WorldWideScience

Sample records for models input parameters

  1. Agricultural and Environmental Input Parameters for the Biosphere Model

    Energy Technology Data Exchange (ETDEWEB)

    Kaylie Rasmuson; Kurt Rautenstrauch

    2003-06-20

    This analysis is one of nine technical reports that support the Environmental Radiation Model for Yucca Mountain Nevada (ERMYN) biosphere model. It documents input parameters for the biosphere model, and supports the use of the model to develop Biosphere Dose Conversion Factors (BDCF). The biosphere model is one of a series of process models supporting the Total System Performance Assessment (TSPA) for the repository at Yucca Mountain. The ERMYN provides the TSPA with the capability to perform dose assessments. A graphical representation of the documentation hierarchy for the ERMYN is presented in Figure 1-1. This figure shows the interrelationships between the major activities and their products (the analysis and model reports) that were planned in the biosphere Technical Work Plan (TWP, BSC 2003a). It should be noted that some documents identified in Figure 1-1 may be under development and therefore not available at the time this document is issued. The ''Biosphere Model Report'' (BSC 2003b) describes the ERMYN and its input parameters. This analysis report, ANL-MGR-MD-000006, ''Agricultural and Environmental Input Parameters for the Biosphere Model'', is one of the five reports that develop input parameters for the biosphere model. This report defines and justifies values for twelve parameters required in the biosphere model. These parameters are related to use of contaminated groundwater to grow crops. The parameter values recommended in this report are used in the soil, plant, and carbon-14 submodels of the ERMYN.

  2. Agricultural and Environmental Input Parameters for the Biosphere Model

    International Nuclear Information System (INIS)

    K. Rasmuson; K. Rautenstrauch

    2004-01-01

    This analysis is one of 10 technical reports that support the Environmental Radiation Model for Yucca Mountain Nevada (ERMYN) (i.e., the biosphere model). It documents development of agricultural and environmental input parameters for the biosphere model, and supports the use of the model to develop biosphere dose conversion factors (BDCFs). The biosphere model is one of a series of process models supporting the total system performance assessment (TSPA) for the repository at Yucca Mountain. The ERMYN provides the TSPA with the capability to perform dose assessments. A graphical representation of the documentation hierarchy for the ERMYN is presented in Figure 1-1. This figure shows the interrelationships between the major activities and their products (the analysis and model reports) that were planned in ''Technical Work Plan for Biosphere Modeling and Expert Support'' (BSC 2004 [DIRS 169573]). The ''Biosphere Model Report'' (BSC 2004 [DIRS 169460]) describes the ERMYN and its input parameters

  3. Environmental Transport Input Parameters for the Biosphere Model

    International Nuclear Information System (INIS)

    M. Wasiolek

    2004-01-01

    This analysis report is one of the technical reports documenting the Environmental Radiation Model for Yucca Mountain, Nevada (ERMYN), a biosphere model supporting the total system performance assessment for the license application (TSPA-LA) for the geologic repository at Yucca Mountain. A graphical representation of the documentation hierarchy for the ERMYN is presented in Figure 1-1. This figure shows relationships among the reports developed for biosphere modeling and biosphere abstraction products for the TSPA-LA, as identified in the ''Technical Work Plan for Biosphere Modeling and Expert Support'' (BSC 2004 [DIRS 169573]) (TWP). This figure provides an understanding of how this report contributes to biosphere modeling in support of the license application (LA). This report is one of the five reports that develop input parameter values for the biosphere model. The ''Biosphere Model Report'' (BSC 2004 [DIRS 169460]) describes the conceptual model and the mathematical model. The input parameter reports, shown to the right of the Biosphere Model Report in Figure 1-1, contain detailed description of the model input parameters. The output of this report is used as direct input in the ''Nominal Performance Biosphere Dose Conversion Factor Analysis'' and in the ''Disruptive Event Biosphere Dose Conversion Factor Analysis'' that calculate the values of biosphere dose conversion factors (BDCFs) for the groundwater and volcanic ash exposure scenarios, respectively. The purpose of this analysis was to develop biosphere model parameter values related to radionuclide transport and accumulation in the environment. These parameters support calculations of radionuclide concentrations in the environmental media (e.g., soil, crops, animal products, and air) resulting from a given radionuclide concentration at the source of contamination (i.e., either in groundwater or in volcanic ash). The analysis was performed in accordance with the TWP (BSC 2004 [DIRS 169573])

  4. Environmental Transport Input Parameters for the Biosphere Model

    Energy Technology Data Exchange (ETDEWEB)

    M. Wasiolek

    2004-09-10

    This analysis report is one of the technical reports documenting the Environmental Radiation Model for Yucca Mountain, Nevada (ERMYN), a biosphere model supporting the total system performance assessment for the license application (TSPA-LA) for the geologic repository at Yucca Mountain. A graphical representation of the documentation hierarchy for the ERMYN is presented in Figure 1-1. This figure shows relationships among the reports developed for biosphere modeling and biosphere abstraction products for the TSPA-LA, as identified in the ''Technical Work Plan for Biosphere Modeling and Expert Support'' (BSC 2004 [DIRS 169573]) (TWP). This figure provides an understanding of how this report contributes to biosphere modeling in support of the license application (LA). This report is one of the five reports that develop input parameter values for the biosphere model. The ''Biosphere Model Report'' (BSC 2004 [DIRS 169460]) describes the conceptual model and the mathematical model. The input parameter reports, shown to the right of the Biosphere Model Report in Figure 1-1, contain detailed description of the model input parameters. The output of this report is used as direct input in the ''Nominal Performance Biosphere Dose Conversion Factor Analysis'' and in the ''Disruptive Event Biosphere Dose Conversion Factor Analysis'' that calculate the values of biosphere dose conversion factors (BDCFs) for the groundwater and volcanic ash exposure scenarios, respectively. The purpose of this analysis was to develop biosphere model parameter values related to radionuclide transport and accumulation in the environment. These parameters support calculations of radionuclide concentrations in the environmental media (e.g., soil, crops, animal products, and air) resulting from a given radionuclide concentration at the source of contamination (i.e., either in groundwater or in volcanic ash). The analysis

  5. Inhalation Exposure Input Parameters for the Biosphere Model

    International Nuclear Information System (INIS)

    K. Rautenstrauch

    2004-01-01

    This analysis is one of 10 reports that support the Environmental Radiation Model for Yucca Mountain, Nevada (ERMYN) biosphere model. The ''Biosphere Model Report'' (BSC 2004 [DIRS 169460]) describes in detail the conceptual model as well as the mathematical model and its input parameters. This report documents development of input parameters for the biosphere model that are related to atmospheric mass loading and supports the use of the model to develop biosphere dose conversion factors (BDCFs). The biosphere model is one of a series of process models supporting the total system performance assessment (TSPA) for a Yucca Mountain repository. Inhalation Exposure Input Parameters for the Biosphere Model is one of five reports that develop input parameters for the biosphere model. A graphical representation of the documentation hierarchy for the ERMYN is presented in Figure 1-1. This figure shows the interrelationships among the products (i.e., analysis and model reports) developed for biosphere modeling, and the plan for development of the biosphere abstraction products for TSPA, as identified in the Technical Work Plan for Biosphere Modeling and Expert Support (BSC 2004 [DIRS 169573]). This analysis report defines and justifies values of mass loading for the biosphere model. Mass loading is the total mass concentration of resuspended particles (e.g., dust, ash) in a volume of air. Mass loading values are used in the air submodel of ERMYN to calculate concentrations of radionuclides in air inhaled by a receptor and concentrations in air surrounding crops. Concentrations in air to which the receptor is exposed are then used in the inhalation submodel to calculate the dose contribution to the receptor from inhalation of contaminated airborne particles. Concentrations in air surrounding plants are used in the plant submodel to calculate the concentrations of radionuclides in foodstuffs contributed from uptake by foliar interception

  6. Inhalation Exposure Input Parameters for the Biosphere Model

    Energy Technology Data Exchange (ETDEWEB)

    K. Rautenstrauch

    2004-09-10

    This analysis is one of 10 reports that support the Environmental Radiation Model for Yucca Mountain, Nevada (ERMYN) biosphere model. The ''Biosphere Model Report'' (BSC 2004 [DIRS 169460]) describes in detail the conceptual model as well as the mathematical model and its input parameters. This report documents development of input parameters for the biosphere model that are related to atmospheric mass loading and supports the use of the model to develop biosphere dose conversion factors (BDCFs). The biosphere model is one of a series of process models supporting the total system performance assessment (TSPA) for a Yucca Mountain repository. Inhalation Exposure Input Parameters for the Biosphere Model is one of five reports that develop input parameters for the biosphere model. A graphical representation of the documentation hierarchy for the ERMYN is presented in Figure 1-1. This figure shows the interrelationships among the products (i.e., analysis and model reports) developed for biosphere modeling, and the plan for development of the biosphere abstraction products for TSPA, as identified in the Technical Work Plan for Biosphere Modeling and Expert Support (BSC 2004 [DIRS 169573]). This analysis report defines and justifies values of mass loading for the biosphere model. Mass loading is the total mass concentration of resuspended particles (e.g., dust, ash) in a volume of air. Mass loading values are used in the air submodel of ERMYN to calculate concentrations of radionuclides in air inhaled by a receptor and concentrations in air surrounding crops. Concentrations in air to which the receptor is exposed are then used in the inhalation submodel to calculate the dose contribution to the receptor from inhalation of contaminated airborne particles. Concentrations in air surrounding plants are used in the plant submodel to calculate the concentrations of radionuclides in foodstuffs contributed from uptake by foliar interception.

  7. Investigation of RADTRAN Stop Model input parameters for truck stops

    International Nuclear Information System (INIS)

    Griego, N.R.; Smith, J.D.; Neuhauser, K.S.

    1996-01-01

    RADTRAN is a computer code for estimating the risks and consequences as transport of radioactive materials (RAM). RADTRAN was developed and is maintained by Sandia National Laboratories for the US Department of Energy (DOE). For incident-free transportation, the dose to persons exposed while the shipment is stopped is frequently a major percentage of the overall dose. This dose is referred to as Stop Dose and is calculated by the Stop Model. Because stop dose is a significant portion of the overall dose associated with RAM transport, the values used as input for the Stop Model are important. Therefore, an investigation of typical values for RADTRAN Stop Parameters for truck stops was performed. The resulting data from these investigations were analyzed to provide mean values, standard deviations, and histograms. Hence, the mean values can be used when an analyst does not have a basis for selecting other input values for the Stop Model. In addition, the histograms and their characteristics can be used to guide statistical sampling techniques to measure sensitivity of the RADTRAN calculated Stop Dose to the uncertainties in the stop model input parameters. This paper discusses the details and presents the results of the investigation of stop model input parameters at truck stops

  8. Inhalation Exposure Input Parameters for the Biosphere Model

    International Nuclear Information System (INIS)

    M. Wasiolek

    2006-01-01

    This analysis is one of the technical reports that support the Environmental Radiation Model for Yucca Mountain, Nevada (ERMYN), referred to in this report as the biosphere model. ''Biosphere Model Report'' (BSC 2004 [DIRS 169460]) describes in detail the conceptual model as well as the mathematical model and its input parameters. This report documents development of input parameters for the biosphere model that are related to atmospheric mass loading and supports the use of the model to develop biosphere dose conversion factors (BDCFs). The biosphere model is one of a series of process models supporting the total system performance assessment (TSPA) for a Yucca Mountain repository. ''Inhalation Exposure Input Parameters for the Biosphere Model'' is one of five reports that develop input parameters for the biosphere model. A graphical representation of the documentation hierarchy for the biosphere model is presented in Figure 1-1 (based on BSC 2006 [DIRS 176938]). This figure shows the interrelationships among the products (i.e., analysis and model reports) developed for biosphere modeling and how this analysis report contributes to biosphere modeling. This analysis report defines and justifies values of atmospheric mass loading for the biosphere model. Mass loading is the total mass concentration of resuspended particles (e.g., dust, ash) in a volume of air. Mass loading values are used in the air submodel of the biosphere model to calculate concentrations of radionuclides in air inhaled by a receptor and concentrations in air surrounding crops. Concentrations in air to which the receptor is exposed are then used in the inhalation submodel to calculate the dose contribution to the receptor from inhalation of contaminated airborne particles. Concentrations in air surrounding plants are used in the plant submodel to calculate the concentrations of radionuclides in foodstuffs contributed from uptake by foliar interception. This report is concerned primarily with the

  9. Inhalation Exposure Input Parameters for the Biosphere Model

    Energy Technology Data Exchange (ETDEWEB)

    M. Wasiolek

    2006-06-05

    This analysis is one of the technical reports that support the Environmental Radiation Model for Yucca Mountain, Nevada (ERMYN), referred to in this report as the biosphere model. ''Biosphere Model Report'' (BSC 2004 [DIRS 169460]) describes in detail the conceptual model as well as the mathematical model and its input parameters. This report documents development of input parameters for the biosphere model that are related to atmospheric mass loading and supports the use of the model to develop biosphere dose conversion factors (BDCFs). The biosphere model is one of a series of process models supporting the total system performance assessment (TSPA) for a Yucca Mountain repository. ''Inhalation Exposure Input Parameters for the Biosphere Model'' is one of five reports that develop input parameters for the biosphere model. A graphical representation of the documentation hierarchy for the biosphere model is presented in Figure 1-1 (based on BSC 2006 [DIRS 176938]). This figure shows the interrelationships among the products (i.e., analysis and model reports) developed for biosphere modeling and how this analysis report contributes to biosphere modeling. This analysis report defines and justifies values of atmospheric mass loading for the biosphere model. Mass loading is the total mass concentration of resuspended particles (e.g., dust, ash) in a volume of air. Mass loading values are used in the air submodel of the biosphere model to calculate concentrations of radionuclides in air inhaled by a receptor and concentrations in air surrounding crops. Concentrations in air to which the receptor is exposed are then used in the inhalation submodel to calculate the dose contribution to the receptor from inhalation of contaminated airborne particles. Concentrations in air surrounding plants are used in the plant submodel to calculate the concentrations of radionuclides in foodstuffs contributed from uptake by foliar interception. This

  10. Soil-related Input Parameters for the Biosphere Model

    International Nuclear Information System (INIS)

    A. J. Smith

    2003-01-01

    This analysis is one of the technical reports containing documentation of the Environmental Radiation Model for Yucca Mountain Nevada (ERMYN), a biosphere model supporting the Total System Performance Assessment (TSPA) for the geologic repository at Yucca Mountain. The biosphere model is one of a series of process models supporting the Total System Performance Assessment (TSPA) for the Yucca Mountain repository. A graphical representation of the documentation hierarchy for the ERMYN biosphere model is presented in Figure 1-1. This figure shows the interrelationships among the products (i.e., analysis and model reports) developed for biosphere modeling, and the plan for development of the biosphere abstraction products for TSPA, as identified in the ''Technical Work Plan: for Biosphere Modeling and Expert Support'' (BSC 2003 [163602]). It should be noted that some documents identified in Figure 1-1 may be under development at the time this report is issued and therefore not available. This figure is included to provide an understanding of how this analysis report contributes to biosphere modeling in support of the license application, and is not intended to imply that access to the listed documents is required to understand the contents of this report. This report, ''Soil Related Input Parameters for the Biosphere Model'', is one of the five analysis reports that develop input parameters for use in the ERMYN model. This report is the source documentation for the six biosphere parameters identified in Table 1-1. ''The Biosphere Model Report'' (BSC 2003 [160699]) describes in detail the conceptual model as well as the mathematical model and its input parameters. The purpose of this analysis was to develop the biosphere model parameters needed to evaluate doses from pathways associated with the accumulation and depletion of radionuclides in the soil. These parameters support the calculation of radionuclide concentrations in soil from on-going irrigation and ash

  11. Inhalation Exposure Input Parameters for the Biosphere Model

    International Nuclear Information System (INIS)

    M. A. Wasiolek

    2003-01-01

    This analysis is one of the nine reports that support the Environmental Radiation Model for Yucca Mountain Nevada (ERMYN) biosphere model. The ''Biosphere Model Report'' (BSC 2003a) describes in detail the conceptual model as well as the mathematical model and its input parameters. This report documents a set of input parameters for the biosphere model, and supports the use of the model to develop biosphere dose conversion factors (BDCFs). The biosphere model is one of a series of process models supporting the Total System Performance Assessment (TSPA) for a Yucca Mountain repository. This report, ''Inhalation Exposure Input Parameters for the Biosphere Model'', is one of the five reports that develop input parameters for the biosphere model. A graphical representation of the documentation hierarchy for the ERMYN is presented in Figure 1-1. This figure shows the interrelationships among the products (i.e., analysis and model reports) developed for biosphere modeling, and the plan for development of the biosphere abstraction products for TSPA, as identified in the ''Technical Work Plan: for Biosphere Modeling and Expert Support'' (BSC 2003b). It should be noted that some documents identified in Figure 1-1 may be under development at the time this report is issued and therefore not available at that time. This figure is included to provide an understanding of how this analysis report contributes to biosphere modeling in support of the license application, and is not intended to imply that access to the listed documents is required to understand the contents of this analysis report. This analysis report defines and justifies values of mass loading, which is the total mass concentration of resuspended particles (e.g., dust, ash) in a volume of air. Measurements of mass loading are used in the air submodel of ERMYN to calculate concentrations of radionuclides in air surrounding crops and concentrations in air inhaled by a receptor. Concentrations in air to which the

  12. Inhalation Exposure Input Parameters for the Biosphere Model

    Energy Technology Data Exchange (ETDEWEB)

    M. A. Wasiolek

    2003-09-24

    This analysis is one of the nine reports that support the Environmental Radiation Model for Yucca Mountain Nevada (ERMYN) biosphere model. The ''Biosphere Model Report'' (BSC 2003a) describes in detail the conceptual model as well as the mathematical model and its input parameters. This report documents a set of input parameters for the biosphere model, and supports the use of the model to develop biosphere dose conversion factors (BDCFs). The biosphere model is one of a series of process models supporting the Total System Performance Assessment (TSPA) for a Yucca Mountain repository. This report, ''Inhalation Exposure Input Parameters for the Biosphere Model'', is one of the five reports that develop input parameters for the biosphere model. A graphical representation of the documentation hierarchy for the ERMYN is presented in Figure 1-1. This figure shows the interrelationships among the products (i.e., analysis and model reports) developed for biosphere modeling, and the plan for development of the biosphere abstraction products for TSPA, as identified in the ''Technical Work Plan: for Biosphere Modeling and Expert Support'' (BSC 2003b). It should be noted that some documents identified in Figure 1-1 may be under development at the time this report is issued and therefore not available at that time. This figure is included to provide an understanding of how this analysis report contributes to biosphere modeling in support of the license application, and is not intended to imply that access to the listed documents is required to understand the contents of this analysis report. This analysis report defines and justifies values of mass loading, which is the total mass concentration of resuspended particles (e.g., dust, ash) in a volume of air. Measurements of mass loading are used in the air submodel of ERMYN to calculate concentrations of radionuclides in air surrounding crops and concentrations in air

  13. Agricultural and Environmental Input Parameters for the Biosphere Model

    Energy Technology Data Exchange (ETDEWEB)

    K. Rasmuson; K. Rautenstrauch

    2004-09-14

    This analysis is one of 10 technical reports that support the Environmental Radiation Model for Yucca Mountain Nevada (ERMYN) (i.e., the biosphere model). It documents development of agricultural and environmental input parameters for the biosphere model, and supports the use of the model to develop biosphere dose conversion factors (BDCFs). The biosphere model is one of a series of process models supporting the total system performance assessment (TSPA) for the repository at Yucca Mountain. The ERMYN provides the TSPA with the capability to perform dose assessments. A graphical representation of the documentation hierarchy for the ERMYN is presented in Figure 1-1. This figure shows the interrelationships between the major activities and their products (the analysis and model reports) that were planned in ''Technical Work Plan for Biosphere Modeling and Expert Support'' (BSC 2004 [DIRS 169573]). The ''Biosphere Model Report'' (BSC 2004 [DIRS 169460]) describes the ERMYN and its input parameters.

  14. Environmental Transport Input Parameters for the Biosphere Model

    International Nuclear Information System (INIS)

    Wasiolek, M. A.

    2003-01-01

    This analysis report is one of the technical reports documenting the Environmental Radiation Model for Yucca Mountain Nevada (ERMYN), a biosphere model supporting the total system performance assessment (TSPA) for the geologic repository at Yucca Mountain. A graphical representation of the documentation hierarchy for the ERMYN is presented in Figure 1-1. This figure shows relationships among the reports developed for biosphere modeling and biosphere abstraction products for the TSPA, as identified in the ''Technical Work Plan: for Biosphere Modeling and Expert Support'' (TWP) (BSC 2003 [163602]). Some documents in Figure 1-1 may be under development and not available when this report is issued. This figure provides an understanding of how this report contributes to biosphere modeling in support of the license application (LA), but access to the listed documents is not required to understand the contents of this report. This report is one of the reports that develops input parameter values for the biosphere model. The ''Biosphere Model Report'' (BSC 2003 [160699]) describes the conceptual model, the mathematical model, and the input parameters. The purpose of this analysis is to develop biosphere model parameter values related to radionuclide transport and accumulation in the environment. These parameters support calculations of radionuclide concentrations in the environmental media (e.g., soil, crops, animal products, and air) resulting from a given radionuclide concentration at the source of contamination (i.e., either in groundwater or volcanic ash). The analysis was performed in accordance with the TWP (BSC 2003 [163602]). This analysis develops values of parameters associated with many features, events, and processes (FEPs) applicable to the reference biosphere (DTN: M00303SEPFEPS2.000 [162452]), which are addressed in the biosphere model (BSC 2003 [160699]). The treatment of these FEPs is described in BSC (2003 [160699], Section 6.2). Parameter values

  15. Environmental Transport Input Parameters for the Biosphere Model

    Energy Technology Data Exchange (ETDEWEB)

    M. A. Wasiolek

    2003-06-27

    This analysis report is one of the technical reports documenting the Environmental Radiation Model for Yucca Mountain Nevada (ERMYN), a biosphere model supporting the total system performance assessment (TSPA) for the geologic repository at Yucca Mountain. A graphical representation of the documentation hierarchy for the ERMYN is presented in Figure 1-1. This figure shows relationships among the reports developed for biosphere modeling and biosphere abstraction products for the TSPA, as identified in the ''Technical Work Plan: for Biosphere Modeling and Expert Support'' (TWP) (BSC 2003 [163602]). Some documents in Figure 1-1 may be under development and not available when this report is issued. This figure provides an understanding of how this report contributes to biosphere modeling in support of the license application (LA), but access to the listed documents is not required to understand the contents of this report. This report is one of the reports that develops input parameter values for the biosphere model. The ''Biosphere Model Report'' (BSC 2003 [160699]) describes the conceptual model, the mathematical model, and the input parameters. The purpose of this analysis is to develop biosphere model parameter values related to radionuclide transport and accumulation in the environment. These parameters support calculations of radionuclide concentrations in the environmental media (e.g., soil, crops, animal products, and air) resulting from a given radionuclide concentration at the source of contamination (i.e., either in groundwater or volcanic ash). The analysis was performed in accordance with the TWP (BSC 2003 [163602]). This analysis develops values of parameters associated with many features, events, and processes (FEPs) applicable to the reference biosphere (DTN: M00303SEPFEPS2.000 [162452]), which are addressed in the biosphere model (BSC 2003 [160699]). The treatment of these FEPs is described in BSC (2003 [160699

  16. Soil-Related Input Parameters for the Biosphere Model

    International Nuclear Information System (INIS)

    Smith, A. J.

    2004-01-01

    This report presents one of the analyses that support the Environmental Radiation Model for Yucca Mountain Nevada (ERMYN). The ''Biosphere Model Report'' (BSC 2004 [DIRS 169460]) describes the details of the conceptual model as well as the mathematical model and the required input parameters. The biosphere model is one of a series of process models supporting the postclosure Total System Performance Assessment (TSPA) for the Yucca Mountain repository. A schematic representation of the documentation flow for the Biosphere input to TSPA is presented in Figure 1-1. This figure shows the evolutionary relationships among the products (i.e., analysis and model reports) developed for biosphere modeling, and the biosphere abstraction products for TSPA, as identified in the ''Technical Work Plan for Biosphere Modeling and Expert Support'' (TWP) (BSC 2004 [DIRS 169573]). This figure is included to provide an understanding of how this analysis report contributes to biosphere modeling in support of the license application, and is not intended to imply that access to the listed documents is required to understand the contents of this report. This report, ''Soil-Related Input Parameters for the Biosphere Model'', is one of the five analysis reports that develop input parameters for use in the ERMYN model. This report is the source documentation for the six biosphere parameters identified in Table 1-1. The purpose of this analysis was to develop the biosphere model parameters associated with the accumulation and depletion of radionuclides in the soil. These parameters support the calculation of radionuclide concentrations in soil from on-going irrigation or ash deposition and, as a direct consequence, radionuclide concentration in other environmental media that are affected by radionuclide concentrations in soil. The analysis was performed in accordance with the TWP (BSC 2004 [DIRS 169573]) where the governing procedure was defined as AP-SIII.9Q, ''Scientific Analyses''. This

  17. Soil-Related Input Parameters for the Biosphere Model

    Energy Technology Data Exchange (ETDEWEB)

    A. J. Smith

    2004-09-09

    This report presents one of the analyses that support the Environmental Radiation Model for Yucca Mountain Nevada (ERMYN). The ''Biosphere Model Report'' (BSC 2004 [DIRS 169460]) describes the details of the conceptual model as well as the mathematical model and the required input parameters. The biosphere model is one of a series of process models supporting the postclosure Total System Performance Assessment (TSPA) for the Yucca Mountain repository. A schematic representation of the documentation flow for the Biosphere input to TSPA is presented in Figure 1-1. This figure shows the evolutionary relationships among the products (i.e., analysis and model reports) developed for biosphere modeling, and the biosphere abstraction products for TSPA, as identified in the ''Technical Work Plan for Biosphere Modeling and Expert Support'' (TWP) (BSC 2004 [DIRS 169573]). This figure is included to provide an understanding of how this analysis report contributes to biosphere modeling in support of the license application, and is not intended to imply that access to the listed documents is required to understand the contents of this report. This report, ''Soil-Related Input Parameters for the Biosphere Model'', is one of the five analysis reports that develop input parameters for use in the ERMYN model. This report is the source documentation for the six biosphere parameters identified in Table 1-1. The purpose of this analysis was to develop the biosphere model parameters associated with the accumulation and depletion of radionuclides in the soil. These parameters support the calculation of radionuclide concentrations in soil from on-going irrigation or ash deposition and, as a direct consequence, radionuclide concentration in other environmental media that are affected by radionuclide concentrations in soil. The analysis was performed in accordance with the TWP (BSC 2004 [DIRS 169573]) where the governing procedure

  18. The definition of input parameters for modelling of energetic subsystems

    Directory of Open Access Journals (Sweden)

    Ptacek M.

    2013-06-01

    Full Text Available This paper is a short review and a basic description of mathematical models of renewable energy sources which present individual investigated subsystems of a system created in Matlab/Simulink. It solves the physical and mathematical relationships of photovoltaic and wind energy sources that are often connected to the distribution networks. The fuel cell technology is much less connected to the distribution networks but it could be promising in the near future. Therefore, the paper informs about a new dynamic model of the low-temperature fuel cell subsystem, and the main input parameters are defined as well. Finally, the main evaluated and achieved graphic results for the suggested parameters and for all the individual subsystems mentioned above are shown.

  19. The definition of input parameters for modelling of energetic subsystems

    Science.gov (United States)

    Ptacek, M.

    2013-06-01

    This paper is a short review and a basic description of mathematical models of renewable energy sources which present individual investigated subsystems of a system created in Matlab/Simulink. It solves the physical and mathematical relationships of photovoltaic and wind energy sources that are often connected to the distribution networks. The fuel cell technology is much less connected to the distribution networks but it could be promising in the near future. Therefore, the paper informs about a new dynamic model of the low-temperature fuel cell subsystem, and the main input parameters are defined as well. Finally, the main evaluated and achieved graphic results for the suggested parameters and for all the individual subsystems mentioned above are shown.

  20. Assigning probability distributions to input parameters of performance assessment models

    International Nuclear Information System (INIS)

    Mishra, Srikanta

    2002-02-01

    This study presents an overview of various approaches for assigning probability distributions to input parameters and/or future states of performance assessment models. Specifically,three broad approaches are discussed for developing input distributions: (a) fitting continuous distributions to data, (b) subjective assessment of probabilities, and (c) Bayesian updating of prior knowledge based on new information. The report begins with a summary of the nature of data and distributions, followed by a discussion of several common theoretical parametric models for characterizing distributions. Next, various techniques are presented for fitting continuous distributions to data. These include probability plotting, method of moments, maximum likelihood estimation and nonlinear least squares analysis. The techniques are demonstrated using data from a recent performance assessment study for the Yucca Mountain project. Goodness of fit techniques are also discussed, followed by an overview of how distribution fitting is accomplished in commercial software packages. The issue of subjective assessment of probabilities is dealt with in terms of the maximum entropy distribution selection approach, as well as some common rules for codifying informal expert judgment. Formal expert elicitation protocols are discussed next, and are based primarily on the guidance provided by the US NRC. The Bayesian framework for updating prior distributions (beliefs) when new information becomes available is discussed. A simple numerical approach is presented for facilitating practical applications of the Bayes theorem. Finally, a systematic framework for assigning distributions is presented: (a) for the situation where enough data are available to define an empirical CDF or fit a parametric model to the data, and (b) to deal with the situation where only a limited amount of information is available

  1. Assigning probability distributions to input parameters of performance assessment models

    Energy Technology Data Exchange (ETDEWEB)

    Mishra, Srikanta [INTERA Inc., Austin, TX (United States)

    2002-02-01

    This study presents an overview of various approaches for assigning probability distributions to input parameters and/or future states of performance assessment models. Specifically,three broad approaches are discussed for developing input distributions: (a) fitting continuous distributions to data, (b) subjective assessment of probabilities, and (c) Bayesian updating of prior knowledge based on new information. The report begins with a summary of the nature of data and distributions, followed by a discussion of several common theoretical parametric models for characterizing distributions. Next, various techniques are presented for fitting continuous distributions to data. These include probability plotting, method of moments, maximum likelihood estimation and nonlinear least squares analysis. The techniques are demonstrated using data from a recent performance assessment study for the Yucca Mountain project. Goodness of fit techniques are also discussed, followed by an overview of how distribution fitting is accomplished in commercial software packages. The issue of subjective assessment of probabilities is dealt with in terms of the maximum entropy distribution selection approach, as well as some common rules for codifying informal expert judgment. Formal expert elicitation protocols are discussed next, and are based primarily on the guidance provided by the US NRC. The Bayesian framework for updating prior distributions (beliefs) when new information becomes available is discussed. A simple numerical approach is presented for facilitating practical applications of the Bayes theorem. Finally, a systematic framework for assigning distributions is presented: (a) for the situation where enough data are available to define an empirical CDF or fit a parametric model to the data, and (b) to deal with the situation where only a limited amount of information is available.

  2. Land Building Models: Uncertainty in and Sensitivity to Input Parameters

    Science.gov (United States)

    2013-08-01

    Vicksburg, MS: US Army Engineer Research and Development Center. An electronic copy of this CHETN is available from http://chl.erdc.usace.army.mil/chetn...Nourishment Module, Chapter 8. In Coastal Louisiana Ecosystem Assessment and Restoration (CLEAR) Model of Louisiana Coastal Area ( LCA ) Comprehensive

  3. Sensitivity Analysis of Input Parameters for a Dynamic Food Chain Model DYNACON

    International Nuclear Information System (INIS)

    Hwang, Won Tae; Lee, Geun Chang; Han, Moon Hee; Cho, Gyu Seong

    2000-01-01

    The sensitivity analysis of input parameters for a dynamic food chain model DYNACON was conducted as a function of deposition data for the long-lived radionuclides ( 137 Cs, 90 Sr). Also, the influence of input parameters for the short and long-terms contamination of selected foodstuffs (cereals, leafy vegetables, milk) was investigated. The input parameters were sampled using the LHS technique, and their sensitivity indices represented as PRCC. The sensitivity index was strongly dependent on contamination period as well as deposition data. In case of deposition during the growing stages of plants, the input parameters associated with contamination by foliar absorption were relatively important in long-term contamination as well as short-term contamination. They were also important in short-term contamination in case of deposition during the non-growing stages. In long-term contamination, the influence of input parameters associated with foliar absorption decreased, while the influence of input parameters associated with root uptake increased. These phenomena were more remarkable in case of the deposition of non-growing stages than growing stages, and in case of 90 Sr deposition than 137 Cs deposition. In case of deposition during growing stages of pasture, the input parameters associated with the characteristics of cattle such as feed-milk transfer factor and daily intake rate of cattle were relatively important in contamination of milk

  4. Input parameters for LEAP and analysis of the Model 22C data base

    Energy Technology Data Exchange (ETDEWEB)

    Stewart, L.; Goldstein, M.

    1981-05-01

    The input data for the Long-Term Energy Analysis Program (LEAP) employed by EIA for projections of long-term energy supply and demand in the US were studied and additional documentation provided. Particular emphasis has been placed on the LEAP Model 22C input data base, which was used in obtaining the output projections which appear in the 1978 Annual Report to Congress. Definitions, units, associated model parameters, and translation equations are given in detail. Many parameters were set to null values in Model 22C so as to turn off certain complexities in LEAP; these parameters are listed in Appendix B along with parameters having constant values across all activities. The values of the parameters for each activity are tabulated along with the source upon which each parameter is based - and appropriate comments provided, where available. The structure of the data base is briefly outlined and an attempt made to categorize the parameters according to the methods employed for estimating the numerical values. Due to incomplete documentation and/or lack of specific parameter definitions, few of the input values could be traced and uniquely interpreted using the information provided in the primary and secondary sources. Input parameter choices were noted which led to output projections which are somewhat suspect. Other data problems encountered are summarized. Some of the input data were corrected and a revised base case was constructed. The output projections for this revised case are compared with the Model 22C output for the year 2020, for the Transportation Sector. LEAP could be a very useful tool, especially so in the study of emerging technologies over long-time frames.

  5. A New Ensemble of Perturbed-Input-Parameter Simulations by the Community Atmosphere Model

    Energy Technology Data Exchange (ETDEWEB)

    Covey, C; Brandon, S; Bremer, P T; Domyancis, D; Garaizar, X; Johannesson, G; Klein, R; Klein, S A; Lucas, D D; Tannahill, J; Zhang, Y

    2011-10-27

    Uncertainty quantification (UQ) is a fundamental challenge in the numerical simulation of Earth's weather and climate, and other complex systems. It entails much more than attaching defensible error bars to predictions: in particular it includes assessing low-probability but high-consequence events. To achieve these goals with models containing a large number of uncertain input parameters, structural uncertainties, etc., raw computational power is needed. An automated, self-adapting search of the possible model configurations is also useful. Our UQ initiative at the Lawrence Livermore National Laboratory has produced the most extensive set to date of simulations from the US Community Atmosphere Model. We are examining output from about 3,000 twelve-year climate simulations generated with a specialized UQ software framework, and assessing the model's accuracy as a function of 21 to 28 uncertain input parameter values. Most of the input parameters we vary are related to the boundary layer, clouds, and other sub-grid scale processes. Our simulations prescribe surface boundary conditions (sea surface temperatures and sea ice amounts) to match recent observations. Fully searching this 21+ dimensional space is impossible, but sensitivity and ranking algorithms can identify input parameters having relatively little effect on a variety of output fields, either individually or in nonlinear combination. Bayesian statistical constraints, employing a variety of climate observations as metrics, also seem promising. Observational constraints will be important in the next step of our project, which will compute sea surface temperatures and sea ice interactively, and will study climate change due to increasing atmospheric carbon dioxide.

  6. Discrete element modelling (DEM) input parameters: understanding their impact on model predictions using statistical analysis

    Science.gov (United States)

    Yan, Z.; Wilkinson, S. K.; Stitt, E. H.; Marigo, M.

    2015-09-01

    Selection or calibration of particle property input parameters is one of the key problematic aspects for the implementation of the discrete element method (DEM). In the current study, a parametric multi-level sensitivity method is employed to understand the impact of the DEM input particle properties on the bulk responses for a given simple system: discharge of particles from a flat bottom cylindrical container onto a plate. In this case study, particle properties, such as Young's modulus, friction parameters and coefficient of restitution were systematically changed in order to assess their effect on material repose angles and particle flow rate (FR). It was shown that inter-particle static friction plays a primary role in determining both final angle of repose and FR, followed by the role of inter-particle rolling friction coefficient. The particle restitution coefficient and Young's modulus were found to have insignificant impacts and were strongly cross correlated. The proposed approach provides a systematic method that can be used to show the importance of specific DEM input parameters for a given system and then potentially facilitates their selection or calibration. It is concluded that shortening the process for input parameters selection and calibration can help in the implementation of DEM.

  7. On Input Vector Representation for the SVR model of Reactor Core Loading Pattern Critical Parameters

    International Nuclear Information System (INIS)

    Trontl, K.; Pevec, D.; Smuc, T.

    2008-01-01

    Determination and optimization of reactor core loading pattern is an important factor in nuclear power plant operation. The goal is to minimize the amount of enriched uranium (fresh fuel) and burnable absorbers placed in the core, while maintaining nuclear power plant operational and safety characteristics. The usual approach to loading pattern optimization involves high degree of engineering judgment, a set of heuristic rules, an optimization algorithm and a computer code used for evaluating proposed loading patterns. The speed of the optimization process is highly dependent on the computer code used for the evaluation. Recently, we proposed a new method for fast loading pattern evaluation based on general robust regression model relying on the state of the art research in the field of machine learning. We employed Support Vector Regression (SVR) technique. SVR is a supervised learning method in which model parameters are automatically determined by solving a quadratic optimization problem. The preliminary tests revealed a good potential of the SVR method application for fast and accurate reactor core loading pattern evaluation. However, some aspects of model development are still unresolved. The main objective of the work reported in this paper was to conduct additional tests and analyses required for full clarification of the SVR applicability for loading pattern evaluation. We focused our attention on the parameters defining input vector, primarily its structure and complexity, and parameters defining kernel functions. All the tests were conducted on the NPP Krsko reactor core, using MCRAC code for the calculation of reactor core loading pattern critical parameters. The tested input vector structures did not influence the accuracy of the models suggesting that the initially tested input vector, consisted of the number of IFBAs and the k-inf at the beginning of the cycle, is adequate. The influence of kernel function specific parameters (σ for RBF kernel

  8. Modelling pesticide leaching under climate change: parameter vs. climate input uncertainty

    Directory of Open Access Journals (Sweden)

    K. Steffens

    2014-02-01

    Full Text Available Assessing climate change impacts on pesticide leaching requires careful consideration of different sources of uncertainty. We investigated the uncertainty related to climate scenario input and its importance relative to parameter uncertainty of the pesticide leaching model. The pesticide fate model MACRO was calibrated against a comprehensive one-year field data set for a well-structured clay soil in south-western Sweden. We obtained an ensemble of 56 acceptable parameter sets that represented the parameter uncertainty. Nine different climate model projections of the regional climate model RCA3 were available as driven by different combinations of global climate models (GCM, greenhouse gas emission scenarios and initial states of the GCM. The future time series of weather data used to drive the MACRO model were generated by scaling a reference climate data set (1970–1999 for an important agricultural production area in south-western Sweden based on monthly change factors for 2070–2099. 30 yr simulations were performed for different combinations of pesticide properties and application seasons. Our analysis showed that both the magnitude and the direction of predicted change in pesticide leaching from present to future depended strongly on the particular climate scenario. The effect of parameter uncertainty was of major importance for simulating absolute pesticide losses, whereas the climate uncertainty was relatively more important for predictions of changes of pesticide losses from present to future. The climate uncertainty should be accounted for by applying an ensemble of different climate scenarios. The aggregated ensemble prediction based on both acceptable parameterizations and different climate scenarios has the potential to provide robust probabilistic estimates of future pesticide losses.

  9. Estimation and impact assessment of input and parameter uncertainty in predicting groundwater flow with a fully distributed model

    Science.gov (United States)

    Touhidul Mustafa, Syed Md.; Nossent, Jiri; Ghysels, Gert; Huysmans, Marijke

    2017-04-01

    Transient numerical groundwater flow models have been used to understand and forecast groundwater flow systems under anthropogenic and climatic effects, but the reliability of the predictions is strongly influenced by different sources of uncertainty. Hence, researchers in hydrological sciences are developing and applying methods for uncertainty quantification. Nevertheless, spatially distributed flow models pose significant challenges for parameter and spatially distributed input estimation and uncertainty quantification. In this study, we present a general and flexible approach for input and parameter estimation and uncertainty analysis of groundwater models. The proposed approach combines a fully distributed groundwater flow model (MODFLOW) with the DiffeRential Evolution Adaptive Metropolis (DREAM) algorithm. To avoid over-parameterization, the uncertainty of the spatially distributed model input has been represented by multipliers. The posterior distributions of these multipliers and the regular model parameters were estimated using DREAM. The proposed methodology has been applied in an overexploited aquifer in Bangladesh where groundwater pumping and recharge data are highly uncertain. The results confirm that input uncertainty does have a considerable effect on the model predictions and parameter distributions. Additionally, our approach also provides a new way to optimize the spatially distributed recharge and pumping data along with the parameter values under uncertain input conditions. It can be concluded from our approach that considering model input uncertainty along with parameter uncertainty is important for obtaining realistic model predictions and a correct estimation of the uncertainty bounds.

  10. Assessment of input function distortions on kinetic model parameters in simulated dynamic 82Rb PET perfusion studies

    International Nuclear Information System (INIS)

    Meyer, Carsten; Peligrad, Dragos-Nicolae; Weibrecht, Martin

    2007-01-01

    Cardiac 82 rubidium dynamic PET studies allow quantifying absolute myocardial perfusion by using tracer kinetic modeling. Here, the accurate measurement of the input function, i.e. the tracer concentration in blood plasma, is a major challenge. This measurement is deteriorated by inappropriate temporal sampling, spillover, etc. Such effects may influence the measured input peak value and the measured blood pool clearance. The aim of our study is to evaluate the effect of input function distortions on the myocardial perfusion as estimated by the model. To this end, we simulate noise-free myocardium time activity curves (TACs) with a two-compartment kinetic model. The input function to the model is a generic analytical function. Distortions of this function have been introduced by varying its parameters. Using the distorted input function, the compartment model has been fitted to the simulated myocardium TAC. This analysis has been performed for various sets of model parameters covering a physiologically relevant range. The evaluation shows that ±10% error in the input peak value can easily lead to ±10-25% error in the model parameter K 1 , which relates to myocardial perfusion. Variations in the input function tail are generally less relevant. We conclude that an accurate estimation especially of the plasma input peak is crucial for a reliable kinetic analysis and blood flow estimation

  11. Parameter setting and input reduction

    NARCIS (Netherlands)

    Evers, A.; van Kampen, N.J.|info:eu-repo/dai/nl/126439737

    2008-01-01

    The language acquisition procedure identifies certain properties of the target grammar before others. The evidence from the input is processed in a stepwise order. Section 1 equates that order and its typical effects with an order of parameter setting. The question is how the acquisition procedure

  12. Investigations of the sensitivity of a coronal mass ejection model (ENLIL) to solar input parameters

    DEFF Research Database (Denmark)

    Falkenberg, Thea Vilstrup; Vršnak, B.; Taktakishvili, A.

    2010-01-01

    Understanding space weather is not only important for satellite operations and human exploration of the solar system but also to phenomena here on Earth that may potentially disturb and disrupt electrical signals. Some of the most violent space weather effects are caused by coronal mass ejections...... investigate the parameter space of the ENLILv2.5b model using the CME event of 25 July 2004. ENLIL is a time‐dependent 3‐D MHD model that can simulate the propagation of cone‐shaped interplanetary coronal mass ejections (ICMEs) through the solar system. Excepting the cone parameters (radius, position...

  13. Deriving input parameters for cost-effectiveness modeling: taxonomy of data types and approaches to their statistical synthesis.

    Science.gov (United States)

    Saramago, Pedro; Manca, Andrea; Sutton, Alex J

    2012-01-01

    The evidence base informing economic evaluation models is rarely derived from a single source. Researchers are typically expected to identify and combine available data to inform the estimation of model parameters for a particular decision problem. The absence of clear guidelines on what data can be used and how to effectively synthesize this evidence base under different scenarios inevitably leads to different approaches being used by different modelers. The aim of this article is to produce a taxonomy that can help modelers identify the most appropriate methods to use when synthesizing the available data for a given model parameter. This article developed a taxonomy based on possible scenarios faced by the analyst when dealing with the available evidence. While mainly focusing on clinical effectiveness parameters, this article also discusses strategies relevant to other key input parameters in any economic model (i.e., disease natural history, resource use/costs, and preferences). The taxonomy categorizes the evidence base for health economic modeling according to whether 1) single or multiple data sources are available, 2) individual or aggregate data are available (or both), or 3) individual or multiple decision model parameters are to be estimated from the data. References to examples of the key methodological developments for each entry in the taxonomy together with citations to where such methods have been used in practice are provided throughout. The use of the taxonomy developed in this article hopes to improve the quality of the synthesis of evidence informing decision models by bringing to the attention of health economics modelers recent methodological developments in this field. Copyright © 2012 International Society for Pharmacoeconomics and Outcomes Research (ISPOR). Published by Elsevier Inc. All rights reserved.

  14. Better temperature predictions in geothermal modelling by improved quality of input parameters

    DEFF Research Database (Denmark)

    Fuchs, Sven; Bording, Thue Sylvester; Balling, N.

    2015-01-01

    Thermal modelling is used to examine the subsurface temperature field and geothermal conditions at various scales (e.g. sedimentary basins, deep crust) and in the framework of different problem settings (e.g. scientific or industrial use). In such models, knowledge of rock thermal properties...

  15. Global Nitrous Oxide Emissions from Agricultural Soils: Magnitude and Uncertainties Associated with Input Data and Model Parameters

    Science.gov (United States)

    Xu, R.; Tian, H.; Pan, S.; Yang, J.; Lu, C.; Zhang, B.

    2016-12-01

    Human activities have caused significant perturbations of the nitrogen (N) cycle, resulting in about 21% increase of atmospheric N2O concentration since the pre-industrial era. This large increase is mainly caused by intensive agricultural activities including the application of nitrogen fertilizer and the expansion of leguminous crops. Substantial efforts have been made to quantify the global and regional N2O emission from agricultural soils in the last several decades using a wide variety of approaches, such as ground-based observation, atmospheric inversion, and process-based model. However, large uncertainties exist in those estimates as well as methods themselves. In this study, we used a coupled biogeochemical model (DLEM) to estimate magnitude, spatial, and temporal patterns of N2O emissions from global croplands in the past five decades (1961-2012). To estimate uncertainties associated with input data and model parameters, we have implemented a number of simulation experiments with DLEM, accounting for key parameter values that affect calculation of N2O fluxes (i.e., maximum nitrification and denitrification rates, N fixation rate, and the adsorption coefficient for soil ammonium and nitrate), different sets of input data including climate, land management practices (i.e., nitrogen fertilizer types, application rates and timings, with/without irrigation), N deposition, and land use and land cover change. This work provides a robust estimate of global N2O emissions from agricultural soils as well as identifies key gaps and limitations in the existing model and data that need to be investigated in the future.

  16. Optimizing the modified microdosimetric kinetic model input parameters for proton and 4He ion beam therapy application

    Science.gov (United States)

    Mairani, A.; Magro, G.; Tessonnier, T.; Böhlen, T. T.; Molinelli, S.; Ferrari, A.; Parodi, K.; Debus, J.; Haberer, T.

    2017-06-01

    Models able to predict relative biological effectiveness (RBE) values are necessary for an accurate determination of the biological effect with proton and 4He ion beams. This is particularly important when including RBE calculations in treatment planning studies comparing biologically optimized proton and 4He ion beam plans. In this work, we have tailored the predictions of the modified microdosimetric kinetic model (MKM), which is clinically applied for carbon ion beam therapy in Japan, to reproduce RBE with proton and 4He ion beams. We have tuned the input parameters of the MKM, i.e. the domain and nucleus radii, reproducing an experimental database of initial RBE data for proton and He ion beams. The modified MKM, with the best fit parameters obtained, has been used to reproduce in vitro cell survival data in clinically-relevant scenarios. A satisfactory agreement has been found for the studied cell lines, A549 and RENCA, with the mean absolute survival variation between the data and predictions within 2% and 5% for proton and 4He ion beams, respectively. Moreover, a sensitivity study has been performed varying the domain and nucleus radii and the quadratic parameter of the photon response curve. The promising agreement found in this work for the studied clinical-like scenarios supports the usage of the modified MKM for treatment planning studies in proton and 4He ion beam therapy.

  17. Application of regional physically-based landslide early warning model: tuning of the input parameters and validation of the results

    Science.gov (United States)

    D'Ambrosio, Michele; Tofani, Veronica; Rossi, Guglielmo; Salvatici, Teresa; Tacconi Stefanelli, Carlo; Rosi, Ascanio; Benedetta Masi, Elena; Pazzi, Veronica; Vannocci, Pietro; Catani, Filippo; Casagli, Nicola

    2017-04-01

    The Aosta Valley region is located in North-West Alpine mountain chain. The geomorphology of the region is characterized by steep slopes, high climatic and altitude (ranging from 400 m a.s.l of Dora Baltea's river floodplain to 4810 m a.s.l. of Mont Blanc) variability. In the study area (zone B), located in Eastern part of Aosta Valley, heavy rainfall of about 800-900 mm per year is the main landslides trigger. These features lead to a high hydrogeological risk in all territory, as mass movements interest the 70% of the municipality areas (mainly shallow rapid landslides and rock falls). An in-depth study of the geotechnical and hydrological properties of hillslopes controlling shallow landslides formation was conducted, with the aim to improve the reliability of deterministic model, named HIRESS (HIgh REsolution Stability Simulator). In particular, two campaigns of on site measurements and laboratory experiments were performed. The data obtained have been studied in order to assess the relationships existing among the different parameters and the bedrock lithology. The analyzed soils in 12 survey points are mainly composed of sand and gravel, with highly variable contents of silt. The range of effective internal friction angle (from 25.6° to 34.3°) and effective cohesion (from 0 kPa to 9.3 kPa) measured and the median ks (10E-6 m/s) value are consistent with the average grain sizes (gravelly sand). The data collected contributes to generate input map of parameters for HIRESS (static data). More static data are: volume weight, residual water content, porosity and grain size index. In order to improve the original formulation of the model, the contribution of the root cohesion has been also taken into account based on the vegetation map and literature values. HIRESS is a physically based distributed slope stability simulator for analyzing shallow landslide triggering conditions in real time and in large areas using parallel computational techniques. The software

  18. Methods, Devices and Computer Program Products Providing for Establishing a Model for Emulating a Physical Quantity Which Depends on at Least One Input Parameter, and Use Thereof

    DEFF Research Database (Denmark)

    2014-01-01

    The present invention proposes methods, devices and computer program products. To this extent, there is defined a set X including N distinct parameter values x_i for at least one input parameter x, N being an integer greater than or equal to 1, first measured the physical quantity Pm1 for each...... based on the Vandermonde matrix and the first measured physical quantity according to the equation W=(VMT*VM)-1*VMT*Pm1. The model is iteratively refined so as to obtained a desired emulation precision.; The model can later be used to emulate the physical quantity based on input parameters or logs taken...

  19. Distribution Development for STORM Ingestion Input Parameters

    Energy Technology Data Exchange (ETDEWEB)

    Fulton, John [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-07-01

    The Sandia-developed Transport of Radioactive Materials (STORM) code suite is used as part of the Radioisotope Power System Launch Safety (RPSLS) program to perform statistical modeling of the consequences due to release of radioactive material given a launch accident. As part of this modeling, STORM samples input parameters from probability distributions with some parameters treated as constants. This report described the work done to convert four of these constant inputs (Consumption Rate, Average Crop Yield, Cropland to Landuse Database Ratio, and Crop Uptake Factor) to sampled values. Consumption rate changed from a constant value of 557.68 kg / yr to a normal distribution with a mean of 102.96 kg / yr and a standard deviation of 2.65 kg / yr. Meanwhile, Average Crop Yield changed from a constant value of 3.783 kg edible / m 2 to a normal distribution with a mean of 3.23 kg edible / m 2 and a standard deviation of 0.442 kg edible / m 2 . The Cropland to Landuse Database ratio changed from a constant value of 0.0996 (9.96%) to a normal distribution with a mean value of 0.0312 (3.12%) and a standard deviation of 0.00292 (0.29%). Finally the crop uptake factor changed from a constant value of 6.37e-4 (Bq crop /kg)/(Bq soil /kg) to a lognormal distribution with a geometric mean value of 3.38e-4 (Bq crop /kg)/(Bq soil /kg) and a standard deviation value of 3.33 (Bq crop /kg)/(Bq soil /kg)

  20. Methodology for deriving hydrogeological input parameters for safety-analysis models - application to fractured crystalline rocks of Northern Switzerland

    International Nuclear Information System (INIS)

    Vomvoris, S.; Andrews, R.W.; Lanyon, G.W.; Voborny, O.; Wilson, W.

    1996-04-01

    Switzerland is one of many nations with nuclear power that is seeking to identify rock types and locations that would be suitable for the underground disposal of nuclear waste. A common challenge among these programs is to provide engineering designers and safety analysts with a reasonably representative hydrogeological input dataset that synthesizes the relevant information from direct field observations as well as inferences and model results derived from those observations. Needed are estimates of the volumetric flux through a volume of rock and the distribution of that flux into discrete pathways between the repository zones and the biosphere. These fluxes are not directly measurable but must be derived based on understandings of the range of plausible hydrogeologic conditions expected at the location investigated. The methodology described in this report utilizes conceptual and numerical models at various scales to derive the input dataset. The methodology incorporates an innovative approach, called the geometric approach, in which field observations and their associated uncertainty, together with a conceptual representation of those features that most significantly affect the groundwater flow regime, were rigorously applied to generate alternative possible realizations of hydrogeologic features in the geosphere. In this approach, the ranges in the output values directly reflect uncertainties in the input values. As a demonstration, the methodology is applied to the derivation of the hydrogeological dataset for the crystalline basement of Northern Switzerland. (author) figs., tabs., refs

  1. How uncertainty in input and parameters influences transport model output: four-stage model case-study

    DEFF Research Database (Denmark)

    Manzo, Stefano; Nielsen, Otto Anker; Prato, Carlo Giacomo

    2015-01-01

    -year model outputs uncertainty. More precisely, this study contributes to the existing literature on the topic by investigating the effects on model outputs uncertainty deriving from the use of (i) different probability distributions in the sampling process, (ii) different assignment algorithms, and (iii...... of coefficient of variation, resulting from stochastic user equilibrium and user equilibrium is, respectively, of 0.425 and 0.468. Finally, network congestion does not show a high effect on model output uncertainty at the network level. However, the final uncertainty of links with higher volume/capacity ratio......If not properly quantified, the uncertainty inherent to transport models makes analyses based on their output highly unreliable. This study investigated uncertainty in four-stage transport models by analysing a Danish case-study: the Næstved model. The model describes the demand of transport...

  2. Input torque sensitivity to uncertain parameters in biped robot

    Science.gov (United States)

    Ding, Chang-Tao; Yang, Shi-Xi; Gan, Chun-Biao

    2013-06-01

    Input torque is themain power to maintain bipedal walking of robot, and can be calculated from trajectory planning and dynamic modeling on biped robot. During bipedal walking, the input torque is usually required to be adjusted due to some uncertain parameters arising from objective or subjective factors in the dynamical model to maintain the pre-planned stable trajectory. Here, a planar 5-link biped robot is used as an illustrating example to investigate the effects of uncertain parameters on the input torques. Kinematic equations of the biped robot are firstly established by the third-order spline curves based on the trajectory planning method, and the dynamic modeling is accomplished by taking both the certain and uncertain parameters into account. Next, several evaluation indices on input torques are introduced to perform sensitivity analysis of the input torque with respect to the uncertain parameters. Finally, based on the Monte Carlo simulation, the values of evaluation indices on input torques are presented, from which all the robot parameters are classified into three categories, i.e., strongly sensitive, sensitive and almost insensitive parameters.

  3. Nuclear model parameter testing for nuclear data evaluation (Reference Input Parameter Library: Phase II). Summary report of the third research co-ordination meeting

    International Nuclear Information System (INIS)

    Herman, M.

    2002-04-01

    This report summarises the results and recommendations of the third Research Co-ordination Meeting on improving and testing the Reference Input Parameter Library: Phase II. A primary aim of the meeting was to review the achievements of the CRP, to assess the testing of the library and to approve the final contents. Actions were approved that will result in completion of the file and a draft report by the end of February 2002. Full release of the library is scheduled for July 2002. (author)

  4. Groundwater travel time uncertainty analysis. Sensitivity of results to model geometry, and correlations and cross correlations among input parameters

    International Nuclear Information System (INIS)

    Clifton, P.M.

    1985-03-01

    This study examines the sensitivity of the travel time distribution predicted by a reference case model to (1) scale of representation of the model parameters, (2) size of the model domain, (3) correlation range of log-transmissivity, and (4) cross correlations between transmissivity and effective thickness. The basis for the reference model is the preliminary stochastic travel time model previously documented by the Basalt Waste Isolation Project. Results of this study show the following. The variability of the predicted travel times can be adequately represented when the ratio between the size of the zones used to represent the model parameters and the log-transmissivity correlation range is less than about one-fifth. The size of the model domain and the types of boundary conditions can have a strong impact on the distribution of travel times. Longer log-transmissivity correlation ranges cause larger variability in the predicted travel times. Positive cross correlation between transmissivity and effective thickness causes a decrease in the travel time variability. These results demonstrate the need for a sound conceptual model prior to conducting a stochastic travel time analysis

  5. Second research co-ordination meeting on development of reference input parameter library for nuclear model calculations of nuclear data. Summary report

    International Nuclear Information System (INIS)

    Oblozinsky, P.

    1996-03-01

    The present report contains the summary of the Second Research Co-ordination Meeting on ''Development of Reference Input Parameter Library for Nuclear Model Calculations of Nuclear Data'', held in Vienna, Austria, from 30 October to 3 November 1995. The library should serve the input for theoretical calculations of nuclear reaction data induced primarily with neutrons in the incident energy range below 30 MeV. Summarized are conclusions and recommendations of the meeting together with a detailed list of actions and deadlines. Attached is the agenda of the meeting, list of participants, and titles and abstracts of their presentations. (author)

  6. Better temperature predictions in geothermal modelling by improved quality of input parameters: a regional case study from the Danish-German border region

    Science.gov (United States)

    Fuchs, Sven; Bording, Thue S.; Balling, Niels

    2015-04-01

    Thermal modelling is used to examine the subsurface temperature field and geothermal conditions at various scales (e.g. sedimentary basins, deep crust) and in the framework of different problem settings (e.g. scientific or industrial use). In such models, knowledge of rock thermal properties is prerequisites for the parameterisation of boundary conditions and layer properties. In contrast to hydrogeological ground-water models, where parameterization of the major rock property (i.e. hydraulic conductivity) is generally conducted considering lateral variations within geological layers, parameterization of thermal models (in particular regarding thermal conductivity but also radiogenic heat production and specific heat capacity) in most cases is conducted using constant parameters for each modelled layer. For such constant thermal parameter values, moreover, initial values are normally obtained from rare core measurements and/or literature values, which raise questions for their representativeness. Some few studies have considered lithological composition or well log information, but still keeping the layer values constant. In the present thermal-modelling scenario analysis, we demonstrate how the use of different parameter input type (from literature, well logs and lithology) and parameter input style (constant or laterally varying layer values) affects the temperature model prediction in sedimentary basins. For this purpose, rock thermal properties are deduced from standard petrophysical well logs and lithological descriptions for several wells in a project area. Statistical values of thermal properties (mean, standard deviation, moments, etc.) are calculated at each borehole location for each geological formation and, moreover, for the entire dataset. Our case study is located at the Danish-German border region (model dimension: 135 x115 km, depth: 20 km). Results clearly show that (i) the use of location-specific well-log derived rock thermal properties and (i

  7. Migration of radionuclides with ground water: a discussion of the relevance of the input parameters used in model calculations

    International Nuclear Information System (INIS)

    Jensen, B.S.

    1982-01-01

    It is probably obvious to all, that establishing the scientific basis of geological waste disposal by going deeper and deeper in detail, may fill out the working hours of hundreds of scientists for hundreds of years. Such an endeavor is, however, impossible to attain, and we are forced to define some criteria telling us and others when knowledge and insight is sufficient. In thepresent case of geological disposal one need to be able to predict migration behavior of a series of radionuclides under diverse conditions to ascertain that unacceptable transfer to the biosphere never occurs. We have already collected a huge amount of data concerning migration phenomena, some very useful, oter less so, but we still need investigatoins departing from the simple ideal concepts, which most often have provided modellers with input data to their calculations. I therefore advocate that basic research is pursued to the point where it is possible to put limits on the effect of the lesser known factors on the migration behavior of radionuclides. When such limits have been established, it will be possible to make calculations on the worst cases, which may also occur. Although I personally believe, that these extra investigations will prove additional safety in geological disposal, this fact will convince nobody, only experimental facts will do

  8. Groundwater travel time uncertainty analysis: Sensitivity of results to model geometry, and correlations and cross correlations among input parameters

    International Nuclear Information System (INIS)

    Clifton, P.M.

    1984-12-01

    The deep basalt formations beneath the Hanford Site are being investigated for the Department of Energy (DOE) to assess their suitability as a host medium for a high level nuclear waste repository. Predicted performance of the proposed repository is an important part of the investigation. One of the performance measures being used to gauge the suitability of the host medium is pre-waste-emplacement groundwater travel times to the accessible environment. Many deterministic analyses of groundwater travel times have been completed by Rockwell and other independent organizations. Recently, Rockwell has completed a preliminary stochastic analysis of groundwater travel times. This document presents analyses that show the sensitivity of the results from the previous stochastic travel time study to: (1) scale of representation of model parameters, (2) size of the model domain, (3) correlation range of log-transmissivity, and (4) cross-correlation between transmissivity and effective thickness. 40 refs., 29 figs., 6 tabs

  9. Adaptive distributed parameter and input estimation in linear parabolic PDEs

    KAUST Repository

    Mechhoud, Sarra

    2016-01-01

    In this paper, we discuss the on-line estimation of distributed source term, diffusion, and reaction coefficients of a linear parabolic partial differential equation using both distributed and interior-point measurements. First, new sufficient identifiability conditions of the input and the parameter simultaneous estimation are stated. Then, by means of Lyapunov-based design, an adaptive estimator is derived in the infinite-dimensional framework. It consists of a state observer and gradient-based parameter and input adaptation laws. The parameter convergence depends on the plant signal richness assumption, whereas the state convergence is established using a Lyapunov approach. The results of the paper are illustrated by simulation on tokamak plasma heat transport model using simulated data.

  10. Impact of Uncertainty Characterization of Satellite Rainfall Inputs and Model Parameters on Hydrological Data Assimilation with the Ensemble Kalman Filter for Flood Prediction

    Science.gov (United States)

    Vergara, H. J.; Kirstetter, P.; Hong, Y.; Gourley, J. J.; Wang, X.

