WorldWideScience

Sample records for models input parameters

  1. Agricultural and Environmental Input Parameters for the Biosphere Model

    International Nuclear Information System (INIS)

    Kaylie Rasmuson; Kurt Rautenstrauch

    2003-01-01

    This analysis is one of nine technical reports that support the Environmental Radiation Model for Yucca Mountain Nevada (ERMYN) biosphere model. It documents input parameters for the biosphere model, and supports the use of the model to develop Biosphere Dose Conversion Factors (BDCF). The biosphere model is one of a series of process models supporting the Total System Performance Assessment (TSPA) for the repository at Yucca Mountain. The ERMYN provides the TSPA with the capability to perform dose assessments. A graphical representation of the documentation hierarchy for the ERMYN is presented in Figure 1-1. This figure shows the interrelationships between the major activities and their products (the analysis and model reports) that were planned in the biosphere Technical Work Plan (TWP, BSC 2003a). It should be noted that some documents identified in Figure 1-1 may be under development and therefore not available at the time this document is issued. The ''Biosphere Model Report'' (BSC 2003b) describes the ERMYN and its input parameters. This analysis report, ANL-MGR-MD-000006, ''Agricultural and Environmental Input Parameters for the Biosphere Model'', is one of the five reports that develop input parameters for the biosphere model. This report defines and justifies values for twelve parameters required in the biosphere model. These parameters are related to use of contaminated groundwater to grow crops. The parameter values recommended in this report are used in the soil, plant, and carbon-14 submodels of the ERMYN

  2. Agricultural and Environmental Input Parameters for the Biosphere Model

    Energy Technology Data Exchange (ETDEWEB)

    Kaylie Rasmuson; Kurt Rautenstrauch

    2003-06-20

    This analysis is one of nine technical reports that support the Environmental Radiation Model for Yucca Mountain Nevada (ERMYN) biosphere model. It documents input parameters for the biosphere model, and supports the use of the model to develop Biosphere Dose Conversion Factors (BDCF). The biosphere model is one of a series of process models supporting the Total System Performance Assessment (TSPA) for the repository at Yucca Mountain. The ERMYN provides the TSPA with the capability to perform dose assessments. A graphical representation of the documentation hierarchy for the ERMYN is presented in Figure 1-1. This figure shows the interrelationships between the major activities and their products (the analysis and model reports) that were planned in the biosphere Technical Work Plan (TWP, BSC 2003a). It should be noted that some documents identified in Figure 1-1 may be under development and therefore not available at the time this document is issued. The ''Biosphere Model Report'' (BSC 2003b) describes the ERMYN and its input parameters. This analysis report, ANL-MGR-MD-000006, ''Agricultural and Environmental Input Parameters for the Biosphere Model'', is one of the five reports that develop input parameters for the biosphere model. This report defines and justifies values for twelve parameters required in the biosphere model. These parameters are related to use of contaminated groundwater to grow crops. The parameter values recommended in this report are used in the soil, plant, and carbon-14 submodels of the ERMYN.

  3. Agricultural and Environmental Input Parameters for the Biosphere Model

    International Nuclear Information System (INIS)

    K. Rasmuson; K. Rautenstrauch

    2004-01-01

    This analysis is one of 10 technical reports that support the Environmental Radiation Model for Yucca Mountain Nevada (ERMYN) (i.e., the biosphere model). It documents development of agricultural and environmental input parameters for the biosphere model, and supports the use of the model to develop biosphere dose conversion factors (BDCFs). The biosphere model is one of a series of process models supporting the total system performance assessment (TSPA) for the repository at Yucca Mountain. The ERMYN provides the TSPA with the capability to perform dose assessments. A graphical representation of the documentation hierarchy for the ERMYN is presented in Figure 1-1. This figure shows the interrelationships between the major activities and their products (the analysis and model reports) that were planned in ''Technical Work Plan for Biosphere Modeling and Expert Support'' (BSC 2004 [DIRS 169573]). The ''Biosphere Model Report'' (BSC 2004 [DIRS 169460]) describes the ERMYN and its input parameters

  4. Environmental Transport Input Parameters for the Biosphere Model

    Energy Technology Data Exchange (ETDEWEB)

    M. Wasiolek

    2004-09-10

    This analysis report is one of the technical reports documenting the Environmental Radiation Model for Yucca Mountain, Nevada (ERMYN), a biosphere model supporting the total system performance assessment for the license application (TSPA-LA) for the geologic repository at Yucca Mountain. A graphical representation of the documentation hierarchy for the ERMYN is presented in Figure 1-1. This figure shows relationships among the reports developed for biosphere modeling and biosphere abstraction products for the TSPA-LA, as identified in the ''Technical Work Plan for Biosphere Modeling and Expert Support'' (BSC 2004 [DIRS 169573]) (TWP). This figure provides an understanding of how this report contributes to biosphere modeling in support of the license application (LA). This report is one of the five reports that develop input parameter values for the biosphere model. The ''Biosphere Model Report'' (BSC 2004 [DIRS 169460]) describes the conceptual model and the mathematical model. The input parameter reports, shown to the right of the Biosphere Model Report in Figure 1-1, contain detailed description of the model input parameters. The output of this report is used as direct input in the ''Nominal Performance Biosphere Dose Conversion Factor Analysis'' and in the ''Disruptive Event Biosphere Dose Conversion Factor Analysis'' that calculate the values of biosphere dose conversion factors (BDCFs) for the groundwater and volcanic ash exposure scenarios, respectively. The purpose of this analysis was to develop biosphere model parameter values related to radionuclide transport and accumulation in the environment. These parameters support calculations of radionuclide concentrations in the environmental media (e.g., soil, crops, animal products, and air) resulting from a given radionuclide concentration at the source of contamination (i.e., either in groundwater or in volcanic ash). The analysis

  5. Environmental Transport Input Parameters for the Biosphere Model

    International Nuclear Information System (INIS)

    M. Wasiolek

    2004-01-01

    This analysis report is one of the technical reports documenting the Environmental Radiation Model for Yucca Mountain, Nevada (ERMYN), a biosphere model supporting the total system performance assessment for the license application (TSPA-LA) for the geologic repository at Yucca Mountain. A graphical representation of the documentation hierarchy for the ERMYN is presented in Figure 1-1. This figure shows relationships among the reports developed for biosphere modeling and biosphere abstraction products for the TSPA-LA, as identified in the ''Technical Work Plan for Biosphere Modeling and Expert Support'' (BSC 2004 [DIRS 169573]) (TWP). This figure provides an understanding of how this report contributes to biosphere modeling in support of the license application (LA). This report is one of the five reports that develop input parameter values for the biosphere model. The ''Biosphere Model Report'' (BSC 2004 [DIRS 169460]) describes the conceptual model and the mathematical model. The input parameter reports, shown to the right of the Biosphere Model Report in Figure 1-1, contain detailed description of the model input parameters. The output of this report is used as direct input in the ''Nominal Performance Biosphere Dose Conversion Factor Analysis'' and in the ''Disruptive Event Biosphere Dose Conversion Factor Analysis'' that calculate the values of biosphere dose conversion factors (BDCFs) for the groundwater and volcanic ash exposure scenarios, respectively. The purpose of this analysis was to develop biosphere model parameter values related to radionuclide transport and accumulation in the environment. These parameters support calculations of radionuclide concentrations in the environmental media (e.g., soil, crops, animal products, and air) resulting from a given radionuclide concentration at the source of contamination (i.e., either in groundwater or in volcanic ash). The analysis was performed in accordance with the TWP (BSC 2004 [DIRS 169573])

  6. Inhalation Exposure Input Parameters for the Biosphere Model

    Energy Technology Data Exchange (ETDEWEB)

    K. Rautenstrauch

    2004-09-10

    This analysis is one of 10 reports that support the Environmental Radiation Model for Yucca Mountain, Nevada (ERMYN) biosphere model. The ''Biosphere Model Report'' (BSC 2004 [DIRS 169460]) describes in detail the conceptual model as well as the mathematical model and its input parameters. This report documents development of input parameters for the biosphere model that are related to atmospheric mass loading and supports the use of the model to develop biosphere dose conversion factors (BDCFs). The biosphere model is one of a series of process models supporting the total system performance assessment (TSPA) for a Yucca Mountain repository. Inhalation Exposure Input Parameters for the Biosphere Model is one of five reports that develop input parameters for the biosphere model. A graphical representation of the documentation hierarchy for the ERMYN is presented in Figure 1-1. This figure shows the interrelationships among the products (i.e., analysis and model reports) developed for biosphere modeling, and the plan for development of the biosphere abstraction products for TSPA, as identified in the Technical Work Plan for Biosphere Modeling and Expert Support (BSC 2004 [DIRS 169573]). This analysis report defines and justifies values of mass loading for the biosphere model. Mass loading is the total mass concentration of resuspended particles (e.g., dust, ash) in a volume of air. Mass loading values are used in the air submodel of ERMYN to calculate concentrations of radionuclides in air inhaled by a receptor and concentrations in air surrounding crops. Concentrations in air to which the receptor is exposed are then used in the inhalation submodel to calculate the dose contribution to the receptor from inhalation of contaminated airborne particles. Concentrations in air surrounding plants are used in the plant submodel to calculate the concentrations of radionuclides in foodstuffs contributed from uptake by foliar interception.

  7. Inhalation Exposure Input Parameters for the Biosphere Model

    International Nuclear Information System (INIS)

    K. Rautenstrauch

    2004-01-01

    This analysis is one of 10 reports that support the Environmental Radiation Model for Yucca Mountain, Nevada (ERMYN) biosphere model. The ''Biosphere Model Report'' (BSC 2004 [DIRS 169460]) describes in detail the conceptual model as well as the mathematical model and its input parameters. This report documents development of input parameters for the biosphere model that are related to atmospheric mass loading and supports the use of the model to develop biosphere dose conversion factors (BDCFs). The biosphere model is one of a series of process models supporting the total system performance assessment (TSPA) for a Yucca Mountain repository. Inhalation Exposure Input Parameters for the Biosphere Model is one of five reports that develop input parameters for the biosphere model. A graphical representation of the documentation hierarchy for the ERMYN is presented in Figure 1-1. This figure shows the interrelationships among the products (i.e., analysis and model reports) developed for biosphere modeling, and the plan for development of the biosphere abstraction products for TSPA, as identified in the Technical Work Plan for Biosphere Modeling and Expert Support (BSC 2004 [DIRS 169573]). This analysis report defines and justifies values of mass loading for the biosphere model. Mass loading is the total mass concentration of resuspended particles (e.g., dust, ash) in a volume of air. Mass loading values are used in the air submodel of ERMYN to calculate concentrations of radionuclides in air inhaled by a receptor and concentrations in air surrounding crops. Concentrations in air to which the receptor is exposed are then used in the inhalation submodel to calculate the dose contribution to the receptor from inhalation of contaminated airborne particles. Concentrations in air surrounding plants are used in the plant submodel to calculate the concentrations of radionuclides in foodstuffs contributed from uptake by foliar interception

  8. Key processes and input parameters for environmental tritium models

    International Nuclear Information System (INIS)

    Bunnenberg, C.; Taschner, M.; Ogram, G.L.

    1994-01-01

    The primary objective of the work reported here is to define key processes and input parameters for mathematical models of environmental tritium behaviour adequate for use in safety analysis and licensing of fusion devices like NET and associated tritium handling facilities. (author). 45 refs., 3 figs

  9. Key processes and input parameters for environmental tritium models

    Energy Technology Data Exchange (ETDEWEB)

    Bunnenberg, C; Taschner, M [Niedersaechsisches Inst. fuer Radiooekologie, Hannover (Germany); Ogram, G L [Ontario Hydro, Toronto, ON (Canada)

    1994-12-31

    The primary objective of the work reported here is to define key processes and input parameters for mathematical models of environmental tritium behaviour adequate for use in safety analysis and licensing of fusion devices like NET and associated tritium handling facilities. (author). 45 refs., 3 figs.

  10. Investigation of RADTRAN Stop Model input parameters for truck stops

    International Nuclear Information System (INIS)

    Griego, N.R.; Smith, J.D.; Neuhauser, K.S.

    1996-01-01

    RADTRAN is a computer code for estimating the risks and consequences as transport of radioactive materials (RAM). RADTRAN was developed and is maintained by Sandia National Laboratories for the US Department of Energy (DOE). For incident-free transportation, the dose to persons exposed while the shipment is stopped is frequently a major percentage of the overall dose. This dose is referred to as Stop Dose and is calculated by the Stop Model. Because stop dose is a significant portion of the overall dose associated with RAM transport, the values used as input for the Stop Model are important. Therefore, an investigation of typical values for RADTRAN Stop Parameters for truck stops was performed. The resulting data from these investigations were analyzed to provide mean values, standard deviations, and histograms. Hence, the mean values can be used when an analyst does not have a basis for selecting other input values for the Stop Model. In addition, the histograms and their characteristics can be used to guide statistical sampling techniques to measure sensitivity of the RADTRAN calculated Stop Dose to the uncertainties in the stop model input parameters. This paper discusses the details and presents the results of the investigation of stop model input parameters at truck stops

  11. Inhalation Exposure Input Parameters for the Biosphere Model

    Energy Technology Data Exchange (ETDEWEB)

    M. Wasiolek

    2006-06-05

    This analysis is one of the technical reports that support the Environmental Radiation Model for Yucca Mountain, Nevada (ERMYN), referred to in this report as the biosphere model. ''Biosphere Model Report'' (BSC 2004 [DIRS 169460]) describes in detail the conceptual model as well as the mathematical model and its input parameters. This report documents development of input parameters for the biosphere model that are related to atmospheric mass loading and supports the use of the model to develop biosphere dose conversion factors (BDCFs). The biosphere model is one of a series of process models supporting the total system performance assessment (TSPA) for a Yucca Mountain repository. ''Inhalation Exposure Input Parameters for the Biosphere Model'' is one of five reports that develop input parameters for the biosphere model. A graphical representation of the documentation hierarchy for the biosphere model is presented in Figure 1-1 (based on BSC 2006 [DIRS 176938]). This figure shows the interrelationships among the products (i.e., analysis and model reports) developed for biosphere modeling and how this analysis report contributes to biosphere modeling. This analysis report defines and justifies values of atmospheric mass loading for the biosphere model. Mass loading is the total mass concentration of resuspended particles (e.g., dust, ash) in a volume of air. Mass loading values are used in the air submodel of the biosphere model to calculate concentrations of radionuclides in air inhaled by a receptor and concentrations in air surrounding crops. Concentrations in air to which the receptor is exposed are then used in the inhalation submodel to calculate the dose contribution to the receptor from inhalation of contaminated airborne particles. Concentrations in air surrounding plants are used in the plant submodel to calculate the concentrations of radionuclides in foodstuffs contributed from uptake by foliar interception. This

  12. Inhalation Exposure Input Parameters for the Biosphere Model

    International Nuclear Information System (INIS)

    M. Wasiolek

    2006-01-01

    This analysis is one of the technical reports that support the Environmental Radiation Model for Yucca Mountain, Nevada (ERMYN), referred to in this report as the biosphere model. ''Biosphere Model Report'' (BSC 2004 [DIRS 169460]) describes in detail the conceptual model as well as the mathematical model and its input parameters. This report documents development of input parameters for the biosphere model that are related to atmospheric mass loading and supports the use of the model to develop biosphere dose conversion factors (BDCFs). The biosphere model is one of a series of process models supporting the total system performance assessment (TSPA) for a Yucca Mountain repository. ''Inhalation Exposure Input Parameters for the Biosphere Model'' is one of five reports that develop input parameters for the biosphere model. A graphical representation of the documentation hierarchy for the biosphere model is presented in Figure 1-1 (based on BSC 2006 [DIRS 176938]). This figure shows the interrelationships among the products (i.e., analysis and model reports) developed for biosphere modeling and how this analysis report contributes to biosphere modeling. This analysis report defines and justifies values of atmospheric mass loading for the biosphere model. Mass loading is the total mass concentration of resuspended particles (e.g., dust, ash) in a volume of air. Mass loading values are used in the air submodel of the biosphere model to calculate concentrations of radionuclides in air inhaled by a receptor and concentrations in air surrounding crops. Concentrations in air to which the receptor is exposed are then used in the inhalation submodel to calculate the dose contribution to the receptor from inhalation of contaminated airborne particles. Concentrations in air surrounding plants are used in the plant submodel to calculate the concentrations of radionuclides in foodstuffs contributed from uptake by foliar interception. This report is concerned primarily with the

  13. Soil-related Input Parameters for the Biosphere Model

    International Nuclear Information System (INIS)

    A. J. Smith

    2003-01-01

    This analysis is one of the technical reports containing documentation of the Environmental Radiation Model for Yucca Mountain Nevada (ERMYN), a biosphere model supporting the Total System Performance Assessment (TSPA) for the geologic repository at Yucca Mountain. The biosphere model is one of a series of process models supporting the Total System Performance Assessment (TSPA) for the Yucca Mountain repository. A graphical representation of the documentation hierarchy for the ERMYN biosphere model is presented in Figure 1-1. This figure shows the interrelationships among the products (i.e., analysis and model reports) developed for biosphere modeling, and the plan for development of the biosphere abstraction products for TSPA, as identified in the ''Technical Work Plan: for Biosphere Modeling and Expert Support'' (BSC 2003 [163602]). It should be noted that some documents identified in Figure 1-1 may be under development at the time this report is issued and therefore not available. This figure is included to provide an understanding of how this analysis report contributes to biosphere modeling in support of the license application, and is not intended to imply that access to the listed documents is required to understand the contents of this report. This report, ''Soil Related Input Parameters for the Biosphere Model'', is one of the five analysis reports that develop input parameters for use in the ERMYN model. This report is the source documentation for the six biosphere parameters identified in Table 1-1. ''The Biosphere Model Report'' (BSC 2003 [160699]) describes in detail the conceptual model as well as the mathematical model and its input parameters. The purpose of this analysis was to develop the biosphere model parameters needed to evaluate doses from pathways associated with the accumulation and depletion of radionuclides in the soil. These parameters support the calculation of radionuclide concentrations in soil from on-going irrigation and ash

  14. Inhalation Exposure Input Parameters for the Biosphere Model

    Energy Technology Data Exchange (ETDEWEB)

    M. A. Wasiolek

    2003-09-24

    This analysis is one of the nine reports that support the Environmental Radiation Model for Yucca Mountain Nevada (ERMYN) biosphere model. The ''Biosphere Model Report'' (BSC 2003a) describes in detail the conceptual model as well as the mathematical model and its input parameters. This report documents a set of input parameters for the biosphere model, and supports the use of the model to develop biosphere dose conversion factors (BDCFs). The biosphere model is one of a series of process models supporting the Total System Performance Assessment (TSPA) for a Yucca Mountain repository. This report, ''Inhalation Exposure Input Parameters for the Biosphere Model'', is one of the five reports that develop input parameters for the biosphere model. A graphical representation of the documentation hierarchy for the ERMYN is presented in Figure 1-1. This figure shows the interrelationships among the products (i.e., analysis and model reports) developed for biosphere modeling, and the plan for development of the biosphere abstraction products for TSPA, as identified in the ''Technical Work Plan: for Biosphere Modeling and Expert Support'' (BSC 2003b). It should be noted that some documents identified in Figure 1-1 may be under development at the time this report is issued and therefore not available at that time. This figure is included to provide an understanding of how this analysis report contributes to biosphere modeling in support of the license application, and is not intended to imply that access to the listed documents is required to understand the contents of this analysis report. This analysis report defines and justifies values of mass loading, which is the total mass concentration of resuspended particles (e.g., dust, ash) in a volume of air. Measurements of mass loading are used in the air submodel of ERMYN to calculate concentrations of radionuclides in air surrounding crops and concentrations in air

  15. Inhalation Exposure Input Parameters for the Biosphere Model

    International Nuclear Information System (INIS)

    M. A. Wasiolek

    2003-01-01

    This analysis is one of the nine reports that support the Environmental Radiation Model for Yucca Mountain Nevada (ERMYN) biosphere model. The ''Biosphere Model Report'' (BSC 2003a) describes in detail the conceptual model as well as the mathematical model and its input parameters. This report documents a set of input parameters for the biosphere model, and supports the use of the model to develop biosphere dose conversion factors (BDCFs). The biosphere model is one of a series of process models supporting the Total System Performance Assessment (TSPA) for a Yucca Mountain repository. This report, ''Inhalation Exposure Input Parameters for the Biosphere Model'', is one of the five reports that develop input parameters for the biosphere model. A graphical representation of the documentation hierarchy for the ERMYN is presented in Figure 1-1. This figure shows the interrelationships among the products (i.e., analysis and model reports) developed for biosphere modeling, and the plan for development of the biosphere abstraction products for TSPA, as identified in the ''Technical Work Plan: for Biosphere Modeling and Expert Support'' (BSC 2003b). It should be noted that some documents identified in Figure 1-1 may be under development at the time this report is issued and therefore not available at that time. This figure is included to provide an understanding of how this analysis report contributes to biosphere modeling in support of the license application, and is not intended to imply that access to the listed documents is required to understand the contents of this analysis report. This analysis report defines and justifies values of mass loading, which is the total mass concentration of resuspended particles (e.g., dust, ash) in a volume of air. Measurements of mass loading are used in the air submodel of ERMYN to calculate concentrations of radionuclides in air surrounding crops and concentrations in air inhaled by a receptor. Concentrations in air to which the

  16. Agricultural and Environmental Input Parameters for the Biosphere Model

    Energy Technology Data Exchange (ETDEWEB)

    K. Rasmuson; K. Rautenstrauch

    2004-09-14

    This analysis is one of 10 technical reports that support the Environmental Radiation Model for Yucca Mountain Nevada (ERMYN) (i.e., the biosphere model). It documents development of agricultural and environmental input parameters for the biosphere model, and supports the use of the model to develop biosphere dose conversion factors (BDCFs). The biosphere model is one of a series of process models supporting the total system performance assessment (TSPA) for the repository at Yucca Mountain. The ERMYN provides the TSPA with the capability to perform dose assessments. A graphical representation of the documentation hierarchy for the ERMYN is presented in Figure 1-1. This figure shows the interrelationships between the major activities and their products (the analysis and model reports) that were planned in ''Technical Work Plan for Biosphere Modeling and Expert Support'' (BSC 2004 [DIRS 169573]). The ''Biosphere Model Report'' (BSC 2004 [DIRS 169460]) describes the ERMYN and its input parameters.

  17. Environmental Transport Input Parameters for the Biosphere Model

    International Nuclear Information System (INIS)

    Wasiolek, M. A.

    2003-01-01

    This analysis report is one of the technical reports documenting the Environmental Radiation Model for Yucca Mountain Nevada (ERMYN), a biosphere model supporting the total system performance assessment (TSPA) for the geologic repository at Yucca Mountain. A graphical representation of the documentation hierarchy for the ERMYN is presented in Figure 1-1. This figure shows relationships among the reports developed for biosphere modeling and biosphere abstraction products for the TSPA, as identified in the ''Technical Work Plan: for Biosphere Modeling and Expert Support'' (TWP) (BSC 2003 [163602]). Some documents in Figure 1-1 may be under development and not available when this report is issued. This figure provides an understanding of how this report contributes to biosphere modeling in support of the license application (LA), but access to the listed documents is not required to understand the contents of this report. This report is one of the reports that develops input parameter values for the biosphere model. The ''Biosphere Model Report'' (BSC 2003 [160699]) describes the conceptual model, the mathematical model, and the input parameters. The purpose of this analysis is to develop biosphere model parameter values related to radionuclide transport and accumulation in the environment. These parameters support calculations of radionuclide concentrations in the environmental media (e.g., soil, crops, animal products, and air) resulting from a given radionuclide concentration at the source of contamination (i.e., either in groundwater or volcanic ash). The analysis was performed in accordance with the TWP (BSC 2003 [163602]). This analysis develops values of parameters associated with many features, events, and processes (FEPs) applicable to the reference biosphere (DTN: M00303SEPFEPS2.000 [162452]), which are addressed in the biosphere model (BSC 2003 [160699]). The treatment of these FEPs is described in BSC (2003 [160699], Section 6.2). Parameter values

  18. Environmental Transport Input Parameters for the Biosphere Model

    Energy Technology Data Exchange (ETDEWEB)

    M. A. Wasiolek

    2003-06-27

    This analysis report is one of the technical reports documenting the Environmental Radiation Model for Yucca Mountain Nevada (ERMYN), a biosphere model supporting the total system performance assessment (TSPA) for the geologic repository at Yucca Mountain. A graphical representation of the documentation hierarchy for the ERMYN is presented in Figure 1-1. This figure shows relationships among the reports developed for biosphere modeling and biosphere abstraction products for the TSPA, as identified in the ''Technical Work Plan: for Biosphere Modeling and Expert Support'' (TWP) (BSC 2003 [163602]). Some documents in Figure 1-1 may be under development and not available when this report is issued. This figure provides an understanding of how this report contributes to biosphere modeling in support of the license application (LA), but access to the listed documents is not required to understand the contents of this report. This report is one of the reports that develops input parameter values for the biosphere model. The ''Biosphere Model Report'' (BSC 2003 [160699]) describes the conceptual model, the mathematical model, and the input parameters. The purpose of this analysis is to develop biosphere model parameter values related to radionuclide transport and accumulation in the environment. These parameters support calculations of radionuclide concentrations in the environmental media (e.g., soil, crops, animal products, and air) resulting from a given radionuclide concentration at the source of contamination (i.e., either in groundwater or volcanic ash). The analysis was performed in accordance with the TWP (BSC 2003 [163602]). This analysis develops values of parameters associated with many features, events, and processes (FEPs) applicable to the reference biosphere (DTN: M00303SEPFEPS2.000 [162452]), which are addressed in the biosphere model (BSC 2003 [160699]). The treatment of these FEPs is described in BSC (2003 [160699

  19. Soil-Related Input Parameters for the Biosphere Model

    International Nuclear Information System (INIS)

    Smith, A. J.

    2004-01-01

    This report presents one of the analyses that support the Environmental Radiation Model for Yucca Mountain Nevada (ERMYN). The ''Biosphere Model Report'' (BSC 2004 [DIRS 169460]) describes the details of the conceptual model as well as the mathematical model and the required input parameters. The biosphere model is one of a series of process models supporting the postclosure Total System Performance Assessment (TSPA) for the Yucca Mountain repository. A schematic representation of the documentation flow for the Biosphere input to TSPA is presented in Figure 1-1. This figure shows the evolutionary relationships among the products (i.e., analysis and model reports) developed for biosphere modeling, and the biosphere abstraction products for TSPA, as identified in the ''Technical Work Plan for Biosphere Modeling and Expert Support'' (TWP) (BSC 2004 [DIRS 169573]). This figure is included to provide an understanding of how this analysis report contributes to biosphere modeling in support of the license application, and is not intended to imply that access to the listed documents is required to understand the contents of this report. This report, ''Soil-Related Input Parameters for the Biosphere Model'', is one of the five analysis reports that develop input parameters for use in the ERMYN model. This report is the source documentation for the six biosphere parameters identified in Table 1-1. The purpose of this analysis was to develop the biosphere model parameters associated with the accumulation and depletion of radionuclides in the soil. These parameters support the calculation of radionuclide concentrations in soil from on-going irrigation or ash deposition and, as a direct consequence, radionuclide concentration in other environmental media that are affected by radionuclide concentrations in soil. The analysis was performed in accordance with the TWP (BSC 2004 [DIRS 169573]) where the governing procedure was defined as AP-SIII.9Q, ''Scientific Analyses''. This

  20. Soil-Related Input Parameters for the Biosphere Model

    Energy Technology Data Exchange (ETDEWEB)

    A. J. Smith

    2004-09-09

    This report presents one of the analyses that support the Environmental Radiation Model for Yucca Mountain Nevada (ERMYN). The ''Biosphere Model Report'' (BSC 2004 [DIRS 169460]) describes the details of the conceptual model as well as the mathematical model and the required input parameters. The biosphere model is one of a series of process models supporting the postclosure Total System Performance Assessment (TSPA) for the Yucca Mountain repository. A schematic representation of the documentation flow for the Biosphere input to TSPA is presented in Figure 1-1. This figure shows the evolutionary relationships among the products (i.e., analysis and model reports) developed for biosphere modeling, and the biosphere abstraction products for TSPA, as identified in the ''Technical Work Plan for Biosphere Modeling and Expert Support'' (TWP) (BSC 2004 [DIRS 169573]). This figure is included to provide an understanding of how this analysis report contributes to biosphere modeling in support of the license application, and is not intended to imply that access to the listed documents is required to understand the contents of this report. This report, ''Soil-Related Input Parameters for the Biosphere Model'', is one of the five analysis reports that develop input parameters for use in the ERMYN model. This report is the source documentation for the six biosphere parameters identified in Table 1-1. The purpose of this analysis was to develop the biosphere model parameters associated with the accumulation and depletion of radionuclides in the soil. These parameters support the calculation of radionuclide concentrations in soil from on-going irrigation or ash deposition and, as a direct consequence, radionuclide concentration in other environmental media that are affected by radionuclide concentrations in soil. The analysis was performed in accordance with the TWP (BSC 2004 [DIRS 169573]) where the governing procedure

  1. Influential input parameters for reflood model of MARS code

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Deog Yeon; Bang, Young Seok [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2012-10-15

    Best Estimate (BE) calculation has been more broadly used in nuclear industries and regulations to reduce the significant conservatism for evaluating Loss of Coolant Accident (LOCA). Reflood model has been identified as one of the problems in BE calculation. The objective of the Post BEMUSE Reflood Model Input Uncertainty Methods (PREMIUM) program of OECD/NEA is to make progress the issue of the quantification of the uncertainty of the physical models in system thermal hydraulic codes, by considering an experimental result especially for reflood. It is important to establish a methodology to identify and select the parameters influential to the response of reflood phenomena following Large Break LOCA. For this aspect, a reference calculation and sensitivity analysis to select the dominant influential parameters for FEBA experiment are performed.

  2. Assigning probability distributions to input parameters of performance assessment models

    Energy Technology Data Exchange (ETDEWEB)

    Mishra, Srikanta [INTERA Inc., Austin, TX (United States)

    2002-02-01

    This study presents an overview of various approaches for assigning probability distributions to input parameters and/or future states of performance assessment models. Specifically,three broad approaches are discussed for developing input distributions: (a) fitting continuous distributions to data, (b) subjective assessment of probabilities, and (c) Bayesian updating of prior knowledge based on new information. The report begins with a summary of the nature of data and distributions, followed by a discussion of several common theoretical parametric models for characterizing distributions. Next, various techniques are presented for fitting continuous distributions to data. These include probability plotting, method of moments, maximum likelihood estimation and nonlinear least squares analysis. The techniques are demonstrated using data from a recent performance assessment study for the Yucca Mountain project. Goodness of fit techniques are also discussed, followed by an overview of how distribution fitting is accomplished in commercial software packages. The issue of subjective assessment of probabilities is dealt with in terms of the maximum entropy distribution selection approach, as well as some common rules for codifying informal expert judgment. Formal expert elicitation protocols are discussed next, and are based primarily on the guidance provided by the US NRC. The Bayesian framework for updating prior distributions (beliefs) when new information becomes available is discussed. A simple numerical approach is presented for facilitating practical applications of the Bayes theorem. Finally, a systematic framework for assigning distributions is presented: (a) for the situation where enough data are available to define an empirical CDF or fit a parametric model to the data, and (b) to deal with the situation where only a limited amount of information is available.

  3. Assigning probability distributions to input parameters of performance assessment models

    International Nuclear Information System (INIS)

    Mishra, Srikanta

    2002-02-01

    This study presents an overview of various approaches for assigning probability distributions to input parameters and/or future states of performance assessment models. Specifically,three broad approaches are discussed for developing input distributions: (a) fitting continuous distributions to data, (b) subjective assessment of probabilities, and (c) Bayesian updating of prior knowledge based on new information. The report begins with a summary of the nature of data and distributions, followed by a discussion of several common theoretical parametric models for characterizing distributions. Next, various techniques are presented for fitting continuous distributions to data. These include probability plotting, method of moments, maximum likelihood estimation and nonlinear least squares analysis. The techniques are demonstrated using data from a recent performance assessment study for the Yucca Mountain project. Goodness of fit techniques are also discussed, followed by an overview of how distribution fitting is accomplished in commercial software packages. The issue of subjective assessment of probabilities is dealt with in terms of the maximum entropy distribution selection approach, as well as some common rules for codifying informal expert judgment. Formal expert elicitation protocols are discussed next, and are based primarily on the guidance provided by the US NRC. The Bayesian framework for updating prior distributions (beliefs) when new information becomes available is discussed. A simple numerical approach is presented for facilitating practical applications of the Bayes theorem. Finally, a systematic framework for assigning distributions is presented: (a) for the situation where enough data are available to define an empirical CDF or fit a parametric model to the data, and (b) to deal with the situation where only a limited amount of information is available

  4. An improved robust model predictive control for linear parameter-varying input-output models

    NARCIS (Netherlands)

    Abbas, H.S.; Hanema, J.; Tóth, R.; Mohammadpour, J.; Meskin, N.

    2018-01-01

    This paper describes a new robust model predictive control (MPC) scheme to control the discrete-time linear parameter-varying input-output models subject to input and output constraints. Closed-loop asymptotic stability is guaranteed by including a quadratic terminal cost and an ellipsoidal terminal

  5. Sensitivity Analysis of Input Parameters for a Dynamic Food Chain Model DYNACON

    International Nuclear Information System (INIS)

    Hwang, Won Tae; Lee, Geun Chang; Han, Moon Hee; Cho, Gyu Seong

    2000-01-01

    The sensitivity analysis of input parameters for a dynamic food chain model DYNACON was conducted as a function of deposition data for the long-lived radionuclides ( 137 Cs, 90 Sr). Also, the influence of input parameters for the short and long-terms contamination of selected foodstuffs (cereals, leafy vegetables, milk) was investigated. The input parameters were sampled using the LHS technique, and their sensitivity indices represented as PRCC. The sensitivity index was strongly dependent on contamination period as well as deposition data. In case of deposition during the growing stages of plants, the input parameters associated with contamination by foliar absorption were relatively important in long-term contamination as well as short-term contamination. They were also important in short-term contamination in case of deposition during the non-growing stages. In long-term contamination, the influence of input parameters associated with foliar absorption decreased, while the influence of input parameters associated with root uptake increased. These phenomena were more remarkable in case of the deposition of non-growing stages than growing stages, and in case of 90 Sr deposition than 137 Cs deposition. In case of deposition during growing stages of pasture, the input parameters associated with the characteristics of cattle such as feed-milk transfer factor and daily intake rate of cattle were relatively important in contamination of milk

  6. Statistical Analysis of Input Parameters Impact on the Modelling of Underground Structures

    Directory of Open Access Journals (Sweden)

    M. Hilar

    2008-01-01

    Full Text Available The behaviour of a geomechanical model and its final results are strongly affected by the input parameters. As the inherent variability of rock mass is difficult to model, engineers are frequently forced to face the question “Which input values should be used for analyses?” The correct answer to such a question requires a probabilistic approach, considering the uncertainty of site investigations and variation in the ground. This paper describes the statistical analysis of input parameters for FEM calculations of traffic tunnels in the city of Prague. At the beginning of the paper, the inaccuracy in the geotechnical modelling is discussed. In the following part the Fuzzy techniques are summarized, including information about an application of the Fuzzy arithmetic on the shotcrete parameters. The next part of the paper is focused on the stochastic simulation – Monte Carlo Simulation is briefly described, Latin Hypercubes method is described more in details. At the end several practical examples are described: statistical analysis of the input parameters on the numerical modelling of the completed Mrázovka tunnel (profile West Tunnel Tube km 5.160 and modelling of the constructed tunnel Špejchar – Pelc Tyrolka. 

  7. Post-BEMUSE Reflood Model Input Uncertainty Methods (PREMIUM) Benchmark Phase II: Identification of Influential Parameters

    International Nuclear Information System (INIS)

    Kovtonyuk, A.; Petruzzi, A.; D'Auria, F.

    2015-01-01

    The objective of the Post-BEMUSE Reflood Model Input Uncertainty Methods (PREMIUM) benchmark is to progress on the issue of the quantification of the uncertainty of the physical models in system thermal-hydraulic codes by considering a concrete case: the physical models involved in the prediction of core reflooding. The PREMIUM benchmark consists of five phases. This report presents the results of Phase II dedicated to the identification of the uncertain code parameters associated with physical models used in the simulation of reflooding conditions. This identification is made on the basis of the Test 216 of the FEBA/SEFLEX programme according to the following steps: - identification of influential phenomena; - identification of the associated physical models and parameters, depending on the used code; - quantification of the variation range of identified input parameters through a series of sensitivity calculations. A procedure for the identification of potentially influential code input parameters has been set up in the Specifications of Phase II of PREMIUM benchmark. A set of quantitative criteria has been as well proposed for the identification of influential IP and their respective variation range. Thirteen participating organisations, using 8 different codes (7 system thermal-hydraulic codes and 1 sub-channel module of a system thermal-hydraulic code) submitted Phase II results. The base case calculations show spread in predicted cladding temperatures and quench front propagation that has been characterized. All the participants, except one, predict a too fast quench front progression. Besides, the cladding temperature time trends obtained by almost all the participants show oscillatory behaviour which may have numeric origins. Adopted criteria for identification of influential input parameters differ between the participants: some organisations used the set of criteria proposed in Specifications 'as is', some modified the quantitative thresholds

  8. On the relationship between input parameters in two-mass vocal-fold model with acoustical coupling an signal parameters of the glottal flow

    NARCIS (Netherlands)

    van Hirtum, Annemie; Lopez, Ines; Hirschberg, Abraham; Pelorson, Xavier

    2003-01-01

    In this paper the sensitivity of the two-mass model with acoustical coupling to the model input-parameters is assessed. The model-output or the glottal volume air flow is characterised by signal-parameters in the time-domain. The influence of changing input-parameters on the signal-parameters is

  9. On the relationship between input parameters in the two-mass vocal-fold model with acoustical coupling and signal parameters of the glottal flow

    NARCIS (Netherlands)

    Hirtum, van A.; Lopez Arteaga, I.; Hirschberg, A.; Pelorson, X.

    2003-01-01

    In this paper the sensitivity of the two-mass model with acoustical coupling to the model input-parameters is assessed. The model-output or the glottal volume air flow is characterised by signal-parameters in the time-domain. The influence of changing input-parameters on the signal-parameters is

  10. Investigations of the sensitivity of a coronal mass ejection model (ENLIL) to solar input parameters

    DEFF Research Database (Denmark)

    Falkenberg, Thea Vilstrup; Vršnak, B.; Taktakishvili, A.

    2010-01-01

    Understanding space weather is not only important for satellite operations and human exploration of the solar system but also to phenomena here on Earth that may potentially disturb and disrupt electrical signals. Some of the most violent space weather effects are caused by coronal mass ejections...... (CMEs), but in order to predict the caused effects, we need to be able to model their propagation from their origin in the solar corona to the point of interest, e.g., Earth. Many such models exist, but to understand the models in detail we must understand the primary input parameters. Here we...... investigate the parameter space of the ENLILv2.5b model using the CME event of 25 July 2004. ENLIL is a time‐dependent 3‐D MHD model that can simulate the propagation of cone‐shaped interplanetary coronal mass ejections (ICMEs) through the solar system. Excepting the cone parameters (radius, position...

  11. A New Ensemble of Perturbed-Input-Parameter Simulations by the Community Atmosphere Model

    Energy Technology Data Exchange (ETDEWEB)

    Covey, C; Brandon, S; Bremer, P T; Domyancis, D; Garaizar, X; Johannesson, G; Klein, R; Klein, S A; Lucas, D D; Tannahill, J; Zhang, Y

    2011-10-27

    Uncertainty quantification (UQ) is a fundamental challenge in the numerical simulation of Earth's weather and climate, and other complex systems. It entails much more than attaching defensible error bars to predictions: in particular it includes assessing low-probability but high-consequence events. To achieve these goals with models containing a large number of uncertain input parameters, structural uncertainties, etc., raw computational power is needed. An automated, self-adapting search of the possible model configurations is also useful. Our UQ initiative at the Lawrence Livermore National Laboratory has produced the most extensive set to date of simulations from the US Community Atmosphere Model. We are examining output from about 3,000 twelve-year climate simulations generated with a specialized UQ software framework, and assessing the model's accuracy as a function of 21 to 28 uncertain input parameter values. Most of the input parameters we vary are related to the boundary layer, clouds, and other sub-grid scale processes. Our simulations prescribe surface boundary conditions (sea surface temperatures and sea ice amounts) to match recent observations. Fully searching this 21+ dimensional space is impossible, but sensitivity and ranking algorithms can identify input parameters having relatively little effect on a variety of output fields, either individually or in nonlinear combination. Bayesian statistical constraints, employing a variety of climate observations as metrics, also seem promising. Observational constraints will be important in the next step of our project, which will compute sea surface temperatures and sea ice interactively, and will study climate change due to increasing atmospheric carbon dioxide.

  12. Input Uncertainty and its Implications on Parameter Assessment in Hydrologic and Hydroclimatic Modelling Studies

    Science.gov (United States)

    Chowdhury, S.; Sharma, A.

    2005-12-01

    Hydrological model inputs are often derived from measurements at point locations taken at discrete time steps. The nature of uncertainty associated with such inputs is thus a function of the quality and number of measurements available in time. A change in these characteristics (such as a change in the number of rain-gauge inputs used to derive spatially averaged rainfall) results in inhomogeneity in the associated distributional profile. Ignoring such uncertainty can lead to models that aim to simulate based on the observed input variable instead of the true measurement, resulting in a biased representation of the underlying system dynamics as well as an increase in both bias and the predictive uncertainty in simulations. This is especially true of cases where the nature of uncertainty likely in the future is significantly different to that in the past. Possible examples include situations where the accuracy of the catchment averaged rainfall has increased substantially due to an increase in the rain-gauge density, or accuracy of climatic observations (such as sea surface temperatures) increased due to the use of more accurate remote sensing technologies. We introduce here a method to ascertain the true value of parameters in the presence of additive uncertainty in model inputs. This method, known as SIMulation EXtrapolation (SIMEX, [Cook, 1994]) operates on the basis of an empirical relationship between parameters and the level of additive input noise (or uncertainty). The method starts with generating a series of alternate realisations of model inputs by artificially adding white noise in increasing multiples of the known error variance. The alternate realisations lead to alternate sets of parameters that are increasingly biased with respect to the truth due to the increased variability in the inputs. Once several such realisations have been drawn, one is able to formulate an empirical relationship between the parameter values and the level of additive noise

  13. On Input Vector Representation for the SVR model of Reactor Core Loading Pattern Critical Parameters

    International Nuclear Information System (INIS)

    Trontl, K.; Pevec, D.; Smuc, T.

    2008-01-01

    Determination and optimization of reactor core loading pattern is an important factor in nuclear power plant operation. The goal is to minimize the amount of enriched uranium (fresh fuel) and burnable absorbers placed in the core, while maintaining nuclear power plant operational and safety characteristics. The usual approach to loading pattern optimization involves high degree of engineering judgment, a set of heuristic rules, an optimization algorithm and a computer code used for evaluating proposed loading patterns. The speed of the optimization process is highly dependent on the computer code used for the evaluation. Recently, we proposed a new method for fast loading pattern evaluation based on general robust regression model relying on the state of the art research in the field of machine learning. We employed Support Vector Regression (SVR) technique. SVR is a supervised learning method in which model parameters are automatically determined by solving a quadratic optimization problem. The preliminary tests revealed a good potential of the SVR method application for fast and accurate reactor core loading pattern evaluation. However, some aspects of model development are still unresolved. The main objective of the work reported in this paper was to conduct additional tests and analyses required for full clarification of the SVR applicability for loading pattern evaluation. We focused our attention on the parameters defining input vector, primarily its structure and complexity, and parameters defining kernel functions. All the tests were conducted on the NPP Krsko reactor core, using MCRAC code for the calculation of reactor core loading pattern critical parameters. The tested input vector structures did not influence the accuracy of the models suggesting that the initially tested input vector, consisted of the number of IFBAs and the k-inf at the beginning of the cycle, is adequate. The influence of kernel function specific parameters (σ for RBF kernel

  14. Modelling pesticide leaching under climate change: parameter vs. climate input uncertainty

    Directory of Open Access Journals (Sweden)

    K. Steffens

    2014-02-01

    Full Text Available Assessing climate change impacts on pesticide leaching requires careful consideration of different sources of uncertainty. We investigated the uncertainty related to climate scenario input and its importance relative to parameter uncertainty of the pesticide leaching model. The pesticide fate model MACRO was calibrated against a comprehensive one-year field data set for a well-structured clay soil in south-western Sweden. We obtained an ensemble of 56 acceptable parameter sets that represented the parameter uncertainty. Nine different climate model projections of the regional climate model RCA3 were available as driven by different combinations of global climate models (GCM, greenhouse gas emission scenarios and initial states of the GCM. The future time series of weather data used to drive the MACRO model were generated by scaling a reference climate data set (1970–1999 for an important agricultural production area in south-western Sweden based on monthly change factors for 2070–2099. 30 yr simulations were performed for different combinations of pesticide properties and application seasons. Our analysis showed that both the magnitude and the direction of predicted change in pesticide leaching from present to future depended strongly on the particular climate scenario. The effect of parameter uncertainty was of major importance for simulating absolute pesticide losses, whereas the climate uncertainty was relatively more important for predictions of changes of pesticide losses from present to future. The climate uncertainty should be accounted for by applying an ensemble of different climate scenarios. The aggregated ensemble prediction based on both acceptable parameterizations and different climate scenarios has the potential to provide robust probabilistic estimates of future pesticide losses.

  15. Assessment of input function distortions on kinetic model parameters in simulated dynamic 82Rb PET perfusion studies

    International Nuclear Information System (INIS)

    Meyer, Carsten; Peligrad, Dragos-Nicolae; Weibrecht, Martin

    2007-01-01

    Cardiac 82 rubidium dynamic PET studies allow quantifying absolute myocardial perfusion by using tracer kinetic modeling. Here, the accurate measurement of the input function, i.e. the tracer concentration in blood plasma, is a major challenge. This measurement is deteriorated by inappropriate temporal sampling, spillover, etc. Such effects may influence the measured input peak value and the measured blood pool clearance. The aim of our study is to evaluate the effect of input function distortions on the myocardial perfusion as estimated by the model. To this end, we simulate noise-free myocardium time activity curves (TACs) with a two-compartment kinetic model. The input function to the model is a generic analytical function. Distortions of this function have been introduced by varying its parameters. Using the distorted input function, the compartment model has been fitted to the simulated myocardium TAC. This analysis has been performed for various sets of model parameters covering a physiologically relevant range. The evaluation shows that ±10% error in the input peak value can easily lead to ±10-25% error in the model parameter K 1 , which relates to myocardial perfusion. Variations in the input function tail are generally less relevant. We conclude that an accurate estimation especially of the plasma input peak is crucial for a reliable kinetic analysis and blood flow estimation

  16. Effect of stimulation on the input parameters of stochastic leaky integrate-and-fire neuronal model

    Czech Academy of Sciences Publication Activity Database

    Lánský, Petr; Šanda, Pavel; He, J.

    2010-01-01

    Roč. 104, 3-4 (2010), s. 160-166 ISSN 0928-4257 R&D Projects: GA MŠk(CZ) LC554; GA AV ČR(CZ) IAA101120604 Institutional research plan: CEZ:AV0Z50110509 Keywords : membrane depolarization * input parameters * diffusion Subject RIV: BO - Biophysics Impact factor: 3.030, year: 2010

  17. Finding identifiable parameter combinations in nonlinear ODE models and the rational reparameterization of their input-output equations.

    Science.gov (United States)

    Meshkat, Nicolette; Anderson, Chris; Distefano, Joseph J

    2011-09-01

    When examining the structural identifiability properties of dynamic system models, some parameters can take on an infinite number of values and yet yield identical input-output data. These parameters and the model are then said to be unidentifiable. Finding identifiable combinations of parameters with which to reparameterize the model provides a means for quantitatively analyzing the model and computing solutions in terms of the combinations. In this paper, we revisit and explore the properties of an algorithm for finding identifiable parameter combinations using Gröbner Bases and prove useful theoretical properties of these parameter combinations. We prove a set of M algebraically independent identifiable parameter combinations can be found using this algorithm and that there exists a unique rational reparameterization of the input-output equations over these parameter combinations. We also demonstrate application of the procedure to a nonlinear biomodel. Copyright © 2011 Elsevier Inc. All rights reserved.

  18. Parameter setting and input reduction

    NARCIS (Netherlands)

    Evers, A.; van Kampen, N.J.|info:eu-repo/dai/nl/126439737

    2008-01-01

    The language acquisition procedure identifies certain properties of the target grammar before others. The evidence from the input is processed in a stepwise order. Section 1 equates that order and its typical effects with an order of parameter setting. The question is how the acquisition procedure

  19. Modelling the soil microclimate: does the spatial or temporal resolution of input parameters matter?

    Directory of Open Access Journals (Sweden)

    Anna Carter

    2016-01-01

    Full Text Available The urgency of predicting future impacts of environmental change on vulnerable populations is advancing the development of spatially explicit habitat models. Continental-scale climate and microclimate layers are now widely available. However, most terrestrial organisms exist within microclimate spaces that are very small, relative to the spatial resolution of those layers. We examined the effects of multi-resolution, multi-extent topographic and climate inputs on the accuracy of hourly soil temperature predictions for a small island generated at a very high spatial resolution (<1 m2 using the mechanistic microclimate model in NicheMapR. Achieving an accuracy comparable to lower-resolution, continental-scale microclimate layers (within about 2–3°C of observed values required the use of daily weather data as well as high resolution topographic layers (elevation, slope, aspect, horizon angles, while inclusion of site-specific soil properties did not markedly improve predictions. Our results suggest that large-extent microclimate layers may not provide accurate estimates of microclimate conditions when the spatial extent of a habitat or other area of interest is similar to or smaller than the spatial resolution of the layers themselves. Thus, effort in sourcing model inputs should be focused on obtaining high resolution terrain data, e.g., via LiDAR or photogrammetry, and local weather information rather than in situ sampling of microclimate characteristics.

  20. Progress on reference input parameter library for nuclear model calculations of nuclear data (III)

    International Nuclear Information System (INIS)

    Su Zongdi; Liu Jianfeng; Huang Zhongfu

    1997-01-01

    A new set of the average neutron resonance spacings D 0 and neutron strength functions S 0 for 309 nuclei were reestimated on the basis of the resolved resonance parameters reevaluated from BNL-325, ENDF/B-6, JEF-2, and JENDL-3, and the cumulative number N 0 of low low lying levels for 344 nuclei were also reevaluated by means of histograms. Three sets of level density parameters for the Gilbert-Cameron (GC) formula, back-shifted Fermi gas model(BS) and generated superfluid model (GSM) have been reesitmated by fitting the D 0 and N 0 values of CENPL.LRD-2

  1. EARLY GUIDANCE FOR ASSIGNING DISTRIBUTION PARAMETERS TO GEOCHEMICAL INPUT TERMS TO STOCHASTIC TRANSPORT MODELS

    International Nuclear Information System (INIS)

    Kaplan, D; Margaret Millings, M

    2006-01-01

    Stochastic modeling is being used in the Performance Assessment program to provide a probabilistic estimate of the range of risk that buried waste may pose. The objective of this task was to provide early guidance for stochastic modelers for the selection of the range and distribution (e.g., normal, log-normal) of distribution coefficients (K d ) and solubility values (K sp ) to be used in modeling subsurface radionuclide transport in E- and Z-Area on the Savannah River Site (SRS). Due to the project's schedule, some modeling had to be started prior to collecting the necessary field and laboratory data needed to fully populate these models. For the interim, the project will rely on literature values and some statistical analyses of literature data as inputs. Based on statistical analyses of some literature sorption tests, the following early guidance was provided: (1) Set the range to an order of magnitude for radionuclides with K d values >1000 mL/g and to a factor of two for K d values of sp values -6 M and to a factor of two for K d values of >10 -6 M. This decision is based on the literature. (3) The distribution of K d values with a mean >1000 mL/g will be log-normally distributed. Those with a K d value <1000 mL/g will be assigned a normal distribution. This is based on statistical analysis of non-site-specific data. Results from on-going site-specific field/laboratory research involving E-Area sediments will supersede this guidance; these results are expected in 2007

  2. Evaluation of Uncertainty in Constituent Input Parameters for Modeling the Fate of IMX 101 Components

    Science.gov (United States)

    2017-05-01

    2) TREECS™ has a tool for estimating soil Kd values given Koc, the soil tex- ture (percent sand, silt, and clay ), and the percent organic matter...respectively. Mulherin et al. (2005) studied the stability of NQ in three moist, unsatu- rated soils under laboratory conditions. This study yielded a range...of the uncertain input properties (degrada- tion rates and water-to- soil and water-to-sediment adsorption partitioning distribution coefficients, or

  3. Better temperature predictions in geothermal modelling by improved quality of input parameters

    DEFF Research Database (Denmark)

    Fuchs, Sven; Bording, Thue Sylvester; Balling, N.

    2015-01-01

    Thermal modelling is used to examine the subsurface temperature field and geothermal conditions at various scales (e.g. sedimentary basins, deep crust) and in the framework of different problem settings (e.g. scientific or industrial use). In such models, knowledge of rock thermal properties...

  4. Application of regional physically-based landslide early warning model: tuning of the input parameters and validation of the results

    Science.gov (United States)

    D'Ambrosio, Michele; Tofani, Veronica; Rossi, Guglielmo; Salvatici, Teresa; Tacconi Stefanelli, Carlo; Rosi, Ascanio; Benedetta Masi, Elena; Pazzi, Veronica; Vannocci, Pietro; Catani, Filippo; Casagli, Nicola

    2017-04-01

    The Aosta Valley region is located in North-West Alpine mountain chain. The geomorphology of the region is characterized by steep slopes, high climatic and altitude (ranging from 400 m a.s.l of Dora Baltea's river floodplain to 4810 m a.s.l. of Mont Blanc) variability. In the study area (zone B), located in Eastern part of Aosta Valley, heavy rainfall of about 800-900 mm per year is the main landslides trigger. These features lead to a high hydrogeological risk in all territory, as mass movements interest the 70% of the municipality areas (mainly shallow rapid landslides and rock falls). An in-depth study of the geotechnical and hydrological properties of hillslopes controlling shallow landslides formation was conducted, with the aim to improve the reliability of deterministic model, named HIRESS (HIgh REsolution Stability Simulator). In particular, two campaigns of on site measurements and laboratory experiments were performed. The data obtained have been studied in order to assess the relationships existing among the different parameters and the bedrock lithology. The analyzed soils in 12 survey points are mainly composed of sand and gravel, with highly variable contents of silt. The range of effective internal friction angle (from 25.6° to 34.3°) and effective cohesion (from 0 kPa to 9.3 kPa) measured and the median ks (10E-6 m/s) value are consistent with the average grain sizes (gravelly sand). The data collected contributes to generate input map of parameters for HIRESS (static data). More static data are: volume weight, residual water content, porosity and grain size index. In order to improve the original formulation of the model, the contribution of the root cohesion has been also taken into account based on the vegetation map and literature values. HIRESS is a physically based distributed slope stability simulator for analyzing shallow landslide triggering conditions in real time and in large areas using parallel computational techniques. The software

  5. Distribution Development for STORM Ingestion Input Parameters

    Energy Technology Data Exchange (ETDEWEB)

    Fulton, John [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-07-01

    The Sandia-developed Transport of Radioactive Materials (STORM) code suite is used as part of the Radioisotope Power System Launch Safety (RPSLS) program to perform statistical modeling of the consequences due to release of radioactive material given a launch accident. As part of this modeling, STORM samples input parameters from probability distributions with some parameters treated as constants. This report described the work done to convert four of these constant inputs (Consumption Rate, Average Crop Yield, Cropland to Landuse Database Ratio, and Crop Uptake Factor) to sampled values. Consumption rate changed from a constant value of 557.68 kg / yr to a normal distribution with a mean of 102.96 kg / yr and a standard deviation of 2.65 kg / yr. Meanwhile, Average Crop Yield changed from a constant value of 3.783 kg edible / m 2 to a normal distribution with a mean of 3.23 kg edible / m 2 and a standard deviation of 0.442 kg edible / m 2 . The Cropland to Landuse Database ratio changed from a constant value of 0.0996 (9.96%) to a normal distribution with a mean value of 0.0312 (3.12%) and a standard deviation of 0.00292 (0.29%). Finally the crop uptake factor changed from a constant value of 6.37e-4 (Bq crop /kg)/(Bq soil /kg) to a lognormal distribution with a geometric mean value of 3.38e-4 (Bq crop /kg)/(Bq soil /kg) and a standard deviation value of 3.33 (Bq crop /kg)/(Bq soil /kg)

  6. How Sensitive Are Transdermal Transport Predictions by Microscopic Stratum Corneum Models to Geometric and Transport Parameter Input?

    Science.gov (United States)

    Wen, Jessica; Koo, Soh Myoung; Lape, Nancy

    2018-02-01

    While predictive models of transdermal transport have the potential to reduce human and animal testing, microscopic stratum corneum (SC) model output is highly dependent on idealized SC geometry, transport pathway (transcellular vs. intercellular), and penetrant transport parameters (e.g., compound diffusivity in lipids). Most microscopic models are limited to a simple rectangular brick-and-mortar SC geometry and do not account for variability across delivery sites, hydration levels, and populations. In addition, these models rely on transport parameters obtained from pure theory, parameter fitting to match in vivo experiments, and time-intensive diffusion experiments for each compound. In this work, we develop a microscopic finite element model that allows us to probe model sensitivity to variations in geometry, transport pathway, and hydration level. Given the dearth of experimentally-validated transport data and the wide range in theoretically-predicted transport parameters, we examine the model's response to a variety of transport parameters reported in the literature. Results show that model predictions are strongly dependent on all aforementioned variations, resulting in order-of-magnitude differences in lag times and permeabilities for distinct structure, hydration, and parameter combinations. This work demonstrates that universally predictive models cannot fully succeed without employing experimentally verified transport parameters and individualized SC structures. Copyright © 2018 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  7. Methodology for deriving hydrogeological input parameters for safety-analysis models - application to fractured crystalline rocks of Northern Switzerland

    International Nuclear Information System (INIS)

    Vomvoris, S.; Andrews, R.W.; Lanyon, G.W.; Voborny, O.; Wilson, W.

    1996-04-01

    Switzerland is one of many nations with nuclear power that is seeking to identify rock types and locations that would be suitable for the underground disposal of nuclear waste. A common challenge among these programs is to provide engineering designers and safety analysts with a reasonably representative hydrogeological input dataset that synthesizes the relevant information from direct field observations as well as inferences and model results derived from those observations. Needed are estimates of the volumetric flux through a volume of rock and the distribution of that flux into discrete pathways between the repository zones and the biosphere. These fluxes are not directly measurable but must be derived based on understandings of the range of plausible hydrogeologic conditions expected at the location investigated. The methodology described in this report utilizes conceptual and numerical models at various scales to derive the input dataset. The methodology incorporates an innovative approach, called the geometric approach, in which field observations and their associated uncertainty, together with a conceptual representation of those features that most significantly affect the groundwater flow regime, were rigorously applied to generate alternative possible realizations of hydrogeologic features in the geosphere. In this approach, the ranges in the output values directly reflect uncertainties in the input values. As a demonstration, the methodology is applied to the derivation of the hydrogeological dataset for the crystalline basement of Northern Switzerland. (author) figs., tabs., refs

  8. Nuclear model parameter testing for nuclear data evaluation (Reference Input Parameter Library: Phase II). Summary report of the third research co-ordination meeting

    International Nuclear Information System (INIS)

    Herman, M.

    2002-04-01

    This report summarises the results and recommendations of the third Research Co-ordination Meeting on improving and testing the Reference Input Parameter Library: Phase II. A primary aim of the meeting was to review the achievements of the CRP, to assess the testing of the library and to approve the final contents. Actions were approved that will result in completion of the file and a draft report by the end of February 2002. Full release of the library is scheduled for July 2002. (author)

  9. Nuclear model parameter testing for nuclear data evaluation (Reference Input Parameter Library: Phase II). Summary report of the second research co-ordination meeting

    International Nuclear Information System (INIS)

    Herman, M.

    2000-09-01

    This report summarizes the results and recommendations of the Second Research Coordination Meeting on Testing and Improvement of the Reference Input Parameter Library: Phase II. A primary aim of this meeting was to review progress in the CRP work, to review results of testing the library, to establish the RIPL-2 format and to decide on the contents of the library. The actions were agreed with an aim to complete the project by the end of 2001. Separate abstracts were prepared for 10 individual papers

  10. Groundwater travel time uncertainty analysis. Sensitivity of results to model geometry, and correlations and cross correlations among input parameters

    International Nuclear Information System (INIS)

    Clifton, P.M.

    1985-03-01

    This study examines the sensitivity of the travel time distribution predicted by a reference case model to (1) scale of representation of the model parameters, (2) size of the model domain, (3) correlation range of log-transmissivity, and (4) cross correlations between transmissivity and effective thickness. The basis for the reference model is the preliminary stochastic travel time model previously documented by the Basalt Waste Isolation Project. Results of this study show the following. The variability of the predicted travel times can be adequately represented when the ratio between the size of the zones used to represent the model parameters and the log-transmissivity correlation range is less than about one-fifth. The size of the model domain and the types of boundary conditions can have a strong impact on the distribution of travel times. Longer log-transmissivity correlation ranges cause larger variability in the predicted travel times. Positive cross correlation between transmissivity and effective thickness causes a decrease in the travel time variability. These results demonstrate the need for a sound conceptual model prior to conducting a stochastic travel time analysis

  11. Adaptive distributed parameter and input estimation in linear parabolic PDEs

    KAUST Repository

    Mechhoud, Sarra

    2016-01-01

    First, new sufficient identifiability conditions of the input and the parameter simultaneous estimation are stated. Then, by means of Lyapunov-based design, an adaptive estimator is derived in the infinite-dimensional framework. It consists of a state observer and gradient-based parameter and input adaptation laws. The parameter convergence depends on the plant signal richness assumption, whereas the state convergence is established using a Lyapunov approach. The results of the paper are illustrated by simulation on tokamak plasma heat transport model using simulated data.

