WorldWideScience

Sample records for models incorporating feedstock

  1. a Novel Framework for Incorporating Sustainability Into Biomass Feedstock Design

    Science.gov (United States)

    Gopalakrishnan, G.; Negri, C.

    2012-12-01

    There is a strong society need to evaluate and understand the sustainability of biofuels, especially due to the significant increases in production mandated by many countries, including the United States. Biomass feedstock production is an important contributor to environmental, social and economic impacts from biofuels. We present a systems approach where the agricultural, urban, energy and environmental sectors are considered as components of a single system and environmental liabilities are used as recoverable resources for biomass feedstock production. A geospatial analysis evaluating marginal land and degraded water resources to improve feedstock productivity with concomitant environmental restoration was conducted for the major corn producing states in the US. The extent and availability of these resources was assessed and geospatial techniques used to identify promising opportunities to implement this approach. Utilizing different sources of marginal land (roadway buffers, contaminated land) could result in a 7-fold increase in land availability for feedstock production and provide ecosystem services such as water quality improvement and carbon sequestration. Spatial overlap between degraded water and marginal land resources was found to be as high as 98% and could maintain sustainable feedstock production on marginal lands through the supply of water and nutrients. Multi-objective optimization was used to quantify the tradeoffs between net revenue, improvements in water quality and carbon sequestration at the farm scale using this design. Results indicated that there is an initial opportunity where land that is marginally productive for row crops and of marginal value for conservation purposes could be used to grow bioenergy crops such that that water quality and carbon sequestration benefits are obtained.

  2. Model feedstock supply processing plants

    Directory of Open Access Journals (Sweden)

    V. M. Bautin

    2013-01-01

    Full Text Available The model of raw providing the processing enterprises entering into vertically integrated structure on production and processing of dairy raw materials, differing by an orientation on achievement of cumulative effect by the integrated structure acting as criterion function which maximizing is reached by optimization of capacities, volumes of deliveries of raw materials and its qualitative characteristics, costs of industrial processing of raw materials and demand for dairy production is developed.

  3. Modeling Sustainable Bioenergy Feedstock Production in the Alps

    Science.gov (United States)

    Kraxner, Florian; Leduc, Sylvain; Kindermann, Georg; Fuss, Sabine; Pietsch, Stephan; Lakyda, Ivan; Serrano Leon, Hernan; Shchepashchenko, Dmitry; Shvidenko, Anatoly

    2016-04-01

    Sustainability of bioenergy is often indicated by the neutrality of emissions at the conversion site while the feedstock production site is assumed to be carbon neutral. Recent research shows that sustainability of bioenergy systems starts with feedstock management. Even if sustainable forest management is applied, different management types can impact ecosystem services substantially. This study examines different sustainable forest management systems together with an optimal planning of green-field bioenergy plants in the Alps. Two models - the biophysical global forest model (G4M) and a techno-economic engineering model for optimizing renewable energy systems (BeWhere) are implemented. G4M is applied in a forward looking manner in order to provide information on the forest under different management scenarios: (1) managing the forest for maximizing the carbon sequestration; or (2) managing the forest for maximizing the harvestable wood amount for bioenergy production. The results from the forest modelling are then picked up by the engineering model BeWhere, which optimizes the bioenergy production in terms of energy demand (power and heat demand by population) and supply (wood harvesting potentials), feedstock harvesting and transport costs, the location and capacity of the bioenergy plant as well as the energy distribution logistics with respect to heat and electricity (e.g. considering existing grids for electricity or district heating etc.). First results highlight the importance of considering ecosystem services under different scenarios and in a geographically explicit manner. While aiming at producing the same amount of bioenergy under both forest management scenarios, it turns out that in scenario (1) a substantially larger area (distributed across the Alps) will need to be used for producing (and harvesting) the necessary amount of feedstock than under scenario (2). This result clearly shows that scenario (2) has to be seen as an "intensification

  4. Feedstock Quality Factor Calibration and Data Model Development

    Energy Technology Data Exchange (ETDEWEB)

    Richard D. Boardman; Tyler L. Westover; Garold L. Gresham

    2010-05-01

    The goal of the feedstock assembly operation is to deliver uniform, quality-assured feedstock materials that will enhance downstream system performance by avoiding problems in the conversion equipment. In order to achieve this goal, there is a need for rapid screening tools and methodologies for assessing the thermochemical quality characteristics of biomass feedstock through the assembly process. Laser-induced breakdown spectroscopy (LIBS) has been identified as potential technique that could allow rapid elemental analyses of the inorganic content of biomass feedstocks; and consequently, would complement the carbohydrate data provided by near-infrared spectrometry (NIRS). These constituents, including Si, K, Ca, Na, S, P, Cl, Mg, Fe and Al, create a number of downstream problems in thermochemical processes. In particular, they reduce the energy content of the feedstock, influence reaction pathways, contribute to fouling and corrosion within systems, poison catalysts, and impact waste streams.

  5. Impacts of bioenergy feedstock production on environmental factors in the Central U.S. using an agroecosystem model (Invited)

    Science.gov (United States)

    Twine, T. E.; Vanloocke, A. D.; Williams, M.; Bernacchi, C.

    2010-12-01

    The Renewable Fuel Standard in the Energy Independence and Security Act of 2007 requires annual U.S. production of 36 billion gallons of renewable fuels by 2022, nearly half of this from cellulosic biofuels. We have little guidance as to where to grow bioenergy feedstocks to maximize yield without competing for food resources, and little understanding of the environmental and economic impacts of their production. Furthermore, it is unclear how bioenergy feedstocks might be incorporated into the current landscape to minimize environmental consequences. Numerical models allow us to predict environmental impacts across large spatial domains and long time periods by simulating the response of potential feedstocks to drivers such as soil type and climate. We used the Agro-IBIS (Integrated Biosphere Simulator, agricultural version) model to quantify the impacts on Midwest U.S. water and energy budgets from land use for bioenergy production. We analyzed effects of changes in land cover (e.g., from current crops to perennial grasses) as well as changes in management (e.g., removal of crop residues for fuel). Our analyses indicate that perennial grasses can substantially increase evapotranspiration (water transport to the atmosphere) in locations where fraction cover is greater than 25%. This change in evapotranspiration is lowest in regions where current crops and grasses are highly productive and evapotranspiration is large, and is highest in semi-arid regions where productivity is lower. These results imply that growing bioenergy feedstocks on marginal lands could have substantial effects on water resources.

  6. Integration of Feedstock Assembly System and Cellulosic Ethanol Conversion Models to Analyze Bioenergy System Performance

    Energy Technology Data Exchange (ETDEWEB)

    Jared M. Abodeely; Douglas S. McCorkle; Kenneth M. Bryden; David J. Muth; Daniel Wendt; Kevin Kenney

    2010-09-01

    Research barriers continue to exist in all phases of the emerging cellulosic ethanol biorefining industry. These barriers include the identification and development of a sustainable and abundant biomass feedstock, the assembly of viable assembly systems formatting the feedstock and moving it from the field (e.g., the forest) to the biorefinery, and improving conversion technologies. Each of these phases of cellulosic ethanol production are fundamentally connected, but computational tools used to support and inform analysis within each phase remain largely disparate. This paper discusses the integration of a feedstock assembly system modeling toolkit and an Aspen Plus® conversion process model. Many important biomass feedstock characteristics, such as composition, moisture, particle size and distribution, ash content, etc. are impacted and most effectively managed within the assembly system, but generally come at an economic cost. This integration of the assembly system and the conversion process modeling tools will facilitate a seamless investigation of the assembly system conversion process interface. Through the integrated framework, the user can design the assembly system for a particular biorefinery by specifying location, feedstock, equipment, and unit operation specifications. The assembly system modeling toolkit then provides economic valuation, and detailed biomass feedstock composition and formatting information. This data is seamlessly and dynamically used to run the Aspen Plus® conversion process model. The model can then be used to investigate the design of systems for cellulosic ethanol production from field to final product.

  7. Liquefied Wood as Inexpensive Precursor-Feedstock for Bio-Mediated Incorporation of (R-3-Hydroxyvalerate into Polyhydroxyalkanoates

    Directory of Open Access Journals (Sweden)

    Martin Koller

    2015-09-01

    Full Text Available Liquefied wood (LW prepared in a microwave process was applied as a novel; inexpensive precursor feedstock for incorporation of (R-3-hydroxyvalerate (3HV into polyhydroxyalkanoate (PHA biopolyesters in order to improve the biopolyester’s material quality; Cupriavidus necator was applied as microbial production strain. For proof of concept, pre-experiments were carried out on a shake flask scale using different mixtures of glucose and LW as carbon source. The results indicate that LW definitely acts as a 3HV precursor, but, at the same time, displays toxic effects on C. necator at concentrations exceeding 10 g/L. Based on these findings, PHA biosynthesis under controlled conditions was performed using a fed-batch feeding regime on a bioreactor scale. As major outcome, a poly(3HB-co-0.8%-3HV copolyester was obtained displaying a desired high molar mass of Mw = 5.39 × 105 g/mol at low molar-mass dispersity (ĐM of 1.53, a degree of crystallinity (Xc of 62.1%, and melting temperature Tm (176.3 °C slightly lower than values reported for poly([R]-3-hydroxybutyrate (PHB homopolyester produced by C. necator; thus, the produced biopolyester is expected to be more suitable for polymer processing purposes.

  8. Modelling of pretreatment and saccharification with different feedstocks and kinetic modeling of sorghum saccharification.

    Science.gov (United States)

    Prathyusha, N; Kamesh, Reddi; Rani, K Yamuna; Sumana, C; Sridhar, S; Prakasham, R S; Yashwanth, V V N; Sheelu, G; Kumar, M Pradeep

    2016-12-01

    Experiments have been performed for pretreatment of sorghum, wheat straw and bamboo through high temperature alkali pretreatment with different alkaline loading and temperatures, and the data on extent of delignification in terms of the final compositions of cellulose, hemicellulose and lignin have been generated. Further, enzymatic saccharification has been carried out in all the cases to find the extent of conversion possible after 72h. The effect of different operating parameters on the extent of delignification and cellulose conversion are evaluated. This data is employed to develop a generalized multi-feedstock and individual feedstock based models which can be used to determine the extent of delignification and cellulose conversion for any and specific biomass respectively with alkaline pretreatment and similar enzyme conditions as considered in the present study. Also, a kinetic model is developed and validated for sorghum for cellulosic conversion.

  9. Models to Predict the Viscosity of Metal Injection Molding Feedstock Materials as Function of Their Formulation

    Directory of Open Access Journals (Sweden)

    Joamin Gonzalez-Gutierrez

    2016-05-01

    Full Text Available The viscosity of feedstock materials is directly related to its processability during injection molding; therefore, being able to predict the viscosity of feedstock materials based on the individual properties of their components can greatly facilitate the formulation of these materials to tailor properties to improve their processability. Many empirical and semi-empirical models are available in the literature that can be used to predict the viscosity of polymeric blends and concentrated suspensions as a function of their formulation; these models can partly be used also for metal injection molding binders and feedstock materials. Among all available models, we made a narrow selection and used only simple models that do not require knowledge of molecular weight or density and have parameters with physical background. In this paper, we investigated the applicability of several of these models for two types of feedstock materials each one with different binder composition and powder loading. For each material, an optimal model was found, but each model was different; therefore, there is not a universal model that fits both materials investigated, which puts under question the underlying physical meaning of these models.

  10. Design, modeling, and analysis of a feedstock logistics system.

    Science.gov (United States)

    Judd, Jason D; Sarin, Subhash C; Cundiff, John S

    2012-01-01

    Given the location of a bio-energy plant for the conversion of biomass to bio-energy, a feedstock logistics system that relies on the use of satellite storage locations (SSLs) for temporary storage and loading of round bales is proposed. Three equipment systems are considered for handling biomass at the SSLs, and they are either placed permanently or are mobile and thereby travel from one SSL to another. A mathematical programming-based approach is utilized to determine SSLs and equipment routes in order to minimize the total cost. The use of a Side-loading Rack System results in average savings of 21.3% over a Densification System while a Rear-loading Rack System is more expensive to operate than either of the other equipment systems. The utilization of mobile equipment results in average savings of 14.8% over the equipment placed permanently. Furthermore, the Densification System is not justifiable for transportation distances less than 81 km. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. MODEL BASED BIOMASS SYSTEM DESIGN OF FEEDSTOCK SUPPLY SYSTEMS FOR BIOENERGY PRODUCTION

    Energy Technology Data Exchange (ETDEWEB)

    David J. Muth, Jr.; Jacob J. Jacobson; Kenneth M. Bryden

    2013-08-01

    Engineering feedstock supply systems that deliver affordable, high-quality biomass remains a challenge for the emerging bioenergy industry. Cellulosic biomass is geographically distributed and has diverse physical and chemical properties. Because of this feedstock supply systems that deliver cellulosic biomass resources to biorefineries require integration of a broad set of engineered unit operations. These unit operations include harvest and collection, storage, preprocessing, and transportation processes. Design decisions for each feedstock supply system unit operation impact the engineering design and performance of the other system elements. These interdependencies are further complicated by spatial and temporal variances such as climate conditions and biomass characteristics. This paper develops an integrated model that couples a SQL-based data management engine and systems dynamics models to design and evaluate biomass feedstock supply systems. The integrated model, called the Biomass Logistics Model (BLM), includes a suite of databases that provide 1) engineering performance data for hundreds of equipment systems, 2) spatially explicit labor cost datasets, and 3) local tax and regulation data. The BLM analytic engine is built in the systems dynamics software package PowersimTM. The BLM is designed to work with thermochemical and biochemical based biofuel conversion platforms and accommodates a range of cellulosic biomass types (i.e., herbaceous residues, short- rotation woody and herbaceous energy crops, woody residues, algae, etc.). The BLM simulates the flow of biomass through the entire supply chain, tracking changes in feedstock characteristics (i.e., moisture content, dry matter, ash content, and dry bulk density) as influenced by the various operations in the supply chain. By accounting for all of the equipment that comes into contact with biomass from the point of harvest to the throat of the conversion facility and the change in characteristics, the

  12. Multi-scale process and supply chain modelling: from lignocellulosic feedstock to process and products.

    Science.gov (United States)

    Hosseini, Seyed Ali; Shah, Nilay

    2011-04-06

    There is a large body of literature regarding the choice and optimization of different processes for converting feedstock to bioethanol and bio-commodities; moreover, there has been some reasonable technological development in bioconversion methods over the past decade. However, the eventual cost and other important metrics relating to sustainability of biofuel production will be determined not only by the performance of the conversion process, but also by the performance of the entire supply chain from feedstock production to consumption. Moreover, in order to ensure world-class biorefinery performance, both the network and the individual components must be designed appropriately, and allocation of resources over the resulting infrastructure must effectively be performed. The goal of this work is to describe the key challenges in bioenergy supply chain modelling and then to develop a framework and methodology to show how multi-scale modelling can pave the way to answer holistic supply chain questions, such as the prospects for second generation bioenergy crops.

  13. Farm systems assessment of bioenergy feedstock production: Integrating bio-economic models and life cycle analysis approaches.

    Science.gov (United States)

    Glithero, N J; Ramsden, S J; Wilson, P

    2012-06-01

    Climate change and energy security concerns have driven the development of policies that encourage bioenergy production. Meeting EU targets for the consumption of transport fuels from bioenergy by 2020 will require a large increase in the production of bioenergy feedstock. Initially an increase in 'first generation' biofuels was observed, however 'food competition' concerns have generated interest in second generation biofuels (SGBs). These SGBs can be produced from co-products (e.g. cereal straw) or energy crops (e.g. miscanthus), with the former largely negating food competition concerns. In order to assess the sustainability of feedstock supply for SGBs, the financial, environmental and energy costs and benefits of the farm system must be quantified. Previous research has captured financial costs and benefits through linear programming (LP) approaches, whilst environmental and energy metrics have been largely been undertaken within life cycle analysis (LCA) frameworks. Assessing aspects of the financial, environmental and energy sustainability of supplying co-product second generation biofuel (CPSGB) feedstocks at the farm level requires a framework that permits the trade-offs between these objectives to be quantified and understood. The development of a modelling framework for Managing Energy and Emissions Trade-Offs in Agriculture (MEETA Model) that combines bio-economic process modelling and LCA is presented together with input data parameters obtained from literature and industry sources. The MEETA model quantifies arable farm inputs and outputs in terms of financial, energy and emissions results. The model explicitly captures fertiliser: crop-yield relationships, plus the incorporation of straw or removal for sale, with associated nutrient impacts of incorporation/removal on the following crop in the rotation. Key results of crop-mix, machinery use, greenhouse gas (GHG) emissions per kg of crop product and energy use per hectare are in line with previous

  14. Leaching Pretreatments for Improving Biomass Quality: Feedstocks, Solvents, and Extraction Modeling

    Science.gov (United States)

    Yu, Chao Wei

    characterized. Among these solvents, 1M HCl improved the corn stover feedstock quality better than other solvents investigated while water worked better for wheat straw. The results show that 1M HCl increased the ash fusion temperature of corn stover from 900 to 1300°C and above 1550°C for water-treated wheat straw. Leachability of each ion extracted from corn stover and wheat straw with different solvents was determined, and the results may be useful in studying the solubility of different elements in a complex ionic solution like leachate. A parallel diffusion model was developed from Fick's second law of diffusion to describe the mass transfer of compounds extracted from biomass to the bulk liquid phase. The model describes two leaching steps with two effective diffusion coefficients, the first step being an initial washing and fast diffusion ( Dfast) followed by a second slower intraparticle diffusion (Dslow). Mass concentration profiles of anions, cations, and sugars leached from wheat straw with water were developed and were used to estimate parameters in the model and for model validation. Results show that Dfast increased as leaching temperature increased while the effects of leaching ratio on Dfast and Dslow were inconclusive. The calculated Dfast and Dslow for leaching ions and sugars from wheat straw did not follow an Arrhenius behavior, suggesting that the effective diffusion coefficients were different depending on batch leaching conditions. In general, the model was able to predict the concentrations of selected anions, cations and total sugars leached from wheat straw with R2 between 0.85 and 0.99 from linear regression analysis of the experimental data versus predicted data. However, the predictability of the model significantly decreased when employing as low a leaching ratio as 15 L/kg due to the high solids concentration of the slurry and resulting inability to apply sufficient agitation. The model tended to overestimate the concentrations of ions in

  15. Performance Analysis of an Integrated Fixed Bed Gasifier Model for Different Biomass Feedstocks

    Directory of Open Access Journals (Sweden)

    Sharmina Begum

    2013-12-01

    Full Text Available Energy recovery from biomass by gasification technology has attracted significant interest because it satisfies a key requirement of environmental sustainability by producing near zero emissions. Though it is not a new technology, studies on its integrated process simulation and analysis are limited, in particular for municipal solid waste (MSW gasification. This paper develops an integrated fixed bed gasifier model of biomass gasification using the Advanced System for Process ENngineering (Aspen Plus software for its performance analysis. A computational model was developed on the basis of Gibbs free energy minimization. The model is validated with experimental data of MSW and food waste gasification available in the literature. A reasonable agreement between measured and predicted syngas composition was found. Using the validated model, the effects of operating conditions, namely air-fuel ratio and gasifier temperature, on syngas production are studied. Performance analyses have been done for four different feedstocks, namely wood, coffee bean husks, green wastes and MSWs. The ultimate and proximate analysis data for each feedstock was used for model development. It was found that operating parameters have a significant influence on syngas composition. An air-fuel ratio of 0.3 and gasifier temperature of 700 °C provides optimum performance for a fixed bed gasifier for MSWs, wood wastes, green wastes and coffee bean husks. The developed model can be useful for gasification of other biomasses (e.g., food wastes, rice husks, poultry wastes and sugarcane bagasse to predict the syngas composition. Therefore, the study provides an integrated gasification model which can be used for different biomass feedstocks.

  16. Increasing secondary and renewable material use: a chance constrained modeling approach to manage feedstock quality variation.

    Science.gov (United States)

    Olivetti, Elsa A; Gaustad, Gabrielle G; Field, Frank R; Kirchain, Randolph E

    2011-05-01

    The increased use of secondary (i.e., recycled) and renewable resources will likely be key toward achieving sustainable materials use. Unfortunately, these strategies share a common barrier to economical implementation - increased quality variation compared to their primary and synthetic counterparts. Current deterministic process-planning models overestimate the economic impact of this increased variation. This paper shows that for a range of industries from biomaterials to inorganics, managing variation through a chance-constrained (CC) model enables increased use of such variable raw materials, or heterogeneous feedstocks (hF), over conventional, deterministic models. An abstract, analytical model and a quantitative model applied to an industrial case of aluminum recycling were used to explore the limits and benefits of the CC formulation. The results indicate that the CC solution can reduce cost and increase potential hF use across a broad range of production conditions through raw materials diversification. These benefits increase where the hFs exhibit mean quality performance close to that of the more homogeneous feedstocks (often the primary and synthetic materials) or have large quality variability. In terms of operational context, the relative performance grows as intolerance for batch error increases and as the opportunity to diversify the raw material portfolio increases.

  17. Incorporating groundwater flow into the WEPP model

    Science.gov (United States)

    William Elliot; Erin Brooks; Tim Link; Sue Miller

    2010-01-01

    The water erosion prediction project (WEPP) model is a physically-based hydrology and erosion model. In recent years, the hydrology prediction within the model has been improved for forest watershed modeling by incorporating shallow lateral flow into watershed runoff prediction. This has greatly improved WEPP's hydrologic performance on small watersheds with...

  18. Analyzing hydrotreated renewable jet fuel (HRJ) feedstock availability using crop simulation modeling

    Science.gov (United States)

    While hydrotreated renewable jet fuel (HRJ) has been demonstrated for use in commercial and military aviation, a challenge to large-scale adoption is availability of cost competitive feedstocks. Brassica oilseed crops like Brassica napus, B. rapa, B. juncea, B. carinata, Sinapis alba, and Camelina s...

  19. Enhancing the productivity of grasses under high-density planting by engineering light responses: from model systems to feedstocks.

    Science.gov (United States)

    Warnasooriya, Sankalpi N; Brutnell, Thomas P

    2014-06-01

    The successful commercialization of bioenergy grasses as lignocellulosic feedstocks requires that they be produced, processed, and transported efficiently. Intensive breeding for higher yields in food crops has resulted in varieties that perform optimally under high-density planting but often with high input costs. This is particularly true of maize, where most yield gains in the past have come through increased planting densities and an abundance of fertilizer. For lignocellulosic feedstocks, biomass rather than grain yield and digestibility of cell walls are two of the major targets for improvement. Breeding for high-density performance of lignocellulosic crops has been much less intense and thus provides an opportunity for improving the feedstock potential of these grasses. In this review, we discuss the role of vegetative shade on growth and development and suggest targets for manipulating this response to increase harvestable biomass under high-density planting. To engineer grass architecture and modify biomass properties at increasing planting densities, we argue that new model systems are needed and recommend Setaria viridis, a panicoid grass, closely related to major fuel and bioenergy grasses as a model genetic system.

  20. Comparative feedstock analysis in Setaria viridis L. as a model for C4 bioenergy grasses and Panicoid crop species

    Directory of Open Access Journals (Sweden)

    Carloalberto ePetti

    2013-06-01

    Full Text Available Second generation feedstocks for bioethanol will likely include a sizable proportion of perennial C4 grasses, principally in the Panicoideae clade. The Panicoideae contain agronomically important annual grasses including Zea mays L. (maize, Sorghum bicolor (L. Moench (sorghum, and Saccharum officinarum L. (sugar cane as well as promising second generation perennial feedstocks including Miscanthus x giganteus and Panicum virgatum L. (switchgrass. The underlying complexity of these polyploid grass genomes is a major limitation for their direct manipulation and thus driving a need for rapidly cycling comparative model. Setaria viridis (green millet is a rapid cycling C4 Panicoid grass with a relatively small and sequenced diploid genome and abundant seed production. Stable, transient and protoplast transformation technologies have also been developed for S. viridis making it a potentially excellent model for other C4 bioenergy grasses. Here, the lignocellulosic feedstock composition, cellulose biosynthesis inhibitor (CBI response and saccharification dynamics of S. viridis are compared with the annual s00orghum and maize and the perennial switchgrass bioenergy crops as a baseline study into the applicability for translational research. A genome-wide systematic investigation of the cellulose synthase-A (CesA genes was performed identifying eight candidate sequences. Two-developmental stages; a metabolically active young tissue and b metabolically plateaued (mature material are examined to compare biomass performance metrics.

  1. Incorporating immigrant flows into microsimulation models.

    Science.gov (United States)

    Duleep, Harriet Orcutt; Dowhan, Daniel J

    2008-01-01

    Building on the research on immigrant earnings reviewed in the first article of this series, "Research on Immigrant Earnings," the preceding article, "Adding Immigrants to Microsimulation Models," linked research results to various issues essential for incorporating immigrant earnings into microsimulation models. The discussions of that article were in terms of a closed system. That is, it examined a system in which immigrant earnings and emigration are forecast for a given population represented in the base sample in the microsimulation model. This article, the last in the series, addresses immigrant earnings projections for open systems--microsimulation models that include projections of future immigration. The article suggests a simple method to project future immigrants and their earnings. Including the future flow of immigrants in microsimulation models can dramatically affect the projected Social Security benefits of some groups.

  2. Incorporating neurophysiological concepts in mathematical thermoregulation models

    Science.gov (United States)

    Kingma, Boris R. M.; Vosselman, M. J.; Frijns, A. J. H.; van Steenhoven, A. A.; van Marken Lichtenbelt, W. D.

    2014-01-01

    Skin blood flow (SBF) is a key player in human thermoregulation during mild thermal challenges. Various numerical models of SBF regulation exist. However, none explicitly incorporates the neurophysiology of thermal reception. This study tested a new SBF model that is in line with experimental data on thermal reception and the neurophysiological pathways involved in thermoregulatory SBF control. Additionally, a numerical thermoregulation model was used as a platform to test the function of the neurophysiological SBF model for skin temperature simulation. The prediction-error of the SBF-model was quantified by root-mean-squared-residual (RMSR) between simulations and experimental measurement data. Measurement data consisted of SBF (abdomen, forearm, hand), core and skin temperature recordings of young males during three transient thermal challenges (1 development and 2 validation). Additionally, ThermoSEM, a thermoregulation model, was used to simulate body temperatures using the new neurophysiological SBF-model. The RMSR between simulated and measured mean skin temperature was used to validate the model. The neurophysiological model predicted SBF with an accuracy of RMSR temperature. This study shows that (1) thermal reception and neurophysiological pathways involved in thermoregulatory SBF control can be captured in a mathematical model, and (2) human thermoregulation models can be equipped with SBF control functions that are based on neurophysiology without loss of performance. The neurophysiological approach in modelling thermoregulation is favourable over engineering approaches because it is more in line with the underlying physiology.

  3. Incorporation of RAM techniques into simulation modeling

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, S.C. Jr.; Haire, M.J.; Schryver, J.C.

    1995-07-01

    This work concludes that reliability, availability, and maintainability (RAM) analytical techniques can be incorporated into computer network simulation modeling to yield an important new analytical tool. This paper describes the incorporation of failure and repair information into network simulation to build a stochastic computer model represents the RAM Performance of two vehicles being developed for the US Army: The Advanced Field Artillery System (AFAS) and the Future Armored Resupply Vehicle (FARV). The AFAS is the US Army`s next generation self-propelled cannon artillery system. The FARV is a resupply vehicle for the AFAS. Both vehicles utilize automation technologies to improve the operational performance of the vehicles and reduce manpower. The network simulation model used in this work is task based. The model programmed in this application requirements a typical battle mission and the failures and repairs that occur during that battle. Each task that the FARV performs--upload, travel to the AFAS, refuel, perform tactical/survivability moves, return to logistic resupply, etc.--is modeled. Such a model reproduces a model reproduces operational phenomena (e.g., failures and repairs) that are likely to occur in actual performance. Simulation tasks are modeled as discrete chronological steps; after the completion of each task decisions are programmed that determine the next path to be followed. The result is a complex logic diagram or network. The network simulation model is developed within a hierarchy of vehicle systems, subsystems, and equipment and includes failure management subnetworks. RAM information and other performance measures are collected which have impact on design requirements. Design changes are evaluated through ``what if`` questions, sensitivity studies, and battle scenario changes.

  4. Biomass supply chain management in North Carolina (part 1: predictive model for cropland conversion to biomass feedstocks

    Directory of Open Access Journals (Sweden)

    Kevin R Caffrey

    2016-03-01

    Full Text Available Increased interest in biomass cultivation requires detailed analysis of spatial production potential of possible biorefinery locations, with emphasis on feedstock production cost minimization. Integrated assessment of publicly available spatial data on current crop production, soil type, and yield potential, coupled with techno-economic production cost estimates, can support a functional method for rapid analysis of potential biorefinery sites. A novel predictive model was developed to determine cropland conversion using a probabilistic profit based equation for multiple biomass crops: giant reed, miscanthus, switchgrass, and sorghum (with either canola or barley as a winter crop. The three primary regions of North Carolina (Mountains, Piedmont, and Coastal Plain were used as a case study and with a single parameter uncertainty analysis was completed. According to the model, the county chosen to represent the Coastal Plain (Duplin County had the largest potential acreage that would be converted (15,071 ha, 7.1% total land, 9.3% of cropland primarily to sorghum with canola as a winter crop. Large portions were also predicted to convert to giant reed and switchgrass, depending on the price and yield parameters used. The Piedmont (Granville County, 7697 ha, 5.5% total land, 6.9% cropland and Mountain (Henderson County, 2117 ha, 2.2% total land, 2.3% cropland regions were predicted to convert primarily to switchgrass acreage for biomass production, with much less available biomass overall compared to the Coastal Plain. This model provided meaningful insight into regional cropping systems and feedstock availability, allowing for improved business planning in designated regions. Determination of cropland conversion is imperative to develop realistic biomass logistical operations, which in conjunction can assist with rapid determination of profitable biomass availability. After this rapid analysis method is conducted in-depth on-ground biorefinery

  5. Incorporating infiltration modelling in urban flood management

    Directory of Open Access Journals (Sweden)

    A. S. Jumadar

    2008-06-01

    Full Text Available Increasing frequency and intensity of flood events in urban areas can be linked to increase in impervious area due to urbanization, exacerbated by climate change. The established approach of conveying storm water by conventional drainage systems has contributed to magnification of runoff volume and peak flows beyond those of undeveloped catchments. Furthermore, the continuous upgrading of such conventional systems is costly and unsustainable in the long term. Sustainable drainage systems aim at addressing the adverse effects associated with conventional systems, by mimicking the natural drainage processes, encouraging infiltration and storage of storm water. In this study we model one of the key components of SuDS, the infiltration basins, in order to assert the benefits of the approach. Infiltration modelling was incorporated in the detention storage unit within the one-dimensional urban storm water management model, EPA-SWMM 5.0. By introduction of infiltration modelling in the storage, the flow attenuation performance of the unit was considerably improved. The study also examines the catchment scale impact of both source and regional control storage/infiltration systems. Based on the findings of two case study areas modelled with the proposed options, it was observed that source control systems have a greater and much more natural impact at a catchment level, with respect to flow attenuation, compared to regional control systems of which capacity is equivalent to the sum of source control capacity at the catchment.

  6. Incorporation of salinity in Water Availability Modeling

    Science.gov (United States)

    Wurbs, Ralph A.; Lee, Chihun

    2011-10-01

    SummaryNatural salt pollution from geologic formations in the upper watersheds of several large river basins in the Southwestern United States severely constrains the use of otherwise available major water supply sources. The Water Rights Analysis Package modeling system has been routinely applied in Texas since the late 1990s in regional and statewide planning studies and administration of the state's water rights permit system, but without consideration of water quality. The modeling system was recently expanded to incorporate salinity considerations in assessments of river/reservoir system capabilities for supplying water for environmental, municipal, agricultural, and industrial needs. Salinity loads and concentrations are tracked through systems of river reaches and reservoirs to develop concentration frequency statistics that augment flow frequency and water supply reliability metrics at pertinent locations for alternative water management strategies. Flexible generalized capabilities are developed for using limited observed salinity data to model highly variable concentrations imposed upon complex river regulation infrastructure and institutional water allocation/management practices.

  7. Coupling hydrothermal liquefaction and anaerobic digestion for energy valorization from model biomass feedstocks.

    Science.gov (United States)

    Posmanik, Roy; Labatut, Rodrigo A; Kim, Andrew H; Usack, Joseph G; Tester, Jefferson W; Angenent, Largus T

    2017-06-01

    Hydrothermal liquefaction converts food waste into oil and a carbon-rich hydrothermal aqueous phase. The hydrothermal aqueous phase may be converted to biomethane via anaerobic digestion. Here, the feasibility of coupling hydrothermal liquefaction and anaerobic digestion for the conversion of food waste into energy products was examined. A mixture of polysaccharides, proteins, and lipids, representing food waste, underwent hydrothermal processing at temperatures ranging from 200 to 350°C. The anaerobic biodegradability of the hydrothermal aqueous phase was examined through conducting biochemical methane potential assays. The results demonstrate that the anaerobic biodegradability of the hydrothermal aqueous phase was lower when the temperature of hydrothermal processing increased. The chemical composition of the hydrothermal aqueous phase affected the anaerobic biodegradability. However, no inhibition of biodegradation was observed for most samples. Combining hydrothermal and anaerobic digestion may, therefore, yield a higher energetic return by converting the feedstock into oil and biomethane. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Lignocellulosic feedstock resource assessment

    Energy Technology Data Exchange (ETDEWEB)

    Rooney, T.

    1998-09-01

    This report provides overall state and national information on the quantity, availability, and costs of current and potential feedstocks for ethanol production in the United States. It characterizes end uses and physical characteristics of feedstocks, and presents relevant information that affects the economic and technical feasibility of ethanol production from these feedstocks. The data can help researchers focus ethanol conversion research efforts on feedstocks that are compatible with the resource base.

  9. COMPUTATIONAL RESOURCES FOR BIOFUEL FEEDSTOCK SPECIES

    Energy Technology Data Exchange (ETDEWEB)

    Buell, Carol Robin [Michigan State University; Childs, Kevin L [Michigan State University

    2013-05-07

    While current production of ethanol as a biofuel relies on starch and sugar inputs, it is anticipated that sustainable production of ethanol for biofuel use will utilize lignocellulosic feedstocks. Candidate plant species to be used for lignocellulosic ethanol production include a large number of species within the Grass, Pine and Birch plant families. For these biofuel feedstock species, there are variable amounts of genome sequence resources available, ranging from complete genome sequences (e.g. sorghum, poplar) to transcriptome data sets (e.g. switchgrass, pine). These data sets are not only dispersed in location but also disparate in content. It will be essential to leverage and improve these genomic data sets for the improvement of biofuel feedstock production. The objectives of this project were to provide computational tools and resources for data-mining genome sequence/annotation and large-scale functional genomic datasets available for biofuel feedstock species. We have created a Bioenergy Feedstock Genomics Resource that provides a web-based portal or clearing house for genomic data for plant species relevant to biofuel feedstock production. Sequence data from a total of 54 plant species are included in the Bioenergy Feedstock Genomics Resource including model plant species that permit leveraging of knowledge across taxa to biofuel feedstock species.We have generated additional computational analyses of these data, including uniform annotation, to facilitate genomic approaches to improved biofuel feedstock production. These data have been centralized in the publicly available Bioenergy Feedstock Genomics Resource (http://bfgr.plantbiology.msu.edu/).

  10. Using the GREET model to analyze algae as a feedstock for biodiesel production

    Science.gov (United States)

    Tatum, Christopher

    There is a growing interest in renewable, carbon-neutral biofuels such as ethanol and biodiesel. A life-cycle analysis is conducted in this study to determine the viability of using algae as a feedstock for biodiesel. The method involves assessing energy use, fossil fuel use, greenhouse gas emissions, and criteria pollutant emissions using a simulation developed by Argonne National Laboratory. The energy and emissions of algae-derived biodiesel are compared to those of soybean biodiesel, corn ethanol, conventional gasoline, and low-sulfur diesel. Results show that there are sizeable greenhouse gas emission benefits attributed to the production of both types of biodiesel as compared to petroleum fuels. Energy expenditures are much larger when producing algae biodiesel than compared to the other four fuels. The alternative scenario of growing algae at a wastewater treatment plant is also evaluated and is proven to reduce fossil fuel consumption by 17%. The results suggest that producing biodiesel from algae, while not yet competitive regarding energy use, does have many benefits and is worthy of further research and development.

  11. Incorporating direct marketing activity into latent attrition models

    NARCIS (Netherlands)

    Schweidel, David A.; Knox, George

    2013-01-01

    When defection is unobserved, latent attrition models provide useful insights about customer behavior and accurate forecasts of customer value. Yet extant models ignore direct marketing efforts. Response models incorporate the effects of direct marketing, but because they ignore latent attrition,

  12. Multiplicative earthquake likelihood models incorporating strain rates

    Science.gov (United States)

    Rhoades, D. A.; Christophersen, A.; Gerstenberger, M. C.

    2017-01-01

    SUMMARYWe examine the potential for strain-rate variables to improve long-term earthquake likelihood models. We derive a set of multiplicative hybrid earthquake likelihood models in which cell rates in a spatially uniform baseline model are scaled using combinations of covariates derived from earthquake catalogue data, fault data, and strain-rates for the New Zealand region. Three components of the strain rate estimated from GPS data over the period 1991-2011 are considered: the shear, rotational and dilatational strain rates. The hybrid model parameters are optimised for earthquakes of M 5 and greater over the period 1987-2006 and tested on earthquakes from the period 2012-2015, which is independent of the strain rate estimates. The shear strain rate is overall the most informative individual covariate, as indicated by Molchan error diagrams as well as multiplicative modelling. Most models including strain rates are significantly more informative than the best models excluding strain rates in both the fitting and testing period. A hybrid that combines the shear and dilatational strain rates with a smoothed seismicity covariate is the most informative model in the fitting period, and a simpler model without the dilatational strain rate is the most informative in the testing period. These results have implications for probabilistic seismic hazard analysis and can be used to improve the background model component of medium-term and short-term earthquake forecasting models.

  13. A Financial Market Model Incorporating Herd Behaviour.

    Science.gov (United States)

    Wray, Christopher M; Bishop, Steven R

    2016-01-01

    Herd behaviour in financial markets is a recurring phenomenon that exacerbates asset price volatility, and is considered a possible contributor to market fragility. While numerous studies investigate herd behaviour in financial markets, it is often considered without reference to the pricing of financial instruments or other market dynamics. Here, a trader interaction model based upon informational cascades in the presence of information thresholds is used to construct a new model of asset price returns that allows for both quiescent and herd-like regimes. Agent interaction is modelled using a stochastic pulse-coupled network, parametrised by information thresholds and a network coupling probability. Agents may possess either one or two information thresholds that, in each case, determine the number of distinct states an agent may occupy before trading takes place. In the case where agents possess two thresholds (labelled as the finite state-space model, corresponding to agents' accumulating information over a bounded state-space), and where coupling strength is maximal, an asymptotic expression for the cascade-size probability is derived and shown to follow a power law when a critical value of network coupling probability is attained. For a range of model parameters, a mixture of negative binomial distributions is used to approximate the cascade-size distribution. This approximation is subsequently used to express the volatility of model price returns in terms of the model parameter which controls the network coupling probability. In the case where agents possess a single pulse-coupling threshold (labelled as the semi-infinite state-space model corresponding to agents' accumulating information over an unbounded state-space), numerical evidence is presented that demonstrates volatility clustering and long-memory patterns in the volatility of asset returns. Finally, output from the model is compared to both the distribution of historical stock returns and the market

  14. Incorporating Resilience into Dynamic Social Models

    Science.gov (United States)

    2016-07-20

    resiliency, computational modeling, computational social science /systems, modeling and simulation 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF...system. The relationships between random variables are given as conditional probability rules. BKBs are represented as a directed graph with...and BKB inferencing methods can be found in Santos et al [20]. 4.1. BKB Definition and Inferencing A BKB is a directed , bipartite graph consisting

  15. Incorporating evolutionary processes into population viability models.

    Science.gov (United States)

    Pierson, Jennifer C; Beissinger, Steven R; Bragg, Jason G; Coates, David J; Oostermeijer, J Gerard B; Sunnucks, Paul; Schumaker, Nathan H; Trotter, Meredith V; Young, Andrew G

    2015-06-01

    We examined how ecological and evolutionary (eco-evo) processes in population dynamics could be better integrated into population viability analysis (PVA). Complementary advances in computation and population genomics can be combined into an eco-evo PVA to offer powerful new approaches to understand the influence of evolutionary processes on population persistence. We developed the mechanistic basis of an eco-evo PVA using individual-based models with individual-level genotype tracking and dynamic genotype-phenotype mapping to model emergent population-level effects, such as local adaptation and genetic rescue. We then outline how genomics can allow or improve parameter estimation for PVA models by providing genotypic information at large numbers of loci for neutral and functional genome regions. As climate change and other threatening processes increase in rate and scale, eco-evo PVAs will become essential research tools to evaluate the effects of adaptive potential, evolutionary rescue, and locally adapted traits on persistence.

  16. Incorporating 3-dimensional models in online articles

    Science.gov (United States)

    Cevidanes, Lucia H. S.; Ruellasa, Antonio C. O.; Jomier, Julien; Nguyen, Tung; Pieper, Steve; Budin, Francois; Styner, Martin; Paniagua, Beatriz

    2015-01-01

    Introduction The aims of this article were to introduce the capability to view and interact with 3-dimensional (3D) surface models in online publications, and to describe how to prepare surface models for such online 3D visualizations. Methods Three-dimensional image analysis methods include image acquisition, construction of surface models, registration in a common coordinate system, visualization of overlays, and quantification of changes. Cone-beam computed tomography scans were acquired as volumetric images that can be visualized as 3D projected images or used to construct polygonal meshes or surfaces of specific anatomic structures of interest. The anatomic structures of interest in the scans can be labeled with color (3D volumetric label maps), and then the scans are registered in a common coordinate system using a target region as the reference. The registered 3D volumetric label maps can be saved in .obj, .ply, .stl, or .vtk file formats and used for overlays, quantification of differences in each of the 3 planes of space, or color-coded graphic displays of 3D surface distances. Results All registered 3D surface models in this study were saved in .vtk file format and loaded in the Elsevier 3D viewer. In this study, we describe possible ways to visualize the surface models constructed from cone-beam computed tomography images using 2D and 3D figures. The 3D surface models are available in the article’s online version for viewing and downloading using the reader’s software of choice. These 3D graphic displays are represented in the print version as 2D snapshots. Overlays and color-coded distance maps can be displayed using the reader’s software of choice, allowing graphic assessment of the location and direction of changes or morphologic differences relative to the structure of reference. The interpretation of 3D overlays and quantitative color-coded maps requires basic knowledge of 3D image analysis. Conclusions When submitting manuscripts, authors can

  17. Incorporating territory compression into population models

    NARCIS (Netherlands)

    Ridley, J; Komdeur, J; Sutherland, WJ; Sutherland, William J.

    The ideal despotic distribution, whereby the lifetime reproductive success a territory's owner achieves is unaffected by population density, is a mainstay of behaviour-based population models. We show that the population dynamics of an island population of Seychelles warblers (Acrocephalus

  18. Incorporating POS Tagging into Language Modeling

    CERN Document Server

    Heeman, P A; Heeman, Peter A.; Allen, James F.

    1997-01-01

    Language models for speech recognition tend to concentrate solely on recognizing the words that were spoken. In this paper, we redefine the speech recognition problem so that its goal is to find both the best sequence of words and their syntactic role (part-of-speech) in the utterance. This is a necessary first step towards tightening the interaction between speech recognition and natural language understanding.

  19. Integrated regional modeling assessment of the environmental and economic potential of perennial grass bioenergy feedstocks

    Science.gov (United States)

    Hudiburg, T. W.; Khanna, M.; Dwivedi, P.; Parton, W. J.; Long, S.; Wang, W.; DeLucia, E. H.

    2013-12-01

    Perennial grasses have been proposed as viable bioenergy crops because of their potential to yield harvestable biomass on marginal lands without displacing food and contribute to greenhouse gas (GHG) reduction by storing carbon in soil. Switchgrass, miscanthus, and restored native prairie are among the crops being considered in the corn and agricultural regions of the eastern United States. In this study, we used an extensive dataset of site observations for each of these crops to evaluate and improve a combined ecosystem and economic modeling framework about how both yield and GHG fluxes would respond to different land use strategies. Using this model-data integration approach, we found 30-75% improvement in our predictions over previous studies and good model-data agreement of harvested yields and soil carbon stocks (r2 > 0.62 for all crops). We found that growing perennial grasses would result in average onsite GHG reductions of 0.5-2.0 Mg CO2e ha-1 yr-1compared to a corn-soy baseline, not including fossil fuel offsets. If grown on marginal lands, average onsite GHG reductions remain significant at 0.3-1.0 Mg CO2e ha-1 yr-1. After conversion to bioenergy and complete life cycle assessment, offsite GHG savings can increase by up to 150%, providing a dry biomass supply of 11-22 Mg ha-1 yr-1 for energy use. Preliminary model results of the abatement cost range between 62- 250 per ton of CO2e abated. While a carbon tax would provide an incentive, we find that it would need to be larger than the abatement cost to induce production of cellulosic biofuels.

  20. Energy supply chain optimization of hybrid feedstock processes: a review.

    Science.gov (United States)

    Elia, Josephine A; Floudas, Christodoulos A

    2014-01-01

    The economic, environmental, and social performances of energy systems depend on their geographical locations and the surrounding market infrastructure for feedstocks and energy products. Strategic decisions to locate energy conversion facilities must take all upstream and downstream operations into account, prompting the development of supply chain modeling and optimization methods. This article reviews the contributions of energy supply chain studies that include heat, power, and liquid fuels production. Studies are categorized based on specific features of the mathematical model, highlighting those that address energy supply chain models with and without considerations of multiperiod decisions. Studies that incorporate uncertainties are discussed, and opportunities for future research developments are outlined.