    2013-12-01

    The Ensemble Kalman Filter (EnKF) is arguably the assimilation approach that has found the widest application in hydrologic modeling. Its relatively easy implementation and computational efficiency makes it an attractive method for research and operational purposes. However, the scientific literature featuring this approach lacks guidance on how the errors in the forecast need to be characterized so as to get the required corrections from the assimilation process. Moreover, several studies have indicated that the performance of the EnKF is 'sub-optimal' when assimilating certain hydrologic observations. Likewise, some authors have suggested that the underlying assumptions of the Kalman Filter and its dependence on linear dynamics make the EnKF unsuitable for hydrologic modeling. Such assertions are often based on ineffectiveness and poor robustness of EnKF implementations resulting from restrictive specification of error characteristics and the absence of a-priori information of error magnitudes. Therefore, understanding the capabilities and limitations of the EnKF to improve hydrologic forecasts require studying its sensitivity to the manner in which errors in the hydrologic modeling system are represented through ensembles. This study presents a methodology that explores various uncertainty representation configurations to characterize the errors in the hydrologic forecasts in a data assimilation context. The uncertainty in rainfall inputs is represented through a Generalized Additive Model for Location, Scale, and Shape (GAMLSS), which provides information about second-order statistics of quantitative precipitation estimates (QPE) error. The uncertainty in model parameters is described adding perturbations based on parameters covariance information. The method allows for the identification of rainfall and parameter perturbation combinations for which the performance of the EnKF is 'optimal' given a set of objective functions. In this process, information about

  11. Impact analysis of input parameter for damage detection code

    Directory of Open Access Journals (Sweden)

    Venglar Michal

    2017-01-01

    Full Text Available The primary aim of the article is to analyse impact of appropriate values of input parameter for an effective solution of the self-developed code used for damage detection. The code was prepared to determine the change of bending stiffness in Microsoft Office Excel Visual Basic for Applications. The code used non-destructive vibration based method, i.e. the FE model updating method. A steel bar was assumed for numerical calculation. Time consumption of calculation, precision of identification and degree of possible damage detection were investigated. The values of computation time depend on the input values, the desired limit of the accepted error. Then, data from a laboratory experiment was analysed. The damage detection was done in accordance with the suitable input data from a parametric study of the steel bar.

  12. Thermal properties and unfrozen water content of frozen volcanic ash as a modelling input parameters in mountainous volcanic areas

    Science.gov (United States)

    Kuznetsova, E.

    2016-12-01

    Volcanic eruptions are one of the major causes of the burial of ice and snow in volcanic areas. This has been demonstrated on volcanoes, e.g. in Iceland, Russia, USA and Chile, where the combination of a permafrost-favorable climate and a thin layer of tephra is sufficient to reduce the sub-tephra layer snow ablation substantially, even to zero, causing ground ice formation and permafrost aggradation. Many numerical models that have been used to investigate and predict the evolution of cold regions as the result of climatic changes are lacking the accurate data of the thermal properties —thermal conductivity, heat capacity, thermal diffusivity—of soils or debris layers involved. The angular shape of the fragments that make up ash and scoria makes it inappropriate to apply existing models to estimate bulk thermal conductivity. The lack of experimental data on the thermal conductivity of volcanic deposits will hinder the development of realistic models. The decreasing thermal conductivity of volcanic ash in the frozen state is associated with the development and presence of unfrozen water films that may have a direct mechanical impact on the movement or slippage between ice and particle, and thus, change the stress transfer. This becomes particularly significant during periods of climate change when enhanced temperatures and associated melting could weaken polythermal glaciers and affect areas with warm and discontinuous permafrost, and induce ice or land movements, perhaps on a catastrophic scale. In the presentation, we will summarize existing data regarding: (i) the thermal properties and unfrozen water content in frozen volcanic ash and cinder, (ii) the effects of cold temperatures on weathering processes of volcanic glass, (iii) the relationship between the mineralogy of frozen volcanic deposits and their thermal properties —and then discusses their significance in relation to the numerical modelling of glaciers and permafrost's thermal behavior.

  13. Modal Parameter Identification from Responses of General Unknown Random Inputs

    DEFF Research Database (Denmark)

    Ibrahim, S. R.; Asmussen, J. C.; Brincker, Rune

    1996-01-01

    Modal parameter identification from ambient responses due to a general unknown random inputs is investigated. Existing identification techniques which are based on assumptions of white noise and or stationary random inputs are utilized even though the inputs conditions are not satisfied....... This is accomplished via adding. In cascade. A force cascade conversion to the structures system under consideration. The input to the force conversion system is white noise and the output of which is the actual force(s) applied to the structure. The white noise input(s) and the structures responses are then used...

  14. Control rod drive WWER 1000 – tuning of input parameters

    Directory of Open Access Journals (Sweden)

    Markov P.

    2007-10-01

    Full Text Available The article picks up on the contributions presented at the conferences Computational Mechanics 2005 and 2006, in which a calculational model of an upgraded control rod linear stepping drive for the reactors WWER 1000 (LKP-M/3 was described and results of analysis of dynamical response of its individual parts when moving up- and downwards were included. The contribution deals with the tuning of input parameters of the 3rd generation drive with the objective of reaching its running as smooth as possible so as to get a minimum wear of its parts as a result and hence to achieve maximum life-time.

  15. DC servomechanism parameter identification: a Closed Loop Input Error approach.

    Science.gov (United States)

    Garrido, Ruben; Miranda, Roger

    2012-01-01

    This paper presents a Closed Loop Input Error (CLIE) approach for on-line parametric estimation of a continuous-time model of a DC servomechanism functioning in closed loop. A standard Proportional Derivative (PD) position controller stabilizes the loop without requiring knowledge on the servomechanism parameters. The analysis of the identification algorithm takes into account the control law employed for closing the loop. The model contains four parameters that depend on the servo inertia, viscous, and Coulomb friction as well as on a constant disturbance. Lyapunov stability theory permits assessing boundedness of the signals associated to the identification algorithm. Experiments on a laboratory prototype allows evaluating the performance of the approach. Copyright © 2011 ISA. Published by Elsevier Ltd. All rights reserved.

  16. Modeling and generating input processes

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, M.E.

    1987-01-01

    This tutorial paper provides information relevant to the selection and generation of stochastic inputs to simulation studies. The primary area considered is multivariate but much of the philosophy at least is relevant to univariate inputs as well. 14 refs.

  17. ECOS - analysis of sensitivity to database and input parameters

    International Nuclear Information System (INIS)

    Sumerling, T.J.; Jones, C.H.

    1986-06-01

    The sensitivity of doses calculated by the generic biosphere code ECOS to parameter changes has been investigated by the authors for the Department of the Environment as part of its radioactive waste management research programme. The sensitivity of results to radionuclide dependent parameters has been tested by specifying reasonable parameter ranges and performing code runs for best estimate, upper-bound and lower-bound parameter values. The work indicates that doses are most sensitive to scenario parameters: geosphere input fractions, area of contaminated land, land use and diet, flux of contaminated waters and water use. Recommendations are made based on the results of sensitivity. (author)

  18. Optimal Input Design for Aircraft Parameter Estimation using Dynamic Programming Principles

    Science.gov (United States)

    Morelli, Eugene A.; Klein, Vladislav

    1990-01-01

    A new technique was developed for designing optimal flight test inputs for aircraft parameter estimation experiments. The principles of dynamic programming were used for the design in the time domain. This approach made it possible to include realistic practical constraints on the input and output variables. A description of the new approach is presented, followed by an example for a multiple input linear model describing the lateral dynamics of a fighter aircraft. The optimal input designs produced by the new technique demonstrated improved quality and expanded capability relative to the conventional multiple input design method.

  19. Robust input design for nonlinear dynamic modeling of AUV.

    Science.gov (United States)

    Nouri, Nowrouz Mohammad; Valadi, Mehrdad

    2017-09-01

    Input design has a dominant role in developing the dynamic model of autonomous underwater vehicles (AUVs) through system identification. Optimal input design is the process of generating informative inputs that can be used to generate the good quality dynamic model of AUVs. In a problem with optimal input design, the desired input signal depends on the unknown system which is intended to be identified. In this paper, the input design approach which is robust to uncertainties in model parameters is used. The Bayesian robust design strategy is applied to design input signals for dynamic modeling of AUVs. The employed approach can design multiple inputs and apply constraints on an AUV system's inputs and outputs. Particle swarm optimization (PSO) is employed to solve the constraint robust optimization problem. The presented algorithm is used for designing the input signals for an AUV, and the estimate obtained by robust input design is compared with that of the optimal input design. According to the results, proposed input design can satisfy both robustness of constraints and optimality. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  20. Microstrip superconducting quantum interference device radio-frequency amplifier: Scattering parameters and input coupling

    Energy Technology Data Exchange (ETDEWEB)

    Kinion, D; Clarke, J

    2008-01-24

    The scattering parameters of an amplifier based on a dc Superconducting QUantum Interference Device (SQUID) are directly measured at 4.2 K. The results can be described using an equivalent circuit model of the fundamental resonance of the microstrip resonator which forms the input of the amplifier. The circuit model is used to determine the series capacitance required for critical coupling of the microstrip to the input circuit.

  1. Analytic uncertainty and sensitivity analysis of models with input correlations

    Science.gov (United States)

    Zhu, Yueying; Wang, Qiuping A.; Li, Wei; Cai, Xu

    2018-03-01

    Probabilistic uncertainty analysis is a common means of evaluating mathematical models. In mathematical modeling, the uncertainty in input variables is specified through distribution laws. Its contribution to the uncertainty in model response is usually analyzed by assuming that input variables are independent of each other. However, correlated parameters are often happened in practical applications. In the present paper, an analytic method is built for the uncertainty and sensitivity analysis of models in the presence of input correlations. With the method, it is straightforward to identify the importance of the independence and correlations of input variables in determining the model response. This allows one to decide whether or not the input correlations should be considered in practice. Numerical examples suggest the effectiveness and validation of our analytic method in the analysis of general models. A practical application of the method is also proposed to the uncertainty and sensitivity analysis of a deterministic HIV model.

  2. Probabilistic leak-before-break analysis with correlated input parameters

    International Nuclear Information System (INIS)

    Qian Guian; Niffenegger, Markus; Karanki, Durga Rao; Li Shuxin

    2013-01-01

    Highlights: ► The correlation of crack growth has the most significant impact on LBB behavior. ► The correlation impact increases with the correlation coefficients. ► The correlation impact increases with the number of cracks. ► Independent assumption may lead to nonconservative result. - Abstract: The paper presents a probabilistic methodology considering the correlations between the input variables for the analysis of leak-before-break (LBB) behavior of a pressure tube. A computer program based on Monte Carlo (MC) simulation with Nataf transformation has been developed to allow the proposed methodology to calculate both the time from the first leakage to unstable fracture and the time from leakage detection to unstable fracture. The results show that the correlation of the crack growth rates between different cracks has the most significant impact on the LBB behavior of the pressure tube. The impact of the parameters correlation on LBB behavior increases with the crack numbers. If the correlations between different parameters for an individual crack are not considered, the predicted results are nonconservative when the cumulative probability is below 50% and conservative when it is above 50%.

  3. Estimating unknown input parameters when implementing the NGA ground-motion prediction equations in engineering practice

    Science.gov (United States)

    Kaklamanos, James; Baise, Laurie G.; Boore, David M.

    2011-01-01

    The ground-motion prediction equations (GMPEs) developed as part of the Next Generation Attenuation of Ground Motions (NGA-West) project in 2008 are becoming widely used in seismic hazard analyses. However, these new models are considerably more complicated than previous GMPEs, and they require several more input parameters. When employing the NGA models, users routinely face situations in which some of the required input parameters are unknown. In this paper, we present a framework for estimating the unknown source, path, and site parameters when implementing the NGA models in engineering practice, and we derive geometrically-based equations relating the three distance measures found in the NGA models. Our intent is for the content of this paper not only to make the NGA models more accessible, but also to help with the implementation of other present or future GMPEs.

  4. Lumped-parameter models

    Energy Technology Data Exchange (ETDEWEB)

    Ibsen, Lars Bo; Liingaard, M.

    2006-12-15

    A lumped-parameter model represents the frequency dependent soil-structure interaction of a massless foundation placed on or embedded into an unbounded soil domain. In this technical report the steps of establishing a lumped-parameter model are presented. Following sections are included in this report: Static and dynamic formulation, Simple lumped-parameter models and Advanced lumped-parameter models. (au)

  5. Handbook for calculations of nuclear reaction data. Reference input parameter library. Final report of a co-ordinated research project

    International Nuclear Information System (INIS)

    1998-08-01

    With the aim to develop an internationally recognised input parameter library with the contributions from all major nuclear data laboratories, IAEA initiated and co-ordinated a Co-ordinated Research Project (CRP) entitled 'Development of Reference Input Parameter Library for Nuclear Model calculations of Nuclear Data (Phase 1: Starter File)'. Between 1994 and 1997 the following two major results were produced: complete electronic Reference Input Parameter Library (Starter File) available to users cost-free and this Handbook containing a detailed description of the Library. Starter file contains input parameters for calculations of nuclear reaction cross sections arranged in seven segments (directories): Atomic masses and deformations, Discrete level schemes, Average neutron resonance parameters, Optical model parameters, Level densities, Gamma-ray strength functions, Continuum angular distributions. This book contains ten papers describing the cited subjects, each with a separate abstract

  6. A Procedure for Characterizing the Range of Input Uncertainty Parameters by the Use of FFTBM

    International Nuclear Information System (INIS)

    Petruzzi, A.; Kovtonyuk, A.; Raucci, M.; De Luca, D.; Veronese, F.; D'Auria, F.

    2013-01-01

    In the last years various methodologies were proposed to evaluate the uncertainty of Best Estimate (BE) code predictions. The most used method at the industrial level is based upon the selection of input uncertain parameters, on assigning related ranges of variations and Probability Distribution Functions (PDFs) and on performing a suitable number of code runs to get the combined effect of the variations on the results. A procedure to characterize the variation ranges of the input uncertain parameters is proposed in the paper in place of the usual approach based (mostly) on engineering judgment. The procedure is based on the use of the Fast Fourier Transform Based Method (FFTBM), already part of the Uncertainty Method based on the Accuracy Extrapolation (UMAE) method and extensively used in several international frameworks. The FFTBM has been originally developed to answer questions like 'How long improvements should be added to the system thermal-hydraulic code model? How much simplifications can be introduced and how to conduct an objective comparison?'. The method, easy to understand, convenient to use and user independent, clearly indicates when simulation needs to be improved. The procedure developed for characterizing the range of input uncertainty parameters involves the following main aspects: a) One single input parameter shall not be 'responsible' for the entire error |exp-calc|, unless exceptional situations to be evaluated case by case; b) Initial guess for Max and Min for variation ranges to be based on the usual (adopted) expertise; c) More than one experiment can be used per each NPP and each scenario. Highly influential parameters are expected to be the same. The bounding ranges should be considered for the NPP uncertainty analysis; d) A data base of suitable uncertainty input parameters can be created per each NPP and each transient scenario. (authors)

  7. An updated Quantitative Water Air Sediment Interaction (QWASI) model for evaluating chemical fate and input parameter sensitivities in aquatic systems: application to D5 (decamethylcyclopentasiloxane) and PCB-180 in two lakes.

    Science.gov (United States)

    Mackay, Donald; Hughes, Lauren; Powell, David E; Kim, Jaeshin

    2014-09-01

    The QWASI fugacity mass balance model has been widely used since 1983 for both scientific and regulatory purposes to estimate the concentrations of organic chemicals in water and sediment, given an assumed rate of chemical emission, advective inflow in water or deposition from the atmosphere. It has become apparent that an updated version is required, especially to incorporate improved methods of obtaining input parameters such as partition coefficients. Accordingly, the model has been revised and it is now available in spreadsheet format. Changes to the model are described and the new version is applied to two chemicals, D5 (decamethylcyclopentasiloxane) and PCB-180, in two lakes, Lake Pepin (MN, USA) and Lake Ontario, showing the model's capability of illustrating both the chemical to chemical differences and lake to lake differences. Since there are now increased regulatory demands for rigorous sensitivity and uncertainty analyses, these aspects are discussed and two approaches are illustrated. It is concluded that the new QWASI water quality model can be of value for both evaluative and simulation purposes, thus providing a tool for obtaining an improved understanding of chemical mass balances in lakes, as a contribution to the assessment of fate and exposure and as a step towards the assessment of risk. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  8. Evaluation of severe accident risks: Quantification of major input parameters: MAACS [MELCOR Accident Consequence Code System] input

    International Nuclear Information System (INIS)

    Sprung, J.L.; Jow, H-N; Rollstin, J.A.; Helton, J.C.

    1990-12-01

    Estimation of offsite accident consequences is the customary final step in a probabilistic assessment of the risks of severe nuclear reactor accidents. Recently, the Nuclear Regulatory Commission reassessed the risks of severe accidents at five US power reactors (NUREG-1150). Offsite accident consequences for NUREG-1150 source terms were estimated using the MELCOR Accident Consequence Code System (MACCS). Before these calculations were performed, most MACCS input parameters were reviewed, and for each parameter reviewed, a best-estimate value was recommended. This report presents the results of these reviews. Specifically, recommended values and the basis for their selection are presented for MACCS atmospheric and biospheric transport, emergency response, food pathway, and economic input parameters. Dose conversion factors and health effect parameters are not reviewed in this report. 134 refs., 15 figs., 110 tabs

  9. Evaluation of severe accident risks: Quantification of major input parameters: MAACS (MELCOR Accident Consequence Code System) input

    Energy Technology Data Exchange (ETDEWEB)

    Sprung, J.L.; Jow, H-N (Sandia National Labs., Albuquerque, NM (USA)); Rollstin, J.A. (GRAM, Inc., Albuquerque, NM (USA)); Helton, J.C. (Arizona State Univ., Tempe, AZ (USA))

    1990-12-01

    Estimation of offsite accident consequences is the customary final step in a probabilistic assessment of the risks of severe nuclear reactor accidents. Recently, the Nuclear Regulatory Commission reassessed the risks of severe accidents at five US power reactors (NUREG-1150). Offsite accident consequences for NUREG-1150 source terms were estimated using the MELCOR Accident Consequence Code System (MACCS). Before these calculations were performed, most MACCS input parameters were reviewed, and for each parameter reviewed, a best-estimate value was recommended. This report presents the results of these reviews. Specifically, recommended values and the basis for their selection are presented for MACCS atmospheric and biospheric transport, emergency response, food pathway, and economic input parameters. Dose conversion factors and health effect parameters are not reviewed in this report. 134 refs., 15 figs., 110 tabs.

  10. Temporal rainfall estimation using input data reduction and model inversion

    Science.gov (United States)

    Wright, A. J.; Vrugt, J. A.; Walker, J. P.; Pauwels, V. R. N.

    2016-12-01

    Floods are devastating natural hazards. To provide accurate, precise and timely flood forecasts there is a need to understand the uncertainties associated with temporal rainfall and model parameters. The estimation of temporal rainfall and model parameter distributions from streamflow observations in complex dynamic catchments adds skill to current areal rainfall estimation methods, allows for the uncertainty of rainfall input to be considered when estimating model parameters and provides the ability to estimate rainfall from poorly gauged catchments. Current methods to estimate temporal rainfall distributions from streamflow are unable to adequately explain and invert complex non-linear hydrologic systems. This study uses the Discrete Wavelet Transform (DWT) to reduce rainfall dimensionality for the catchment of Warwick, Queensland, Australia. The reduction of rainfall to DWT coefficients allows the input rainfall time series to be simultaneously estimated along with model parameters. The estimation process is conducted using multi-chain Markov chain Monte Carlo simulation with the DREAMZS algorithm. The use of a likelihood function that considers both rainfall and streamflow error allows for model parameter and temporal rainfall distributions to be estimated. Estimation of the wavelet approximation coefficients of lower order decomposition structures was able to estimate the most realistic temporal rainfall distributions. These rainfall estimates were all able to simulate streamflow that was superior to the results of a traditional calibration approach. It is shown that the choice of wavelet has a considerable impact on the robustness of the inversion. The results demonstrate that streamflow data contains sufficient information to estimate temporal rainfall and model parameter distributions. The extent and variance of rainfall time series that are able to simulate streamflow that is superior to that simulated by a traditional calibration approach is a

  11. Effect of input signal and filter parameters on patterning effect in a semiconductor optical amplifier

    Science.gov (United States)

    Hussain, Kamal; Pratap Singh, Satya; Kumar Datta, Prasanta

    2013-11-01

    A numerical investigation is presented to show the dependence of patterning effect (PE) of an amplified signal in a bulk semiconductor optical amplifier (SOA) and an optical bandpass filter based amplifier on various input signal and filter parameters considering both the cases of including and excluding intraband effects in the SOA model. The simulation shows that the variation of PE with input energy has a characteristic nature which is similar for both the cases. However the variation of PE with pulse width is quite different for the two cases, PE being independent of the pulse width when intraband effects are neglected in the model. We find a simple relationship between the PE and the signal pulse width. Using a simple treatment we study the effect of the amplified spontaneous emission (ASE) on PE and find that the ASE has almost no effect on the PE in the range of energy considered here. The optimum filter parameters are determined to obtain an acceptable extinction ratio greater than 10 dB and a PE less than 1 dB for the amplified signal over a wide range of input signal energy and bit-rate.

  12. Antenna Correlation From Input Parameters for Arbitrary Topologies and Terminations

    DEFF Research Database (Denmark)

    Alrabadi, Osama; Andersen, Jørgen Bach; Pedersen, Gert Frølund

    2012-01-01

    The spatial correlation between pairs of antennas in a system comprised of N RF ports is found by extending the N × N scattering matrix to (N + 1)×(N + 1) spatial scattering matrix, where the extra space dimension accounts for the reference port patterns. The lossless property of the spatial...... scattering matrix in a 3D uniform field is employed for expressing the spatial correlation between the port patterns at arbitrary complex terminations merely from the reference scattering parameters and the complex terminations without any far-field calculation....

  13. IAEA nuclear data for applications: Cross section standards and the reference input parameter library (RIPL)

    International Nuclear Information System (INIS)

    Capote Noy, Roberto; Nichols, Alan L.; Pronyaev, Vladimir G.

    2003-01-01

    develop a library of validated nuclear-model input parameters, referred to as the Reference Input Parameter Library (RIPL). The first stage of this work was initiated in 1994 and the second step began in 1998, both as IAEA CRPs. A consistent library of recommended nuclear theoretical input parameters is now available (RIPL-2) that includes a large amount of theoretical information suitable for nuclear reaction calculations, along with a number of computer codes for parameter retrieval and related calculations. A third further phase of this project has been recently initiated in order to extend the applicability of the RIPL library to cross sections for reactions on nuclei far from the line of stability, incident energies up to 200 MeV, and reactions induced by charged particles. (authors)

  14. Response model parameter linking

    NARCIS (Netherlands)

    Barrett, M.L.D.

    2015-01-01

    With a few exceptions, the problem of linking item response model parameters from different item calibrations has been conceptualized as an instance of the problem of equating observed scores on different test forms. This thesis argues, however, that the use of item response models does not require

  15. A statistical survey of heat input parameters into the cusp thermosphere

    Science.gov (United States)

    Moen, J. I.; Skjaeveland, A.; Carlson, H. C.

    2017-12-01

    Based on three winters of observational data, we present those ionosphere parameters deemed most critical to realistic space weather ionosphere and thermosphere representation and prediction, in regions impacted by variability in the cusp. The CHAMP spacecraft revealed large variability in cusp thermosphere densities, measuring frequent satellite drag enhancements, up to doublings. The community recognizes a clear need for more realistic representation of plasma flows and electron densities near the cusp. Existing average-value models produce order of magnitude errors in these parameters, resulting in large under estimations of predicted drag. We fill this knowledge gap with statistics-based specification of these key parameters over their range of observed values. The EISCAT Svalbard Radar (ESR) tracks plasma flow Vi , electron density Ne, and electron, ion temperatures Te, Ti , with consecutive 2-3 minute windshield-wipe scans of 1000x500 km areas. This allows mapping the maximum Ti of a large area within or near the cusp with high temporal resolution. In magnetic field-aligned mode the radar can measure high-resolution profiles of these plasma parameters. By deriving statistics for Ne and Ti , we enable derivation of thermosphere heating deposition under background and frictional-drag-dominated magnetic reconnection conditions. We separate our Ne and Ti profiles into quiescent and enhanced states, which are not closely correlated due to the spatial structure of the reconnection foot point. Use of our data-based parameter inputs can make order of magnitude corrections to input data driving thermosphere models, enabling removal of previous two fold drag errors.

  16. Input modeling with phase-type distributions and Markov models theory and applications

    CERN Document Server

    Buchholz, Peter; Felko, Iryna

    2014-01-01

    Containing a summary of several recent results on Markov-based input modeling in a coherent notation, this book introduces and compares algorithms for parameter fitting and gives an overview of available software tools in the area. Due to progress made in recent years with respect to new algorithms to generate PH distributions and Markovian arrival processes from measured data, the models outlined are useful alternatives to other distributions or stochastic processes used for input modeling. Graduate students and researchers in applied probability, operations research and computer science along with practitioners using simulation or analytical models for performance analysis and capacity planning will find the unified notation and up-to-date results presented useful. Input modeling is the key step in model based system analysis to adequately describe the load of a system using stochastic models. The goal of input modeling is to find a stochastic model to describe a sequence of measurements from a real system...

  17. Effects of input uncertainty on cross-scale crop modeling

    Science.gov (United States)

    Waha, Katharina; Huth, Neil; Carberry, Peter

    2014-05-01

    The quality of data on climate, soils and agricultural management in the tropics is in general low or data is scarce leading to uncertainty in process-based modeling of cropping systems. Process-based crop models are common tools for simulating crop yields and crop production in climate change impact studies, studies on mitigation and adaptation options or food security studies. Crop modelers are concerned about input data accuracy as this, together with an adequate representation of plant physiology processes and choice of model parameters, are the key factors for a reliable simulation. For example, assuming an error in measurements of air temperature, radiation and precipitation of ± 0.2°C, ± 2 % and ± 3 % respectively, Fodor & Kovacs (2005) estimate that this translates into an uncertainty of 5-7 % in yield and biomass simulations. In our study we seek to answer the following questions: (1) are there important uncertainties in the spatial variability of simulated crop yields on the grid-cell level displayed on maps, (2) are there important uncertainties in the temporal variability of simulated crop yields on the aggregated, national level displayed in time-series, and (3) how does the accuracy of different soil, climate and management information influence the simulated crop yields in two crop models designed for use at different spatial scales? The study will help to determine whether more detailed information improves the simulations and to advise model users on the uncertainty related to input data. We analyse the performance of the point-scale crop model APSIM (Keating et al., 2003) and the global scale crop model LPJmL (Bondeau et al., 2007) with different climate information (monthly and daily) and soil conditions (global soil map and African soil map) under different agricultural management (uniform and variable sowing dates) for the low-input maize-growing areas in Burkina Faso/West Africa. We test the models' response to different levels of input

  18. Explicitly integrating parameter, input, and structure uncertainties into Bayesian Neural Networks for probabilistic hydrologic forecasting

    KAUST Repository

    Zhang, Xuesong

    2011-11-01

    Estimating uncertainty of hydrologic forecasting is valuable to water resources and other relevant decision making processes. Recently, Bayesian Neural Networks (BNNs) have been proved powerful tools for quantifying uncertainty of streamflow forecasting. In this study, we propose a Markov Chain Monte Carlo (MCMC) framework (BNN-PIS) to incorporate the uncertainties associated with parameters, inputs, and structures into BNNs. This framework allows the structure of the neural networks to change by removing or adding connections between neurons and enables scaling of input data by using rainfall multipliers. The results show that the new BNNs outperform BNNs that only consider uncertainties associated with parameters and model structures. Critical evaluation of posterior distribution of neural network weights, number of effective connections, rainfall multipliers, and hyper-parameters shows that the assumptions held in our BNNs are not well supported. Further understanding of characteristics of and interactions among different uncertainty sources is expected to enhance the application of neural networks for uncertainty analysis of hydrologic forecasting. © 2011 Elsevier B.V.

  19. Remote sensing inputs to water demand modeling

    Science.gov (United States)

    Estes, J. E.; Jensen, J. R.; Tinney, L. R.; Rector, M.

    1975-01-01

    In an attempt to determine the ability of remote sensing techniques to economically generate data required by water demand models, the Geography Remote Sensing Unit, in conjunction with the Kern County Water Agency of California, developed an analysis model. As a result it was determined that agricultural cropland inventories utilizing both high altitude photography and LANDSAT imagery can be conducted cost effectively. In addition, by using average irrigation application rates in conjunction with cropland data, estimates of agricultural water demand can be generated. However, more accurate estimates are possible if crop type, acreage, and crop specific application rates are employed. An analysis of the effect of saline-alkali soils on water demand in the study area is also examined. Finally, reference is made to the detection and delineation of water tables that are perched near the surface by semi-permeable clay layers. Soil salinity prediction, automated crop identification on a by-field basis, and a potential input to the determination of zones of equal benefit taxation are briefly touched upon.

  20. State, Parameter, and Unknown Input Estimation Problems in Active Automotive Safety Applications

    Science.gov (United States)

    Phanomchoeng, Gridsada

    A variety of driver assistance systems such as traction control, electronic stability control (ESC), rollover prevention and lane departure avoidance systems are being developed by automotive manufacturers to reduce driver burden, partially automate normal driving operations, and reduce accidents. The effectiveness of these driver assistance systems can be significant enhanced if the real-time values of several vehicle parameters and state variables, namely tire-road friction coefficient, slip angle, roll angle, and rollover index, can be known. Since there are no inexpensive sensors available to measure these variables, it is necessary to estimate them. However, due to the significant nonlinear dynamics in a vehicle, due to unknown and changing plant parameters, and due to the presence of unknown input disturbances, the design of estimation algorithms for this application is challenging. This dissertation develops a new approach to observer design for nonlinear systems in which the nonlinearity has a globally (or locally) bounded Jacobian. The developed approach utilizes a modified version of the mean value theorem to express the nonlinearity in the estimation error dynamics as a convex combination of known matrices with time varying coefficients. The observer gains are then obtained by solving linear matrix inequalities (LMIs). A number of illustrative examples are presented to show that the developed approach is less conservative and more useful than the standard Lipschitz assumption based nonlinear observer. The developed nonlinear observer is utilized for estimation of slip angle, longitudinal vehicle velocity, and vehicle roll angle. In order to predict and prevent vehicle rollovers in tripped situations, it is necessary to estimate the vertical tire forces in the presence of unknown road disturbance inputs. An approach to estimate unknown disturbance inputs in nonlinear systems using dynamic model inversion and a modified version of the mean value theorem is

  1. Robust estimation of hydrological model parameters

    Directory of Open Access Journals (Sweden)

    A. Bárdossy

    2008-11-01

    Full Text Available The estimation of hydrological model parameters is a challenging task. With increasing capacity of computational power several complex optimization algorithms have emerged, but none of the algorithms gives a unique and very best parameter vector. The parameters of fitted hydrological models depend upon the input data. The quality of input data cannot be assured as there may be measurement errors for both input and state variables. In this study a methodology has been developed to find a set of robust parameter vectors for a hydrological model. To see the effect of observational error on parameters, stochastically generated synthetic measurement errors were applied to observed discharge and temperature data. With this modified data, the model was calibrated and the effect of measurement errors on parameters was analysed. It was found that the measurement errors have a significant effect on the best performing parameter vector. The erroneous data led to very different optimal parameter vectors. To overcome this problem and to find a set of robust parameter vectors, a geometrical approach based on Tukey's half space depth was used. The depth of the set of N randomly generated parameters was calculated with respect to the set with the best model performance (Nash-Sutclife efficiency was used for this study for each parameter vector. Based on the depth of parameter vectors, one can find a set of robust parameter vectors. The results show that the parameters chosen according to the above criteria have low sensitivity and perform well when transfered to a different time period. The method is demonstrated on the upper Neckar catchment in Germany. The conceptual HBV model was used for this study.

  2. Adaptive observer for the joint estimation of parameters and input for a coupled wave PDE and infinite dimensional ODE system

    KAUST Repository

    Belkhatir, Zehor

    2016-08-05

    This paper deals with joint parameters and input estimation for coupled PDE-ODE system. The system consists of a damped wave equation and an infinite dimensional ODE. This model describes the spatiotemporal hemodynamic response in the brain and the objective is to characterize brain regions using functional Magnetic Resonance Imaging (fMRI) data. For this reason, we propose an adaptive estimator and prove the asymptotic convergence of the state, the unknown input and the unknown parameters. The proof is based on a Lyapunov approach combined with a priori identifiability assumptions. The performance of the proposed observer is illustrated through some simulation results.

  3. Effects of arterial input function selection on kinetic parameters in brain dynamic contrast-enhanced MRI.

    Science.gov (United States)

    Keil, Vera C; Mädler, Burkhard; Gieseke, Jürgen; Fimmers, Rolf; Hattingen, Elke; Schild, Hans H; Hadizadeh, Dariusch R

    2017-07-01

    Kinetic parameters derived from dynamic contrast-enhanced MRI (DCE-MRI) were suggested as a possible instrument for multi-parametric lesion characterization, but have not found their way into clinical practice yet due to inconsistent results. The quantification is heavily influenced by the definition of an appropriate arterial input functions (AIF). Regarding brain tumor DCE-MRI, there are currently several co-existing methods to determine the AIF frequently including different brain vessels as sources. This study quantitatively and qualitatively analyzes the impact of AIF source selection on kinetic parameters derived from commonly selected AIF source vessels compared to a population-based AIF model. 74 patients with brain lesions underwent 3D DCE-MRI. Kinetic parameters [transfer constants of contrast agent efflux and reflux K trans and k ep and, their ratio, v e, that is used to measure extravascular-extracellular volume fraction and plasma volume fraction v p ] were determined using extended Tofts model in 821 ROI from 4 AIF sources [the internal carotid artery (ICA), the closest artery to the lesion, the superior sagittal sinus (SSS), the population-based Parker model]. The effect of AIF source alteration on kinetic parameters was evaluated by tissue type selective intra-class correlation (ICC) and capacity to differentiate gliomas by WHO grade [area under the curve analysis (AUC)]. Arterial AIF more often led to implausible v e >100% values (pkinetic parameters (pkinetic parameters of different AIF sources and tissues were variable (0.08-0.87) and only consistent >0.5 between arterial AIF derived kinetic parameters. Differentiation between WHO III and II glioma was exclusively possible with v p derived from an AIF in the SSS (p=0.03; AUC 0.74). The AIF source has a significant impact on absolute kinetic parameters in DCE-MRI, which limits the comparability of kinetic parameters derived from different AIF sources. The effect is also tissue-dependent. The SSS

  4. Model parameter updating using Bayesian networks

    Energy Technology Data Exchange (ETDEWEB)

    Treml, C. A. (Christine A.); Ross, Timothy J.

    2004-01-01

    This paper outlines a model parameter updating technique for a new method of model validation using a modified model reference adaptive control (MRAC) framework with Bayesian Networks (BNs). The model parameter updating within this method is generic in the sense that the model/simulation to be validated is treated as a black box. It must have updateable parameters to which its outputs are sensitive, and those outputs must have metrics that can be compared to that of the model reference, i.e., experimental data. Furthermore, no assumptions are made about the statistics of the model parameter uncertainty, only upper and lower bounds need to be specified. This method is designed for situations where a model is not intended to predict a complete point-by-point time domain description of the item/system behavior; rather, there are specific points, features, or events of interest that need to be predicted. These specific points are compared to the model reference derived from actual experimental data. The logic for updating the model parameters to match the model reference is formed via a BN. The nodes of this BN consist of updateable model input parameters and the specific output values or features of interest. Each time the model is executed, the input/output pairs are used to adapt the conditional probabilities of the BN. Each iteration further refines the inferred model parameters to produce the desired model output. After parameter updating is complete and model inputs are inferred, reliabilities for the model output are supplied. Finally, this method is applied to a simulation of a resonance control cooling system for a prototype coupled cavity linac. The results are compared to experimental data.

  5. A probabilistic graphical model based stochastic input model construction

    International Nuclear Information System (INIS)

    Wan, Jiang; Zabaras, Nicholas

    2014-01-01

    Model reduction techniques have been widely used in modeling of high-dimensional stochastic input in uncertainty quantification tasks. However, the probabilistic modeling of random variables projected into reduced-order spaces presents a number of computational challenges. Due to the curse of dimensionality, the underlying dependence relationships between these random variables are difficult to capture. In this work, a probabilistic graphical model based approach is employed to learn the dependence by running a number of conditional independence tests using observation data. Thus a probabilistic model of the joint PDF is obtained and the PDF is factorized into a set of conditional distributions based on the dependence structure of the variables. The estimation of the joint PDF from data is then transformed to estimating conditional distributions under reduced dimensions. To improve the computational efficiency, a polynomial chaos expansion is further applied to represent the random field in terms of a set of standard random variables. This technique is combined with both linear and nonlinear model reduction methods. Numerical examples are presented to demonstrate the accuracy and efficiency of the probabilistic graphical model based stochastic input models. - Highlights: • Data-driven stochastic input models without the assumption of independence of the reduced random variables. • The problem is transformed to a Bayesian network structure learning problem. • Examples are given in flows in random media

  6. Multivariate Self-Exciting Threshold Autoregressive Models with eXogenous Input

    OpenAIRE

    Peter Martey Addo

    2014-01-01

    This study defines a multivariate Self--Exciting Threshold Autoregressive with eXogenous input (MSETARX) models and present an estimation procedure for the parameters. The conditions for stationarity of the nonlinear MSETARX models is provided. In particular, the efficiency of an adaptive parameter estimation algorithm and LSE (least squares estimate) algorithm for this class of models is then provided via simulations.

  7. An efficient method for evaluating the effect of input parameters on the integrity of safety systems

    International Nuclear Information System (INIS)

    Tang, Zhang-Chun; Zuo, Ming J.; Xiao, Ningcong

    2016-01-01

    Safety systems are significant to reduce or prevent risk from potentially dangerous activities in industry. Probability of failure to perform its functions on demand (PFD) for safety system usually exhibits variation due to the epistemic uncertainty associated with various input parameters. This paper uses the complementary cumulative distribution function of the PFD to define the exceedance probability (EP) that the PFD of the system is larger than the designed value. Sensitivity analysis of safety system is further investigated, which focuses on the effect of the variance of an individual input parameter on the EP resulting from epistemic uncertainty associated with the input parameters. An available numerical technique called finite difference method is first employed to evaluate the effect, which requires extensive computational cost and needs to select a step size. To address these difficulties, this paper proposes an efficient simulation method to estimate the effect. The proposed method needs only an evaluation to estimate the effects corresponding to all input parameters. Two examples are used to demonstrate that the proposed method can obtain more accurate results with less computation time compared to reported methods. - Highlights: • We define a sensitivity index to measure effect of a parameter for safety system. • We analyze the physical meaning of the sensitivity index. • We propose an efficient simulation method to assess the sensitivity index. • We derive the formulations of this index for lognormal and beta distributions. • Results identify important parameters on exceedance probability of safety system.

  8. On Optimal Input Design and Model Selection for Communication Channels

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yanyan [ORNL; Djouadi, Seddik M [ORNL; Olama, Mohammed M [ORNL

    2013-01-01

    In this paper, the optimal model (structure) selection and input design which minimize the worst case identification error for communication systems are provided. The problem is formulated using metric complexity theory in a Hilbert space setting. It is pointed out that model selection and input design can be handled independently. Kolmogorov n-width is used to characterize the representation error introduced by model selection, while Gel fand and Time n-widths are used to represent the inherent error introduced by input design. After the model is selected, an optimal input which minimizes the worst case identification error is shown to exist. In particular, it is proven that the optimal model for reducing the representation error is a Finite Impulse Response (FIR) model, and the optimal input is an impulse at the start of the observation interval. FIR models are widely popular in communication systems, such as, in Orthogonal Frequency Division Multiplexing (OFDM) systems.

  9. Lysimeter data as input to performance assessment models

    International Nuclear Information System (INIS)

    McConnell, J.W. Jr.

    1998-01-01

    The Field Lysimeter Investigations: Low-Level Waste Data Base Development Program is obtaining information on the performance of radioactive waste forms in a disposal environment. Waste forms fabricated using ion-exchange resins from EPICOR-117 prefilters employed in the cleanup of the Three Mile Island (TMI) Nuclear Power Station are being tested to develop a low-level waste data base and to obtain information on survivability of waste forms in a disposal environment. The program includes reviewing radionuclide releases from those waste forms in the first 7 years of sampling and examining the relationship between code input parameters and lysimeter data. Also, lysimeter data are applied to performance assessment source term models, and initial results from use of data in two models are presented

  10. Star Classification for the Kepler Input Catalog: From Images to Stellar Parameters

    Science.gov (United States)

    Brown, T. M.; Everett, M.; Latham, D. W.; Monet, D. G.

    2005-12-01

    The Stellar Classification Project is a ground-based effort to screen stars within the Kepler field of view, to allow removal of stars with large radii (and small potential transit signals) from the target list. Important components of this process are: (1) An automated photometry pipeline estimates observed magnitudes both for target stars and for stars in several calibration fields. (2) Data from calibration fields yield extinction-corrected AB magnitudes (with g, r, i, z magnitudes transformed to the SDSS system). We merge these with 2MASS J, H, K magnitudes. (3) The Basel grid of stellar atmosphere models yields synthetic colors, which are transformed to our photometric system by calibration against observations of stars in M67. (4) We combine the r magnitude and stellar galactic latitude with a simple model of interstellar extinction to derive a relation connecting {Teff, luminosity} to distance and reddening. For models satisfying this relation, we compute a chi-squared statistic describing the match between each model and the observed colors. (5) We create a merit function based on the chi-squared statistic, and on a Bayesian prior probability distribution which gives probability as a function of Teff, luminosity, log(Z), and height above the galactic plane. The stellar parameters ascribed to a star are those of the model that maximizes this merit function. (6) Parameter estimates are merged with positional and other information from extant catalogs to yield the Kepler Input Catalog, from which targets will be chosen. Testing and validation of this procedure are underway, with encouraging initial results.

  11. Variance-based sensitivity indices for models with dependent inputs

    International Nuclear Information System (INIS)

    Mara, Thierry A.; Tarantola, Stefano

    2012-01-01

    Computational models are intensively used in engineering for risk analysis or prediction of future outcomes. Uncertainty and sensitivity analyses are of great help in these purposes. Although several methods exist to perform variance-based sensitivity analysis of model output with independent inputs only a few are proposed in the literature in the case of dependent inputs. This is explained by the fact that the theoretical framework for the independent case is set and a univocal set of variance-based sensitivity indices is defined. In the present work, we propose a set of variance-based sensitivity indices to perform sensitivity analysis of models with dependent inputs. These measures allow us to distinguish between the mutual dependent contribution and the independent contribution of an input to the model response variance. Their definition relies on a specific orthogonalisation of the inputs and ANOVA-representations of the model output. In the applications, we show the interest of the new sensitivity indices for model simplification setting. - Highlights: ► Uncertainty and sensitivity analyses are of great help in engineering. ► Several methods exist to perform variance-based sensitivity analysis of model output with independent inputs. ► We define a set of variance-based sensitivity indices for models with dependent inputs. ► Inputs mutual contributions are distinguished from their independent contributions. ► Analytical and computational tests are performed and discussed.

  12. Can Simulation Credibility Be Improved Using Sensitivity Analysis to Understand Input Data Effects on Model Outcome?

    Science.gov (United States)

    Myers, Jerry G.; Young, M.; Goodenow, Debra A.; Keenan, A.; Walton, M.; Boley, L.

    2015-01-01

    Model and simulation (MS) credibility is defined as, the quality to elicit belief or trust in MS results. NASA-STD-7009 [1] delineates eight components (Verification, Validation, Input Pedigree, Results Uncertainty, Results Robustness, Use History, MS Management, People Qualifications) that address quantifying model credibility, and provides guidance to the model developers, analysts, and end users for assessing the MS credibility. Of the eight characteristics, input pedigree, or the quality of the data used to develop model input parameters, governing functions, or initial conditions, can vary significantly. These data quality differences have varying consequences across the range of MS application. NASA-STD-7009 requires that the lowest input data quality be used to represent the entire set of input data when scoring the input pedigree credibility of the model. This requirement provides a conservative assessment of model inputs, and maximizes the communication of the potential level of risk of using model outputs. Unfortunately, in practice, this may result in overly pessimistic communication of the MS output, undermining the credibility of simulation predictions to decision makers. This presentation proposes an alternative assessment mechanism, utilizing results parameter robustness, also known as model input sensitivity, to improve the credibility scoring process for specific simulations.

  13. Modeling Input Errors to Improve Uncertainty Estimates for Sediment Transport Model Predictions

    Science.gov (United States)

    Jung, J. Y.; Niemann, J. D.; Greimann, B. P.

    2016-12-01

    Bayesian methods using Markov chain Monte Carlo algorithms have recently been applied to sediment transport models to assess the uncertainty in the model predictions due to the parameter values. Unfortunately, the existing approaches can only attribute overall uncertainty to the parameters. This limitation is critical because no model can produce accurate forecasts if forced with inaccurate input data, even if the model is well founded in physical theory. In this research, an existing Bayesian method is modified to consider the potential errors in input data during the uncertainty evaluation process. The input error is modeled using Gaussian distributions, and the means and standard deviations are treated as uncertain parameters. The proposed approach is tested by coupling it to the Sedimentation and River Hydraulics - One Dimension (SRH-1D) model and simulating a 23-km reach of the Tachia River in Taiwan. The Wu equation in SRH-1D is used for computing the transport capacity for a bed material load of non-cohesive material. Three types of input data are considered uncertain: (1) the input flowrate at the upstream boundary, (2) the water surface elevation at the downstream boundary, and (3) the water surface elevation at a hydraulic structure in the middle of the reach. The benefits of modeling the input errors in the uncertainty analysis are evaluated by comparing the accuracy of the most likely forecast and the coverage of the observed data by the credible intervals to those of the existing method. The results indicate that the internal boundary condition has the largest uncertainty among those considered. Overall, the uncertainty estimates from the new method are notably different from those of the existing method for both the calibration and forecast periods.

  14. Input parameters to codes which analyze LMFBR wire wrapped bundles. Revision 1

    International Nuclear Information System (INIS)

    Wang, S.F.; Todreas, N.E.

    1979-05-01

    This report provides a current summary of recommended values of key input parameters required for ENERGY code analysis of LMFBR wire wrapped bundles. This data is based on the interpretation of experimental results from the MIT and other available laboratory programs

  15. Reconstruction of neuronal input through modeling single-neuron dynamics and computations

    International Nuclear Information System (INIS)

    Qin, Qing; Wang, Jiang; Yu, Haitao; Deng, Bin; Chan, Wai-lok

    2016-01-01

    Mathematical models provide a mathematical description of neuron activity, which can better understand and quantify neural computations and corresponding biophysical mechanisms evoked by stimulus. In this paper, based on the output spike train evoked by the acupuncture mechanical stimulus, we present two different levels of models to describe the input-output system to achieve the reconstruction of neuronal input. The reconstruction process is divided into two steps: First, considering the neuronal spiking event as a Gamma stochastic process. The scale parameter and the shape parameter of Gamma process are, respectively, defined as two spiking characteristics, which are estimated by a state-space method. Then, leaky integrate-and-fire (LIF) model is used to mimic the response system and the estimated spiking characteristics are transformed into two temporal input parameters of LIF model, through two conversion formulas. We test this reconstruction method by three different groups of simulation data. All three groups of estimates reconstruct input parameters with fairly high accuracy. We then use this reconstruction method to estimate the non-measurable acupuncture input parameters. Results show that under three different frequencies of acupuncture stimulus conditions, estimated input parameters have an obvious difference. The higher the frequency of the acupuncture stimulus is, the higher the accuracy of reconstruction is.

  16. Reconstruction of neuronal input through modeling single-neuron dynamics and computations

    Energy Technology Data Exchange (ETDEWEB)

    Qin, Qing; Wang, Jiang; Yu, Haitao; Deng, Bin, E-mail: dengbin@tju.edu.cn; Chan, Wai-lok [School of Electrical Engineering and Automation, Tianjin University, Tianjin 300072 (China)

    2016-06-15

    Mathematical models provide a mathematical description of neuron activity, which can better understand and quantify neural computations and corresponding biophysical mechanisms evoked by stimulus. In this paper, based on the output spike train evoked by the acupuncture mechanical stimulus, we present two different levels of models to describe the input-output system to achieve the reconstruction of neuronal input. The reconstruction process is divided into two steps: First, considering the neuronal spiking event as a Gamma stochastic process. The scale parameter and the shape parameter of Gamma process are, respectively, defined as two spiking characteristics, which are estimated by a state-space method. Then, leaky integrate-and-fire (LIF) model is used to mimic the response system and the estimated spiking characteristics are transformed into two temporal input parameters of LIF model, through two conversion formulas. We test this reconstruction method by three different groups of simulation data. All three groups of estimates reconstruct input parameters with fairly high accuracy. We then use this reconstruction method to estimate the non-measurable acupuncture input parameters. Results show that under three different frequencies of acupuncture stimulus conditions, estimated input parameters have an obvious difference. The higher the frequency of the acupuncture stimulus is, the higher the accuracy of reconstruction is.

  17. A Novel Coupled State/Input/Parameter Identification Method for Linear Structural Systems

    Directory of Open Access Journals (Sweden)

    Zhimin Wan

    2018-01-01

    Full Text Available In many engineering applications, unknown states, inputs, and parameters exist in the structures. However, most methods require one or two of these variables to be known in order to identify the other(s. Recently, the authors have proposed a method called EGDF for coupled state/input/parameter identification for nonlinear system in state space. However, the EGDF method based solely on acceleration measurements is found to be unstable, which can cause the drift of the identified inputs and displacements. Although some regularization methods can be adopted for solving the problem, they are not suitable for joint input-state identification in real time. In this paper, a strategy of data fusion of displacement and acceleration measurements is used to avoid the low-frequency drift in the identified inputs and structural displacements for linear structural systems. Two numerical examples about a plane truss and a single-stage isolation system are conducted to verify the effectiveness of the proposed modified EGDF algorithm.

  18. Parameter Estimation for Thurstone Choice Models

    Energy Technology Data Exchange (ETDEWEB)

    Vojnovic, Milan [London School of Economics (United Kingdom); Yun, Seyoung [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-04-24

    We consider the estimation accuracy of individual strength parameters of a Thurstone choice model when each input observation consists of a choice of one item from a set of two or more items (so called top-1 lists). This model accommodates the well-known choice models such as the Luce choice model for comparison sets of two or more items and the Bradley-Terry model for pair comparisons. We provide a tight characterization of the mean squared error of the maximum likelihood parameter estimator. We also provide similar characterizations for parameter estimators defined by a rank-breaking method, which amounts to deducing one or more pair comparisons from a comparison of two or more items, assuming independence of these pair comparisons, and maximizing a likelihood function derived under these assumptions. We also consider a related binary classification problem where each individual parameter takes value from a set of two possible values and the goal is to correctly classify all items within a prescribed classification error. The results of this paper shed light on how the parameter estimation accuracy depends on given Thurstone choice model and the structure of comparison sets. In particular, we found that for unbiased input comparison sets of a given cardinality, when in expectation each comparison set of given cardinality occurs the same number of times, for a broad class of Thurstone choice models, the mean squared error decreases with the cardinality of comparison sets, but only marginally according to a diminishing returns relation. On the other hand, we found that there exist Thurstone choice models for which the mean squared error of the maximum likelihood parameter estimator can decrease much faster with the cardinality of comparison sets. We report empirical evaluation of some claims and key parameters revealed by theory using both synthetic and real-world input data from some popular sport competitions and online labor platforms.

  19. Relative sensitivities of DCE-MRI pharmacokinetic parameters to arterial input function (AIF) scaling

    Science.gov (United States)

    Li, Xin; Cai, Yu; Moloney, Brendan; Chen, Yiyi; Huang, Wei; Woods, Mark; Coakley, Fergus V.; Rooney, William D.; Garzotto, Mark G.; Springer, Charles S.

    2016-08-01

    Dynamic-Contrast-Enhanced Magnetic Resonance Imaging (DCE-MRI) has been used widely for clinical applications. Pharmacokinetic modeling of DCE-MRI data that extracts quantitative contrast reagent/tissue-specific model parameters is the most investigated method. One of the primary challenges in pharmacokinetic analysis of DCE-MRI data is accurate and reliable measurement of the arterial input function (AIF), which is the driving force behind all pharmacokinetics. Because of effects such as inflow and partial volume averaging, AIF measured from individual arteries sometimes require amplitude scaling for better representation of the blood contrast reagent (CR) concentration time-courses. Empirical approaches like blinded AIF estimation or reference tissue AIF derivation can be useful and practical, especially when there is no clearly visible blood vessel within the imaging field-of-view (FOV). Similarly, these approaches generally also require magnitude scaling of the derived AIF time-courses. Since the AIF varies among individuals even with the same CR injection protocol and the perfect scaling factor for reconstructing the ground truth AIF often remains unknown, variations in estimated pharmacokinetic parameters due to varying AIF scaling factors are of special interest. In this work, using simulated and real prostate cancer DCE-MRI data, we examined parameter variations associated with AIF scaling. Our results show that, for both the fast-exchange-limit (FXL) Tofts model and the water exchange sensitized fast-exchange-regime (FXR) model, the commonly fitted CR transfer constant (Ktrans) and the extravascular, extracellular volume fraction (ve) scale nearly proportionally with the AIF, whereas the FXR-specific unidirectional cellular water efflux rate constant, kio, and the CR intravasation rate constant, kep, are both AIF scaling insensitive. This indicates that, for DCE-MRI of prostate cancer and possibly other cancers, kio and kep may be more suitable imaging

  20. A didactic Input-Output model for territorial ecology analyses

    OpenAIRE

    Garry Mcdonald

    2010-01-01

    This report describes a didactic input-output modelling framework created jointly be the team at REEDS, Universite de Versailles and Dr Garry McDonald, Director, Market Economics Ltd. There are three key outputs associated with this framework: (i) a suite of didactic input-output models developed in Microsoft Excel, (ii) a technical report (this report) which describes the framework and the suite of models1, and (iii) a two week intensive workshop dedicated to the training of REEDS researcher...

  1. Global sensitivity analysis of computer models with functional inputs

    International Nuclear Information System (INIS)

    Iooss, Bertrand; Ribatet, Mathieu

    2009-01-01

    Global sensitivity analysis is used to quantify the influence of uncertain model inputs on the response variability of a numerical model. The common quantitative methods are appropriate with computer codes having scalar model inputs. This paper aims at illustrating different variance-based sensitivity analysis techniques, based on the so-called Sobol's indices, when some model inputs are functional, such as stochastic processes or random spatial fields. In this work, we focus on large cpu time computer codes which need a preliminary metamodeling step before performing the sensitivity analysis. We propose the use of the joint modeling approach, i.e., modeling simultaneously the mean and the dispersion of the code outputs using two interlinked generalized linear models (GLMs) or generalized additive models (GAMs). The 'mean model' allows to estimate the sensitivity indices of each scalar model inputs, while the 'dispersion model' allows to derive the total sensitivity index of the functional model inputs. The proposed approach is compared to some classical sensitivity analysis methodologies on an analytical function. Lastly, the new methodology is applied to an industrial computer code that simulates the nuclear fuel irradiation.

  2. Computer supported estimation of input data for transportation models

    OpenAIRE

    Cenek, Petr; Tarábek, Peter; Kopf, Marija

    2010-01-01

    Control and management of transportation systems frequently rely on optimization or simulation methods based on a suitable model. Such a model uses optimization or simulation procedures and correct input data. The input data define transportation infrastructure and transportation flows. Data acquisition is a costly process and so an efficient approach is highly desirable. The infrastructure can be recognized from drawn maps using segmentation, thinning and vectorization. The accurate definiti...

  3. Applications of flocking algorithms to input modeling for agent movement

    OpenAIRE

    Singham, Dashi; Therkildsen, Meredith; Schruben, Lee

    2011-01-01

    Refereed Conference Paper The article of record as published can be found at http://dx.doi.org/10.1109/WSC.2011.6147953 Simulation flocking has been introduced as a method for generating simulation input from multivariate dependent time series for sensitivity and risk analysis. It can be applied to data for which a parametric model is not readily available or imposes too many restrictions on the possible inputs. This method uses techniques from agent-based modeling to generate ...

  4. Space market model space industry input-output model

    Science.gov (United States)

    Hodgin, Robert F.; Marchesini, Roberto

    1987-01-01

    The goal of the Space Market Model (SMM) is to develop an information resource for the space industry. The SMM is intended to contain information appropriate for decision making in the space industry. The objectives of the SMM are to: (1) assemble information related to the development of the space business; (2) construct an adequate description of the emerging space market; (3) disseminate the information on the space market to forecasts and planners in government agencies and private corporations; and (4) provide timely analyses and forecasts of critical elements of the space market. An Input-Output model of market activity is proposed which are capable of transforming raw data into useful information for decision makers and policy makers dealing with the space sector.

  5. The Sensitivity of the Input Impedance Parameters of Track Circuits to Changes in the Parameters of the Track

    Directory of Open Access Journals (Sweden)

    Lubomir Ivanek

    2017-01-01

    Full Text Available This paper deals with the sensitivity of the input impedance of an open track circuit in the event that the parameters of the track are changed. Weather conditions and the state of pollution are the most common reasons for parameter changes. The results were obtained from the measured values of the parameters R (resistance, G (conductance, L (inductance, and C (capacitance of a rail superstructure depending on the frequency. Measurements were performed on a railway siding in Orlova. The results are used to design a predictor of occupancy of a track section. In particular, we were interested in the frequencies of 75 and 275 Hz for this purpose. Many parameter values of track substructures have already been solved in different works in literature. At first, we had planned to use the parameter values from these sources when we designed the predictor. Deviations between them, however, are large and often differ by three orders of magnitude (see Tab.8. From this perspective, this article presents data that have been updated using modern measurement devices and computer technology. And above all, it shows a transmission (cascade matrix used to determine the parameters.

  6. Blind Deconvolution for Distributed Parameter Systems with Unbounded Input and Output and Determining Blood Alcohol Concentration from Transdermal Biosensor Data.

    Science.gov (United States)

    Rosen, I G; Luczak, Susan E; Weiss, Jordan

    2014-03-15

    We develop a blind deconvolution scheme for input-output systems described by distributed parameter systems with boundary input and output. An abstract functional analytic theory based on results for the linear quadratic control of infinite dimensional systems with unbounded input and output operators is presented. The blind deconvolution problem is then reformulated as a series of constrained linear and nonlinear optimization problems involving infinite dimensional dynamical systems. A finite dimensional approximation and convergence theory is developed. The theory is applied to the problem of estimating blood or breath alcohol concentration (respectively, BAC or BrAC) from biosensor-measured transdermal alcohol concentration (TAC) in the field. A distributed parameter model with boundary input and output is proposed for the transdermal transport of ethanol from the blood through the skin to the sensor. The problem of estimating BAC or BrAC from the TAC data is formulated as a blind deconvolution problem. A scheme to identify distinct drinking episodes in TAC data based on a Hodrick Prescott filter is discussed. Numerical results involving actual patient data are presented.

  7. Source term modelling parameters for Project-90

    International Nuclear Information System (INIS)

    Shaw, W.; Smith, G.; Worgan, K.; Hodgkinson, D.; Andersson, K.

    1992-04-01

    This document summarises the input parameters for the source term modelling within Project-90. In the first place, the parameters relate to the CALIBRE near-field code which was developed for the Swedish Nuclear Power Inspectorate's (SKI) Project-90 reference repository safety assessment exercise. An attempt has been made to give best estimate values and, where appropriate, a range which is related to variations around base cases. It should be noted that the data sets contain amendments to those considered by KBS-3. In particular, a completely new set of inventory data has been incorporated. The information given here does not constitute a complete set of parameter values for all parts of the CALIBRE code. Rather, it gives the key parameter values which are used in the constituent models within CALIBRE and the associated studies. For example, the inventory data acts as an input to the calculation of the oxidant production rates, which influence the generation of a redox front. The same data is also an initial value data set for the radionuclide migration component of CALIBRE. Similarly, the geometrical parameters of the near-field are common to both sub-models. The principal common parameters are gathered here for ease of reference and avoidance of unnecessary duplication and transcription errors. (au)

  8. Gaussian-input Gaussian mixture model for representing density maps and atomic models.

    Science.gov (United States)

    Kawabata, Takeshi

    2018-03-06

    A new Gaussian mixture model (GMM) has been developed for better representations of both atomic models and electron microscopy 3D density maps. The standard GMM algorithm employs an EM algorithm to determine the parameters. It accepted a set of 3D points with weights, corresponding to voxel or atomic centers. Although the standard algorithm worked reasonably well; however, it had three problems. First, it ignored the size (voxel width or atomic radius) of the input, and thus it could lead to a GMM with a smaller spread than the input. Second, the algorithm had a singularity problem, as it sometimes stopped the iterative procedure due to a Gaussian function with almost zero variance. Third, a map with a large number of voxels required a long computation time for conversion to a GMM. To solve these problems, we have introduced a Gaussian-input GMM algorithm, which considers the input atoms or voxels as a set of Gaussian functions. The standard EM algorithm of GMM was extended to optimize the new GMM. The new GMM has identical radius of gyration to the input, and does not suddenly stop due to the singularity problem. For fast computation, we have introduced a down-sampled Gaussian functions (DSG) by merging neighboring voxels into an anisotropic Gaussian function. It provides a GMM with thousands of Gaussian functions in a short computation time. We also have introduced a DSG-input GMM: the Gaussian-input GMM with the DSG as the input. This new algorithm is much faster than the standard algorithm. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  9. Bayesian tsunami fragility modeling considering input data uncertainty

    OpenAIRE

    De Risi, Raffaele; Goda, Katsu; Mori, Nobuhito; Yasuda, Tomohiro

    2017-01-01

    Empirical tsunami fragility curves are developed based on a Bayesian framework by accounting for uncertainty of input tsunami hazard data in a systematic and comprehensive manner. Three fragility modeling approaches, i.e. lognormal method, binomial logistic method, and multinomial logistic method, are considered, and are applied to extensive tsunami damage data for the 2011 Tohoku earthquake. A unique aspect of this study is that uncertainty of tsunami inundation data (i.e. input hazard data ...

  10. Exploiting intrinsic fluctuations to identify model parameters.

    Science.gov (United States)

    Zimmer, Christoph; Sahle, Sven; Pahle, Jürgen

    2015-04-01

    Parameterisation of kinetic models plays a central role in computational systems biology. Besides the lack of experimental data of high enough quality, some of the biggest challenges here are identification issues. Model parameters can be structurally non-identifiable because of functional relationships. Noise in measured data is usually considered to be a nuisance for parameter estimation. However, it turns out that intrinsic fluctuations in particle numbers can make parameters identifiable that were previously non-identifiable. The authors present a method to identify model parameters that are structurally non-identifiable in a deterministic framework. The method takes time course recordings of biochemical systems in steady state or transient state as input. Often a functional relationship between parameters presents itself by a one-dimensional manifold in parameter space containing parameter sets of optimal goodness. Although the system's behaviour cannot be distinguished on this manifold in a deterministic framework it might be distinguishable in a stochastic modelling framework. Their method exploits this by using an objective function that includes a measure for fluctuations in particle numbers. They show on three example models, immigration-death, gene expression and Epo-EpoReceptor interaction, that this resolves the non-identifiability even in the case of measurement noise with known amplitude. The method is applied to partially observed recordings of biochemical systems with measurement noise. It is simple to implement and it is usually very fast to compute. This optimisation can be realised in a classical or Bayesian fashion.

  11. On how to avoid input and structural uncertainties corrupt the inference of hydrological parameters using a Bayesian framework

    Science.gov (United States)

    Hernández, Mario R.; Francés, Félix

    2015-04-01

    One phase of the hydrological models implementation process, significantly contributing to the hydrological predictions uncertainty, is the calibration phase in which values of the unknown model parameters are tuned by optimizing an objective function. An unsuitable error model (e.g. Standard Least Squares or SLS) introduces noise into the estimation of the parameters. The main sources of this noise are the input errors and the hydrological model structural deficiencies. Thus, the biased calibrated parameters cause the divergence model phenomenon, where the errors variance of the (spatially and temporally) forecasted flows far exceeds the errors variance in the fitting period, and provoke the loss of part or all of the physical meaning of the modeled processes. In other words, yielding a calibrated hydrological model which works well, but not for the right reasons. Besides, an unsuitable error model yields a non-reliable predictive uncertainty assessment. Hence, with the aim of prevent all these undesirable effects, this research focuses on the Bayesian joint inference (BJI) of both the hydrological and error model parameters, considering a general additive (GA) error model that allows for correlation, non-stationarity (in variance and bias) and non-normality of model residuals. As hydrological model, it has been used a conceptual distributed model called TETIS, with a particular split structure of the effective model parameters. Bayesian inference has been performed with the aid of a Markov Chain Monte Carlo (MCMC) algorithm called Dream-ZS. MCMC algorithm quantifies the uncertainty of the hydrological and error model parameters by getting the joint posterior probability distribution, conditioned on the observed flows. The BJI methodology is a very powerful and reliable tool, but it must be used correctly this is, if non-stationarity in errors variance and bias is modeled, the Total Laws must be taken into account. The results of this research show that the

  12. Quality assurance of weather data for agricultural system model input

    Science.gov (United States)

    It is well known that crop production and hydrologic variation on watersheds is weather related. Rarely, however, is meteorological data quality checks reported for agricultural systems model research. We present quality assurance procedures for agricultural system model weather data input. Problems...