  12. Better temperature predictions in geothermal modelling by improved quality of input parameters: a regional case study from the Danish-German border region

    Science.gov (United States)

    Fuchs, Sven; Bording, Thue S.; Balling, Niels

    2015-04-01

    Thermal modelling is used to examine the subsurface temperature field and geothermal conditions at various scales (e.g. sedimentary basins, deep crust) and in the framework of different problem settings (e.g. scientific or industrial use). In such models, knowledge of rock thermal properties is prerequisites for the parameterisation of boundary conditions and layer properties. In contrast to hydrogeological ground-water models, where parameterization of the major rock property (i.e. hydraulic conductivity) is generally conducted considering lateral variations within geological layers, parameterization of thermal models (in particular regarding thermal conductivity but also radiogenic heat production and specific heat capacity) in most cases is conducted using constant parameters for each modelled layer. For such constant thermal parameter values, moreover, initial values are normally obtained from rare core measurements and/or literature values, which raise questions for their representativeness. Some few studies have considered lithological composition or well log information, but still keeping the layer values constant. In the present thermal-modelling scenario analysis, we demonstrate how the use of different parameter input type (from literature, well logs and lithology) and parameter input style (constant or laterally varying layer values) affects the temperature model prediction in sedimentary basins. For this purpose, rock thermal properties are deduced from standard petrophysical well logs and lithological descriptions for several wells in a project area. Statistical values of thermal properties (mean, standard deviation, moments, etc.) are calculated at each borehole location for each geological formation and, moreover, for the entire dataset. Our case study is located at the Danish-German border region (model dimension: 135 x115 km, depth: 20 km). Results clearly show that (i) the use of location-specific well-log derived rock thermal properties and (i

  13. Application and optimization of input parameter spaces in mass flow modelling: a case study with r.randomwalk and r.ranger

    Science.gov (United States)

    Krenn, Julia; Zangerl, Christian; Mergili, Martin

    2017-04-01

    r.randomwalk is a GIS-based, multi-functional, conceptual open source model application for forward and backward analyses of the propagation of mass flows. It relies on a set of empirically derived, uncertain input parameters. In contrast to many other tools, r.randomwalk accepts input parameter ranges (or, in case of two or more parameters, spaces) in order to directly account for these uncertainties. Parameter spaces represent a possibility to withdraw from discrete input values which in most cases are likely to be off target. r.randomwalk automatically performs multiple calculations with various parameter combinations in a given parameter space, resulting in the impact indicator index (III) which denotes the fraction of parameter value combinations predicting an impact on a given pixel. Still, there is a need to constrain the parameter space used for a certain process type or magnitude prior to performing forward calculations. This can be done by optimizing the parameter space in terms of bringing the model results in line with well-documented past events. As most existing parameter optimization algorithms are designed for discrete values rather than for ranges or spaces, the necessity for a new and innovative technique arises. The present study aims at developing such a technique and at applying it to derive guiding parameter spaces for the forward calculation of rock avalanches through back-calculation of multiple events. In order to automatize the work flow we have designed r.ranger, an optimization and sensitivity analysis tool for parameter spaces which can be directly coupled to r.randomwalk. With r.ranger we apply a nested approach where the total value range of each parameter is divided into various levels of subranges. All possible combinations of subranges of all parameters are tested for the performance of the associated pattern of III. Performance indicators are the area under the ROC curve (AUROC) and the factor of conservativeness (FoC). This

  14. Summary report of the 3. research co-ordination meeting on development of reference input parameter library for nuclear model calculations of nuclear data (Phase 1: Starter File)

    International Nuclear Information System (INIS)

    Oblozinsky, P.

    1997-09-01

    The report contains the summary of the third and the last Research Co-ordination Meeting on ''Development of Reference Input Parameter Library for Nuclear Model Calculations of Nuclear Data (Phase I: Starter File)'', held at the ICTP, Trieste, Italy, from 26 to 29 May 1997. Details are given on the status of the Handbook and the Starter File - two major results of the project. (author)

  15. Migration of radionuclides with ground water: a discussion of the relevance of the input parameters used in model calculations

    International Nuclear Information System (INIS)

    Jensen, B.S.

    1982-01-01

    It is probably obvious to all, that establishing the scientific basis of geological waste disposal by going deeper and deeper in detail, may fill out the working hours of hundreds of scientists for hundreds of years. Such an endeavor is, however, impossible to attain, and we are forced to define some criteria telling us and others when knowledge and insight is sufficient. In thepresent case of geological disposal one need to be able to predict migration behavior of a series of radionuclides under diverse conditions to ascertain that unacceptable transfer to the biosphere never occurs. We have already collected a huge amount of data concerning migration phenomena, some very useful, oter less so, but we still need investigatoins departing from the simple ideal concepts, which most often have provided modellers with input data to their calculations. I therefore advocate that basic research is pursued to the point where it is possible to put limits on the effect of the lesser known factors on the migration behavior of radionuclides. When such limits have been established, it will be possible to make calculations on the worst cases, which may also occur. Although I personally believe, that these extra investigations will prove additional safety in geological disposal, this fact will convince nobody, only experimental facts will do

  16. Groundwater travel time uncertainty analysis: Sensitivity of results to model geometry, and correlations and cross correlations among input parameters

    International Nuclear Information System (INIS)

    Clifton, P.M.

    1984-12-01

    The deep basalt formations beneath the Hanford Site are being investigated for the Department of Energy (DOE) to assess their suitability as a host medium for a high level nuclear waste repository. Predicted performance of the proposed repository is an important part of the investigation. One of the performance measures being used to gauge the suitability of the host medium is pre-waste-emplacement groundwater travel times to the accessible environment. Many deterministic analyses of groundwater travel times have been completed by Rockwell and other independent organizations. Recently, Rockwell has completed a preliminary stochastic analysis of groundwater travel times. This document presents analyses that show the sensitivity of the results from the previous stochastic travel time study to: (1) scale of representation of model parameters, (2) size of the model domain, (3) correlation range of log-transmissivity, and (4) cross-correlation between transmissivity and effective thickness. 40 refs., 29 figs., 6 tabs

  17. Adaptive distributed parameter and input estimation in linear parabolic PDEs

    KAUST Repository

    Mechhoud, Sarra

    2016-01-01

    In this paper, we discuss the on-line estimation of distributed source term, diffusion, and reaction coefficients of a linear parabolic partial differential equation using both distributed and interior-point measurements. First, new sufficient identifiability conditions of the input and the parameter simultaneous estimation are stated. Then, by means of Lyapunov-based design, an adaptive estimator is derived in the infinite-dimensional framework. It consists of a state observer and gradient-based parameter and input adaptation laws. The parameter convergence depends on the plant signal richness assumption, whereas the state convergence is established using a Lyapunov approach. The results of the paper are illustrated by simulation on tokamak plasma heat transport model using simulated data.

  18. Impact of Uncertainty Characterization of Satellite Rainfall Inputs and Model Parameters on Hydrological Data Assimilation with the Ensemble Kalman Filter for Flood Prediction

    Science.gov (United States)

    Vergara, H. J.; Kirstetter, P.; Hong, Y.; Gourley, J. J.; Wang, X.

    2013-12-01

    The Ensemble Kalman Filter (EnKF) is arguably the assimilation approach that has found the widest application in hydrologic modeling. Its relatively easy implementation and computational efficiency makes it an attractive method for research and operational purposes. However, the scientific literature featuring this approach lacks guidance on how the errors in the forecast need to be characterized so as to get the required corrections from the assimilation process. Moreover, several studies have indicated that the performance of the EnKF is 'sub-optimal' when assimilating certain hydrologic observations. Likewise, some authors have suggested that the underlying assumptions of the Kalman Filter and its dependence on linear dynamics make the EnKF unsuitable for hydrologic modeling. Such assertions are often based on ineffectiveness and poor robustness of EnKF implementations resulting from restrictive specification of error characteristics and the absence of a-priori information of error magnitudes. Therefore, understanding the capabilities and limitations of the EnKF to improve hydrologic forecasts require studying its sensitivity to the manner in which errors in the hydrologic modeling system are represented through ensembles. This study presents a methodology that explores various uncertainty representation configurations to characterize the errors in the hydrologic forecasts in a data assimilation context. The uncertainty in rainfall inputs is represented through a Generalized Additive Model for Location, Scale, and Shape (GAMLSS), which provides information about second-order statistics of quantitative precipitation estimates (QPE) error. The uncertainty in model parameters is described adding perturbations based on parameters covariance information. The method allows for the identification of rainfall and parameter perturbation combinations for which the performance of the EnKF is 'optimal' given a set of objective functions. In this process, information about

  19. Methods, Devices and Computer Program Products Providing for Establishing a Model for Emulating a Physical Quantity Which Depends on at Least One Input Parameter, and Use Thereof

    DEFF Research Database (Denmark)

    2014-01-01

    The present invention proposes methods, devices and computer program products. To this extent, there is defined a set X including N distinct parameter values x_i for at least one input parameter x, N being an integer greater than or equal to 1, first measured the physical quantity Pm1 for each...

  20. Modal Parameter Identification from Responses of General Unknown Random Inputs

    DEFF Research Database (Denmark)

    Ibrahim, S. R.; Asmussen, J. C.; Brincker, Rune

    1996-01-01

    Modal parameter identification from ambient responses due to a general unknown random inputs is investigated. Existing identification techniques which are based on assumptions of white noise and or stationary random inputs are utilized even though the inputs conditions are not satisfied....... This is accomplished via adding. In cascade. A force cascade conversion to the structures system under consideration. The input to the force conversion system is white noise and the output of which is the actual force(s) applied to the structure. The white noise input(s) and the structures responses are then used...

  1. Control rod drive WWER 1000 – tuning of input parameters

    Directory of Open Access Journals (Sweden)

    Markov P.

    2007-10-01

    Full Text Available The article picks up on the contributions presented at the conferences Computational Mechanics 2005 and 2006, in which a calculational model of an upgraded control rod linear stepping drive for the reactors WWER 1000 (LKP-M/3 was described and results of analysis of dynamical response of its individual parts when moving up- and downwards were included. The contribution deals with the tuning of input parameters of the 3rd generation drive with the objective of reaching its running as smooth as possible so as to get a minimum wear of its parts as a result and hence to achieve maximum life-time.

  2. Modeling and generating input processes

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, M.E.

    1987-01-01

    This tutorial paper provides information relevant to the selection and generation of stochastic inputs to simulation studies. The primary area considered is multivariate but much of the philosophy at least is relevant to univariate inputs as well. 14 refs.

  3. ECOS - analysis of sensitivity to database and input parameters

    International Nuclear Information System (INIS)

    Sumerling, T.J.; Jones, C.H.

    1986-06-01

    The sensitivity of doses calculated by the generic biosphere code ECOS to parameter changes has been investigated by the authors for the Department of the Environment as part of its radioactive waste management research programme. The sensitivity of results to radionuclide dependent parameters has been tested by specifying reasonable parameter ranges and performing code runs for best estimate, upper-bound and lower-bound parameter values. The work indicates that doses are most sensitive to scenario parameters: geosphere input fractions, area of contaminated land, land use and diet, flux of contaminated waters and water use. Recommendations are made based on the results of sensitivity. (author)

  4. Optimal Input Design for Aircraft Parameter Estimation using Dynamic Programming Principles

    Science.gov (United States)

    Morelli, Eugene A.; Klein, Vladislav

    1990-01-01

    A new technique was developed for designing optimal flight test inputs for aircraft parameter estimation experiments. The principles of dynamic programming were used for the design in the time domain. This approach made it possible to include realistic practical constraints on the input and output variables. A description of the new approach is presented, followed by an example for a multiple input linear model describing the lateral dynamics of a fighter aircraft. The optimal input designs produced by the new technique demonstrated improved quality and expanded capability relative to the conventional multiple input design method.

  5. Robust input design for nonlinear dynamic modeling of AUV.

    Science.gov (United States)

    Nouri, Nowrouz Mohammad; Valadi, Mehrdad

    2017-09-01

    Input design has a dominant role in developing the dynamic model of autonomous underwater vehicles (AUVs) through system identification. Optimal input design is the process of generating informative inputs that can be used to generate the good quality dynamic model of AUVs. In a problem with optimal input design, the desired input signal depends on the unknown system which is intended to be identified. In this paper, the input design approach which is robust to uncertainties in model parameters is used. The Bayesian robust design strategy is applied to design input signals for dynamic modeling of AUVs. The employed approach can design multiple inputs and apply constraints on an AUV system's inputs and outputs. Particle swarm optimization (PSO) is employed to solve the constraint robust optimization problem. The presented algorithm is used for designing the input signals for an AUV, and the estimate obtained by robust input design is compared with that of the optimal input design. According to the results, proposed input design can satisfy both robustness of constraints and optimality. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  6. Analytic uncertainty and sensitivity analysis of models with input correlations

    Science.gov (United States)

    Zhu, Yueying; Wang, Qiuping A.; Li, Wei; Cai, Xu

    2018-03-01

    Probabilistic uncertainty analysis is a common means of evaluating mathematical models. In mathematical modeling, the uncertainty in input variables is specified through distribution laws. Its contribution to the uncertainty in model response is usually analyzed by assuming that input variables are independent of each other. However, correlated parameters are often happened in practical applications. In the present paper, an analytic method is built for the uncertainty and sensitivity analysis of models in the presence of input correlations. With the method, it is straightforward to identify the importance of the independence and correlations of input variables in determining the model response. This allows one to decide whether or not the input correlations should be considered in practice. Numerical examples suggest the effectiveness and validation of our analytic method in the analysis of general models. A practical application of the method is also proposed to the uncertainty and sensitivity analysis of a deterministic HIV model.

  7. Sensitivity of seismic design parameters to input variables

    International Nuclear Information System (INIS)

    Wium, D.J.W.

    1987-01-01

    The probabilistic method introduced by Cornell (1968) has been used to a large extent for this purpose. Due to its probabilistic approach, this technique provides a sound basis for studying the influence of the dominant parameters in such a model. Although the Southern African region is not well known for its seismicity, a number of events in the recent past has focussed the attention on some seismically active areas where special attention may be needed in defining the correct design parameters. The relatively sparse historical seismic data has been used to develop a mathematical model which represents this region. This paper briefly discusses this model, and uses it as a basis for evaluating the influence of the uncertainty in each of the principal parameters, being the seismicity of the region, the attenuation of seismic waves after an event, and models that can be used to arrive at engineering design values. (orig./HP)

  8. Probabilistic leak-before-break analysis with correlated input parameters

    International Nuclear Information System (INIS)

    Qian Guian; Niffenegger, Markus; Karanki, Durga Rao; Li Shuxin

    2013-01-01

    Highlights: ► The correlation of crack growth has the most significant impact on LBB behavior. ► The correlation impact increases with the correlation coefficients. ► The correlation impact increases with the number of cracks. ► Independent assumption may lead to nonconservative result. - Abstract: The paper presents a probabilistic methodology considering the correlations between the input variables for the analysis of leak-before-break (LBB) behavior of a pressure tube. A computer program based on Monte Carlo (MC) simulation with Nataf transformation has been developed to allow the proposed methodology to calculate both the time from the first leakage to unstable fracture and the time from leakage detection to unstable fracture. The results show that the correlation of the crack growth rates between different cracks has the most significant impact on the LBB behavior of the pressure tube. The impact of the parameters correlation on LBB behavior increases with the crack numbers. If the correlations between different parameters for an individual crack are not considered, the predicted results are nonconservative when the cumulative probability is below 50% and conservative when it is above 50%.

  9. Estimating unknown input parameters when implementing the NGA ground-motion prediction equations in engineering practice

    Science.gov (United States)

    Kaklamanos, James; Baise, Laurie G.; Boore, David M.

    2011-01-01

    The ground-motion prediction equations (GMPEs) developed as part of the Next Generation Attenuation of Ground Motions (NGA-West) project in 2008 are becoming widely used in seismic hazard analyses. However, these new models are considerably more complicated than previous GMPEs, and they require several more input parameters. When employing the NGA models, users routinely face situations in which some of the required input parameters are unknown. In this paper, we present a framework for estimating the unknown source, path, and site parameters when implementing the NGA models in engineering practice, and we derive geometrically-based equations relating the three distance measures found in the NGA models. Our intent is for the content of this paper not only to make the NGA models more accessible, but also to help with the implementation of other present or future GMPEs.

  10. Lumped-parameter models

    Energy Technology Data Exchange (ETDEWEB)

    Ibsen, Lars Bo; Liingaard, M.

    2006-12-15

    A lumped-parameter model represents the frequency dependent soil-structure interaction of a massless foundation placed on or embedded into an unbounded soil domain. In this technical report the steps of establishing a lumped-parameter model are presented. Following sections are included in this report: Static and dynamic formulation, Simple lumped-parameter models and Advanced lumped-parameter models. (au)

  11. Reducing uncertainty at minimal cost: a method to identify important input parameters and prioritize data collection

    NARCIS (Netherlands)

    Uwizeye, U.A.; Groen, E.A.; Gerber, P.J.; Schulte, Rogier P.O.; Boer, de I.J.M.

    2016-01-01

    The study aims to illustrate a method to identify important input parameters that explain most of the output variance ofenvironmental assessment models. The method is tested for the computation of life-cycle nitrogen (N) use efficiencyindicators among mixed dairy production systems in Rwanda. We

  12. Sensitivity study of steam explosion characteristics to uncertain input parameters using TEXAS-V code

    International Nuclear Information System (INIS)

    Grishchenko, Dmitry; Basso, Simone; Kudinov, Pavel; Bechta, Sevostian

    2014-01-01

    Release of core melt from failed reactor vessel into a pool of water is adopted in several existing designs of light water reactors (LWRs) as an element of severe accident mitigation strategy. Corium melt is expected to fragment, solidify and form a debris bed coolable by natural circulation. However, steam explosion can occur upon melt release threatening containment integrity and potentially leading to large early release of radioactive products to the environment. There are many factors and parameters that could be considered for prediction of the fuel-coolant interaction (FCI) energetics, but it is not clear which of them are the most influential and should be addressed in risk analysis. The goal of this work is to assess importance of different uncertain input parameters used in FCI code TEXAS-V for prediction of the steam explosion energetics. Both aleatory uncertainty in characteristics of melt release scenarios and water pool conditions, and epistemic uncertainty in modeling are considered. Ranges of the uncertain parameters are selected based on the available information about prototypic severe accident conditions in a reference design of a Nordic BWR. Sensitivity analysis with Morris method is implemented using coupled TEXAS-V and DAKOTA codes. In total 12 input parameters were studied and 2 melt release scenarios were considered. Each scenario is based on 60,000 of TEXAS-V runs. Sensitivity study identified the most influential input parameters, and those which have no statistically significant effect on the explosion energetics. Details of approach to robust usage of TEXAS-V input, statistical enveloping of TEXAS-V output and interpretation of the results are discussed in the paper. We also provide probability density function (PDF) of steam explosion impulse estimated using TEXAS-V for reference Nordic BWR. It can be used for assessment of the uncertainty ranges of steam explosion loads for given ranges of input parameters. (author)

  13. A Procedure for Characterizing the Range of Input Uncertainty Parameters by the Use of FFTBM

    International Nuclear Information System (INIS)

    Petruzzi, A.; Kovtonyuk, A.; Raucci, M.; De Luca, D.; Veronese, F.; D'Auria, F.

    2013-01-01

    In the last years various methodologies were proposed to evaluate the uncertainty of Best Estimate (BE) code predictions. The most used method at the industrial level is based upon the selection of input uncertain parameters, on assigning related ranges of variations and Probability Distribution Functions (PDFs) and on performing a suitable number of code runs to get the combined effect of the variations on the results. A procedure to characterize the variation ranges of the input uncertain parameters is proposed in the paper in place of the usual approach based (mostly) on engineering judgment. The procedure is based on the use of the Fast Fourier Transform Based Method (FFTBM), already part of the Uncertainty Method based on the Accuracy Extrapolation (UMAE) method and extensively used in several international frameworks. The FFTBM has been originally developed to answer questions like 'How long improvements should be added to the system thermal-hydraulic code model? How much simplifications can be introduced and how to conduct an objective comparison?'. The method, easy to understand, convenient to use and user independent, clearly indicates when simulation needs to be improved. The procedure developed for characterizing the range of input uncertainty parameters involves the following main aspects: a) One single input parameter shall not be 'responsible' for the entire error |exp-calc|, unless exceptional situations to be evaluated case by case; b) Initial guess for Max and Min for variation ranges to be based on the usual (adopted) expertise; c) More than one experiment can be used per each NPP and each scenario. Highly influential parameters are expected to be the same. The bounding ranges should be considered for the NPP uncertainty analysis; d) A data base of suitable uncertainty input parameters can be created per each NPP and each transient scenario. (authors)

  14. Adaptive observer for the joint estimation of parameters and input for a coupled wave PDE and infinite dimensional ODE system

    KAUST Repository

    Belkhatir, Zehor; Mechhoud, Sarra; Laleg-Kirati, Taous-Meriem

    2016-01-01

    This paper deals with joint parameters and input estimation for coupled PDE-ODE system. The system consists of a damped wave equation and an infinite dimensional ODE. This model describes the spatiotemporal hemodynamic response in the brain

  15. Consultants’ Meeting on Recommended Input Parameters for Fission Cross-Section Calculations. Summary Report

    International Nuclear Information System (INIS)

    Capote Noy, Roberto; Simakov, Stanislav; Goriely, Stephane; Hilaire, Stephane; Iwamoto, Osamu; Kawano, Toshihiko; Koning, Arjan

    2014-12-01

    A Consultants’ Meeting on “Recommended Input Parameters for Fission Cross-Section Calculations” was held at IAEA Headquarters, Vienna, Austria to define the scope, deliverables and appropriate work programme of a possible Coordinated Research Project (CRP) on the subject. Presentations are available online at https://www-nds.iaea.org/indexmeeting-crp/CM-RIPL-fission/. A new CRP was endorsed to recommend a comprehensive set of fission input parameters needed for the modelling of fission cross sections. Special attention will be given to the modelling of photon and nucleon induced reactions on actinides with emphasis on incident energies below 30 MeV. The goals and detailed deliverables of the planned CRP were proposed. A Hauser-Feshbach code intercomparison was recommended. (author)

  16. Modeling inputs to computer models used in risk assessment

    International Nuclear Information System (INIS)

    Iman, R.L.

    1987-01-01

    Computer models for various risk assessment applications are closely scrutinized both from the standpoint of questioning the correctness of the underlying mathematical model with respect to the process it is attempting to model and from the standpoint of verifying that the computer model correctly implements the underlying mathematical model. A process that receives less scrutiny, but is nonetheless of equal importance, concerns the individual and joint modeling of the inputs. This modeling effort clearly has a great impact on the credibility of results. Model characteristics are reviewed in this paper that have a direct bearing on the model input process and reasons are given for using probabilities-based modeling with the inputs. The authors also present ways to model distributions for individual inputs and multivariate input structures when dependence and other constraints may be present

  17. Evaluation of severe accident risks: Quantification of major input parameters: MAACS [MELCOR Accident Consequence Code System] input

    International Nuclear Information System (INIS)

    Sprung, J.L.; Jow, H-N; Rollstin, J.A.; Helton, J.C.

    1990-12-01

    Estimation of offsite accident consequences is the customary final step in a probabilistic assessment of the risks of severe nuclear reactor accidents. Recently, the Nuclear Regulatory Commission reassessed the risks of severe accidents at five US power reactors (NUREG-1150). Offsite accident consequences for NUREG-1150 source terms were estimated using the MELCOR Accident Consequence Code System (MACCS). Before these calculations were performed, most MACCS input parameters were reviewed, and for each parameter reviewed, a best-estimate value was recommended. This report presents the results of these reviews. Specifically, recommended values and the basis for their selection are presented for MACCS atmospheric and biospheric transport, emergency response, food pathway, and economic input parameters. Dose conversion factors and health effect parameters are not reviewed in this report. 134 refs., 15 figs., 110 tabs

  18. Adaptive control of a quadrotor aerial vehicle with input constraints and uncertain parameters

    Science.gov (United States)

    Tran, Trong-Toan; Ge, Shuzhi Sam; He, Wei

    2018-05-01

    In this paper, we address the problem of adaptive bounded control for the trajectory tracking of a Quadrotor Aerial Vehicle (QAV) while the input saturations and uncertain parameters with the known bounds are simultaneously taken into account. First, to deal with the underactuated property of the QAV model, we decouple and construct the QAV model as a cascaded structure which consists of two fully actuated subsystems. Second, to handle the input constraints and uncertain parameters, we use a combination of the smooth saturation function and smooth projection operator in the control design. Third, to ensure the stability of the overall system of the QAV, we develop the technique for the cascaded system in the presence of both the input constraints and uncertain parameters. Finally, the region of stability of the closed-loop system is constructed explicitly, and our design ensures the asymptotic convergence of the tracking errors to the origin. The simulation results are provided to illustrate the effectiveness of the proposed method.

  19. Temporal rainfall estimation using input data reduction and model inversion

    Science.gov (United States)

    Wright, A. J.; Vrugt, J. A.; Walker, J. P.; Pauwels, V. R. N.

    2016-12-01

    Floods are devastating natural hazards. To provide accurate, precise and timely flood forecasts there is a need to understand the uncertainties associated with temporal rainfall and model parameters. The estimation of temporal rainfall and model parameter distributions from streamflow observations in complex dynamic catchments adds skill to current areal rainfall estimation methods, allows for the uncertainty of rainfall input to be considered when estimating model parameters and provides the ability to estimate rainfall from poorly gauged catchments. Current methods to estimate temporal rainfall distributions from streamflow are unable to adequately explain and invert complex non-linear hydrologic systems. This study uses the Discrete Wavelet Transform (DWT) to reduce rainfall dimensionality for the catchment of Warwick, Queensland, Australia. The reduction of rainfall to DWT coefficients allows the input rainfall time series to be simultaneously estimated along with model parameters. The estimation process is conducted using multi-chain Markov chain Monte Carlo simulation with the DREAMZS algorithm. The use of a likelihood function that considers both rainfall and streamflow error allows for model parameter and temporal rainfall distributions to be estimated. Estimation of the wavelet approximation coefficients of lower order decomposition structures was able to estimate the most realistic temporal rainfall distributions. These rainfall estimates were all able to simulate streamflow that was superior to the results of a traditional calibration approach. It is shown that the choice of wavelet has a considerable impact on the robustness of the inversion. The results demonstrate that streamflow data contains sufficient information to estimate temporal rainfall and model parameter distributions. The extent and variance of rainfall time series that are able to simulate streamflow that is superior to that simulated by a traditional calibration approach is a

  20. Photovoltaic module parameters acquisition model

    Energy Technology Data Exchange (ETDEWEB)

    Cibira, Gabriel, E-mail: cibira@lm.uniza.sk; Koščová, Marcela, E-mail: mkoscova@lm.uniza.sk

    2014-09-01

    Highlights: • Photovoltaic five-parameter model is proposed using Matlab{sup ®} and Simulink. • The model acquisits input sparse data matrix from stigmatic measurement. • Computer simulations lead to continuous I–V and P–V characteristics. • Extrapolated I–V and P–V characteristics are in hand. • The model allows us to predict photovoltaics exploitation in different conditions. - Abstract: This paper presents basic procedures for photovoltaic (PV) module parameters acquisition using MATLAB and Simulink modelling. In first step, MATLAB and Simulink theoretical model are set to calculate I–V and P–V characteristics for PV module based on equivalent electrical circuit. Then, limited I–V data string is obtained from examined PV module using standard measurement equipment at standard irradiation and temperature conditions and stated into MATLAB data matrix as a reference model. Next, the theoretical model is optimized to keep-up with the reference model and to learn its basic parameters relations, over sparse data matrix. Finally, PV module parameters are deliverable for acquisition at different realistic irradiation, temperature conditions as well as series resistance. Besides of output power characteristics and efficiency calculation for PV module or system, proposed model validates computing statistical deviation compared to reference model.

  1. Photovoltaic module parameters acquisition model

    International Nuclear Information System (INIS)

    Cibira, Gabriel; Koščová, Marcela

    2014-01-01

    Highlights: • Photovoltaic five-parameter model is proposed using Matlab ® and Simulink. • The model acquisits input sparse data matrix from stigmatic measurement. • Computer simulations lead to continuous I–V and P–V characteristics. • Extrapolated I–V and P–V characteristics are in hand. • The model allows us to predict photovoltaics exploitation in different conditions. - Abstract: This paper presents basic procedures for photovoltaic (PV) module parameters acquisition using MATLAB and Simulink modelling. In first step, MATLAB and Simulink theoretical model are set to calculate I–V and P–V characteristics for PV module based on equivalent electrical circuit. Then, limited I–V data string is obtained from examined PV module using standard measurement equipment at standard irradiation and temperature conditions and stated into MATLAB data matrix as a reference model. Next, the theoretical model is optimized to keep-up with the reference model and to learn its basic parameters relations, over sparse data matrix. Finally, PV module parameters are deliverable for acquisition at different realistic irradiation, temperature conditions as well as series resistance. Besides of output power characteristics and efficiency calculation for PV module or system, proposed model validates computing statistical deviation compared to reference model

  2. Antenna Correlation From Input Parameters for Arbitrary Topologies and Terminations

    DEFF Research Database (Denmark)

    Alrabadi, Osama; Andersen, Jørgen Bach; Pedersen, Gert Frølund

    2012-01-01

    The spatial correlation between pairs of antennas in a system comprised of N RF ports is found by extending the N × N scattering matrix to (N + 1)×(N + 1) spatial scattering matrix, where the extra space dimension accounts for the reference port patterns. The lossless property of the spatial...... scattering matrix in a 3D uniform field is employed for expressing the spatial correlation between the port patterns at arbitrary complex terminations merely from the reference scattering parameters and the complex terminations without any far-field calculation....

  3. IAEA nuclear data for applications: Cross section standards and the reference input parameter library (RIPL)

    International Nuclear Information System (INIS)

    Capote Noy, Roberto; Nichols, Alan L.; Pronyaev, Vladimir G.

    2003-01-01

    develop a library of validated nuclear-model input parameters, referred to as the Reference Input Parameter Library (RIPL). The first stage of this work was initiated in 1994 and the second step began in 1998, both as IAEA CRPs. A consistent library of recommended nuclear theoretical input parameters is now available (RIPL-2) that includes a large amount of theoretical information suitable for nuclear reaction calculations, along with a number of computer codes for parameter retrieval and related calculations. A third further phase of this project has been recently initiated in order to extend the applicability of the RIPL library to cross sections for reactions on nuclei far from the line of stability, incident energies up to 200 MeV, and reactions induced by charged particles. (authors)

  4. A statistical survey of heat input parameters into the cusp thermosphere

    Science.gov (United States)

    Moen, J. I.; Skjaeveland, A.; Carlson, H. C.

    2017-12-01

    Based on three winters of observational data, we present those ionosphere parameters deemed most critical to realistic space weather ionosphere and thermosphere representation and prediction, in regions impacted by variability in the cusp. The CHAMP spacecraft revealed large variability in cusp thermosphere densities, measuring frequent satellite drag enhancements, up to doublings. The community recognizes a clear need for more realistic representation of plasma flows and electron densities near the cusp. Existing average-value models produce order of magnitude errors in these parameters, resulting in large under estimations of predicted drag. We fill this knowledge gap with statistics-based specification of these key parameters over their range of observed values. The EISCAT Svalbard Radar (ESR) tracks plasma flow Vi , electron density Ne, and electron, ion temperatures Te, Ti , with consecutive 2-3 minute windshield-wipe scans of 1000x500 km areas. This allows mapping the maximum Ti of a large area within or near the cusp with high temporal resolution. In magnetic field-aligned mode the radar can measure high-resolution profiles of these plasma parameters. By deriving statistics for Ne and Ti , we enable derivation of thermosphere heating deposition under background and frictional-drag-dominated magnetic reconnection conditions. We separate our Ne and Ti profiles into quiescent and enhanced states, which are not closely correlated due to the spatial structure of the reconnection foot point. Use of our data-based parameter inputs can make order of magnitude corrections to input data driving thermosphere models, enabling removal of previous two fold drag errors.

  5. Explicitly integrating parameter, input, and structure uncertainties into Bayesian Neural Networks for probabilistic hydrologic forecasting

    KAUST Repository

    Zhang, Xuesong

    2011-11-01

    Estimating uncertainty of hydrologic forecasting is valuable to water resources and other relevant decision making processes. Recently, Bayesian Neural Networks (BNNs) have been proved powerful tools for quantifying uncertainty of streamflow forecasting. In this study, we propose a Markov Chain Monte Carlo (MCMC) framework (BNN-PIS) to incorporate the uncertainties associated with parameters, inputs, and structures into BNNs. This framework allows the structure of the neural networks to change by removing or adding connections between neurons and enables scaling of input data by using rainfall multipliers. The results show that the new BNNs outperform BNNs that only consider uncertainties associated with parameters and model structures. Critical evaluation of posterior distribution of neural network weights, number of effective connections, rainfall multipliers, and hyper-parameters shows that the assumptions held in our BNNs are not well supported. Further understanding of characteristics of and interactions among different uncertainty sources is expected to enhance the application of neural networks for uncertainty analysis of hydrologic forecasting. © 2011 Elsevier B.V.

  6. Remote sensing inputs to water demand modeling

    Science.gov (United States)

    Estes, J. E.; Jensen, J. R.; Tinney, L. R.; Rector, M.

    1975-01-01

    In an attempt to determine the ability of remote sensing techniques to economically generate data required by water demand models, the Geography Remote Sensing Unit, in conjunction with the Kern County Water Agency of California, developed an analysis model. As a result it was determined that agricultural cropland inventories utilizing both high altitude photography and LANDSAT imagery can be conducted cost effectively. In addition, by using average irrigation application rates in conjunction with cropland data, estimates of agricultural water demand can be generated. However, more accurate estimates are possible if crop type, acreage, and crop specific application rates are employed. An analysis of the effect of saline-alkali soils on water demand in the study area is also examined. Finally, reference is made to the detection and delineation of water tables that are perched near the surface by semi-permeable clay layers. Soil salinity prediction, automated crop identification on a by-field basis, and a potential input to the determination of zones of equal benefit taxation are briefly touched upon.

  7. Effects of input uncertainty on cross-scale crop modeling

    Science.gov (United States)

    Waha, Katharina; Huth, Neil; Carberry, Peter

    2014-05-01

    The quality of data on climate, soils and agricultural management in the tropics is in general low or data is scarce leading to uncertainty in process-based modeling of cropping systems. Process-based crop models are common tools for simulating crop yields and crop production in climate change impact studies, studies on mitigation and adaptation options or food security studies. Crop modelers are concerned about input data accuracy as this, together with an adequate representation of plant physiology processes and choice of model parameters, are the key factors for a reliable simulation. For example, assuming an error in measurements of air temperature, radiation and precipitation of ± 0.2°C, ± 2 % and ± 3 % respectively, Fodor & Kovacs (2005) estimate that this translates into an uncertainty of 5-7 % in yield and biomass simulations. In our study we seek to answer the following questions: (1) are there important uncertainties in the spatial variability of simulated crop yields on the grid-cell level displayed on maps, (2) are there important uncertainties in the temporal variability of simulated crop yields on the aggregated, national level displayed in time-series, and (3) how does the accuracy of different soil, climate and management information influence the simulated crop yields in two crop models designed for use at different spatial scales? The study will help to determine whether more detailed information improves the simulations and to advise model users on the uncertainty related to input data. We analyse the performance of the point-scale crop model APSIM (Keating et al., 2003) and the global scale crop model LPJmL (Bondeau et al., 2007) with different climate information (monthly and daily) and soil conditions (global soil map and African soil map) under different agricultural management (uniform and variable sowing dates) for the low-input maize-growing areas in Burkina Faso/West Africa. We test the models' response to different levels of input

  8. Input modeling with phase-type distributions and Markov models theory and applications

    CERN Document Server

    Buchholz, Peter; Felko, Iryna

    2014-01-01

    Containing a summary of several recent results on Markov-based input modeling in a coherent notation, this book introduces and compares algorithms for parameter fitting and gives an overview of available software tools in the area. Due to progress made in recent years with respect to new algorithms to generate PH distributions and Markovian arrival processes from measured data, the models outlined are useful alternatives to other distributions or stochastic processes used for input modeling. Graduate students and researchers in applied probability, operations research and computer science along with practitioners using simulation or analytical models for performance analysis and capacity planning will find the unified notation and up-to-date results presented useful. Input modeling is the key step in model based system analysis to adequately describe the load of a system using stochastic models. The goal of input modeling is to find a stochastic model to describe a sequence of measurements from a real system...

  9. State, Parameter, and Unknown Input Estimation Problems in Active Automotive Safety Applications

    Science.gov (United States)

    Phanomchoeng, Gridsada

    A variety of driver assistance systems such as traction control, electronic stability control (ESC), rollover prevention and lane departure avoidance systems are being developed by automotive manufacturers to reduce driver burden, partially automate normal driving operations, and reduce accidents. The effectiveness of these driver assistance systems can be significant enhanced if the real-time values of several vehicle parameters and state variables, namely tire-road friction coefficient, slip angle, roll angle, and rollover index, can be known. Since there are no inexpensive sensors available to measure these variables, it is necessary to estimate them. However, due to the significant nonlinear dynamics in a vehicle, due to unknown and changing plant parameters, and due to the presence of unknown input disturbances, the design of estimation algorithms for this application is challenging. This dissertation develops a new approach to observer design for nonlinear systems in which the nonlinearity has a globally (or locally) bounded Jacobian. The developed approach utilizes a modified version of the mean value theorem to express the nonlinearity in the estimation error dynamics as a convex combination of known matrices with time varying coefficients. The observer gains are then obtained by solving linear matrix inequalities (LMIs). A number of illustrative examples are presented to show that the developed approach is less conservative and more useful than the standard Lipschitz assumption based nonlinear observer. The developed nonlinear observer is utilized for estimation of slip angle, longitudinal vehicle velocity, and vehicle roll angle. In order to predict and prevent vehicle rollovers in tripped situations, it is necessary to estimate the vertical tire forces in the presence of unknown road disturbance inputs. An approach to estimate unknown disturbance inputs in nonlinear systems using dynamic model inversion and a modified version of the mean value theorem is

  10. Adaptive observer for the joint estimation of parameters and input for a coupled wave PDE and infinite dimensional ODE system

    KAUST Repository

    Belkhatir, Zehor

    2016-08-05

    This paper deals with joint parameters and input estimation for coupled PDE-ODE system. The system consists of a damped wave equation and an infinite dimensional ODE. This model describes the spatiotemporal hemodynamic response in the brain and the objective is to characterize brain regions using functional Magnetic Resonance Imaging (fMRI) data. For this reason, we propose an adaptive estimator and prove the asymptotic convergence of the state, the unknown input and the unknown parameters. The proof is based on a Lyapunov approach combined with a priori identifiability assumptions. The performance of the proposed observer is illustrated through some simulation results.

  11. Hydrogen Generation Rate Model Calculation Input Data

    International Nuclear Information System (INIS)

    KUFAHL, M.A.

    2000-01-01

    This report documents the procedures and techniques utilized in the collection and analysis of analyte input data values in support of the flammable gas hazard safety analyses. This document represents the analyses of data current at the time of its writing and does not account for data available since then

  12. Robust estimation of hydrological model parameters

    Directory of Open Access Journals (Sweden)

    A. Bárdossy

    2008-11-01

    Full Text Available The estimation of hydrological model parameters is a challenging task. With increasing capacity of computational power several complex optimization algorithms have emerged, but none of the algorithms gives a unique and very best parameter vector. The parameters of fitted hydrological models depend upon the input data. The quality of input data cannot be assured as there may be measurement errors for both input and state variables. In this study a methodology has been developed to find a set of robust parameter vectors for a hydrological model. To see the effect of observational error on parameters, stochastically generated synthetic measurement errors were applied to observed discharge and temperature data. With this modified data, the model was calibrated and the effect of measurement errors on parameters was analysed. It was found that the measurement errors have a significant effect on the best performing parameter vector. The erroneous data led to very different optimal parameter vectors. To overcome this problem and to find a set of robust parameter vectors, a geometrical approach based on Tukey's half space depth was used. The depth of the set of N randomly generated parameters was calculated with respect to the set with the best model performance (Nash-Sutclife efficiency was used for this study for each parameter vector. Based on the depth of parameter vectors, one can find a set of robust parameter vectors. The results show that the parameters chosen according to the above criteria have low sensitivity and perform well when transfered to a different time period. The method is demonstrated on the upper Neckar catchment in Germany. The conceptual HBV model was used for this study.

  13. Simplifying BRDF input data for optical signature modeling

    Science.gov (United States)

    Hallberg, Tomas; Pohl, Anna; Fagerström, Jan

    2017-05-01

    Scene simulations of optical signature properties using signature codes normally requires input of various parameterized measurement data of surfaces and coatings in order to achieve realistic scene object features. Some of the most important parameters are used in the model of the Bidirectional Reflectance Distribution Function (BRDF) and are normally determined by surface reflectance and scattering measurements. Reflectance measurements of the spectral Directional Hemispherical Reflectance (DHR) at various incident angles can normally be performed in most spectroscopy labs, while measuring the BRDF is more complicated or may not be available at all in many optical labs. We will present a method in order to achieve the necessary BRDF data directly from DHR measurements for modeling software using the Sandford-Robertson BRDF model. The accuracy of the method is tested by modeling a test surface by comparing results from using estimated and measured BRDF data as input to the model. These results show that using this method gives no significant loss in modeling accuracy.

  14. Model parameter updating using Bayesian networks

    International Nuclear Information System (INIS)

    Treml, C.A.; Ross, Timothy J.

    2004-01-01

    This paper outlines a model parameter updating technique for a new method of model validation using a modified model reference adaptive control (MRAC) framework with Bayesian Networks (BNs). The model parameter updating within this method is generic in the sense that the model/simulation to be validated is treated as a black box. It must have updateable parameters to which its outputs are sensitive, and those outputs must have metrics that can be compared to that of the model reference, i.e., experimental data. Furthermore, no assumptions are made about the statistics of the model parameter uncertainty, only upper and lower bounds need to be specified. This method is designed for situations where a model is not intended to predict a complete point-by-point time domain description of the item/system behavior; rather, there are specific points, features, or events of interest that need to be predicted. These specific points are compared to the model reference derived from actual experimental data. The logic for updating the model parameters to match the model reference is formed via a BN. The nodes of this BN consist of updateable model input parameters and the specific output values or features of interest. Each time the model is executed, the input/output pairs are used to adapt the conditional probabilities of the BN. Each iteration further refines the inferred model parameters to produce the desired model output. After parameter updating is complete and model inputs are inferred, reliabilities for the model output are supplied. Finally, this method is applied to a simulation of a resonance control cooling system for a prototype coupled cavity linac. The results are compared to experimental data.

  15. A probabilistic graphical model based stochastic input model construction

    International Nuclear Information System (INIS)

    Wan, Jiang; Zabaras, Nicholas

    2014-01-01

    Model reduction techniques have been widely used in modeling of high-dimensional stochastic input in uncertainty quantification tasks. However, the probabilistic modeling of random variables projected into reduced-order spaces presents a number of computational challenges. Due to the curse of dimensionality, the underlying dependence relationships between these random variables are difficult to capture. In this work, a probabilistic graphical model based approach is employed to learn the dependence by running a number of conditional independence tests using observation data. Thus a probabilistic model of the joint PDF is obtained and the PDF is factorized into a set of conditional distributions based on the dependence structure of the variables. The estimation of the joint PDF from data is then transformed to estimating conditional distributions under reduced dimensions. To improve the computational efficiency, a polynomial chaos expansion is further applied to represent the random field in terms of a set of standard random variables. This technique is combined with both linear and nonlinear model reduction methods. Numerical examples are presented to demonstrate the accuracy and efficiency of the probabilistic graphical model based stochastic input models. - Highlights: • Data-driven stochastic input models without the assumption of independence of the reduced random variables. • The problem is transformed to a Bayesian network structure learning problem. • Examples are given in flows in random media

  16. An efficient method for evaluating the effect of input parameters on the integrity of safety systems

    International Nuclear Information System (INIS)

    Tang, Zhang-Chun; Zuo, Ming J.; Xiao, Ningcong

    2016-01-01

    Safety systems are significant to reduce or prevent risk from potentially dangerous activities in industry. Probability of failure to perform its functions on demand (PFD) for safety system usually exhibits variation due to the epistemic uncertainty associated with various input parameters. This paper uses the complementary cumulative distribution function of the PFD to define the exceedance probability (EP) that the PFD of the system is larger than the designed value. Sensitivity analysis of safety system is further investigated, which focuses on the effect of the variance of an individual input parameter on the EP resulting from epistemic uncertainty associated with the input parameters. An available numerical technique called finite difference method is first employed to evaluate the effect, which requires extensive computational cost and needs to select a step size. To address these difficulties, this paper proposes an efficient simulation method to estimate the effect. The proposed method needs only an evaluation to estimate the effects corresponding to all input parameters. Two examples are used to demonstrate that the proposed method can obtain more accurate results with less computation time compared to reported methods. - Highlights: • We define a sensitivity index to measure effect of a parameter for safety system. • We analyze the physical meaning of the sensitivity index. • We propose an efficient simulation method to assess the sensitivity index. • We derive the formulations of this index for lognormal and beta distributions. • Results identify important parameters on exceedance probability of safety system.

  17. Multivariate Self-Exciting Threshold Autoregressive Models with eXogenous Input

    OpenAIRE

    Addo, Peter Martey

    2014-01-01

    This study defines a multivariate Self--Exciting Threshold Autoregressive with eXogenous input (MSETARX) models and present an estimation procedure for the parameters. The conditions for stationarity of the nonlinear MSETARX models is provided. In particular, the efficiency of an adaptive parameter estimation algorithm and LSE (least squares estimate) algorithm for this class of models is then provided via simulations.

  18. Modeling Recognition Memory Using the Similarity Structure of Natural Input

    Science.gov (United States)

    Lacroix, Joyca P. W.; Murre, Jaap M. J.; Postma, Eric O.; van den Herik, H. Jaap

    2006-01-01

    The natural input memory (NAM) model is a new model for recognition memory that operates on natural visual input. A biologically informed perceptual preprocessing method takes local samples (eye fixations) from a natural image and translates these into a feature-vector representation. During recognition, the model compares incoming preprocessed…

  19. Wind Farm Decentralized Dynamic Modeling With Parameters

    DEFF Research Database (Denmark)

    Soltani, Mohsen; Shakeri, Sayyed Mojtaba; Grunnet, Jacob Deleuran

    2010-01-01

    Development of dynamic wind flow models for wind farms is part of the research in European research FP7 project AEOLUS. The objective of this report is to provide decentralized dynamic wind flow models with parameters. The report presents a structure for decentralized flow models with inputs from...... local models. The results of this report are especially useful, but not limited, to design a decentralized wind farm controller, since in centralized controller design one can also use the model and update it in a central computing node.......Development of dynamic wind flow models for wind farms is part of the research in European research FP7 project AEOLUS. The objective of this report is to provide decentralized dynamic wind flow models with parameters. The report presents a structure for decentralized flow models with inputs from...

  20. Generation of input parameters for OSPM calculations. Sensitivity analysis of a method based on a questionnaire

    Energy Technology Data Exchange (ETDEWEB)

    Vignati, E.; Hertel, O.; Berkowicz, R. [National Environmental Research Inst., Dept. of Atmospheric Enviroment (Denmark); Raaschou-Nielsen, O. [Danish Cancer Society, Division of Cancer Epidemiology (Denmark)

    1997-05-01

    The method for generation of the input data for the calculations with OSPM is presented in this report. The described method which is based on information provided from a questionnaire, will be used for model calculations of long term exposure for a large number of children in connection with an epidemiological study. A test of the calculation method has been performed on a few locations in which detailed measurements of air pollution, meteorological data and traffic were available. Comparisons between measured and calculated concentrations were made for hourly, monthly and yearly values. Beside the measured concentrations, the test results were compared to results obtained with the optimal street configuration data and measured traffic. The main conclusions drawn from this investigation are: (1) The calculation method works satisfactory well for long term averages, whereas the uncertainties are high when short term averages are considered. (2) The street width is one of the most crucial input parameters for the calculation of street pollution levels for both short and long term averages. Using H.C. Andersens Boulevard as an example, it was shown that estimation of street width based on traffic amount can lead to large overestimation of the concentration levels (in this case 50% for NO{sub x} and 30% for NO{sub 2}). (3) The street orientation and geometry is important for prediction of short term concentrations but this importance diminished for longer term averages. (4) The uncertainties in diurnal traffic profiles can influence the accuracy of short term averages, but are less important for long term averages. The correlation is good between modelled and measured concentrations when the actual background concentrations are replaced with the generated values. Even though extreme situations are difficult to reproduce with this method, the comparison between the yearly averaged modelled and measured concentrations is very good. (LN) 20 refs.

  1. Star Classification for the Kepler Input Catalog: From Images to Stellar Parameters

    Science.gov (United States)

    Brown, T. M.; Everett, M.; Latham, D. W.; Monet, D. G.

    2005-12-01

    The Stellar Classification Project is a ground-based effort to screen stars within the Kepler field of view, to allow removal of stars with large radii (and small potential transit signals) from the target list. Important components of this process are: (1) An automated photometry pipeline estimates observed magnitudes both for target stars and for stars in several calibration fields. (2) Data from calibration fields yield extinction-corrected AB magnitudes (with g, r, i, z magnitudes transformed to the SDSS system). We merge these with 2MASS J, H, K magnitudes. (3) The Basel grid of stellar atmosphere models yields synthetic colors, which are transformed to our photometric system by calibration against observations of stars in M67. (4) We combine the r magnitude and stellar galactic latitude with a simple model of interstellar extinction to derive a relation connecting {Teff, luminosity} to distance and reddening. For models satisfying this relation, we compute a chi-squared statistic describing the match between each model and the observed colors. (5) We create a merit function based on the chi-squared statistic, and on a Bayesian prior probability distribution which gives probability as a function of Teff, luminosity, log(Z), and height above the galactic plane. The stellar parameters ascribed to a star are those of the model that maximizes this merit function. (6) Parameter estimates are merged with positional and other information from extant catalogs to yield the Kepler Input Catalog, from which targets will be chosen. Testing and validation of this procedure are underway, with encouraging initial results.

  2. On Optimal Input Design and Model Selection for Communication Channels

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yanyan [ORNL; Djouadi, Seddik M [ORNL; Olama, Mohammed M [ORNL

    2013-01-01

    In this paper, the optimal model (structure) selection and input design which minimize the worst case identification error for communication systems are provided. The problem is formulated using metric complexity theory in a Hilbert space setting. It is pointed out that model selection and input design can be handled independently. Kolmogorov n-width is used to characterize the representation error introduced by model selection, while Gel fand and Time n-widths are used to represent the inherent error introduced by input design. After the model is selected, an optimal input which minimizes the worst case identification error is shown to exist. In particular, it is proven that the optimal model for reducing the representation error is a Finite Impulse Response (FIR) model, and the optimal input is an impulse at the start of the observation interval. FIR models are widely popular in communication systems, such as, in Orthogonal Frequency Division Multiplexing (OFDM) systems.

  3. Lysimeter data as input to performance assessment models

    International Nuclear Information System (INIS)

    McConnell, J.W. Jr.

    1998-01-01

    The Field Lysimeter Investigations: Low-Level Waste Data Base Development Program is obtaining information on the performance of radioactive waste forms in a disposal environment. Waste forms fabricated using ion-exchange resins from EPICOR-117 prefilters employed in the cleanup of the Three Mile Island (TMI) Nuclear Power Station are being tested to develop a low-level waste data base and to obtain information on survivability of waste forms in a disposal environment. The program includes reviewing radionuclide releases from those waste forms in the first 7 years of sampling and examining the relationship between code input parameters and lysimeter data. Also, lysimeter data are applied to performance assessment source term models, and initial results from use of data in two models are presented

  4. Bayesian nonlinear structural FE model and seismic input identification for damage assessment of civil structures

    Science.gov (United States)

    Astroza, Rodrigo; Ebrahimian, Hamed; Li, Yong; Conte, Joel P.

    2017-09-01

    A methodology is proposed to update mechanics-based nonlinear finite element (FE) models of civil structures subjected to unknown input excitation. The approach allows to jointly estimate unknown time-invariant model parameters of a nonlinear FE model of the structure and the unknown time histories of input excitations using spatially-sparse output response measurements recorded during an earthquake event. The unscented Kalman filter, which circumvents the computation of FE response sensitivities with respect to the unknown model parameters and unknown input excitations by using a deterministic sampling approach, is employed as the estimation tool. The use of measurement data obtained from arrays of heterogeneous sensors, including accelerometers, displacement sensors, and strain gauges is investigated. Based on the estimated FE model parameters and input excitations, the updated nonlinear FE model can be interrogated to detect, localize, classify, and assess damage in the structure. Numerically simulated response data of a three-dimensional 4-story 2-by-1 bay steel frame structure with six unknown model parameters subjected to unknown bi-directional horizontal seismic excitation, and a three-dimensional 5-story 2-by-1 bay reinforced concrete frame structure with nine unknown model parameters subjected to unknown bi-directional horizontal seismic excitation are used to illustrate and validate the proposed methodology. The results of the validation studies show the excellent performance and robustness of the proposed algorithm to jointly estimate unknown FE model parameters and unknown input excitations.

  5. Joint analysis of input and parametric uncertainties in watershed water quality modeling: A formal Bayesian approach

    Science.gov (United States)

    Han, Feng; Zheng, Yi

    2018-06-01

    Significant Input uncertainty is a major source of error in watershed water quality (WWQ) modeling. It remains challenging to address the input uncertainty in a rigorous Bayesian framework. This study develops the Bayesian Analysis of Input and Parametric Uncertainties (BAIPU), an approach for the joint analysis of input and parametric uncertainties through a tight coupling of Markov Chain Monte Carlo (MCMC) analysis and Bayesian Model Averaging (BMA). The formal likelihood function for this approach is derived considering a lag-1 autocorrelated, heteroscedastic, and Skew Exponential Power (SEP) distributed error model. A series of numerical experiments were performed based on a synthetic nitrate pollution case and on a real study case in the Newport Bay Watershed, California. The Soil and Water Assessment Tool (SWAT) and Differential Evolution Adaptive Metropolis (DREAM(ZS)) were used as the representative WWQ model and MCMC algorithm, respectively. The major findings include the following: (1) the BAIPU can be implemented and used to appropriately identify the uncertain parameters and characterize the predictive uncertainty; (2) the compensation effect between the input and parametric uncertainties can seriously mislead the modeling based management decisions, if the input uncertainty is not explicitly accounted for; (3) the BAIPU accounts for the interaction between the input and parametric uncertainties and therefore provides more accurate calibration and uncertainty results than a sequential analysis of the uncertainties; and (4) the BAIPU quantifies the credibility of different input assumptions on a statistical basis and can be implemented as an effective inverse modeling approach to the joint inference of parameters and inputs.

  6. Modeling recognition memory using the similarity structure of natural input

    NARCIS (Netherlands)

    Lacroix, J.P.W.; Murre, J.M.J.; Postma, E.O.; van den Herik, H.J.

    2006-01-01

    The natural input memory (NIM) model is a new model for recognition memory that operates on natural visual input. A biologically informed perceptual preprocessing method takes local samples (eye fixations) from a natural image and translates these into a feature-vector representation. During

  7. Variance-based sensitivity indices for models with dependent inputs

    International Nuclear Information System (INIS)

    Mara, Thierry A.; Tarantola, Stefano

    2012-01-01

    Computational models are intensively used in engineering for risk analysis or prediction of future outcomes. Uncertainty and sensitivity analyses are of great help in these purposes. Although several methods exist to perform variance-based sensitivity analysis of model output with independent inputs only a few are proposed in the literature in the case of dependent inputs. This is explained by the fact that the theoretical framework for the independent case is set and a univocal set of variance-based sensitivity indices is defined. In the present work, we propose a set of variance-based sensitivity indices to perform sensitivity analysis of models with dependent inputs. These measures allow us to distinguish between the mutual dependent contribution and the independent contribution of an input to the model response variance. Their definition relies on a specific orthogonalisation of the inputs and ANOVA-representations of the model output. In the applications, we show the interest of the new sensitivity indices for model simplification setting. - Highlights: ► Uncertainty and sensitivity analyses are of great help in engineering. ► Several methods exist to perform variance-based sensitivity analysis of model output with independent inputs. ► We define a set of variance-based sensitivity indices for models with dependent inputs. ► Inputs mutual contributions are distinguished from their independent contributions. ► Analytical and computational tests are performed and discussed.

  8. Input parameters to codes which analyze LMFBR wire-wrapped bundles

    International Nuclear Information System (INIS)

    Hawley, J.T.; Chan, Y.N.; Todreas, N.E.

    1980-12-01

    This report provides a current summary of recommended values of key input parameters required by ENERGY code analysis of LMFBR wire wrapped bundles. This data is based on the interpretation of experimental results from the MIT and other available laboratory programs

  9. Can Simulation Credibility Be Improved Using Sensitivity Analysis to Understand Input Data Effects on Model Outcome?

    Science.gov (United States)

    Myers, Jerry G.; Young, M.; Goodenow, Debra A.; Keenan, A.; Walton, M.; Boley, L.

    2015-01-01

    Model and simulation (MS) credibility is defined as, the quality to elicit belief or trust in MS results. NASA-STD-7009 [1] delineates eight components (Verification, Validation, Input Pedigree, Results Uncertainty, Results Robustness, Use History, MS Management, People Qualifications) that address quantifying model credibility, and provides guidance to the model developers, analysts, and end users for assessing the MS credibility. Of the eight characteristics, input pedigree, or the quality of the data used to develop model input parameters, governing functions, or initial conditions, can vary significantly. These data quality differences have varying consequences across the range of MS application. NASA-STD-7009 requires that the lowest input data quality be used to represent the entire set of input data when scoring the input pedigree credibility of the model. This requirement provides a conservative assessment of model inputs, and maximizes the communication of the potential level of risk of using model outputs. Unfortunately, in practice, this may result in overly pessimistic communication of the MS output, undermining the credibility of simulation predictions to decision makers. This presentation proposes an alternative assessment mechanism, utilizing results parameter robustness, also known as model input sensitivity, to improve the credibility scoring process for specific simulations.

  10. Modeling Input Errors to Improve Uncertainty Estimates for Sediment Transport Model Predictions

    Science.gov (United States)

    Jung, J. Y.; Niemann, J. D.; Greimann, B. P.

    2016-12-01

    Bayesian methods using Markov chain Monte Carlo algorithms have recently been applied to sediment transport models to assess the uncertainty in the model predictions due to the parameter values. Unfortunately, the existing approaches can only attribute overall uncertainty to the parameters. This limitation is critical because no model can produce accurate forecasts if forced with inaccurate input data, even if the model is well founded in physical theory. In this research, an existing Bayesian method is modified to consider the potential errors in input data during the uncertainty evaluation process. The input error is modeled using Gaussian distributions, and the means and standard deviations are treated as uncertain parameters. The proposed approach is tested by coupling it to the Sedimentation and River Hydraulics - One Dimension (SRH-1D) model and simulating a 23-km reach of the Tachia River in Taiwan. The Wu equation in SRH-1D is used for computing the transport capacity for a bed material load of non-cohesive material. Three types of input data are considered uncertain: (1) the input flowrate at the upstream boundary, (2) the water surface elevation at the downstream boundary, and (3) the water surface elevation at a hydraulic structure in the middle of the reach. The benefits of modeling the input errors in the uncertainty analysis are evaluated by comparing the accuracy of the most likely forecast and the coverage of the observed data by the credible intervals to those of the existing method. The results indicate that the internal boundary condition has the largest uncertainty among those considered. Overall, the uncertainty estimates from the new method are notably different from those of the existing method for both the calibration and forecast periods.

  11. Reconstruction of neuronal input through modeling single-neuron dynamics and computations

    International Nuclear Information System (INIS)

    Qin, Qing; Wang, Jiang; Yu, Haitao; Deng, Bin; Chan, Wai-lok

    2016-01-01

    Mathematical models provide a mathematical description of neuron activity, which can better understand and quantify neural computations and corresponding biophysical mechanisms evoked by stimulus. In this paper, based on the output spike train evoked by the acupuncture mechanical stimulus, we present two different levels of models to describe the input-output system to achieve the reconstruction of neuronal input. The reconstruction process is divided into two steps: First, considering the neuronal spiking event as a Gamma stochastic process. The scale parameter and the shape parameter of Gamma process are, respectively, defined as two spiking characteristics, which are estimated by a state-space method. Then, leaky integrate-and-fire (LIF) model is used to mimic the response system and the estimated spiking characteristics are transformed into two temporal input parameters of LIF model, through two conversion formulas. We test this reconstruction method by three different groups of simulation data. All three groups of estimates reconstruct input parameters with fairly high accuracy. We then use this reconstruction method to estimate the non-measurable acupuncture input parameters. Results show that under three different frequencies of acupuncture stimulus conditions, estimated input parameters have an obvious difference. The higher the frequency of the acupuncture stimulus is, the higher the accuracy of reconstruction is.

  12. Reconstruction of neuronal input through modeling single-neuron dynamics and computations

    Energy Technology Data Exchange (ETDEWEB)

    Qin, Qing; Wang, Jiang; Yu, Haitao; Deng, Bin, E-mail: dengbin@tju.edu.cn; Chan, Wai-lok [School of Electrical Engineering and Automation, Tianjin University, Tianjin 300072 (China)

    2016-06-15

    Mathematical models provide a mathematical description of neuron activity, which can better understand and quantify neural computations and corresponding biophysical mechanisms evoked by stimulus. In this paper, based on the output spike train evoked by the acupuncture mechanical stimulus, we present two different levels of models to describe the input-output system to achieve the reconstruction of neuronal input. The reconstruction process is divided into two steps: First, considering the neuronal spiking event as a Gamma stochastic process. The scale parameter and the shape parameter of Gamma process are, respectively, defined as two spiking characteristics, which are estimated by a state-space method. Then, leaky integrate-and-fire (LIF) model is used to mimic the response system and the estimated spiking characteristics are transformed into two temporal input parameters of LIF model, through two conversion formulas. We test this reconstruction method by three different groups of simulation data. All three groups of estimates reconstruct input parameters with fairly high accuracy. We then use this reconstruction method to estimate the non-measurable acupuncture input parameters. Results show that under three different frequencies of acupuncture stimulus conditions, estimated input parameters have an obvious difference. The higher the frequency of the acupuncture stimulus is, the higher the accuracy of reconstruction is.

  13. A Novel Coupled State/Input/Parameter Identification Method for Linear Structural Systems

    Directory of Open Access Journals (Sweden)

    Zhimin Wan

    2018-01-01

    Full Text Available In many engineering applications, unknown states, inputs, and parameters exist in the structures. However, most methods require one or two of these variables to be known in order to identify the other(s. Recently, the authors have proposed a method called EGDF for coupled state/input/parameter identification for nonlinear system in state space. However, the EGDF method based solely on acceleration measurements is found to be unstable, which can cause the drift of the identified inputs and displacements. Although some regularization methods can be adopted for solving the problem, they are not suitable for joint input-state identification in real time. In this paper, a strategy of data fusion of displacement and acceleration measurements is used to avoid the low-frequency drift in the identified inputs and structural displacements for linear structural systems. Two numerical examples about a plane truss and a single-stage isolation system are conducted to verify the effectiveness of the proposed modified EGDF algorithm.