  1. EVALUATION OF BIOMASS AND COAL CO-GASIFICATION OF BRAZILIAN FEEDSTOCK USING A CHEMICAL EQUILIBRIUM MODEL

    Directory of Open Access Journals (Sweden)

    R. Rodrigues

    Full Text Available Abstract Coal and biomass are energy sources with great potential for use in Brazil. Coal-biomass co-gasification enables the combination of the positive characteristics of each fuel, besides leading to a cleaner use of coal. The present study evaluates the potential of co-gasification of binary coal-biomass blends using sources widely available in Brazil. This analysis employs computational simulations using a reliable thermodynamic equilibrium model. Favorable operational conditions at high temperatures are determined in order to obtain gaseous products suitable for energy cogeneration and chemical synthesis. This study shows that blends with biomass ratios of 5% and equivalence ratios ≤ 0.3 lead to high cold gas efficiencies. Suitable gaseous products for chemical synthesis were identified at biomass ratios ≤ 35% and moisture contents ≥ 40%. Formation of undesirable nitrogen and sulfur compounds was also analyzed.

  2. Incorporating direct marketing activity into latent attrition models

    NARCIS (Netherlands)

    Schweidel, David A.; Knox, George

    2013-01-01

    When defection is unobserved, latent attrition models provide useful insights about customer behavior and accurate forecasts of customer value. Yet extant models ignore direct marketing efforts. Response models incorporate the effects of direct marketing, but because they ignore latent attrition, th

  3. Incorporating RTI in a Hybrid Model of Reading Disability

    Science.gov (United States)

    Spencer, Mercedes; Wagner, Richard K.; Schatschneider, Christopher; Quinn, Jamie M.; Lopez, Danielle; Petscher, Yaacov

    2014-01-01

    The present study seeks to evaluate a hybrid model of identification that incorporates response to instruction and intervention (RTI) as one of the key symptoms of reading disability. The 1-year stability of alternative operational definitions of reading disability was examined in a large-scale sample of students who were followed longitudinally…

  4. "Violent Intent Modeling: Incorporating Cultural Knowledge into the Analytical Process

    Energy Technology Data Exchange (ETDEWEB)

    Sanfilippo, Antonio P.; Nibbs, Faith G.

    2007-08-24

    While culture has a significant effect on the appropriate interpretation of textual data, the incorporation of cultural considerations into data transformations has not been systematic. Recognizing that the successful prevention of terrorist activities could hinge on the knowledge of the subcultures, Anthropologist and DHS intern Faith Nibbs has been addressing the need to incorporate cultural knowledge into the analytical process. In this Brown Bag she will present how cultural ideology is being used to understand how the rhetoric of group leaders influences the likelihood of their constituents to engage in violent or radicalized behavior, and how violent intent modeling can benefit from understanding that process.

  5. Biomass Feedstock National User Facility

    Data.gov (United States)

    Federal Laboratory Consortium — Bioenergy research at the Biomass Feedstock National User Facility (BFNUF) is focused on creating commodity-scale feed-stocks from native biomass that meet the needs...

  6. Statistical evaluation and modeling of cheap substrate-based cultivation medium of Chlorella vulgaris to enhance microalgae lipid as new potential feedstock for biolubricant.

    Science.gov (United States)

    Mohammad Mirzaie, M A; Kalbasi, M; Mousavi, S M; Ghobadian, B

    2016-05-18

    Chlorella vulgaris (C. vulgaris) microalga was investigated as a new potential feedstock for the production of biodegradable lubricant. In order to enhance microalgae lipid for biolubricant production, mixotrophic growth of C. vulgaris was optimized using statistical analysis of Plackett-Burman (P-B) and response surface methodology (RSM). A cheap substrate-based medium of molasses and corn steep liquor (CSL) was used instead of expensive mineral salts to reduce the total cost of microalgae production. The effects of molasses and CSL concentration (cheap substrates) and light intensity on the growth of microalgae and their lipid content were analyzed and modeled. Designed models by RSM showed good compatibility with a 95% confidence level when compared to the cultivation system. According to the models, optimal cultivation conditions were obtained with biomass productivity of 0.123 g L(-1) day(-1) and lipid dry weight of 0.64 g L(-1) as 35% of dry weight of C. vulgaris. The extracted microalgae lipid presented useful fatty acid for biolubricant production with viscosities of 42.00 cSt at 40°C and 8.500 cSt at 100°C, viscosity index of 185, flash point of 185°C, and pour point of -6°C. These properties showed that microalgae lipid could be used as potential feedstock for biolubricant production.

  7. Incorporating RTI in a Hybrid Model of Reading Disability

    OpenAIRE

    2014-01-01

    The present study seeks to evaluate a hybrid model of identification that incorporates response-to-intervention (RTI) as a one of the key symptoms of reading disability. The one-year stability of alternative operational definitions of reading disability was examined in a large scale sample of students who were followed longitudinally from first to second grade. The results confirmed previous findings of limited stability for single-criterion based operational definitions of reading disability...

  8. Feedstock storage, handling and processing

    Energy Technology Data Exchange (ETDEWEB)

    Egg, R.P.; Coble, C.G.; Engler, C.R. (Texas A and M Univ., College Station, TX (United States). Dept. of Agricultural Engineering); Lewis, D.H. (Texas A and M Univ., College Station, TX (United States). Dept. of Veterinary Microbiology and Parasitology)

    1993-01-01

    This paper is a review of the technology and research covering components of a methane from biomass system between the field and the digester. It deals primarily with sorghum as a feedstock and focuses on research conducted by the Texas Agricultural Experiment Station. Subjects included in this paper are harvesting, hay storage, ansiling, materials handling, pumping and hydraulic characteristics, hydraulic conductivity, pressure/density relationship, and biological pretreatment. This paper is not a comprehensive design manual; however, design equations and coefficients for sorghum are presented, where available, along with references describing the development and application of design models. (author)

  9. Incorporating the Hayflick Limit into a model of Telomere Dynamics

    CERN Document Server

    Cyrenne, Benoit M

    2013-01-01

    A model of telomere dynamics is proposed and examined. Our model, which extends a previously introduced two-compartment model that incorporates stem cells as progenitors of new cells, imposes the Hayflick Limit, the maximum number of cell divisions that are possible. This new model leads to cell populations for which the average telomere length is not necessarily a monotonically decreasing function of time, in contrast to previously published models. We provide a phase diagram indicating where such results would be expected. In addition, qualitatively different results are obtained for the evolution of the total cell population. Last, in comparison to available leukocyte baboon data, this new model is shown to provide a better fit to biological data.

  10. Incorporating Linguistic Structure into Maximum Entropy Language Models

    Institute of Scientific and Technical Information of China (English)

    FANG GaoLin(方高林); GAO Wen(高文); WANG ZhaoQi(王兆其)

    2003-01-01

    In statistical language models, how to integrate diverse linguistic knowledge in a general framework for long-distance dependencies is a challenging issue. In this paper, an improved language model incorporating linguistic structure into maximum entropy framework is presented.The proposed model combines trigram with the structure knowledge of base phrase in which trigram is used to capture the local relation between words, while the structure knowledge of base phrase is considered to represent the long-distance relations between syntactical structures. The knowledge of syntax, semantics and vocabulary is integrated into the maximum entropy framework.Experimental results show that the proposed model improves by 24% for language model perplexity and increases about 3% for sign language recognition rate compared with the trigram model.

  11. Biodiesel from conventional feedstocks.

    Science.gov (United States)

    Du, Wei; Liu, De-Hua

    2012-01-01

    At present, traditional fossil fuels are used predominantly in China, presenting the country with challenges that include sustainable energy supply, energy efficiency improvement, and reduction of greenhouse gas emissions. In 2007, China issued The Strategic Plan of the Mid-and-Long Term Development of Renewable Energy, which aims to increase the share of clean energy in the country's energy consumption to 15% by 2020 from only 7.5% in 2005. Biodiesel, an important renewable fuel with significant advantages over fossil diesel, has attracted great attention in the USA and European countries. However, biodiesel is still in its infancy in China, although its future is promising. This chapter reviews biodiesel production from conventional feedstocks in the country, including feedstock supply and state of the art technologies for the transesterification reaction through which biodiesel is made, particularly the enzymatic catalytic process developed by Chinese scientists. Finally, the constraints and perspectives for China's biodiesel development are highlighted.

  12. Methods improvements incorporated into the SAPHIRE ASP models

    Energy Technology Data Exchange (ETDEWEB)

    Sattison, M.B.; Blackman, H.S.; Novack, S.D. [Idaho National Engineering Lab., Idaho Falls, ID (United States)] [and others

    1995-04-01

    The Office for Analysis and Evaluation of Operational Data (AEOD) has sought the assistance of the Idaho National Engineering Laboratory (INEL) to make some significant enhancements to the SAPHIRE-based Accident Sequence Precursor (ASP) models recently developed by the INEL. The challenge of this project is to provide the features of a full-scale PRA within the framework of the simplified ASP models. Some of these features include: (1) uncertainty analysis addressing the standard PRA uncertainties and the uncertainties unique to the ASP models and methods, (2) incorporation and proper quantification of individual human actions and the interaction among human actions, (3) enhanced treatment of common cause failures, and (4) extension of the ASP models to more closely mimic full-scale PRAs (inclusion of more initiators, explicitly modeling support system failures, etc.). This paper provides an overview of the methods being used to make the above improvements.

  13. A novel fluence map optimization model incorporating leaf sequencing constraints.

    Science.gov (United States)

    Jin, Renchao; Min, Zhifang; Song, Enmin; Liu, Hong; Ye, Yinyu

    2010-02-21

    A novel fluence map optimization model incorporating leaf sequencing constraints is proposed to overcome the drawbacks of the current objective inside smoothing models. Instead of adding a smoothing item to the objective function, we add the total number of monitor unit (TNMU) requirement directly to the constraints which serves as an important factor to balance the fluence map optimization and leaf sequencing optimization process at the same time. Consequently, we formulate the fluence map optimization models for the trailing (left) leaf synchronized, leading (right) leaf synchronized and the interleaf motion constrained non-synchronized leaf sweeping schemes, respectively. In those schemes, the leaves are all swept unidirectionally from left to right. Each of those models is turned into a linear constrained quadratic programming model which can be solved effectively by the interior point method. Those new models are evaluated with two publicly available clinical treatment datasets including a head-neck case and a prostate case. As shown by the empirical results, our models perform much better in comparison with two recently emerged smoothing models (the total variance smoothing model and the quadratic smoothing model). For all three leaf sweeping schemes, our objective dose deviation functions increase much slower than those in the above two smoothing models with respect to the decreasing of the TNMU. While keeping plans in the similar conformity level, our new models gain much better performance on reducing TNMU.

  14. Invasive plants as feedstock for biochar and bioenergy production.

    Science.gov (United States)

    Liao, Rui; Gao, Bin; Fang, June

    2013-07-01

    In this work, the potential of invasive plant species as feedstock for value-added products (biochar and bioenergy) through pyrolysis was investigated. The product yield rates of two major invasive species in the US, Brazilian Pepper (BP) and Air Potato (AP), were compared to that of two traditional feedstock materials, water oak and energy cane. Three pyrolysis temperatures (300, 450, and 600°C) and four feedstock masses (10, 15, 20, and 25 g) were tested for a total of 12 experimental conditions. AP had high biochar and low oil yields, while BP had a high oil yield. At lower temperatures, the minimum feedstock residence time for biochar and bioenergy production increased at a faster rate as feedstock weight increased than it did at higher temperatures. A simple mathematical model was successfully developed to describe the relationship between feedstock weight and the minimum residence time.

  15. CBTL Design Case Summary Conventional Feedstock Supply System - Herbaceous

    Energy Technology Data Exchange (ETDEWEB)

    Christopher T. Wright; Erin M. Searcy

    2012-02-01

    A conventional bale feedstock design has been established that represents supply system technologies, costs, and logistics that are achievable today for supplying herbaceous feedstocks as a blendstock with coal for energy production. Efforts are made to identify bottlenecks and optimize the efficiency and capacities of this supply system, within the constraints of existing local feedstock supplies, equipment, and permitting requirements. The feedstock supply system logistics operations encompass all of the activities necessary to move herbaceous biomass feedstock from the production location to the conversion reactor ready for blending and insertion. This supply system includes operations that are currently available such that costs and logistics are reasonable and reliable. The system modeled for this research project includes the uses of field-dried corn stover or switchgrass as a feedstock to annually supply an 800,000 DM ton conversion facility.

  16. Incorporating vegetation feedbacks in regional climate modeling over West Africa

    Science.gov (United States)

    Erfanian, A.; Wang, G.; Yu, M.; Ahmed, K. F.; Anyah, R. O.

    2015-12-01

    Despite major advancements in modeling of the climate system, incorporating vegetation dynamics into climate models is still at the initial stages making it an ongoing research topic. Only few of GCMs participating in CMIP5 simulations included the vegetation dynamics component. Consideration for vegetation dynamics is even less common in RCMs. In this study, RegCM4.3.4-CLM4-CN-DV, a regional climate model synchronously coupled with a land surface component that includes both Carbon-Nitrogen (CN) and Dynamic-Vegetation (DV) processes is used to simulate and project regional climate over West Africa. Due to its unique regional features, West Africa climate is known for being susceptible to land-atmosphere interactions, enhancing the importance of including vegetation dynamics in modeling climate over this region. In this study the model is integrated for two scenarios (present-day and future) using outputs from four GCMs participating in CMIP5 (MIROC, CESM, GFDL and CCSM4) as lateral boundary conditions, which form the basis of a multi-model ensemble. Results of model validation indicates that ensemble of all models outperforms each of individual models in simulating present-day temperature and precipitation. Therefore, the ensemble set is used to analyze the impact of including vegetation dynamics in the RCM on future projection of West Africa's climate. Results from the ensemble analysis will be presented, together with comparison among individual models.

  17. Thermodynamic modelling of supercritical water gasification: investigating the effect of biomass composition to aid in the selection of appropriate feedstock material.

    Science.gov (United States)

    Louw, Jeanne; Schwarz, Cara E; Knoetze, Johannes H; Burger, Andries J

    2014-12-01

    A process model developed in Aspen Plus®, was used for the thermodynamic modelling of supercritical water gasification (SCWG) using a wide variety of biomass materials as feedstock. The influence of the composition of the biomass material (in terms of carbon, hydrogen and oxygen content) on various performance indicators (such as gas yields, cold gas efficiency, calorific value of product gas and heat of reaction), were determined at various temperatures (600, 700 and 800°C) and biomass feed concentrations (5, 15 and 25wt.%). Generalised contour plots, based on the biomass composition, were developed for these performance indicators to provide the thermodynamic limits at various operating conditions. These plots can aid in the selection or screening of potential biomass materials and appropriate operating conditions for SCWG prior to conducting experimental work.

  18. A mathematical model for incorporating biofeedback into human postural control

    Directory of Open Access Journals (Sweden)

    Ersal Tulga

    2013-02-01

    Full Text Available Abstract Background Biofeedback of body motion can serve as a balance aid and rehabilitation tool. To date, mathematical models considering the integration of biofeedback into postural control have represented this integration as a sensory addition and limited their application to a single degree-of-freedom representation of the body. This study has two objectives: 1 to develop a scalable method for incorporating biofeedback into postural control that is independent of the model’s degrees of freedom, how it handles sensory integration, and the modeling of its postural controller; and 2 to validate this new model using multidirectional perturbation experimental results. Methods Biofeedback was modeled as an additional torque to the postural controller torque. For validation, this biofeedback modeling approach was applied to a vibrotactile biofeedback device and incorporated into a two-link multibody model with full-state-feedback control that represents the dynamics of bipedal stance. Average response trajectories of body sway and center of pressure (COP to multidirectional surface perturbations of subjects with vestibular deficits were used for model parameterization and validation in multiple perturbation directions and for multiple display resolutions. The quality of fit was quantified using average error and cross-correlation values. Results The mean of the average errors across all tactor configurations and perturbations was 0.24° for body sway and 0.39 cm for COP. The mean of the cross-correlation value was 0.97 for both body sway and COP. Conclusions The biofeedback model developed in this study is capable of capturing experimental response trajectory shapes with low average errors and high cross-correlation values in both the anterior-posterior and medial-lateral directions for all perturbation directions and spatial resolution display configurations considered. The results validate that biofeedback can be modeled as an additional

  19. Biohydrogen production from lignocellulosic feedstock.

    Science.gov (United States)

    Cheng, Chieh-Lun; Lo, Yung-Chung; Lee, Kuo-Shing; Lee, Duu-Jong; Lin, Chiu-Yue; Chang, Jo-Shu

    2011-09-01

    Due to the recent energy crisis and rising concern over climate change, the development of clean alternative energy sources is of significant interest. Biohydrogen produced from cellulosic feedstock, such as second generation feedstock (lignocellulosic biomass) and third generation feedstock (carbohydrate-rich microalgae), is a promising candidate as a clean, CO2-neutral, non-polluting and high efficiency energy carrier to meet the future needs. This article reviews state-of-the-art technology on lignocellulosic biohydrogen production in terms of feedstock pretreatment, saccharification strategy, and fermentation technology. Future developments of integrated biohydrogen processes leading to efficient waste reduction, low CO2 emission and high overall hydrogen yield is discussed.

  20. Feedstock and technology options for Bioethanol production in South Africa: Technoeconomic prefeasibility study

    CSIR Research Space (South Africa)

    Amigun, B

    2013-09-01

    Full Text Available profitable operation during times with high feedstock prices would be possible. A sensitivity analysis of the economic assumptions of the base-case model demonstrated that feedstock price is the most important determinant of production costs...

  1. Safety models incorporating graph theory based transit indicators.

    Science.gov (United States)

    Quintero, Liliana; Sayed, Tarek; Wahba, Mohamed M

    2013-01-01

    There is a considerable need for tools to enable the evaluation of the safety of transit networks at the planning stage. One interesting approach for the planning of public transportation systems is the study of networks. Network techniques involve the analysis of systems by viewing them as a graph composed of a set of vertices (nodes) and edges (links). Once the transport system is visualized as a graph, various network properties can be evaluated based on the relationships between the network elements. Several indicators can be calculated including connectivity, coverage, directness and complexity, among others. The main objective of this study is to investigate the relationship between network-based transit indicators and safety. The study develops macro-level collision prediction models that explicitly incorporate transit physical and operational elements and transit network indicators as explanatory variables. Several macro-level (zonal) collision prediction models were developed using a generalized linear regression technique, assuming a negative binomial error structure. The models were grouped into four main themes: transit infrastructure, transit network topology, transit route design, and transit performance and operations. The safety models showed that collisions were significantly associated with transit network properties such as: connectivity, coverage, overlapping degree and the Local Index of Transit Availability. As well, the models showed a significant relationship between collisions and some transit physical and operational attributes such as the number of routes, frequency of routes, bus density, length of bus and 3+ priority lanes.

  2. Tantalum strength model incorporating temperature, strain rate and pressure

    Science.gov (United States)

    Lim, Hojun; Battaile, Corbett; Brown, Justin; Lane, Matt

    Tantalum is a body-centered-cubic (BCC) refractory metal that is widely used in many applications in high temperature, strain rate and pressure environments. In this work, we propose a physically-based strength model for tantalum that incorporates effects of temperature, strain rate and pressure. A constitutive model for single crystal tantalum is developed based on dislocation kink-pair theory, and calibrated to measurements on single crystal specimens. The model is then used to predict deformations of single- and polycrystalline tantalum. In addition, the proposed strength model is implemented into Sandia's ALEGRA solid dynamics code to predict plastic deformations of tantalum in engineering-scale applications at extreme conditions, e.g. Taylor impact tests and Z machine's high pressure ramp compression tests, and the results are compared with available experimental data. Sandia National Laboratories is a multi program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  3. Incorporating Plant Phenology Dynamics in a Biophysical Canopy Model

    Science.gov (United States)

    Barata, Raquel A.; Drewry, Darren

    2012-01-01

    The Multi-Layer Canopy Model (MLCan) is a vegetation model created to capture plant responses to environmental change. Themodel vertically resolves carbon uptake, water vapor and energy exchange at each canopy level by coupling photosynthesis, stomatal conductance and leaf energy balance. The model is forced by incoming shortwave and longwave radiation, as well as near-surface meteorological conditions. The original formulation of MLCan utilized canopy structural traits derived from observations. This project aims to incorporate a plant phenology scheme within MLCan allowing these structural traits to vary dynamically. In the plant phenology scheme implemented here, plant growth is dependent on environmental conditions such as air temperature and soil moisture. The scheme includes functionality that models plant germination, growth, and senescence. These growth stages dictate the variation in six different vegetative carbon pools: storage, leaves, stem, coarse roots, fine roots, and reproductive. The magnitudes of these carbon pools determine land surface parameters such as leaf area index, canopy height, rooting depth and root water uptake capacity. Coupling this phenology scheme with MLCan allows for a more flexible representation of the structure and function of vegetation as it responds to changing environmental conditions.

  4. A dengue model incorporating saturation incidence and human migration

    Science.gov (United States)

    Gakkhar, S.; Mishra, A.

    2015-03-01

    In this paper, a non-linear model has been proposed to investigate the effects of human migration on dengue dynamics. Human migration has been considered between two patches having different dengue strains. Due to migration secondary infection is possible. Further, the secondary infection is considered in patch-2 only as strain-2 in patch-2 is considered to be more severe than that of strain-1 in patch-1. The saturation incidence rate has been considered to incorporate the behavioral changes towards epidemic in human population. The basic reproduction number has been computed. Four Equilibrium states have been found and analyzed. Increasing saturation rate decreases the threshold thereby enhancing the stability of disease-free state in both the patches. Control on migration may lead to change in infection level of patches.

  5. An SIRS Epidemic Model Incorporating Media Coverage with Time Delay

    Science.gov (United States)

    Lin, Yiping; Dai, Yunxian

    2014-01-01

    An SIRS epidemic model incorporating media coverage with time delay is proposed. The positivity and boundedness are studied firstly. The locally asymptotical stability of the disease-free equilibrium and endemic equilibrium is studied in succession. And then, the conditions on which periodic orbits bifurcate are given. Furthermore, we show that the local Hopf bifurcation implies the global Hopf bifurcation after the second critical value of the delay. The obtained results show that the time delay in media coverage can not affect the stability of the disease-free equilibrium when the basic reproduction number R0 1, the stability of the endemic equilibrium will be affected by the time delay; there will be a family of periodic orbits bifurcating from the endemic equilibrium when the time delay increases through a critical value. Finally, some examples for numerical simulations are also included. PMID:24723967

  6. Incorporating Phaeocystis into a Southern Ocean ecosystem model

    Science.gov (United States)

    Wang, Shanlin; Moore, J. Keith

    2011-01-01

    Phaeocystis antarctica is an important phytoplankton species in the Southern Ocean. We incorporated P. antarctica into the biogeochemical elemental cycling ocean model to study Southern Ocean ecosystem dynamics and biogeochemistry. The optimum values of ecological parameters for Phaeocystis were sought through synthesizing laboratory and field observations, and the model output was evaluated with observed chlorophyll a, carbon biomass, and nutrient distributions. Several factors have been proposed to control Southern Ocean ecosystem structure, including light adaptation, iron uptake capability, and loss processes. Optimum simulation results were obtained when P. antarctica had a relatively high α (P-I curve initial slope) value and a higher half-saturation constant for iron uptake than other phytoplankton. Simulation results suggested that P. antarctica had a competitive advantage under low irradiance levels, especially in the Ross Sea and Weddell Sea. However, the distributions of P. antarctica and diatoms were also strongly influenced by iron availability. Although grazing rates had an influence on total biomass, our simulations did not show a strong influence of grazing pressure in the competition between P. antarctica and diatoms. However, limited observations and the relative simplicity of zooplankton in our model suggest further research is needed. Overall, P. antarctica contributed ˜13% of annual primary production and ˜19% of sinking carbon export in the Southern Ocean (>40°S) in our best case simulation. At higher latitudes (>60°S) P. antarctica accounts for ˜23% of annual primary production and ˜30% of sinking carbon export.

  7. Digital terrain model generalization incorporating scale, semantic and cognitive constraints

    Science.gov (United States)

    Partsinevelos, Panagiotis; Papadogiorgaki, Maria

    2014-05-01

    Cartographic generalization is a well-known process accommodating spatial data compression, visualization and comprehension under various scales. In the last few years, there are several international attempts to construct tangible GIS systems, forming real 3D surfaces using a vast number of mechanical parts along a matrix formation (i.e., bars, pistons, vacuums). Usually, moving bars upon a structured grid push a stretching membrane resulting in a smooth visualization for a given surface. Most of these attempts suffer either in their cost, accuracy, resolution and/or speed. Under this perspective, the present study proposes a surface generalization process that incorporates intrinsic constrains of tangible GIS systems including robotic-motor movement and surface stretching limitations. The main objective is to provide optimized visualizations of 3D digital terrain models with minimum loss of information. That is, to minimize the number of pixels in a raster dataset used to define a DTM, while reserving the surface information. This neighborhood type of pixel relations adheres to the basics of Self Organizing Map (SOM) artificial neural networks, which are often used for information abstraction since they are indicative of intrinsic statistical features contained in the input patterns and provide concise and characteristic representations. Nevertheless, SOM remains more like a black box procedure not capable to cope with possible particularities and semantics of the application at hand. E.g. for coastal monitoring applications, the near - coast areas, surrounding mountains and lakes are more important than other features and generalization should be "biased"-stratified to fulfill this requirement. Moreover, according to the application objectives, we extend the SOM algorithm to incorporate special types of information generalization by differentiating the underlying strategy based on topologic information of the objects included in the application. The final

  8. Alternative Feedstocks Program Technical and Economic Assessment: Thermal/Chemical and Bioprocessing Components

    Energy Technology Data Exchange (ETDEWEB)

    Bozell, J. J.; Landucci, R.

    1993-07-01

    This resource document on biomass to chemicals opportunities describes the development of a technical and market rationale for incorporating renewable feedstocks into the chemical industry in both a qualitative and quantitative sense. The term "renewable feedstock?s" can be defined to include a huge number of materials such as agricultural crops rich in starch, lignocellulosic materials (biomass), or biomass material recovered from a variety of processing wastes.

  9. The California Biomass Crop Adoption Model estimates biofuel feedstock crop production across diverse agro-ecological zones within the state, under different future climates

    Science.gov (United States)

    Kaffka, S.; Jenner, M.; Bucaram, S.; George, N.

    2012-12-01

    Both regulators and businesses need realistic estimates for the potential production of biomass feedstocks for biofuels and bioproducts. This includes the need to understand how climate change will affect mid-tem and longer-term crop performance and relative advantage. The California Biomass Crop Adoption Model is a partial mathematical programming optimization model that estimates the profit level needed for new crop adoption, and the crop(s) displaced when a biomass feedstock crop is added to the state's diverse set of cropping systems, in diverse regions of the state. Both yield and crop price, as elements of profit, can be varied. Crop adoption is tested against current farmer preferences derived from analysis of 10 years crop production data for all crops produced in California, collected by the California Department of Pesticide Regulation. Analysis of this extensive data set resulted in 45 distinctive, representative farming systems distributed across the state's diverse agro-ecological regions. Estimated yields and water use are derived from field trials combined with crop simulation, reported elsewhere. Crop simulation is carried out under different weather and climate assumptions. Besides crop adoption and displacement, crop resource use is also accounted, derived from partial budgets used for each crop's cost of production. Systematically increasing biofuel crop price identified areas of the state where different types of crops were most likely to be adopted. Oilseed crops like canola that can be used for biodiesel production had the greatest potential to be grown in the Sacramento Valley and other northern regions, while sugar beets (for ethanol) had the greatest potential in the northern San Joaquin Valley region, and sweet sorghum in the southern San Joaquin Valley. Up to approximately 10% of existing annual cropland in California was available for new crop adoption. New crops are adopted if the entire cropping system becomes more profitable. In

  10. Preprocessing Moist Lignocellulosic Biomass for Biorefinery Feedstocks

    Energy Technology Data Exchange (ETDEWEB)

    Neal Yancey; Christopher T. Wright; Craig Conner; J. Richard Hess

    2009-06-01

    Biomass preprocessing is one of the primary operations in the feedstock assembly system of a lignocellulosic biorefinery. Preprocessing is generally accomplished using industrial grinders to format biomass materials into a suitable biorefinery feedstock for conversion to ethanol and other bioproducts. Many factors affect machine efficiency and the physical characteristics of preprocessed biomass. For example, moisture content of the biomass as received from the point of production has a significant impact on overall system efficiency and can significantly affect the characteristics (particle size distribution, flowability, storability, etc.) of the size-reduced biomass. Many different grinder configurations are available on the market, each with advantages under specific conditions. Ultimately, the capacity and/or efficiency of the grinding process can be enhanced by selecting the grinder configuration that optimizes grinder performance based on moisture content and screen size. This paper discusses the relationships of biomass moisture with respect to preprocessing system performance and product physical characteristics and compares data obtained on corn stover, switchgrass, and wheat straw as model feedstocks during Vermeer HG 200 grinder testing. During the tests, grinder screen configuration and biomass moisture content were varied and tested to provide a better understanding of their relative impact on machine performance and the resulting feedstock physical characteristics and uniformity relative to each crop tested.

  11. Preprocessing Moist Lignocellulosic Biomass for Biorefinery Feedstocks

    Energy Technology Data Exchange (ETDEWEB)

    Neal Yancey; Christopher T. Wright; Craig Conner; J. Richard Hess

    2009-06-01

    Biomass preprocessing is one of the primary operations in the feedstock assembly system of a lignocellulosic biorefinery. Preprocessing is generally accomplished using industrial grinders to format biomass materials into a suitable biorefinery feedstock for conversion to ethanol and other bioproducts. Many factors affect machine efficiency and the physical characteristics of preprocessed biomass. For example, moisture content of the biomass as received from the point of production has a significant impact on overall system efficiency and can significantly affect the characteristics (particle size distribution, flowability, storability, etc.) of the size-reduced biomass. Many different grinder configurations are available on the market, each with advantages under specific conditions. Ultimately, the capacity and/or efficiency of the grinding process can be enhanced by selecting the grinder configuration that optimizes grinder performance based on moisture content and screen size. This paper discusses the relationships of biomass moisture with respect to preprocessing system performance and product physical characteristics and compares data obtained on corn stover, switchgrass, and wheat straw as model feedstocks during Vermeer HG 200 grinder testing. During the tests, grinder screen configuration and biomass moisture content were varied and tested to provide a better understanding of their relative impact on machine performance and the resulting feedstock physical characteristics and uniformity relative to each crop tested.

  12. Incorporating Context Dependency of Species Interactions in Species Distribution Models.

    Science.gov (United States)

    Lany, Nina K; Zarnetske, Phoebe L; Gouhier, Tarik C; Menge, Bruce A

    2017-07-01

    Species distribution models typically use correlative approaches that characterize the species-environment relationship using occurrence or abundance data for a single species. However, species distributions are determined by both abiotic conditions and biotic interactions with other species in the community. Therefore, climate change is expected to impact species through direct effects on their physiology and indirect effects propagated through their resources, predators, competitors, or mutualists. Furthermore, the sign and strength of species interactions can change according to abiotic conditions, resulting in context-dependent species interactions that may change across space or with climate change. Here, we incorporated the context dependency of species interactions into a dynamic species distribution model. We developed a multi-species model that uses a time-series of observational survey data to evaluate how abiotic conditions and species interactions affect the dynamics of three rocky intertidal species. The model further distinguishes between the direct effects of abiotic conditions on abundance and the indirect effects propagated through interactions with other species. We apply the model to keystone predation by the sea star Pisaster ochraceus on the mussel Mytilus californianus and the barnacle Balanus glandula in the rocky intertidal zone of the Pacific coast, USA. Our method indicated that biotic interactions between P. ochraceus and B. glandula affected B. glandula dynamics across >1000 km of coastline. Consistent with patterns from keystone predation, the growth rate of B. glandula varied according to the abundance of P. ochraceus in the previous year. The data and the model did not indicate that the strength of keystone predation by P. ochraceus varied with a mean annual upwelling index. Balanus glandula cover increased following years with high phytoplankton abundance measured as mean annual chlorophyll-a. M. californianus exhibited the same

  13. CARBONIZER TESTS WITH LAKELAND FEEDSTOCKS

    Energy Technology Data Exchange (ETDEWEB)

    C. Lu; Z. Fan; R. Froehlich; A. Robertson

    2003-09-01

    Research has been conducted under United States Department of Energy Contract (USDOE) DE-AC21-86MC21023 to develop a new type of coal-fired plant for electric power generation. This new type of plant, called a Second Generation Pressurized Fluidized Bed Combustion Plant (2nd Gen PFB), offers the promise of efficiencies greater than 48%, with both emissions and a cost of electricity that are significantly lower than those of conventional pulverized coal-fired (PC) plants with wet flue gas desulfurization/scrubbers. The 2nd Gen PFB plant incorporates the partial gasification of coal in a carbonizer, the combustion of carbonizer char in a pressurized circulating fluidized (PCFB) bed boiler, and the combustion of carbonizer syngas in a topping combustor to achieve gas turbine inlet temperatures of 2700 F and higher. Under the USDOE Clean Coal V Demonstration Plant Program, a nominal 260 MWe plant demonstrating 2nd Gen PFB technology has been proposed for construction at the McIntosh Power Plant of the City of Lakeland, Florida. In the September-December 1997 time period, four test runs were conducted in Foster Wheeler's 12-inch diameter carbonizer pilot plant in Livingston New Jersey to ascertain carbonizer performance characteristics with the Kentucky No. 9 coal and Florida limestone proposed for use in the Lakeland plant. The tests were of a short-term nature exploring carbonizer carbon conversions, sulfur capture efficiencies and syngas alkali levels. The tests were successful; observed carbonizer performance was in agreement with predictions and no operating problems, attributed to the planned feedstocks, were encountered. The results of the four test runs are reported herein.

  14. CARBONIZER TESTS WITH LAKELAND FEEDSTOCKS

    Energy Technology Data Exchange (ETDEWEB)

    C. Lu; Z. Fan; R. Froehlich; A. Robertson

    2003-09-01

    Research has been conducted under United States Department of Energy Contract (USDOE) DE-AC21-86MC21023 to develop a new type of coal-fired plant for electric power generation. This new type of plant, called a Second Generation Pressurized Fluidized Bed Combustion Plant (2nd Gen PFB), offers the promise of efficiencies greater than 48%, with both emissions and a cost of electricity that are significantly lower than those of conventional pulverized coal-fired (PC) plants with wet flue gas desulfurization/scrubbers. The 2nd Gen PFB plant incorporates the partial gasification of coal in a carbonizer, the combustion of carbonizer char in a pressurized circulating fluidized (PCFB) bed boiler, and the combustion of carbonizer syngas in a topping combustor to achieve gas turbine inlet temperatures of 2700 F and higher. Under the USDOE Clean Coal V Demonstration Plant Program, a nominal 260 MWe plant demonstrating 2nd Gen PFB technology has been proposed for construction at the McIntosh Power Plant of the City of Lakeland, Florida. In the September-December 1997 time period, four test runs were conducted in Foster Wheeler's 12-inch diameter carbonizer pilot plant in Livingston New Jersey to ascertain carbonizer performance characteristics with the Kentucky No. 9 coal and Florida limestone proposed for use in the Lakeland plant. The tests were of a short-term nature exploring carbonizer carbon conversions, sulfur capture efficiencies and syngas alkali levels. The tests were successful; observed carbonizer performance was in agreement with predictions and no operating problems, attributed to the planned feedstocks, were encountered. The results of the four test runs are reported herein.

  15. ASSERT FY16 Analysis of Feedstock Companion Markets

    Energy Technology Data Exchange (ETDEWEB)

    Lamers, Patrick [Idaho National Lab. (INL), Idaho Falls, ID (United States); Hansen, Jason [Idaho National Lab. (INL), Idaho Falls, ID (United States); Jacobson, Jacob J. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Nguyen, Thuy [Idaho National Lab. (INL), Idaho Falls, ID (United States); Nair, Shyam [Idaho National Lab. (INL), Idaho Falls, ID (United States); Searcy, Erin [Idaho National Lab. (INL), Idaho Falls, ID (United States); Hess, J. Richard [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-09-01

    Meeting Co-Optima biofuel production targets will require large quantities of mobilized biomass feedstock. Mobilization is of key importance as there is an abundance of biomass resources, yet little is available for purchase, let alone at desired quantity and quality levels needed for a continuous operation, e.g., a biorefinery. Therefore Co-Optima research includes outlining a path towards feedstock production at scale by understanding routes to mobilizing large quantities of biomass feedstock. Continuing along the vertically-integrated path that pioneer cellulosic biorefineries have taken will constrain the bioenergy industry to high biomass yield areas, limiting its ability to reach biofuel production at scale. To advance the cellulosic biofuels industry, a separation between feedstock supply and conversion is necessary. Thus, in contrast to the vertically integrated supply chain, two industries are required: a feedstock industry and a conversion industry. The split is beneficial for growers and feedstock processers as they are able to sell into multiple markets. That is, depots that produce value-add feedstock intermediates that are fully fungible in both the biofuels refining and other, so-called companion markets. As the biofuel industry is currently too small to leverage significant investment in up-stream infrastructure build-up, it requires an established (companion) market to secure demand, which de-risks potential investments and makes a build-up of processing and other logistics infrastructure more likely. A common concern to this theory however is that more demand by other markets could present a disadvantage for biofuels production as resource competition may increase prices leading to reduced availability of low-cost feedstock for biorefineries. To analyze the dynamics across multiple markets vying for the same resources, particularly the potential effects on resource price and distribution, the Companion Market Model (CMM) has been developed in this

  16. Biomass Feedstock and Conversion Supply System Design and Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Jacobson, Jacob J. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Roni, Mohammad S. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Lamers, Patrick [Idaho National Lab. (INL), Idaho Falls, ID (United States); Cafferty, Kara G. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-09-01

    Idaho National Laboratory (INL) supports the U.S. Department of Energy’s bioenergy research program. As part of the research program INL investigates the feedstock logistics economics and sustainability of these fuels. A series of reports were published between 2000 and 2013 to demonstrate the feedstock logistics cost. Those reports were tailored to specific feedstock and conversion process. Although those reports are different in terms of conversion, some of the process in the feedstock logistic are same for each conversion process. As a result, each report has similar information. A single report can be designed that could bring all commonality occurred in the feedstock logistics process while discussing the feedstock logistics cost for different conversion process. Therefore, this report is designed in such a way that it can capture different feedstock logistics cost while eliminating the need of writing a conversion specific design report. Previous work established the current costs based on conventional equipment and processes. The 2012 programmatic target was to demonstrate a delivered biomass logistics cost of $55/dry ton for woody biomass delivered to fast pyrolysis conversion facility. The goal was achieved by applying field and process demonstration unit-scale data from harvest, collection, storage, preprocessing, handling, and transportation operations into INL’s biomass logistics model. The goal of the 2017 Design Case is to enable expansion of biofuels production beyond highly productive resource areas by breaking the reliance of cost-competitive biofuel production on a single, low-cost feedstock. The 2017 programmatic target is to supply feedstock to the conversion facility that meets the in-feed conversion process quality specifications at a total logistics cost of $80/dry T. The $80/dry T. target encompasses total delivered feedstock cost, including both grower payment and logistics costs, while meeting all conversion in-feed quality targets

  17. Design of a GIS-Based Web Application for Simulating Biofuel Feedstock Yields

    Directory of Open Access Journals (Sweden)

    Olga Prilepova

    2014-07-01

    Full Text Available Short rotation woody crops (SRWC, such as hybrid poplar, have the potential to serve as a valuable feedstock for cellulosic biofuels. Spatial estimates of biomass yields under different management regimes are required for assisting stakeholders in making better management decisions and to establish viable woody cropping systems for biofuel production. To support stakeholders in their management decisions, we have developed a GIS-based web interface using a modified 3PG model for spatially predicting poplar biomass yields under different management and climate conditions in the U.S. Pacific Northwest region. The application is implemented with standard HTML5 components, allowing its use in a modern browser and dynamically adjusting to the client screen size and device. In addition, cloud storage of the results makes them accessible on any Internet-enabled device. The web interface appears simple, but is powerful in parameter manipulation and in visualizing and sharing the results. Overall, this application comprises dynamic features that enable users to run SRWC crop growth simulations based on GIS information and contributes significantly to choosing appropriate feedstock growing locations, anticipating the desired physiological properties of the feedstock and incorporating the management and policy analysis needed for growing hybrid poplar plantations.

  18. Incorporating Enterprise Risk Management in the Business Model Innovation Process

    OpenAIRE

    Yariv Taran; Harry Boer; Peter Lindgren

    2013-01-01

    Purpose: Relative to other types of innovations, little is known about business model innovation, let alone the process of managing the risks involved in that process. Using the emerging (enterprise) risk management literature, an approach is proposed through which risk management can be embedded in the business model innovation process. Design: The integrated business model innovation risk management model developed in this paper has been tested through an action research study in a Dani...

  19. Incorporating inductances in tissue-scale models of cardiac electrophysiology

    Science.gov (United States)

    Rossi, Simone; Griffith, Boyce E.

    2017-09-01

    In standard models of cardiac electrophysiology, including the bidomain and monodomain models, local perturbations can propagate at infinite speed. We address this unrealistic property by developing a hyperbolic bidomain model that is based on a generalization of Ohm's law with a Cattaneo-type model for the fluxes. Further, we obtain a hyperbolic monodomain model in the case that the intracellular and extracellular conductivity tensors have the same anisotropy ratio. In one spatial dimension, the hyperbolic monodomain model is equivalent to a cable model that includes axial inductances, and the relaxation times of the Cattaneo fluxes are strictly related to these inductances. A purely linear analysis shows that the inductances are negligible, but models of cardiac electrophysiology are highly nonlinear, and linear predictions may not capture the fully nonlinear dynamics. In fact, contrary to the linear analysis, we show that for simple nonlinear ionic models, an increase in conduction velocity is obtained for small and moderate values of the relaxation time. A similar behavior is also demonstrated with biophysically detailed ionic models. Using the Fenton-Karma model along with a low-order finite element spatial discretization, we numerically analyze differences between the standard monodomain model and the hyperbolic monodomain model. In a simple benchmark test, we show that the propagation of the action potential is strongly influenced by the alignment of the fibers with respect to the mesh in both the parabolic and hyperbolic models when using relatively coarse spatial discretizations. Accurate predictions of the conduction velocity require computational mesh spacings on the order of a single cardiac cell. We also compare the two formulations in the case of spiral break up and atrial fibrillation in an anatomically detailed model of the left atrium, and we examine the effect of intracellular and extracellular inductances on the virtual electrode phenomenon.

  20. Incorporating Temperature-driven Seasonal Variation in Survival, Growth, and Reproduction Models for Small Fish

    Science.gov (United States)

    Seasonal variation in survival and reproduction can be a large source of prediction uncertainty in models used for conservation and management. A seasonally varying matrix population model is developed that incorporates temperature-driven differences in mortality and reproduction...

  1. 2009 Feedstocks Platform Review Report

    Energy Technology Data Exchange (ETDEWEB)

    Ferrell, John [Office of Energy Efficiency and Renewable Energy (EERE), Washington, DC (United States)

    2009-12-01

    This document summarizes the recommendations and evaluations provided by an independent external panel of experts at the U.S. Department of Energy Biomass Program‘s Feedstock platform review meeting, held on April 8–10, 2009, at the Grand Hyatt Washington, Washington, D.C.

  2. Survey of alternative feedstocks for biodiesel production

    Science.gov (United States)

    Summarized will be results obtained from the production of biodiesel from several alternative feedstocks with promising agronomic characteristics. Such feedstocks include camelina (Camelina sativa L.), coriander (Coriandrum sativum L.), field pennycress (Thlaspi arvense L.), and meadowfoam (Limnanth...

  3. Multiplicity Control in Structural Equation Modeling: Incorporating Parameter Dependencies

    Science.gov (United States)

    Smith, Carrie E.; Cribbie, Robert A.

    2013-01-01

    When structural equation modeling (SEM) analyses are conducted, significance tests for all important model relationships (parameters including factor loadings, covariances, etc.) are typically conducted at a specified nominal Type I error rate ([alpha]). Despite the fact that many significance tests are often conducted in SEM, rarely is…

  4. Incorporating Enterprise Risk Management in the Business Model Innovation Process

    Directory of Open Access Journals (Sweden)

    Yariv Taran

    2013-12-01

    Full Text Available Purpose: Relative to other types of innovations, little is known about business model innovation, let alone the process of managing the risks involved in that process. Using the emerging (enterprise risk management literature, an approach is proposed through which risk management can be embedded in the business model innovation process. Design: The integrated business model innovation risk management model developed in this paper has been tested through an action research study in a Danish company. Findings: The study supports our proposition that the implementation of risk management throughout the innovation process reduces the risks related to the uncertainty and complexity of developing and implementing a new business model. Originality: The study supports the proposition that the implementation of risk management throughout the innovation process reduces the risks related to the uncertainty and complexity of developing and implementing a new business model. The business model risk management model makes managers much more focused on identifying problematic issues and putting explicit plans and timetables into place for resolving/reducing risks, and assists companies in aligning the risk treatment choices made during the

  5. A Constrained CA Model for Planning Simulation Incorporating Institutional Constraints

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    In recent years,it is prevailing to simulate urban growth by means of cellular automata (CA in short) modeling,which is based on selforganizing theories and different from the system dynamic modeling.Since the urban system is definitely complex,the CA models applied in urban growth simulation should take into consideration not only the neighborhood influence,but also other factors influencing urban development.We bring forward the term of complex constrained CA (CC-CA in short) model,which integrates the constrained conditions of neighborhood,macro socio-economy,space and institution.Particularly,the constrained construction zoning,as one institutional constraint,is considered in the CC-CA modeling.In the paper,the conceptual CC-CA model is introduced together with the transition rules.Based on the CC-CA model for Beijing,we discuss the complex constraints to the urban development of,and we show how to set institutional constraints in planning scenario to control the urban growth pattern of Beijing.

  6. Modelling of Permanent Magnet Synchronous Motor Incorporating Core-loss

    Directory of Open Access Journals (Sweden)

    K. Suthamno

    2012-08-01

    Full Text Available This study proposes a dq-axis modelling of a Permanent Magnet Synchronous Motor (PMSM with copper-loss and core-loss taken into account. The proposed models can be applied to PMSM control and drive with loss minimization in simultaneous consideration. The study presents simulation results of direct drive of a PMSM under no-load and loaded conditions using the proposed models with MATLAB codes. Comparisons of the results are made among those obtained from using PSIM and SIMULINK software packages. The comparison results indicate very good agreement.