  13. Filtering Based Recursive Least Squares Algorithm for Multi-Input Multioutput Hammerstein Models

    OpenAIRE

    Wang, Ziyun; Wang, Yan; Ji, Zhicheng

    2014-01-01

    This paper considers the parameter estimation problem for Hammerstein multi-input multioutput finite impulse response (FIR-MA) systems. Filtered by the noise transfer function, the FIR-MA model is transformed into a controlled autoregressive model. The key-term variable separation principle is used to derive a data filtering based recursive least squares algorithm. The numerical examples confirm that the proposed algorithm can estimate parameters more accurately and has a higher computational...

  14. Linking Item Response Model Parameters.

    Science.gov (United States)

    van der Linden, Wim J; Barrett, Michelle D

    2016-09-01

    With a few exceptions, the problem of linking item response model parameters from different item calibrations has been conceptualized as an instance of the problem of test equating scores on different test forms. This paper argues, however, that the use of item response models does not require any test score equating. Instead, it involves the necessity of parameter linking due to a fundamental problem inherent in the formal nature of these models-their general lack of identifiability. More specifically, item response model parameters need to be linked to adjust for the different effects of the identifiability restrictions used in separate item calibrations. Our main theorems characterize the formal nature of these linking functions for monotone, continuous response models, derive their specific shapes for different parameterizations of the 3PL model, and show how to identify them from the parameter values of the common items or persons in different linking designs.

  15. THE EFFECT OF NITROGEN INPUT ON POLARISED SUGAR PRODUCTION AND QUALITATIVE PARAMETERS OF SUGAR BEET

    Directory of Open Access Journals (Sweden)

    MILAN MACÁK

    2007-11-01

    Full Text Available During 1998-2002, the application of different forms and doses of nitrogen on quantitative (polarised sugar productionand qualitative parameters (digestion, molasses forming components - potassium, sodium and α-amino nitrogen content of sugar beet in vulnerable zones (Nitrate directive was studied. Calculated input of nitrogen ranged from 12 kg up to 240 kg N.ha-1. By increasing input of N from FYM application into the soil causes an increases of α- amino nitrogen content in root, which in consequence causes a decreases the sugar content (negative correlation r= -0.8659+. The application of straw instead FYM of analogues treatments caused significant decrease (straw versus FYM and highly significant decrease (straw plus N fertilizers versus FYM plus N fertilizers of α-amino nitrogen content in sugar beet root living the productive parameters unchanged. The content of α-amino nitrogen in root of sugar beet indicate an environmentally friendly management practices with causal relation to water protection from nitrate.

  16. Input-output model for MACCS nuclear accident impacts estimation¹

    Energy Technology Data Exchange (ETDEWEB)

    Outkin, Alexander V. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bixler, Nathan E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Vargas, Vanessa N [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-01-27

    Since the original economic model for MACCS was developed, better quality economic data (as well as the tools to gather and process it) and better computational capabilities have become available. The update of the economic impacts component of the MACCS legacy model will provide improved estimates of business disruptions through the use of Input-Output based economic impact estimation. This paper presents an updated MACCS model, bases on Input-Output methodology, in which economic impacts are calculated using the Regional Economic Accounting analysis tool (REAcct) created at Sandia National Laboratories. This new GDP-based model allows quick and consistent estimation of gross domestic product (GDP) losses due to nuclear power plant accidents. This paper outlines the steps taken to combine the REAcct Input-Output-based model with the MACCS code, describes the GDP loss calculation, and discusses the parameters and modeling assumptions necessary for the estimation of long-term effects of nuclear power plant accidents.

  17. Influence of simulation assumptions and input parameters on energy balance calculations of residential buildings

    International Nuclear Information System (INIS)

    Dodoo, Ambrose; Tettey, Uniben Yao Ayikoe; Gustavsson, Leif

    2017-01-01

    In this study, we modelled the influence of different simulation assumptions on energy balances of two variants of a residential building, comprising the building in its existing state and with energy-efficient improvements. We explored how selected parameter combinations and variations affect the energy balances of the building configurations. The selected parameters encompass outdoor microclimate, building thermal envelope and household electrical equipment including technical installations. Our modelling takes into account hourly as well as seasonal profiles of different internal heat gains. The results suggest that the impact of parameter interactions on calculated space heating of buildings is somewhat small and relatively more noticeable for an energy-efficient building in contrast to a conventional building. We find that the influence of parameters combinations is more apparent as more individual parameters are varied. The simulations show that a building's calculated space heating demand is significantly influenced by how heat gains from electrical equipment are modelled. For the analyzed building versions, calculated final energy for space heating differs by 9–14 kWh/m 2 depending on the assumed energy efficiency level for electrical equipment. The influence of electrical equipment on calculated final space heating is proportionally more significant for an energy-efficient building compared to a conventional building. This study shows the influence of different simulation assumptions and parameter combinations when varied simultaneously. - Highlights: • Energy balances are modelled for conventional and efficient variants of a building. • Influence of assumptions and parameter combinations and variations are explored. • Parameter interactions influence is apparent as more single parameters are varied. • Calculated space heating demand is notably affected by how heat gains are modelled.

  18. Input data requirements for performance modelling and monitoring of photovoltaic plants

    DEFF Research Database (Denmark)

    Gavriluta, Anamaria Florina; Spataru, Sergiu; Sera, Dezso

    2018-01-01

    This work investigates the input data requirements in the context of performance modeling of thin-film photovoltaic (PV) systems. The analysis focuses on the PVWatts performance model, well suited for on-line performance monitoring of PV strings, due to its low number of parameters and high...... accuracy. The work aims to identify the minimum amount of input data required for parameterizing an accurate model of the PV plant. The analysis was carried out for both amorphous silicon (a-Si) and cadmium telluride (CdTe), using crystalline silicon (c-Si) as a base for comparison. In the studied cases...

  19. Model reduction of nonlinear systems subject to input disturbances

    KAUST Repository

    Ndoye, Ibrahima

    2017-07-10

    The method of convex optimization is used as a tool for model reduction of a class of nonlinear systems in the presence of disturbances. It is shown that under some conditions the nonlinear disturbed system can be approximated by a reduced order nonlinear system with similar disturbance-output properties to the original plant. The proposed model reduction strategy preserves the nonlinearity and the input disturbance nature of the model. It guarantees a sufficiently small error between the outputs of the original and the reduced-order systems, and also maintains the properties of input-to-state stability. The matrices of the reduced order system are given in terms of a set of linear matrix inequalities (LMIs). The paper concludes with a demonstration of the proposed approach on model reduction of a nonlinear electronic circuit with additive disturbances.

  20. Comparisons of CAP88PC version 2.0 default parameters to site specific inputs

    International Nuclear Information System (INIS)

    Lehto, M. A.; Courtney, J. C.; Charter, N.; Egan, T.

    2000-01-01

    The effects of varying the input for the CAP88PC Version 2.0 program on the total effective dose equivalents (TEDEs) were determined for hypothetical releases from the Hot Fuel Examination Facility (HFEF) located at the Argonne National Laboratory site on the Idaho National Engineering and Environmental Laboratory (INEEL). Values for site specific meteorological conditions and agricultural production parameters were determined for the 80 km radius surrounding the HFEF. Four nuclides, 3 H, 85 Kr, 129 I, and 137 Cs (with its short lived progeny, 137m Ba) were selected for this study; these are the radioactive materials most likely to be released from HFEF under normal or abnormal operating conditions. Use of site specific meteorological parameters of annual precipitation, average temperature, and the height of the inversion layer decreased the TEDE from 137 Cs- 137m Ba up to 36%; reductions for other nuclides were less than 3%. Use of the site specific agricultural parameters reduced TEDE values between 7% and 49%, depending on the nuclide. Reductions are associated with decreased committed effective dose equivalents (CEDEs) from the ingestion pathway. This is not surprising since the HFEF is located well within the INEEL exclusion area, and the surrounding area closest to the release point is a high desert with limited agricultural diversity. Livestock and milk production are important in some counties at distances greater than 30 km from the HFEF

  1. The scaling of edge parameters in jet with plasma input power

    International Nuclear Information System (INIS)

    Erents, S.K.; McCracken, G.M.; Harbour, P.J.; Clement, S.; Summers, D.D.R.; Tagle, J.A.; Kock, L. de

    1989-01-01

    The scaling of edge parameters of density and temperature with central density and ohmic power in JET has been presented previously for the discrete limiter geometry and more recently for the new belt limiter configuration. However, the scaling with plasma current (I p ) is difficult to interpret because varying I p does not only change the input power but also the safety factor qs and consequently the SOL thickness. The use of additional heating at constant current allows more direct observation of the effects of changing heating power. In this paper we present data in which the plasma input power is increased by ICRH, (Pt<20MW), using a 3MA target plasma, and compare data for different plasma currents using discrete and belt limiter geometries. Edge data is presented from Langmuir probes in tiles at the top of the torus, when the tokamak is operated in single null magnetic separatrix (divertor) mode, as well as for probes in the main plasma boundary to contrast these data with limiter data. (author) 3 refs., 4 figs

  2. Effect of correlated input parameters on the failure probability of pipelines with corrosion defects by using FITNET FFS procedure

    International Nuclear Information System (INIS)

    Qian, Guian; Niffenegger, Markus; Zhou, Wenxing; Li, Shuxin

    2013-01-01

    The paper presents a probabilistic methodology considering the correlations between the input variables for the failure probability evaluation of corroding pipelines based on the corrosion module of the FITNET FFS procedure. A computer program based on this method is developed to calculate the failure probability of pipelines by considering different numbers of defects and different elapsed times. In case of one defect, the correlation between the initial defect depth and the initial defect length has the most significant impact on the failure probability of the pipeline. If the correlations between these two parameters for an individual defect are not considered, the prediction results are nonconservative when the failure probability is below 40% and conservative when it is above 40%. In case of multiple defects, the independent assumption of variables generally leads to a conservative estimate of the failure probability. The conservatism increases if the elapsed time and/or the actual correlation coefficients of the variables increase. The correlation of the operating pressure, the initial defect depth and material ultimate tensile strength at the location of different defects has a larger impact on the failure probability than the correlation of other parameters at different defects. The upper bound failure probability calculated by engineering method corresponds to that calculated using the presented method without considering the correlation between input parameters. This confirms the validity of the presented model. -- Highlights: ► Correlation between d 0 and L 0 has the biggest impact on the probability. ► Independent assumption of variables generally leads to a conservative estimate. ► The conservatism increases with the elapsed time and correlation coefficients. ► Upper bound of engineering method corresponds to that without correlation input

  3. Input point distribution for regular stem form spline modeling

    Directory of Open Access Journals (Sweden)

    Karel Kuželka

    2015-04-01

    Full Text Available Aim of study: To optimize an interpolation method and distribution of measured diameters to represent regular stem form of coniferous trees using a set of discrete points. Area of study: Central-Bohemian highlands, Czech Republic; a region that represents average stand conditions of production forests of Norway spruce (Picea abies [L.] Karst. in central Europe Material and methods: The accuracy of stem curves modeled using natural cubic splines from a set of measured diameters was evaluated for 85 closely measured stems of Norway spruce using five statistical indicators and compared to the accuracy of three additional models based on different spline types selected for their ability to represent stem curves. The optimal positions to measure diameters were identified using an aggregate objective function approach. Main results: The optimal positions of the input points vary depending on the properties of each spline type. If the optimal input points for each spline are used, then all spline types are able to give reasonable results with higher numbers of input points. The commonly used natural cubic spline was outperformed by other spline types. The lowest errors occur by interpolating the points using the Catmull-Rom spline, which gives accurate and unbiased volume estimates, even with only five input points. Research highlights: The study contributes to more accurate representation of stem form and therefore more accurate estimation of stem volume using data obtained from terrestrial imagery or other close-range remote sensing methods.

  4. Applications of Flocking Algorithms to Input Modeling for Agent Movement

    Science.gov (United States)

    2011-12-01

    2445 Singham, Therkildsen, and Schruben We apply the following flocking algorithm to this leading boid to generate followers, who will then be mapped...due to the paths crossing. 2447 Singham, Therkildsen, and Schruben Figure 2: Plot of the path of a boid generated by the Group 4 flocking algorithm ...on the possible inputs. This method uses techniques from agent-based modeling to generate a flock of boids that follow the data. In this paper, we

  5. Study on Parameters Modeling of Wind Turbines Using SCADA Data

    Directory of Open Access Journals (Sweden)

    Yonglong YAN

    2014-08-01

    Full Text Available Taking the advantage of the current massive monitoring data from Supervisory Control and Data Acquisition (SCADA system of wind farm, it is of important significance for anomaly detection, early warning and fault diagnosis to build the data model of state parameters of wind turbines (WTs. The operational conditions and the relationships between the state parameters of wind turbines are complex. It is difficult to establish the model of state parameter accurately, and the modeling method of state parameters of wind turbines considering parameter selection is proposed. Firstly, by analyzing the characteristic of SCADA data, a reasonable range of data and monitoring parameters are chosen. Secondly, neural network algorithm is adapted, and the selection method of input parameters in the model is presented. Generator bearing temperature and cooling air temperature are regarded as target parameters, and the two models are built and input parameters of the models are selected, respectively. Finally, the parameter selection method in this paper and the method using genetic algorithm-partial least square (GA-PLS are analyzed comparatively, and the results show that the proposed methods are correct and effective. Furthermore, the modeling of two parameters illustrate that the method in this paper can applied to other state parameters of wind turbines.

  6. A stochastic model of input effectiveness during irregular gamma rhythms.

    Science.gov (United States)

    Dumont, Grégory; Northoff, Georg; Longtin, André

    2016-02-01

    Gamma-band synchronization has been linked to attention and communication between brain regions, yet the underlying dynamical mechanisms are still unclear. How does the timing and amplitude of inputs to cells that generate an endogenously noisy gamma rhythm affect the network activity and rhythm? How does such "communication through coherence" (CTC) survive in the face of rhythm and input variability? We present a stochastic modelling approach to this question that yields a very fast computation of the effectiveness of inputs to cells involved in gamma rhythms. Our work is partly motivated by recent optogenetic experiments (Cardin et al. Nature, 459(7247), 663-667 2009) that tested the gamma phase-dependence of network responses by first stabilizing the rhythm with periodic light pulses to the interneurons (I). Our computationally efficient model E-I network of stochastic two-state neurons exhibits finite-size fluctuations. Using the Hilbert transform and Kuramoto index, we study how the stochastic phase of its gamma rhythm is entrained by external pulses. We then compute how this rhythmic inhibition controls the effectiveness of external input onto pyramidal (E) cells, and how variability shapes the window of firing opportunity. For transferring the time variations of an external input to the E cells, we find a tradeoff between the phase selectivity and depth of rate modulation. We also show that the CTC is sensitive to the jitter in the arrival times of spikes to the E cells, and to the degree of I-cell entrainment. We further find that CTC can occur even if the underlying deterministic system does not oscillate; quasicycle-type rhythms induced by the finite-size noise retain the basic CTC properties. Finally a resonance analysis confirms the relative importance of the I cell pacing for rhythm generation. Analysis of whole network behaviour, including computations of synchrony, phase and shifts in excitatory-inhibitory balance, can be further sped up by orders of

  7. A one-model approach based on relaxed combinations of inputs for evaluating input congestion in DEA

    Science.gov (United States)

    Khodabakhshi, Mohammad

    2009-08-01

    This paper provides a one-model approach of input congestion based on input relaxation model developed in data envelopment analysis (e.g. [G.R. Jahanshahloo, M. Khodabakhshi, Suitable combination of inputs for improving outputs in DEA with determining input congestion -- Considering textile industry of China, Applied Mathematics and Computation (1) (2004) 263-273; G.R. Jahanshahloo, M. Khodabakhshi, Determining assurance interval for non-Archimedean ele improving outputs model in DEA, Applied Mathematics and Computation 151 (2) (2004) 501-506; M. Khodabakhshi, A super-efficiency model based on improved outputs in data envelopment analysis, Applied Mathematics and Computation 184 (2) (2007) 695-703; M. Khodabakhshi, M. Asgharian, An input relaxation measure of efficiency in stochastic data analysis, Applied Mathematical Modelling 33 (2009) 2010-2023]. This approach reduces solving three problems with the two-model approach introduced in the first of the above-mentioned reference to two problems which is certainly important from computational point of view. The model is applied to a set of data extracted from ISI database to estimate input congestion of 12 Canadian business schools.

  8. Application of a Linear Input/Output Model to Tankless Water Heaters

    Energy Technology Data Exchange (ETDEWEB)

    Butcher T.; Schoenbauer, B.

    2011-12-31

    In this study, the applicability of a linear input/output model to gas-fired, tankless water heaters has been evaluated. This simple model assumes that the relationship between input and output, averaged over both active draw and idle periods, is linear. This approach is being applied to boilers in other studies and offers the potential to make a small number of simple measurements to obtain the model parameters. These parameters can then be used to predict performance under complex load patterns. Both condensing and non-condensing water heaters have been tested under a very wide range of load conditions. It is shown that this approach can be used to reproduce performance metrics, such as the energy factor, and can be used to evaluate the impacts of alternative draw patterns and conditions.

  9. Efficient uncertainty quantification of a fully nonlinear and dispersive water wave model with random inputs

    DEFF Research Database (Denmark)

    Bigoni, Daniele; Engsig-Karup, Allan Peter; Eskilsson, Claes

    2016-01-01

    A major challenge in next-generation industrial applications is to improve numerical analysis by quantifying uncertainties in predictions. In this work we present a formulation of a fully nonlinear and dispersive potential flow water wave model with random inputs for the probabilistic description...... of the evolution of waves. The model is analyzed using random sampling techniques and nonintrusive methods based on generalized polynomial chaos (PC). These methods allow us to accurately and efficiently estimate the probability distribution of the solution and require only the computation of the solution...... at different points in the parameter space, allowing for the reuse of existing simulation software. The choice of the applied methods is driven by the number of uncertain input parameters and by the fact that finding the solution of the considered model is computationally intensive. We revisit experimental...

  10. Remotely sensed soil moisture input to a hydrologic model

    Science.gov (United States)

    Engman, E. T.; Kustas, W. P.; Wang, J. R.

    1989-01-01

    The possibility of using detailed spatial soil moisture maps as input to a runoff model was investigated. The water balance of a small drainage basin was simulated using a simple storage model. Aircraft microwave measurements of soil moisture were used to construct two-dimensional maps of the spatial distribution of the soil moisture. Data from overflights on different dates provided the temporal changes resulting from soil drainage and evapotranspiration. The study site and data collection are described, and the soil measurement data are given. The model selection is discussed, and the simulation results are summarized. It is concluded that a time series of soil moisture is a valuable new type of data for verifying model performance and for updating and correcting simulated streamflow.

  11. Dual-input two-compartment pharmacokinetic model of dynamic contrast-enhanced magnetic resonance imaging in hepatocellular carcinoma.

    Science.gov (United States)

    Yang, Jian-Feng; Zhao, Zhen-Hua; Zhang, Yu; Zhao, Li; Yang, Li-Ming; Zhang, Min-Ming; Wang, Bo-Yin; Wang, Ting; Lu, Bao-Chun

    2016-04-07

    To investigate the feasibility of a dual-input two-compartment tracer kinetic model for evaluating tumorous microvascular properties in advanced hepatocellular carcinoma (HCC). From January 2014 to April 2015, we prospectively measured and analyzed pharmacokinetic parameters [transfer constant (Ktrans), plasma flow (Fp), permeability surface area product (PS), efflux rate constant (kep), extravascular extracellular space volume ratio (ve), blood plasma volume ratio (vp), and hepatic perfusion index (HPI)] using dual-input two-compartment tracer kinetic models [a dual-input extended Tofts model and a dual-input 2-compartment exchange model (2CXM)] in 28 consecutive HCC patients. A well-known consensus that HCC is a hypervascular tumor supplied by the hepatic artery and the portal vein was used as a reference standard. A paired Student's t-test and a nonparametric paired Wilcoxon rank sum test were used to compare the equivalent pharmacokinetic parameters derived from the two models, and Pearson correlation analysis was also applied to observe the correlations among all equivalent parameters. The tumor size and pharmacokinetic parameters were tested by Pearson correlation analysis, while correlations among stage, tumor size and all pharmacokinetic parameters were assessed by Spearman correlation analysis. The Fp value was greater than the PS value (FP = 1.07 mL/mL per minute, PS = 0.19 mL/mL per minute) in the dual-input 2CXM; HPI was 0.66 and 0.63 in the dual-input extended Tofts model and the dual-input 2CXM, respectively. There were no significant differences in the kep, vp, or HPI between the dual-input extended Tofts model and the dual-input 2CXM (P = 0.524, 0.569, and 0.622, respectively). All equivalent pharmacokinetic parameters, except for ve, were correlated in the two dual-input two-compartment pharmacokinetic models; both Fp and PS in the dual-input 2CXM were correlated with Ktrans derived from the dual-input extended Tofts model (P = 0.002, r = 0.566; P

  12. Filtering Based Recursive Least Squares Algorithm for Multi-Input Multioutput Hammerstein Models

    Directory of Open Access Journals (Sweden)

    Ziyun Wang

    2014-01-01

    Full Text Available This paper considers the parameter estimation problem for Hammerstein multi-input multioutput finite impulse response (FIR-MA systems. Filtered by the noise transfer function, the FIR-MA model is transformed into a controlled autoregressive model. The key-term variable separation principle is used to derive a data filtering based recursive least squares algorithm. The numerical examples confirm that the proposed algorithm can estimate parameters more accurately and has a higher computational efficiency compared with the recursive least squares algorithm.

  13. Comprehensive Information Retrieval and Model Input Sequence (CIRMIS)

    Energy Technology Data Exchange (ETDEWEB)

    Friedrichs, D.R.

    1977-04-01

    The Comprehensive Information Retrieval and Model Input Sequence (CIRMIS) was developed to provide the research scientist with man--machine interactive capabilities in a real-time environment, and thereby produce results more quickly and efficiently. The CIRMIS system was originally developed to increase data storage and retrieval capabilities and ground-water model control for the Hanford site. The overall configuration, however, can be used in other areas. The CIRMIS system provides the user with three major functions: retrieval of well-based data, special application for manipulating surface data or background maps, and the manipulation and control of ground-water models. These programs comprise only a portion of the entire CIRMIS system. A complete description of the CIRMIS system is given in this report. 25 figures, 7 tables. (RWR)

  14. A summary of the sources of input parameter values for the Waste Isolation Pilot Plant final porosity surface calculations

    International Nuclear Information System (INIS)

    Butcher, B.M.

    1997-08-01

    A summary of the input parameter values used in final predictions of closure and waste densification in the Waste Isolation Pilot Plant disposal room is presented, along with supporting references. These predictions are referred to as the final porosity surface data and will be used for WIPP performance calculations supporting the Compliance Certification Application to be submitted to the U.S. Environmental Protection Agency. The report includes tables and list all of the input parameter values, references citing their source, and in some cases references to more complete descriptions of considerations leading to the selection of values

  15. A summary of the sources of input parameter values for the Waste Isolation Pilot Plant final porosity surface calculations

    Energy Technology Data Exchange (ETDEWEB)

    Butcher, B.M.

    1997-08-01

    A summary of the input parameter values used in final predictions of closure and waste densification in the Waste Isolation Pilot Plant disposal room is presented, along with supporting references. These predictions are referred to as the final porosity surface data and will be used for WIPP performance calculations supporting the Compliance Certification Application to be submitted to the U.S. Environmental Protection Agency. The report includes tables and list all of the input parameter values, references citing their source, and in some cases references to more complete descriptions of considerations leading to the selection of values.

  16. Sensitivity of soil water content simulation to different methods of soil hydraulic parameter characterization as initial input values

    Science.gov (United States)

    Rezaei, Meisam; Seuntjens, Piet; Shahidi, Reihaneh; Joris, Ingeborg; Boënne, Wesley; Cornelis, Wim

    2016-04-01

    Soil hydraulic parameters, which can be derived from in situ and/or laboratory experiments, are key input parameters for modeling water flow in the vadose zone. In this study, we measured soil hydraulic properties with typical laboratory measurements and field tension infiltration experiments using Wooding's analytical solution and inverse optimization along the vertical direction within two typical podzol profiles with sand texture in a potato field. The objective was to identify proper sets of hydraulic parameters and to evaluate their relevance on hydrological model performance for irrigation management purposes. Tension disc infiltration experiments were carried out at five different depths for both profiles at consecutive negative pressure heads of 12, 6, 3 and 0.1 cm. At the same locations and depths undisturbed samples were taken to determine the water retention curve with hanging water column and pressure extractors and lab saturated hydraulic conductivity with the constant head method. Both approaches allowed to determine the Mualem-van Genuchten (MVG) hydraulic parameters (residual water content θr, saturated water content θs,, shape parameters α and n, and field or lab saturated hydraulic conductivity Kfs and Kls). Results demonstrated horizontal differences and vertical variability of hydraulic properties. Inverse optimization resulted in excellent matches between observed and fitted infiltration rates in combination with final water content at the end of the experiment, θf, using Hydrus 2D/3D. It also resulted in close correspondence of  and Kfs with those from Logsdon and Jaynes' (1993) solution of Wooding's equation. The MVG parameters Kfs and α estimated from the inverse solution (θr set to zero), were relatively similar to values from Wooding's solution which were used as initial value and the estimated θs corresponded to (effective) field saturated water content θf. We found the Gardner parameter αG to be related to the optimized van

  17. Sampling of Stochastic Input Parameters for Rockfall Calculations and for Structural Response Calculations Under Vibratory Ground Motion

    International Nuclear Information System (INIS)

    M. Gross

    2004-01-01

    The purpose of this scientific analysis is to define the sampled values of stochastic (random) input parameters for (1) rockfall calculations in the lithophysal and nonlithophysal zones under vibratory ground motions, and (2) structural response calculations for the drip shield and waste package under vibratory ground motions. This analysis supplies: (1) Sampled values of ground motion time history and synthetic fracture pattern for analysis of rockfall in emplacement drifts in nonlithophysal rock (Section 6.3 of ''Drift Degradation Analysis'', BSC 2004 [DIRS 166107]); (2) Sampled values of ground motion time history and rock mechanical properties category for analysis of rockfall in emplacement drifts in lithophysal rock (Section 6.4 of ''Drift Degradation Analysis'', BSC 2004 [DIRS 166107]); (3) Sampled values of ground motion time history and metal to metal and metal to rock friction coefficient for analysis of waste package and drip shield damage to vibratory motion in ''Structural Calculations of Waste Package Exposed to Vibratory Ground Motion'' (BSC 2004 [DIRS 167083]) and in ''Structural Calculations of Drip Shield Exposed to Vibratory Ground Motion'' (BSC 2003 [DIRS 163425]). The sampled values are indices representing the number of ground motion time histories, number of fracture patterns and rock mass properties categories. These indices are translated into actual values within the respective analysis and model reports or calculations. This report identifies the uncertain parameters and documents the sampled values for these parameters. The sampled values are determined by GoldSim V6.04.007 [DIRS 151202] calculations using appropriate distribution types and parameter ranges. No software development or model development was required for these calculations. The calculation of the sampled values allows parameter uncertainty to be incorporated into the rockfall and structural response calculations that support development of the seismic scenario for the

  18. Measurement of Laser Weld Temperatures for 3D Model Input

    Energy Technology Data Exchange (ETDEWEB)

    Dagel, Daryl [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Grossetete, Grant [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Maccallum, Danny O. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-10-01

    Laser welding is a key joining process used extensively in the manufacture and assembly of critical components for several weapons systems. Sandia National Laboratories advances the understanding of the laser welding process through coupled experimentation and modeling. This report summarizes the experimental portion of the research program, which focused on measuring temperatures and thermal history of laser welds on steel plates. To increase confidence in measurement accuracy, researchers utilized multiple complementary techniques to acquire temperatures during laser welding. This data serves as input to and validation of 3D laser welding models aimed at predicting microstructure and the formation of defects and their impact on weld-joint reliability, a crucial step in rapid prototyping of weapons components.

  19. Phylogenetic mixtures and linear invariants for equal input models.

    Science.gov (United States)

    Casanellas, Marta; Steel, Mike

    2017-04-01

    The reconstruction of phylogenetic trees from molecular sequence data relies on modelling site substitutions by a Markov process, or a mixture of such processes. In general, allowing mixed processes can result in different tree topologies becoming indistinguishable from the data, even for infinitely long sequences. However, when the underlying Markov process supports linear phylogenetic invariants, then provided these are sufficiently informative, the identifiability of the tree topology can be restored. In this paper, we investigate a class of processes that support linear invariants once the stationary distribution is fixed, the 'equal input model'. This model generalizes the 'Felsenstein 1981' model (and thereby the Jukes-Cantor model) from four states to an arbitrary number of states (finite or infinite), and it can also be described by a 'random cluster' process. We describe the structure and dimension of the vector spaces of phylogenetic mixtures and of linear invariants for any fixed phylogenetic tree (and for all trees-the so called 'model invariants'), on any number n of leaves. We also provide a precise description of the space of mixtures and linear invariants for the special case of [Formula: see text] leaves. By combining techniques from discrete random processes and (multi-) linear algebra, our results build on a classic result that was first established by James Lake (Mol Biol Evol 4:167-191, 1987).

  20. Metocean input data for drift models applications: Loustic study

    International Nuclear Information System (INIS)

    Michon, P.; Bossart, C.; Cabioc'h, M.

    1995-01-01

    Real-time monitoring and crisis management of oil slicks or floating structures displacement require a good knowledge of local winds, waves and currents used as input data for operational drift models. Fortunately, thanks to world-wide and all-weather coverage, satellite measurements have recently enabled the introduction of new methods for the remote sensing of the marine environment. Within a French joint industry project, a procedure has been developed using basically satellite measurements combined to metocean models in order to provide marine operators' drift models with reliable wind, wave and current analyses and short term forecasts. Particularly, a model now allows the calculation of the drift current, under the joint action of wind and sea-state, thus radically improving the classical laws. This global procedure either directly uses satellite wind and waves measurements (if available on the study area) or indirectly, as calibration of metocean models results which are brought to the oil slick or floating structure location. The operational use of this procedure is reported here with an example of floating structure drift offshore from the Brittany coasts

  1. A Markovian model of evolving world input-output network.

    Directory of Open Access Journals (Sweden)

    Vahid Moosavi

    Full Text Available The initial theoretical connections between Leontief input-output models and Markov chains were established back in 1950s. However, considering the wide variety of mathematical properties of Markov chains, so far there has not been a full investigation of evolving world economic networks with Markov chain formalism. In this work, using the recently available world input-output database, we investigated the evolution of the world economic network from 1995 to 2011 through analysis of a time series of finite Markov chains. We assessed different aspects of this evolving system via different known properties of the Markov chains such as mixing time, Kemeny constant, steady state probabilities and perturbation analysis of the transition matrices. First, we showed how the time series of mixing times and Kemeny constants could be used as an aggregate index of globalization. Next, we focused on the steady state probabilities as a measure of structural power of the economies that are comparable to GDP shares of economies as the traditional index of economies welfare. Further, we introduced two measures of systemic risk, called systemic influence and systemic fragility, where the former is the ratio of number of influenced nodes to the total number of nodes, caused by a shock in the activity of a node, and the latter is based on the number of times a specific economic node is affected by a shock in the activity of any of the other nodes. Finally, focusing on Kemeny constant as a global indicator of monetary flow across the network, we showed that there is a paradoxical effect of a change in activity levels of economic nodes on the overall flow of the world economic network. While the economic slowdown of the majority of nodes with high structural power results to a slower average monetary flow over the network, there are some nodes, where their slowdowns improve the overall quality of the network in terms of connectivity and the average flow of the money.

  2. A Markovian model of evolving world input-output network.

    Science.gov (United States)

    Moosavi, Vahid; Isacchini, Giulio

    2017-01-01

    The initial theoretical connections between Leontief input-output models and Markov chains were established back in 1950s. However, considering the wide variety of mathematical properties of Markov chains, so far there has not been a full investigation of evolving world economic networks with Markov chain formalism. In this work, using the recently available world input-output database, we investigated the evolution of the world economic network from 1995 to 2011 through analysis of a time series of finite Markov chains. We assessed different aspects of this evolving system via different known properties of the Markov chains such as mixing time, Kemeny constant, steady state probabilities and perturbation analysis of the transition matrices. First, we showed how the time series of mixing times and Kemeny constants could be used as an aggregate index of globalization. Next, we focused on the steady state probabilities as a measure of structural power of the economies that are comparable to GDP shares of economies as the traditional index of economies welfare. Further, we introduced two measures of systemic risk, called systemic influence and systemic fragility, where the former is the ratio of number of influenced nodes to the total number of nodes, caused by a shock in the activity of a node, and the latter is based on the number of times a specific economic node is affected by a shock in the activity of any of the other nodes. Finally, focusing on Kemeny constant as a global indicator of monetary flow across the network, we showed that there is a paradoxical effect of a change in activity levels of economic nodes on the overall flow of the world economic network. While the economic slowdown of the majority of nodes with high structural power results to a slower average monetary flow over the network, there are some nodes, where their slowdowns improve the overall quality of the network in terms of connectivity and the average flow of the money.

  3. Optimal input design for model discrimination using Pontryagin's maximum principle: Application to kinetic model structures

    NARCIS (Netherlands)

    Keesman, K.J.; Walter, E.

    2014-01-01

    The paper presents a methodology for an optimal input design for model discrimination. To allow analytical solutions, the method, using Pontryagin’s maximum principle, is developed for non-linear single-state systems that are affine in their joint input. The method is demonstrated on a fed-batch

  4. Regulation of Wnt signaling by nociceptive input in animal models

    Directory of Open Access Journals (Sweden)

    Shi Yuqiang

    2012-06-01

    Full Text Available Abstract Background Central sensitization-associated synaptic plasticity in the spinal cord dorsal horn (SCDH critically contributes to the development of chronic pain, but understanding of the underlying molecular pathways is still incomplete. Emerging evidence suggests that Wnt signaling plays a crucial role in regulation of synaptic plasticity. Little is known about the potential function of the Wnt signaling cascades in chronic pain development. Results Fluorescent immunostaining results indicate that β-catenin, an essential protein in the canonical Wnt signaling pathway, is expressed in the superficial layers of the mouse SCDH with enrichment at synapses in lamina II. In addition, Wnt3a, a prototypic Wnt ligand that activates the canonical pathway, is also enriched in the superficial layers. Immunoblotting analysis indicates that both Wnt3a a β-catenin are up-regulated in the SCDH of various mouse pain models created by hind-paw injection of capsaicin, intrathecal (i.t. injection of HIV-gp120 protein or spinal nerve ligation (SNL. Furthermore, Wnt5a, a prototypic Wnt ligand for non-canonical pathways, and its receptor Ror2 are also up-regulated in the SCDH of these models. Conclusion Our results suggest that Wnt signaling pathways are regulated by nociceptive input. The activation of Wnt signaling may regulate the expression of spinal central sensitization during the development of acute and chronic pain.

  5. ON MODELING METHODS OF REPRODUCTION OF FIXED ASSETS IN DYNAMIC INPUT - OUTPUT MODELS

    Directory of Open Access Journals (Sweden)

    Baranov A. O.

    2014-12-01

    Full Text Available The article presents a comparative study of methods for modeling reproduction of fixed assets in various types of dynamic input-output models, which have been developed at the Novosibirsk State University and at the Institute of Economics and Industrial Engineering of the Siberian Division of Russian Academy of Sciences. The study compares the technique of information providing for the investment blocks of the models. Considered in detail mathematical description of the block of fixed assets reproduction in the Dynamic Input - Output Model included in the KAMIN system and the optimization interregional input - output model. Analyzes the peculiarities of information support of investment and fixed assets blocks of the Dynamic Input - Output Model included in the KAMIN system and the optimization interregional input - output model. In conclusion of the article provides suggestions for joint use of the analyzed models for Russian economy development forecasting. Provided the use of the KAMIN system’s models for short-term and middle-term forecasting and the optimization interregional input - output model to develop long-term forecasts based on the spatial structure of the economy.

  6. Transportation radiological risk assessment for the programmatic environmental impact statement: An overview of methodologies, assumptions, and input parameters

    International Nuclear Information System (INIS)

    Monette, F.; Biwer, B.; LePoire, D.; Chen, S.Y.

    1994-01-01

    The U.S. Department of Energy is considering a broad range of alternatives for the future configuration of radioactive waste management at its network of facilities. Because the transportation of radioactive waste is an integral component of the management alternatives being considered, the estimated human health risks associated with both routine and accident transportation conditions must be assessed to allow a complete appraisal of the alternatives. This paper provides an overview of the technical approach being used to assess the radiological risks from the transportation of radioactive wastes. The approach presented employs the RADTRAN 4 computer code to estimate the collective population risk during routine and accident transportation conditions. Supplemental analyses are conducted using the RISKIND computer code to address areas of specific concern to individuals or population subgroups. RISKIND is used for estimating routine doses to maximally exposed individuals and for assessing the consequences of the most severe credible transportation accidents. The transportation risk assessment is designed to ensure -- through uniform and judicious selection of models, data, and assumptions -- that relative comparisons of risk among the various alternatives are meaningful. This is accomplished by uniformly applying common input parameters and assumptions to each waste type for all alternatives. The approach presented can be applied to all radioactive waste types and provides a consistent and comprehensive evaluation of transportation-related risk

  7. Little Higgs model limits from LHC - Input for Snowmass 2013

    International Nuclear Information System (INIS)

    Reuter, Juergen; Tonini, Marco; Vries, Maikel de

    2013-07-01

    The status of the most prominent model implementations of the Little Higgs paradigm, the Littlest Higgs with and without discrete T parity as well as the Simplest Little Higgs are reviewed. For this, we are taking into account a fit to 21 electroweak precision observables from LEP, SLC, Tevatron together with the full 25 fb -1 of Higgs data reported from ATLAS and CMS at Moriond 2013. We also - focusing on the Littlest Higgs with T parity - include an outlook on corresponding direct searches at the 8 TeV LHC and their competitiveness with the EW and Higgs data regarding their exclusion potential. This contribution to the Snowmass procedure serves as a guideline which regions in parameter space of Little Higgs models are still compatible for the upcoming LHC runs and future experiments at the energy frontier. For this we propose two different benchmark scenarios for the Littlest Higgs with T parity, one with heavy mirror quarks, one with light ones.

  8. Surrogate based approaches to parameter inference in ocean models

    KAUST Repository

    Knio, Omar

    2016-01-06

    This talk discusses the inference of physical parameters using model surrogates. Attention is focused on the use of sampling schemes to build suitable representations of the dependence of the model response on uncertain input data. Non-intrusive spectral projections and regularized regressions are used for this purpose. A Bayesian inference formalism is then applied to update the uncertain inputs based on available measurements or observations. To perform the update, we consider two alternative approaches, based on the application of Markov Chain Monte Carlo methods or of adjoint-based optimization techniques. We outline the implementation of these techniques to infer dependence of wind drag, bottom drag, and internal mixing coefficients.

  9. Optimization of input parameters of acoustic-transfection for the intracellular delivery of macromolecules using FRET-based biosensors

    Science.gov (United States)

    Yoon, Sangpil; Wang, Yingxiao; Shung, K. K.

    2016-03-01

    Acoustic-transfection technique has been developed for the first time. We have developed acoustic-transfection by integrating a high frequency ultrasonic transducer and a fluorescence microscope. High frequency ultrasound with the center frequency over 150 MHz can focus acoustic sound field into a confined area with the diameter of 10 μm or less. This focusing capability was used to perturb lipid bilayer of cell membrane to induce intracellular delivery of macromolecules. Single cell level imaging was performed to investigate the behavior of a targeted single-cell after acoustic-transfection. FRET-based Ca2+ biosensor was used to monitor intracellular concentration of Ca2+ after acoustic-transfection and the fluorescence intensity of propidium iodide (PI) was used to observe influx of PI molecules. We changed peak-to-peak voltages and pulse duration to optimize the input parameters of an acoustic pulse. Input parameters that can induce strong perturbations on cell membrane were found and size dependent intracellular delivery of macromolecules was explored. To increase the amount of delivered molecules by acoustic-transfection, we applied several acoustic pulses and the intensity of PI fluorescence increased step wise. Finally, optimized input parameters of acoustic-transfection system were used to deliver pMax-E2F1 plasmid and GFP expression 24 hours after the intracellular delivery was confirmed using HeLa cells.

  10. The stability of input structures in a supply-driven input-output model: A regional analysis

    Energy Technology Data Exchange (ETDEWEB)

    Allison, T.

    1994-06-01

    Disruptions in the supply of strategic resources or other crucial factor inputs often present significant problems for planners and policymakers. The problem may be particularly significant at the regional level where higher levels of product specialization mean supply restrictions are more likely to affect leading regional industries. To maintain economic stability in the event of a supply restriction, regional planners may therefore need to evaluate the importance of market versus non-market systems for allocating the remaining supply of the disrupted resource to the region`s leading consuming industries. This paper reports on research that has attempted to show that large short term changes on the supply side do not lead to substantial changes in input coefficients and do not therefore mean the abandonment of the concept of the production function as has been suggested (Oosterhaven, 1988). The supply-driven model was tested for six sectors of the economy of Washington State and found to yield new input coefficients whose values were in most cases close approximations of their original values, even with substantial changes in supply. Average coefficient changes from a 50% output reduction in these six sectors were in the vast majority of cases (297 from a total of 315) less than +2.0% of their original values, excluding coefficient changes for the restricted input. Given these small changes, the most important issue for the validity of the supply-driven input-output model may therefore be the empirical question of the extent to which these coefficient changes are acceptable as being within the limits of approximation.

  11. A method for model identification and parameter estimation

    International Nuclear Information System (INIS)

    Bambach, M; Heinkenschloss, M; Herty, M

    2013-01-01

    We propose and analyze a new method for the identification of a parameter-dependent model that best describes a given system. This problem arises, for example, in the mathematical modeling of material behavior where several competing constitutive equations are available to describe a given material. In this case, the models are differential equations that arise from the different constitutive equations, and the unknown parameters are coefficients in the constitutive equations. One has to determine the best-suited constitutive equations for a given material and application from experiments. We assume that the true model is one of the N possible parameter-dependent models. To identify the correct model and the corresponding parameters, we can perform experiments, where for each experiment we prescribe an input to the system and observe a part of the system state. Our approach consists of two stages. In the first stage, for each pair of models we determine the experiment, i.e. system input and observation, that best differentiates between the two models, and measure the distance between the two models. Then we conduct N(N − 1) or, depending on the approach taken, N(N − 1)/2 experiments and use the result of the experiments as well as the previously computed model distances to determine the true model. We provide sufficient conditions on the model distances and measurement errors which guarantee that our approach identifies the correct model. Given the model, we identify the corresponding model parameters in the second stage. The problem in the second stage is a standard parameter estimation problem and we use a method suitable for the given application. We illustrate our approach on three examples, including one where the models are elliptic partial differential equations with different parameterized right-hand sides and an example where we identify the constitutive equation in a problem from computational viscoplasticity. (paper)

  12. Effective Moisture Penetration Depth Model for Residential Buildings: Sensitivity Analysis and Guidance on Model Inputs

    Energy Technology Data Exchange (ETDEWEB)

    Woods, Jason D [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Winkler, Jonathan M [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2018-01-31

    Moisture buffering of building materials has a significant impact on the building's indoor humidity, and building energy simulations need to model this buffering to accurately predict the humidity. Researchers requiring a simple moisture-buffering approach typically rely on the effective-capacitance model, which has been shown to be a poor predictor of actual indoor humidity. This paper describes an alternative two-layer effective moisture penetration depth (EMPD) model and its inputs. While this model has been used previously, there is a need to understand the sensitivity of this model to uncertain inputs. In this paper, we use the moisture-adsorbent materials exposed to the interior air: drywall, wood, and carpet. We use a global sensitivity analysis to determine which inputs are most influential and how the model's prediction capability degrades due to uncertainty in these inputs. We then compare the model's humidity prediction with measured data from five houses, which shows that this model, and a set of simple inputs, can give reasonable prediction of the indoor humidity.

  13. Regionalization of SWAT Model Parameters for Use in Ungauged Watersheds

    Directory of Open Access Journals (Sweden)

    Indrajeet Chaubey

    2010-11-01

    Full Text Available There has been a steady shift towards modeling and model-based approaches as primary methods of assessing watershed response to hydrologic inputs and land management, and of quantifying watershed-wide best management practice (BMP effectiveness. Watershed models often require some degree of calibration and validation to achieve adequate watershed and therefore BMP representation. This is, however, only possible for gauged watersheds. There are many watersheds for which there are very little or no monitoring data available, thus the question as to whether it would be possible to extend and/or generalize model parameters obtained through calibration of gauged watersheds to ungauged watersheds within the same region. This study explored the possibility of developing regionalized model parameter sets for use in ungauged watersheds. The study evaluated two regionalization methods: global averaging, and regression-based parameters, on the SWAT model using data from priority watersheds in Arkansas. Resulting parameters were tested and model performance determined on three gauged watersheds. Nash-Sutcliffe efficiencies (NS for stream flow obtained using regression-based parameters (0.53–0.83 compared well with corresponding values obtained through model calibration (0.45–0.90. Model performance obtained using global averaged parameter values was also generally acceptable (0.4 ≤ NS ≤ 0.75. Results from this study indicate that regionalized parameter sets for the SWAT model can be obtained and used for making satisfactory hydrologic response predictions in ungauged watersheds.

  14. Indoor environmental input parameters for the design and assessment of energy performance of buildings

    DEFF Research Database (Denmark)

    Olesen, Bjarne W.

    2015-01-01

    The first international standard that dealtwith all indoor environmental parameters (thermal comfort, air quality, lightingand acoustic) was published in 2007 asEN15251. This standard prescribed inputparameters for design and assessment ofenergy performance of buildings and was apart of the set...

  15. Modelling groundwater discharge areas using only digital elevation models as input data

    International Nuclear Information System (INIS)

    Brydsten, Lars

    2006-10-01

    Advanced geohydrological models require data on topography, soil distribution in three dimensions, vegetation, land use, bedrock fracture zones. To model present geohydrological conditions, these factors can be gathered with different techniques. If a future geohydrological condition is modelled in an area with positive shore displacement (say 5,000 or 10,000 years), some of these factors can be difficult to measure. This could include the development of wetlands and the filling of lakes. If the goal of the model is to predict distribution of groundwater recharge and discharge areas in the landscape, the most important factor is topography. The question is how much can topography alone explain the distribution of geohydrological objects in the landscape. A simplified description of the distribution of geohydrological objects in the landscape is that groundwater recharge areas occur at local elevation curvatures and discharge occurs in lakes, brooks, and low situated slopes. Areas in-between these make up discharge areas during wet periods and recharge areas during dry periods. A model that could predict this pattern only using topography data needs to be able to predict high ridges and future lakes and brooks. This study uses GIS software with four different functions using digital elevation models as input data, geomorphometrical parameters to predict landscape ridges, basin fill for predicting lakes, flow accumulations for predicting future waterways, and topographical wetness indexes for dividing in-between areas based on degree of wetness. An area between the village of and Forsmarks' Nuclear Power Plant has been used to calibrate the model. The area is within the SKB 10-metre Elevation Model (DEM) and has a high-resolution orienteering map for wetlands. Wetlands are assumed to be groundwater discharge areas. Five hundred points were randomly distributed across the wetlands. These are potential discharge points. Model parameters were chosen with the

  16. Modelling groundwater discharge areas using only digital elevation models as input data

    Energy Technology Data Exchange (ETDEWEB)

    Brydsten, Lars [Umeaa Univ. (Sweden). Dept. of Biology and Environmental Science

    2006-10-15

    Advanced geohydrological models require data on topography, soil distribution in three dimensions, vegetation, land use, bedrock fracture zones. To model present geohydrological conditions, these factors can be gathered with different techniques. If a future geohydrological condition is modelled in an area with positive shore displacement (say 5,000 or 10,000 years), some of these factors can be difficult to measure. This could include the development of wetlands and the filling of lakes. If the goal of the model is to predict distribution of groundwater recharge and discharge areas in the landscape, the most important factor is topography. The question is how much can topography alone explain the distribution of geohydrological objects in the landscape. A simplified description of the distribution of geohydrological objects in the landscape is that groundwater recharge areas occur at local elevation curvatures and discharge occurs in lakes, brooks, and low situated slopes. Areas in-between these make up discharge areas during wet periods and recharge areas during dry periods. A model that could predict this pattern only using topography data needs to be able to predict high ridges and future lakes and brooks. This study uses GIS software with four different functions using digital elevation models as input data, geomorphometrical parameters to predict landscape ridges, basin fill for predicting lakes, flow accumulations for predicting future waterways, and topographical wetness indexes for dividing in-between areas based on degree of wetness. An area between the village of and Forsmarks' Nuclear Power Plant has been used to calibrate the model. The area is within the SKB 10-metre Elevation Model (DEM) and has a high-resolution orienteering map for wetlands. Wetlands are assumed to be groundwater discharge areas. Five hundred points were randomly distributed across the wetlands. These are potential discharge points. Model parameters were chosen with the

  17. Visual Predictive Check in Models with Time-Varying Input Function.

    Science.gov (United States)

    Largajolli, Anna; Bertoldo, Alessandra; Campioni, Marco; Cobelli, Claudio

    2015-11-01

    The nonlinear mixed effects models are commonly used modeling techniques in the pharmaceutical research as they enable the characterization of the individual profiles together with the population to which the individuals belong. To ensure a correct use of them is fundamental to provide powerful diagnostic tools that are able to evaluate the predictive performance of the models. The visual predictive check (VPC) is a commonly used tool that helps the user to check by visual inspection if the model is able to reproduce the variability and the main trend of the observed data. However, the simulation from the model is not always trivial, for example, when using models with time-varying input function (IF). In this class of models, there is a potential mismatch between each set of simulated parameters and the associated individual IF which can cause an incorrect profile simulation. We introduce a refinement of the VPC by taking in consideration a correlation term (the Mahalanobis or normalized Euclidean distance) that helps the association of the correct IF with the individual set of simulated parameters. We investigate and compare its performance with the standard VPC in models of the glucose and insulin system applied on real and simulated data and in a simulated pharmacokinetic/pharmacodynamic (PK/PD) example. The newly proposed VPC performance appears to be better with respect to the standard VPC especially for the models with big variability in the IF where the probability of simulating incorrect profiles is higher.

  18. Forecasting Kp from solar wind data: input parameter study using 3-hour averages and 3-hour range values

    Directory of Open Access Journals (Sweden)

    Wintoft Peter

    2017-01-01

    Full Text Available We have developed neural network models that predict Kp from upstream solar wind data. We study the importance of various input parameters, starting with the magnetic component Bz, particle density n, and velocity V and then adding total field B and the By component. As we also notice a seasonal and UT variation in average Kp we include functions of day-of-year and UT. Finally, as Kp is a global representation of the maximum range of geomagnetic variation over 3-hour UT intervals we conclude that sudden changes in the solar wind can have a big effect on Kp, even though it is a 3-hour value. Therefore, 3-hour solar wind averages will not always appropriately represent the solar wind condition, and we introduce 3-hour maxima and minima values to some degree address this problem. We find that introducing total field B and 3-hour maxima and minima, derived from 1-minute solar wind data, have a great influence on the performance. Due to the low number of samples for high Kp values there can be considerable variation in predicted Kp for different networks with similar validation errors. We address this issue by using an ensemble of networks from which we use the median predicted Kp. The models (ensemble of networks provide prediction lead times in the range 20–90 min given by the time it takes a solar wind structure to travel from L1 to Earth. Two models are implemented that can be run with real time data: (1 IRF-Kp-2017-h3 uses the 3-hour averages of the solar wind data and (2 IRF-Kp-2017 uses in addition to the averages, also the minima and maxima values. The IRF-Kp-2017 model has RMS error of 0.55 and linear correlation of 0.92 based on an independent test set with final Kp covering 2 years using ACE Level 2 data. The IRF-Kp-2017-h3 model has RMSE = 0.63 and correlation = 0.89. We also explore the errors when tested on another two-year period with real-time ACE data which gives RMSE = 0.59 for IRF-Kp-2017 and RMSE = 0.73 for IRF

  19. Forecasting Kp from solar wind data: input parameter study using 3-hour averages and 3-hour range values

    Science.gov (United States)

    Wintoft, Peter; Wik, Magnus; Matzka, Jürgen; Shprits, Yuri

    2017-11-01

    We have developed neural network models that predict Kp from upstream solar wind data. We study the importance of various input parameters, starting with the magnetic component Bz, particle density n, and velocity V and then adding total field B and the By component. As we also notice a seasonal and UT variation in average Kp we include functions of day-of-year and UT. Finally, as Kp is a global representation of the maximum range of geomagnetic variation over 3-hour UT intervals we conclude that sudden changes in the solar wind can have a big effect on Kp, even though it is a 3-hour value. Therefore, 3-hour solar wind averages will not always appropriately represent the solar wind condition, and we introduce 3-hour maxima and minima values to some degree address this problem. We find that introducing total field B and 3-hour maxima and minima, derived from 1-minute solar wind data, have a great influence on the performance. Due to the low number of samples for high Kp values there can be considerable variation in predicted Kp for different networks with similar validation errors. We address this issue by using an ensemble of networks from which we use the median predicted Kp. The models (ensemble of networks) provide prediction lead times in the range 20-90 min given by the time it takes a solar wind structure to travel from L1 to Earth. Two models are implemented that can be run with real time data: (1) IRF-Kp-2017-h3 uses the 3-hour averages of the solar wind data and (2) IRF-Kp-2017 uses in addition to the averages, also the minima and maxima values. The IRF-Kp-2017 model has RMS error of 0.55 and linear correlation of 0.92 based on an independent test set with final Kp covering 2 years using ACE Level 2 data. The IRF-Kp-2017-h3 model has RMSE = 0.63 and correlation = 0.89. We also explore the errors when tested on another two-year period with real-time ACE data which gives RMSE = 0.59 for IRF-Kp-2017 and RMSE = 0.73 for IRF-Kp-2017-h3. The errors as function

  20. Parameter estimation in stochastic rainfall-runoff models

    DEFF Research Database (Denmark)

    Jonsdottir, Harpa; Madsen, Henrik; Palsson, Olafur Petur

    2006-01-01

    A parameter estimation method for stochastic rainfall-runoff models is presented. The model considered in the paper is a conceptual stochastic model, formulated in continuous-discrete state space form. The model is small and a fully automatic optimization is, therefore, possible for estimating all....... For a comparison the parameters are also estimated by an output error method, where the sum of squared simulation error is minimized. The former methodology is optimal for short-term prediction whereas the latter is optimal for simulations. Hence, depending on the purpose it is possible to select whether...... the parameter values are optimal for simulation or prediction. The data originates from Iceland and the model is designed for Icelandic conditions, including a snow routine for mountainous areas. The model demands only two input data series, precipitation and temperature and one output data series...

  1. High Temperature Test Facility Preliminary RELAP5-3D Input Model Description

    Energy Technology Data Exchange (ETDEWEB)

    Bayless, Paul David [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-12-01

    A RELAP5-3D input model is being developed for the High Temperature Test Facility at Oregon State University. The current model is described in detail. Further refinements will be made to the model as final as-built drawings are released and when system characterization data are available for benchmarking the input model.

  2. Effect Assessment the Impact of Filler Types on the Input Design Parameter of Flexible Pavements

    Directory of Open Access Journals (Sweden)

    Sahar S. Neham

    2017-08-01

    Full Text Available To meet the requirements of flexible pavements (safety, economy, limited the stresses on the natural subgrade and a smooth ride, good quality material of surface course must be used so to prevent pavement distresses caused by the different types of loadings (structural and environmental loadings, while the resilient modulus is important input data when flexible pavement was designed, it is selected to show its effect by different types of mineral filler as a partial replacement. In this paving mix, to improve the quality of the mix material and to represent the effect of these replacements materials on the elastic characterization by measuring the resilient modulus of hot mix asphalt (HMA: Fly Ash (FA, Ordinary Portland Cement (OPC, Hydrated Lime (HL and Silica Fume (SF are used as a partial percent of filler (Limestone Dust (LSD replacement, where these materials are locally available including (40-50 penetration grade asphalt binder. To achieve the goal of study; asphalt concrete mixes are prepared at their optimum asphalt content using Marshall Method of mix design. Four replacement percent’s were used; 0, 1.5, 3.0 and 4.5 percent by total weight of aggregate for each filler types. According to ASTM D4123 criteria (Resilient Modulus was tested by UTM¬25. Mixes modified with (FA, (OPC, (HL and (SF were found to have average improvement in the value of Resilient Modulus by (13.37, 9.63, 11.14, 24.00 % at 1.5 percent of filler replacement and by (24.54, 16.63, 18.73, 38.31 % at 3.0 percent of filler replacement also the percent of improvement is: (39.55, 26.36, 29.82, 58.30 at 4.5percent of filler replacement sequentially.

  3. Getting innovation out of suppliers? A conceptual model for characterizing supplier inputs to new product development

    OpenAIRE

    Lakemond, Nicolette; Rosell, David T.

    2011-01-01

    There are many studies on supplier collaborations in NPD. However, there is not much written about what suppliers actually contribute to innovation. Based on a literature review focusing on 80 articles we develop a conceptual framework categorizing different supplier inputs to innovation. This model is formulated by characterizing supplier inputs related to the component level and architectural level, and inputs that are incremental or radical in nature. On a component level, supplier inputs ...

  4. Using Whole-House Field Tests to Empirically Derive Moisture Buffering Model Inputs

    Energy Technology Data Exchange (ETDEWEB)

    Woods, J.; Winkler, J.; Christensen, D.; Hancock, E.

    2014-08-01

    Building energy simulations can be used to predict a building's interior conditions, along with the energy use associated with keeping these conditions comfortable. These models simulate the loads on the building (e.g., internal gains, envelope heat transfer), determine the operation of the space conditioning equipment, and then calculate the building's temperature and humidity throughout the year. The indoor temperature and humidity are affected not only by the loads and the space conditioning equipment, but also by the capacitance of the building materials, which buffer changes in temperature and humidity. This research developed an empirical method to extract whole-house model inputs for use with a more accurate moisture capacitance model (the effective moisture penetration depth model). The experimental approach was to subject the materials in the house to a square-wave relative humidity profile, measure all of the moisture transfer terms (e.g., infiltration, air conditioner condensate) and calculate the only unmeasured term: the moisture absorption into the materials. After validating the method with laboratory measurements, we performed the tests in a field house. A least-squares fit of an analytical solution to the measured moisture absorption curves was used to determine the three independent model parameters representing the moisture buffering potential of this house and its furnishings. Follow on tests with realistic latent and sensible loads showed good agreement with the derived parameters, especially compared to the commonly-used effective capacitance approach. These results show that the EMPD model, once the inputs are known, is an accurate moisture buffering model.

  5. MOESHA: A genetic algorithm for automatic calibration and estimation of parameter uncertainty and sensitivity of hydrologic models

    Science.gov (United States)

    Characterization of uncertainty and sensitivity of model parameters is an essential and often overlooked facet of hydrological modeling. This paper introduces an algorithm called MOESHA that combines input parameter sensitivity analyses with a genetic algorithm calibration routin...

  6. Propagation channel characterization, parameter estimation, and modeling for wireless communications

    CERN Document Server

    Yin, Xuefeng

    2016-01-01

    Thoroughly covering channel characteristics and parameters, this book provides the knowledge needed to design various wireless systems, such as cellular communication systems, RFID and ad hoc wireless communication systems. It gives a detailed introduction to aspects of channels before presenting the novel estimation and modelling techniques which can be used to achieve accurate models. To systematically guide readers through the topic, the book is organised in three distinct parts. The first part covers the fundamentals of the characterization of propagation channels, including the conventional single-input single-output (SISO) propagation channel characterization as well as its extension to multiple-input multiple-output (MIMO) cases. Part two focuses on channel measurements and channel data post-processing. Wideband channel measurements are introduced, including the equipment, technology and advantages and disadvantages of different data acquisition schemes. The channel parameter estimation methods are ...

  7. Plant Friendly Input Design for Parameter Estimation in an Inertial System with Respect to D-Efficiency Constraints

    Directory of Open Access Journals (Sweden)

    Wiktor Jakowluk

    2014-11-01

    Full Text Available System identification, in practice, is carried out by perturbing processes or plants under operation. That is why in many industrial applications a plant-friendly input signal would be preferred for system identification. The goal of the study is to design the optimal input signal which is then employed in the identification experiment and to examine the relationships between the index of friendliness of this input signal and the accuracy of parameter estimation when the measured output signal is significantly affected by noise. In this case, the objective function was formulated through maximisation of the Fisher information matrix determinant (D-optimality expressed in conventional Bolza form. As setting such conditions of the identification experiment we can only talk about the D-suboptimality, we quantify the plant trajectories using the D-efficiency measure. An additional constraint, imposed on D-efficiency of the solution, should allow one to attain the most adequate information content  from the plant which operating point is perturbed in the least invasive (most friendly way. A simple numerical example, which clearly demonstrates the idea presented in the paper, is included and discussed.

  8. Parameter estimation for groundwater models under uncertain irrigation data

    Science.gov (United States)

    Demissie, Yonas; Valocchi, Albert J.; Cai, Ximing; Brozovic, Nicholas; Senay, Gabriel; Gebremichael, Mekonnen

    2015-01-01

    The success of modeling groundwater is strongly influenced by the accuracy of the model parameters that are used to characterize the subsurface system. However, the presence of uncertainty and possibly bias in groundwater model source/sink terms may lead to biased estimates of model parameters and model predictions when the standard regression-based inverse modeling techniques are used. This study first quantifies the levels of bias in groundwater model parameters and predictions due to the presence of errors in irrigation data. Then, a new inverse modeling technique called input uncertainty weighted least-squares (IUWLS) is presented for unbiased estimation of the parameters when pumping and other source/sink data are uncertain. The approach uses the concept of generalized least-squares method with the weight of the objective function depending on the level of pumping uncertainty and iteratively adjusted during the parameter optimization process. We have conducted both analytical and numerical experiments, using irrigation pumping data from the Republican River Basin in Nebraska, to evaluate the performance of ordinary least-squares (OLS) and IUWLS calibration methods under different levels of uncertainty of irrigation data and calibration conditions. The result from the OLS method shows the presence of statistically significant (p model predictions that persist despite calibrating the models to different calibration data and sample sizes. However, by directly accounting for the irrigation pumping uncertainties during the calibration procedures, the proposed IUWLS is able to minimize the bias effectively without adding significant computational burden to the calibration processes.

  9. Multivariate sensitivity analysis to measure global contribution of input factors in dynamic models

    International Nuclear Information System (INIS)

    Lamboni, Matieyendou; Monod, Herve; Makowski, David

    2011-01-01

    Many dynamic models are used for risk assessment and decision support in ecology and crop science. Such models generate time-dependent model predictions, with time either discretised or continuous. Their global sensitivity analysis is usually applied separately on each time output, but Campbell et al. (2006 ) advocated global sensitivity analyses on the expansion of the dynamics in a well-chosen functional basis. This paper focuses on the particular case when principal components analysis is combined with analysis of variance. In addition to the indices associated with the principal components, generalised sensitivity indices are proposed to synthesize the influence of each parameter on the whole time series output. Index definitions are given when the uncertainty on the input factors is either discrete or continuous and when the dynamic model is either discrete or functional. A general estimation algorithm is proposed, based on classical methods of global sensitivity analysis. The method is applied to a dynamic wheat crop model with 13 uncertain parameters. Three methods of global sensitivity analysis are compared: the Sobol'-Saltelli method, the extended FAST method, and the fractional factorial design of resolution 6.

  10. Parametric modeling of DSC-MRI data with stochastic filtration and optimal input design versus non-parametric modeling.