  14. Stein's neuronal model with pooled renewal input

    Czech Academy of Sciences Publication Activity Database

    Rajdl, K.; Lánský, Petr

    2015-01-01

    Roč. 109, č. 3 (2015), s. 389-399 ISSN 0340-1200 Institutional support: RVO:67985823 Keywords : Stein’s model * Poisson process * pooled renewal processes * first-passage time Subject RIV: BA - General Mathematics Impact factor: 1.611, year: 2015

  15. Relative sensitivities of DCE-MRI pharmacokinetic parameters to arterial input function (AIF) scaling.

    Science.gov (United States)

    Li, Xin; Cai, Yu; Moloney, Brendan; Chen, Yiyi; Huang, Wei; Woods, Mark; Coakley, Fergus V; Rooney, William D; Garzotto, Mark G; Springer, Charles S

    2016-08-01

    Dynamic-Contrast-Enhanced Magnetic Resonance Imaging (DCE-MRI) has been used widely for clinical applications. Pharmacokinetic modeling of DCE-MRI data that extracts quantitative contrast reagent/tissue-specific model parameters is the most investigated method. One of the primary challenges in pharmacokinetic analysis of DCE-MRI data is accurate and reliable measurement of the arterial input function (AIF), which is the driving force behind all pharmacokinetics. Because of effects such as inflow and partial volume averaging, AIF measured from individual arteries sometimes require amplitude scaling for better representation of the blood contrast reagent (CR) concentration time-courses. Empirical approaches like blinded AIF estimation or reference tissue AIF derivation can be useful and practical, especially when there is no clearly visible blood vessel within the imaging field-of-view (FOV). Similarly, these approaches generally also require magnitude scaling of the derived AIF time-courses. Since the AIF varies among individuals even with the same CR injection protocol and the perfect scaling factor for reconstructing the ground truth AIF often remains unknown, variations in estimated pharmacokinetic parameters due to varying AIF scaling factors are of special interest. In this work, using simulated and real prostate cancer DCE-MRI data, we examined parameter variations associated with AIF scaling. Our results show that, for both the fast-exchange-limit (FXL) Tofts model and the water exchange sensitized fast-exchange-regime (FXR) model, the commonly fitted CR transfer constant (K(trans)) and the extravascular, extracellular volume fraction (ve) scale nearly proportionally with the AIF, whereas the FXR-specific unidirectional cellular water efflux rate constant, kio, and the CR intravasation rate constant, kep, are both AIF scaling insensitive. This indicates that, for DCE-MRI of prostate cancer and possibly other cancers, kio and kep may be more suitable imaging

  16. Parameter Estimation for Thurstone Choice Models

    Energy Technology Data Exchange (ETDEWEB)

    Vojnovic, Milan [London School of Economics (United Kingdom); Yun, Seyoung [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-04-24

    We consider the estimation accuracy of individual strength parameters of a Thurstone choice model when each input observation consists of a choice of one item from a set of two or more items (so called top-1 lists). This model accommodates the well-known choice models such as the Luce choice model for comparison sets of two or more items and the Bradley-Terry model for pair comparisons. We provide a tight characterization of the mean squared error of the maximum likelihood parameter estimator. We also provide similar characterizations for parameter estimators defined by a rank-breaking method, which amounts to deducing one or more pair comparisons from a comparison of two or more items, assuming independence of these pair comparisons, and maximizing a likelihood function derived under these assumptions. We also consider a related binary classification problem where each individual parameter takes value from a set of two possible values and the goal is to correctly classify all items within a prescribed classification error. The results of this paper shed light on how the parameter estimation accuracy depends on given Thurstone choice model and the structure of comparison sets. In particular, we found that for unbiased input comparison sets of a given cardinality, when in expectation each comparison set of given cardinality occurs the same number of times, for a broad class of Thurstone choice models, the mean squared error decreases with the cardinality of comparison sets, but only marginally according to a diminishing returns relation. On the other hand, we found that there exist Thurstone choice models for which the mean squared error of the maximum likelihood parameter estimator can decrease much faster with the cardinality of comparison sets. We report empirical evaluation of some claims and key parameters revealed by theory using both synthetic and real-world input data from some popular sport competitions and online labor platforms.

  17. Global sensitivity analysis of computer models with functional inputs

    International Nuclear Information System (INIS)

    Iooss, Bertrand; Ribatet, Mathieu

    2009-01-01

    Global sensitivity analysis is used to quantify the influence of uncertain model inputs on the response variability of a numerical model. The common quantitative methods are appropriate with computer codes having scalar model inputs. This paper aims at illustrating different variance-based sensitivity analysis techniques, based on the so-called Sobol's indices, when some model inputs are functional, such as stochastic processes or random spatial fields. In this work, we focus on large cpu time computer codes which need a preliminary metamodeling step before performing the sensitivity analysis. We propose the use of the joint modeling approach, i.e., modeling simultaneously the mean and the dispersion of the code outputs using two interlinked generalized linear models (GLMs) or generalized additive models (GAMs). The 'mean model' allows to estimate the sensitivity indices of each scalar model inputs, while the 'dispersion model' allows to derive the total sensitivity index of the functional model inputs. The proposed approach is compared to some classical sensitivity analysis methodologies on an analytical function. Lastly, the new methodology is applied to an industrial computer code that simulates the nuclear fuel irradiation.

  18. Monte Carlo Simulation of Influence of Input Parameters Uncertainty on Output Data

    International Nuclear Information System (INIS)

    Sobek, Lukas

    2010-01-01

    Input parameters of a complex system in the probabilistic simulation are treated by means of probability density function (PDF). The result of the simulation have also probabilistic character. Monte Carlo simulation is widely used to obtain predictions concerning the probability of the risk. The Monte Carlo method was performed to calculate histograms of PDF for release rate given by uncertainty in distribution coefficient of radionuclides 135 Cs and 235 U.

  19. Calibration of controlling input models for pavement management system.

    Science.gov (United States)

    2013-07-01

    The Oklahoma Department of Transportation (ODOT) is currently using the Deighton Total Infrastructure Management System (dTIMS) software for pavement management. This system is based on several input models which are computational backbones to dev...

  20. The Sensitivity of the Input Impedance Parameters of Track Circuits to Changes in the Parameters of the Track

    Directory of Open Access Journals (Sweden)

    Lubomir Ivanek

    2017-01-01

    Full Text Available This paper deals with the sensitivity of the input impedance of an open track circuit in the event that the parameters of the track are changed. Weather conditions and the state of pollution are the most common reasons for parameter changes. The results were obtained from the measured values of the parameters R (resistance, G (conductance, L (inductance, and C (capacitance of a rail superstructure depending on the frequency. Measurements were performed on a railway siding in Orlova. The results are used to design a predictor of occupancy of a track section. In particular, we were interested in the frequencies of 75 and 275 Hz for this purpose. Many parameter values of track substructures have already been solved in different works in literature. At first, we had planned to use the parameter values from these sources when we designed the predictor. Deviations between them, however, are large and often differ by three orders of magnitude (see Tab.8. From this perspective, this article presents data that have been updated using modern measurement devices and computer technology. And above all, it shows a transmission (cascade matrix used to determine the parameters.

  1. Calibration of discrete element model parameters: soybeans

    Science.gov (United States)

    Ghodki, Bhupendra M.; Patel, Manish; Namdeo, Rohit; Carpenter, Gopal

    2018-05-01

    Discrete element method (DEM) simulations are broadly used to get an insight of flow characteristics of granular materials in complex particulate systems. DEM input parameters for a model are the critical prerequisite for an efficient simulation. Thus, the present investigation aims to determine DEM input parameters for Hertz-Mindlin model using soybeans as a granular material. To achieve this aim, widely acceptable calibration approach was used having standard box-type apparatus. Further, qualitative and quantitative findings such as particle profile, height of kernels retaining the acrylic wall, and angle of repose of experiments and numerical simulations were compared to get the parameters. The calibrated set of DEM input parameters includes the following (a) material properties: particle geometric mean diameter (6.24 mm); spherical shape; particle density (1220 kg m^{-3} ), and (b) interaction parameters such as particle-particle: coefficient of restitution (0.17); coefficient of static friction (0.26); coefficient of rolling friction (0.08), and particle-wall: coefficient of restitution (0.35); coefficient of static friction (0.30); coefficient of rolling friction (0.08). The results may adequately be used to simulate particle scale mechanics (grain commingling, flow/motion, forces, etc) of soybeans in post-harvest machinery and devices.

  2. Optimal input shaping for Fisher identifiability of control-oriented lithium-ion battery models

    Science.gov (United States)

    Rothenberger, Michael J.

    This dissertation examines the fundamental challenge of optimally shaping input trajectories to maximize parameter identifiability of control-oriented lithium-ion battery models. Identifiability is a property from information theory that determines the solvability of parameter estimation for mathematical models using input-output measurements. This dissertation creates a framework that exploits the Fisher information metric to quantify the level of battery parameter identifiability, optimizes this metric through input shaping, and facilitates faster and more accurate estimation. The popularity of lithium-ion batteries is growing significantly in the energy storage domain, especially for stationary and transportation applications. While these cells have excellent power and energy densities, they are plagued with safety and lifespan concerns. These concerns are often resolved in the industry through conservative current and voltage operating limits, which reduce the overall performance and still lack robustness in detecting catastrophic failure modes. New advances in automotive battery management systems mitigate these challenges through the incorporation of model-based control to increase performance, safety, and lifespan. To achieve these goals, model-based control requires accurate parameterization of the battery model. While many groups in the literature study a variety of methods to perform battery parameter estimation, a fundamental issue of poor parameter identifiability remains apparent for lithium-ion battery models. This fundamental challenge of battery identifiability is studied extensively in the literature, and some groups are even approaching the problem of improving the ability to estimate the model parameters. The first approach is to add additional sensors to the battery to gain more information that is used for estimation. The other main approach is to shape the input trajectories to increase the amount of information that can be gained from input

  3. Blind Deconvolution for Distributed Parameter Systems with Unbounded Input and Output and Determining Blood Alcohol Concentration from Transdermal Biosensor Data.

    Science.gov (United States)

    Rosen, I G; Luczak, Susan E; Weiss, Jordan

    2014-03-15

    We develop a blind deconvolution scheme for input-output systems described by distributed parameter systems with boundary input and output. An abstract functional analytic theory based on results for the linear quadratic control of infinite dimensional systems with unbounded input and output operators is presented. The blind deconvolution problem is then reformulated as a series of constrained linear and nonlinear optimization problems involving infinite dimensional dynamical systems. A finite dimensional approximation and convergence theory is developed. The theory is applied to the problem of estimating blood or breath alcohol concentration (respectively, BAC or BrAC) from biosensor-measured transdermal alcohol concentration (TAC) in the field. A distributed parameter model with boundary input and output is proposed for the transdermal transport of ethanol from the blood through the skin to the sensor. The problem of estimating BAC or BrAC from the TAC data is formulated as a blind deconvolution problem. A scheme to identify distinct drinking episodes in TAC data based on a Hodrick Prescott filter is discussed. Numerical results involving actual patient data are presented.

  4. Source term modelling parameters for Project-90

    International Nuclear Information System (INIS)

    Shaw, W.; Smith, G.; Worgan, K.; Hodgkinson, D.; Andersson, K.

    1992-04-01

    This document summarises the input parameters for the source term modelling within Project-90. In the first place, the parameters relate to the CALIBRE near-field code which was developed for the Swedish Nuclear Power Inspectorate's (SKI) Project-90 reference repository safety assessment exercise. An attempt has been made to give best estimate values and, where appropriate, a range which is related to variations around base cases. It should be noted that the data sets contain amendments to those considered by KBS-3. In particular, a completely new set of inventory data has been incorporated. The information given here does not constitute a complete set of parameter values for all parts of the CALIBRE code. Rather, it gives the key parameter values which are used in the constituent models within CALIBRE and the associated studies. For example, the inventory data acts as an input to the calculation of the oxidant production rates, which influence the generation of a redox front. The same data is also an initial value data set for the radionuclide migration component of CALIBRE. Similarly, the geometrical parameters of the near-field are common to both sub-models. The principal common parameters are gathered here for ease of reference and avoidance of unnecessary duplication and transcription errors. (au)

  5. Sensitivity analysis of complex models: Coping with dynamic and static inputs

    International Nuclear Information System (INIS)

    Anstett-Collin, F.; Goffart, J.; Mara, T.; Denis-Vidal, L.

    2015-01-01

    In this paper, we address the issue of conducting a sensitivity analysis of complex models with both static and dynamic uncertain inputs. While several approaches have been proposed to compute the sensitivity indices of the static inputs (i.e. parameters), the one of the dynamic inputs (i.e. stochastic fields) have been rarely addressed. For this purpose, we first treat each dynamic as a Gaussian process. Then, the truncated Karhunen–Loève expansion of each dynamic input is performed. Such an expansion allows to generate independent Gaussian processes from a finite number of independent random variables. Given that a dynamic input is represented by a finite number of random variables, its variance-based sensitivity index is defined by the sensitivity index of this group of variables. Besides, an efficient sampling-based strategy is described to estimate the first-order indices of all the input factors by only using two input samples. The approach is applied to a building energy model, in order to assess the impact of the uncertainties of the material properties (static inputs) and the weather data (dynamic inputs) on the energy performance of a real low energy consumption house. - Highlights: • Sensitivity analysis of models with uncertain static and dynamic inputs is performed. • Karhunen–Loève (KL) decomposition of the spatio/temporal inputs is performed. • The influence of the dynamic inputs is studied through the modes of the KL expansion. • The proposed approach is applied to a building energy model. • Impact of weather data and material properties on performance of real house is given

  6. System Identification for Nonlinear FOPDT Model with Input-Dependent Dead-Time

    DEFF Research Database (Denmark)

    Sun, Zhen; Yang, Zhenyu

    2011-01-01

    An on-line iterative method of system identification for a kind of nonlinear FOPDT system is proposed in the paper. The considered nonlinear FOPDT model is an extension of the standard FOPDT model by means that its dead time depends on the input signal and the other parameters are time dependent....

  7. On how to avoid input and structural uncertainties corrupt the inference of hydrological parameters using a Bayesian framework

    Science.gov (United States)

    Hernández, Mario R.; Francés, Félix

    2015-04-01

    One phase of the hydrological models implementation process, significantly contributing to the hydrological predictions uncertainty, is the calibration phase in which values of the unknown model parameters are tuned by optimizing an objective function. An unsuitable error model (e.g. Standard Least Squares or SLS) introduces noise into the estimation of the parameters. The main sources of this noise are the input errors and the hydrological model structural deficiencies. Thus, the biased calibrated parameters cause the divergence model phenomenon, where the errors variance of the (spatially and temporally) forecasted flows far exceeds the errors variance in the fitting period, and provoke the loss of part or all of the physical meaning of the modeled processes. In other words, yielding a calibrated hydrological model which works well, but not for the right reasons. Besides, an unsuitable error model yields a non-reliable predictive uncertainty assessment. Hence, with the aim of prevent all these undesirable effects, this research focuses on the Bayesian joint inference (BJI) of both the hydrological and error model parameters, considering a general additive (GA) error model that allows for correlation, non-stationarity (in variance and bias) and non-normality of model residuals. As hydrological model, it has been used a conceptual distributed model called TETIS, with a particular split structure of the effective model parameters. Bayesian inference has been performed with the aid of a Markov Chain Monte Carlo (MCMC) algorithm called Dream-ZS. MCMC algorithm quantifies the uncertainty of the hydrological and error model parameters by getting the joint posterior probability distribution, conditioned on the observed flows. The BJI methodology is a very powerful and reliable tool, but it must be used correctly this is, if non-stationarity in errors variance and bias is modeled, the Total Laws must be taken into account. The results of this research show that the

  8. Exploiting intrinsic fluctuations to identify model parameters.

    Science.gov (United States)

    Zimmer, Christoph; Sahle, Sven; Pahle, Jürgen

    2015-04-01

    Parameterisation of kinetic models plays a central role in computational systems biology. Besides the lack of experimental data of high enough quality, some of the biggest challenges here are identification issues. Model parameters can be structurally non-identifiable because of functional relationships. Noise in measured data is usually considered to be a nuisance for parameter estimation. However, it turns out that intrinsic fluctuations in particle numbers can make parameters identifiable that were previously non-identifiable. The authors present a method to identify model parameters that are structurally non-identifiable in a deterministic framework. The method takes time course recordings of biochemical systems in steady state or transient state as input. Often a functional relationship between parameters presents itself by a one-dimensional manifold in parameter space containing parameter sets of optimal goodness. Although the system's behaviour cannot be distinguished on this manifold in a deterministic framework it might be distinguishable in a stochastic modelling framework. Their method exploits this by using an objective function that includes a measure for fluctuations in particle numbers. They show on three example models, immigration-death, gene expression and Epo-EpoReceptor interaction, that this resolves the non-identifiability even in the case of measurement noise with known amplitude. The method is applied to partially observed recordings of biochemical systems with measurement noise. It is simple to implement and it is usually very fast to compute. This optimisation can be realised in a classical or Bayesian fashion.

  9. Quality assurance of weather data for agricultural system model input

    Science.gov (United States)

    It is well known that crop production and hydrologic variation on watersheds is weather related. Rarely, however, is meteorological data quality checks reported for agricultural systems model research. We present quality assurance procedures for agricultural system model weather data input. Problems...

  10. MPC for LPV Systems Based on Parameter-Dependent Lyapunov Function with Perturbation on Control Input Strategy

    Directory of Open Access Journals (Sweden)

    Pornchai Bumroongsri

    2012-04-01

    Full Text Available In this paper, the model predictive control (MPC algorithm for linear parameter varying (LPV systems is proposed. The proposed algorithm consists of two steps. The first step is derived by using parameter-dependent Lyapunov function and the second step is derived by using the perturbation on control input strategy. In order to achieve good control performance, the bounds on the rate of variation of the parameters are taken into account in the controller synthesis. An overall algorithm is proved to guarantee robust stability. The controller design is illustrated with two case studies of continuous stirred-tank reactors. Comparisons with other MPC algorithms for LPV systems have been undertaken. The results show that the proposed algorithm can achieve better control performance.

  11. Evaluating nuclear physics inputs in core-collapse supernova models

    Science.gov (United States)

    Lentz, E.; Hix, W. R.; Baird, M. L.; Messer, O. E. B.; Mezzacappa, A.

    Core-collapse supernova models depend on the details of the nuclear and weak interaction physics inputs just as they depend on the details of the macroscopic physics (transport, hydrodynamics, etc.), numerical methods, and progenitors. We present preliminary results from our ongoing comparison studies of nuclear and weak interaction physics inputs to core collapse supernova models using the spherically-symmetric, general relativistic, neutrino radiation hydrodynamics code Agile-Boltztran. We focus on comparisons of the effects of the nuclear EoS and the effects of improving the opacities, particularly neutrino--nucleon interactions.

  12. The use of synthetic input sequences in time series modeling

    International Nuclear Information System (INIS)

    Oliveira, Dair Jose de; Letellier, Christophe; Gomes, Murilo E.D.; Aguirre, Luis A.

    2008-01-01

    In many situations time series models obtained from noise-like data settle to trivial solutions under iteration. This Letter proposes a way of producing a synthetic (dummy) input, that is included to prevent the model from settling down to a trivial solution, while maintaining features of the original signal. Simulated benchmark models and a real time series of RR intervals from an ECG are used to illustrate the procedure

  13. PARAMETER ESTIMATION IN BREAD BAKING MODEL

    Directory of Open Access Journals (Sweden)

    Hadiyanto Hadiyanto

    2012-05-01

    Full Text Available Bread product quality is highly dependent to the baking process. A model for the development of product quality, which was obtained by using quantitative and qualitative relationships, was calibrated by experiments at a fixed baking temperature of 200°C alone and in combination with 100 W microwave powers. The model parameters were estimated in a stepwise procedure i.e. first, heat and mass transfer related parameters, then the parameters related to product transformations and finally product quality parameters. There was a fair agreement between the calibrated model results and the experimental data. The results showed that the applied simple qualitative relationships for quality performed above expectation. Furthermore, it was confirmed that the microwave input is most meaningful for the internal product properties and not for the surface properties as crispness and color. The model with adjusted parameters was applied in a quality driven food process design procedure to derive a dynamic operation pattern, which was subsequently tested experimentally to calibrate the model. Despite the limited calibration with fixed operation settings, the model predicted well on the behavior under dynamic convective operation and on combined convective and microwave operation. It was expected that the suitability between model and baking system could be improved further by performing calibration experiments at higher temperature and various microwave power levels.  Abstrak  PERKIRAAN PARAMETER DALAM MODEL UNTUK PROSES BAKING ROTI. Kualitas produk roti sangat tergantung pada proses baking yang digunakan. Suatu model yang telah dikembangkan dengan metode kualitatif dan kuantitaif telah dikalibrasi dengan percobaan pada temperatur 200oC dan dengan kombinasi dengan mikrowave pada 100 Watt. Parameter-parameter model diestimasi dengan prosedur bertahap yaitu pertama, parameter pada model perpindahan masa dan panas, parameter pada model transformasi, dan

  14. Influence of simulation assumptions and input parameters on energy balance calculations of residential buildings

    International Nuclear Information System (INIS)

    Dodoo, Ambrose; Tettey, Uniben Yao Ayikoe; Gustavsson, Leif

    2017-01-01

    In this study, we modelled the influence of different simulation assumptions on energy balances of two variants of a residential building, comprising the building in its existing state and with energy-efficient improvements. We explored how selected parameter combinations and variations affect the energy balances of the building configurations. The selected parameters encompass outdoor microclimate, building thermal envelope and household electrical equipment including technical installations. Our modelling takes into account hourly as well as seasonal profiles of different internal heat gains. The results suggest that the impact of parameter interactions on calculated space heating of buildings is somewhat small and relatively more noticeable for an energy-efficient building in contrast to a conventional building. We find that the influence of parameters combinations is more apparent as more individual parameters are varied. The simulations show that a building's calculated space heating demand is significantly influenced by how heat gains from electrical equipment are modelled. For the analyzed building versions, calculated final energy for space heating differs by 9–14 kWh/m"2 depending on the assumed energy efficiency level for electrical equipment. The influence of electrical equipment on calculated final space heating is proportionally more significant for an energy-efficient building compared to a conventional building. This study shows the influence of different simulation assumptions and parameter combinations when varied simultaneously. - Highlights: • Energy balances are modelled for conventional and efficient variants of a building. • Influence of assumptions and parameter combinations and variations are explored. • Parameter interactions influence is apparent as more single parameters are varied. • Calculated space heating demand is notably affected by how heat gains are modelled.

  15. GASFLOW computer code (physical models and input data)

    International Nuclear Information System (INIS)

    Muehlbauer, Petr

    2007-11-01

    The GASFLOW computer code was developed jointly by the Los Alamos National Laboratory, USA, and Forschungszentrum Karlsruhe, Germany. The code is primarily intended for calculations of the transport, mixing, and combustion of hydrogen and other gases in nuclear reactor containments and in other facilities. The physical models and the input data are described, and a commented simple calculation is presented

  16. Framework for Modelling Multiple Input Complex Aggregations for Interactive Installations

    DEFF Research Database (Denmark)

    Padfield, Nicolas; Andreasen, Troels

    2012-01-01

    on fuzzy logic and provides a method for variably balancing interaction and user input with the intention of the artist or director. An experimental design is presented, demonstrating an intuitive interface for parametric modelling of a complex aggregation function. The aggregation function unifies...

  17. Input-output model for MACCS nuclear accident impacts estimation¹

    Energy Technology Data Exchange (ETDEWEB)

    Outkin, Alexander V. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bixler, Nathan E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Vargas, Vanessa N [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-01-27

    Since the original economic model for MACCS was developed, better quality economic data (as well as the tools to gather and process it) and better computational capabilities have become available. The update of the economic impacts component of the MACCS legacy model will provide improved estimates of business disruptions through the use of Input-Output based economic impact estimation. This paper presents an updated MACCS model, bases on Input-Output methodology, in which economic impacts are calculated using the Regional Economic Accounting analysis tool (REAcct) created at Sandia National Laboratories. This new GDP-based model allows quick and consistent estimation of gross domestic product (GDP) losses due to nuclear power plant accidents. This paper outlines the steps taken to combine the REAcct Input-Output-based model with the MACCS code, describes the GDP loss calculation, and discusses the parameters and modeling assumptions necessary for the estimation of long-term effects of nuclear power plant accidents.

  18. Model reduction of nonlinear systems subject to input disturbances

    KAUST Repository

    Ndoye, Ibrahima

    2017-07-10

    The method of convex optimization is used as a tool for model reduction of a class of nonlinear systems in the presence of disturbances. It is shown that under some conditions the nonlinear disturbed system can be approximated by a reduced order nonlinear system with similar disturbance-output properties to the original plant. The proposed model reduction strategy preserves the nonlinearity and the input disturbance nature of the model. It guarantees a sufficiently small error between the outputs of the original and the reduced-order systems, and also maintains the properties of input-to-state stability. The matrices of the reduced order system are given in terms of a set of linear matrix inequalities (LMIs). The paper concludes with a demonstration of the proposed approach on model reduction of a nonlinear electronic circuit with additive disturbances.

  19. A PRODUCTIVITY EVALUATION MODEL BASED ON INPUT AND OUTPUT ORIENTATIONS

    Directory of Open Access Journals (Sweden)

    C.O. Anyaeche

    2012-01-01

    Full Text Available

    ENGLISH ABSTRACT: Many productivity models evaluate either the input or the output performances using standalone techniques. This sometimes gives divergent views of the same system’s results. The work reported in this article, which simultaneously evaluated productivity from both orientations, was applied on real life data. The results showed losses in productivity (–2% and price recovery (–8% for the outputs; the inputs showed productivity gain (145% but price recovery loss (–63%. These imply losses in product performances but a productivity gain in inputs. The loss in the price recovery of inputs indicates a problem in the pricing policy. This model is applicable in product diversification.

    AFRIKAANSE OPSOMMING: Die meeste produktiwiteitsmodelle evalueer of die inset- of die uitsetverrigting deur gebruik te maak van geïsoleerde tegnieke. Dit lei soms tot uiteenlopende perspektiewe van dieselfde sisteem se verrigting. Hierdie artikel evalueer verrigting uit beide perspektiewe en gebruik ware data. Die resultate toon ‘n afname in produktiwiteit (-2% en prysherwinning (-8% vir die uitsette. Die insette toon ‘n toename in produktiwiteit (145%, maar ‘n afname in prysherwinning (-63%. Dit impliseer ‘n afname in produkverrigting, maar ‘n produktiwiteitstoename in insette. Die afname in die prysherwinning van insette dui op ‘n problem in die prysvasstellingbeleid. Hierdie model is geskik vir produkdiversifikasie.

  20. Comparisons of CAP88PC version 2.0 default parameters to site specific inputs

    International Nuclear Information System (INIS)

    Lehto, M. A.; Courtney, J. C.; Charter, N.; Egan, T.

    2000-01-01

    The effects of varying the input for the CAP88PC Version 2.0 program on the total effective dose equivalents (TEDEs) were determined for hypothetical releases from the Hot Fuel Examination Facility (HFEF) located at the Argonne National Laboratory site on the Idaho National Engineering and Environmental Laboratory (INEEL). Values for site specific meteorological conditions and agricultural production parameters were determined for the 80 km radius surrounding the HFEF. Four nuclides, 3 H, 85 Kr, 129 I, and 137 Cs (with its short lived progeny, 137m Ba) were selected for this study; these are the radioactive materials most likely to be released from HFEF under normal or abnormal operating conditions. Use of site specific meteorological parameters of annual precipitation, average temperature, and the height of the inversion layer decreased the TEDE from 137 Cs- 137m Ba up to 36%; reductions for other nuclides were less than 3%. Use of the site specific agricultural parameters reduced TEDE values between 7% and 49%, depending on the nuclide. Reductions are associated with decreased committed effective dose equivalents (CEDEs) from the ingestion pathway. This is not surprising since the HFEF is located well within the INEEL exclusion area, and the surrounding area closest to the release point is a high desert with limited agricultural diversity. Livestock and milk production are important in some counties at distances greater than 30 km from the HFEF

  1. The scaling of edge parameters in jet with plasma input power

    International Nuclear Information System (INIS)

    Erents, S.K.; McCracken, G.M.; Harbour, P.J.; Clement, S.; Summers, D.D.R.; Tagle, J.A.; Kock, L. de

    1989-01-01

    The scaling of edge parameters of density and temperature with central density and ohmic power in JET has been presented previously for the discrete limiter geometry and more recently for the new belt limiter configuration. However, the scaling with plasma current (I p ) is difficult to interpret because varying I p does not only change the input power but also the safety factor qs and consequently the SOL thickness. The use of additional heating at constant current allows more direct observation of the effects of changing heating power. In this paper we present data in which the plasma input power is increased by ICRH, (Pt<20MW), using a 3MA target plasma, and compare data for different plasma currents using discrete and belt limiter geometries. Edge data is presented from Langmuir probes in tiles at the top of the torus, when the tokamak is operated in single null magnetic separatrix (divertor) mode, as well as for probes in the main plasma boundary to contrast these data with limiter data. (author) 3 refs., 4 figs

  2. Sensitivity of traffic input parameters on rutting performance of a flexible pavement using Mechanistic Empirical Pavement Design Guide

    Directory of Open Access Journals (Sweden)

    Nur Hossain

    2016-11-01

    Full Text Available The traffic input parameters in the Mechanistic Empirical Pavement Design Guide (MEPDG are: (a general traffic inputs, (b traffic volume adjustment factors, and (c axle load spectra (ALS. Of these three traffic inputs, the traffic volume adjustment factors specifically monthly adjustment factor (MAF and the ALS are widely considered to be important and sensitive factors, which can significantly affect design of and prediction of distress in flexible pavements. Therefore, the present study was undertaken to assess the sensitivity of ALS and MAF traffic inputs on rutting distress of a flexible pavement. The traffic data of four years (from 2008 to 2012 were collected from an instrumented test section on I-35 in Oklahoma. Site specific traffic input parameters were developed. It was observed that significant differences exist between the MEPDG default and developed site-specific traffic input values. However, the differences in the yearly ALS and MAF data, developed for these four years, were not found to be as significant when compared to one another. In addition, quarterly field rut data were measured on the test section and compared with the MEPDG predicted rut values using the default and developed traffic input values for different years. It was found that significant differences exist between the measured rut and the MEPDG (AASHTOWare-ME predicted rut when default values were used. Keywords: MEPDG, Rut, Level 1 inputs, Axle load spectra, Traffic input parameters, Sensitivity

  3. Development of an Input Model to MELCOR 1.8.5 for the Ringhals 3 PWR

    International Nuclear Information System (INIS)

    Nilsson, Lars

    2004-12-01

    An input file to the severe accident code MELCOR 1.8.5 has been developed for the Swedish pressurized water reactor Ringhals 3. The aim was to produce a file that can be used for calculations of various postulated severe accident scenarios, although the first application is specifically on cases involving large hydrogen production. The input file is rather detailed with individual modelling of all three cooling loops. The report describes the basis for the Ringhals 3 model and the input preparation step by step and is illustrated by nodalization schemes of the different plant systems. Present version of the report is restricted to the fundamental MELCOR input preparation, and therefore most of the figures of Ringhals 3 measurements and operating parameters are excluded here. These are given in another, complete version of the report, for limited distribution, which includes tables for pertinent data of all components. That version contains appendices with a complete listing of the input files as well as tables of data compiled from a RELAP5 file, that was a major basis for the MELCOR input for the cooling loops. The input was tested in steady-state calculations in order to simulate the initial conditions at current nominal operating conditions in Ringhals 3 for 2775 MW thermal power. The results of the steady-state calculations are presented in the report. Calculations with the MELCOR model will then be carried out of certain accident sequences for comparison with results from earlier MAAP4 calculations. That work will be reported separately

  4. Input data requirements for performance modelling and monitoring of photovoltaic plants

    DEFF Research Database (Denmark)

    Gavriluta, Anamaria Florina; Spataru, Sergiu; Sera, Dezso

    2018-01-01

    This work investigates the input data requirements in the context of performance modeling of thin-film photovoltaic (PV) systems. The analysis focuses on the PVWatts performance model, well suited for on-line performance monitoring of PV strings, due to its low number of parameters and high......, modelling the performance of the PV modules at high irradiances requires a dataset of only a few hundred samples in order to obtain a power estimation accuracy of ~1-2\\%....

  5. Screening important inputs in models with strong interaction properties

    International Nuclear Information System (INIS)

    Saltelli, Andrea; Campolongo, Francesca; Cariboni, Jessica

    2009-01-01

    We introduce a new method for screening inputs in mathematical or computational models with large numbers of inputs. The method proposed here represents an improvement over the best available practice for this setting when dealing with models having strong interaction effects. When the sample size is sufficiently high the same design can also be used to obtain accurate quantitative estimates of the variance-based sensitivity measures: the same simulations can be used to obtain estimates of the variance-based measures according to the Sobol' and the Jansen formulas. Results demonstrate that Sobol' is more efficient for the computation of the first-order indices, while Jansen performs better for the computation of the total indices.

  6. Screening important inputs in models with strong interaction properties

    Energy Technology Data Exchange (ETDEWEB)

    Saltelli, Andrea [European Commission, Joint Research Centre, 21020 Ispra, Varese (Italy); Campolongo, Francesca [European Commission, Joint Research Centre, 21020 Ispra, Varese (Italy)], E-mail: francesca.campolongo@jrc.it; Cariboni, Jessica [European Commission, Joint Research Centre, 21020 Ispra, Varese (Italy)

    2009-07-15

    We introduce a new method for screening inputs in mathematical or computational models with large numbers of inputs. The method proposed here represents an improvement over the best available practice for this setting when dealing with models having strong interaction effects. When the sample size is sufficiently high the same design can also be used to obtain accurate quantitative estimates of the variance-based sensitivity measures: the same simulations can be used to obtain estimates of the variance-based measures according to the Sobol' and the Jansen formulas. Results demonstrate that Sobol' is more efficient for the computation of the first-order indices, while Jansen performs better for the computation of the total indices.

  7. Seismic risk maps of Switzerland; description of the probabilistic method and discussion of some input parameters

    International Nuclear Information System (INIS)

    Mayer-Rosa, D.; Merz, H.A.

    1976-01-01

    The probabilistic model used in a seismic risk mapping project for Switzerland is presented. Some of its advantages and limitations are spelled out. In addition some earthquake parameters which should be carefully investigated before using them in a seismic risk analysis are discussed

  8. Online State Space Model Parameter Estimation in Synchronous Machines

    Directory of Open Access Journals (Sweden)

    Z. Gallehdari

    2014-06-01

    The suggested approach is evaluated for a sample synchronous machine model. Estimated parameters are tested for different inputs at different operating conditions. The effect of noise is also considered in this study. Simulation results show that the proposed approach provides good accuracy for parameter estimation.

  9. Study on Parameters Modeling of Wind Turbines Using SCADA Data

    Directory of Open Access Journals (Sweden)

    Yonglong YAN

    2014-08-01

    Full Text Available Taking the advantage of the current massive monitoring data from Supervisory Control and Data Acquisition (SCADA system of wind farm, it is of important significance for anomaly detection, early warning and fault diagnosis to build the data model of state parameters of wind turbines (WTs. The operational conditions and the relationships between the state parameters of wind turbines are complex. It is difficult to establish the model of state parameter accurately, and the modeling method of state parameters of wind turbines considering parameter selection is proposed. Firstly, by analyzing the characteristic of SCADA data, a reasonable range of data and monitoring parameters are chosen. Secondly, neural network algorithm is adapted, and the selection method of input parameters in the model is presented. Generator bearing temperature and cooling air temperature are regarded as target parameters, and the two models are built and input parameters of the models are selected, respectively. Finally, the parameter selection method in this paper and the method using genetic algorithm-partial least square (GA-PLS are analyzed comparatively, and the results show that the proposed methods are correct and effective. Furthermore, the modeling of two parameters illustrate that the method in this paper can applied to other state parameters of wind turbines.

  10. Application of a Linear Input/Output Model to Tankless Water Heaters

    Energy Technology Data Exchange (ETDEWEB)

    Butcher T.; Schoenbauer, B.

    2011-12-31

    In this study, the applicability of a linear input/output model to gas-fired, tankless water heaters has been evaluated. This simple model assumes that the relationship between input and output, averaged over both active draw and idle periods, is linear. This approach is being applied to boilers in other studies and offers the potential to make a small number of simple measurements to obtain the model parameters. These parameters can then be used to predict performance under complex load patterns. Both condensing and non-condensing water heaters have been tested under a very wide range of load conditions. It is shown that this approach can be used to reproduce performance metrics, such as the energy factor, and can be used to evaluate the impacts of alternative draw patterns and conditions.

  11. Efficient uncertainty quantification of a fully nonlinear and dispersive water wave model with random inputs

    DEFF Research Database (Denmark)

    Bigoni, Daniele; Engsig-Karup, Allan Peter; Eskilsson, Claes

    2016-01-01

    A major challenge in next-generation industrial applications is to improve numerical analysis by quantifying uncertainties in predictions. In this work we present a formulation of a fully nonlinear and dispersive potential flow water wave model with random inputs for the probabilistic description...... at different points in the parameter space, allowing for the reuse of existing simulation software. The choice of the applied methods is driven by the number of uncertain input parameters and by the fact that finding the solution of the considered model is computationally intensive. We revisit experimental...... benchmarks often used for validation of deterministic water wave models. Based on numerical experiments and assumed uncertainties in boundary data, our analysis reveals that some of the known discrepancies from deterministic simulation in comparison with experimental measurements could be partially explained...

  12. Variance-based sensitivity indices for stochastic models with correlated inputs

    Energy Technology Data Exchange (ETDEWEB)

    Kala, Zdeněk [Brno University of Technology, Faculty of Civil Engineering, Department of Structural Mechanics Veveří St. 95, ZIP 602 00, Brno (Czech Republic)

    2015-03-10

    The goal of this article is the formulation of the principles of one of the possible strategies in implementing correlation between input random variables so as to be usable for algorithm development and the evaluation of Sobol’s sensitivity analysis. With regard to the types of stochastic computational models, which are commonly found in structural mechanics, an algorithm was designed for effective use in conjunction with Monte Carlo methods. Sensitivity indices are evaluated for all possible permutations of the decorrelation procedures for input parameters. The evaluation of Sobol’s sensitivity coefficients is illustrated on an example in which a computational model was used for the analysis of the resistance of a steel bar in tension with statistically dependent input geometric characteristics.

  13. Variance-based sensitivity indices for stochastic models with correlated inputs

    International Nuclear Information System (INIS)

    Kala, Zdeněk

    2015-01-01

    The goal of this article is the formulation of the principles of one of the possible strategies in implementing correlation between input random variables so as to be usable for algorithm development and the evaluation of Sobol’s sensitivity analysis. With regard to the types of stochastic computational models, which are commonly found in structural mechanics, an algorithm was designed for effective use in conjunction with Monte Carlo methods. Sensitivity indices are evaluated for all possible permutations of the decorrelation procedures for input parameters. The evaluation of Sobol’s sensitivity coefficients is illustrated on an example in which a computational model was used for the analysis of the resistance of a steel bar in tension with statistically dependent input geometric characteristics

  14. Evaluating the uncertainty of input quantities in measurement models

    Science.gov (United States)

    Possolo, Antonio; Elster, Clemens

    2014-06-01

    The Guide to the Expression of Uncertainty in Measurement (GUM) gives guidance about how values and uncertainties should be assigned to the input quantities that appear in measurement models. This contribution offers a concrete proposal for how that guidance may be updated in light of the advances in the evaluation and expression of measurement uncertainty that were made in the course of the twenty years that have elapsed since the publication of the GUM, and also considering situations that the GUM does not yet contemplate. Our motivation is the ongoing conversation about a new edition of the GUM. While generally we favour a Bayesian approach to uncertainty evaluation, we also recognize the value that other approaches may bring to the problems considered here, and focus on methods for uncertainty evaluation and propagation that are widely applicable, including to cases that the GUM has not yet addressed. In addition to Bayesian methods, we discuss maximum-likelihood estimation, robust statistical methods, and measurement models where values of nominal properties play the same role that input quantities play in traditional models. We illustrate these general-purpose techniques in concrete examples, employing data sets that are realistic but that also are of conveniently small sizes. The supplementary material available online lists the R computer code that we have used to produce these examples (stacks.iop.org/Met/51/3/339/mmedia). Although we strive to stay close to clause 4 of the GUM, which addresses the evaluation of uncertainty for input quantities, we depart from it as we review the classes of measurement models that we believe are generally useful in contemporary measurement science. We also considerably expand and update the treatment that the GUM gives to Type B evaluations of uncertainty: reviewing the state-of-the-art, disciplined approach to the elicitation of expert knowledge, and its encapsulation in probability distributions that are usable in

  15. Comprehensive Information Retrieval and Model Input Sequence (CIRMIS)

    International Nuclear Information System (INIS)

    Friedrichs, D.R.

    1977-04-01

    The Comprehensive Information Retrieval and Model Input Sequence (CIRMIS) was developed to provide the research scientist with man--machine interactive capabilities in a real-time environment, and thereby produce results more quickly and efficiently. The CIRMIS system was originally developed to increase data storage and retrieval capabilities and ground-water model control for the Hanford site. The overall configuration, however, can be used in other areas. The CIRMIS system provides the user with three major functions: retrieval of well-based data, special application for manipulating surface data or background maps, and the manipulation and control of ground-water models. These programs comprise only a portion of the entire CIRMIS system. A complete description of the CIRMIS system is given in this report. 25 figures, 7 tables

  16. Hierarchical Bayesian modelling of mobility metrics for hazard model input calibration

    Science.gov (United States)

    Calder, Eliza; Ogburn, Sarah; Spiller, Elaine; Rutarindwa, Regis; Berger, Jim

    2015-04-01

    In this work we present a method to constrain flow mobility input parameters for pyroclastic flow models using hierarchical Bayes modeling of standard mobility metrics such as H/L and flow volume etc. The advantage of hierarchical modeling is that it can leverage the information in global dataset for a particular mobility metric in order to reduce the uncertainty in modeling of an individual volcano, especially important where individual volcanoes have only sparse datasets. We use compiled pyroclastic flow runout data from Colima, Merapi, Soufriere Hills, Unzen and Semeru volcanoes, presented in an open-source database FlowDat (https://vhub.org/groups/massflowdatabase). While the exact relationship between flow volume and friction varies somewhat between volcanoes, dome collapse flows originating from the same volcano exhibit similar mobility relationships. Instead of fitting separate regression models for each volcano dataset, we use a variation of the hierarchical linear model (Kass and Steffey, 1989). The model presents a hierarchical structure with two levels; all dome collapse flows and dome collapse flows at specific volcanoes. The hierarchical model allows us to assume that the flows at specific volcanoes share a common distribution of regression slopes, then solves for that distribution. We present comparisons of the 95% confidence intervals on the individual regression lines for the data set from each volcano as well as those obtained from the hierarchical model. The results clearly demonstrate the advantage of considering global datasets using this technique. The technique developed is demonstrated here for mobility metrics, but can be applied to many other global datasets of volcanic parameters. In particular, such methods can provide a means to better contain parameters for volcanoes for which we only have sparse data, a ubiquitous problem in volcanology.

  17. A summary of the sources of input parameter values for the Waste Isolation Pilot Plant final porosity surface calculations

    International Nuclear Information System (INIS)

    Butcher, B.M.

    1997-08-01

    A summary of the input parameter values used in final predictions of closure and waste densification in the Waste Isolation Pilot Plant disposal room is presented, along with supporting references. These predictions are referred to as the final porosity surface data and will be used for WIPP performance calculations supporting the Compliance Certification Application to be submitted to the U.S. Environmental Protection Agency. The report includes tables and list all of the input parameter values, references citing their source, and in some cases references to more complete descriptions of considerations leading to the selection of values

  18. A summary of the sources of input parameter values for the Waste Isolation Pilot Plant final porosity surface calculations

    Energy Technology Data Exchange (ETDEWEB)

    Butcher, B.M.

    1997-08-01

    A summary of the input parameter values used in final predictions of closure and waste densification in the Waste Isolation Pilot Plant disposal room is presented, along with supporting references. These predictions are referred to as the final porosity surface data and will be used for WIPP performance calculations supporting the Compliance Certification Application to be submitted to the U.S. Environmental Protection Agency. The report includes tables and list all of the input parameter values, references citing their source, and in some cases references to more complete descriptions of considerations leading to the selection of values.

  19. How model and input uncertainty impact maize yield simulations in West Africa

    Science.gov (United States)

    Waha, Katharina; Huth, Neil; Carberry, Peter; Wang, Enli

    2015-02-01

    Crop models are common tools for simulating crop yields and crop production in studies on food security and global change. Various uncertainties however exist, not only in the model design and model parameters, but also and maybe even more important in soil, climate and management input data. We analyze the performance of the point-scale crop model APSIM and the global scale crop model LPJmL with different climate and soil conditions under different agricultural management in the low-input maize-growing areas of Burkina Faso, West Africa. We test the models’ response to different levels of input information from little to detailed information on soil, climate (1961-2000) and agricultural management and compare the models’ ability to represent the observed spatial (between locations) and temporal variability (between years) in crop yields. We found that the resolution of different soil, climate and management information influences the simulated crop yields in both models. However, the difference between models is larger than between input data and larger between simulations with different climate and management information than between simulations with different soil information. The observed spatial variability can be represented well from both models even with little information on soils and management but APSIM simulates a higher variation between single locations than LPJmL. The agreement of simulated and observed temporal variability is lower due to non-climatic factors e.g. investment in agricultural research and development between 1987 and 1991 in Burkina Faso which resulted in a doubling of maize yields. The findings of our study highlight the importance of scale and model choice and show that the most detailed input data does not necessarily improve model performance.

  20. Sampling of Stochastic Input Parameters for Rockfall Calculations and for Structural Response Calculations Under Vibratory Ground Motion

    International Nuclear Information System (INIS)

    M. Gross

    2004-01-01

    The purpose of this scientific analysis is to define the sampled values of stochastic (random) input parameters for (1) rockfall calculations in the lithophysal and nonlithophysal zones under vibratory ground motions, and (2) structural response calculations for the drip shield and waste package under vibratory ground motions. This analysis supplies: (1) Sampled values of ground motion time history and synthetic fracture pattern for analysis of rockfall in emplacement drifts in nonlithophysal rock (Section 6.3 of ''Drift Degradation Analysis'', BSC 2004 [DIRS 166107]); (2) Sampled values of ground motion time history and rock mechanical properties category for analysis of rockfall in emplacement drifts in lithophysal rock (Section 6.4 of ''Drift Degradation Analysis'', BSC 2004 [DIRS 166107]); (3) Sampled values of ground motion time history and metal to metal and metal to rock friction coefficient for analysis of waste package and drip shield damage to vibratory motion in ''Structural Calculations of Waste Package Exposed to Vibratory Ground Motion'' (BSC 2004 [DIRS 167083]) and in ''Structural Calculations of Drip Shield Exposed to Vibratory Ground Motion'' (BSC 2003 [DIRS 163425]). The sampled values are indices representing the number of ground motion time histories, number of fracture patterns and rock mass properties categories. These indices are translated into actual values within the respective analysis and model reports or calculations. This report identifies the uncertain parameters and documents the sampled values for these parameters. The sampled values are determined by GoldSim V6.04.007 [DIRS 151202] calculations using appropriate distribution types and parameter ranges. No software development or model development was required for these calculations. The calculation of the sampled values allows parameter uncertainty to be incorporated into the rockfall and structural response calculations that support development of the seismic scenario for the

  1. Measurement of Laser Weld Temperatures for 3D Model Input

    Energy Technology Data Exchange (ETDEWEB)

    Dagel, Daryl [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Grossetete, Grant [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Maccallum, Danny O. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-10-01

    Laser welding is a key joining process used extensively in the manufacture and assembly of critical components for several weapons systems. Sandia National Laboratories advances the understanding of the laser welding process through coupled experimentation and modeling. This report summarizes the experimental portion of the research program, which focused on measuring temperatures and thermal history of laser welds on steel plates. To increase confidence in measurement accuracy, researchers utilized multiple complementary techniques to acquire temperatures during laser welding. This data serves as input to and validation of 3D laser welding models aimed at predicting microstructure and the formation of defects and their impact on weld-joint reliability, a crucial step in rapid prototyping of weapons components.

  2. Parameters for calculation of nuclear reactions of relevance to non-energy nuclear applications (Reference Input Parameter Library: Phase III). Summary report of the first research coordination meeting

    International Nuclear Information System (INIS)

    Capote Noy, R.

    2004-08-01

    A summary is given of the First Research Coordination Meeting on Parameters for Calculation of Nuclear Reactions of Relevance to Non-Energy Nuclear Applications (Reference Input Parameter Library: Phase III), including a critical review of the RIPL-2 file. The new library should serve as input for theoretical calculations of nuclear reaction data at incident energies up to 200 MeV, as needed for energy and non-energy modern applications of nuclear data. Technical discussions and the resulting work plan of the Coordinated Research Programme are summarized, along with actions and deadlines. Participants' contributions to the RCM are also attached. (author)

  3. Phylogenetic mixtures and linear invariants for equal input models.

    Science.gov (United States)

    Casanellas, Marta; Steel, Mike

    2017-04-01

    The reconstruction of phylogenetic trees from molecular sequence data relies on modelling site substitutions by a Markov process, or a mixture of such processes. In general, allowing mixed processes can result in different tree topologies becoming indistinguishable from the data, even for infinitely long sequences. However, when the underlying Markov process supports linear phylogenetic invariants, then provided these are sufficiently informative, the identifiability of the tree topology can be restored. In this paper, we investigate a class of processes that support linear invariants once the stationary distribution is fixed, the 'equal input model'. This model generalizes the 'Felsenstein 1981' model (and thereby the Jukes-Cantor model) from four states to an arbitrary number of states (finite or infinite), and it can also be described by a 'random cluster' process. We describe the structure and dimension of the vector spaces of phylogenetic mixtures and of linear invariants for any fixed phylogenetic tree (and for all trees-the so called 'model invariants'), on any number n of leaves. We also provide a precise description of the space of mixtures and linear invariants for the special case of [Formula: see text] leaves. By combining techniques from discrete random processes and (multi-) linear algebra, our results build on a classic result that was first established by James Lake (Mol Biol Evol 4:167-191, 1987).

  4. Metocean input data for drift models applications: Loustic study

    International Nuclear Information System (INIS)

    Michon, P.; Bossart, C.; Cabioc'h, M.

    1995-01-01

    Real-time monitoring and crisis management of oil slicks or floating structures displacement require a good knowledge of local winds, waves and currents used as input data for operational drift models. Fortunately, thanks to world-wide and all-weather coverage, satellite measurements have recently enabled the introduction of new methods for the remote sensing of the marine environment. Within a French joint industry project, a procedure has been developed using basically satellite measurements combined to metocean models in order to provide marine operators' drift models with reliable wind, wave and current analyses and short term forecasts. Particularly, a model now allows the calculation of the drift current, under the joint action of wind and sea-state, thus radically improving the classical laws. This global procedure either directly uses satellite wind and waves measurements (if available on the study area) or indirectly, as calibration of metocean models results which are brought to the oil slick or floating structure location. The operational use of this procedure is reported here with an example of floating structure drift offshore from the Brittany coasts

  5. Integrate-and-fire vs Poisson models of LGN input to V1 cortex: noisier inputs reduce orientation selectivity.

    Science.gov (United States)

    Lin, I-Chun; Xing, Dajun; Shapley, Robert

    2012-12-01

    One of the reasons the visual cortex has attracted the interest of computational neuroscience is that it has well-defined inputs. The lateral geniculate nucleus (LGN) of the thalamus is the source of visual signals to the primary visual cortex (V1). Most large-scale cortical network models approximate the spike trains of LGN neurons as simple Poisson point processes. However, many studies have shown that neurons in the early visual pathway are capable of spiking with high temporal precision and their discharges are not Poisson-like. To gain an understanding of how response variability in the LGN influences the behavior of V1, we study response properties of model V1 neurons that receive purely feedforward inputs from LGN cells modeled either as noisy leaky integrate-and-fire (NLIF) neurons or as inhomogeneous Poisson processes. We first demonstrate that the NLIF model is capable of reproducing many experimentally observed statistical properties of LGN neurons. Then we show that a V1 model in which the LGN input to a V1 neuron is modeled as a group of NLIF neurons produces higher orientation selectivity than the one with Poisson LGN input. The second result implies that statistical characteristics of LGN spike trains are important for V1's function. We conclude that physiologically motivated models of V1 need to include more realistic LGN spike trains that are less noisy than inhomogeneous Poisson processes.

  6. Modelling Analysis of Forestry Input-Output Elasticity in China

    Directory of Open Access Journals (Sweden)

    Guofeng Wang

    2016-01-01

    Full Text Available Based on an extended economic model and space econometrics, this essay analyzed the spatial distributions and interdependent relationships of the production of forestry in China; also the input-output elasticity of forestry production were calculated. Results figure out there exists significant spatial correlation in forestry production in China. Spatial distribution is mainly manifested as spatial agglomeration. The output elasticity of labor force is equal to 0.6649, and that of capital is equal to 0.8412. The contribution of land is significantly negative. Labor and capital are the main determinants for the province-level forestry production in China. Thus, research on the province-level forestry production should not ignore the spatial effect. The policy-making process should take into consideration the effects between provinces on the production of forestry. This study provides some scientific technical support for forestry production.

  7. Prioritizing Interdependent Production Processes using Leontief Input-Output Model

    Directory of Open Access Journals (Sweden)

    Masbad Jesah Grace

    2016-03-01

    Full Text Available This paper proposes a methodology in identifying key production processes in an interdependent production system. Previous approaches on this domain have drawbacks that may potentially affect the reliability of decision-making. The proposed approach adopts the Leontief input-output model (L-IOM which was proven successful in analyzing interdependent economic systems. The motivation behind such adoption lies in the strength of L-IOM in providing a rigorous quantitative framework in identifying key components of interdependent systems. In this proposed approach, the consumption and production flows of each process are represented respectively by the material inventory produced by the prior process and the material inventory produced by the current process, both in monetary values. A case study in a furniture production system located in central Philippines was carried out to elucidate the proposed approach. Results of the case were reported in this work

  8. Prediction of Chl-a concentrations in an eutrophic lake using ANN models with hybrid inputs

    Science.gov (United States)

    Aksoy, A.; Yuzugullu, O.

    2017-12-01

    Chlorophyll-a (Chl-a) concentrations in water bodies exhibit both spatial and temporal variations. As a result, frequent sampling is required with higher number of samples. This motivates the use of remote sensing as a monitoring tool. Yet, prediction performances of models that convert radiance values into Chl-a concentrations can be poor in shallow lakes. In this study, Chl-a concentrations in Lake Eymir, a shallow eutrophic lake in Ankara (Turkey), are determined using artificial neural network (ANN) models that use hybrid inputs composed of water quality and meteorological data as well as remotely sensed radiance values to improve prediction performance. Following a screening based on multi-collinearity and principal component analysis (PCA), dissolved-oxygen concentration (DO), pH, turbidity, and humidity were selected among several parameters as the constituents of the hybrid input dataset. Radiance values were obtained from QuickBird-2 satellite. Conversion of the hybrid input into Chl-a concentrations were studied for two different periods in the lake. ANN models were successful in predicting Chl-a concentrations. Yet, prediction performance declined for low Chl-a concentrations in the lake. In general, models with hybrid inputs were superior over the ones that solely used remotely sensed data.

  9. 2000 CKM-triangle analysis a critical review with updated experimental inputs and theoretical parameters

    International Nuclear Information System (INIS)

    Roudeau, P.; Stocchi, A.; Ciuchini, M.; Lubicz, V.; D'Agostini, G.; Franco, E.; Martinelli, G.; Parodi, F.

    2000-12-01

    Within the Standard Model, a review of the current determination of the sides and angles of the CKM unitarity triangle is presented, using experimental constraints from the measurements of |ε K |, |V ub /V cb |, Δm d and from the limit on Δm s , available in September 2000. Results from the experimental search for B 0 s -B-bar 0 s oscillations are introduced in the present analysis using the likelihood. Special attention is devoted to the determination of the theoretical uncertainties. The purpose of the analysis is to infer regions where the parameters of interest lie with given probabilities. The BaBar '95% C.L. scanning' method is also commented. (authors)

  10. An analytical model for an input/output-subsystem

    International Nuclear Information System (INIS)

    Roemgens, J.

    1983-05-01

    An input/output-subsystem of one or several computers if formed by the external memory units and the peripheral units of a computer system. For these subsystems mathematical models are established, taking into account the special properties of the I/O-subsystems, in order to avoid planning errors and to allow for predictions of the capacity of such systems. Here an analytical model is presented for the magnetic discs of a I/O-subsystem, using analytical methods for the individual waiting queues or waiting queue networks. Only I/O-subsystems of IBM-computer configurations are considered, which can be controlled by the MVS operating system. After a description of the hardware and software components of these I/O-systems, possible solutions from the literature are presented and discussed with respect to their applicability in IBM-I/O-subsystems. Based on these models a special scheme is developed which combines the advantages of the literature models and avoids the disadvantages in part. (orig./RW) [de

  11. Parameter estimation in stochastic rainfall-runoff models

    DEFF Research Database (Denmark)

    Jonsdottir, Harpa; Madsen, Henrik; Palsson, Olafur Petur

    2006-01-01

    A parameter estimation method for stochastic rainfall-runoff models is presented. The model considered in the paper is a conceptual stochastic model, formulated in continuous-discrete state space form. The model is small and a fully automatic optimization is, therefore, possible for estimating all...... the parameter values are optimal for simulation or prediction. The data originates from Iceland and the model is designed for Icelandic conditions, including a snow routine for mountainous areas. The model demands only two input data series, precipitation and temperature and one output data series...

  12. A Markovian model of evolving world input-output network.

    Directory of Open Access Journals (Sweden)

    Vahid Moosavi

    Full Text Available The initial theoretical connections between Leontief input-output models and Markov chains were established back in 1950s. However, considering the wide variety of mathematical properties of Markov chains, so far there has not been a full investigation of evolving world economic networks with Markov chain formalism. In this work, using the recently available world input-output database, we investigated the evolution of the world economic network from 1995 to 2011 through analysis of a time series of finite Markov chains. We assessed different aspects of this evolving system via different known properties of the Markov chains such as mixing time, Kemeny constant, steady state probabilities and perturbation analysis of the transition matrices. First, we showed how the time series of mixing times and Kemeny constants could be used as an aggregate index of globalization. Next, we focused on the steady state probabilities as a measure of structural power of the economies that are comparable to GDP shares of economies as the traditional index of economies welfare. Further, we introduced two measures of systemic risk, called systemic influence and systemic fragility, where the former is the ratio of number of influenced nodes to the total number of nodes, caused by a shock in the activity of a node, and the latter is based on the number of times a specific economic node is affected by a shock in the activity of any of the other nodes. Finally, focusing on Kemeny constant as a global indicator of monetary flow across the network, we showed that there is a paradoxical effect of a change in activity levels of economic nodes on the overall flow of the world economic network. While the economic slowdown of the majority of nodes with high structural power results to a slower average monetary flow over the network, there are some nodes, where their slowdowns improve the overall quality of the network in terms of connectivity and the average flow of the money.

  13. A Markovian model of evolving world input-output network.

    Science.gov (United States)

    Moosavi, Vahid; Isacchini, Giulio

    2017-01-01

    The initial theoretical connections between Leontief input-output models and Markov chains were established back in 1950s. However, considering the wide variety of mathematical properties of Markov chains, so far there has not been a full investigation of evolving world economic networks with Markov chain formalism. In this work, using the recently available world input-output database, we investigated the evolution of the world economic network from 1995 to 2011 through analysis of a time series of finite Markov chains. We assessed different aspects of this evolving system via different known properties of the Markov chains such as mixing time, Kemeny constant, steady state probabilities and perturbation analysis of the transition matrices. First, we showed how the time series of mixing times and Kemeny constants could be used as an aggregate index of globalization. Next, we focused on the steady state probabilities as a measure of structural power of the economies that are comparable to GDP shares of economies as the traditional index of economies welfare. Further, we introduced two measures of systemic risk, called systemic influence and systemic fragility, where the former is the ratio of number of influenced nodes to the total number of nodes, caused by a shock in the activity of a node, and the latter is based on the number of times a specific economic node is affected by a shock in the activity of any of the other nodes. Finally, focusing on Kemeny constant as a global indicator of monetary flow across the network, we showed that there is a paradoxical effect of a change in activity levels of economic nodes on the overall flow of the world economic network. While the economic slowdown of the majority of nodes with high structural power results to a slower average monetary flow over the network, there are some nodes, where their slowdowns improve the overall quality of the network in terms of connectivity and the average flow of the money.

  14. Regulation of Wnt signaling by nociceptive input in animal models

    Directory of Open Access Journals (Sweden)

    Shi Yuqiang

    2012-06-01

    Full Text Available Abstract Background Central sensitization-associated synaptic plasticity in the spinal cord dorsal horn (SCDH critically contributes to the development of chronic pain, but understanding of the underlying molecular pathways is still incomplete. Emerging evidence suggests that Wnt signaling plays a crucial role in regulation of synaptic plasticity. Little is known about the potential function of the Wnt signaling cascades in chronic pain development. Results Fluorescent immunostaining results indicate that β-catenin, an essential protein in the canonical Wnt signaling pathway, is expressed in the superficial layers of the mouse SCDH with enrichment at synapses in lamina II. In addition, Wnt3a, a prototypic Wnt ligand that activates the canonical pathway, is also enriched in the superficial layers. Immunoblotting analysis indicates that both Wnt3a a β-catenin are up-regulated in the SCDH of various mouse pain models created by hind-paw injection of capsaicin, intrathecal (i.t. injection of HIV-gp120 protein or spinal nerve ligation (SNL. Furthermore, Wnt5a, a prototypic Wnt ligand for non-canonical pathways, and its receptor Ror2 are also up-regulated in the SCDH of these models. Conclusion Our results suggest that Wnt signaling pathways are regulated by nociceptive input. The activation of Wnt signaling may regulate the expression of spinal central sensitization during the development of acute and chronic pain.

  15. Tumor Growth Model with PK Input for Neuroblastoma Drug Development

    Science.gov (United States)

    2015-09-01

    Your credit card order has been processed on  Tuesday  2 December 2014 at 3:05 PM. Status: Complete 12/3/2014 Oasis, The Online Abstract Submission System...pharmacokinetic models. Toxicol Ind Health, 1997. 13(4): p. 407-84. PMID: 9249929 4. Davies, B. and T. Morris , Physiological parameters in laboratory animals and humans. Pharm Res, 1993. 10(7): p. 1093-5. PMID: 8378254

  16. Transportation radiological risk assessment for the programmatic environmental impact statement: An overview of methodologies, assumptions, and input parameters

    International Nuclear Information System (INIS)

    Monette, F.; Biwer, B.; LePoire, D.; Chen, S.Y.

    1994-01-01

    The U.S. Department of Energy is considering a broad range of alternatives for the future configuration of radioactive waste management at its network of facilities. Because the transportation of radioactive waste is an integral component of the management alternatives being considered, the estimated human health risks associated with both routine and accident transportation conditions must be assessed to allow a complete appraisal of the alternatives. This paper provides an overview of the technical approach being used to assess the radiological risks from the transportation of radioactive wastes. The approach presented employs the RADTRAN 4 computer code to estimate the collective population risk during routine and accident transportation conditions. Supplemental analyses are conducted using the RISKIND computer code to address areas of specific concern to individuals or population subgroups. RISKIND is used for estimating routine doses to maximally exposed individuals and for assessing the consequences of the most severe credible transportation accidents. The transportation risk assessment is designed to ensure -- through uniform and judicious selection of models, data, and assumptions -- that relative comparisons of risk among the various alternatives are meaningful. This is accomplished by uniformly applying common input parameters and assumptions to each waste type for all alternatives. The approach presented can be applied to all radioactive waste types and provides a consistent and comprehensive evaluation of transportation-related risk

  17. Little Higgs model limits from LHC - Input for Snowmass 2013

    International Nuclear Information System (INIS)

    Reuter, Juergen; Tonini, Marco; Vries, Maikel de

    2013-07-01

    The status of the most prominent model implementations of the Little Higgs paradigm, the Littlest Higgs with and without discrete T parity as well as the Simplest Little Higgs are reviewed. For this, we are taking into account a fit to 21 electroweak precision observables from LEP, SLC, Tevatron together with the full 25 fb -1 of Higgs data reported from ATLAS and CMS at Moriond 2013. We also - focusing on the Littlest Higgs with T parity - include an outlook on corresponding direct searches at the 8 TeV LHC and their competitiveness with the EW and Higgs data regarding their exclusion potential. This contribution to the Snowmass procedure serves as a guideline which regions in parameter space of Little Higgs models are still compatible for the upcoming LHC runs and future experiments at the energy frontier. For this we propose two different benchmark scenarios for the Littlest Higgs with T parity, one with heavy mirror quarks, one with light ones.