  7. Markov modulated Poisson process models incorporating covariates for rainfall intensity.

    Science.gov (United States)

    Thayakaran, R; Ramesh, N I

    2013-01-01

    Time series of rainfall bucket tip times at the Beaufort Park station, Bracknell, in the UK are modelled by a class of Markov modulated Poisson processes (MMPP) which may be thought of as a generalization of the Poisson process. Our main focus in this paper is to investigate the effects of including covariate information into the MMPP model framework on statistical properties. In particular, we look at three types of time-varying covariates namely temperature, sea level pressure, and relative humidity that are thought to be affecting the rainfall arrival process. Maximum likelihood estimation is used to obtain the parameter estimates, and likelihood ratio tests are employed in model comparison. Simulated data from the fitted model are used to make statistical inferences about the accumulated rainfall in the discrete time interval. Variability of the daily Poisson arrival rates is studied.

  8. Incorporating concern for relative wealth into economic models

    OpenAIRE

    1995-01-01

    This article develops a simple model that captures a concern for relative standing, or status. This concern is instrumental, in the sense that individuals do not get utility directly from their relative standing, but, rather, the concern is induced because their relative standing affects their consumption of standard commodities. The article investigates the consequences of a concern for relative wealth in models in which individuals are making labor/leisure decisions. The analysis shows how ...

  9. Stochastic modelling of landfill leachate and biogas production incorporating waste heterogeneity. Model formulation and uncertainty analysis.

    Science.gov (United States)

    Zacharof, A I; Butler, A P

    2004-01-01

    A mathematical model simulating the hydrological and biochemical processes occurring in landfilled waste is presented and demonstrated. The model combines biochemical and hydrological models into an integrated representation of the landfill environment. Waste decomposition is modelled using traditional biochemical waste decomposition pathways combined with a simplified methodology for representing the rate of decomposition. Water flow through the waste is represented using a statistical velocity model capable of representing the effects of waste heterogeneity on leachate flow through the waste. Given the limitations in data capture from landfill sites, significant emphasis is placed on improving parameter identification and reducing parameter requirements. A sensitivity analysis is performed, highlighting the model's response to changes in input variables. A model test run is also presented, demonstrating the model capabilities. A parameter perturbation model sensitivity analysis was also performed. This has been able to show that although the model is sensitive to certain key parameters, its overall intuitive response provides a good basis for making reasonable predictions of the future state of the landfill system. Finally, due to the high uncertainty associated with landfill data, a tool for handling input data uncertainty is incorporated in the model's structure. It is concluded that the model can be used as a reasonable tool for modelling landfill processes and that further work should be undertaken to assess the model's performance.

  10. The incorporation and validation of empirical crawling data into the buildingEXODUS model

    OpenAIRE

    Muhdi, Rani; Gwynne, Steve; Davis, Jerry

    2009-01-01

    The deterioration of environmental conditions can influence evacuee decisions and their subsequent behaviors. Simulating evacuee behaviors enhances the robustness of engineering procedural designs, improves the accuracy of egress models, and better evaluates the safety of evacuees. The purpose of this paper is to more accurately incorporate and validate evacuee crawling behavior into the buildingEXODUS egress model. Crawling data were incorporated into the model and tested for accurate repres...

  11. Modelling toluene oxidation : Incorporation of mass transfer phenomena

    NARCIS (Netherlands)

    Hoorn, J.A.A.; van Soolingen, J.; Versteeg, G. F.

    2005-01-01

    The kinetics of the oxidation of toluene have been studied in close interaction with the gas-liquid mass transfer occurring in the reactor. Kinetic parameters for a simple model have been estimated on basis of experimental observations performed under industrial conditions. The conclusions for the m

  12. Modelling toluene oxidation : Incorporation of mass transfer phenomena

    NARCIS (Netherlands)

    Hoorn, J.A.A.; van Soolingen, J.; Versteeg, G. F.

    The kinetics of the oxidation of toluene have been studied in close interaction with the gas-liquid mass transfer occurring in the reactor. Kinetic parameters for a simple model have been estimated on basis of experimental observations performed under industrial conditions. The conclusions for the

  13. Modelling toluene oxidation : Incorporation of mass transfer phenomena

    NARCIS (Netherlands)

    Hoorn, J.A.A.; van Soolingen, J.; Versteeg, G. F.

    2005-01-01

    The kinetics of the oxidation of toluene have been studied in close interaction with the gas-liquid mass transfer occurring in the reactor. Kinetic parameters for a simple model have been estimated on basis of experimental observations performed under industrial conditions. The conclusions for the m

  14. Incorporating Uncertainties in Satellite-Derived Chlorophyll into Model Forecasts

    Science.gov (United States)

    2012-10-01

    radiances in the seven visible MODIS channels used in the estimation of the bio-optical products, such as chlorophyll, absorption and backscattering...grazers, nitrate, silicate, ammonium, and two detritus pools. Phytoplankton photosynthesis in the biochemical model is driven by Photosynthetically

  15. Day-to-day route choice modeling incorporating inertial behavior

    NARCIS (Netherlands)

    Essen, van M.A.; Rakha, H.; Vreeswijk, J.D.; Wismans, L.J.J.; Berkum, van E.C.

    2015-01-01

    Accurate route choice modeling is one of the most important aspects when predicting the effects of transport policy and dynamic traffic management. Moreover, the effectiveness of intervention measures to a large extent depends on travelers’ response to the changes these measures cause. As a compleme

  16. Workforce scheduling: A new model incorporating human factors

    Directory of Open Access Journals (Sweden)

    Mohammed Othman

    2012-12-01

    Full Text Available Purpose: The majority of a company’s improvement comes when the right workers with the right skills, behaviors and capacities are deployed appropriately throughout a company. This paper considers a workforce scheduling model including human aspects such as skills, training, workers’ personalities, workers’ breaks and workers’ fatigue and recovery levels. This model helps to minimize the hiring, firing, training and overtime costs, minimize the number of fired workers with high performance, minimize the break time and minimize the average worker’s fatigue level.Design/methodology/approach: To achieve this objective, a multi objective mixed integer programming model is developed to determine the amount of hiring, firing, training and overtime for each worker type.Findings: The results indicate that the worker differences should be considered in workforce scheduling to generate realistic plans with minimum costs. This paper also investigates the effects of human fatigue and recovery on the performance of the production systems.Research limitations/implications: In this research, there are some assumptions that might affect the accuracy of the model such as the assumption of certainty of the demand in each period, and the linearity function of Fatigue accumulation and recovery curves. These assumptions can be relaxed in future work.Originality/value: In this research, a new model for integrating workers’ differences with workforce scheduling is proposed. To the authors' knowledge, it is the first time to study the effects of different important human factors such as human personality, skills and fatigue and recovery in the workforce scheduling process. This research shows that considering both technical and human factors together can reduce the costs in manufacturing systems and ensure the safety of the workers.

  17. Incorporating Satellite Time-Series Data into Modeling

    Science.gov (United States)

    Gregg, Watson

    2008-01-01

    In situ time series observations have provided a multi-decadal view of long-term changes in ocean biology. These observations are sufficiently reliable to enable discernment of even relatively small changes, and provide continuous information on a host of variables. Their key drawback is their limited domain. Satellite observations from ocean color sensors do not suffer the drawback of domain, and simultaneously view the global oceans. This attribute lends credence to their use in global and regional model validation and data assimilation. We focus on these applications using the NASA Ocean Biogeochemical Model. The enhancement of the satellite data using data assimilation is featured and the limitation of tongterm satellite data sets is also discussed.

  18. Aircraft conceptual design modelling incorporating reliability and maintainability predictions

    OpenAIRE

    Vaziry-Zanjany , Mohammad Ali (F)

    1996-01-01

    A computer assisted conceptual aircraft design program has been developed (CACAD). It has an optimisation capability, with extensive break-down in maintenance costs. CACAD's aim is to optimise the size, and configurations of turbofan-powered transport aircraft. A methodology was developed to enhance the reliability of current aircraft systems, and was applied to avionics systems. R&M models of thermal management were developed and linked with avionics failure rate and its ma...

  19. Incorporating nucleosomes into thermodynamic models of transcription regulation.

    Science.gov (United States)

    Raveh-Sadka, Tali; Levo, Michal; Segal, Eran

    2009-08-01

    Transcriptional control is central to many cellular processes, and, consequently, much effort has been devoted to understanding its underlying mechanisms. The organization of nucleosomes along promoter regions is important for this process, since most transcription factors cannot bind nucleosomal sequences and thus compete with nucleosomes for DNA access. This competition is governed by the relative concentrations of nucleosomes and transcription factors and by their respective sequence binding preferences. However, despite its importance, a mechanistic understanding of the quantitative effects that the competition between nucleosomes and factors has on transcription is still missing. Here we use a thermodynamic framework based on fundamental principles of statistical mechanics to explore theoretically the effect that different nucleosome organizations along promoters have on the activation dynamics of promoters in response to varying concentrations of the regulating factors. We show that even simple landscapes of nucleosome organization reproduce experimental results regarding the effect of nucleosomes as general repressors and as generators of obligate binding cooperativity between factors. Our modeling framework also allows us to characterize the effects that various sequence elements of promoters have on the induction threshold and on the shape of the promoter activation curves. Finally, we show that using only sequence preferences for nucleosomes and transcription factors, our model can also predict expression behavior of real promoter sequences, thereby underscoring the importance of the interplay between nucleosomes and factors in determining expression kinetics.

  20. Synthesis of fuels and feedstocks

    Energy Technology Data Exchange (ETDEWEB)

    Sutton, Andrew D.; Brooks, Ty; Jenkins, Rhodri; Moore, Cameron; Staples, Orion

    2017-10-10

    Disclosed herein are embodiments of a method for making fuels and feedstocks from readily available alcohol starting materials. In some embodiments, the method concerns converting alcohols to carbonyl-containing compounds and then condensing such carbonyl-containing compounds together to form oligomerized species. These oligomerized species can then be reduced using by-products from the conversion of the alcohol. In some embodiments, the method further comprises converting saturated, oligomerized, carbonyl-containing compounds to aliphatic fuels.

  1. Models of microbiome evolution incorporating host and microbial selection.

    Science.gov (United States)

    Zeng, Qinglong; Wu, Steven; Sukumaran, Jeet; Rodrigo, Allen

    2017-09-25

    Numerous empirical studies suggest that hosts and microbes exert reciprocal selective effects on their ecological partners. Nonetheless, we still lack an explicit framework to model the dynamics of both hosts and microbes under selection. In a previous study, we developed an agent-based forward-time computational framework to simulate the neutral evolution of host-associated microbial communities in a constant-sized, unstructured population of hosts. These neutral models allowed offspring to sample microbes randomly from parents and/or from the environment. Additionally, the environmental pool of available microbes was constituted by fixed and persistent microbial OTUs and by contributions from host individuals in the preceding generation. In this paper, we extend our neutral models to allow selection to operate on both hosts and microbes. We do this by constructing a phenome for each microbial OTU consisting of a sample of traits that influence host and microbial fitnesses independently. Microbial traits can influence the fitness of hosts ("host selection") and the fitness of microbes ("trait-mediated microbial selection"). Additionally, the fitness effects of traits on microbes can be modified by their hosts ("host-mediated microbial selection"). We simulate the effects of these three types of selection, individually or in combination, on microbiome diversities and the fitnesses of hosts and microbes over several thousand generations of hosts. We show that microbiome diversity is strongly influenced by selection acting on microbes. Selection acting on hosts only influences microbiome diversity when there is near-complete direct or indirect parental contribution to the microbiomes of offspring. Unsurprisingly, microbial fitness increases under microbial selection. Interestingly, when host selection operates, host fitness only increases under two conditions: (1) when there is a strong parental contribution to microbial communities or (2) in the absence of a strong

  2. Amphiphilic poly-N-vinylpyrrolidone nanocarriers with incorporated model proteins

    Energy Technology Data Exchange (ETDEWEB)

    Kuskov, A N [Department of Polymers, D I Mendeleyev University of Chemical Technology, 9 Miusskaya Square, Moscow 125047 (Russian Federation); Villemson, A L [Department of Chemistry, M V Lomonosov Moscow State University, 119992 Moscow (Russian Federation); Shtilman, M I [Department of Polymers, D I Mendeleyev University of Chemical Technology, 9 Miusskaya Square, Moscow 125047 (Russian Federation); Larionova, N I [Department of Chemistry, M V Lomonosov Moscow State University, 119992 Moscow (Russian Federation); Tsatsakis, A M [Medical School, University of Crete, Voutes, 71409 Heraklion, Crete (Greece); Tsikalas, I [Department of Chemistry and Foundation for Research and Technology-Hellas (FORTH), University of Crete, PO Box 2208, Heraklion 71003, Crete (Greece); Rizos, A K [Department of Chemistry and Foundation for Research and Technology-Hellas (FORTH), University of Crete, PO Box 2208, Heraklion 71003, Crete (Greece)

    2007-05-23

    New nanoscaled polymeric carriers have been prepared on the basis of different amphiphilic water-soluble derivatives of poly-N-vinylpyrrolidone (PVP). The polymer self-assembly and interaction with model proteins (Bowman-Birk soybean proteinase inhibitor (BBI) and its hydrophobized derivatives) were studied in aqueous media. The possibility of inclusion of both BBI and hydrophobized oleic acid derivatives of BBI in amphiphilic PVP aggregates was investigated. It was ascertained that polymeric particles of size 50-80 nm were formed in certain concentrations of amphiphilic PVP and poorly soluble dioleic acid derivatives of BBI. Such polymeric aggregates are capable of solubilization of dioleoyl BBI with a concomitant prevention of its inactivation at low pH values.

  3. Amphiphilic poly-N-vinylpyrrolidone nanocarriers with incorporated model proteins

    Science.gov (United States)

    Kuskov, A. N.; Villemson, A. L.; Shtilman, M. I.; Larionova, N. I.; Tsatsakis, A. M.; Tsikalas, I.; Rizos, A. K.

    2007-05-01

    New nanoscaled polymeric carriers have been prepared on the basis of different amphiphilic water-soluble derivatives of poly-N-vinylpyrrolidone (PVP). The polymer self-assembly and interaction with model proteins (Bowman-Birk soybean proteinase inhibitor (BBI) and its hydrophobized derivatives) were studied in aqueous media. The possibility of inclusion of both BBI and hydrophobized oleic acid derivatives of BBI in amphiphilic PVP aggregates was investigated. It was ascertained that polymeric particles of size 50-80 nm were formed in certain concentrations of amphiphilic PVP and poorly soluble dioleic acid derivatives of BBI. Such polymeric aggregates are capable of solubilization of dioleoyl BBI with a concomitant prevention of its inactivation at low pH values.

  4. Engineered plant biomass feedstock particles

    Science.gov (United States)

    Dooley, James H.; Lanning, David N.; Broderick, Thomas F.

    2011-10-11

    A novel class of flowable biomass feedstock particles with unusually large surface areas that can be manufactured in remarkably uniform sizes using low-energy comminution techniques. The feedstock particles are roughly parallelepiped in shape and characterized by a length dimension (L) aligned substantially with the grain direction and defining a substantially uniform distance along the grain, a width dimension (W) normal to L and aligned cross grain, and a height dimension (H) normal to W and L. The particles exhibit a disrupted grain structure with prominent end and surface checks that greatly enhances their skeletal surface area as compared to their envelope surface area. The L.times.H dimensions define a pair of substantially parallel side surfaces characterized by substantially intact longitudinally arrayed fibers. The W.times.H dimensions define a pair of substantially parallel end surfaces characterized by crosscut fibers and end checking between fibers. The L.times.W dimensions define a pair of substantially parallel top surfaces characterized by some surface checking between longitudinally arrayed fibers. The feedstock particles are manufactured from a variety of plant biomass materials including wood, crop residues, plantation grasses, hemp, bagasse, and bamboo.

  5. Engineered plant biomass feedstock particles

    Science.gov (United States)

    Dooley, James H [Federal Way, WA; Lanning, David N [Federal Way, WA; Broderick, Thomas F [Lake Forest Park, WA

    2011-10-18

    A novel class of flowable biomass feedstock particles with unusually large surface areas that can be manufactured in remarkably uniform sizes using low-energy comminution techniques. The feedstock particles are roughly parallelepiped in shape and characterized by a length dimension (L) aligned substantially with the grain direction and defining a substantially uniform distance along the grain, a width dimension (W) normal to L and aligned cross grain, and a height dimension (H) normal to W and L. The particles exhibit a disrupted grain structure with prominent end and surface checks that greatly enhances their skeletal surface area as compared to their envelope surface area. The L.times.H dimensions define a pair of substantially parallel side surfaces characterized by substantially intact longitudinally arrayed fibers. The W.times.H dimensions define a pair of substantially parallel end surfaces characterized by crosscut fibers and end checking between fibers. The L.times.W dimensions define a pair of substantially parallel top surfaces characterized by some surface checking between longitudinally arrayed fibers. At least 80% of the particles pass through a 1/4 inch screen having a 6.3 mm nominal sieve opening but are retained by a No. 10 screen having a 2 mm nominal sieve opening. The feedstock particles are manufactured from a variety of plant biomass materials including wood, crop residues, plantation grasses, hemp, bagasse, and bamboo.

  6. Incorporating flood event analyses and catchment structures into model development

    Science.gov (United States)

    Oppel, Henning; Schumann, Andreas

    2016-04-01

    The space-time variability in catchment response results from several hydrological processes which differ in their relevance in an event-specific way. An approach to characterise this variance consists in comparisons between flood events in a catchment and between flood responses of several sub-basins in such an event. In analytical frameworks the impact of space and time variability of rainfall on runoff generation due to rainfall excess can be characterised. Moreover the effect of hillslope and channel network routing on runoff timing can be specified. Hence, a modelling approach is needed to specify the runoff generation and formation. Knowing the space-time variability of rainfall and the (spatial averaged) response of a catchment it seems worthwhile to develop new models based on event and catchment analyses. The consideration of spatial order and the distribution of catchment characteristics in their spatial variability and interaction with the space-time variability of rainfall provides additional knowledge about hydrological processes at the basin scale. For this purpose a new procedure to characterise the spatial heterogeneity of catchments characteristics in their succession along the flow distance (differentiated between river network and hillslopes) was developed. It was applied to study of flood responses at a set of nested catchments in a river basin in eastern Germany. In this study the highest observed rainfall-runoff events were analysed, beginning at the catchment outlet and moving upstream. With regard to the spatial heterogeneities of catchment characteristics, sub-basins were separated by new algorithms to attribute runoff-generation, hillslope and river network processes. With this procedure the cumulative runoff response at the outlet can be decomposed and individual runoff features can be assigned to individual aspects of the catchment. Through comparative analysis between the sub-catchments and the assigned effects on runoff dynamics new

  7. Joint modelling of longitudinal and survival data: incorporating delayed entry and an assessment of model misspecification.

    Science.gov (United States)

    Crowther, Michael J; Andersson, Therese M-L; Lambert, Paul C; Abrams, Keith R; Humphreys, Keith

    2016-03-30

    A now common goal in medical research is to investigate the inter-relationships between a repeatedly measured biomarker, measured with error, and the time to an event of interest. This form of question can be tackled with a joint longitudinal-survival model, with the most common approach combining a longitudinal mixed effects model with a proportional hazards survival model, where the models are linked through shared random effects. In this article, we look at incorporating delayed entry (left truncation), which has received relatively little attention. The extension to delayed entry requires a second set of numerical integration, beyond that required in a standard joint model. We therefore implement two sets of fully adaptive Gauss-Hermite quadrature with nested Gauss-Kronrod quadrature (to allow time-dependent association structures), conducted simultaneously, to evaluate the likelihood. We evaluate fully adaptive quadrature compared with previously proposed non-adaptive quadrature through a simulation study, showing substantial improvements, both in terms of minimising bias and reducing computation time. We further investigate, through simulation, the consequences of misspecifying the longitudinal trajectory and its impact on estimates of association. Our scenarios showed the current value association structure to be very robust, compared with the rate of change that we found to be highly sensitive showing that assuming a simpler trend when the truth is more complex can lead to substantial bias. With emphasis on flexible parametric approaches, we generalise previous models by proposing the use of polynomials or splines to capture the longitudinal trend and restricted cubic splines to model the baseline log hazard function. The methods are illustrated on a dataset of breast cancer patients, modelling mammographic density jointly with survival, where we show how to incorporate density measurements prior to the at-risk period, to make use of all the available

  8. Security of feedstocks supply for future bio-ethanol production in Thailand

    Energy Technology Data Exchange (ETDEWEB)

    Silalertruksa, Thapat; Gheewala, Shabbir H. [The Joint Graduate School of Energy and Environment, King Mongkut' s University of Technology Thonburi, 126 Prachauthit Road, Bangkok 10140 (Thailand)

    2010-11-15

    This study assesses the security of feedstock supply to satisfy the increased demand for bio-ethanol production based on the recent 15 years biofuels development plan and target (year 2008-2022) of the Thai government. Future bio-ethanol systems are modeled and the feedstock supply potentials analyzed based on three scenarios including low-, moderate- and high-yields improvement. The three scenarios are modeled and key dimensions including availability; diversity; and environmental acceptability of feedstocks supply in terms of GHG reduction are evaluated through indicators such as net feedstock balances, Shannon index and net life cycle GHG emissions. The results show that only the case of high yields improvement scenario can result in a reliable and sufficient supply of feedstocks to satisfy the long-term demands for bio-ethanol and other related industries. Cassava is identified as the critical feedstock and a reduction in cassava export is necessary. The study concludes that to enhance long-term security of feedstocks supply for sustainable bio-ethanol production in Thailand, increasing use of sugarcane juice as feedstock, improved yields of existing feedstocks and promoting production of bio-ethanol derived from agricultural residues are three key recommendations that need to be urgently implemented by the policy makers. (author)

  9. Effect of hydrotreating FCC feedstock on product distribution

    Energy Technology Data Exchange (ETDEWEB)

    Salazar-Sotelo, D.; Maya-Yescas, R.; Mariaca-Dominguez, E.; Rodriguez-Salomon, S.; Aguilera-Lopez, M. [Programa de Tratamiento de Crudo Maya, Instituto Mexicano del Petroleo, Lazaro Cardenas 152, San Bartolo Atepehuacan, 07730 Mexico, D.F. (Mexico)

    2004-11-24

    The demand of low-sulfur fuels has been increasing during the last 20 years due to environmental concerns about SO{sub x} emissions from processing plants and engines. Due to its high contribution to the gasoline pool, hydrotreating fluid catalytic cracking (FCC) feedstock offers several advantages, such as the increase of conversion and yields of gasoline and liquid-phase gas, meanwhile sulfur content in fuels is diminished. However, there are more important factors to be considered when hydrotreating FCC feedstock.In this work, two FCC feedstocks, typical and hydrotreated, were converted in a microactivity test (MAT) reactor, as described by ASTM D-3907-92, at different severities and using two commercial catalysts. Feedstock conversion, product yields and selectivity to valuable products were compared against industrial-scale results predicted by using commercial FCC simulation software. Expected increment in conversion and yield to profitable products was observed when hydrotreated feedstock was used; simulation results follow acceptably MAT results. Some recommendations are given for looking closely at the overall behavior (riser-regenerator), using reliable kinetic models and simulation programs.

  10. Incorporating phosphorus cycling into global modeling efforts: a worthwhile, tractable endeavor

    Science.gov (United States)

    Reed, Sasha C.; Yang, Xiaojuan; Thornton, Peter E.

    2015-01-01

    Myriad field, laboratory, and modeling studies show that nutrient availability plays a fundamental role in regulating CO2 exchange between the Earth's biosphere and atmosphere, and in determining how carbon pools and fluxes respond to climatic change. Accordingly, global models that incorporate coupled climate–carbon cycle feedbacks made a significant advance with the introduction of a prognostic nitrogen cycle. Here we propose that incorporating phosphorus cycling represents an important next step in coupled climate–carbon cycling model development, particularly for lowland tropical forests where phosphorus availability is often presumed to limit primary production. We highlight challenges to including phosphorus in modeling efforts and provide suggestions for how to move forward.

  11. Using Unlabeled Data to Improve Inductive Models by Incorporating Transductive Models

    Directory of Open Access Journals (Sweden)

    ShengJun Cheng

    2014-02-01

    Full Text Available This paper shows how to use labeled and unlabeled data to improve inductive models with the help of transductivemodels.We proposed a solution for the self-training scenario. Self- training is an effective semi-supervised wrapper method which can generalize any type of supervised inductive model to the semi-supervised settings. it iteratively refines a inductive model by bootstrap from unlabeled data. Standard self-training uses the classifier model(trained on labeled examples to label and select candidates from the unlabeled training set, which may be problematic since the initial classifier may not be able to provide highly confident predictions as labeled training data is always rare. As a result, it could always suffer from introducing too much wrongly labeled candidates to the labeled training set, which may severely degrades performance. To tackle this problem, we propose a novel self-training style algorithm which incorporate a graph-based transductive model in the self-labeling process. Unlike standard self-training, our algorithm utilizes labeled and unlabeled data as a whole to label and select unlabeled examples for training set augmentation. A robust transductive model based on graph markov random walk is proposed, which exploits manifold assumption to output reliable predictions on unlabeled data using noisy labeled examples. The proposed algorithm can greatly minimize the risk of performance degradation due to accumulated noise in the training set. Experiments show that the proposed algorithm can effectively utilize unlabeled data to improve classification performance.

  12. Interfacing feedstock logistics with bioenergy conversion

    Energy Technology Data Exchange (ETDEWEB)

    Sokhansanj, S. [British Columbia Univ., Vancouver, BC (Canada). Oak Ridge National Lab

    2010-07-01

    The interface between biomass production and biomass conversion platforms was investigated. Functional relationships were assembled in a modeling platform to simulate the flow of biomass feedstock from farm and forest to a densification plant. The model considers key properties of biomass for downstream pre-processing and conversion. These properties include moisture content, cellulose, hemicelluloses, lignin, ash, particle size, specific density and bulk density. The model simulates logistical operations such as grinding to convert biomass to pellets that are supplied to a biorefinery for conversion to heat, power, or biofuels. Equations were developed to describe the physical aspects of each unit operation. The effect that each of the process variables has on the efficiency of the conversion processes was described.

  13. CBTL Design Case Summary Conventional Feedstock Supply System - Woody

    Energy Technology Data Exchange (ETDEWEB)

    Christopher T. Wright; Erin M. Searcy

    2012-02-01

    A conventional woody feedstock design has been developed that represents supply system technologies, costs, and logistics that are achievable today for supplying woody biomass as a blendstock with coal for energy production. Efforts are made to identify bottlenecks and optimize the efficiency and capacities of this supply system, within the constraints and consideration of existing local feedstock supplies, equipment, and permitting requirements. The feedstock supply system logistics operations encompass all of the activities necessary to move woody biomass from the production location to the conversion reactor ready for blending and insertion. This supply system includes operations that are currently available such that costs and logistics are reasonable and reliable. The system modeled for this research project includes the use of the slash stream since it is a more conservative analysis and represents the material actually used in the experimental part of the project.

  14. A new model for in situ nitrogen incorporation into 4H-SiC during epitaxy

    Science.gov (United States)

    Ferro, Gabriel; Chaussende, Didier

    2017-02-01

    Nitrogen doping of 4H-SiC during vapor phase epitaxy is still lacking of a general model explaining the apparently contradictory trends obtained by different teams. In this paper, the evolutions of nitrogen incorporation (on both polar Si and C faces) as a function of the main growth parameters (C/Si ratio, temperature, pressure and growth rate) are reviewed and explained using a model based on surface exchanges between the gas phase and the uppermost 4H-SiC atomic layers. In this model, N incorporation is driven mainly by the transient formation of C vacancies, due to H2 etching, at the surface or near the surface. It is shown that all the growth parameters are influencing the probability of C vacancies formation in a similar manner as they do for N incorporation. The surface exchange model proposes a new framework for explaining the experimental results even beyond the commonly accepted reactor type dependency.

  15. Quantifying the regional water footprint of biofuel production by incorporating hydrologic modeling

    Science.gov (United States)

    Wu, M.; Chiu, Y.; Demissie, Y.

    2012-10-01

    A spatially explicit life cycle water analysis framework is proposed, in which a standardized water footprint methodology is coupled with hydrologic modeling to assess blue water, green water (rainfall), and agricultural grey water discharge in the production of biofuel feedstock at county-level resolution. Grey water is simulated via SWAT, a watershed model. Evapotranspiration (ET) estimates generated with the Penman-Monteith equation and crop parameters were verified by using remote sensing results, a satellite-imagery-derived data set, and other field measurements. Crop irrigation survey data are used to corroborate the estimate of irrigation ET. An application of the concept is presented in a case study for corn-stover-based ethanol grown in Iowa (United States) within the Upper Mississippi River basin. Results show vast spatial variations in the water footprint of stover ethanol from county to county. Producing 1 L of ethanol from corn stover growing in the Iowa counties studied requires from 4.6 to 13.1 L of blue water (with an average of 5.4 L), a majority (86%) of which is consumed in the biorefinery. The county-level green water (rainfall) footprint ranges from 760 to 1000 L L-1. The grey water footprint varies considerably, ranging from 44 to 1579 L, a 35-fold difference, with a county average of 518 L. This framework can be a useful tool for watershed- or county-level biofuel sustainability metric analysis to address the heterogeneity of the water footprint for biofuels.

  16. A new car-following model with the consideration of incorporating timid and aggressive driving behaviors

    Science.gov (United States)

    Peng, Guanghan; He, Hongdi; Lu, Wei-Zhen

    2016-01-01

    In this paper, a new car-following model is proposed with the consideration of the incorporating timid and aggressive behaviors on single lane. The linear stability condition with the incorporating timid and aggressive behaviors term is obtained. Numerical simulation indicates that the new car-following model can estimate proper delay time of car motion and kinematic wave speed at jam density by considering the incorporating the timid and aggressive behaviors. The results also show that the aggressive behavior can improve traffic flow while the timid behavior deteriorates traffic stability, which means that the aggressive behavior is better than timid behavior since the aggressive driver makes rapid response to the variation of the velocity of the leading car. Snapshot of the velocities also shows that the new model can approach approximation to a wide moving jam.

  17. Incorporation of the capillary hysteresis model HYSTR into the numerical code TOUGH

    Energy Technology Data Exchange (ETDEWEB)

    Niemi, A.; Bodvarsson, G.S.; Pruess, K.

    1991-11-01

    As part of the work performed to model flow in the unsaturated zone at Yucca Mountain Nevada, a capillary hysteresis model has been developed. The computer program HYSTR has been developed to compute the hysteretic capillary pressure -- liquid saturation relationship through interpolation of tabulated data. The code can be easily incorporated into any numerical unsaturated flow simulator. A complete description of HYSTR, including a brief summary of the previous hysteresis literature, detailed description of the program, and instructions for its incorporation into a numerical simulator are given in the HYSTR user`s manual (Niemi and Bodvarsson, 1991a). This report describes the incorporation of HYSTR into the numerical code TOUGH (Transport of Unsaturated Groundwater and Heat; Pruess, 1986). The changes made and procedures for the use of TOUGH for hysteresis modeling are documented.

  18. Bias associated with failing to incorporate dependence on event history in Markov models.

    Science.gov (United States)

    Bentley, Tanya G K; Kuntz, Karen M; Ringel, Jeanne S

    2010-01-01

    When using state-transition Markov models to simulate risk of recurrent events over time, incorporating dependence on higher numbers of prior episodes can increase model complexity, yet failing to capture this event history may bias model outcomes. This analysis assessed the tradeoffs between model bias and complexity when evaluating risks of recurrent events in Markov models. The authors developed a generic episode/relapse Markov cohort model, defining bias as the percentage change in events prevented with 2 hypothetical interventions (prevention and treatment) when incorporating 0 to 9 prior episodes in relapse risk versus a model with 10 such episodes. Magnitude and sign of bias were evaluated as a function of event and recovery risks, disease-specific mortality, and risk function. Bias was positive in the base case for a prevention strategy, indicating that failing to fully incorporate dependence on event history overestimated the prevention's predicted impact. For treatment, the bias was negative, indicating an underestimated benefit. Bias approached zero as the number of tracked prior episodes increased, and the average bias over 10 tracked episodes was greater with the exponential compared with linear functions of relapse risk and with treatment compared with prevention strategies. With linear and exponential risk functions, absolute bias reached 33% and 78%, respectively, in prevention and 52% and 85% in treatment. Failing to incorporate dependence on prior event history in subsequent relapse risk in Markov models can greatly affect model outcomes, overestimating the impact of prevention and treatment strategies by up to 85% and underestimating the impact in some treatment models by up to 20%. When at least 4 prior episodes are incorporated, bias does not exceed 26% in prevention or 11% in treatment.

  19. Modeling fraud detection and the incorporation of forensic specialists in the audit process

    DEFF Research Database (Denmark)

    Sakalauskaite, Dominyka

    Financial statement audits are still comparatively poor in fraud detection. Forensic specialists can play a significant role in increasing audit quality. In this paper, based on prior academic research, I develop a model of fraud detection and the incorporation of forensic specialists in the audit...... process. The intention of the model is to identify the reasons why the audit is weak in fraud detection and to provide the analytical framework to assess whether the incorporation of forensic specialists can help to improve it. The results show that such specialists can potentially improve the fraud...

  20. Incorporating Prior Knowledge for Quantifying and Reducing Model-Form Uncertainty in RANS Simulations

    CERN Document Server

    Wang, Jian-Xun; Xiao, Heng

    2015-01-01

    Simulations based on Reynolds-Averaged Navier--Stokes (RANS) models have been used to support high-consequence decisions related to turbulent flows. Apart from the deterministic model predictions, the decision makers are often equally concerned about the predictions confidence. Among the uncertainties in RANS simulations, the model-form uncertainty is an important or even a dominant source. Therefore, quantifying and reducing the model-form uncertainties in RANS simulations are of critical importance to make risk-informed decisions. Researchers in statistics communities have made efforts on this issue by considering numerical models as black boxes. However, this physics-neutral approach is not a most efficient use of data, and is not practical for most engineering problems. Recently, we proposed an open-box, Bayesian framework for quantifying and reducing model-form uncertainties in RANS simulations by incorporating observation data and physics-prior knowledge. It can incorporate the information from the vast...

  1. Bayseian genomic models for the incorporation of pathway topology knowledge into association studies.

    Science.gov (United States)

    Brisbin, Abra; Fridley, Brooke L

    2013-08-01

    Pathway topology and relationships between genes have the potential to provide information for modeling effects of mRNA gene expression on complex traits. For example, researchers may wish to incorporate the prior belief that "hub" genes (genes with many neighbors) are more likely to influence the trait. In this paper, we propose and compare six Bayesian pathway-based prior models to incorporate pathway topology information into association analyses. Including prior information regarding the relationships among genes in a pathway was effective in somewhat improving detection rates for genes associated with complex traits. Through an extensive set of simulations, we found that when hub (central) effects are expected, the diagonal degree model is preferred; when spoke (edge) effects are expected, the spatial power model is preferred. When there is no prior knowledge about the location of the effect genes in the pathway (e.g., hub versus spoke model), it is worthwhile to apply multiple models, as the model with the best DIC is not always the one with the best detection rate. We also applied the models to pharmacogenomic studies for the drugs gemcitabine and 6-mercaptopurine and found that the diagonal degree model identified an association between 6-mercaptopurine response and expression of the gene SLC28A3, which was not detectable using the model including no pathway information. These results demonstrate the value of incorporating pathway information into association analyses.

  2. Multilevel growth curve models that incorporate a random coefficient model for the level 1 variance function.

    Science.gov (United States)

    Goldstein, Harvey; Leckie, George; Charlton, Christopher; Tilling, Kate; Browne, William J

    2017-01-01

    Aim To present a flexible model for repeated measures longitudinal growth data within individuals that allows trends over time to incorporate individual-specific random effects. These may reflect the timing of growth events and characterise within-individual variability which can be modelled as a function of age. Subjects and methods A Bayesian model is developed that includes random effects for the mean growth function, an individual age-alignment random effect and random effects for the within-individual variance function. This model is applied to data on boys' heights from the Edinburgh longitudinal growth study and to repeated weight measurements of a sample of pregnant women in the Avon Longitudinal Study of Parents and Children cohort. Results The mean age at which the growth curves for individual boys are aligned is 11.4 years, corresponding to the mean 'take off' age for pubertal growth. The within-individual variance (standard deviation) is found to decrease from 0.24 cm(2) (0.50 cm) at 9 years for the 'average' boy to 0.07 cm(2) (0.25 cm) at 16 years. Change in weight during pregnancy can be characterised by regression splines with random effects that include a large woman-specific random effect for the within-individual variation, which is also correlated with overall weight and weight gain. Conclusions The proposed model provides a useful extension to existing approaches, allowing considerable flexibility in describing within- and between-individual differences in growth patterns.

  3. A Physically Based Analytical Model to Predict Quantized Eigen Energies and Wave Functions Incorporating Penetration Effect

    CERN Document Server

    Chowdhury, Nadim; Azim, Zubair Al; Alam, Md Hasibul; Niaz, Iftikhar Ahmad; Khosru, Quazi D M

    2014-01-01

    We propose a physically based analytical compact model to calculate Eigen energies and Wave functions which incorporates penetration effect. The model is applicable for a quantum well structure that frequently appears in modern nano-scale devices. This model is equally applicable for both silicon and III-V devices. Unlike other models already available in the literature, our model can accurately predict all the eigen energies without the inclusion of any fitting parameters. The validity of our model has been checked with numerical simulations and the results show significantly better agreement compared to the available methods.

  4. New Feedstock for c-Si Photovoltaics

    Science.gov (United States)

    Kravtsov, Alexey; Shagun, Alexander; Kravtsov, Anatoly

    2015-03-01

    Results from functional tests of highly doped silicon purified with electron beam melting, a new feedstock for photovoltaics are presented. Possibility of obtaining dislocation free single crystals from such feedstock in typical industrial processes (CZ and FZ) is shown, crystals' parameters are tested for coherence with requirements for PV silicon.

  5. Evolution and Development of Effective Feedstock Specifications

    Energy Technology Data Exchange (ETDEWEB)

    Garold Gresham; Rachel Emerson; Amber Hoover; Amber Miller; William Bauer; Kevin Kenney

    2013-09-01

    The U.S. Department of Energy promotes the production of a range of liquid fuels and fuel blend stocks from lignocellulosic biomass feedstocks by funding fundamental and applied research that advances the state of technology in biomass collection, conversion, and sustainability. As part of its involvement in this program, the Idaho National Laboratory (INL) investigates the feedstock logistics economics and sustainability of these fuels. The 2012 feedstock logistics milestone demonstrated that for high-yield areas that minimize the transportation distances of a low-density, unstable biomass, we could achieve a delivered cost of $35/ton. Based on current conventional equipment and processes, the 2012 logistics design is able to deliver the volume of biomass needed to fulfill the 2012 Renewable Fuel Standard’s targets for ethanol. However, the Renewable Fuel Standard’s volume targets are continuing to increase and are expected to peak in 2022 at 36 billion gallons. Meeting these volume targets and achieving a national-scale biofuels industry will require expansion of production capacity beyond the 2012 Conventional Feedstock Supply Design Case to access diverse available feedstocks, regardless of their inherent ability to meet preliminary biorefinery quality feedstock specifications. Implementation of quality specifications (specs), as outlined in the 2017 Design Case – “Feedstock Supply System Design and Economics for Conversion of Lignocellulosic Biomass to Hydrocarbon Fuels” (in progress), requires insertion of deliberate, active quality controls into the feedstock supply chain, whereas the 2012 Conventional Design only utilizes passive quality controls.

  6. Incorporating Linguistic Rules in Statistical Chinese Language Model for Pinyin-to-character Conversion

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    An N-gram Chinese language model incorporating linguistic rules is presented. By constructing elements lattice, rules information is incorporated in statistical frame. To facilitate the hybrid modeling, novel methods such as MI-based rule evaluating, weighted rule quantification and element-based n-gram probability approximation are presented. Dynamic Viterbi algorithm is adopted to search the best path in lattice. To strengthen the model, transformation-based error-driven rules learning is adopted. Applying proposed model to Chinese Pinyin-to-character conversion, high performance has been achieved in accuracy, flexibility and robustness simultaneously. Tests show correct rate achieves 94.81% instead of 90.53% using bi-gram Markov model alone. Many long-distance dependency and recursion in language can be processed effectively.

  7. A new experimental procedure for incorporation of model contaminants in polymer hosts

    NARCIS (Netherlands)

    Papaspyrides, C.D.; Voultzatis, Y.; Pavlidou, S.; Tsenoglou, C.; Dole, P.; Feigenbaum, A.; Paseiro, P.; Pastorelli, S.; Cruz Garcia, C. de la; Hankemeier, T.; Aucejo, S.

    2005-01-01

    A new experimental procedure for incorporation of model contaminants in polymers was developed as part of a general scheme for testing the efficiency of functional barriers in food packaging. The aim was to progressively pollute polymers in a controlled fashion up to a high level in the range of 100

  8. 75 FR 56487 - Airworthiness Directives; Erickson Air-Crane Incorporated Model S-64F Helicopters

    Science.gov (United States)

    2010-09-16

    ... Federal Aviation Administration 14 CFR Part 39 RIN 2120-AA64 Airworthiness Directives; Erickson Air-Crane... rulemaking (NPRM). SUMMARY: This document proposes adopting a new airworthiness directive (AD) for Erickson Air-Crane Incorporated (Erickson Air-Crane) Model S- 64F helicopters. The AD would require, at...

  9. A new experimental procedure for incorporation of model contaminants in polymer hosts

    NARCIS (Netherlands)

    Papaspyrides, C.D.; Voultzatis, Y.; Pavlidou, S.; Tsenoglou, C.; Dole, P.; Feigenbaum, A.; Paseiro, P.; Pastorelli, S.; Cruz Garcia, C. de la; Hankemeier, T.; Aucejo, S.

    2005-01-01

    A new experimental procedure for incorporation of model contaminants in polymers was developed as part of a general scheme for testing the efficiency of functional barriers in food packaging. The aim was to progressively pollute polymers in a controlled fashion up to a high level in the range of 100

  10. Incorporating Eco-Evolutionary Processes into Population Models:Design and Applications

    Science.gov (United States)

    Eco-evolutionary population models are powerful new tools for exploring howevolutionary processes influence plant and animal population dynamics andvice-versa. The need to manage for climate change and other dynamicdisturbance regimes is creating a demand for the incorporation of...

  11. The Forced Choice Dilemma: A Model Incorporating Idiocentric/Allocentric Cultural Orientation

    Science.gov (United States)

    Jung, Jae Yup; McCormick, John; Gross, Miraca U. M.

    2012-01-01

    This study developed and tested a new model of the forced choice dilemma (i.e., the belief held by some intellectually gifted students that they must choose between academic achievement and peer acceptance) that incorporates individual-level cultural orientation variables (i.e., vertical allocentrism and vertical idiocentrism). A survey that had…

  12. SPARC Groups: A Model for Incorporating Spiritual Psychoeducation into Group Work

    Science.gov (United States)

    Christmas, Christopher; Van Horn, Stacy M.

    2012-01-01

    The use of spirituality as a resource for clients within the counseling field is growing; however, the primary focus has been on individual therapy. The purpose of this article is to provide counseling practitioners, administrators, and researchers with an approach for incorporating spiritual psychoeducation into group work. The proposed model can…

  13. Application of fuzzy sets and cognitive maps to incorporate social science scenarios in integrated assessment models

    NARCIS (Netherlands)

    Kok, de Jean-Luc; Titus, Milan; Wind, Herman G.

    2000-01-01

    Decision-support systems in the field of integrated water management could benefit considerably from social science knowledge, as many environmental changes are human-induced. Unfortunately the adequate incorporation of qualitative social science concepts in a quantitative modeling framework is not

  14. Nine challenges in incorporating the dynamics of behaviour in infectious diseases models.

    Science.gov (United States)

    Funk, Sebastian; Bansal, Shweta; Bauch, Chris T; Eames, Ken T D; Edmunds, W John; Galvani, Alison P; Klepac, Petra

    2015-03-01

    Traditionally, the spread of infectious diseases in human populations has been modelled with static parameters. These parameters, however, can change when individuals change their behaviour. If these changes are themselves influenced by the disease dynamics, there is scope for mechanistic models of behaviour to improve our understanding of this interaction. Here, we present challenges in modelling changes in behaviour relating to disease dynamics, specifically: how to incorporate behavioural changes in models of infectious disease dynamics, how to inform measurement of relevant behaviour to parameterise such models, and how to determine the impact of behavioural changes on observed disease dynamics. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  15. Incorporation of composite defects from ultrasonic NDE into CAD and FE models

    Science.gov (United States)

    Bingol, Onur Rauf; Schiefelbein, Bryan; Grandin, Robert J.; Holland, Stephen D.; Krishnamurthy, Adarsh

    2017-02-01

    Fiber-reinforced composites are widely used in aerospace industry due to their combined properties of high strength and low weight. However, owing to their complex structure, it is difficult to assess the impact of manufacturing defects and service damage on their residual life. While, ultrasonic testing (UT) is the preferred NDE method to identify the presence of defects in composites, there are no reasonable ways to model the damage and evaluate the structural integrity of composites. We have developed an automated framework to incorporate flaws and known composite damage automatically into a finite element analysis (FEA) model of composites, ultimately aiding in accessing the residual life of composites and make informed decisions regarding repairs. The framework can be used to generate a layer-by-layer 3D structural CAD model of the composite laminates replicating their manufacturing process. Outlines of structural defects, such as delaminations, are automatically detected from UT of the laminate and are incorporated into the CAD model between the appropriate layers. In addition, the framework allows for direct structural analysis of the resulting 3D CAD models with defects by automatically applying the appropriate boundary conditions. In this paper, we show a working proof-of-concept for the composite model builder with capabilities of incorporating delaminations between laminate layers and automatically preparing the CAD model for structural analysis using a FEA software.

  16. Incorporating sorption/desorption of organic pollutants into river water quality model

    Institute of Scientific and Technical Information of China (English)

    LOU Bao-feng; ZHU Li-zhong; YANG Kun

    2004-01-01

    Preliminary research was conducted about how to incorporate sorption/desorption of organic pollutants with suspended solids and sediments into single-chemical and one-dimensional water quality model of Jinghang Canal.Sedimentation-resuspension coefficient k3 was deduced; characteristics of organic pollutants, concentrations and components of suspended solids/sediments and hydrological and hydraulic conditions were integrated into k3 and further into river water quality model; impact of sorption/desorption of organic pollutants with suspended solids and sediments on prediction function of the model was discussed. Results demonstrated that this impact is pronounced for organic pollutants with relatively large Koc and Kow, especially when they are also conservative and foc of river suspended solids/sediments is high, and that incorporation of sorption/ desorption of organic pollutants into river water quality model can improve its prediction accuracy.