    Science.gov (United States)

    Kalicka, Renata; Pietrenko-Dabrowska, Anna

    2007-03-01

    In the paper MRI measurements are used for assessment of brain tissue perfusion and other features and functions of the brain (cerebral blood flow - CBF, cerebral blood volume - CBV, mean transit time - MTT). Perfusion is an important indicator of tissue viability and functioning as in pathological tissue blood flow, vascular and tissue structure are altered with respect to normal tissue. MRI enables diagnosing diseases at an early stage of their course. The parametric and non-parametric approaches to the identification of MRI models are presented and compared. The non-parametric modeling adopts gamma variate functions. The parametric three-compartmental catenary model, based on the general kinetic model, is also proposed. The parameters of the models are estimated on the basis of experimental data. The goodness of fit of the gamma variate and the three-compartmental models to the data and the accuracy of the parameter estimates are compared. Kalman filtering, smoothing the measurements, was adopted to improve the estimate accuracy of the parametric model. Parametric modeling gives a better fit and better parameter estimates than non-parametric and allows an insight into the functioning of the system. To improve the accuracy optimal experiment design related to the input signal was performed.

  11. The MARINA model (Model to Assess River Inputs of Nutrients to seAs)

    NARCIS (Netherlands)

    Strokal, Maryna; Kroeze, Carolien; Wang, Mengru; Bai, Zhaohai; Ma, Lin

    2016-01-01

    Chinese agriculture has been developing fast towards industrial food production systems that discharge nutrient-rich wastewater into rivers. As a result, nutrient export by rivers has been increasing, resulting in coastal water pollution. We developed a Model to Assess River Inputs of Nutrients

  12. Ionospheric energy input as a function of solar wind parameters: global MHD simulation results

    Directory of Open Access Journals (Sweden)

    M. Palmroth

    2004-01-01

    Full Text Available We examine the global energetics of the solar wind magnetosphere-ionosphere system by using the global MHD simulation code GUMICS-4. We show simulation results for a major magnetospheric storm (6 April 2000 and a moderate substorm (15 August 2001. The ionospheric dissipation is investigated by determining the Joule heating and precipitation powers in the simulation during the two events. The ionospheric dissipation is concentrated largely on the dayside cusp region during the main phase of the storm period, whereas the nightside oval dominates the ionospheric dissipation during the substorm event. The temporal variations of the precipitation power during the two events are shown to correlate well with the commonly used AE-based proxy of the precipitation power. The temporal variation of the Joule heating power during the substorm event is well-correlated with a commonly used AE-based empirical proxy, whereas during the storm period the simulated Joule heating is different from the empirical proxy. Finally, we derive a power law formula, which gives the total ionospheric dissipation from the solar wind density, velocity and magnetic field z-component and which agrees with the simulation result with more than 80% correlation. Key words. Ionosphere (modeling and forecasting – Magnetospheric physics (magnetosphere-ionosphere interactions; storms and substorms

  13. Ionospheric energy input as a function of solar wind parameters: global MHD simulation results

    Directory of Open Access Journals (Sweden)

    M. Palmroth

    2004-01-01

    Full Text Available We examine the global energetics of the solar wind magnetosphere-ionosphere system by using the global MHD simulation code GUMICS-4. We show simulation results for a major magnetospheric storm (6 April 2000 and a moderate substorm (15 August 2001. The ionospheric dissipation is investigated by determining the Joule heating and precipitation powers in the simulation during the two events. The ionospheric dissipation is concentrated largely on the dayside cusp region during the main phase of the storm period, whereas the nightside oval dominates the ionospheric dissipation during the substorm event. The temporal variations of the precipitation power during the two events are shown to correlate well with the commonly used AE-based proxy of the precipitation power. The temporal variation of the Joule heating power during the substorm event is well-correlated with a commonly used AE-based empirical proxy, whereas during the storm period the simulated Joule heating is different from the empirical proxy. Finally, we derive a power law formula, which gives the total ionospheric dissipation from the solar wind density, velocity and magnetic field z-component and which agrees with the simulation result with more than 80% correlation.

    Key words. Ionosphere (modeling and forecasting – Magnetospheric physics (magnetosphere-ionosphere interactions; storms and substorms

  14. On parameter estimation in deformable models

    DEFF Research Database (Denmark)

    Fisker, Rune; Carstensen, Jens Michael

    1998-01-01

    Deformable templates have been intensively studied in image analysis through the last decade, but despite its significance the estimation of model parameters has received little attention. We present a method for supervised and unsupervised model parameter estimation using a general Bayesian form...

  15. BUILDING MODEL ANALYSIS APPLICATIONS WITH THE JOINT UNIVERSAL PARAMETER IDENTIFICATION AND EVALUATION OF RELIABILITY (JUPITER) API

    Science.gov (United States)

    The open-source, public domain JUPITER (Joint Universal Parameter IdenTification and Evaluation of Reliability) API (Application Programming Interface) provides conventions and Fortran-90 modules to develop applications (computer programs) for analyzing process models. The input ...

  16. Parameter Estimation and Prediction of a Nonlinear Storage Model: an algebraic approach

    NARCIS (Netherlands)

    Doeswijk, T.G.; Keesman, K.J.

    2005-01-01

    Generally, parameters that are nonlinear in system models are estimated by nonlinear least-squares optimization algorithms. In this paper, if a nonlinear discrete-time model with a polynomial quotient structure in input, output, and parameters, a method is proposed to re-parameterize the model such

  17. Combining predictions from linear models when training and test inputs differ

    NARCIS (Netherlands)

    T. van Ommen (Thijs); N.L. Zhang (Nevin); J. Tian (Jin)

    2014-01-01

    textabstractMethods for combining predictions from different models in a supervised learning setting must somehow estimate/predict the quality of a model's predictions at unknown future inputs. Many of these methods (often implicitly) make the assumption that the test inputs are identical to the

  18. Motivation Monitoring and Assessment Extension for Input-Process-Outcome Game Model

    Science.gov (United States)

    Ghergulescu, Ioana; Muntean, Cristina Hava

    2014-01-01

    This article proposes a Motivation Assessment-oriented Input-Process-Outcome Game Model (MotIPO), which extends the Input-Process-Outcome game model with game-centred and player-centred motivation assessments performed right from the beginning of the game-play. A feasibility case-study involving 67 participants playing an educational game and…

  19. The Modulated-Input Modulated-Output Model

    National Research Council Canada - National Science Library

    Moskowitz, Ira S; Kang, Myong H

    1995-01-01

    .... The data replication problem in database systems is our motivation. We introduce a new queueing theoretic model, the MIMO model, that incorporates burstiness in the sending side and busy periods in the receiving side...

  20. Modeling and Control of a Dual-Input Isolated Full-Bridge Boost Converter

    DEFF Research Database (Denmark)

    Zhang, Zhe; Thomsen, Ole Cornelius; Andersen, Michael A. E.

    2012-01-01

    In this paper, a steady-state model, a large-signal (LS) model and an ac small-signal (SS) model for a recently proposed dual-input transformer-isolated boost converter are derived respectively by the switching flow-graph (SFG) nonlinear modeling technique. Based upon the converter’s model, the c....... The measured experimental results match the simulation results fairly well on both input source dynamic and step load transient responses....

  1. The MARINA model (Model to Assess River Inputs of Nutrients to seAs)

    OpenAIRE

    Strokal, Maryna; Kroeze, Carolien; Wang, Mengru; Bai, Zhaohai; Ma, Lin

    2016-01-01

    Chinese agriculture has been developing fast towards industrial food production systems that discharge nutrient-rich wastewater into rivers. As a result, nutrient export by rivers has been increasing, resulting in coastal water pollution. We developed a Model to Assess River Inputs of Nutrients to seAs (MARINA) for China. The MARINA Nutrient Model quantifies river export of nutrients by source at the sub-basin scale as a function of human activities on land. MARINA is a downscaled version for...

  2. Precipitation forecasts and their uncertainty as input into hydrological models

    Directory of Open Access Journals (Sweden)

    M. Kobold

    2005-01-01

    Full Text Available Torrential streams and fast runoff are characteristic of most Slovenian rivers and extensive damage is caused almost every year by rainstorms affecting different regions of Slovenia. Rainfall-runoff models which are tools for runoff calculation can be used for flood forecasting. In Slovenia, the lag time between rainfall and runoff is only a few hours and on-line data are used only for now-casting. Predicted precipitation is necessary in flood forecasting some days ahead. The ECMWF (European Centre for Medium-Range Weather Forecasts model gives general forecasts several days ahead while more detailed precipitation data with the ALADIN/SI model are available for two days ahead. Combining the weather forecasts with the information on catchment conditions and a hydrological forecasting model can give advance warning of potential flooding notwithstanding a certain degree of uncertainty in using precipitation forecasts based on meteorological models. Analysis of the sensitivity of the hydrological model to the rainfall error has shown that the deviation in runoff is much larger than the rainfall deviation. Therefore, verification of predicted precipitation for large precipitation events was performed with the ECMWF model. Measured precipitation data were interpolated on a regular grid and compared with the results from the ECMWF model. The deviation in predicted precipitation from interpolated measurements is shown with the model bias resulting from the inability of the model to predict the precipitation correctly and a bias for horizontal resolution of the model and natural variability of precipitation.

  3. Characteristic length scale of input data in distributed models: implications for modeling grid size

    Science.gov (United States)

    Artan, G. A.; Neale, C. M. U.; Tarboton, D. G.

    2000-01-01

    The appropriate spatial scale for a distributed energy balance model was investigated by: (a) determining the scale of variability associated with the remotely sensed and GIS-generated model input data; and (b) examining the effects of input data spatial aggregation on model response. The semi-variogram and the characteristic length calculated from the spatial autocorrelation were used to determine the scale of variability of the remotely sensed and GIS-generated model input data. The data were collected from two hillsides at Upper Sheep Creek, a sub-basin of the Reynolds Creek Experimental Watershed, in southwest Idaho. The data were analyzed in terms of the semivariance and the integral of the autocorrelation. The minimum characteristic length associated with the variability of the data used in the analysis was 15 m. Simulated and observed radiometric surface temperature fields at different spatial resolutions were compared. The correlation between agreement simulated and observed fields sharply declined after a 10×10 m2 modeling grid size. A modeling grid size of about 10×10 m2 was deemed to be the best compromise to achieve: (a) reduction of computation time and the size of the support data; and (b) a reproduction of the observed radiometric surface temperature.

  4. Characteristic length scale of input data in distributed models: implications for modeling grain size

    Science.gov (United States)

    Artan, Guleid A.; Neale, C. M. U.; Tarboton, D. G.

    2000-01-01

    The appropriate spatial scale for a distributed energy balance model was investigated by: (a) determining the scale of variability associated with the remotely sensed and GIS-generated model input data; and (b) examining the effects of input data spatial aggregation on model response. The semi-variogram and the characteristic length calculated from the spatial autocorrelation were used to determine the scale of variability of the remotely sensed and GIS-generated model input data. The data were collected from two hillsides at Upper Sheep Creek, a sub-basin of the Reynolds Creek Experimental Watershed, in southwest Idaho. The data were analyzed in terms of the semivariance and the integral of the autocorrelation. The minimum characteristic length associated with the variability of the data used in the analysis was 15 m. Simulated and observed radiometric surface temperature fields at different spatial resolutions were compared. The correlation between agreement simulated and observed fields sharply declined after a 10×10 m2 modeling grid size. A modeling grid size of about 10×10 m2 was deemed to be the best compromise to achieve: (a) reduction of computation time and the size of the support data; and (b) a reproduction of the observed radiometric surface temperature.

  5. Parameter identification in the logistic STAR model

    DEFF Research Database (Denmark)

    Ekner, Line Elvstrøm; Nejstgaard, Emil

    We propose a new and simple parametrization of the so-called speed of transition parameter of the logistic smooth transition autoregressive (LSTAR) model. The new parametrization highlights that a consequence of the well-known identification problem of the speed of transition parameter is that th......We propose a new and simple parametrization of the so-called speed of transition parameter of the logistic smooth transition autoregressive (LSTAR) model. The new parametrization highlights that a consequence of the well-known identification problem of the speed of transition parameter...

  6. Evaluation of precipitation input for SWAT modeling in Alpine catchment: A case study in the Adige river basin (Italy).

    Science.gov (United States)

    Tuo, Ye; Duan, Zheng; Disse, Markus; Chiogna, Gabriele

    2016-12-15

    Precipitation is often the most important input data in hydrological models when simulating streamflow. The Soil and Water Assessment Tool (SWAT), a widely used hydrological model, only makes use of data from one precipitation gauge station that is nearest to the centroid of each subbasin, which is eventually corrected using the elevation band method. This leads in general to inaccurate representation of subbasin precipitation input data, particularly in catchments with complex topography. To investigate the impact of different precipitation inputs on the SWAT model simulations in Alpine catchments, 13years (1998-2010) of daily precipitation data from four datasets including OP (Observed precipitation), IDW (Inverse Distance Weighting data), CHIRPS (Climate Hazards Group InfraRed Precipitation with Station data) and TRMM (Tropical Rainfall Measuring Mission) has been considered. Both model performances (comparing simulated and measured streamflow data at the catchment outlet) as well as parameter and prediction uncertainties have been quantified. For all three subbasins, the use of elevation bands is fundamental to match the water budget. Streamflow predictions obtained using IDW inputs are better than those obtained using the other datasets in terms of both model performance and prediction uncertainty. Models using the CHIRPS product as input provide satisfactory streamflow estimation, suggesting that this satellite product can be applied to this data-scarce Alpine region. Comparing the performance of SWAT models using different precipitation datasets is therefore important in data-scarce regions. This study has shown that, precipitation is the main source of uncertainty, and different precipitation datasets in SWAT models lead to different best estimate ranges for the calibrated parameters. This has important implications for the interpretation of the simulated hydrological processes. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  7. Modeling Water Quality Parameters Using Data-driven Methods

    Directory of Open Access Journals (Sweden)

    Shima Soleimani

    2017-02-01

    Full Text Available Introduction: Surface water bodies are the most easily available water resources. Increase use and waste water withdrawal of surface water causes drastic changes in surface water quality. Water quality, importance as the most vulnerable and important water supply resources is absolutely clear. Unfortunately, in the recent years because of city population increase, economical improvement, and industrial product increase, entry of pollutants to water bodies has been increased. According to that water quality parameters express physical, chemical, and biological water features. So the importance of water quality monitoring is necessary more than before. Each of various uses of water, such as agriculture, drinking, industry, and aquaculture needs the water with a special quality. In the other hand, the exact estimation of concentration of water quality parameter is significant. Material and Methods: In this research, first two input variable models as selection methods (namely, correlation coefficient and principal component analysis were applied to select the model inputs. Data processing is consisting of three steps, (1 data considering, (2 identification of input data which have efficient on output data, and (3 selecting the training and testing data. Genetic Algorithm-Least Square Support Vector Regression (GA-LSSVR algorithm were developed to model the water quality parameters. In the LSSVR method is assumed that the relationship between input and output variables is nonlinear, but by using a nonlinear mapping relation can create a space which is named feature space in which relationship between input and output variables is defined linear. The developed algorithm is able to gain maximize the accuracy of the LSSVR method with auto LSSVR parameters. Genetic algorithm (GA is one of evolutionary algorithm which automatically can find the optimum coefficient of Least Square Support Vector Regression (LSSVR. The GA-LSSVR algorithm was employed to

  8. Parameter Estimation of Partial Differential Equation Models

    KAUST Repository

    Xun, Xiaolei

    2013-09-01

    Partial differential equation (PDE) models are commonly used to model complex dynamic systems in applied sciences such as biology and finance. The forms of these PDE models are usually proposed by experts based on their prior knowledge and understanding of the dynamic system. Parameters in PDE models often have interesting scientific interpretations, but their values are often unknown and need to be estimated from the measurements of the dynamic system in the presence of measurement errors. Most PDEs used in practice have no analytic solutions, and can only be solved with numerical methods. Currently, methods for estimating PDE parameters require repeatedly solving PDEs numerically under thousands of candidate parameter values, and thus the computational load is high. In this article, we propose two methods to estimate parameters in PDE models: a parameter cascading method and a Bayesian approach. In both methods, the underlying dynamic process modeled with the PDE model is represented via basis function expansion. For the parameter cascading method, we develop two nested levels of optimization to estimate the PDE parameters. For the Bayesian method, we develop a joint model for data and the PDE and develop a novel hierarchical model allowing us to employ Markov chain Monte Carlo (MCMC) techniques to make posterior inference. Simulation studies show that the Bayesian method and parameter cascading method are comparable, and both outperform other available methods in terms of estimation accuracy. The two methods are demonstrated by estimating parameters in a PDE model from long-range infrared light detection and ranging data. Supplementary materials for this article are available online. © 2013 American Statistical Association.

  9. Application of lumped-parameter models

    Energy Technology Data Exchange (ETDEWEB)

    Ibsen, Lars Bo; Liingaard, M.

    2006-12-15

    This technical report concerns the lumped-parameter models for a suction caisson with a ratio between skirt length and foundation diameter equal to 1/2, embedded into an viscoelastic soil. The models are presented for three different values of the shear modulus of the subsoil. Subsequently, the assembly of the dynamic stiffness matrix for the foundation is considered, and the solution for obtaining the steady state response, when using lumped-parameter models is given. (au)

  10. Influence of input matrix representation on topic modelling performance

    CSIR Research Space (South Africa)

    De Waal, A

    2010-11-01

    Full Text Available Topic models explain a collection of documents with a small set of distributions over terms. These distributions over terms define the topics. Topic models ignore the structure of documents and use a bag-of-words approach which relies solely...

  11. Identifying best-fitting inputs in health-economic model calibration: a Pareto frontier approach.

    Science.gov (United States)

    Enns, Eva A; Cipriano, Lauren E; Simons, Cyrena T; Kong, Chung Yin

    2015-02-01

    To identify best-fitting input sets using model calibration, individual calibration target fits are often combined into a single goodness-of-fit (GOF) measure using a set of weights. Decisions in the calibration process, such as which weights to use, influence which sets of model inputs are identified as best-fitting, potentially leading to different health economic conclusions. We present an alternative approach to identifying best-fitting input sets based on the concept of Pareto-optimality. A set of model inputs is on the Pareto frontier if no other input set simultaneously fits all calibration targets as well or better. We demonstrate the Pareto frontier approach in the calibration of 2 models: a simple, illustrative Markov model and a previously published cost-effectiveness model of transcatheter aortic valve replacement (TAVR). For each model, we compare the input sets on the Pareto frontier to an equal number of best-fitting input sets according to 2 possible weighted-sum GOF scoring systems, and we compare the health economic conclusions arising from these different definitions of best-fitting. For the simple model, outcomes evaluated over the best-fitting input sets according to the 2 weighted-sum GOF schemes were virtually nonoverlapping on the cost-effectiveness plane and resulted in very different incremental cost-effectiveness ratios ($79,300 [95% CI 72,500-87,600] v. $139,700 [95% CI 79,900-182,800] per quality-adjusted life-year [QALY] gained). Input sets on the Pareto frontier spanned both regions ($79,000 [95% CI 64,900-156,200] per QALY gained). The TAVR model yielded similar results. Choices in generating a summary GOF score may result in different health economic conclusions. The Pareto frontier approach eliminates the need to make these choices by using an intuitive and transparent notion of optimality as the basis for identifying best-fitting input sets. © The Author(s) 2014.

  12. "Updates to Model Algorithms & Inputs for the Biogenic ...

    Science.gov (United States)

    We have developed new canopy emission algorithms and land use data for BEIS. Simulations with BEIS v3.4 and these updates in CMAQ v5.0.2 are compared these changes to the Model of Emissions of Gases and Aerosols from Nature (MEGAN) and evaluated the simulations against observations. This has resulted in improvements in model evaluations of modeled isoprene, NOx, and O3. The National Exposure Research Laboratory (NERL) Atmospheric Modeling and Analysis Division (AMAD) conducts research in support of EPA mission to protect human health and the environment. AMAD research program is engaged in developing and evaluating predictive atmospheric models on all spatial and temporal scales for forecasting the air quality and for assessing changes in air quality and air pollutant exposures, as affected by changes in ecosystem management and regulatory decisions. AMAD is responsible for providing a sound scientific and technical basis for regulatory policies based on air quality models to improve ambient air quality. The models developed by AMAD are being used by EPA, NOAA, and the air pollution community in understanding and forecasting not only the magnitude of the air pollution problem, but also in developing emission control policies and regulations for air quality improvements.

  13. Using Crowd Sensed Data as Input to Congestion Model

    DEFF Research Database (Denmark)

    Lehmann, Anders; Gross, Allan

    2016-01-01

    Emission of airborne pollutants and climate gasses from the transport sector is a growing problem, both in indus- trialised and developing countries. Planning of urban transport system is essential to minimise the environmental, health and economic impact of congestion in the transport system...... traffic systems, in less than an hour. The model is implemented in an open source database system, for easy interface with GIS resources and crowd sensed transportation data........ To get accurate and timely information on traffic congestion, and by extension information on air pollution, near real time traffic models are needed. We present in this paper an implementation of the Restricted Stochastic User equilibrium model, that is capable to model congestions for very large Urban...

  14. X-Parameter Based Modelling of Polar Modulated Power Amplifiers

    DEFF Research Database (Denmark)

    Wang, Yelin; Nielsen, Troels Studsgaard; Sira, Daniel

    2013-01-01

    X-parameters are developed as an extension of S-parameters capable of modelling non-linear devices driven by large signals. They are suitable for devices having only radio frequency (RF) and DC ports. In a polar power amplifier (PA), phase and envelope of the input modulated signal are applied...... at separate ports and the envelope port is neither an RF nor a DC port. As a result, X-parameters may fail to characterise the effect of the envelope port excitation and consequently the polar PA. This study introduces a solution to the problem for a commercial polar PA. In this solution, the RF-phase path...... PA for simulations. The simulated error vector magnitude (EVM) and adjacent channel power ratio (ACPR) were compared with the measured data to validate the model. The maximum differences between the simulated and measured EVM and ACPR are less than 2% point and 3 dB, respectively....

  15. Thermal Model Parameter Identification of a Lithium Battery

    Directory of Open Access Journals (Sweden)

    Dirk Nissing

    2017-01-01

    Full Text Available The temperature of a Lithium battery cell is important for its performance, efficiency, safety, and capacity and is influenced by the environmental temperature and by the charging and discharging process itself. Battery Management Systems (BMS take into account this effect. As the temperature at the battery cell is difficult to measure, often the temperature is measured on or nearby the poles of the cell, although the accuracy of predicting the cell temperature with those quantities is limited. Therefore a thermal model of the battery is used in order to calculate and estimate the cell temperature. This paper uses a simple RC-network representation for the thermal model and shows how the thermal parameters are identified using input/output measurements only, where the load current of the battery represents the input while the temperatures at the poles represent the outputs of the measurement. With a single measurement the eight model parameters (thermal resistances, electric contact resistances, and heat capacities can be determined using the method of least-square. Experimental results show that the simple model with the identified parameters fits very accurately to the measurements.

  16. CHAMP: Changepoint Detection Using Approximate Model Parameters

    Science.gov (United States)

    2014-06-01

    form (with independent emissions or otherwise), in which parameter estimates are available via means such as maximum likelihood fit, MCMC , or sample ...counterparts, including the ability to generate a full posterior distribution over changepoint locations and offering a natural way to incorporate prior... sample consensus method. Our modifications also remove a significant restriction on model definition when detecting parameter changes within a single

  17. Development of ANFIS models for air quality forecasting and input optimization for reducing the computational cost and time

    Science.gov (United States)

    Prasad, Kanchan; Gorai, Amit Kumar; Goyal, Pramila

    2016-03-01

    This study aims to develop adaptive neuro-fuzzy inference system (ANFIS) for forecasting of daily air pollution concentrations of five air pollutants [sulphur dioxide (SO2), nitrogen dioxide (NO2), carbon monoxide (CO), ozone (O3) and particular matters (PM10)] in the atmosphere of a Megacity (Howrah). Air pollution in the city (Howrah) is rising in parallel with the economics and thus observing, forecasting and controlling the air pollution becomes increasingly important due to the health impact. ANFIS serve as a basis for constructing a set of fuzzy IF-THEN rules, with appropriate membership functions to generate the stipulated input-output pairs. The ANFIS model predictor considers the value of meteorological factors (pressure, temperature, relative humidity, dew point, visibility, wind speed, and precipitation) and previous day's pollutant concentration in different combinations as the inputs to predict the 1-day advance and same day air pollution concentration. The concentration value of five air pollutants and seven meteorological parameters of the Howrah city during the period 2009 to 2011 were used for development of the ANFIS model. Collinearity tests were conducted to eliminate the redundant input variables. A forward selection (FS) method is used for selecting the different subsets of input variables. Application of collinearity tests and FS techniques reduces the numbers of input variables and subsets which helps in reducing the computational cost and time. The performances of the models were evaluated on the basis of four statistical indices (coefficient of determination, normalized mean square error, index of agreement, and fractional bias).

  18. BASELINE PARAMETER UPDATE FOR HUMAN HEALTH INPUT AND TRANSFER FACTORS FOR RADIOLOGICAL PERFORMANCE ASSESSMENTS AT THE SAVANNAH RIVER SITE

    Energy Technology Data Exchange (ETDEWEB)

    Coffield, T; Patricia Lee, P

    2007-01-31

    The purpose of this report is to update parameters utilized in Human Health Exposure calculations and Bioaccumulation Transfer Factors utilized at SRS for Performance Assessment modeling. The reason for the update is to utilize more recent information issued, validate information currently used and correct minor inconsistencies between modeling efforts performed in SRS contiguous areas of the heavy industrialized central site usage areas called the General Separations Area (GSA). SRS parameters utilized were compared to a number of other DOE facilities and generic national/global references to establish relevance of the parameters selected and/or verify the regional differences of the southeast USA. The parameters selected were specifically chosen to be expected values along with identifying a range for these values versus the overly conservative specification of parameters for estimating an annual dose to the maximum exposed individual (MEI). The end uses are to establish a standardized source for these parameters that is up to date with existing data and maintain it via review of any future issued national references to evaluate the need for changes as new information is released. These reviews are to be added to this document by revision.

  19. Input-dependent wave attenuation in a critically-balanced model of cortex.

    Directory of Open Access Journals (Sweden)

    Xiao-Hu Yan

    Full Text Available A number of studies have suggested that many properties of brain activity can be understood in terms of critical systems. However it is still not known how the long-range susceptibilities characteristic of criticality arise in the living brain from its local connectivity structures. Here we prove that a dynamically critically-poised model of cortex acquires an infinitely-long ranged susceptibility in the absence of input. When an input is presented, the susceptibility attenuates exponentially as a function of distance, with an increasing spatial attenuation constant (i.e., decreasing range the larger the input. This is in direct agreement with recent results that show that waves of local field potential activity evoked by single spikes in primary visual cortex of cat and macaque attenuate with a characteristic length that also increases with decreasing contrast of the visual stimulus. A susceptibility that changes spatial range with input strength can be thought to implement an input-dependent spatial integration: when the input is large, no additional evidence is needed in addition to the local input; when the input is weak, evidence needs to be integrated over a larger spatial domain to achieve a decision. Such input-strength-dependent strategies have been demonstrated in visual processing. Our results suggest that input-strength dependent spatial integration may be a natural feature of a critically-balanced cortical network.

  20. Reissner-Mindlin plate model with uncertain input data

    Czech Academy of Sciences Publication Activity Database

    Hlaváček, Ivan; Chleboun, J.

    2014-01-01

    Roč. 17, Jun (2014), s. 71-88 ISSN 1468-1218 Institutional support: RVO:67985840 Keywords : Reissner-Mindlin model * orthotropic plate Subject RIV: BA - General Mathematics Impact factor: 2.519, year: 2014 http://www.sciencedirect.com/science/article/pii/S1468121813001077

  1. Determining input values for a simple parametric model to estimate ...

    African Journals Online (AJOL)

    Estimating soil evaporation (Es) is an important part of modelling vineyard evapotranspiration for irrigation purposes. Furthermore, quantification of possible soil texture and trellis effects is essential. Daily Es from six topsoils packed into lysimeters was measured under grapevines on slanting and vertical trellises, ...

  2. Scientific and technical advisory committee review of the nutrient inputs to the watershed model

    Science.gov (United States)

    The following is a report by a STAC Review Team concerning the methods and documentation used by the Chesapeake Bay Partnership for evaluation of nutrient inputs to Phase 6 of the Chesapeake Bay Watershed Model. The “STAC Review of the Nutrient Inputs to the Watershed Model” (previously referred to...

  3. Crop growth modelling and crop yield forecasting using satellite derived meteorological inputs

    NARCIS (Netherlands)

    Wit, de A.J.W.; Diepen, van K.

    2006-01-01

    One of the key challenges for operational crop monitoring and yield forecasting using crop models is to find spatially representative meteorological input data. Currently, weather inputs are often interpolated from low density networks of weather stations or derived from output from coarse (0.5

  4. Setting Parameters for Biological Models With ANIMO

    NARCIS (Netherlands)

    Schivo, Stefano; Scholma, Jetse; Karperien, Hermanus Bernardus Johannes; Post, Janine Nicole; van de Pol, Jan Cornelis; Langerak, Romanus; André, Étienne; Frehse, Goran

    2014-01-01

    ANIMO (Analysis of Networks with Interactive MOdeling) is a software for modeling biological networks, such as e.g. signaling, metabolic or gene networks. An ANIMO model is essentially the sum of a network topology and a number of interaction parameters. The topology describes the interactions

  5. Three-Verb Clusters in Interference Frisian: A Stochastic Model over Sequential Syntactic Input.

    Science.gov (United States)

    Hoekstra, Eric; Versloot, Arjen

    2016-03-01

    Abstract Interference Frisian (IF) is a variety of Frisian, spoken by mostly younger speakers, which is heavily influenced by Dutch. IF exhibits all six logically possible word orders in a cluster of three verbs. This phenomenon has been researched by Koeneman and Postma (2006), who argue for a parameter theory, which leaves frequency differences between various orders unexplained. Rejecting Koeneman and Postma's parameter theory, but accepting their conclusion that Dutch (and Frisian) data are input for the grammar of IF, we will argue that the word order preferences of speakers of IF are determined by frequency and similarity. More specifically, three-verb clusters in IF are sensitive to: their linear left-to-right similarity to two-verb clusters and three-verb clusters in Frisian and in Dutch; the (estimated) frequency of two- and three-verb clusters in Frisian and Dutch. The model will be shown to work best if Dutch and Frisian, and two- and three-verb clusters, have equal impact factors. If different impact factors are taken, the model's predictions do not change substantially, testifying to its robustness. This analysis is in line with recent ideas that the sequential nature of human speech is more important to syntactic processes than commonly assumed, and that less burden need be put on the hierarchical dimension of syntactic structure.

  6. Parameters and error of a theoretical model

    International Nuclear Information System (INIS)

    Moeller, P.; Nix, J.R.; Swiatecki, W.

    1986-09-01

    We propose a definition for the error of a theoretical model of the type whose parameters are determined from adjustment to experimental data. By applying a standard statistical method, the maximum-likelihoodlmethod, we derive expressions for both the parameters of the theoretical model and its error. We investigate the derived equations by solving them for simulated experimental and theoretical quantities generated by use of random number generators. 2 refs., 4 tabs

  7. Space geodetic techniques for global modeling of ionospheric peak parameters

    Science.gov (United States)

    Alizadeh, M. Mahdi; Schuh, Harald; Schmidt, Michael

    The rapid development of new technological systems for navigation, telecommunication, and space missions which transmit signals through the Earth’s upper atmosphere - the ionosphere - makes the necessity of precise, reliable and near real-time models of the ionospheric parameters more crucial. In the last decades space geodetic techniques have turned into a capable tool for measuring ionospheric parameters in terms of Total Electron Content (TEC) or the electron density. Among these systems, the current space geodetic techniques, such as Global Navigation Satellite Systems (GNSS), Low Earth Orbiting (LEO) satellites, satellite altimetry missions, and others have found several applications in a broad range of commercial and scientific fields. This paper aims at the development of a three-dimensional integrated model of the ionosphere, by using various space geodetic techniques and applying a combination procedure for computation of the global model of electron density. In order to model ionosphere in 3D, electron density is represented as a function of maximum electron density (NmF2), and its corresponding height (hmF2). NmF2 and hmF2 are then modeled in longitude, latitude, and height using two sets of spherical harmonic expansions with degree and order 15. To perform the estimation, GNSS input data are simulated in such a way that the true position of the satellites are detected and used, but the STEC values are obtained through a simulation procedure, using the IGS VTEC maps. After simulating the input data, the a priori values required for the estimation procedure are calculated using the IRI-2012 model and also by applying the ray-tracing technique. The estimated results are compared with F2-peak parameters derived from the IRI model to assess the least-square estimation procedure and moreover, to validate the developed maps, the results are compared with the raw F2-peak parameters derived from the Formosat-3/Cosmic data.

  8. Application of lumped-parameter models

    DEFF Research Database (Denmark)

    Ibsen, Lars Bo; Liingaard, Morten

    This technical report concerns the lumped-parameter models for a suction caisson with a ratio between skirt length and foundation diameter equal to 1/2, embedded into an viscoelastic soil. The models are presented for three different values of the shear modulus of the subsoil (section 1.1). Subse......This technical report concerns the lumped-parameter models for a suction caisson with a ratio between skirt length and foundation diameter equal to 1/2, embedded into an viscoelastic soil. The models are presented for three different values of the shear modulus of the subsoil (section 1...

  9. Application of multi-parameter chorus and plasmaspheric hiss wave models in radiation belt modeling

    Science.gov (United States)

    Aryan, H.; Kang, S. B.; Balikhin, M. A.; Fok, M. C. H.; Agapitov, O. V.; Komar, C. M.; Kanekal, S. G.; Nagai, T.; Sibeck, D. G.

    2017-12-01

    Numerical simulation studies of the Earth's radiation belts are important to understand the acceleration and loss of energetic electrons. The Comprehensive Inner Magnetosphere-Ionosphere (CIMI) model along with many other radiation belt models require inputs for pitch angle, energy, and cross diffusion of electrons, due to chorus and plasmaspheric hiss waves. These parameters are calculated using statistical wave distribution models of chorus and plasmaspheric hiss amplitudes. In this study we incorporate recently developed multi-parameter chorus and plasmaspheric hiss wave models based on geomagnetic index and solar wind parameters. We perform CIMI simulations for two geomagnetic storms and compare the flux enhancement of MeV electrons with data from the Van Allen Probes and Akebono satellites. We show that the relativistic electron fluxes calculated with multi-parameter wave models resembles the observations more accurately than the relativistic electron fluxes calculated with single-parameter wave models. This indicates that wave models based on a combination of geomagnetic index and solar wind parameters are more effective as inputs to radiation belt models.

  10. Setting Parameters for Biological Models With ANIMO

    Directory of Open Access Journals (Sweden)

    Stefano Schivo

    2014-03-01

    Full Text Available ANIMO (Analysis of Networks with Interactive MOdeling is a software for modeling biological networks, such as e.g. signaling, metabolic or gene networks. An ANIMO model is essentially the sum of a network topology and a number of interaction parameters. The topology describes the interactions between biological entities in form of a graph, while the parameters determine the speed of occurrence of such interactions. When a mismatch is observed between the behavior of an ANIMO model and experimental data, we want to update the model so that it explains the new data. In general, the topology of a model can be expanded with new (known or hypothetical nodes, and enables it to match experimental data. However, the unrestrained addition of new parts to a model causes two problems: models can become too complex too fast, to the point of being intractable, and too many parts marked as "hypothetical" or "not known" make a model unrealistic. Even if changing the topology is normally the easier task, these problems push us to try a better parameter fit as a first step, and resort to modifying the model topology only as a last resource. In this paper we show the support added in ANIMO to ease the task of expanding the knowledge on biological networks, concentrating in particular on the parameter settings.

  11. Mechanistic interpretation of glass reaction: Input to kinetic model development

    International Nuclear Information System (INIS)

    Bates, J.K.; Ebert, W.L.; Bradley, J.P.; Bourcier, W.L.

    1991-05-01

    Actinide-doped SRL 165 type glass was reacted in J-13 groundwater at 90 degree C for times up to 278 days. The reaction was characterized by both solution and solid analyses. The glass was seen to react nonstoichiometrically with preferred leaching of alkali metals and boron. High resolution electron microscopy revealed the formation of a complex layer structure which became separated from the underlying glass as the reaction progressed. The formation of the layer and its effect on continued glass reaction are discussed with respect to the current model for glass reaction used in the EQ3/6 computer simulation. It is concluded that the layer formed after 278 days is not protective and may eventually become fractured and generate particulates that may be transported by liquid water. 5 refs., 5 figs. , 3 tabs

  12. Remote sensing inputs to landscape models which predict future spatial land use patterns for hydrologic models

    Science.gov (United States)

    Miller, L. D.; Tom, C.; Nualchawee, K.

    1977-01-01

    A tropical forest area of Northern Thailand provided a test case of the application of the approach in more natural surroundings. Remote sensing imagery subjected to proper computer analysis has been shown to be a very useful means of collecting spatial data for the science of hydrology. Remote sensing products provide direct input to hydrologic models and practical data bases for planning large and small-scale hydrologic developments. Combining the available remote sensing imagery together with available map information in the landscape model provides a basis for substantial improvements in these applications.

  13. Data including GROMACS input files for atomistic molecular dynamics simulations of mixed, asymmetric bilayers including molecular topologies, equilibrated structures, and force field for lipids compatible with OPLS-AA parameters

    DEFF Research Database (Denmark)

    Róg, Tomasz; Orłowski, Adam; Llorente, Alicia

    2016-01-01

    In this Data in Brief article we provide a data package of GROMACS input files for atomistic molecular dynamics simulations of multicomponent, asymmetric lipid bilayers using the OPLS-AA force field. These data include 14 model bilayers composed of 8 different lipid molecules. The lipids present......, and cholesterol, while the extracellular leaflet is composed of SM, PC and cholesterol discussed in Van Meer et al. (2008) [2]. The provided data include lipids' topologies, equilibrated structures of asymmetric bilayers, all force field parameters, and input files with parameters describing simulation conditions...

  14. Comparison of different snow model formulations and their responses to input uncertainties in the Upper Indus Basin

    Science.gov (United States)

    Pritchard, David; Fowler, Hayley; Forsythe, Nathan; O'Donnell, Greg; Rutter, Nick; Bardossy, Andras

    2017-04-01

    Snow and glacier melt in the mountainous Upper Indus Basin (UIB) sustain water supplies, irrigation networks, hydropower production and ecosystems in extensive downstream lowlands. Understanding hydrological and cryospheric sensitivities to climatic variability and change in the basin is therefore critical for local, national and regional water resources management. Assessing these sensitivities using numerical modelling is challenging, due to limitations in the quality and quantity of input and evaluation data, as well as uncertainties in model structures and parameters. This study explores how these uncertainties in inputs and process parameterisations affect distributed simulations of ablation in the complex climatic setting of the UIB. The role of model forcing uncertainties is explored using combinations of local observations, remote sensing and reanalysis - including the high resolution High Asia Refined Analysis - to generate multiple realisations of spatiotemporal model input fields. Forcing a range of model structures with these input fields then provides an indication of how different ablation parameterisations respond to uncertainties and perturbations in climatic drivers. Model structures considered include simple, empirical representations of melt processes through to physically based, full energy balance models with multi-physics options for simulating snowpack evolution (including an adapted version of FSM). Analysing model input and structural uncertainties in this way provides insights for methodological choices in climate sensitivity assessments of data-sparse, high mountain catchments. Such assessments are key for supporting water resource management in these catchments, particularly given the potential complications of enhanced warming through elevation effects or, in the case of the UIB, limited understanding of how and why local climate change signals differ from broader patterns.

  15. Modelling of Multi Input Transfer Function for Rainfall Forecasting in Batu City

    Directory of Open Access Journals (Sweden)

    Priska Arindya Purnama

    2017-11-01

    Full Text Available The aim of this research is to model and forecast the rainfall in Batu City using multi input transfer function model based on air temperature, humidity, wind speed and cloud. Transfer function model is a multivariate time series model which consists of an output series (Yt sequence expected to be effected by an input series (Xt and other inputs in a group called a noise series (Nt. Multi input transfer function model obtained is (b1,s1,r1 (b2,s2,r2 (b3,s3,r3 (b4,s4,r4(pn,qn = (0,0,0 (23,0,0 (1,2,0 (0,0,0 ([5,8],2 and shows that air temperature on t-day affects rainfall on t-day, rainfall on t-day is influenced by air humidity in the previous 23 days, rainfall on t-day is affected by wind speed in the previous day , and rainfall on day t is affected by clouds on day t. The results of rainfall forecasting in Batu City with multi input transfer function model can be said to be accurate, because it produces relatively small RMSE value. The value of RMSE data forecasting training is 7.7921 while forecasting data testing is 4.2184. Multi-input transfer function model is suitable for rainfall in Batu City.

  16. Parameter and State Estimator for State Space Models

    Directory of Open Access Journals (Sweden)

    Ruifeng Ding

    2014-01-01

    Full Text Available This paper proposes a parameter and state estimator for canonical state space systems from measured input-output data. The key is to solve the system state from the state equation and to substitute it into the output equation, eliminating the state variables, and the resulting equation contains only the system inputs and outputs, and to derive a least squares parameter identification algorithm. Furthermore, the system states are computed from the estimated parameters and the input-output data. Convergence analysis using the martingale convergence theorem indicates that the parameter estimates converge to their true values. Finally, an illustrative example is provided to show that the proposed algorithm is effective.

  17. Parameter and state estimator for state space models.

    Science.gov (United States)

    Ding, Ruifeng; Zhuang, Linfan

    2014-01-01

    This paper proposes a parameter and state estimator for canonical state space systems from measured input-output data. The key is to solve the system state from the state equation and to substitute it into the output equation, eliminating the state variables, and the resulting equation contains only the system inputs and outputs, and to derive a least squares parameter identification algorithm. Furthermore, the system states are computed from the estimated parameters and the input-output data. Convergence analysis using the martingale convergence theorem indicates that the parameter estimates converge to their true values. Finally, an illustrative example is provided to show that the proposed algorithm is effective.

  18. Targeting the right input data to improve crop modeling at global level

    Science.gov (United States)

    Adam, M.; Robertson, R.; Gbegbelegbe, S.; Jones, J. W.; Boote, K. J.; Asseng, S.

    2012-12-01

    Designed for location-specific simulations, the use of crop models at a global level raises important questions. Crop models are originally premised on small unit areas where environmental conditions and management practices are considered homogeneous. Specific information describing soils, climate, management, and crop characteristics are used in the calibration process. However, when scaling up for global application, we rely on information derived from geographical information systems and weather generators. To run crop models at broad, we use a modeling platform that assumes a uniformly generated grid cell as a unit area. Specific weather, specific soil and specific management practices for each crop are represented for each of the cell grids. Studies on the impacts of the uncertainties of weather information and climate change on crop yield at a global level have been carried out (Osborne et al, 2007, Nelson et al., 2010, van Bussel et al, 2011). Detailed information on soils and management practices at global level are very scarce but recognized to be of critical importance (Reidsma et al., 2009). Few attempts to assess the impact of their uncertainties on cropping systems performances can be found. The objectives of this study are (i) to determine sensitivities of a crop model to soil and management practices, inputs most relevant to low input rainfed cropping systems, and (ii) to define hotspots of sensitivity according to the input data. We ran DSSAT v4.5 globally (CERES-CROPSIM) to simulate wheat yields at 45arc-minute resolution. Cultivar parameters were calibrated and validated for different mega-environments (results not shown). The model was run for nitrogen-limited production systems. This setting was chosen as the most representative to simulate actual yield (especially for low-input rainfed agricultural systems) and assumes crop growth to be free of any pest and diseases damages. We conducted a sensitivity analysis on contrasting management

  19. Modelling and parameter estimation of dynamic systems

    CERN Document Server

    Raol, JR; Singh, J

    2004-01-01

    Parameter estimation is the process of using observations from a system to develop mathematical models that adequately represent the system dynamics. The assumed model consists of a finite set of parameters, the values of which are calculated using estimation techniques. Most of the techniques that exist are based on least-square minimization of error between the model response and actual system response. However, with the proliferation of high speed digital computers, elegant and innovative techniques like filter error method, H-infinity and Artificial Neural Networks are finding more and mor

  20. Models and parameters for environmental radiological assessments

    Energy Technology Data Exchange (ETDEWEB)

    Miller, C W [ed.

    1984-01-01

    This book presents a unified compilation of models and parameters appropriate for assessing the impact of radioactive discharges to the environment. Models examined include those developed for the prediction of atmospheric and hydrologic transport and deposition, for terrestrial and aquatic food-chain bioaccumulation, and for internal and external dosimetry. Chapters have been entered separately into the data base. (ACR)

  1. Consistent Stochastic Modelling of Meteocean Design Parameters

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard; Sterndorff, M. J.

    2000-01-01

    Consistent stochastic models of metocean design parameters and their directional dependencies are essential for reliability assessment of offshore structures. In this paper a stochastic model for the annual maximum values of the significant wave height, and the associated wind velocity, current...

  2. Models and parameters for environmental radiological assessments

    International Nuclear Information System (INIS)

    Miller, C.W.

    1984-01-01

    This book presents a unified compilation of models and parameters appropriate for assessing the impact of radioactive discharges to the environment. Models examined include those developed for the prediction of atmospheric and hydrologic transport and deposition, for terrestrial and aquatic food-chain bioaccumulation, and for internal and external dosimetry. Chapters have been entered separately into the data base

  3. Input-dependent life-cycle inventory model of industrial wastewater-treatment processes in the chemical sector.

    Science.gov (United States)

    Köhler, Annette; Hellweg, Stefanie; Recan, Ercan; Hungerbühler, Konrad

    2007-08-01

    Industrial wastewater-treatment systems need to ensure a high level of protection for the environment as a whole. Life-cycle assessment (LCA) comprehensively evaluates the environmental impacts of complex treatment systems, taking into account impacts from auxiliaries and energy consumption as well as emissions. However, the application of LCA is limited by a scarcity of wastewater-specific life-cycle inventory (LCI) data. This study presents a modular gate-to-gate inventory model for industrial wastewater purification in the chemical and related sectors. It enables the calculation of inventory parameters as a function of the wastewater composition and the technologies applied. Forthis purpose, data on energy and auxiliaries' consumption, wastewater composition, and process parameters was collected from chemical industry. On this basis, causal relationships between wastewater input, emissions, and technical inputs were identified. These causal relationships were translated into a generic inventory model. Generic and site-specific data ranges for LCI parameters are provided for the following processes: mechanical-biological treatment, high-pressure wet-air oxidation, nanofiltration, and extraction. The input- and technology-dependent process inventories help to bridge data gaps where primary data are not available. Thus, they substantially help to perform an environmental assessment of industrial wastewater purification in the chemical and associated industries, which may be used, for instance, for technology choices.

  4. Microbial Communities Model Parameter Calculation for TSPA/SR

    Energy Technology Data Exchange (ETDEWEB)

    D. Jolley

    2001-07-16

    This calculation has several purposes. First the calculation reduces the information contained in ''Committed Materials in Repository Drifts'' (BSC 2001a) to useable parameters required as input to MING V1.O (CRWMS M&O 1998, CSCI 30018 V1.O) for calculation of the effects of potential in-drift microbial communities as part of the microbial communities model. The calculation is intended to replace the parameters found in Attachment II of the current In-Drift Microbial Communities Model revision (CRWMS M&O 2000c) with the exception of Section 11-5.3. Second, this calculation provides the information necessary to supercede the following DTN: M09909SPAMING1.003 and replace it with a new qualified dataset (see Table 6.2-1). The purpose of this calculation is to create the revised qualified parameter input for MING that will allow {Delta}G (Gibbs Free Energy) to be corrected for long-term changes to the temperature of the near-field environment. Calculated herein are the quadratic or second order regression relationships that are used in the energy limiting calculations to potential growth of microbial communities in the in-drift geochemical environment. Third, the calculation performs an impact review of a new DTN: M00012MAJIONIS.000 that is intended to replace the currently cited DTN: GS9809083 12322.008 for water chemistry data used in the current ''In-Drift Microbial Communities Model'' revision (CRWMS M&O 2000c). Finally, the calculation updates the material lifetimes reported on Table 32 in section 6.5.2.3 of the ''In-Drift Microbial Communities'' AMR (CRWMS M&O 2000c) based on the inputs reported in BSC (2001a). Changes include adding new specified materials and updating old materials information that has changed.

  5. Microbial Communities Model Parameter Calculation for TSPA/SR

    International Nuclear Information System (INIS)

    D. Jolley

    2001-01-01

    This calculation has several purposes. First the calculation reduces the information contained in ''Committed Materials in Repository Drifts'' (BSC 2001a) to useable parameters required as input to MING V1.O (CRWMS M and O 1998, CSCI 30018 V1.O) for calculation of the effects of potential in-drift microbial communities as part of the microbial communities model. The calculation is intended to replace the parameters found in Attachment II of the current In-Drift Microbial Communities Model revision (CRWMS M and O 2000c) with the exception of Section 11-5.3. Second, this calculation provides the information necessary to supercede the following DTN: M09909SPAMING1.003 and replace it with a new qualified dataset (see Table 6.2-1). The purpose of this calculation is to create the revised qualified parameter input for MING that will allow ΔG (Gibbs Free Energy) to be corrected for long-term changes to the temperature of the near-field environment. Calculated herein are the quadratic or second order regression relationships that are used in the energy limiting calculations to potential growth of microbial communities in the in-drift geochemical environment. Third, the calculation performs an impact review of a new DTN: M00012MAJIONIS.000 that is intended to replace the currently cited DTN: GS9809083 12322.008 for water chemistry data used in the current ''In-Drift Microbial Communities Model'' revision (CRWMS M and O 2000c). Finally, the calculation updates the material lifetimes reported on Table 32 in section 6.5.2.3 of the ''In-Drift Microbial Communities'' AMR (CRWMS M and O 2000c) based on the inputs reported in BSC (2001a). Changes include adding new specified materials and updating old materials information that has changed

  6. Garbage In Garbage Out Garbage In : Improving the Inputs and Atmospheric Feedbacks in Seasonal Snowpack Modeling

    Science.gov (United States)

    Gutmann, E. D.

    2016-12-01

    Without good input data, almost any model will produce bad output; however, alpine environments are extremely difficult places to make measurements of those inputs. Perhaps the least well known input is precipitation, but almost as important are temperature, wind, humidity, and radiation. Recent advances in atmospheric modeling have improved the fidelity of the output such that model output is sometimes better than interpolated observations, particularly for precipitation; however these models come with a tremendous computational cost. We describe the Intermediate Complexity Atmospheric Research model (ICAR) as one path to a computationally efficient method to improve snow pack model inputs over complex terrain. ICAR provides estimates of all inputs at a small fraction of the computational cost of a traditional atmospheric model such as the Weather Research and Forecasting model (WRF). Importantly, ICAR is able to simulate feedbacks from the land surface that are critical for estimating the air temperature. In addition, we will explore future improvements to the local wind fields including the use of statistics derived from limited duration Large Eddy Simulation (LES) model runs. These wind fields play a critical role in determing the redistribution of snow, and the redistribution of snow changes the surface topography and thus the wind field. We show that a proper depiction of snowpack redistribution can have a large affect on streamflow timing, and an even larger effect on the climate change signal of that streamflow.

  7. Variance estimation of modal parameters from output-only and input/output subspace-based system identification

    OpenAIRE

    Mellinger, Philippe; Döhler, Michael; Mevel, Laurent

    2016-01-01

    International audience; An important step in the operational modal analysis of a structure is to infer on its dynamic behavior through its modal parameters. They can be estimated by various modal identification algorithms that fit a theoretical model to measured data. When output-only data is available, i.e. measured responses of the structure, frequencies, damping ratios and mode shapes can be identified assuming that ambient sources like wind or traffic excite the system sufficiently. When ...

  8. Modeling of heat transfer into a heat pipe for a localized heat input zone

    International Nuclear Information System (INIS)

    Rosenfeld, J.H.

    1987-01-01

    A general model is presented for heat transfer into a heat pipe using a localized heat input. Conduction in the wall of the heat pipe and boiling in the interior structure are treated simultaneously. The model is derived from circumferential heat transfer in a cylindrical heat pipe evaporator and for radial heat transfer in a circular disk with boiling from the interior surface. A comparison is made with data for a localized heat input zone. Agreement between the theory and the model is good. This model can be used for design purposes if a boiling correlation is available. The model can be extended to provide improved predictions of heat pipe performance

  9. Parameters-related uncertainty in modeling sugar cane yield with an agro-Land Surface Model

    Science.gov (United States)

    Valade, A.; Ciais, P.; Vuichard, N.; Viovy, N.; Ruget, F.; Gabrielle, B.

    2012-12-01

    Agro-Land Surface Models (agro-LSM) have been developed from the coupling of specific crop models and large-scale generic vegetation models. They aim at accounting for the spatial distribution and variability of energy, water and carbon fluxes within soil-vegetation-atmosphere continuum with a particular emphasis on how crop phenology and agricultural management practice influence the turbulent fluxes exchanged with the atmosphere, and the underlying water and carbon pools. A part of the uncertainty in these models is related to the many parameters included in the models' equations. In this study, we quantify the parameter-based uncertainty in the simulation of sugar cane biomass production with the agro-LSM ORCHIDEE-STICS on a multi-regional approach with data from sites in Australia, La Reunion and Brazil. First, the main source of uncertainty for the output variables NPP, GPP, and sensible heat flux (SH) is determined through a screening of the main parameters of the model on a multi-site basis leading to the selection of a subset of most sensitive parameters causing most of the uncertainty. In a second step, a sensitivity analysis is carried out on the parameters selected from the screening analysis at a regional scale. For this, a Monte-Carlo sampling method associated with the calculation of Partial Ranked Correlation Coefficients is used. First, we quantify the sensitivity of the output variables to individual input parameters on a regional scale for two regions of intensive sugar cane cultivation in Australia and Brazil. Then, we quantify the overall uncertainty in the simulation's outputs propagated from the uncertainty in the input parameters. Seven parameters are identified by the screening procedure as driving most of the uncertainty in the agro-LSM ORCHIDEE-STICS model output at all sites. These parameters control photosynthesis (optimal temperature of photosynthesis, optimal carboxylation rate), radiation interception (extinction coefficient), root

  10. Verification Techniques for Parameter Selection and Bayesian Model Calibration Presented for an HIV Model

    Science.gov (United States)

    Wentworth, Mami Tonoe

    Uncertainty quantification plays an important role when making predictive estimates of model responses. In this context, uncertainty quantification is defined as quantifying and reducing uncertainties, and the objective is to quantify uncertainties in parameter, model and measurements, and propagate the uncertainties through the model, so that one can make a predictive estimate with quantified uncertainties. Two of the aspects of uncertainty quantification that must be performed prior to propagating uncertainties are model calibration and parameter selection. There are several efficient techniques for these processes; however, the accuracy of these methods are often not verified. This is the motivation for our work, and in this dissertation, we present and illustrate verification frameworks for model calibration and parameter selection in the context of biological and physical models. First, HIV models, developed and improved by [2, 3, 8], describe the viral infection dynamics of an HIV disease. These are also used to make predictive estimates of viral loads and T-cell counts and to construct an optimal control for drug therapy. Estimating input parameters is an essential step prior to uncertainty quantification. However, not all the parameters are identifiable, implying that they cannot be uniquely determined by the observations. These unidentifiable parameters can be partially removed by performing parameter selection, a process in which parameters that have minimal impacts on the model response are determined. We provide verification techniques for Bayesian model calibration and parameter selection for an HIV model. As an example of a physical model, we employ a heat model with experimental measurements presented in [10]. A steady-state heat model represents a prototypical behavior for heat conduction and diffusion process involved in a thermal-hydraulic model, which is a part of nuclear reactor models. We employ this simple heat model to illustrate verification

  11. On the Influence of Input Data Quality to Flood Damage Estimation: The Performance of the INSYDE Model

    Directory of Open Access Journals (Sweden)

    Daniela Molinari

    2017-09-01

    Full Text Available IN-depth SYnthetic Model for Flood Damage Estimation (INSYDE is a model for the estimation of flood damage to residential buildings at the micro-scale. This study investigates the sensitivity of INSYDE to the accuracy of input data. Starting from the knowledge of input parameters at the scale of individual buildings for a case study, the level of detail of input data is progressively downgraded until the condition in which a representative value is defined for all inputs at the census block scale. The analysis reveals that two conditions are required to limit the errors in damage estimation: the representativeness of representatives values with respect to micro-scale values and the local knowledge of the footprint area of the buildings, being the latter the main extensive variable adopted by INSYDE. Such a result allows for extending the usability of the model at the meso-scale, also in different countries, depending on the availability of aggregated building data.

  12. Sensitivity Analysis of Input Parameters for the Dose Assessment from Gaseous Effluents due to the Normal Operation of Jordan Research and Training Reactor

    International Nuclear Information System (INIS)

    Kim, Sukhoon; Lee, Seunghee; Kim, Juyoul; Kim, Juyub; Han, Moonhee

    2015-01-01

    In this study, therefore, the sensitivity analysis of input variables for the dose assessment was performed for reviewing the effect of each parameter on the result after determining the type and range of parameters that could affect the exposure dose of the public. (Since JRTR will be operated by the concept of 'no liquid discharge,' the input parameters used for calculation of dose due to liquid effluents are not considered in the sensitivity analysis.) In this paper, the sensitivity analysis of input parameters for the dose assessment in the vicinity of the site boundary due to gaseous effluents was performed for a total of thirty-five (35) cases. And, detailed results for the input variables that have an significant effect are shown in Figures 1 through 7, respectively. For preparing a R-ER for the operating license of the JRTR, these results will be updated by the additional information and could be applied to predicting the variation trend of the exposure dose in the process of updating the input parameters for the dose assessment reflecting the characteristics of the JRTR site

  13. Allocatable Fixed Inputs and Two-Stage Aggregation Models of Multioutput Production Decisions

    OpenAIRE

    Barry T. Coyle

    1993-01-01

    Allocation decisions for a fixed input such as land are incorporated into a two-stage aggregation model of multioutput production decisions. The resulting two-stage model is more realistic and is as tractable for empirical research as the standard model.

  14. Definition of Saturn's magnetospheric model parameters for the Pioneer 11 flyby

    Directory of Open Access Journals (Sweden)

    E. S. Belenkaya

    2006-05-01

    Full Text Available This paper presents a description of a method for selection parameters for a global paraboloid model of Saturn's magnetosphere. The model is based on the preexisting paraboloid terrestrial and Jovian models of the magnetospheric field. Interaction of the solar wind with the magnetosphere, i.e. the magnetotail current system, and the magnetopause currents screening all magnetospheric field sources, is taken into account. The input model parameters are determined from observations of the Pioneer 11 inbound flyby.

  15. Effects of model input data uncertainty in simulating water resources of a transnational catchment

    Science.gov (United States)

    Camargos, Carla; Breuer, Lutz

    2016-04-01

    Landscape consists of different ecosystem components and how these components affect water quantity and quality need to be understood. We start from the assumption that water resources are generated in landscapes and that rural land use (particular agriculture) has a strong impact on water resources that are used downstream for domestic and industrial supply. Partly located in the north of Luxembourg and partly in the southeast of Belgium, the Haute-Sûre catchment is about 943 km2. As part of the catchment, the Haute-Sûre Lake is an important source of drinking water for Luxembourg population, satisfying 30% of the city's demand. The objective of this study is investigate impact of spatial input data uncertainty on water resources simulations for the Haute-Sûre catchment. We apply the SWAT model for the period 2006 to 2012 and use a variety of digital information on soils, elevation and land uses with various spatial resolutions. Several objective functions are being evaluated and we consider resulting parameter uncertainty to quantify an important part of the global uncertainty in model simulations.

  16. Vascular input function correction of inflow enhancement for improved pharmacokinetic modeling of liver DCE-MRI.

    Science.gov (United States)

    Ning, Jia; Schubert, Tilman; Johnson, Kevin M; Roldán-Alzate, Alejandro; Chen, Huijun; Yuan, Chun; Reeder, Scott B

    2018-06-01

    To propose a simple method to correct vascular input function (VIF) due to inflow effects and to test whether the proposed method can provide more accurate VIFs for improved pharmacokinetic modeling. A spoiled gradient echo sequence-based inflow quantification and contrast agent concentration correction method was proposed. Simulations were conducted to illustrate improvement in the accuracy of VIF estimation and pharmacokinetic fitting. Animal studies with dynamic contrast-enhanced MR scans were conducted before, 1 week after, and 2 weeks after portal vein embolization (PVE) was performed in the left portal circulation of pigs. The proposed method was applied to correct the VIFs for model fitting. Pharmacokinetic parameters fitted using corrected and uncorrected VIFs were compared between different lobes and visits. Simulation results demonstrated that the proposed method can improve accuracy of VIF estimation and pharmacokinetic fitting. In animal study results, pharmacokinetic fitting using corrected VIFs demonstrated changes in perfusion consistent with changes expected after PVE, whereas the perfusion estimates derived by uncorrected VIFs showed no significant changes. The proposed correction method improves accuracy of VIFs and therefore provides more precise pharmacokinetic fitting. This method may be promising in improving the reliability of perfusion quantification. Magn Reson Med 79:3093-3102, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  17. Realistic modelling of the seismic input: Site effects and parametric studies

    International Nuclear Information System (INIS)

    Romanelli, F.; Vaccari, F.; Panza, G.F.

    2002-11-01

    We illustrate the work done in the framework of a large international cooperation, showing the very recent numerical experiments carried out within the framework of the EC project 'Advanced methods for assessing the seismic vulnerability of existing motorway bridges' (VAB) to assess the importance of non-synchronous seismic excitation of long structures. The definition of the seismic input at the Warth bridge site, i.e. the determination of the seismic ground motion due to an earthquake with a given magnitude and epicentral distance from the site, has been done following a theoretical approach. In order to perform an accurate and realistic estimate of site effects and of differential motion it is necessary to make a parametric study that takes into account the complex combination of the source and propagation parameters, in realistic geological structures. The computation of a wide set of time histories and spectral information, corresponding to possible seismotectonic scenarios for different sources and structural models, allows us the construction of damage scenarios that are out of the reach of stochastic models, at a very low cost/benefit ratio. (author)

  18. A sensitivity analysis of a personalized pulse wave propagation model for arteriovenous fistula surgery. Part B: Identification of possible generic model parameters.

    Science.gov (United States)

    Huberts, W; de Jonge, C; van der Linden, W P M; Inda, M A; Passera, K; Tordoir, J H M; van de Vosse, F N; Bosboom, E M H

    2013-06-01

    Decision-making in vascular access surgery for hemodialysis can be supported by a pulse wave propagation model that is able to simulate pressure and flow changes induced by the creation of a vascular access. To personalize such a model, patient-specific input parameters should be chosen. However, the number of input parameters that can be measured in clinical routine is limited. Besides, patient data are compromised with uncertainty. Incomplete and uncertain input data will result in uncertainties in model predictions. In part A, we analyzed how the measurement uncertainty in the input propagates to the model output by means of a sensitivity analysis. Of all 73 input parameters, 16 parameters were identified to be worthwhile to measure more accurately and 51 could be fixed within their measurement uncertainty range, but these latter parameters still needed to be measured. Here, we present a methodology for assessing the model input parameters that can be taken constant and therefore do not need to be measured. In addition, a method to determine the value of this parameter is presented. For the pulse wave propagation model applied to vascular access surgery, six patient-specific datasets were analyzed and it was found that 47 out of 73 parameters can be fixed on a generic value. These model parameters are not important for personalization of the wave propagation model. Furthermore, we were able to determine a generic value for 37 of the 47 fixable model parameters. Copyright © 2012 IPEM. Published by Elsevier Ltd. All rights reserved.

  19. Use of regional climate model simulations as an input for hydrological models for the Hindukush-Karakorum-Himalaya region

    NARCIS (Netherlands)

    Akhtar, M.; Ahmad, N.; Booij, Martijn J.