  18. Surrogate based approaches to parameter inference in ocean models

    KAUST Repository

    Knio, Omar

    2016-01-06

    This talk discusses the inference of physical parameters using model surrogates. Attention is focused on the use of sampling schemes to build suitable representations of the dependence of the model response on uncertain input data. Non-intrusive spectral projections and regularized regressions are used for this purpose. A Bayesian inference formalism is then applied to update the uncertain inputs based on available measurements or observations. To perform the update, we consider two alternative approaches, based on the application of Markov Chain Monte Carlo methods or of adjoint-based optimization techniques. We outline the implementation of these techniques to infer dependence of wind drag, bottom drag, and internal mixing coefficients.

  19. Surrogate based approaches to parameter inference in ocean models

    KAUST Repository

    Knio, Omar

    2016-01-01

    This talk discusses the inference of physical parameters using model surrogates. Attention is focused on the use of sampling schemes to build suitable representations of the dependence of the model response on uncertain input data. Non-intrusive spectral projections and regularized regressions are used for this purpose. A Bayesian inference formalism is then applied to update the uncertain inputs based on available measurements or observations. To perform the update, we consider two alternative approaches, based on the application of Markov Chain Monte Carlo methods or of adjoint-based optimization techniques. We outline the implementation of these techniques to infer dependence of wind drag, bottom drag, and internal mixing coefficients.

  20. Input dependent cell assembly dynamics in a model of the striatal medium spiny neuron network

    Directory of Open Access Journals (Sweden)

    Adam ePonzi

    2012-03-01

    Full Text Available The striatal medium spiny neuron (MSNs network is sparsely connected with fairly weak GABAergic collaterals receiving an excitatory glutamatergic cortical projection. Peri stimulus time histograms (PSTH of MSN population response investigated in various experimental studies display strong firing rate modulations distributed throughout behavioural task epochs. In previous work we have shown by numerical simulation that sparse random networks of inhibitory spiking neurons with characteristics appropriate for UP state MSNs form cell assemblies which fire together coherently in sequences on long behaviourally relevant timescales when the network receives a fixed pattern of constant input excitation. Here we first extend that model to the case where cortical excitation is composed of many independent noisy Poisson processes and demonstrate that cell assembly dynamics is still observed when the input is sufficiently weak. However if cortical excitation strength is increased more regularly firing and completely quiescent cells are found, which depend on the cortical stimulation. Subsequently we further extend previous work to consider what happens when the excitatory input varies as it would in when the animal is engaged in behavior. We investigate how sudden switches in excitation interact with network generated patterned activity. We show that sequences of cell assembly activations can be locked to the excitatory input sequence and delineate the range of parameters where this behaviour is shown. Model cell population PSTH display both stimulus and temporal specificity, with large population firing rate modulations locked to elapsed time from task events. Thus the random network can generate a large diversity of temporally evolving stimulus dependent responses even though the input is fixed between switches. We suggest the MSN network is well suited to the generation of such slow coherent task dependent response

  1. Input dependent cell assembly dynamics in a model of the striatal medium spiny neuron network.

    Science.gov (United States)

    Ponzi, Adam; Wickens, Jeff

    2012-01-01

    The striatal medium spiny neuron (MSN) network is sparsely connected with fairly weak GABAergic collaterals receiving an excitatory glutamatergic cortical projection. Peri-stimulus time histograms (PSTH) of MSN population response investigated in various experimental studies display strong firing rate modulations distributed throughout behavioral task epochs. In previous work we have shown by numerical simulation that sparse random networks of inhibitory spiking neurons with characteristics appropriate for UP state MSNs form cell assemblies which fire together coherently in sequences on long behaviorally relevant timescales when the network receives a fixed pattern of constant input excitation. Here we first extend that model to the case where cortical excitation is composed of many independent noisy Poisson processes and demonstrate that cell assembly dynamics is still observed when the input is sufficiently weak. However if cortical excitation strength is increased more regularly firing and completely quiescent cells are found, which depend on the cortical stimulation. Subsequently we further extend previous work to consider what happens when the excitatory input varies as it would when the animal is engaged in behavior. We investigate how sudden switches in excitation interact with network generated patterned activity. We show that sequences of cell assembly activations can be locked to the excitatory input sequence and outline the range of parameters where this behavior is shown. Model cell population PSTH display both stimulus and temporal specificity, with large population firing rate modulations locked to elapsed time from task events. Thus the random network can generate a large diversity of temporally evolving stimulus dependent responses even though the input is fixed between switches. We suggest the MSN network is well suited to the generation of such slow coherent task dependent response which could be utilized by the animal in behavior.

  2. ETFOD: a point model physics code with arbitrary input

    International Nuclear Information System (INIS)

    Rothe, K.E.; Attenberger, S.E.

    1980-06-01

    ETFOD is a zero-dimensional code which solves a set of physics equations by minimization. The technique used is different than normally used, in that the input is arbitrary. The user is supplied with a set of variables from which he specifies which variables are input (unchanging). The remaining variables become the output. Presently the code is being used for ETF reactor design studies. The code was written in a manner to allow easy modificaton of equations, variables, and physics calculations. The solution technique is presented along with hints for using the code

  3. A method for model identification and parameter estimation

    International Nuclear Information System (INIS)

    Bambach, M; Heinkenschloss, M; Herty, M

    2013-01-01

    We propose and analyze a new method for the identification of a parameter-dependent model that best describes a given system. This problem arises, for example, in the mathematical modeling of material behavior where several competing constitutive equations are available to describe a given material. In this case, the models are differential equations that arise from the different constitutive equations, and the unknown parameters are coefficients in the constitutive equations. One has to determine the best-suited constitutive equations for a given material and application from experiments. We assume that the true model is one of the N possible parameter-dependent models. To identify the correct model and the corresponding parameters, we can perform experiments, where for each experiment we prescribe an input to the system and observe a part of the system state. Our approach consists of two stages. In the first stage, for each pair of models we determine the experiment, i.e. system input and observation, that best differentiates between the two models, and measure the distance between the two models. Then we conduct N(N − 1) or, depending on the approach taken, N(N − 1)/2 experiments and use the result of the experiments as well as the previously computed model distances to determine the true model. We provide sufficient conditions on the model distances and measurement errors which guarantee that our approach identifies the correct model. Given the model, we identify the corresponding model parameters in the second stage. The problem in the second stage is a standard parameter estimation problem and we use a method suitable for the given application. We illustrate our approach on three examples, including one where the models are elliptic partial differential equations with different parameterized right-hand sides and an example where we identify the constitutive equation in a problem from computational viscoplasticity. (paper)

  4. Little Higgs model limits from LHC - Input for Snowmass 2013

    Energy Technology Data Exchange (ETDEWEB)

    Reuter, Juergen; Tonini, Marco; Vries, Maikel. de

    2013-07-15

    The status of the most prominent model implementations of the Little Higgs paradigm, the Littlest Higgs with and without discrete T parity as well as the Simplest Little Higgs are reviewed. For this, we are taking into account a fit to 21 electroweak precision observables from LEP, SLC, Tevatron together with the full 25 fb{sup -1} of Higgs data reported from ATLAS and CMS at Moriond 2013. We also - focusing on the Littlest Higgs with T parity - include an outlook on corresponding direct searches at the 8 TeV LHC and their competitiveness with the EW and Higgs data regarding their exclusion potential. This contribution to the Snowmass procedure serves as a guideline which regions in parameter space of Little Higgs models are still compatible for the upcoming LHC runs and future experiments at the energy frontier. For this we propose two different benchmark scenarios for the Littlest Higgs with T parity, one with heavy mirror quarks, one with light ones.

  5. Forecasting Kp from solar wind data: input parameter study using 3-hour averages and 3-hour range values

    Science.gov (United States)

    Wintoft, Peter; Wik, Magnus; Matzka, Jürgen; Shprits, Yuri

    2017-11-01

    We have developed neural network models that predict Kp from upstream solar wind data. We study the importance of various input parameters, starting with the magnetic component Bz, particle density n, and velocity V and then adding total field B and the By component. As we also notice a seasonal and UT variation in average Kp we include functions of day-of-year and UT. Finally, as Kp is a global representation of the maximum range of geomagnetic variation over 3-hour UT intervals we conclude that sudden changes in the solar wind can have a big effect on Kp, even though it is a 3-hour value. Therefore, 3-hour solar wind averages will not always appropriately represent the solar wind condition, and we introduce 3-hour maxima and minima values to some degree address this problem. We find that introducing total field B and 3-hour maxima and minima, derived from 1-minute solar wind data, have a great influence on the performance. Due to the low number of samples for high Kp values there can be considerable variation in predicted Kp for different networks with similar validation errors. We address this issue by using an ensemble of networks from which we use the median predicted Kp. The models (ensemble of networks) provide prediction lead times in the range 20-90 min given by the time it takes a solar wind structure to travel from L1 to Earth. Two models are implemented that can be run with real time data: (1) IRF-Kp-2017-h3 uses the 3-hour averages of the solar wind data and (2) IRF-Kp-2017 uses in addition to the averages, also the minima and maxima values. The IRF-Kp-2017 model has RMS error of 0.55 and linear correlation of 0.92 based on an independent test set with final Kp covering 2 years using ACE Level 2 data. The IRF-Kp-2017-h3 model has RMSE = 0.63 and correlation = 0.89. We also explore the errors when tested on another two-year period with real-time ACE data which gives RMSE = 0.59 for IRF-Kp-2017 and RMSE = 0.73 for IRF-Kp-2017-h3. The errors as function

  6. Modelling groundwater discharge areas using only digital elevation models as input data

    Energy Technology Data Exchange (ETDEWEB)

    Brydsten, Lars [Umeaa Univ. (Sweden). Dept. of Biology and Environmental Science

    2006-10-15

    Advanced geohydrological models require data on topography, soil distribution in three dimensions, vegetation, land use, bedrock fracture zones. To model present geohydrological conditions, these factors can be gathered with different techniques. If a future geohydrological condition is modelled in an area with positive shore displacement (say 5,000 or 10,000 years), some of these factors can be difficult to measure. This could include the development of wetlands and the filling of lakes. If the goal of the model is to predict distribution of groundwater recharge and discharge areas in the landscape, the most important factor is topography. The question is how much can topography alone explain the distribution of geohydrological objects in the landscape. A simplified description of the distribution of geohydrological objects in the landscape is that groundwater recharge areas occur at local elevation curvatures and discharge occurs in lakes, brooks, and low situated slopes. Areas in-between these make up discharge areas during wet periods and recharge areas during dry periods. A model that could predict this pattern only using topography data needs to be able to predict high ridges and future lakes and brooks. This study uses GIS software with four different functions using digital elevation models as input data, geomorphometrical parameters to predict landscape ridges, basin fill for predicting lakes, flow accumulations for predicting future waterways, and topographical wetness indexes for dividing in-between areas based on degree of wetness. An area between the village of and Forsmarks' Nuclear Power Plant has been used to calibrate the model. The area is within the SKB 10-metre Elevation Model (DEM) and has a high-resolution orienteering map for wetlands. Wetlands are assumed to be groundwater discharge areas. Five hundred points were randomly distributed across the wetlands. These are potential discharge points. Model parameters were chosen with the

  7. Modelling groundwater discharge areas using only digital elevation models as input data

    International Nuclear Information System (INIS)

    Brydsten, Lars

    2006-10-01

    Advanced geohydrological models require data on topography, soil distribution in three dimensions, vegetation, land use, bedrock fracture zones. To model present geohydrological conditions, these factors can be gathered with different techniques. If a future geohydrological condition is modelled in an area with positive shore displacement (say 5,000 or 10,000 years), some of these factors can be difficult to measure. This could include the development of wetlands and the filling of lakes. If the goal of the model is to predict distribution of groundwater recharge and discharge areas in the landscape, the most important factor is topography. The question is how much can topography alone explain the distribution of geohydrological objects in the landscape. A simplified description of the distribution of geohydrological objects in the landscape is that groundwater recharge areas occur at local elevation curvatures and discharge occurs in lakes, brooks, and low situated slopes. Areas in-between these make up discharge areas during wet periods and recharge areas during dry periods. A model that could predict this pattern only using topography data needs to be able to predict high ridges and future lakes and brooks. This study uses GIS software with four different functions using digital elevation models as input data, geomorphometrical parameters to predict landscape ridges, basin fill for predicting lakes, flow accumulations for predicting future waterways, and topographical wetness indexes for dividing in-between areas based on degree of wetness. An area between the village of and Forsmarks' Nuclear Power Plant has been used to calibrate the model. The area is within the SKB 10-metre Elevation Model (DEM) and has a high-resolution orienteering map for wetlands. Wetlands are assumed to be groundwater discharge areas. Five hundred points were randomly distributed across the wetlands. These are potential discharge points. Model parameters were chosen with the

  8. Regionalization of SWAT Model Parameters for Use in Ungauged Watersheds

    Directory of Open Access Journals (Sweden)

    Indrajeet Chaubey

    2010-11-01

    Full Text Available There has been a steady shift towards modeling and model-based approaches as primary methods of assessing watershed response to hydrologic inputs and land management, and of quantifying watershed-wide best management practice (BMP effectiveness. Watershed models often require some degree of calibration and validation to achieve adequate watershed and therefore BMP representation. This is, however, only possible for gauged watersheds. There are many watersheds for which there are very little or no monitoring data available, thus the question as to whether it would be possible to extend and/or generalize model parameters obtained through calibration of gauged watersheds to ungauged watersheds within the same region. This study explored the possibility of developing regionalized model parameter sets for use in ungauged watersheds. The study evaluated two regionalization methods: global averaging, and regression-based parameters, on the SWAT model using data from priority watersheds in Arkansas. Resulting parameters were tested and model performance determined on three gauged watersheds. Nash-Sutcliffe efficiencies (NS for stream flow obtained using regression-based parameters (0.53–0.83 compared well with corresponding values obtained through model calibration (0.45–0.90. Model performance obtained using global averaged parameter values was also generally acceptable (0.4 ≤ NS ≤ 0.75. Results from this study indicate that regionalized parameter sets for the SWAT model can be obtained and used for making satisfactory hydrologic response predictions in ungauged watersheds.

  9. Prediction of geomagnetic storm using neural networks: Comparison of the efficiency of the Satellite and ground-based input parameters

    International Nuclear Information System (INIS)

    Stepanova, Marina; Antonova, Elizavieta; Munos-Uribe, F A; Gordo, S L Gomez; Torres-Sanchez, M V

    2008-01-01

    Different kinds of neural networks have established themselves as an effective tool in the prediction of different geomagnetic indices, including the Dst being the most important constituent for determination of the impact of Space Weather on the human life. Feed-forward networks with one hidden layer are used to forecast the Dst variation, using separately the solar wind paramenters, polar cap index, and auroral electrojet index as input parameters. It was found that in all three cases the storm-time intervals were predicted much more precisely as quite time intervals. The majority of cross-correlation coefficients between predicted and observed Dst of strong geomagnetic storms are situated between 0.8 and 0.9. Changes in the neural network architecture, including the number of nodes in the input and hidden layers and the transfer functions between them lead to an improvement of a network performance up to 10%.

  10. Ranking of input parameters importance for BWR stability based on Ringhals-1

    International Nuclear Information System (INIS)

    Gajev, Ivan; Kozlowski, Tomasz; Xu, Yunlin; Downar, Thomas

    2011-01-01

    Unstable behavior of Boiling Water Reactors (BWRs) is known to occur during operation at certain power and flow conditions. Uncertainty calculations for BWR stability, based on the Wilks' formula, have been already done for the Ringhals-1 benchmark. In this work, these calculations have been used to identify and rank the most important parameters affecting the stability of the Ringhals-1 plant. The ranking has been done in two different ways and a comparison of these two methods has been demonstrated. Results show that the methods provide different, but meaningful evaluations of the ranking. (author)

  11. Effect Assessment the Impact of Filler Types on the Input Design Parameter of Flexible Pavements

    Directory of Open Access Journals (Sweden)

    Sahar S. Neham

    2017-08-01

    Full Text Available To meet the requirements of flexible pavements (safety, economy, limited the stresses on the natural subgrade and a smooth ride, good quality material of surface course must be used so to prevent pavement distresses caused by the different types of loadings (structural and environmental loadings, while the resilient modulus is important input data when flexible pavement was designed, it is selected to show its effect by different types of mineral filler as a partial replacement. In this paving mix, to improve the quality of the mix material and to represent the effect of these replacements materials on the elastic characterization by measuring the resilient modulus of hot mix asphalt (HMA: Fly Ash (FA, Ordinary Portland Cement (OPC, Hydrated Lime (HL and Silica Fume (SF are used as a partial percent of filler (Limestone Dust (LSD replacement, where these materials are locally available including (40-50 penetration grade asphalt binder. To achieve the goal of study; asphalt concrete mixes are prepared at their optimum asphalt content using Marshall Method of mix design. Four replacement percent’s were used; 0, 1.5, 3.0 and 4.5 percent by total weight of aggregate for each filler types. According to ASTM D4123 criteria (Resilient Modulus was tested by UTM¬25. Mixes modified with (FA, (OPC, (HL and (SF were found to have average improvement in the value of Resilient Modulus by (13.37, 9.63, 11.14, 24.00 % at 1.5 percent of filler replacement and by (24.54, 16.63, 18.73, 38.31 % at 3.0 percent of filler replacement also the percent of improvement is: (39.55, 26.36, 29.82, 58.30 at 4.5percent of filler replacement sequentially.

  12. Multimedia Environmental Pollutant Assessment System (MEPAS) application guidance. Guidelines for evaluating MEPAS input parameters for Version 3.1

    International Nuclear Information System (INIS)

    Buck, J.W.; Whelan, G.; Droppo, J.G. Jr.; Strenge, D.L.; Castleton, K.J.; McDonald, J.P.; Sato, C.; Streile, G.P.

    1995-02-01

    The Multimedia Environmental Pollutant Assessment System (MEPAS) was developed by Pacific Northwest Laboratory (PNL) for the U.S. Department of Energy (DOE) Office of Environment, Safety and Health and Office of Environmental Management and Environmental Restoration. MEPAS is a set of computer codes developed to provide decision makers with risk information integrated for hazardous, radioactive, and mixed-waste sites based on their potential hazard to public health. It is applicable to a wide range of environmental management and regulatory conditions, including inactive sites covered under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) and active air and water releases covered under the Clean Air Act, the Clean Water Act, and the Resource Conservation and Recovery Act. MEPAS integrates contaminant release, transport, and exposure models into a single system. An interactive user interface assists the investigator in defining problems, assembling data and entering input, and developing reports. PNL has compiled two documents that explain the methodology behind the MEPAS model and instruct the user in how to input, retrieve, and evaluate data. This report contains detailed guidelines for defining the input data required to conduct an analysis with MEPAS. Entries for each variable have a short definition, units, and text explaining what a variable is and how it can be quantified. As appropriate, ranges and typical values are given. This report also contains listings of the input screens (worksheets) that are used in the MEPAS user interface for these variables

  13. High Temperature Test Facility Preliminary RELAP5-3D Input Model Description

    Energy Technology Data Exchange (ETDEWEB)

    Bayless, Paul David [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-12-01

    A RELAP5-3D input model is being developed for the High Temperature Test Facility at Oregon State University. The current model is described in detail. Further refinements will be made to the model as final as-built drawings are released and when system characterization data are available for benchmarking the input model.

  14. Modelling of Multi Input Transfer Function for Rainfall Forecasting in Batu City

    OpenAIRE

    Priska Arindya Purnama

    2017-01-01

    The aim of this research is to model and forecast the rainfall in Batu City using multi input transfer function model based on air temperature, humidity, wind speed and cloud. Transfer function model is a multivariate time series model which consists of an output series (Yt) sequence expected to be effected by an input series (Xt) and other inputs in a group called a noise series (Nt). Multi input transfer function model obtained is (b1,s1,r1) (b2,s2,r2) (b3,s3,r3) (b4,s4,r4)(pn,qn) = (0,0,0)...

  15. Using Whole-House Field Tests to Empirically Derive Moisture Buffering Model Inputs

    Energy Technology Data Exchange (ETDEWEB)

    Woods, J.; Winkler, J.; Christensen, D.; Hancock, E.

    2014-08-01

    Building energy simulations can be used to predict a building's interior conditions, along with the energy use associated with keeping these conditions comfortable. These models simulate the loads on the building (e.g., internal gains, envelope heat transfer), determine the operation of the space conditioning equipment, and then calculate the building's temperature and humidity throughout the year. The indoor temperature and humidity are affected not only by the loads and the space conditioning equipment, but also by the capacitance of the building materials, which buffer changes in temperature and humidity. This research developed an empirical method to extract whole-house model inputs for use with a more accurate moisture capacitance model (the effective moisture penetration depth model). The experimental approach was to subject the materials in the house to a square-wave relative humidity profile, measure all of the moisture transfer terms (e.g., infiltration, air conditioner condensate) and calculate the only unmeasured term: the moisture absorption into the materials. After validating the method with laboratory measurements, we performed the tests in a field house. A least-squares fit of an analytical solution to the measured moisture absorption curves was used to determine the three independent model parameters representing the moisture buffering potential of this house and its furnishings. Follow on tests with realistic latent and sensible loads showed good agreement with the derived parameters, especially compared to the commonly-used effective capacitance approach. These results show that the EMPD model, once the inputs are known, is an accurate moisture buffering model.

  16. Fuzzy portfolio model with fuzzy-input return rates and fuzzy-output proportions

    Science.gov (United States)

    Tsaur, Ruey-Chyn

    2015-02-01

    In the finance market, a short-term investment strategy is usually applied in portfolio selection in order to reduce investment risk; however, the economy is uncertain and the investment period is short. Further, an investor has incomplete information for selecting a portfolio with crisp proportions for each chosen security. In this paper we present a new method of constructing fuzzy portfolio model for the parameters of fuzzy-input return rates and fuzzy-output proportions, based on possibilistic mean-standard deviation models. Furthermore, we consider both excess or shortage of investment in different economic periods by using fuzzy constraint for the sum of the fuzzy proportions, and we also refer to risks of securities investment and vagueness of incomplete information during the period of depression economics for the portfolio selection. Finally, we present a numerical example of a portfolio selection problem to illustrate the proposed model and a sensitivity analysis is realised based on the results.

  17. Radiation safety assessment and development of environmental radiation monitoring technology; standardization of input parameters for the calculation of annual dose from routine releases from commercial reactor effluents

    Energy Technology Data Exchange (ETDEWEB)

    Rhee, I. H.; Cho, D.; Youn, S. H.; Kim, H. S.; Lee, S. J.; Ahn, H. K. [Soonchunhyang University, Ahsan (Korea)

    2002-04-01

    This research is to develop a standard methodology for determining the input parameters that impose a substantial impact on radiation doses of residential individuals in the vicinity of four nuclear power plants in Korea. We have selected critical nuclei, pathways and organs related to the human exposure via simulated estimation with K-DOSE 60 based on the updated ICRP-60 and sensitivity analyses. From the results, we found that 1) the critical nuclides were found to be {sup 3}H, {sup 133}Xe, {sup 60}Co for Kori plants and {sup 14}C, {sup 41}Ar for Wolsong plants. The most critical pathway was 'vegetable intake' for adults and 'milk intake' for infants. However, there was no preference in the effective organs, and 2) sensitivity analyses showed that the chemical composition in a nuclide much more influenced upon the radiation dose than any other input parameters such as food intake, radiation discharge, and transfer/concentration coefficients by more than 102 factor. The effect of transfer/concentration coefficients on the radiation dose was negligible. All input parameters showed highly estimated correlation with the radiation dose, approximated to 1.0, except for food intake in Wolsong power plant (partial correlation coefficient (PCC)=0.877). Consequently, we suggest that a prediction model or scenarios for food intake reflecting the current living trend and a formal publications including details of chemical components in the critical nuclei from each plant are needed. Also, standardized domestic values of the parameters used in the calculation must replace the values of the existed or default-set imported factors via properly designed experiments and/or modelling such as transport of liquid discharge in waters nearby the plants, exposure tests on corps and plants so on. 4 figs., 576 tabs. (Author)

  18. Plant Friendly Input Design for Parameter Estimation in an Inertial System with Respect to D-Efficiency Constraints

    Directory of Open Access Journals (Sweden)

    Wiktor Jakowluk

    2014-11-01

    Full Text Available System identification, in practice, is carried out by perturbing processes or plants under operation. That is why in many industrial applications a plant-friendly input signal would be preferred for system identification. The goal of the study is to design the optimal input signal which is then employed in the identification experiment and to examine the relationships between the index of friendliness of this input signal and the accuracy of parameter estimation when the measured output signal is significantly affected by noise. In this case, the objective function was formulated through maximisation of the Fisher information matrix determinant (D-optimality expressed in conventional Bolza form. As setting such conditions of the identification experiment we can only talk about the D-suboptimality, we quantify the plant trajectories using the D-efficiency measure. An additional constraint, imposed on D-efficiency of the solution, should allow one to attain the most adequate information content  from the plant which operating point is perturbed in the least invasive (most friendly way. A simple numerical example, which clearly demonstrates the idea presented in the paper, is included and discussed.

  19. A new interpretation and validation of variance based importance measures for models with correlated inputs

    Science.gov (United States)

    Hao, Wenrui; Lu, Zhenzhou; Li, Luyi

    2013-05-01

    In order to explore the contributions by correlated input variables to the variance of the output, a novel interpretation framework of importance measure indices is proposed for a model with correlated inputs, which includes the indices of the total correlated contribution and the total uncorrelated contribution. The proposed indices accurately describe the connotations of the contributions by the correlated input to the variance of output, and they can be viewed as the complement and correction of the interpretation about the contributions by the correlated inputs presented in "Estimation of global sensitivity indices for models with dependent variables, Computer Physics Communications, 183 (2012) 937-946". Both of them contain the independent contribution by an individual input. Taking the general form of quadratic polynomial as an illustration, the total correlated contribution and the independent contribution by an individual input are derived analytically, from which the components and their origins of both contributions of correlated input can be clarified without any ambiguity. In the special case that no square term is included in the quadratic polynomial model, the total correlated contribution by the input can be further decomposed into the variance contribution related to the correlation of the input with other inputs and the independent contribution by the input itself, and the total uncorrelated contribution can be further decomposed into the independent part by interaction between the input and others and the independent part by the input itself. Numerical examples are employed and their results demonstrate that the derived analytical expressions of the variance-based importance measure are correct, and the clarification of the correlated input contribution to model output by the analytical derivation is very important for expanding the theory and solutions of uncorrelated input to those of the correlated one.

  20. Parameter Estimation of Partial Differential Equation Models.

    Science.gov (United States)

    Xun, Xiaolei; Cao, Jiguo; Mallick, Bani; Carroll, Raymond J; Maity, Arnab

    2013-01-01

    Partial differential equation (PDE) models are commonly used to model complex dynamic systems in applied sciences such as biology and finance. The forms of these PDE models are usually proposed by experts based on their prior knowledge and understanding of the dynamic system. Parameters in PDE models often have interesting scientific interpretations, but their values are often unknown, and need to be estimated from the measurements of the dynamic system in the present of measurement errors. Most PDEs used in practice have no analytic solutions, and can only be solved with numerical methods. Currently, methods for estimating PDE parameters require repeatedly solving PDEs numerically under thousands of candidate parameter values, and thus the computational load is high. In this article, we propose two methods to estimate parameters in PDE models: a parameter cascading method and a Bayesian approach. In both methods, the underlying dynamic process modeled with the PDE model is represented via basis function expansion. For the parameter cascading method, we develop two nested levels of optimization to estimate the PDE parameters. For the Bayesian method, we develop a joint model for data and the PDE, and develop a novel hierarchical model allowing us to employ Markov chain Monte Carlo (MCMC) techniques to make posterior inference. Simulation studies show that the Bayesian method and parameter cascading method are comparable, and both outperform other available methods in terms of estimation accuracy. The two methods are demonstrated by estimating parameters in a PDE model from LIDAR data.

  1. MOESHA: A genetic algorithm for automatic calibration and estimation of parameter uncertainty and sensitivity of hydrologic models

    Science.gov (United States)

    Characterization of uncertainty and sensitivity of model parameters is an essential and often overlooked facet of hydrological modeling. This paper introduces an algorithm called MOESHA that combines input parameter sensitivity analyses with a genetic algorithm calibration routin...

  2. Quality assessment for radiological model parameters

    International Nuclear Information System (INIS)

    Funtowicz, S.O.

    1989-01-01

    A prototype framework for representing uncertainties in radiological model parameters is introduced. This follows earlier development in this journal of a corresponding framework for representing uncertainties in radiological data. Refinements and extensions to the earlier framework are needed in order to take account of the additional contextual factors consequent on using data entries to quantify model parameters. The parameter coding can in turn feed in to methods for evaluating uncertainties in calculated model outputs. (author)

  3. Propagation channel characterization, parameter estimation, and modeling for wireless communications

    CERN Document Server

    Yin, Xuefeng

    2016-01-01

    Thoroughly covering channel characteristics and parameters, this book provides the knowledge needed to design various wireless systems, such as cellular communication systems, RFID and ad hoc wireless communication systems. It gives a detailed introduction to aspects of channels before presenting the novel estimation and modelling techniques which can be used to achieve accurate models. To systematically guide readers through the topic, the book is organised in three distinct parts. The first part covers the fundamentals of the characterization of propagation channels, including the conventional single-input single-output (SISO) propagation channel characterization as well as its extension to multiple-input multiple-output (MIMO) cases. Part two focuses on channel measurements and channel data post-processing. Wideband channel measurements are introduced, including the equipment, technology and advantages and disadvantages of different data acquisition schemes. The channel parameter estimation methods are ...

  4. Establishing statistical models of manufacturing parameters

    International Nuclear Information System (INIS)

    Senevat, J.; Pape, J.L.; Deshayes, J.F.

    1991-01-01

    This paper reports on the effect of pilgering and cold-work parameters on contractile strain ratio and mechanical properties that were investigated using a large population of Zircaloy tubes. Statistical models were established between: contractile strain ratio and tooling parameters, mechanical properties (tensile test, creep test) and cold-work parameters, and mechanical properties and stress-relieving temperature

  5. Specification and Aggregation Errors in Environmentally Extended Input-Output Models

    NARCIS (Netherlands)

    Bouwmeester, Maaike C.; Oosterhaven, Jan

    This article considers the specification and aggregation errors that arise from estimating embodied emissions and embodied water use with environmentally extended national input-output (IO) models, instead of with an environmentally extended international IO model. Model specification errors result

  6. Multivariate sensitivity analysis to measure global contribution of input factors in dynamic models

    International Nuclear Information System (INIS)

    Lamboni, Matieyendou; Monod, Herve; Makowski, David

    2011-01-01

    Many dynamic models are used for risk assessment and decision support in ecology and crop science. Such models generate time-dependent model predictions, with time either discretised or continuous. Their global sensitivity analysis is usually applied separately on each time output, but Campbell et al. (2006 ) advocated global sensitivity analyses on the expansion of the dynamics in a well-chosen functional basis. This paper focuses on the particular case when principal components analysis is combined with analysis of variance. In addition to the indices associated with the principal components, generalised sensitivity indices are proposed to synthesize the influence of each parameter on the whole time series output. Index definitions are given when the uncertainty on the input factors is either discrete or continuous and when the dynamic model is either discrete or functional. A general estimation algorithm is proposed, based on classical methods of global sensitivity analysis. The method is applied to a dynamic wheat crop model with 13 uncertain parameters. Three methods of global sensitivity analysis are compared: the Sobol'-Saltelli method, the extended FAST method, and the fractional factorial design of resolution 6.

  7. Multivariate sensitivity analysis to measure global contribution of input factors in dynamic models

    Energy Technology Data Exchange (ETDEWEB)

    Lamboni, Matieyendou [INRA, Unite MIA (UR341), F78352 Jouy en Josas Cedex (France); Monod, Herve, E-mail: herve.monod@jouy.inra.f [INRA, Unite MIA (UR341), F78352 Jouy en Josas Cedex (France); Makowski, David [INRA, UMR Agronomie INRA/AgroParisTech (UMR 211), BP 01, F78850 Thiverval-Grignon (France)

    2011-04-15

    Many dynamic models are used for risk assessment and decision support in ecology and crop science. Such models generate time-dependent model predictions, with time either discretised or continuous. Their global sensitivity analysis is usually applied separately on each time output, but Campbell et al. (2006) advocated global sensitivity analyses on the expansion of the dynamics in a well-chosen functional basis. This paper focuses on the particular case when principal components analysis is combined with analysis of variance. In addition to the indices associated with the principal components, generalised sensitivity indices are proposed to synthesize the influence of each parameter on the whole time series output. Index definitions are given when the uncertainty on the input factors is either discrete or continuous and when the dynamic model is either discrete or functional. A general estimation algorithm is proposed, based on classical methods of global sensitivity analysis. The method is applied to a dynamic wheat crop model with 13 uncertain parameters. Three methods of global sensitivity analysis are compared: the Sobol'-Saltelli method, the extended FAST method, and the fractional factorial design of resolution 6.

  8. The MARINA model (Model to Assess River Inputs of Nutrients to seAs)

    NARCIS (Netherlands)

    Strokal, Maryna; Kroeze, Carolien; Wang, Mengru; Bai, Zhaohai; Ma, Lin

    2016-01-01

    Chinese agriculture has been developing fast towards industrial food production systems that discharge nutrient-rich wastewater into rivers. As a result, nutrient export by rivers has been increasing, resulting in coastal water pollution. We developed a Model to Assess River Inputs of Nutrients

  9. On parameter estimation in deformable models

    DEFF Research Database (Denmark)

    Fisker, Rune; Carstensen, Jens Michael

    1998-01-01

    Deformable templates have been intensively studied in image analysis through the last decade, but despite its significance the estimation of model parameters has received little attention. We present a method for supervised and unsupervised model parameter estimation using a general Bayesian form...

  10. Motivation Monitoring and Assessment Extension for Input-Process-Outcome Game Model

    Science.gov (United States)

    Ghergulescu, Ioana; Muntean, Cristina Hava

    2014-01-01

    This article proposes a Motivation Assessment-oriented Input-Process-Outcome Game Model (MotIPO), which extends the Input-Process-Outcome game model with game-centred and player-centred motivation assessments performed right from the beginning of the game-play. A feasibility case-study involving 67 participants playing an educational game and…

  11. BUILDING MODEL ANALYSIS APPLICATIONS WITH THE JOINT UNIVERSAL PARAMETER IDENTIFICATION AND EVALUATION OF RELIABILITY (JUPITER) API

    Science.gov (United States)

    The open-source, public domain JUPITER (Joint Universal Parameter IdenTification and Evaluation of Reliability) API (Application Programming Interface) provides conventions and Fortran-90 modules to develop applications (computer programs) for analyzing process models. The input ...

  12. Parameter Estimation and Prediction of a Nonlinear Storage Model: an algebraic approach

    NARCIS (Netherlands)

    Doeswijk, T.G.; Keesman, K.J.

    2005-01-01

    Generally, parameters that are nonlinear in system models are estimated by nonlinear least-squares optimization algorithms. In this paper, if a nonlinear discrete-time model with a polynomial quotient structure in input, output, and parameters, a method is proposed to re-parameterize the model such

  13. Characteristic length scale of input data in distributed models: implications for modeling grid size

    Science.gov (United States)

    Artan, G. A.; Neale, C. M. U.; Tarboton, D. G.

    2000-01-01

    The appropriate spatial scale for a distributed energy balance model was investigated by: (a) determining the scale of variability associated with the remotely sensed and GIS-generated model input data; and (b) examining the effects of input data spatial aggregation on model response. The semi-variogram and the characteristic length calculated from the spatial autocorrelation were used to determine the scale of variability of the remotely sensed and GIS-generated model input data. The data were collected from two hillsides at Upper Sheep Creek, a sub-basin of the Reynolds Creek Experimental Watershed, in southwest Idaho. The data were analyzed in terms of the semivariance and the integral of the autocorrelation. The minimum characteristic length associated with the variability of the data used in the analysis was 15 m. Simulated and observed radiometric surface temperature fields at different spatial resolutions were compared. The correlation between agreement simulated and observed fields sharply declined after a 10×10 m2 modeling grid size. A modeling grid size of about 10×10 m2 was deemed to be the best compromise to achieve: (a) reduction of computation time and the size of the support data; and (b) a reproduction of the observed radiometric surface temperature.

  14. Characteristic length scale of input data in distributed models: implications for modeling grain size

    Science.gov (United States)

    Artan, Guleid A.; Neale, C. M. U.; Tarboton, D. G.

    2000-01-01

    The appropriate spatial scale for a distributed energy balance model was investigated by: (a) determining the scale of variability associated with the remotely sensed and GIS-generated model input data; and (b) examining the effects of input data spatial aggregation on model response. The semi-variogram and the characteristic length calculated from the spatial autocorrelation were used to determine the scale of variability of the remotely sensed and GIS-generated model input data. The data were collected from two hillsides at Upper Sheep Creek, a sub-basin of the Reynolds Creek Experimental Watershed, in southwest Idaho. The data were analyzed in terms of the semivariance and the integral of the autocorrelation. The minimum characteristic length associated with the variability of the data used in the analysis was 15 m. Simulated and observed radiometric surface temperature fields at different spatial resolutions were compared. The correlation between agreement simulated and observed fields sharply declined after a 10×10 m2 modeling grid size. A modeling grid size of about 10×10 m2 was deemed to be the best compromise to achieve: (a) reduction of computation time and the size of the support data; and (b) a reproduction of the observed radiometric surface temperature.

  15. Influence of input matrix representation on topic modelling performance

    CSIR Research Space (South Africa)

    De Waal, A

    2010-11-01

    Full Text Available Topic models explain a collection of documents with a small set of distributions over terms. These distributions over terms define the topics. Topic models ignore the structure of documents and use a bag-of-words approach which relies solely...

  16. Parameter identification in multinomial processing tree models

    NARCIS (Netherlands)

    Schmittmann, V.D.; Dolan, C.V.; Raijmakers, M.E.J.; Batchelder, W.H.

    2010-01-01

    Multinomial processing tree models form a popular class of statistical models for categorical data that have applications in various areas of psychological research. As in all statistical models, establishing which parameters are identified is necessary for model inference and selection on the basis

  17. Evaluation of precipitation input for SWAT modeling in Alpine catchment: A case study in the Adige river basin (Italy).

    Science.gov (United States)

    Tuo, Ye; Duan, Zheng; Disse, Markus; Chiogna, Gabriele

    2016-12-15

    Precipitation is often the most important input data in hydrological models when simulating streamflow. The Soil and Water Assessment Tool (SWAT), a widely used hydrological model, only makes use of data from one precipitation gauge station that is nearest to the centroid of each subbasin, which is eventually corrected using the elevation band method. This leads in general to inaccurate representation of subbasin precipitation input data, particularly in catchments with complex topography. To investigate the impact of different precipitation inputs on the SWAT model simulations in Alpine catchments, 13years (1998-2010) of daily precipitation data from four datasets including OP (Observed precipitation), IDW (Inverse Distance Weighting data), CHIRPS (Climate Hazards Group InfraRed Precipitation with Station data) and TRMM (Tropical Rainfall Measuring Mission) has been considered. Both model performances (comparing simulated and measured streamflow data at the catchment outlet) as well as parameter and prediction uncertainties have been quantified. For all three subbasins, the use of elevation bands is fundamental to match the water budget. Streamflow predictions obtained using IDW inputs are better than those obtained using the other datasets in terms of both model performance and prediction uncertainty. Models using the CHIRPS product as input provide satisfactory streamflow estimation, suggesting that this satellite product can be applied to this data-scarce Alpine region. Comparing the performance of SWAT models using different precipitation datasets is therefore important in data-scarce regions. This study has shown that, precipitation is the main source of uncertainty, and different precipitation datasets in SWAT models lead to different best estimate ranges for the calibrated parameters. This has important implications for the interpretation of the simulated hydrological processes. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  18. "Updates to Model Algorithms & Inputs for the Biogenic ...

    Science.gov (United States)

    We have developed new canopy emission algorithms and land use data for BEIS. Simulations with BEIS v3.4 and these updates in CMAQ v5.0.2 are compared these changes to the Model of Emissions of Gases and Aerosols from Nature (MEGAN) and evaluated the simulations against observations. This has resulted in improvements in model evaluations of modeled isoprene, NOx, and O3. The National Exposure Research Laboratory (NERL) Atmospheric Modeling and Analysis Division (AMAD) conducts research in support of EPA mission to protect human health and the environment. AMAD research program is engaged in developing and evaluating predictive atmospheric models on all spatial and temporal scales for forecasting the air quality and for assessing changes in air quality and air pollutant exposures, as affected by changes in ecosystem management and regulatory decisions. AMAD is responsible for providing a sound scientific and technical basis for regulatory policies based on air quality models to improve ambient air quality. The models developed by AMAD are being used by EPA, NOAA, and the air pollution community in understanding and forecasting not only the magnitude of the air pollution problem, but also in developing emission control policies and regulations for air quality improvements.

  19. Identifying best-fitting inputs in health-economic model calibration: a Pareto frontier approach.

    Science.gov (United States)

    Enns, Eva A; Cipriano, Lauren E; Simons, Cyrena T; Kong, Chung Yin

    2015-02-01

    To identify best-fitting input sets using model calibration, individual calibration target fits are often combined into a single goodness-of-fit (GOF) measure using a set of weights. Decisions in the calibration process, such as which weights to use, influence which sets of model inputs are identified as best-fitting, potentially leading to different health economic conclusions. We present an alternative approach to identifying best-fitting input sets based on the concept of Pareto-optimality. A set of model inputs is on the Pareto frontier if no other input set simultaneously fits all calibration targets as well or better. We demonstrate the Pareto frontier approach in the calibration of 2 models: a simple, illustrative Markov model and a previously published cost-effectiveness model of transcatheter aortic valve replacement (TAVR). For each model, we compare the input sets on the Pareto frontier to an equal number of best-fitting input sets according to 2 possible weighted-sum GOF scoring systems, and we compare the health economic conclusions arising from these different definitions of best-fitting. For the simple model, outcomes evaluated over the best-fitting input sets according to the 2 weighted-sum GOF schemes were virtually nonoverlapping on the cost-effectiveness plane and resulted in very different incremental cost-effectiveness ratios ($79,300 [95% CI 72,500-87,600] v. $139,700 [95% CI 79,900-182,800] per quality-adjusted life-year [QALY] gained). Input sets on the Pareto frontier spanned both regions ($79,000 [95% CI 64,900-156,200] per QALY gained). The TAVR model yielded similar results. Choices in generating a summary GOF score may result in different health economic conclusions. The Pareto frontier approach eliminates the need to make these choices by using an intuitive and transparent notion of optimality as the basis for identifying best-fitting input sets. © The Author(s) 2014.

  20. Parameter Estimation of Partial Differential Equation Models

    KAUST Repository

    Xun, Xiaolei

    2013-09-01

    Partial differential equation (PDE) models are commonly used to model complex dynamic systems in applied sciences such as biology and finance. The forms of these PDE models are usually proposed by experts based on their prior knowledge and understanding of the dynamic system. Parameters in PDE models often have interesting scientific interpretations, but their values are often unknown and need to be estimated from the measurements of the dynamic system in the presence of measurement errors. Most PDEs used in practice have no analytic solutions, and can only be solved with numerical methods. Currently, methods for estimating PDE parameters require repeatedly solving PDEs numerically under thousands of candidate parameter values, and thus the computational load is high. In this article, we propose two methods to estimate parameters in PDE models: a parameter cascading method and a Bayesian approach. In both methods, the underlying dynamic process modeled with the PDE model is represented via basis function expansion. For the parameter cascading method, we develop two nested levels of optimization to estimate the PDE parameters. For the Bayesian method, we develop a joint model for data and the PDE and develop a novel hierarchical model allowing us to employ Markov chain Monte Carlo (MCMC) techniques to make posterior inference. Simulation studies show that the Bayesian method and parameter cascading method are comparable, and both outperform other available methods in terms of estimation accuracy. The two methods are demonstrated by estimating parameters in a PDE model from long-range infrared light detection and ranging data. Supplementary materials for this article are available online. © 2013 American Statistical Association.

  1. High Flux Isotope Reactor system RELAP5 input model

    International Nuclear Information System (INIS)

    Morris, D.G.; Wendel, M.W.

    1993-01-01

    A thermal-hydraulic computational model of the High Flux Isotope Reactor (HFIR) has been developed using the RELAP5 program. The purpose of the model is to provide a state-of-the art thermal-hydraulic simulation tool for analyzing selected hypothetical accident scenarios for a revised HFIR Safety Analysis Report (SAR). The model includes (1) a detailed representation of the reactor core and other vessel components, (2) three heat exchanger/pump cells, (3) pressurizing pumps and letdown valves, and (4) secondary coolant system (with less detail than the primary system). Data from HFIR operation, component tests, tests in facility mockups and the HFIR, HFIR specific experiments, and other pertinent experiments performed independent of HFIR were used to construct the model and validate it to the extent permitted by the data. The detailed version of the model has been used to simulate loss-of-coolant accidents (LOCAs), while the abbreviated version has been developed for the operational transients that allow use of a less detailed nodalization. Analysis of station blackout with core long-term decay heat removal via natural convection has been performed using the core and vessel portions of the detailed model

  2. Determining input values for a simple parametric model to estimate ...

    African Journals Online (AJOL)

    Estimating soil evaporation (Es) is an important part of modelling vineyard evapotranspiration for irrigation purposes. Furthermore, quantification of possible soil texture and trellis effects is essential. Daily Es from six topsoils packed into lysimeters was measured under grapevines on slanting and vertical trellises, ...

  3. Reissner-Mindlin plate model with uncertain input data

    Czech Academy of Sciences Publication Activity Database

    Hlaváček, Ivan; Chleboun, J.

    2014-01-01

    Roč. 17, Jun (2014), s. 71-88 ISSN 1468-1218 Institutional support: RVO:67985840 Keywords : Reissner-Mindlin model * orthotropic plate Subject RIV: BA - General Mathematics Impact factor: 2.519, year: 2014 http://www.sciencedirect.com/science/article/pii/S1468121813001077

  4. Model reduction of nonlinear systems subject to input disturbances

    KAUST Repository

    Ndoye, Ibrahima; Laleg-Kirati, Taous-Meriem

    2017-01-01

    The method of convex optimization is used as a tool for model reduction of a class of nonlinear systems in the presence of disturbances. It is shown that under some conditions the nonlinear disturbed system can be approximated by a reduced order

  5. F-18 High Alpha Research Vehicle (HARV) parameter identification flight test maneuvers for optimal input design validation and lateral control effectiveness

    Science.gov (United States)

    Morelli, Eugene A.

    1995-01-01

    Flight test maneuvers are specified for the F-18 High Alpha Research Vehicle (HARV). The maneuvers were designed for open loop parameter identification purposes, specifically for optimal input design validation at 5 degrees angle of attack, identification of individual strake effectiveness at 40 and 50 degrees angle of attack, and study of lateral dynamics and lateral control effectiveness at 40 and 50 degrees angle of attack. Each maneuver is to be realized by applying square wave inputs to specific control effectors using the On-Board Excitation System (OBES). Maneuver descriptions and complete specifications of the time/amplitude points define each input are included, along with plots of the input time histories.

  6. X-Parameter Based Modelling of Polar Modulated Power Amplifiers

    DEFF Research Database (Denmark)

    Wang, Yelin; Nielsen, Troels Studsgaard; Sira, Daniel

    2013-01-01

    X-parameters are developed as an extension of S-parameters capable of modelling non-linear devices driven by large signals. They are suitable for devices having only radio frequency (RF) and DC ports. In a polar power amplifier (PA), phase and envelope of the input modulated signal are applied...... at separate ports and the envelope port is neither an RF nor a DC port. As a result, X-parameters may fail to characterise the effect of the envelope port excitation and consequently the polar PA. This study introduces a solution to the problem for a commercial polar PA. In this solution, the RF-phase path...... PA for simulations. The simulated error vector magnitude (EVM) and adjacent channel power ratio (ACPR) were compared with the measured data to validate the model. The maximum differences between the simulated and measured EVM and ACPR are less than 2% point and 3 dB, respectively....

  7. Overview of input parameters for calculation of the probability of a brittle fracture of the reactor pressure vessel

    International Nuclear Information System (INIS)

    Horacek, L.

    1994-12-01

    The parameters are summarized for a calculation of the probability of brittle fracture of the WWER-440 reactor pressure vessel (RPV). The parameters were selected for 2 basic approaches, viz., one based on the Monte Carlo method and the other on the FORM and SORM methods (First and Second Order Reliability Methods). The approaches were represented by US computer codes VISA-II and OCA-P and by the German ZERBERUS code. The philosophy of the deterministic and probabilistic aspects of the VISA-II code is outlined, and the differences between the US and Czech PWR's are discussed in this context. Briefly described is the partial approach to the evaluation of the WWER type RPV's based on the assessment of their resistance to brittle fracture by fracture mechanics tools and by using the FORM and SORM methods. Attention is paid to the input data for the WWER modification of the VISA-II code. The data are categorized with respect to randomness, i.e. to the stochastic or deterministic nature of their behavior. 18 tabs., 14 refs

  8. Input parameters for the statistical seismic hazard assessment in central part of Romania territory using crustal earthquakes

    International Nuclear Information System (INIS)

    Moldovan, A.I.; Bazacliu, O.; Popescu, E.

    2004-01-01

    The seismic hazard assessment in dense-populated geographical regions and subsequently the design of the strategic objectives (dams, nuclear power plants, etc.) are based on the knowledge of the seismicity parameters of the seismic sources which can generate ground motion amplitudes above the minimum level considered risky at the specific site and the way the seismic waves propagate between the focus and the site. The purpose of this paper is to provide a set of information required for a probabilistic assessment of the seismic hazard in the central Romanian territory relative to the following seismic sources: Fagaras zone (FC), Campulung zone (CP), and Transilvania zone (TD) all of them in the crust domain. Extremely vulnerable objectives are present in the central part of Romania, including cities of Pitesti and Sibiu and the 'Vidraru' dam. The analysis that we propose implies: (1) geometrical definition of the seismic sources, (2) estimation of the maximum possible magnitude, (3) estimation of the frequency - magnitude relationship and (4) estimation of the attenuation laws. As an example, the obtained input parameters are used to evaluate the seismic hazard distribution due to the crustal earthquakes applying the McGuire's procedure (1976). These preliminary results are in good agreement with the previous research based on deterministic approach (Radulian et al., 2000). (authors)

  9. Parameter identification in the logistic STAR model

    DEFF Research Database (Denmark)

    Ekner, Line Elvstrøm; Nejstgaard, Emil

    We propose a new and simple parametrization of the so-called speed of transition parameter of the logistic smooth transition autoregressive (LSTAR) model. The new parametrization highlights that a consequence of the well-known identification problem of the speed of transition parameter is that th...

  10. Scientific and technical advisory committee review of the nutrient inputs to the watershed model

    Science.gov (United States)

    The following is a report by a STAC Review Team concerning the methods and documentation used by the Chesapeake Bay Partnership for evaluation of nutrient inputs to Phase 6 of the Chesapeake Bay Watershed Model. The “STAC Review of the Nutrient Inputs to the Watershed Model” (previously referred to...

  11. From LCC to LCA Using a Hybrid Input Output Model – A Maritime Case Study

    DEFF Research Database (Denmark)

    Kjær, Louise Laumann; Pagoropoulos, Aris; Hauschild, Michael Zwicky

    2015-01-01

    As companies try to embrace life cycle thinking, Life Cycle Assessment (LCA) and Life Cycle Costing (LCC) have proven to be powerful tools. In this paper, an Environmental Input-Output model is used for analysis as it enables an LCA using the same economic input data as LCC. This approach helps...

  12. Setting Parameters for Biological Models With ANIMO

    NARCIS (Netherlands)

    Schivo, Stefano; Scholma, Jetse; Karperien, Hermanus Bernardus Johannes; Post, Janine Nicole; van de Pol, Jan Cornelis; Langerak, Romanus; André, Étienne; Frehse, Goran

    2014-01-01

    ANIMO (Analysis of Networks with Interactive MOdeling) is a software for modeling biological networks, such as e.g. signaling, metabolic or gene networks. An ANIMO model is essentially the sum of a network topology and a number of interaction parameters. The topology describes the interactions

  13. Wideband Small-Signal Input dq Admittance Modeling of Six-Pulse Diode Rectifiers

    DEFF Research Database (Denmark)

    Yue, Xiaolong; Wang, Xiongfei; Blaabjerg, Frede

    2018-01-01

    This paper studies the wideband small-signal input dq admittance of six-pulse diode rectifiers. Considering the frequency coupling introduced by ripple frequency harmonics of d-and q-channel switching function, the proposed model successfully predicts the small-signal input dq admittance of six......-pulse diode rectifiers in high frequency regions that existing models fail to explain. Simulation and experimental results verify the accuracy of the proposed model....

  14. A Design Method of Robust Servo Internal Model Control with Control Input Saturation

    OpenAIRE

    山田, 功; 舩見, 洋祐

    2001-01-01

    In the present paper, we examine a design method of robust servo Internal Model Control with control input saturation. First of all, we clarify the condition that Internal Model Control has robust servo characteristics for the system with control input saturation. From this consideration, we propose new design method of Internal Model Control with robust servo characteristics. A numerical example to illustrate the effectiveness of the proposed method is shown.

  15. Description of the CONTAIN input model for the Dodewaard nuclear power plant

    International Nuclear Information System (INIS)

    Velema, E.J.

    1992-02-01

    This report describes the ECN standard CONTAIN input model for the Dodewaard Nuclear Power Plant (NPP) that has been developed by ECN. This standard input model will serve as a basis for analyses of the phenomena which may occur inside the Dodewaard containment in the event of a postulated severe accident. Boundary conditions for specific containment analyses can easily be implemented in the input model. as a result ECN will be able to respond quickly on requests for analyses from the utilities of the authorities. The report also includes brief descriptions of the Dodewaard NPP and the CONTAIN computer program. (author). 7 refs.; 5 figs.; 3 tabs

  16. Parameters and error of a theoretical model

    International Nuclear Information System (INIS)

    Moeller, P.; Nix, J.R.; Swiatecki, W.

    1986-09-01

    We propose a definition for the error of a theoretical model of the type whose parameters are determined from adjustment to experimental data. By applying a standard statistical method, the maximum-likelihoodlmethod, we derive expressions for both the parameters of the theoretical model and its error. We investigate the derived equations by solving them for simulated experimental and theoretical quantities generated by use of random number generators. 2 refs., 4 tabs

  17. Parameter Estimation of Nonlinear Models in Forestry.

    OpenAIRE

    Fekedulegn, Desta; Mac Siúrtáin, Máirtín Pádraig; Colbert, Jim J.

    1999-01-01

    Partial derivatives of the negative exponential, monomolecular, Mitcherlich, Gompertz, logistic, Chapman-Richards, von Bertalanffy, Weibull and the Richard’s nonlinear growth models are presented. The application of these partial derivatives in estimating the model parameters is illustrated. The parameters are estimated using the Marquardt iterative method of nonlinear regression relating top height to age of Norway spruce (Picea abies L.) from the Bowmont Norway Spruce Thinnin...

  18. Modeling and Control of a Dual-Input Isolated Full-Bridge Boost Converter

    DEFF Research Database (Denmark)

    Zhang, Zhe; Thomsen, Ole Cornelius; Andersen, Michael A. E.

    2012-01-01

    In this paper, a steady-state model, a large-signal (LS) model and an ac small-signal (SS) model for a recently proposed dual-input transformer-isolated boost converter are derived respectively by the switching flow-graph (SFG) nonlinear modeling technique. Based upon the converter’s model...

  19. Mechanistic interpretation of glass reaction: Input to kinetic model development

    International Nuclear Information System (INIS)

    Bates, J.K.; Ebert, W.L.; Bradley, J.P.; Bourcier, W.L.

    1991-05-01

    Actinide-doped SRL 165 type glass was reacted in J-13 groundwater at 90 degree C for times up to 278 days. The reaction was characterized by both solution and solid analyses. The glass was seen to react nonstoichiometrically with preferred leaching of alkali metals and boron. High resolution electron microscopy revealed the formation of a complex layer structure which became separated from the underlying glass as the reaction progressed. The formation of the layer and its effect on continued glass reaction are discussed with respect to the current model for glass reaction used in the EQ3/6 computer simulation. It is concluded that the layer formed after 278 days is not protective and may eventually become fractured and generate particulates that may be transported by liquid water. 5 refs., 5 figs. , 3 tabs

  20. Remote sensing inputs to landscape models which predict future spatial land use patterns for hydrologic models

    Science.gov (United States)

    Miller, L. D.; Tom, C.; Nualchawee, K.

    1977-01-01

    A tropical forest area of Northern Thailand provided a test case of the application of the approach in more natural surroundings. Remote sensing imagery subjected to proper computer analysis has been shown to be a very useful means of collecting spatial data for the science of hydrology. Remote sensing products provide direct input to hydrologic models and practical data bases for planning large and small-scale hydrologic developments. Combining the available remote sensing imagery together with available map information in the landscape model provides a basis for substantial improvements in these applications.

  1. Updated climatological model predictions of ionospheric and HF propagation parameters

    International Nuclear Information System (INIS)

    Reilly, M.H.; Rhoads, F.J.; Goodman, J.M.; Singh, M.

    1991-01-01

    The prediction performances of several climatological models, including the ionospheric conductivity and electron density model, RADAR C, and Ionospheric Communications Analysis and Predictions Program, are evaluated for different regions and sunspot number inputs. Particular attention is given to the near-real-time (NRT) predictions associated with single-station updates. It is shown that a dramatic improvement can be obtained by using single-station ionospheric data to update the driving parameters for an ionospheric model for NRT predictions of f(0)F2 and other ionospheric and HF circuit parameters. For middle latitudes, the improvement extends out thousands of kilometers from the update point to points of comparable corrected geomagnetic latitude. 10 refs

  2. Application of multi-parameter chorus and plasmaspheric hiss wave models in radiation belt modeling

    Science.gov (United States)

    Aryan, H.; Kang, S. B.; Balikhin, M. A.; Fok, M. C. H.; Agapitov, O. V.; Komar, C. M.; Kanekal, S. G.; Nagai, T.; Sibeck, D. G.

    2017-12-01

    Numerical simulation studies of the Earth's radiation belts are important to understand the acceleration and loss of energetic electrons. The Comprehensive Inner Magnetosphere-Ionosphere (CIMI) model along with many other radiation belt models require inputs for pitch angle, energy, and cross diffusion of electrons, due to chorus and plasmaspheric hiss waves. These parameters are calculated using statistical wave distribution models of chorus and plasmaspheric hiss amplitudes. In this study we incorporate recently developed multi-parameter chorus and plasmaspheric hiss wave models based on geomagnetic index and solar wind parameters. We perform CIMI simulations for two geomagnetic storms and compare the flux enhancement of MeV electrons with data from the Van Allen Probes and Akebono satellites. We show that the relativistic electron fluxes calculated with multi-parameter wave models resembles the observations more accurately than the relativistic electron fluxes calculated with single-parameter wave models. This indicates that wave models based on a combination of geomagnetic index and solar wind parameters are more effective as inputs to radiation belt models.

  3. Comparison of different snow model formulations and their responses to input uncertainties in the Upper Indus Basin

    Science.gov (United States)

    Pritchard, David; Fowler, Hayley; Forsythe, Nathan; O'Donnell, Greg; Rutter, Nick; Bardossy, Andras

    2017-04-01

    Snow and glacier melt in the mountainous Upper Indus Basin (UIB) sustain water supplies, irrigation networks, hydropower production and ecosystems in extensive downstream lowlands. Understanding hydrological and cryospheric sensitivities to climatic variability and change in the basin is therefore critical for local, national and regional water resources management. Assessing these sensitivities using numerical modelling is challenging, due to limitations in the quality and quantity of input and evaluation data, as well as uncertainties in model structures and parameters. This study explores how these uncertainties in inputs and process parameterisations affect distributed simulations of ablation in the complex climatic setting of the UIB. The role of model forcing uncertainties is explored using combinations of local observations, remote sensing and reanalysis - including the high resolution High Asia Refined Analysis - to generate multiple realisations of spatiotemporal model input fields. Forcing a range of model structures with these input fields then provides an indication of how different ablation parameterisations respond to uncertainties and perturbations in climatic drivers. Model structures considered include simple, empirical representations of melt processes through to physically based, full energy balance models with multi-physics options for simulating snowpack evolution (including an adapted version of FSM). Analysing model input and structural uncertainties in this way provides insights for methodological choices in climate sensitivity assessments of data-sparse, high mountain catchments. Such assessments are key for supporting water resource management in these catchments, particularly given the potential complications of enhanced warming through elevation effects or, in the case of the UIB, limited understanding of how and why local climate change signals differ from broader patterns.

  4. Modelling of Multi Input Transfer Function for Rainfall Forecasting in Batu City

    Directory of Open Access Journals (Sweden)

    Priska Arindya Purnama

    2017-11-01

    Full Text Available The aim of this research is to model and forecast the rainfall in Batu City using multi input transfer function model based on air temperature, humidity, wind speed and cloud. Transfer function model is a multivariate time series model which consists of an output series (Yt sequence expected to be effected by an input series (Xt and other inputs in a group called a noise series (Nt. Multi input transfer function model obtained is (b1,s1,r1 (b2,s2,r2 (b3,s3,r3 (b4,s4,r4(pn,qn = (0,0,0 (23,0,0 (1,2,0 (0,0,0 ([5,8],2 and shows that air temperature on t-day affects rainfall on t-day, rainfall on t-day is influenced by air humidity in the previous 23 days, rainfall on t-day is affected by wind speed in the previous day , and rainfall on day t is affected by clouds on day t. The results of rainfall forecasting in Batu City with multi input transfer function model can be said to be accurate, because it produces relatively small RMSE value. The value of RMSE data forecasting training is 7.7921 while forecasting data testing is 4.2184. Multi-input transfer function model is suitable for rainfall in Batu City.

  5. Evaluating the Sensitivity of Agricultural Model Performance to Different Climate Inputs: Supplemental Material

    Science.gov (United States)

    Glotter, Michael J.; Ruane, Alex C.; Moyer, Elisabeth J.; Elliott, Joshua W.

    2015-01-01

    Projections of future food production necessarily rely on models, which must themselves be validated through historical assessments comparing modeled and observed yields. Reliable historical validation requires both accurate agricultural models and accurate climate inputs. Problems with either may compromise the validation exercise. Previous studies have compared the effects of different climate inputs on agricultural projections but either incompletely or without a ground truth of observed yields that would allow distinguishing errors due to climate inputs from those intrinsic to the crop model. This study is a systematic evaluation of the reliability of a widely used crop model for simulating U.S. maize yields when driven by multiple observational data products. The parallelized Decision Support System for Agrotechnology Transfer (pDSSAT) is driven with climate inputs from multiple sources reanalysis, reanalysis that is bias corrected with observed climate, and a control dataset and compared with observed historical yields. The simulations show that model output is more accurate when driven by any observation-based precipitation product than when driven by non-bias-corrected reanalysis. The simulations also suggest, in contrast to previous studies, that biased precipitation distribution is significant for yields only in arid regions. Some issues persist for all choices of climate inputs: crop yields appear to be oversensitive to precipitation fluctuations but under sensitive to floods and heat waves. These results suggest that the most important issue for agricultural projections may be not climate inputs but structural limitations in the crop models themselves.