  17. Incorporating Parameter Uncertainty in Bayesian Segmentation Models: Application to Hippocampal Subfield Volumetry

    OpenAIRE

    Iglesias, Juan Eugenio; Sabuncu, Mert Rory; Van Leemput, Koen

    2012-01-01

    Many successful segmentation algorithms are based on Bayesian models in which prior anatomical knowledge is combined with the available image information. However, these methods typically have many free parameters that are estimated to obtain point estimates only, whereas a faithful Bayesian analysis would also consider all possible alternate values these parameters may take. In this paper, we propose to incorporate the uncertainty of the free parameters in Bayesian segmentation models more a...

  18. Incorporating social role theory into topic models for social media content analysis

    OpenAIRE

    Zhao, Wayne Xin; Wang, Jinpeng; He, Yulan; Nie, Jian-Yun; Wen, Ji-Rong; Li, Xiaoming

    2015-01-01

    In this paper, we explore the idea of social role theory (SRT) and propose a novel regularized topic model which incorporates SRT into the generative process of social media content. We assume that a user can play multiple social roles, and each social role serves to fulfil different duties and is associated with a role-driven distribution over latent topics. In particular, we focus on social roles corresponding to the most common social activities on social networks. Our model is instantiate...

  19. Incorporating preferential flow into a 3D model of a forested headwater catchment

    Science.gov (United States)

    Glaser, Barbara; Jackisch, Conrad; Hopp, Luisa; Pfister, Laurent; Klaus, Julian

    2016-04-01

    Preferential flow plays an important role for water flow and solute transport. The inclusion of preferential flow, for example with dual porosity or dual permeability approaches, is a common feature in transport simulations at the plot scale. But at hillslope and catchment scales, incorporation of macropore and fracture flow into distributed hydrologic 3D models is rare, often due to limited data availability for model parameterisation. In this study, we incorporated preferential flow into an existing 3D integrated surface subsurface hydrologic model (HydroGeoSphere) of a headwater region (6 ha) of the forested Weierbach catchment in western Luxembourg. Our model philosophy was a strong link between measured data and the model setup. The model setup we used previously had been parameterised and validated based on various field data. But existing macropores and fractures had not been considered in this initial model setup. The multi-criteria validation revealed a good model performance but also suggested potential for further improvement by incorporating preferential flow as additional process. In order to pursue the data driven model philosophy for the implementation of preferential flow, we analysed the results of plot scale bromide sprinkling and infiltration experiments carried out in the vicinity of the Weierbach catchment. Three 1 sqm plots were sprinkled for one hour and excavated one day later for bromide depth profile sampling. We simulated these sprinkling experiments at the soil column scale, using the parameterisation of the base headwater model extended by a second permeability domain. Representing the bromide depth profiles was successful without changing this initial parameterisation. Moreover, to explain the variability between the three bromide depth profiles it was sufficient to adapt the dual permeability properties, indicating the spatial heterogeneity of preferential flow. Subsequently, we incorporated the dual permeability simulation in the

  20. 2-D magnetotelluric modeling using finite element method incorporating unstructured quadrilateral elements

    Science.gov (United States)

    Sarakorn, Weerachai

    2017-04-01

    In this research, the finite element (FE) method incorporating quadrilateral elements for solving 2-D MT modeling was presented. The finite element software was developed, employing a paving algorithm to generate the unstructured quadrilateral mesh. The accuracy, efficiency, reliability, and flexibility of our FE forward modeling are presented, compared and discussed. The numerical results indicate that our FE codes using an unstructured quadrilateral mesh provide good accuracy when the local mesh refinement is applied around sites and in the area of interest, with superior results when compared to other FE methods. The reliability of the developed codes was also confirmed when comparing both analytical solutions and COMMEMI2D model. Furthermore, our developed FE codes incorporating an unstructured quadrilateral mesh showed useful and powerful features such as handling irregular and complex subregions and providing local refinement of the mesh for a 2-D domain as closely as unstructured triangular mesh but it requires less number of elements in a mesh.

  1. In silico investigation of the short QT syndrome, using human ventricle models incorporating electromechanical coupling

    Directory of Open Access Journals (Sweden)

    Ismail eAdeniran

    2013-07-01

    Full Text Available Introduction Genetic forms of the Short QT Syndrome (SQTS arise due to cardiac ion channel mutations leading to accelerated ventricular repolarisation, arrhythmias and sudden cardiac death. Results from experimental and simulation studies suggest that changes to refractoriness and tissue vulnerability produce a substrate favourable to re-entry. Potential electromechanical consequences of the SQTS are less well understood. The aim of this study was to utilize electromechanically coupled human ventricle models to explore electromechanical consequences of the SQTS. Methods and results: The Rice et al. mechanical model was coupled to the ten Tusscher et al. ventricular cell model. Previously validated K+ channel formulations for SQT variants 1 and 3 were incorporated. Functional effects of the SQTS mutations on transients, sarcomere length shortening and contractile force at the single cell level were evaluated with and without the consideration of stretch activated channel current (Isac. Without Isac, the SQTS mutations produced dramatic reductions in the amplitude of transients, sarcomere length shortening and contractile force. When Isac was incorporated, there was a considerable attenuation of the effects of SQTS-associated action potential shortening on Ca2+ transients, sarcomere shortening and contractile force. Single cell models were then incorporated into 3D human ventricular tissue models. The timing of maximum deformation was delayed in the SQTS setting compared to control. Conclusion: The incorporation of Isac appears to be an important consideration in modelling functional effects of SQT 1 and 3 mutations on cardiac electro-mechanical coupling. Whilst there is little evidence of profoundly impaired cardiac contractile function in SQTS patients, our 3D simulations correlate qualitatively with reported evidence for dissociation between ventricular repolarization and the end of mechanical systole.

  2. Engineered plant biomass feedstock particles

    Science.gov (United States)

    Dooley, James H [Federal Way, WA; Lanning, David N [Federal Way, WA; Broderick, Thomas F [Lake Forest Park, WA

    2012-04-17

    A new class of plant biomass feedstock particles characterized by consistent piece size and shape uniformity, high skeletal surface area, and good flow properties. The particles of plant biomass material having fibers aligned in a grain are characterized by a length dimension (L) aligned substantially parallel to the grain and defining a substantially uniform distance along the grain, a width dimension (W) normal to L and aligned cross grain, and a height dimension (H) normal to W and L. In particular, the L.times.H dimensions define a pair of substantially parallel side surfaces characterized by substantially intact longitudinally arrayed fibers, the W.times.H dimensions define a pair of substantially parallel end surfaces characterized by crosscut fibers and end checking between fibers, and the L.times.W dimensions define a pair of substantially parallel top and bottom surfaces. The L.times.W surfaces of particles with L/H dimension ratios of 4:1 or less are further elaborated by surface checking between longitudinally arrayed fibers. The length dimension L is preferably aligned within 30.degree. parallel to the grain, and more preferably within 10.degree. parallel to the grain. The plant biomass material is preferably selected from among wood, agricultural crop residues, plantation grasses, hemp, bagasse, and bamboo.

  3. Incorporating spatial autocorrelation into species distribution models alters forecasts of climate-mediated range shifts.

    Science.gov (United States)

    Crase, Beth; Liedloff, Adam; Vesk, Peter A; Fukuda, Yusuke; Wintle, Brendan A

    2014-08-01

    Species distribution models (SDMs) are widely used to forecast changes in the spatial distributions of species and communities in response to climate change. However, spatial autocorrelation (SA) is rarely accounted for in these models, despite its ubiquity in broad-scale ecological data. While spatial autocorrelation in model residuals is known to result in biased parameter estimates and the inflation of type I errors, the influence of unmodeled SA on species' range forecasts is poorly understood. Here we quantify how accounting for SA in SDMs influences the magnitude of range shift forecasts produced by SDMs for multiple climate change scenarios. SDMs were fitted to simulated data with a known autocorrelation structure, and to field observations of three mangrove communities from northern Australia displaying strong spatial autocorrelation. Three modeling approaches were implemented: environment-only models (most frequently applied in species' range forecasts), and two approaches that incorporate SA; autologistic models and residuals autocovariate (RAC) models. Differences in forecasts among modeling approaches and climate scenarios were quantified. While all model predictions at the current time closely matched that of the actual current distribution of the mangrove communities, under the climate change scenarios environment-only models forecast substantially greater range shifts than models incorporating SA. Furthermore, the magnitude of these differences intensified with increasing increments of climate change across the scenarios. When models do not account for SA, forecasts of species' range shifts indicate more extreme impacts of climate change, compared to models that explicitly account for SA. Therefore, where biological or population processes induce substantial autocorrelation in the distribution of organisms, and this is not modeled, model predictions will be inaccurate. These results have global importance for conservation efforts as inaccurate

  4. Energy system investment model incorporating heat pumps with thermal storage in buildings and buffer tanks

    DEFF Research Database (Denmark)

    Hedegaard, Karsten; Balyk, Olexandr

    2013-01-01

    options: passive heat storage in the building structure via radiator heating, active heat storage in concrete floors via floor heating, and use of thermal storage tanks for space heating and hot water. It is shown that the model is well qualified for analysing possibilities and system benefits...... be taken into account. In this study, we present a model that facilitates analysing individual heat pumps and complementing heat storages in integration with the energy system, while optimising both investments and operation. The model incorporates thermal building dynamics and covers various heat storage...

  5. Incorporating Mobility in Growth Modeling for Multilevel and Longitudinal Item Response Data.

    Science.gov (United States)

    Choi, In-Hee; Wilson, Mark

    2016-01-01

    Multilevel data often cannot be represented by the strict form of hierarchy typically assumed in multilevel modeling. A common example is the case in which subjects change their group membership in longitudinal studies (e.g., students transfer schools; employees transition between different departments). In this study, cross-classified and multiple membership models for multilevel and longitudinal item response data (CCMM-MLIRD) are developed to incorporate such mobility, focusing on students' school change in large-scale longitudinal studies. Furthermore, we investigate the effect of incorrectly modeling school membership in the analysis of multilevel and longitudinal item response data. Two types of school mobility are described, and corresponding models are specified. Results of the simulation studies suggested that appropriate modeling of the two types of school mobility using the CCMM-MLIRD yielded good recovery of the parameters and improvement over models that did not incorporate mobility properly. In addition, the consequences of incorrectly modeling the school effects on the variance estimates of the random effects and the standard errors of the fixed effects depended upon mobility patterns and model specifications. Two sets of large-scale longitudinal data are analyzed to illustrate applications of the CCMM-MLIRD for each type of school mobility.

  6. Modeling fraud detection and the incorporation of forensic specialists in the audit process

    DEFF Research Database (Denmark)

    Sakalauskaite, Dominyka

    Financial statement audits are still comparatively poor in fraud detection. Forensic specialists can play a significant role in increasing audit quality. In this paper, based on prior academic research, I develop a model of fraud detection and the incorporation of forensic specialists in the audit...... process. The intention of the model is to identify the reasons why the audit is weak in fraud detection and to provide the analytical framework to assess whether the incorporation of forensic specialists can help to improve it. The results show that such specialists can potentially improve the fraud...... detection in the audit, but might also cause some negative implications. Overall, even though fraud detection is one of the main topics in research there are very few studies done on the subject of how auditors co-operate with forensic specialists. Thus, the paper concludes with suggestions for further...

  7. Gold Incorporated Mesoporous Silica Thin Film Model Surface as a Robust SERS and Catalytically Active Substrate

    Directory of Open Access Journals (Sweden)

    Anandakumari Chandrasekharan Sunil Sekhar

    2016-05-01

    Full Text Available Ultra-small gold nanoparticles incorporated in mesoporous silica thin films with accessible pore channels perpendicular to the substrate are prepared by a modified sol-gel method. The simple and easy spin coating technique is applied here to make homogeneous thin films. The surface characterization using FESEM shows crack-free films with a perpendicular pore arrangement. The applicability of these thin films as catalysts as well as a robust SERS active substrate for model catalysis study is tested. Compared to bare silica film our gold incorporated silica, GSM-23F gave an enhancement factor of 103 for RhB with a laser source 633 nm. The reduction reaction of p-nitrophenol with sodium borohydride from our thin films shows a decrease in peak intensity corresponding to –NO2 group as time proceeds, confirming the catalytic activity. Such model surfaces can potentially bridge the material gap between a real catalytic system and surface science studies.

  8. Going beyond the unitary curve: incorporating richer cognition into agent-based water resources models

    Science.gov (United States)

    Kock, B. E.

    2008-12-01

    The increased availability and understanding of agent-based modeling technology and techniques provides a unique opportunity for water resources modelers, allowing them to go beyond traditional behavioral approaches from neoclassical economics, and add rich cognition to social-hydrological models. Agent-based models provide for an individual focus, and the easier and more realistic incorporation of learning, memory and other mechanisms for increased cognitive sophistication. We are in an age of global change impacting complex water resources systems, and social responses are increasingly recognized as fundamentally adaptive and emergent. In consideration of this, water resources models and modelers need to better address social dynamics in a manner beyond the capabilities of neoclassical economics theory and practice. However, going beyond the unitary curve requires unique levels of engagement with stakeholders, both to elicit the richer knowledge necessary for structuring and parameterizing agent-based models, but also to make sure such models are appropriately used. With the aim of encouraging epistemological and methodological convergence in the agent-based modeling of water resources, we have developed a water resources-specific cognitive model and an associated collaborative modeling process. Our cognitive model emphasizes efficiency in architecture and operation, and capacity to adapt to different application contexts. We describe a current application of this cognitive model and modeling process in the Arkansas Basin of Colorado. In particular, we highlight the potential benefits of, and challenges to, using more sophisticated cognitive models in agent-based water resources models.

  9. Application of fuzzy sets and cognitive maps to incorporate social science scenarios in integrated assessment models

    OpenAIRE

    Kok, de, JMM John; Titus, Milan; Wind, Herman G.

    2000-01-01

    Decision-support systems in the field of integrated water management could benefit considerably from social science knowledge, as many environmental changes are human-induced. Unfortunately the adequate incorporation of qualitative social science concepts in a quantitative modeling framework is not straightforward. The applicability of fuzzy set theory and fuzzy cognitive maps for the integration of qualitative scenarios in a decision–support system was examined for the urbanization of the co...

  10. Mixed Culture PHA Production With Alternating Feedstocks

    DEFF Research Database (Denmark)

    Oliveira, C.S.S.; Duque, A.F.; Carvalho, Gilda

    Polyhydroxyalkanoates (PHA) are a sustainable alternative to conventional plastics that can be obtained from industrial wastes/by-products using mixed microbial cultures (MMC). MMC PHA production is commonly carried out in a 3-stage process consisting of an acidogenic stage, a PHA producing culture...... selection stage, and a PHA production phase. This work investigated the performance robustness and microbial population dynamics of a PHA producing MMC when subjected to a feedstock shift, mimicking a seasonal feedstock scenario, from cheese whey to sugar cane molasses. Research was focused...... on the possibility of tailoring PHA through the selection of feedstock: either using feedstocks with different compositions or mixing two or more fermented substrates with different organic acid profiles. This knowledge is expected to contribute to the extended application of this promising process for resource...

  11. 2011 Biomass Program Platform Peer Review: Feedstock

    Energy Technology Data Exchange (ETDEWEB)

    McCann, Laura [Office of Energy Efficiency and Renewable Energy (EERE), Washington, DC (United States)

    2012-02-01

    This document summarizes the recommendations and evaluations provided by an independent external panel of experts at the 2011 U.S. Department of Energy Biomass Program’s Feedstock Platform Review meeting.

  12. Incorporation of stochastic engineering models as prior information in Bayesian medical device trials.

    Science.gov (United States)

    Haddad, Tarek; Himes, Adam; Thompson, Laura; Irony, Telba; Nair, Rajesh

    2017-03-10

    Evaluation of medical devices via clinical trial is often a necessary step in the process of bringing a new product to market. In recent years, device manufacturers are increasingly using stochastic engineering models during the product development process. These models have the capability to simulate virtual patient outcomes. This article presents a novel method based on the power prior for augmenting a clinical trial using virtual patient data. To properly inform clinical evaluation, the virtual patient model must simulate the clinical outcome of interest, incorporating patient variability, as well as the uncertainty in the engineering model and in its input parameters. The number of virtual patients is controlled by a discount function which uses the similarity between modeled and observed data. This method is illustrated by a case study of cardiac lead fracture. Different discount functions are used to cover a wide range of scenarios in which the type I error rates and power vary for the same number of enrolled patients. Incorporation of engineering models as prior knowledge in a Bayesian clinical trial design can provide benefits of decreased sample size and trial length while still controlling type I error rate and power.

  13. Incorporation of ICRP-116 eye model into ICRP reference polygonal surface phantoms

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Thang Tat; Yeom, Yeon Soo; Han, Min Cheol; Wang, Zhao Jun; Kim, Han Sung; Kim, Chan Hyeong [Dept. of Nuclear Engineering, Hanyang University, Seoul (Korea, Republic of)

    2015-04-15

    The ICRP adopted a detailed stylized eye model developed by Behrens et al. for evaluation of lens dose coefficients released in ICRP publication 116. However, the dose coefficients were calculated with the stylized eye model modelled into the head of mathematical phantoms not the ICRP reference phantoms, which may cause inconsistency in lens dose assessment. In order to keep consistency in the lens dose assessment, the present study incorporates the ICRP-116 eye model into the currently developing polygonal-mesh-type ICRP reference phantoms which are being converted from the voxel-type ICRP reference phantoms. Then, lens dose values were calculated and compared with those calculated with the mathematical phantom to see how it affects lens doses. The present study incorporated the ICRP-116 eye model into the currently developing polygonal-mesh-type ICRP reference phantoms and showed significant dose differences when compared with ICRP-116 data calculated with the mathematical phantom. We believe that the ICRP reference phantoms including the detailed eye model provide more consistent assessment for eye lens dose.

  14. A code reviewer assignment model incorporating the competence differences and participant preferences

    Directory of Open Access Journals (Sweden)

    Wang Yanqing

    2016-03-01

    Full Text Available A good assignment of code reviewers can effectively utilize the intellectual resources, assure code quality and improve programmers’ skills in software development. However, little research on reviewer assignment of code review has been found. In this study, a code reviewer assignment model is created based on participants’ preference to reviewing assignment. With a constraint of the smallest size of a review group, the model is optimized to maximize review outcomes and avoid the negative impact of “mutual admiration society”. This study shows that the reviewer assignment strategies incorporating either the reviewers’ preferences or the authors’ preferences get much improvement than a random assignment. The strategy incorporating authors’ preference makes higher improvement than that incorporating reviewers’ preference. However, when the reviewers’ and authors’ preference matrixes are merged, the improvement becomes moderate. The study indicates that the majority of the participants have a strong wish to work with reviewers and authors having highest competence. If we want to satisfy the preference of both reviewers and authors at the same time, the overall improvement of learning outcomes may be not the best.

  15. Molding Properties of Inconel 718 Feedstocks Used in Low-Pressure Powder Injection Molding

    Directory of Open Access Journals (Sweden)

    Fouad Fareh

    2016-01-01

    Full Text Available The impact of binders and temperature on the rheological properties of feedstocks used in low-pressure powder injection molding was investigated. Experiments were conducted on different feedstock formulations obtained by mixing Inconel 718 powder with wax-based binder systems. The shear rate sensitivity index and the activation energy were used to study the degree of dependence of shear rate and temperature on the viscosity of the feedstocks. The injection performance of feedstocks was then evaluated using an analytical moldability model. The results indicated that the viscosity profiles of feedstocks depend significantly on the binder constituents, and the secondary binder constituents play an important role in the rheological behavior (pseudoplastic or near-Newtonian exhibited by the feedstock formulations. Viscosity values as low as 0.06 to 2.9 Pa·s were measured at high shear rates and high temperatures. The results indicate that a feedstock containing a surfactant agent exhibits the best moldability characteristics.

  16. Fully-coupled magnetoelastic model for Galfenol alloys incorporating eddy current losses and thermal relaxation

    Science.gov (United States)

    Evans, Phillip G.; Dapino, Marcelo J.

    2008-03-01

    A general framework is developed to model the nonlinear magnetization and strain response of cubic magnetostrictive materials to 3-D dynamic magnetic fields and 3-D stresses. Dynamic eddy current losses and inertial stresses are modeled by coupling Maxwell's equations to Newton's second law through a nonlinear constitutive model. The constitutive model is derived from continuum thermodynamics and incorporates rate-dependent thermal effects. The framework is implemented in 1-D to describe a Tonpilz transducer in both dynamic actuation and sensing modes. The model is shown to qualitatively describe the effect of increase in magnetic hysteresis with increasing frequency, the shearing of the magnetization loops with increasing stress, and the decrease in the magnetostriction with increasing load stiffness.

  17. Global dynamics of a PDE model for aedes aegypti mosquitoe incorporating female sexual preference

    KAUST Repository

    Parshad, Rana

    2011-01-01

    In this paper we study the long time dynamics of a reaction diffusion system, describing the spread of Aedes aegypti mosquitoes, which are the primary cause of dengue infection. The system incorporates a control attempt via the sterile insect technique. The model incorporates female mosquitoes sexual preference for wild males over sterile males. We show global existence of strong solution for the system. We then derive uniform estimates to prove the existence of a global attractor in L-2(Omega), for the system. The attractor is shown to be L-infinity(Omega) regular and posess state of extinction, if the injection of sterile males is large enough. We also provide upper bounds on the Hausdorff and fractal dimensions of the attractor.

  18. A data-driven model for influenza transmission incorporating media effects

    CERN Document Server

    Mitchell, Lewis

    2016-01-01

    Numerous studies have attempted to model the effect of mass media on the transmission of diseases such as influenza, however quantitative data on media engagement has until recently been difficult to obtain. With the recent explosion of "big data" coming from online social media and the like, large volumes of data on a population's engagement with mass media during an epidemic are becoming available to researchers. In this study we combine an online data set comprising millions of shared messages relating to influenza with traditional surveillance data on flu activity to suggest a functional form for the relationship between the two. Using this data we present a simple deterministic model for influenza dynamics incorporating media effects, and show that such a model helps explain the dynamics of historical influenza outbreaks. Furthermore, through model selection we show that the proposed media function fits historical data better than other media functions proposed in earlier studies.

  19. Towards a functional model of mental disorders incorporating the laws of thermodynamics.

    Science.gov (United States)

    Murray, George C; McKenzie, Karen

    2013-05-01

    The current paper presents the hypothesis that the understanding of mental disorders can be advanced by incorporating the laws of thermodynamics, specifically relating to energy conservation and energy transfer. These ideas, along with the introduction of the notion that entropic activities are symptomatic of inefficient energy transfer or disorder, were used to propose a model of understanding mental ill health as resulting from the interaction of entropy, capacity and work (environmental demands). The model was applied to Attention Deficit Hyperactivity Disorder, and was shown to be compatible with current thinking about this condition, as well as emerging models of mental disorders as complex networks. A key implication of the proposed model is that it argues that all mental disorders require a systemic functional approach, with the advantage that it offers a number of routes into the assessment, formulation and treatment for mental health problems.

  20. Incorporation of the Driver’s Personality Profile in an Agent Model

    Directory of Open Access Journals (Sweden)

    Mian Muhammad Mubasher

    2015-12-01

    Full Text Available Urban traffic flow is a complex system. Behavior of an individual driver can have butterfly effect which can become root cause of an emergent phenomenon such as congestion or accident. Interaction of drivers with each other and the surrounding environment forms the dynamics of traffic flow. Hence global effects of traffic flow depend upon the behavior of each individual driver. Due to several applications of driver models in serious games, urban traffic planning and simulations, study of a realistic driver model is important. Hhence cognitive models of a driver agent are required. In order to address this challenge concepts from cognitive science and psychology are employed to design a computational model of driver cognition which is capable of incorporating law abidance and social norms using big five personality profile.

  1. A data-driven model for influenza transmission incorporating media effects.

    Science.gov (United States)

    Mitchell, Lewis; Ross, Joshua V

    2016-10-01

    Numerous studies have attempted to model the effect of mass media on the transmission of diseases such as influenza; however, quantitative data on media engagement has until recently been difficult to obtain. With the recent explosion of 'big data' coming from online social media and the like, large volumes of data on a population's engagement with mass media during an epidemic are becoming available to researchers. In this study, we combine an online dataset comprising millions of shared messages relating to influenza with traditional surveillance data on flu activity to suggest a functional form for the relationship between the two. Using this data, we present a simple deterministic model for influenza dynamics incorporating media effects, and show that such a model helps explain the dynamics of historical influenza outbreaks. Furthermore, through model selection we show that the proposed media function fits historical data better than other media functions proposed in earlier studies.

  2. A predictive model of community assembly that incorporates intraspecific trait variation.

    Science.gov (United States)

    Laughlin, Daniel C; Joshi, Chaitanya; van Bodegom, Peter M; Bastow, Zachary A; Fulé, Peter Z

    2012-11-01

    Community assembly involves two antagonistic processes that select functional traits in opposite directions. Environmental filtering tends to increase the functional similarity of species within communities leading to trait convergence, whereas competition tends to limit the functional similarity of species within communities leading to trait divergence. Here, we introduce a new hierarchical Bayesian model that incorporates intraspecific trait variation into a predictive framework to unify classic coexistence theory and evolutionary biology with recent trait-based approaches. Model predictions exhibited a significant positive correlation (r = 0.66) with observed relative abundances along a 10 °C gradient in mean annual temperature. The model predicted the correct dominant species in half of the plots, and accurately reproduced species' temperature optimums. The framework is generalizable to any ecosystem as it can accommodate any species pool, any set of functional traits and multiple environmental gradients, and it eliminates some of the criticisms associated with recent trait-based community assembly models.

  3. Lifetime growth in wild meerkats: incorporating life history and environmental factors into a standard growth model.

    Science.gov (United States)

    English, Sinéad; Bateman, Andrew W; Clutton-Brock, Tim H

    2012-05-01

    Lifetime records of changes in individual size or mass in wild animals are scarce and, as such, few studies have attempted to model variation in these traits across the lifespan or to assess the factors that affect them. However, quantifying lifetime growth is essential for understanding trade-offs between growth and other life history parameters, such as reproductive performance or survival. Here, we used model selection based on information theory to measure changes in body mass over the lifespan of wild meerkats, and compared the relative fits of several standard growth models (monomolecular, von Bertalanffy, Gompertz, logistic and Richards). We found that meerkats exhibit monomolecular growth, with the best model incorporating separate growth rates before and after nutritional independence, as well as effects of season and total rainfall in the previous nine months. Our study demonstrates how simple growth curves may be improved by considering life history and environmental factors, which may be particularly relevant when quantifying growth patterns in wild populations.

  4. A data-driven model for influenza transmission incorporating media effects

    Science.gov (United States)

    Ross, Joshua V.

    2016-01-01

    Numerous studies have attempted to model the effect of mass media on the transmission of diseases such as influenza; however, quantitative data on media engagement has until recently been difficult to obtain. With the recent explosion of ‘big data’ coming from online social media and the like, large volumes of data on a population’s engagement with mass media during an epidemic are becoming available to researchers. In this study, we combine an online dataset comprising millions of shared messages relating to influenza with traditional surveillance data on flu activity to suggest a functional form for the relationship between the two. Using this data, we present a simple deterministic model for influenza dynamics incorporating media effects, and show that such a model helps explain the dynamics of historical influenza outbreaks. Furthermore, through model selection we show that the proposed media function fits historical data better than other media functions proposed in earlier studies. PMID:27853563

  5. Hydrogen production via catalytic processing of renewable feedstocks

    Energy Technology Data Exchange (ETDEWEB)

    Nazim Muradov; Franklyn Smith; Ali T-Raissi [Florida Solar Energy Center, University of Central Florida, Cocoa, Florida, (United States)

    2006-07-01

    Landfill gas (LFG) and biogas can potentially become important feedstocks for renewable hydrogen production. The objectives of this work were: (1) to develop a catalytic process for direct reforming of CH{sub 4}-CO{sub 2} gaseous mixture mimicking LFG, (2) perform thermodynamic analysis of the reforming process using AspenPlus chemical process simulator, (3) determine operational conditions for auto-thermal (or thermo-neutral) reforming of a model CH{sub 4}-CO{sub 2} feedstock, and (4) fabricate and test a bench-scale hydrogen production unit. Experimental data obtained from catalytic reformation of the CH{sub 4}-CO{sub 2} and CH{sub 4}-CO{sub 2}-O{sub 2} gaseous mixtures using Ni-catalyst were in a good agreement with the simulation results. It was demonstrated that catalytic reforming of LFG-mimicking gas produced hydrogen with the purity of 99.9 vol.%. (authors)

  6. Incorporating grazing into an eco-hydrologic model: Simulating coupled human and natural systems in rangelands

    Science.gov (United States)

    Reyes, J. J.; Liu, M.; Tague, C.; Choate, J. S.; Evans, R. D.; Johnson, K. A.; Adam, J. C.

    2013-12-01

    Rangelands provide an opportunity to investigate the coupled feedbacks between human activities and natural ecosystems. These areas comprise at least one-third of the Earth's surface and provide ecological support for birds, insects, wildlife and agricultural animals including grazing lands for livestock. Capturing the interactions among water, carbon, and nitrogen cycles within the context of regional scale patterns of climate and management is important to understand interactions, responses, and feedbacks between rangeland systems and humans, as well as provide relevant information to stakeholders and policymakers. The overarching objective of this research is to understand the full consequences, intended and unintended, of human activities and climate over time in rangelands by incorporating dynamics related to rangeland management into an eco-hydrologic model that also incorporates biogeochemical and soil processes. Here we evaluate our model over ungrazed and grazed sites for different rangeland ecosystems. The Regional Hydro-ecologic Simulation System (RHESSys) is a process-based, watershed-scale model that couples water with carbon and nitrogen cycles. Climate, soil, vegetation, and management effects within the watershed are represented in a nested landscape hierarchy to account for heterogeneity and the lateral movement of water and nutrients. We incorporated a daily time-series of plant biomass loss from rangeland to represent grazing. The TRY Plant Trait Database was used to parameterize genera of shrubs and grasses in different rangeland types, such as tallgrass prairie, Intermountain West cold desert, and shortgrass steppe. In addition, other model parameters captured the reallocation of carbon and nutrients after grass defoliation. Initial simulations were conducted at the Curlew Valley site in northern Utah, a former International Geosphere-Biosphere Programme Desert Biome site. We found that grasses were most sensitive to model parameters affecting

  7. The Use of Artificial Neural Networks for Identifying Sustainable Biodiesel Feedstocks

    Directory of Open Access Journals (Sweden)

    Zoran D. Ristovski

    2013-07-01

    Full Text Available Over the past few decades, biodiesel produced from oilseed crops and animal fat is receiving much attention as a renewable and sustainable alternative for automobile engine fuels, and particularly petroleum diesel. However, current biodiesel production is heavily dependent on edible oil feedstocks which are unlikely to be sustainable in the longer term due to the rising food prices and the concerns about automobile engine durability. Therefore, there is an urgent need for researchers to identify and develop sustainable biodiesel feedstocks which overcome the disadvantages of current ones. On the other hand, artificial neural network (ANN modeling has been successfully used in recent years to gain new knowledge in various disciplines. The main goal of this article is to review recent literatures and assess the state of the art on the use of ANN as a modeling tool for future generation biodiesel feedstocks. Biodiesel feedstocks, production processes, chemical compositions, standards, physio-chemical properties and in-use performance are discussed. Limitations of current biodiesel feedstocks over future generation biodiesel feedstock have been identified. The application of ANN in modeling key biodiesel quality parameters and combustion performance in automobile engines is also discussed. This review has determined that ANN modeling has a high potential to contribute to the development of renewable energy systems by accelerating biodiesel research.

  8. Incorporating risk attitude into Markov-process decision models: importance for individual decision making.

    Science.gov (United States)

    Cher, D J; Miyamoto, J; Lenert, L A

    1997-01-01

    Most decision models published in the medical literature take a risk-neutral perspective. Under risk neutrality, the utility of a gamble is equivalent to its expected value and the marginal utility of living a given unit of time is the same regardless of when it occurs. Most patients, however, are not risk-neutral. Not only does risk aversion affect decision analyses when tradeoffs between short- and long-term survival are involved, it also affects the interpretation of time-tradeoff measures of health-state utility. The proportional time tradeoff under- or overestimates the disutility of an inferior health state, depending on whether the patient is risk-seeking or risk-averse (it is unbiased if the patient is risk-neutral). The authors review how risk attitude with respect to gambles for survival duration can be incorporated into decision models using the framework of risk-adjusted quality-adjusted life years (RA-QALYs). They present a simple extension of this framework that allows RA-QALYs to be calculated for Markov-process decision models. Using a previously published Markov-process model of surgical vs expectant treatment for benign prostatic hypertrophy (BPH), they show how attitude towards risk affects the expected number of QALYs calculated by the model. In this model, under risk neutrality, surgery was the preferred option. Under mild risk aversion, expectant treatment was the preferred option. Risk attitude is an important aspect of preferences that should be incorporated into decision models where one treatment option has upfront risks of morbidity or mortality.

  9. A non-classical Mindlin plate model incorporating microstructure, surface energy and foundation effects

    Science.gov (United States)

    Gao, X.-L.; Zhang, G. Y.

    2016-07-01

    A non-classical model for a Mindlin plate resting on an elastic foundation is developed in a general form using a modified couple stress theory, a surface elasticity theory and a two-parameter Winkler-Pasternak foundation model. It includes all five kinematic variables possible for a Mindlin plate. The equations of motion and the complete boundary conditions are obtained simultaneously through a variational formulation based on Hamilton's principle, and the microstructure, surface energy and foundation effects are treated in a unified manner. The newly developed model contains one material length-scale parameter to describe the microstructure effect, three surface elastic constants to account for the surface energy effect, and two foundation parameters to capture the foundation effect. The current non-classical plate model reduces to its classical elasticity-based counterpart when the microstructure, surface energy and foundation effects are all suppressed. In addition, the new model includes the Mindlin plate models considering the microstructure dependence or the surface energy effect or the foundation influence alone as special cases, recovers the Kirchhoff plate model incorporating the microstructure, surface energy and foundation effects, and degenerates to the Timoshenko beam model including the microstructure effect. To illustrate the new Mindlin plate model, the static bending and free vibration problems of a simply supported rectangular plate are analytically solved by directly applying the general formulae derived.

  10. Extension of the QUASAR river water quality model to incorporate dead-zone mixing

    Directory of Open Access Journals (Sweden)

    M. J. Lees

    1998-01-01

    Full Text Available A modification to the well-known water quality model 'Quality Simulation Along River Systems' (QUASAR is presented, extending its utility to real-time forecasting applications such as the management and control of pollution incidents. Two aggregated dead-zone (ADZ parameters, namely time delay and dispersive fraction, are incorporated into the existing model formulation, extending the current continuously stirred tank reactor based model processes to account for advective and active mixing volume dispersive processes. The resulting river water quality model combines the strengths of the QUASAR model, which has proven non-conservative pollutant modelling capabilities, with the accurate advection and dispersion characterisation of the ADZ model. A discrete-time mathematical representation of the governing equations is developed that enables efficient system identification methods of parameter estimation to be utilised. The enhanced water quality model and associated methods of parameter estimation are validated using data from tracer experiments conducted on the River Mimram. The revised model produces accurate predictions of observed concentration-time curves for conservative substances.

  11. Extension of the QUASAR river water quality model to incorporate dead-zone mixing

    Science.gov (United States)

    Lees, M. J.; Camacho, L.; Whitehead, P.

    A modification to the well-known water quality model "Quality Simulation Along River Systems" (QUASAR) is presented, extending its utility to real-time forecasting applications such as the management and control of pollution incidents. Two aggregated dead-zone (ADZ) parameters, namely time delay and dispersive fraction, are incorporated into the existing model formulation, extending the current continuously stirred tank reactor based model processes to account for advective and active mixing volume dispersive processes. The resulting river water quality model combines the strengths of the QUASAR model, which has proven non-conservative pollutant modelling capabilities, with the accurate advection and dispersion characterisation of the ADZ model. A discrete-time mathematical representation of the governing equations is developed that enables efficient system identification methods of parameter estimation to be utilised. The enhanced water quality model and associated methods of parameter estimation are validated using data from tracer experiments conducted on the River Mimram. The revised model produces accurate predictions of observed concentration-time curves for conservative substances.

  12. A molecular dynamics model of rhodamine-labeled phospholipid incorporated into a lipid bilayer

    Science.gov (United States)

    Kyrychenko, Alexander

    2010-01-01

    Phospholipids, labeled covalently by a fluorescent dye, are commonly applied in membrane biophysics. In this work, a molecular dynamics model of sulforhodamine attached covalently to a headgroup of 1,2-dipalmitoyl- sn-glycero-3-phosphoethanolamine is developed. It is found that the incorporation of rhodamine-labeled phospholipids into a DPPC bilayer at the low concentration results in small perturbation of the bilayer. In the dye-labeled membrane, the sulforhodamine moiety binds favorably to a polar membrane interface, forming the tilt angle 44° ± 8° to the bilayer normal. The deep location and binding of a bulk sulforhodamine fluorophore lead, therefore, to some 'softening' of the membrane structure.

  13. Non-Newtonian fluid model incorporated into elastohydrodynamic lubrication of rectangular contacts

    Science.gov (United States)

    Jacobson, B. O.; Hamrock, B. J.

    1984-01-01

    A procedure is outlined for the numerical solution of the complete elastohydrodynamic lubrication of rectangular contacts incorporating a non-Newtonian fluid model. The approach uses a Newtonian model as long as the shear stress is less than a limiting shear stress. If the shear stress exceeds the limiting value, the shear stress is set equal to the limiting value. The numerical solution requires the coupled solution of the pressure, film shape, and fluid rheology equations from the inlet to the outlet. Isothermal and no-side-leakage assumptions were imposed in the analysis. The influence of dimensionless speed, load, materials, and sliding velocity and limiting-shear-strength proportionality constant on dimensionless minimum film thickness was investigated. Fourteen cases were used in obtaining the minimum-film-thickness equation for an elastohydrodynamically lubricated rectangular contact incorporating a non-Newtonian fluid model. Computer plots are also presented that indicate in detail pressure distribution, film shape, shear stress at the surfaces, and flow throughout the conjunction.

  14. Evolutionary demography of iteroparous plants: incorporating non-lethal costs of reproduction into integral projection models.

    Science.gov (United States)

    Miller, Tom E X; Williams, Jennifer L; Jongejans, Eelke; Brys, Rein; Jacquemyn, Hans

    2012-07-22

    Understanding the selective forces that shape reproductive strategies is a central goal of evolutionary ecology. Selection on the timing of reproduction is well studied in semelparous organisms because the cost of reproduction (death) can be easily incorporated into demographic models. Iteroparous organisms also exhibit delayed reproduction and experience reproductive costs, although these are not necessarily lethal. How non-lethal costs shape iteroparous life histories remains unresolved. We analysed long-term demographic data for the iteroparous orchid Orchis purpurea from two habitat types (light and shade). In both the habitats, flowering plants had lower growth rates and this cost was greater for smaller plants. We detected an additional growth cost of fruit production in the light habitat. We incorporated these non-lethal costs into integral projection models to identify the flowering size that maximizes fitness. In both habitats, observed flowering sizes were well predicted by the models. We also estimated optimal parameters for size-dependent flowering effort, but found a strong mismatch with the observed flower production. Our study highlights the role of context-dependent non-lethal reproductive costs as selective forces in the evolution of iteroparous life histories, and provides a novel and broadly applicable approach to studying the evolutionary demography of iteroparous organisms.

  15. Evolutionary Models of Super-Earths and Mini-Neptunes Incorporating Cooling and Mass Loss

    CERN Document Server

    Howe, Alex R

    2015-01-01

    We construct models of the structural evolution of super-Earth- and mini-Neptune-type exoplanets with hydrogen-helium envelopes, incorporating radiative cooling and XUV-driven mass loss. We conduct a parameter study of these models, focusing on initial mass, radius, and envelope mass fractions, as well as orbital distance, metallicity, and the specific prescription for mass loss. From these calculations, we investigate how the observed masses and radii of exoplanets today relate to the distribution of their initial conditions. Orbital distance and initial envelope mass fraction are the most important factors determining planetary evolution, particular radius evolution. Initial mass also becomes important below a "turnoff mass," which varies with orbital distance, with mass-radius curves being approximately flat for higher masses. Initial radius is the least important parameter we study, with very little difference between the hot start and cold start limits after an age of 100 Myr. Model sets with no mass los...

  16. Agent-Based Evacuation Model Incorporating Fire Scene and Building Geometry

    Institute of Scientific and Technical Information of China (English)

    TANG Fangqin; REN Aizhu

    2008-01-01

    A comprehensive description of the key factors affecting evacuations at fire scones is necessary for accurate simulations.An agent-based simulation model which incorporates the fire scene and the building geometry is developed using a fire dynamics simulator (FDS) based on the computational fluid dynamics and geographic information system (GIS) data to model the occupant response.The building entities are generated for FDS simulation while the spatial analysis on GIS data represents the occupant's knowledge of the building.The influence of the fire is based on a hazard assessment of the combustion products.The agent behavior and decisions are affected by environmental features and the fire field.A case study demonstrates that the evacuation model effectively simulates the coexistence and interactions of the major factors including occupants,building geometry,and fire disaster during the evacuation.The results can be used for the assessments of building designs regarding fire safety.

  17. Hidden Markov Models Incorporating Fuzzy Measures and Integrals for Protein Sequence Identification and Alignment

    Institute of Scientific and Technical Information of China (English)

    Niranjan P.Bidargaddi; Madlhu Chetty; Joarder Kamruzzaman

    2008-01-01

    Profile hidden Markov models (HMMs) based on classical HMMs have been widely applied for protein sequence identification. The formulation of the forward and backward variables in profile HMMs is made under statistical independence assumption of the probability theory. We propose a fuzzy profile HMM to overcome the limitations of that assumption and to achieve an improved alignment for protein sequences belonging to a given family. The proposed model fuzzifies the forward and backward variables by incorporating Sugeno fuzzy measures and Choquet integrals, thus further extends the generalized HMM. Based on the fuzzified forwardand backward variables, we propose a fuzzy Baum-Welch parameter estimation al-gorithm for profiles. The strong correlations and the sequence preference involved in the protein structures make this fuzzy architecture based model as a suitable candidate for building profiles of a given family, since the fuzzy set can handle uncertainties better than classical methods.

  18. Some considerations concerning the challenge of incorporating social variables into epidemiological models of infectious disease transmission.

    Science.gov (United States)

    Barnett, Tony; Fournié, Guillaume; Gupta, Sunetra; Seeley, Janet

    2015-01-01

    Incorporation of 'social' variables into epidemiological models remains a challenge. Too much detail and models cease to be useful; too little and the very notion of infection - a highly social process in human populations - may be considered with little reference to the social. The French sociologist Émile Durkheim proposed that the scientific study of society required identification and study of 'social currents'. Such 'currents' are what we might today describe as 'emergent properties', specifiable variables appertaining to individuals and groups, which represent the perspectives of social actors as they experience the environment in which they live their lives. Here we review the ways in which one particular emergent property, hope, relevant to a range of epidemiological situations, might be used in epidemiological modelling of infectious diseases in human populations. We also indicate how such an approach might be extended to include a range of other potential emergent properties to represent complex social and economic processes bearing on infectious disease transmission.

  19. Incorporating evolutionary adaptation in species distribution modelling reduces projected vulnerability to climate change.

    Science.gov (United States)

    Bush, Alex; Mokany, Karel; Catullo, Renee; Hoffmann, Ary; Kellermann, Vanessa; Sgrò, Carla; McEvey, Shane; Ferrier, Simon

    2016-12-01

    Based on the sensitivity of species to ongoing climate change, and numerous challenges they face tracking suitable conditions, there is growing interest in species' capacity to adapt to climatic stress. Here, we develop and apply a new generic modelling approach (AdaptR) that incorporates adaptive capacity through physiological limits, phenotypic plasticity, evolutionary adaptation and dispersal into a species distribution modelling framework. Using AdaptR to predict change in the distribution of 17 species of Australian fruit flies (Drosophilidae), we show that accounting for adaptive capacity reduces projected range losses by up to 33% by 2105. We identify where local adaptation is likely to occur and apply sensitivity analyses to identify the critical factors of interest when parameters are uncertain. Our study suggests some species could be less vulnerable than previously thought, and indicates that spatiotemporal adaptive models could help improve management interventions that support increased species' resilience to climate change. © 2016 John Wiley & Sons Ltd/CNRS.

  20. Affordances perspective and grammaticalization: Incorporation of language, environment and users in the model of semantic paths

    Directory of Open Access Journals (Sweden)

    Alexander Andrason

    2015-12-01

    Full Text Available The present paper demonstrates that insights from the affordances perspective can contribute to developing a more comprehensive model of grammaticalization. The authors argue that the grammaticalization process is afforded differently depending on the values of three contributing parameters: the factor (schematized as a qualitative-quantitative map or a wave of a gram, environment (understood as the structure of the stream along which the gram travels, and actor (narrowed to certain cognitive-epistemological capacities of the users, in particular to the fact of being a native speaker. By relating grammaticalization to these three parameters and by connecting it to the theory of optimization, the proposed model offers a better approximation to realistic cases of grammaticalization: The actor and environment are overtly incorporated into the model and divergences from canonical grammaticalization paths are both tolerated and explicable.

  1. A Fibrocontractive Mechanochemical Model of Dermal Wound Closure Incorporating Realistic Growth Factor Kinetics

    KAUST Repository

    Murphy, Kelly E.

    2012-01-13

    Fibroblasts and their activated phenotype, myofibroblasts, are the primary cell types involved in the contraction associated with dermal wound healing. Recent experimental evidence indicates that the transformation from fibroblasts to myofibroblasts involves two distinct processes: The cells are stimulated to change phenotype by the combined actions of transforming growth factor β (TGFβ) and mechanical tension. This observation indicates a need for a detailed exploration of the effect of the strong interactions between the mechanical changes and growth factors in dermal wound healing. We review the experimental findings in detail and develop a model of dermal wound healing that incorporates these phenomena. Our model includes the interactions between TGFβ and collagenase, providing a more biologically realistic form for the growth factor kinetics than those included in previous mechanochemical descriptions. A comparison is made between the model predictions and experimental data on human dermal wound healing and all the essential features are well matched. © 2012 Society for Mathematical Biology.