    2009-01-01

    The most important climatological inputs required for the calibration and validation of hydrological models are temperature and precipitation that can be derived from observational records or alternatively from regional climate models (RCMs). In this paper, meteorological station observations and

  20. Backstepping control for a 3DOF model helicopter with input and output constraints

    Directory of Open Access Journals (Sweden)

    Rong Mei

    2016-02-01

    Full Text Available In this article, a backstepping control scheme is developed for the motion control of a Three degrees of freedom (3DOF model helicopter with unknown external disturbance, modelling uncertainties and input and output constraints. In the developed robust control scheme, augmented state observers are applied to estimate the unknown states, unknown external disturbance and modelling uncertainties. Auxiliary systems are designed to deal with input saturation. A barrier Lyapunov function is employed to handle the output saturation. The stability of closed-loop system is proved by the Lyapunov method. Simulation results show that the designed control scheme is effective at dealing with the motion control of a 3DOF model helicopter in the presence of unknown external disturbance and modelling uncertainties, and input and output saturation.

  1. ASR in a Human Word Recognition Model: Generating Phonemic Input for Shortlist

    OpenAIRE

    Scharenborg, O.E.; Boves, L.W.J.; Veth, J.M. de

    2002-01-01

    The current version of the psycholinguistic model of human word recognition Shortlist suffers from two unrealistic constraints. First, the input of Shortlist must consist of a single string of phoneme symbols. Second, the current version of the search in Shortlist makes it difficult to deal with insertions and deletions in the input phoneme string. This research attempts to fully automatically derive a phoneme string from the acoustic signal that is as close as possible to the number of phone...

  2. Realistic modeling of seismic input for megacities and large urban areas

    International Nuclear Information System (INIS)

    Panza, Giuliano F.; Alvarez, Leonardo; Aoudia, Abdelkrim

    2002-06-01

    The project addressed the problem of pre-disaster orientation: hazard prediction, risk assessment, and hazard mapping, in connection with seismic activity and man-induced vibrations. The definition of realistic seismic input has been obtained from the computation of a wide set of time histories and spectral information, corresponding to possible seismotectonic scenarios for different source and structural models. The innovative modeling technique, that constitutes the common tool to the entire project, takes into account source, propagation and local site effects. This is done using first principles of physics about wave generation and propagation in complex media, and does not require to resort to convolutive approaches, that have been proven to be quite unreliable, mainly when dealing with complex geological structures, the most interesting from the practical point of view. In fact, several techniques that have been proposed to empirically estimate the site effects using observations convolved with theoretically computed signals corresponding to simplified models, supply reliable information about the site response to non-interfering seismic phases. They are not adequate in most of the real cases, when the seismic sequel is formed by several interfering waves. The availability of realistic numerical simulations enables us to reliably estimate the amplification effects even in complex geological structures, exploiting the available geotechnical, lithological, geophysical parameters, topography of the medium, tectonic, historical, palaeoseismological data, and seismotectonic models. The realistic modeling of the ground motion is a very important base of knowledge for the preparation of groundshaking scenarios that represent a valid and economic tool for the seismic microzonation. This knowledge can be very fruitfully used by civil engineers in the design of new seismo-resistant constructions and in the reinforcement of the existing built environment, and, therefore

  3. Calibration of uncertain inputs to computer models using experimentally measured quantities and the BMARS emulator

    International Nuclear Information System (INIS)

    Stripling, H.F.; McClarren, R.G.; Kuranz, C.C.; Grosskopf, M.J.; Rutter, E.; Torralva, B.R.

    2011-01-01

    We present a method for calibrating the uncertain inputs to a computer model using available experimental data. The goal of the procedure is to produce posterior distributions of the uncertain inputs such that when samples from the posteriors are used as inputs to future model runs, the model is more likely to replicate (or predict) the experimental response. The calibration is performed by sampling the space of the uncertain inputs, using the computer model (or, more likely, an emulator for the computer model) to assign weights to the samples, and applying the weights to produce the posterior distributions and generate predictions of new experiments within confidence bounds. The method is similar to the Markov chain Monte Carlo (MCMC) calibration methods with independent sampling with the exception that we generate samples beforehand and replace the candidate acceptance routine with a weighting scheme. We apply our method to the calibration of a Hyades 2D model of laser energy deposition in beryllium. We employ a Bayesian Multivariate Adaptive Regression Splines (BMARS) emulator as a surrogate for Hyades 2D. We treat a range of uncertainties in our system, including uncertainties in the experimental inputs, experimental measurement error, and systematic experimental timing errors. The results of the calibration are posterior distributions that both agree with intuition and improve the accuracy and decrease the uncertainty in experimental predictions. (author)

  4. Advances in Modelling, System Identification and Parameter ...

    Indian Academy of Sciences (India)

    models determined from flight test data by using parameter estimation methods find extensive use in design/modification of flight control systems, high fidelity flight simulators and evaluation of handling qualitites of aircraft and rotorcraft. R K Mehra et al present new algorithms and results for flutter tests and adaptive notching ...

  5. Development of the MARS input model for Kori nuclear units 1 transient analyzer

    International Nuclear Information System (INIS)

    Hwang, M.; Kim, K. D.; Lee, S. W.; Lee, Y. J.; Lee, W. J.; Chung, B. D.; Jeong, J. J.

    2004-11-01

    KAERI has been developing the 'NSSS transient analyzer' based on best-estimate codes for Kori Nuclear Units 1 plants. The MARS and RETRAN codes have been used as the best-estimate codes for the NSSS transient analyzer. Among these codes, the MARS code is adopted for realistic analysis of small- and large-break loss-of-coolant accidents, of which break size is greater than 2 inch diameter. So it is necessary to develop the MARS input model for Kori Nuclear Units 1 plants. This report includes the input model (hydrodynamic component and heat structure models) requirements and the calculation note for the MARS input data generation for Kori Nuclear Units 1 plant analyzer (see the Appendix). In order to confirm the validity of the input data, we performed the calculations for a steady state at 100 % power operation condition and a double-ended cold leg break LOCA. The results of the steady-state calculation agree well with the design data. The results of the LOCA calculation seem to be reasonable and consistent with those of other best-estimate calculations. Therefore, the MARS input data can be used as a base input deck for the MARS transient analyzer for Kori Nuclear Units 1

  6. A lumped parameter model of plasma focus

    International Nuclear Information System (INIS)

    Gonzalez, Jose H.; Florido, Pablo C.; Bruzzone, H.; Clausse, Alejandro

    1999-01-01

    A lumped parameter model to estimate neutron emission of a plasma focus (PF) device is developed. The dynamic of the current sheet is calculated using a snowplow model, and the neutron production with the thermal fusion cross section for a deuterium filling gas. The results were contrasted as a function of the filling pressure with experimental measurements of a 3.68 KJ Mather-type PF. (author)

  7. One parameter model potential for noble metals

    International Nuclear Information System (INIS)

    Idrees, M.; Khwaja, F.A.; Razmi, M.S.K.

    1981-08-01

    A phenomenological one parameter model potential which includes s-d hybridization and core-core exchange contributions is proposed for noble metals. A number of interesting properties like liquid metal resistivities, band gaps, thermoelectric powers and ion-ion interaction potentials are calculated for Cu, Ag and Au. The results obtained are in better agreement with experiment than the ones predicted by the other model potentials in the literature. (author)

  8. The interspike interval of a cable model neuron with white noise input.

    Science.gov (United States)

    Tuckwell, H C; Wan, F Y; Wong, Y S

    1984-01-01

    The firing time of a cable model neuron in response to white noise current injection is investigated with various methods. The Fourier decomposition of the depolarization leads to partial differential equations for the moments of the firing time. These are solved by perturbation and numerical methods, and the results obtained are in excellent agreement with those obtained by Monte Carlo simulation. The convergence of the random Fourier series is found to be very slow for small times so that when the firing time is small it is more efficient to simulate the solution of the stochastic cable equation directly using the two different representations of the Green's function, one which converges rapidly for small times and the other which converges rapidly for large times. The shape of the interspike interval density is found to depend strongly on input position. The various shapes obtained for different input positions resemble those for real neurons. The coefficient of variation of the interspike interval decreases monotonically as the distance between the input and trigger zone increases. A diffusion approximation for a nerve cell receiving Poisson input is considered and input/output frequency relations obtained for different input sites. The cases of multiple trigger zones and multiple input sites are briefly discussed.

  9. Parameter optimization for surface flux transport models

    Science.gov (United States)

    Whitbread, T.; Yeates, A. R.; Muñoz-Jaramillo, A.; Petrie, G. J. D.

    2017-11-01

    Accurate prediction of solar activity calls for precise calibration of solar cycle models. Consequently we aim to find optimal parameters for models which describe the physical processes on the solar surface, which in turn act as proxies for what occurs in the interior and provide source terms for coronal models. We use a genetic algorithm to optimize surface flux transport models using National Solar Observatory (NSO) magnetogram data for Solar Cycle 23. This is applied to both a 1D model that inserts new magnetic flux in the form of idealized bipolar magnetic regions, and also to a 2D model that assimilates specific shapes of real active regions. The genetic algorithm searches for parameter sets (meridional flow speed and profile, supergranular diffusivity, initial magnetic field, and radial decay time) that produce the best fit between observed and simulated butterfly diagrams, weighted by a latitude-dependent error structure which reflects uncertainty in observations. Due to the easily adaptable nature of the 2D model, the optimization process is repeated for Cycles 21, 22, and 24 in order to analyse cycle-to-cycle variation of the optimal solution. We find that the ranges and optimal solutions for the various regimes are in reasonable agreement with results from the literature, both theoretical and observational. The optimal meridional flow profiles for each regime are almost entirely within observational bounds determined by magnetic feature tracking, with the 2D model being able to accommodate the mean observed profile more successfully. Differences between models appear to be important in deciding values for the diffusive and decay terms. In like fashion, differences in the behaviours of different solar cycles lead to contrasts in parameters defining the meridional flow and initial field strength.

  10. Modeling the short-run effect of fiscal stimuli on GDP : A new semi-closed input-output model

    NARCIS (Netherlands)

    Chen, Quanrun; Dietzenbacher, Erik; Los, Bart; Yang, Cuihong

    2016-01-01

    In this study, we propose a new semi-closed input-output model, which reconciles input-output analysis with modern consumption theories. It can simulate changes in household consumption behavior when exogenous stimulus policies lead to higher disposable income levels. It is useful for quantifying

  11. Regional disaster impact analysis: comparing Input-Output and Computable General Equilibrium models

    NARCIS (Netherlands)

    Koks, E.E.; Carrera, L.; Jonkeren, O.; Aerts, J.C.J.H.; Husby, T.G.; Thissen, M.; Standardi, G.; Mysiak, J.

    2016-01-01

    A variety of models have been applied to assess the economic losses of disasters, of which the most common ones are input-output (IO) and computable general equilibrium (CGE) models. In addition, an increasing number of scholars have developed hybrid approaches: one that combines both or either of

  12. Improving the Performance of Water Demand Forecasting Models by Using Weather Input

    NARCIS (Netherlands)

    Bakker, M.; Van Duist, H.; Van Schagen, K.; Vreeburg, J.; Rietveld, L.

    2014-01-01

    Literature shows that water demand forecasting models which use water demand as single input, are capable of generating a fairly accurate forecast. However, at changing weather conditions the forecasting errors are quite large. In this paper three different forecasting models are studied: an

  13. Logistics flows and enterprise input-output models: aggregate and disaggregate analysis

    NARCIS (Netherlands)

    Albino, V.; Yazan, Devrim; Messeni Petruzzelli, A.; Okogbaa, O.G.

    2011-01-01

    In the present paper, we propose the use of enterprise input-output (EIO) models to describe and analyse the logistics flows considering spatial issues and related environmental effects associated with production and transportation processes. In particular, transportation is modelled as a specific

  14. GEN-IV Benchmarking of Triso Fuel Performance Models under accident conditions modeling input data

    Energy Technology Data Exchange (ETDEWEB)

    Collin, Blaise Paul [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-09-01

    This document presents the benchmark plan for the calculation of particle fuel performance on safety testing experiments that are representative of operational accidental transients. The benchmark is dedicated to the modeling of fission product release under accident conditions by fuel performance codes from around the world, and the subsequent comparison to post-irradiation experiment (PIE) data from the modeled heating tests. The accident condition benchmark is divided into three parts: • The modeling of a simplified benchmark problem to assess potential numerical calculation issues at low fission product release. • The modeling of the AGR-1 and HFR-EU1bis safety testing experiments. • The comparison of the AGR-1 and HFR-EU1bis modeling results with PIE data. The simplified benchmark case, thereafter named NCC (Numerical Calculation Case), is derived from “Case 5” of the International Atomic Energy Agency (IAEA) Coordinated Research Program (CRP) on coated particle fuel technology [IAEA 2012]. It is included so participants can evaluate their codes at low fission product release. “Case 5” of the IAEA CRP-6 showed large code-to-code discrepancies in the release of fission products, which were attributed to “effects of the numerical calculation method rather than the physical model” [IAEA 2012]. The NCC is therefore intended to check if these numerical effects subsist. The first two steps imply the involvement of the benchmark participants with a modeling effort following the guidelines and recommendations provided by this document. The third step involves the collection of the modeling results by Idaho National Laboratory (INL) and the comparison of these results with the available PIE data. The objective of this document is to provide all necessary input data to model the benchmark cases, and to give some methodology guidelines and recommendations in order to make all results suitable for comparison with each other. The participants should read

  15. Analisis Perbandingan Parameter Transformasi Antar Itrf Hasil Hitungan Kuadrat Terkecil Model Helmert 14-parameter Dengan Parameter Standar Iers

    OpenAIRE

    Fadly, Romi; Dewi, Citra

    2014-01-01

    This research aims to compare the 14 transformation parameters between ITRF from computation result using the Helmert 14-parameter models with IERS standard parameters. The transforma- tion parameters are calculated from the coordinates and velocities of ITRF05 to ITRF00 epoch 2000.00, and from ITRF08 to ITRF05 epoch 2005.00 for respectively transformation models. The transformation parameters are compared to the IERS standard parameters, then tested the signifi- cance of the d...

  16. Development of an Input Model to MELCOR 1.8.5 for the Oskarshamn 3 BWR

    Energy Technology Data Exchange (ETDEWEB)

    Nilsson, Lars [Lentek, Nykoeping (Sweden)

    2006-05-15

    An input model has been prepared to the code MELCOR 1.8.5 for the Swedish Oskarshamn 3 Boiling Water Reactor (O3). This report describes the modelling work and the various files which comprise the input deck. Input data are mainly based on original drawings and system descriptions made available by courtesy of OKG AB. Comparison and check of some primary system data were made against an O3 input file to the SCDAP/RELAP5 code that was used in the SARA project. Useful information was also obtained from the FSAR (Final Safety Analysis Report) for O3 and the SKI report '2003 Stoerningshandboken BWR'. The input models the O3 reactor at its current state with the operating power of 3300 MW{sub th}. One aim with this work is that the MELCOR input could also be used for power upgrading studies. All fuel assemblies are thus assumed to consist of the new Westinghouse-Atom's SVEA-96 Optima2 fuel. MELCOR is a severe accident code developed by Sandia National Laboratory under contract from the U.S. Nuclear Regulatory Commission (NRC). MELCOR is a successor to STCP (Source Term Code Package) and has thus a long evolutionary history. The input described here is adapted to the latest version 1.8.5 available when the work began. It was released the year 2000, but a new version 1.8.6 was distributed recently. Conversion to the new version is recommended. (During the writing of this report still another code version, MELCOR 2.0, has been announced to be released within short.) In version 1.8.5 there is an option to describe the accident progression in the lower plenum and the melt-through of the reactor vessel bottom in more detail by use of the Bottom Head (BH) package developed by Oak Ridge National Laboratory especially for BWRs. This is in addition to the ordinary MELCOR COR package. Since problems arose running with the BH input two versions of the O3 input deck were produced, a NONBH and a BH deck. The BH package is no longer a separate package in the new 1

  17. Influence of the spatial extent and resolution of input data on soil carbon models in Florida, USA

    Science.gov (United States)

    Vasques, Gustavo M.; Grunwald, S.; Myers, D. Brenton

    2012-12-01

    Understanding the causes of spatial variation of soil carbon (C) has important implications for regional and global C dynamics studies. Soil C predictive models can identify sources of C variation, but may be influenced by scale parameters, including the spatial extent and resolution of input data. Our objective was to investigate the influence of these scale parameters on soil C spatial predictive models in Florida, USA. We used data from three nested spatial extents (Florida, 150,000 km2; Santa Fe River watershed, 3,585 km2; and University of Florida Beef Cattle Station, 5.58 km2) to derive stepwise linear models of soil C as a function of 24 environmental properties. Models were derived within the three extents and for seven resolutions (30-1920 m) of input environmental data in Florida and in the watershed, then cross-evaluated among extents and resolutions, respectively. The quality of soil C models increased with an increase in the spatial extent (R2 from 0.10 in the cattle station to 0.61 in Florida) and with a decrease in the resolution of input data (R2 from 0.33 at 1920-m resolution to 0.61 at 30-m resolution in Florida). Soil and hydrologic variables were the most important across the seven resolutions both in Florida and in the watershed. The spatial extent and resolution of environmental covariates modulate soil C variation and soil-landscape correlations influencing soil C predictive models. Our results provide scale boundaries to observe environmental data and assess soil C spatial patterns, supporting C sequestration, budgeting and monitoring programs.

  18. Constant-parameter capture-recapture models

    Science.gov (United States)

    Brownie, C.; Hines, J.E.; Nichols, J.D.

    1986-01-01

    Jolly (1982, Biometrics 38, 301-321) presented modifications of the Jolly-Seber model for capture-recapture data, which assume constant survival and/or capture rates. Where appropriate, because of the reduced number of parameters, these models lead to more efficient estimators than the Jolly-Seber model. The tests to compare models given by Jolly do not make complete use of the data, and we present here the appropriate modifications, and also indicate how to carry out goodness-of-fit tests which utilize individual capture history information. We also describe analogous models for the case where young and adult animals are tagged. The availability of computer programs to perform the analysis is noted, and examples are given using output from these programs.

  19. Joint state and parameter estimation for a class of cascade systems: Application to a hemodynamic model

    KAUST Repository

    Zayane, Chadia

    2014-06-01

    In this paper, we address a special case of state and parameter estimation, where the system can be put on a cascade form allowing to estimate the state components and the set of unknown parameters separately. Inspired by the nonlinear Balloon hemodynamic model for functional Magnetic Resonance Imaging problem, we propose a hierarchical approach. The system is divided into two subsystems in cascade. The state and input are first estimated from a noisy measured signal using an adaptive observer. The obtained input is then used to estimate the parameters of a linear system using the modulating functions method. Some numerical results are presented to illustrate the efficiency of the proposed method.

  20. Design of vaccination and fumigation on Host-Vector Model by input-output linearization method

    Science.gov (United States)

    Nugraha, Edwin Setiawan; Naiborhu, Janson; Nuraini, Nuning

    2017-03-01

    Here, we analyze the Host-Vector Model and proposed design of vaccination and fumigation to control infectious population by using feedback control especially input-output liniearization method. Host population is divided into three compartments: susceptible, infectious and recovery. Whereas the vector population is divided into two compartment such as susceptible and infectious. In this system, vaccination and fumigation treat as input factors and infectious population as output result. The objective of design is to stabilize of the output asymptotically tend to zero. We also present the examples to illustrate the design model.

  1. Predicting the combined effect of TiO{sub 2} nano-particles and welding input parameters on the hardness of melted zone in submerged arc welding by fuzzy logic

    Energy Technology Data Exchange (ETDEWEB)

    Aghakhani, Masood; Ghaderi, Mohammad Reza; Jalilian, Maziar Mahdipour; Derakhshan, Ali Ashraf [Razi University, Kermanshah (Iran, Islamic Republic of)

    2013-07-15

    Submerged arc welding (SAW) is a high-quality arc welding process used in heavy industries for welding thick plates. In this process, selecting appropriate values for the input parameters is required for high productivity and cost effectiveness. A very important weld quality characteristic affected by welding input parameters is the hardness of melted zone (HMZ). This paper reports the applicability of fuzzy logic (FL) to predict HMZ in the SAW process which is affected by the combined effect of TiO{sub 2} nano-particles and welding input parameters. The arc voltage, welding current, welding speed, contact tip-to-plate distance, and TiO{sub 2} nano-particles were used as input parameters and HMZ as the response to develop FL model. A five-level five-factor central composite rotatable design (CCRD) was used in the experiments to generate experimental data. Experiments were performed, and HMZs were measured. The predicted results from FL were compared with the experimental data. The correlation factor value obtained was 99.99% between the measured and predicted values of HMZ. The results showed that FL is an accurate and reliable technique for predicting HMZ because of its low error rate.

  2. Aqueous Electrolytes: Model Parameters and Process Simulation

    DEFF Research Database (Denmark)

    Thomsen, Kaj

    This thesis deals with aqueous electrolyte mixtures. The Extended UNIQUAC model is being used to describe the excess Gibbs energy of such solutions. Extended UNIQUAC parameters for the twelve ions Na+, K+, NH4+, H+, Cl-, NO3-, SO42-, HSO4-, OH-, CO32-, HCO3-, and S2O82- are estimated. A computer ...... program including a steady state process simulator for the design, simulation, and optimization of fractional crystallization processes is presented.......This thesis deals with aqueous electrolyte mixtures. The Extended UNIQUAC model is being used to describe the excess Gibbs energy of such solutions. Extended UNIQUAC parameters for the twelve ions Na+, K+, NH4+, H+, Cl-, NO3-, SO42-, HSO4-, OH-, CO32-, HCO3-, and S2O82- are estimated. A computer...

  3. Recurrent network models for perfect temporal integration of fluctuating correlated inputs.

    Directory of Open Access Journals (Sweden)

    Hiroshi Okamoto

    2009-06-01

    Full Text Available Temporal integration of input is essential to the accumulation of information in various cognitive and behavioral processes, and gradually increasing neuronal activity, typically occurring within a range of seconds, is considered to reflect such computation by the brain. Some psychological evidence suggests that temporal integration by the brain is nearly perfect, that is, the integration is non-leaky, and the output of a neural integrator is accurately proportional to the strength of input. Neural mechanisms of perfect temporal integration, however, remain largely unknown. Here, we propose a recurrent network model of cortical neurons that perfectly integrates partially correlated, irregular input spike trains. We demonstrate that the rate of this temporal integration changes proportionately to the probability of spike coincidences in synaptic inputs. We analytically prove that this highly accurate integration of synaptic inputs emerges from integration of the variance of the fluctuating synaptic inputs, when their mean component is kept constant. Highly irregular neuronal firing and spike coincidences are the major features of cortical activity, but they have been separately addressed so far. Our results suggest that the efficient protocol of information integration by cortical networks essentially requires both features and hence is heterotic.

  4. Modelling tourists arrival using time varying parameter

    Science.gov (United States)

    Suciptawati, P.; Sukarsa, K. G.; Kencana, Eka N.

    2017-06-01

    The importance of tourism and its related sectors to support economic development and poverty reduction in many countries increase researchers’ attentions to study and model tourists’ arrival. This work is aimed to demonstrate time varying parameter (TVP) technique to model the arrival of Korean’s tourists to Bali. The number of Korean tourists whom visiting Bali for period January 2010 to December 2015 were used to model the number of Korean’s tourists to Bali (KOR) as dependent variable. The predictors are the exchange rate of Won to IDR (WON), the inflation rate in Korea (INFKR), and the inflation rate in Indonesia (INFID). Observing tourists visit to Bali tend to fluctuate by their nationality, then the model was built by applying TVP and its parameters were approximated using Kalman Filter algorithm. The results showed all of predictor variables (WON, INFKR, INFID) significantly affect KOR. For in-sample and out-of-sample forecast with ARIMA’s forecasted values for the predictors, TVP model gave mean absolute percentage error (MAPE) as much as 11.24 percent and 12.86 percent, respectively.

  5. Development of algorithm for depreciation costs allocation in dynamic input-output industrial enterprise model

    OpenAIRE

    Keller Alevtina; Vinogradova Tatyana

    2017-01-01

    The article considers the issue of allocation of depreciation costs in the dynamic inputoutput model of an industrial enterprise. Accounting the depreciation costs in such a model improves the policy of fixed assets management. It is particularly relevant to develop the algorithm for the allocation of depreciation costs in the construction of dynamic input-output model of an industrial enterprise, since such enterprises have a significant amount of fixed assets. Implementation of terms of the...

  6. Stream Heat Budget Modeling of Groundwater Inputs: Model Development and Validation

    Science.gov (United States)

    Glose, A.; Lautz, L. K.

    2012-12-01

    Models of physical processes in fluvial systems are useful for improving understanding of hydrologic systems and for predicting future conditions. Process-based models of fluid flow and heat transport in fluvial systems can be used to quantify unknown spatial and temporal patterns of hydrologic fluxes, such as groundwater discharge, and to predict system response to future change. In this study, a stream heat budget model was developed and calibrated to observed stream water temperature data for Meadowbrook Creek in Syracuse, NY. The one-dimensional (longitudinal), transient stream temperature model is programmed in Matlab and solves the equations for heat and fluid transport using a Crank-Nicholson finite difference scheme. The model considers four meteorologically driven heat fluxes: shortwave solar radiation, longwave radiation, latent heat flux, and sensible heat flux. Streambed conduction is also considered. Input data for the model were collected from June 13-18, 2012 over a 500 m reach of Meadowbrook Creek, a first order urban stream that drains a retention pond in the city of Syracuse, NY. Stream temperature data were recorded every 20 m longitudinally in the stream at 5-minute intervals using iButtons (model DS1922L, accuracy of ±0.5°C, resolution of 0.0625°C). Meteorological data, including air temperature, solar radiation, relative humidity, and wind speed, were recorded at 5-minute intervals using an on-site weather station. Groundwater temperature was measured in wells adjacent to the stream. Stream dimensions, bed temperatures, and type of bed sediments were also collected. A constant rate tracer injection of Rhodamine WT was used to quantify groundwater inputs every 10 m independently to validate model results. Stream temperatures fluctuated diurnally by ~3-5 °C during the observation period with temperatures peaking around 2 pm and cooling overnight, reaching a minimum between 6 and 7 am. Spatially, the stream shows a cooling trend along the

  7. Lumped Parameters Model of a Crescent Pump

    Directory of Open Access Journals (Sweden)

    Massimo Rundo

    2016-10-01

    Full Text Available This paper presents the lumped parameters model of an internal gear crescent pump with relief valve, able to estimate the steady-state flow-pressure characteristic and the pressure ripple. The approach is based on the identification of three variable control volumes regardless of the number of gear teeth. The model has been implemented in the commercial environment LMS Amesim with the development of customized components. Specific attention has been paid to the leakage passageways, some of them affected by the deformation of the cover plate under the action of the delivery pressure. The paper reports the finite element method analysis of the cover for the evaluation of the deflection and the validation through a contactless displacement transducer. Another aspect described in this study is represented by the computational fluid dynamics analysis of the relief valve, whose results have been used for tuning the lumped parameters model. Finally, the validation of the entire model of the pump is presented in terms of steady-state flow rate and of pressure oscillations.

  8. Sensitivity of predicted bioaerosol exposure from open windrow composting facilities to ADMS dispersion model parameters.

    Science.gov (United States)

    Douglas, P; Tyrrel, S F; Kinnersley, R P; Whelan, M; Longhurst, P J; Walsh, K; Pollard, S J T; Drew, G H

    2016-12-15

    Bioaerosols are released in elevated quantities from composting facilities and are associated with negative health effects, although dose-response relationships are not well understood, and require improved exposure classification. Dispersion modelling has great potential to improve exposure classification, but has not yet been extensively used or validated in this context. We present a sensitivity analysis of the ADMS dispersion model specific to input parameter ranges relevant to bioaerosol emissions from open windrow composting. This analysis provides an aid for model calibration by prioritising parameter adjustment and targeting independent parameter estimation. Results showed that predicted exposure was most sensitive to the wet and dry deposition modules and the majority of parameters relating to emission source characteristics, including pollutant emission velocity, source geometry and source height. This research improves understanding of the accuracy of model input data required to provide more reliable exposure predictions. Copyright © 2016. Published by Elsevier Ltd.

  9. Input-Output model for waste management plan for Nigeria | Njoku ...

    African Journals Online (AJOL)

    An Input-Output Model for Waste Management Plan has been developed for Nigeria based on Leontief concept and life cycle analysis. Waste was considered as source of pollution, loss of resources, and emission of green house gasses from bio-chemical treatment and decomposition, with negative impact on the ...

  10. Land cover models to predict non-point nutrient inputs for selected ...

    African Journals Online (AJOL)

    WQSAM is a practical water quality model for use in guiding southern African water quality management. However, the estimation of non-point nutrient inputs within WQSAM is uncertain, as it is achieved through a combination of calibration and expert knowledge. Non-point source loads can be correlated to particular land ...

  11. Comparison of plasma input and reference tissue models for analysing [(11)C]flumazenil studies

    NARCIS (Netherlands)

    Klumpers, Ursula M. H.; Veltman, Dick J.; Boellaard, Ronald; Comans, Emile F.; Zuketto, Cassandra; Yaqub, Maqsood; Mourik, Jurgen E. M.; Lubberink, Mark; Hoogendijk, Witte J. G.; Lammertsma, Adriaan A.

    2008-01-01

    A single-tissue compartment model with plasma input is the established method for analysing [(11)C]flumazenil ([(11)C]FMZ) studies. However, arterial cannulation and measurement of metabolites are time-consuming. Therefore, a reference tissue approach is appealing, but this approach has not been

  12. The economic impact of multifunctional agriculture in The Netherlands: A regional input-output model

    NARCIS (Netherlands)

    Heringa, P.W.; Heide, van der C.M.; Heijman, W.J.M.

    2012-01-01

    Multifunctional agriculture is a broad concept lacking a precise and uniform definition. Moreover, little is known about the societal importance of multifunctional agriculture. This paper is an empirical attempt to fill this gap. To this end, an input-output model is constructed for multifunctional

  13. The economic impact of multifunctional agriculture in Dutch regions: An input-output model

    NARCIS (Netherlands)

    Heringa, P.W.; Heide, van der C.M.; Heijman, W.J.M.

    2013-01-01

    Multifunctional agriculture is a broad concept lacking a precise definition. Moreover, little is known about the societal importance of multifunctional agriculture. This paper is an empirical attempt to fill this gap. To this end, an input-output model was constructed for multifunctional agriculture

  14. A Dynamic Fuzzy Controller to Meet Thermal Comfort by Using Neural Network Forecasted Parameters as the Input

    Directory of Open Access Journals (Sweden)

    Mario Collotta

    2014-07-01

    Full Text Available Heating, ventilating and air-conditioning (HVAC systems are typical non-linear time-variable multivariate systems with disturbances and uncertainties. In this paper, an approach based on a combined neuro-fuzzy model for dynamic and automatic regulation of indoor temperature is proposed. The proposed artificial neural network performs indoor temperatures forecasts that are used to feed a fuzzy logic control unit in order to manage the on/off switching of the HVAC system and the regulation of the inlet air speed. Moreover, the used neural network is optimized by the analytical calculation of the embedding parameters, and the goodness of this approach is tested through MATLAB. The fuzzy controller is driven by the indoor temperature forecasted by the neural network module and is able to adjust the membership functions dynamically, since thermal comfort is a very subjective factor and may vary even in the same subject. The paper shows some experimental results, through a real implementation in an embedded prototyping board, of the proposed approach in terms of the evolution of the inlet air speed injected by the fan coils, the indoor air temperature forecasted by the neural network model and the adjusting of the membership functions after receiving user feedback.

  15. Input parameters and scenarios, including economic inputs

    DEFF Research Database (Denmark)

    Boklund, Anette; Hisham Beshara Halasa, Tariq

    2012-01-01

    stand still was initiated. Furthermore, infected herds were depopulated and a 3 km detection zone and a 10 km surveillance zone were implemented around all infected herds. Within the protections zones, all herds were simulated to be clinically surveyed twice, first within 7 days after implementing...... the zone, and second 21 days later. Sheep within the zone were simulated to be tested. Within the surveillance zone, all herds were simulated to be clinically surveyed within 7 days, and sheep within the zone were simulated to be tested within 7 days and again before lifting the zone. Herds, which had...... in ringzones of varying radii around infected herds. In alternative scenarios, we tested the effect of depopulating in zones of 500, 1000 and 1500 meters from infected herds. Depopulation was started on day 14 after detection of the first herd, or after detecting 10, 20, 30 or 50 infected herds. In some...

  16. Design, Fabrication, and Modeling of a Novel Dual-Axis Control Input PZT Gyroscope

    Directory of Open Access Journals (Sweden)

    Cheng-Yang Chang

    2017-10-01

    Full Text Available Conventional gyroscopes are equipped with a single-axis control input, limiting their performance. Although researchers have proposed control algorithms with dual-axis control inputs to improve gyroscope performance, most have verified the control algorithms through numerical simulations because they lacked practical devices with dual-axis control inputs. The aim of this study was to design a piezoelectric gyroscope equipped with a dual-axis control input so that researchers may experimentally verify those control algorithms in future. Designing a piezoelectric gyroscope with a dual-axis control input is more difficult than designing a conventional gyroscope because the control input must be effective over a broad frequency range to compensate for imperfections, and the multiple mode shapes in flexural deformations complicate the relation between flexural deformation and the proof mass position. This study solved these problems by using a lead zirconate titanate (PZT material, introducing additional electrodes for shielding, developing an optimal electrode pattern, and performing calibrations of undesired couplings. The results indicated that the fabricated device could be operated at 5.5±1 kHz to perform dual-axis actuations and position measurements. The calibration of the fabricated device was completed by system identifications of a new dynamic model including gyroscopic motions, electromechanical coupling, mechanical coupling, electrostatic coupling, and capacitive output impedance. Finally, without the assistance of control algorithms, the “open loop sensitivity” of the fabricated gyroscope was 1.82 μV/deg/s with a nonlinearity of 9.5% full-scale output. This sensitivity is comparable with those of other PZT gyroscopes with single-axis control inputs.

  17. Linear and quadratic models of point process systems: contributions of patterned input to output.

    Science.gov (United States)

    Lindsay, K A; Rosenberg, J R

    2012-08-01

    In the 1880's Volterra characterised a nonlinear system using a functional series connecting continuous input and continuous output. Norbert Wiener, in the 1940's, circumvented problems associated with the application of Volterra series to physical problems by deriving from it a new series of terms that are mutually uncorrelated with respect to Gaussian processes. Subsequently, Brillinger, in the 1970's, introduced a point-process analogue of Volterra's series connecting point-process inputs to the instantaneous rate of point-process output. We derive here a new series from this analogue in which its terms are mutually uncorrelated with respect to Poisson processes. This new series expresses how patterned input in a spike train, represented by third-order cross-cumulants, is converted into the instantaneous rate of an output point-process. Given experimental records of suitable duration, the contribution of arbitrary patterned input to an output process can, in principle, be determined. Solutions for linear and quadratic point-process models with one and two inputs and a single output are investigated. Our theoretical results are applied to isolated muscle spindle data in which the spike trains from the primary and secondary endings from the same muscle spindle are recorded in response to stimulation of one and then two static fusimotor axons in the absence and presence of a random length change imposed on the parent muscle. For a fixed mean rate of input spikes, the analysis of the experimental data makes explicit which patterns of two input spikes contribute to an output spike. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Design, Fabrication, and Modeling of a Novel Dual-Axis Control Input PZT Gyroscope.

    Science.gov (United States)

    Chang, Cheng-Yang; Chen, Tsung-Lin

    2017-10-31

    Conventional gyroscopes are equipped with a single-axis control input, limiting their performance. Although researchers have proposed control algorithms with dual-axis control inputs to improve gyroscope performance, most have verified the control algorithms through numerical simulations because they lacked practical devices with dual-axis control inputs. The aim of this study was to design a piezoelectric gyroscope equipped with a dual-axis control input so that researchers may experimentally verify those control algorithms in future. Designing a piezoelectric gyroscope with a dual-axis control input is more difficult than designing a conventional gyroscope because the control input must be effective over a broad frequency range to compensate for imperfections, and the multiple mode shapes in flexural deformations complicate the relation between flexural deformation and the proof mass position. This study solved these problems by using a lead zirconate titanate (PZT) material, introducing additional electrodes for shielding, developing an optimal electrode pattern, and performing calibrations of undesired couplings. The results indicated that the fabricated device could be operated at 5.5±1 kHz to perform dual-axis actuations and position measurements. The calibration of the fabricated device was completed by system identifications of a new dynamic model including gyroscopic motions, electromechanical coupling, mechanical coupling, electrostatic coupling, and capacitive output impedance. Finally, without the assistance of control algorithms, the "open loop sensitivity" of the fabricated gyroscope was 1.82 μV/deg/s with a nonlinearity of 9.5% full-scale output. This sensitivity is comparable with those of other PZT gyroscopes with single-axis control inputs.

  19. Artificial neural network modelling of biological oxygen demand in rivers at the national level with input selection based on Monte Carlo simulations.

    Science.gov (United States)

    Šiljić, Aleksandra; Antanasijević, Davor; Perić-Grujić, Aleksandra; Ristić, Mirjana; Pocajt, Viktor

    2015-03-01

    Biological oxygen demand (BOD) is the most significant water quality parameter and indicates water pollution with respect to the present biodegradable organic matter content. European countries are therefore obliged to report annual BOD values to Eurostat; however, BOD data at the national level is only available for 28 of 35 listed European countries for the period prior to 2008, among which 46% of data is missing. This paper describes the development of an artificial neural network model for the forecasting of annual BOD values at the national level, using widely available sustainability and economical/industrial parameters as inputs. The initial general regression neural network (GRNN) model was trained, validated and tested utilizing 20 inputs. The number of inputs was reduced to 15 using the Monte Carlo simulation technique as the input selection method. The best results were achieved with the GRNN model utilizing 25% less inputs than the initial model and a comparison with a multiple linear regression model trained and tested using the same input variables using multiple statistical performance indicators confirmed the advantage of the GRNN model. Sensitivity analysis has shown that inputs with the greatest effect on the GRNN model were (in descending order) precipitation, rural population with access to improved water sources, treatment capacity of wastewater treatment plants (urban) and treatment of municipal waste, with the last two having an equal effect. Finally, it was concluded that the developed GRNN model can be useful as a tool to support the decision-making process on sustainable development at a regional, national and international level.

  20. INTEGRATION OF INPUT - OUTPUT APPROACH INTO AGENT-BASED MODELING. PART 2. INTERREGIONAL ANALYSIS IN AN ARTIFICIAL ECONOMY

    Directory of Open Access Journals (Sweden)

    Domozhirov D. A.

    2017-06-01

    Full Text Available The article demonstrates the possibilities of spatial analysis provided by the Agent-Based Multiregional Input - Output Model (ABMIOM of the Russian economy. The basic hypothesis of the ABMIOM is that agents’ decisions at the microeconomic level lead to spatial changes at the macro level. Confirmation of this hypothesis requires experimental calculations with changes in various parameters that influence agents’ decisions (such as prices, taxes, tariffs, etc.. Analyzing the results of these calculations requires moving from microeconomic data to the macro level. The paper proposes a method for the structural analysis of the model simulation results using input-output tables. The method involves statistical aggregation of calculation results, construction of regional, national and interregional input-output tables and structural analysis of the obtained tables including calculation of regional Leontief multipliers. The method proposed is used to study the influence of the level of transport costs on the geographical structure of trade flows. The results of the experiments confirmed that with the increase of transportation costs economic agents prefer to interact with nearest agents, which leads to a decreased interregional commodity exchange and to economic «insulation» of the regions.

  1. Responses of two nonlinear microbial models to warming and increased carbon input

    Science.gov (United States)

    Wang, Y. P.; Jiang, J.; Chen-Charpentier, B.; Agusto, F. B.; Hastings, A.; Hoffman, F.; Rasmussen, M.; Smith, M. J.; Todd-Brown, K.; Wang, Y.; Xu, X.; Luo, Y. Q.

    2016-02-01

    A number of nonlinear microbial models of soil carbon decomposition have been developed. Some of them have been applied globally but have yet to be shown to realistically represent soil carbon dynamics in the field. A thorough analysis of their key differences is needed to inform future model developments. Here we compare two nonlinear microbial models of soil carbon decomposition: one based on reverse Michaelis-Menten kinetics (model A) and the other on regular Michaelis-Menten kinetics (model B). Using analytic approximations and numerical solutions, we find that the oscillatory responses of carbon pools to a small perturbation in their initial pool sizes dampen faster in model A than in model B. Soil warming always decreases carbon storage in model A, but in model B it predominantly decreases carbon storage in cool regions and increases carbon storage in warm regions. For both models, the CO2 efflux from soil carbon decomposition reaches a maximum value some time after increased carbon input (as in priming experiments). This maximum CO2 efflux (Fmax) decreases with an increase in soil temperature in both models. However, the sensitivity of Fmax to the increased amount of carbon input increases with soil temperature in model A but decreases monotonically with an increase in soil temperature in model B. These differences in the responses to soil warming and carbon input between the two nonlinear models can be used to discern which model is more realistic when compared to results from field or laboratory experiments. These insights will contribute to an improved understanding of the significance of soil microbial processes in soil carbon responses to future climate change.

  2. Development of the MARS input model for Ulchin 1/2 transient analyzer

    International Nuclear Information System (INIS)

    Jeong, J. J.; Kim, K. D.; Lee, S. W.; Lee, Y. J.; Chung, B. D.; Hwang, M.

    2003-03-01

    KAERI has been developing the NSSS transient analyzer based on best-estimate codes for Ulchin 1/2 plants. The MARS and RETRAN code are used as the best-estimate codes for the NSSS transient analyzer. Among the two codes, the MARS code is to be used for realistic analysis of small- and large-break loss-of-coolant accidents, of which break size is greater than 2 inch diameter. This report includes the input model requirements and the calculation note for the Ulchin 1/2 MARS input data generation (see the Appendix). In order to confirm the validity of the input data, we performed the calculations for a steady state at 100 % power operation condition and a double-ended cold leg break LOCA. The results of the steady-state calculation agree well with the design data. The results of the LOCA calculation seem to be reasonable and consistent with those of other best-estimate calculations. Therefore, the MARS input data can be used as a base input deck for the MARS transient analyzer for Ulchin 1/2

  3. Development of the MARS input model for Ulchin 3/4 transient analyzer

    International Nuclear Information System (INIS)

    Jeong, J. J.; Kim, K. D.; Lee, S. W.; Lee, Y. J.; Lee, W. J.; Chung, B. D.; Hwang, M. G.

    2003-12-01

    KAERI has been developing the NSSS transient analyzer based on best-estimate codes.The MARS and RETRAN code are adopted as the best-estimate codes for the NSSS transient analyzer. Among these two codes, the MARS code is to be used for realistic analysis of small- and large-break loss-of-coolant accidents, of which break size is greater than 2 inch diameter. This report includes the MARS input model requirements and the calculation note for the MARS input data generation (see the Appendix) for Ulchin 3/4 plant analyzer. In order to confirm the validity of the input data, we performed the calculations for a steady state at 100 % power operation condition and a double-ended cold leg break LOCA. The results of the steady-state calculation agree well with the design data. The results of the LOCA calculation seem to be reasonable and consistent with those of other best-estimate calculations. Therefore, the MARS input data can be used as a base input deck for the MARS transient analyzer for Ulchin 3/4

  4. Human upright posture control models based on multisensory inputs; in fast and slow dynamics.

    Science.gov (United States)

    Chiba, Ryosuke; Takakusaki, Kaoru; Ota, Jun; Yozu, Arito; Haga, Nobuhiko

    2016-03-01

    Posture control to maintain an upright stance is one of the most important and basic requirements in the daily life of humans. The sensory inputs involved in posture control include visual and vestibular inputs, as well as proprioceptive and tactile somatosensory inputs. These multisensory inputs are integrated to represent the body state (body schema); this is then utilized in the brain to generate the motion. Changes in the multisensory inputs result in postural alterations (fast dynamics), as well as long-term alterations in multisensory integration and posture control itself (slow dynamics). In this review, we discuss the fast and slow dynamics, with a focus on multisensory integration including an introduction of our study to investigate "internal force control" with multisensory integration-evoked posture alteration. We found that the study of the slow dynamics is lagging compared to that of fast dynamics, such that our understanding of long-term alterations is insufficient to reveal the underlying mechanisms and to propose suitable models. Additional studies investigating slow dynamics are required to expand our knowledge of this area, which would support the physical training and rehabilitation of elderly and impaired persons. Copyright © 2015 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  5. ANALYSIS OF THE BANDUNG CHANGES EXCELLENT POTENTIAL THROUGH INPUT-OUTPUT MODEL USING INDEX LE MASNE

    Directory of Open Access Journals (Sweden)

    Teti Sofia Yanti

    2017-03-01

    Full Text Available Input-Output Table is arranged to present an overview of the interrelationships and interdependence between units of activity (sector production in the whole economy. Therefore the input-output models are complete and comprehensive analytical tool. The usefulness of input-output tables is an analysis of the economic structure of the national/regional level which covers the structure of production and value-added (GDP of each sector. For the purposes of planning and evaluation of the outcomes of development that is comprehensive both national and smaller scale (district/city, a model for regional development planning approach can use the model input-output analysis. Analysis of Bandung Economic Structure did use Le Masne index, by comparing the coefficients of the technology in 2003 and 2008, of which nearly 50% change. The trade sector has grown very conspicuous than other areas, followed by the services of road transport and air transport services, the development priorities and investment Bandung should be directed to these areas, this is due to these areas can be thrust and be power attraction for the growth of other areas. The areas that experienced the highest decrease was Industrial Chemicals and Goods from Chemistry, followed by Oil and Refinery Industry Textile Industry Except For Garment.

  6. Simulation model structure numerically robust to changes in magnitude and combination of input and output variables

    DEFF Research Database (Denmark)

    Rasmussen, Bjarne D.; Jakobsen, Arne

    1999-01-01

    Mathematical models of refrigeration systems are often based on a coupling of component models forming a “closed loop” type of system model. In these models the coupling structure of the component models represents the actual flow path of refrigerant in the system. Very often numerical...... variables with narrow definition intervals for the exchange of information between the cycle model and the component models.The advantages of the cycle-oriented method are illustrated by an example showing the refrigeration cycle similarities between two very different refrigeration systems....... instabilities prevent the practical use of such a system model for more than one input/output combination and for other magnitudes of refrigerating capacities.A higher numerical robustness of system models can be achieved by making a model for the refrigeration cycle the core of the system model and by using...

  7. Modeling of Parameters of Subcritical Assembly SAD

    CERN Document Server

    Petrochenkov, S; Puzynin, I

    2005-01-01

    The accepted conceptual design of the experimental Subcritical Assembly in Dubna (SAD) is based on the MOX core with a nominal unit capacity of 25 kW (thermal). This corresponds to the multiplication coefficient $k_{\\rm eff} =0.95$ and accelerator beam power 1 kW. A subcritical assembly driven with the existing 660 MeV proton accelerator at the Joint Institute for Nuclear Research has been modelled in order to make choice of the optimal parameters for the future experiments. The Monte Carlo method was used to simulate neutron spectra, energy deposition and doses calculations. Some of the calculation results are presented in the paper.

  8. Parameter estimation in fractional diffusion models

    CERN Document Server

    Kubilius, Kęstutis; Ralchenko, Kostiantyn

    2017-01-01

    This book is devoted to parameter estimation in diffusion models involving fractional Brownian motion and related processes. For many years now, standard Brownian motion has been (and still remains) a popular model of randomness used to investigate processes in the natural sciences, financial markets, and the economy. The substantial limitation in the use of stochastic diffusion models with Brownian motion is due to the fact that the motion has independent increments, and, therefore, the random noise it generates is “white,” i.e., uncorrelated. However, many processes in the natural sciences, computer networks and financial markets have long-term or short-term dependences, i.e., the correlations of random noise in these processes are non-zero, and slowly or rapidly decrease with time. In particular, models of financial markets demonstrate various kinds of memory and usually this memory is modeled by fractional Brownian diffusion. Therefore, the book constructs diffusion models with memory and provides s...

  9. Dynamics of a Stage Structured Pest Control Model in a Polluted Environment with Pulse Pollution Input

    OpenAIRE

    Liu, Bing; Xu, Ling; Kang, Baolin

    2013-01-01

    By using pollution model and impulsive delay differential equation, we formulate a pest control model with stage structure for natural enemy in a polluted environment by introducing a constant periodic pollutant input and killing pest at different fixed moments and investigate the dynamics of such a system. We assume only that the natural enemies are affected by pollution, and we choose the method to kill the pest without harming natural enemies. Sufficient conditions for global attractivity ...

  10. A stock-flow consistent input-output model with applications to energy price shocks, interest rates, and heat emissions

    Science.gov (United States)

    Berg, Matthew; Hartley, Brian; Richters, Oliver

    2015-01-01

    By synthesizing stock-flow consistent models, input-output models, and aspects of ecological macroeconomics, a method is developed to simultaneously model monetary flows through the financial system, flows of produced goods and services through the real economy, and flows of physical materials through the natural environment. This paper highlights the linkages between the physical environment and the economic system by emphasizing the role of the energy industry. A conceptual model is developed in general form with an arbitrary number of sectors, while emphasizing connections with the agent-based, econophysics, and complexity economics literature. First, we use the model to challenge claims that 0% interest rates are a necessary condition for a stationary economy and conduct a stability analysis within the parameter space of interest rates and consumption parameters of an economy in stock-flow equilibrium. Second, we analyze the role of energy price shocks in contributing to recessions, incorporating several propagation and amplification mechanisms. Third, implied heat emissions from energy conversion and the effect of anthropogenic heat flux on climate change are considered in light of a minimal single-layer atmosphere climate model, although the model is only implicitly, not explicitly, linked to the economic model.

  11. CONSTRUCTION OF A DYNAMIC INPUT-OUTPUT MODEL WITH A HUMAN CAPITAL BLOCK

    Directory of Open Access Journals (Sweden)

    Baranov A. O.

    2017-03-01

    Full Text Available The accumulation of human capital is an important factor of economic growth. It seems to be useful to include «human capital» as a factor of a macroeconomic model, as it helps to take into account the quality differentiation of the workforce. Most of the models usually distinguish labor force by the levels of education, while some of the factors remain unaccounted. Among them are health status and culture development level, which influence productivity level as well as gross product reproduction. Inclusion of the human capital block to the interindustry model can help to make it more reliable for economic development forecasting. The article presents a mathematical description of the extended dynamic input-output model (DIOM with a human capital block. The extended DIOM is based on the Input-Output Model from The KAMIN system (the System of Integrated Analyses of Interindustrial Information developed at the Institute of Economics and Industrial Engineering of the Siberian Branch of the Academy of Sciences of the Russian Federation and at the Novosibirsk State University. The extended input-output model can be used to analyze and forecast development of Russian economy.

  12. Empirically modelled Pc3 activity based on solar wind parameters

    Directory of Open Access Journals (Sweden)

    B. Heilig

    2010-09-01

    Full Text Available It is known that under certain solar wind (SW/interplanetary magnetic field (IMF conditions (e.g. high SW speed, low cone angle the occurrence of ground-level Pc3–4 pulsations is more likely. In this paper we demonstrate that in the event of anomalously low SW particle density, Pc3 activity is extremely low regardless of otherwise favourable SW speed and cone angle. We re-investigate the SW control of Pc3 pulsation activity through a statistical analysis and two empirical models with emphasis on the influence of SW density on Pc3 activity. We utilise SW and IMF measurements from the OMNI project and ground-based magnetometer measurements from the MM100 array to relate SW and IMF measurements to the occurrence of Pc3 activity. Multiple linear regression and artificial neural network models are used in iterative processes in order to identify sets of SW-based input parameters, which optimally reproduce a set of Pc3 activity data. The inclusion of SW density in the parameter set significantly improves the models. Not only the density itself, but other density related parameters, such as the dynamic pressure of the SW, or the standoff distance of the magnetopause work equally well in the model. The disappearance of Pc3s during low-density events can have at least four reasons according to the existing upstream wave theory: 1. Pausing the ion-cyclotron resonance that generates the upstream ultra low frequency waves in the absence of protons, 2. Weakening of the bow shock that implies less efficient reflection, 3. The SW becomes sub-Alfvénic and hence it is not able to sweep back the waves propagating upstream with the Alfvén-speed, and 4. The increase of the standoff distance of the magnetopause (and of the bow shock. Although the models cannot account for the lack of Pc3s during intervals when the SW density is extremely low, the resulting sets of optimal model inputs support the generation of mid latitude Pc3 activity predominantly through

  13. Moose models with vanishing S parameter

    International Nuclear Information System (INIS)

    Casalbuoni, R.; De Curtis, S.; Dominici, D.

    2004-01-01

    In the linear moose framework, which naturally emerges in deconstruction models, we show that there is a unique solution for the vanishing of the S parameter at the lowest order in the weak interactions. We consider an effective gauge theory based on K SU(2) gauge groups, K+1 chiral fields, and electroweak groups SU(2) L and U(1) Y at the ends of the chain of the moose. S vanishes when a link in the moose chain is cut. As a consequence one has to introduce a dynamical nonlocal field connecting the two ends of the moose. Then the model acquires an additional custodial symmetry which protects this result. We examine also the possibility of a strong suppression of S through an exponential behavior of the link couplings as suggested by the Randall Sundrum metric

  14. High Resolution Modeling of the Thermospheric Response to Energy Inputs During the RENU-2 Rocket Flight

    Science.gov (United States)

    Walterscheid, R. L.; Brinkman, D. G.; Clemmons, J. H.; Hecht, J. H.; Lessard, M.; Fritz, B.; Hysell, D. L.; Clausen, L. B. N.; Moen, J.; Oksavik, K.; Yeoman, T. K.

    2017-12-01

    The Earth's magnetospheric cusp provides direct access of energetic particles to the thermosphere. These particles produce ionization and kinetic (particle) heating of the atmosphere. The increased ionization coupled with enhanced electric fields in the cusp produces increased Joule heating and ion drag forcing. These energy inputs cause large wind and temperature changes in the cusp region. The Rocket Experiment for Neutral Upwelling -2 (RENU-2) launched from Andoya, Norway at 0745UT on 13 December 2015 into the ionosphere-thermosphere beneath the magnetic cusp. It made measurements of the energy inputs (e.g., precipitating particles, electric fields) and the thermospheric response to these energy inputs (e.g., neutral density and temperature, neutral winds). Complementary ground based measurements were made. In this study, we use a high resolution two-dimensional time-dependent non hydrostatic nonlinear dynamical model driven by rocket and ground based measurements of the energy inputs to simulate the thermospheric response during the RENU-2 flight. Model simulations will be compared to the corresponding measurements of the thermosphere to see what they reveal about thermospheric structure and the nature of magnetosphere-ionosphere-thermosphere coupling in the cusp. Acknowledgements: This material is based upon work supported by the National Aeronautics and Space Administration under Grants: NNX16AH46G and NNX13AJ93G. This research was also supported by The Aerospace Corporation's Technical Investment program

  15. Input vs. Output Taxation—A DSGE Approach to Modelling Resource Decoupling

    Directory of Open Access Journals (Sweden)

    Marek Antosiewicz

    2016-04-01

    Full Text Available Environmental taxes constitute a crucial instrument aimed at reducing resource use through lower production losses, resource-leaner products, and more resource-efficient production processes. In this paper we focus on material use and apply a multi-sector dynamic stochastic general equilibrium (DSGE model to study two types of taxation: tax on material inputs used by industry, energy, construction, and transport sectors, and tax on output of these sectors. We allow for endogenous adoption of resource-saving technologies. We calibrate the model for the EU27 area using an IO matrix. We consider taxation introduced from 2021 and simulate its impact until 2050. We compare the taxes along their ability to induce reduction in material use and raise revenue. We also consider the effect of spending this revenue on reduction of labour taxation. We find that input and output taxation create contrasting incentives and have opposite effects on resource efficiency. The material input tax induces investment in efficiency-improving technology which, in the long term, results in GDP and employment by 15%–20% higher than in the case of a comparable output tax. We also find that using revenues to reduce taxes on labour has stronger beneficial effects for the input tax.

  16. Development of wavelet-ANN models to predict water quality parameters in Hilo Bay, Pacific Ocean.

    Science.gov (United States)

    Alizadeh, Mohamad Javad; Kavianpour, Mohamad Reza

    2015-09-15

    The main objective of this study is to apply artificial neural network (ANN) and wavelet-neural network (WNN) models for predicting a variety of ocean water quality parameters. In this regard, several water quality parameters in Hilo Bay, Pacific Ocean, are taken under consideration. Different combinations of water quality parameters are applied as input variables to predict daily values of salinity, temperature and DO as well as hourly values of DO. The results demonstrate that the WNN models are superior to the ANN models. Also, the hourly models developed for DO prediction outperform the daily models of DO. For the daily models, the most accurate model has R equal to 0.96, while for the hourly model it reaches up to 0.98. Overall, the results show the ability of the model to monitor the ocean parameters, in condition with missing data, or when regular measurement and monitoring are impossible. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. A non-linear dimension reduction methodology for generating data-driven stochastic input models

    Science.gov (United States)

    Ganapathysubramanian, Baskar; Zabaras, Nicholas

    2008-06-01

    Stochastic analysis of random heterogeneous media (polycrystalline materials, porous media, functionally graded materials) provides information of significance only if realistic input models of the topology and property variations are used. This paper proposes a framework to construct such input stochastic models for the topology and thermal diffusivity variations in heterogeneous media using a data-driven strategy. Given a set of microstructure realizations (input samples) generated from given statistical information about the medium topology, the framework constructs a reduced-order stochastic representation of the thermal diffusivity. This problem of constructing a low-dimensional stochastic representation of property variations is analogous to the problem of manifold learning and parametric fitting of hyper-surfaces encountered in image processing and psychology. Denote by M the set of microstructures that satisfy the given experimental statistics. A non-linear dimension reduction strategy is utilized to map M to a low-dimensional region, A. We first show that M is a compact manifold embedded in a high-dimensional input space Rn. An isometric mapping F from M to a low-dimensional, compact, connected set A⊂Rd(d≪n) is constructed. Given only a finite set of samples of the data, the methodology uses arguments from graph theory and differential geometry to construct the isometric transformation F:M→A. Asymptotic convergence of the representation of M by A is shown. This mapping F serves as an accurate, low-dimensional, data-driven representation of the property variations. The reduced-order model of the material topology and thermal diffusivity variations is subsequently used as an input in the solution of stochastic partial differential equations that describe the evolution of dependant variables. A sparse grid collocation strategy (Smolyak algorithm) is utilized to solve these stochastic equations efficiently. We showcase the methodology by constructing low

  18. A non-linear dimension reduction methodology for generating data-driven stochastic input models

    International Nuclear Information System (INIS)

    Ganapathysubramanian, Baskar; Zabaras, Nicholas

    2008-01-01

    Stochastic analysis of random heterogeneous media (polycrystalline materials, porous media, functionally graded materials) provides information of significance only if realistic input models of the topology and property variations are used. This paper proposes a framework to construct such input stochastic models for the topology and thermal diffusivity variations in heterogeneous media using a data-driven strategy. Given a set of microstructure realizations (input samples) generated from given statistical information about the medium topology, the framework constructs a reduced-order stochastic representation of the thermal diffusivity. This problem of constructing a low-dimensional stochastic representation of property variations is analogous to the problem of manifold learning and parametric fitting of hyper-surfaces encountered in image processing and psychology. Denote by M the set of microstructures that satisfy the given experimental statistics. A non-linear dimension reduction strategy is utilized to map M to a low-dimensional region, A. We first show that M is a compact manifold embedded in a high-dimensional input space R n . An isometric mapping F from M to a low-dimensional, compact, connected set A is contained in R d (d<< n) is constructed. Given only a finite set of samples of the data, the methodology uses arguments from graph theory and differential geometry to construct the isometric transformation F:M→A. Asymptotic convergence of the representation of M by A is shown. This mapping F serves as an accurate, low-dimensional, data-driven representation of the property variations. The reduced-order model of the material topology and thermal diffusivity variations is subsequently used as an input in the solution of stochastic partial differential equations that describe the evolution of dependant variables. A sparse grid collocation strategy (Smolyak algorithm) is utilized to solve these stochastic equations efficiently. We showcase the methodology

  19. Integrate-and-fire models with an almost periodic input function

    Science.gov (United States)

    Kasprzak, Piotr; Nawrocki, Adam; Signerska-Rynkowska, Justyna

    2018-02-01

    We investigate leaky integrate-and-fire models (LIF models for short) driven by Stepanov and μ-almost periodic functions. Special attention is paid to the properties of the firing map and its displacement, which give information about the spiking behavior of the considered system. We provide conditions under which such maps are well-defined and are uniformly continuous. We show that the LIF models with Stepanov almost periodic inputs have uniformly almost periodic displacements. We also show that in the case of μ-almost periodic drives it may happen that the displacement map is uniformly continuous, but is not μ-almost periodic (and thus cannot be Stepanov or uniformly almost periodic). By allowing discontinuous inputs, we extend some previous results, showing, for example, that the firing rate for the LIF models with Stepanov almost periodic input exists and is unique. This is a starting point for the investigation of the dynamics of almost-periodically driven integrate-and-fire systems.

  20. Non parametric, self organizing, scalable modeling of spatiotemporal inputs: the sign language paradigm.

    Science.gov (United States)

    Caridakis, G; Karpouzis, K; Drosopoulos, A; Kollias, S

    2012-12-01

    Modeling and recognizing spatiotemporal, as opposed to static input, is a challenging task since it incorporates input dynamics as part of the problem. The vast majority of existing methods tackle the problem as an extension of the static counterpart, using dynamics, such as input derivatives, at feature level and adopting artificial intelligence and machine learning techniques originally designed for solving problems that do not specifically address the temporal aspect. The proposed approach deals with temporal and spatial aspects of the spatiotemporal domain in a discriminative as well as coupling manner. Self Organizing Maps (SOM) model the spatial aspect of the problem and Markov models its temporal counterpart. Incorporation of adjacency, both in training and classification, enhances the overall architecture with robustness and adaptability. The proposed scheme is validated both theoretically, through an error propagation study, and experimentally, on the recognition of individual signs, performed by different, native Greek Sign Language users. Results illustrate the architecture's superiority when compared to Hidden Markov Model techniques and variations both in terms of classification performance and computational cost. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Computational Techniques for Model Predictive Control of Large-Scale Systems with Continuous-Valued and Discrete-Valued Inputs

    Directory of Open Access Journals (Sweden)

    Koichi Kobayashi

    2013-01-01

    Full Text Available We propose computational techniques for model predictive control of large-scale systems with both continuous-valued control inputs and discrete-valued control inputs, which are a class of hybrid systems. In the proposed method, we introduce the notion of virtual control inputs, which are obtained by relaxing discrete-valued control inputs to continuous variables. In online computation, first, we find continuous-valued control inputs and virtual control inputs minimizing a cost function. Next, using the obtained virtual control inputs, only discrete-valued control inputs at the current time are computed in each subsystem. In addition, we also discuss the effect of quantization errors. Finally, the effectiveness of the proposed method is shown by a numerical example. The proposed method enables us to reduce and decentralize the computation load.

  2. Propagation of Uncertainty in System Parameters of a LWR Model by Sampling MCNPX Calculations - Burnup Analysis

    Science.gov (United States)

    Campolina, Daniel de A. M.; Lima, Claubia P. B.; Veloso, Maria Auxiliadora F.

    2014-06-01

    For all the physical components that comprise a nuclear system there is an uncertainty. Assessing the impact of uncertainties in the simulation of fissionable material systems is essential for a best estimate calculation that has been replacing the conservative model calculations as the computational power increases. The propagation of uncertainty in a simulation using a Monte Carlo code by sampling the input parameters is recent because of the huge computational effort required. In this work a sample space of MCNPX calculations was used to propagate the uncertainty. The sample size was optimized using the Wilks formula for a 95th percentile and a two-sided statistical tolerance interval of 95%. Uncertainties in input parameters of the reactor considered included geometry dimensions and densities. It was showed the capacity of the sampling-based method for burnup when the calculations sample size is optimized and many parameter uncertainties are investigated together, in the same input.

  3. Models for setting ATM parameter values

    DEFF Research Database (Denmark)

    Blaabjerg, Søren; Gravey, A.; Romæuf, L.