  6. Systematic parameter inference in stochastic mesoscopic modeling

    Energy Technology Data Exchange (ETDEWEB)

    Lei, Huan; Yang, Xiu [Pacific Northwest National Laboratory, Richland, WA 99352 (United States); Li, Zhen [Division of Applied Mathematics, Brown University, Providence, RI 02912 (United States); Karniadakis, George Em, E-mail: george_karniadakis@brown.edu [Division of Applied Mathematics, Brown University, Providence, RI 02912 (United States)

    2017-02-01

    We propose a method to efficiently determine the optimal coarse-grained force field in mesoscopic stochastic simulations of Newtonian fluid and polymer melt systems modeled by dissipative particle dynamics (DPD) and energy conserving dissipative particle dynamics (eDPD). The response surfaces of various target properties (viscosity, diffusivity, pressure, etc.) with respect to model parameters are constructed based on the generalized polynomial chaos (gPC) expansion using simulation results on sampling points (e.g., individual parameter sets). To alleviate the computational cost to evaluate the target properties, we employ the compressive sensing method to compute the coefficients of the dominant gPC terms given the prior knowledge that the coefficients are “sparse”. The proposed method shows comparable accuracy with the standard probabilistic collocation method (PCM) while it imposes a much weaker restriction on the number of the simulation samples especially for systems with high dimensional parametric space. Fully access to the response surfaces within the confidence range enables us to infer the optimal force parameters given the desirable values of target properties at the macroscopic scale. Moreover, it enables us to investigate the intrinsic relationship between the model parameters, identify possible degeneracies in the parameter space, and optimize the model by eliminating model redundancies. The proposed method provides an efficient alternative approach for constructing mesoscopic models by inferring model parameters to recover target properties of the physics systems (e.g., from experimental measurements), where those force field parameters and formulation cannot be derived from the microscopic level in a straight forward way.

  7. Targeting the right input data to improve crop modeling at global level

    Science.gov (United States)

    Adam, M.; Robertson, R.; Gbegbelegbe, S.; Jones, J. W.; Boote, K. J.; Asseng, S.

    2012-12-01

    Designed for location-specific simulations, the use of crop models at a global level raises important questions. Crop models are originally premised on small unit areas where environmental conditions and management practices are considered homogeneous. Specific information describing soils, climate, management, and crop characteristics are used in the calibration process. However, when scaling up for global application, we rely on information derived from geographical information systems and weather generators. To run crop models at broad, we use a modeling platform that assumes a uniformly generated grid cell as a unit area. Specific weather, specific soil and specific management practices for each crop are represented for each of the cell grids. Studies on the impacts of the uncertainties of weather information and climate change on crop yield at a global level have been carried out (Osborne et al, 2007, Nelson et al., 2010, van Bussel et al, 2011). Detailed information on soils and management practices at global level are very scarce but recognized to be of critical importance (Reidsma et al., 2009). Few attempts to assess the impact of their uncertainties on cropping systems performances can be found. The objectives of this study are (i) to determine sensitivities of a crop model to soil and management practices, inputs most relevant to low input rainfed cropping systems, and (ii) to define hotspots of sensitivity according to the input data. We ran DSSAT v4.5 globally (CERES-CROPSIM) to simulate wheat yields at 45arc-minute resolution. Cultivar parameters were calibrated and validated for different mega-environments (results not shown). The model was run for nitrogen-limited production systems. This setting was chosen as the most representative to simulate actual yield (especially for low-input rainfed agricultural systems) and assumes crop growth to be free of any pest and diseases damages. We conducted a sensitivity analysis on contrasting management

  8. Parameter and State Estimator for State Space Models

    Directory of Open Access Journals (Sweden)

    Ruifeng Ding

    2014-01-01

    Full Text Available This paper proposes a parameter and state estimator for canonical state space systems from measured input-output data. The key is to solve the system state from the state equation and to substitute it into the output equation, eliminating the state variables, and the resulting equation contains only the system inputs and outputs, and to derive a least squares parameter identification algorithm. Furthermore, the system states are computed from the estimated parameters and the input-output data. Convergence analysis using the martingale convergence theorem indicates that the parameter estimates converge to their true values. Finally, an illustrative example is provided to show that the proposed algorithm is effective.

  9. Application of lumped-parameter models

    DEFF Research Database (Denmark)

    Ibsen, Lars Bo; Liingaard, Morten

    This technical report concerns the lumped-parameter models for a suction caisson with a ratio between skirt length and foundation diameter equal to 1/2, embedded into an viscoelastic soil. The models are presented for three different values of the shear modulus of the subsoil (section 1.1). Subse...

  10. Models and parameters for environmental radiological assessments

    International Nuclear Information System (INIS)

    Miller, C.W.

    1984-01-01

    This book presents a unified compilation of models and parameters appropriate for assessing the impact of radioactive discharges to the environment. Models examined include those developed for the prediction of atmospheric and hydrologic transport and deposition, for terrestrial and aquatic food-chain bioaccumulation, and for internal and external dosimetry. Chapters have been entered separately into the data base

  11. WINKLER'S SINGLE-PARAMETER SUBGRADE MODEL FROM ...

    African Journals Online (AJOL)

    Preferred Customer

    Page 1 ... corresponding single-parameter Winkler model presented in this work. Keywords: Heterogeneous subgrade, Reissner's simplified continuum, Shear interaction, Simplified continuum, Winkler ... model in practical applications and its long time familiarity among practical engineers, its usage has endured to this date ...

  12. Models and parameters for environmental radiological assessments

    Energy Technology Data Exchange (ETDEWEB)

    Miller, C W [ed.

    1984-01-01

    This book presents a unified compilation of models and parameters appropriate for assessing the impact of radioactive discharges to the environment. Models examined include those developed for the prediction of atmospheric and hydrologic transport and deposition, for terrestrial and aquatic food-chain bioaccumulation, and for internal and external dosimetry. Chapters have been entered separately into the data base. (ACR)

  13. Consistent Stochastic Modelling of Meteocean Design Parameters

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard; Sterndorff, M. J.

    2000-01-01

    Consistent stochastic models of metocean design parameters and their directional dependencies are essential for reliability assessment of offshore structures. In this paper a stochastic model for the annual maximum values of the significant wave height, and the associated wind velocity, current...

  14. Models and parameters for environmental radiological assessments

    International Nuclear Information System (INIS)

    Miller, C.W.

    1983-01-01

    This article reviews the forthcoming book Models and Parameters for Environmental Radiological Assessments, which presents a unified compilation of models and parameters for assessing the impact on man of radioactive discharges, both routine and accidental, into the environment. Models presented in this book include those developed for the prediction of atmospheric and hydrologic transport and deposition, for terrestrial and aquatic food-chain bioaccumulation, and for internal and external dosimetry. Summaries are presented for each of the transport and dosimetry areas previously for each of the transport and dosimetry areas previously mentioned, and details are available in the literature cited. A chapter of example problems illustrates many of the methodologies presented throughout the text. Models and parameters presented are based on the results of extensive literature reviews and evaluations performed primarily by the staff of the Health and Safety Research Division of Oak Ridge National Laboratory

  15. Pandemic recovery analysis using the dynamic inoperability input-output model.

    Science.gov (United States)

    Santos, Joost R; Orsi, Mark J; Bond, Erik J

    2009-12-01

    Economists have long conceptualized and modeled the inherent interdependent relationships among different sectors of the economy. This concept paved the way for input-output modeling, a methodology that accounts for sector interdependencies governing the magnitude and extent of ripple effects due to changes in the economic structure of a region or nation. Recent extensions to input-output modeling have enhanced the model's capabilities to account for the impact of an economic perturbation; two such examples are the inoperability input-output model((1,2)) and the dynamic inoperability input-output model (DIIM).((3)) These models introduced sector inoperability, or the inability to satisfy as-planned production levels, into input-output modeling. While these models provide insights for understanding the impacts of inoperability, there are several aspects of the current formulation that do not account for complexities associated with certain disasters, such as a pandemic. This article proposes further enhancements to the DIIM to account for economic productivity losses resulting primarily from workforce disruptions. A pandemic is a unique disaster because the majority of its direct impacts are workforce related. The article develops a modeling framework to account for workforce inoperability and recovery factors. The proposed workforce-explicit enhancements to the DIIM are demonstrated in a case study to simulate a pandemic scenario in the Commonwealth of Virginia.

  16. Development of the RETRAN input model for Ulchin 3/4 visual system analyzer

    International Nuclear Information System (INIS)

    Lee, S. W.; Kim, K. D.; Lee, Y. J.; Lee, W. J.; Chung, B. D.; Jeong, J. J.; Hwang, M. K.

    2004-01-01

    As a part of the Long-Term Nuclear R and D program, KAERI has developed the so-called Visual System Analyzer (ViSA) based on best-estimate codes. The MARS and RETRAN codes are used as the best-estimate codes for ViSA. Between these two codes, the RETRAN code is used for realistic analysis of Non-LOCA transients and small-break loss-of-coolant accidents, of which break size is less than 3 inch diameter. So it is necessary to develop the RETRAN input model for Ulchin 3/4 plants (KSNP). In recognition of this, the RETRAN input model for Ulchin 3/4 plants has been developed. This report includes the input model requirements and the calculation note for the input data generation (see the Appendix). In order to confirm the validity of the input data, the calculations are performed for a steady state at 100 % power operation condition, inadvertent reactor trip and RCP trip. The results of the steady-state calculation agree well with the design data. The results of the other transient calculations seem to be reasonable and consistent with those of other best-estimate calculations. Therefore, the RETRAN input data can be used as a base input deck for the RETRAN transient analyzer for Ulchin 3/4. Moreover, it is found that Core Protection Calculator (CPC) module, which is modified by Korea Electric Power Research Institute (KEPRI), is well adapted to ViSA

  17. Microbial Communities Model Parameter Calculation for TSPA/SR

    International Nuclear Information System (INIS)

    D. Jolley

    2001-01-01

    This calculation has several purposes. First the calculation reduces the information contained in ''Committed Materials in Repository Drifts'' (BSC 2001a) to useable parameters required as input to MING V1.O (CRWMS M and O 1998, CSCI 30018 V1.O) for calculation of the effects of potential in-drift microbial communities as part of the microbial communities model. The calculation is intended to replace the parameters found in Attachment II of the current In-Drift Microbial Communities Model revision (CRWMS M and O 2000c) with the exception of Section 11-5.3. Second, this calculation provides the information necessary to supercede the following DTN: M09909SPAMING1.003 and replace it with a new qualified dataset (see Table 6.2-1). The purpose of this calculation is to create the revised qualified parameter input for MING that will allow ΔG (Gibbs Free Energy) to be corrected for long-term changes to the temperature of the near-field environment. Calculated herein are the quadratic or second order regression relationships that are used in the energy limiting calculations to potential growth of microbial communities in the in-drift geochemical environment. Third, the calculation performs an impact review of a new DTN: M00012MAJIONIS.000 that is intended to replace the currently cited DTN: GS9809083 12322.008 for water chemistry data used in the current ''In-Drift Microbial Communities Model'' revision (CRWMS M and O 2000c). Finally, the calculation updates the material lifetimes reported on Table 32 in section 6.5.2.3 of the ''In-Drift Microbial Communities'' AMR (CRWMS M and O 2000c) based on the inputs reported in BSC (2001a). Changes include adding new specified materials and updating old materials information that has changed

  18. The mobilisation model and parameter sensitivity

    International Nuclear Information System (INIS)

    Blok, B.M.

    1993-12-01

    In the PRObabillistic Safety Assessment (PROSA) of radioactive waste in a salt repository one of the nuclide release scenario's is the subrosion scenario. A new subrosion model SUBRECN has been developed. In this model the combined effect of a depth-dependent subrosion, glass dissolution, and salt rise has been taken into account. The subrosion model SUBRECN and the implementation of this model in the German computer program EMOS4 is presented. A new computer program PANTER is derived from EMOS4. PANTER models releases of radionuclides via subrosion from a disposal site in a salt pillar into the biosphere. For uncertainty and sensitivity analyses the new subrosion model Latin Hypercube Sampling has been used for determine the different values for the uncertain parameters. The influence of the uncertainty in the parameters on the dose calculations has been investigated by the following sensitivity techniques: Spearman Rank Correlation Coefficients, Partial Rank Correlation Coefficients, Standardised Rank Regression Coefficients, and the Smirnov Test. (orig./HP)

  19. Modeling of heat transfer into a heat pipe for a localized heat input zone

    International Nuclear Information System (INIS)

    Rosenfeld, J.H.

    1987-01-01

    A general model is presented for heat transfer into a heat pipe using a localized heat input. Conduction in the wall of the heat pipe and boiling in the interior structure are treated simultaneously. The model is derived from circumferential heat transfer in a cylindrical heat pipe evaporator and for radial heat transfer in a circular disk with boiling from the interior surface. A comparison is made with data for a localized heat input zone. Agreement between the theory and the model is good. This model can be used for design purposes if a boiling correlation is available. The model can be extended to provide improved predictions of heat pipe performance

  20. Sensitivity Analysis of Input Parameters for the Dose Assessment from Gaseous Effluents due to the Normal Operation of Jordan Research and Training Reactor

    International Nuclear Information System (INIS)

    Kim, Sukhoon; Lee, Seunghee; Kim, Juyoul; Kim, Juyub; Han, Moonhee

    2015-01-01

    In this study, therefore, the sensitivity analysis of input variables for the dose assessment was performed for reviewing the effect of each parameter on the result after determining the type and range of parameters that could affect the exposure dose of the public. (Since JRTR will be operated by the concept of 'no liquid discharge,' the input parameters used for calculation of dose due to liquid effluents are not considered in the sensitivity analysis.) In this paper, the sensitivity analysis of input parameters for the dose assessment in the vicinity of the site boundary due to gaseous effluents was performed for a total of thirty-five (35) cases. And, detailed results for the input variables that have an significant effect are shown in Figures 1 through 7, respectively. For preparing a R-ER for the operating license of the JRTR, these results will be updated by the additional information and could be applied to predicting the variation trend of the exposure dose in the process of updating the input parameters for the dose assessment reflecting the characteristics of the JRTR site

  1. On the Influence of Input Data Quality to Flood Damage Estimation: The Performance of the INSYDE Model

    Directory of Open Access Journals (Sweden)

    Daniela Molinari

    2017-09-01

    Full Text Available IN-depth SYnthetic Model for Flood Damage Estimation (INSYDE is a model for the estimation of flood damage to residential buildings at the micro-scale. This study investigates the sensitivity of INSYDE to the accuracy of input data. Starting from the knowledge of input parameters at the scale of individual buildings for a case study, the level of detail of input data is progressively downgraded until the condition in which a representative value is defined for all inputs at the census block scale. The analysis reveals that two conditions are required to limit the errors in damage estimation: the representativeness of representatives values with respect to micro-scale values and the local knowledge of the footprint area of the buildings, being the latter the main extensive variable adopted by INSYDE. Such a result allows for extending the usability of the model at the meso-scale, also in different countries, depending on the availability of aggregated building data.

  2. Parameters-related uncertainty in modeling sugar cane yield with an agro-Land Surface Model

    Science.gov (United States)

    Valade, A.; Ciais, P.; Vuichard, N.; Viovy, N.; Ruget, F.; Gabrielle, B.

    2012-12-01

    Agro-Land Surface Models (agro-LSM) have been developed from the coupling of specific crop models and large-scale generic vegetation models. They aim at accounting for the spatial distribution and variability of energy, water and carbon fluxes within soil-vegetation-atmosphere continuum with a particular emphasis on how crop phenology and agricultural management practice influence the turbulent fluxes exchanged with the atmosphere, and the underlying water and carbon pools. A part of the uncertainty in these models is related to the many parameters included in the models' equations. In this study, we quantify the parameter-based uncertainty in the simulation of sugar cane biomass production with the agro-LSM ORCHIDEE-STICS on a multi-regional approach with data from sites in Australia, La Reunion and Brazil. First, the main source of uncertainty for the output variables NPP, GPP, and sensible heat flux (SH) is determined through a screening of the main parameters of the model on a multi-site basis leading to the selection of a subset of most sensitive parameters causing most of the uncertainty. In a second step, a sensitivity analysis is carried out on the parameters selected from the screening analysis at a regional scale. For this, a Monte-Carlo sampling method associated with the calculation of Partial Ranked Correlation Coefficients is used. First, we quantify the sensitivity of the output variables to individual input parameters on a regional scale for two regions of intensive sugar cane cultivation in Australia and Brazil. Then, we quantify the overall uncertainty in the simulation's outputs propagated from the uncertainty in the input parameters. Seven parameters are identified by the screening procedure as driving most of the uncertainty in the agro-LSM ORCHIDEE-STICS model output at all sites. These parameters control photosynthesis (optimal temperature of photosynthesis, optimal carboxylation rate), radiation interception (extinction coefficient), root

  3. Analysis of Modeling Parameters on Threaded Screws.

    Energy Technology Data Exchange (ETDEWEB)

    Vigil, Miquela S. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Brake, Matthew Robert [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Vangoethem, Douglas [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-06-01

    Assembled mechanical systems often contain a large number of bolted connections. These bolted connections (joints) are integral aspects of the load path for structural dynamics, and, consequently, are paramount for calculating a structure's stiffness and energy dissipation prop- erties. However, analysts have not found the optimal method to model appropriately these bolted joints. The complexity of the screw geometry cause issues when generating a mesh of the model. This paper will explore different approaches to model a screw-substrate connec- tion. Model parameters such as mesh continuity, node alignment, wedge angles, and thread to body element size ratios are examined. The results of this study will give analysts a better understanding of the influences of these parameters and will aide in finding the optimal method to model bolted connections.

  4. Verification Techniques for Parameter Selection and Bayesian Model Calibration Presented for an HIV Model

    Science.gov (United States)

    Wentworth, Mami Tonoe

    Uncertainty quantification plays an important role when making predictive estimates of model responses. In this context, uncertainty quantification is defined as quantifying and reducing uncertainties, and the objective is to quantify uncertainties in parameter, model and measurements, and propagate the uncertainties through the model, so that one can make a predictive estimate with quantified uncertainties. Two of the aspects of uncertainty quantification that must be performed prior to propagating uncertainties are model calibration and parameter selection. There are several efficient techniques for these processes; however, the accuracy of these methods are often not verified. This is the motivation for our work, and in this dissertation, we present and illustrate verification frameworks for model calibration and parameter selection in the context of biological and physical models. First, HIV models, developed and improved by [2, 3, 8], describe the viral infection dynamics of an HIV disease. These are also used to make predictive estimates of viral loads and T-cell counts and to construct an optimal control for drug therapy. Estimating input parameters is an essential step prior to uncertainty quantification. However, not all the parameters are identifiable, implying that they cannot be uniquely determined by the observations. These unidentifiable parameters can be partially removed by performing parameter selection, a process in which parameters that have minimal impacts on the model response are determined. We provide verification techniques for Bayesian model calibration and parameter selection for an HIV model. As an example of a physical model, we employ a heat model with experimental measurements presented in [10]. A steady-state heat model represents a prototypical behavior for heat conduction and diffusion process involved in a thermal-hydraulic model, which is a part of nuclear reactor models. We employ this simple heat model to illustrate verification

  5. Parameter Estimation of Spacecraft Fuel Slosh Model

    Science.gov (United States)

    Gangadharan, Sathya; Sudermann, James; Marlowe, Andrea; Njengam Charles

    2004-01-01

    Fuel slosh in the upper stages of a spinning spacecraft during launch has been a long standing concern for the success of a space mission. Energy loss through the movement of the liquid fuel in the fuel tank affects the gyroscopic stability of the spacecraft and leads to nutation (wobble) which can cause devastating control issues. The rate at which nutation develops (defined by Nutation Time Constant (NTC can be tedious to calculate and largely inaccurate if done during the early stages of spacecraft design. Pure analytical means of predicting the influence of onboard liquids have generally failed. A strong need exists to identify and model the conditions of resonance between nutation motion and liquid modes and to understand the general characteristics of the liquid motion that causes the problem in spinning spacecraft. A 3-D computerized model of the fuel slosh that accounts for any resonant modes found in the experimental testing will allow for increased accuracy in the overall modeling process. Development of a more accurate model of the fuel slosh currently lies in a more generalized 3-D computerized model incorporating masses, springs and dampers. Parameters describing the model include the inertia tensor of the fuel, spring constants, and damper coefficients. Refinement and understanding the effects of these parameters allow for a more accurate simulation of fuel slosh. The current research will focus on developing models of different complexity and estimating the model parameters that will ultimately provide a more realistic prediction of Nutation Time Constant obtained through simulation.

  6. Vascular input function correction of inflow enhancement for improved pharmacokinetic modeling of liver DCE-MRI.

    Science.gov (United States)

    Ning, Jia; Schubert, Tilman; Johnson, Kevin M; Roldán-Alzate, Alejandro; Chen, Huijun; Yuan, Chun; Reeder, Scott B

    2018-06-01

    To propose a simple method to correct vascular input function (VIF) due to inflow effects and to test whether the proposed method can provide more accurate VIFs for improved pharmacokinetic modeling. A spoiled gradient echo sequence-based inflow quantification and contrast agent concentration correction method was proposed. Simulations were conducted to illustrate improvement in the accuracy of VIF estimation and pharmacokinetic fitting. Animal studies with dynamic contrast-enhanced MR scans were conducted before, 1 week after, and 2 weeks after portal vein embolization (PVE) was performed in the left portal circulation of pigs. The proposed method was applied to correct the VIFs for model fitting. Pharmacokinetic parameters fitted using corrected and uncorrected VIFs were compared between different lobes and visits. Simulation results demonstrated that the proposed method can improve accuracy of VIF estimation and pharmacokinetic fitting. In animal study results, pharmacokinetic fitting using corrected VIFs demonstrated changes in perfusion consistent with changes expected after PVE, whereas the perfusion estimates derived by uncorrected VIFs showed no significant changes. The proposed correction method improves accuracy of VIFs and therefore provides more precise pharmacokinetic fitting. This method may be promising in improving the reliability of perfusion quantification. Magn Reson Med 79:3093-3102, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  7. Realistic modelling of the seismic input: Site effects and parametric studies

    International Nuclear Information System (INIS)

    Romanelli, F.; Vaccari, F.; Panza, G.F.

    2002-11-01

    We illustrate the work done in the framework of a large international cooperation, showing the very recent numerical experiments carried out within the framework of the EC project 'Advanced methods for assessing the seismic vulnerability of existing motorway bridges' (VAB) to assess the importance of non-synchronous seismic excitation of long structures. The definition of the seismic input at the Warth bridge site, i.e. the determination of the seismic ground motion due to an earthquake with a given magnitude and epicentral distance from the site, has been done following a theoretical approach. In order to perform an accurate and realistic estimate of site effects and of differential motion it is necessary to make a parametric study that takes into account the complex combination of the source and propagation parameters, in realistic geological structures. The computation of a wide set of time histories and spectral information, corresponding to possible seismotectonic scenarios for different sources and structural models, allows us the construction of damage scenarios that are out of the reach of stochastic models, at a very low cost/benefit ratio. (author)

  8. Complexity, parameter sensitivity and parameter transferability in the modelling of floodplain inundation

    Science.gov (United States)

    Bates, P. D.; Neal, J. C.; Fewtrell, T. J.

    2012-12-01

    In this we paper we consider two related questions. First, we address the issue of how much physical complexity is necessary in a model in order to simulate floodplain inundation to within validation data error. This is achieved through development of a single code/multiple physics hydraulic model (LISFLOOD-FP) where different degrees of complexity can be switched on or off. Different configurations of this code are applied to four benchmark test cases, and compared to the results of a number of industry standard models. Second we address the issue of how parameter sensitivity and transferability change with increasing complexity using numerical experiments with models of different physical and geometric intricacy. Hydraulic models are a good example system with which to address such generic modelling questions as: (1) they have a strong physical basis; (2) there is only one set of equations to solve; (3) they require only topography and boundary conditions as input data; and (4) they typically require only a single free parameter, namely boundary friction. In terms of complexity required we show that for the problem of sub-critical floodplain inundation a number of codes of different dimensionality and resolution can be found to fit uncertain model validation data equally well, and that in this situation Occam's razor emerges as a useful logic to guide model selection. We find also find that model skill usually improves more rapidly with increases in model spatial resolution than increases in physical complexity, and that standard approaches to testing hydraulic models against laboratory data or analytical solutions may fail to identify this important fact. Lastly, we find that in benchmark testing studies significant differences can exist between codes with identical numerical solution techniques as a result of auxiliary choices regarding the specifics of model implementation that are frequently unreported by code developers. As a consequence, making sound

  9. Parameter and input data uncertainty estimation for the assessment of water resources in two sub-basins of the Limpopo River Basin

    Directory of Open Access Journals (Sweden)

    N. Oosthuizen

    2018-05-01

    Full Text Available The demand for water resources is rapidly growing, placing more strain on access to water and its management. In order to appropriately manage water resources, there is a need to accurately quantify available water resources. Unfortunately, the data required for such assessment are frequently far from sufficient in terms of availability and quality, especially in southern Africa. In this study, the uncertainty related to the estimation of water resources of two sub-basins of the Limpopo River Basin – the Mogalakwena in South Africa and the Shashe shared between Botswana and Zimbabwe – is assessed. Input data (and model parameters are significant sources of uncertainty that should be quantified. In southern Africa water use data are among the most unreliable sources of model input data because available databases generally consist of only licensed information and actual use is generally unknown. The study assesses how these uncertainties impact the estimation of surface water resources of the sub-basins. Data on farm reservoirs and irrigated areas from various sources were collected and used to run the model. Many farm dams and large irrigation areas are located in the upper parts of the Mogalakwena sub-basin. Results indicate that water use uncertainty is small. Nevertheless, the medium to low flows are clearly impacted. The simulated mean monthly flows at the outlet of the Mogalakwena sub-basin were between 22.62 and 24.68 Mm3 per month when incorporating only the uncertainty related to the main physical runoff generating parameters. The range of total predictive uncertainty of the model increased to between 22.15 and 24.99 Mm3 when water use data such as small farm and large reservoirs and irrigation were included. For the Shashe sub-basin incorporating only uncertainty related to the main runoff parameters resulted in mean monthly flows between 11.66 and 14.54 Mm3. The range of predictive uncertainty changed to between 11.66 and 17

  10. Use of regional climate model simulations as an input for hydrological models for the Hindukush-Karakorum-Himalaya region

    NARCIS (Netherlands)

    Akhtar, M.; Ahmad, N.; Booij, Martijn J.

    2009-01-01

    The most important climatological inputs required for the calibration and validation of hydrological models are temperature and precipitation that can be derived from observational records or alternatively from regional climate models (RCMs). In this paper, meteorological station observations and

  11. Centrifuge modeling of one-step outflow tests for unsaturated parameter estimations

    Directory of Open Access Journals (Sweden)

    H. Nakajima

    2006-01-01

    Full Text Available Centrifuge modeling of one-step outflow tests were carried out using a 2-m radius geotechnical centrifuge, and the cumulative outflow and transient pore water pressure were measured during the tests at multiple gravity levels. Based on the scaling laws of centrifuge modeling, the measurements generally showed reasonable agreement with prototype data calculated from forward simulations with input parameters determined from standard laboratory tests. The parameter optimizations were examined for three different combinations of input data sets using the test measurements. Within the gravity level examined in this study up to 40g, the optimized unsaturated parameters compared well when accurate pore water pressure measurements were included along with cumulative outflow as input data. With its capability to implement variety of instrumentations under well controlled initial and boundary conditions and to shorten testing time, the centrifuge modeling technique is attractive as an alternative experimental method that provides more freedom to set inverse problem conditions for the parameter estimation.

  12. Centrifuge modeling of one-step outflow tests for unsaturated parameter estimations

    Science.gov (United States)

    Nakajima, H.; Stadler, A. T.

    2006-10-01

    Centrifuge modeling of one-step outflow tests were carried out using a 2-m radius geotechnical centrifuge, and the cumulative outflow and transient pore water pressure were measured during the tests at multiple gravity levels. Based on the scaling laws of centrifuge modeling, the measurements generally showed reasonable agreement with prototype data calculated from forward simulations with input parameters determined from standard laboratory tests. The parameter optimizations were examined for three different combinations of input data sets using the test measurements. Within the gravity level examined in this study up to 40g, the optimized unsaturated parameters compared well when accurate pore water pressure measurements were included along with cumulative outflow as input data. With its capability to implement variety of instrumentations under well controlled initial and boundary conditions and to shorten testing time, the centrifuge modeling technique is attractive as an alternative experimental method that provides more freedom to set inverse problem conditions for the parameter estimation.

  13. Calibration of uncertain inputs to computer models using experimentally measured quantities and the BMARS emulator

    International Nuclear Information System (INIS)

    Stripling, H.F.; McClarren, R.G.; Kuranz, C.C.; Grosskopf, M.J.; Rutter, E.; Torralva, B.R.

    2011-01-01

    We present a method for calibrating the uncertain inputs to a computer model using available experimental data. The goal of the procedure is to produce posterior distributions of the uncertain inputs such that when samples from the posteriors are used as inputs to future model runs, the model is more likely to replicate (or predict) the experimental response. The calibration is performed by sampling the space of the uncertain inputs, using the computer model (or, more likely, an emulator for the computer model) to assign weights to the samples, and applying the weights to produce the posterior distributions and generate predictions of new experiments within confidence bounds. The method is similar to the Markov chain Monte Carlo (MCMC) calibration methods with independent sampling with the exception that we generate samples beforehand and replace the candidate acceptance routine with a weighting scheme. We apply our method to the calibration of a Hyades 2D model of laser energy deposition in beryllium. We employ a Bayesian Multivariate Adaptive Regression Splines (BMARS) emulator as a surrogate for Hyades 2D. We treat a range of uncertainties in our system, including uncertainties in the experimental inputs, experimental measurement error, and systematic experimental timing errors. The results of the calibration are posterior distributions that both agree with intuition and improve the accuracy and decrease the uncertainty in experimental predictions. (author)

  14. Realistic modeling of seismic input for megacities and large urban areas

    International Nuclear Information System (INIS)

    Panza, Giuliano F.; Alvarez, Leonardo; Aoudia, Abdelkrim

    2002-06-01

    The project addressed the problem of pre-disaster orientation: hazard prediction, risk assessment, and hazard mapping, in connection with seismic activity and man-induced vibrations. The definition of realistic seismic input has been obtained from the computation of a wide set of time histories and spectral information, corresponding to possible seismotectonic scenarios for different source and structural models. The innovative modeling technique, that constitutes the common tool to the entire project, takes into account source, propagation and local site effects. This is done using first principles of physics about wave generation and propagation in complex media, and does not require to resort to convolutive approaches, that have been proven to be quite unreliable, mainly when dealing with complex geological structures, the most interesting from the practical point of view. In fact, several techniques that have been proposed to empirically estimate the site effects using observations convolved with theoretically computed signals corresponding to simplified models, supply reliable information about the site response to non-interfering seismic phases. They are not adequate in most of the real cases, when the seismic sequel is formed by several interfering waves. The availability of realistic numerical simulations enables us to reliably estimate the amplification effects even in complex geological structures, exploiting the available geotechnical, lithological, geophysical parameters, topography of the medium, tectonic, historical, palaeoseismological data, and seismotectonic models. The realistic modeling of the ground motion is a very important base of knowledge for the preparation of groundshaking scenarios that represent a valid and economic tool for the seismic microzonation. This knowledge can be very fruitfully used by civil engineers in the design of new seismo-resistant constructions and in the reinforcement of the existing built environment, and, therefore

  15. Using Random Forests to Select Optimal Input Variables for Short-Term Wind Speed Forecasting Models

    Directory of Open Access Journals (Sweden)

    Hui Wang

    2017-10-01

    Full Text Available Achieving relatively high-accuracy short-term wind speed forecasting estimates is a precondition for the construction and grid-connected operation of wind power forecasting systems for wind farms. Currently, most research is focused on the structure of forecasting models and does not consider the selection of input variables, which can have significant impacts on forecasting performance. This paper presents an input variable selection method for wind speed forecasting models. The candidate input variables for various leading periods are selected and random forests (RF is employed to evaluate the importance of all variable as features. The feature subset with the best evaluation performance is selected as the optimal feature set. Then, kernel-based extreme learning machine is constructed to evaluate the performance of input variables selection based on RF. The results of the case study show that by removing the uncorrelated and redundant features, RF effectively extracts the most strongly correlated set of features from the candidate input variables. By finding the optimal feature combination to represent the original information, RF simplifies the structure of the wind speed forecasting model, shortens the training time required, and substantially improves the model’s accuracy and generalization ability, demonstrating that the input variables selected by RF are effective.

  16. Development of the MARS input model for Kori nuclear units 1 transient analyzer

    International Nuclear Information System (INIS)

    Hwang, M.; Kim, K. D.; Lee, S. W.; Lee, Y. J.; Lee, W. J.; Chung, B. D.; Jeong, J. J.

    2004-11-01

    KAERI has been developing the 'NSSS transient analyzer' based on best-estimate codes for Kori Nuclear Units 1 plants. The MARS and RETRAN codes have been used as the best-estimate codes for the NSSS transient analyzer. Among these codes, the MARS code is adopted for realistic analysis of small- and large-break loss-of-coolant accidents, of which break size is greater than 2 inch diameter. So it is necessary to develop the MARS input model for Kori Nuclear Units 1 plants. This report includes the input model (hydrodynamic component and heat structure models) requirements and the calculation note for the MARS input data generation for Kori Nuclear Units 1 plant analyzer (see the Appendix). In order to confirm the validity of the input data, we performed the calculations for a steady state at 100 % power operation condition and a double-ended cold leg break LOCA. The results of the steady-state calculation agree well with the design data. The results of the LOCA calculation seem to be reasonable and consistent with those of other best-estimate calculations. Therefore, the MARS input data can be used as a base input deck for the MARS transient analyzer for Kori Nuclear Units 1

  17. Hydrological model parameter dimensionality is a weak measure of prediction uncertainty (discussion paper)

    NARCIS (Netherlands)

    Pande, S.; Arkesteijn, L.; Savenije, H.H.G.; Bastidas, L.A.

    2014-01-01

    This paper presents evidence that model prediction uncertainty does not necessarily rise with parameter dimensionality (the number of parameters). Here by prediction we mean future simulation of a variable of interest conditioned on certain future values of input variables. We utilize a relationship

  18. Model comparisons and genetic and environmental parameter ...

    African Journals Online (AJOL)

    arc

    Model comparisons and genetic and environmental parameter estimates of growth and the ... breeding strategies and for accurate breeding value estimation. The objectives ...... Sci. 23, 72-76. Van Wyk, J.B., Fair, M.D. & Cloete, S.W.P., 2003.

  19. The rho-parameter in supersymmetric models

    International Nuclear Information System (INIS)

    Lim, C.S.; Inami, T.; Sakai, N.

    1983-10-01

    The electroweak rho-parameter is examined in a general class of supersymmetric models. Formulae are given for one-loop contributions to Δrho from scalar quarks and leptons, gauge-Higgs fermions and an extra doublet of Higgs scalars. Mass differences between members of isodoublet scalar quarks and leptons are constrained to be less than about 200 GeV. (author)

  20. A lumped parameter model of plasma focus

    International Nuclear Information System (INIS)

    Gonzalez, Jose H.; Florido, Pablo C.; Bruzzone, H.; Clausse, Alejandro

    1999-01-01

    A lumped parameter model to estimate neutron emission of a plasma focus (PF) device is developed. The dynamic of the current sheet is calculated using a snowplow model, and the neutron production with the thermal fusion cross section for a deuterium filling gas. The results were contrasted as a function of the filling pressure with experimental measurements of a 3.68 KJ Mather-type PF. (author)

  1. One parameter model potential for noble metals

    International Nuclear Information System (INIS)

    Idrees, M.; Khwaja, F.A.; Razmi, M.S.K.

    1981-08-01

    A phenomenological one parameter model potential which includes s-d hybridization and core-core exchange contributions is proposed for noble metals. A number of interesting properties like liquid metal resistivities, band gaps, thermoelectric powers and ion-ion interaction potentials are calculated for Cu, Ag and Au. The results obtained are in better agreement with experiment than the ones predicted by the other model potentials in the literature. (author)

  2. A sensitivity analysis of a personalized pulse wave propagation model for arteriovenous fistula surgery. Part B: Identification of possible generic model parameters.

    Science.gov (United States)

    Huberts, W; de Jonge, C; van der Linden, W P M; Inda, M A; Passera, K; Tordoir, J H M; van de Vosse, F N; Bosboom, E M H

    2013-06-01

    Decision-making in vascular access surgery for hemodialysis can be supported by a pulse wave propagation model that is able to simulate pressure and flow changes induced by the creation of a vascular access. To personalize such a model, patient-specific input parameters should be chosen. However, the number of input parameters that can be measured in clinical routine is limited. Besides, patient data are compromised with uncertainty. Incomplete and uncertain input data will result in uncertainties in model predictions. In part A, we analyzed how the measurement uncertainty in the input propagates to the model output by means of a sensitivity analysis. Of all 73 input parameters, 16 parameters were identified to be worthwhile to measure more accurately and 51 could be fixed within their measurement uncertainty range, but these latter parameters still needed to be measured. Here, we present a methodology for assessing the model input parameters that can be taken constant and therefore do not need to be measured. In addition, a method to determine the value of this parameter is presented. For the pulse wave propagation model applied to vascular access surgery, six patient-specific datasets were analyzed and it was found that 47 out of 73 parameters can be fixed on a generic value. These model parameters are not important for personalization of the wave propagation model. Furthermore, we were able to determine a generic value for 37 of the 47 fixable model parameters. Copyright © 2012 IPEM. Published by Elsevier Ltd. All rights reserved.

  3. Multi input single output model predictive control of non-linear bio-polymerization process

    Energy Technology Data Exchange (ETDEWEB)

    Arumugasamy, Senthil Kumar; Ahmad, Z. [School of Chemical Engineering, Univerisiti Sains Malaysia, Engineering Campus, Seri Ampangan,14300 Nibong Tebal, Seberang Perai Selatan, Pulau Pinang (Malaysia)

    2015-05-15

    This paper focuses on Multi Input Single Output (MISO) Model Predictive Control of bio-polymerization process in which mechanistic model is developed and linked with the feedforward neural network model to obtain a hybrid model (Mechanistic-FANN) of lipase-catalyzed ring-opening polymerization of ε-caprolactone (ε-CL) for Poly (ε-caprolactone) production. In this research, state space model was used, in which the input to the model were the reactor temperatures and reactor impeller speeds and the output were the molecular weight of polymer (M{sub n}) and polymer polydispersity index. State space model for MISO created using System identification tool box of Matlab™. This state space model is used in MISO MPC. Model predictive control (MPC) has been applied to predict the molecular weight of the biopolymer and consequently control the molecular weight of biopolymer. The result shows that MPC is able to track reference trajectory and give optimum movement of manipulated variable.

  4. A quantitative approach to modeling the information processing of NPP operators under input information overload

    International Nuclear Information System (INIS)

    Kim, Jong Hyun; Seong, Poong Hyun

    2002-01-01

    This paper proposes a quantitative approach to modeling the information processing of NPP operators. The aim of this work is to derive the amount of the information processed during a certain control task under input information overload. We primarily develop the information processing model having multiple stages, which contains information flow. Then the uncertainty of the information is quantified using the Conant's model, a kind of information theory. We also investigate the applicability of this approach to quantifying the information reduction of operators under the input information overload

  5. Parameter optimization for surface flux transport models

    Science.gov (United States)

    Whitbread, T.; Yeates, A. R.; Muñoz-Jaramillo, A.; Petrie, G. J. D.

    2017-11-01

    Accurate prediction of solar activity calls for precise calibration of solar cycle models. Consequently we aim to find optimal parameters for models which describe the physical processes on the solar surface, which in turn act as proxies for what occurs in the interior and provide source terms for coronal models. We use a genetic algorithm to optimize surface flux transport models using National Solar Observatory (NSO) magnetogram data for Solar Cycle 23. This is applied to both a 1D model that inserts new magnetic flux in the form of idealized bipolar magnetic regions, and also to a 2D model that assimilates specific shapes of real active regions. The genetic algorithm searches for parameter sets (meridional flow speed and profile, supergranular diffusivity, initial magnetic field, and radial decay time) that produce the best fit between observed and simulated butterfly diagrams, weighted by a latitude-dependent error structure which reflects uncertainty in observations. Due to the easily adaptable nature of the 2D model, the optimization process is repeated for Cycles 21, 22, and 24 in order to analyse cycle-to-cycle variation of the optimal solution. We find that the ranges and optimal solutions for the various regimes are in reasonable agreement with results from the literature, both theoretical and observational. The optimal meridional flow profiles for each regime are almost entirely within observational bounds determined by magnetic feature tracking, with the 2D model being able to accommodate the mean observed profile more successfully. Differences between models appear to be important in deciding values for the diffusive and decay terms. In like fashion, differences in the behaviours of different solar cycles lead to contrasts in parameters defining the meridional flow and initial field strength.

  6. Regional disaster impact analysis: comparing Input-Output and Computable General Equilibrium models

    NARCIS (Netherlands)

    Koks, E.E.; Carrera, L.; Jonkeren, O.; Aerts, J.C.J.H.; Husby, T.G.; Thissen, M.; Standardi, G.; Mysiak, J.

    2016-01-01

    A variety of models have been applied to assess the economic losses of disasters, of which the most common ones are input-output (IO) and computable general equilibrium (CGE) models. In addition, an increasing number of scholars have developed hybrid approaches: one that combines both or either of

  7. DIMITRI 1.0: Beschrijving en toepassing van een dynamisch input-output model

    NARCIS (Netherlands)

    Wilting HC; Blom WF; Thomas R; Idenburg AM; LAE

    2001-01-01

    DIMITRI, the Dynamic Input-Output Model to study the Impacts of Technology Related Innovations, was developed in the framework of the RIVM Environment and Economy project to answer questions about interrelationships between economy, technology and the environment. DIMITRI, a meso-economic model,

  8. Logistics flows and enterprise input-output models: aggregate and disaggregate analysis

    NARCIS (Netherlands)

    Albino, V.; Yazan, Devrim; Messeni Petruzzelli, A.; Okogbaa, O.G.

    2011-01-01

    In the present paper, we propose the use of enterprise input-output (EIO) models to describe and analyse the logistics flows considering spatial issues and related environmental effects associated with production and transportation processes. In particular, transportation is modelled as a specific

  9. Modeling the short-run effect of fiscal stimuli on GDP : A new semi-closed input-output model

    NARCIS (Netherlands)

    Chen, Quanrun; Dietzenbacher, Erik; Los, Bart; Yang, Cuihong

    In this study, we propose a new semi-closed input-output model, which reconciles input-output analysis with modern consumption theories. It can simulate changes in household consumption behavior when exogenous stimulus policies lead to higher disposable income levels. It is useful for quantifying

  10. Modeling the short-run effect of fiscal stimuli on GDP : A new semi-closed input-output model

    NARCIS (Netherlands)

    Chen, Quanrun; Dietzenbacher, Erik; Los, Bart; Yang, Cuihong

    2016-01-01

    In this study, we propose a new semi-closed input-output model, which reconciles input-output analysis with modern consumption theories. It can simulate changes in household consumption behavior when exogenous stimulus policies lead to higher disposable income levels. It is useful for quantifying

  11. Input modelling of ASSERT-PV V2R8M1 for RUFIC fuel bundle

    Energy Technology Data Exchange (ETDEWEB)

    Park, Joo Hwan; Suk, Ho Chun

    2001-02-01

    This report describes the input modelling for subchannel analysis of CANFLEX-RU (RUFIC) fuel bundle which has been developed for an advanced fuel bundle of CANDU-6 reactor, using ASSERT-PV V2R8M1 code. Execution file of ASSERT-PV V2R8M1 code was recently transferred from AECL under JRDC agreement between KAERI and AECL. SSERT-PV V2R8M1 which is quite different from COBRA-IV-i code has been developed for thermalhydraulic analysis of CANDU-6 fuel channel by subchannel analysis method and updated so that 43-element CANDU fuel geometry can be applied. Hence, ASSERT code can be applied to the subchannel analysis of RUFIC fuel bundle. The present report was prepared for ASSERT input modelling of RUFIC fuel bundle. Since the ASSERT results highly depend on user's input modelling, the calculation results may be quite different among the user's input models. The objective of the present report is the preparation of detail description of the background information for input data and gives credibility of the calculation results.

  12. Input modelling of ASSERT-PV V2R8M1 for RUFIC fuel bundle

    Energy Technology Data Exchange (ETDEWEB)

    Park, Joo Hwan; Suk, Ho Chun

    2001-02-01

    This report describes the input modelling for subchannel analysis of CANFLEX-RU (RUFIC) fuel bundle which has been developed for an advanced fuel bundle of CANDU-6 reactor, using ASSERT-PV V2R8M1 code. Execution file of ASSERT-PV V2R8M1 code was recently transferred from AECL under JRDC agreement between KAERI and AECL. SSERT-PV V2R8M1 which is quite different from COBRA-IV-i code has been developed for thermalhydraulic analysis of CANDU-6 fuel channel by subchannel analysis method and updated so that 43-element CANDU fuel geometry can be applied. Hence, ASSERT code can be applied to the subchannel analysis of RUFIC fuel bundle. The present report was prepared for ASSERT input modelling of RUFIC fuel bundle. Since the ASSERT results highly depend on user's input modelling, the calculation results may be quite different among the user's input models. The objective of the present report is the preparation of detail description of the background information for input data and gives credibility of the calculation results.

  13. Input modelling of ASSERT-PV V2R8M1 for RUFIC fuel bundle

    International Nuclear Information System (INIS)

    Park, Joo Hwan; Suk, Ho Chun

    2001-02-01

    This report describes the input modelling for subchannel analysis of CANFLEX-RU (RUFIC) fuel bundle which has been developed for an advanced fuel bundle of CANDU-6 reactor, using ASSERT-PV V2R8M1 code. Execution file of ASSERT-PV V2R8M1 code was recently transferred from AECL under JRDC agreement between KAERI and AECL. SSERT-PV V2R8M1 which is quite different from COBRA-IV-i code has been developed for thermalhydraulic analysis of CANDU-6 fuel channel by subchannel analysis method and updated so that 43-element CANDU fuel geometry can be applied. Hence, ASSERT code can be applied to the subchannel analysis of RUFIC fuel bundle. The present report was prepared for ASSERT input modelling of RUFIC fuel bundle. Since the ASSERT results highly depend on user's input modelling, the calculation results may be quite different among the user's input models. The objective of the present report is the preparation of detail description of the background information for input data and gives credibility of the calculation results

  14. Development of an Input Model to MELCOR 1.8.5 for the Oskarshamn 3 BWR

    Energy Technology Data Exchange (ETDEWEB)

    Nilsson, Lars [Lentek, Nykoeping (Sweden)

    2006-05-15

    An input model has been prepared to the code MELCOR 1.8.5 for the Swedish Oskarshamn 3 Boiling Water Reactor (O3). This report describes the modelling work and the various files which comprise the input deck. Input data are mainly based on original drawings and system descriptions made available by courtesy of OKG AB. Comparison and check of some primary system data were made against an O3 input file to the SCDAP/RELAP5 code that was used in the SARA project. Useful information was also obtained from the FSAR (Final Safety Analysis Report) for O3 and the SKI report '2003 Stoerningshandboken BWR'. The input models the O3 reactor at its current state with the operating power of 3300 MW{sub th}. One aim with this work is that the MELCOR input could also be used for power upgrading studies. All fuel assemblies are thus assumed to consist of the new Westinghouse-Atom's SVEA-96 Optima2 fuel. MELCOR is a severe accident code developed by Sandia National Laboratory under contract from the U.S. Nuclear Regulatory Commission (NRC). MELCOR is a successor to STCP (Source Term Code Package) and has thus a long evolutionary history. The input described here is adapted to the latest version 1.8.5 available when the work began. It was released the year 2000, but a new version 1.8.6 was distributed recently. Conversion to the new version is recommended. (During the writing of this report still another code version, MELCOR 2.0, has been announced to be released within short.) In version 1.8.5 there is an option to describe the accident progression in the lower plenum and the melt-through of the reactor vessel bottom in more detail by use of the Bottom Head (BH) package developed by Oak Ridge National Laboratory especially for BWRs. This is in addition to the ordinary MELCOR COR package. Since problems arose running with the BH input two versions of the O3 input deck were produced, a NONBH and a BH deck. The BH package is no longer a separate package in the new 1

  15. Multiple-Input Subject-Specific Modeling of Plasma Glucose Concentration for Feedforward Control.

    Science.gov (United States)

    Kotz, Kaylee; Cinar, Ali; Mei, Yong; Roggendorf, Amy; Littlejohn, Elizabeth; Quinn, Laurie; Rollins, Derrick K

    2014-11-26

    The ability to accurately develop subject-specific, input causation models, for blood glucose concentration (BGC) for large input sets can have a significant impact on tightening control for insulin dependent diabetes. More specifically, for Type 1 diabetics (T1Ds), it can lead to an effective artificial pancreas (i.e., an automatic control system that delivers exogenous insulin) under extreme changes in critical disturbances. These disturbances include food consumption, activity variations, and physiological stress changes. Thus, this paper presents a free-living, outpatient, multiple-input, modeling method for BGC with strong causation attributes that is stable and guards against overfitting to provide an effective modeling approach for feedforward control (FFC). This approach is a Wiener block-oriented methodology, which has unique attributes for meeting critical requirements for effective, long-term, FFC.

  16. A Model to Determinate the Influence of Probability Density Functions (PDFs of Input Quantities in Measurements

    Directory of Open Access Journals (Sweden)

    Jesús Caja

    2016-06-01

    Full Text Available A method for analysing the effect of different hypotheses about the type of the input quantities distributions of a measurement model is presented here so that the developed algorithms can be simplified. As an example, a model of indirect measurements with optical coordinate measurement machine was employed to evaluate these different hypotheses. As a result of the different experiments, the assumption that the different variables of the model can be modelled as normal distributions is proved.

  17. Sensitivity of a complex urban air quality model to input data

    International Nuclear Information System (INIS)

    Seigneur, C.; Tesche, T.W.; Roth, P.M.; Reid, L.E.

    1981-01-01

    In recent years, urban-scale photochemical simulation models have been developed that are of practical value for predicting air quality and analyzing the impacts of alternative emission control strategies. Although the performance of some urban-scale models appears to be acceptable, the demanding data requirements of such models have prompted concern about the costs of data acquistion, which might be high enough to preclude use of photochemical models for many urban areas. To explore this issue, sensitivity studies with the Systems Applications, Inc. (SAI) Airshed Model, a grid-based time-dependent photochemical dispersion model, have been carried out for the Los Angeles basin. Reductions in the amount and quality of meteorological, air quality and emission data, as well as modifications of the model gridded structure, have been analyzed. This paper presents and interprets the results of 22 sensitivity studies. A sensitivity-uncertainty index is defined to rank input data needs for an urban photochemical model. The index takes into account the sensitivity of model predictions to the amount of input data, the costs of data acquistion, and the uncertainties in the air quality model input variables. The results of these sensitivity studies are considered in light of the limitations of specific attributes of the Los Angeles basin and of the modeling conditions (e.g., choice of wind model, length of simulation time). The extent to which the results may be applied to other urban areas also is discussed

  18. Constant-parameter capture-recapture models

    Science.gov (United States)

    Brownie, C.; Hines, J.E.; Nichols, J.D.

    1986-01-01

    Jolly (1982, Biometrics 38, 301-321) presented modifications of the Jolly-Seber model for capture-recapture data, which assume constant survival and/or capture rates. Where appropriate, because of the reduced number of parameters, these models lead to more efficient estimators than the Jolly-Seber model. The tests to compare models given by Jolly do not make complete use of the data, and we present here the appropriate modifications, and also indicate how to carry out goodness-of-fit tests which utilize individual capture history information. We also describe analogous models for the case where young and adult animals are tagged. The availability of computer programs to perform the analysis is noted, and examples are given using output from these programs.

  19. Parameter and input data uncertainty estimation for the assessment of water resources in two sub-basins of the Limpopo River Basin

    CSIR Research Space (South Africa)

    Oosthuizen, Nadia

    2017-07-01

    Full Text Available frica Parameter and input data uncertainty estimation for the assessment of water resources in two sub-basins of the Limpopo River Basin Nadia Oosthuizen1,2, Denis A. Hughes2, Evison Kapangaziwiri1, Jean-Marc Mwenge Kahinda1, and Vuyelwa Mvandaba1,2 1...

  20. Recurrent network models for perfect temporal integration of fluctuating correlated inputs.

    Directory of Open Access Journals (Sweden)

    Hiroshi Okamoto

    2009-06-01

    Full Text Available Temporal integration of input is essential to the accumulation of information in various cognitive and behavioral processes, and gradually increasing neuronal activity, typically occurring within a range of seconds, is considered to reflect such computation by the brain. Some psychological evidence suggests that temporal integration by the brain is nearly perfect, that is, the integration is non-leaky, and the output of a neural integrator is accurately proportional to the strength of input. Neural mechanisms of perfect temporal integration, however, remain largely unknown. Here, we propose a recurrent network model of cortical neurons that perfectly integrates partially correlated, irregular input spike trains. We demonstrate that the rate of this temporal integration changes proportionately to the probability of spike coincidences in synaptic inputs. We analytically prove that this highly accurate integration of synaptic inputs emerges from integration of the variance of the fluctuating synaptic inputs, when their mean component is kept constant. Highly irregular neuronal firing and spike coincidences are the major features of cortical activity, but they have been separately addressed so far. Our results suggest that the efficient protocol of information integration by cortical networks essentially requires both features and hence is heterotic.

  1. Hydrological model parameter dimensionality is a weak measure of prediction uncertainty

    Science.gov (United States)

    Pande, S.; Arkesteijn, L.; Savenije, H.; Bastidas, L. A.

    2015-04-01

    This paper shows that instability of hydrological system representation in response to different pieces of information and associated prediction uncertainty is a function of model complexity. After demonstrating the connection between unstable model representation and model complexity, complexity is analyzed in a step by step manner. This is done measuring differences between simulations of a model under different realizations of input forcings. Algorithms are then suggested to estimate model complexity. Model complexities of the two model structures, SAC-SMA (Sacramento Soil Moisture Accounting) and its simplified version SIXPAR (Six Parameter Model), are computed on resampled input data sets from basins that span across the continental US. The model complexities for SIXPAR are estimated for various parameter ranges. It is shown that complexity of SIXPAR increases with lower storage capacity and/or higher recession coefficients. Thus it is argued that a conceptually simple model structure, such as SIXPAR, can be more complex than an intuitively more complex model structure, such as SAC-SMA for certain parameter ranges. We therefore contend that magnitudes of feasible model parameters influence the complexity of the model selection problem just as parameter dimensionality (number of parameters) does and that parameter dimensionality is an incomplete indicator of stability of hydrological model selection and prediction problems.

  2. Joint state and parameter estimation for a class of cascade systems: Application to a hemodynamic model

    KAUST Repository

    Zayane, Chadia

    2014-06-01

    In this paper, we address a special case of state and parameter estimation, where the system can be put on a cascade form allowing to estimate the state components and the set of unknown parameters separately. Inspired by the nonlinear Balloon hemodynamic model for functional Magnetic Resonance Imaging problem, we propose a hierarchical approach. The system is divided into two subsystems in cascade. The state and input are first estimated from a noisy measured signal using an adaptive observer. The obtained input is then used to estimate the parameters of a linear system using the modulating functions method. Some numerical results are presented to illustrate the efficiency of the proposed method.

  3. COGEDIF - automatic TORT and DORT input generation from MORSE combinatorial geometry models

    International Nuclear Information System (INIS)

    Castelli, R.A.; Barnett, D.A.

    1992-01-01

    COGEDIF is an interactive utility which was developed to automate the preparation of two and three dimensional geometrical inputs for the ORNL-TORT and DORT discrete ordinates programs from complex three dimensional models described using the MORSE combinatorial geometry input description. The program creates either continuous or disjoint mesh input based upon the intersections of user defined meshing planes and the MORSE body definitions. The composition overlay of the combinatorial geometry is used to create the composition mapping of the discretized geometry based upon the composition found at the centroid of each of the mesh cells. This program simplifies the process of using discrete orthogonal mesh cells to represent non-orthogonal geometries in large models which require mesh sizes of the order of a million cells or more. The program was specifically written to take advantage of the new TORT disjoint mesh option which was developed at ORNL

  4. Modelling tourists arrival using time varying parameter

    Science.gov (United States)

    Suciptawati, P.; Sukarsa, K. G.; Kencana, Eka N.

    2017-06-01

    The importance of tourism and its related sectors to support economic development and poverty reduction in many countries increase researchers’ attentions to study and model tourists’ arrival. This work is aimed to demonstrate time varying parameter (TVP) technique to model the arrival of Korean’s tourists to Bali. The number of Korean tourists whom visiting Bali for period January 2010 to December 2015 were used to model the number of Korean’s tourists to Bali (KOR) as dependent variable. The predictors are the exchange rate of Won to IDR (WON), the inflation rate in Korea (INFKR), and the inflation rate in Indonesia (INFID). Observing tourists visit to Bali tend to fluctuate by their nationality, then the model was built by applying TVP and its parameters were approximated using Kalman Filter algorithm. The results showed all of predictor variables (WON, INFKR, INFID) significantly affect KOR. For in-sample and out-of-sample forecast with ARIMA’s forecasted values for the predictors, TVP model gave mean absolute percentage error (MAPE) as much as 11.24 percent and 12.86 percent, respectively.

  5. Input parameters and scenarios, including economic inputs

    DEFF Research Database (Denmark)

    Boklund, Anette; Hisham Beshara Halasa, Tariq

    2012-01-01

    scenarios, we excluded hobby-type farms1 In the vaccination scenarios, herds within the vaccination zone were simulated to be vaccinated 14 days after detection of the first herd or when 10, 20, 30 or 50 herds were infected. All herds within the zones were simulated to be vaccinated. We used vaccination...... zones of either a 1, 2, 3 or 5 km. In some scenarios, hobby herds were not vaccinated. In one scenario, no sheep were vaccinated, and in another scenario no swine were vaccinated. from depopulation in zones. The resources for depopulation were estimated to 4,800 swine and 2,000 ruminants a day...

  6. Input-output and energy demand models for Ireland: Data collection report. Part 1: EXPLOR

    Energy Technology Data Exchange (ETDEWEB)

    Henry, E W; Scott, S

    1981-01-01

    Data are presented in support of EXPLOR, an input-output economic model for Ireland. The data follow the listing of exogenous data-sets used by Batelle in document X11/515/77. Data are given for 1974, 1980, and 1985 and consist of household consumption, final demand-production, and commodity prices. (ACR)

  7. Comparison of plasma input and reference tissue models for analysing [(11)C]flumazenil studies

    NARCIS (Netherlands)

    Klumpers, Ursula M. H.; Veltman, Dick J.; Boellaard, Ronald; Comans, Emile F.; Zuketto, Cassandra; Yaqub, Maqsood; Mourik, Jurgen E. M.; Lubberink, Mark; Hoogendijk, Witte J. G.; Lammertsma, Adriaan A.

    2008-01-01

    A single-tissue compartment model with plasma input is the established method for analysing [(11)C]flumazenil ([(11)C]FMZ) studies. However, arterial cannulation and measurement of metabolites are time-consuming. Therefore, a reference tissue approach is appealing, but this approach has not been

  8. Input-Output model for waste management plan for Nigeria | Njoku ...

    African Journals Online (AJOL)

    An Input-Output Model for Waste Management Plan has been developed for Nigeria based on Leontief concept and life cycle analysis. Waste was considered as source of pollution, loss of resources, and emission of green house gasses from bio-chemical treatment and decomposition, with negative impact on the ...

  9. The economic impact of multifunctional agriculture in Dutch regions: An input-output model

    NARCIS (Netherlands)

    Heringa, P.W.; Heide, van der C.M.; Heijman, W.J.M.

    2013-01-01

    Multifunctional agriculture is a broad concept lacking a precise definition. Moreover, little is known about the societal importance of multifunctional agriculture. This paper is an empirical attempt to fill this gap. To this end, an input-output model was constructed for multifunctional agriculture

  10. The economic impact of multifunctional agriculture in The Netherlands: A regional input-output model

    NARCIS (Netherlands)

    Heringa, P.W.; Heide, van der C.M.; Heijman, W.J.M.

    2012-01-01

    Multifunctional agriculture is a broad concept lacking a precise and uniform definition. Moreover, little is known about the societal importance of multifunctional agriculture. This paper is an empirical attempt to fill this gap. To this end, an input-output model is constructed for multifunctional

  11. Linear and quadratic models of point process systems: contributions of patterned input to output.

    Science.gov (United States)

    Lindsay, K A; Rosenberg, J R

    2012-08-01

    In the 1880's Volterra characterised a nonlinear system using a functional series connecting continuous input and continuous output. Norbert Wiener, in the 1940's, circumvented problems associated with the application of Volterra series to physical problems by deriving from it a new series of terms that are mutually uncorrelated with respect to Gaussian processes. Subsequently, Brillinger, in the 1970's, introduced a point-process analogue of Volterra's series connecting point-process inputs to the instantaneous rate of point-process output. We derive here a new series from this analogue in which its terms are mutually uncorrelated with respect to Poisson processes. This new series expresses how patterned input in a spike train, represented by third-order cross-cumulants, is converted into the instantaneous rate of an output point-process. Given experimental records of suitable duration, the contribution of arbitrary patterned input to an output process can, in principle, be determined. Solutions for linear and quadratic point-process models with one and two inputs and a single output are investigated. Our theoretical results are applied to isolated muscle spindle data in which the spike trains from the primary and secondary endings from the same muscle spindle are recorded in response to stimulation of one and then two static fusimotor axons in the absence and presence of a random length change imposed on the parent muscle. For a fixed mean rate of input spikes, the analysis of the experimental data makes explicit which patterns of two input spikes contribute to an output spike. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Design, Fabrication, and Modeling of a Novel Dual-Axis Control Input PZT Gyroscope.

    Science.gov (United States)

    Chang, Cheng-Yang; Chen, Tsung-Lin

    2017-10-31

    Conventional gyroscopes are equipped with a single-axis control input, limiting their performance. Although researchers have proposed control algorithms with dual-axis control inputs to improve gyroscope performance, most have verified the control algorithms through numerical simulations because they lacked practical devices with dual-axis control inputs. The aim of this study was to design a piezoelectric gyroscope equipped with a dual-axis control input so that researchers may experimentally verify those control algorithms in future. Designing a piezoelectric gyroscope with a dual-axis control input is more difficult than designing a conventional gyroscope because the control input must be effective over a broad frequency range to compensate for imperfections, and the multiple mode shapes in flexural deformations complicate the relation between flexural deformation and the proof mass position. This study solved these problems by using a lead zirconate titanate (PZT) material, introducing additional electrodes for shielding, developing an optimal electrode pattern, and performing calibrations of undesired couplings. The results indicated that the fabricated device could be operated at 5.5±1 kHz to perform dual-axis actuations and position measurements. The calibration of the fabricated device was completed by system identifications of a new dynamic model including gyroscopic motions, electromechanical coupling, mechanical coupling, electrostatic coupling, and capacitive output impedance. Finally, without the assistance of control algorithms, the "open loop sensitivity" of the fabricated gyroscope was 1.82 μV/deg/s with a nonlinearity of 9.5% full-scale output. This sensitivity is comparable with those of other PZT gyroscopes with single-axis control inputs.