  2. A Direct Method for Incorporating Experimental Data into Multiscale Coarse-Grained Models.

    Science.gov (United States)

    Dannenhoffer-Lafage, Thomas; White, Andrew D; Voth, Gregory A

    2016-05-10

    To extract meaningful data from molecular simulations, it is necessary to incorporate new experimental observations as they become available. Recently, a new method was developed for incorporating experimental observations into molecular simulations, called experiment directed simulation (EDS), which utilizes a maximum entropy argument to bias an existing model to agree with experimental observations while changing the original model by a minimal amount. However, there is no discussion in the literature of whether or not the minimal bias systematically and generally improves the model by creating agreement with the experiment. In this work, we show that the relative entropy of the biased system with respect to an ideal target is always reduced by the application of a minimal bias, such as the one utilized by EDS. Using all-atom simulations that have been biased with EDS, one can then easily and rapidly improve a bottom-up multiscale coarse-grained (MS-CG) model without the need for a time-consuming reparametrization of the underlying atomistic force field. Furthermore, the improvement given by the many-body interactions introduced by the EDS bias can be maintained after being projected down to effective two-body MS-CG interactions. The result of this analysis is a new paradigm in coarse-grained modeling and simulation in which the "bottom-up" and "top-down" approaches are combined within a single, rigorous formalism based on statistical mechanics. The utility of building the resulting EDS-MS-CG models is demonstrated on two molecular systems: liquid methanol and ethylene carbonate.

  3. Effects of surfactant on properties of MIM feedstock

    Institute of Scientific and Technical Information of China (English)

    LI Yi-min; LIU Xiang-quan; LUO Feng-hua; YUE Jian-ling

    2007-01-01

    Effects of the surfactant for improving the properties of MIM feedstock were investigated. Feedstocks were prepared by 17-4PH stainless steel(SS) powder and paraffin wax-based binder containing different contents of stearic acid(SA) as the surfactant. The viscosity of the feedstock decreases significantly when the SA is added. Besides, the wetting angle of the binder against the 17-4PH SS powder decreases greatly and the critical solid loading increases with the adding of the SA. Fourier transformation infrared spectroscopy(FTIR) analysis was used to prove the interaction between the SA and the 17-4PH SS powder. Chemical bonding is found on the surface of 17-4PH SS powder after mixing and it helps a lot to enhance the interacting force between the binder and the powder. Then an adsorbing model was adopted to estimate the least content of the surfactant that formed a monolayer adsorption on the mono-sized spherical powder (with smooth surface). The least content of the surfactant is calculated to be 0.19%. Whereas, the experiments indicate that about 5% is the optimal value to improve the properties of the feedstock. The reason may come from two aspects: firstly, the powders used in current experiment are not all mono-sized spheres and the coarse surface of the powder has a great effect on the adsorptive capacity of the powder; secondly, multilayer adsorption is likely to occur on the powder surface, which will also increase the adsorptive capacity.

  4. How non-conventional feedstocks will affect aromatics technologies

    Energy Technology Data Exchange (ETDEWEB)

    Koehler, E. [Clariant Produkte (Deutschland) GmbH, Muenchen (Germany)

    2013-11-01

    The abundance of non-conventional feedstocks such as coal and shale gas has begun to affect the availability of traditional base chemicals such as propylene and BTX aromatics. Although this trend is primarily fueled by the fast growing shale gas economy in the US and the abundance of coal in China, it will cause the global supply and demand situation to equilibrate across the regions. Lower demand for gasoline and consequently less aromatics rich reformate from refineries will further tighten the aromatics markets that are expected to grow at healthy rates, however. Refiners can benefit from this trend by abandoning their traditional fuel-oriented business model and becoming producers of petrochemical intermediates, with special focus on paraxylene (PX). Cheap gas from coal (via gasification) or shale reserves is an advantaged feedstock that offers a great platform to make aromatics in a cost-competitive manner, especially in regions where naphtha is in short supply. Gas condensates (LPG and naphtha) are good feedstocks for paraffin aromatization, and methanol from coal or (shale) gas can be directly converted to BTX aromatics (MTA) or alkylated with benzene or toluene to make paraxylene. Most of today's technologies for the production and upgrading of BTX aromatics and their derivatives make use of the unique properties of zeolites. (orig.)

  5. Incorporating animal behavior into seed dispersal models: implications for seed shadows.

    Science.gov (United States)

    Russo, Sabrina E; Portnoy, Stephen; Augspurger, Carol K

    2006-12-01

    Seed dispersal fundamentally influences plant population and community dynamics but is difficult to quantify directly. Consequently, models are frequently used to describe the seed shadow (the seed deposition pattern of a plant population). For vertebrate-dispersed plants, animal behavior is known to influence seed shadows but is poorly integrated in seed dispersal models. Here, we illustrate a modeling approach that incorporates animal behavior and develop a stochastic, spatially explicit simulation model that predicts the seed shadow for a primate-dispersed tree species (Virola calophylla, Myristicaceae) at the forest stand scale. The model was parameterized from field-collected data on fruit production and seed dispersal, behaviors and movement patterns of the key disperser, the spider monkey (Ateles paniscus), densities of dispersed and non-dispersed seeds, and direct estimates of seed dispersal distances. Our model demonstrated that the spatial scale of dispersal for this V. calophylla population was large, as spider monkeys routinely dispersed seeds >100 m, a commonly used threshold for long-distance dispersal. The simulated seed shadow was heterogeneous, with high spatial variance in seed density resulting largely from behaviors and movement patterns of spider monkeys that aggregated seeds (dispersal at their sleeping sites) and that scattered seeds (dispersal during diurnal foraging and resting). The single-distribution dispersal kernels frequently used to model dispersal substantially underestimated this variance and poorly fit the simulated seed-dispersal curve, primarily because of its multimodality, and a mixture distribution always fit the simulated dispersal curve better. Both seed shadow heterogeneity and dispersal curve multimodality arose directly from these different dispersal processes generated by spider monkeys. Compared to models that did not account for disperser behavior, our modeling approach improved prediction of the seed shadow of this V

  6. Incorporating uncertainty of management costs in sensitivity analyses of matrix population models.

    Science.gov (United States)

    Salomon, Yacov; McCarthy, Michael A; Taylor, Peter; Wintle, Brendan A

    2013-02-01

    The importance of accounting for economic costs when making environmental-management decisions subject to resource constraints has been increasingly recognized in recent years. In contrast, uncertainty associated with such costs has often been ignored. We developed a method, on the basis of economic theory, that accounts for the uncertainty in population-management decisions. We considered the case where, rather than taking fixed values, model parameters are random variables that represent the situation when parameters are not precisely known. Hence, the outcome is not precisely known either. Instead of maximizing the expected outcome, we maximized the probability of obtaining an outcome above a threshold of acceptability. We derived explicit analytical expressions for the optimal allocation and its associated probability, as a function of the threshold of acceptability, where the model parameters were distributed according to normal and uniform distributions. To illustrate our approach we revisited a previous study that incorporated cost-efficiency analyses in management decisions that were based on perturbation analyses of matrix population models. Incorporating derivations from this study into our framework, we extended the model to address potential uncertainties. We then applied these results to 2 case studies: management of a Koala (Phascolarctos cinereus) population and conservation of an olive ridley sea turtle (Lepidochelys olivacea) population. For low aspirations, that is, when the threshold of acceptability is relatively low, the optimal strategy was obtained by diversifying the allocation of funds. Conversely, for high aspirations, the budget was directed toward management actions with the highest potential effect on the population. The exact optimal allocation was sensitive to the choice of uncertainty model. Our results highlight the importance of accounting for uncertainty when making decisions and suggest that more effort should be placed on

  7. An approach to incorporate individual personality in modeling fish dispersal across in-stream barriers.

    Science.gov (United States)

    Hirsch, Philipp Emanuel; Thorlacius, Magnus; Brodin, Tomas; Burkhardt-Holm, Patricia

    2017-01-01

    Animal personalities are an important factor that affects the dispersal of animals. In the context of aquatic species, dispersal modeling needs to consider that most freshwater ecosystems are highly fragmented by barriers reducing longitudinal connectivity. Previous research has incorporated such barriers into dispersal models under the neutral assumption that all migrating animals attempt to ascend at all times. Modeling dispersal of animals that do not perform trophic or reproductive migrations will be more realistic if it includes assumptions of which individuals attempt to overcome a barrier. We aimed to introduce personality into predictive modeling of whether a nonmigratory invasive freshwater fish (the round goby, Neogobius melanostomus) will disperse across an in-stream barrier. To that end, we experimentally assayed the personalities of 259 individuals from invasion fronts and established round goby populations. Based on the population differences in boldness, asociability, and activity, we defined a priori thresholds with bolder, more asocial, and more active individuals having a higher likelihood of ascent. We then combined the personality thresholds with swimming speed data from the literature and in situ measurements of flow velocities in the barrier. The resulting binary logistic regression model revealed probabilities of crossing a barrier which depended not only on water flow and fish swimming speed but also on animal personalities. We conclude that risk assessment through predictive dispersal modeling across fragmented landscapes can be advanced by including personality traits as parameters. The inclusion of behavior into modeling the spread of invasive species can help to improve the accuracy of risk assessments.

  8. A constitutive mechanical model for gas hydrate bearing sediments incorporating inelastic mechanisms

    KAUST Repository

    Sánchez, Marcelo

    2016-11-30

    Gas hydrate bearing sediments (HBS) are natural soils formed in permafrost and sub-marine settings where the temperature and pressure conditions are such that gas hydrates are stable. If these conditions shift from the hydrate stability zone, hydrates dissociate and move from the solid to the gas phase. Hydrate dissociation is accompanied by significant changes in sediment structure and strongly affects its mechanical behavior (e.g., sediment stiffenss, strength and dilatancy). The mechanical behavior of HBS is very complex and its modeling poses great challenges. This paper presents a new geomechanical model for hydrate bearing sediments. The model incorporates the concept of partition stress, plus a number of inelastic mechanisms proposed to capture the complex behavior of this type of soil. This constitutive model is especially well suited to simulate the behavior of HBS upon dissociation. The model was applied and validated against experimental data from triaxial and oedometric tests conducted on manufactured and natural specimens involving different hydrate saturation, hydrate morphology, and confinement conditions. Particular attention was paid to model the HBS behavior during hydrate dissociation under loading. The model performance was highly satisfactory in all the cases studied. It managed to properly capture the main features of HBS mechanical behavior and it also assisted to interpret the behavior of this type of sediment under different loading and hydrate conditions.

  9. Advanced Methods for Incorporating Solar Energy Technologies into Electric Sector Capacity-Expansion Models: Literature Review and Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, P.; Eurek, K.; Margolis, R.

    2014-07-01

    Because solar power is a rapidly growing component of the electricity system, robust representations of solar technologies should be included in capacity-expansion models. This is a challenge because modeling the electricity system--and, in particular, modeling solar integration within that system--is a complex endeavor. This report highlights the major challenges of incorporating solar technologies into capacity-expansion models and shows examples of how specific models address those challenges. These challenges include modeling non-dispatchable technologies, determining which solar technologies to model, choosing a spatial resolution, incorporating a solar resource assessment, and accounting for solar generation variability and uncertainty.

  10. Biofuel Feedstock Assessment for Selected Countries

    Energy Technology Data Exchange (ETDEWEB)

    Kline, K.L.; Oladosu, G.A.; Wolfe, A.K.; Perlack, R.D.; Dale, V.H.

    2008-02-18

    Findings from biofuel feedstock production assessments and projections of future supply are presented and discussed. The report aims to improve capabilities to assess the degree to which imported biofuel could contribute to meeting future U.S. targets to reduce dependence on imported oil. The study scope was focused to meet time and resource requirements. A screening process identified Argentina, Brazil, Canada, China, Colombia, India, Mexico, and the Caribbean Basin Initiative (CBI) region for initial analysis, given their likely role in future feedstock supply relevant to U.S. markets. Supply curves for selected feedstocks in these countries are projected for 2012, 2017 and 2027. The supply functions, along with calculations to reflect estimated supplies available for export and/or biofuel production, were provided to DOE for use in a broader energy market allocation study. Potential cellulosic supplies from crop and forestry residues and perennials were also estimated for 2017 and 2027. The analysis identified capacity to potentially double or triple feedstock production by 2017 in some cases. A majority of supply growth is derived from increasing the area cultivated (especially sugarcane in Brazil). This is supplemented by improving yields and farming practices. Most future supplies of corn and wheat are projected to be allocated to food and feed. Larger shares of future supplies of sugarcane, soybean and palm oil production will be available for export or biofuel. National policies are catalyzing investments in biofuel industries to meet targets for fuel blending that generally fall in the 5-10% range. Social and environmental concerns associated with rapid expansion of feedstock production are considered. If the 2017 projected feedstock supply calculated as ‘available’ for export or biofuel were converted to fuel, it would represent the equivalent of about 38 billion gallons of gasoline. Sugarcane and bagasse dominate the available supply, representing 64

  11. Incorporating biological pathways via a Markov random field model in genome-wide association studies.

    Directory of Open Access Journals (Sweden)

    Min Chen

    2011-04-01

    Full Text Available Genome-wide association studies (GWAS examine a large number of markers across the genome to identify associations between genetic variants and disease. Most published studies examine only single markers, which may be less informative than considering multiple markers and multiple genes jointly because genes may interact with each other to affect disease risk. Much knowledge has been accumulated in the literature on biological pathways and interactions. It is conceivable that appropriate incorporation of such prior knowledge may improve the likelihood of making genuine discoveries. Although a number of methods have been developed recently to prioritize genes using prior biological knowledge, such as pathways, most methods treat genes in a specific pathway as an exchangeable set without considering the topological structure of a pathway. However, how genes are related with each other in a pathway may be very informative to identify association signals. To make use of the connectivity information among genes in a pathway in GWAS analysis, we propose a Markov Random Field (MRF model to incorporate pathway topology for association analysis. We show that the conditional distribution of our MRF model takes on a simple logistic regression form, and we propose an iterated conditional modes algorithm as well as a decision theoretic approach for statistical inference of each gene's association with disease. Simulation studies show that our proposed framework is more effective to identify genes associated with disease than a single gene-based method. We also illustrate the usefulness of our approach through its applications to a real data example.

  12. Incorporating S-shaped testing-effort functions into NHPP software reliability model with imperfect debugging

    Institute of Scientific and Technical Information of China (English)

    Qiuying Li; Haifeng Li; Minyan Lu

    2015-01-01

    Testing-effort (TE) and imperfect debugging (ID) in the reliability modeling process may further improve the fitting and pre-diction results of software reliability growth models (SRGMs). For describing the S-shaped varying trend of TE increasing rate more accurately, first, two S-shaped testing-effort functions (TEFs), i.e., delayed S-shaped TEF (DS-TEF) and inflected S-shaped TEF (IS-TEF), are proposed. Then these two TEFs are incorporated into various types (exponential-type, delayed S-shaped and in-flected S-shaped) of non-homogeneous Poisson process (NHPP) SRGMs with two forms of ID respectively for obtaining a series of new NHPP SRGMs which consider S-shaped TEFs as wel as ID. Final y these new SRGMs and several comparison NHPP SRGMs are applied into four real failure data-sets respectively for investigating the fitting and prediction power of these new SRGMs. The experimental results show that: (i) the proposed IS-TEF is more suitable and flexible for describing the consumption of TE than the previous TEFs; (i ) incorporating TEFs into the inflected S-shaped NHPP SRGM may be more effective and appropriate compared with the exponential-type and the delayed S-shaped NHPP SRGMs; (i i) the inflected S-shaped NHPP SRGM con-sidering both IS-TEF and ID yields the most accurate fitting and prediction results than the other comparison NHPP SRGMs.

  13. Wastepaper as a feedstock for ethanol production

    Energy Technology Data Exchange (ETDEWEB)

    Bergeron, P.W.; Riley, C.J.

    1991-11-01

    The possibility of using wastepaper as a cheap feedstock for production of ethanol is discussed. As the single largest material category in the municipal solid waste (MSW) stream, wastepaper is the main target of efforts to reduce the volume of MSW. And in the process for producing ethanol from lignocellulosics, the feedstock represents the highest cost. If wastepaper could be obtained cheaply in large enough quantities and if conversion process cost and efficiency prove to be similar to those for wood, the cost of ethanol could be significantly reduced. At the same time, the volume of wastepaper that must be disposed of in landfills could be lessened. 13 refs., 3 figs., 7 tabs.

  14. High quality transportation fuels from renewable feedstock

    Energy Technology Data Exchange (ETDEWEB)

    Lindfors, Lars Peter

    2010-09-15

    Hydrotreating of vegetable oils is novel process for producing high quality renewable diesel. Hydrotreated vegetable oils (HVO) are paraffinic hydrocarbons. They are free of aromatics, have high cetane numbers and reduce emissions. HVO can be used as component or as such. HVO processes can also be modified to produce jet fuel. GHG savings by HVO use are significant compared to fossil fuels. HVO is already in commercial production. Neste Oil is producing its NExBTL diesel in two plants. Production of renewable fuels will be limited by availability of sustainable feedstock. Therefore R and D efforts are made to expand feedstock base further.

  15. Plasma-Powder Feedstock Interaction During Plasma Spray-Physical Vapor Deposition

    Science.gov (United States)

    Anwaar, Aleem; Wei, Lianglinag; Guo, Hongbo; Zhang, Baopeng

    2017-02-01

    Plasma spray-physical vapor deposition is a new process developed to produce coatings from the vapor phase. To achieve deposition from the vapor phase, the plasma-feedstock interaction inside the plasma torch, i.e., from the powder injection point to the nozzle exit, is critical. In this work, the plasma characteristics and the momentum and heat transfer between the plasma and powder feedstock at different torch input power levels were investigated theoretically to optimize the net plasma torch power, among other important factors such as the plasma gas composition, powder feed rate, and carrier gas. The plasma characteristics were calculated using the CEA2 code, and the plasma-feedstock interaction was studied inside the torch nozzle at low-pressure (20-25 kPa) conditions. A particle dynamics model was introduced to compute the particle velocity, coupled with Xi Chen's drag model for nonevaporating particles. The results show that the energy transferred to the particles and the coating morphology are greatly influenced by the plasma gas characteristics and the particle dynamics inside the nozzle. The heat transfer between the plasma gas and feedstock material increased with the net torch power up to an optimum at 64 kW, at which a maximum of 3.4% of the available plasma energy was absorbed by the feedstock powder. Experimental results using agglomerated 7-8 wt.% yttria-stabilized zirconia (YSZ) powder as feedstock material confirmed the theoretical predictions.

  16. Plasma-Powder Feedstock Interaction During Plasma Spray-Physical Vapor Deposition

    Science.gov (United States)

    Anwaar, Aleem; Wei, Lianglinag; Guo, Hongbo; Zhang, Baopeng

    2017-01-01

    Plasma spray-physical vapor deposition is a new process developed to produce coatings from the vapor phase. To achieve deposition from the vapor phase, the plasma-feedstock interaction inside the plasma torch, i.e., from the powder injection point to the nozzle exit, is critical. In this work, the plasma characteristics and the momentum and heat transfer between the plasma and powder feedstock at different torch input power levels were investigated theoretically to optimize the net plasma torch power, among other important factors such as the plasma gas composition, powder feed rate, and carrier gas. The plasma characteristics were calculated using the CEA2 code, and the plasma-feedstock interaction was studied inside the torch nozzle at low-pressure (20-25 kPa) conditions. A particle dynamics model was introduced to compute the particle velocity, coupled with Xi Chen's drag model for nonevaporating particles. The results show that the energy transferred to the particles and the coating morphology are greatly influenced by the plasma gas characteristics and the particle dynamics inside the nozzle. The heat transfer between the plasma gas and feedstock material increased with the net torch power up to an optimum at 64 kW, at which a maximum of 3.4% of the available plasma energy was absorbed by the feedstock powder. Experimental results using agglomerated 7-8 wt.% yttria-stabilized zirconia (YSZ) powder as feedstock material confirmed the theoretical predictions.

  17. Incorporating parameter uncertainty in Bayesian segmentation models: application to hippocampal subfield volumetry.

    Science.gov (United States)

    Iglesias, Juan Eugenio; Sabuncu, Mert Rory; Van Leemput, Koen

    2012-01-01

    Many successful segmentation algorithms are based on Bayesian models in which prior anatomical knowledge is combined with the available image information. However, these methods typically have many free parameters that are estimated to obtain point estimates only, whereas a faithful Bayesian analysis would also consider all possible alternate values these parameters may take. In this paper, we propose to incorporate the uncertainty of the free parameters in Bayesian segmentation models more accurately by using Monte Carlo sampling. We demonstrate our technique by sampling atlas warps in a recent method for hippocampal subfield segmentation, and show a significant improvement in an Alzheimer's disease classification task. As an additional benefit, the method also yields informative "error bars" on the segmentation results for each of the individual sub-structures.

  18. Incorporating Parameter Uncertainty in Bayesian Segmentation Models: Application to Hippocampal Subfield Volumetry

    DEFF Research Database (Denmark)

    Iglesias, J. E.; Sabuncu, M. R.; Van Leemput, Koen

    2012-01-01

    in a recent method for hippocampal subfield segmentation, and show a significant improvement in an Alzheimer’s disease classification task. As an additional benefit, the method also yields informative “error bars” on the segmentation results for each of the individual sub-structures.......Many successful segmentation algorithms are based on Bayesian models in which prior anatomical knowledge is combined with the available image information. However, these methods typically have many free parameters that are estimated to obtain point estimates only, whereas a faithful Bayesian...... analysis would also consider all possible alternate values these parameters may take. In this paper, we propose to incorporate the uncertainty of the free parameters in Bayesian segmentation models more accurately by using Monte Carlo sampling. We demonstrate our technique by sampling atlas warps...

  19. Algorithm for break even availability allocation in process system modification using deterministic valuation model incorporating reliability

    Energy Technology Data Exchange (ETDEWEB)

    Shouri, P.V.; Sreejith, P.S. [Division of Mechanical Engineering, School of Engineering, Cochin University of Science and Technology (CUSAT), Cochin 682 022, Kerala (India)

    2008-06-15

    In the present scenario of energy demand overtaking energy supply, top priority is given for energy conservation programs and policies. As a result, most existing systems are redesigned or modified with a view for improving energy efficiency. Often these modifications can have an impact on process system configuration, thereby affecting process system reliability. The paper presents a model for valuation of process systems incorporating reliability that can be used to determine the change in process system value resulting from system modification. The model also determines the break even system availability and presents an algorithm for allocation of component reliabilities of the modified system based on the break even system availability. The developed equations are applied to a steam power plant to study the effect of various operating parameters on system value. (author)

  20. SIFT and shape information incorporated into fluid model for non-rigid registration of ultrasound images.

    Science.gov (United States)

    Lu, Xuesong; Zhang, Su; Yang, Wei; Chen, Yazhu

    2010-11-01

    Non-rigid registration of ultrasound images takes an important role in image-guided radiotherapy and surgery. Intensity-based method is popular in non-rigid registration, but it is sensitive to intensity variations and has problems with matching small structure features for the existence of speckles in ultrasound images. In this paper, we develop a new algorithm integrating the intensity and feature of ultrasound images. Both global shape information and local keypoint information extracted by scale invariant feature transform (SIFT) are incorporated into intensity similarity measure as the body force of viscous fluid model in a Bayesian framework. Experiments were performed on synthetic and clinical ultrasound images of breast and kidney. It is shown that shape and keypoint information significantly improves fluid model for non-rigid registration, especially for alignment of small structure features in accuracy.

  1. A Loudness Model for Time-Varying Sounds Incorporating Binaural Inhibition

    Directory of Open Access Journals (Sweden)

    Brian C. J. Moore

    2016-12-01

    Full Text Available This article describes a model of loudness for time-varying sounds that incorporates the concept of binaural inhibition, namely, that the signal applied to one ear can reduce the internal response to a signal at the other ear. For each ear, the model includes the following: a filter to allow for the effects of transfer of sound through the outer and middle ear; a short-term spectral analysis with greater frequency resolution at low than at high frequencies; calculation of an excitation pattern, representing the magnitudes of the outputs of the auditory filters as a function of center frequency; application of a compressive nonlinearity to the output of each auditory filter; and smoothing over time of the resulting instantaneous specific loudness pattern using an averaging process resembling an automatic gain control. The resulting short-term specific loudness patterns are used to calculate broadly tuned binaural inhibition functions, the amount of inhibition depending on the relative short-term specific loudness at the two ears. The inhibited specific loudness patterns are summed across frequency to give an estimate of the short-term loudness for each ear. The overall short-term loudness is calculated as the sum of the short-term loudness values for the two ears. The long-term loudness for each ear is calculated by smoothing the short-term loudness for that ear, again by a process resembling automatic gain control, and the overall loudness impression is obtained by summing the long-term loudness across ears. The predictions of the model are more accurate than those of an earlier model that did not incorporate binaural inhibition.

  2. A Loudness Model for Time-Varying Sounds Incorporating Binaural Inhibition.

    Science.gov (United States)

    Moore, Brian C J; Glasberg, Brian R; Varathanathan, Ajanth; Schlittenlacher, Josef

    2016-01-01

    This article describes a model of loudness for time-varying sounds that incorporates the concept of binaural inhibition, namely, that the signal applied to one ear can reduce the internal response to a signal at the other ear. For each ear, the model includes the following: a filter to allow for the effects of transfer of sound through the outer and middle ear; a short-term spectral analysis with greater frequency resolution at low than at high frequencies; calculation of an excitation pattern, representing the magnitudes of the outputs of the auditory filters as a function of center frequency; application of a compressive nonlinearity to the output of each auditory filter; and smoothing over time of the resulting instantaneous specific loudness pattern using an averaging process resembling an automatic gain control. The resulting short-term specific loudness patterns are used to calculate broadly tuned binaural inhibition functions, the amount of inhibition depending on the relative short-term specific loudness at the two ears. The inhibited specific loudness patterns are summed across frequency to give an estimate of the short-term loudness for each ear. The overall short-term loudness is calculated as the sum of the short-term loudness values for the two ears. The long-term loudness for each ear is calculated by smoothing the short-term loudness for that ear, again by a process resembling automatic gain control, and the overall loudness impression is obtained by summing the long-term loudness across ears. The predictions of the model are more accurate than those of an earlier model that did not incorporate binaural inhibition.

  3. Incorporation of experimentally-derived fiber orientation into a structural constitutive model for planar collagenous tissues.

    Science.gov (United States)

    Sacks, Michael S

    2003-04-01

    Structural constitutive models integrate information on tissue composition and structure, avoiding ambiguities in material characterization. However, critical structural information (such as fiber orientation) must be modeled using assumed statistical distributions, with the distribution parameters estimated from fits to the mechanical test data. Thus, full realization of structural approaches continues to be limited without direct quantitative structural information for direct implementation or to validate model predictions. In the present study, fiber orientation information obtained using small angle light scattering (SALS) was directly incorporated into a structural constitutive model based on work by Lanir (J. Biomech., v. 16, pp. 1-12, 1983). Demonstration of the model was performed using existing biaxial mechanical and fiber orientation data for native bovine pericardium (Sacks and Chuong, ABME, v.26, pp. 892-902, 1998). The structural constitutive model accurately predicted the complete measured biaxial mechanical response. An important aspect of this approach is that only a single equibiaxial test to determine the effective fiber stress-strain response and the SALS-derived fiber orientation distribution were required to determine the complete planar biaxial mechanical response. Changes in collagen fiber crimp under equibiaxial strain suggest that, at the meso-scale, fiber deformations follow the global tissue strains. This result supports the assumption of affine strain to estimate the fiber strains. However, future evaluations will have to be performed for tissue subjected to a wider range of strain to more fully validate the current approach.

  4. An agent-based model of stock markets incorporating momentum investors

    Science.gov (United States)

    Wei, J. R.; Huang, J. P.; Hui, P. M.

    2013-06-01

    It has been widely accepted that there exist investors who adopt momentum strategies in real stock markets. Understanding the momentum behavior is of both academic and practical importance. For this purpose, we propose and study a simple agent-based model of trading incorporating momentum investors and random investors. The random investors trade randomly all the time. The momentum investors could be idle, buying or selling, and they decide on their action by implementing an action threshold that assesses the most recent price movement. The model is able to reproduce some of the stylized facts observed in real markets, including the fat-tails in returns, weak long-term correlation and scaling behavior in the kurtosis of returns. An analytic treatment of the model relates the model parameters to several quantities that can be extracted from real data sets. To illustrate how the model can be applied, we show that real market data can be used to constrain the model parameters, which in turn provide information on the behavior of momentum investors in different markets.

  5. Tutorial in medical decision modeling incorporating waiting lines and queues using discrete event simulation.

    Science.gov (United States)

    Jahn, Beate; Theurl, Engelbert; Siebert, Uwe; Pfeiffer, Karl-Peter

    2010-01-01

    In most decision-analytic models in health care, it is assumed that there is treatment without delay and availability of all required resources. Therefore, waiting times caused by limited resources and their impact on treatment effects and costs often remain unconsidered. Queuing theory enables mathematical analysis and the derivation of several performance measures of queuing systems. Nevertheless, an analytical approach with closed formulas is not always possible. Therefore, simulation techniques are used to evaluate systems that include queuing or waiting, for example, discrete event simulation. To include queuing in decision-analytic models requires a basic knowledge of queuing theory and of the underlying interrelationships. This tutorial introduces queuing theory. Analysts and decision-makers get an understanding of queue characteristics, modeling features, and its strength. Conceptual issues are covered, but the emphasis is on practical issues like modeling the arrival of patients. The treatment of coronary artery disease with percutaneous coronary intervention including stent placement serves as an illustrative queuing example. Discrete event simulation is applied to explicitly model resource capacities, to incorporate waiting lines and queues in the decision-analytic modeling example.

  6. Upgrading of petroleum oil feedstocks using alkali metals and hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Gordon, John Howard

    2014-09-09

    A method of upgrading an oil feedstock by removing heteroatoms and/or one or more heavy metals from the oil feedstock composition. This method reacts the oil feedstock with an alkali metal and an upgradant hydrocarbon. The alkali metal reacts with a portion of the heteroatoms and/or one or more heavy metals to form an inorganic phase separable from the organic oil feedstock material. The upgradant hydrocarbon bonds to the oil feedstock material and increases the number of carbon atoms in the product. This increase in the number of carbon atoms of the product increases the energy value of the resulting oil feedstock.

  7. Upgrading of petroleum oil feedstocks using alkali metals and hydrocarbons

    Science.gov (United States)

    Gordon, John Howard

    2014-09-09

    A method of upgrading an oil feedstock by removing heteroatoms and/or one or more heavy metals from the oil feedstock composition. This method reacts the oil feedstock with an alkali metal and an upgradant hydrocarbon. The alkali metal reacts with a portion of the heteroatoms and/or one or more heavy metals to form an inorganic phase separable from the organic oil feedstock material. The upgradant hydrocarbon bonds to the oil feedstock material and increases the number of carbon atoms in the product. This increase in the number of carbon atoms of the product increases the energy value of the resulting oil feedstock.

  8. Benefits of incorporating spatial organisation of catchments for a semi-distributed hydrological model

    Science.gov (United States)

    Schumann, Andreas; Oppel, Henning

    2017-04-01

    To represent the hydrological behaviour of catchments a model should reproduce/reflect the hydrologically most relevant catchment characteristics. These are heterogeneously distributed within a watershed but often interrelated and subject of a certain spatial organisation. Since common models are mostly based on fundamental assumptions about hydrological processes, the reduction of variance of catchment properties as well as the incorporation of the spatial organisation of the catchment is desirable. We have developed a method that combines the idea of the width-function used for determination of the geomorphologic unit hydrograph with information about soil or topography. With this method we are able to assess the spatial organisation of selected catchment characteristics. An algorithm was developed that structures a watershed into sub-basins and other spatial units to minimise its heterogeneity. The outcomes of this algorithm are used for the spatial setup of a semi-distributed model. Since the spatial organisation of a catchment is not bound to a single characteristic, we have to embed information of multiple catchment properties. For this purpose we applied a fuzzy-based method to combine the spatial setup for multiple single characteristics into a union, optimal spatial differentiation. Utilizing this method, we are able to propose a spatial structure for a semi-distributed hydrological model, comprising the definition of sub-basins and a zonal classification within each sub-basin. Besides the improved spatial structuring, the performed analysis ameliorates modelling in another way. The spatial variability of catchment characteristics, which is considered by a minimum of heterogeneity in the zones, can be considered in a parameter constrained calibration scheme in a case study both options were used to explore the benefits of incorporating the spatial organisation and derived parameter constraints for the parametrisation of a HBV-96 model. We use two benchmark

  9. The dilemma of disappearing diatoms: Incorporating diatom dissolution data into palaeoenvironmental modelling and reconstruction

    Science.gov (United States)

    Ryves, David B.; Battarbee, Richard W.; Fritz, Sherilyn C.

    2009-01-01

    Taphonomic issues pose fundamental challenges for Quaternary scientists to recover environmental signals from biological proxies and make accurate inferences of past environments. The problem of microfossil preservation, specifically diatom dissolution, remains an important, but often overlooked, source of error in both qualitative and quantitative reconstructions of key variables from fossil samples, especially those using relative abundance data. A first step to tackling this complex issue is establishing an objective method of assessing preservation (here, diatom dissolution) that can be applied by different analysts and incorporated into routine counting strategies. Here, we establish a methodology for assessment of diatom dissolution under standard light microscopy (LM) illustrated with morphological criteria for a range of major diatom valve shapes. Dissolution data can be applied to numerical models (transfer functions) from contemporary samples, and to fossil material to aid interpretation of stratigraphic profiles and taphonomic pathways of individual taxa. Using a surface sediment diatom-salinity training set from the Northern Great Plains (NGP) as an example, we explore a variety of approaches to include dissolution data in salinity inference models indirectly and directly. Results show that dissolution data can improve models, with apparent dissolution-adjusted error (RMSE) up to 15% lower than their unadjusted counterparts. Internal validation suggests improvements are more modest, with bootstrapped prediction errors (RMSEP) up to 10% lower. When tested on a short core from Devils Lake, North Dakota, which has a historical record of salinity, dissolution-adjusted models infer higher values compared to unadjusted models during peak salinity of the 1930s-1940s Dust Bowl but nonetheless significantly underestimate peak values. Site-specific factors at Devils Lake associated with effects of lake level change on taphonomy (preservation and re

  10. Overall challenges in incorporating micro-mechanical models into materials design process

    Science.gov (United States)

    Bennoura, M.; Aboutajeddine, A.

    2016-10-01

    Using materials in engineering design has historically been handled using the paradigm of selecting appropriate materials from the finite set of available material databases. Recent trends, however, have moved toward the tailoring of materials that meet the overall system performance requirements, based on a process called material design. An important building block of this process is micromechanical models that relate microstructure to proprieties. Unfortunately, these models remain short and include a lot of uncertainties from assumptions and idealizations, which, unavoidably, impacts material design strategy. In this work, candidate methods to deal with micromechanical models uncertainties and their drawbacks in material design are investigated. Robust design methods for quantifying uncertainty and managing or mitigating its impact on design performances are reviewed first. These methods include principles for classifying uncertainty, mathematical techniques for evaluating its level degree, and design methods for performing and generating design alternatives, that are relatively insensitive to sources of uncertainty and flexible for admitting design changes or variations. The last section of this paper addresses the limits of the existing approaches from material modelling perspective and identifies the research opportunities to overcome the impediment of incorporating micromechanical models in material design process.

  11. Incorporating experimental design and error into coalescent/mutation models of population history.

    Science.gov (United States)

    Knudsen, Bjarne; Miyamoto, Michael M

    2007-08-01

    Coalescent theory provides a powerful framework for estimating the evolutionary, demographic, and genetic parameters of a population from a small sample of individuals. Current coalescent models have largely focused on population genetic factors (e.g., mutation, population growth, and migration) rather than on the effects of experimental design and error. This study develops a new coalescent/mutation model that accounts for unobserved polymorphisms due to missing data, sequence errors, and multiple reads for diploid individuals. The importance of accommodating these effects of experimental design and error is illustrated with evolutionary simulations and a real data set from a population of the California sea hare. In particular, a failure to account for sequence errors can lead to overestimated mutation rates, inflated coalescent times, and inappropriate conclusions about the population. This current model can now serve as a starting point for the development of newer models with additional experimental and population genetic factors. It is currently implemented as a maximum-likelihood method, but this model may also serve as the basis for the development of Bayesian approaches that incorporate experimental design and error.

  12. A transient electrochemical model incorporating the Donnan effect for all-vanadium redox flow batteries

    Science.gov (United States)

    Lei, Y.; Zhang, B. W.; Bai, B. F.; Zhao, T. S.

    2015-12-01

    In a typical all-vanadium redox flow battery (VRFB), the ion exchange membrane is directly exposed in the bulk electrolyte. Consequently, the Donnan effect occurs at the membrane/electrolyte (M/E) interfaces, which is critical for modeling of ion transport through the membrane and the prediction of cell performance. However, unrealistic assumptions in previous VRFB models, such as electroneutrality and discontinuities of ionic potential and ion concentrations at the M/E interfaces, lead to simulated results inconsistent with the theoretical analysis of ion adsorption in the membrane. To address this issue, this work proposes a continuous-Donnan effect-model using the Poisson equation coupled with the Nernst-Planck equation to describe variable distributions at the M/E interfaces. A one-dimensional transient VRFB model incorporating the Donnan effect is developed. It is demonstrated that the present model enables (i) a more realistic simulation of continuous distributions of ion concentrations and ionic potential throughout the membrane and (ii) a more comprehensive estimation for the effect of the fixed charge concentration on species crossover across the membrane and cell performance.

  13. a Maximum Entropy Model of the Bearded Capuchin Monkey Habitat Incorporating Topography and Spectral Unmixing Analysis

    Science.gov (United States)

    Howard, A. M.; Bernardes, S.; Nibbelink, N.; Biondi, L.; Presotto, A.; Fragaszy, D. M.; Madden, M.

    2012-07-01

    Movement patterns of bearded capuchin monkeys (Cebus (Sapajus) libidinosus) in northeastern Brazil are likely impacted by environmental features such as elevation, vegetation density, or vegetation type. Habitat preferences of these monkeys provide insights regarding the impact of environmental features on species ecology and the degree to which they incorporate these features in movement decisions. In order to evaluate environmental features influencing movement patterns and predict areas suitable for movement, we employed a maximum entropy modelling approach, using observation points along capuchin monkey daily routes as species presence points. We combined these presence points with spatial data on important environmental features from remotely sensed data on land cover and topography. A spectral mixing analysis procedure was used to generate fraction images that represent green vegetation, shade and soil of the study area. A Landsat Thematic Mapper scene of the area of study was geometrically and atmospherically corrected and used as input in a Minimum Noise Fraction (MNF) procedure and a linear spectral unmixing approach was used to generate the fraction images. These fraction images and elevation were the environmental layer inputs for our logistic MaxEnt model of capuchin movement. Our models' predictive power (test AUC) was 0.775. Areas of high elevation (>450 m) showed low probabilities of presence, and percent green vegetation was the greatest overall contributor to model AUC. This work has implications for predicting daily movement patterns of capuchins in our field site, as suitability values from our model may relate to habitat preference and facility of movement.

  14. Incorporating plant fossil data into species distribution models is not straightforward: Pitfalls and possible solutions

    Science.gov (United States)

    Moreno-Amat, Elena; Rubiales, Juan Manuel; Morales-Molino, César; García-Amorena, Ignacio

    2017-08-01

    The increasing development of species distribution models (SDMs) using palaeodata has created new prospects to address questions of evolution, ecology and biogeography from wider perspectives. Palaeobotanical data provide information on the past distribution of taxa at a given time and place and its incorporation on modelling has contributed to advancing the SDM field. This has allowed, for example, to calibrate models under past climate conditions or to validate projected models calibrated on current species distributions. However, these data also bear certain shortcomings when used in SDMs that may hinder the resulting ecological outcomes and eventually lead to misleading conclusions. Palaeodata may not be equivalent to present data, but instead frequently exhibit limitations and biases regarding species representation, taxonomy and chronological control, and their inclusion in SDMs should be carefully assessed. The limitations of palaeobotanical data applied to SDM studies are infrequently discussed and often neglected in the modelling literature; thus, we argue for the more careful selection and control of these data. We encourage authors to use palaeobotanical data in their SDMs studies and for doing so, we propose some recommendations to improve the robustness, reliability and significance of palaeo-SDM analyses.

  15. Statistical integration of tracking and vessel survey data to incorporate life history differences in habitat models.

    Science.gov (United States)

    Yamamoto, Takashi; Watanuki, Yutaka; Hazen, Elliott L; Nishizawa, Bungo; Sasaki, Hiroko; Takahashi, Akinori

    2015-12-01

    Habitat use is often examined at a species or population level, but patterns likely differ within a species, as a function of the sex, breeding colony, and current breeding status of individuals. Hence, within-species differences should be considered in habitat models when analyzing and predicting species distributions, such as predicted responses to expected climate change scenarios. Also, species' distribution data obtained by different methods (vessel-survey and individual tracking) are often analyzed separately rather than integrated to improve predictions. Here, we eventually fit generalized additive models for Streaked Shearwaters Calonectris leuconelas using tracking data from two different breeding colonies in the Northwestern Pacific and visual observer data collected during a research cruise off the coast of western Japan. The tracking-based models showed differences among patterns of relative density distribution as a function of life history category (colony, sex, and breeding conditions). The integrated tracking-based and vessel-based bird count model incorporated ecological states rather than predicting a single surface for the entire species. This study highlights both the importance of including ecological and life history data and integrating multiple data types (tag-based tracking and vessel count) when examining species-environment relationships, ultimately advancing the capabilities of species distribution models.

  16. Incorporating teleconnection information into reservoir operating policies using Stochastic Dynamic Programming and a Hidden Markov Model

    Science.gov (United States)

    Turner, Sean; Galelli, Stefano; Wilcox, Karen

    2015-04-01

    Water reservoir systems are often affected by recurring large-scale ocean-atmospheric anomalies, known as teleconnections, that cause prolonged periods of climatological drought. Accurate forecasts of these events -- at lead times in the order of weeks and months -- may enable reservoir operators to take more effective release decisions to improve the performance of their systems. In practice this might mean a more reliable water supply system, a more profitable hydropower plant or a more sustainable environmental release policy. To this end, climate indices, which represent the oscillation of the ocean-atmospheric system, might be gainfully employed within reservoir operating models that adapt the reservoir operation as a function of the climate condition. This study develops a Stochastic Dynamic Programming (SDP) approach that can incorporate climate indices using a Hidden Markov Model. The model simulates the climatic regime as a hidden state following a Markov chain, with the state transitions driven by variation in climatic indices, such as the Southern Oscillation Index. Time series analysis of recorded streamflow data reveals the parameters of separate autoregressive models that describe the inflow to the reservoir under three representative climate states ("normal", "wet", "dry"). These models then define inflow transition probabilities for use in a classic SDP approach. The key advantage of the Hidden Markov Model is that it allows conditioning the operating policy not only on the reservoir storage and the antecedent inflow, but also on the climate condition, thus potentially allowing adaptability to a broader range of climate conditions. In practice, the reservoir operator would effect a water release tailored to a specific climate state based on available teleconnection data and forecasts. The approach is demonstrated on the operation of a realistic, stylised water reservoir with carry-over capacity in South-East Australia. Here teleconnections relating

  17. Halophytes Energy Feedstocks: Back to Our Roots

    Science.gov (United States)

    Hendricks, Robert C.; Bushnell, Dennis M.

    2008-01-01

    Of the Earth s landmass, approx.43% is arid or semi-arid, and 97% of the Earth s water is seawater. Halophytes are salt-tolerant plants (micro and macro) that can prosper in seawater or brackish waters and are common feedstocks for fuel and food (fuel-food feedstocks) in depressed countries. Two types, broadly classed as coastal and desert, can be found in marshes, coastal planes, inland lakes, and deserts. Major arid or semi-arid halophyte agriculture problems include pumping and draining the required high volumes of irrigation water from sea or ocean sources. Also, not all arid or semi-arid lands are suitable for crops. Benefits of halophyte agriculture include freeing up arable land and freshwater resources, cleansing the environment, decontaminating soils, desalinating brackish waters, and carbon sequestration. Sea and ocean halophyte agriculture problems include storms, transport, and diffuse harvesting. Benefits include available nutrients, ample water, and Sun. Careful attention to details and use of saline agriculture fuel feedstocks are required to prevent anthropogenic disasters. It is shown that the potential for fuel-food feedstock halophyte production is high; based on test plot data, it could supply 421.4 Quad, or 94% of the 2004 world energy consumption and sequester carbon, with major impact on the Triangle of Conflicts.

  18. Chemical or feedstock recycling of WEEE products

    NARCIS (Netherlands)

    Tukker, A.

    2012-01-01

    This chapter reviews initiatives with regard to chemical or feedstock recycling of plastics waste from electrical and electronic products. eurostat estimates the amount of waste from electrical and electronic products that is collected is 2.2 million tonnes. Roughly 20% of this waste consists of pla

  19. Incorporating Single-nucleotide Polymorphisms Into the Lyman Model to Improve Prediction of Radiation Pneumonitis

    Energy Technology Data Exchange (ETDEWEB)

    Tucker, Susan L., E-mail: sltucker@mdanderson.org [Department of Bioinformatics and Computational Biology, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Li Minghuan [Department of Radiation Oncology, Shandong Cancer Hospital, Jinan, Shandong (China); Xu Ting; Gomez, Daniel [Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Yuan Xianglin [Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan (China); Yu Jinming [Department of Radiation Oncology, Shandong Cancer Hospital, Jinan, Shandong (China); Liu Zhensheng; Yin Ming; Guan Xiaoxiang; Wang Lie; Wei Qingyi [Department of Epidemiology, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Mohan, Radhe [Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Vinogradskiy, Yevgeniy [University of Colorado School of Medicine, Aurora, Colorado (United States); Martel, Mary [Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Liao Zhongxing [Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas (United States)

    2013-01-01

    Purpose: To determine whether single-nucleotide polymorphisms (SNPs) in genes associated with DNA repair, cell cycle, transforming growth factor-{beta}, tumor necrosis factor and receptor, folic acid metabolism, and angiogenesis can significantly improve the fit of the Lyman-Kutcher-Burman (LKB) normal-tissue complication probability (NTCP) model of radiation pneumonitis (RP) risk among patients with non-small cell lung cancer (NSCLC). Methods and Materials: Sixteen SNPs from 10 different genes (XRCC1, XRCC3, APEX1, MDM2, TGF{beta}, TNF{alpha}, TNFR, MTHFR, MTRR, and VEGF) were genotyped in 141 NSCLC patients treated with definitive radiation therapy, with or without chemotherapy. The LKB model was used to estimate the risk of severe (grade {>=}3) RP as a function of mean lung dose (MLD), with SNPs and patient smoking status incorporated into the model as dose-modifying factors. Multivariate analyses were performed by adding significant factors to the MLD model in a forward stepwise procedure, with significance assessed using the likelihood-ratio test. Bootstrap analyses were used to assess the reproducibility of results under variations in the data. Results: Five SNPs were selected for inclusion in the multivariate NTCP model based on MLD alone. SNPs associated with an increased risk of severe RP were in genes for TGF{beta}, VEGF, TNF{alpha}, XRCC1 and APEX1. With smoking status included in the multivariate model, the SNPs significantly associated with increased risk of RP were in genes for TGF{beta}, VEGF, and XRCC3. Bootstrap analyses selected a median of 4 SNPs per model fit, with the 6 genes listed above selected most often. Conclusions: This study provides evidence that SNPs can significantly improve the predictive ability of the Lyman MLD model. With a small number of SNPs, it was possible to distinguish cohorts with >50% risk vs <10% risk of RP when they were exposed to high MLDs.