    1996-01-01

    presents approximate methods and discusses their applicability. We then discuss the problem of obtaining traffic characteristic values for a connection that has crossed a series of switching nodes. This problem is particularly relevant for the traffic contract components corresponding to ICIs...... (CDV) tolerance(s). The values taken by these traffic parameters characterize the so-called ''Worst Case Traffic'' that is used by CAC procedures for accepting a new connection and allocating resources to it. Conformance to the negotiated traffic characteristics is defined, at the ingress User...... essential to set traffic characteristic values that are relevant to the considered cell stream, and that ensure that the amount of non-conforming traffic is small. Using a queueing model representation for the GCRA formalism, several methods are available for choosing the traffic characteristics. This paper...

  4. Input variable selection for data-driven models of Coriolis flowmeters for two-phase flow measurement

    International Nuclear Information System (INIS)

    Wang, Lijuan; Yan, Yong; Wang, Xue; Wang, Tao

    2017-01-01

    Input variable selection is an essential step in the development of data-driven models for environmental, biological and industrial applications. Through input variable selection to eliminate the irrelevant or redundant variables, a suitable subset of variables is identified as the input of a model. Meanwhile, through input variable selection the complexity of the model structure is simplified and the computational efficiency is improved. This paper describes the procedures of the input variable selection for the data-driven models for the measurement of liquid mass flowrate and gas volume fraction under two-phase flow conditions using Coriolis flowmeters. Three advanced input variable selection methods, including partial mutual information (PMI), genetic algorithm-artificial neural network (GA-ANN) and tree-based iterative input selection (IIS) are applied in this study. Typical data-driven models incorporating support vector machine (SVM) are established individually based on the input candidates resulting from the selection methods. The validity of the selection outcomes is assessed through an output performance comparison of the SVM based data-driven models and sensitivity analysis. The validation and analysis results suggest that the input variables selected from the PMI algorithm provide more effective information for the models to measure liquid mass flowrate while the IIS algorithm provides a fewer but more effective variables for the models to predict gas volume fraction. (paper)

  5. Input variable selection for data-driven models of Coriolis flowmeters for two-phase flow measurement

    Science.gov (United States)

    Wang, Lijuan; Yan, Yong; Wang, Xue; Wang, Tao

    2017-03-01

    Input variable selection is an essential step in the development of data-driven models for environmental, biological and industrial applications. Through input variable selection to eliminate the irrelevant or redundant variables, a suitable subset of variables is identified as the input of a model. Meanwhile, through input variable selection the complexity of the model structure is simplified and the computational efficiency is improved. This paper describes the procedures of the input variable selection for the data-driven models for the measurement of liquid mass flowrate and gas volume fraction under two-phase flow conditions using Coriolis flowmeters. Three advanced input variable selection methods, including partial mutual information (PMI), genetic algorithm-artificial neural network (GA-ANN) and tree-based iterative input selection (IIS) are applied in this study. Typical data-driven models incorporating support vector machine (SVM) are established individually based on the input candidates resulting from the selection methods. The validity of the selection outcomes is assessed through an output performance comparison of the SVM based data-driven models and sensitivity analysis. The validation and analysis results suggest that the input variables selected from the PMI algorithm provide more effective information for the models to measure liquid mass flowrate while the IIS algorithm provides a fewer but more effective variables for the models to predict gas volume fraction.

  6. Input vs. Output Taxation—A DSGE Approach to Modelling Resource Decoupling

    OpenAIRE

    Marek Antosiewicz; Piotr Lewandowski; Jan Witajewski-Baltvilks

    2016-01-01

    Environmental taxes constitute a crucial instrument aimed at reducing resource use through lower production losses, resource-leaner products, and more resource-efficient production processes. In this paper we focus on material use and apply a multi-sector dynamic stochastic general equilibrium (DSGE) model to study two types of taxation: tax on material inputs used by industry, energy, construction, and transport sectors, and tax on output of these sectors. We allow for endogenous adoption of...

  7. Urban Landscape Characterization Using Remote Sensing Data For Input into Air Quality Modeling

    Science.gov (United States)

    Quattrochi, Dale A.; Estes, Maurice G., Jr.; Crosson, William; Khan, Maudood

    2005-01-01

    The urban landscape is inherently complex and this complexity is not adequately captured in air quality models that are used to assess whether urban areas are in attainment of EPA air quality standards, particularly for ground level ozone. This inadequacy of air quality models to sufficiently respond to the heterogeneous nature of the urban landscape can impact how well these models predict ozone pollutant levels over metropolitan areas and ultimately, whether cities exceed EPA ozone air quality standards. We are exploring the utility of high-resolution remote sensing data and urban growth projections as improved inputs to meteorological and air quality models focusing on the Atlanta, Georgia metropolitan area as a case study. The National Land Cover Dataset at 30m resolution is being used as the land use/land cover input and aggregated to the 4km scale for the MM5 mesoscale meteorological model and the Community Multiscale Air Quality (CMAQ) modeling schemes. Use of these data have been found to better characterize low density/suburban development as compared with USGS 1 km land use/land cover data that have traditionally been used in modeling. Air quality prediction for future scenarios to 2030 is being facilitated by land use projections using a spatial growth model. Land use projections were developed using the 2030 Regional Transportation Plan developed by the Atlanta Regional Commission. This allows the State Environmental Protection agency to evaluate how these transportation plans will affect future air quality.

  8. Including operational data in QMRA model: development and impact of model inputs.

    Science.gov (United States)

    Jaidi, Kenza; Barbeau, Benoit; Carrière, Annie; Desjardins, Raymond; Prévost, Michèle

    2009-03-01

    A Monte Carlo model, based on the Quantitative Microbial Risk Analysis approach (QMRA), has been developed to assess the relative risks of infection associated with the presence of Cryptosporidium and Giardia in drinking water. The impact of various approaches for modelling the initial parameters of the model on the final risk assessments is evaluated. The Monte Carlo simulations that we performed showed that the occurrence of parasites in raw water was best described by a mixed distribution: log-Normal for concentrations > detection limit (DL), and a uniform distribution for concentrations risks significantly. The mean annual risks for conventional treatment are: 1.97E-03 (removal credit adjusted by log parasite = log spores), 1.58E-05 (log parasite = 1.7 x log spores) or 9.33E-03 (regulatory credits based on the turbidity measurement in filtered water). Using full scale validated SCADA data, the simplified calculation of CT performed at the plant was shown to largely underestimate the risk relative to a more detailed CT calculation, which takes into consideration the downtime and system failure events identified at the plant (1.46E-03 vs. 3.93E-02 for the mean risk).

  9. A generic method for automatic translation between input models for different versions of simulation codes

    International Nuclear Information System (INIS)

    Serfontein, Dawid E.; Mulder, Eben J.; Reitsma, Frederik

    2014-01-01

    A computer code was developed for the semi-automatic translation of input models for the VSOP-A diffusion neutronics simulation code to the format of the newer VSOP 99/05 code. In this paper, this algorithm is presented as a generic method for producing codes for the automatic translation of input models from the format of one code version to another, or even to that of a completely different code. Normally, such translations are done manually. However, input model files, such as for the VSOP codes, often are very large and may consist of many thousands of numeric entries that make no particular sense to the human eye. Therefore the task, of for instance nuclear regulators, to verify the accuracy of such translated files can be very difficult and cumbersome. This may cause translation errors not to be picked up, which may have disastrous consequences later on when a reactor with such a faulty design is built. Therefore a generic algorithm for producing such automatic translation codes may ease the translation and verification process to a great extent. It will also remove human error from the process, which may significantly enhance the accuracy and reliability of the process. The developed algorithm also automatically creates a verification log file which permanently record the names and values of each variable used, as well as the list of meanings of all the possible values. This should greatly facilitate reactor licensing applications

  10. Responses of two nonlinear microbial models to warming or increased carbon input

    Science.gov (United States)

    Wang, Y. P.; Jiang, J.; Chen-Charpentier, B.; Agusto, F. B.; Hastings, A.; Hoffman, F.; Rasmussen, M.; Smith, M. J.; Todd-Brown, K.; Wang, Y.; Xu, X.; Luo, Y. Q.

    2015-09-01

    A number of nonlinear microbial models of soil carbon decomposition have been developed. Some of them have been applied globally but have yet to be shown to realistically represent soil carbon dynamics in the field. Therefore a thorough analysis of their key differences will be very useful for the future development of these models. Here we compare two nonlinear microbial models of soil carbon decomposition: one is based on reverse Michaelis-Menten kinetics (model A) and the other on regular Michaelis-Menten kinetics (model B). Using a combination of analytic solutions and numerical simulations, we find that the oscillatory responses of carbon pools model A to a small perturbation in the initial pool sizes have a higher frequency and damps faster than model B. In response to soil warming, soil carbon always decreases in model A; but likely decreases in cool regions and increases in warm regions in model B. Maximum CO2 efflux from soil carbon decomposition (Fmax) after an increased carbon addition decreases with an increase in soil temperature in both models, and the sensitivity of Fmax to the amount of carbon input increases with soil temperature in model A; but decreases monotonically with an increase in soil temperature in model B. These differences in the responses to soil warming and carbon input between the two nonlinear models can be used to differentiate which model is more realistic with field or laboratory experiments. This will lead to a better understanding of the significance of soil microbial processes in the responses of soil carbon to future climate change at regional or global scales.

  11. Dispersion modeling of accidental releases of toxic gases - Sensitivity study and optimization of the meteorological input

    Science.gov (United States)

    Baumann-Stanzer, K.; Stenzel, S.

    2009-04-01

    Several air dispersion models are available for prediction and simulation of the hazard areas associated with accidental releases of toxic gases. The most model packages (commercial or free of charge) include a chemical database, an intuitive graphical user interface (GUI) and automated graphical output for effective presentation of results. The models are designed especially for analyzing different accidental toxic release scenarios ("worst-case scenarios"), preparing emergency response plans and optimal countermeasures as well as for real-time risk assessment and management. Uncertainties in the meteorological input together with incorrect estimates of the source play a critical role for the model results. The research project RETOMOD (reference scenarios calculations for toxic gas releases - model systems and their utility for the fire brigade) was conducted by the Central Institute for Meteorology and Geodynamics (ZAMG) in cooperation with the Vienna fire brigade, OMV Refining & Marketing GmbH and Synex Ries & Greßlehner GmbH. RETOMOD was funded by the KIRAS safety research program at the Austrian Ministry of Transport, Innovation and Technology (www.kiras.at). The main tasks of this project were 1. Sensitivity study and optimization of the meteorological input for modeling of the hazard areas (human exposure) during the accidental toxic releases. 2. Comparison of several model packages (based on reference scenarios) in order to estimate the utility for the fire brigades. This presentation gives a short introduction to the project and presents the results of task 1 (meteorological input). The results of task 2 are presented by Stenzel and Baumann-Stanzer in this session. For the aim of this project, the observation-based analysis and forecasting system INCA, developed in the Central Institute for Meteorology and Geodynamics (ZAMG) was used. INCA (Integrated Nowcasting through Comprehensive Analysis) data were calculated with 1 km horizontal resolution and

  12. Development of algorithm for depreciation costs allocation in dynamic input-output industrial enterprise model

    Directory of Open Access Journals (Sweden)

    Keller Alevtina

    2017-01-01

    Full Text Available The article considers the issue of allocation of depreciation costs in the dynamic inputoutput model of an industrial enterprise. Accounting the depreciation costs in such a model improves the policy of fixed assets management. It is particularly relevant to develop the algorithm for the allocation of depreciation costs in the construction of dynamic input-output model of an industrial enterprise, since such enterprises have a significant amount of fixed assets. Implementation of terms of the adequacy of such an algorithm itself allows: evaluating the appropriateness of investments in fixed assets, studying the final financial results of an industrial enterprise, depending on management decisions in the depreciation policy. It is necessary to note that the model in question for the enterprise is always degenerate. It is caused by the presence of zero rows in the matrix of capital expenditures by lines of structural elements unable to generate fixed assets (part of the service units, households, corporate consumers. The paper presents the algorithm for the allocation of depreciation costs for the model. This algorithm was developed by the authors and served as the basis for further development of the flowchart for subsequent implementation with use of software. The construction of such algorithm and its use for dynamic input-output models of industrial enterprises is actualized by international acceptance of the effectiveness of the use of input-output models for national and regional economic systems. This is what allows us to consider that the solutions discussed in the article are of interest to economists of various industrial enterprises.

  13. A time-resolved model of the mesospheric Na layer: constraints on the meteor input function

    Directory of Open Access Journals (Sweden)

    J. M. C. Plane

    2004-01-01

    Full Text Available A time-resolved model of the Na layer in the mesosphere/lower thermosphere region is described, where the continuity equations for the major sodium species Na, Na+ and NaHCO3 are solved explicity, and the other short-lived species are treated in steady-state. It is shown that the diurnal variation of the Na layer can only be modelled satisfactorily if sodium species are permanently removed below about 85 km, both through the dimerization of NaHCO3 and the uptake of sodium species on meteoric smoke particles that are assumed to have formed from the recondensation of vaporized meteoroids. When the sensitivity of the Na layer to the meteoroid input function is considered, an inconsistent picture emerges. The ratio of the column abundance of Na+ to Na is shown to increase strongly with the average meteoroid velocity, because the Na is injected at higher altitudes. Comparison with a limited set of Na+ measurements indicates that the average meteoroid velocity is probably less than about 25 km s-1, in agreement with velocity estimates from conventional meteor radars, and considerably slower than recent observations made by wide aperture incoherent scatter radars. The Na column abundance is shown to be very sensitive to the meteoroid mass input rate, and to the rate of vertical transport by eddy diffusion. Although the magnitude of the eddy diffusion coefficient in the 80–90 km region is uncertain, there is a consensus between recent models using parameterisations of gravity wave momentum deposition that the average value is less than 3×105 cm2 s-1. This requires that the global meteoric mass input rate is less than about 20 td-1, which is closest to estimates from incoherent scatter radar observations. Finally, the diurnal variation in the meteoroid input rate only slight perturbs the Na layer, because the residence time of Na in the layer is several days, and diurnal effects are effectively averaged out.

  14. Dengue human infection model performance parameters.

    Science.gov (United States)

    Endy, Timothy P

    2014-06-15

    Dengue is a global health problem and of concern to travelers and deploying military personnel with development and licensure of an effective tetravalent dengue vaccine a public health priority. The dengue viruses (DENVs) are mosquito-borne flaviviruses transmitted by infected Aedes mosquitoes. Illness manifests across a clinical spectrum with severe disease characterized by intravascular volume depletion and hemorrhage. DENV illness results from a complex interaction of viral properties and host immune responses. Dengue vaccine development efforts are challenged by immunologic complexity, lack of an adequate animal model of disease, absence of an immune correlate of protection, and only partially informative immunogenicity assays. A dengue human infection model (DHIM) will be an essential tool in developing potential dengue vaccines or antivirals. The potential performance parameters needed for a DHIM to support vaccine or antiviral candidates are discussed. © The Author 2014. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  15. Dimensionality reduction of RKHS model parameters.

    Science.gov (United States)

    Taouali, Okba; Elaissi, Ilyes; Messaoud, Hassani

    2015-07-01

    This paper proposes a new method to reduce the parameter number of models developed in the Reproducing Kernel Hilbert Space (RKHS). In fact, this number is equal to the number of observations used in the learning phase which is assumed to be high. The proposed method entitled Reduced Kernel Partial Least Square (RKPLS) consists on approximating the retained latent components determined using the Kernel Partial Least Square (KPLS) method by their closest observation vectors. The paper proposes the design and the comparative study of the proposed RKPLS method and the Support Vector Machines on Regression (SVR) technique. The proposed method is applied to identify a nonlinear Process Trainer PT326 which is a physical process available in our laboratory. Moreover as a thermal process with large time response may help record easily effective observations which contribute to model identification. Compared to the SVR technique, the results from the proposed RKPLS method are satisfactory. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  16. A Sensitivity Study for an Evaluation of Input Parameters Effect on a Preliminary Probabilistic Tsunami Hazard Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Rhee, Hyun-Me; Kim, Min Kyu; Choi, In-Kil [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Sheen, Dong-Hoon [Chonnam National University, Gwangju (Korea, Republic of)

    2014-10-15

    The tsunami hazard analysis has been based on the seismic hazard analysis. The seismic hazard analysis has been performed by using the deterministic method and the probabilistic method. To consider the uncertainties in hazard analysis, the probabilistic method has been regarded as attractive approach. The various parameters and their weight are considered by using the logic tree approach in the probabilistic method. The uncertainties of parameters should be suggested by analyzing the sensitivity because the various parameters are used in the hazard analysis. To apply the probabilistic tsunami hazard analysis, the preliminary study for the Ulchin NPP site had been performed. The information on the fault sources which was published by the Atomic Energy Society of Japan (AESJ) had been used in the preliminary study. The tsunami propagation was simulated by using the TSUNAMI{sub 1}.0 which was developed by Japan Nuclear Energy Safety Organization (JNES). The wave parameters have been estimated from the result of tsunami simulation. In this study, the sensitivity analysis for the fault sources which were selected in the previous studies has been performed. To analyze the effect of the parameters, the sensitivity analysis for the E3 fault source which was published by AESJ was performed. The effect of the recurrence interval, the potential maximum magnitude, and the beta were suggested by the sensitivity analysis results. Level of annual exceedance probability has been affected by the recurrence interval.. Wave heights have been influenced by the potential maximum magnitude and the beta. In the future, the sensitivity analysis for the all fault sources in the western part of Japan which were published AESJ would be performed.

  17. Unitary input DEA model to identify beef cattle production systems typologies

    Directory of Open Access Journals (Sweden)

    Eliane Gonçalves Gomes

    2012-08-01

    Full Text Available The cow-calf beef production sector in Brazil has a wide variety of operating systems. This suggests the identification and the characterization of homogeneous regions of production, with consequent implementation of actions to achieve its sustainability. In this paper we attempted to measure the performance of 21 livestock modal production systems, in their cow-calf phase. We measured the performance of these systems, considering husbandry and production variables. The proposed approach is based on data envelopment analysis (DEA. We used unitary input DEA model, with apparent input orientation, together with the efficiency measurements generated by the inverted DEA frontier. We identified five modal production systems typologies, using the isoefficiency layers approach. The results showed that the knowledge and the processes management are the most important factors for improving the efficiency of beef cattle production systems.

  18. The sensitivity of ecosystem service models to choices of input data and spatial resolution

    Science.gov (United States)

    Bagstad, Kenneth J.; Cohen, Erika; Ancona, Zachary H.; McNulty, Steven; Sun, Ge

    2018-01-01

    Although ecosystem service (ES) modeling has progressed rapidly in the last 10–15 years, comparative studies on data and model selection effects have become more common only recently. Such studies have drawn mixed conclusions about whether different data and model choices yield divergent results. In this study, we compared the results of different models to address these questions at national, provincial, and subwatershed scales in Rwanda. We compared results for carbon, water, and sediment as modeled using InVEST and WaSSI using (1) land cover data at 30 and 300 m resolution and (2) three different input land cover datasets. WaSSI and simpler InVEST models (carbon storage and annual water yield) were relatively insensitive to the choice of spatial resolution, but more complex InVEST models (seasonal water yield and sediment regulation) produced large differences when applied at differing resolution. Six out of nine ES metrics (InVEST annual and seasonal water yield and WaSSI) gave similar predictions for at least two different input land cover datasets. Despite differences in mean values when using different data sources and resolution, we found significant and highly correlated results when using Spearman's rank correlation, indicating consistent spatial patterns of high and low values. Our results confirm and extend conclusions of past studies, showing that in certain cases (e.g., simpler models and national-scale analyses), results can be robust to data and modeling choices. For more complex models, those with different output metrics, and subnational to site-based analyses in heterogeneous environments, data and model choices may strongly influence study findings.

  19. VSC Input-Admittance Modeling and Analysis Above the Nyquist Frequency for Passivity-Based Stability Assessment

    DEFF Research Database (Denmark)

    Harnefors, Lennart; Finger, Raphael; Wang, Xiongfei

    2017-01-01

    The interconnection stability of a gridconnected voltage-source converter (VSC) can be assessed via the dissipative properties of its input admittance. In this paper, the modeling of the current control loop is revisited with the aim to improve the accuracy of the input-admittance model above the...

  20. Definition of Saturn's magnetospheric model parameters for the Pioneer 11 flyby

    Directory of Open Access Journals (Sweden)

    E. S. Belenkaya

    2006-05-01

    Full Text Available This paper presents a description of a method for selection parameters for a global paraboloid model of Saturn's magnetosphere. The model is based on the preexisting paraboloid terrestrial and Jovian models of the magnetospheric field. Interaction of the solar wind with the magnetosphere, i.e. the magnetotail current system, and the magnetopause currents screening all magnetospheric field sources, is taken into account. The input model parameters are determined from observations of the Pioneer 11 inbound flyby.

  1. Model Optimization Identification Method Based on Closed-loop Operation Data and Process Characteristics Parameters

    Directory of Open Access Journals (Sweden)

    Zhiqiang GENG

    2014-01-01

    Full Text Available Output noise is strongly related to input in closed-loop control system, which makes model identification of closed-loop difficult, even unidentified in practice. The forward channel model is chosen to isolate disturbance from the output noise to input, and identified by optimization the dynamic characteristics of the process based on closed-loop operation data. The characteristics parameters of the process, such as dead time and time constant, are calculated and estimated based on the PI/PID controller parameters and closed-loop process input/output data. And those characteristics parameters are adopted to define the search space of the optimization identification algorithm. PSO-SQP optimization algorithm is applied to integrate the global search ability of PSO with the local search ability of SQP to identify the model parameters of forward channel. The validity of proposed method has been verified by the simulation. The practicability is checked with the PI/PID controller parameter turning based on identified forward channel model.

  2. Parameter determination for singlet oxygen modeling of BPD-mediated PDT

    Science.gov (United States)

    McMillan, Dayton D.; Chen, Daniel; Kim, Michele M.; Liang, Xing; Zhu, Timothy C.

    2013-03-01

    Photodynamic therapy (PDT) offers a cancer treatment modality capable of providing minimally invasive localized tumor necrosis. To accurately predict PDT treatment outcome based on pre-treatment patient specific parameters, an explicit dosimetry model is used to calculate apparent reacted 1O2 concentration ([1O2]rx) at varied radial distances from the activating light source inserted into tumor tissue and apparent singlet oxygen threshold concentration for necrosis ([1O2]rx, sd) for type-II PDT photosensitizers. Inputs into the model include a number of photosensitizer independent parameters as well as photosensitizer specific photochemical parameters ξ σ, and β. To determine the specific photochemical parameters of benzoporphyrin derivative monoacid A (BPD), mice were treated with BPDPDT with varied light source strengths and treatment times. All photosensitizer independent inputs were assessed pre-treatment and average necrotic radius in treated tissue was determined post-treatment. Using the explicit dosimetry model, BPD specific ξ σ, and β photochemical parameters were determined which estimated necrotic radii similar to those observed in initial BPD-PDT treated mice using an optimization algorithm that minimizes the difference between the model and that of the measurements. Photochemical parameters for BPD are compared with those of other known photosensitizers, such as Photofrin. The determination of these BPD specific photochemical parameters provides necessary data for predictive treatment outcome in clinical BPD-PDT using the explicit dosimetry model.

  3. Simulation of the Demand Side Management impacts: resolution enhancement of the input parameters at the local scale

    International Nuclear Information System (INIS)

    Imbert, P.

    2011-01-01

    Following the integrated energy planning paradigm in the 90's and the recent renewal of decentralized energy planning interests, Demand Side Management (DSM) actions are expected to take a significant role on energy planning activities in the future. Indeed the DSM actions represent a relevant option to achieve environmental and energy commitments or to alleviate some specific problems of electricity supply. DSM actions at the local scale at least in the French context is observed today. There is a need for appropriate methods and tools to assess the impacts of such MDE programs at local level. The local scale involves taking into account the specificities of the territories (physical, social, geographical, economical, institutional, etc.) The objective of this thesis is to improve the spatial resolution of input variables for the use in DSM action simulation tools. Based on a case study in France (PREMIO project: smart architecture for load management applied to a district) and an existing simulation tool we will study the impacts of this local experience to several municipalities. (author)

  4. The MARINA model (Model to Assess River Inputs of Nutrients to seAs): Model description and results for China.

    Science.gov (United States)

    Strokal, Maryna; Kroeze, Carolien; Wang, Mengru; Bai, Zhaohai; Ma, Lin

    2016-08-15

    Chinese agriculture has been developing fast towards industrial food production systems that discharge nutrient-rich wastewater into rivers. As a result, nutrient export by rivers has been increasing, resulting in coastal water pollution. We developed a Model to Assess River Inputs of Nutrients to seAs (MARINA) for China. The MARINA Nutrient Model quantifies river export of nutrients by source at the sub-basin scale as a function of human activities on land. MARINA is a downscaled version for China of the Global NEWS-2 (Nutrient Export from WaterSheds) model with an improved approach for nutrient losses from animal production and population. We use the model to quantify dissolved inorganic and organic nitrogen (N) and phosphorus (P) export by six large rivers draining into the Bohai Gulf (Yellow, Hai, Liao), Yellow Sea (Yangtze, Huai) and South China Sea (Pearl) in 1970, 2000 and 2050. We addressed uncertainties in the MARINA Nutrient model. Between 1970 and 2000 river export of dissolved N and P increased by a factor of 2-8 depending on sea and nutrient form. Thus, the risk for coastal eutrophication increased. Direct losses of manure to rivers contribute to 60-78% of nutrient inputs to the Bohai Gulf and 20-74% of nutrient inputs to the other seas in 2000. Sewage is an important source of dissolved inorganic P, and synthetic fertilizers of dissolved inorganic N. Over half of the nutrients exported by the Yangtze and Pearl rivers originated from human activities in downstream and middlestream sub-basins. The Yellow River exported up to 70% of dissolved inorganic N and P from downstream sub-basins and of dissolved organic N and P from middlestream sub-basins. Rivers draining into the Bohai Gulf are drier, and thus transport fewer nutrients. For the future we calculate further increases in river export of nutrients. The MARINA Nutrient model quantifies the main sources of coastal water pollution for sub-basins. This information can contribute to formulation of

  5. Clustering reveals limits of parameter identifiability in multi-parameter models of biochemical dynamics.

    Science.gov (United States)

    Nienałtowski, Karol; Włodarczyk, Michał; Lipniacki, Tomasz; Komorowski, Michał

    2015-09-29

    Compared to engineering or physics problems, dynamical models in quantitative biology typically depend on a relatively large number of parameters. Progress in developing mathematics to manipulate such multi-parameter models and so enable their efficient interplay with experiments has been slow. Existing solutions are significantly limited by model size. In order to simplify analysis of multi-parameter models a method for clustering of model parameters is proposed. It is based on a derived statistically meaningful measure of similarity between groups of parameters. The measure quantifies to what extend changes in values of some parameters can be compensated by changes in values of other parameters. The proposed methodology provides a natural mathematical language to precisely communicate and visualise effects resulting from compensatory changes in values of parameters. As a results, a relevant insight into identifiability analysis and experimental planning can be obtained. Analysis of NF-κB and MAPK pathway models shows that highly compensative parameters constitute clusters consistent with the network topology. The method applied to examine an exceptionally rich set of published experiments on the NF-κB dynamics reveals that the experiments jointly ensure identifiability of only 60% of model parameters. The method indicates which further experiments should be performed in order to increase the number of identifiable parameters. We currently lack methods that simplify broadly understood analysis of multi-parameter models. The introduced tools depict mutually compensative effects between parameters to provide insight regarding role of individual parameters, identifiability and experimental design. The method can also find applications in related methodological areas of model simplification and parameters estimation.

  6. Scaling precipitation input to spatially distributed hydrological models by measured snow distribution

    Directory of Open Access Journals (Sweden)

    Christian Vögeli

    2016-12-01

    Full Text Available Accurate knowledge on snow distribution in alpine terrain is crucial for various applicationssuch as flood risk assessment, avalanche warning or managing water supply and hydro-power.To simulate the seasonal snow cover development in alpine terrain, the spatially distributed,physics-based model Alpine3D is suitable. The model is typically driven by spatial interpolationsof observations from automatic weather stations (AWS, leading to errors in the spatial distributionof atmospheric forcing. With recent advances in remote sensing techniques, maps of snowdepth can be acquired with high spatial resolution and accuracy. In this work, maps of the snowdepth distribution, calculated from summer and winter digital surface models based on AirborneDigital Sensors (ADS, are used to scale precipitation input data, with the aim to improve theaccuracy of simulation of the spatial distribution of snow with Alpine3D. A simple method toscale and redistribute precipitation is presented and the performance is analysed. The scalingmethod is only applied if it is snowing. For rainfall the precipitation is distributed by interpolation,with a simple air temperature threshold used for the determination of the precipitation phase.It was found that the accuracy of spatial snow distribution could be improved significantly forthe simulated domain. The standard deviation of absolute snow depth error is reduced up toa factor 3.4 to less than 20 cm. The mean absolute error in snow distribution was reducedwhen using representative input sources for the simulation domain. For inter-annual scaling, themodel performance could also be improved, even when using a remote sensing dataset from adifferent winter. In conclusion, using remote sensing data to process precipitation input, complexprocesses such as preferential snow deposition and snow relocation due to wind or avalanches,can be substituted and modelling performance of spatial snow distribution is improved.

  7. PERMODELAN INDEKS HARGA KONSUMEN INDONESIA DENGAN MENGGUNAKAN MODEL INTERVENSI MULTI INPUT

    KAUST Repository

    Novianti, Putri Wikie

    2017-01-24

    There are some events which are expected effecting CPI’s fluctuation, i.e. financial crisis 1997/1998, fuel price risings, base year changing’s, independence of Timor-Timur (October 1999), and Tsunami disaster in Aceh (December 2004). During re-search period, there were eight fuel price risings and four base year changing’s. The objective of this research is to obtain multi input intervention model which can des-cribe magnitude and duration of each event effected to CPI. Most of intervention re-searches that have been done are only contain of an intervention with single input, ei-ther step or pulse function. Multi input intervention was used in Indonesia CPI case because there are some events which are expected effecting CPI. Based on the result, those events were affecting CPI. Additionally, other events, such as Ied on January 1999, events on April 2002, July 2003, December 2005, and September 2008, were affecting CPI too. In general, those events gave positive effect to CPI, except events on April 2002 and July 2003 which gave negative effects.

  8. Input-Output Modeling for Urban Energy Consumption in Beijing: Dynamics and Comparison

    Science.gov (United States)

    Zhang, Lixiao; Hu, Qiuhong; Zhang, Fan

    2014-01-01

    Input-output analysis has been proven to be a powerful instrument for estimating embodied (direct plus indirect) energy usage through economic sectors. Using 9 economic input-output tables of years 1987, 1990, 1992, 1995, 1997, 2000, 2002, 2005, and 2007, this paper analyzes energy flows for the entire city of Beijing and its 30 economic sectors, respectively. Results show that the embodied energy consumption of Beijing increased from 38.85 million tonnes of coal equivalent (Mtce) to 206.2 Mtce over the past twenty years of rapid urbanization; the share of indirect energy consumption in total energy consumption increased from 48% to 76%, suggesting the transition of Beijing from a production-based and manufacturing-dominated economy to a consumption-based and service-dominated economy. Real estate development has shown to be a major driving factor of the growth in indirect energy consumption. The boom and bust of construction activities have been strongly correlated with the increase and decrease of system-side indirect energy consumption. Traditional heavy industries remain the most energy-intensive sectors in the economy. However, the transportation and service sectors have contributed most to the rapid increase in overall energy consumption. The analyses in this paper demonstrate that a system-wide approach such as that based on input-output model can be a useful tool for robust energy policy making. PMID:24595199

  9. GEMSFITS: Code package for optimization of geochemical model parameters and inverse modeling

    International Nuclear Information System (INIS)

    Miron, George D.; Kulik, Dmitrii A.; Dmytrieva, Svitlana V.; Wagner, Thomas

    2015-01-01

    Highlights: • Tool for generating consistent parameters against various types of experiments. • Handles a large number of experimental data and parameters (is parallelized). • Has a graphical interface and can perform statistical analysis on the parameters. • Tested on fitting the standard state Gibbs free energies of aqueous Al species. • Example on fitting interaction parameters of mixing models and thermobarometry. - Abstract: GEMSFITS is a new code package for fitting internally consistent input parameters of GEM (Gibbs Energy Minimization) geochemical–thermodynamic models against various types of experimental or geochemical data, and for performing inverse modeling tasks. It consists of the gemsfit2 (parameter optimizer) and gfshell2 (graphical user interface) programs both accessing a NoSQL database, all developed with flexibility, generality, efficiency, and user friendliness in mind. The parameter optimizer gemsfit2 includes the GEMS3K chemical speciation solver ( (http://gems.web.psi.ch/GEMS3K)), which features a comprehensive suite of non-ideal activity- and equation-of-state models of solution phases (aqueous electrolyte, gas and fluid mixtures, solid solutions, (ad)sorption. The gemsfit2 code uses the robust open-source NLopt library for parameter fitting, which provides a selection between several nonlinear optimization algorithms (global, local, gradient-based), and supports large-scale parallelization. The gemsfit2 code can also perform comprehensive statistical analysis of the fitted parameters (basic statistics, sensitivity, Monte Carlo confidence intervals), thus supporting the user with powerful tools for evaluating the quality of the fits and the physical significance of the model parameters. The gfshell2 code provides menu-driven setup of optimization options (data selection, properties to fit and their constraints, measured properties to compare with computed counterparts, and statistics). The practical utility, efficiency, and

  10. Input data for mathematical modeling and numerical simulation of switched reluctance machines

    Directory of Open Access Journals (Sweden)

    Ali Asghar Memon

    2017-10-01

    Full Text Available The modeling and simulation of Switched Reluctance (SR machine and drives is challenging for its dual pole salient structure and magnetic saturation. This paper presents the input data in form of experimentally obtained magnetization characteristics. This data was used for computer simulation based model of SR machine, “Selecting Best Interpolation Technique for Simulation Modeling of Switched Reluctance Machine” [1], “Modeling of Static Characteristics of Switched Reluctance Motor” [2]. This data is primary source of other data tables of co energy and static torque which are also among the required data essential for the simulation and can be derived from this data. The procedure and experimental setup for collection of the data is presented in detail.

  11. Input data for mathematical modeling and numerical simulation of switched reluctance machines.

    Science.gov (United States)

    Memon, Ali Asghar; Shaikh, Muhammad Mujtaba

    2017-10-01

    The modeling and simulation of Switched Reluctance (SR) machine and drives is challenging for its dual pole salient structure and magnetic saturation. This paper presents the input data in form of experimentally obtained magnetization characteristics. This data was used for computer simulation based model of SR machine, "Selecting Best Interpolation Technique for Simulation Modeling of Switched Reluctance Machine" [1], "Modeling of Static Characteristics of Switched Reluctance Motor" [2]. This data is primary source of other data tables of co energy and static torque which are also among the required data essential for the simulation and can be derived from this data. The procedure and experimental setup for collection of the data is presented in detail.

  12. Modeling the cellular mechanisms and olfactory input underlying the triphasic response of moth pheromone-sensitive projection neurons.

    Directory of Open Access Journals (Sweden)

    Yuqiao Gu

    Full Text Available In the antennal lobe of the noctuid moth Agrotis ipsilon, most pheromone-sensitive projection neurons (PNs exhibit a triphasic firing pattern of excitation (E1-inhibition (I-excitation (E2 in response to a pulse of the sex pheromone. To understand the mechanisms underlying this stereotypical discharge, we developed a biophysical model of a PN receiving inputs from olfactory receptor neurons (ORNs via nicotinic cholinergic synapses. The ORN is modeled as an inhomogeneous Poisson process whose firing rate is a function of time and is fitted to extracellular data recorded in response to pheromone stimulations at various concentrations and durations. The PN model is based on the Hodgkin-Huxley formalism with realistic ionic currents whose parameters were derived from previous studies. Simulations revealed that the inhibitory phase I can be produced by a SK current (Ca2+-gated small conductance K+ current and that the excitatory phase E2 can result from the long-lasting response of the ORNs. Parameter analysis further revealed that the ending time of E1 depends on some parameters of SK, Ca2+, nACh and Na+ currents; I duration mainly depends on the time constant of intracellular Ca2+ dynamics, conductance of Ca2+ currents and some parameters of nACh currents; The mean firing frequency of E1 and E2 depends differentially on the interaction of various currents. Thus it is likely that the interplay between PN intrinsic currents and feedforward synaptic currents are sufficient to generate the triphasic firing patterns observed in the noctuid moth A. ipsilon.

  13. Sensitivity analysis of specific activity model parameters for environmental transport of 3H and dose assessment

    International Nuclear Information System (INIS)

    Rout, S.; Mishra, D.G.; Ravi, P.M.; Tripathi, R.M.

    2016-01-01

    Tritium is one of the radionuclides likely to get released to the environment from Pressurized Heavy Water Reactors. Environmental models are extensively used to quantify the complex environmental transport processes of radionuclides and also to assess the impact to the environment. Model parameters exerting the significant influence on model results are identified through a sensitivity analysis (SA). SA is the study of how the variation (uncertainty) in the output of a mathematical model can be apportioned, qualitatively or quantitatively, to different sources of variation in the input parameters. This study was designed to identify the sensitive model parameters of specific activity model (TRS 1616, IAEA) for environmental transfer of 3 H following release to air and then to vegetation and animal products. Model includes parameters such as air to soil transfer factor (CRs), Tissue Free Water 3 H to Organically Bound 3 H ratio (Rp), Relative humidity (RH), WCP (fractional water content) and WEQp (water equivalent factor) any change in these parameters leads to change in 3 H level in vegetation and animal products consequently change in dose due to ingestion. All these parameters are function of climate and/or plant which change with time, space and species. Estimation of these parameters at every time is a time consuming and also required sophisticated instrumentation. Therefore it is necessary to identify the sensitive parameters and freeze the values of least sensitive parameters at constant values for more accurate estimation of 3 H dose in short time for routine assessment

  14. Realistic modelling of the seismic input Site effects and parametric studies

    CERN Document Server

    Romanelli, F; Vaccari, F

    2002-01-01

    We illustrate the work done in the framework of a large international cooperation, showing the very recent numerical experiments carried out within the framework of the EC project 'Advanced methods for assessing the seismic vulnerability of existing motorway bridges' (VAB) to assess the importance of non-synchronous seismic excitation of long structures. The definition of the seismic input at the Warth bridge site, i.e. the determination of the seismic ground motion due to an earthquake with a given magnitude and epicentral distance from the site, has been done following a theoretical approach. In order to perform an accurate and realistic estimate of site effects and of differential motion it is necessary to make a parametric study that takes into account the complex combination of the source and propagation parameters, in realistic geological structures. The computation of a wide set of time histories and spectral information, corresponding to possible seismotectonic scenarios for different sources and stru...

  15. Modeling a production scale milk drying process: parameter estimation, uncertainty and sensitivity analysis

    DEFF Research Database (Denmark)

    Ferrari, A.; Gutierrez, S.; Sin, Gürkan

    2016-01-01

    A steady state model for a production scale milk drying process was built to help process understanding and optimization studies. It involves a spray chamber and also internal/external fluid beds. The model was subjected to a comprehensive statistical analysis for quality assurance using...... sensitivity analysis of inputs/parameters, and uncertainty analysis to estimate confidence intervals on parameters and model predictions (error propagation). Variance based sensitivity analysis (Sobol's method) was used to quantify the influence of inputs on the final powder moisture as the model output...... at chamber inlet air (variation > 100%). The sensitivity analysis results suggest exploring improvements in the current control (Proportional Integral Derivative) for moisture content at concentrate chamber feed in order to reduce the output variance. It is also confirmed that humidity control at chamber...

  16. Optimization model of peach production relevant to input energies – Yield function in Chaharmahal va Bakhtiari province, Iran

    International Nuclear Information System (INIS)

    Ghatrehsamani, Shirin; Ebrahimi, Rahim; Kazi, Salim Newaz; Badarudin Badry, Ahmad; Sadeghinezhad, Emad

    2016-01-01

    The aim of this study was to determine the amount of input–output energy used in peach production and to develop an optimal model of production in Chaharmahal va Bakhtiari province, Iran. Data were collected from 100 producers by administering a questionnaire in face-to-face interviews. Farms were selected based on random sampling method. Results revealed that the total energy of production is 47,951.52 MJ/ha and the highest share of energy consumption belongs to chemical fertilizers (35.37%). Consumption of direct energy was 47.4% while indirect energy was 52.6%. Also, Total energy consumption was divided into two groups; renewable and non-renewable (19.2% and 80.8% respectively). Energy use efficiency, Energy productivity, Specific energy and Net energy were calculated as 0.433, 0.228 (kg/MJ), 4.38 (MJ/kg) and −27,161.722 (MJ/ha), respectively. According to the negative sign for Net energy, if special strategy is used, energy dismiss will decrease and negative effect of some parameters could be omitted. In the present case the amount is indicating decimate of production energy. In addition, energy efficiency was not high enough. Some of the input energies were applied to machinery, chemical fertilizer, water irrigation and electricity which had significant effect on increasing production and MPP (marginal physical productivity) was determined for variables. This parameter was positive for energy groups namely; machinery, diesel fuel, chemical fertilizer, water irrigation and electricity while it was negative for other kind of energy such as chemical pesticides and human labor. Finally, there is a need to pursue a new policy to force producers to undertake energy-efficient practices to establish sustainable production systems without disrupting the natural resources. In addition, extension activities are needed to improve the efficiency of energy consumption and to sustain the natural resources. - Highlights: • Replacing non-renewable energy with renewable

  17. Modelling Effects on Grid Cells of Sensory Input During Self-motion

    Science.gov (United States)

    2016-04-20

    Olton et al. 1979, 1986; Morris et al. 1982), and hence their accurate updating on the basis of sensory features appears to be essential to memory -guided...J Physiol 000.0 (2016) pp 1–14 1 Th e Jo u rn al o f Ph ys io lo g y N eu ro sc ie nc e SYMPOS IUM REV IEW Modelling effects on grid cells of sensory ...input during self-motion Florian Raudies, James R. Hinman and Michael E. Hasselmo Center for Systems Neuroscience, Centre for Memory and Brain

  18. Input-constrained model predictive control via the alternating direction method of multipliers

    DEFF Research Database (Denmark)

    Sokoler, Leo Emil; Frison, Gianluca; Andersen, Martin S.

    2014-01-01

    is quadratic in the dimensions of the controlled system, and linear in the length of the prediction horizon. Simulations show that the approach proposed in this paper is more than an order of magnitude faster than several state-of-the-art quadratic programming algorithms, and that the difference in computation......This paper presents an algorithm, based on the alternating direction method of multipliers, for the convex optimal control problem arising in input-constrained model predictive control. We develop an efficient implementation of the algorithm for the extended linear quadratic control problem (LQCP...

  19. Selection Input Output by Restriction Using DEA Models Based on a Fuzzy Delphi Approach and Expert Information

    Science.gov (United States)

    Arsad, Roslah; Nasir Abdullah, Mohammad; Alias, Suriana; Isa, Zaidi

    2017-09-01

    Stock evaluation has always been an interesting problem for investors. In this paper, a comparison regarding the efficiency stocks of listed companies in Bursa Malaysia were made through the application of estimation method of Data Envelopment Analysis (DEA). One of the interesting research subjects in DEA is the selection of appropriate input and output parameter. In this study, DEA was used to measure efficiency of stocks of listed companies in Bursa Malaysia in terms of the financial ratio to evaluate performance of stocks. Based on previous studies and Fuzzy Delphi Method (FDM), the most important financial ratio was selected. The results indicated that return on equity, return on assets, net profit margin, operating profit margin, earnings per share, price to earnings and debt to equity were the most important ratios. Using expert information, all the parameter were clarified as inputs and outputs. The main objectives were to identify most critical financial ratio, clarify them based on expert information and compute the relative efficiency scores of stocks as well as rank them in the construction industry and material completely. The methods of analysis using Alirezaee and Afsharian’s model were employed in this study, where the originality of Charnes, Cooper and Rhodes (CCR) with the assumption of Constant Return to Scale (CSR) still holds. This method of ranking relative efficiency of decision making units (DMUs) was value-added by the Balance Index. The interested data was made for year 2015 and the population of the research includes accepted companies in stock markets in the construction industry and material (63 companies). According to the ranking, the proposed model can rank completely for 63 companies using selected financial ratio.

  20. Sample Size and Item Parameter Estimation Precision When Utilizing the One-Parameter "Rasch" Model

    Science.gov (United States)

    Custer, Michael

    2015-01-01

    This study examines the relationship between sample size and item parameter estimation precision when utilizing the one-parameter model. Item parameter estimates are examined relative to "true" values by evaluating the decline in root mean squared deviation (RMSD) and the number of outliers as sample size increases. This occurs across…

  1. Models for estimating photosynthesis parameters from in situ production profiles

    Science.gov (United States)

    Kovač, Žarko; Platt, Trevor; Sathyendranath, Shubha; Antunović, Suzana

    2017-12-01

    The rate of carbon assimilation in phytoplankton primary production models is mathematically prescribed with photosynthesis irradiance functions, which convert a light flux (energy) into a material flux (carbon). Information on this rate is contained in photosynthesis parameters: the initial slope and the assimilation number. The exactness of parameter values is crucial for precise calculation of primary production. Here we use a model of the daily production profile based on a suite of photosynthesis irradiance functions and extract photosynthesis parameters from in situ measured daily production profiles at the Hawaii Ocean Time-series station Aloha. For each function we recover parameter values, establish parameter distributions and quantify model skill. We observe that the choice of the photosynthesis irradiance function to estimate the photosynthesis parameters affects the magnitudes of parameter values as recovered from in situ profiles. We also tackle the problem of parameter exchange amongst the models and the effect it has on model performance. All models displayed little or no bias prior to parameter exchange, but significant bias following parameter exchange. The best model performance resulted from using optimal parameter values. Model formulation was extended further by accounting for spectral effects and deriving a spectral analytical solution for the daily production profile. The daily production profile was also formulated with time dependent growing biomass governed by a growth equation. The work on parameter recovery was further extended by exploring how to extract photosynthesis parameters from information on watercolumn production. It was demonstrated how to estimate parameter values based on a linearization of the full analytical solution for normalized watercolumn production and from the solution itself, without linearization. The paper complements previous works on photosynthesis irradiance models by analysing the skill and consistency of

  2. Air quality modelling in the Berlin-Brandenburg region using WRF-Chem v3.7.1: sensitivity to resolution of model grid and input data

    Science.gov (United States)

    Kuik, Friderike; Lauer, Axel; Churkina, Galina; Denier van der Gon, Hugo A. C.; Fenner, Daniel; Mar, Kathleen A.; Butler, Tim M.

    2016-12-01

    Air pollution is the number one environmental cause of premature deaths in Europe. Despite extensive regulations, air pollution remains a challenge, especially in urban areas. For studying summertime air quality in the Berlin-Brandenburg region of Germany, the Weather Research and Forecasting Model with Chemistry (WRF-Chem) is set up and evaluated against meteorological and air quality observations from monitoring stations as well as from a field campaign conducted in 2014. The objective is to assess which resolution and level of detail in the input data is needed for simulating urban background air pollutant concentrations and their spatial distribution in the Berlin-Brandenburg area. The model setup includes three nested domains with horizontal resolutions of 15, 3 and 1 km and anthropogenic emissions from the TNO-MACC III inventory. We use RADM2 chemistry and the MADE/SORGAM aerosol scheme. Three sensitivity simulations are conducted updating input parameters to the single-layer urban canopy model based on structural data for Berlin, specifying land use classes on a sub-grid scale (mosaic option) and downscaling the original emissions to a resolution of ca. 1 km × 1 km for Berlin based on proxy data including traffic density and population density. The results show that the model simulates meteorology well, though urban 2 m temperature and urban wind speeds are biased high and nighttime mixing layer height is biased low in the base run with the settings described above. We show that the simulation of urban meteorology can be improved when specifying the input parameters to the urban model, and to a lesser extent when using the mosaic option. On average, ozone is simulated reasonably well, but maximum daily 8 h mean concentrations are underestimated, which is consistent with the results from previous modelling studies using the RADM2 chemical mechanism. Particulate matter is underestimated, which is partly due to an underestimation of secondary organic aerosols

  3. A comparison of numerical and machine-learning modeling of soil water content with limited input data

    Science.gov (United States)

    Karandish, Fatemeh; Šimůnek, Jiří

    2016-12-01

    Soil water content (SWC) is a key factor in optimizing the usage of water resources in agriculture since it provides information to make an accurate estimation of crop water demand. Methods for predicting SWC that have simple data requirements are needed to achieve an optimal irrigation schedule, especially for various water-saving irrigation strategies that are required to resolve both food and water security issues under conditions of water shortages. Thus, a two-year field investigation was carried out to provide a dataset to compare the effectiveness of HYDRUS-2D, a physically-based numerical model, with various machine-learning models, including Multiple Linear Regressions (MLR), Adaptive Neuro-Fuzzy Inference Systems (ANFIS), and Support Vector Machines (SVM), for simulating time series of SWC data under water stress conditions. SWC was monitored using TDRs during the maize growing seasons of 2010 and 2011. Eight combinations of six, simple, independent parameters, including pan evaporation and average air temperature as atmospheric parameters, cumulative growth degree days (cGDD) and crop coefficient (Kc) as crop factors, and water deficit (WD) and irrigation depth (In) as crop stress factors, were adopted for the estimation of SWCs in the machine-learning models. Having Root Mean Square Errors (RMSE) in the range of 0.54-2.07 mm, HYDRUS-2D ranked first for the SWC estimation, while the ANFIS and SVM models with input datasets of cGDD, Kc, WD and In ranked next with RMSEs ranging from 1.27 to 1.9 mm and mean bias errors of -0.07 to 0.27 mm, respectively. However, the MLR models did not perform well for SWC forecasting, mainly due to non-linear changes of SWCs under the irrigation process. The results demonstrated that despite requiring only simple input data, the ANFIS and SVM models could be favorably used for SWC predictions under water stress conditions, especially when there is a lack of data. However, process-based numerical models are undoubtedly a

  4. Seasonal variation in coat characteristics, tick loads, cortisol levels, some physiological parameters and temperature humidity index on Nguni cows raised in low- and high-input farms.

    Science.gov (United States)

    Katiyatiya, C L F; Muchenje, V; Mushunje, A

    2015-06-01

    Seasonal variations in hair length, tick loads, cortisol levels, haematological parameters (HP) and temperature humidity index (THI) in Nguni cows of different colours raised in two low-input farms, and a commercial stud was determined. The sites were chosen based on their production systems, climatic characteristics and geographical locations. Zazulwana and Komga are low-input, humid-coastal areas, while Honeydale is a high-input, dry-inland Nguni stud farm. A total of 103 cows, grouped according to parity, location and coat colour, were used in the study. The effects of location, coat colour, hair length and season were used to determine tick loads on different body parts, cortisol levels and HP in blood from Nguni cows. Highest tick loads were recorded under the tail and the lowest on the head of each of the animals (P cows recorded the highest tick loads under the tails of all the cows used in the study from the three farms (P tick loads were recorded for cows with long hairs. Hair lengths were longest during the winter season in the coastal areas of Zazulwana and Honeydale (P cows had significantly longer (P tick loads on different body parts and heat stress in Nguni cows.

  5. Seasonal variation in coat characteristics, tick loads, cortisol levels, some physiological parameters and temperature humidity index on Nguni cows raised in low- and high-input farms

    Science.gov (United States)

    Katiyatiya, C. L. F.; Muchenje, V.; Mushunje, A.

    2015-06-01

    Seasonal variations in hair length, tick loads, cortisol levels, haematological parameters (HP) and temperature humidity index (THI) in Nguni cows of different colours raised in two low-input farms, and a commercial stud was determined. The sites were chosen based on their production systems, climatic characteristics and geographical locations. Zazulwana and Komga are low-input, humid-coastal areas, while Honeydale is a high-input, dry-inland Nguni stud farm. A total of 103 cows, grouped according to parity, location and coat colour, were used in the study. The effects of location, coat colour, hair length and season were used to determine tick loads on different body parts, cortisol levels and HP in blood from Nguni cows. Highest tick loads were recorded under the tail and the lowest on the head of each of the animals ( P winter season in the coastal areas of Zazulwana and Honeydale ( P coat colour and season had effects on hair length, cortisol levels, THI, HP and tick loads on different body parts and heat stress in Nguni cows.

  6. A switchable light-input, light-output system modelled and constructed in yeast

    Directory of Open Access Journals (Sweden)

    Kozma-Bognar Laszlo

    2009-09-01

    Full Text Available Abstract Background Advances in synthetic biology will require spatio-temporal regulation of biological processes in heterologous host cells. We develop a light-switchable, two-hybrid interaction in yeast, based upon the Arabidopsis proteins PHYTOCHROME A and FAR-RED ELONGATED HYPOCOTYL 1-LIKE. Light input to this regulatory module allows dynamic control of a light-emitting LUCIFERASE reporter gene, which we detect by real-time imaging of yeast colonies on solid media. Results The reversible activation of the phytochrome by red light, and its inactivation by far-red light, is retained. We use this quantitative readout to construct a mathematical model that matches the system's behaviour and predicts the molecular targets for future manipulation. Conclusion Our model, methods and materials together constitute a novel system for a eukaryotic host with the potential to convert a dynamic pattern of light input into a predictable gene expression response. This system could be applied for the regulation of genetic networks - both known and synthetic.

  7. A Water-Withdrawal Input-Output Model of the Indian Economy.

    Science.gov (United States)

    Bogra, Shelly; Bakshi, Bhavik R; Mathur, Ritu

    2016-02-02

    Managing freshwater allocation for a highly populated and growing economy like India can benefit from knowledge about the effect of economic activities. This study transforms the 2003-2004 economic input-output (IO) table of India into a water withdrawal input-output model to quantify direct and indirect flows. This unique model is based on a comprehensive database compiled from diverse public sources, and estimates direct and indirect water withdrawal of all economic sectors. It distinguishes between green (rainfall), blue (surface and ground), and scarce groundwater. Results indicate that the total direct water withdrawal is nearly 3052 billion cubic meter (BCM) and 96% of this is used in agriculture sectors with the contribution of direct green water being about 1145 BCM, excluding forestry. Apart from 727 BCM direct blue water withdrawal for agricultural, other significant users include "Electricity" with 64 BCM, "Water supply" with 44 BCM and other industrial sectors with nearly 14 BCM. "Construction", "miscellaneous food products"; "Hotels and restaurants"; "Paper, paper products, and newsprint" are other significant indirect withdrawers. The net virtual water import is found to be insignificant compared to direct water used in agriculture nationally, while scarce ground water associated with crops is largely contributed by northern states.

  8. Development of a General Form CO2 and Brine Flux Input Model

    Energy Technology Data Exchange (ETDEWEB)

    Mansoor, K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Sun, Y. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Carroll, S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2014-08-01

    The National Risk Assessment Partnership (NRAP) project is developing a science-based toolset for the quantitative analysis of the potential risks associated with changes in groundwater chemistry from CO2 injection. In order to address uncertainty probabilistically, NRAP is developing efficient, reduced-order models (ROMs) as part of its approach. These ROMs are built from detailed, physics-based process models to provide confidence in the predictions over a range of conditions. The ROMs are designed to reproduce accurately the predictions from the computationally intensive process models at a fraction of the computational time, thereby allowing the utilization of Monte Carlo methods to probe variability in key parameters. This report presents the procedures used to develop a generalized model for CO2 and brine leakage fluxes based on the output of a numerical wellbore simulation. The resulting generalized parameters and ranges reported here will be used for the development of third-generation groundwater ROMs.

  9. Time-Varying FOPDT Modeling and On-line Parameter Identification

    DEFF Research Database (Denmark)

    Yang, Zhenyu; Sun, Zhen

    2013-01-01

    A type of Time-Varying First-Order Plus Dead-Time (TV-FOPDT) model is extended from SISO format into a MISO version by explicitly taking the disturbance input into consideration. Correspondingly, a set of on-line parameter identification algorithms oriented to MISO TV-FOPDT model are proposed based...... on the Mixed-Integer-Nonlinear Programming, Least-Mean-Square and sliding window techniques. The proposed approaches can simultaneously estimate the time-dependent system parameters, as well as the unknown disturbance input if it is the case, in an on-line manner. The proposed concepts and algorithms...... are firstly illustrated through a numerical example, and then applied to investigate transient superheat dynamic modeling in a supermarket refrigeration system....

  10. INPUT DATA OF BURNING WOOD FOR CFD MODELLING USING SMALL-SCALE EXPERIMENTS

    Directory of Open Access Journals (Sweden)

    Petr Hejtmánek

    2017-12-01

    Full Text Available The paper presents an option how to acquire simplified input data for modelling of burning wood in CFD programmes. The option lies in combination of data from small- and molecular-scale experiments in order to describe the material as a one-reaction material property. Such virtual material would spread fire, develop the fire according to surrounding environment and it could be extinguished without using complex reaction molecular description. Series of experiments including elemental analysis, thermogravimetric analysis and difference thermal analysis, and combustion analysis were performed. Then the FDS model of burning pine wood in a cone calorimeter was built. In the model where those values were used. The model was validated to HRR (Heat Release Rate from the real cone calorimeter experiment. The results show that for the purpose of CFD modelling the effective heat of combustion, which is one of the basic material property for fire modelling affecting the total intensity of burning, should be used. Using the net heat of combustion in the model leads to higher values of HRR in comparison to the real experiment data. Considering all the results shown in this paper, it was shown that it is possible to simulate burning of wood using the extrapolated data obtained in small-size experiments.

  11. Optimizing incomplete sample designs for item response model parameters

    NARCIS (Netherlands)

    van der Linden, Willem J.

    Several models for optimizing incomplete sample designs with respect to information on the item parameters are presented. The following cases are considered: (1) known ability parameters; (2) unknown ability parameters; (3) item sets with multiple ability scales; and (4) response models with

  12. Treatment of input uncertainty in hydrologic modeling: Doing hydrology backward with Markov chain Monte Carlo simulation

    NARCIS (Netherlands)

    Vrugt, J.A.; Braak, ter C.J.F.; Clark, M.P.; Hyman, J.M.; Robinson, B.A.

    2008-01-01

    There is increasing consensus in the hydrologic literature that an appropriate framework for streamflow forecasting and simulation should include explicit recognition of forcing and parameter and model structural error. This paper presents a novel Markov chain Monte Carlo (MCMC) sampler, entitled

  13. New insights into mammalian signaling pathways using microfluidic pulsatile inputs and mathematical modeling

    Science.gov (United States)

    Sumit, M.; Takayama, S.; Linderman, J. J.

    2016-01-01

    Temporally modulated input mimics physiology. This chemical communication strategy filters the biochemical noise through entrainment and phase-locking. Under laboratory conditions, it also expands the observability space for downstream responses. A combined approach involving microfluidic pulsatile stimulation and mathematical modeling has led to deciphering of hidden/unknown temporal motifs in several mammalian signaling pathways and has provided mechanistic insights, including how these motifs combine to form distinct band-pass filters and govern fate regulation under dynamic microenvironment. This approach can be utilized to understand signaling circuit architectures and to gain mechanistic insights for several other signaling systems. Potential applications include synthetic biology and biotechnology, in developing pharmaceutical interventions, and in developing lab-on-chip models. PMID:27868126

  14. New insights into mammalian signaling pathways using microfluidic pulsatile inputs and mathematical modeling.

    Science.gov (United States)

    Sumit, M; Takayama, S; Linderman, J J

    2017-01-23

    Temporally modulated input mimics physiology. This chemical communication strategy filters the biochemical noise through entrainment and phase-locking. Under laboratory conditions, it also expands the observability space for downstream responses. A combined approach involving microfluidic pulsatile stimulation and mathematical modeling has led to deciphering of hidden/unknown temporal motifs in several mammalian signaling pathways and has provided mechanistic insights, including how these motifs combine to form distinct band-pass filters and govern fate regulation under dynamic microenvironment. This approach can be utilized to understand signaling circuit architectures and to gain mechanistic insights for several other signaling systems. Potential applications include synthetic biology and biotechnology, in developing pharmaceutical interventions, and in developing lab-on-chip models.

  15. Loss of GABAergic inputs in APP/PS1 mouse model of Alzheimer's disease

    Directory of Open Access Journals (Sweden)

    Tutu Oyelami

    2014-04-01

    Full Text Available Alzheimer's disease (AD is characterized by symptoms which include seizures, sleep disruption, loss of memory as well as anxiety in patients. Of particular importance is the possibility of preventing the progressive loss of neuronal projections in the disease. Transgenic mice overexpressing EOFAD mutant PS1 (L166P and mutant APP (APP KM670/671NL Swedish (APP/PS1 develop a very early and robust Amyloid pathology and display synaptic plasticity impairments and cognitive dysfunction. Here we investigated GABAergic neurotransmission, using multi-electrode array (MEA technology and pharmacological manipulation to quantify the effect of GABA Blockers on field excitatory postsynaptic potentials (fEPSP, and immunostaining of GABAergic neurons. Using MEA technology we confirm impaired LTP induction by high frequency stimulation in APPPS1 hippocampal CA1 region that was associated with reduced alteration of the pair pulse ratio after LTP induction. Synaptic dysfunction was also observed under manipulation of external Calcium concentration and input-output curve. Electrophysiological recordings from brain slice of CA1 hippocampus area, in the presence of GABAergic receptors blockers cocktails further demonstrated significant reduction in the GABAergic inputs in APP/PS1 mice. Moreover, immunostaining of GAD65 a specific marker for GABAergic neurons revealed reduction of the GABAergic inputs in CA1 area of the hippocampus. These results might be linked to increased seizure sensitivity, premature death and cognitive dysfunction in this animal model of AD. Further in depth analysis of GABAergic dysfunction in APP/PS1 mice is required and may open new perspectives for AD therapy by restoring GABAergic function.

  16. Realistic modeling of seismic input for megacities and large urban areas

    Science.gov (United States)

    Panza, G. F.; Unesco/Iugs/Igcp Project 414 Team

    2003-04-01

    The project addressed the problem of pre-disaster orientation: hazard prediction, risk assessment, and hazard mapping, in connection with seismic activity and man-induced vibrations. The definition of realistic seismic input has been obtained from the computation of a wide set of time histories and spectral information, corresponding to possible seismotectonic scenarios for different source and structural models. The innovative modeling technique, that constitutes the common tool to the entire project, takes into account source, propagation and local site effects. This is done using first principles of physics about wave generation and propagation in complex media, and does not require to resort to convolutive approaches, that have been proven to be quite unreliable, mainly when dealing with complex geological structures, the most interesting from the practical point of view. In fact, several techniques that have been proposed to empirically estimate the site effects using observations convolved with theoretically computed signals corresponding to simplified models, supply reliable information about the site response to non-interfering seismic phases. They are not adequate in most of the real cases, when the seismic sequel is formed by several interfering waves. The availability of realistic numerical simulations enables us to reliably estimate the amplification effects even in complex geological structures, exploiting the available geotechnical, lithological, geophysical parameters, topography of the medium, tectonic, historical, palaeoseismological data, and seismotectonic models. The realistic modeling of the ground motion is a very important base of knowledge for the preparation of groundshaking scenarios that represent a valid and economic tool for the seismic microzonation. This knowledge can be very fruitfully used by civil engineers in the design of new seismo-resistant constructions and in the reinforcement of the existing built environment, and, therefore

  17. Correlation of iodine uptake and perfusion parameters between dual-energy CT imaging and first-pass dual-input perfusion CT in lung cancer.