  13. Design, Fabrication, and Modeling of a Novel Dual-Axis Control Input PZT Gyroscope

    Directory of Open Access Journals (Sweden)

    Cheng-Yang Chang

    2017-10-01

    Full Text Available Conventional gyroscopes are equipped with a single-axis control input, limiting their performance. Although researchers have proposed control algorithms with dual-axis control inputs to improve gyroscope performance, most have verified the control algorithms through numerical simulations because they lacked practical devices with dual-axis control inputs. The aim of this study was to design a piezoelectric gyroscope equipped with a dual-axis control input so that researchers may experimentally verify those control algorithms in future. Designing a piezoelectric gyroscope with a dual-axis control input is more difficult than designing a conventional gyroscope because the control input must be effective over a broad frequency range to compensate for imperfections, and the multiple mode shapes in flexural deformations complicate the relation between flexural deformation and the proof mass position. This study solved these problems by using a lead zirconate titanate (PZT material, introducing additional electrodes for shielding, developing an optimal electrode pattern, and performing calibrations of undesired couplings. The results indicated that the fabricated device could be operated at 5.5±1 kHz to perform dual-axis actuations and position measurements. The calibration of the fabricated device was completed by system identifications of a new dynamic model including gyroscopic motions, electromechanical coupling, mechanical coupling, electrostatic coupling, and capacitive output impedance. Finally, without the assistance of control algorithms, the “open loop sensitivity” of the fabricated gyroscope was 1.82 μV/deg/s with a nonlinearity of 9.5% full-scale output. This sensitivity is comparable with those of other PZT gyroscopes with single-axis control inputs.

  14. The lumped parameter model for fuel pins

    Energy Technology Data Exchange (ETDEWEB)

    Liu, W S [Ontario Hydro, Toronto, ON (Canada)

    1996-12-31

    The use of a lumped fuel-pin model in a thermal-hydraulic code is advantageous because of computational simplicity and efficiency. The model uses an averaging approach over the fuel cross section and makes some simplifying assumptions to describe the transient equations for the averaged fuel, fuel centerline and sheath temperatures. It is shown that by introducing a factor in the effective fuel conductivity, the analytical solution of the mean fuel temperature can be modified to simulate the effects of the flux depression in the heat generation rate and the variation in fuel thermal conductivity. The simplified analytical method used in the transient equation is presented. The accuracy of the lumped parameter model has been compared with the results from the finite difference method. (author). 4 refs., 2 tabs., 4 figs.

  15. Input-constrained model predictive control via the alternating direction method of multipliers

    DEFF Research Database (Denmark)

    Sokoler, Leo Emil; Frison, Gianluca; Andersen, Martin S.

    2014-01-01

    This paper presents an algorithm, based on the alternating direction method of multipliers, for the convex optimal control problem arising in input-constrained model predictive control. We develop an efficient implementation of the algorithm for the extended linear quadratic control problem (LQCP......) with input and input-rate limits. The algorithm alternates between solving an extended LQCP and a highly structured quadratic program. These quadratic programs are solved using a Riccati iteration procedure, and a structure-exploiting interior-point method, respectively. The computational cost per iteration...... is quadratic in the dimensions of the controlled system, and linear in the length of the prediction horizon. Simulations show that the approach proposed in this paper is more than an order of magnitude faster than several state-of-the-art quadratic programming algorithms, and that the difference in computation...

  16. Development of the MARS input model for Ulchin 1/2 transient analyzer

    International Nuclear Information System (INIS)

    Jeong, J. J.; Kim, K. D.; Lee, S. W.; Lee, Y. J.; Chung, B. D.; Hwang, M.

    2003-03-01

    KAERI has been developing the NSSS transient analyzer based on best-estimate codes for Ulchin 1/2 plants. The MARS and RETRAN code are used as the best-estimate codes for the NSSS transient analyzer. Among the two codes, the MARS code is to be used for realistic analysis of small- and large-break loss-of-coolant accidents, of which break size is greater than 2 inch diameter. This report includes the input model requirements and the calculation note for the Ulchin 1/2 MARS input data generation (see the Appendix). In order to confirm the validity of the input data, we performed the calculations for a steady state at 100 % power operation condition and a double-ended cold leg break LOCA. The results of the steady-state calculation agree well with the design data. The results of the LOCA calculation seem to be reasonable and consistent with those of other best-estimate calculations. Therefore, the MARS input data can be used as a base input deck for the MARS transient analyzer for Ulchin 1/2

  17. Development of the MARS input model for Ulchin 3/4 transient analyzer

    International Nuclear Information System (INIS)

    Jeong, J. J.; Kim, K. D.; Lee, S. W.; Lee, Y. J.; Lee, W. J.; Chung, B. D.; Hwang, M. G.

    2003-12-01

    KAERI has been developing the NSSS transient analyzer based on best-estimate codes.The MARS and RETRAN code are adopted as the best-estimate codes for the NSSS transient analyzer. Among these two codes, the MARS code is to be used for realistic analysis of small- and large-break loss-of-coolant accidents, of which break size is greater than 2 inch diameter. This report includes the MARS input model requirements and the calculation note for the MARS input data generation (see the Appendix) for Ulchin 3/4 plant analyzer. In order to confirm the validity of the input data, we performed the calculations for a steady state at 100 % power operation condition and a double-ended cold leg break LOCA. The results of the steady-state calculation agree well with the design data. The results of the LOCA calculation seem to be reasonable and consistent with those of other best-estimate calculations. Therefore, the MARS input data can be used as a base input deck for the MARS transient analyzer for Ulchin 3/4

  18. Artificial neural network modelling of biological oxygen demand in rivers at the national level with input selection based on Monte Carlo simulations.

    Science.gov (United States)

    Šiljić, Aleksandra; Antanasijević, Davor; Perić-Grujić, Aleksandra; Ristić, Mirjana; Pocajt, Viktor

    2015-03-01

    Biological oxygen demand (BOD) is the most significant water quality parameter and indicates water pollution with respect to the present biodegradable organic matter content. European countries are therefore obliged to report annual BOD values to Eurostat; however, BOD data at the national level is only available for 28 of 35 listed European countries for the period prior to 2008, among which 46% of data is missing. This paper describes the development of an artificial neural network model for the forecasting of annual BOD values at the national level, using widely available sustainability and economical/industrial parameters as inputs. The initial general regression neural network (GRNN) model was trained, validated and tested utilizing 20 inputs. The number of inputs was reduced to 15 using the Monte Carlo simulation technique as the input selection method. The best results were achieved with the GRNN model utilizing 25% less inputs than the initial model and a comparison with a multiple linear regression model trained and tested using the same input variables using multiple statistical performance indicators confirmed the advantage of the GRNN model. Sensitivity analysis has shown that inputs with the greatest effect on the GRNN model were (in descending order) precipitation, rural population with access to improved water sources, treatment capacity of wastewater treatment plants (urban) and treatment of municipal waste, with the last two having an equal effect. Finally, it was concluded that the developed GRNN model can be useful as a tool to support the decision-making process on sustainable development at a regional, national and international level.

  19. ANALYSIS OF THE BANDUNG CHANGES EXCELLENT POTENTIAL THROUGH INPUT-OUTPUT MODEL USING INDEX LE MASNE

    Directory of Open Access Journals (Sweden)

    Teti Sofia Yanti

    2017-03-01

    Full Text Available Input-Output Table is arranged to present an overview of the interrelationships and interdependence between units of activity (sector production in the whole economy. Therefore the input-output models are complete and comprehensive analytical tool. The usefulness of input-output tables is an analysis of the economic structure of the national/regional level which covers the structure of production and value-added (GDP of each sector. For the purposes of planning and evaluation of the outcomes of development that is comprehensive both national and smaller scale (district/city, a model for regional development planning approach can use the model input-output analysis. Analysis of Bandung Economic Structure did use Le Masne index, by comparing the coefficients of the technology in 2003 and 2008, of which nearly 50% change. The trade sector has grown very conspicuous than other areas, followed by the services of road transport and air transport services, the development priorities and investment Bandung should be directed to these areas, this is due to these areas can be thrust and be power attraction for the growth of other areas. The areas that experienced the highest decrease was Industrial Chemicals and Goods from Chemistry, followed by Oil and Refinery Industry Textile Industry Except For Garment.

  20. Simulation model structure numerically robust to changes in magnitude and combination of input and output variables

    DEFF Research Database (Denmark)

    Rasmussen, Bjarne D.; Jakobsen, Arne

    1999-01-01

    Mathematical models of refrigeration systems are often based on a coupling of component models forming a “closed loop” type of system model. In these models the coupling structure of the component models represents the actual flow path of refrigerant in the system. Very often numerical...... instabilities prevent the practical use of such a system model for more than one input/output combination and for other magnitudes of refrigerating capacities.A higher numerical robustness of system models can be achieved by making a model for the refrigeration cycle the core of the system model and by using...... variables with narrow definition intervals for the exchange of information between the cycle model and the component models.The advantages of the cycle-oriented method are illustrated by an example showing the refrigeration cycle similarities between two very different refrigeration systems....

  1. Sensitivity of numerical dispersion modeling to explosive source parameters

    International Nuclear Information System (INIS)

    Baskett, R.L.; Cederwall, R.T.

    1991-01-01

    The calculation of downwind concentrations from non-traditional sources, such as explosions, provides unique challenges to dispersion models. The US Department of Energy has assigned the Atmospheric Release Advisory Capability (ARAC) at the Lawrence Livermore National Laboratory (LLNL) the task of estimating the impact of accidental radiological releases to the atmosphere anywhere in the world. Our experience includes responses to over 25 incidents in the past 16 years, and about 150 exercises a year. Examples of responses to explosive accidents include the 1980 Titan 2 missile fuel explosion near Damascus, Arkansas and the hydrogen gas explosion in the 1986 Chernobyl nuclear power plant accident. Based on judgment and experience, we frequently estimate the source geometry and the amount of toxic material aerosolized as well as its particle size distribution. To expedite our real-time response, we developed some automated algorithms and default assumptions about several potential sources. It is useful to know how well these algorithms perform against real-world measurements and how sensitive our dispersion model is to the potential range of input values. In this paper we present the algorithms we use to simulate explosive events, compare these methods with limited field data measurements, and analyze their sensitivity to input parameters. 14 refs., 7 figs., 2 tabs

  2. Modeling of Parameters of Subcritical Assembly SAD

    CERN Document Server

    Petrochenkov, S; Puzynin, I

    2005-01-01

    The accepted conceptual design of the experimental Subcritical Assembly in Dubna (SAD) is based on the MOX core with a nominal unit capacity of 25 kW (thermal). This corresponds to the multiplication coefficient $k_{\\rm eff} =0.95$ and accelerator beam power 1 kW. A subcritical assembly driven with the existing 660 MeV proton accelerator at the Joint Institute for Nuclear Research has been modelled in order to make choice of the optimal parameters for the future experiments. The Monte Carlo method was used to simulate neutron spectra, energy deposition and doses calculations. Some of the calculation results are presented in the paper.

  3. Parameter estimation in fractional diffusion models

    CERN Document Server

    Kubilius, Kęstutis; Ralchenko, Kostiantyn

    2017-01-01

    This book is devoted to parameter estimation in diffusion models involving fractional Brownian motion and related processes. For many years now, standard Brownian motion has been (and still remains) a popular model of randomness used to investigate processes in the natural sciences, financial markets, and the economy. The substantial limitation in the use of stochastic diffusion models with Brownian motion is due to the fact that the motion has independent increments, and, therefore, the random noise it generates is “white,” i.e., uncorrelated. However, many processes in the natural sciences, computer networks and financial markets have long-term or short-term dependences, i.e., the correlations of random noise in these processes are non-zero, and slowly or rapidly decrease with time. In particular, models of financial markets demonstrate various kinds of memory and usually this memory is modeled by fractional Brownian diffusion. Therefore, the book constructs diffusion models with memory and provides s...

  4. Insight into model mechanisms through automatic parameter fitting: a new methodological framework for model development.

    Science.gov (United States)

    Tøndel, Kristin; Niederer, Steven A; Land, Sander; Smith, Nicolas P

    2014-05-20

    Striking a balance between the degree of model complexity and parameter identifiability, while still producing biologically feasible simulations using modelling is a major challenge in computational biology. While these two elements of model development are closely coupled, parameter fitting from measured data and analysis of model mechanisms have traditionally been performed separately and sequentially. This process produces potential mismatches between model and data complexities that can compromise the ability of computational frameworks to reveal mechanistic insights or predict new behaviour. In this study we address this issue by presenting a generic framework for combined model parameterisation, comparison of model alternatives and analysis of model mechanisms. The presented methodology is based on a combination of multivariate metamodelling (statistical approximation of the input-output relationships of deterministic models) and a systematic zooming into biologically feasible regions of the parameter space by iterative generation of new experimental designs and look-up of simulations in the proximity of the measured data. The parameter fitting pipeline includes an implicit sensitivity analysis and analysis of parameter identifiability, making it suitable for testing hypotheses for model reduction. Using this approach, under-constrained model parameters, as well as the coupling between parameters within the model are identified. The methodology is demonstrated by refitting the parameters of a published model of cardiac cellular mechanics using a combination of measured data and synthetic data from an alternative model of the same system. Using this approach, reduced models with simplified expressions for the tropomyosin/crossbridge kinetics were found by identification of model components that can be omitted without affecting the fit to the parameterising data. Our analysis revealed that model parameters could be constrained to a standard deviation of on

  5. Dynamics of a Stage Structured Pest Control Model in a Polluted Environment with Pulse Pollution Input

    OpenAIRE

    Liu, Bing; Xu, Ling; Kang, Baolin

    2013-01-01

    By using pollution model and impulsive delay differential equation, we formulate a pest control model with stage structure for natural enemy in a polluted environment by introducing a constant periodic pollutant input and killing pest at different fixed moments and investigate the dynamics of such a system. We assume only that the natural enemies are affected by pollution, and we choose the method to kill the pest without harming natural enemies. Sufficient conditions for global attractivity ...

  6. CONSTRUCTION OF A DYNAMIC INPUT-OUTPUT MODEL WITH A HUMAN CAPITAL BLOCK

    Directory of Open Access Journals (Sweden)

    Baranov A. O.

    2017-03-01

    Full Text Available The accumulation of human capital is an important factor of economic growth. It seems to be useful to include «human capital» as a factor of a macroeconomic model, as it helps to take into account the quality differentiation of the workforce. Most of the models usually distinguish labor force by the levels of education, while some of the factors remain unaccounted. Among them are health status and culture development level, which influence productivity level as well as gross product reproduction. Inclusion of the human capital block to the interindustry model can help to make it more reliable for economic development forecasting. The article presents a mathematical description of the extended dynamic input-output model (DIOM with a human capital block. The extended DIOM is based on the Input-Output Model from The KAMIN system (the System of Integrated Analyses of Interindustrial Information developed at the Institute of Economics and Industrial Engineering of the Siberian Branch of the Academy of Sciences of the Russian Federation and at the Novosibirsk State University. The extended input-output model can be used to analyze and forecast development of Russian economy.

  7. A stock-flow consistent input-output model with applications to energy price shocks, interest rates, and heat emissions

    Science.gov (United States)

    Berg, Matthew; Hartley, Brian; Richters, Oliver

    2015-01-01

    By synthesizing stock-flow consistent models, input-output models, and aspects of ecological macroeconomics, a method is developed to simultaneously model monetary flows through the financial system, flows of produced goods and services through the real economy, and flows of physical materials through the natural environment. This paper highlights the linkages between the physical environment and the economic system by emphasizing the role of the energy industry. A conceptual model is developed in general form with an arbitrary number of sectors, while emphasizing connections with the agent-based, econophysics, and complexity economics literature. First, we use the model to challenge claims that 0% interest rates are a necessary condition for a stationary economy and conduct a stability analysis within the parameter space of interest rates and consumption parameters of an economy in stock-flow equilibrium. Second, we analyze the role of energy price shocks in contributing to recessions, incorporating several propagation and amplification mechanisms. Third, implied heat emissions from energy conversion and the effect of anthropogenic heat flux on climate change are considered in light of a minimal single-layer atmosphere climate model, although the model is only implicitly, not explicitly, linked to the economic model.

  8. Moose models with vanishing S parameter

    International Nuclear Information System (INIS)

    Casalbuoni, R.; De Curtis, S.; Dominici, D.

    2004-01-01

    In the linear moose framework, which naturally emerges in deconstruction models, we show that there is a unique solution for the vanishing of the S parameter at the lowest order in the weak interactions. We consider an effective gauge theory based on K SU(2) gauge groups, K+1 chiral fields, and electroweak groups SU(2) L and U(1) Y at the ends of the chain of the moose. S vanishes when a link in the moose chain is cut. As a consequence one has to introduce a dynamical nonlocal field connecting the two ends of the moose. Then the model acquires an additional custodial symmetry which protects this result. We examine also the possibility of a strong suppression of S through an exponential behavior of the link couplings as suggested by the Randall Sundrum metric

  9. Empirically modelled Pc3 activity based on solar wind parameters

    Directory of Open Access Journals (Sweden)

    B. Heilig

    2010-09-01

    Full Text Available It is known that under certain solar wind (SW/interplanetary magnetic field (IMF conditions (e.g. high SW speed, low cone angle the occurrence of ground-level Pc3–4 pulsations is more likely. In this paper we demonstrate that in the event of anomalously low SW particle density, Pc3 activity is extremely low regardless of otherwise favourable SW speed and cone angle. We re-investigate the SW control of Pc3 pulsation activity through a statistical analysis and two empirical models with emphasis on the influence of SW density on Pc3 activity. We utilise SW and IMF measurements from the OMNI project and ground-based magnetometer measurements from the MM100 array to relate SW and IMF measurements to the occurrence of Pc3 activity. Multiple linear regression and artificial neural network models are used in iterative processes in order to identify sets of SW-based input parameters, which optimally reproduce a set of Pc3 activity data. The inclusion of SW density in the parameter set significantly improves the models. Not only the density itself, but other density related parameters, such as the dynamic pressure of the SW, or the standoff distance of the magnetopause work equally well in the model. The disappearance of Pc3s during low-density events can have at least four reasons according to the existing upstream wave theory: 1. Pausing the ion-cyclotron resonance that generates the upstream ultra low frequency waves in the absence of protons, 2. Weakening of the bow shock that implies less efficient reflection, 3. The SW becomes sub-Alfvénic and hence it is not able to sweep back the waves propagating upstream with the Alfvén-speed, and 4. The increase of the standoff distance of the magnetopause (and of the bow shock. Although the models cannot account for the lack of Pc3s during intervals when the SW density is extremely low, the resulting sets of optimal model inputs support the generation of mid latitude Pc3 activity predominantly through

  10. High Resolution Modeling of the Thermospheric Response to Energy Inputs During the RENU-2 Rocket Flight

    Science.gov (United States)

    Walterscheid, R. L.; Brinkman, D. G.; Clemmons, J. H.; Hecht, J. H.; Lessard, M.; Fritz, B.; Hysell, D. L.; Clausen, L. B. N.; Moen, J.; Oksavik, K.; Yeoman, T. K.

    2017-12-01

    The Earth's magnetospheric cusp provides direct access of energetic particles to the thermosphere. These particles produce ionization and kinetic (particle) heating of the atmosphere. The increased ionization coupled with enhanced electric fields in the cusp produces increased Joule heating and ion drag forcing. These energy inputs cause large wind and temperature changes in the cusp region. The Rocket Experiment for Neutral Upwelling -2 (RENU-2) launched from Andoya, Norway at 0745UT on 13 December 2015 into the ionosphere-thermosphere beneath the magnetic cusp. It made measurements of the energy inputs (e.g., precipitating particles, electric fields) and the thermospheric response to these energy inputs (e.g., neutral density and temperature, neutral winds). Complementary ground based measurements were made. In this study, we use a high resolution two-dimensional time-dependent non hydrostatic nonlinear dynamical model driven by rocket and ground based measurements of the energy inputs to simulate the thermospheric response during the RENU-2 flight. Model simulations will be compared to the corresponding measurements of the thermosphere to see what they reveal about thermospheric structure and the nature of magnetosphere-ionosphere-thermosphere coupling in the cusp. Acknowledgements: This material is based upon work supported by the National Aeronautics and Space Administration under Grants: NNX16AH46G and NNX13AJ93G. This research was also supported by The Aerospace Corporation's Technical Investment program

  11. Input vs. Output Taxation—A DSGE Approach to Modelling Resource Decoupling

    Directory of Open Access Journals (Sweden)

    Marek Antosiewicz

    2016-04-01

    Full Text Available Environmental taxes constitute a crucial instrument aimed at reducing resource use through lower production losses, resource-leaner products, and more resource-efficient production processes. In this paper we focus on material use and apply a multi-sector dynamic stochastic general equilibrium (DSGE model to study two types of taxation: tax on material inputs used by industry, energy, construction, and transport sectors, and tax on output of these sectors. We allow for endogenous adoption of resource-saving technologies. We calibrate the model for the EU27 area using an IO matrix. We consider taxation introduced from 2021 and simulate its impact until 2050. We compare the taxes along their ability to induce reduction in material use and raise revenue. We also consider the effect of spending this revenue on reduction of labour taxation. We find that input and output taxation create contrasting incentives and have opposite effects on resource efficiency. The material input tax induces investment in efficiency-improving technology which, in the long term, results in GDP and employment by 15%–20% higher than in the case of a comparable output tax. We also find that using revenues to reduce taxes on labour has stronger beneficial effects for the input tax.

  12. New Results on Robust Model Predictive Control for Time-Delay Systems with Input Constraints

    Directory of Open Access Journals (Sweden)

    Qing Lu

    2014-01-01

    Full Text Available This paper investigates the problem of model predictive control for a class of nonlinear systems subject to state delays and input constraints. The time-varying delay is considered with both upper and lower bounds. A new model is proposed to approximate the delay. And the uncertainty is polytopic type. For the state-feedback MPC design objective, we formulate an optimization problem. Under model transformation, a new model predictive controller is designed such that the robust asymptotical stability of the closed-loop system can be guaranteed. Finally, the applicability of the presented results are demonstrated by a practical example.

  13. Development of wavelet-ANN models to predict water quality parameters in Hilo Bay, Pacific Ocean.

    Science.gov (United States)

    Alizadeh, Mohamad Javad; Kavianpour, Mohamad Reza

    2015-09-15

    The main objective of this study is to apply artificial neural network (ANN) and wavelet-neural network (WNN) models for predicting a variety of ocean water quality parameters. In this regard, several water quality parameters in Hilo Bay, Pacific Ocean, are taken under consideration. Different combinations of water quality parameters are applied as input variables to predict daily values of salinity, temperature and DO as well as hourly values of DO. The results demonstrate that the WNN models are superior to the ANN models. Also, the hourly models developed for DO prediction outperform the daily models of DO. For the daily models, the most accurate model has R equal to 0.96, while for the hourly model it reaches up to 0.98. Overall, the results show the ability of the model to monitor the ocean parameters, in condition with missing data, or when regular measurement and monitoring are impossible. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Time series analysis as input for clinical predictive modeling: modeling cardiac arrest in a pediatric ICU.

    Science.gov (United States)

    Kennedy, Curtis E; Turley, James P

    2011-10-24

    Thousands of children experience cardiac arrest events every year in pediatric intensive care units. Most of these children die. Cardiac arrest prediction tools are used as part of medical emergency team evaluations to identify patients in standard hospital beds that are at high risk for cardiac arrest. There are no models to predict cardiac arrest in pediatric intensive care units though, where the risk of an arrest is 10 times higher than for standard hospital beds. Current tools are based on a multivariable approach that does not characterize deterioration, which often precedes cardiac arrests. Characterizing deterioration requires a time series approach. The purpose of this study is to propose a method that will allow for time series data to be used in clinical prediction models. Successful implementation of these methods has the potential to bring arrest prediction to the pediatric intensive care environment, possibly allowing for interventions that can save lives and prevent disabilities. We reviewed prediction models from nonclinical domains that employ time series data, and identified the steps that are necessary for building predictive models using time series clinical data. We illustrate the method by applying it to the specific case of building a predictive model for cardiac arrest in a pediatric intensive care unit. Time course analysis studies from genomic analysis provided a modeling template that was compatible with the steps required to develop a model from clinical time series data. The steps include: 1) selecting candidate variables; 2) specifying measurement parameters; 3) defining data format; 4) defining time window duration and resolution; 5) calculating latent variables for candidate variables not directly measured; 6) calculating time series features as latent variables; 7) creating data subsets to measure model performance effects attributable to various classes of candidate variables; 8) reducing the number of candidate features; 9

  15. A non-linear dimension reduction methodology for generating data-driven stochastic input models

    Science.gov (United States)

    Ganapathysubramanian, Baskar; Zabaras, Nicholas

    2008-06-01

    Stochastic analysis of random heterogeneous media (polycrystalline materials, porous media, functionally graded materials) provides information of significance only if realistic input models of the topology and property variations are used. This paper proposes a framework to construct such input stochastic models for the topology and thermal diffusivity variations in heterogeneous media using a data-driven strategy. Given a set of microstructure realizations (input samples) generated from given statistical information about the medium topology, the framework constructs a reduced-order stochastic representation of the thermal diffusivity. This problem of constructing a low-dimensional stochastic representation of property variations is analogous to the problem of manifold learning and parametric fitting of hyper-surfaces encountered in image processing and psychology. Denote by M the set of microstructures that satisfy the given experimental statistics. A non-linear dimension reduction strategy is utilized to map M to a low-dimensional region, A. We first show that M is a compact manifold embedded in a high-dimensional input space Rn. An isometric mapping F from M to a low-dimensional, compact, connected set A⊂Rd(d≪n) is constructed. Given only a finite set of samples of the data, the methodology uses arguments from graph theory and differential geometry to construct the isometric transformation F:M→A. Asymptotic convergence of the representation of M by A is shown. This mapping F serves as an accurate, low-dimensional, data-driven representation of the property variations. The reduced-order model of the material topology and thermal diffusivity variations is subsequently used as an input in the solution of stochastic partial differential equations that describe the evolution of dependant variables. A sparse grid collocation strategy (Smolyak algorithm) is utilized to solve these stochastic equations efficiently. We showcase the methodology by constructing low

  16. A non-linear dimension reduction methodology for generating data-driven stochastic input models

    International Nuclear Information System (INIS)

    Ganapathysubramanian, Baskar; Zabaras, Nicholas

    2008-01-01

    Stochastic analysis of random heterogeneous media (polycrystalline materials, porous media, functionally graded materials) provides information of significance only if realistic input models of the topology and property variations are used. This paper proposes a framework to construct such input stochastic models for the topology and thermal diffusivity variations in heterogeneous media using a data-driven strategy. Given a set of microstructure realizations (input samples) generated from given statistical information about the medium topology, the framework constructs a reduced-order stochastic representation of the thermal diffusivity. This problem of constructing a low-dimensional stochastic representation of property variations is analogous to the problem of manifold learning and parametric fitting of hyper-surfaces encountered in image processing and psychology. Denote by M the set of microstructures that satisfy the given experimental statistics. A non-linear dimension reduction strategy is utilized to map M to a low-dimensional region, A. We first show that M is a compact manifold embedded in a high-dimensional input space R n . An isometric mapping F from M to a low-dimensional, compact, connected set A is contained in R d (d<< n) is constructed. Given only a finite set of samples of the data, the methodology uses arguments from graph theory and differential geometry to construct the isometric transformation F:M→A. Asymptotic convergence of the representation of M by A is shown. This mapping F serves as an accurate, low-dimensional, data-driven representation of the property variations. The reduced-order model of the material topology and thermal diffusivity variations is subsequently used as an input in the solution of stochastic partial differential equations that describe the evolution of dependant variables. A sparse grid collocation strategy (Smolyak algorithm) is utilized to solve these stochastic equations efficiently. We showcase the methodology

  17. Non parametric, self organizing, scalable modeling of spatiotemporal inputs: the sign language paradigm.

    Science.gov (United States)

    Caridakis, G; Karpouzis, K; Drosopoulos, A; Kollias, S

    2012-12-01

    Modeling and recognizing spatiotemporal, as opposed to static input, is a challenging task since it incorporates input dynamics as part of the problem. The vast majority of existing methods tackle the problem as an extension of the static counterpart, using dynamics, such as input derivatives, at feature level and adopting artificial intelligence and machine learning techniques originally designed for solving problems that do not specifically address the temporal aspect. The proposed approach deals with temporal and spatial aspects of the spatiotemporal domain in a discriminative as well as coupling manner. Self Organizing Maps (SOM) model the spatial aspect of the problem and Markov models its temporal counterpart. Incorporation of adjacency, both in training and classification, enhances the overall architecture with robustness and adaptability. The proposed scheme is validated both theoretically, through an error propagation study, and experimentally, on the recognition of individual signs, performed by different, native Greek Sign Language users. Results illustrate the architecture's superiority when compared to Hidden Markov Model techniques and variations both in terms of classification performance and computational cost. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Computational Techniques for Model Predictive Control of Large-Scale Systems with Continuous-Valued and Discrete-Valued Inputs

    Directory of Open Access Journals (Sweden)

    Koichi Kobayashi

    2013-01-01

    Full Text Available We propose computational techniques for model predictive control of large-scale systems with both continuous-valued control inputs and discrete-valued control inputs, which are a class of hybrid systems. In the proposed method, we introduce the notion of virtual control inputs, which are obtained by relaxing discrete-valued control inputs to continuous variables. In online computation, first, we find continuous-valued control inputs and virtual control inputs minimizing a cost function. Next, using the obtained virtual control inputs, only discrete-valued control inputs at the current time are computed in each subsystem. In addition, we also discuss the effect of quantization errors. Finally, the effectiveness of the proposed method is shown by a numerical example. The proposed method enables us to reduce and decentralize the computation load.

  19. On the redistribution of existing inputs using the spherical frontier dea model

    Directory of Open Access Journals (Sweden)

    José Virgilio Guedes de Avellar

    2010-04-01

    Full Text Available The Spherical Frontier DEA Model (SFM (Avellar et al., 2007 was developed to be used when one wants to fairly distribute a new and fixed input to a group of Decision Making Units (DMU's. SFM's basic idea is to distribute this new and fixed input in such a way that every DMU will be placed on an efficiency frontier with a spherical shape. We use SFM to analyze the problems that appear when one wants to redistribute an already existing input to a group of DMU's such that the total sum of this input will remain constant. We also analyze the case in which this total sum may vary.O Modelo de Fronteira Esférica (MFE (Avellar et al., 2007 foi desenvolvido para ser usado quando se deseja distribuir de maneira justa um novo insumo a um conjunto de unidades tomadoras de decisão (DMU's, da sigla em inglês, Decision Making Units. A ideia básica do MFE é a de distribuir esse novo insumo de maneira que todas as DMU's sejam colocadas numa fronteira de eficiência com um formato esférico. Neste artigo, usamos MFE para analisar o problema que surge quando se deseja redistribuir um insumo já existente para um grupo de DMU's de tal forma que a soma desse insumo para todas as DMU's se mantenha constante. Também analisamos o caso em que essa soma possa variar.

  20. Persistence and ergodicity of plant disease model with markov conversion and impulsive toxicant input

    Science.gov (United States)

    Zhao, Wencai; Li, Juan; Zhang, Tongqian; Meng, Xinzhu; Zhang, Tonghua

    2017-07-01

    Taking into account of both white and colored noises, a stochastic mathematical model with impulsive toxicant input is formulated. Based on this model, we investigate dynamics, such as the persistence and ergodicity, of plant infectious disease model with Markov conversion in a polluted environment. The thresholds of extinction and persistence in mean are obtained. By using Lyapunov functions, we prove that the system is ergodic and has a stationary distribution under certain sufficient conditions. Finally, numerical simulations are employed to illustrate our theoretical analysis.

  1. Models for setting ATM parameter values

    DEFF Research Database (Denmark)

    Blaabjerg, Søren; Gravey, A.; Romæuf, L.

    1996-01-01

    essential to set traffic characteristic values that are relevant to the considered cell stream, and that ensure that the amount of non-conforming traffic is small. Using a queueing model representation for the GCRA formalism, several methods are available for choosing the traffic characteristics. This paper......In ATM networks, a user should negotiate at connection set-up a traffic contract which includes traffic characteristics and requested QoS. The traffic characteristics currently considered are the Peak Cell Rate, the Sustainable Cell Rate, the Intrinsic Burst Tolerance and the Cell Delay Variation...... (CDV) tolerance(s). The values taken by these traffic parameters characterize the so-called ''Worst Case Traffic'' that is used by CAC procedures for accepting a new connection and allocating resources to it. Conformance to the negotiated traffic characteristics is defined, at the ingress User...

  2. Adaptive control of Parkinson's state based on a nonlinear computational model with unknown parameters.

    Science.gov (United States)

    Su, Fei; Wang, Jiang; Deng, Bin; Wei, Xi-Le; Chen, Ying-Yuan; Liu, Chen; Li, Hui-Yan

    2015-02-01

    The objective here is to explore the use of adaptive input-output feedback linearization method to achieve an improved deep brain stimulation (DBS) algorithm for closed-loop control of Parkinson's state. The control law is based on a highly nonlinear computational model of Parkinson's disease (PD) with unknown parameters. The restoration of thalamic relay reliability is formulated as the desired outcome of the adaptive control methodology, and the DBS waveform is the control input. The control input is adjusted in real time according to estimates of unknown parameters as well as the feedback signal. Simulation results show that the proposed adaptive control algorithm succeeds in restoring the relay reliability of the thalamus, and at the same time achieves accurate estimation of unknown parameters. Our findings point to the potential value of adaptive control approach that could be used to regulate DBS waveform in more effective treatment of PD.

  3. The Canadian Defence Input-Output Model DIO Version 4.41

    Science.gov (United States)

    2011-09-01

    Request to develop DND tailored Input/Output Model. Electronic communication from AllenWeldon to Team Leader, Defence Economics Team onMarch 12, 2011...and similar contain- ers 166 1440 Handbags, wallets and similar personal articles such as eyeglass and cigar cases and coin purses 167 1450 Cotton yarn...408 3600 Radar and radio navigation equipment 409 3619 Semi-conductors 410 3621 Printed circuits 411 3622 Integrated circuits 412 3623 Other electronic

  4. Urban Landscape Characterization Using Remote Sensing Data For Input into Air Quality Modeling

    Science.gov (United States)

    Quattrochi, Dale A.; Estes, Maurice G., Jr.; Crosson, William; Khan, Maudood

    2005-01-01

    The urban landscape is inherently complex and this complexity is not adequately captured in air quality models that are used to assess whether urban areas are in attainment of EPA air quality standards, particularly for ground level ozone. This inadequacy of air quality models to sufficiently respond to the heterogeneous nature of the urban landscape can impact how well these models predict ozone pollutant levels over metropolitan areas and ultimately, whether cities exceed EPA ozone air quality standards. We are exploring the utility of high-resolution remote sensing data and urban growth projections as improved inputs to meteorological and air quality models focusing on the Atlanta, Georgia metropolitan area as a case study. The National Land Cover Dataset at 30m resolution is being used as the land use/land cover input and aggregated to the 4km scale for the MM5 mesoscale meteorological model and the Community Multiscale Air Quality (CMAQ) modeling schemes. Use of these data have been found to better characterize low density/suburban development as compared with USGS 1 km land use/land cover data that have traditionally been used in modeling. Air quality prediction for future scenarios to 2030 is being facilitated by land use projections using a spatial growth model. Land use projections were developed using the 2030 Regional Transportation Plan developed by the Atlanta Regional Commission. This allows the State Environmental Protection agency to evaluate how these transportation plans will affect future air quality.

  5. Development of an Input Suite for an Orthotropic Composite Material Model

    Science.gov (United States)

    Hoffarth, Canio; Shyamsunder, Loukham; Khaled, Bilal; Rajan, Subramaniam; Goldberg, Robert K.; Carney, Kelly S.; Dubois, Paul; Blankenhorn, Gunther

    2017-01-01

    An orthotropic three-dimensional material model suitable for use in modeling impact tests has been developed that has three major components elastic and inelastic deformations, damage and failure. The material model has been implemented as MAT213 into a special version of LS-DYNA and uses tabulated data obtained from experiments. The prominent features of the constitutive model are illustrated using a widely-used aerospace composite the T800S3900-2B[P2352W-19] BMS8-276 Rev-H-Unitape fiber resin unidirectional composite. The input for the deformation model consists of experimental data from 12 distinct experiments at a known temperature and strain rate: tension and compression along all three principal directions, shear in all three principal planes, and off axis tension or compression tests in all three principal planes, along with other material constants. There are additional input associated with the damage and failure models. The steps in using this model are illustrated composite characterization tests, verification tests and a validation test. The results show that the developed and implemented model is stable and yields acceptably accurate results.

  6. Input variable selection for data-driven models of Coriolis flowmeters for two-phase flow measurement

    International Nuclear Information System (INIS)

    Wang, Lijuan; Yan, Yong; Wang, Xue; Wang, Tao

    2017-01-01

    Input variable selection is an essential step in the development of data-driven models for environmental, biological and industrial applications. Through input variable selection to eliminate the irrelevant or redundant variables, a suitable subset of variables is identified as the input of a model. Meanwhile, through input variable selection the complexity of the model structure is simplified and the computational efficiency is improved. This paper describes the procedures of the input variable selection for the data-driven models for the measurement of liquid mass flowrate and gas volume fraction under two-phase flow conditions using Coriolis flowmeters. Three advanced input variable selection methods, including partial mutual information (PMI), genetic algorithm-artificial neural network (GA-ANN) and tree-based iterative input selection (IIS) are applied in this study. Typical data-driven models incorporating support vector machine (SVM) are established individually based on the input candidates resulting from the selection methods. The validity of the selection outcomes is assessed through an output performance comparison of the SVM based data-driven models and sensitivity analysis. The validation and analysis results suggest that the input variables selected from the PMI algorithm provide more effective information for the models to measure liquid mass flowrate while the IIS algorithm provides a fewer but more effective variables for the models to predict gas volume fraction. (paper)

  7. A generic method for automatic translation between input models for different versions of simulation codes

    International Nuclear Information System (INIS)

    Serfontein, Dawid E.; Mulder, Eben J.; Reitsma, Frederik

    2014-01-01

    A computer code was developed for the semi-automatic translation of input models for the VSOP-A diffusion neutronics simulation code to the format of the newer VSOP 99/05 code. In this paper, this algorithm is presented as a generic method for producing codes for the automatic translation of input models from the format of one code version to another, or even to that of a completely different code. Normally, such translations are done manually. However, input model files, such as for the VSOP codes, often are very large and may consist of many thousands of numeric entries that make no particular sense to the human eye. Therefore the task, of for instance nuclear regulators, to verify the accuracy of such translated files can be very difficult and cumbersome. This may cause translation errors not to be picked up, which may have disastrous consequences later on when a reactor with such a faulty design is built. Therefore a generic algorithm for producing such automatic translation codes may ease the translation and verification process to a great extent. It will also remove human error from the process, which may significantly enhance the accuracy and reliability of the process. The developed algorithm also automatically creates a verification log file which permanently record the names and values of each variable used, as well as the list of meanings of all the possible values. This should greatly facilitate reactor licensing applications

  8. A generic method for automatic translation between input models for different versions of simulation codes

    Energy Technology Data Exchange (ETDEWEB)

    Serfontein, Dawid E., E-mail: Dawid.Serfontein@nwu.ac.za [School of Mechanical and Nuclear Engineering, North West University (PUK-Campus), PRIVATE BAG X6001 (Internal Post Box 360), Potchefstroom 2520 (South Africa); Mulder, Eben J. [School of Mechanical and Nuclear Engineering, North West University (South Africa); Reitsma, Frederik [Calvera Consultants (South Africa)

    2014-05-01

    A computer code was developed for the semi-automatic translation of input models for the VSOP-A diffusion neutronics simulation code to the format of the newer VSOP 99/05 code. In this paper, this algorithm is presented as a generic method for producing codes for the automatic translation of input models from the format of one code version to another, or even to that of a completely different code. Normally, such translations are done manually. However, input model files, such as for the VSOP codes, often are very large and may consist of many thousands of numeric entries that make no particular sense to the human eye. Therefore the task, of for instance nuclear regulators, to verify the accuracy of such translated files can be very difficult and cumbersome. This may cause translation errors not to be picked up, which may have disastrous consequences later on when a reactor with such a faulty design is built. Therefore a generic algorithm for producing such automatic translation codes may ease the translation and verification process to a great extent. It will also remove human error from the process, which may significantly enhance the accuracy and reliability of the process. The developed algorithm also automatically creates a verification log file which permanently record the names and values of each variable used, as well as the list of meanings of all the possible values. This should greatly facilitate reactor licensing applications.

  9. Development of algorithm for depreciation costs allocation in dynamic input-output industrial enterprise model

    Directory of Open Access Journals (Sweden)

    Keller Alevtina

    2017-01-01

    Full Text Available The article considers the issue of allocation of depreciation costs in the dynamic inputoutput model of an industrial enterprise. Accounting the depreciation costs in such a model improves the policy of fixed assets management. It is particularly relevant to develop the algorithm for the allocation of depreciation costs in the construction of dynamic input-output model of an industrial enterprise, since such enterprises have a significant amount of fixed assets. Implementation of terms of the adequacy of such an algorithm itself allows: evaluating the appropriateness of investments in fixed assets, studying the final financial results of an industrial enterprise, depending on management decisions in the depreciation policy. It is necessary to note that the model in question for the enterprise is always degenerate. It is caused by the presence of zero rows in the matrix of capital expenditures by lines of structural elements unable to generate fixed assets (part of the service units, households, corporate consumers. The paper presents the algorithm for the allocation of depreciation costs for the model. This algorithm was developed by the authors and served as the basis for further development of the flowchart for subsequent implementation with use of software. The construction of such algorithm and its use for dynamic input-output models of industrial enterprises is actualized by international acceptance of the effectiveness of the use of input-output models for national and regional economic systems. This is what allows us to consider that the solutions discussed in the article are of interest to economists of various industrial enterprises.

  10. Parameter Estimation of Partial Differential Equation Models

    KAUST Repository

    Xun, Xiaolei; Cao, Jiguo; Mallick, Bani; Maity, Arnab; Carroll, Raymond J.

    2013-01-01

    PDEs used in practice have no analytic solutions, and can only be solved with numerical methods. Currently, methods for estimating PDE parameters require repeatedly solving PDEs numerically under thousands of candidate parameter values, and thus

  11. A time-resolved model of the mesospheric Na layer: constraints on the meteor input function

    Directory of Open Access Journals (Sweden)

    J. M. C. Plane

    2004-01-01

    Full Text Available A time-resolved model of the Na layer in the mesosphere/lower thermosphere region is described, where the continuity equations for the major sodium species Na, Na+ and NaHCO3 are solved explicity, and the other short-lived species are treated in steady-state. It is shown that the diurnal variation of the Na layer can only be modelled satisfactorily if sodium species are permanently removed below about 85 km, both through the dimerization of NaHCO3 and the uptake of sodium species on meteoric smoke particles that are assumed to have formed from the recondensation of vaporized meteoroids. When the sensitivity of the Na layer to the meteoroid input function is considered, an inconsistent picture emerges. The ratio of the column abundance of Na+ to Na is shown to increase strongly with the average meteoroid velocity, because the Na is injected at higher altitudes. Comparison with a limited set of Na+ measurements indicates that the average meteoroid velocity is probably less than about 25 km s-1, in agreement with velocity estimates from conventional meteor radars, and considerably slower than recent observations made by wide aperture incoherent scatter radars. The Na column abundance is shown to be very sensitive to the meteoroid mass input rate, and to the rate of vertical transport by eddy diffusion. Although the magnitude of the eddy diffusion coefficient in the 80–90 km region is uncertain, there is a consensus between recent models using parameterisations of gravity wave momentum deposition that the average value is less than 3×105 cm2 s-1. This requires that the global meteoric mass input rate is less than about 20 td-1, which is closest to estimates from incoherent scatter radar observations. Finally, the diurnal variation in the meteoroid input rate only slight perturbs the Na layer, because the residence time of Na in the layer is several days, and diurnal effects are effectively averaged out.

  12. A Sensitivity Study for an Evaluation of Input Parameters Effect on a Preliminary Probabilistic Tsunami Hazard Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Rhee, Hyun-Me; Kim, Min Kyu; Choi, In-Kil [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Sheen, Dong-Hoon [Chonnam National University, Gwangju (Korea, Republic of)

    2014-10-15

    The tsunami hazard analysis has been based on the seismic hazard analysis. The seismic hazard analysis has been performed by using the deterministic method and the probabilistic method. To consider the uncertainties in hazard analysis, the probabilistic method has been regarded as attractive approach. The various parameters and their weight are considered by using the logic tree approach in the probabilistic method. The uncertainties of parameters should be suggested by analyzing the sensitivity because the various parameters are used in the hazard analysis. To apply the probabilistic tsunami hazard analysis, the preliminary study for the Ulchin NPP site had been performed. The information on the fault sources which was published by the Atomic Energy Society of Japan (AESJ) had been used in the preliminary study. The tsunami propagation was simulated by using the TSUNAMI{sub 1}.0 which was developed by Japan Nuclear Energy Safety Organization (JNES). The wave parameters have been estimated from the result of tsunami simulation. In this study, the sensitivity analysis for the fault sources which were selected in the previous studies has been performed. To analyze the effect of the parameters, the sensitivity analysis for the E3 fault source which was published by AESJ was performed. The effect of the recurrence interval, the potential maximum magnitude, and the beta were suggested by the sensitivity analysis results. Level of annual exceedance probability has been affected by the recurrence interval.. Wave heights have been influenced by the potential maximum magnitude and the beta. In the future, the sensitivity analysis for the all fault sources in the western part of Japan which were published AESJ would be performed.

  13. Good Modeling Practice for PAT Applications: Propagation of Input Uncertainty and Sensitivity Analysis

    DEFF Research Database (Denmark)

    Sin, Gürkan; Gernaey, Krist; Eliasson Lantz, Anna

    2009-01-01

    The uncertainty and sensitivity analysis are evaluated for their usefulness as part of the model-building within Process Analytical Technology applications. A mechanistic model describing a batch cultivation of Streptomyces coelicolor for antibiotic production was used as case study. The input...... compared to the large uncertainty observed in the antibiotic and off-gas CO2 predictions. The output uncertainty was observed to be lower during the exponential growth phase, while higher in the stationary and death phases - meaning the model describes some periods better than others. To understand which...... promising for helping to build reliable mechanistic models and to interpret the model outputs properly. These tools make part of good modeling practice, which can contribute to successful PAT applications for increased process understanding, operation and control purposes. © 2009 American Institute...

  14. Assessing first-order emulator inference for physical parameters in nonlinear mechanistic models

    Science.gov (United States)

    Hooten, Mevin B.; Leeds, William B.; Fiechter, Jerome; Wikle, Christopher K.

    2011-01-01

    We present an approach for estimating physical parameters in nonlinear models that relies on an approximation to the mechanistic model itself for computational efficiency. The proposed methodology is validated and applied in two different modeling scenarios: (a) Simulation and (b) lower trophic level ocean ecosystem model. The approach we develop relies on the ability to predict right singular vectors (resulting from a decomposition of computer model experimental output) based on the computer model input and an experimental set of parameters. Critically, we model the right singular vectors in terms of the model parameters via a nonlinear statistical model. Specifically, we focus our attention on first-order models of these right singular vectors rather than the second-order (covariance) structure.

  15. Alternative to Ritt's pseudodivision for finding the input-output equations of multi-output models.

    Science.gov (United States)

    Meshkat, Nicolette; Anderson, Chris; DiStefano, Joseph J

    2012-09-01

    Differential algebra approaches to structural identifiability analysis of a dynamic system model in many instances heavily depend upon Ritt's pseudodivision at an early step in analysis. The pseudodivision algorithm is used to find the characteristic set, of which a subset, the input-output equations, is used for identifiability analysis. A simpler algorithm is proposed for this step, using Gröbner Bases, along with a proof of the method that includes a reduced upper bound on derivative requirements. Efficacy of the new algorithm is illustrated with several biosystem model examples. Copyright © 2012 Elsevier Inc. All rights reserved.

  16. Unitary input DEA model to identify beef cattle production systems typologies

    Directory of Open Access Journals (Sweden)

    Eliane Gonçalves Gomes

    2012-08-01

    Full Text Available The cow-calf beef production sector in Brazil has a wide variety of operating systems. This suggests the identification and the characterization of homogeneous regions of production, with consequent implementation of actions to achieve its sustainability. In this paper we attempted to measure the performance of 21 livestock modal production systems, in their cow-calf phase. We measured the performance of these systems, considering husbandry and production variables. The proposed approach is based on data envelopment analysis (DEA. We used unitary input DEA model, with apparent input orientation, together with the efficiency measurements generated by the inverted DEA frontier. We identified five modal production systems typologies, using the isoefficiency layers approach. The results showed that the knowledge and the processes management are the most important factors for improving the efficiency of beef cattle production systems.

  17. An Envelope Correlation Formula for (N,N MIMO Antenna Arrays Using Input Scattering Parameters, and Including Power Losses

    Directory of Open Access Journals (Sweden)

    Y. A. S. Dama

    2011-01-01

    Full Text Available The scattering parameter formulation for the envelope correlation in an (N,N MIMO antenna array has been modified to take the intrinsic antenna power losses into account. This method of calculation provides a major simplification over the use of antenna radiation field patterns. Its accuracy is illustrated in three examples, which also show that the locations of the correlation minima are sensitive to the intrinsic losses.

  18. Simulation of the Demand Side Management impacts: resolution enhancement of the input parameters at the local scale

    International Nuclear Information System (INIS)

    Imbert, P.

    2011-01-01

    Following the integrated energy planning paradigm in the 90's and the recent renewal of decentralized energy planning interests, Demand Side Management (DSM) actions are expected to take a significant role on energy planning activities in the future. Indeed the DSM actions represent a relevant option to achieve environmental and energy commitments or to alleviate some specific problems of electricity supply. DSM actions at the local scale at least in the French context is observed today. There is a need for appropriate methods and tools to assess the impacts of such MDE programs at local level. The local scale involves taking into account the specificities of the territories (physical, social, geographical, economical, institutional, etc.) The objective of this thesis is to improve the spatial resolution of input variables for the use in DSM action simulation tools. Based on a case study in France (PREMIO project: smart architecture for load management applied to a district) and an existing simulation tool we will study the impacts of this local experience to several municipalities. (author)

  19. The sensitivity of ecosystem service models to choices of input data and spatial resolution

    Science.gov (United States)

    Bagstad, Kenneth J.; Cohen, Erika; Ancona, Zachary H.; McNulty, Steven; Sun, Ge

    2018-01-01

    Although ecosystem service (ES) modeling has progressed rapidly in the last 10–15 years, comparative studies on data and model selection effects have become more common only recently. Such studies have drawn mixed conclusions about whether different data and model choices yield divergent results. In this study, we compared the results of different models to address these questions at national, provincial, and subwatershed scales in Rwanda. We compared results for carbon, water, and sediment as modeled using InVEST and WaSSI using (1) land cover data at 30 and 300 m resolution and (2) three different input land cover datasets. WaSSI and simpler InVEST models (carbon storage and annual water yield) were relatively insensitive to the choice of spatial resolution, but more complex InVEST models (seasonal water yield and sediment regulation) produced large differences when applied at differing resolution. Six out of nine ES metrics (InVEST annual and seasonal water yield and WaSSI) gave similar predictions for at least two different input land cover datasets. Despite differences in mean values when using different data sources and resolution, we found significant and highly correlated results when using Spearman's rank correlation, indicating consistent spatial patterns of high and low values. Our results confirm and extend conclusions of past studies, showing that in certain cases (e.g., simpler models and national-scale analyses), results can be robust to data and modeling choices. For more complex models, those with different output metrics, and subnational to site-based analyses in heterogeneous environments, data and model choices may strongly influence study findings.

  20. VSC Input-Admittance Modeling and Analysis Above the Nyquist Frequency for Passivity-Based Stability Assessment

    DEFF Research Database (Denmark)

    Harnefors, Lennart; Finger, Raphael; Wang, Xiongfei

    2017-01-01

    The interconnection stability of a gridconnected voltage-source converter (VSC) can be assessed via the dissipative properties of its input admittance. In this paper, the modeling of the current control loop is revisited with the aim to improve the accuracy of the input-admittance model above...

  1. 'Fingerprints' of four crop models as affected by soil input data aggregation

    DEFF Research Database (Denmark)

    Angulo, Carlos; Gaiser, Thomas; Rötter, Reimund P

    2014-01-01

    for all models. Further analysis revealed that the small influence of spatial resolution of soil input data might be related to: (a) the high precipitation amount in the region which partly masked differences in soil characteristics for water holding capacity, (b) the loss of variability in hydraulic soil...... properties due to the methods applied to calculate water retention properties of the used soil profiles, and (c) the method of soil data aggregation. No characteristic “fingerprint” between sites, years and resolutions could be found for any of the models. Our results support earlier recommendation....... In this study we used four crop models (SIMPLACE, DSSAT-CSM, EPIC and DAISY) differing in the detail of modeling above-ground biomass and yield as well as of modeling soil water dynamics, water uptake and drought effects on plants to simulate winter wheat in two (agro-climatologically and geo...

  2. Scaling precipitation input to spatially distributed hydrological models by measured snow distribution

    Directory of Open Access Journals (Sweden)

    Christian Vögeli

    2016-12-01

    Full Text Available Accurate knowledge on snow distribution in alpine terrain is crucial for various applicationssuch as flood risk assessment, avalanche warning or managing water supply and hydro-power.To simulate the seasonal snow cover development in alpine terrain, the spatially distributed,physics-based model Alpine3D is suitable. The model is typically driven by spatial interpolationsof observations from automatic weather stations (AWS, leading to errors in the spatial distributionof atmospheric forcing. With recent advances in remote sensing techniques, maps of snowdepth can be acquired with high spatial resolution and accuracy. In this work, maps of the snowdepth distribution, calculated from summer and winter digital surface models based on AirborneDigital Sensors (ADS, are used to scale precipitation input data, with the aim to improve theaccuracy of simulation of the spatial distribution of snow with Alpine3D. A simple method toscale and redistribute precipitation is presented and the performance is analysed. The scalingmethod is only applied if it is snowing. For rainfall the precipitation is distributed by interpolation,with a simple air temperature threshold used for the determination of the precipitation phase.It was found that the accuracy of spatial snow distribution could be improved significantly forthe simulated domain. The standard deviation of absolute snow depth error is reduced up toa factor 3.4 to less than 20 cm. The mean absolute error in snow distribution was reducedwhen using representative input sources for the simulation domain. For inter-annual scaling, themodel performance could also be improved, even when using a remote sensing dataset from adifferent winter. In conclusion, using remote sensing data to process precipitation input, complexprocesses such as preferential snow deposition and snow relocation due to wind or avalanches,can be substituted and modelling performance of spatial snow distribution is improved.

  3. Model Optimization Identification Method Based on Closed-loop Operation Data and Process Characteristics Parameters

    Directory of Open Access Journals (Sweden)

    Zhiqiang GENG

    2014-01-01

    Full Text Available Output noise is strongly related to input in closed-loop control system, which makes model identification of closed-loop difficult, even unidentified in practice. The forward channel model is chosen to isolate disturbance from the output noise to input, and identified by optimization the dynamic characteristics of the process based on closed-loop operation data. The characteristics parameters of the process, such as dead time and time constant, are calculated and estimated based on the PI/PID controller parameters and closed-loop process input/output data. And those characteristics parameters are adopted to define the search space of the optimization identification algorithm. PSO-SQP optimization algorithm is applied to integrate the global search ability of PSO with the local search ability of SQP to identify the model parameters of forward channel. The validity of proposed method has been verified by the simulation. The practicability is checked with the PI/PID controller parameter turning based on identified forward channel model.

  4. PERMODELAN INDEKS HARGA KONSUMEN INDONESIA DENGAN MENGGUNAKAN MODEL INTERVENSI MULTI INPUT

    KAUST Repository

    Novianti, Putri Wikie

    2017-01-24

    There are some events which are expected effecting CPI’s fluctuation, i.e. financial crisis 1997/1998, fuel price risings, base year changing’s, independence of Timor-Timur (October 1999), and Tsunami disaster in Aceh (December 2004). During re-search period, there were eight fuel price risings and four base year changing’s. The objective of this research is to obtain multi input intervention model which can des-cribe magnitude and duration of each event effected to CPI. Most of intervention re-searches that have been done are only contain of an intervention with single input, ei-ther step or pulse function. Multi input intervention was used in Indonesia CPI case because there are some events which are expected effecting CPI. Based on the result, those events were affecting CPI. Additionally, other events, such as Ied on January 1999, events on April 2002, July 2003, December 2005, and September 2008, were affecting CPI too. In general, those events gave positive effect to CPI, except events on April 2002 and July 2003 which gave negative effects.

  5. Detection of no-model input-output pairs in closed-loop systems.

    Science.gov (United States)

    Potts, Alain Segundo; Alvarado, Christiam Segundo Morales; Garcia, Claudio

    2017-11-01

    The detection of no-model input-output (IO) pairs is important because it can speed up the multivariable system identification process, since all the pairs with null transfer functions are previously discarded and it can also improve the identified model quality, thus improving the performance of model based controllers. In the available literature, the methods focus just on the open-loop case, since in this case there is not the effect of the controller forcing the main diagonal in the transfer matrix to one and all the other terms to zero. In this paper, a modification of a previous method able to detect no-model IO pairs in open-loop systems is presented, but adapted to perform this duty in closed-loop systems. Tests are performed by using the traditional methods and the proposed one to show its effectiveness. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  6. An improved state-parameter analysis of ecosystem models using data assimilation

    Science.gov (United States)

    Chen, M.; Liu, S.; Tieszen, L.L.; Hollinger, D.Y.

    2008-01-01

    Much of the effort spent in developing data assimilation methods for carbon dynamics analysis has focused on estimating optimal values for either model parameters or state variables. The main weakness of estimating parameter values alone (i.e., without considering state variables) is that all errors from input, output, and model structure are attributed to model parameter uncertainties. On the other hand, the accuracy of estimating state variables may be lowered if the temporal evolution of parameter values is not incorporated. This research develops a smoothed ensemble Kalman filter (SEnKF) by combining ensemble Kalman filter with kernel smoothing technique. SEnKF has following characteristics: (1) to estimate simultaneously the model states and parameters through concatenating unknown parameters and state variables into a joint state vector; (2) to mitigate dramatic, sudden changes of parameter values in parameter sampling and parameter evolution process, and control narrowing of parameter variance which results in filter divergence through adjusting smoothing factor in kernel smoothing algorithm; (3) to assimilate recursively data into the model and thus detect possible time variation of parameters; and (4) to address properly various sources of uncertainties stemming from input, output and parameter uncertainties. The SEnKF is tested by assimilating observed fluxes of carbon dioxide and environmental driving factor data from an AmeriFlux forest station located near Howland, Maine, USA, into a partition eddy flux model. Our analysis demonstrates that model parameters, such as light use efficiency, respiration coefficients, minimum and optimum temperatures for photosynthetic activity, and others, are highly constrained by eddy flux data at daily-to-seasonal time scales. The SEnKF stabilizes parameter values quickly regardless of the initial values of the parameters. Potential ecosystem light use efficiency demonstrates a strong seasonality. Results show that the

  7. GEMSFITS: Code package for optimization of geochemical model parameters and inverse modeling

    International Nuclear Information System (INIS)

    Miron, George D.; Kulik, Dmitrii A.; Dmytrieva, Svitlana V.; Wagner, Thomas

    2015-01-01

    Highlights: • Tool for generating consistent parameters against various types of experiments. • Handles a large number of experimental data and parameters (is parallelized). • Has a graphical interface and can perform statistical analysis on the parameters. • Tested on fitting the standard state Gibbs free energies of aqueous Al species. • Example on fitting interaction parameters of mixing models and thermobarometry. - Abstract: GEMSFITS is a new code package for fitting internally consistent input parameters of GEM (Gibbs Energy Minimization) geochemical–thermodynamic models against various types of experimental or geochemical data, and for performing inverse modeling tasks. It consists of the gemsfit2 (parameter optimizer) and gfshell2 (graphical user interface) programs both accessing a NoSQL database, all developed with flexibility, generality, efficiency, and user friendliness in mind. The parameter optimizer gemsfit2 includes the GEMS3K chemical speciation solver ( (http://gems.web.psi.ch/GEMS3K)), which features a comprehensive suite of non-ideal activity- and equation-of-state models of solution phases (aqueous electrolyte, gas and fluid mixtures, solid solutions, (ad)sorption. The gemsfit2 code uses the robust open-source NLopt library for parameter fitting, which provides a selection between several nonlinear optimization algorithms (global, local, gradient-based), and supports large-scale parallelization. The gemsfit2 code can also perform comprehensive statistical analysis of the fitted parameters (basic statistics, sensitivity, Monte Carlo confidence intervals), thus supporting the user with powerful tools for evaluating the quality of the fits and the physical significance of the model parameters. The gfshell2 code provides menu-driven setup of optimization options (data selection, properties to fit and their constraints, measured properties to compare with computed counterparts, and statistics). The practical utility, efficiency, and

  8. Modeling the cellular mechanisms and olfactory input underlying the triphasic response of moth pheromone-sensitive projection neurons.

    Directory of Open Access Journals (Sweden)

    Yuqiao Gu

    Full Text Available In the antennal lobe of the noctuid moth Agrotis ipsilon, most pheromone-sensitive projection neurons (PNs exhibit a triphasic firing pattern of excitation (E1-inhibition (I-excitation (E2 in response to a pulse of the sex pheromone. To understand the mechanisms underlying this stereotypical discharge, we developed a biophysical model of a PN receiving inputs from olfactory receptor neurons (ORNs via nicotinic cholinergic synapses. The ORN is modeled as an inhomogeneous Poisson process whose firing rate is a function of time and is fitted to extracellular data recorded in response to pheromone stimulations at various concentrations and durations. The PN model is based on the Hodgkin-Huxley formalism with realistic ionic currents whose parameters were derived from previous studies. Simulations revealed that the inhibitory phase I can be produced by a SK current (Ca2+-gated small conductance K+ current and that the excitatory phase E2 can result from the long-lasting response of the ORNs. Parameter analysis further revealed that the ending time of E1 depends on some parameters of SK, Ca2+, nACh and Na+ currents; I duration mainly depends on the time constant of intracellular Ca2+ dynamics, conductance of Ca2+ currents and some parameters of nACh currents; The mean firing frequency of E1 and E2 depends differentially on the interaction of various currents. Thus it is likely that the interplay between PN intrinsic currents and feedforward synaptic currents are sufficient to generate the triphasic firing patterns observed in the noctuid moth A. ipsilon.

  9. Adaptive Control for Revolute Joints Robot Manipulator with Uncertain/Unknown Dynamic Parameters and in Presence of Disturbance in Control Input

    DEFF Research Database (Denmark)

    Seyed Sakha, Masoud; Shaker, Hamid Reza

    2017-01-01

    This paper presents an effective adaptive controller for revolute joints robot manipulator where the control input is accompanied with a random disturbance (with unknown PSD). It is clear that, disturbance can compromise the overall performance of the system. To cope with this problem, a control...... technique is proposed which uses the concept of exponential practical stability. Unlike other counterparts, the proposed method does not need information such as the physical parameters of robot and gravitational acceleration. The results show that the proposed controller achieves an excellent performance...