  20. Incorporation of caffeine into a quantitative model of fatigue and sleep.

    Science.gov (United States)

    Puckeridge, M; Fulcher, B D; Phillips, A J K; Robinson, P A

    2011-03-21

    A recent physiologically based model of human sleep is extended to incorporate the effects of caffeine on sleep-wake timing and fatigue. The model includes the sleep-active neurons of the hypothalamic ventrolateral preoptic area (VLPO), the wake-active monoaminergic brainstem populations (MA), their interactions with cholinergic/orexinergic (ACh/Orx) input to MA, and circadian and homeostatic drives. We model two effects of caffeine on the brain due to competitive antagonism of adenosine (Ad): (i) a reduction in the homeostatic drive and (ii) an increase in cholinergic activity. By comparing the model output to experimental data, constraints are determined on the parameters that describe the action of caffeine on the brain. In accord with experiment, the ranges of these parameters imply significant variability in caffeine sensitivity between individuals, with caffeine's effectiveness in reducing fatigue being highly dependent on an individual's tolerance, and past caffeine and sleep history. Although there are wide individual differences in caffeine sensitivity and thus in parameter values, once the model is calibrated for an individual it can be used to make quantitative predictions for that individual. A number of applications of the model are examined, using exemplar parameter values, including: (i) quantitative estimation of the sleep loss and the delay to sleep onset after taking caffeine for various doses and times; (ii) an analysis of the system's stable states showing that the wake state during sleep deprivation is stabilized after taking caffeine; and (iii) comparing model output successfully to experimental values of subjective fatigue reported in a total sleep deprivation study examining the reduction of fatigue with caffeine. This model provides a framework for quantitatively assessing optimal strategies for using caffeine, on an individual basis, to maintain performance during sleep deprivation.

  1. A neural population model incorporating dopaminergic neurotransmission during complex voluntary behaviors.

    Directory of Open Access Journals (Sweden)

    Stefan Fürtinger

    2014-11-01

    Full Text Available Assessing brain activity during complex voluntary motor behaviors that require the recruitment of multiple neural sites is a field of active research. Our current knowledge is primarily based on human brain imaging studies that have clear limitations in terms of temporal and spatial resolution. We developed a physiologically informed non-linear multi-compartment stochastic neural model to simulate functional brain activity coupled with neurotransmitter release during complex voluntary behavior, such as speech production. Due to its state-dependent modulation of neural firing, dopaminergic neurotransmission plays a key role in the organization of functional brain circuits controlling speech and language and thus has been incorporated in our neural population model. A rigorous mathematical proof establishing existence and uniqueness of solutions to the proposed model as well as a computationally efficient strategy to numerically approximate these solutions are presented. Simulated brain activity during the resting state and sentence production was analyzed using functional network connectivity, and graph theoretical techniques were employed to highlight differences between the two conditions. We demonstrate that our model successfully reproduces characteristic changes seen in empirical data between the resting state and speech production, and dopaminergic neurotransmission evokes pronounced changes in modeled functional connectivity by acting on the underlying biological stochastic neural model. Specifically, model and data networks in both speech and rest conditions share task-specific network features: both the simulated and empirical functional connectivity networks show an increase in nodal influence and segregation in speech over the resting state. These commonalities confirm that dopamine is a key neuromodulator of the functional connectome of speech control. Based on reproducible characteristic aspects of empirical data, we suggest a number

  2. Estimating Biofuel Feedstock Water Footprints Using System Dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Inman, Daniel; Warner, Ethan; Stright, Dana; Macknick, Jordan; Peck, Corey

    2016-07-01

    Increased biofuel production has prompted concerns about the environmental tradeoffs of biofuels compared to petroleum-based fuels. Biofuel production in general, and feedstock production in particular, is under increased scrutiny. Water footprinting (measuring direct and indirect water use) has been proposed as one measure to evaluate water use in the context of concerns about depleting rural water supplies through activities such as irrigation for large-scale agriculture. Water footprinting literature has often been limited in one or more key aspects: complete assessment across multiple water stocks (e.g., vadose zone, surface, and ground water stocks), geographical resolution of data, consistent representation of many feedstocks, and flexibility to perform scenario analysis. We developed a model called BioSpatial H2O using a system dynamics modeling and database framework. BioSpatial H2O could be used to consistently evaluate the complete water footprints of multiple biomass feedstocks at high geospatial resolutions. BioSpatial H2O has the flexibility to perform simultaneous scenario analysis of current and potential future crops under alternative yield and climate conditions. In this proof-of-concept paper, we modeled corn grain (Zea mays L.) and soybeans (Glycine max) under current conditions as illustrative results. BioSpatial H2O links to a unique database that houses annual spatially explicit climate, soil, and plant physiological data. Parameters from the database are used as inputs to our system dynamics model for estimating annual crop water requirements using daily time steps. Based on our review of the literature, estimated green water footprints are comparable to other modeled results, suggesting that BioSpatial H2O is computationally sound for future scenario analysis. Our modeling framework builds on previous water use analyses to provide a platform for scenario-based assessment. BioSpatial H2O's system dynamics is a flexible and user

  3. Horse manure as feedstock for anaerobic digestion.

    Science.gov (United States)

    Hadin, Sa; Eriksson, Ola

    2016-10-01

    Horse keeping is of great economic, social and environmental benefit for society, but causes environmental impacts throughout the whole chain from feed production to manure treatment. According to national statistics, the number of horses in Sweden is continually increasing and is currently approximately 360,000. This in turn leads to increasing amounts of horse manure that have to be managed and treated. Current practices could cause local and global environmental impacts due to poor performance or lack of proper management. Horse manure with its content of nutrients and organic material can however contribute to fertilisation of arable land and recovery of renewable energy following anaerobic digestion. At present anaerobic digestion of horse manure is not a common treatment. In this paper the potential for producing biogas and biofertiliser from horse manure is analysed based on a thorough literature review in combination with mathematical modelling and simulations. Anaerobic digestion was chosen as it has a high degree of resource conservation, both in terms of energy (biogas) and nutrients (digestate). Important factors regarding manure characteristics and operating factors in the biogas plant are identified. Two crucial factors are the type and amount of bedding material used, which has strong implications for feedstock characteristics, and the type of digestion method applied (dry or wet process). Straw and waste paper are identified as the best materials in an energy point of view. While the specific methane yield decreases with a high amount of bedding, the bedding material still makes a positive contribution to the energy balance. Thermophilic digestion increases the methane generation rate and yield, compared with mesophilic digestion, but the total effect is negligible.

  4. Petroacoustic Modelling of Heterolithic Sandstone Reservoirs: A Novel Approach to Gassmann Modelling Incorporating Sedimentological Constraints and NMR Porosity data

    Science.gov (United States)

    Matthews, S.; Lovell, M.; Davies, S. J.; Pritchard, T.; Sirju, C.; Abdelkarim, A.

    2012-12-01

    Heterolithic or 'shaly' sandstone reservoirs constitute a significant proportion of hydrocarbon resources. Petroacoustic models (a combination of petrophysics and rock physics) enhance the ability to extract reservoir properties from seismic data, providing a connection between seismic and fine-scale rock properties. By incorporating sedimentological observations these models can be better constrained and improved. Petroacoustic modelling is complicated by the unpredictable effects of clay minerals and clay-sized particles on geophysical properties. Such effects are responsible for erroneous results when models developed for "clean" reservoirs - such as Gassmann's equation (Gassmann, 1951) - are applied to heterolithic sandstone reservoirs. Gassmann's equation is arguably the most popular petroacoustic modelling technique in the hydrocarbon industry and is used to model elastic effects of changing reservoir fluid saturations. Successful implementation of Gassmann's equation requires well-constrained drained rock frame properties, which in heterolithic sandstones are heavily influenced by reservoir sedimentology, particularly clay distribution. The prevalent approach to categorising clay distribution is based on the Thomas - Stieber model (Thomas & Stieber, 1975), this approach is inconsistent with current understanding of 'shaly sand' sedimentology and omits properties such as sorting and grain size. The novel approach presented here demonstrates that characterising reservoir sedimentology constitutes an important modelling phase. As well as incorporating sedimentological constraints, this novel approach also aims to improve drained frame moduli estimates through more careful consideration of Gassmann's model assumptions and limitations. A key assumption of Gassmann's equation is a pore space in total communication with movable fluids. This assumption is often violated by conventional applications in heterolithic sandstone reservoirs where effective porosity, which

  5. Discrete Software Reliability Growth Modeling for Errors of Different Severity Incorporating Change-point Concept

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Several software reliability growth models (SRGM) have been developed to monitor the reliability growth during the testing phase of software development. In most of the existing research available in the literatures, it is considered that a similar testing effort is required on each debugging effort. However, in practice, different types of faults may require different amounts of testing efforts for their detection and removal. Consequently, faults are classified into three categories on the basis of severity: simple, hard and complex. This categorization may be extended to r type of faults on the basis of severity. Although some existing research in the literatures has incorporated this concept that fault removal rate (FRR) is different for different types of faults, they assume that the FRR remains constant during the overall testing period. On the contrary, it has been observed that as testing progresses, FRR changes due to changing testing strategy, skill, environment and personnel resources. In this paper, a general discrete SRGM is proposed for errors of different severity in software systems using the change-point concept. Then, the models are formulated for two particular environments. The models were validated on two real-life data sets. The results show better fit and wider applicability of the proposed models as to different types of failure datasets.

  6. Preliminary Assessment of Mercury Atmosphere-Surface Exchange Parameterizations for Incorporation into Chemical Transport Models

    Science.gov (United States)

    Khan, T.; Agnan, Y.; Obrist, D.; Selin, N. E.; Urban, N. R.; Wu, S.; Perlinger, J. A.

    2015-12-01

    Inadequate representation of process-based mechanisms of exchange behavior of elemental mercury (Hg0) and decoupled treatment of deposition and emission are two major limitations of parameterizations of atmosphere-surface exchange flux commonly incorporated into chemical transport models (CTMs). Of nineteen CTMs for Hg0 exchange we reviewed (ten global, nine regional), eight global and seven regional models have decoupled treatment of Hg0 deposition and emission, two global models include no parameterization to account for emission, and the remaining two regional models include coupled deposition and emission parameterizations (i.e., net atmosphere-surface exchange). The performance of atmosphere-surface exchange parameterizations in CTMs depends on parameterization uncertainty (in terms of both accuracy and precision) and feasibility of implementation. We provide a comparison of the performance of three available parameterizations of net atmosphere-surface exchange. To evaluate parameterization accuracy, we compare predicted exchange fluxes to field measurements conducted over a variety of surfaces compiled in a recently developed global database of terrestrial Hg0 surface-atmosphere exchange flux measurements. To assess precision, we estimate the sensitivity of predicted fluxes to the imprecision in parameter input values, and compare this sensitivity to that derived from analysis of the global Hg0 flux database. Feasibility of implementation is evaluated according to the availability of input parameters, computational requirements, and the adequacy of uncertainty representation. Based on this assessment, we provide suggestions for improved treatment of Hg0 net exchange processes in CTMs.

  7. Incorporation of memory effects in coarse-grained modeling via the Mori-Zwanzig formalism

    Science.gov (United States)

    Li, Zhen; Bian, Xin; Li, Xiantao; Karniadakis, George Em

    2015-12-01

    The Mori-Zwanzig formalism for coarse-graining a complex dynamical system typically introduces memory effects. The Markovian assumption of delta-correlated fluctuating forces is often employed to simplify the formulation of coarse-grained (CG) models and numerical implementations. However, when the time scales of a system are not clearly separated, the memory effects become strong and the Markovian assumption becomes inaccurate. To this end, we incorporate memory effects into CG modeling by preserving non-Markovian interactions between CG variables, and the memory kernel is evaluated directly from microscopic dynamics. For a specific example, molecular dynamics (MD) simulations of star polymer melts are performed while the corresponding CG system is defined by grouping many bonded atoms into single clusters. Then, the effective interactions between CG clusters as well as the memory kernel are obtained from the MD simulations. The constructed CG force field with a memory kernel leads to a non-Markovian dissipative particle dynamics (NM-DPD). Quantitative comparisons between the CG models with Markovian and non-Markovian approximations indicate that including the memory effects using NM-DPD yields similar results as the Markovian-based DPD if the system has clear time scale separation. However, for systems with small separation of time scales, NM-DPD can reproduce correct short-time properties that are related to how the system responds to high-frequency disturbances, which cannot be captured by the Markovian-based DPD model.

  8. Incorporation of memory effects in coarse-grained modeling via the Mori-Zwanzig formalism

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zhen; Bian, Xin; Karniadakis, George Em, E-mail: george-karniadakis@brown.edu [Division of Applied Mathematics, Brown University, Providence, Rhode Island 02912 (United States); Li, Xiantao [Department of Mathematics, Pennsylvania State University, University Park, Pennsylvania 16802 (United States)

    2015-12-28

    The Mori-Zwanzig formalism for coarse-graining a complex dynamical system typically introduces memory effects. The Markovian assumption of delta-correlated fluctuating forces is often employed to simplify the formulation of coarse-grained (CG) models and numerical implementations. However, when the time scales of a system are not clearly separated, the memory effects become strong and the Markovian assumption becomes inaccurate. To this end, we incorporate memory effects into CG modeling by preserving non-Markovian interactions between CG variables, and the memory kernel is evaluated directly from microscopic dynamics. For a specific example, molecular dynamics (MD) simulations of star polymer melts are performed while the corresponding CG system is defined by grouping many bonded atoms into single clusters. Then, the effective interactions between CG clusters as well as the memory kernel are obtained from the MD simulations. The constructed CG force field with a memory kernel leads to a non-Markovian dissipative particle dynamics (NM-DPD). Quantitative comparisons between the CG models with Markovian and non-Markovian approximations indicate that including the memory effects using NM-DPD yields similar results as the Markovian-based DPD if the system has clear time scale separation. However, for systems with small separation of time scales, NM-DPD can reproduce correct short-time properties that are related to how the system responds to high-frequency disturbances, which cannot be captured by the Markovian-based DPD model.

  9. Incorporation of memory effects in coarse-grained modeling via the Mori-Zwanzig formalism.

    Science.gov (United States)

    Li, Zhen; Bian, Xin; Li, Xiantao; Karniadakis, George Em

    2015-12-28

    The Mori-Zwanzig formalism for coarse-graining a complex dynamical system typically introduces memory effects. The Markovian assumption of delta-correlated fluctuating forces is often employed to simplify the formulation of coarse-grained (CG) models and numerical implementations. However, when the time scales of a system are not clearly separated, the memory effects become strong and the Markovian assumption becomes inaccurate. To this end, we incorporate memory effects into CG modeling by preserving non-Markovian interactions between CG variables, and the memory kernel is evaluated directly from microscopic dynamics. For a specific example, molecular dynamics (MD) simulations of star polymer melts are performed while the corresponding CG system is defined by grouping many bonded atoms into single clusters. Then, the effective interactions between CG clusters as well as the memory kernel are obtained from the MD simulations. The constructed CG force field with a memory kernel leads to a non-Markovian dissipative particle dynamics (NM-DPD). Quantitative comparisons between the CG models with Markovian and non-Markovian approximations indicate that including the memory effects using NM-DPD yields similar results as the Markovian-based DPD if the system has clear time scale separation. However, for systems with small separation of time scales, NM-DPD can reproduce correct short-time properties that are related to how the system responds to high-frequency disturbances, which cannot be captured by the Markovian-based DPD model.

  10. A Biomimetic Model of the Outer Plexiform Layer by Incorporating Memristive Devices

    CERN Document Server

    Gelencser, Andras; Toumazou, Christofer; Roska, Tamas

    2011-01-01

    In this paper we present a biorealistic model for the first part of the early vision processing by incorporating memristive nanodevices. The architecture of the proposed network is based on the organisation and functioning of the outer plexiform layer (OPL) in the vertebrate retina. We demonstrate that memristive devices are indeed a valuable building block for neuromorphic architectures, as their highly non-linear and adaptive response could be exploited for establishing ultra-dense networks with similar dynamics to their biological counterparts. We particularly show that hexagonal memristive grids can be employed for faithfully emulating the smoothing-effect occurring at the OPL for enhancing the dynamic range of the system. In addition, we employ a memristor-based thresholding scheme for detecting the edges of grayscale images, while the proposed system is also evaluated for its adaptation and fault tolerance capacity against different light or noise conditions as well as distinct device yields.

  11. Sustainable Use of Biotechnology for Bioenergy Feedstocks

    Science.gov (United States)

    Moon, Hong S.; Abercrombie, Jason M.; Kausch, Albert P.; Stewart, C. Neal

    2010-10-01

    Done correctly, cellulosic bioenergy should be both environmentally and economically beneficial. Carbon sequestration and decreased fossil fuel use are both worthy goals in developing next-generation biofuels. We believe that biotechnology will be needed to significantly improve yield and digestibility of dedicated perennial herbaceous biomass feedstocks, such as switchgrass and Miscanthus, which are native to the US and China, respectively. This Forum discusses the sustainability of herbaceous feedstocks relative to the regulation of biotechnology with regards to likely genetically engineered traits. The Forum focuses on two prominent countries wishing to develop their bioeconomies: the US and China. These two countries also share a political desire and regulatory frameworks to enable the commercialization and wide release of transgenic feedstocks with appropriate and safe new genetics. In recent years, regulators in both countries perform regular inspections of transgenic field releases and seriously consider compliance issues, even though the US framework is considered to be more mature and stringent. Transgene flow continues to be a pertinent environmental and regulatory issue with regards to transgenic plants. This concern is largely driven by consumer issues and ecological uncertainties. Regulators are concerned about large-scale releases of transgenic crops that have sexually compatible crops or wild relatives that can stably harbor transgenes via hybridization and introgression. Therefore, prior to the commercialization or extensive field testing of transgenic bioenergy feedstocks, we recommend that mechanisms that ensure biocontainment of transgenes be instituted, especially for perennial grasses. A cautionary case study will be presented in which a plant’s biology and ecology conspired against regulatory constraints in a non-biomass crop perennial grass (creeping bentgrass, Agrostis stolonifera), in which biocontainment was not attained. Appropriate

  12. Incorporating fragmentation and non-native species into distribution models to inform fluvial fish conservation.

    Science.gov (United States)

    Taylor, Andrew T; Papeş, Monica; Long, James M

    2017-09-06

    Fluvial fishes face increased imperilment from anthropogenic activities, but the specific factors contributing most to range declines are often poorly understood. For example, the shoal bass (Micropterus cataractae) is a fluvial-specialist species experiencing continual range loss, yet how perceived threats have contributed to range loss is largely unknown. We employed species distribution models (SDMs) to disentangle which factors are contributing most to shoal bass range loss by estimating a potential distribution based on natural abiotic factors and by estimating a series of current, occupied distributions that also incorporated variables characterizing land cover, non-native species, and fragmentation intensity (no fragmentation, dams only, and dams and large impoundments). Model construction allowed for interspecific relationships between non-native congeners and shoal bass to vary across fragmentation intensities. Results from the potential distribution model estimated shoal bass presence throughout much of their native basin, whereas models of current occupied distribution illustrated increased range loss as fragmentation intensified. Response curves from current occupied models indicated a potential interaction between fragmentation intensity and the relationship between shoal bass and non-native congeners, wherein non-natives may be favored at the highest fragmentation intensity. Response curves also suggested that free-flowing fragment lengths of > 100 km were necessary to support shoal bass presence. Model evaluation, including an independent validation, suggested models had favorable predictive and discriminative abilities. Similar approaches that use readily-available, diverse geospatial datasets may deliver insights into the biology and conservation needs of other fluvial species facing similar threats. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  13. Supply Deficit of Feedstock Oils for Carbon Black

    Institute of Scientific and Technical Information of China (English)

    Li Bingyan

    2007-01-01

    @@ Feedstock oils used for carbon blackproduction mainly include ethylene tar,anthracene oil and coal tar. With thegrowing output of carbon black in re-cent years, demand for feedstock oilshas increased constantly.

  14. Methodology for the Incorporation of Passive Component Aging Modeling into the RAVEN/ RELAP-7 Environment

    Energy Technology Data Exchange (ETDEWEB)

    Mandelli, Diego; Rabiti, Cristian; Cogliati, Joshua; Alfonsi, Andrea; Askin Guler; Tunc Aldemir

    2014-11-01

    Passive system, structure and components (SSCs) will degrade over their operation life and this degradation may cause to reduction in the safety margins of a nuclear power plant. In traditional probabilistic risk assessment (PRA) using the event-tree/fault-tree methodology, passive SSC failure rates are generally based on generic plant failure data and the true state of a specific plant is not reflected realistically. To address aging effects of passive SSCs in the traditional PRA methodology [1] does consider physics based models that account for the operating conditions in the plant, however, [1] does not include effects of surveillance/inspection. This paper represents an overall methodology for the incorporation of aging modeling of passive components into the RAVEN/RELAP-7 environment which provides a framework for performing dynamic PRA. Dynamic PRA allows consideration of both epistemic and aleatory uncertainties (including those associated with maintenance activities) in a consistent phenomenological and probabilistic framework and is often needed when there is complex process/hardware/software/firmware/ human interaction [2]. Dynamic PRA has gained attention recently due to difficulties in the traditional PRA modeling of aging effects of passive components using physics based models and also in the modeling of digital instrumentation and control systems. RAVEN (Reactor Analysis and Virtual control Environment) [3] is a software package under development at the Idaho National Laboratory (INL) as an online control logic driver and post-processing tool. It is coupled to the plant transient code RELAP-7 (Reactor Excursion and Leak Analysis Program) also currently under development at INL [3], as well as RELAP 5 [4]. The overall methodology aims to: • Address multiple aging mechanisms involving large number of components in a computational feasible manner where sequencing of events is conditioned on the physical conditions predicted in a simulation

  15. Model-Based Detection of Radioactive Contraband for Harbor Defense Incorporating Compton Scattering Physics

    Energy Technology Data Exchange (ETDEWEB)

    Candy, J V; Chambers, D H; Breitfeller, E F; Guidry, B L; Verbeke, J M; Axelrod, M A; Sale, K E; Meyer, A M

    2010-03-02

    The detection of radioactive contraband is a critical problem is maintaining national security for any country. Photon emissions from threat materials challenge both detection and measurement technologies especially when concealed by various types of shielding complicating the transport physics significantly. This problem becomes especially important when ships are intercepted by U.S. Coast Guard harbor patrols searching for contraband. The development of a sequential model-based processor that captures both the underlying transport physics of gamma-ray emissions including Compton scattering and the measurement of photon energies offers a physics-based approach to attack this challenging problem. The inclusion of a basic radionuclide representation of absorbed/scattered photons at a given energy along with interarrival times is used to extract the physics information available from the noisy measurements portable radiation detection systems used to interdict contraband. It is shown that this physics representation can incorporated scattering physics leading to an 'extended' model-based structure that can be used to develop an effective sequential detection technique. The resulting model-based processor is shown to perform quite well based on data obtained from a controlled experiment.

  16. Incorporation of a Wind Generator Model into a Dynamic Power Flow Analysis

    Directory of Open Access Journals (Sweden)

    Angeles-Camacho C.

    2011-07-01

    Full Text Available Wind energy is nowadays one of the most cost-effective and practical options for electric generation from renewable resources. However, increased penetration of wind generation causes the power networks to be more depend on, and vulnerable to, the varying wind speed. Modeling is a tool which can provide valuable information about the interaction between wind farms and the power network to which they are connected. This paper develops a realistic characterization of a wind generator. The wind generator model is incorporated into an algorithm to investigate its contribution to the stability of the power network in the time domain. The tool obtained is termed dynamic power flow. The wind generator model takes on account the wind speed and the reactive power consumption by induction generators. Dynamic power flow analysis is carried-out using real wind data at 10-minute time intervals collected for one meteorological station. The generation injected at one point into the network provides active power locally and is found to reduce global power losses. However, the power supplied is time-varying and causes fluctuations in voltage magnitude and power fl ows in transmission lines.

  17. Incorporating Student Mobility in Achievement Growth Modeling: A Cross-Classified Multiple Membership Growth Curve Model

    Science.gov (United States)

    Grady, Matthew W.; Beretvas, S. Natasha

    2010-01-01

    Multiple membership random effects models (MMREMs) have been developed for use in situations where individuals are members of multiple higher level organizational units. Despite their availability and the frequency with which multiple membership structures are encountered, no studies have extended the MMREM approach to hierarchical growth curve…

  18. Alternative, Renewable and Novel Feedstocks for Producing Chemicals

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2007-07-01

    Vision2020 and ITP directed the Alternative, Renewable and Novel Feedstocks project to identify industrial options and to determine the work required to make alternative, renewable and novel feedstock options attractive to the U.S. chemicals industry. This report presents the Alternative, Renewable and Novel Feedstocks project findings which were based on a technology review and industry workshop.

  19. Incorporating an extended dendritic growth model into the CAFE model for rapidly solidified non-dilute alloys

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Jie; Wang, Bo [State Key Laboratory of Advanced Special Steel, Shanghai University, Shanghai 200072 (China); Shanghai Engineering Technology Research Center of Special Casting, Shanghai 201605 (China); Zhao, Shunli [Research Institute, Baoshan Iron & Steel Co., Ltd, Shanghai 201900 (China); Wu, Guangxin [State Key Laboratory of Advanced Special Steel, Shanghai University, Shanghai 200072 (China); Shanghai Engineering Technology Research Center of Special Casting, Shanghai 201605 (China); Zhang, Jieyu, E-mail: zjy6162@staff.shu.edu.cn [State Key Laboratory of Advanced Special Steel, Shanghai University, Shanghai 200072 (China); Shanghai Engineering Technology Research Center of Special Casting, Shanghai 201605 (China); Yang, Zhiliang [State Key Laboratory of Advanced Special Steel, Shanghai University, Shanghai 200072 (China); Shanghai Engineering Technology Research Center of Special Casting, Shanghai 201605 (China)

    2016-05-25

    We have extended the dendritic growth model first proposed by Boettinger, Coriell and Trivedi (here termed EBCT) for microstructure simulations of rapidly solidified non-dilute alloys. The temperature-dependent distribution coefficient, obtained from calculations of phase equilibria, and the continuous growth model (CGM) were adopted in the present EBCT model to describe the solute trapping behaviors. The temperature dependence of the physical properties, which were not used in previous dendritic growth models, were also considered in the present EBCT model. These extensions allow the present EBCT model to be used for microstructure simulations of non-dilute alloys. The comparison of the present EBCT model with the BCT model proves that the considerations of the distribution coefficient and physical properties are necessary for microstructure simulations, especially for small particles with high undercoolings. Finally, the EBCT model was incorporated into the cellular automaton-finite element (CAFE) model to simulate microstructures of gas-atomized ASP30 high speed steel particles that were then compared with experimental results. Both the simulated and experimental results reveal that a columnar dendritic microstructure preferentially forms in small particles and an equiaxed microstructure forms otherwise. The applications of the present EBCT model provide a convenient way to predict the microstructure of non-dilute alloys. - Highlights: • A dendritic growth model was developed considering non-equilibrium distribution coefficient. • The physical properties with temperature dependence were considered in the extended model. • The extended model can be used to non-dilute alloys and the extensions are necessary in small particles. • Microstructure of ASP30 steel was investigated using the present model and verified by experiment.

  20. A land use regression model incorporating data on industrial point source pollution

    Institute of Scientific and Technical Information of China (English)

    Li Chen; Yuming Wang; Peiwu Li; Yaqin Ji; Shaofei Kong; Zhiyong Li; Zhipeng Bai

    2012-01-01

    Advancing the understanding of the spatial aspects of air pollution in the city regional environment is an area where improved methods can be of great benefit to exposure assessment and polcy support.We created land use regression (LUR) models for SO2,NO2 and PM10for Tianjin,China.Traffic volumes,road networks,land use data,population density,meteorological conditions,physical conditions and satellite-derived greenness,brightness and wetness were used for predicting SO2,NO2 and PM10 concentrations.We incorporated data on industrial point sources to improve LUR model performance.In order to consider the impact of different sources,we calculated the PSIndex,LSIndex and area of different land use types (agricultural land,industrial land,commercial land,residential land,green space and water area) within different buffer radii (1 to 20 km).This method makes up for the lack of consideration of source impact based on the LUR model.Remote sensing-derived variables were significantly correlated with gaseous pollutant concentrations such as SO2 and NO2.R2 values of the multiple linear regression equations for SO2,NO2 and PM10 were 0.78,0.89 and 0.84,respectively,and the RMSE values were 0.32,0.18 and 0.21,respectively.Model predictions at validation monitoring sites went well with predictions generally within 15% of measured values.Compared to the relationship between dependent variables and simple variables (such as traffic variables or meteorological condition variables),the relationship between dependent variables and integrated variables was more consistent with a linear relationship.Such integration has a discernable influence on both the overall model prediction and health effects assessment on the spatial distribution of air pollution in the city region.

  1. A land use regression model incorporating data on industrial point source pollution.

    Science.gov (United States)

    Chen, Li; Wang, Yuming; Li, Peiwu; Ji, Yaqin; Kong, Shaofei; Li, Zhiyong; Bai, Zhipeng

    2012-01-01

    Advancing the understanding of the spatial aspects of air pollution in the city regional environment is an area where improved methods can be of great benefit to exposure assessment and policy support. We created land use regression (LUR) models for SO2, NO2 and PM10 for Tianjin, China. Traffic volumes, road networks, land use data, population density, meteorological conditions, physical conditions and satellite-derived greenness, brightness and wetness were used for predicting SO2, NO2 and PM10 concentrations. We incorporated data on industrial point sources to improve LUR model performance. In order to consider the impact of different sources, we calculated the PSIndex, LSIndex and area of different land use types (agricultural land, industrial land, commercial land, residential land, green space and water area) within different buffer radii (1 to 20 km). This method makes up for the lack of consideration of source impact based on the LUR model. Remote sensing-derived variables were significantly correlated with gaseous pollutant concentrations such as SO2 and NO2. R2 values of the multiple linear regression equations for SO2, NO2 and PM10 were 0.78, 0.89 and 0.84, respectively, and the RMSE values were 0.32, 0.18 and 0.21, respectively. Model predictions at validation monitoring sites went well with predictions generally within 15% of measured values. Compared to the relationship between dependent variables and simple variables (such as traffic variables or meteorological condition variables), the relationship between dependent variables and integrated variables was more consistent with a linear relationship. Such integration has a discernable influence on both the overall model prediction and health effects assessment on the spatial distribution of air pollution in the city region.

  2. Incorporating food web dynamics into ecological restoration: A modeling approach for river ecosystems

    Science.gov (United States)

    Bellmore, J. Ryan; Benjamin, Joseph R.; Newsom, Michael; Bountry, Jennifer A.; Dombroski, Daniel

    2017-01-01

    Restoration is frequently aimed at the recovery of target species, but also influences the larger food web in which these species participate. Effects of restoration on this broader network of organisms can influence target species both directly and indirectly via changes in energy flow through food webs. To help incorporate these complexities into river restoration planning we constructed a model that links river food web dynamics to in-stream physical habitat and riparian vegetation conditions. We present an application of the model to the Methow River, Washington (USA), a location of on-going restoration aimed at recovering salmon. Three restoration strategies were simulated: riparian vegetation restoration, nutrient augmentation via salmon carcass addition, and side-channel reconnection. We also added populations of nonnative aquatic snails and fish to the modeled food web to explore how changes in food web structure mediate responses to restoration. Simulations suggest that side-channel reconnection may be a better strategy than carcass addition and vegetation planting for improving conditions for salmon in this river segment. However, modeled responses were strongly sensitive to changes in the structure of the food web. The addition of nonnative snails and fish modified pathways of energy through the food web, which negated restoration improvements. This finding illustrates that forecasting responses to restoration may require accounting for the structure of food webs, and that changes in this structure—as might be expected with the spread of invasive species—could compromise restoration outcomes. Unlike habitat-based approaches to restoration assessment that focus on the direct effects of physical habitat conditions on single species of interest, our approach dynamically links the success of target organisms to the success of competitors, predators, and prey. By elucidating the direct and indirect pathways by which restoration affects target species

  3. Bias in diet determination: incorporating traditional methods in Bayesian mixing models.

    Science.gov (United States)

    Franco-Trecu, Valentina; Drago, Massimiliano; Riet-Sapriza, Federico G; Parnell, Andrew; Frau, Rosina; Inchausti, Pablo

    2013-01-01

    There are not "universal methods" to determine diet composition of predators. Most traditional methods are biased because of their reliance on differential digestibility and the recovery of hard items. By relying on assimilated food, stable isotope and Bayesian mixing models (SIMMs) resolve many biases of traditional methods. SIMMs can incorporate prior information (i.e. proportional diet composition) that may improve the precision in the estimated dietary composition. However few studies have assessed the performance of traditional methods and SIMMs with and without informative priors to study the predators' diets. Here we compare the diet compositions of the South American fur seal and sea lions obtained by scats analysis and by SIMMs-UP (uninformative priors) and assess whether informative priors (SIMMs-IP) from the scat analysis improved the estimated diet composition compared to SIMMs-UP. According to the SIMM-UP, while pelagic species dominated the fur seal's diet the sea lion's did not have a clear dominance of any prey. In contrast, SIMM-IP's diets compositions were dominated by the same preys as in scat analyses. When prior information influenced SIMMs' estimates, incorporating informative priors improved the precision in the estimated diet composition at the risk of inducing biases in the estimates. If preys isotopic data allow discriminating preys' contributions to diets, informative priors should lead to more precise but unbiased estimated diet composition. Just as estimates of diet composition obtained from traditional methods are critically interpreted because of their biases, care must be exercised when interpreting diet composition obtained by SIMMs-IP. The best approach to obtain a near-complete view of predators' diet composition should involve the simultaneous consideration of different sources of partial evidence (traditional methods, SIMM-UP and SIMM-IP) in the light of natural history of the predator species so as to reliably ascertain and

  4. Modelling of Dynamic Rock Fracture Process with a Rate-Dependent Combined Continuum Damage-Embedded Discontinuity Model Incorporating Microstructure

    Science.gov (United States)

    Saksala, Timo

    2016-10-01

    This paper deals with numerical modelling of rock fracture under dynamic loading. For this end, a combined continuum damage-embedded discontinuity model is applied in finite element modelling of crack propagation in rock. In this model, the strong loading rate sensitivity of rock is captured by the rate-dependent continuum scalar damage model that controls the pre-peak nonlinear hardening part of rock behaviour. The post-peak exponential softening part of the rock behaviour is governed by the embedded displacement discontinuity model describing the mode I, mode II and mixed mode fracture of rock. Rock heterogeneity is incorporated in the present approach by random description of the rock mineral texture based on the Voronoi tessellation. The model performance is demonstrated in numerical examples where the uniaxial tension and compression tests on rock are simulated. Finally, the dynamic three-point bending test of a semicircular disc is simulated in order to show that the model correctly predicts the strain rate-dependent tensile strengths as well as the failure modes of rock in this test. Special emphasis is laid on modelling the loading rate sensitivity of tensile strength of Laurentian granite.

  5. Biofuel Feedstock Assessment For Selected Countries

    Energy Technology Data Exchange (ETDEWEB)

    Kline, Keith L [ORNL; Oladosu, Gbadebo A [ORNL; Wolfe, Amy K [ORNL; Perlack, Robert D [ORNL; Dale, Virginia H [ORNL

    2008-02-01

    Findings from biofuel feedstock production assessments and projections of future supply are presented and discussed. The report aims to improve capabilities to assess the degree to which imported biofuel could contribute to meeting future U.S. targets to reduce dependence on imported oil. The study scope was focused to meet time and resource requirements. A screening process identified Argentina, Brazil, Canada, China, Colombia, India, Mexico, and the Caribbean Basin Initiative (CBI) region for initial analysis, given their likely role in future feedstock supply relevant to U.S. markets. Supply curves for selected feedstocks in these countries are projected for 2012, 2017 and 2027. The supply functions, along with calculations to reflect estimated supplies available for export and/or biofuel production, were provided to DOE for use in a broader energy market allocation study. Potential cellulosic supplies from crop and forestry residues and perennials were also estimated for 2017 and 2027. The analysis identified capacity to potentially double or triple feedstock production by 2017 in some cases. A majority of supply growth is derived from increasing the area cultivated (especially sugarcane in Brazil). This is supplemented by improving yields and farming practices. Most future supplies of corn and wheat are projected to be allocated to food and feed. Larger shares of future supplies of sugarcane, soybean and palm oil production will be available for export or biofuel. National policies are catalyzing investments in biofuel industries to meet targets for fuel blending that generally fall in the 5-10% range. Social and environmental concerns associated with rapid expansion of feedstock production are considered. If the 2017 projected feedstock supply calculated as 'available' for export or biofuel were converted to fuel, it would represent the equivalent of about 38 billion gallons of gasoline. Sugarcane and bagasse dominate the available supply

  6. Incorporating H2 Dynamics and Inhibition into a Microbially Based Methanogenesis Model for Restored Wetland Sediments

    Science.gov (United States)

    Pal, David; Jaffe, Peter

    2015-04-01

    Estimates of global CH4 emissions from wetlands indicate that wetlands are the largest natural source of CH4 to the atmosphere. In this paper, we propose that there is a missing component to these models that should be addressed. CH4 is produced in wetland sediments from the microbial degradation of organic carbon through multiple fermentation steps and methanogenesis pathways. There are multiple sources of carbon for methananogenesis; in vegetated wetland sediments, microbial communities consume root exudates as a major source of organic carbon. In many methane models propionate is used as a model carbon molecule. This simple sugar is fermented into acetate and H2, acetate is transformed to methane and CO2, while the H2 and CO2 are used to form an additional CH4 molecule. The hydrogenotrophic pathway involves the equilibrium of two dissolved gases, CH4 and H2. In an effort to limit CH4 emissions from wetlands, there has been growing interest in finding ways to limit plant transport of soil gases through root systems. Changing planted species, or genetically modifying new species of plants may control this transport of soil gases. While this may decrease the direct emissions of methane, there is little understanding about how H2 dynamics may feedback into overall methane production. The results of an incubation study were combined with a new model of propionate degradation for methanogenesis that also examines other natural parameters (i.e. gas transport through plants). This presentation examines how we would expect this model to behave in a natural field setting with changing sulfate and carbon loading schemes. These changes can be controlled through new plant species and other management practices. Next, we compare the behavior of two variations of this model, with or without the incorporation of H2 interactions, with changing sulfate, carbon loading and root volatilization. Results show that while the models behave similarly there may be a discrepancy of nearly

  7. Nanofibers for drug delivery – incorporation and release of model molecules, influence of molecular weight and polymer structure

    OpenAIRE

    2015-01-01

    Nanofibers were prepared from polycaprolactone, polylactide and polyvinyl alcohol using NanospiderTM technology. Polyethylene glycols with molecular weights of 2 000, 6 000, 10 000 and 20 000 g/mol, which can be used to moderate the release profile of incorporated pharmacologically active compounds, served as model molecules. They were terminated by aromatic isocyanate and incorporated into the nanofibers. The release of these molecules into an aqueous environment was investigated. The influe...

  8. Biofuel production from microalgae as feedstock: current status and potential.

    Science.gov (United States)

    Han, Song-Fang; Jin, Wen-Biao; Tu, Ren-Jie; Wu, Wei-Min

    2015-06-01

    Algal biofuel has become an attractive alternative of petroleum-based fuels in the past decade. Microalgae have been proposed as a feedstock to produce biodiesel, since they are capable of mitigating CO2 emission and accumulating lipids with high productivity. This article is an overview of the updated status of biofuels, especially biodiesel production from microalgae including fundamental research, culture selection and engineering process development; it summarizes research on mathematical and life cycle modeling on algae growth and biomass production; and it updates global efforts of research and development and commercialization attempts. The major challenges are also discussed.

  9. Anisotropic constitutive model incorporating multiple damage mechanisms for multiscale simulation of dental enamel.

    Science.gov (United States)

    Ma, Songyun; Scheider, Ingo; Bargmann, Swantje

    2016-09-01

    An anisotropic constitutive model is proposed in the framework of finite deformation to capture several damage mechanisms occurring in the microstructure of dental enamel, a hierarchical bio-composite. It provides the basis for a homogenization approach for an efficient multiscale (in this case: multiple hierarchy levels) investigation of the deformation and damage behavior. The influence of tension-compression asymmetry and fiber-matrix interaction on the nonlinear deformation behavior of dental enamel is studied by 3D micromechanical simulations under different loading conditions and fiber lengths. The complex deformation behavior and the characteristics and interaction of three damage mechanisms in the damage process of enamel are well captured. The proposed constitutive model incorporating anisotropic damage is applied to the first hierarchical level of dental enamel and validated by experimental results. The effect of the fiber orientation on the damage behavior and compressive strength is studied by comparing micro-pillar experiments of dental enamel at the first hierarchical level in multiple directions of fiber orientation. A very good agreement between computational and experimental results is found for the damage evolution process of dental enamel.

  10. Incorporating a Wheeled Vehicle Model in a New Monocular Visual Odometry Algorithm for Dynamic Outdoor Environments

    Directory of Open Access Journals (Sweden)

    Yanhua Jiang

    2014-09-01

    Full Text Available This paper presents a monocular visual odometry algorithm that incorporates a wheeled vehicle model for ground vehicles. The main innovation of this algorithm is to use the single-track bicycle model to interpret the relationship between the yaw rate and side slip angle, which are the two most important parameters that describe the motion of a wheeled vehicle. Additionally, the pitch angle is also considered since the planar-motion hypothesis often fails due to the dynamic characteristics of wheel suspensions and tires in real-world environments. Linearization is used to calculate a closed-form solution of the motion parameters that works as a hypothesis generator in a RAndom SAmple Consensus (RANSAC scheme to reduce the complexity in solving equations involving trigonometric. All inliers found are used to refine the winner solution through minimizing the reprojection error. Finally, the algorithm is applied to real-time on-board visual localization applications. Its performance is evaluated by comparing against the state-of-the-art monocular visual odometry methods using both synthetic data and publicly available datasets over several kilometers in dynamic outdoor environments.

  11. Alternative Methods of Classifying Eating Disorders: Models Incorporating Comorbid Psychopathology and Associated Features

    Science.gov (United States)

    Wildes, Jennifer E.; Marcus, Marsha D.

    2013-01-01

    There is increasing recognition of the limitations of current approaches to psychiatric classification. Nowhere is this more apparent than in the eating disorders (EDs). Several alternative methods of classifying EDs have been proposed, which can be divided into two major groups: 1) those that have classified individuals on the basis of disordered eating symptoms; and, 2) those that have classified individuals on the basis of comorbid psychopathology and associated features. Several reviews have addressed symptom-based approaches to ED classification, but we are aware of no paper that has critically examined comorbidity-based systems. Thus, in this paper, we review models of classifying EDs that incorporate information about comorbid psychopathology and associated features. Early approaches are described first, followed by more recent scholarly contributions to comorbidity-based ED classification. Importantly, several areas of overlap among the classification schemes are identified that may have implications for future research. In particular, we note similarities between early models and newer studies in the salience of impulsivity, compulsivity, distress, and inhibition versus risk taking. Finally, we close with directions for future work, with an emphasis on neurobiologically-informed research to elucidate basic behavioral and neuropsychological correlates of comorbidity-based ED classes, as well as implications for treatment. PMID:23416343

  12. Exciton delocalization incorporated drift-diffusion model for bulk-heterojunction organic solar cells

    Science.gov (United States)

    Wang, Zi Shuai; Sha, Wei E. I.; Choy, Wallace C. H.

    2016-12-01

    Modeling the charge-generation process is highly important to understand device physics and optimize power conversion efficiency of bulk-heterojunction organic solar cells (OSCs). Free carriers are generated by both ultrafast exciton delocalization and slow exciton diffusion and dissociation at the heterojunction interface. In this work, we developed a systematic numerical simulation to describe the charge-generation process by a modified drift-diffusion model. The transport, recombination, and collection of free carriers are incorporated to fully capture the device response. The theoretical results match well with the state-of-the-art high-performance organic solar cells. It is demonstrated that the increase of exciton delocalization ratio reduces the energy loss in the exciton diffusion-dissociation process, and thus, significantly improves the device efficiency, especially for the short-circuit current. By changing the exciton delocalization ratio, OSC performances are comprehensively investigated under the conditions of short-circuit and open-circuit. Particularly, bulk recombination dependent fill factor saturation is unveiled and understood. As a fundamental electrical analysis of the delocalization mechanism, our work is important to understand and optimize the high-performance OSCs.

  13. Building a Better Model: A Personalized Breast Cancer Risk Model Incorporating Breast Density to Stratify Risk and Improve Application of Resources

    Science.gov (United States)

    2015-12-01

    women with a diagnosis of breast cancer from 2003 to 2012 and enrolled in a larger study on MD were evaluated. Operative and pathology reports were...AD______________ AWARD NUMBER: W81XWH-11-1-0545 TITLE: Building a Better Model: A Personalized Breast Cancer Risk Model Incorporating Breast ...Better Model: A Personalized Breast Cancer Risk Model Incorporating Breast Density to Stratify Risk and Improve Application of Resources 5a. CONTRACT

  14. Processing Cost Analysis for Biomass Feedstocks

    Energy Technology Data Exchange (ETDEWEB)

    Badger, P.C.