    Science.gov (United States)

    Chen, Xiaoliang; Xu, Yanyan; Duan, Jianghui; Li, Chuandong; Sun, Hongliang; Wang, Wu

    2017-07-01

    To investigate the potential relationship between perfusion parameters from first-pass dual-input perfusion computed tomography (DI-PCT) and iodine uptake levels estimated from dual-energy CT (DE-CT).The pre-experimental part of this study included a dynamic DE-CT protocol in 15 patients to evaluate peak arterial enhancement of lung cancer based on time-attenuation curves, and the scan time of DE-CT was determined. In the prospective part of the study, 28 lung cancer patients underwent whole-volume perfusion CT and single-source DE-CT using 320-row CT. Pulmonary flow (PF, mL/min/100 mL), aortic flow (AF, mL/min/100 mL), and a perfusion index (PI = PF/[PF + AF]) were automatically generated by in-house commercial software using the dual-input maximum slope method for DI-PCT. For the dual-energy CT data, iodine uptake was estimated by the difference (λ) and the slope (λHU). λ was defined as the difference of CT values between 40 and 70 KeV monochromatic images in lung lesions. λHU was calculated by the following equation: λHU = |λ/(70 - 40)|. The DI-PCT and DE-CT parameters were analyzed by Pearson/Spearman correlation analysis, respectively.All subjects were pathologically proved as lung cancer patients (including 16 squamous cell carcinoma, 8 adenocarcinoma, and 4 small cell lung cancer) by surgery or CT-guided biopsy. Interobserver reproducibility in DI-PCT (PF, AF, PI) and DE-CT (λ, λHU) were relatively good to excellent (intraclass correlation coefficient [ICC]Inter = 0.8726-0.9255, ICCInter = 0.8179-0.8842; ICCInter = 0.8881-0.9177, ICCInter = 0.9820-0.9970, ICCInter = 0.9780-0.9971, respectively). Correlation coefficient between λ and AF, and PF were as follows: 0.589 (P input CT perfusion analysis method can be applied to assess blood supply of lung cancer patients. Preliminary results demonstrated that the iodine uptake relevant parameters derived from DE-CT significantly correlated with perfusion

  18. Parameter and Uncertainty Estimation in Groundwater Modelling

    DEFF Research Database (Denmark)

    Jensen, Jacob Birk

    The data basis on which groundwater models are constructed is in general very incomplete, and this leads to uncertainty in model outcome. Groundwater models form the basis for many, often costly decisions and if these are to be made on solid grounds, the uncertainty attached to model results must...... be quantified. This study was motivated by the need to estimate the uncertainty involved in groundwater models.Chapter 2 presents an integrated surface/subsurface unstructured finite difference model that was developed and applied to a synthetic case study.The following two chapters concern calibration...... was applied.Capture zone modelling was conducted on a synthetic stationary 3-dimensional flow problem involving river, surface and groundwater flow. Simulated capture zones were illustrated as likelihood maps and compared with a deterministic capture zones derived from a reference model. The results showed...

  19. An Approach for Generating Precipitation Input for Worst-Case Flood Modelling

    Science.gov (United States)

    Felder, Guido; Weingartner, Rolf

    2015-04-01

    There is a lack of suitable methods for creating precipitation scenarios that can be used to realistically estimate peak discharges with very low probabilities. On the one hand, existing methods are methodically questionable when it comes to physical system boundaries. On the other hand, the spatio-temporal representativeness of precipitation patterns as system input is limited. In response, this study proposes a method of deriving representative spatio-temporal precipitation patterns and presents a step towards making methodically correct estimations of infrequent floods by using a worst-case approach. A Monte-Carlo rainfall-runoff model allows for the testing of a wide range of different spatio-temporal distributions of an extreme precipitation event and therefore for the generation of a hydrograph for each of these distributions. Out of these numerous hydrographs and their corresponding peak discharges, the worst-case catchment reactions on the system input can be derived. The spatio-temporal distributions leading to the highest peak discharges are identified and can eventually be used for further investigations.

  20. WINKLER'S SINGLE-PARAMETER SUBGRADE MODEL FROM ...

    African Journals Online (AJOL)

    Preferred Customer

    SUBGRADE MODELING. Asrat Worku. Department of ... The models give consistently larger stiffness for the Winkler springs as compared to previously proposed similar continuum-based models that ignore the lateral stresses. ...... (ν = 0.25 and E = 40MPa); (b) a medium stiff clay (ν = 0.45 and E = 50MPa). In contrast to this, ...

  1. Solar Load Inputs for USARIEM Thermal Strain Models and the Solar Radiation-Sensitive Components of the WBGT Index

    National Research Council Canada - National Science Library

    Matthew, William

    2001-01-01

    This report describes processes we have implemented to use global pyranometer-based estimates of mean radiant temperature as the common solar load input for the Scenario model, the USARIEM heat strain...

  2. Boolean modeling of neural systems with point-process inputs and outputs. Part I: theory and simulations.

    Science.gov (United States)

    Marmarelis, Vasilis Z; Zanos, Theodoros P; Berger, Theodore W

    2009-08-01

    This paper presents a new modeling approach for neural systems with point-process (spike) inputs and outputs that utilizes Boolean operators (i.e. modulo 2 multiplication and addition that correspond to the logical AND and OR operations respectively, as well as the AND_NOT logical operation representing inhibitory effects). The form of the employed mathematical models is akin to a "Boolean-Volterra" model that contains the product terms of all relevant input lags in a hierarchical order, where terms of order higher than first represent nonlinear interactions among the various lagged values of each input point-process or among lagged values of various inputs (if multiple inputs exist) as they reflect on the output. The coefficients of this Boolean-Volterra model are also binary variables that indicate the presence or absence of the respective term in each specific model/system. Simulations are used to explore the properties of such models and the feasibility of their accurate estimation from short data-records in the presence of noise (i.e. spurious spikes). The results demonstrate the feasibility of obtaining reliable estimates of such models, with excitatory and inhibitory terms, in the presence of considerable noise (spurious spikes) in the outputs and/or the inputs in a computationally efficient manner. A pilot application of this approach to an actual neural system is presented in the companion paper (Part II).

  3. Reconstruction of rocks petrophysical properties as input data for reservoir modeling

    Science.gov (United States)

    Cantucci, B.; Montegrossi, G.; Lucci, F.; Quattrocchi, F.

    2016-11-01

    The worldwide increasing energy demand triggered studies focused on defining the underground energy potential even in areas previously discharged or neglected. Nowadays, geological gas storage (CO2 and/or CH4) and geothermal energy are considered strategic for low-carbon energy development. A widespread and safe application of these technologies needs an accurate characterization of the underground, in terms of geology, hydrogeology, geochemistry, and geomechanics. However, during prefeasibility study-stage, the limited number of available direct measurements of reservoirs, and the high costs of reopening closed deep wells must be taken into account. The aim of this work is to overcome these limits, proposing a new methodology to reconstruct vertical profiles, from surface to reservoir base, of: (i) thermal capacity, (ii) thermal conductivity, (iii) porosity, and (iv) permeability, through integration of well-log information, petrographic observations on inland outcropping samples, and flow and heat transport modeling. As case study to test our procedure we selected a deep structure, located in the medium Tyrrhenian Sea (Italy). Obtained results are consistent with measured data, confirming the validity of the proposed model. Notwithstanding intrinsic limitations due to manual calibration of the model with measured data, this methodology represents an useful tool for reservoir and geochemical modelers that need to define petrophysical input data for underground modeling before the well reopening.

  4. Comparison of several climate indices as inputs in modelling of the Baltic Sea runoff

    Energy Technology Data Exchange (ETDEWEB)

    Hanninen, J.; Vuorinen, I. [Turku Univ. (Finland). Archipelaco Research Inst.], e-mail: jari.hanninen@utu.fi

    2012-11-01

    Using Transfer function (TF) models, we have earlier presented a chain of events between changes in the North Atlantic Oscillation (NAO) and their oceanographical and ecological consequences in the Baltic Sea. Here we tested whether other climate indices as inputs would improve TF models, and our understanding of the Baltic Sea ecosystem. Besides NAO, the predictors were the Arctic Oscillation (AO), sea-level air pressures at Iceland (SLP), and wind speeds at Hoburg (Gotland). All indices produced good TF models when the total riverine runoff to the Baltic Sea was used as a modelling basis. AO was not applicable in all study areas, showing a delay of about half a year between climate and runoff events, connected with freezing and melting time of ice and snow in the northern catchment area of the Baltic Sea. NAO appeared to be most useful modelling tool as its area of applicability was the widest of the tested indices, and the time lag between climate and runoff events was the shortest. SLP and Hoburg wind speeds showed largely same results as NAO, but with smaller areal applicability. Thus AO and NAO were both mostly contributing to the general understanding of climate control of runoff events in the Baltic Sea ecosystem. (orig.)

  5. Neural Systems with Numerically Matched Input-Output Statistic: Isotonic Bivariate Statistical Modeling

    Directory of Open Access Journals (Sweden)

    Simone Fiori

    2007-07-01

    Full Text Available Bivariate statistical modeling from incomplete data is a useful statistical tool that allows to discover the model underlying two data sets when the data in the two sets do not correspond in size nor in ordering. Such situation may occur when the sizes of the two data sets do not match (i.e., there are “holes” in the data or when the data sets have been acquired independently. Also, statistical modeling is useful when the amount of available data is enough to show relevant statistical features of the phenomenon underlying the data. We propose to tackle the problem of statistical modeling via a neural (nonlinear system that is able to match its input-output statistic to the statistic of the available data sets. A key point of the new implementation proposed here is that it is based on look-up-table (LUT neural systems, which guarantee a computationally advantageous way of implementing neural systems. A number of numerical experiments, performed on both synthetic and real-world data sets, illustrate the features of the proposed modeling procedure.

  6. Analysis of Evapotranspiration Model Sensitivity to Climate and Vegetation Parameters With Dependence

    Science.gov (United States)

    Levy, M. C.

    2013-12-01

    ; Saltelli, 2002) to assess the sensitivity of a PM ET model to both climate and vegetation input variables, and the first applied use of a Sobol' SA analogue method (Kucherenko et al., 2012) developed for correlated input variables. This study finds that without accounting for correlated input variables, PM ET is not sensitive to vegetation variables relative to climate variables. However, accounting for input variable dependence yields different results. In an arid climate example, first order (individual variable) sensitivities are higher, total (variable interaction) sensitivities are lower, and climate and vegetation variables are more closely ranked in terms of their total sensitivities. Because Sobol' type SAs are used to evaluate environmental models broadly, and environmental variables are in many cases correlated, this study provides an example of how not accounting for all model input variables and their correlation can result in inaccurate estimates of the sensitivity of models to their parameters. This research illustrates the importance of accounting for parameter dependence when a SA is being used for parameterization and calibration guidance, and/or assessments of the sensitivity of model outputs to changes in environmental inputs. The latter is particularly relevant for climate change studies.

  7. Evaluation of Uncertainty in Constituent Input Parameters for Modeling the Fate of IMX 101 Components

    Science.gov (United States)

    2017-05-01

    engineering and environmental challenges. ERDC develops innovative solutions in civil and military engineering, geospatial sciences, water...could pose risks to human and ecological receptors down-gradient of ranges. Additionally, TREECS™ can be used to evaluate Green Range Best Management... ecological health. A detailed description of TREECS™, as well as its performance, is provided by Dortch et al. (2013). The physicochemical properties of

  8. Propagation of uncertainty in system parameters of a LWR model by sampling MCNPX calculations - Burnup analysis

    International Nuclear Information System (INIS)

    Campolina, D. de A. M.; Lima, C.P.B.; Veloso, M.A.F.

    2013-01-01

    For all the physical components that comprise a nuclear system there is an uncertainty. Assessing the impact of uncertainties in the simulation of fissionable material systems is essential for a best estimate calculation that has been replacing the conservative model calculations as the computational power increases. The propagation of uncertainty in a simulation using a Monte Carlo code by sampling the input parameters is recent because of the huge computational effort required. In this work a sample space of MCNPX calculations was used to propagate the uncertainty. The sample size was optimized using the Wilks formula for a 95. percentile and a two-sided statistical tolerance interval of 95%. Uncertainties in input parameters of the reactor considered included geometry dimensions and densities. It was showed the capacity of the sampling-based method for burnup when the calculations sample size is optimized and many parameter uncertainties are investigated together, in the same input. Particularly it was shown that during the burnup, the variances when considering all the parameters uncertainties is equivalent to the sum of variances if the parameter uncertainties are sampled separately

  9. Assessment of NASA's Physiographic and Meteorological Datasets as Input to HSPF and SWAT Hydrological Models

    Science.gov (United States)

    Alacron, Vladimir J.; Nigro, Joseph D.; McAnally, William H.; OHara, Charles G.; Engman, Edwin Ted; Toll, David

    2011-01-01

    This paper documents the use of simulated Moderate Resolution Imaging Spectroradiometer land use/land cover (MODIS-LULC), NASA-LIS generated precipitation and evapo-transpiration (ET), and Shuttle Radar Topography Mission (SRTM) datasets (in conjunction with standard land use, topographical and meteorological datasets) as input to hydrological models routinely used by the watershed hydrology modeling community. The study is focused in coastal watersheds in the Mississippi Gulf Coast although one of the test cases focuses in an inland watershed located in northeastern State of Mississippi, USA. The decision support tools (DSTs) into which the NASA datasets were assimilated were the Soil Water & Assessment Tool (SWAT) and the Hydrological Simulation Program FORTRAN (HSPF). These DSTs are endorsed by several US government agencies (EPA, FEMA, USGS) for water resources management strategies. These models use physiographic and meteorological data extensively. Precipitation gages and USGS gage stations in the region were used to calibrate several HSPF and SWAT model applications. Land use and topographical datasets were swapped to assess model output sensitivities. NASA-LIS meteorological data were introduced in the calibrated model applications for simulation of watershed hydrology for a time period in which no weather data were available (1997-2006). The performance of the NASA datasets in the context of hydrological modeling was assessed through comparison of measured and model-simulated hydrographs. Overall, NASA datasets were as useful as standard land use, topographical , and meteorological datasets. Moreover, NASA datasets were used for performing analyses that the standard datasets could not made possible, e.g., introduction of land use dynamics into hydrological simulations

  10. Modeling and Controller Design of PV Micro Inverter without Using Electrolytic Capacitors and Input Current Sensors

    Directory of Open Access Journals (Sweden)

    Faa Jeng Lin

    2016-11-01

    Full Text Available This paper outlines the modeling and controller design of a novel two-stage photovoltaic (PV micro inverter (MI that eliminates the need for an electrolytic capacitor (E-cap and input current sensor. The proposed MI uses an active-clamped current-fed push-pull DC-DC converter, cascaded with a full-bridge inverter. Three strategies are proposed to cope with the inherent limitations of a two-stage PV MI: (i high-speed DC bus voltage regulation using an integrator to deal with the 2nd harmonic voltage ripples found in single-phase systems; (ii inclusion of a small film capacitor in the DC bus to achieve ripple-free PV voltage; (iii improved incremental conductance (INC maximum power point tracking (MPPT without the need for current sensing by the PV module. Simulation and experimental results demonstrate the efficacy of the proposed system.

  11. On Approaches to Analyze the Sensitivity of Simulated Hydrologic Fluxes to Model Parameters in the Community Land Model

    Directory of Open Access Journals (Sweden)

    Jie Bao

    2015-12-01

    Full Text Available Effective sensitivity analysis approaches are needed to identify important parameters or factors and their uncertainties in complex Earth system models composed of multi-phase multi-component phenomena and multiple biogeophysical-biogeochemical processes. In this study, the impacts of 10 hydrologic parameters in the Community Land Model on simulations of runoff and latent heat flux are evaluated using data from a watershed. Different metrics, including residual statistics, the Nash–Sutcliffe coefficient, and log mean square error, are used as alternative measures of the deviations between the simulated and field observed values. Four sensitivity analysis (SA approaches, including analysis of variance based on the generalized linear model, generalized cross validation based on the multivariate adaptive regression splines model, standardized regression coefficients based on a linear regression model, and analysis of variance based on support vector machine, are investigated. Results suggest that these approaches show consistent measurement of the impacts of major hydrologic parameters on response variables, but with differences in the relative contributions, particularly for the secondary parameters. The convergence behaviors of the SA with respect to the number of sampling points are also examined with different combinations of input parameter sets and output response variables and their alternative metrics. This study helps identify the optimal SA approach, provides guidance for the calibration of the Community Land Model parameters to improve the model simulations of land surface fluxes, and approximates the magnitudes to be adjusted in the parameter values during parametric model optimization.

  12. Identifying the connective strength between model parameters and performance criteria

    Directory of Open Access Journals (Sweden)

    B. Guse

    2017-11-01

    Full Text Available In hydrological models, parameters are used to represent the time-invariant characteristics of catchments and to capture different aspects of hydrological response. Hence, model parameters need to be identified based on their role in controlling the hydrological behaviour. For the identification of meaningful parameter values, multiple and complementary performance criteria are used that compare modelled and measured discharge time series. The reliability of the identification of hydrologically meaningful model parameter values depends on how distinctly a model parameter can be assigned to one of the performance criteria. To investigate this, we introduce the new concept of connective strength between model parameters and performance criteria. The connective strength assesses the intensity in the interrelationship between model parameters and performance criteria in a bijective way. In our analysis of connective strength, model simulations are carried out based on a latin hypercube sampling. Ten performance criteria including Nash–Sutcliffe efficiency (NSE, Kling–Gupta efficiency (KGE and its three components (alpha, beta and r as well as RSR (the ratio of the root mean square error to the standard deviation for different segments of the flow duration curve (FDC are calculated. With a joint analysis of two regression tree (RT approaches, we derive how a model parameter is connected to different performance criteria. At first, RTs are constructed using each performance criterion as the target variable to detect the most relevant model parameters for each performance criterion. Secondly, RTs are constructed using each parameter as the target variable to detect which performance criteria are impacted by changes in the values of one distinct model parameter. Based on this, appropriate performance criteria are identified for each model parameter. In this study, a high bijective connective strength between model parameters and performance criteria

  13. Effect of Manure vs. Fertilizer Inputs on Productivity of Forage Crop Models

    Directory of Open Access Journals (Sweden)

    Pasquale Martiniello

    2011-06-01

    Full Text Available Manure produced by livestock activity is a dangerous product capable of causing serious environmental pollution. Agronomic management practices on the use of manure may transform the target from a waste to a resource product. Experiments performed on comparison of manure with standard chemical fertilizers (CF were studied under a double cropping per year regime (alfalfa, model I; Italian ryegrass-corn, model II; barley-seed sorghum, model III; and horse-bean-silage sorghum, model IV. The total amount of manure applied in the annual forage crops of the model II, III and IV was 158, 140 and 80 m3 ha−1, respectively. The manure applied to soil by broadcast and injection procedure provides an amount of nitrogen equal to that supplied by CF. The effect of manure applications on animal feeding production and biochemical soil characteristics was related to the models. The weather condition and manures and CF showed small interaction among treatments. The number of MFU ha−1 of biomass crop gross product produced in autumn and spring sowing models under manure applications was 11,769, 20,525, 11,342, 21,397 in models I through IV, respectively. The reduction of MFU ha−1 under CF ranges from 10.7% to 13.2% those of the manure models. The effect of manure on organic carbon and total nitrogen of topsoil, compared to model I, stressed the parameters as CF whose amount was higher in models II and III than model IV. In term of percentage the organic carbon and total nitrogen of model I and treatment with manure was reduced by about 18.5 and 21.9% in model II and model III and 8.8 and 6.3% in model IV, respectively. Manure management may substitute CF without reducing gross production and sustainability of cropping systems, thus allowing the opportunity to recycle the waste product for animal forage feeding.

  14. A sensitivity analysis of a personalized pulse wave propagation model for arteriovenous fistula surgery. Part A: Identification of most influential model parameters.

    Science.gov (United States)

    Huberts, W; de Jonge, C; van der Linden, W P M; Inda, M A; Tordoir, J H M; van de Vosse, F N; Bosboom, E M H

    2013-06-01

    Previously, a pulse wave propagation model was developed that has potential in supporting decision-making in arteriovenous fistula (AVF) surgery for hemodialysis. To adapt the wave propagation model to personalized conditions, patient-specific input parameters should be available. In clinics, the number of measurable input parameters is limited which results in sparse datasets. In addition, patient data are compromised with uncertainty. These uncertain and incomplete input datasets will result in model output uncertainties. By means of a sensitivity analysis the propagation of input uncertainties into output uncertainty can be studied which can give directions for input measurement improvement. In this study, a computational framework has been developed to perform such a sensitivity analysis with a variance-based method and Monte Carlo simulations. The framework was used to determine the influential parameters of our pulse wave propagation model applied to AVF surgery, with respect to parameter prioritization and parameter fixing. With this we were able to determine the model parameters that have the largest influence on the predicted mean brachial flow and systolic radial artery pressure after AVF surgery. Of all 73 parameters 51 could be fixed within their measurement uncertainty interval without significantly influencing the output, while 16 parameters importantly influence the output uncertainty. Measurement accuracy improvement should thus focus on these 16 influential parameters. The most rewarding are measurement improvements of the following parameters: the mean aortic flow, the aortic windkessel resistance, the parameters associated with the smallest arterial or venous diameters of the AVF in- and outflow tract and the radial artery windkessel compliance. Copyright © 2012 IPEM. Published by Elsevier Ltd. All rights reserved.

  15. Quantifying dynamic contrast-enhanced MRI of the knee in children with juvenile rheumatoid arthritis using an arterial input function (AIF) extracted from popliteal artery enhancement, and the effect of the choice of the AIF on the kinetic parameters.

    Science.gov (United States)

    Workie, Dagnachew W; Dardzinski, Bernard J

    2005-09-01

    Quantification of dynamic contrast-enhanced (DCE) MRI based on pharmacokinetic modeling requires specification of the arterial input function (AIF). A full representation of the plasma concentration data, including the initial rise and decay parts, considering the delay and dispersion of the bolus contrast is important. This work deals with modeling of DCE-MRI data from the knees of children with a history of juvenile rheumatoid arthritis (JRA) by using an AIF extracted from the signal enhancement data from the nearby popliteal artery. Three models for the AIFs were considered: a triexponential (AIF1), a gamma-variate plus a biexponential (AIF2), and a biexponential (AIF3). The pharmacokinetic parameters obtained from the model were Ktrans', kep, and V'p. The results from AIF1 and AIF2 showed no statistically significant difference. However, some statistically significant differences were seen with AIF3, particularly for parameters Ktrans' and V'p in the synovium (SNVM). These results suggest the importance of obtaining an appropriate AIF representation in pharmacokinetic modeling of JRA. Specifically, the initial rising part of the AIF should be incorporated for optimal pharmacokinetic modeling results. The pharmacokinetic parameters (mean+/-SD) derived from AIF1, using the average plasma concentration data, were as follows: SNVM Ktrans'(min-1)=0.52+/-0.34, kep(min-1)=0.71+/-0.39, and V'p=0.33+/-0.16, and for the distal femoral physis (DFP) Ktrans'(min-1)=1.83+/-1.78, kep(min-1)=2.65+/-1.80, and V'p=0.46+/-0.31. The pharmacokinetic parameters in the SNVM may be useful for investigating activity and therapeutic efficacy in studies of JRA. Longitudinal studies are necessary to find or demonstrate the parameter that is more sensitive to disease activity. Copyright (c) 2005 Wiley-Liss, Inc.

  16. Errors in estimation of the input signal for integrate-and-fire neuronal models

    Czech Academy of Sciences Publication Activity Database

    Bibbona, E.; Lánský, Petr; Sacerdote, L.; Sirovich, R.

    2008-01-01

    Roč. 78, č. 1 (2008), s. 1-10 ISSN 1539-3755 R&D Projects: GA MŠk(CZ) LC554; GA AV ČR(CZ) 1ET400110401 Grant - others:EC(XE) MIUR PRIN 2005 Institutional research plan: CEZ:AV0Z50110509 Keywords : parameter estimation * stochastic neuronal model Subject RIV: BO - Biophysics Impact factor: 2.508, year: 2008 http://link.aps.org/abstract/PRE/v78/e011918

  17. Summary of the DREAM8 Parameter Estimation Challenge: Toward Parameter Identification for Whole-Cell Models.

    Directory of Open Access Journals (Sweden)

    Jonathan R Karr

    2015-05-01

    Full Text Available Whole-cell models that explicitly represent all cellular components at the molecular level have the potential to predict phenotype from genotype. However, even for simple bacteria, whole-cell models will contain thousands of parameters, many of which are poorly characterized or unknown. New algorithms are needed to estimate these parameters and enable researchers to build increasingly comprehensive models. We organized the Dialogue for Reverse Engineering Assessments and Methods (DREAM 8 Whole-Cell Parameter Estimation Challenge to develop new parameter estimation algorithms for whole-cell models. We asked participants to identify a subset of parameters of a whole-cell model given the model's structure and in silico "experimental" data. Here we describe the challenge, the best performing methods, and new insights into the identifiability of whole-cell models. We also describe several valuable lessons we learned toward improving future challenges. Going forward, we believe that collaborative efforts supported by inexpensive cloud computing have the potential to solve whole-cell model parameter estimation.

  18. Catchment classification and model parameter transfer with a view to regionalisation

    Science.gov (United States)

    Ley, Rita; Hellebrand, Hugo; Casper, Markus C.

    2013-04-01

    Physiographic and climatic catchment characteristics are responsible for catchment response behaviour, whereas hydrological model parameters describe catchment properties in such a way to transform input data (here: precipitation, evaporation) to runoff, hence describing the response behaviour of a catchment. In this respect, model parameters can thus be seen as catchment descriptors. A third catchment descriptor is runoff behaviour, depicted by indices derived from event runoff coefficients and Flow Duration Curves. In an ongoing research project founded by the Deutsche Forschungsgemeinschaft (DFG), we investigate the interdependencies of these three catchment descriptors for catchment classification with a view to regionalisation. The study area comprises about 80 meso-scale catchments in western Germany. These catchments are classified by Self Organising Maps (SOM) based on a) runoff behaviour and b) physical and climatic properties. The two classifications show an overlap of about 80% for all catchments and indicate a direct connection between the two descriptors for a majority of the catchments. Next, all catchments are calibrated with a simple and parsimonious conceptual model, stemming from the Superflex model framework. In this study we test the interdependencies between the classification and the calibrated model parameters by parameter transfer within and between the classes established by SOM. The model simulates total discharge, given observed precipitation and pre-estimated potential evaporation. Simulations with a few catchments show encouraging results: all simulations with the calibrated model show a good fit, which is indicated by Nash Sutcliff coefficients of about 0.8. Most of the simulations of runoff time series for catchments with parameter sets belonging to their own class display good performances too, while simulated runoff with model parameter sets from other classes display significant lower performance. This indicates that there is a

  19. Estimation of Kinetic Parameters in an Automotive SCR Catalyst Model

    DEFF Research Database (Denmark)

    Åberg, Andreas; Widd, Anders; Abildskov, Jens

    2016-01-01

    A challenge during the development of models for simulation of the automotive Selective Catalytic Reduction catalyst is the parameter estimation of the kinetic parameters, which can be time consuming and problematic. The parameter estimation is often carried out on small-scale reactor tests...

  20. Edge Modeling by Two Blur Parameters in Varying Contrasts.

    Science.gov (United States)

    Seo, Suyoung

    2018-06-01

    This paper presents a method of modeling edge profiles with two blur parameters, and estimating and predicting those edge parameters with varying brightness combinations and camera-to-object distances (COD). First, the validity of the edge model is proven mathematically. Then, it is proven experimentally with edges from a set of images captured for specifically designed target sheets and with edges from natural images. Estimation of the two blur parameters for each observed edge profile is performed with a brute-force method to find parameters that produce global minimum errors. Then, using the estimated blur parameters, actual blur parameters of edges with arbitrary brightness combinations are predicted using a surface interpolation method (i.e., kriging). The predicted surfaces show that the two blur parameters of the proposed edge model depend on both dark-side edge brightness and light-side edge brightness following a certain global trend. This is similar across varying CODs. The proposed edge model is compared with a one-blur parameter edge model using experiments of the root mean squared error for fitting the edge models to each observed edge profile. The comparison results suggest that the proposed edge model has superiority over the one-blur parameter edge model in most cases where edges have varying brightness combinations.

  1. An extended TRANSCAR model including ionospheric convection: simulation of EISCAT observations using inputs from AMIE

    Directory of Open Access Journals (Sweden)

    P.-L. Blelly

    2005-02-01

    Full Text Available The TRANSCAR ionospheric model was extended to account for the convection of the magnetic field lines in the auroral and polar ionosphere. A mixed Eulerian-Lagrangian 13-moment approach was used to describe the dynamics of an ionospheric plasma tube. In the present study, one focuses on large scale transports in the polar ionosphere. The model was used to simulate a 35-h period of EISCAT-UHF observations on 16-17 February 1993. The first day was magnetically quiet, and characterized by elevated electron concentrations: the diurnal F2 layer reached as much as 1012m-3, which is unusual for a winter and moderate solar activity (F10.7=130 period. An intense geomagnetic event occurred on the second day, seen in the data as a strong intensification of the ionosphere convection velocities in the early afternoon (with the northward electric field reaching 150mVm-1 and corresponding frictional heating of the ions up to 2500K. The simulation used time-dependent AMIE outputs to infer flux-tube transports in the polar region, and to provide magnetospheric particle and energy inputs to the ionosphere. The overall very good agreement, obtained between the model and the observations, demonstrates the high ability of the extended TRANSCAR model for quantitative modelling of the high-latitude ionosphere; however, some differences are found which are attributed to the precipitation of electrons with very low energy. All these results are finally discussed in the frame of modelling the auroral ionosphere with space weather applications in mind.

  2. An extended TRANSCAR model including ionospheric convection: simulation of EISCAT observations using inputs from AMIE

    Directory of Open Access Journals (Sweden)

    P.-L. Blelly

    2005-02-01

    Full Text Available The TRANSCAR ionospheric model was extended to account for the convection of the magnetic field lines in the auroral and polar ionosphere. A mixed Eulerian-Lagrangian 13-moment approach was used to describe the dynamics of an ionospheric plasma tube. In the present study, one focuses on large scale transports in the polar ionosphere. The model was used to simulate a 35-h period of EISCAT-UHF observations on 16-17 February 1993. The first day was magnetically quiet, and characterized by elevated electron concentrations: the diurnal F2 layer reached as much as 1012m-3, which is unusual for a winter and moderate solar activity (F10.7=130 period. An intense geomagnetic event occurred on the second day, seen in the data as a strong intensification of the ionosphere convection velocities in the early afternoon (with the northward electric field reaching 150mVm-1 and corresponding frictional heating of the ions up to 2500K. The simulation used time-dependent AMIE outputs to infer flux-tube transports in the polar region, and to provide magnetospheric particle and energy inputs to the ionosphere. The overall very good agreement, obtained between the model and the observations, demonstrates the high ability of the extended TRANSCAR model for quantitative modelling of the high-latitude ionosphere; however, some differences are found which are attributed to the precipitation of electrons with very low energy. All these results are finally discussed in the frame of modelling the auroral ionosphere with space weather applications in mind.

  3. Estimation of Parameters in Latent Class Models with Constraints on the Parameters.

    Science.gov (United States)

    Paulson, James A.

    This paper reviews the application of the EM Algorithm to marginal maximum likelihood estimation of parameters in the latent class model and extends the algorithm to the case where there are monotone homogeneity constraints on the item parameters. It is shown that the EM algorithm can be used to obtain marginal maximum likelihood estimates of the…

  4. Fuzzy Stochastic Petri Nets for Modeling Biological Systems with Uncertain Kinetic Parameters.

    Science.gov (United States)

    Liu, Fei; Heiner, Monika; Yang, Ming

    2016-01-01

    Stochastic Petri nets (SPNs) have been widely used to model randomness which is an inherent feature of biological systems. However, for many biological systems, some kinetic parameters may be uncertain due to incomplete, vague or missing kinetic data (often called fuzzy uncertainty), or naturally vary, e.g., between different individuals, experimental conditions, etc. (often called variability), which has prevented a wider application of SPNs that require accurate parameters. Considering the strength of fuzzy sets to deal with uncertain information, we apply a specific type of stochastic Petri nets, fuzzy stochastic Petri nets (FSPNs), to model and analyze biological systems with uncertain kinetic parameters. FSPNs combine SPNs and fuzzy sets, thereby taking into account both randomness and fuzziness of biological systems. For a biological system, SPNs model the randomness, while fuzzy sets model kinetic parameters with fuzzy uncertainty or variability by associating each parameter with a fuzzy number instead of a crisp real value. We introduce a simulation-based analysis method for FSPNs to explore the uncertainties of outputs resulting from the uncertainties associated with input parameters, which works equally well for bounded and unbounded models. We illustrate our approach using a yeast polarization model having an infinite state space, which shows the appropriateness of FSPNs in combination with simulation-based analysis for modeling and analyzing biological systems with uncertain information.

  5. Objective Tuning of Model Parameters in CAM5 Across Different Spatial Resolutions

    Science.gov (United States)

    Bulaevskaya, V.; Lucas, D. D.

    2014-12-01

    Parameterizations of physical processes in climate models are highly dependent on the spatial and temporal resolution and must be tuned for each resolution under consideration. At high spatial resolutions, objective methods for parameter tuning are computationally prohibitive. Our work has focused on calibrating parameters in the Community Atmosphere Model 5 (CAM5) for three spatial resolutions: 1, 2, and 4 degrees. Using perturbed-parameter ensembles and uncertainty quantification methodology, we have identified input parameters that minimize discrepancies of energy fluxes simulated by CAM5 across the three resolutions and with respect to satellite observations. We are also beginning to exploit the parameter-resolution relationships to objectively tune parameters in a high-resolution version of CAM5 by leveraging cheaper, low-resolution simulations and statistical models. We will present our approach to multi-resolution climate model parameter tuning, as well as the key findings. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344 and was supported from the DOE Office of Science through the Scientific Discovery Through Advanced Computing (SciDAC) project on Multiscale Methods for Accurate, Efficient, and Scale-Aware Models of the Earth System.

  6. Incremental parameter estimation of kinetic metabolic network models

    Directory of Open Access Journals (Sweden)

    Jia Gengjie

    2012-11-01

    Full Text Available Abstract Background An efficient and reliable parameter estimation method is essential for the creation of biological models using ordinary differential equation (ODE. Most of the existing estimation methods involve finding the global minimum of data fitting residuals over the entire parameter space simultaneously. Unfortunately, the associated computational requirement often becomes prohibitively high due to the large number of parameters and the lack of complete parameter identifiability (i.e. not all parameters can be uniquely identified. Results In this work, an incremental approach was applied to the parameter estimation of ODE models from concentration time profiles. Particularly, the method was developed to address a commonly encountered circumstance in the modeling of metabolic networks, where the number of metabolic fluxes (reaction rates exceeds that of metabolites (chemical species. Here, the minimization of model residuals was performed over a subset of the parameter space that is associated with the degrees of freedom in the dynamic flux estimation from the concentration time-slopes. The efficacy of this method was demonstrated using two generalized mass action (GMA models, where the method significantly outperformed single-step estimations. In addition, an extension of the estimation method to handle missing data is also presented. Conclusions The proposed incremental estimation method is able to tackle the issue on the lack of complete parameter identifiability and to significantly reduce the computational efforts in estimating model parameters, which will facilitate kinetic modeling of genome-scale cellular metabolism in the future.

  7. Short-Term Solar Irradiance Forecasting Model Based on Artificial Neural Network Using Statistical Feature Parameters

    Directory of Open Access Journals (Sweden)

    Hongshan Zhao

    2012-05-01

    Full Text Available Short-term solar irradiance forecasting (STSIF is of great significance for the optimal operation and power predication of grid-connected photovoltaic (PV plants. However, STSIF is very complex to handle due to the random and nonlinear characteristics of solar irradiance under changeable weather conditions. Artificial Neural Network (ANN is suitable for STSIF modeling and many research works on this topic are presented, but the conciseness and robustness of the existing models still need to be improved. After discussing the relation between weather variations and irradiance, the characteristics of the statistical feature parameters of irradiance under different weather conditions are figured out. A novel ANN model using statistical feature parameters (ANN-SFP for STSIF is proposed in this paper. The input vector is reconstructed with several statistical feature parameters of irradiance and ambient temperature. Thus sufficient information can be effectively extracted from relatively few inputs and the model complexity is reduced. The model structure is determined by cross-validation (CV, and the Levenberg-Marquardt algorithm (LMA is used for the network training. Simulations are carried out to validate and compare the proposed model with the conventional ANN model using historical data series (ANN-HDS, and the results indicated that the forecast accuracy is obviously improved under variable weather conditions.

  8. Predicting musically induced emotions from physiological inputs: Linear and neural network models

    Directory of Open Access Journals (Sweden)

    Frank A. Russo

    2013-08-01

    Full Text Available Listening to music often leads to physiological responses. Do these physiological responses contain sufficient information to infer emotion induced in the listener? The current study explores this question by attempting to predict judgments of 'felt' emotion from physiological responses alone using linear and neural network models. We measured five channels of peripheral physiology from 20 participants – heart rate, respiration, galvanic skin response, and activity in corrugator supercilii and zygomaticus major facial muscles. Using valence and arousal (VA dimensions, participants rated their felt emotion after listening to each of 12 classical music excerpts. After extracting features from the five channels, we examined their correlation with VA ratings, and then performed multiple linear regression to see if a linear relationship between the physiological responses could account for the ratings. Although linear models predicted a significant amount of variance in arousal ratings, they were unable to do so with valence ratings. We then used a neural network to provide a nonlinear account of the ratings. The network was trained on the mean ratings of eight of the 12 excerpts and tested on the remainder. Performance of the neural network confirms that physiological responses alone can be used to predict musically induced emotion. The nonlinear model derived from the neural network was more accurate than linear models derived from multiple linear regression, particularly along the valence dimension. A secondary analysis allowed us to quantify the relative contributions of inputs to the nonlinear model. The study represents a novel approach to understanding the complex relationship between physiological responses and musically induced emotion.

  9. Multi-Layer Perceptron (MLP)-Based Nonlinear Auto-Regressive with Exogenous Inputs (NARX) Stock Forecasting Model

    OpenAIRE

    I. M. Yassin; M. F. Abdul Khalid; S. H. Herman; I. Pasya; N. Ab Wahab; Z. Awang

    2017-01-01

    The prediction of stocks in the stock market is important in investment as it would help the investor to time buy and sell transactions to maximize profits. In this paper, a Multi-Layer Perceptron (MLP)-based Nonlinear Auto-Regressive with Exogenous Inputs (NARX) model was used to predict the prices of the Apple Inc. weekly stock prices over a time horizon of 1995 to 2013. The NARX model belongs is a system identification model that constructs a mathematical model from the dynamic input/outpu...

  10. An approach to adjustment of relativistic mean field model parameters

    Directory of Open Access Journals (Sweden)

    Bayram Tuncay

    2017-01-01

    Full Text Available The Relativistic Mean Field (RMF model with a small number of adjusted parameters is powerful tool for correct predictions of various ground-state nuclear properties of nuclei. Its success for describing nuclear properties of nuclei is directly related with adjustment of its parameters by using experimental data. In the present study, the Artificial Neural Network (ANN method which mimics brain functionality has been employed for improvement of the RMF model parameters. In particular, the understanding capability of the ANN method for relations between the RMF model parameters and their predictions for binding energies (BEs of 58Ni and 208Pb have been found in agreement with the literature values.

  11. A simulation of water pollution model parameter estimation

    Science.gov (United States)

    Kibler, J. F.

    1976-01-01

    A parameter estimation procedure for a water pollution transport model is elaborated. A two-dimensional instantaneous-release shear-diffusion model serves as representative of a simple transport process. Pollution concentration levels are arrived at via modeling of a remote-sensing system. The remote-sensed data are simulated by adding Gaussian noise to the concentration level values generated via the transport model. Model parameters are estimated from the simulated data using a least-squares batch processor. Resolution, sensor array size, and number and location of sensor readings can be found from the accuracies of the parameter estimates.

  12. "Updates to Model Algorithms & Inputs for the Biogenic Emissions Inventory System (BEIS) Model"

    Science.gov (United States)

    We have developed new canopy emission algorithms and land use data for BEIS. Simulations with BEIS v3.4 and these updates in CMAQ v5.0.2 are compared these changes to the Model of Emissions of Gases and Aerosols from Nature (MEGAN) and evaluated the simulations against observatio...

  13. Lumped parameter models for the interpretation of environmental tracer data

    International Nuclear Information System (INIS)

    Maloszewski, P.; Zuber, A.

    1996-01-01

    Principles of the lumped-parameter approach to the interpretation of environmental tracer data are given. The following models are considered: the piston flow model (PFM), exponential flow model (EM), linear model (LM), combined piston flow and exponential flow model (EPM), combined linear flow and piston flow model (LPM), and dispersion model (DM). The applicability of these models for the interpretation of different tracer data is discussed for a steady state flow approximation. Case studies are given to exemplify the applicability of the lumped-parameter approach. Description of a user-friendly computer program is given. (author). 68 refs, 25 figs, 4 tabs

  14. Categorical Inputs, Sensitivity Analysis, Optimization and Importance Tempering with tgp Version 2, an R Package for Treed Gaussian Process Models

    Directory of Open Access Journals (Sweden)

    Robert B. Gramacy

    2010-02-01

    Full Text Available This document describes the new features in version 2.x of the tgp package for R, implementing treed Gaussian process (GP models. The topics covered include methods for dealing with categorical inputs and excluding inputs from the tree or GP part of the model; fully Bayesian sensitivity analysis for inputs/covariates; sequential optimization of black-box functions; and a new Monte Carlo method for inference in multi-modal posterior distributions that combines simulated tempering and importance sampling. These additions extend the functionality of tgp across all models in the hierarchy: from Bayesian linear models, to classification and regression trees (CART, to treed Gaussian processes with jumps to the limiting linear model. It is assumed that the reader is familiar with the baseline functionality of the package, outlined in the first vignette (Gramacy 2007.

  15. WE-FG-206-06: Dual-Input Tracer Kinetic Modeling and Its Analog Implementation for Dynamic Contrast-Enhanced (DCE-) MRI of Malignant Mesothelioma (MPM)

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S; Rimner, A; Hayes, S; Hunt, M; Deasy, J; Zauderer, M; Rusch, V; Tyagi, N [Memorial Sloan Kettering Cancer Center, New York, NY (United States)

    2016-06-15

    Purpose: To use dual-input tracer kinetic modeling of the lung for mapping spatial heterogeneity of various kinetic parameters in malignant MPM Methods: Six MPM patients received DCE-MRI as part of their radiation therapy simulation scan. 5 patients had the epitheloid subtype of MPM, while one was biphasic. A 3D fast-field echo sequence with TR/TE/Flip angle of 3.62ms/1.69ms/15° was used for DCE-MRI acquisition. The scan was collected for 5 minutes with a temporal resolution of 5-9 seconds depending on the spatial extent of the tumor. A principal component analysis-based groupwise deformable registration was used to co-register all the DCE-MRI series for motion compensation. All the images were analyzed using five different dual-input tracer kinetic models implemented in analog continuous-time formalism: the Tofts-Kety (TK), extended TK (ETK), two compartment exchange (2CX), adiabatic approximation to the tissue homogeneity (AATH), and distributed parameter (DP) models. The following parameters were computed for each model: total blood flow (BF), pulmonary flow fraction (γ), pulmonary blood flow (BF-pa), systemic blood flow (BF-a), blood volume (BV), mean transit time (MTT), permeability-surface area product (PS), fractional interstitial volume (vi), extraction fraction (E), volume transfer constant (Ktrans) and efflux rate constant (kep). Results: Although the majority of patients had epitheloid histologies, kinetic parameter values varied across different models. One patient showed a higher total BF value in all models among the epitheloid histologies, although the γ value was varying among these different models. In one tumor with a large area of necrosis, the TK and ETK models showed higher E, Ktrans, and kep values and lower interstitial volume as compared to AATH and DP and 2CX models. Kinetic parameters such as BF-pa, BF-a, PS, Ktrans values were higher in surviving group compared to non-surviving group across most models. Conclusion: Dual-input tracer

  16. A test for the parameters of multiple linear regression models ...

    African Journals Online (AJOL)

    A test for the parameters of multiple linear regression models is developed for conducting tests simultaneously on all the parameters of multiple linear regression models. The test is robust relative to the assumptions of homogeneity of variances and absence of serial correlation of the classical F-test. Under certain null and ...

  17. WATGIS: A GIS-Based Lumped Parameter Water Quality Model

    Science.gov (United States)

    Glenn P. Fernandez; George M. Chescheir; R. Wayne Skaggs; Devendra M. Amatya

    2002-01-01

    A Geographic Information System (GIS)­based, lumped parameter water quality model was developed to estimate the spatial and temporal nitrogen­loading patterns for lower coastal plain watersheds in eastern North Carolina. The model uses a spatially distributed delivery ratio (DR) parameter to account for nitrogen retention or loss along a drainage network. Delivery...

  18. Exploring the interdependencies between parameters in a material model.

    Energy Technology Data Exchange (ETDEWEB)

    Silling, Stewart Andrew; Fermen-Coker, Muge

    2014-01-01

    A method is investigated to reduce the number of numerical parameters in a material model for a solid. The basis of the method is to detect interdependencies between parameters within a class of materials of interest. The method is demonstrated for a set of material property data for iron and steel using the Johnson-Cook plasticity model.

  19. Modelling Implicit Communication in Multi-Agent Systems with Hybrid Input/Output Automata

    Directory of Open Access Journals (Sweden)

    Marta Capiluppi

    2012-10-01

    Full Text Available We propose an extension of Hybrid I/O Automata (HIOAs to model agent systems and their implicit communication through perturbation of the environment, like localization of objects or radio signals diffusion and detection. To this end we decided to specialize some variables of the HIOAs whose values are functions both of time and space. We call them world variables. Basically they are treated similarly to the other variables of HIOAs, but they have the function of representing the interaction of each automaton with the surrounding environment, hence they can be output, input or internal variables. Since these special variables have the role of simulating implicit communication, their dynamics are specified both in time and space, because they model the perturbations induced by the agent to the environment, and the perturbations of the environment as perceived by the agent. Parallel composition of world variables is slightly different from parallel composition of the other variables, since their signals are summed. The theory is illustrated through a simple example of agents systems.

  20. Modeling uncertainties in workforce disruptions from influenza pandemics using dynamic input-output analysis.

    Science.gov (United States)

    El Haimar, Amine; Santos, Joost R

    2014-03-01

    Influenza pandemic is a serious disaster that can pose significant disruptions to the workforce and associated economic sectors. This article examines the impact of influenza pandemic on workforce availability within an interdependent set of economic sectors. We introduce a simulation model based on the dynamic input-output model to capture the propagation of pandemic consequences through the National Capital Region (NCR). The analysis conducted in this article is based on the 2009 H1N1 pandemic data. Two metrics were used to assess the impacts of the influenza pandemic on the economic sectors: (i) inoperability, which measures the percentage gap between the as-planned output and the actual output of a sector, and (ii) economic loss, which quantifies the associated monetary value of the degraded output. The inoperability and economic loss metrics generate two different rankings of the critical economic sectors. Results show that most of the critical sectors in terms of inoperability are sectors that are related to hospitals and health-care providers. On the other hand, most of the sectors that are critically ranked in terms of economic loss are sectors with significant total production outputs in the NCR such as federal government agencies. Therefore, policy recommendations relating to potential mitigation and recovery strategies should take into account the balance between the inoperability and economic loss metrics. © 2013 Society for Risk Analysis.

  1. Modeling imbalanced economic recovery following a natural disaster using input-output analysis.

    Science.gov (United States)

    Li, Jun; Crawford-Brown, Douglas; Syddall, Mark; Guan, Dabo

    2013-10-01

    Input-output analysis is frequently used in studies of large-scale weather-related (e.g., Hurricanes and flooding) disruption of a regional economy. The economy after a sudden catastrophe shows a multitude of imbalances with respect to demand and production and may take months or years to recover. However, there is no consensus about how the economy recovers. This article presents a theoretical route map for imbalanced economic recovery called dynamic inequalities. Subsequently, it is applied to a hypothetical postdisaster economic scenario of flooding in London around the year 2020 to assess the influence of future shocks to a regional economy and suggest adaptation measures. Economic projections are produced by a macro econometric model and used as baseline conditions. The results suggest that London's economy would recover over approximately 70 months by applying a proportional rationing scheme under the assumption of initial 50% labor loss (with full recovery in six months), 40% initial loss to service sectors, and 10-30% initial loss to other sectors. The results also suggest that imbalance will be the norm during the postdisaster period of economic recovery even though balance may occur temporarily. Model sensitivity analysis suggests that a proportional rationing scheme may be an effective strategy to apply during postdisaster economic reconstruction, and that policies in transportation recovery and in health care are essential for effective postdisaster economic recovery. © 2013 Society for Risk Analysis.

  2. Three-scale input-output modeling for urban economy: Carbon emission by Beijing 2007

    Science.gov (United States)

    Chen, G. Q.; Guo, Shan; Shao, Ling; Li, J. S.; Chen, Zhan-Ming

    2013-09-01

    For urban economies, an ecological endowment embodiment analysis has to be supported by endowment intensities at both the international and domestic scales to reflect the international and domestic imports of increasing importance. A three-scale input-output modeling for an urban economy to give nine categories of embodiment fluxes is presented in this paper by a case study on the carbon dioxide emissions by the Beijing economy in 2007, based on the carbon intensities for the average world and national economies. The total direct emissions are estimated at 1.03E+08 t, in which 91.61% is energy-related emissions. By the modeling, emissions embodied in fixed capital formation amount to 7.20E+07 t, emissions embodied in household consumption are 1.58 times those in government consumption, and emissions in gross capital formation are 14.93% more than those in gross consumption. As a net exporter of carbon emissions, Beijing exports 5.21E+08 t carbon embodied in foreign imported commodities and 1.06E+08 t in domestic imported commodities, while emissions embodied in foreign and domestic imported commodities are 3.34E+07 and 1.75E+08 t respectively. The algorithm presented in this study is applicable to the embodiment analysis of other environmental resources for regional economies characteristic of multi-scales.

  3. Evaluating the effects of model structure and meteorological input data on runoff modelling in an alpine headwater basin

    Science.gov (United States)

    Schattan, Paul; Bellinger, Johannes; Förster, Kristian; Schöber, Johannes; Huttenlau, Matthias; Kirnbauer, Robert; Achleitner, Stefan

    2017-04-01

    Modelling water resources in snow-dominated mountainous catchments is challenging due to both, short concentration times and a highly variable contribution of snow melt in space and time from complex terrain. A number of model setups exist ranging from physically based models to conceptional models which do not attempt to represent the natural processes in a physically meaningful way. Within the flood forecasting system for the Tyrolean Inn River two serially linked hydrological models with differing process representation are used. Non- glacierized catchments are modelled by a semi-distributed, water balance model (HQsim) based on the HRU-approach. A fully-distributed energy and mass balance model (SES), purpose-built for snow- and icemelt, is used for highly glacierized headwater catchments. Previous work revealed uncertainties and limitations within the models' structures regarding (i) the representation of snow processes in HQsim, (ii) the runoff routing of SES, and (iii) the spatial resolution of the meteorological input data in both models. To overcome these limitations, a "strengths driven" model coupling is applied. Instead of linking the models serially, a vertical one-way coupling of models has been implemented. The fully-distributed snow modelling of SES is combined with the semi-distributed HQsim structure, allowing to benefit from soil and runoff routing schemes in HQsim. A monte-carlo based modelling experiment was set up to evaluate the resulting differences in the runoff prediction due to the improved model coupling and a refined spatial resolution of the meteorological forcing. The experiment design follows a gradient of spatial discretisation of hydrological processes and meteorological forcing data with a total of six different model setups for the alpine headwater basin of the Fagge River in the Tyrolean Alps. In general, all setups show a good performance for this particular basin. It is therefore planned to include other basins with differing

  4. Parameter survey of a rib stiffened wooden floor using sinus modes model

    DEFF Research Database (Denmark)

    Sjökvist, Lars-Göran; Brunskog, Jonas; Jacobsen, Finn

    2008-01-01

    of the sound insulation for lightweight buildings have the possibility to speed up the development of new techniques and in the end give tenants better quality of life. This study uses Fourier sinus series to calculate the vibrations on a rib stiffened plate. The beams are modelled as line forces and moments...... that reacts onto the plate vibrations. A parameter study is performed with the aim to identify the most important parameters and their behaviour. The preliminary results show that the attenuation of the system is by far most evident in the direction across the beams. The influence from the basic input...

  5. Land and Water Use Characteristics and Human Health Input Parameters for use in Environmental Dosimetry and Risk Assessments at the Savannah River Site 2017 Update

    Energy Technology Data Exchange (ETDEWEB)

    Jannik, T. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Stagich, B. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-05-25

    Operations at the Savannah River Site (SRS) result in releases of relatively small amounts of radioactive materials to the atmosphere and to the Savannah River. For regulatory compliance purposes, potential offsite radiological doses are estimated annually using computer models that follow U.S. Nuclear Regulatory Commission (NRC) regulatory guides. Within the regulatory guides, default values are provided for many of the dose model parameters, but the use of site-specific values is encouraged. Detailed surveys of land-use and water-use parameters were conducted in 1991, 2008, 2010, and 2016 and are being concurred with or updated in this report. These parameters include local characteristics of meat, milk, and vegetable production; river recreational activities; and meat, milk, and vegetable consumption rates, as well as other human usage parameters required in the SRS dosimetry models. In addition, the preferred elemental bioaccumulation factors and transfer factors (to be used in human health exposure calculations at SRS) are documented. The intent of this report is to establish a standardized source for these parameters that is up to date with existing data, and that is maintained via review of future-issued national references (to evaluate the need for changes as new information is released). These reviews will continue to be added to this document by revision.

  6. Land and Water Use Characteristics and Human Health Input Parameters for use in Environmental Dosimetry and Risk Assessments at the Savannah River Site. 2016 Update

    Energy Technology Data Exchange (ETDEWEB)

    Jannik, G. Tim [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Hartman, Larry [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Stagich, Brooke [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-09-26

    Operations at the Savannah River Site (SRS) result in releases of small amounts of radioactive materials to the atmosphere and to the Savannah River. For regulatory compliance purposes, potential offsite radiological doses are estimated annually using computer models that follow U.S. Nuclear Regulatory Commission (NRC) regulatory guides. Within the regulatory guides, default values are provided for many of the dose model parameters, but the use of applicant site-specific values is encouraged. Detailed surveys of land-use and water-use parameters were conducted in 1991 and 2010. They are being updated in this report. These parameters include local characteristics of meat, milk and vegetable production; river recreational activities; and meat, milk and vegetable consumption rates, as well as other human usage parameters required in the SRS dosimetry models. In addition, the preferred elemental bioaccumulation factors and transfer factors (to be used in human health exposure calculations at SRS) are documented. The intent of this report is to establish a standardized source for these parameters that is up to date with existing data, and that is maintained via review of future-issued national references (to evaluate the need for changes as new information is released). These reviews will continue to be added to this document by revision.

  7. Land and Water Use Characteristics and Human Health Input Parameters for use in Environmental Dosimetry and Risk Assessments at the Savannah River Site. 2016 Update

    International Nuclear Information System (INIS)

    Jannik, G. Tim; Hartman, Larry; Stagich, Brooke

    2016-01-01

    Operations at the Savannah River Site (SRS) result in releases of small amounts of radioactive materials to the atmosphere and to the Savannah River. For regulatory compliance purposes, potential offsite radiological doses are estimated annually using computer models that follow U.S. Nuclear Regulatory Commission (NRC) regulatory guides. Within the regulatory guides, default values are provided for many of the dose model parameters, but the use of applicant site-specific values is encouraged. Detailed surveys of land-use and water-use parameters were conducted in 1991 and 2010. They are being updated in this report. These parameters include local characteristics of meat, milk and vegetable production; river recreational activities; and meat, milk and vegetable consumption rates, as well as other human usage parameters required in the SRS dosimetry models. In addition, the preferred elemental bioaccumulation factors and transfer factors (to be used in human health exposure calculations at SRS) are documented. The intent of this report is to establish a standardized source for these parameters that is up to date with existing data, and that is maintained via review of future-issued national references (to evaluate the need for changes as new information is released). These reviews will continue to be added to this document by revision.

  8. An Asymmetric Hysteresis Model and Parameter Identification Method for Piezoelectric Actuator

    Directory of Open Access Journals (Sweden)

    Haichen Qin

    2014-01-01

    Full Text Available Hysteresis behaviour degrades the positioning accuracy of PZT actuator for ultrahigh-precision positioning applications. In this paper, a corrected hysteresis model based on Bouc-Wen model for modelling the asymmetric hysteresis behaviour of PZT actuator is established by introducing an input bias φ and an asymmetric factor ΔΦ into the standard Bouc-Wen hysteresis model. A modified particle swarm optimization (MPSO algorithm is established and realized to identify and optimize the model parameters. Feasibility and effectiveness of MPSO are proved by experiment and numerical simulation. The research results show that the corrected hysteresis model can represent the asymmetric hysteresis behaviour of the PZT actuator more accurately than the noncorrected hysteresis model based on the Bouc-Wen model. The MPSO parameter identification method can effectively identify the parameters of the corrected and noncorrected hysteresis models. Some cases demonstrate the corrected hysteresis model and the MPSO parameter identification method can be used to model smart materials and structure systems with the asymmetric hysteresis behaviour.

  9. Bayesian estimation of parameters in a regional hydrological model

    Directory of Open Access Journals (Sweden)

    K. Engeland

    2002-01-01

    Full Text Available This study evaluates the applicability of the distributed, process-oriented Ecomag model for prediction of daily streamflow in ungauged basins. The Ecomag model is applied as a regional model to nine catchments in the NOPEX area, using Bayesian statistics to estimate the posterior distribution of the model parameters conditioned on the observed streamflow. The distribution is calculated by Markov Chain Monte Carlo (MCMC analysis. The Bayesian method requires formulation of a likelihood function for the parameters and three alternative formulations are used. The first is a subjectively chosen objective function that describes the goodness of fit between the simulated and observed streamflow, as defined in the GLUE framework. The second and third formulations are more statistically correct likelihood models that describe the simulation errors. The full statistical likelihood model describes the simulation errors as an AR(1 process, whereas the simple model excludes the auto-regressive part. The statistical parameters depend on the catchments and the hydrological processes and the statistical and the hydrological parameters are estimated simultaneously. The results show that the simple likelihood model gives the most robust parameter estimates. The simulation error may be explained to a large extent by the catchment characteristics and climatic conditions, so it is possible to transfer knowledge about them to ungauged catchments. The statistical models for the simulation errors indicate that structural errors in the model are more important than parameter uncertainties. Keywords: regional hydrological model, model uncertainty, Bayesian analysis, Markov Chain Monte Carlo analysis

  10. Brownian motion model with stochastic parameters for asset prices

    Science.gov (United States)

    Ching, Soo Huei; Hin, Pooi Ah

    2013-09-01

    The Brownian motion model may not be a completely realistic model for asset prices because in real asset prices the drift μ and volatility σ may change over time. Presently we consider a model in which the parameter x = (μ,σ) is such that its value x (t + Δt) at a short time Δt ahead of the present time t depends on the value of the asset price at time t + Δt as well as the present parameter value x(t) and m-1 other parameter values before time t via a conditional distribution. The Malaysian stock prices are used to compare the performance of the Brownian motion model with fixed parameter with that of the model with stochastic parameter.

  11. Personalization of models with many model parameters: an efficient sensitivity analysis approach.

    Science.gov (United States)

    Donders, W P; Huberts, W; van de Vosse, F N; Delhaas, T

    2015-10-01

    Uncertainty quantification and global sensitivity analysis are indispensable for patient-specific applications of models that enhance diagnosis or aid decision-making. Variance-based sensitivity analysis methods, which apportion each fraction of the output uncertainty (variance) to the effects of individual input parameters or their interactions, are considered the gold standard. The variance portions are called the Sobol sensitivity indices and can be estimated by a Monte Carlo (MC) approach (e.g., Saltelli's method [1]) or by employing a metamodel (e.g., the (generalized) polynomial chaos expansion (gPCE) [2, 3]). All these methods require a large number of model evaluations when estimating the Sobol sensitivity indices for models with many parameters [4]. To reduce the computational cost, we introduce a two-step approach. In the first step, a subset of important parameters is identified for each output of interest using the screening method of Morris [5]. In the second step, a quantitative variance-based sensitivity analysis is performed using gPCE. Efficient sampling strategies are introduced to minimize the number of model runs required to obtain the sensitivity indices for models considering multiple outputs. The approach is tested using a model that was developed for predicting post-operative flows after creation of a vascular access for renal failure patients. We compare the sensitivity indices obtained with the novel two-step approach with those obtained from a reference analysis that applies Saltelli's MC method. The two-step approach was found to yield accurate estimates of the sensitivity indices at two orders of magnitude lower computational cost. Copyright © 2015 John Wiley & Sons, Ltd.

  12. Estimation of shape model parameters for 3D surfaces

    DEFF Research Database (Denmark)

    Erbou, Søren Gylling Hemmingsen; Darkner, Sune; Fripp, Jurgen

    2008-01-01

    is applied to a database of 3D surfaces from a section of the porcine pelvic bone extracted from 33 CT scans. A leave-one-out validation shows that the parameters of the first 3 modes of the shape model can be predicted with a mean difference within [-0.01,0.02] from the true mean, with a standard deviation......Statistical shape models are widely used as a compact way of representing shape variation. Fitting a shape model to unseen data enables characterizing the data in terms of the model parameters. In this paper a Gauss-Newton optimization scheme is proposed to estimate shape model parameters of 3D...... surfaces using distance maps, which enables the estimation of model parameters without the requirement of point correspondence. For applications with acquisition limitations such as speed and cost, this formulation enables the fitting of a statistical shape model to arbitrarily sampled data. The method...

  13. Discharge simulations performed with a hydrological model using bias corrected regional climate model input

    Directory of Open Access Journals (Sweden)

    S. C. van Pelt

    2009-12-01

    Full Text Available Studies have demonstrated that precipitation on Northern Hemisphere mid-latitudes has increased in the last decades and that it is likely that this trend will continue. This will have an influence on discharge of the river Meuse. The use of bias correction methods is important when the effect of precipitation change on river discharge is studied. The objective of this paper is to investigate the effect of using two different bias correction methods on output from a Regional Climate Model (RCM simulation. In this study a Regional Atmospheric Climate Model (RACMO2 run is used, forced by ECHAM5/MPIOM under the condition of the SRES-A1B emission scenario, with a 25 km horizontal resolution. The RACMO2 runs contain a systematic precipitation bias on which two bias correction methods are applied. The first method corrects for the wet day fraction and wet day average (WD bias correction and the second method corrects for the mean and coefficient of variance (MV bias correction. The WD bias correction initially corrects well for the average, but it appears that too many successive precipitation days were removed with this correction. The second method performed less well on average bias correction, but the temporal precipitation pattern was better. Subsequently, the discharge was calculated by using RACMO2 output as forcing to the HBV-96 hydrological model. A large difference was found between the simulated discharge of the uncorrected RACMO2 run, the WD bias corrected run and the MV bias corrected run. These results show the importance of an appropriate bias correction.