  10. Input-output model of regional environmental and economic impacts of nuclear power plants

    International Nuclear Information System (INIS)

    Johnson, M.H.; Bennett, J.T.

    1979-01-01

    The costs of delayed licensing of nuclear power plants calls for a more-comprehensive method of quantifying the economic and environmental impacts on a region. A traditional input-output (I-O) analysis approach is extended to assess the effects of changes in output, income, employment, pollution, water consumption, and the costs and revenues of local government disaggregated among 23 industry sectors during the construction and operating phases. Unlike earlier studies, this model uses nonlinear environmental interactions and specifies environmental feedbacks to the economic sector. 20 references

  11. Optimization model of peach production relevant to input energies – Yield function in Chaharmahal va Bakhtiari province, Iran

    International Nuclear Information System (INIS)

    Ghatrehsamani, Shirin; Ebrahimi, Rahim; Kazi, Salim Newaz; Badarudin Badry, Ahmad; Sadeghinezhad, Emad

    2016-01-01

    The aim of this study was to determine the amount of input–output energy used in peach production and to develop an optimal model of production in Chaharmahal va Bakhtiari province, Iran. Data were collected from 100 producers by administering a questionnaire in face-to-face interviews. Farms were selected based on random sampling method. Results revealed that the total energy of production is 47,951.52 MJ/ha and the highest share of energy consumption belongs to chemical fertilizers (35.37%). Consumption of direct energy was 47.4% while indirect energy was 52.6%. Also, Total energy consumption was divided into two groups; renewable and non-renewable (19.2% and 80.8% respectively). Energy use efficiency, Energy productivity, Specific energy and Net energy were calculated as 0.433, 0.228 (kg/MJ), 4.38 (MJ/kg) and −27,161.722 (MJ/ha), respectively. According to the negative sign for Net energy, if special strategy is used, energy dismiss will decrease and negative effect of some parameters could be omitted. In the present case the amount is indicating decimate of production energy. In addition, energy efficiency was not high enough. Some of the input energies were applied to machinery, chemical fertilizer, water irrigation and electricity which had significant effect on increasing production and MPP (marginal physical productivity) was determined for variables. This parameter was positive for energy groups namely; machinery, diesel fuel, chemical fertilizer, water irrigation and electricity while it was negative for other kind of energy such as chemical pesticides and human labor. Finally, there is a need to pursue a new policy to force producers to undertake energy-efficient practices to establish sustainable production systems without disrupting the natural resources. In addition, extension activities are needed to improve the efficiency of energy consumption and to sustain the natural resources. - Highlights: • Replacing non-renewable energy with renewable

  12. Low-level waste shallow land disposal source term model: Data input guides

    International Nuclear Information System (INIS)

    Sullivan, T.M.; Suen, C.J.

    1989-07-01

    This report provides an input guide for the computational models developed to predict the rate of radionuclide release from shallow land disposal of low-level waste. Release of contaminants depends on four processes: water flow, container degradation, waste from leaching, and contaminant transport. The computer code FEMWATER has been selected to predict the movement of water in an unsaturated porous media. The computer code BLT (Breach, Leach, and Transport), a modification of FEMWASTE, has been selected to predict the processes of container degradation (Breach), contaminant release from the waste form (Leach), and contaminant migration (Transport). In conjunction, these two codes have the capability to account for the effects of disposal geometry, unsaturated/water flow, container degradation, waste form leaching, and migration of contaminants releases within a single disposal trench. In addition to the input requirements, this report presents the fundamental equations and relationships used to model the four different processes previously discussed. Further, the appendices provide a representative sample of data required by the different models. 14 figs., 27 tabs

  13. Transport coefficient computation based on input/output reduced order models

    Science.gov (United States)

    Hurst, Joshua L.

    The guiding purpose of this thesis is to address the optimal material design problem when the material description is a molecular dynamics model. The end goal is to obtain a simplified and fast model that captures the property of interest such that it can be used in controller design and optimization. The approach is to examine model reduction analysis and methods to capture a specific property of interest, in this case viscosity, or more generally complex modulus or complex viscosity. This property and other transport coefficients are defined by a input/output relationship and this motivates model reduction techniques that are tailored to preserve input/output behavior. In particular Singular Value Decomposition (SVD) based methods are investigated. First simulation methods are identified that are amenable to systems theory analysis. For viscosity, these models are of the Gosling and Lees-Edwards type. They are high order nonlinear Ordinary Differential Equations (ODEs) that employ Periodic Boundary Conditions. Properties can be calculated from the state trajectories of these ODEs. In this research local linear approximations are rigorously derived and special attention is given to potentials that are evaluated with Periodic Boundary Conditions (PBC). For the Gosling description LTI models are developed from state trajectories but are found to have limited success in capturing the system property, even though it is shown that full order LTI models can be well approximated by reduced order LTI models. For the Lees-Edwards SLLOD type model nonlinear ODEs will be approximated by a Linear Time Varying (LTV) model about some nominal trajectory and both balanced truncation and Proper Orthogonal Decomposition (POD) will be used to assess the plausibility of reduced order models to this system description. An immediate application of the derived LTV models is Quasilinearization or Waveform Relaxation. Quasilinearization is a Newton's method applied to the ODE operator

  14. ORBSIM- ESTIMATING GEOPHYSICAL MODEL PARAMETERS FROM PLANETARY GRAVITY DATA

    Science.gov (United States)

    Sjogren, W. L.

    1994-01-01

    The ORBSIM program was developed for the accurate extraction of geophysical model parameters from Doppler radio tracking data acquired from orbiting planetary spacecraft. The model of the proposed planetary structure is used in a numerical integration of the spacecraft along simulated trajectories around the primary body. Using line of sight (LOS) Doppler residuals, ORBSIM applies fast and efficient modelling and optimization procedures which avoid the traditional complex dynamic reduction of data. ORBSIM produces quantitative geophysical results such as size, depth, and mass. ORBSIM has been used extensively to investigate topographic features on the Moon, Mars, and Venus. The program has proven particulary suitable for modelling gravitational anomalies and mascons. The basic observable for spacecraft-based gravity data is the Doppler frequency shift of a transponded radio signal. The time derivative of this signal carries information regarding the gravity field acting on the spacecraft in the LOS direction (the LOS direction being the path between the spacecraft and the receiving station, either Earth or another satellite). There are many dynamic factors taken into account: earth rotation, solar radiation, acceleration from planetary bodies, tracking station time and location adjustments, etc. The actual trajectories of the spacecraft are simulated using least squares fitted to conic motion. The theoretical Doppler readings from the simulated orbits are compared to actual Doppler observations and another least squares adjustment is made. ORBSIM has three modes of operation: trajectory simulation, optimization, and gravity modelling. In all cases, an initial gravity model of curved and/or flat disks, harmonics, and/or a force table are required input. ORBSIM is written in FORTRAN 77 for batch execution and has been implemented on a DEC VAX 11/780 computer operating under VMS. This program was released in 1985.

  15. Selection Input Output by Restriction Using DEA Models Based on a Fuzzy Delphi Approach and Expert Information

    Science.gov (United States)

    Arsad, Roslah; Nasir Abdullah, Mohammad; Alias, Suriana; Isa, Zaidi

    2017-09-01

    Stock evaluation has always been an interesting problem for investors. In this paper, a comparison regarding the efficiency stocks of listed companies in Bursa Malaysia were made through the application of estimation method of Data Envelopment Analysis (DEA). One of the interesting research subjects in DEA is the selection of appropriate input and output parameter. In this study, DEA was used to measure efficiency of stocks of listed companies in Bursa Malaysia in terms of the financial ratio to evaluate performance of stocks. Based on previous studies and Fuzzy Delphi Method (FDM), the most important financial ratio was selected. The results indicated that return on equity, return on assets, net profit margin, operating profit margin, earnings per share, price to earnings and debt to equity were the most important ratios. Using expert information, all the parameter were clarified as inputs and outputs. The main objectives were to identify most critical financial ratio, clarify them based on expert information and compute the relative efficiency scores of stocks as well as rank them in the construction industry and material completely. The methods of analysis using Alirezaee and Afsharian’s model were employed in this study, where the originality of Charnes, Cooper and Rhodes (CCR) with the assumption of Constant Return to Scale (CSR) still holds. This method of ranking relative efficiency of decision making units (DMUs) was value-added by the Balance Index. The interested data was made for year 2015 and the population of the research includes accepted companies in stock markets in the construction industry and material (63 companies). According to the ranking, the proposed model can rank completely for 63 companies using selected financial ratio.

  16. Sensitivity analysis of specific activity model parameters for environmental transport of 3H and dose assessment

    International Nuclear Information System (INIS)

    Rout, S.; Mishra, D.G.; Ravi, P.M.; Tripathi, R.M.

    2016-01-01

    Tritium is one of the radionuclides likely to get released to the environment from Pressurized Heavy Water Reactors. Environmental models are extensively used to quantify the complex environmental transport processes of radionuclides and also to assess the impact to the environment. Model parameters exerting the significant influence on model results are identified through a sensitivity analysis (SA). SA is the study of how the variation (uncertainty) in the output of a mathematical model can be apportioned, qualitatively or quantitatively, to different sources of variation in the input parameters. This study was designed to identify the sensitive model parameters of specific activity model (TRS 1616, IAEA) for environmental transfer of 3 H following release to air and then to vegetation and animal products. Model includes parameters such as air to soil transfer factor (CRs), Tissue Free Water 3 H to Organically Bound 3 H ratio (Rp), Relative humidity (RH), WCP (fractional water content) and WEQp (water equivalent factor) any change in these parameters leads to change in 3 H level in vegetation and animal products consequently change in dose due to ingestion. All these parameters are function of climate and/or plant which change with time, space and species. Estimation of these parameters at every time is a time consuming and also required sophisticated instrumentation. Therefore it is necessary to identify the sensitive parameters and freeze the values of least sensitive parameters at constant values for more accurate estimation of 3 H dose in short time for routine assessment

  17. Seasonal variation in coat characteristics, tick loads, cortisol levels, some physiological parameters and temperature humidity index on Nguni cows raised in low- and high-input farms

    Science.gov (United States)

    Katiyatiya, C. L. F.; Muchenje, V.; Mushunje, A.

    2015-06-01

    Seasonal variations in hair length, tick loads, cortisol levels, haematological parameters (HP) and temperature humidity index (THI) in Nguni cows of different colours raised in two low-input farms, and a commercial stud was determined. The sites were chosen based on their production systems, climatic characteristics and geographical locations. Zazulwana and Komga are low-input, humid-coastal areas, while Honeydale is a high-input, dry-inland Nguni stud farm. A total of 103 cows, grouped according to parity, location and coat colour, were used in the study. The effects of location, coat colour, hair length and season were used to determine tick loads on different body parts, cortisol levels and HP in blood from Nguni cows. Highest tick loads were recorded under the tail and the lowest on the head of each of the animals ( P cows recorded the highest tick loads under the tails of all the cows used in the study from the three farms ( P cows with long hairs. Hair lengths were longest during the winter season in the coastal areas of Zazulwana and Honeydale ( P cows had significantly longer ( P heat stress in Nguni cows.

  18. Models for estimating photosynthesis parameters from in situ production profiles

    Science.gov (United States)

    Kovač, Žarko; Platt, Trevor; Sathyendranath, Shubha; Antunović, Suzana

    2017-12-01

    The rate of carbon assimilation in phytoplankton primary production models is mathematically prescribed with photosynthesis irradiance functions, which convert a light flux (energy) into a material flux (carbon). Information on this rate is contained in photosynthesis parameters: the initial slope and the assimilation number. The exactness of parameter values is crucial for precise calculation of primary production. Here we use a model of the daily production profile based on a suite of photosynthesis irradiance functions and extract photosynthesis parameters from in situ measured daily production profiles at the Hawaii Ocean Time-series station Aloha. For each function we recover parameter values, establish parameter distributions and quantify model skill. We observe that the choice of the photosynthesis irradiance function to estimate the photosynthesis parameters affects the magnitudes of parameter values as recovered from in situ profiles. We also tackle the problem of parameter exchange amongst the models and the effect it has on model performance. All models displayed little or no bias prior to parameter exchange, but significant bias following parameter exchange. The best model performance resulted from using optimal parameter values. Model formulation was extended further by accounting for spectral effects and deriving a spectral analytical solution for the daily production profile. The daily production profile was also formulated with time dependent growing biomass governed by a growth equation. The work on parameter recovery was further extended by exploring how to extract photosynthesis parameters from information on watercolumn production. It was demonstrated how to estimate parameter values based on a linearization of the full analytical solution for normalized watercolumn production and from the solution itself, without linearization. The paper complements previous works on photosynthesis irradiance models by analysing the skill and consistency of

  19. TART input manual

    International Nuclear Information System (INIS)

    Kimlinger, J.R.; Plechaty, E.F.

    1982-01-01

    The TART code is a Monte Carlo neutron/photon transport code that is only on the CRAY computer. All the input cards for the TART code are listed, and definitions for all input parameters are given. The execution and limitations of the code are described, and input for two sample problems are given

  20. A comparison of numerical and machine-learning modeling of soil water content with limited input data

    Science.gov (United States)

    Karandish, Fatemeh; Šimůnek, Jiří

    2016-12-01

    Soil water content (SWC) is a key factor in optimizing the usage of water resources in agriculture since it provides information to make an accurate estimation of crop water demand. Methods for predicting SWC that have simple data requirements are needed to achieve an optimal irrigation schedule, especially for various water-saving irrigation strategies that are required to resolve both food and water security issues under conditions of water shortages. Thus, a two-year field investigation was carried out to provide a dataset to compare the effectiveness of HYDRUS-2D, a physically-based numerical model, with various machine-learning models, including Multiple Linear Regressions (MLR), Adaptive Neuro-Fuzzy Inference Systems (ANFIS), and Support Vector Machines (SVM), for simulating time series of SWC data under water stress conditions. SWC was monitored using TDRs during the maize growing seasons of 2010 and 2011. Eight combinations of six, simple, independent parameters, including pan evaporation and average air temperature as atmospheric parameters, cumulative growth degree days (cGDD) and crop coefficient (Kc) as crop factors, and water deficit (WD) and irrigation depth (In) as crop stress factors, were adopted for the estimation of SWCs in the machine-learning models. Having Root Mean Square Errors (RMSE) in the range of 0.54-2.07 mm, HYDRUS-2D ranked first for the SWC estimation, while the ANFIS and SVM models with input datasets of cGDD, Kc, WD and In ranked next with RMSEs ranging from 1.27 to 1.9 mm and mean bias errors of -0.07 to 0.27 mm, respectively. However, the MLR models did not perform well for SWC forecasting, mainly due to non-linear changes of SWCs under the irrigation process. The results demonstrated that despite requiring only simple input data, the ANFIS and SVM models could be favorably used for SWC predictions under water stress conditions, especially when there is a lack of data. However, process-based numerical models are undoubtedly a

  1. A Water-Withdrawal Input-Output Model of the Indian Economy.

    Science.gov (United States)

    Bogra, Shelly; Bakshi, Bhavik R; Mathur, Ritu

    2016-02-02

    Managing freshwater allocation for a highly populated and growing economy like India can benefit from knowledge about the effect of economic activities. This study transforms the 2003-2004 economic input-output (IO) table of India into a water withdrawal input-output model to quantify direct and indirect flows. This unique model is based on a comprehensive database compiled from diverse public sources, and estimates direct and indirect water withdrawal of all economic sectors. It distinguishes between green (rainfall), blue (surface and ground), and scarce groundwater. Results indicate that the total direct water withdrawal is nearly 3052 billion cubic meter (BCM) and 96% of this is used in agriculture sectors with the contribution of direct green water being about 1145 BCM, excluding forestry. Apart from 727 BCM direct blue water withdrawal for agricultural, other significant users include "Electricity" with 64 BCM, "Water supply" with 44 BCM and other industrial sectors with nearly 14 BCM. "Construction", "miscellaneous food products"; "Hotels and restaurants"; "Paper, paper products, and newsprint" are other significant indirect withdrawers. The net virtual water import is found to be insignificant compared to direct water used in agriculture nationally, while scarce ground water associated with crops is largely contributed by northern states.

  2. International trade inoperability input-output model (IT-IIM): theory and application.

    Science.gov (United States)

    Jung, Jeesang; Santos, Joost R; Haimes, Yacov Y

    2009-01-01

    The inoperability input-output model (IIM) has been used for analyzing disruptions due to man-made or natural disasters that can adversely affect the operation of economic systems or critical infrastructures. Taking economic perturbation for each sector as inputs, the IIM provides the degree of economic production impacts on all industry sectors as the outputs for the model. The current version of the IIM does not provide a separate analysis for the international trade component of the inoperability. If an important port of entry (e.g., Port of Los Angeles) is disrupted, then international trade inoperability becomes a highly relevant subject for analysis. To complement the current IIM, this article develops the International Trade-IIM (IT-IIM). The IT-IIM investigates the resulting international trade inoperability for all industry sectors resulting from disruptions to a major port of entry. Similar to traditional IIM analysis, the inoperability metrics that the IT-IIM provides can be used to prioritize economic sectors based on the losses they could potentially incur. The IT-IIM is used to analyze two types of direct perturbations: (1) the reduced capacity of ports of entry, including harbors and airports (e.g., a shutdown of any port of entry); and (2) restrictions on commercial goods that foreign countries trade with the base nation (e.g., embargo).

  3. Multiregional input-output model for the evaluation of Spanish water flows.

    Science.gov (United States)

    Cazcarro, Ignacio; Duarte, Rosa; Sánchez Chóliz, Julio

    2013-01-01

    We construct a multiregional input-output model for Spain, in order to evaluate the pressures on the water resources, virtual water flows, and water footprints of the regions, and the water impact of trade relationships within Spain and abroad. The study is framed with those interregional input-output models constructed to study water flows and impacts of regions in China, Australia, Mexico, or the UK. To build our database, we reconcile regional IO tables, national and regional accountancy of Spain, trade and water data. Results show an important imbalance between origin of water resources and final destination, with significant water pressures in the South, Mediterranean, and some central regions. The most populated and dynamic regions of Madrid and Barcelona are important drivers of water consumption in Spain. Main virtual water exporters are the South and Central agrarian regions: Andalusia, Castile-La Mancha, Castile-Leon, Aragon, and Extremadura, while the main virtual water importers are the industrialized regions of Madrid, Basque country, and the Mediterranean coast. The paper shows the different location of direct and indirect consumers of water in Spain and how the economic trade and consumption pattern of certain areas has significant impacts on the availability of water resources in other different and often drier regions.

  4. Model analysis of riparian buffer effectiveness for reducing nutrient inputs to streams in agricultural landscapes

    Science.gov (United States)

    McKane, R. B.; M, S.; F, P.; Kwiatkowski, B. L.; Rastetter, E. B.

    2006-12-01

    Federal and state agencies responsible for protecting water quality rely mainly on statistically-based methods to assess and manage risks to the nation's streams, lakes and estuaries. Although statistical approaches provide valuable information on current trends in water quality, process-based simulation models are essential for understanding and forecasting how changes in human activities across complex landscapes impact the transport of nutrients and contaminants to surface waters. To address this need, we developed a broadly applicable, process-based watershed simulator that links a spatially-explicit hydrologic model and a terrestrial biogeochemistry model (MEL). See Stieglitz et al. and Pan et al., this meeting, for details on the design and verification of this simulator. Here we apply the watershed simulator to a generalized agricultural setting to demonstrate its potential for informing policy and management decisions concerning water quality. This demonstration specifically explores the effectiveness of riparian buffers for reducing the transport of nitrogenous fertilizers from agricultural fields to streams. The interaction of hydrologic and biogeochemical processes represented in our simulator allows several important questions to be addressed. (1) For a range of upland fertilization rates, to what extent do riparian buffers reduce nitrogen inputs to streams? (2) How does buffer effectiveness change over time as the plant-soil system approaches N-saturation? (3) How can buffers be managed to increase their effectiveness, e.g., through periodic harvest and replanting? The model results illustrate that, while the answers to these questions depend to some extent on site factors (climatic regime, soil properties and vegetation type), in all cases riparian buffers have a limited capacity to reduce nitrogen inputs to streams where fertilization rates approach those typically used for intensive agriculture (e.g., 200 kg N per ha per year for corn in the U

  5. INPUT DATA OF BURNING WOOD FOR CFD MODELLING USING SMALL-SCALE EXPERIMENTS

    Directory of Open Access Journals (Sweden)

    Petr Hejtmánek

    2017-12-01

    Full Text Available The paper presents an option how to acquire simplified input data for modelling of burning wood in CFD programmes. The option lies in combination of data from small- and molecular-scale experiments in order to describe the material as a one-reaction material property. Such virtual material would spread fire, develop the fire according to surrounding environment and it could be extinguished without using complex reaction molecular description. Series of experiments including elemental analysis, thermogravimetric analysis and difference thermal analysis, and combustion analysis were performed. Then the FDS model of burning pine wood in a cone calorimeter was built. In the model where those values were used. The model was validated to HRR (Heat Release Rate from the real cone calorimeter experiment. The results show that for the purpose of CFD modelling the effective heat of combustion, which is one of the basic material property for fire modelling affecting the total intensity of burning, should be used. Using the net heat of combustion in the model leads to higher values of HRR in comparison to the real experiment data. Considering all the results shown in this paper, it was shown that it is possible to simulate burning of wood using the extrapolated data obtained in small-size experiments.

  6. Development of a General Form CO2 and Brine Flux Input Model

    Energy Technology Data Exchange (ETDEWEB)

    Mansoor, K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Sun, Y. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Carroll, S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2014-08-01

    The National Risk Assessment Partnership (NRAP) project is developing a science-based toolset for the quantitative analysis of the potential risks associated with changes in groundwater chemistry from CO2 injection. In order to address uncertainty probabilistically, NRAP is developing efficient, reduced-order models (ROMs) as part of its approach. These ROMs are built from detailed, physics-based process models to provide confidence in the predictions over a range of conditions. The ROMs are designed to reproduce accurately the predictions from the computationally intensive process models at a fraction of the computational time, thereby allowing the utilization of Monte Carlo methods to probe variability in key parameters. This report presents the procedures used to develop a generalized model for CO2 and brine leakage fluxes based on the output of a numerical wellbore simulation. The resulting generalized parameters and ranges reported here will be used for the development of third-generation groundwater ROMs.

  7. Treatment of input uncertainty in hydrologic modeling: Doing hydrology backward with Markov chain Monte Carlo simulation

    NARCIS (Netherlands)

    Vrugt, J.A.; Braak, ter C.J.F.; Clark, M.P.; Hyman, J.M.; Robinson, B.A.

    2008-01-01

    There is increasing consensus in the hydrologic literature that an appropriate framework for streamflow forecasting and simulation should include explicit recognition of forcing and parameter and model structural error. This paper presents a novel Markov chain Monte Carlo (MCMC) sampler, entitled

  8. Loss of GABAergic inputs in APP/PS1 mouse model of Alzheimer's disease

    Directory of Open Access Journals (Sweden)

    Tutu Oyelami

    2014-04-01

    Full Text Available Alzheimer's disease (AD is characterized by symptoms which include seizures, sleep disruption, loss of memory as well as anxiety in patients. Of particular importance is the possibility of preventing the progressive loss of neuronal projections in the disease. Transgenic mice overexpressing EOFAD mutant PS1 (L166P and mutant APP (APP KM670/671NL Swedish (APP/PS1 develop a very early and robust Amyloid pathology and display synaptic plasticity impairments and cognitive dysfunction. Here we investigated GABAergic neurotransmission, using multi-electrode array (MEA technology and pharmacological manipulation to quantify the effect of GABA Blockers on field excitatory postsynaptic potentials (fEPSP, and immunostaining of GABAergic neurons. Using MEA technology we confirm impaired LTP induction by high frequency stimulation in APPPS1 hippocampal CA1 region that was associated with reduced alteration of the pair pulse ratio after LTP induction. Synaptic dysfunction was also observed under manipulation of external Calcium concentration and input-output curve. Electrophysiological recordings from brain slice of CA1 hippocampus area, in the presence of GABAergic receptors blockers cocktails further demonstrated significant reduction in the GABAergic inputs in APP/PS1 mice. Moreover, immunostaining of GAD65 a specific marker for GABAergic neurons revealed reduction of the GABAergic inputs in CA1 area of the hippocampus. These results might be linked to increased seizure sensitivity, premature death and cognitive dysfunction in this animal model of AD. Further in depth analysis of GABAergic dysfunction in APP/PS1 mice is required and may open new perspectives for AD therapy by restoring GABAergic function.

  9. Optimizing incomplete sample designs for item response model parameters

    NARCIS (Netherlands)

    van der Linden, Willem J.

    Several models for optimizing incomplete sample designs with respect to information on the item parameters are presented. The following cases are considered: (1) known ability parameters; (2) unknown ability parameters; (3) item sets with multiple ability scales; and (4) response models with

  10. Correlation of iodine uptake and perfusion parameters between dual-energy CT imaging and first-pass dual-input perfusion CT in lung cancer.

    Science.gov (United States)

    Chen, Xiaoliang; Xu, Yanyan; Duan, Jianghui; Li, Chuandong; Sun, Hongliang; Wang, Wu

    2017-07-01

    To investigate the potential relationship between perfusion parameters from first-pass dual-input perfusion computed tomography (DI-PCT) and iodine uptake levels estimated from dual-energy CT (DE-CT).The pre-experimental part of this study included a dynamic DE-CT protocol in 15 patients to evaluate peak arterial enhancement of lung cancer based on time-attenuation curves, and the scan time of DE-CT was determined. In the prospective part of the study, 28 lung cancer patients underwent whole-volume perfusion CT and single-source DE-CT using 320-row CT. Pulmonary flow (PF, mL/min/100 mL), aortic flow (AF, mL/min/100 mL), and a perfusion index (PI = PF/[PF + AF]) were automatically generated by in-house commercial software using the dual-input maximum slope method for DI-PCT. For the dual-energy CT data, iodine uptake was estimated by the difference (λ) and the slope (λHU). λ was defined as the difference of CT values between 40 and 70 KeV monochromatic images in lung lesions. λHU was calculated by the following equation: λHU = |λ/(70 - 40)|. The DI-PCT and DE-CT parameters were analyzed by Pearson/Spearman correlation analysis, respectively.All subjects were pathologically proved as lung cancer patients (including 16 squamous cell carcinoma, 8 adenocarcinoma, and 4 small cell lung cancer) by surgery or CT-guided biopsy. Interobserver reproducibility in DI-PCT (PF, AF, PI) and DE-CT (λ, λHU) were relatively good to excellent (intraclass correlation coefficient [ICC]Inter = 0.8726-0.9255, ICCInter = 0.8179-0.8842; ICCInter = 0.8881-0.9177, ICCInter = 0.9820-0.9970, ICCInter = 0.9780-0.9971, respectively). Correlation coefficient between λ and AF, and PF were as follows: 0.589 (P input CT perfusion analysis method can be applied to assess blood supply of lung cancer patients. Preliminary results demonstrated that the iodine uptake relevant parameters derived from DE-CT significantly correlated with perfusion

  11. Performance of extended and unscented Kalman filters for state and parameter estimation of a greenhouse climate model

    NARCIS (Netherlands)

    López-Cruz, I.L.; Beveren, Van P.J.M.; Mourik, Van S.; Henten, Van E.J.

    2017-01-01

    In dynamic modeling of the greenhouse climate, prediction errors are a significant issue due to uncertainties in initial state values, input variables, model parameters and model structure, all propagating in time in a nonlinear way. We investigated a data assimilation approach using two non-linear

  12. Parameter Estimates in Differential Equation Models for Chemical Kinetics

    Science.gov (United States)

    Winkel, Brian

    2011-01-01

    We discuss the need for devoting time in differential equations courses to modelling and the completion of the modelling process with efforts to estimate the parameters in the models using data. We estimate the parameters present in several differential equation models of chemical reactions of order n, where n = 0, 1, 2, and apply more general…

  13. Realistic modeling of seismic input for megacities and large urban areas

    Science.gov (United States)

    Panza, G. F.; Unesco/Iugs/Igcp Project 414 Team

    2003-04-01

    The project addressed the problem of pre-disaster orientation: hazard prediction, risk assessment, and hazard mapping, in connection with seismic activity and man-induced vibrations. The definition of realistic seismic input has been obtained from the computation of a wide set of time histories and spectral information, corresponding to possible seismotectonic scenarios for different source and structural models. The innovative modeling technique, that constitutes the common tool to the entire project, takes into account source, propagation and local site effects. This is done using first principles of physics about wave generation and propagation in complex media, and does not require to resort to convolutive approaches, that have been proven to be quite unreliable, mainly when dealing with complex geological structures, the most interesting from the practical point of view. In fact, several techniques that have been proposed to empirically estimate the site effects using observations convolved with theoretically computed signals corresponding to simplified models, supply reliable information about the site response to non-interfering seismic phases. They are not adequate in most of the real cases, when the seismic sequel is formed by several interfering waves. The availability of realistic numerical simulations enables us to reliably estimate the amplification effects even in complex geological structures, exploiting the available geotechnical, lithological, geophysical parameters, topography of the medium, tectonic, historical, palaeoseismological data, and seismotectonic models. The realistic modeling of the ground motion is a very important base of knowledge for the preparation of groundshaking scenarios that represent a valid and economic tool for the seismic microzonation. This knowledge can be very fruitfully used by civil engineers in the design of new seismo-resistant constructions and in the reinforcement of the existing built environment, and, therefore

  14. An Approach for Generating Precipitation Input for Worst-Case Flood Modelling

    Science.gov (United States)

    Felder, Guido; Weingartner, Rolf

    2015-04-01

    There is a lack of suitable methods for creating precipitation scenarios that can be used to realistically estimate peak discharges with very low probabilities. On the one hand, existing methods are methodically questionable when it comes to physical system boundaries. On the other hand, the spatio-temporal representativeness of precipitation patterns as system input is limited. In response, this study proposes a method of deriving representative spatio-temporal precipitation patterns and presents a step towards making methodically correct estimations of infrequent floods by using a worst-case approach. A Monte-Carlo rainfall-runoff model allows for the testing of a wide range of different spatio-temporal distributions of an extreme precipitation event and therefore for the generation of a hydrograph for each of these distributions. Out of these numerous hydrographs and their corresponding peak discharges, the worst-case catchment reactions on the system input can be derived. The spatio-temporal distributions leading to the highest peak discharges are identified and can eventually be used for further investigations.

  15. Four-parameter model for polarization-resolved rough-surface BRDF.

    Science.gov (United States)

    Renhorn, Ingmar G E; Hallberg, Tomas; Bergström, David; Boreman, Glenn D

    2011-01-17

    A modeling procedure is demonstrated, which allows representation of polarization-resolved BRDF data using only four parameters: the real and imaginary parts of an effective refractive index with an added parameter taking grazing incidence absorption into account and an angular-scattering parameter determined from the BRDF measurement of a chosen angle of incidence, preferably close to normal incidence. These parameters allow accurate predictions of s- and p-polarized BRDF for a painted rough surface, over three decades of variation in BRDF magnitude. To characterize any particular surface of interest, the measurements required to determine these four parameters are the directional hemispherical reflectance (DHR) for s- and p-polarized input radiation and the BRDF at a selected angle of incidence. The DHR data describes the angular and polarization dependence, as well as providing the overall normalization constraint. The resulting model conserves energy and fulfills the reciprocity criteria.

  16. Comparison of several climate indices as inputs in modelling of the Baltic Sea runoff

    Energy Technology Data Exchange (ETDEWEB)

    Hanninen, J.; Vuorinen, I. [Turku Univ. (Finland). Archipelaco Research Inst.], e-mail: jari.hanninen@utu.fi

    2012-11-01

    Using Transfer function (TF) models, we have earlier presented a chain of events between changes in the North Atlantic Oscillation (NAO) and their oceanographical and ecological consequences in the Baltic Sea. Here we tested whether other climate indices as inputs would improve TF models, and our understanding of the Baltic Sea ecosystem. Besides NAO, the predictors were the Arctic Oscillation (AO), sea-level air pressures at Iceland (SLP), and wind speeds at Hoburg (Gotland). All indices produced good TF models when the total riverine runoff to the Baltic Sea was used as a modelling basis. AO was not applicable in all study areas, showing a delay of about half a year between climate and runoff events, connected with freezing and melting time of ice and snow in the northern catchment area of the Baltic Sea. NAO appeared to be most useful modelling tool as its area of applicability was the widest of the tested indices, and the time lag between climate and runoff events was the shortest. SLP and Hoburg wind speeds showed largely same results as NAO, but with smaller areal applicability. Thus AO and NAO were both mostly contributing to the general understanding of climate control of runoff events in the Baltic Sea ecosystem. (orig.)

  17. Solar Load Inputs for USARIEM Thermal Strain Models and the Solar Radiation-Sensitive Components of the WBGT Index

    National Research Council Canada - National Science Library

    Matthew, William

    2001-01-01

    This report describes processes we have implemented to use global pyranometer-based estimates of mean radiant temperature as the common solar load input for the Scenario model, the USARIEM heat strain...

  18. Assessment of NASA's Physiographic and Meteorological Datasets as Input to HSPF and SWAT Hydrological Models

    Science.gov (United States)

    Alacron, Vladimir J.; Nigro, Joseph D.; McAnally, William H.; OHara, Charles G.; Engman, Edwin Ted; Toll, David

    2011-01-01

    This paper documents the use of simulated Moderate Resolution Imaging Spectroradiometer land use/land cover (MODIS-LULC), NASA-LIS generated precipitation and evapo-transpiration (ET), and Shuttle Radar Topography Mission (SRTM) datasets (in conjunction with standard land use, topographical and meteorological datasets) as input to hydrological models routinely used by the watershed hydrology modeling community. The study is focused in coastal watersheds in the Mississippi Gulf Coast although one of the test cases focuses in an inland watershed located in northeastern State of Mississippi, USA. The decision support tools (DSTs) into which the NASA datasets were assimilated were the Soil Water & Assessment Tool (SWAT) and the Hydrological Simulation Program FORTRAN (HSPF). These DSTs are endorsed by several US government agencies (EPA, FEMA, USGS) for water resources management strategies. These models use physiographic and meteorological data extensively. Precipitation gages and USGS gage stations in the region were used to calibrate several HSPF and SWAT model applications. Land use and topographical datasets were swapped to assess model output sensitivities. NASA-LIS meteorological data were introduced in the calibrated model applications for simulation of watershed hydrology for a time period in which no weather data were available (1997-2006). The performance of the NASA datasets in the context of hydrological modeling was assessed through comparison of measured and model-simulated hydrographs. Overall, NASA datasets were as useful as standard land use, topographical , and meteorological datasets. Moreover, NASA datasets were used for performing analyses that the standard datasets could not made possible, e.g., introduction of land use dynamics into hydrological simulations

  19. Fractional Gaussian noise-enhanced information capacity of a nonlinear neuron model with binary signal input

    Science.gov (United States)

    Gao, Feng-Yin; Kang, Yan-Mei; Chen, Xi; Chen, Guanrong

    2018-05-01

    This paper reveals the effect of fractional Gaussian noise with Hurst exponent H ∈(1 /2 ,1 ) on the information capacity of a general nonlinear neuron model with binary signal input. The fGn and its corresponding fractional Brownian motion exhibit long-range, strong-dependent increments. It extends standard Brownian motion to many types of fractional processes found in nature, such as the synaptic noise. In the paper, for the subthreshold binary signal, sufficient conditions are given based on the "forbidden interval" theorem to guarantee the occurrence of stochastic resonance, while for the suprathreshold binary signal, the simulated results show that additive fGn with Hurst exponent H ∈(1 /2 ,1 ) could increase the mutual information or bits count. The investigation indicated that the synaptic noise with the characters of long-range dependence and self-similarity might be the driving factor for the efficient encoding and decoding of the nervous system.

  20. Evaluation of globally available precipitation data products as input for water balance models

    Science.gov (United States)

    Lebrenz, H.; Bárdossy, A.

    2009-04-01

    Subject of this study is the evaluation of globally available precipitation data products, which are intended to be used as input variables for water balance models in ungauged basins. The selected data sources are a) the Global Precipitation Climatology Centre (GPCC), b) the Global Precipitation Climatology Project (GPCP) and c) the Climate Research Unit (CRU), resulting into twelve globally available data products. The data products imply different data bases, different derivation routines and varying resolutions in time and space. For validation purposes, the ground data from South Africa were screened on homogeneity and consistency by various tests and an outlier detection using multi-linear regression was performed. External Drift Kriging was subsequently applied on the ground data and the resulting precipitation arrays were compared to the different products with respect to quantity and variance.

  1. Mathematical modeling and evaluation of radionuclide transport parameters from the ANL Laboratory Analog Program

    International Nuclear Information System (INIS)

    Chen, B.C.J.; Hull, J.R.; Seitz, M.G.; Sha, W.T.; Shah, V.L.; Soo, S.L.

    1984-07-01

    Computer model simulation is required to evaluate the performance of proposed or future high-level radioactive waste geological repositories. However, the accuracy of a model in predicting the real situation depends on how well the values of the transport properties are prescribed as input parameters. Knowledge of transport parameters is therefore essential. We have modeled ANL's Experiment Analog Program which was designed to simulate long-term radwaste migration process by groundwater flowing through a high-level radioactive waste repository. Using this model and experimental measurements, we have evaluated neptunium (actinide) deposition velocity and analyzed the complex phenomena of simultaneous deposition, erosion, and reentrainment of bentonite when groundwater is flowing through a narrow crack in a basalt rock. The present modeling demonstrates that we can obtain the values of transport parameters, as added information without any additional cost, from the available measurements of laboratory analog experiments. 8 figures, 3 tables

  2. Inverse modeling for the determination of hydrogeological parameters of a two-phase system

    International Nuclear Information System (INIS)

    Finsterle, S.

    1993-02-01

    Investigations related to the disposal of radioactive wastes in Switzerland consider formations containing natural gas as potential rocks for a repository. Moreover, gas generation in the repository itself may lead to an unsaturated zone of significant extent and impact on the system's performance. The site characterization procedure requires the estimation of hydraulic properties being used as input parameters for a two-phase two-component numerical simulator. In this study, estimates of gas-related formation parameters are obtained by inverse modeling. Based on discrete observations of the system's state, model parameters can be estimated within the framework of a given conceptual model by means of optimization techniques. This study presents the theoretical background that related field data to the model parameters. A parameter estimation procedure is proposed and implemented in a computer code for automatic model calibration. This tool allows identification of key parameters affecting flow of water and gas in porous media. The inverse modeling approach is verified using data from a synthetic laboratory experiment. In addition, the Gas test performed at the Grimsel Test Site is analyzed in order to demonstrate the applicability of the proposed procedure when used with data from a real geologic environment. Estimation of hydrogeologic parameters by automatic model calibration improves the understanding of the two-phase flow processes and therefore increases the reliability of the subsequent simulation runs. (author) figs., tabs., refs

  3. Inverse modeling for the determination of hydrogeological parameters of a two-phase system

    International Nuclear Information System (INIS)

    Finsterle, S.

    1993-01-01

    Investigations related to the disposal of radioactive wastes in Switzerland are dealing with formations containing natural gas as potential host rock for a repository. Moreover, gas generation in the repository itself may lead to an unsaturated zone of significant extent and impact on the system's performance. The site characterization procedure requires the estimation of hydraulic properties being used as input parameters for a two-phase two-component numerical simulator. In this study, estimates of gas related formation parameters are obtained by inverse modeling. Based on discrete observations of the system's state, model parameters can be estimated within the framework of a given conceptual model by means of optimization techniques. This study presents the theoretical background that relates field data to the model parameters. A parameter estimation procedure is proposed and implemented in a computer code for automatic model calibration. This tool allows to identify key parameters affecting flow of water and gas in porous media. The inverse modeling approach is verified using data from a synthetic laboratory experiment. In addition, the Gastest performed at the Grimsel Test Site is analyzed in order to demonstrate the applicability of the proposed procedure when used with data from a real geologic environment. Estimation of hydrogeologic parameters by automatic model calibration improves the understanding of the two-phase flow processes and therefore increases the reliability of the subsequent simulation runs. (author) figs., tabs., 100 refs

  4. Parameter Optimisation for the Behaviour of Elastic Models over Time

    DEFF Research Database (Denmark)

    Mosegaard, Jesper

    2004-01-01

    Optimisation of parameters for elastic models is essential for comparison or finding equivalent behaviour of elastic models when parameters cannot simply be transferred or converted. This is the case with a large range of commonly used elastic models. In this paper we present a general method tha...

  5. An automatic and effective parameter optimization method for model tuning

    Directory of Open Access Journals (Sweden)

    T. Zhang

    2015-11-01

    simulation results show that the optimum combination of these parameters determined using this method is able to improve the model's overall performance by 9 %. The proposed methodology and software framework can be easily applied to other GCMs to speed up the model development process, especially regarding unavoidable comprehensive parameter tuning during the model development stage.

  6. Effect of manure vs. fertilizer inputs on productivity of forage crop models.

    Science.gov (United States)

    Annicchiarico, Giovanni; Caternolo, Giovanni; Rossi, Emanuela; Martiniello, Pasquale

    2011-06-01

    Manure produced by livestock activity is a dangerous product capable of causing serious environmental pollution. Agronomic management practices on the use of manure may transform the target from a waste to a resource product. Experiments performed on comparison of manure with standard chemical fertilizers (CF) were studied under a double cropping per year regime (alfalfa, model I; Italian ryegrass-corn, model II; barley-seed sorghum, model III; and horse-bean-silage sorghum, model IV). The total amount of manure applied in the annual forage crops of the model II, III and IV was 158, 140 and 80 m3 ha(-1), respectively. The manure applied to soil by broadcast and injection procedure provides an amount of nitrogen equal to that supplied by CF. The effect of manure applications on animal feeding production and biochemical soil characteristics was related to the models. The weather condition and manures and CF showed small interaction among treatments. The number of MFU ha(-1) of biomass crop gross product produced in autumn and spring sowing models under manure applications was 11,769, 20,525, 11,342, 21,397 in models I through IV, respectively. The reduction of MFU ha(-1) under CF ranges from 10.7% to 13.2% those of the manure models. The effect of manure on organic carbon and total nitrogen of topsoil, compared to model I, stressed the parameters as CF whose amount was higher in models II and III than model IV. In term of percentage the organic carbon and total nitrogen of model I and treatment with manure was reduced by about 18.5 and 21.9% in model II and model III and 8.8 and 6.3% in model IV, respectively. Manure management may substitute CF without reducing gross production and sustainability of cropping systems, thus allowing the opportunity to recycle the waste product for animal forage feeding.

  7. Effect of Manure vs. Fertilizer Inputs on Productivity of Forage Crop Models

    Directory of Open Access Journals (Sweden)

    Pasquale Martiniello

    2011-06-01

    Full Text Available Manure produced by livestock activity is a dangerous product capable of causing serious environmental pollution. Agronomic management practices on the use of manure may transform the target from a waste to a resource product. Experiments performed on comparison of manure with standard chemical fertilizers (CF were studied under a double cropping per year regime (alfalfa, model I; Italian ryegrass-corn, model II; barley-seed sorghum, model III; and horse-bean-silage sorghum, model IV. The total amount of manure applied in the annual forage crops of the model II, III and IV was 158, 140 and 80 m3 ha−1, respectively. The manure applied to soil by broadcast and injection procedure provides an amount of nitrogen equal to that supplied by CF. The effect of manure applications on animal feeding production and biochemical soil characteristics was related to the models. The weather condition and manures and CF showed small interaction among treatments. The number of MFU ha−1 of biomass crop gross product produced in autumn and spring sowing models under manure applications was 11,769, 20,525, 11,342, 21,397 in models I through IV, respectively. The reduction of MFU ha−1 under CF ranges from 10.7% to 13.2% those of the manure models. The effect of manure on organic carbon and total nitrogen of topsoil, compared to model I, stressed the parameters as CF whose amount was higher in models II and III than model IV. In term of percentage the organic carbon and total nitrogen of model I and treatment with manure was reduced by about 18.5 and 21.9% in model II and model III and 8.8 and 6.3% in model IV, respectively. Manure management may substitute CF without reducing gross production and sustainability of cropping systems, thus allowing the opportunity to recycle the waste product for animal forage feeding.

  8. The impact of structural error on parameter constraint in a climate model

    Science.gov (United States)

    McNeall, Doug; Williams, Jonny; Booth, Ben; Betts, Richard; Challenor, Peter; Wiltshire, Andy; Sexton, David

    2016-11-01

    Uncertainty in the simulation of the carbon cycle contributes significantly to uncertainty in the projections of future climate change. We use observations of forest fraction to constrain carbon cycle and land surface input parameters of the global climate model FAMOUS, in the presence of an uncertain structural error. Using an ensemble of climate model runs to build a computationally cheap statistical proxy (emulator) of the climate model, we use history matching to rule out input parameter settings where the corresponding climate model output is judged sufficiently different from observations, even allowing for uncertainty. Regions of parameter space where FAMOUS best simulates the Amazon forest fraction are incompatible with the regions where FAMOUS best simulates other forests, indicating a structural error in the model. We use the emulator to simulate the forest fraction at the best set of parameters implied by matching the model to the Amazon, Central African, South East Asian, and North American forests in turn. We can find parameters that lead to a realistic forest fraction in the Amazon, but that using the Amazon alone to tune the simulator would result in a significant overestimate of forest fraction in the other forests. Conversely, using the other forests to tune the simulator leads to a larger underestimate of the Amazon forest fraction. We use sensitivity analysis to find the parameters which have the most impact on simulator output and perform a history-matching exercise using credible estimates for simulator discrepancy and observational uncertainty terms. We are unable to constrain the parameters individually, but we rule out just under half of joint parameter space as being incompatible with forest observations. We discuss the possible sources of the discrepancy in the simulated Amazon, including missing processes in the land surface component and a bias in the climatology of the Amazon.

  9. Identifying the connective strength between model parameters and performance criteria

    Directory of Open Access Journals (Sweden)

    B. Guse

    2017-11-01

    Full Text Available In hydrological models, parameters are used to represent the time-invariant characteristics of catchments and to capture different aspects of hydrological response. Hence, model parameters need to be identified based on their role in controlling the hydrological behaviour. For the identification of meaningful parameter values, multiple and complementary performance criteria are used that compare modelled and measured discharge time series. The reliability of the identification of hydrologically meaningful model parameter values depends on how distinctly a model parameter can be assigned to one of the performance criteria. To investigate this, we introduce the new concept of connective strength between model parameters and performance criteria. The connective strength assesses the intensity in the interrelationship between model parameters and performance criteria in a bijective way. In our analysis of connective strength, model simulations are carried out based on a latin hypercube sampling. Ten performance criteria including Nash–Sutcliffe efficiency (NSE, Kling–Gupta efficiency (KGE and its three components (alpha, beta and r as well as RSR (the ratio of the root mean square error to the standard deviation for different segments of the flow duration curve (FDC are calculated. With a joint analysis of two regression tree (RT approaches, we derive how a model parameter is connected to different performance criteria. At first, RTs are constructed using each performance criterion as the target variable to detect the most relevant model parameters for each performance criterion. Secondly, RTs are constructed using each parameter as the target variable to detect which performance criteria are impacted by changes in the values of one distinct model parameter. Based on this, appropriate performance criteria are identified for each model parameter. In this study, a high bijective connective strength between model parameters and performance criteria

  10. Quantifying dynamic contrast-enhanced MRI of the knee in children with juvenile rheumatoid arthritis using an arterial input function (AIF) extracted from popliteal artery enhancement, and the effect of the choice of the AIF on the kinetic parameters.

    Science.gov (United States)

    Workie, Dagnachew W; Dardzinski, Bernard J

    2005-09-01

    Quantification of dynamic contrast-enhanced (DCE) MRI based on pharmacokinetic modeling requires specification of the arterial input function (AIF). A full representation of the plasma concentration data, including the initial rise and decay parts, considering the delay and dispersion of the bolus contrast is important. This work deals with modeling of DCE-MRI data from the knees of children with a history of juvenile rheumatoid arthritis (JRA) by using an AIF extracted from the signal enhancement data from the nearby popliteal artery. Three models for the AIFs were considered: a triexponential (AIF1), a gamma-variate plus a biexponential (AIF2), and a biexponential (AIF3). The pharmacokinetic parameters obtained from the model were Ktrans', kep, and V'p. The results from AIF1 and AIF2 showed no statistically significant difference. However, some statistically significant differences were seen with AIF3, particularly for parameters Ktrans' and V'p in the synovium (SNVM). These results suggest the importance of obtaining an appropriate AIF representation in pharmacokinetic modeling of JRA. Specifically, the initial rising part of the AIF should be incorporated for optimal pharmacokinetic modeling results. The pharmacokinetic parameters (mean+/-SD) derived from AIF1, using the average plasma concentration data, were as follows: SNVM Ktrans'(min-1)=0.52+/-0.34, kep(min-1)=0.71+/-0.39, and V'p=0.33+/-0.16, and for the distal femoral physis (DFP) Ktrans'(min-1)=1.83+/-1.78, kep(min-1)=2.65+/-1.80, and V'p=0.46+/-0.31. The pharmacokinetic parameters in the SNVM may be useful for investigating activity and therapeutic efficacy in studies of JRA. Longitudinal studies are necessary to find or demonstrate the parameter that is more sensitive to disease activity. Copyright (c) 2005 Wiley-Liss, Inc.

  11. Errors in estimation of the input signal for integrate-and-fire neuronal models

    Czech Academy of Sciences Publication Activity Database

    Bibbona, E.; Lánský, Petr; Sacerdote, L.; Sirovich, R.

    2008-01-01

    Roč. 78, č. 1 (2008), s. 1-10 ISSN 1539-3755 R&D Projects: GA MŠk(CZ) LC554; GA AV ČR(CZ) 1ET400110401 Grant - others:EC(XE) MIUR PRIN 2005 Institutional research plan: CEZ:AV0Z50110509 Keywords : parameter estimation * stochastic neuronal model Subject RIV: BO - Biophysics Impact factor: 2.508, year: 2008 http://link.aps.org/abstract/PRE/v78/e011918

  12. Resuspension parameters for TRAC dispersion model

    International Nuclear Information System (INIS)

    Langer, G.

    1987-01-01

    Resuspension factors for the wind erosion of soil contaminated with plutonium are necessary to run the Rocky Flats Plant Terrain Responsive Atmospheric Code (TRAC). The model predicts the dispersion and resulting population dose due to accidental plutonium releases

  13. On Approaches to Analyze the Sensitivity of Simulated Hydrologic Fluxes to Model Parameters in the Community Land Model

    Directory of Open Access Journals (Sweden)

    Jie Bao

    2015-12-01

    Full Text Available Effective sensitivity analysis approaches are needed to identify important parameters or factors and their uncertainties in complex Earth system models composed of multi-phase multi-component phenomena and multiple biogeophysical-biogeochemical processes. In this study, the impacts of 10 hydrologic parameters in the Community Land Model on simulations of runoff and latent heat flux are evaluated using data from a watershed. Different metrics, including residual statistics, the Nash–Sutcliffe coefficient, and log mean square error, are used as alternative measures of the deviations between the simulated and field observed values. Four sensitivity analysis (SA approaches, including analysis of variance based on the generalized linear model, generalized cross validation based on the multivariate adaptive regression splines model, standardized regression coefficients based on a linear regression model, and analysis of variance based on support vector machine, are investigated. Results suggest that these approaches show consistent measurement of the impacts of major hydrologic parameters on response variables, but with differences in the relative contributions, particularly for the secondary parameters. The convergence behaviors of the SA with respect to the number of sampling points are also examined with different combinations of input parameter sets and output response variables and their alternative metrics. This study helps identify the optimal SA approach, provides guidance for the calibration of the Community Land Model parameters to improve the model simulations of land surface fluxes, and approximates the magnitudes to be adjusted in the parameter values during parametric model optimization.

  14. Modeling and Analysis of CNC Milling Process Parameters on Al3030 based Composite

    Science.gov (United States)

    Gupta, Anand; Soni, P. K.; Krishna, C. M.

    2018-04-01

    The machining of Al3030 based composites on Computer Numerical Control (CNC) high speed milling machine have assumed importance because of their wide application in aerospace industries, marine industries and automotive industries etc. Industries mainly focus on surface irregularities; material removal rate (MRR) and tool wear rate (TWR) which usually depends on input process parameters namely cutting speed, feed in mm/min, depth of cut and step over ratio. Many researchers have carried out researches in this area but very few have taken step over ratio or radial depth of cut also as one of the input variables. In this research work, the study of characteristics of Al3030 is carried out at high speed CNC milling machine over the speed range of 3000 to 5000 r.p.m. Step over ratio, depth of cut and feed rate are other input variables taken into consideration in this research work. A total nine experiments are conducted according to Taguchi L9 orthogonal array. The machining is carried out on high speed CNC milling machine using flat end mill of diameter 10mm. Flatness, MRR and TWR are taken as output parameters. Flatness has been measured using portable Coordinate Measuring Machine (CMM). Linear regression models have been developed using Minitab 18 software and result are validated by conducting selected additional set of experiments. Selection of input process parameters in order to get best machining outputs is the key contributions of this research work.

  15. Summary of the DREAM8 Parameter Estimation Challenge: Toward Parameter Identification for Whole-Cell Models.

    Directory of Open Access Journals (Sweden)

    Jonathan R Karr

    2015-05-01

    Full Text Available Whole-cell models that explicitly represent all cellular components at the molecular level have the potential to predict phenotype from genotype. However, even for simple bacteria, whole-cell models will contain thousands of parameters, many of which are poorly characterized or unknown. New algorithms are needed to estimate these parameters and enable researchers to build increasingly comprehensive models. We organized the Dialogue for Reverse Engineering Assessments and Methods (DREAM 8 Whole-Cell Parameter Estimation Challenge to develop new parameter estimation algorithms for whole-cell models. We asked participants to identify a subset of parameters of a whole-cell model given the model's structure and in silico "experimental" data. Here we describe the challenge, the best performing methods, and new insights into the identifiability of whole-cell models. We also describe several valuable lessons we learned toward improving future challenges. Going forward, we believe that collaborative efforts supported by inexpensive cloud computing have the potential to solve whole-cell model parameter estimation.

  16. An extended TRANSCAR model including ionospheric convection: simulation of EISCAT observations using inputs from AMIE

    Directory of Open Access Journals (Sweden)

    P.-L. Blelly

    2005-02-01

    Full Text Available The TRANSCAR ionospheric model was extended to account for the convection of the magnetic field lines in the auroral and polar ionosphere. A mixed Eulerian-Lagrangian 13-moment approach was used to describe the dynamics of an ionospheric plasma tube. In the present study, one focuses on large scale transports in the polar ionosphere. The model was used to simulate a 35-h period of EISCAT-UHF observations on 16-17 February 1993. The first day was magnetically quiet, and characterized by elevated electron concentrations: the diurnal F2 layer reached as much as 1012m-3, which is unusual for a winter and moderate solar activity (F10.7=130 period. An intense geomagnetic event occurred on the second day, seen in the data as a strong intensification of the ionosphere convection velocities in the early afternoon (with the northward electric field reaching 150mVm-1 and corresponding frictional heating of the ions up to 2500K. The simulation used time-dependent AMIE outputs to infer flux-tube transports in the polar region, and to provide magnetospheric particle and energy inputs to the ionosphere. The overall very good agreement, obtained between the model and the observations, demonstrates the high ability of the extended TRANSCAR model for quantitative modelling of the high-latitude ionosphere; however, some differences are found which are attributed to the precipitation of electrons with very low energy. All these results are finally discussed in the frame of modelling the auroral ionosphere with space weather applications in mind.

  17. An extended TRANSCAR model including ionospheric convection: simulation of EISCAT observations using inputs from AMIE

    Directory of Open Access Journals (Sweden)

    P.-L. Blelly

    2005-02-01

    Full Text Available The TRANSCAR ionospheric model was extended to account for the convection of the magnetic field lines in the auroral and polar ionosphere. A mixed Eulerian-Lagrangian 13-moment approach was used to describe the dynamics of an ionospheric plasma tube. In the present study, one focuses on large scale transports in the polar ionosphere. The model was used to simulate a 35-h period of EISCAT-UHF observations on 16-17 February 1993. The first day was magnetically quiet, and characterized by elevated electron concentrations: the diurnal F2 layer reached as much as 1012m-3, which is unusual for a winter and moderate solar activity (F10.7=130 period. An intense geomagnetic event occurred on the second day, seen in the data as a strong intensification of the ionosphere convection velocities in the early afternoon (with the northward electric field reaching 150mVm-1 and corresponding frictional heating of the ions up to 2500K. The simulation used time-dependent AMIE outputs to infer flux-tube transports in the polar region, and to provide magnetospheric particle and energy inputs to the ionosphere. The overall very good agreement, obtained between the model and the observations, demonstrates the high ability of the extended TRANSCAR model for quantitative modelling of the high-latitude ionosphere; however, some differences are found which are attributed to the precipitation of electrons with very low energy. All these results are finally discussed in the frame of modelling the auroral ionosphere with space weather applications in mind.

  18. A sensitivity analysis of a personalized pulse wave propagation model for arteriovenous fistula surgery. Part A: Identification of most influential model parameters.

    Science.gov (United States)

    Huberts, W; de Jonge, C; van der Linden, W P M; Inda, M A; Tordoir, J H M; van de Vosse, F N; Bosboom, E M H

    2013-06-01

    Previously, a pulse wave propagation model was developed that has potential in supporting decision-making in arteriovenous fistula (AVF) surgery for hemodialysis. To adapt the wave propagation model to personalized conditions, patient-specific input parameters should be available. In clinics, the number of measurable input parameters is limited which results in sparse datasets. In addition, patient data are compromised with uncertainty. These uncertain and incomplete input datasets will result in model output uncertainties. By means of a sensitivity analysis the propagation of input uncertainties into output uncertainty can be studied which can give directions for input measurement improvement. In this study, a computational framework has been developed to perform such a sensitivity analysis with a variance-based method and Monte Carlo simulations. The framework was used to determine the influential parameters of our pulse wave propagation model applied to AVF surgery, with respect to parameter prioritization and parameter fixing. With this we were able to determine the model parameters that have the largest influence on the predicted mean brachial flow and systolic radial artery pressure after AVF surgery. Of all 73 parameters 51 could be fixed within their measurement uncertainty interval without significantly influencing the output, while 16 parameters importantly influence the output uncertainty. Measurement accuracy improvement should thus focus on these 16 influential parameters. The most rewarding are measurement improvements of the following parameters: the mean aortic flow, the aortic windkessel resistance, the parameters associated with the smallest arterial or venous diameters of the AVF in- and outflow tract and the radial artery windkessel compliance. Copyright © 2012 IPEM. Published by Elsevier Ltd. All rights reserved.

  19. Modeling Influenza Transmission Using Environmental Parameters

    Science.gov (United States)

    Soebiyanto, Radina P.; Kiang, Richard K.

    2010-01-01

    Influenza is an acute viral respiratory disease that has significant mortality, morbidity and economic burden worldwide. It infects approximately 5-15% of the world population, and causes 250,000 500,000 deaths each year. The role of environments on influenza is often drawn upon the latitude variability of influenza seasonality pattern. In regions with temperate climate, influenza epidemics exhibit clear seasonal pattern that peak during winter months, but it is not as evident in the tropics. Toward this end, we developed mathematical model and forecasting capabilities for influenza in regions characterized by warm climate Hong Kong (China) and Maricopa County (Arizona, USA). The best model for Hong Kong uses Land Surface Temperature (LST), precipitation and relative humidity as its covariates. Whereas for Maricopa County, we found that weekly influenza cases can be best modelled using mean air temperature as its covariates. Our forecasts can further guides public health organizations in targeting influenza prevention and control measures such as vaccination.

  20. Edge Modeling by Two Blur Parameters in Varying Contrasts.

    Science.gov (United States)

    Seo, Suyoung

    2018-06-01

    This paper presents a method of modeling edge profiles with two blur parameters, and estimating and predicting those edge parameters with varying brightness combinations and camera-to-object distances (COD). First, the validity of the edge model is proven mathematically. Then, it is proven experimentally with edges from a set of images captured for specifically designed target sheets and with edges from natural images. Estimation of the two blur parameters for each observed edge profile is performed with a brute-force method to find parameters that produce global minimum errors. Then, using the estimated blur parameters, actual blur parameters of edges with arbitrary brightness combinations are predicted using a surface interpolation method (i.e., kriging). The predicted surfaces show that the two blur parameters of the proposed edge model depend on both dark-side edge brightness and light-side edge brightness following a certain global trend. This is similar across varying CODs. The proposed edge model is compared with a one-blur parameter edge model using experiments of the root mean squared error for fitting the edge models to each observed edge profile. The comparison results suggest that the proposed edge model has superiority over the one-blur parameter edge model in most cases where edges have varying brightness combinations.

  1. A new chance-constrained DEA model with birandom input and output data

    OpenAIRE

    Tavana, M.; Shiraz, R. K.; Hatami-Marbini, A.

    2013-01-01

    The purpose of conventional Data Envelopment Analysis (DEA) is to evaluate the performance of a set of firms or Decision-Making Units using deterministic input and output data. However, the input and output data in the real-life performance evaluation problems are often stochastic. The stochastic input and output data in DEA can be represented with random variables. Several methods have been proposed to deal with the random input and output data in DEA. In this paper, we propose a new chance-...

  2. Dynamics in the Parameter Space of a Neuron Model

    Science.gov (United States)

    Paulo, C. Rech

    2012-06-01

    Some two-dimensional parameter-space diagrams are numerically obtained by considering the largest Lyapunov exponent for a four-dimensional thirteen-parameter Hindmarsh—Rose neuron model. Several different parameter planes are considered, and it is shown that depending on the combination of parameters, a typical scenario can be preserved: for some choice of two parameters, the parameter plane presents a comb-shaped chaotic region embedded in a large periodic region. It is also shown that there exist regions close to these comb-shaped chaotic regions, separated by the comb teeth, organizing themselves in period-adding bifurcation cascades.

  3. Advances in Modelling, System Identification and Parameter ...

    Indian Academy of Sciences (India)

    Authors show, using numerical simulation for two system functions, the improvement in percentage normalized ... of nonlinear systems. The approach is to use multiple linearizing models fitted along the operating trajectories. ... over emphasized in the light of present day high level of research activity in the field of aerospace ...

  4. Predicting musically induced emotions from physiological inputs: linear and neural network models.

    Science.gov (United States)

    Russo, Frank A; Vempala, Naresh N; Sandstrom, Gillian M

    2013-01-01

    Listening to music often leads to physiological responses. Do these physiological responses contain sufficient information to infer emotion induced in the listener? The current study explores this question by attempting to predict judgments of "felt" emotion from physiological responses alone using linear and neural network models. We measured five channels of peripheral physiology from 20 participants-heart rate (HR), respiration, galvanic skin response, and activity in corrugator supercilii and zygomaticus major facial muscles. Using valence and arousal (VA) dimensions, participants rated their felt emotion after listening to each of 12 classical music excerpts. After extracting features from the five channels, we examined their correlation with VA ratings, and then performed multiple linear regression to see if a linear relationship between the physiological responses could account for the ratings. Although linear models predicted a significant amount of variance in arousal ratings, they were unable to do so with valence ratings. We then used a neural network to provide a non-linear account of the ratings. The network was trained on the mean ratings of eight of the 12 excerpts and tested on the remainder. Performance of the neural network confirms that physiological responses alone can be used to predict musically induced emotion. The non-linear model derived from the neural network was more accurate than linear models derived from multiple linear regression, particularly along the valence dimension. A secondary analysis allowed us to quantify the relative contributions of inputs to the non-linear model. The study represents a novel approach to understanding the complex relationship between physiological responses and musically induced emotion.