    2002-11-20

    The receiving, handling, storing, and processing of woody biomass feedstocks is an overlooked component of biopower systems. The purpose of this study was twofold: (1) to identify and characterize all the receiving, handling, storing, and processing steps required to make woody biomass feedstocks suitable for use in direct combustion and gasification applications, including small modular biopower (SMB) systems, and (2) to estimate the capital and operating costs at each step. Since biopower applications can be varied, a number of conversion systems and feedstocks required evaluation. In addition to limiting this study to woody biomass feedstocks, the boundaries of this study were from the power plant gate to the feedstock entry point into the conversion device. Although some power plants are sited at a source of wood waste fuel, it was assumed for this study that all wood waste would be brought to the power plant site. This study was also confined to the following three feedstocks (1) forest residues, (2) industrial mill residues, and (3) urban wood residues. Additionally, the study was confined to grate, suspension, and fluidized bed direct combustion systems; gasification systems; and SMB conversion systems. Since scale can play an important role in types of equipment, operational requirements, and capital and operational costs, this study examined these factors for the following direct combustion and gasification system size ranges: 50, 20, 5, and 1 MWe. The scope of the study also included: Specific operational issues associated with specific feedstocks (e.g., bark and problems with bridging); Opportunities for reducing handling, storage, and processing costs; How environmental restrictions can affect handling and processing costs (e.g., noise, commingling of treated wood or non-wood materials, emissions, and runoff); and Feedstock quality issues and/or requirements (e.g., moisture, particle size, presence of non-wood materials). The study found that over the

  15. Incorporating Geochemical And Microbial Kinetics In Reactive Transport Models For Generation Of Acid Rock Drainage

    Science.gov (United States)

    Andre, B. J.; Rajaram, H.; Silverstein, J.

    2010-12-01

    diffusion model at the scale of a single rock is developed incorporating the proposed kinetic rate expressions. Simulations of initiation, washout and AMD flows are discussed to gain a better understanding of the role of porosity, effective diffusivity and reactive surface area in generating AMD. Simulations indicate that flow boundary conditions control generation of acid rock drainage as porosity increases.

  16. Thoughts on Optimization of Aromatic Feedstock

    Institute of Scientific and Technical Information of China (English)

    Cao Jian

    2002-01-01

    This article refers to four cases of process unit combinations with different throughputs of aromatics unit for production of 450 kt/a paraxylene at a certain petrochemical complex in order to against a representative case (provided with an 800-kt/a CCR unit and a 600-kt/a disproportionation unit) and the feasibility and advantage of using prolysis gasoline as aromatic feedstock is studied.

  17. Adolescent Decision-Making Processes regarding University Entry: A Model Incorporating Cultural Orientation, Motivation and Occupational Variables

    Science.gov (United States)

    Jung, Jae Yup

    2013-01-01

    This study tested a newly developed model of the cognitive decision-making processes of senior high school students related to university entry. The model incorporated variables derived from motivation theory (i.e. expectancy-value theory and the theory of reasoned action), literature on cultural orientation and occupational considerations. A…

  18. Using a cognitive architecture in educational and recreational games : How to incorporate a model in your App

    NARCIS (Netherlands)

    Taatgen, Niels A.; de Weerd, Harmen; Reitter, David; Ritter, Frank

    2016-01-01

    We present a Swift re-implementation of the ACT-R cognitive architecture, which can be used to quickly build iOS Apps that incorporate an ACT-R model as a core feature. We discuss how this implementation can be used in an example model, and explore the breadth of possibilities by presenting six Apps

  19. Adolescent Decision-Making Processes regarding University Entry: A Model Incorporating Cultural Orientation, Motivation and Occupational Variables

    Science.gov (United States)

    Jung, Jae Yup

    2013-01-01

    This study tested a newly developed model of the cognitive decision-making processes of senior high school students related to university entry. The model incorporated variables derived from motivation theory (i.e. expectancy-value theory and the theory of reasoned action), literature on cultural orientation and occupational considerations. A…

  20. A Fault-Cored Anticline Boundary Element Model Incorporating the Combined Fault Slip and Buckling Mechanisms

    Directory of Open Access Journals (Sweden)

    Wen-Jeng Huang

    2016-02-01

    Full Text Available We develop a folding boundary element model in a medium containing a fault and elastic layers to show that anticlines growing over slipping reverse faults can be significantly amplified by mechanical layering buckling under horizontal shortening. Previous studies suggested that folds over blind reverse faults grow primarily during deformation increments associated with slips on the fault during and immediately after earthquakes. Under this assumption, the potential for earthquakes on blind faults can be determined directly from fold geometry because the amount of slip on the fault can be estimated directly from the fold geometry using the solution for a dislocation in an elastic half-space. Studies that assume folds grown solely by slip on a fault may therefore significantly overestimate fault slip. Our boundary element technique demonstrates that the fold amplitude produced in a medium containing a fault and elastic layers with free slip and subjected to layer-parallel shortening can grow to more than twice the fold amplitude produced in homogeneous media without mechanical layering under the same amount of shortening. In addition, the fold wavelengths produced by the combined fault slip and buckling mechanisms may be narrower than folds produced by fault slip in an elastic half space by a factor of two. We also show that subsurface fold geometry of the Kettleman Hills Anticline in Central California inferred from seismic reflection image is consistent with a model that incorporates layer buckling over a dipping, blind reverse fault and the coseismic uplift pattern produced during a 1985 earthquake centered over the anticline forelimb is predicted by the model.

  1. Bioenergy Feedstock Development Program Status Report

    Energy Technology Data Exchange (ETDEWEB)

    Kszos, L.A.

    2001-02-09

    The U.S. Department of Energy's (DOE's) Bioenergy Feedstock Development Program (BFDP) at Oak Ridge National Laboratory (ORNL) is a mission-oriented program of research and analysis whose goal is to develop and demonstrate cropping systems for producing large quantities of low-cost, high-quality biomass feedstocks for use as liquid biofuels, biomass electric power, and/or bioproducts. The program specifically supports the missions and goals of DOE's Office of Fuels Development and DOE's Office of Power Technologies. ORNL has provided technical leadership and field management for the BFDP since DOE began energy crop research in 1978. The major components of the BFDP include energy crop selection and breeding; crop management research; environmental assessment and monitoring; crop production and supply logistics operational research; integrated resource analysis and assessment; and communications and outreach. Research into feedstock supply logistics has recently been added and will become an integral component of the program.

  2. Markets for Canadian bitumen-based feedstock

    Energy Technology Data Exchange (ETDEWEB)

    Lauerman, V. [Canadian Energy Research Inst., Calgary, AB (Canada)

    2001-07-01

    The best types of refineries for processing western Canadian bitumen-based feedstock (BBF) were identified and a potential market for these feedstock for year 2007 was calculated. In addition, this power point presentation provided an estimation of potential regional and total demand for BBF. BBF included Athabasca bitumen blend, de-asphalted blend, coked sour crude oil (SCO), coked sweet SCO, hydrocracked SCO and hydrocracked/aromatic saturated SCO (HAS). Refinery prototypes included light and mixed prototypes for primary cracking units, light and heavy prototypes for primary coking units, as well as no coking, coking severe and residuum prototypes for primary hydrocracking units. The presentation included graphs depicting the natural market for Western Canadian crudes as well as U.S. crude oil production forecasts by PADD districts. It was forecasted that the market for bitumen-based feedstock in 2007 will be tight and that the potential demand for bitumen-based blends would be similar to expected production. It was also forecasted that the potential demand for SCO is not as promising relative to the expected production, unless price discounting or HAS will be available. 11 figs.

  3. Incorporation of Fine-Grained Sediment Erodibility Measurements into Sediment Transport Modeling, Capitol Lake, Washington

    Science.gov (United States)

    Stevens, Andrew W.; Gelfenbaum, Guy; Elias, Edwin; Jones, Craig

    2008-01-01

    lab with Sedflume, an apparatus for measuring sediment erosion-parameters. In this report, we present results of the characterization of fine-grained sediment erodibility within Capitol Lake. The erodibility data were incorporated into the previously developed hydrodynamic and sediment transport model. Model simulations using the measured erodibility parameters were conducted to provide more robust estimates of the overall magnitudes and spatial patterns of sediment transport resulting from restoration of the Deschutes Estuary.

  4. A diagnostic model incorporating P50 sensory gating and neuropsychological tests for schizophrenia.

    Directory of Open Access Journals (Sweden)

    Jia-Chi Shan

    Full Text Available OBJECTIVES: Endophenotypes in schizophrenia research is a contemporary approach to studying this heterogeneous mental illness, and several candidate neurophysiological markers (e.g. P50 sensory gating and neuropsychological tests (e.g. Continuous Performance Test (CPT and Wisconsin Card Sorting Test (WCST have been proposed. However, the clinical utility of a single marker appears to be limited. In the present study, we aimed to construct a diagnostic model incorporating P50 sensory gating with other neuropsychological tests in order to improve the clinical utility. METHODS: We recruited clinically stable outpatients meeting DSM-IV criteria of schizophrenia and age- and gender-matched healthy controls. Participants underwent P50 sensory gating experimental sessions and batteries of neuropsychological tests, including CPT, WCST and Wechsler Adult Intelligence Scale Third Edition (WAIS-III. RESULTS: A total of 106 schizophrenia patients and 74 healthy controls were enrolled. Compared with healthy controls, the patient group had significantly a larger S2 amplitude, and thus poorer P50 gating ratio (gating ratio = S2/S1. In addition, schizophrenia patients had a poorer performance on neuropsychological tests. We then developed a diagnostic model by using multivariable logistic regression analysis to differentiate patients from healthy controls. The final model included the following covariates: abnormal P50 gating (defined as P50 gating ratio >0.4, three subscales derived from the WAIS-III (Arithmetic, Block Design, and Performance IQ, sensitivity index from CPT and smoking status. This model had an adequate accuracy (concordant percentage = 90.4%; c-statistic = 0.904; Hosmer-Lemeshow Goodness-of-Fit Test, p = 0.64>0.05. CONCLUSION: To the best of our knowledge, this is the largest study to date using P50 sensory gating in subjects of Chinese ethnicity and the first to use P50 sensory gating along with other neuropsychological tests

  5. Bayesian hierarchical models for network meta-analysis incorporating nonignorable missingness.

    Science.gov (United States)

    Zhang, Jing; Chu, Haitao; Hong, Hwanhee; Virnig, Beth A; Carlin, Bradley P

    2015-07-28

    Network meta-analysis expands the scope of a conventional pairwise meta-analysis to simultaneously compare multiple treatments, synthesizing both direct and indirect information and thus strengthening inference. Since most of trials only compare two treatments, a typical data set in a network meta-analysis managed as a trial-by-treatment matrix is extremely sparse, like an incomplete block structure with significant missing data. Zhang et al. proposed an arm-based method accounting for correlations among different treatments within the same trial and assuming that absent arms are missing at random. However, in randomized controlled trials, nonignorable missingness or missingness not at random may occur due to deliberate choices of treatments at the design stage. In addition, those undertaking a network meta-analysis may selectively choose treatments to include in the analysis, which may also lead to missingness not at random. In this paper, we extend our previous work to incorporate missingness not at random using selection models. The proposed method is then applied to two network meta-analyses and evaluated through extensive simulation studies. We also provide comprehensive comparisons of a commonly used contrast-based method and the arm-based method via simulations in a technical appendix under missing completely at random and missing at random.

  6. Incorporating organizational factors into probabilistic safety assessment of nuclear power plants through canonical probabilistic models

    Energy Technology Data Exchange (ETDEWEB)

    Galan, S.F. [Dpto. de Inteligencia Artificial, E.T.S.I. Informatica (UNED), Juan del Rosal, 16, 28040 Madrid (Spain)]. E-mail: seve@dia.uned.es; Mosleh, A. [2100A Marie Mount Hall, Materials and Nuclear Engineering Department, University of Maryland, College Park, MD 20742 (United States)]. E-mail: mosleh@umd.edu; Izquierdo, J.M. [Area de Modelado y Simulacion, Consejo de Seguridad Nuclear, Justo Dorado, 11, 28040 Madrid (Spain)]. E-mail: jmir@csn.es

    2007-08-15

    The {omega}-factor approach is a method that explicitly incorporates organizational factors into Probabilistic safety assessment of nuclear power plants. Bayesian networks (BNs) are the underlying formalism used in this approach. They have a structural part formed by a graph whose nodes represent organizational variables, and a parametric part that consists of conditional probabilities, each of them quantifying organizational influences between one variable and its parents in the graph. The aim of this paper is twofold. First, we discuss some important limitations of current procedures in the {omega}-factor approach for either assessing conditional probabilities from experts or estimating them from data. We illustrate the discussion with an example that uses data from Licensee Events Reports of nuclear power plants for the estimation task. Second, we introduce significant improvements in the way BNs for the {omega}-factor approach can be constructed, so that parameter acquisition becomes easier and more intuitive. The improvements are based on the use of noisy-OR gates as model of multicausal interaction between each BN node and its parents.

  7. Conformational preferences of proline derivatives incorporated into vasopressin analogues: NMR and molecular modelling studies.

    Science.gov (United States)

    Sikorska, Emilia; Sobolewski, Dariusz; Kwiatkowska, Anna

    2012-04-01

    In this study, arginine vasopressin analogues modified with proline derivatives - indoline-2-carboxylic acid (Ica), (2S,4R)-4-(naphthalene-2-ylmethyl)pyrrolidine-2-carboxylic acid (Nmp), (2S,4S)-4-aminopyroglutamic acid (APy) and (2R,4S)-4-aminopyroglutamic acid, (Apy) - were examined using NMR spectroscopy and molecular modelling methods. The results have shown that Ica is involved in the formation of the cis peptide bond. Moreover, it reduces to a great extent the conformational flexibility of the peptide. In turn, incorporation of (2S,4R)-Nmp stabilizes the backbone conformation, which is heavily influenced by the pyrrolidine ring. However, the aromatic part of the Nmp side chain exhibits a high degree of conformational freedom. With analogues IV and V, introduction of the 4-aminopyroglumatic acid reduces locally conformational space of the peptides, but it also results in weaker interactions with the dodecylphosphocholine/sodium dodecyl sulphate micelle. Admittedly, both analogues are adsorbed on the micelle's surface but they do not penetrate into its core. With analogue V, the interactions between the peptide and the micelle seem to be so weak that conformational equilibrium is established between different bound states.

  8. Elastic Properties of Natural Sea Surface Films Incorporated with Solid Dust Particles: Model Baltic Sea Studies

    Directory of Open Access Journals (Sweden)

    Adriana Z. Mazurek

    2012-01-01

    Full Text Available Floating dust-originated solid particles at air-water interfaces will interact with one another and disturb the smoothness of such a composite surface affecting its dilational elasticity. To quantify the effect, surface pressure (Π versus film area (A isotherm, and stress-relaxation (Π-time measurements were performed for monoparticulate layers of the model hydrophobic material (of μm-diameter and differentiated hydrophobicity corresponding to the water contact angles (CA ranging from 60 to 140° deposited at surfaces of surfactant-containing original seawater and were studied with a Langmuir trough system. The composite surface dilational modulus predicted from the theoretical approach, in which natural dust load signatures (particle number flux, daily deposition rate, and diameter spectra originated from in situ field studies performed along Baltic Sea near-shore line stations, agreed well with the direct experimentally derived data. The presence of seawater surfactants affected wettability of the solid material which was evaluated with different CA techniques applicable to powdered samples. Surface energetics of the particle-subphase interactions was expressed in terms of the particle removal energy, contact cross-sectional areas, collapse energies, and so forth. The hydrophobic particles incorporation at a sea surface film structure increased the elasticity modulus by a factor K (1.29–1.58. The particle-covered seawater revealed a viscoelastic behavior with the characteristic relaxation times ranging from 2.6 to 68.5 sec.

  9. Incorporating Geological Effects in Modeling of Revegetation Strategies for Salt-Affected Landscapes.

    Science.gov (United States)

    Clarke; Bell; Hobbs; George

    1999-07-01

    / This paper synthesizes results of research into the impact that major faults have on dryland salinity and the development of revegetation treatments in the wheatbelt of Western Australia. Currently, landscape planning does not routinely incorporate geology, but this research shows that faults can have a dramatic impact on land and stream salinization and on the effectiveness of revegetation treatments, and evidence exists that other geological features can have a similar influence. This research shows that faults can be identified from airborne magnetic data, they can be assigned a characteristic hydraulic conductivity based on simple borehole tests, and four other geological features that are expected to affect land and stream salinity could be identified in airborne geophysical data. A geological theme map could then be created to which characteristic hydraulic conductivities could be assigned for use in computer groundwater models to improve prediction of the effectiveness of revegetation treatments and thus enhance the landscape planning process. The work highlights the difficulties of using standard sampling and statistical techniques to investigate regional phenomena and presents an integrated approach combining small-scale sampling with broad-scale observations to provide input into a modeling exercise. It is suggested that such approaches are vital if landscape- and regional-scale processes are to be understood and managed. The way in which the problem is perceived (holistically or piecemeal) affects the way treatments are designed and their effectiveness: past approaches have failed to integrate the various scales and processes involved. Effective solutions require an integrated holistic response.KEY WORDS: Dryland salinity; Geology; Landscape; Revegetation integrationhttp://link.springer-ny.com/link/service/journals/00267/bibs/24n1p99.html

  10. Sensitivity studies for incorporating the direct effect of sulfate aerosols into climate models

    Science.gov (United States)

    Miller, Mary Rawlings Lamberton

    2000-09-01

    Aerosols have been identified as a major element of the climate system known to scatter and absorb solar and infrared radiation, but the development of procedures for representing them is still rudimentary. This study addresses the need to improve the treatment of sulfate aerosols in climate models by investigating how sensitive radiative particles are to varying specific sulfate aerosol properties. The degree to which sulfate particles absorb or scatter radiation, termed the direct effect, varies with the size distribution of particles, the aerosol mass density, the aerosol refractive indices, the relative humidity and the concentration of the aerosol. This study develops 504 case studies of altering sulfate aerosol chemistry, size distributions, refractive indices and densities at various ambient relative humidity conditions. Ammonium sulfate and sulfuric acid aerosols are studied with seven distinct size distributions at a given mode radius with three corresponding standard deviations implemented from field measurements. These test cases are evaluated for increasing relative humidity. As the relative humidity increases, the complex index of refraction and the mode radius for each distribution correspondingly change. Mie theory is employed to obtain the radiative properties for each case study. The case studies are then incorporated into a box model, the National Center of Atmospheric Research's (NCAR) column radiation model (CRM), and NCAR's community climate model version 3 (CCM3) to determine how sensitive the radiative properties and potential climatic effects are to altering sulfate properties. This study found the spatial variability of the sulfate aerosol leads to regional areas of intense aerosol forcing (W/m2). These areas are particularly sensitive to altering sulfate properties. Changes in the sulfate lognormal distribution standard deviation can lead to substantial regional differences in the annual aerosol forcing greater than 2 W/m 2. Changes in the

  11. Ligncellulosic feedstock supply systems with intermodal and overseas transportation

    Energy Technology Data Exchange (ETDEWEB)

    Ric Hoefnagels; Kara Cafferty; Erin Searcy; Jacob J. Jacobson; Martin Junginger; Thijs Cornelissen; Andre Faaij

    2014-12-01

    With growing demand for biomass from industrial uses and international trade, the logistic operations required to economically move the biomass from the field or forest to the end users have become increasingly complex. In addition to economics, understanding energy and GHG emissions is required to design cost effective, sustainable logistic process operations; in order to improve international supply chains it is also important to understate their interdependencies and related uncertainties. This article presents an approach to assess lignocellulosic feedstock supply systems at the operational level. For this purpose, the Biomass Logistic Model (BLM) has been linked with the Geographic Information Systems based Biomass Intermodal Transportation model (BIT-UU) and extended with inter-continental transport routes. Case studies of herbaceous and woody biomass, produced in the U.S. Midwest and U.S. Southeast, respectively, and shipped to Europe for conversion to Fischer-Tropsch (FT) diesel are included to demonstrate how intermodal transportation and, in particular, overseas shipping integrates with the bioenergy supply chains. For the cases demonstrated, biomass can be supplied at 99 € Mg-1 to 117 € Mg-1 (dry) and converted to FT-diesel at 19 € GJ-1 to 24 € GJ-1 depending on the feedstock type and location, intermediate (chips or pellets) and size of the FT-diesel production plant. With the flexibility to change the design of supply chains as well as input variables, many alternative supply chain cases can be assessed.

  12. NexGen PVAs: Incorporating Eco-Evolutionary Processes into Population Viability Models

    Science.gov (United States)

    We examine how the integration of evolutionary and ecological processes in population dynamics – an emerging framework in ecology – could be incorporated into population viability analysis (PVA). Driven by parallel, complementary advances in population genomics and computational ...

  13. Survey of Alternative Feedstocks for Commodity Chemical Manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    McFarlane, Joanna [ORNL; Robinson, Sharon M [ORNL

    2008-02-01

    The current high prices for petroleum and natural gas have spurred the chemical industry to examine alternative feedstocks for the production of commodity chemicals. High feedstock prices have driven methanol and ammonia production offshore. The U.S. Chemical Industry is the largest user of natural gas in the country. Over the last 30 years, alternatives to conventional petroleum and natural gas feedstocks have been developed, but have limited, if any, commercial implementation in the United States. Alternative feedstocks under consideration include coal from unconventional processing technologies, such as gasification and liquefaction, novel resources such as biomass, stranded natural gas from unconventional reserves, and heavy oil from tar sands or oil shale. These feedstock sources have been evaluated with respect to the feasibility and readiness for production of the highest volume commodity chemicals in the United States. Sources of organic compounds, such as ethanol from sugar fermentation and bitumen-derived heavy crude are now being primarily exploited for fuels, rather than for chemical feedstocks. Overall, government-sponsored research into the use of alternatives to petroleum feedstocks focuses on use for power and transportation fuels rather than for chemical feedstocks. Research is needed to reduce cost and technical risk. Use of alternative feedstocks is more common outside the United States R&D efforts are needed to make these processes more efficient and less risky before becoming more common domestically. The status of alternative feedstock technology is summarized.

  14. Acceptable contamination levels in solar grade silicon: From feedstock to solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Hofstetter, J. [Instituto de Energia Solar, Avd. Complutense s/n, 28040 Madrid (Spain)], E-mail: jasmin.hofstetter@ies-def.upm.es; Lelievre, J.F.; Canizo, C.; Luque, A. del [Instituto de Energia Solar, Avd. Complutense s/n, 28040 Madrid (Spain)

    2009-03-15

    Ultimately, alternative ways of silicon purification for photovoltaic applications are developed and applied. There is an ongoing debate about what are the acceptable contamination levels within the purified silicon feedstock to specify the material as solar grade silicon. Applying a simple model and making some additional assumptions, we calculate the acceptable contamination levels of different characteristic impurities for each fabrication step of a typical industrial mc-Si solar cell. The acceptable impurity concentrations within the finished solar cell are calculated for SRH recombination exclusively and under low injection conditions. It is assumed that during solar cell fabrication impurity concentrations are only altered by a gettering step. During the crystallization process, impurity segregation at the solid-liquid interface and at extended defects are taken into account. Finally, the initial contamination levels allowed within the feedstock are deduced. The acceptable concentration of iron in the finished solar cell is determined to be 9.7x10{sup -3} ppma whereas the concentration in the silicon feedstock can be as high as 12.5 ppma. In comparison, the titanium concentration admitted in the solar cell is calculated to be 2.7x10{sup -4} ppma and the allowed concentration of 2.2x10{sup -2} ppma in the feedstock is only two orders of magnitude higher. Finally, it is shown theoretically and experimentally that slow cooling rates can lead to a decrease of the interstitial Fe concentration and thus relax the purity requirements in the feedstock.

  15. Economic evaluation of United States ethanol production from ligno-cellulosic feedstocks

    Science.gov (United States)

    Choi, Youn-Sang

    This paper evaluates the economic feasibility and economy-wide impacts of the U. S. ethanol production from lignocellulosic feedstocks (LCF) using Tennessee Valley Authority's (TVA's) dilute acid hydrolysis process. A nonlinear mathematical programming model of a single ethanol producer, whose objective is profit maximization, is developed. Because of differences in their chemical composition and production process, lignocellulosic feedstocks are divided into two groups: Biomass feedstocks, which refer to crop residues, energy crops and woody biomass, and municipal solid waste (MSW). Biomass feedstocks are more productive and less costly in producing ethanol and co-products, while MSW generates an additional income to the producer from a tipping fee and recycling. The analysis suggests that, regardless of types of feedstocks used, TVA's conversion process can enhance the economic viability of ethanol production as long as furfural is produced from the hemicellulose fraction of feedstocks as a co-product. The high price of furfural makes it a major factor in determining the economic feasibility of ethanol production. Along with evaluating economic feasibility of LCF-to-ethanol production, the optimal size of a plant producing ethanol using TVA's conversion process is estimated. The larger plant would have the advantage of economies of scale, but also have a disadvantage of increased collection and transportation costs for bulky biomass from more distant locations. We assume that the plant is located in the state of Missouri and utilizes only feedstocks produced in the state. The results indicate that the size of a plant using Biomass feedstocks is much bigger than one using MSW. The difference of plant sizes results from plant location and feedstock availability. One interesting finding is that energy crops are not feasible feedstocks for LCF-to-ethanol production due to their high price. Next, a static CGE model is developed to estimate the U.S. economy

  16. A passive movement method for parameter estimation of a musculo-skeletal arm model incorporating a modified hill muscle model.

    Science.gov (United States)

    Yu, Tung Fai; Wilson, Adrian J

    2014-05-01

    In this paper we present an experimental method of parameterising the passive mechanical characteristics of the bicep and tricep muscles in vivo, by fitting the dynamics of a two muscle arm model incorporating anatomically meaningful and structurally identifiable modified Hill muscle models to measured elbow movements. Measurements of the passive flexion and extension of the elbow joint were obtained using 3D motion capture, from which the elbow angle trajectories were determined and used to obtain the spring constants and damping coefficients in the model through parameter estimation. Four healthy subjects were used in the experiments. Anatomical lengths and moment of inertia values of the subjects were determined by direct measurement and calculation. There was good reproducibility in the measured arm movement between trials, and similar joint angle trajectory characteristics were seen between subjects. Each subject had their own set of fitted parameter values determined and the results showed good agreement between measured and simulated data. The average fitted muscle parallel spring constant across all subjects was 143 N/m and the average fitted muscle parallel damping constant was 1.73 Ns/m. The passive movement method was proven to be successful, and can be applied to other joints in the human body, where muscles with similar actions are grouped together. Copyright © 2013 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  17. Liquid Feedstock Plasma Spraying: An Emerging Process for Advanced Thermal Barrier Coatings

    Science.gov (United States)

    Markocsan, Nicolaie; Gupta, Mohit; Joshi, Shrikant; Nylén, Per; Li, Xin-Hai; Wigren, Jan

    2017-08-01

    Liquid feedstock plasma spraying (LFPS) involves deposition of ultrafine droplets of suspensions or solution precursors (typically ranging from nano- to submicron size) and permits production of coatings with unique microstructures that are promising for advanced thermal barrier coating (TBC) applications. This paper reviews the recent progress arising from efforts devoted to development of high-performance TBCs using the LFPS approach. Advancements in both suspension plasma spraying and solution precursor plasma spraying, which constitute the two main variants of LFPS, are presented. Results illustrating the different types of the microstructures that can be realized in LFPS through appropriate process parameter control, model-assisted assessment of influence of coating defects on thermo-mechanical properties and the complex interplay between pore coarsening, sintering and crystallite growth in governing thermal conductivity are summarized. The enhancement in functional performances/lifetime possible in LFPS TBCs with multilayered architectures and by incorporating new pyrochlore chemistries such as gadolinium zirconate, besides the conventional single 8 wt.% yttria-stabilized zirconia insulating ceramic layer, is specifically highlighted.

  18. 76 FR 66617 - Airworthiness Directives; Erickson Air-Crane Incorporated Model S-64F Helicopters

    Science.gov (United States)

    2011-10-27

    ...-026-AD; Amendment 39-16835; AD 2011-21-12] RIN 2120-AA64 Airworthiness Directives; Erickson Air-Crane.... SUMMARY: We are adopting a new airworthiness directive (AD) for the Erickson Air-Crane (Erickson Air-Crane..., 2011. ADDRESSES: For service information identified in this AD, contact Erickson Air-Crane Incorporated...

  19. Incorporating food web dynamics into ecological restoration: a modeling approach for river ecosystems

    Science.gov (United States)

    J. Ryan Bellmore; Joseph R. Benjamin; Michael Newsom; Jennifer A. Bountry; Daniel Dombroski

    2017-01-01

    Restoration is frequently aimed at the recovery of target species, but also influences the larger food web in which these species participate. Effects of restoration on this broader network of organisms can influence target species both directly and indirectly via changes in energy flow through food webs. To help incorporate these complexities into river restoration...

  20. Strategies for Incorporating Women-Specific Sexuality Education into Addiction Treatment Models

    Science.gov (United States)

    James, Raven

    2007-01-01

    This paper advocates for the incorporation of a women-specific sexuality curriculum in the addiction treatment process to aid in sexual healing and provide for aftercare issues. Sexuality in addiction treatment modalities is often approached from a sex-negative stance, or that of sexual victimization. Sexual issues are viewed as addictive in and…

  1. Preparation of gasification feedstock from leafy biomass.

    Science.gov (United States)

    Shone, C M; Jothi, T J S

    2016-05-01

    Dried leaves are a potential source of energy although these are not commonly used beside to satisfy daily energy demands in rural areas. This paper aims at preparing a leafy biomass feedstock in the form of briquettes which can be directly used for combustion or to extract the combustible gas using a gasifier. Teak (Tectona grandis) and rubber (Hevea brasiliensis) leaves are considered for the present study. A binder-assisted briquetting technique with tapioca starch as binder is adopted. Properties of these leafy biomass briquettes such as moisture content, calorific value, compressive strength, and shatter index are determined. From the study, briquettes with biomass-to-binder ratio of 3:5 are found to be stable. Higher mass percentage of binder is considered for preparation of briquettes due to the fact that leafy biomasses do not adhere well on densification with lower binder content. Ultimate analysis test is conducted to analyze the gasification potential of the briquettes. Results show that the leafy biomass prepared from teak and rubber leaves has calorific values of 17.5 and 17.8 MJ/kg, respectively, which are comparable with those of existing biomass feedstock made of sawdust, rice husk, and rice straw.

  2. Influence of feedstock sulfur content on cat cracking results

    Energy Technology Data Exchange (ETDEWEB)

    Manovyan, A.K.; Pivovarova, N.A.; Tarakanov, G.V. [and others

    1995-11-01

    In the interest of expanding the resources for cat cracking feedstocks, blends of vacuum distillate and resids are being used. The feedstock components are usually subjected to hydrotreating or deasphalting in order to lower the contents of resins and sulfur. However, there has been very little study of the question of how the cracking results are influenced by resins and sulfur remaining in the feedstock after hydrotreating or deasphalting. Here, the authors are reporting on a study of the influence of feedstock sulfur content on the content of olefins in the products from cracking.

  3. Socio-economic impact of biofuel feedstock production on local ...

    African Journals Online (AJOL)

    Keywords: Biofuel feedstock plantations; Jatropha curcas; land grabbing; local livelihoods; ... Consequently, many European and American governments, international ...... Biofuel biomass crop farm/plantation initiatives in the Northern Region.

  4. Study on the Adaptability of Etheriifcation Feedstock to Reactor Type

    Institute of Scientific and Technical Information of China (English)

    Mao Junyi; Yuan Qing; Wang Lei; Huang Tao

    2016-01-01

    A reactive C5 oleifns and methanol etheriifcation kinetic model based on E-R mechanism was established and three different types of reactors including the adiabatic ifxed-bed liquid reactor, the external loop reactor and the mixed-phase reactor were constructed by Aspen Plus. The adaptability of reactive C5 oleifns to these reactors was studied and simulated using various gasoline fractions with different oleifns content. After the theoretical model was validated by the experimental data of the etheriifcation of three C5 light cut fractions from different gasoline sources in different reactors, the simulated isoamylene conversion with reactive C5 olefin contents increasing from 10% to 60% was studied in the three different types of reactors for etheriifcation with methanol, respectively. Test results show that there is an obvious adaptability of the feedstock composition to the reactor type to achieve a high conversion.

  5. 26 CFR 48.4082-7 - Kerosene; exemption for feedstock purposes.

    Science.gov (United States)

    2010-04-01

    ... 26 Internal Revenue 16 2010-04-01 2010-04-01 true Kerosene; exemption for feedstock purposes. 48.4082-7 Section 48.4082-7 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY... same form as the model certificate provided in paragraph (e)(2) of this section, and contains...

  6. Interactions of Woody Biofuel Feedstock Production Systems with Water Resources: Considerations for Sustainability

    Energy Technology Data Exchange (ETDEWEB)

    Trettin, Carl C. [US Forest Service Center for Forested Wetlands Research, Cordesville, SC (United States); Amatya, Devendra [US Forest Service Center for Forested Wetlands Research, Cordesville, SC (United States); Coleman, Mark [US Forest Service Center for Forested Wetlands Research, Cordesville, SC (United States)

    2008-04-15

    Water resources are important for the production of woody biofuel feedstocks. It is necessary to ensure that production systems do not adversely affect the quantity or quality of surface and ground water. The effects of woody biomass plantations on water resources are largely dependent on the prior land use and the management regime. Experience from both irrigated and non-irrigated systems has demonstrated that woody biofuel production systems do not impair water quality. Water quality actually improves from conversion of idle or degraded agricultural lands to woody biomass plantations. Site water balance may be altered by cultivation of woody biomass plantations relative to agricultural use, due to increases in evapostranspiration (ET) and storage. Incorporation of woody biomass production plantations within the landscape provides an opportunity to improve the quality of runoff water and soil conservation. Finally, given the centrality of water resources to the sustainability of ecosystem services and other values derived, the experience with woody biofuels feedstock production systems is positive.

  7. Repeated oral dosing of TAS-102 confers high trifluridine incorporation into DNA and sustained antitumor activity in mouse models.

    Science.gov (United States)

    Tanaka, Nozomu; Sakamoto, Kazuki; Okabe, Hiroyuki; Fujioka, Akio; Yamamura, Keisuke; Nakagawa, Fumio; Nagase, Hideki; Yokogawa, Tatsushi; Oguchi, Kei; Ishida, Keiji; Osada, Akiko; Kazuno, Hiromi; Yamada, Yukari; Matsuo, Kenichi

    2014-12-01

    TAS-102 is a novel oral nucleoside antitumor agent containing trifluridine (FTD) and tipiracil hydrochloride (TPI). The compound improves overall survival of colorectal cancer (CRC) patients who are insensitive to standard chemotherapies. FTD possesses direct antitumor activity since it inhibits thymidylate synthase (TS) and is itself incorporated into DNA. However, the precise mechanisms underlying the incorporation into DNA and the inhibition of TS remain unclear. We found that FTD-dependent inhibition of TS was similar to that elicited by fluorodeoxyuridine (FdUrd), another clinically used nucleoside analog. However, washout experiments revealed that FTD-dependent inhibition of TS declined rapidly, whereas FdUrd activity persisted. The incorporation of FTD into DNA was significantly higher than that of other antitumor nucleosides. Additionally, orally administered FTD had increased antitumor activity and was incorporated into DNA more effectively than continuously infused FTD. When TAS-102 was administered, FTD gradually accumulated in tumor cell DNA, in a TPI-independent manner, and significantly delayed tumor growth and prolonged survival, compared to treatment with 5-FU derivatives. TAS-102 reduced the Ki-67-positive cell fraction, and swollen nuclei were observed in treated tumor tissue. The amount of FTD incorporation in DNA and the antitumor activity of TAS-102 in xenograft models were positively and significantly correlated. These results suggest that TAS-102 exerts its antitumor activity predominantly due to its DNA incorporation, rather than as a result of TS inhibition. The persistence of FTD in the DNA of tumor cells treated with TAS-102 may underlie its ability to prolong survival in cancer patients.

  8. Bio-energy feedstock yields and their water quality benefits in Mississippi

    Energy Technology Data Exchange (ETDEWEB)

    Parajuli, Prem B.

    2011-08-10

    Cellulosic and agricultural bio-energy crops can, under careful management, be harvested as feedstock for bio-fuels production and provide environmental benefits. However, it is required to quantify their relative advantages in feedstock production and water quality. The primary objective of this research was to evaluate potential feedstock yield and water quality benefit scenarios of bioenergy crops: Miscanthus (Miscanthus-giganteus), Switchgrass (Panicum virgatum), Johnsongrass (Sorghum halepense), Alfalfa (Medicago sativa L.), Soybean {Glycine max (L.) Merr.}, and Corn (Lea mays) in the Upper Pearl River watershed (UPRW), Mississippi using a Soil and Water Assessment Tool (SWAT). The SWAT model was calibrated (January 1981 to December 1994) and validated (January 1995 to September 2008) using monthly measured stream flow data. The calibrated and validated model determined good to very good performance for stream flow prediction (R2 and E from 0.60 to 0.86). The RMSE values (from 14 m3 s-1 to 37 m3 s-1) were estimated at similar levels of errors during model calibration and validation. The long-term average annual potential feedstock yield as an alternative energy source was determined the greatest when growing Miscanthus grass (373,849 Mg) as followed by Alfalfa (206,077 Mg), Switchgrass (132,077 Mg), Johnsongrass (47,576 Mg), Soybean (37,814 Mg), and Corn (22,069 Mg) in the pastureland and cropland of the watershed. Model results determined that average annual sediment yield from the Miscanthus grass scenario determined the least (1.16 Mg/ha) and corn scenario the greatest (12.04 Mg/ha). The SWAT model simulated results suggested that growing Miscanthus grass in the UPRW would have the greatest potential feedstock yield and water quality benefits.

  9. A computational model incorporating neural stem cell dynamics reproduces glioma incidence across the lifespan in the human population.

    Directory of Open Access Journals (Sweden)

    Roman Bauer

    Full Text Available Glioma is the most common form of primary brain tumor. Demographically, the risk of occurrence increases until old age. Here we present a novel computational model to reproduce the probability of glioma incidence across the lifespan. Previous mathematical models explaining glioma incidence are framed in a rather abstract way, and do not directly relate to empirical findings. To decrease this gap between theory and experimental observations, we incorporate recent data on cellular and molecular factors underlying gliomagenesis. Since evidence implicates the adult neural stem cell as the likely cell-of-origin of glioma, we have incorporated empirically-determined estimates of neural stem cell number, cell division rate, mutation rate and oncogenic potential into our model. We demonstrate that our model yields results which match actual demographic data in the human population. In particular, this model accounts for the observed peak incidence of glioma at approximately 80 years of age, without the need to assert differential susceptibility throughout the population. Overall, our model supports the hypothesis that glioma is caused by randomly-occurring oncogenic mutations within the neural stem cell population. Based on this model, we assess the influence of the (experimentally indicated decrease in the number of neural stem cells and increase of cell division rate during aging. Our model provides multiple testable predictions, and suggests that different temporal sequences of oncogenic mutations can lead to tumorigenesis. Finally, we conclude that four or five oncogenic mutations are sufficient for the formation of glioma.

  10. Incorporating wind availability into land use regression modelling of air quality in mountainous high-density urban environment.

    Science.gov (United States)

    Shi, Yuan; Lau, Kevin Ka-Lun; Ng, Edward

    2017-08-01

    Urban air quality serves as an important function of the quality of urban life. Land use regression (LUR) modelling of air quality is essential for conducting health impacts assessment but more challenging in mountainous high-density urban scenario due to the complexities of the urban environment. In this study, a total of 21 LUR models are developed for seven kinds of air pollutants (gaseous air pollutants CO, NO2, NOx, O3, SO2 and particulate air pollutants PM2.5, PM10) with reference to three different time periods (summertime, wintertime and annual average of 5-year long-term hourly monitoring data from local air quality monitoring network) in Hong Kong. Under the mountainous high-density urban scenario, we improved the traditional LUR modelling method by incorporating wind availability information into LUR modelling based on surface geomorphometrical analysis. As a result, 269 independent variables were examined to develop the LUR models by using the "ADDRESS" independent variable selection method and stepwise multiple linear regression (MLR). Cross validation has been performed for each resultant model. The results show that wind-related variables are included in most of the resultant models as statistically significant independent variables. Compared with the traditional method, a maximum increase of 20% was achieved in the prediction performance of annual averaged NO2 concentration level by incorporating wind-related variables into LUR model development. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Biodiesel from non-food alternative feed-stock

    Science.gov (United States)

    As a potential feedstock for biodiesel (BD) production, Jojoba oil was extracted from Jojoba (Simmondsia chinensis L.) plant seeds that contained around 50-60 wt.%, which were explored as non-food alternative feedstocks. Interestingly, Jojoba oil has long-chain wax esters and is not a typical trigly...

  12. Best practices guidelines for managing water in bioenergy feedstock production

    Science.gov (United States)

    Daniel G. Neary

    2015-01-01

    In the quest to develop renewable energy sources, woody and agricultural crops are being viewed as an important source of low environmental impact feedstocks for electrical generation and biofuels production (Hall and Scrase 1998, Eriksson et al. 2002, Somerville et al. 2010, Berndes and Smith 2013). In countries like the USA, the bioenergy feedstock potential is...

  13. A Mass Balance Model for Designing Green Roof Systems that Incorporate a Cistern for Re-Use

    OpenAIRE

    Manoj Chopra; Martin Wanielista; Mike Hardin

    2012-01-01

    Green roofs, which have been used for several decades in many parts of the world, offer a unique and sustainable approach to stormwater management. Within this paper, evidence is presented on water retention for an irrigated green roof system. The presented green roof design results in a water retention volume on site. A first principle mass balance computer model is introduced to assist with the design of these green roof systems which incorporate a cistern to capture and reuse runoff waters...

  14. Ab initio modeling of point defects, self-diffusion, and incorporation of impurities in thorium

    Science.gov (United States)

    Daroca, D. Pérez

    2017-02-01

    Research on Generation-IV nuclear reactors has boosted the investigation of thorium as nuclear fuel. By means of first-principles calculations within the framework of density functional theory, structural properties and phonon dispersion curves of Th are obtained. These results agreed very well with previous ones. The stability and formation energies of vacancies, interstitial and divacancies are studied. It is found that vacancies are the energetically preferred defects. The incorporation energies of He, Xe, and Kr atoms in Th defects are analyzed. Self-diffusion, migration paths and activation energies are also calculated.

  15. Incorporating environmental attitudes in discrete choice models: an exploration of the utility of the awareness of consequences scale.

    Science.gov (United States)

    Hoyos, David; Mariel, Petr; Hess, Stephane

    2015-02-01

    Environmental economists are increasingly interested in better understanding how people cognitively organise their beliefs and attitudes towards environmental change in order to identify key motives and barriers that stimulate or prevent action. In this paper, we explore the utility of a commonly used psychometric scale, the awareness of consequences (AC) scale, in order to better understand stated choices. The main contribution of the paper is that it provides a novel approach to incorporate attitudinal information into discrete choice models for environmental valuation: firstly, environmental attitudes are incorporated using a reinterpretation of the classical AC scale recently proposed by Ryan and Spash (2012); and, secondly, attitudinal data is incorporated as latent variables under a hybrid choice modelling framework. This novel approach is applied to data from a survey conducted in the Basque Country (Spain) in 2008 aimed at valuing land-use policies in a Natura 2000 Network site. The results are relevant to policy-making because choice models that are able to accommodate underlying environmental attitudes may help in designing more effective environmental policies. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. C4 Plants as Biofuel Feedstocks: Optimising Biomass Production and Feedstock Quality from a Lignocellulosic Perspective

    Institute of Scientific and Technical Information of China (English)

    Caitlin S.Byrt; Christopher P.L.Grof; Robert T.Furbank

    2011-01-01

    The main feedstocks for bioethanol are sugarcane (Saccharum offic-inarum) and maize (Zea mays), both of which are C4 grasses, highly efficient at converting solar energy into chemical energy, and both are food crops. As the systems for lignocellulosic bioethanol production become more efficient and cost effective, plant biomass from any source may be used as a feedstock for bioethanol production. Thus, a move away from using food plants to make fuel is possible, and sources of biomass such as wood from forestry and plant waste from cropping may be used. However, the bioethanol industry will need a continuous and reliable supply of biomass that can be produced at a low cost and with minimal use of water, fertilizer and arable land. As many C4 plants have high light, water and nitrogen use efficiency, as compared with C3 species, they are ideal as feedstock crops. We consider the productivity and resource use of a number of candidate plant species, and discuss biomass 'quality', that is, the composition of the plant cell wall.

  17. [Incorporation of an organic MAGIC (Model of Acidification of Groundwater in Catchments) and testing of the revised model using independent data sources]. [MAGIC Model

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, T.J.

    1992-09-01

    A project was initiated in March, 1992 to (1) incorporate a rigorous organic acid representation, based on empirical data and geochemical considerations, into the MAGIC model of acidification response, and (2) test the revised model using three sets of independent data. After six months of performance, the project is on schedule and the majority of the tasks outlined for Year 1 have been successfully completed. Major accomplishments to data include development of the organic acid modeling approach, using data from the Adirondack Lakes Survey Corporation (ALSC), and coupling the organic acid model with MAGIC for chemical hindcast comparisons. The incorporation of an organic acid representation into MAGIC can account for much of the discrepancy earlier observed between MAGIC hindcasts and paleolimnological reconstructions of preindustrial pH and alkalinity for 33 statistically-selected Adirondack lakes. Additional work is on-going for model calibration and testing with data from two whole-catchment artificial acidification projects. Results obtained thus far are being prepared as manuscripts for submission to the peer-reviewed scientific literature.

  18. Incorporating Transmission Into Causal Models of Infectious Diseases for Improved Understanding of the Effect and Impact of Risk Factors.

    Science.gov (United States)

    Paynter, Stuart

    2016-03-15

    Conventional measures of causality (which compare risks between exposed and unexposed individuals) do not factor in the population-scale dynamics of infectious disease transmission. We used mathematical models of 2 childhood infections (respiratory syncytial virus and rotavirus) to illustrate this problem. These models incorporated 3 causal pathways whereby malnutrition could act to increase the incidence of severe infection: increasing the proportion of infected children who develop severe infection, increasing the children's susceptibility to infection, and increasing infectiousness. For risk factors that increased the proportion of infected children who developed severe infection, the population attributable fraction (PAF) calculated conventionally was the same as the PAF calculated directly from the models. However, for risk factors that increased transmission (by either increasing susceptibility to infection or increasing infectiousness), the PAF calculated directly from the models was much larger than that predicted by the conventional PAF calculation. The models also showed that even when conventional studies find no association between a risk factor and an outcome, risk factors that increase transmission can still have a large impact on disease burden. For a complete picture of infectious disease causality, transmission effects must be incorporated into causal models.