  14. Determination of the Corona model parameters with artificial neural networks

    International Nuclear Information System (INIS)

    Ahmet, Nayir; Bekir, Karlik; Arif, Hashimov

    2005-01-01

    Full text : The aim of this study is to calculate new model parameters taking into account the corona of electrical transmission line wires. For this purpose, a neural network modeling proposed for the corona frequent characteristics modeling. Then this model was compared with the other model developed at the Polytechnic Institute of Saint Petersburg. The results of development of the specified corona model for calculation of its influence on the wave processes in multi-wires line and determination of its parameters are submitted. Results of obtained calculation equations are brought for electrical transmission line with allowance for superficial effect in the ground and wires with reference to developed corona model

  15. Optimization modeling of U.S. renewable electricity deployment using local input variables

    Science.gov (United States)

    Bernstein, Adam

    For the past five years, state Renewable Portfolio Standard (RPS) laws have been a primary driver of renewable electricity (RE) deployments in the United States. However, four key trends currently developing: (i) lower natural gas prices, (ii) slower growth in electricity demand, (iii) challenges of system balancing intermittent RE within the U.S. transmission regions, and (iv) fewer economical sites for RE development, may limit the efficacy of RPS laws over the remainder of the current RPS statutes' lifetime. An outsized proportion of U.S. RE build occurs in a small number of favorable locations, increasing the effects of these variables on marginal RE capacity additions. A state-by-state analysis is necessary to study the U.S. electric sector and to generate technology specific generation forecasts. We used LP optimization modeling similar to the National Renewable Energy Laboratory (NREL) Renewable Energy Development System (ReEDS) to forecast RE deployment across the 8 U.S. states with the largest electricity load, and found state-level RE projections to Year 2031 significantly lower than thoseimplied in the Energy Information Administration (EIA) 2013 Annual Energy Outlook forecast. Additionally, the majority of states do not achieve their RPS targets in our forecast. Combined with the tendency of prior research and RE forecasts to focus on larger national and global scale models, we posit that further bottom-up state and local analysis is needed for more accurate policy assessment, forecasting, and ongoing revision of variables as parameter values evolve through time. Current optimization software eliminates much of the need for algorithm coding and programming, allowing for rapid model construction and updating across many customized state and local RE parameters. Further, our results can be tested against the empirical outcomes that will be observed over the coming years, and the forecast deviation from the actuals can be attributed to discrete parameter

  16. A latent low-dimensional common input drives a pool of motor neurons: a probabilistic latent state-space model.

    Science.gov (United States)

    Feeney, Daniel F; Meyer, François G; Noone, Nicholas; Enoka, Roger M

    2017-10-01

    Motor neurons appear to be activated with a common input signal that modulates the discharge activity of all neurons in the motor nucleus. It has proven difficult for neurophysiologists to quantify the variability in a common input signal, but characterization of such a signal may improve our understanding of how the activation signal varies across motor tasks. Contemporary methods of quantifying the common input to motor neurons rely on compiling discrete action potentials into continuous time series, assuming the motor pool acts as a linear filter, and requiring signals to be of sufficient duration for frequency analysis. We introduce a space-state model in which the discharge activity of motor neurons is modeled as inhomogeneous Poisson processes and propose a method to quantify an abstract latent trajectory that represents the common input received by motor neurons. The approach also approximates the variation in synaptic noise in the common input signal. The model is validated with four data sets: a simulation of 120 motor units, a pair of integrate-and-fire neurons with a Renshaw cell providing inhibitory feedback, the discharge activity of 10 integrate-and-fire neurons, and the discharge times of concurrently active motor units during an isometric voluntary contraction. The simulations revealed that a latent state-space model is able to quantify the trajectory and variability of the common input signal across all four conditions. When compared with the cumulative spike train method of characterizing common input, the state-space approach was more sensitive to the details of the common input current and was less influenced by the duration of the signal. The state-space approach appears to be capable of detecting rather modest changes in common input signals across conditions. NEW & NOTEWORTHY We propose a state-space model that explicitly delineates a common input signal sent to motor neurons and the physiological noise inherent in synaptic signal

  17. Large uncertainty in soil carbon modelling related to method of calculation of plant carbon input to agriculutral systems

    DEFF Research Database (Denmark)

    Keel, S G; Leifeld, Jens; Mayer, Julius

    2017-01-01

    referred to as soil carbon inputs (C). The soil C inputs from plants are derived from measured agricultural yields using allometric equations. Here we compared the results of five previously published equations. Our goal was to test whether the choice of method is critical for modelling soil C and if so...... with the model C-TOOL showed that calculated SOC stocks were affected strongly by the choice of the allometric equation. With four equations, a decrease in SOC stocks was simulated, whereas with one equation there was no change. This considerable uncertainty in modelled soil C is attributable solely...... to the allometric equation used to estimate the soil C input. We identify the evaluation and selection of allometric equations and associated coefficients as critical steps when setting up a model-based soil C inventory for agricultural systems....

  18. Hydrological and sedimentological modeling of the Okavango Delta, Botswana, using remotely sensed input and calibration data

    Science.gov (United States)

    Milzow, C.; Kgotlhang, L.; Kinzelbach, W.; Bauer-Gottwein, P.

    2006-12-01

    medium-term. The Delta's size and limited accessibility make direct data acquisition on the ground difficult. Remote sensing methods are the most promising source of acquiring spatially distributed data for both, model input and calibration. Besides ground data, METEOSAT and NOAA data are used for precipitation and evapotranspiration inputs respectively. The topography is taken from a study from Gumbricht et al. (2004) where the SRTM shuttle mission data is refined using remotely sensed vegetation indexes. The aquifer thickness was determined with an aeromagnetic survey. For calibration, the simulated flooding patterns are compared to patterns derived from satellite imagery: recent ENVISAT ASAR and older NOAA AVHRR scenes. The final objective is to better understand the hydrological and hydraulic aspects of this complex ecosystem and eventually predict the consequences of human interventions. It will provide a tool for decision makers involved to assess the impact of possible upstream dams and water abstraction scenarios.

  19. Spatio-temporal modeling of nonlinear distributed parameter systems

    CERN Document Server

    Li, Han-Xiong

    2011-01-01

    The purpose of this volume is to provide a brief review of the previous work on model reduction and identifi cation of distributed parameter systems (DPS), and develop new spatio-temporal models and their relevant identifi cation approaches. In this book, a systematic overview and classifi cation on the modeling of DPS is presented fi rst, which includes model reduction, parameter estimation and system identifi cation. Next, a class of block-oriented nonlinear systems in traditional lumped parameter systems (LPS) is extended to DPS, which results in the spatio-temporal Wiener and Hammerstein s

  20. Some tests for parameter constancy in cointegrated VAR-models

    DEFF Research Database (Denmark)

    Hansen, Henrik; Johansen, Søren

    1999-01-01

    Some methods for the evaluation of parameter constancy in vector autoregressive (VAR) models are discussed. Two different ways of re-estimating the VAR model are proposed; one in which all parameters are estimated recursively based upon the likelihood function for the first observations, and anot...... be applied to test the constancy of the long-run parameters in the cointegrated VAR-model. All results are illustrated using a model for the term structure of interest rates on US Treasury securities. ...

  1. Smoke inputs to climate models: optical properties and height distribution for nuclear winter studies

    International Nuclear Information System (INIS)

    Penner, J.E.; Haselman, L.C. Jr.

    1985-04-01

    Smoke from fires produced in the aftermath of a major nuclear exchange has been predicted to cause large decreases in land surface temperatures. The extent of the decrease and even the sign of the temperature change depend on the optical characteristics of the smoke and how it is distributed with altitude. The height distribution of smoke over a fire is determined by the amount of buoyant energy produced by the fire and the amount of energy released by the latent heat of condensation of water vapor. The optical properties of the smoke depend on the size distribution of smoke particles which changes due to coagulation within the lofted plume. We present calculations demonstrating these processes and estimate their importance for the smoke source term input for climate models. For high initial smoke densities and for absorbing smoke ( m = 1.75 - 0.3i), coagulation of smoke particles within the smoke plume is predicted to first increase, then decrease, the size-integrated extinction cross section. However, at the smoke densities predicted in our model (assuming a 3% emission rate for smoke) and for our assumed initial size distribution, the attachment rates for brownian and turbulent collision processes are not fast enough to alter the smoke size distribution enough to significantly change the integrated extinction cross section. Early-time coagulation is, however, fast enough to allow further coagulation, on longer time scales, to act to decrease the extinction cross section. On these longer time scales appropriate to climate models, coagulation can decrease the extinction cross section by almost a factor of two before the smoke becomes well mixed around the globe. This process has been neglected in past climate effect evaluations, but could have a significant effect, since the extinction cross section enters as an exponential factor in calculating the light attenuation due to smoke. 10 refs., 20 figs

  2. Determining extreme parameter correlation in ground water models

    DEFF Research Database (Denmark)

    Hill, Mary Cole; Østerby, Ole

    2003-01-01

    In ground water flow system models with hydraulic-head observations but without significant imposed or observed flows, extreme parameter correlation generally exists. As a result, hydraulic conductivity and recharge parameters cannot be uniquely estimated. In complicated problems, such correlation...... correlation coefficients with absolute values that round to 1.00 were good indicators of extreme parameter correlation, but smaller values were not necessarily good indicators of lack of correlation and resulting unique parameter estimates; (2) the SVD may be more difficult to interpret than parameter...

  3. Parameters Estimation of Geographically Weighted Ordinal Logistic Regression (GWOLR) Model

    Science.gov (United States)

    Zuhdi, Shaifudin; Retno Sari Saputro, Dewi; Widyaningsih, Purnami

    2017-06-01

    A regression model is the representation of relationship between independent variable and dependent variable. The dependent variable has categories used in the logistic regression model to calculate odds on. The logistic regression model for dependent variable has levels in the logistics regression model is ordinal. GWOLR model is an ordinal logistic regression model influenced the geographical location of the observation site. Parameters estimation in the model needed to determine the value of a population based on sample. The purpose of this research is to parameters estimation of GWOLR model using R software. Parameter estimation uses the data amount of dengue fever patients in Semarang City. Observation units used are 144 villages in Semarang City. The results of research get GWOLR model locally for each village and to know probability of number dengue fever patient categories.

  4. Modeling and Parameter Estimation of a Small Wind Generation System

    Directory of Open Access Journals (Sweden)

    Carlos A. Ramírez Gómez

    2013-11-01

    Full Text Available The modeling and parameter estimation of a small wind generation system is presented in this paper. The system consists of a wind turbine, a permanent magnet synchronous generator, a three phase rectifier, and a direct current load. In order to estimate the parameters wind speed data are registered in a weather station located in the Fraternidad Campus at ITM. Wind speed data were applied to a reference model programed with PSIM software. From that simulation, variables were registered to estimate the parameters. The wind generation system model together with the estimated parameters is an excellent representation of the detailed model, but the estimated model offers a higher flexibility than the programed model in PSIM software.

  5. Parameter estimation of variable-parameter nonlinear Muskingum model using excel solver

    Science.gov (United States)

    Kang, Ling; Zhou, Liwei

    2018-02-01

    Abstract . The Muskingum model is an effective flood routing technology in hydrology and water resources Engineering. With the development of optimization technology, more and more variable-parameter Muskingum models were presented to improve effectiveness of the Muskingum model in recent decades. A variable-parameter nonlinear Muskingum model (NVPNLMM) was proposed in this paper. According to the results of two real and frequently-used case studies by various models, the NVPNLMM could obtain better values of evaluation criteria, which are used to describe the superiority of the estimated outflows and compare the accuracies of flood routing using various models, and the optimal estimated outflows by the NVPNLMM were closer to the observed outflows than the ones by other models.

  6. A new method to estimate parameters of linear compartmental models using artificial neural networks

    International Nuclear Information System (INIS)

    Gambhir, Sanjiv S.; Keppenne, Christian L.; Phelps, Michael E.; Banerjee, Pranab K.

    1998-01-01

    At present, the preferred tool for parameter estimation in compartmental analysis is an iterative procedure; weighted nonlinear regression. For a large number of applications, observed data can be fitted to sums of exponentials whose parameters are directly related to the rate constants/coefficients of the compartmental models. Since weighted nonlinear regression often has to be repeated for many different data sets, the process of fitting data from compartmental systems can be very time consuming. Furthermore the minimization routine often converges to a local (as opposed to global) minimum. In this paper, we examine the possibility of using artificial neural networks instead of weighted nonlinear regression in order to estimate model parameters. We train simple feed-forward neural networks to produce as outputs the parameter values of a given model when kinetic data are fed to the networks' input layer. The artificial neural networks produce unbiased estimates and are orders of magnitude faster than regression algorithms. At noise levels typical of many real applications, the neural networks are found to produce lower variance estimates than weighted nonlinear regression in the estimation of parameters from mono- and biexponential models. These results are primarily due to the inability of weighted nonlinear regression to converge. These results establish that artificial neural networks are powerful tools for estimating parameters for simple compartmental models. (author)

  7. Ecological input-output modeling for embodied resources and emissions in Chinese economy 2005

    Science.gov (United States)

    Chen, Z. M.; Chen, G. Q.; Zhou, J. B.; Jiang, M. M.; Chen, B.

    2010-07-01

    For the embodiment of natural resources and environmental emissions in Chinese economy 2005, a biophysical balance modeling is carried out based on an extension of the economic input-output table into an ecological one integrating the economy with its various environmental driving forces. Included resource flows into the primary resource sectors and environmental emission flows from the primary emission sectors belong to seven categories as energy resources in terms of fossil fuels, hydropower and nuclear energy, biomass, and other sources; freshwater resources; greenhouse gas emissions in terms of CO2, CH4, and N2O; industrial wastes in terms of waste water, waste gas, and waste solid; exergy in terms of fossil fuel resources, biological resources, mineral resources, and environmental resources; solar emergy and cosmic emergy in terms of climate resources, soil, fossil fuels, and minerals. The resulted database for embodiment intensity and sectoral embodiment of natural resources and environmental emissions is of essential implications in context of systems ecology and ecological economics in general and of global climate change in particular.

  8. Data including GROMACS input files for atomistic molecular dynamics simulations of mixed, asymmetric bilayers including molecular topologies, equilibrated structures, and force field for lipids compatible with OPLS-AA parameters.

    Science.gov (United States)

    Róg, Tomasz; Orłowski, Adam; Llorente, Alicia; Skotland, Tore; Sylvänne, Tuulia; Kauhanen, Dimple; Ekroos, Kim; Sandvig, Kirsten; Vattulainen, Ilpo

    2016-06-01

    In this Data in Brief article we provide a data package of GROMACS input files for atomistic molecular dynamics simulations of multicomponent, asymmetric lipid bilayers using the OPLS-AA force field. These data include 14 model bilayers composed of 8 different lipid molecules. The lipids present in these models are: cholesterol (CHOL), 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylcholine (POPC), 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylethanolamine (POPE), 1-stearoyl-2-oleoyl-sn-glycero-3-phosphatidyl-ethanolamine (SOPE), 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylserine (POPS), 1-stearoyl-2-oleoyl-sn-glycero-3-phosphatidylserine (SOPS), N-palmitoyl-D-erythro-sphingosyl-phosphatidylcholine (SM16), and N-lignoceroyl-D-erythro-sphingosyl-phosphatidylcholine (SM24). The bilayers׳ compositions are based on lipidomic studies of PC-3 prostate cancer cells and exosomes discussed in Llorente et al. (2013) [1], showing an increase in the section of long-tail lipid species (SOPS, SOPE, and SM24) in the exosomes. Former knowledge about lipid asymmetry in cell membranes was accounted for in the models, meaning that the model of the inner leaflet is composed of a mixture of PC, PS, PE, and cholesterol, while the extracellular leaflet is composed of SM, PC and cholesterol discussed in Van Meer et al. (2008) [2]. The provided data include lipids׳ topologies, equilibrated structures of asymmetric bilayers, all force field parameters, and input files with parameters describing simulation conditions (md.mdp). The data is associated with the research article "Interdigitation of Long-Chain Sphingomyelin Induces Coupling of Membrane Leaflets in a Cholesterol Dependent Manner" (Róg et al., 2016) [3].

  9. An integrated model for the assessment of global water resources Part 1: Model description and input meteorological forcing

    Science.gov (United States)

    Hanasaki, N.; Kanae, S.; Oki, T.; Masuda, K.; Motoya, K.; Shirakawa, N.; Shen, Y.; Tanaka, K.

    2008-07-01

    To assess global water availability and use at a subannual timescale, an integrated global water resources model was developed consisting of six modules: land surface hydrology, river routing, crop growth, reservoir operation, environmental flow requirement estimation, and anthropogenic water withdrawal. The model simulates both natural and anthropogenic water flow globally (excluding Antarctica) on a daily basis at a spatial resolution of 1°×1° (longitude and latitude). This first part of the two-feature report describes the six modules and the input meteorological forcing. The input meteorological forcing was provided by the second Global Soil Wetness Project (GSWP2), an international land surface modeling project. Several reported shortcomings of the forcing component were improved. The land surface hydrology module was developed based on a bucket type model that simulates energy and water balance on land surfaces. The crop growth module is a relatively simple model based on concepts of heat unit theory, potential biomass, and a harvest index. In the reservoir operation module, 452 major reservoirs with >1 km3 each of storage capacity store and release water according to their own rules of operation. Operating rules were determined for each reservoir by an algorithm that used currently available global data such as reservoir storage capacity, intended purposes, simulated inflow, and water demand in the lower reaches. The environmental flow requirement module was newly developed based on case studies from around the world. Simulated runoff was compared and validated with observation-based global runoff data sets and observed streamflow records at 32 major river gauging stations around the world. Mean annual runoff agreed well with earlier studies at global and continental scales, and in individual basins, the mean bias was less than ±20% in 14 of the 32 river basins and less than ±50% in 24 basins. The error in the peak was less than ±1 mo in 19 of the 27

  10. The Use of an Eight-Step Instructional Model to Train School Staff in Partner-Augmented Input

    Science.gov (United States)

    Senner, Jill E.; Baud, Matthew R.

    2017-01-01

    An eight-step instruction model was used to train a self-contained classroom teacher, speech-language pathologist, and two instructional assistants in partner-augmented input, a modeling strategy for teaching augmentative and alternative communication use. With the exception of a 2-hr training session, instruction primarily was conducted during…

  11. Usefulness of non-linear input-output models for economic impact analyses in tourism and recreation

    NARCIS (Netherlands)

    Klijs, J.; Peerlings, J.H.M.; Heijman, W.J.M.

    2015-01-01

    In tourism and recreation management it is still common practice to apply traditional input–output (IO) economic impact models, despite their well-known limitations. In this study the authors analyse the usefulness of applying a non-linear input–output (NLIO) model, in which price-induced input

  12. Surrogate models for identifying robust, high yield regions of parameter space for ICF implosion simulations

    Science.gov (United States)

    Humbird, Kelli; Peterson, J. Luc; Brandon, Scott; Field, John; Nora, Ryan; Spears, Brian

    2016-10-01

    Next-generation supercomputer architecture and in-transit data analysis have been used to create a large collection of 2-D ICF capsule implosion simulations. The database includes metrics for approximately 60,000 implosions, with x-ray images and detailed physics parameters available for over 20,000 simulations. To map and explore this large database, surrogate models for numerous quantities of interest are built using supervised machine learning algorithms. Response surfaces constructed using the predictive capabilities of the surrogates allow for continuous exploration of parameter space without requiring additional simulations. High performing regions of the input space are identified to guide the design of future experiments. In particular, a model for the yield built using a random forest regression algorithm has a cross validation score of 94.3% and is consistently conservative for high yield predictions. The model is used to search for robust volumes of parameter space where high yields are expected, even given variations in other input parameters. Surrogates for additional quantities of interest relevant to ignition are used to further characterize the high yield regions. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344, Lawrence Livermore National Security, LLC. LLNL-ABS-697277.

  13. Do Lumped-Parameter Models Provide the Correct Geometrical Damping?

    DEFF Research Database (Denmark)

    Andersen, Lars

    2007-01-01

    This paper concerns the formulation of lumped-parameter models for rigid footings on homogenous or stratified soil with focus on the horizontal sliding and rocking. Such models only contain a few degrees of freedom, which makes them ideal for inclusion in aero-elastic codes for wind turbines......-parameter models with respect to the prediction of the maximum response during excitation and the geometrical damping related to free vibrations of a footing....

  14. Urban pluvial flood prediction: a case study evaluating radar rainfall nowcasts and numerical weather prediction models as model inputs.

    Science.gov (United States)

    Thorndahl, Søren; Nielsen, Jesper Ellerbæk; Jensen, David Getreuer

    2016-12-01

    Flooding produced by high-intensive local rainfall and drainage system capacity exceedance can have severe impacts in cities. In order to prepare cities for these types of flood events - especially in the future climate - it is valuable to be able to simulate these events numerically, both historically and in real-time. There is a rather untested potential in real-time prediction of urban floods. In this paper, radar data observations with different spatial and temporal resolution, radar nowcasts of 0-2 h leadtime, and numerical weather models with leadtimes up to 24 h are used as inputs to an integrated flood and drainage systems model in order to investigate the relative difference between different inputs in predicting future floods. The system is tested on the small town of Lystrup in Denmark, which was flooded in 2012 and 2014. Results show it is possible to generate detailed flood maps in real-time with high resolution radar rainfall data, but rather limited forecast performance in predicting floods with leadtimes more than half an hour.

  15. Recommended Parameter Values for GENII Modeling of Radionuclides in Routine Air and Water Releases

    Energy Technology Data Exchange (ETDEWEB)

    Snyder, Sandra F. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Arimescu, Carmen [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Napier, Bruce A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hay, Tristan R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2012-11-01

    The GENII v2 code is used to estimate dose to individuals or populations from the release of radioactive materials into air or water. Numerous parameter values are required for input into this code. User-defined parameters cover the spectrum from chemical data, meteorological data, agricultural data, and behavioral data. This document is a summary of parameter values that reflect conditions in the United States. Reasonable regional and age-dependent data is summarized. Data availability and quality varies. The set of parameters described address scenarios for chronic air emissions or chronic releases to public waterways. Considerations for the special tritium and carbon-14 models are briefly addressed. GENIIv2.10.0 is the current software version that this document supports.

  16. Incorporating model parameter uncertainty into inverse treatment planning

    International Nuclear Information System (INIS)

    Lian Jun; Xing Lei

    2004-01-01

    Radiobiological treatment planning depends not only on the accuracy of the models describing the dose-response relation of different tumors and normal tissues but also on the accuracy of tissue specific radiobiological parameters in these models. Whereas the general formalism remains the same, different sets of model parameters lead to different solutions and thus critically determine the final plan. Here we describe an inverse planning formalism with inclusion of model parameter uncertainties. This is made possible by using a statistical analysis-based frameset developed by our group. In this formalism, the uncertainties of model parameters, such as the parameter a that describes tissue-specific effect in the equivalent uniform dose (EUD) model, are expressed by probability density function and are included in the dose optimization process. We found that the final solution strongly depends on distribution functions of the model parameters. Considering that currently available models for computing biological effects of radiation are simplistic, and the clinical data used to derive the models are sparse and of questionable quality, the proposed technique provides us with an effective tool to minimize the effect caused by the uncertainties in a statistical sense. With the incorporation of the uncertainties, the technique has potential for us to maximally utilize the available radiobiology knowledge for better IMRT treatment

  17. Modeling DPOAE input/output function compression: comparisons with hearing thresholds.

    Science.gov (United States)

    Bhagat, Shaum P

    2014-09-01

    Basilar membrane input/output (I/O) functions in mammalian animal models are characterized by linear and compressed segments when measured near the location corresponding to the characteristic frequency. A method of studying basilar membrane compression indirectly in humans involves measuring distortion-product otoacoustic emission (DPOAE) I/O functions. Previous research has linked compression estimates from behavioral growth-of-masking functions to hearing thresholds. The aim of this study was to compare compression estimates from DPOAE I/O functions and hearing thresholds at 1 and 2 kHz. A prospective correlational research design was performed. The relationship between DPOAE I/O function compression estimates and hearing thresholds was evaluated with Pearson product-moment correlations. Normal-hearing adults (n = 16) aged 22-42 yr were recruited. DPOAE I/O functions (L₂ = 45-70 dB SPL) and two-interval forced-choice hearing thresholds were measured in normal-hearing adults. A three-segment linear regression model applied to DPOAE I/O functions supplied estimates of compression thresholds, defined as breakpoints between linear and compressed segments and the slopes of the compressed segments. Pearson product-moment correlations between DPOAE compression estimates and hearing thresholds were evaluated. A high correlation between DPOAE compression thresholds and hearing thresholds was observed at 2 kHz, but not at 1 kHz. Compression slopes also correlated highly with hearing thresholds only at 2 kHz. The derivation of cochlear compression estimates from DPOAE I/O functions provides a means to characterize basilar membrane mechanics in humans and elucidates the role of compression in tone detection in the 1-2 kHz frequency range. American Academy of Audiology.

  18. Optimal parameters for the FFA-Beddoes dynamic stall model

    Energy Technology Data Exchange (ETDEWEB)

    Bjoerck, A.; Mert, M. [FFA, The Aeronautical Research Institute of Sweden, Bromma (Sweden); Madsen, H.A. [Risoe National Lab., Roskilde (Denmark)

    1999-03-01

    Unsteady aerodynamic effects, like dynamic stall, must be considered in calculation of dynamic forces for wind turbines. Models incorporated in aero-elastic programs are of semi-empirical nature. Resulting aerodynamic forces therefore depend on values used for the semi-empiricial parameters. In this paper a study of finding appropriate parameters to use with the Beddoes-Leishman model is discussed. Minimisation of the `tracking error` between results from 2D wind tunnel tests and simulation with the model is used to find optimum values for the parameters. The resulting optimum parameters show a large variation from case to case. Using these different sets of optimum parameters in the calculation of blade vibrations, give rise to quite different predictions of aerodynamic damping which is discussed. (au)

  19. A distributed approach for parameters estimation in System Biology models

    International Nuclear Information System (INIS)

    Mosca, E.; Merelli, I.; Alfieri, R.; Milanesi, L.

    2009-01-01

    Due to the lack of experimental measurements, biological variability and experimental errors, the value of many parameters of the systems biology mathematical models is yet unknown or uncertain. A possible computational solution is the parameter estimation, that is the identification of the parameter values that determine the best model fitting respect to experimental data. We have developed an environment to distribute each run of the parameter estimation algorithm on a different computational resource. The key feature of the implementation is a relational database that allows the user to swap the candidate solutions among the working nodes during the computations. The comparison of the distributed implementation with the parallel one showed that the presented approach enables a faster and better parameter estimation of systems biology models.

  20. Are subject-specific musculoskeletal models robust to the uncertainties in parameter identification?

    Science.gov (United States)

    Valente, Giordano; Pitto, Lorenzo; Testi, Debora; Seth, Ajay; Delp, Scott L; Stagni, Rita; Viceconti, Marco; Taddei, Fulvia

    2014-01-01

    Subject-specific musculoskeletal modeling can be applied to study musculoskeletal disorders, allowing inclusion of personalized anatomy and properties. Independent of the tools used for model creation, there are unavoidable uncertainties associated with parameter identification, whose effect on model predictions is still not fully understood. The aim of the present study was to analyze the sensitivity of subject-specific model predictions (i.e., joint angles, joint moments, muscle and joint contact forces) during walking to the uncertainties in the identification of body landmark positions, maximum muscle tension and musculotendon geometry. To this aim, we created an MRI-based musculoskeletal model of the lower limbs, defined as a 7-segment, 10-degree-of-freedom articulated linkage, actuated by 84 musculotendon units. We then performed a Monte-Carlo probabilistic analysis perturbing model parameters according to their uncertainty, and solving a typical inverse dynamics and static optimization problem using 500 models that included the different sets of perturbed variable values. Model creation and gait simulations were performed by using freely available software that we developed to standardize the process of model creation, integrate with OpenSim and create probabilistic simulations of movement. The uncertainties in input variables had a moderate effect on model predictions, as muscle and joint contact forces showed maximum standard deviation of 0.3 times body-weight and maximum range of 2.1 times body-weight. In addition, the output variables significantly correlated with few input variables (up to 7 out of 312) across the gait cycle, including the geometry definition of larger muscles and the maximum muscle tension in limited gait portions. Although we found subject-specific models not markedly sensitive to parameter identification, researchers should be aware of the model precision in relation to the intended application. In fact, force predictions could be

  1. Are subject-specific musculoskeletal models robust to the uncertainties in parameter identification?

    Directory of Open Access Journals (Sweden)

    Giordano Valente

    Full Text Available Subject-specific musculoskeletal modeling can be applied to study musculoskeletal disorders, allowing inclusion of personalized anatomy and properties. Independent of the tools used for model creation, there are unavoidable uncertainties associated with parameter identification, whose effect on model predictions is still not fully understood. The aim of the present study was to analyze the sensitivity of subject-specific model predictions (i.e., joint angles, joint moments, muscle and joint contact forces during walking to the uncertainties in the identification of body landmark positions, maximum muscle tension and musculotendon geometry. To this aim, we created an MRI-based musculoskeletal model of the lower limbs, defined as a 7-segment, 10-degree-of-freedom articulated linkage, actuated by 84 musculotendon units. We then performed a Monte-Carlo probabilistic analysis perturbing model parameters according to their uncertainty, and solving a typical inverse dynamics and static optimization problem using 500 models that included the different sets of perturbed variable values. Model creation and gait simulations were performed by using freely available software that we developed to standardize the process of model creation, integrate with OpenSim and create probabilistic simulations of movement. The uncertainties in input variables had a moderate effect on model predictions, as muscle and joint contact forces showed maximum standard deviation of 0.3 times body-weight and maximum range of 2.1 times body-weight. In addition, the output variables significantly correlated with few input variables (up to 7 out of 312 across the gait cycle, including the geometry definition of larger muscles and the maximum muscle tension in limited gait portions. Although we found subject-specific models not markedly sensitive to parameter identification, researchers should be aware of the model precision in relation to the intended application. In fact, force

  2. Parameter identification of process simulation models as a means for knowledge acquisition and technology transfer

    Science.gov (United States)

    Batzias, Dimitris F.; Ifanti, Konstantina

    2012-12-01

    Process simulation models are usually empirical, therefore there is an inherent difficulty in serving as carriers for knowledge acquisition and technology transfer, since their parameters have no physical meaning to facilitate verification of the dependence on the production conditions; in such a case, a 'black box' regression model or a neural network might be used to simply connect input-output characteristics. In several cases, scientific/mechanismic models may be proved valid, in which case parameter identification is required to find out the independent/explanatory variables and parameters, which each parameter depends on. This is a difficult task, since the phenomenological level at which each parameter is defined is different. In this paper, we have developed a methodological framework under the form of an algorithmic procedure to solve this problem. The main parts of this procedure are: (i) stratification of relevant knowledge in discrete layers immediately adjacent to the layer that the initial model under investigation belongs to, (ii) design of the ontology corresponding to these layers, (iii) elimination of the less relevant parts of the ontology by thinning, (iv) retrieval of the stronger interrelations between the remaining nodes within the revised ontological network, and (v) parameter identification taking into account the most influential interrelations revealed in (iv). The functionality of this methodology is demonstrated by quoting two representative case examples on wastewater treatment.

  3. Do Lumped-Parameter Models Provide the Correct Geometrical Damping?

    DEFF Research Database (Denmark)

    Andersen, Lars

    This paper concerns the formulation of lumped-parameter models for rigid footings on homogenous or stratified soil. Such models only contain a few degrees of freedom, which makes them ideal for inclusion in aero-elastic codes for wind turbines and other models applied to fast evaluation of struct......This paper concerns the formulation of lumped-parameter models for rigid footings on homogenous or stratified soil. Such models only contain a few degrees of freedom, which makes them ideal for inclusion in aero-elastic codes for wind turbines and other models applied to fast evaluation...... response during excitation and the geometrical damping related to free vibrations of a hexagonal footing. The optimal order of a lumped-parameter model is determined for each degree of freedom, i.e. horizontal and vertical translation as well as torsion and rocking. In particular, the necessity of coupling...

  4. Transformations among CE–CVM model parameters for ...

    Indian Academy of Sciences (India)

    Unknown

    parameters which exclusively represent interactions of the higher order systems. Such a procedure is presen- ted in detail in this communication. Furthermore, the details of transformations required to express the model parameters in one basis from those defined in another basis for the same system are also presented.

  5. Transformations among CE–CVM model parameters for ...

    Indian Academy of Sciences (India)

    ... of parameters which exclusively represent interactions of the higher order systems. Such a procedure is presented in detail in this communication. Furthermore, the details of transformations required to express the model parameters in one basis from those defined in another basis for the same system are also presented.

  6. Prior distributions for item parameters in IRT models

    NARCIS (Netherlands)

    Matteucci, M.; S. Mignani, Prof.; Veldkamp, Bernard P.

    2012-01-01

    The focus of this article is on the choice of suitable prior distributions for item parameters within item response theory (IRT) models. In particular, the use of empirical prior distributions for item parameters is proposed. Firstly, regression trees are implemented in order to build informative

  7. Retrospective forecast of ETAS model with daily parameters estimate

    Science.gov (United States)

    Falcone, Giuseppe; Murru, Maura; Console, Rodolfo; Marzocchi, Warner; Zhuang, Jiancang

    2016-04-01

    We present a retrospective ETAS (Epidemic Type of Aftershock Sequence) model based on the daily updating of free parameters during the background, the learning and the test phase of a seismic sequence. The idea was born after the 2011 Tohoku-Oki earthquake. The CSEP (Collaboratory for the Study of Earthquake Predictability) Center in Japan provided an appropriate testing benchmark for the five 1-day submitted models. Of all the models, only one was able to successfully predict the number of events that really happened. This result was verified using both the real time and the revised catalogs. The main cause of the failure was in the underestimation of the forecasted events, due to model parameters maintained fixed during the test. Moreover, the absence in the learning catalog of an event similar to the magnitude of the mainshock (M9.0), which drastically changed the seismicity in the area, made the learning parameters not suitable to describe the real seismicity. As an example of this methodological development we show the evolution of the model parameters during the last two strong seismic sequences in Italy: the 2009 L'Aquila and the 2012 Reggio Emilia episodes. The achievement of the model with daily updated parameters is compared with that of same model where the parameters remain fixed during the test time.

  8. Decreased Hering-Breuer input-output entrainment in a mouse model of Rett syndrome

    Directory of Open Access Journals (Sweden)

    Rishi R Dhingra

    2013-04-01

    Full Text Available Rett syndrome, a severe X-linked neurodevelopmental disorder caused by mutations in the gene encoding methyl-CpG-binding protein 2 (Mecp2, is associated with a highly irregular respiratory pattern including severe upper-airway dysfunction. Recent work suggests that hyperexcitability of the Hering-Breuer reflex (HBR pathway contributes to respiratory dysrhythmia in Mecp2 mutant mice. To assess how enhanced HBR input impacts respiratory entrainment by sensory afferents in closed-loop in vivo-like conditions, we investigated the input (vagal stimulus trains – output (phrenic bursting entrainment via the HBR in wild-type and Mecp2-deficient mice. Using the in situ perfused brainstem preparation, which maintains an intact pontomedullary axis capable of generating an in vivo-like respiratory rhythm in the absence of the HBR, we mimicked the HBR feedback input by stimulating the vagus nerve (at threshold current, 0.5 ms pulse duration, 75 Hz pulse frequency, 100 ms train duration at an inter-burst frequency matching that of the intrinsic oscillation of the inspiratory motor output of each preparation. Using this approach, we observed significant input-output entrainment in wild-type mice as measured by the maximum of the cross-correlation function, the peak of the instantaneous relative phase distribution, and the mutual information of the instantaneous phases. This entrainment was associated with a reduction in inspiratory duration during feedback stimulation. In contrast, the strength of input-output entrainment was significantly weaker in Mecp2-/+ mice. However, Mecp2-/+ mice also had a reduced inspiratory duration during stimulation, indicating that reflex behavior in the HBR pathway was intact. Together, these observations suggest that the respiratory network compensates for enhanced sensitivity of HBR inputs by reducing HBR input-output entrainment.

  9. Influence of Population Variation of Physiological Parameters in Computational Models of Space Physiology

    Science.gov (United States)

    Myers, J. G.; Feola, A.; Werner, C.; Nelson, E. S.; Raykin, J.; Samuels, B.; Ethier, C. R.

    2016-01-01

    The earliest manifestations of Visual Impairment and Intracranial Pressure (VIIP) syndrome become evident after months of spaceflight and include a variety of ophthalmic changes, including posterior globe flattening and distension of the optic nerve sheath. Prevailing evidence links the occurrence of VIIP to the cephalic fluid shift induced by microgravity and the subsequent pressure changes around the optic nerve and eye. Deducing the etiology of VIIP is challenging due to the wide range of physiological parameters that may be influenced by spaceflight and are required to address a realistic spectrum of physiological responses. Here, we report on the application of an efficient approach to interrogating physiological parameter space through computational modeling. Specifically, we assess the influence of uncertainty in input parameters for two models of VIIP syndrome: a lumped-parameter model (LPM) of the cardiovascular and central nervous systems, and a finite-element model (FEM) of the posterior eye, optic nerve head (ONH) and optic nerve sheath. Methods: To investigate the parameter space in each model, we employed Latin hypercube sampling partial rank correlation coefficient (LHSPRCC) strategies. LHS techniques outperform Monte Carlo approaches by enforcing efficient sampling across the entire range of all parameters. The PRCC method estimates the sensitivity of model outputs to these parameters while adjusting for the linear effects of all other inputs. The LPM analysis addressed uncertainties in 42 physiological parameters, such as initial compartmental volume and nominal compartment percentage of total cardiac output in the supine state, while the FEM evaluated the effects on biomechanical strain from uncertainties in 23 material and pressure parameters for the ocular anatomy. Results and Conclusion: The LPM analysis identified several key factors including high sensitivity to the initial fluid distribution. The FEM study found that intraocular pressure and

  10. Automated detection of arterial input function in DSC perfusion MRI in a stroke rat model

    Energy Technology Data Exchange (ETDEWEB)

    Yeh, M-Y; Liu, H-L [Graduate Institute of Medical Physics and Imaging Science, Chang Gung University, Taoyuan, Taiwan (China); Lee, T-H; Yang, S-T; Kuo, H-H [Stroke Section, Department of Neurology, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan (China); Chyi, T-K [Molecular Imaging Center Chang Gung Memorial Hospital, Taoyuan, Taiwan (China)], E-mail: hlaliu@mail.cgu.edu.tw

    2009-05-15

    Quantitative cerebral blood flow (CBF) estimation requires deconvolution of the tissue concentration time curves with an arterial input function (AIF). However, image-based determination of AIF in rodent is challenged due to limited spatial resolution. We evaluated the feasibility of quantitative analysis using automated AIF detection and compared the results with commonly applied semi-quantitative analysis. Permanent occlusion of bilateral or unilateral common carotid artery was used to induce cerebral ischemia in rats. The image using dynamic susceptibility contrast method was performed on a 3-T magnetic resonance scanner with a spin-echo echo-planar-image sequence (TR/TE = 700/80 ms, FOV = 41 mm, matrix = 64, 3 slices, SW = 2 mm), starting from 7 s prior to contrast injection (1.2 ml/kg) at four different time points. For quantitative analysis, CBF was calculated by the AIF which was obtained from 10 voxels with greatest contrast enhancement after deconvolution. For semi-quantitative analysis, relative CBF was estimated by the integral divided by the first moment of the relaxivity time curves. We observed if the AIFs obtained in the three different ROIs (whole brain, hemisphere without lesion and hemisphere with lesion) were similar, the CBF ratios (lesion/normal) between quantitative and semi-quantitative analyses might have a similar trend at different operative time points. If the AIFs were different, the CBF ratios might be different. We concluded that using local maximum one can define proper AIF without knowing the anatomical location of arteries in a stroke rat model.

  11. Stochastic hyperelastic modeling considering dependency of material parameters

    Science.gov (United States)

    Caylak, Ismail; Penner, Eduard; Dridger, Alex; Mahnken, Rolf

    2018-03-01

    This paper investigates the uncertainty of a hyperelastic model by treating random material parameters as stochastic variables. For its stochastic discretization a polynomial chaos expansion (PCE) is used. An important aspect in our work is the consideration of stochastic dependencies in the stochastic modeling of Ogden's material model. To this end, artificial experiments are generated using the auto-regressive moving average process based on real experiments. The parameter identification for all data provides statistics of Ogden's material parameters, which are subsequently used for stochastic modeling. Stochastic dependencies are incorporated into the PCE using a Nataf transformation from dependent distributed random variables to independent standard normal distributed ones. The representative numerical example shows that our proposed method adequately takes into account the stochastic dependencies of Ogden's material parameters.

  12. A compact cyclic plasticity model with parameter evolution

    DEFF Research Database (Denmark)

    Krenk, Steen; Tidemann, L.

    2017-01-01

    by the Armstrong–Frederick model, contained as a special case of the present model for a particular choice of the shape parameter. In contrast to previous work, where shaping the stress-strain loops is derived from multiple internal stress states, this effect is here represented by a single parameter......The paper presents a compact model for cyclic plasticity based on energy in terms of external and internal variables, and plastic yielding described by kinematic hardening and a flow potential with an additive term controlling the nonlinear cyclic hardening. The model is basically described by five...... parameters: external and internal stiffness, a yield stress and a limiting ultimate stress, and finally a parameter controlling the gradual development of plastic deformation. Calibration against numerous experimental results indicates that typically larger plastic strains develop than predicted...

  13. Parameter Estimation for the Thurstone Case III Model.

    Science.gov (United States)

    Mackay, David B.; Chaiy, Seoil

    1982-01-01

    The ability of three estimation criteria to recover parameters of the Thurstone Case V and Case III models from comparative judgment data was investigated via Monte Carlo techniques. Significant differences in recovery are shown to exist. (Author/JKS)

  14. Improved parameter estimation for hydrological models using weighted object functions

    NARCIS (Netherlands)

    Stein, A.; Zaadnoordijk, W.J.

    1999-01-01

    This paper discusses the sensitivity of calibration of hydrological model parameters to different objective functions. Several functions are defined with weights depending upon the hydrological background. These are compared with an objective function based upon kriging. Calibration is applied to

  15. Evaluating the efficiency of municipalities in collecting and processing municipal solid waste: a shared input DEA-model.

    Science.gov (United States)

    Rogge, Nicky; De Jaeger, Simon

    2012-10-01

    This paper proposed an adjusted "shared-input" version of the popular efficiency measurement technique Data Envelopment Analysis (DEA) that enables evaluating municipality waste collection and processing performances in settings in which one input (waste costs) is shared among treatment efforts of multiple municipal solid waste fractions. The main advantage of this version of DEA is that it not only provides an estimate of the municipalities overall cost efficiency but also estimates of the municipalities' cost efficiency in the treatment of the different fractions of municipal solid waste (MSW). To illustrate the practical usefulness of the shared input DEA-model, we apply the model to data on 293 municipalities in Flanders, Belgium, for the year 2008. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Partial sum approaches to mathematical parameters of some growth models

    Science.gov (United States)

    Korkmaz, Mehmet

    2016-04-01

    Growth model is fitted by evaluating the mathematical parameters, a, b and c. In this study, the method of partial sums were used. For finding the mathematical parameters, firstly three partial sums were used, secondly four partial sums were used, thirdly five partial sums were used and finally N partial sums were used. The purpose of increasing the partial decomposition is to produce a better phase model which gives a better expected value by minimizing error sum of squares in the interval used.

  17. Luminescence model with quantum impact parameter for low energy ions

    CERN Document Server

    Cruz-Galindo, H S; Martínez-Davalos, A; Belmont-Moreno, E; Galindo, S

    2002-01-01

    We have modified an analytical model of induced light production by energetic ions interacting in scintillating materials. The original model is based on the distribution of energy deposited by secondary electrons produced along the ion's track. The range of scattered electrons, and thus the energy distribution, depends on a classical impact parameter between the electron and the ion's track. The only adjustable parameter of the model is the quenching density rho sub q. The modification here presented, consists in proposing a quantum impact parameter that leads to a better fit of the model to the experimental data at low incident ion energies. The light output response of CsI(Tl) detectors to low energy ions (<3 MeV/A) is fitted with the modified model and comparison is made to the original model.

  18. Cosmological Parameter Uncertainties from SALT-II Type Ia Supernova Light Curve Models

    Energy Technology Data Exchange (ETDEWEB)

    Mosher, J. [Pennsylvania U.; Guy, J. [LBL, Berkeley; Kessler, R. [Chicago U., KICP; Astier, P. [Paris U., VI-VII; Marriner, J. [Fermilab; Betoule, M. [Paris U., VI-VII; Sako, M. [Pennsylvania U.; El-Hage, P. [Paris U., VI-VII; Biswas, R. [Argonne; Pain, R. [Paris U., VI-VII; Kuhlmann, S. [Argonne; Regnault, N. [Paris U., VI-VII; Frieman, J. A. [Fermilab; Schneider, D. P. [Penn State U.

    2014-08-29

    We use simulated type Ia supernova (SN Ia) samples, including both photometry and spectra, to perform the first direct validation of cosmology analysis using the SALT-II light curve model. This validation includes residuals from the light curve training process, systematic biases in SN Ia distance measurements, and a bias on the dark energy equation of state parameter w. Using the SN-analysis package SNANA, we simulate and analyze realistic samples corresponding to the data samples used in the SNLS3 analysis: ~120 low-redshift (z < 0.1) SNe Ia, ~255 Sloan Digital Sky Survey SNe Ia (z < 0.4), and ~290 SNLS SNe Ia (z ≤ 1). To probe systematic uncertainties in detail, we vary the input spectral model, the model of intrinsic scatter, and the smoothing (i.e., regularization) parameters used during the SALT-II model training. Using realistic intrinsic scatter models results in a slight bias in the ultraviolet portion of the trained SALT-II model, and w biases (w (input) – w (recovered)) ranging from –0.005 ± 0.012 to –0.024 ± 0.010. These biases are indistinguishable from each other within the uncertainty, the average bias on w is –0.014 ± 0.007.

  19. The material parameters for computational modeling of long-fibre composites with textile

    Directory of Open Access Journals (Sweden)

    Krmela Jan

    2018-01-01

    Full Text Available In this contribution, the composites with textile fibre (cord and an elastomer matrix are studied based on computational modeling of car tires in combination with experiments. These composite are applied in tire casings for cars, conveyor belts etc. The aim of this research work of authors is creation of computational models namely for stress-strain analyses of selected parts of radial tire casing. The typically passenger car radial tire casing consists of one or two polyester plies in tire carcass and two steel-cord belts and one polyamide 66 cap ply below tread. The finite element method using the program system ANSYS is applied to the computational modeling. For the determination of the material parameters of elastomer and textile cords as input data to the computational models, it was necessary to perform tests as statically tensile tests. Also the experiments of composites as tests of low cyclic loading of composites are needed for verification analyses between computational results and experimental data. For computational modeling, the modulus of elasticity and Poisson ratio are used as material input parameters of textile reinforcements. The results from the computational modeling and selected results from the tests are presented in this contribution.

  20. A parameter network and model pyramid for managing technical information flow

    International Nuclear Information System (INIS)

    Sinnock, S.; Hartman, H.A.

    1994-01-01

    Prototypes of information management tools have been developed that can help communicate the technical basis for nuclear waste disposal to a broad audience of program scientists and engineers, project managers, and informed observers from stakeholder organizations. These tools include system engineering concepts, parameter networks expressed as influence diagrams, associated model hierarchies, and a relational database. These tools are used to express relationships among data-collection parameters, model input parameters, model output parameters, systems requirements, physical elements of a system description, and functional analysis of the contribution of physical elements and their associated parameters in satisfying the system requirements. By organizing parameters, models, physical elements, functions, and requirements in a visually reviewable network and a relational database the severe communication challenges facing participants in the nuclear waste dialog can be addressed. The network identifies the influences that data collected in the field have on measures of repository suitability, providing a visual, traceable map that clarifies the role of data and models in supporting conclusions about repository suitability. The map allows conclusions to be traced directly to the underlying parameters and models. Uncertainty in these underlying elements can be exposed to open review in the context of the effects uncertainty has on judgements about suitability. A parameter network provides a stage upon which an informed social dialog about the technical merits of a nuclear waste repository can be conducted. The basis for such dialog must be that stage, if decisions about repository suitability are to be based on a repository's ability to meet requirements embodied in laws and regulations governing disposal of nuclear wastes

  1. Adaptive Model Predictive Vibration Control of a Cantilever Beam with Real-Time Parameter Estimation

    Directory of Open Access Journals (Sweden)

    Gergely Takács

    2014-01-01

    Full Text Available This paper presents an adaptive-predictive vibration control system using extended Kalman filtering for the joint estimation of system states and model parameters. A fixed-free cantilever beam equipped with piezoceramic actuators serves as a test platform to validate the proposed control strategy. Deflection readings taken at the end of the beam have been used to reconstruct the position and velocity information for a second-order state-space model. In addition to the states, the dynamic system has been augmented by the unknown model parameters: stiffness, damping constant, and a voltage/force conversion constant, characterizing the actuating effect of the piezoceramic transducers. The states and parameters of this augmented system have been estimated in real time, using the hybrid extended Kalman filter. The estimated model parameters have been applied to define the continuous state-space model of the vibrating system, which in turn is discretized for the predictive controller. The model predictive control algorithm generates state predictions and dual-mode quadratic cost prediction matrices based on the updated discrete state-space models. The resulting cost function is then minimized using quadratic programming to find the sequence of optimal but constrained control inputs. The proposed active vibration control system is implemented and evaluated experimentally to investigate the viability of the control method.

  2. Enhancement of information transmission with stochastic resonance in hippocampal CA1 neuron models: effects of noise input location.

    Science.gov (United States)

    Kawaguchi, Minato; Mino, Hiroyuki; Durand, Dominique M

    2007-01-01

    Stochastic resonance (SR) has been shown to enhance the signal to noise ratio or detection of signals in neurons. It is not yet clear how this effect of SR on the signal to noise ratio affects signal processing in neural networks. In this paper, we investigate the effects of the location of background noise input on information transmission in a hippocampal CA1 neuron model. In the computer simulation, random sub-threshold spike trains (signal) generated by a filtered homogeneous Poisson process were presented repeatedly to the middle point of the main apical branch, while the homogeneous Poisson shot noise (background noise) was applied to a location of the dendrite in the hippocampal CA1 model consisting of the soma with a sodium, a calcium, and five potassium channels. The location of the background noise input was varied along the dendrites to investigate the effects of background noise input location on information transmission. The computer simulation results show that the information rate reached a maximum value for an optimal amplitude of the background noise amplitude. It is also shown that this optimal amplitude of the background noise is independent of the distance between the soma and the noise input location. The results also show that the location of the background noise input does not significantly affect the maximum values of the information rates generated by stochastic resonance.

  3. Combined Estimation of Hydrogeologic Conceptual Model and Parameter Uncertainty

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Philip D.; Ye, Ming; Neuman, Shlomo P.; Cantrell, Kirk J.

    2004-03-01

    The objective of the research described in this report is the development and application of a methodology for comprehensively assessing the hydrogeologic uncertainties involved in dose assessment, including uncertainties associated with conceptual models, parameters, and scenarios. This report describes and applies a statistical method to quantitatively estimate the combined uncertainty in model predictions arising from conceptual model and parameter uncertainties. The method relies on model averaging to combine the predictions of a set of alternative models. Implementation is driven by the available data. When there is minimal site-specific data the method can be carried out with prior parameter estimates based on generic data and subjective prior model probabilities. For sites with observations of system behavior (and optionally data characterizing model parameters), the method uses model calibration to update the prior parameter estimates and model probabilities based on the correspondence between model predictions and site observations. The set of model alternatives can contain both simplified and complex models, with the requirement that all models be based on the same set of data. The method was applied to the geostatistical modeling of air permeability at a fractured rock site. Seven alternative variogram models of log air permeability were considered to represent data from single-hole pneumatic injection tests in six boreholes at the site. Unbiased maximum likelihood estimates of variogram and drift parameters were obtained for each model. Standard information criteria provided an ambiguous ranking of the models, which would not justify selecting one of them and discarding all others as is commonly done in practice. Instead, some of the models were eliminated based on their negligibly small updated probabilities and the rest were used to project the measured log permeabilities by kriging onto a rock volume containing the six boreholes. These four

  4. Tracing Temporal Changes of Model Parameters in Rainfall-Runoff Modeling via a Real-Time Data Assimilation

    Directory of Open Access Journals (Sweden)

    Shanshan Meng

    2016-01-01

    Full Text Available Watershed characteristics such as patterns of land use and land cover (LULC, soil structure and river systems, have substantially changed due to natural and anthropogenic factors. To adapt hydrological models to the changing characteristics of watersheds, one of the feasible strategies is to explicitly estimate the changed parameters. However, few approaches have been dedicated to these non-stationary conditions. In this study, we employ an ensemble Kalman filter (EnKF technique with a constrained parameter evolution scheme to trace the parameter changes. This technique is coupled to a rainfall-runoff model, i.e., the Xinanjiang (XAJ model. In addition to a stationary condition, we designed three typical non-stationary conditions, including sudden, gradual and rotational changes with respect to two behavioral parameters of the XAJ. Synthetic experiments demonstrated that the EnKF-based method can trace the three types of parameter changes in real time. This method shows robust performance even for the scenarios of high-level uncertainties within rainfall input, modeling and observations, and it holds an implication for detecting changes in watershed characteristics. Coupling this method with a rainfall-runoff model is useful to adapt the model to non-stationary conditions, thereby improving flood simulations and predictions.

  5. SPOTting Model Parameters Using a Ready-Made Python Package.

    Directory of Open Access Journals (Sweden)

    Tobias Houska

    Full Text Available The choice for specific parameter estimation methods is often more dependent on its availability than its performance. We developed SPOTPY (Statistical Parameter Optimization Tool, an open source python package containing a comprehensive set of methods typically used to calibrate, analyze and optimize parameters for a wide range of ecological models. SPOTPY currently contains eight widely used algorithms, 11 objective functions, and can sample from eight parameter distributions. SPOTPY has a model-independent structure and can be run in parallel from the workstation to large computation clusters using the Message Passing Interface (MPI. We tested SPOTPY in five different case studies to parameterize the Rosenbrock, Griewank and Ackley functions, a one-dimensional physically based soil moisture routine, where we searched for parameters of the van Genuchten-Mualem function and a calibration of a biogeochemistry model with different objective functions. The case studies reveal that the implemented SPOTPY methods can be used for any model with just a minimal amount of code for maximal power of parameter optimization. They further show the benefit of having one package at hand that includes number of well performing parameter search methods, since not every case study can be solved sufficiently with every algorithm or every objective function.

  6. Simultaneous inference for model averaging of derived parameters

    DEFF Research Database (Denmark)

    Jensen, Signe Marie; Ritz, Christian

    2015-01-01

    Model averaging is a useful approach for capturing uncertainty due to model selection. Currently, this uncertainty is often quantified by means of approximations that do not easily extend to simultaneous inference. Moreover, in practice there is a need for both model averaging and simultaneous...... inference for derived parameters calculated in an after-fitting step. We propose a method for obtaining asymptotically correct standard errors for one or several model-averaged estimates of derived parameters and for obtaining simultaneous confidence intervals that asymptotically control the family...

  7. Updating parameters of the chicken processing line model

    DEFF Research Database (Denmark)

    Kurowicka, Dorota; Nauta, Maarten; Jozwiak, Katarzyna

    2010-01-01

    A mathematical model of chicken processing that quantitatively describes the transmission of Campylobacter on chicken carcasses from slaughter to chicken meat product has been developed in Nauta et al. (2005). This model was quantified with expert judgment. Recent availability of data allows...... updating parameters of the model to better describe processes observed in slaughterhouses. We propose Bayesian updating as a suitable technique to update expert judgment with microbiological data. Berrang and Dickens’s data are used to demonstrate performance of this method in updating parameters...... of the chicken processing line model....

  8. Lumped-Parameter Models for Windturbine Footings on Layered Ground

    DEFF Research Database (Denmark)

    Andersen, Lars

    The design of modern wind turbines is typically based on lifetime analyses using aeroelastic codes. In this regard, the impedance of the foundations must be described accurately without increasing the overall size of the computationalmodel significantly. This may be obtained by the fitting...... of a lumped-parameter model to the results of a rigorous model or experimental results. In this paper, guidelines are given for the formulation of such lumped-parameter models and examples are given in which the models are utilised for the analysis of a wind turbine supported by a surface footing on a layered...

  9. Parameter estimation and model selection in computational biology.

    Directory of Open Access Journals (Sweden)

    Gabriele Lillacci

    2010-03-01

    Full Text Available A central challenge in computational modeling of biological systems is the determination of the model parameters. Typically, only a fraction of the parameters (such as kinetic rate constants are experimentally measured, while the rest are often fitted. The fitting process is usually based on experimental time course measurements of observables, which are used to assign parameter values that minimize some measure of the error between these measurements and the corresponding model prediction. The measurements, which can come from immunoblotting assays, fluorescent markers, etc., tend to be very noisy and taken at a limited number of time points. In this work we present a new approach to the problem of parameter selection of biological models. We show how one can use a dynamic recursive estimator, known as extended Kalman filter, to arrive at estimates of the model parameters. The proposed method follows. First, we use a variation of the Kalman filter that is particularly well suited to biological applications to obtain a first guess for the unknown parameters. Secondly, we employ an a posteriori identifiability test to check the reliability of the estimates. Finally, we solve an optimization problem to refine the first guess in case it should not be accurate enough. The final estimates are guaranteed to be statistically consistent with the measurements. Furthermore, we show how the same tools can be used to discriminate among alternate models of the same biological process. We demonstrate these ideas by applying our methods to two examples, namely a model of the heat shock response in E. coli, and a model of a synthetic gene regulation system. The methods presented are quite general and may be applied to a wide class of biological systems where noisy measurements are used for parameter estimation or model selection.

  10. The Neurobiological Basis of Cognition: Identification by Multi-Input, Multioutput Nonlinear Dynamic Modeling

    Science.gov (United States)

    Berger, Theodore W.; Song, Dong; Chan, Rosa H. M.; Marmarelis, Vasilis Z.

    2010-01-01

    The successful development of neural prostheses requires an understanding of the neurobiological bases of cognitive processes, i.e., how the collective activity of populations of neurons results in a higher level process not predictable based on knowledge of the individual neurons and/or synapses alone. We have been studying and applying novel methods for representing nonlinear transformations of multiple spike train inputs (multiple time series of pulse train inputs) produced by synaptic and field interactions among multiple subclasses of neurons arrayed in multiple layers of incompletely connected units. We have been applying our methods to study of the hippocampus, a cortical brain structure that has been demonstrated, in humans and in animals, to perform the cognitive function of encoding new long-term (declarative) memories. Without their hippocampi, animals and humans retain a short-term memory (memory lasting approximately 1 min), and long-term memory for information learned prior to loss of hippocampal function. Results of more than 20 years of studies have demonstrated that both individual hippocampal neurons, and populations of hippocampal cells, e.g., the neurons comprising one of the three principal subsystems of the hippocampus, induce strong, higher order, nonlinear transformations of hippocampal inputs into hippocampal outputs. For one synaptic input or for a population of synchronously active synaptic inputs, such a transformation is represented by a sequence of action potential inputs being changed into a different sequence of action potential outputs. In other words, an incoming temporal pattern is transformed into a different, outgoing temporal pattern. For multiple, asynchronous synaptic inputs, such a transformation is represented by a spatiotemporal pattern of action potential inputs being changed into a different spatiotemporal pattern of action potential outputs. Our primary thesis is that the encoding of short-term memories into new, long

  11. Application of Context Input Process and Product Model in Curriculum Evaluation: Case Study of a Call Centre

    Science.gov (United States)

    Kavgaoglu, Derya; Alci, Bülent

    2016-01-01

    The goal of this research which was carried out in reputable dedicated call centres within the Turkish telecommunication sector aims is to evaluate competence-based curriculums designed by means of internal funding through Stufflebeam's context, input, process, product (CIPP) model. In the research, a general scanning pattern in the scope of…

  12. Effect of Process Parameter in Laser Cutting of PMMA Sheet and ANFIS Modelling for Online Control

    Directory of Open Access Journals (Sweden)

    Hossain Anamul

    2016-01-01

    Full Text Available Laser beam machining (LBM is a promising and high accuracy machining technology in advanced manufacturing process. In LBM, crucial machining qualities of the end product include heat affected zone, surface roughness, kerf width, thermal stress, taper angle etc. It is essential for industrial applications especially in laser cutting of thermoplastics to acquire output product with minimum kerf width. The kerf width is dependent on laser input parameters such as laser power, cutting speed, standoff distance, assist gas pressure etc. However it is difficult to get a functional relationship due to the high uncertainty among these parameters. Hence, total 81 sets of full factorial experiment were conducted, representing four input parameters with three different levels. The experiments were performed by a continuous wave (CW CO2 laser with the mode structure of TEM01 named Zech laser machine that can provide maximum laser power up to 500 W. The polymethylmethacrylate (PMMA sheet with thickness of 3.0 mm was used for this experiment. Laser power, cutting speed, standoff distance and assist gas pressure were used as input parameters for the output named kerf width. Standoff distance, laser power, cutting speed and assist gas pressure have the dominant effect on kerf width, respectively, although assist gas has some significant effect to remove the harmful gas. ANFIS model has been developed for online control purposes. This research is considered important and helpful for manufacturing engineers in adjusting and decision making of the process parameters in laser manufacturing industry of PMMA thermoplastics with desired minimum kerf width as well as intricate shape design purposes.

  13. Development of new model for high explosives detonation parameters calculation

    Directory of Open Access Journals (Sweden)

    Jeremić Radun

    2012-01-01

    Full Text Available The simple semi-empirical model for calculation of detonation pressure and velocity for CHNO explosives has been developed, which is based on experimental values of detonation parameters. Model uses Avakyan’s method for determination of detonation products' chemical composition, and is applicable in wide range of densities. Compared with the well-known Kamlet's method and numerical model of detonation based on BKW EOS, the calculated values from proposed model have significantly better accuracy.

  14. Enhancement of regional wet deposition estimates based on modeled precipitation inputs

    Science.gov (United States)

    James A. Lynch; Jeffery W. Grimm; Edward S. Corbett

    1996-01-01

    Application of a variety of two-dimensional interpolation algorithms to precipitation chemistry data gathered at scattered monitoring sites for the purpose of estimating precipitation- born ionic inputs for specific points or regions have failed to produce accurate estimates. The accuracy of these estimates is particularly poor in areas of high topographic relief....

  15. The input and output management of solid waste using DEA models: A case study at Jengka, Pahang

    Science.gov (United States)

    Mohamed, Siti Rosiah; Ghazali, Nur Fadzrina Mohd; Mohd, Ainun Hafizah

    2017-08-01

    Data Envelopment Analysis (DEA) as a tool for obtaining performance indices has been used extensively in several of organizations sector. The ways to improve the efficiency of Decision Making Units (DMUs) is impractical because some of inputs and outputs are uncontrollable and in certain situation its produce weak efficiency which often reflect the impact for operating environment. Based on the data from Alam Flora Sdn. Bhd Jengka, the researcher wants to determine the efficiency of solid waste management (SWM) in town Jengka Pahang using CCRI and CCRO model of DEA and duality formulation with vector average input and output. Three input variables (length collection in meter, frequency time per week in hour and number of garbage truck) and 2 outputs variables (frequency collection and the total solid waste collection in kilogram) are analyzed. As a conclusion, it shows only three roads from 23 roads are efficient that achieve efficiency score 1. Meanwhile, 20 other roads are in an inefficient management.

  16. Parameter uncertainty analysis of a biokinetic model of caesium

    International Nuclear Information System (INIS)

    Li, W.B.; Oeh, U.; Klein, W.; Blanchardon, E.; Puncher, M.; Leggett, R.W.; Breustedt, B.; Nosske, D.; Lopez, M.A.

    2015-01-01

    Parameter uncertainties for the biokinetic model of caesium (Cs) developed by Leggett et al. were inventoried and evaluated. The methods of parameter uncertainty analysis were used to assess the uncertainties of model predictions with the assumptions of model parameter uncertainties and distributions. Furthermore, the importance of individual model parameters was assessed by means of sensitivity analysis. The calculated uncertainties of model predictions were compared with human data of Cs measured in blood and in the whole body. It was found that propagating the derived uncertainties in model parameter values reproduced the range of bioassay data observed in human subjects at different times after intake. The maximum ranges, expressed as uncertainty factors (UFs) (defined as a square root of ratio between 97.5. and 2.5. percentiles) of blood clearance, whole-body retention and urinary excretion of Cs predicted at earlier time after intake were, respectively: 1.5, 1.0 and 2.5 at the first day; 1.8, 1.1 and 2.4 at Day 10 and 1.8, 2.0 and 1.8 at Day 100; for the late times (1000 d) after intake, the UFs were increased to 43, 24 and 31, respectively. The model parameters of transfer rates between kidneys and blood, muscle and blood and the rate of transfer from kidneys to urinary bladder content are most influential to the blood clearance and to the whole-body retention of Cs. For the urinary excretion, the parameters of transfer rates from urinary bladder content to urine and from kidneys to urinary bladder content impact mostly. The implication and effect on the estimated equivalent and effective doses of the larger uncertainty of 43 in whole-body retention in the later time, say, after Day 500 will be explored in a successive work in the framework of EURADOS. (authors)

  17. Sensor placement for calibration of spatially varying model parameters

    Science.gov (United States)

    Nath, Paromita; Hu, Zhen; Mahadevan, Sankaran

    2017-08-01

    This paper presents a sensor placement optimization framework for the calibration of spatially varying model parameters. To account for the randomness of the calibration parameters over space and across specimens, the spatially varying parameter