  5. Predicting musically induced emotions from physiological inputs: Linear and neural network models

    Directory of Open Access Journals (Sweden)

    Frank A. Russo

    2013-08-01

    Full Text Available Listening to music often leads to physiological responses. Do these physiological responses contain sufficient information to infer emotion induced in the listener? The current study explores this question by attempting to predict judgments of 'felt' emotion from physiological responses alone using linear and neural network models. We measured five channels of peripheral physiology from 20 participants – heart rate, respiration, galvanic skin response, and activity in corrugator supercilii and zygomaticus major facial muscles. Using valence and arousal (VA dimensions, participants rated their felt emotion after listening to each of 12 classical music excerpts. After extracting features from the five channels, we examined their correlation with VA ratings, and then performed multiple linear regression to see if a linear relationship between the physiological responses could account for the ratings. Although linear models predicted a significant amount of variance in arousal ratings, they were unable to do so with valence ratings. We then used a neural network to provide a nonlinear account of the ratings. The network was trained on the mean ratings of eight of the 12 excerpts and tested on the remainder. Performance of the neural network confirms that physiological responses alone can be used to predict musically induced emotion. The nonlinear model derived from the neural network was more accurate than linear models derived from multiple linear regression, particularly along the valence dimension. A secondary analysis allowed us to quantify the relative contributions of inputs to the nonlinear model. The study represents a novel approach to understanding the complex relationship between physiological responses and musically induced emotion.

  6. "Updates to Model Algorithms & Inputs for the Biogenic Emissions Inventory System (BEIS) Model"

    Science.gov (United States)

    We have developed new canopy emission algorithms and land use data for BEIS. Simulations with BEIS v3.4 and these updates in CMAQ v5.0.2 are compared these changes to the Model of Emissions of Gases and Aerosols from Nature (MEGAN) and evaluated the simulations against observatio...

  7. Nonlinear System Identification Using Quasi-ARX RBFN Models with a Parameter-Classified Scheme

    Directory of Open Access Journals (Sweden)

    Lan Wang

    2017-01-01

    Full Text Available Quasi-linear autoregressive with exogenous inputs (Quasi-ARX models have received considerable attention for their usefulness in nonlinear system identification and control. In this paper, identification methods of quasi-ARX type models are reviewed and categorized in three main groups, and a two-step learning approach is proposed as an extension of the parameter-classified methods to identify the quasi-ARX radial basis function network (RBFN model. Firstly, a clustering method is utilized to provide statistical properties of the dataset for determining the parameters nonlinear to the model, which are interpreted meaningfully in the sense of interpolation parameters of a local linear model. Secondly, support vector regression is used to estimate the parameters linear to the model; meanwhile, an explicit kernel mapping is given in terms of the nonlinear parameter identification procedure, in which the model is transformed from the nonlinear-in-nature to the linear-in-parameter. Numerical and real cases are carried out finally to demonstrate the effectiveness and generalization ability of the proposed method.

  8. Categorical Inputs, Sensitivity Analysis, Optimization and Importance Tempering with tgp Version 2, an R Package for Treed Gaussian Process Models

    Directory of Open Access Journals (Sweden)

    Robert B. Gramacy

    2010-02-01

    Full Text Available This document describes the new features in version 2.x of the tgp package for R, implementing treed Gaussian process (GP models. The topics covered include methods for dealing with categorical inputs and excluding inputs from the tree or GP part of the model; fully Bayesian sensitivity analysis for inputs/covariates; sequential optimization of black-box functions; and a new Monte Carlo method for inference in multi-modal posterior distributions that combines simulated tempering and importance sampling. These additions extend the functionality of tgp across all models in the hierarchy: from Bayesian linear models, to classification and regression trees (CART, to treed Gaussian processes with jumps to the limiting linear model. It is assumed that the reader is familiar with the baseline functionality of the package, outlined in the first vignette (Gramacy 2007.

  9. Land and Water Use Characteristics and Human Health Input Parameters for use in Environmental Dosimetry and Risk Assessments at the Savannah River Site. 2016 Update

    Energy Technology Data Exchange (ETDEWEB)

    Jannik, G. Tim [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Hartman, Larry [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Stagich, Brooke [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-09-26

    Operations at the Savannah River Site (SRS) result in releases of small amounts of radioactive materials to the atmosphere and to the Savannah River. For regulatory compliance purposes, potential offsite radiological doses are estimated annually using computer models that follow U.S. Nuclear Regulatory Commission (NRC) regulatory guides. Within the regulatory guides, default values are provided for many of the dose model parameters, but the use of applicant site-specific values is encouraged. Detailed surveys of land-use and water-use parameters were conducted in 1991 and 2010. They are being updated in this report. These parameters include local characteristics of meat, milk and vegetable production; river recreational activities; and meat, milk and vegetable consumption rates, as well as other human usage parameters required in the SRS dosimetry models. In addition, the preferred elemental bioaccumulation factors and transfer factors (to be used in human health exposure calculations at SRS) are documented. The intent of this report is to establish a standardized source for these parameters that is up to date with existing data, and that is maintained via review of future-issued national references (to evaluate the need for changes as new information is released). These reviews will continue to be added to this document by revision.

  10. Land and Water Use Characteristics and Human Health Input Parameters for use in Environmental Dosimetry and Risk Assessments at the Savannah River Site 2017 Update

    Energy Technology Data Exchange (ETDEWEB)

    Jannik, T. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Stagich, B. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-05-25

    Operations at the Savannah River Site (SRS) result in releases of relatively small amounts of radioactive materials to the atmosphere and to the Savannah River. For regulatory compliance purposes, potential offsite radiological doses are estimated annually using computer models that follow U.S. Nuclear Regulatory Commission (NRC) regulatory guides. Within the regulatory guides, default values are provided for many of the dose model parameters, but the use of site-specific values is encouraged. Detailed surveys of land-use and water-use parameters were conducted in 1991, 2008, 2010, and 2016 and are being concurred with or updated in this report. These parameters include local characteristics of meat, milk, and vegetable production; river recreational activities; and meat, milk, and vegetable consumption rates, as well as other human usage parameters required in the SRS dosimetry models. In addition, the preferred elemental bioaccumulation factors and transfer factors (to be used in human health exposure calculations at SRS) are documented. The intent of this report is to establish a standardized source for these parameters that is up to date with existing data, and that is maintained via review of future-issued national references (to evaluate the need for changes as new information is released). These reviews will continue to be added to this document by revision.

  11. Modeling imbalanced economic recovery following a natural disaster using input-output analysis.

    Science.gov (United States)

    Li, Jun; Crawford-Brown, Douglas; Syddall, Mark; Guan, Dabo

    2013-10-01

    Input-output analysis is frequently used in studies of large-scale weather-related (e.g., Hurricanes and flooding) disruption of a regional economy. The economy after a sudden catastrophe shows a multitude of imbalances with respect to demand and production and may take months or years to recover. However, there is no consensus about how the economy recovers. This article presents a theoretical route map for imbalanced economic recovery called dynamic inequalities. Subsequently, it is applied to a hypothetical postdisaster economic scenario of flooding in London around the year 2020 to assess the influence of future shocks to a regional economy and suggest adaptation measures. Economic projections are produced by a macro econometric model and used as baseline conditions. The results suggest that London's economy would recover over approximately 70 months by applying a proportional rationing scheme under the assumption of initial 50% labor loss (with full recovery in six months), 40% initial loss to service sectors, and 10-30% initial loss to other sectors. The results also suggest that imbalance will be the norm during the postdisaster period of economic recovery even though balance may occur temporarily. Model sensitivity analysis suggests that a proportional rationing scheme may be an effective strategy to apply during postdisaster economic reconstruction, and that policies in transportation recovery and in health care are essential for effective postdisaster economic recovery. © 2013 Society for Risk Analysis.

  12. The efficiency of the agricultural sector in Poland in the light output-input model1

    Directory of Open Access Journals (Sweden)

    Czyżewski Andrzej

    2015-05-01

    Full Text Available The study turns attention to the use of the input-output model (account of interbranch flows in macroeconomic assessments of the effectiveness of the agricultural sector. In the introductory part the essence of the account of interbranch flows has been specified, pointing to its historical origin and place in the economic theory, and the morphological structure of the individual parts (quarters of the model has been presented. Then the study discusses the application of the account of interbranch flows in macroeconomic assessments of the effectiveness of the agricultural sector, defining and characterizing a number of indicators which allow to conclude on the effectiveness of the agricultural sector on the basis of the account of interbranch flows. The last, empirical part of the study assesses the effectiveness of the agricultural sector in Poland on the basis of interbranch flows statistics for the years 2000 and 2005. The analyses allowed to demonstrate increased efficiency of the agricultural sector in Poland after Poland joined the EU, and also to say that the account of interbranch flows is an important tool enabling comprehensive assessment of the effectiveness of the agricultural sector in the macro-scale, through the prism of the effect - disbursement, which accounts for its exceptional suitability in this kind of analyses.

  13. Modeling uncertainties in workforce disruptions from influenza pandemics using dynamic input-output analysis.

    Science.gov (United States)

    El Haimar, Amine; Santos, Joost R

    2014-03-01

    Influenza pandemic is a serious disaster that can pose significant disruptions to the workforce and associated economic sectors. This article examines the impact of influenza pandemic on workforce availability within an interdependent set of economic sectors. We introduce a simulation model based on the dynamic input-output model to capture the propagation of pandemic consequences through the National Capital Region (NCR). The analysis conducted in this article is based on the 2009 H1N1 pandemic data. Two metrics were used to assess the impacts of the influenza pandemic on the economic sectors: (i) inoperability, which measures the percentage gap between the as-planned output and the actual output of a sector, and (ii) economic loss, which quantifies the associated monetary value of the degraded output. The inoperability and economic loss metrics generate two different rankings of the critical economic sectors. Results show that most of the critical sectors in terms of inoperability are sectors that are related to hospitals and health-care providers. On the other hand, most of the sectors that are critically ranked in terms of economic loss are sectors with significant total production outputs in the NCR such as federal government agencies. Therefore, policy recommendations relating to potential mitigation and recovery strategies should take into account the balance between the inoperability and economic loss metrics. © 2013 Society for Risk Analysis.

  14. Modelling Implicit Communication in Multi-Agent Systems with Hybrid Input/Output Automata

    Directory of Open Access Journals (Sweden)

    Marta Capiluppi

    2012-10-01

    Full Text Available We propose an extension of Hybrid I/O Automata (HIOAs to model agent systems and their implicit communication through perturbation of the environment, like localization of objects or radio signals diffusion and detection. To this end we decided to specialize some variables of the HIOAs whose values are functions both of time and space. We call them world variables. Basically they are treated similarly to the other variables of HIOAs, but they have the function of representing the interaction of each automaton with the surrounding environment, hence they can be output, input or internal variables. Since these special variables have the role of simulating implicit communication, their dynamics are specified both in time and space, because they model the perturbations induced by the agent to the environment, and the perturbations of the environment as perceived by the agent. Parallel composition of world variables is slightly different from parallel composition of the other variables, since their signals are summed. The theory is illustrated through a simple example of agents systems.

  15. A simulation of water pollution model parameter estimation

    Science.gov (United States)

    Kibler, J. F.

    1976-01-01

    A parameter estimation procedure for a water pollution transport model is elaborated. A two-dimensional instantaneous-release shear-diffusion model serves as representative of a simple transport process. Pollution concentration levels are arrived at via modeling of a remote-sensing system. The remote-sensed data are simulated by adding Gaussian noise to the concentration level values generated via the transport model. Model parameters are estimated from the simulated data using a least-squares batch processor. Resolution, sensor array size, and number and location of sensor readings can be found from the accuracies of the parameter estimates.

  16. Short-Term Solar Irradiance Forecasting Model Based on Artificial Neural Network Using Statistical Feature Parameters

    Directory of Open Access Journals (Sweden)

    Hongshan Zhao

    2012-05-01

    Full Text Available Short-term solar irradiance forecasting (STSIF is of great significance for the optimal operation and power predication of grid-connected photovoltaic (PV plants. However, STSIF is very complex to handle due to the random and nonlinear characteristics of solar irradiance under changeable weather conditions. Artificial Neural Network (ANN is suitable for STSIF modeling and many research works on this topic are presented, but the conciseness and robustness of the existing models still need to be improved. After discussing the relation between weather variations and irradiance, the characteristics of the statistical feature parameters of irradiance under different weather conditions are figured out. A novel ANN model using statistical feature parameters (ANN-SFP for STSIF is proposed in this paper. The input vector is reconstructed with several statistical feature parameters of irradiance and ambient temperature. Thus sufficient information can be effectively extracted from relatively few inputs and the model complexity is reduced. The model structure is determined by cross-validation (CV, and the Levenberg-Marquardt algorithm (LMA is used for the network training. Simulations are carried out to validate and compare the proposed model with the conventional ANN model using historical data series (ANN-HDS, and the results indicated that the forecast accuracy is obviously improved under variable weather conditions.

  17. Parameter identification of a BWR nuclear power plant model for use in optimal control

    International Nuclear Information System (INIS)

    Volf, K.

    1976-02-01

    The problem being considered is the modeling of a nuclear power plant for the development of an optimal control system of the plant. Current system identification concepts, combining input/output information with a-priori structural information are employed. Two of the known parameter identification methods i.e., a least squares method and a maximum likelihood technique, are studied as ways of parameter identification from measurement data. A low order state variable stochastic model of a BWR nuclear power plant is presented as an application of this approach. The model consists of a deterministic and a noise part. The deterministic part is formed by simplified modeling of the major plant dynamic phenomena. The moise part models the effects of input random disturbances to the deterministic part and additive measurement noise. Most of the model parameters are assumed to be initially unknown. They are identified using measurement data records. A detailed high order digital computer simulation is used to simulate plant dynamic behaviour since it is not conceivable for experimentation of this kind to be performed on the real nuclear power plant. The identification task consists in adapting the performance of the simple model to the data acquired from this plant simulation ensuring the applicability of the techniques to measurement data acquired directly from the plant. (orig.) [de

  18. Objective Tuning of Model Parameters in CAM5 Across Different Spatial Resolutions

    Science.gov (United States)

    Bulaevskaya, V.; Lucas, D. D.

    2014-12-01

    Parameterizations of physical processes in climate models are highly dependent on the spatial and temporal resolution and must be tuned for each resolution under consideration. At high spatial resolutions, objective methods for parameter tuning are computationally prohibitive. Our work has focused on calibrating parameters in the Community Atmosphere Model 5 (CAM5) for three spatial resolutions: 1, 2, and 4 degrees. Using perturbed-parameter ensembles and uncertainty quantification methodology, we have identified input parameters that minimize discrepancies of energy fluxes simulated by CAM5 across the three resolutions and with respect to satellite observations. We are also beginning to exploit the parameter-resolution relationships to objectively tune parameters in a high-resolution version of CAM5 by leveraging cheaper, low-resolution simulations and statistical models. We will present our approach to multi-resolution climate model parameter tuning, as well as the key findings. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344 and was supported from the DOE Office of Science through the Scientific Discovery Through Advanced Computing (SciDAC) project on Multiscale Methods for Accurate, Efficient, and Scale-Aware Models of the Earth System.

  19. Lumped parameter models for the interpretation of environmental tracer data

    International Nuclear Information System (INIS)

    Maloszewski, P.; Zuber, A.

    1996-01-01

    Principles of the lumped-parameter approach to the interpretation of environmental tracer data are given. The following models are considered: the piston flow model (PFM), exponential flow model (EM), linear model (LM), combined piston flow and exponential flow model (EPM), combined linear flow and piston flow model (LPM), and dispersion model (DM). The applicability of these models for the interpretation of different tracer data is discussed for a steady state flow approximation. Case studies are given to exemplify the applicability of the lumped-parameter approach. Description of a user-friendly computer program is given. (author). 68 refs, 25 figs, 4 tabs

  20. Lumped parameter models for the interpretation of environmental tracer data

    Energy Technology Data Exchange (ETDEWEB)

    Maloszewski, P [GSF-Inst. for Hydrology, Oberschleissheim (Germany); Zuber, A [Institute of Nuclear Physics, Cracow (Poland)

    1996-10-01

    Principles of the lumped-parameter approach to the interpretation of environmental tracer data are given. The following models are considered: the piston flow model (PFM), exponential flow model (EM), linear model (LM), combined piston flow and exponential flow model (EPM), combined linear flow and piston flow model (LPM), and dispersion model (DM). The applicability of these models for the interpretation of different tracer data is discussed for a steady state flow approximation. Case studies are given to exemplify the applicability of the lumped-parameter approach. Description of a user-friendly computer program is given. (author). 68 refs, 25 figs, 4 tabs.

  1. PERMODELAN INDEKS HARGA KONSUMEN INDONESIA DENGAN MENGGUNAKAN MODEL INTERVENSI MULTI INPUT

    KAUST Repository

    Novianti, Putri Wikie; Suhartono, Suhartono

    2017-01-01

    -searches that have been done are only contain of an intervention with single input, ei-ther step or pulse function. Multi input intervention was used in Indonesia CPI case because there are some events which are expected effecting CPI. Based on the result, those

  2. Evaluating the effects of model structure and meteorological input data on runoff modelling in an alpine headwater basin

    Science.gov (United States)

    Schattan, Paul; Bellinger, Johannes; Förster, Kristian; Schöber, Johannes; Huttenlau, Matthias; Kirnbauer, Robert; Achleitner, Stefan

    2017-04-01

    Modelling water resources in snow-dominated mountainous catchments is challenging due to both, short concentration times and a highly variable contribution of snow melt in space and time from complex terrain. A number of model setups exist ranging from physically based models to conceptional models which do not attempt to represent the natural processes in a physically meaningful way. Within the flood forecasting system for the Tyrolean Inn River two serially linked hydrological models with differing process representation are used. Non- glacierized catchments are modelled by a semi-distributed, water balance model (HQsim) based on the HRU-approach. A fully-distributed energy and mass balance model (SES), purpose-built for snow- and icemelt, is used for highly glacierized headwater catchments. Previous work revealed uncertainties and limitations within the models' structures regarding (i) the representation of snow processes in HQsim, (ii) the runoff routing of SES, and (iii) the spatial resolution of the meteorological input data in both models. To overcome these limitations, a "strengths driven" model coupling is applied. Instead of linking the models serially, a vertical one-way coupling of models has been implemented. The fully-distributed snow modelling of SES is combined with the semi-distributed HQsim structure, allowing to benefit from soil and runoff routing schemes in HQsim. A monte-carlo based modelling experiment was set up to evaluate the resulting differences in the runoff prediction due to the improved model coupling and a refined spatial resolution of the meteorological forcing. The experiment design follows a gradient of spatial discretisation of hydrological processes and meteorological forcing data with a total of six different model setups for the alpine headwater basin of the Fagge River in the Tyrolean Alps. In general, all setups show a good performance for this particular basin. It is therefore planned to include other basins with differing

  3. Parameters modelling of amaranth grain processing technology

    Science.gov (United States)

    Derkanosova, N. M.; Shelamova, S. A.; Ponomareva, I. N.; Shurshikova, G. V.; Vasilenko, O. A.

    2018-03-01

    The article presents a technique that allows calculating the structure of a multicomponent bakery mixture for the production of enriched products, taking into account the instability of nutrient content, and ensuring the fulfilment of technological requirements and, at the same time considering consumer preferences. The results of modelling and analysis of optimal solutions are given by the example of calculating the structure of a three-component mixture of wheat and rye flour with an enriching component, that is, whole-hulled amaranth flour applied to the technology of bread from a mixture of rye and wheat flour on a liquid leaven.

  4. WE-FG-206-06: Dual-Input Tracer Kinetic Modeling and Its Analog Implementation for Dynamic Contrast-Enhanced (DCE-) MRI of Malignant Mesothelioma (MPM)

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S; Rimner, A; Hayes, S; Hunt, M; Deasy, J; Zauderer, M; Rusch, V; Tyagi, N [Memorial Sloan Kettering Cancer Center, New York, NY (United States)

    2016-06-15

    Purpose: To use dual-input tracer kinetic modeling of the lung for mapping spatial heterogeneity of various kinetic parameters in malignant MPM Methods: Six MPM patients received DCE-MRI as part of their radiation therapy simulation scan. 5 patients had the epitheloid subtype of MPM, while one was biphasic. A 3D fast-field echo sequence with TR/TE/Flip angle of 3.62ms/1.69ms/15° was used for DCE-MRI acquisition. The scan was collected for 5 minutes with a temporal resolution of 5-9 seconds depending on the spatial extent of the tumor. A principal component analysis-based groupwise deformable registration was used to co-register all the DCE-MRI series for motion compensation. All the images were analyzed using five different dual-input tracer kinetic models implemented in analog continuous-time formalism: the Tofts-Kety (TK), extended TK (ETK), two compartment exchange (2CX), adiabatic approximation to the tissue homogeneity (AATH), and distributed parameter (DP) models. The following parameters were computed for each model: total blood flow (BF), pulmonary flow fraction (γ), pulmonary blood flow (BF-pa), systemic blood flow (BF-a), blood volume (BV), mean transit time (MTT), permeability-surface area product (PS), fractional interstitial volume (vi), extraction fraction (E), volume transfer constant (Ktrans) and efflux rate constant (kep). Results: Although the majority of patients had epitheloid histologies, kinetic parameter values varied across different models. One patient showed a higher total BF value in all models among the epitheloid histologies, although the γ value was varying among these different models. In one tumor with a large area of necrosis, the TK and ETK models showed higher E, Ktrans, and kep values and lower interstitial volume as compared to AATH and DP and 2CX models. Kinetic parameters such as BF-pa, BF-a, PS, Ktrans values were higher in surviving group compared to non-surviving group across most models. Conclusion: Dual-input tracer

  5. Incorporation of Damage and Failure into an Orthotropic Elasto-Plastic Three-Dimensional Model with Tabulated Input Suitable for Use in Composite Impact Problems

    Science.gov (United States)

    Goldberg, Robert K.; Carney, Kelly S.; Dubois, Paul; Hoffarth, Canio; Khaled, Bilal; Rajan, Subramaniam; Blankenhorn, Gunther

    2016-01-01

    A material model which incorporates several key capabilities which have been identified by the aerospace community as lacking in the composite impact models currently available in LS-DYNA(Registered Trademark) is under development. In particular, the material model, which is being implemented as MAT 213 into a tailored version of LS-DYNA being jointly developed by the FAA and NASA, incorporates both plasticity and damage within the material model, utilizes experimentally based tabulated input to define the evolution of plasticity and damage as opposed to specifying discrete input parameters (such as modulus and strength), and is able to analyze the response of composites composed with a variety of fiber architectures. The plasticity portion of the orthotropic, three-dimensional, macroscopic composite constitutive model is based on an extension of the Tsai-Wu composite failure model into a generalized yield function with a non-associative flow rule. The capability to account for the rate and temperature dependent deformation response of composites has also been incorporated into the material model. For the damage model, a strain equivalent formulation is utilized to allow for the uncoupling of the deformation and damage analyses. In the damage model, a diagonal damage tensor is defined to account for the directionally dependent variation of damage. However, in composites it has been found that loading in one direction can lead to damage in multiple coordinate directions. To account for this phenomena, the terms in the damage matrix are semi-coupled such that the damage in a particular coordinate direction is a function of the stresses and plastic strains in all of the coordinate directions. The onset of material failure, and thus element deletion, is being developed to be a function of the stresses and plastic strains in the various coordinate directions. Systematic procedures are being developed to generate the required input parameters based on the results of

  6. WATGIS: A GIS-Based Lumped Parameter Water Quality Model

    Science.gov (United States)

    Glenn P. Fernandez; George M. Chescheir; R. Wayne Skaggs; Devendra M. Amatya

    2002-01-01

    A Geographic Information System (GIS)­based, lumped parameter water quality model was developed to estimate the spatial and temporal nitrogen­loading patterns for lower coastal plain watersheds in eastern North Carolina. The model uses a spatially distributed delivery ratio (DR) parameter to account for nitrogen retention or loss along a drainage network. Delivery...

  7. A test for the parameters of multiple linear regression models ...

    African Journals Online (AJOL)

    A test for the parameters of multiple linear regression models is developed for conducting tests simultaneously on all the parameters of multiple linear regression models. The test is robust relative to the assumptions of homogeneity of variances and absence of serial correlation of the classical F-test. Under certain null and ...

  8. The influence of model parameters on catchment-response

    International Nuclear Information System (INIS)

    Shah, S.M.S.; Gabriel, H.F.; Khan, A.A.

    2002-01-01

    This paper deals with the study of influence of influence of conceptual rainfall-runoff model parameters on catchment response (runoff). A conceptual modified watershed yield model is employed to study the effects of model-parameters on catchment-response, i.e. runoff. The model is calibrated, using manual parameter-fitting approach, also known as trial and error parameter-fitting. In all, there are twenty one (21) parameters that control the functioning of the model. A lumped parametric approach is used. The detailed analysis was performed on Ling River near Kahuta, having catchment area of 56 sq. miles. The model includes physical parameters like GWSM, PETS, PGWRO, etc. fitting coefficients like CINF, CGWS, etc. and initial estimates of the surface-water and groundwater storages i.e. srosp and gwsp. Sensitivity analysis offers a good way, without repetititious computations, the proper weight and consideration that must be taken when each of the influencing factor is evaluated. Sensitivity-analysis was performed to evaluate the influence of model-parameters on runoff. The sensitivity and relative contributions of model parameters influencing catchment-response are studied. (author)

  9. Identification of ecosystem parameters by SDE-modelling

    DEFF Research Database (Denmark)

    Stochastic differential equations (SDEs) for ecosystem modelling have attracted increasing attention during recent years. The modelling has mostly been through simulation experiments in order to analyse how system noise propagates through the ordinary differential equation formulation of ecosystem...... models. Estimation of parameters in SDEs is, however, possible by combining Kalman filter techniques and likelihood estimation. By modelling parameters as random walks it is possible to identify linear as well as non-linear interactions between ecosystem components. By formulating a simple linear SDE...

  10. Bayesian estimation of parameters in a regional hydrological model

    Directory of Open Access Journals (Sweden)

    K. Engeland

    2002-01-01

    Full Text Available This study evaluates the applicability of the distributed, process-oriented Ecomag model for prediction of daily streamflow in ungauged basins. The Ecomag model is applied as a regional model to nine catchments in the NOPEX area, using Bayesian statistics to estimate the posterior distribution of the model parameters conditioned on the observed streamflow. The distribution is calculated by Markov Chain Monte Carlo (MCMC analysis. The Bayesian method requires formulation of a likelihood function for the parameters and three alternative formulations are used. The first is a subjectively chosen objective function that describes the goodness of fit between the simulated and observed streamflow, as defined in the GLUE framework. The second and third formulations are more statistically correct likelihood models that describe the simulation errors. The full statistical likelihood model describes the simulation errors as an AR(1 process, whereas the simple model excludes the auto-regressive part. The statistical parameters depend on the catchments and the hydrological processes and the statistical and the hydrological parameters are estimated simultaneously. The results show that the simple likelihood model gives the most robust parameter estimates. The simulation error may be explained to a large extent by the catchment characteristics and climatic conditions, so it is possible to transfer knowledge about them to ungauged catchments. The statistical models for the simulation errors indicate that structural errors in the model are more important than parameter uncertainties. Keywords: regional hydrological model, model uncertainty, Bayesian analysis, Markov Chain Monte Carlo analysis

  11. Brownian motion model with stochastic parameters for asset prices

    Science.gov (United States)

    Ching, Soo Huei; Hin, Pooi Ah

    2013-09-01

    The Brownian motion model may not be a completely realistic model for asset prices because in real asset prices the drift μ and volatility σ may change over time. Presently we consider a model in which the parameter x = (μ,σ) is such that its value x (t + Δt) at a short time Δt ahead of the present time t depends on the value of the asset price at time t + Δt as well as the present parameter value x(t) and m-1 other parameter values before time t via a conditional distribution. The Malaysian stock prices are used to compare the performance of the Brownian motion model with fixed parameter with that of the model with stochastic parameter.

  12. Optimization modeling of U.S. renewable electricity deployment using local input variables

    Science.gov (United States)

    Bernstein, Adam

    For the past five years, state Renewable Portfolio Standard (RPS) laws have been a primary driver of renewable electricity (RE) deployments in the United States. However, four key trends currently developing: (i) lower natural gas prices, (ii) slower growth in electricity demand, (iii) challenges of system balancing intermittent RE within the U.S. transmission regions, and (iv) fewer economical sites for RE development, may limit the efficacy of RPS laws over the remainder of the current RPS statutes' lifetime. An outsized proportion of U.S. RE build occurs in a small number of favorable locations, increasing the effects of these variables on marginal RE capacity additions. A state-by-state analysis is necessary to study the U.S. electric sector and to generate technology specific generation forecasts. We used LP optimization modeling similar to the National Renewable Energy Laboratory (NREL) Renewable Energy Development System (ReEDS) to forecast RE deployment across the 8 U.S. states with the largest electricity load, and found state-level RE projections to Year 2031 significantly lower than thoseimplied in the Energy Information Administration (EIA) 2013 Annual Energy Outlook forecast. Additionally, the majority of states do not achieve their RPS targets in our forecast. Combined with the tendency of prior research and RE forecasts to focus on larger national and global scale models, we posit that further bottom-up state and local analysis is needed for more accurate policy assessment, forecasting, and ongoing revision of variables as parameter values evolve through time. Current optimization software eliminates much of the need for algorithm coding and programming, allowing for rapid model construction and updating across many customized state and local RE parameters. Further, our results can be tested against the empirical outcomes that will be observed over the coming years, and the forecast deviation from the actuals can be attributed to discrete parameter

  13. A latent low-dimensional common input drives a pool of motor neurons: a probabilistic latent state-space model.

    Science.gov (United States)

    Feeney, Daniel F; Meyer, François G; Noone, Nicholas; Enoka, Roger M

    2017-10-01

    Motor neurons appear to be activated with a common input signal that modulates the discharge activity of all neurons in the motor nucleus. It has proven difficult for neurophysiologists to quantify the variability in a common input signal, but characterization of such a signal may improve our understanding of how the activation signal varies across motor tasks. Contemporary methods of quantifying the common input to motor neurons rely on compiling discrete action potentials into continuous time series, assuming the motor pool acts as a linear filter, and requiring signals to be of sufficient duration for frequency analysis. We introduce a space-state model in which the discharge activity of motor neurons is modeled as inhomogeneous Poisson processes and propose a method to quantify an abstract latent trajectory that represents the common input received by motor neurons. The approach also approximates the variation in synaptic noise in the common input signal. The model is validated with four data sets: a simulation of 120 motor units, a pair of integrate-and-fire neurons with a Renshaw cell providing inhibitory feedback, the discharge activity of 10 integrate-and-fire neurons, and the discharge times of concurrently active motor units during an isometric voluntary contraction. The simulations revealed that a latent state-space model is able to quantify the trajectory and variability of the common input signal across all four conditions. When compared with the cumulative spike train method of characterizing common input, the state-space approach was more sensitive to the details of the common input current and was less influenced by the duration of the signal. The state-space approach appears to be capable of detecting rather modest changes in common input signals across conditions. NEW & NOTEWORTHY We propose a state-space model that explicitly delineates a common input signal sent to motor neurons and the physiological noise inherent in synaptic signal

  14. Personalization of models with many model parameters: an efficient sensitivity analysis approach.

    Science.gov (United States)

    Donders, W P; Huberts, W; van de Vosse, F N; Delhaas, T

    2015-10-01

    Uncertainty quantification and global sensitivity analysis are indispensable for patient-specific applications of models that enhance diagnosis or aid decision-making. Variance-based sensitivity analysis methods, which apportion each fraction of the output uncertainty (variance) to the effects of individual input parameters or their interactions, are considered the gold standard. The variance portions are called the Sobol sensitivity indices and can be estimated by a Monte Carlo (MC) approach (e.g., Saltelli's method [1]) or by employing a metamodel (e.g., the (generalized) polynomial chaos expansion (gPCE) [2, 3]). All these methods require a large number of model evaluations when estimating the Sobol sensitivity indices for models with many parameters [4]. To reduce the computational cost, we introduce a two-step approach. In the first step, a subset of important parameters is identified for each output of interest using the screening method of Morris [5]. In the second step, a quantitative variance-based sensitivity analysis is performed using gPCE. Efficient sampling strategies are introduced to minimize the number of model runs required to obtain the sensitivity indices for models considering multiple outputs. The approach is tested using a model that was developed for predicting post-operative flows after creation of a vascular access for renal failure patients. We compare the sensitivity indices obtained with the novel two-step approach with those obtained from a reference analysis that applies Saltelli's MC method. The two-step approach was found to yield accurate estimates of the sensitivity indices at two orders of magnitude lower computational cost. Copyright © 2015 John Wiley & Sons, Ltd.

  15. Asteroseismic modelling of solar-type stars: internal systematics from input physics and surface correction methods

    Science.gov (United States)

    Nsamba, B.; Campante, T. L.; Monteiro, M. J. P. F. G.; Cunha, M. S.; Rendle, B. M.; Reese, D. R.; Verma, K.

    2018-04-01

    Asteroseismic forward modelling techniques are being used to determine fundamental properties (e.g. mass, radius, and age) of solar-type stars. The need to take into account all possible sources of error is of paramount importance towards a robust determination of stellar properties. We present a study of 34 solar-type stars for which high signal-to-noise asteroseismic data is available from multi-year Kepler photometry. We explore the internal systematics on the stellar properties, that is, associated with the uncertainty in the input physics used to construct the stellar models. In particular, we explore the systematics arising from: (i) the inclusion of the diffusion of helium and heavy elements; and (ii) the uncertainty in solar metallicity mixture. We also assess the systematics arising from (iii) different surface correction methods used in optimisation/fitting procedures. The systematics arising from comparing results of models with and without diffusion are found to be 0.5%, 0.8%, 2.1%, and 16% in mean density, radius, mass, and age, respectively. The internal systematics in age are significantly larger than the statistical uncertainties. We find the internal systematics resulting from the uncertainty in solar metallicity mixture to be 0.7% in mean density, 0.5% in radius, 1.4% in mass, and 6.7% in age. The surface correction method by Sonoi et al. and Ball & Gizon's two-term correction produce the lowest internal systematics among the different correction methods, namely, ˜1%, ˜1%, ˜2%, and ˜8% in mean density, radius, mass, and age, respectively. Stellar masses obtained using the surface correction methods by Kjeldsen et al. and Ball & Gizon's one-term correction are systematically higher than those obtained using frequency ratios.

  16. Smoke inputs to climate models: optical properties and height distribution for nuclear winter studies

    International Nuclear Information System (INIS)

    Penner, J.E.; Haselman, L.C. Jr.

    1985-04-01

    Smoke from fires produced in the aftermath of a major nuclear exchange has been predicted to cause large decreases in land surface temperatures. The extent of the decrease and even the sign of the temperature change depend on the optical characteristics of the smoke and how it is distributed with altitude. The height distribution of smoke over a fire is determined by the amount of buoyant energy produced by the fire and the amount of energy released by the latent heat of condensation of water vapor. The optical properties of the smoke depend on the size distribution of smoke particles which changes due to coagulation within the lofted plume. We present calculations demonstrating these processes and estimate their importance for the smoke source term input for climate models. For high initial smoke densities and for absorbing smoke ( m = 1.75 - 0.3i), coagulation of smoke particles within the smoke plume is predicted to first increase, then decrease, the size-integrated extinction cross section. However, at the smoke densities predicted in our model (assuming a 3% emission rate for smoke) and for our assumed initial size distribution, the attachment rates for brownian and turbulent collision processes are not fast enough to alter the smoke size distribution enough to significantly change the integrated extinction cross section. Early-time coagulation is, however, fast enough to allow further coagulation, on longer time scales, to act to decrease the extinction cross section. On these longer time scales appropriate to climate models, coagulation can decrease the extinction cross section by almost a factor of two before the smoke becomes well mixed around the globe. This process has been neglected in past climate effect evaluations, but could have a significant effect, since the extinction cross section enters as an exponential factor in calculating the light attenuation due to smoke. 10 refs., 20 figs

  17. Determination of the Corona model parameters with artificial neural networks

    International Nuclear Information System (INIS)

    Ahmet, Nayir; Bekir, Karlik; Arif, Hashimov

    2005-01-01

    Full text : The aim of this study is to calculate new model parameters taking into account the corona of electrical transmission line wires. For this purpose, a neural network modeling proposed for the corona frequent characteristics modeling. Then this model was compared with the other model developed at the Polytechnic Institute of Saint Petersburg. The results of development of the specified corona model for calculation of its influence on the wave processes in multi-wires line and determination of its parameters are submitted. Results of obtained calculation equations are brought for electrical transmission line with allowance for superficial effect in the ground and wires with reference to developed corona model

  18. Biological parameters for lung cancer in mathematical models of carcinogenesis

    International Nuclear Information System (INIS)

    Jacob, P.; Jacob, V.

    2003-01-01

    Applications of the two-step model of carcinogenesis with clonal expansion (TSCE) to lung cancer data are reviewed, including those on atomic bomb survivors from Hiroshima and Nagasaki, British doctors, Colorado Plateau miners, and Chinese tin miners. Different sets of identifiable model parameters are used in the literature. The parameter set which could be determined with the lowest uncertainty consists of the net proliferation rate gamma of intermediate cells, the hazard h 55 at an intermediate age, and the hazard H? at an asymptotically large age. Also, the values of these three parameters obtained in the various studies are more consistent than other identifiable combinations of the biological parameters. Based on representative results for these three parameters, implications for the biological parameters in the TSCE model are derived. (author)

  19. Learning about physical parameters: the importance of model discrepancy

    International Nuclear Information System (INIS)

    Brynjarsdóttir, Jenný; O'Hagan, Anthony

    2014-01-01

    Science-based simulation models are widely used to predict the behavior of complex physical systems. It is also common to use observations of the physical system to solve the inverse problem, that is, to learn about the values of parameters within the model, a process which is often called calibration. The main goal of calibration is usually to improve the predictive performance of the simulator but the values of the parameters in the model may also be of intrinsic scientific interest in their own right. In order to make appropriate use of observations of the physical system it is important to recognize model discrepancy, the difference between reality and the simulator output. We illustrate through a simple example that an analysis that does not account for model discrepancy may lead to biased and over-confident parameter estimates and predictions. The challenge with incorporating model discrepancy in statistical inverse problems is being confounded with calibration parameters, which will only be resolved with meaningful priors. For our simple example, we model the model-discrepancy via a Gaussian process and demonstrate that through accounting for model discrepancy our prediction within the range of data is correct. However, only with realistic priors on the model discrepancy do we uncover the true parameter values. Through theoretical arguments we show that these findings are typical of the general problem of learning about physical parameters and the underlying physical system using science-based mechanistic models. (paper)

  20. Spatio-temporal modeling of nonlinear distributed parameter systems

    CERN Document Server

    Li, Han-Xiong

    2011-01-01

    The purpose of this volume is to provide a brief review of the previous work on model reduction and identifi cation of distributed parameter systems (DPS), and develop new spatio-temporal models and their relevant identifi cation approaches. In this book, a systematic overview and classifi cation on the modeling of DPS is presented fi rst, which includes model reduction, parameter estimation and system identifi cation. Next, a class of block-oriented nonlinear systems in traditional lumped parameter systems (LPS) is extended to DPS, which results in the spatio-temporal Wiener and Hammerstein s

  1. A response analysis with effective stress model by using vertical input motions

    International Nuclear Information System (INIS)

    Yamanouchi, H.; Ohkawa, I.; Chiba, O.; Tohdo, M.; Kaneko, O.

    1987-01-01

    The nuclear power plant reactor buildings are to be directly supported on a hard soil as a rule in Japan. In case of determining the input motions in order to design those buildings, the amplifications of the hard soil deposits are examined by the total stress analysis in general. However, when the supporting hard soil is replaced with the slightly softer medium such as sandy or gravelly soil, the existence of pore water, in other words, the contribution of the pore water pressure to the total stress cannot be ignored even in a practical sense. In this paper the authors defined an analytical model considering the effective stress-strain relation. In the analyses, the response in the vertical direction is used to evaluate the confining pressure, at first. In the next step, the process of the generation and dissipation of the pore water pressure, is taken into account, together with the effect of the confining pressure. They applied these procedures for the response computations of the horizontally layered soil deposits

  2. Determination of the arterial input function in mouse-models using clinical MRI

    International Nuclear Information System (INIS)

    Theis, D.; Fachhochschule Giessen-Friedberg; Keil, B.; Heverhagen, J.T.; Klose, K.J.; Behe, M.; Fiebich, M.

    2008-01-01

    Dynamic contrast enhanced magnetic resonance imaging is a promising method for quantitative analysis of tumor perfusion and is increasingly used in study of cancer in small animal models. In those studies the determination of the arterial input function (AIF) of the target tissue can be the first step. Series of short-axis images of the heart were acquired during administration of a bolus of Gd-DTPA using saturation-recovery gradient echo pulse sequences. The AIF was determined from the changes of the signal intensity in the left ventricle. The native T1 relaxation times and AIF were determined for 11 mice. An average value of (1.16 ± 0.09) s for the native T1 relaxation time was measured. However, the AIF showed significant inter animal variability, as previously observed by other authors. The inter-animal variability shows, that a direct measurement of the AIF is reasonable to avoid significant errors. The proposed method for determination of the AIF proved to be reliable. (orig.)

  3. Multiregional input-output model for China's farm land and water use.

    Science.gov (United States)

    Guo, Shan; Shen, Geoffrey Qiping

    2015-01-06

    Land and water are the two main drivers of agricultural production. Pressure on farm land and water resources is increasing in China due to rising food demand. Domestic trade affects China's regional farm land and water use by distributing resources associated with the production of goods and services. This study constructs a multiregional input-output model to simultaneously analyze China's farm land and water uses embodied in consumption and interregional trade. Results show a great similarity for both China's farm land and water endowments. Shandong, Henan, Guangdong, and Yunnan are the most important drivers of farm land and water consumption in China, even though they have relatively few land and water resource endowments. Significant net transfers of embodied farm land and water flows are identified from the central and western areas to the eastern area via interregional trade. Heilongjiang is the largest farm land and water supplier, in contrast to Shanghai as the largest receiver. The results help policy makers to comprehensively understand embodied farm land and water flows in a complex economy network. Improving resource utilization efficiency and reshaping the embodied resource trade nexus should be addressed by considering the transfer of regional responsibilities.

  4. Process Debottlenecking and Retrofit of Palm Oil Milling Process via Inoperability Input-Output Modelling

    Directory of Open Access Journals (Sweden)

    May Tan May

    2018-01-01

    Full Text Available In recent years, there has been an increase in crude palm oil (CPO demand, resulting in palm oil mills (POMs seizing the opportunity to increase CPO production to make more profits. A series of equipment are designed to operate in their optimum capacities in the current existing POMs. Some equipment may be limited by their maximum design capacities when there is a need to increase CPO production, resulting in process bottlenecks. In this research, a framework is developed to provide stepwise procedures on identifying bottlenecks and retrofitting a POM process to cater for the increase in production capacity. This framework adapts an algebraic approach known as Inoperability Input-Output Modelling (IIM. To illustrate the application of the framework, an industrial POM case study was solved using LINGO software in this work, by maximising its production capacity. Benefit-to-Cost Ratio (BCR analysis was also performed to assess the economic feasibility. As results, the Screw Press was identified as the bottleneck. The retrofitting recommendation was to purchase an additional Screw Press to cater for the new throughput with BCR of 54.57. It was found the POM to be able to achieve the maximum targeted production capacity of 8,139.65 kg/hr of CPO without any bottlenecks.

  5. Parameters Estimation of Geographically Weighted Ordinal Logistic Regression (GWOLR) Model

    Science.gov (United States)

    Zuhdi, Shaifudin; Retno Sari Saputro, Dewi; Widyaningsih, Purnami

    2017-06-01

    A regression model is the representation of relationship between independent variable and dependent variable. The dependent variable has categories used in the logistic regression model to calculate odds on. The logistic regression model for dependent variable has levels in the logistics regression model is ordinal. GWOLR model is an ordinal logistic regression model influenced the geographical location of the observation site. Parameters estimation in the model needed to determine the value of a population based on sample. The purpose of this research is to parameters estimation of GWOLR model using R software. Parameter estimation uses the data amount of dengue fever patients in Semarang City. Observation units used are 144 villages in Semarang City. The results of research get GWOLR model locally for each village and to know probability of number dengue fever patient categories.

  6. Universally sloppy parameter sensitivities in systems biology models.

    Directory of Open Access Journals (Sweden)

    Ryan N Gutenkunst

    2007-10-01

    Full Text Available Quantitative computational models play an increasingly important role in modern biology. Such models typically involve many free parameters, and assigning their values is often a substantial obstacle to model development. Directly measuring in vivo biochemical parameters is difficult, and collectively fitting them to other experimental data often yields large parameter uncertainties. Nevertheless, in earlier work we showed in a growth-factor-signaling model that collective fitting could yield well-constrained predictions, even when it left individual parameters very poorly constrained. We also showed that the model had a "sloppy" spectrum of parameter sensitivities, with eigenvalues roughly evenly distributed over many decades. Here we use a collection of models from the literature to test whether such sloppy spectra are common in systems biology. Strikingly, we find that every model we examine has a sloppy spectrum of sensitivities. We also test several consequences of this sloppiness for building predictive models. In particular, sloppiness suggests that collective fits to even large amounts of ideal time-series data will often leave many parameters poorly constrained. Tests over our model collection are consistent with this suggestion. This difficulty with collective fits may seem to argue for direct parameter measurements, but sloppiness also implies that such measurements must be formidably precise and complete to usefully constrain many model predictions. We confirm this implication in our growth-factor-signaling model. Our results suggest that sloppy sensitivity spectra are universal in systems biology models. The prevalence of sloppiness highlights the power of collective fits and suggests that modelers should focus on predictions rather than on parameters.

  7. Universally sloppy parameter sensitivities in systems biology models.

    Science.gov (United States)

    Gutenkunst, Ryan N; Waterfall, Joshua J; Casey, Fergal P; Brown, Kevin S; Myers, Christopher R; Sethna, James P

    2007-10-01

    Quantitative computational models play an increasingly important role in modern biology. Such models typically involve many free parameters, and assigning their values is often a substantial obstacle to model development. Directly measuring in vivo biochemical parameters is difficult, and collectively fitting them to other experimental data often yields large parameter uncertainties. Nevertheless, in earlier work we showed in a growth-factor-signaling model that collective fitting could yield well-constrained predictions, even when it left individual parameters very poorly constrained. We also showed that the model had a "sloppy" spectrum of parameter sensitivities, with eigenvalues roughly evenly distributed over many decades. Here we use a collection of models from the literature to test whether such sloppy spectra are common in systems biology. Strikingly, we find that every model we examine has a sloppy spectrum of sensitivities. We also test several consequences of this sloppiness for building predictive models. In particular, sloppiness suggests that collective fits to even large amounts of ideal time-series data will often leave many parameters poorly constrained. Tests over our model collection are consistent with this suggestion. This difficulty with collective fits may seem to argue for direct parameter measurements, but sloppiness also implies that such measurements must be formidably precise and complete to usefully constrain many model predictions. We confirm this implication in our growth-factor-signaling model. Our results suggest that sloppy sensitivity spectra are universal in systems biology models. The prevalence of sloppiness highlights the power of collective fits and suggests that modelers should focus on predictions rather than on parameters.

  8. Parameter estimation of variable-parameter nonlinear Muskingum model using excel solver

    Science.gov (United States)

    Kang, Ling; Zhou, Liwei

    2018-02-01

    Abstract . The Muskingum model is an effective flood routing technology in hydrology and water resources Engineering. With the development of optimization technology, more and more variable-parameter Muskingum models were presented to improve effectiveness of the Muskingum model in recent decades. A variable-parameter nonlinear Muskingum model (NVPNLMM) was proposed in this paper. According to the results of two real and frequently-used case studies by various models, the NVPNLMM could obtain better values of evaluation criteria, which are used to describe the superiority of the estimated outflows and compare the accuracies of flood routing using various models, and the optimal estimated outflows by the NVPNLMM were closer to the observed outflows than the ones by other models.

  9. Usefulness of non-linear input-output models for economic impact analyses in tourism and recreation

    NARCIS (Netherlands)

    Klijs, J.; Peerlings, J.H.M.; Heijman, W.J.M.

    2015-01-01

    In tourism and recreation management it is still common practice to apply traditional input–output (IO) economic impact models, despite their well-known limitations. In this study the authors analyse the usefulness of applying a non-linear input–output (NLIO) model, in which price-induced input

  10. Validation of Simulation Models without Knowledge of Parameters Using Differential Algebra

    Directory of Open Access Journals (Sweden)

    Björn Haffke

    2015-01-01

    Full Text Available This study deals with the external validation of simulation models using methods from differential algebra. Without any system identification or iterative numerical methods, this approach provides evidence that the equations of a model can represent measured and simulated sets of data. This is very useful to check if a model is, in general, suitable. In addition, the application of this approach to verification of the similarity between the identifiable parameters of two models with different sets of input and output measurements is demonstrated. We present a discussion on how the method can be used to find parameter deviations between any two models. The advantage of this method is its applicability to nonlinear systems as well as its algorithmic nature, which makes it easy to automate.

  11. Modeling and Parameter Estimation of a Small Wind Generation System

    Directory of Open Access Journals (Sweden)

    Carlos A. Ramírez Gómez

    2013-11-01

    Full Text Available The modeling and parameter estimation of a small wind generation system is presented in this paper. The system consists of a wind turbine, a permanent magnet synchronous generator, a three phase rectifier, and a direct current load. In order to estimate the parameters wind speed data are registered in a weather station located in the Fraternidad Campus at ITM. Wind speed data were applied to a reference model programed with PSIM software. From that simulation, variables were registered to estimate the parameters. The wind generation system model together with the estimated parameters is an excellent representation of the detailed model, but the estimated model offers a higher flexibility than the programed model in PSIM software.

  12. NONLINEAR PLANT PIECEWISE-CONTINUOUS MODEL MATRIX PARAMETERS ESTIMATION

    Directory of Open Access Journals (Sweden)

    Roman L. Leibov

    2017-09-01

    Full Text Available This paper presents a nonlinear plant piecewise-continuous model matrix parameters estimation technique using nonlinear model time responses and random search method. One of piecewise-continuous model application areas is defined. The results of proposed approach application for aircraft turbofan engine piecewisecontinuous model formation are presented

  13. RUSLE2015: Modelling soil erosion at continental scale using high resolution input layers

    Science.gov (United States)

    Panagos, Panos; Borrelli, Pasquale; Meusburger, Katrin; Poesen, Jean; Ballabio, Cristiano; Lugato, Emanuele; Montanarella, Luca; Alewell, Christine

    2016-04-01

    Soil erosion by water is one of the most widespread forms of soil degradation in the Europe. On the occasion of the 2015 celebration of the International Year of Soils, the European Commission's Joint Research Centre (JRC) published the RUSLE2015, a modified modelling approach for assessing soil erosion in Europe by using the best available input data layers. The objective of the recent assessment performed with RUSLE2015 was to improve our knowledge and understanding of soil erosion by water across the European Union and to accentuate the differences and similarities between different regions and countries beyond national borders and nationally adapted models. RUSLE2015 has maximized the use of available homogeneous, updated, pan-European datasets (LUCAS topsoil, LUCAS survey, GAEC, Eurostat crops, Eurostat Management Practices, REDES, DEM 25m, CORINE, European Soil Database) and have used the best suited approach at European scale for modelling soil erosion. The collaboration of JRC with many scientists around Europe and numerous prominent European universities and institutes resulted in an improved assessment of individual risk factors (rainfall erosivity, soil erodibility, cover-management, topography and support practices) and a final harmonized European soil erosion map at high resolution. The mean soil loss rate in the European Union's erosion-prone lands (agricultural, forests and semi-natural areas) was found to be 2.46 t ha-1 yr-1, resulting in a total soil loss of 970 Mt annually; equal to an area the size of Berlin (assuming a removal of 1 meter). According to the RUSLE2015 model approximately 12.7% of arable lands in the European Union is estimated to suffer from moderate to high erosion(>5 t ha-1 yr-1). This equates to an area of 140,373 km2 which equals to the surface area of Greece (Environmental Science & Policy, 54, 438-447; 2015). Even the mean erosion rate outstrips the mean formation rate (walls and contouring) through the common agricultural

  14. Modeling DPOAE input/output function compression: comparisons with hearing thresholds.

    Science.gov (United States)

    Bhagat, Shaum P

    2014-09-01

    Basilar membrane input/output (I/O) functions in mammalian animal models are characterized by linear and compressed segments when measured near the location corresponding to the characteristic frequency. A method of studying basilar membrane compression indirectly in humans involves measuring distortion-product otoacoustic emission (DPOAE) I/O functions. Previous research has linked compression estimates from behavioral growth-of-masking functions to hearing thresholds. The aim of this study was to compare compression estimates from DPOAE I/O functions and hearing thresholds at 1 and 2 kHz. A prospective correlational research design was performed. The relationship between DPOAE I/O function compression estimates and hearing thresholds was evaluated with Pearson product-moment correlations. Normal-hearing adults (n = 16) aged 22-42 yr were recruited. DPOAE I/O functions (L₂ = 45-70 dB SPL) and two-interval forced-choice hearing thresholds were measured in normal-hearing adults. A three-segment linear regression model applied to DPOAE I/O functions supplied estimates of compression thresholds, defined as breakpoints between linear and compressed segments and the slopes of the compressed segments. Pearson product-moment correlations between DPOAE compression estimates and hearing thresholds were evaluated. A high correlation between DPOAE compression thresholds and hearing thresholds was observed at 2 kHz, but not at 1 kHz. Compression slopes also correlated highly with hearing thresholds only at 2 kHz. The derivation of cochlear compression estimates from DPOAE I/O functions provides a means to characterize basilar membrane mechanics in humans and elucidates the role of compression in tone detection in the 1-2 kHz frequency range. American Academy of Audiology.

  15. Identification of parameters of discrete-continuous models

    International Nuclear Information System (INIS)

    Cekus, Dawid; Warys, Pawel

    2015-01-01

    In the paper, the parameters of a discrete-continuous model have been identified on the basis of experimental investigations and formulation of optimization problem. The discrete-continuous model represents a cantilever stepped Timoshenko beam. The mathematical model has been formulated and solved according to the Lagrange multiplier formalism. Optimization has been based on the genetic algorithm. The presented proceeding’s stages make the identification of any parameters of discrete-continuous systems possible

  16. Identification of parameters of discrete-continuous models

    Energy Technology Data Exchange (ETDEWEB)

    Cekus, Dawid, E-mail: cekus@imipkm.pcz.pl; Warys, Pawel, E-mail: warys@imipkm.pcz.pl [Institute of Mechanics and Machine Design Foundations, Czestochowa University of Technology, Dabrowskiego 73, 42-201 Czestochowa (Poland)

    2015-03-10

    In the paper, the parameters of a discrete-continuous model have been identified on the basis of experimental investigations and formulation of optimization problem. The discrete-continuous model represents a cantilever stepped Timoshenko beam. The mathematical model has been formulated and solved according to the Lagrange multiplier formalism. Optimization has been based on the genetic algorithm. The presented proceeding’s stages make the identification of any parameters of discrete-continuous systems possible.

  17. A new method to estimate parameters of linear compartmental models using artificial neural networks

    International Nuclear Information System (INIS)

    Gambhir, Sanjiv S.; Keppenne, Christian L.; Phelps, Michael E.; Banerjee, Pranab K.

    1998-01-01

    At present, the preferred tool for parameter estimation in compartmental analysis is an iterative procedure; weighted nonlinear regression. For a large number of applications, observed data can be fitted to sums of exponentials whose parameters are directly related to the rate constants/coefficients of the compartmental models. Since weighted nonlinear regression often has to be repeated for many different data sets, the process of fitting data from compartmental systems can be very time consuming. Furthermore the minimization routine often converges to a local (as opposed to global) minimum. In this paper, we examine the possibility of using artificial neural networks instead of weighted nonlinear regression in order to estimate model parameters. We train simple feed-forward neural networks to produce as outputs the parameter values of a given model when kinetic data are fed to the networks' input layer. The artificial neural networks produce unbiased estimates and are orders of magnitude faster than regression algorithms. At noise levels typical of many real applications, the neural networks are found to produce lower variance estimates than weighted nonlinear regression in the estimation of parameters from mono- and biexponential models. These results are primarily due to the inability of weighted nonlinear regression to converge. These results establish that artificial neural networks are powerful tools for estimating parameters for simple compartmental models. (author)

  18. Some tests for parameter constancy in cointegrated VAR-models

    DEFF Research Database (Denmark)

    Hansen, Henrik; Johansen, Søren

    1999-01-01

    Some methods for the evaluation of parameter constancy in vector autoregressive (VAR) models are discussed. Two different ways of re-estimating the VAR model are proposed; one in which all parameters are estimated recursively based upon the likelihood function for the first observations, and anot...... be applied to test the constancy of the long-run parameters in the cointegrated VAR-model. All results are illustrated using a model for the term structure of interest rates on US Treasury securities. ......Some methods for the evaluation of parameter constancy in vector autoregressive (VAR) models are discussed. Two different ways of re-estimating the VAR model are proposed; one in which all parameters are estimated recursively based upon the likelihood function for the first observations......, and another in which the cointegrating relations are estimated recursively from a likelihood function, where the short-run parameters have been concentrated out. We suggest graphical procedures based on recursively estimated eigenvalues to evaluate the constancy of the long-run parameters in the model...

  19. Incorporating model parameter uncertainty into inverse treatment planning

    International Nuclear Information System (INIS)

    Lian Jun; Xing Lei

    2004-01-01

    Radiobiological treatment planning depends not only on the accuracy of the models describing the dose-response relation of different tumors and normal tissues but also on the accuracy of tissue specific radiobiological parameters in these models. Whereas the general formalism remains the same, different sets of model parameters lead to different solutions and thus critically determine the final plan. Here we describe an inverse planning formalism with inclusion of model parameter uncertainties. This is made possible by using a statistical analysis-based frameset developed by our group. In this formalism, the uncertainties of model parameters, such as the parameter a that describes tissue-specific effect in the equivalent uniform dose (EUD) model, are expressed by probability density function and are included in the dose optimization process. We found that the final solution strongly depends on distribution functions of the model parameters. Considering that currently available models for computing biological effects of radiation are simplistic, and the clinical data used to derive the models are sparse and of questionable quality, the proposed technique provides us with an effective tool to minimize the effect caused by the uncertainties in a statistical sense. With the incorporation of the uncertainties, the technique has potential for us to maximally utilize the available radiobiology knowledge for better IMRT treatment

  20. A new approach to modeling temperature-related mortality: Non-linear autoregressive models with exogenous input.

    Science.gov (United States)

    Lee, Cameron C; Sheridan, Scott C

    2018-07-01

    Temperature-mortality relationships are nonlinear, time-lagged, and can vary depending on the time of year and geographic location, all of which limits the applicability of simple regression models in describing these associations. This research demonstrates the utility of an alternative method for modeling such complex relationships that has gained recent traction in other environmental fields: nonlinear autoregressive models with exogenous input (NARX models). All-cause mortality data and multiple temperature-based data sets were gathered from 41 different US cities, for the period 1975-2010, and subjected to ensemble NARX modeling. Models generally performed better in larger cities and during the winter season. Across the US, median absolute percentage errors were 10% (ranging from 4% to 15% in various cities), the average improvement in the r-squared over that of a simple persistence model was 17% (6-24%), and the hit rate for modeling spike days in mortality (>80th percentile) was 54% (34-71%). Mortality responded acutely to hot summer days, peaking at 0-2 days of lag before dropping precipitously, and there was an extended mortality response to cold winter days, peaking at 2-4 days of lag and dropping slowly and continuing for multiple weeks. Spring and autumn showed both of the aforementioned temperature-mortality relationships, but generally to a lesser magnitude than what was seen in summer or winter. When compared to distributed lag nonlinear models, NARX model output was nearly identical. These results highlight the applicability of NARX models for use in modeling complex and time-dependent relationships for various applications in epidemiology and environmental sciences. Copyright © 2018 Elsevier Inc. All rights reserved.

  1. Recommended Parameter Values for GENII Modeling of Radionuclides in Routine Air and Water Releases

    Energy Technology Data Exchange (ETDEWEB)

    Snyder, Sandra F. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Arimescu, Carmen [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Napier, Bruce A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hay, Tristan R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2012-11-01

    The GENII v2 code is used to estimate dose to individuals or populations from the release of radioactive materials into air or water. Numerous parameter values are required for input into this code. User-defined parameters cover the spectrum from chemical data, meteorological data, agricultural data, and behavioral data. This document is a summary of parameter values that reflect conditions in the United States. Reasonable regional and age-dependent data is summarized. Data availability and quality varies. The set of parameters described address scenarios for chronic air emissions or chronic releases to public waterways. Considerations for the special tritium and carbon-14 models are briefly addressed. GENIIv2.10.0 is the current software version that this document supports.

  2. Global sensitivity analysis of a model related to memory formation in synapses: Model reduction based on epistemic parameter uncertainties and related issues.

    Science.gov (United States)

    Kulasiri, Don; Liang, Jingyi; He, Yao; Samarasinghe, Sandhya

    2017-04-21

    We investigate the epistemic uncertainties of parameters of a mathematical model that describes the dynamics of CaMKII-NMDAR complex related to memory formation in synapses using global sensitivity analysis (GSA). The model, which was published in this journal, is nonlinear and complex with Ca 2+ patterns with different level of frequencies as inputs. We explore the effects of parameter on the key outputs of the model to discover the most sensitive ones using GSA and partial ranking correlation coefficient (PRCC) and to understand why they are sensitive and others are not based on the biology of the problem. We also extend the model to add presynaptic neurotransmitter vesicles release to have action potentials as inputs of different frequencies. We perform GSA on this extended model to show that the parameter sensitivities are different for the extended model as shown by PRCC landscapes. Based on the results of GSA and PRCC, we reduce the original model to a less complex model taking the most important biological processes into account. We validate the reduced model against the outputs of the original model. We show that the parameter sensitivities are dependent on the inputs and GSA would make us understand the sensitivities and the importance of the parameters. A thorough phenomenological understanding of the relationships involved is essential to interpret the results of GSA and hence for the possible model reduction. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Modelling hydrodynamic parameters to predict flow assisted corrosion

    International Nuclear Information System (INIS)

    Poulson, B.; Greenwell, B.; Chexal, B.; Horowitz, J.

    1992-01-01

    During the past 15 years, flow assisted corrosion has been a worldwide problem in the power generating industry. The phenomena is complex and depends on environment, material composition, and hydrodynamic factors. Recently, modeling of flow assisted corrosion has become a subject of great importance. A key part of this effort is modeling the hydrodynamic aspects of this issue. This paper examines which hydrodynamic parameter should be used to correlate the occurrence and rate of flow assisted corrosion with physically meaningful parameters, discusses ways of measuring the relevant hydrodynamic parameter, and describes how the hydrodynamic data is incorporated into the predictive model

  4. A distributed approach for parameters estimation in System Biology models

    International Nuclear Information System (INIS)

    Mosca, E.; Merelli, I.; Alfieri, R.; Milanesi, L.

    2009-01-01

    Due to the lack of experimental measurements, biological variability and experimental errors, the value of many parameters of the systems biology mathematical