  19. Incorporation of Failure Into an Orthotropic Three-Dimensional Model with Tabulated Input Suitable for Use in Composite Impact Problems

    Science.gov (United States)

    Goldberg, Robert K.; Carney, Kelly S.; Dubois, Paul; Hoffarth, Canio; Khaled, Bilal; Shyamsunder, Loukham; Rajan, Subramaniam; Blankenhorn, Gunther

    2017-01-01

    The need for accurate material models to simulate the deformation, damage and failure of polymer matrix composites under impact conditions is becoming critical as these materials are gaining increased use in the aerospace and automotive communities. The aerospace community has identified several key capabilities which are currently lacking in the available material models in commercial transient dynamic finite element codes. To attempt to improve the predictive capability of composite impact simulations, a next generation material model is being developed for incorporation within the commercial transient dynamic finite element code LS-DYNA. The material model, which incorporates plasticity, damage and failure, utilizes experimentally based tabulated input to define the evolution of plasticity and damage and the initiation of failure as opposed to specifying discrete input parameters such as modulus and strength. The plasticity portion of the orthotropic, three-dimensional, macroscopic composite constitutive model is based on an extension of the Tsai-Wu composite failure model into a generalized yield function with a non-associative flow rule. For the damage model, a strain equivalent formulation is used to allow for the uncoupling of the deformation and damage analyses. In the damage model, a semi-coupled approach is employed where the overall damage in a particular coordinate direction is assumed to be a multiplicative combination of the damage in that direction resulting from the applied loads in various coordinate directions. For the failure model, a tabulated approach is utilized in which a stress or strain based invariant is defined as a function of the location of the current stress state in stress space to define the initiation of failure. Failure surfaces can be defined with any arbitrary shape, unlike traditional failure models where the mathematical functions used to define the failure surface impose a specific shape on the failure surface. In the current

  20. Methods for determination of biomethane potential of feedstocks: a review

    Directory of Open Access Journals (Sweden)

    Raphael Muzondiwa Jingura

    2017-06-01

    Full Text Available Biogas produced during anaerobic digestion (AD of biodegradable organic materials. AD is a series of biochemical reactions in which microorganisms degrade organic matter under anaerobic conditions. There are many biomass resources that can be degraded by AD to produce biogas. Biogas consists of methane, carbon dioxide, and trace amounts of other gases. The gamut of feedstocks used in AD includes animal manure, municipal solid waste, sewage sludge, and various crops. Several factors affect the potential of feedstocks for biomethane production. The factors include nutrient content, total and volatile solids (VS content, chemical and biological oxygen demand, carbon/nitrogen ratio, and presence of inhibitory substances. The biochemical methane potential (BMP, often defined as the maximum volume of methane produced per g of VS substrate provides an indication of the biodegradability of a substrate and its potential to produce methane via AD. The BMP test is a method of establishing a baseline for performance of AD. BMP data are useful for designing AD parameters in order to optimise methane production. Several methods which include experimental and theoretical methods can be used to determine BMP. The objective of this paper is to review several methods with a special focus on their advantages and disadvantages. The review shows that experimental methods, mainly the BMP test are widely used. The BMP test is credited for its reliability and validity. There are variants of BMP assays as well. Theoretical models are alternative methods to estimate BMP. They are credited for being fast and easy to use. Spectroscopy has emerged as a new experimental tool to determine BMP. Each method has its own advantages and disadvantages with reference to efficacy, time, and ease of use. Choosing a method to use depends on various exigencies. More work needs to be continuously done in order to improve the various methods used to determine BMP.

  1. The watershed-scale optimized and rearranged landscape design (WORLD) model and local biomass processing depots for sustainable biofuel production: Integrated life cycle assessments

    Energy Technology Data Exchange (ETDEWEB)

    Eranki, Pragnya L.; Manowitz, David H.; Bals, Bryan D.; Izaurralde, Roberto C.; Kim, Seungdo; Dale, Bruce E.

    2013-07-23

    An array of feedstock is being evaluated as potential raw material for cellulosic biofuel production. Thorough assessments are required in regional landscape settings before these feedstocks can be cultivated and sustainable management practices can be implemented. On the processing side, a potential solution to the logistical challenges of large biorefi neries is provided by a network of distributed processing facilities called local biomass processing depots. A large-scale cellulosic ethanol industry is likely to emerge soon in the United States. We have the opportunity to influence the sustainability of this emerging industry. The watershed-scale optimized and rearranged landscape design (WORLD) model estimates land allocations for different cellulosic feedstocks at biorefinery scale without displacing current animal nutrition requirements. This model also incorporates a network of the aforementioned depots. An integrated life cycle assessment is then conducted over the unified system of optimized feedstock production, processing, and associated transport operations to evaluate net energy yields (NEYs) and environmental impacts.

  2. Nanofibers for drug delivery - incorporation and release of model molecules, influence of molecular weight and polymer structure.

    Science.gov (United States)

    Hrib, Jakub; Sirc, Jakub; Hobzova, Radka; Hampejsova, Zuzana; Bosakova, Zuzana; Munzarova, Marcela; Michalek, Jiri

    2015-01-01

    Nanofibers were prepared from polycaprolactone, polylactide and polyvinyl alcohol using Nanospider(TM) technology. Polyethylene glycols with molecular weights of 2 000, 6 000, 10 000 and 20 000 g/mol, which can be used to moderate the release profile of incorporated pharmacologically active compounds, served as model molecules. They were terminated by aromatic isocyanate and incorporated into the nanofibers. The release of these molecules into an aqueous environment was investigated. The influences of the molecular length and chemical composition of the nanofibers on the release rate and the amount of released polyethylene glycols were evaluated. Longer molecules released faster, as evidenced by a significantly higher amount of released molecules after 72 hours. However, the influence of the chemical composition of nanofibers was even more distinct - the highest amount of polyethylene glycol molecules released from polyvinyl alcohol nanofibers, the lowest amount from polylactide nanofibers.

  3. Nanofibers for drug delivery – incorporation and release of model molecules, influence of molecular weight and polymer structure

    Directory of Open Access Journals (Sweden)

    Jakub Hrib

    2015-09-01

    Full Text Available Nanofibers were prepared from polycaprolactone, polylactide and polyvinyl alcohol using NanospiderTM technology. Polyethylene glycols with molecular weights of 2 000, 6 000, 10 000 and 20 000 g/mol, which can be used to moderate the release profile of incorporated pharmacologically active compounds, served as model molecules. They were terminated by aromatic isocyanate and incorporated into the nanofibers. The release of these molecules into an aqueous environment was investigated. The influences of the molecular length and chemical composition of the nanofibers on the release rate and the amount of released polyethylene glycols were evaluated. Longer molecules released faster, as evidenced by a significantly higher amount of released molecules after 72 hours. However, the influence of the chemical composition of nanofibers was even more distinct – the highest amount of polyethylene glycol molecules released from polyvinyl alcohol nanofibers, the lowest amount from polylactide nanofibers.

  4. A Mass Balance Model for Designing Green Roof Systems that Incorporate a Cistern for Re-Use

    Directory of Open Access Journals (Sweden)

    Manoj Chopra

    2012-11-01

    Full Text Available Green roofs, which have been used for several decades in many parts of the world, offer a unique and sustainable approach to stormwater management. Within this paper, evidence is presented on water retention for an irrigated green roof system. The presented green roof design results in a water retention volume on site. A first principle mass balance computer model is introduced to assist with the design of these green roof systems which incorporate a cistern to capture and reuse runoff waters for irrigation of the green roof. The model is used to estimate yearly stormwater retention volume for different cistern storage volumes. Additionally, the Blaney and Criddle equation is evaluated for estimation of monthly evapotranspiration rates for irrigated systems and incorporated into the model. This is done so evapotranspiration rates can be calculated for regions where historical data does not exist, allowing the model to be used anywhere historical weather data are available. This model is developed and discussed within this paper as well as compared to experimental results.

  5. CONTEXT MATTERS: THE IMPORTANCE OF MARKET CHARACTERISTICS IN THE VOLATILITY OF FEEDSTOCK COSTS FOR BIOGAS PLANTS.

    Science.gov (United States)

    Mertens, A; Van Meensel, J; Mondelaers, K; Buysse, J

    2015-01-01

    Recently, biogas plant managers in Flanders face increased financial uncertainty. Between 2011 and 2012, 20% of the Flemish biogas plants went bankrupt. Difficulties in obtaining feedstock at stable and affordable prices is one reason why the biogas sector struggles. In literature, contracting is often proposed as a way to decrease the volatility of the feedstock costs. However, these studies generally do not consider the context in which the biogas plant manager needs to buy the feedstock. Yet, this context could be of specific importance when biogas plant managers are in competition with other users of the same biomass type. Silage maize is an example of such a feedstock, as it is both used by dairy farmers and biogas plant managers. Using a combination of qualitative research and agent-based modelling, we investigated the effect of specific characteristics of the silage maize market on the acquisition of local silage maize by biogas plant managers. This paper details the institutional arrangements of the silage maize market in Flanders and the results of a scenario analysis, simulating three different scenarios. As shown by the results, the time of entry into the market, as well as the different institutional arrangements used by the biogas plant managers as opposed to dairy farmers could explain the difficulties in obtaining a stable supply of local silage maize by biogas plants. Our findings can help to develop mitigation strategies addressing these difficulties.

  6. Investigation of a growth model incorporating density dependence for the mackerel management plan simulations

    NARCIS (Netherlands)

    Brunel, T.P.A.

    2015-01-01

    This report presents a framework to model density dependent growth for the North East Atlantic mackerel. The model used is the classical von Bertalanffy equation, but modified so that growth is reduced when stock size increases. The model developed was able to reproduce quite closely the trends in t

  7. Investigation of a growth model incorporating density dependence for the mackerel management plan simulations

    NARCIS (Netherlands)

    Brunel, T.P.A.

    2015-01-01

    This report presents a framework to model density dependent growth for the North East Atlantic mackerel. The model used is the classical von Bertalanffy equation, but modified so that growth is reduced when stock size increases. The model developed was able to reproduce quite closely the trends in

  8. Impact of Technology and Feedstock Choice on the Environmental Footprint of Biofuels

    Science.gov (United States)

    Schultz, P. B.; Dodder, R. S.

    2012-12-01

    The implementation of the U.S. Renewable Fuel Standard program (RFS2) has led to a dramatic shift in the use of biofuel in the U.S. transportation system over the last decade. To satisfy this demand, the production of U.S. corn-based ethanol has grown rapidly, with an average increase of over 25% annually from 2002 to 2010. RFS2 requires a similarly steep increase in the production of advanced biofuels, such as cellulosic ethanol. Unlike corn-based ethanol, which is derived from the biochemical fermentation of sugars in wet and dry mills, it is likely that a more diverse suite of technologies will need to be developed to be able to meet the advanced biofuel RFS2 targets, including biochemical as well as thermochemical (e.g., gasification and pyrolysis) approaches. Rather than relying on energy crops, a potential advantage of thermochemical approaches is the ability to use a wider variety of feedstocks, including municipal solid waste and wood waste. In this work, we conduct a system-level analysis to understand how technology and feedstock choice can impact the environmental footprint of biofuels in the U.S. We use a least-cost optimization model of the U.S. energy system to account for interactions between various components of the energy system: industrial, transportation, electric, and residential/commercial sectors. The model was used to understand the scale of feedstock demand required from dedicated energy crops, as well as other biomass feedstocks, in order to meet the RFS2 mandate. On a regional basis, we compare the overall water-consumption and land requirements for biofuels production given a suite of liquid-fuel production technologies. By considering a range of scenarios, we examine how the use of various feedstocks (e.g., agricultural residues, wood wastes, mill residues and municipal wastes) can be used to off-set environmental impacts as compared to relying solely on energy crops.

  9. A selenium-deficient Caco-2 cell model for assessing differential incorporation of chemical or food selenium into glutathione peroxidase.

    Science.gov (United States)

    Zeng, Huawei; Botnen, James H; Johnson, Luann K

    2008-01-01

    Assessing the ability of a selenium (Se) sample to induce cellular glutathione peroxidase (GPx) activity in Se-deficient animals is the most commonly used method to determine Se bioavailability. Our goal is to establish a Se-deficient cell culture model with differential incorporation of Se chemical forms into GPx, which may complement the in vivo studies. In the present study, we developed a Se-deficient Caco-2 cell model with a serum gradual reduction method. It is well recognized that selenomethionine (SeMet) is the major nutritional source of Se; therefore, SeMet, selenite, or methylselenocysteine (SeMSC) was added to cell culture media with different concentrations and treatment time points. We found that selenite and SeMSC induced GPx more rapidly than SeMet. However, SeMet was better retained as it is incorporated into proteins in place of methionine; compared with 8-, 24-, or 48-h treatment, 72-h Se treatment was a more sensitive time point to measure the potential of GPx induction in all tested concentrations. Based on induction of GPx activity, the cellular bioavailability of Se from an extract of selenobroccoli after a simulated gastrointestinal digestion was comparable with that of SeMSC and SeMet. These in vitro data are, for the first time, consistent with previous published data regarding selenite and SeMet bioavailability in animal models and Se chemical speciation studies with broccoli. Thus, Se-deficient Caco-2 cell model with differential incorporation of chemical or food forms of Se into GPx provides a new tool to study the cellular mechanisms of Se bioavailability.

  10. Incorporating shape constraints in generalized additive modelling of the height-diameter relationship for Norway spruce

    Directory of Open Access Journals (Sweden)

    Natalya Pya

    2016-02-01

    Full Text Available Background: Measurements of tree heights and diameters are essential in forest assessment and modelling. Tree heights are used for estimating timber volume, site index and other important variables related to forest growth and yield, succession and carbon budget models. However, the diameter at breast height (dbh can be more accurately obtained and at lower cost, than total tree height. Hence, generalized height-diameter (h-d models that predict tree height from dbh, age and other covariates are needed. For a more flexible but biologically plausible estimation of covariate effects we use shape constrained generalized additive models as an extension of existing h-d model approaches. We use causal site parameters such as index of aridity to enhance the generality and causality of the models and to enable predictions under projected changeable climatic conditions. Methods: We develop unconstrained generalized additive models (GAM and shape constrained generalized additive models (SCAM for investigating the possible effects of tree-specific parameters such as tree age, relative diameter at breast height, and site-specific parameters such as index of aridity and sum of daily mean temperature during vegetation period, on the h-d relationship of forests in Lower Saxony, Germany. Results: Some of the derived effects, e.g. effects of age, index of aridity and sum of daily mean temperature have significantly non-linear pattern. The need for using SCAM results from the fact that some of the model effects show partially implausible patterns especially at the boundaries of data ranges. The derived model predicts monotonically increasing levels of tree height with increasing age and temperature sum and decreasing aridity and social rank of a tree within a stand. The definition of constraints leads only to marginal or minor decline in the model statistics like AIC. An observed structured spatial trend in tree height is modelled via 2-dimensional surface

  11. A mathematical model for maximizing the value of phase 3 drug development portfolios incorporating budget constraints and risk.

    Science.gov (United States)

    Patel, Nitin R; Ankolekar, Suresh; Antonijevic, Zoran; Rajicic, Natasa

    2013-05-10

    We describe a value-driven approach to optimizing pharmaceutical portfolios. Our approach incorporates inputs from research and development and commercial functions by simultaneously addressing internal and external factors. This approach differentiates itself from current practices in that it recognizes the impact of study design parameters, sample size in particular, on the portfolio value. We develop an integer programming (IP) model as the basis for Bayesian decision analysis to optimize phase 3 development portfolios using expected net present value as the criterion. We show how this framework can be used to determine optimal sample sizes and trial schedules to maximize the value of a portfolio under budget constraints. We then illustrate the remarkable flexibility of the IP model to answer a variety of 'what-if' questions that reflect situations that arise in practice. We extend the IP model to a stochastic IP model to incorporate uncertainty in the availability of drugs from earlier development phases for phase 3 development in the future. We show how to use stochastic IP to re-optimize the portfolio development strategy over time as new information accumulates and budget changes occur.

  12. An Application of Combined Model for Tehran Metropolitan Area Incorporating Captive Travel Behavior

    Directory of Open Access Journals (Sweden)

    Shahriar A. Zargari

    2009-01-01

    Full Text Available To overcome deficiencies of the sequential transportation planning approach, this research applies a Combined Trip Distribution and Assignment Model (CTDAM for the simultaneous prediction. The proposed combined model can itself be reformulated as an Equivalent Minimization Problem (EMP. When applying the Evans algorithm to the EMP, the CTDAM is expected to be usable in a realistic application. The objective of this research is to compare the conventional sequential procedure and CTDAM by applying both models to a large urban transportation network for captive trip purposes. Several evaluation measures were utilized to compare the results and confirm that the proposed model can efficiently satisfy several convergence criterions. It became clear that the User Equilibrium (UE assignment in the proposed model can be obtained relatively swifter than the Sequential Model (SM and can be efficiently used in large transportation networks. Furthermore, the comparing results point out the performance of the CTDAM is significantly better than SM.

  13. Incorporating Floating Surface Objects into a Fully Dispersive Surface Wave Model

    Science.gov (United States)

    2016-04-19

    solutions and a VOF model for a 2D floating box and with laboratory measurements of wave generation by a ver- tically oscillating sphere. A steep...breaking waves or sud - en surface impacts. These simplifications also considerably reduce he computational requirements of the model. The Pressure...recently, erakhti et al. (2015) carried out extensive model validations of HWAVE against laboratory data. The focus of their study was to xamine the

  14. Incorporating Latent Variables into Discrete Choice Models - A Simultaneous Estimation Approach Using SEM Software

    Directory of Open Access Journals (Sweden)

    Dirk Temme

    2008-12-01

    Full Text Available Integrated choice and latent variable (ICLV models represent a promising new class of models which merge classic choice models with the structural equation approach (SEM for latent variables. Despite their conceptual appeal, applications of ICLV models in marketing remain rare. We extend previous ICLV applications by first estimating a multinomial choice model and, second, by estimating hierarchical relations between latent variables. An empirical study on travel mode choice clearly demonstrates the value of ICLV models to enhance the understanding of choice processes. In addition to the usually studied directly observable variables such as travel time, we show how abstract motivations such as power and hedonism as well as attitudes such as a desire for flexibility impact on travel mode choice. Furthermore, we show that it is possible to estimate such a complex ICLV model with the widely available structural equation modeling package Mplus. This finding is likely to encourage more widespread application of this appealing model class in the marketing field.

  15. Combined harvesting of a stage structured prey-predator model incorporating cannibalism in competitive environment.

    Science.gov (United States)

    Chakraborty, Kunal; Das, Kunal; Kar, Tapan Kumar

    2013-01-01

    In this paper, we propose a prey-predator system with stage structure for predator. The proposed system incorporates cannibalism for predator populations in a competitive environment. The combined fishing effort is considered as control used to harvest the populations. The steady states of the system are determined and the dynamical behavior of the system is discussed. Local stability of the system is analyzed and sufficient conditions are derived for the global stability of the system at the positive equilibrium point. The existence of the Hopf bifurcation phenomenon is examined at the positive equilibrium point of the proposed system. We consider harvesting effort as a control parameter and subsequently, characterize the optimal control parameter in order to formulate the optimal control problem under the dynamic framework towards optimal utilization of the resource. Moreover, the optimal system is solved numerically to investigate the sustainability of the ecosystem using an iterative method with a Runge-Kutta fourth-order scheme. Simulation results show that the optimal control scheme can achieve sustainable ecosystem. Results are analyzed with the help of graphical illustrations.

  16. Method for determining processability of a hydrocarbon containing feedstock

    Science.gov (United States)

    Schabron, John F.; Rovani, Jr., Joseph F.

    2013-09-10

    Disclosed herein is a method involving the steps of (a) precipitating an amount of asphaltenes from a liquid sample of a first hydrocarbon-containing feedstock having solvated asphaltenes therein with one or more first solvents in a column; (b) determining one or more solubility characteristics of the precipitated asphaltenes; (c) analyzing the one or more solubility characteristics of the precipitated asphaltenes; and (d) correlating a measurement of feedstock reactivity for the first hydrocarbon-containing feedstock sample with a mathematical parameter derived from the results of analyzing the one or more solubility characteristics of the precipitated asphaltenes.

  17. Effect of Blended Feedstock on Pyrolysis Oil Composition

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Kristin M [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Gaston, Katherine R [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-09-28

    Current techno-economic analysis results indicate biomass feedstock cost represents 27% of the overall minimum fuel selling price for biofuels produced from fast pyrolysis followed by hydrotreating (hydro-deoxygenation, HDO). As a result, blended feedstocks have been proposed as a way to both reduce cost as well as tailor key chemistry for improved fuel quality. For this study, two feedstocks were provided by Idaho National Laboratory (INL). Both were pyrolyzed and collected under the same conditions in the National Renewable Energy Laboratory's (NREL) Thermochemical Process Development Unit (TCPDU). The resulting oil properties were then analyzed and characterized for statistical differences.

  18. Development of Oilfield Chemicals Based on Advantages in Petrochemical Feedstocks

    Institute of Scientific and Technical Information of China (English)

    Wang Xieqing; Peng Pu

    2002-01-01

    This article focuses on the routes for development of oilfield chemicals by making use of the feedstock advantages of the petrochemical industry. The diversification of oilfield chemicals has re sulted in thousand product grades. Because there are hundred domestic producers of oilfield chemicals,mostly medium and small producers, the fluctuations of feedstock prices and product quality cannot be conducive to the application and development of oilfield chemicals. This article illustrates the feasibility of oilfield chemical production by state-run medium and large petrochemical enterprises by allowing full play to their own advantages in petrochemical feedstocks.

  19. Incorporating Video Modeling into a School-Based Intervention for Students with Autism Spectrum Disorders

    Science.gov (United States)

    Wilson, Kaitlyn P.

    2013-01-01

    Purpose: Video modeling is an intervention strategy that has been shown to be effective in improving the social and communication skills of students with autism spectrum disorders, or ASDs. The purpose of this tutorial is to outline empirically supported, step-by-step instructions for the use of video modeling by school-based speech-language…

  20. Applications of explicitly-incorporated/post-processing measurement uncertainty in watershed modeling

    Science.gov (United States)

    The importance of measurement uncertainty in terms of calculation of model evaluation error statistics has been recently stated in the literature. The impact of measurement uncertainty on calibration results indicates the potential vague zone in the field of watershed modeling where the assumption ...

  1. A simple 2-D inundation model for incorporating flood damage in urban drainage planning

    Directory of Open Access Journals (Sweden)

    A. Pathirana

    2008-11-01

    Full Text Available In this paper a new inundation model code is developed and coupled with Storm Water Management Model, SWMM, to relate spatial information associated with urban drainage systems as criteria for planning of storm water drainage networks. The prime objective is to achive a model code that is simple and fast enough to be consistently be used in planning stages of urban drainage projects.

    The formulation for the two-dimensional (2-D surface flow model algorithms is based on the Navier Stokes equation in two dimensions. An Alternating Direction Implicit (ADI finite difference numerical scheme is applied to solve the governing equations. This numerical scheme is used to express the partial differential equations with time steps split into two halves. The model algorithm is written using C++ computer programming language.

    This 2-D surface flow model is then coupled with SWMM for simulation of both pipe flow component and surcharge induced inundation in urban areas. In addition, a damage calculation block is integrated within the inundation model code.

    The coupled model is shown to be capable of dealing with various flow conditions, as well as being able to simulate wetting and drying processes that will occur as the flood flows over an urban area. It has been applied under idealized and semi-hypothetical cases to determine detailed inundation zones, depths and velocities due to surcharged water on overland surface.

  2. LINKING MICROBES TO CLIMATE: INCORPORATING MICROBIAL ACTIVITY INTO CLIMATE MODELS COLLOQUIUM

    Energy Technology Data Exchange (ETDEWEB)

    DeLong, Edward; Harwood, Caroline; Reid, Ann

    2011-01-01

    This report explains the connection between microbes and climate, discusses in general terms what modeling is and how it applied to climate, and discusses the need for knowledge in microbial physiology, evolution, and ecology to contribute to the determination of fluxes and rates in climate models. It recommends with a multi-pronged approach to address the gaps.

  3. Incorporating Fuzzy Systems Modeling and Possibility Theory in Hydrogeological Uncertainty Analysis

    Science.gov (United States)

    Faybishenko, B.

    2008-12-01

    Hydrogeological predictions are subject to numerous uncertainties, including the development of conceptual, mathematical, and numerical models, as well as determination of their parameters. Stochastic simulations of hydrogeological systems and the associated uncertainty analysis are usually based on the assumption that the data characterizing spatial and temporal variations of hydrogeological processes are random, and the output uncertainty is quantified using a probability distribution. However, hydrogeological systems are often characterized by imprecise, vague, inconsistent, incomplete or subjective information. One of the modern approaches to modeling and uncertainty quantification of such systems is based on using a combination of statistical and fuzzy-logic uncertainty analyses. The aims of this presentation are to: (1) present evidence of fuzziness in developing conceptual hydrogeological models, and (2) give examples of the integration of the statistical and fuzzy-logic analyses in modeling and assessing both aleatoric uncertainties (e.g., caused by vagueness in assessing the subsurface system heterogeneities of fractured-porous media) and epistemic uncertainties (e.g., caused by the selection of different simulation models) involved in hydrogeological modeling. The author will discuss several case studies illustrating the application of fuzzy modeling for assessing the water balance and water travel time in unsaturated-saturated media. These examples will include the evaluation of associated uncertainties using the main concepts of possibility theory, a comparison between the uncertainty evaluation using probabilistic and possibility theories, and a transformation of the probabilities into possibilities distributions (and vice versa) for modeling hydrogeological processes.

  4. Incorporating Video Modeling into a School-Based Intervention for Students with Autism Spectrum Disorders

    Science.gov (United States)

    Wilson, Kaitlyn P.

    2013-01-01

    Purpose: Video modeling is an intervention strategy that has been shown to be effective in improving the social and communication skills of students with autism spectrum disorders, or ASDs. The purpose of this tutorial is to outline empirically supported, step-by-step instructions for the use of video modeling by school-based speech-language…

  5. A Preventative Model of School Consultation: Incorporating Perspectives from Positive Psychology

    Science.gov (United States)

    Akin-Little, K. Angeleque; Little, Steven G.; Delligatti, Nina

    2004-01-01

    Using the principles of mental health and behavioral consultation, combined with concepts from positive psychology, this paper generates a new preventative model of school consultation. This model has two steps: (1) the school psychologist aids the teacher in the development and use of his/her personal positive psychology (e.g., optimism,…

  6. Geoffroea decorticans for Biofuels: A Promising Feedstock

    Directory of Open Access Journals (Sweden)

    Claudia Santibáñez

    2017-01-01

    Full Text Available In this work, chañar (Geoffroea decorticans fruit is evaluated as a potential feedstock for biodiesel and biomass pellets production with reference to some relevant properties. The fatty acid profile of this oil (83% unsaturated acids is found to be comparable to similar seed oils which have been attempted for biodiesel production. As a result, the methyl esters (biodiesel obtained from this oil exhibits high quality properties. Chañar biodiesel quality meets all other biodiesel international standards (ASTM D6751 and EN 14214. Moreover, the husk that surrounds the kernel showed a high potential for usage as densified solid fuels. The results demonstrate that chañar husks pellets have a higher calorific value when compared with other biomass pellets, typically, approximately 21 MJ kg−1 with 1.8% of ashes (which is equivalent to that obtained from the combustion of pellets produced from forest wastes. This study indicates that chañar can be used as a multipurpose energy crop in semiarid regions for biodiesel and densified solid fuels (pellets production.

  7. Butter as a feedstock for biodiesel production.

    Science.gov (United States)

    Haas, Michael J; Adawi, Nadia; Berry, William W; Feldman, Elaine; Kasprzyk, Stephen; Ratigan, Brian; Scott, Karen; Landsburg, Emily Bockian

    2010-07-14

    Fatty acid methyl esters (FAME) were produced from cow's milk (Bostaurus) butter by esterification/transesterification in the presence of methanol. The product was assayed according to the Standard Specification for Biodiesel Fuel Blend Stock (B100) for Middle Distillate Fuels (ASTM D 6751). The preparation failed to meet the specifications for flash point, free and total glycerin contents, total sulfur, and oxidation stability. Failures to meet the flash point and free/total glycerin specifications were determined to be due to interference with standard assays for these parameters by short-chain-length fatty acid esters. The oxidation stability of the butterfat FAME was improved by supplementation with a commercial antioxidant formulation. Approximately 725 ppm of antioxidant was required to meet the ASTM-specified stability value for biodiesel. This work indicates that, without further purification to reduce a slightly excessive sulfur content, fatty acid ester preparations produced from butter are unacceptable as sole components of a biodiesel fuel. However, it is possible that even without further purification a butter-based ester preparation could be mixed with biodiesel from other feedstocks to produce a blend that meets the current quality standards for biodiesel. The results presented here also illustrate some potential weaknesses in the accepted methods for biodiesel characterization when employed in the analysis of FAME preparations containing mid- and short-chain fatty acid esters.

  8. Incorporating learning goals about modeling into an upper-division physics laboratory experiment

    Science.gov (United States)

    Zwickl, Benjamin M.; Finkelstein, Noah; Lewandowski, H. J.

    2014-09-01

    Implementing a laboratory activity involves a complex interplay among learning goals, available resources, feedback about the existing course, best practices for teaching, and an overall philosophy about teaching labs. Building on our previous work, which described a process of transforming an entire lab course, we now turn our attention to how an individual lab activity on the polarization of light was redesigned to include a renewed emphasis on one broad learning goal: modeling. By using this common optics lab as a concrete case study of a broadly applicable approach, we highlight many aspects of the activity development and show how modeling is used to integrate sophisticated conceptual and quantitative reasoning into the experimental process through the various aspects of modeling: constructing models, making predictions, interpreting data, comparing measurements with predictions, and refining models. One significant outcome is a natural way to integrate an analysis and discussion of systematic error into a lab activity.

  9. Incorporating sediment compaction into a gravitationally self-consistent model for ice age sea-level change

    Science.gov (United States)

    Ferrier, Ken L.; Austermann, Jacqueline; Mitrovica, Jerry X.; Pico, Tamara

    2017-10-01

    Sea-level changes are of wide interest because they regulate coastal hazards, shape the sedimentary geologic record and are sensitive to climate change. In areas where rivers deliver sediment to marine deltas and fans, sea-level changes are strongly modulated by the deposition and compaction of marine sediment. Deposition affects sea level by increasing the elevation of the seafloor, by perturbing crustal elevation and gravity fields and by reducing the volume of seawater through the incorporation of water into sedimentary pore space. In a similar manner, compaction affects sea level by lowering the elevation of the seafloor and by purging water out of sediments and into the ocean. Here we incorporate the effects of sediment compaction into a gravitationally self-consistent global sea-level model by extending the approach of Dalca et al. (2013). We show that incorporating compaction requires accounting for two quantities that are not included in the Dalca et al. (2013) analysis: the mean porosity of the sediment and the degree of saturation in the sediment. We demonstrate the effects of compaction by modelling sea-level responses to two simplified 122-kyr sediment transfer scenarios for the Amazon River system, one including compaction and one neglecting compaction. These simulations show that the largest effect of compaction is on the thickness of the compacting sediment, an effect that is largest where deposition rates are fastest. Compaction can also produce minor sea-level changes in coastal regions by influencing shoreline migration and the location of seawater loading, which perturbs crustal elevations. By providing a tool for modelling gravitationally self-consistent sea-level responses to sediment compaction, this work offers an improved approach for interpreting the drivers of past sea-level changes.

  10. Predicting feedstock and percent composition for blends of biodiesel with conventional diesel using chemometrics and gas chromatography-mass spectrometry.

    Science.gov (United States)

    Schale, Stephen P; Le, Trang M; Pierce, Karisa M

    2012-05-30

    The two main goals of the analytical method described herein were to (1) use principal component analysis (PCA), hierarchical clustering (HCA) and K-nearest neighbors (KNN) to determine the feedstock source of blends of biodiesel and conventional diesel (feedstocks were two sources of soy, two strains of jatropha, and a local feedstock) and (2) use a partial least squares (PLS) model built specifically for each feedstock to determine the percent composition of the blend. The chemometric models were built using training sets composed of total ion current chromatograms from gas chromatography-quadrupole mass spectrometry (GC-qMS) using a polar column. The models were used to semi-automatically determine feedstock and blend percent composition of independent test set samples. The PLS predictions for jatropha blends had RMSEC=0.6, RMSECV=1.2, and RMSEP=1.4. The PLS predictions for soy blends had RMSEC=0.5, RMSECV=0.8, and RMSEP=1.2. The average relative error in predicted test set sample compositions was 5% for jatropha blends and 4% for soy blends. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Economic Impacts of Using Switchgrass as a Feedstock for Ethanol Production: A Case Study Located in East Tennessee

    Directory of Open Access Journals (Sweden)

    Burton C. English

    2013-01-01

    Full Text Available One of the major motivations to establish a biobased energy sector in the United States is to promote economic development in the rural areas of the nation. This study estimated the economic impact of investing and operating a switchgrass-based ethanol plant in East Tennessee. Applying a spatially oriented mixed-integer mathematical programming model, we first determined the location of biorefinery, feedstock draw area, and the resources used in various feedstock supply systems by minimizing the total plant gate cost of feedstock. Based on the model output, an input-output model was utilized to determine the total economic impact, including direct, indirect, and induced effects of feedstock investment and annual production in the study region. Moreover, the economic impact of ethanol plant investment and annual conversion operation was analyzed. Results suggest that the total annual expenditures in an unprotected large round bale system generated a total $92.5 million in economic output within the 13 counties of East Tennessee. In addition, an estimated $234 million in overall economic output was generated through the operation of the biorefinery. This research showed that the least-cost configuration of the feedstock supply chain influenced the levels and types of economic impact of biorefinery.

  12. Incorporation of an Energy Equation into a Pulsed Inductive Thruster Performance Model

    Science.gov (United States)

    Polzin, Kurt A.; Reneau, Jarred P.; Sankaran, Kameshwaran

    2011-01-01

    A model for pulsed inductive plasma acceleration containing an energy equation to account for the various sources and sinks in such devices is presented. The model consists of a set of circuit equations coupled to an equation of motion and energy equation for the plasma. The latter two equations are obtained for the plasma current sheet by treating it as a one-element finite volume, integrating the equations over that volume, and then matching known terms or quantities already calculated in the model to the resulting current sheet-averaged terms in the equations. Calculations showing the time-evolution of the various sources and sinks in the system are presented to demonstrate the efficacy of the model, with two separate resistivity models employed to show an example of how the plasma transport properties can affect the calculation. While neither resistivity model is fully accurate, the demonstration shows that it is possible within this modeling framework to time-accurately update various plasma parameters.

  13. A spatial model for conflict incorporating within- and between-actor effects

    Science.gov (United States)

    Knipl, Diána; Davies, Toby; Baudains, Peter

    2017-10-01

    The application of ecological models to human conflict scenarios has given rise to a number of models which describe antagonistic relationships between adversaries. Recent work demonstrates that the spatial disaggregation of such models is not only well-motivated but also gives rise to interesting dynamic behaviour, particularly with respect to the spatial distribution of resources. One feature which is largely absent from previous models, however, is the ability of an adversary to coordinate activity across its various locations. Most immediately, this corresponds to the notion of 'support' - the reallocation of resources from one site to another according to need - which plays an important role in real-world conflict. In this paper, we generalise a spatially-disaggregated form of the classic Richardson model of conflict escalation by adding a cross-location interaction term for the within-adversary dynamics at each location. We explore the model analytically, giving conditions for the stability of the balanced equilibrium state. We then also carry out a number of numerical simulations which correspond to stylised real-world conflict scenarios. Potential further applications of the model, and its implications for policy, are then discussed.

  14. A LabVIEW model incorporating an open-loop arterial impedance and a closed-loop circulatory system.

    Science.gov (United States)

    Cole, R T; Lucas, C L; Cascio, W E; Johnson, T A

    2005-11-01

    While numerous computer models exist for the circulatory system, many are limited in scope, contain unwanted features or incorporate complex components specific to unique experimental situations. Our purpose was to develop a basic, yet multifaceted, computer model of the left heart and systemic circulation in LabVIEW having universal appeal without sacrificing crucial physiologic features. The program we developed employs Windkessel-type impedance models in several open-loop configurations and a closed-loop model coupling a lumped impedance and ventricular pressure source. The open-loop impedance models demonstrate afterload effects on arbitrary aortic pressure/flow inputs. The closed-loop model catalogs the major circulatory waveforms with changes in afterload, preload, and left heart properties. Our model provides an avenue for expanding the use of the ventricular equations through closed-loop coupling that includes a basic coronary circuit. Tested values used for the afterload components and the effects of afterload parameter changes on various waveforms are consistent with published data. We conclude that this model offers the ability to alter several circulatory factors and digitally catalog the most salient features of the pressure/flow waveforms employing a user-friendly platform. These features make the model a useful instructional tool for students as well as a simple experimental tool for cardiovascular research.

  15. Forest type mapping using incorporation of spatial models and ETM+ data.

    Science.gov (United States)

    Joibary, Shaban Shataee; Darvishsefat, Ali A; Kellenberger, Tobias W

    2007-07-15

    Results of former researches have shown that spectrally based analysis alone could not satisfy forest type classification in mountainous mixed forests. Forest type based on composed different parameters such as topography elements like aspect, elevation and slop. These elements that are affected on occurrences of forest type can be stated as spatial distribution models. Using ancillary data integrated with spectral data could help to separate forest type. In order to find the abilities of using topographic spatial predictive models to improve forest type classification, an investigation was carried out to classify forest type using ETM+ data in a part of northern forests of Iran. The Tasseled Cap, Ratioing transformations and Principal Component Analysis were applied to the spectral bands. The best spectral and predictive data sets for classifying forest type using maximum likelihood classification were chosen using the Bhattacharya seperability index. Primary analysis between forest type and topographic parameters showed that elevation and aspect are most correlated with the occurrences of type. Probability occurrence rates of forest type were extracted in the aspect; elevation, integrated aspect and elevation as well as homogeneous units structured on elevation and aspect classes. Based on occurrence rates of forest type, spatial predictive distribution models were generated for each type individually. Classification of the best spectral data sets was accomplished by maximum likelihood classifier and using these spatial predictive models. Results were assessed using a sample ground truth of forest type. This study showed that spatial predictive models could considerably improve the results compared with spectral data alone from 49 to 60%. Among spatial models used, the spatial predictive models constructed based on the homogeneous units could improve results in comparison to other models. Applying other parameters related to forest type like soil maps would

  16. Periglacial processes incorporated into a long-term landscape evolution model

    DEFF Research Database (Denmark)

    Andersen, Jane Lund; Egholm, D.L.; Knudsen, Mads Faurschou

    relating frost-cracking intensity to the mean annual air temperature (MAAT). The model integrates temperature variations in the subsurface following an annually oscillating surface temperature. Hales and Roering (2007) assumed that frost-cracking intensity is a simple function of the temperature gradient...... allows us to couple the frost-cracking model to a long- term landscape evolution model where surface elevation, sediment thickness, and air temperature evolve through time. This enables us to explore the spatial distribution of frost cracking in realistic landscapes, and to study the slow feedbacks...

  17. Incorporation of Electrical Systems Models Into an Existing Thermodynamic Cycle Code

    Science.gov (United States)

    Freeh, Josh

    2003-01-01

    Integration of entire system includes: Fuel cells, motors, propulsors, thermal/power management, compressors, etc. Use of existing, pre-developed NPSS capabilities includes: 1) Optimization tools; 2) Gas turbine models for hybrid systems; 3) Increased interplay between subsystems; 4) Off-design modeling capabilities; 5) Altitude effects; and 6) Existing transient modeling architecture. Other factors inclde: 1) Easier transfer between users and groups of users; 2) General aerospace industry acceptance and familiarity; and 3) Flexible analysis tool that can also be used for ground power applications.

  18. Incorporating Protein Biosynthesis into the Saccharomyces cerevisiae Genome-scale Metabolic Model

    DEFF Research Database (Denmark)

    Olivares Hernandez, Roberto

    Based on stoichiometric biochemical equations that occur into the cell, the genome-scale metabolic models can quantify the metabolic fluxes, which are regarded as the final representation of the physiological state of the cell. For Saccharomyces Cerevisiae the genome scale model has been......, translation initiation, translation elongation, translation termination, translation elongation, and mRNA decay. Considering these information from the mechanisms of transcription and translation, we will include this stoichiometric reactions into the genome scale model for S. Cerevisiae to obtain the first...

  19. Incorporation of NREL Solar Advisor Model Photovoltaic Capabilities with GridLAB-D

    Energy Technology Data Exchange (ETDEWEB)

    Tuffner, Francis K.; Hammerstrom, Janelle L.; Singh, Ruchi

    2012-10-19

    This report provides a summary of the work updating the photovoltaic model inside GridLAB-D. The National Renewable Energy Laboratory Solar Advisor Model (SAM) was utilized as a basis for algorithms and validation of the new implementation. Subsequent testing revealed that the two implementations are nearly identical in both solar impacts and power output levels. This synergized model aides the system-level impact studies of GridLAB-D, but also allows more specific details of a particular site to be explored via the SAM software.

  20. Incorporating seepage losses into a 1D unsteady model of floods in ...

    African Journals Online (AJOL)

    2015-07-04

    Joseph et al., 2004): (i) runoff volume and velocity; (ii) channel geometry; (iii) ... of seepage on different turbulent characteristics for an open channel flow. ..... Comparison of flow profiles calculated by present model with MIKE 11.

  1. Radmap: ''as-built'' cad models incorporating geometrical, radiological and material information

    Energy Technology Data Exchange (ETDEWEB)

    Piotrowski, L. [Electricite de France (EDF/DRD), 78 - Chatou (France); Lubawy, J.L. [Electricite de France (EDF/CNEPE), 37 - Tours (France)

    2001-07-01

    EDF intends to achieve successful and cost-effective dismantling of its obsolete nuclear plants. To reach this goal, EDF is currently extending its ''as-built'' 3-D modelling system to also include the location and characteristics of gamma sources in the geometrical models of its nuclear installations. The resulting system (called RADMAP) is a complete CAD chain covering 3-D and gamma data acquisitions, CAD modelling and exploitation of the final model. Its aim is to describe completely the geometrical and radiological state of a particular nuclear environment. This paper presents an overall view of RADMAP. The technical and functional characteristics of each element of the chain are indicated and illustrated using real (EDF) environments/applications. (author)

  2. Simulation of a severe convective storm using a numerical model with explicitly incorporated aerosols

    Science.gov (United States)

    Lompar, Miloš; Ćurić, Mladjen; Romanic, Djordje

    2017-09-01

    Despite an important role the aerosols play in all stages of cloud lifecycle, their representation in numerical weather prediction models is often rather crude. This paper investigates the effects the explicit versus implicit inclusion of aerosols in a microphysics parameterization scheme in Weather Research and Forecasting (WRF) - Advanced Research WRF (WRF-ARW) model has on cloud dynamics and microphysics. The testbed selected for this study is a severe mesoscale convective system with supercells that struck west and central parts of Serbia in the afternoon of July 21, 2014. Numerical products of two model runs, i.e. one with aerosols explicitly (WRF-AE) included and another with aerosols implicitly (WRF-AI) assumed, are compared against precipitation measurements from surface network of rain gauges, as well as against radar and satellite observations. The WRF-AE model accurately captured the transportation of dust from the north Africa over the Mediterranean and to the Balkan region. On smaller scales, both models displaced the locations of clouds situated above west and central Serbia towards southeast and under-predicted the maximum values of composite radar reflectivity. Similar to satellite images, WRF-AE shows the mesoscale convective system as a merged cluster of cumulonimbus clouds. Both models over-predicted the precipitation amounts; WRF-AE over-predictions are particularly pronounced in the zones of light rain, while WRF-AI gave larger outliers. Unlike WRF-AI, the WRF-AE approach enables the modelling of time evolution and influx of aerosols into the cloud which could be of practical importance in weather forecasting and weather modification. Several likely causes for discrepancies between models and observations are discussed and prospects for further research in this field are outlined.

  3. Incorporation of a Generalized Data Assimilation Module within a Global Photospheric Flux Transport Model

    Science.gov (United States)

    2016-03-31

    National Laboratory (LANL). The main outcome of this research effort is the state-of- the- art data assimilative photospheric flux transport model now...input to WSA. Such comparisons were made with the assistance of a University of New Mexico graduate student/Summer AFRL Space Scholar so that WSA...advance state-of-the- art 3-D MHD CORHEL coronal and solar wind model. In year seven (2014) significant progress was made in is this area. Figure 41

  4. A rat experimental model of glaucoma incorporating rapid-onset elevation of intraocular pressure

    OpenAIRE

    Smedowski, Adrian; Pietrucha-Dutczak, Marita; Kaarniranta, Kai; Lewin-Kowalik, Joanna

    2014-01-01

    Glaucoma is a chronic disease that causes structural and functional damage to retinal ganglion cells (RGC). The currently employed therapeutic options are not sufficient to prevent vision loss in patients with glaucoma; therefore, there is a need to develop novel therapies, which requires the creation of functional, repeatable and easy-to-utilize animal models for use in pre-clinical studies. The currently available models ensure only low to moderate damage in optic nerves, with high variatio...

  5. Improving River Flow Predictions from the NOAA NCRFC Forecasting Model by Incorporating Satellite Observations

    Science.gov (United States)

    Tuttle, S. E.; Jacobs, J. M.; Restrepo, P. J.; Deweese, M. M.; Connelly, B.; Buan, S.

    2016-12-01

    The NOAA National Weather Service North Central River Forecast Center (NCRFC) is responsible for issuing river flow forecasts for parts of the Upper Mississippi, Great Lakes, and Hudson Bay drainages, including the Red River of the North basin (RRB). The NCRFC uses an operational hydrologic modeling infrastructure called the Community Hydrologic Prediction System (CHPS) for its operational forecasts, which currently links the SNOW-17 snow accumulation and ablation model, to the Sacramento-Soil Moisture Accounting (SAC-SMA) rainfall-runoff model, to a number of hydrologic and hydraulic flow routing models. The operational model is lumped and requires only area-averaged precipitation and air temperature as inputs. NCRFC forecasters use observational data of hydrological state variables as a source of supplemental information during forecasting, and can use professional judgment to modify the model states in real time. In a few recent years (e.g. 2009, 2013), the RRB exhibited unexpected anomalous hydrologic behavior, resulting in overestimation of peak flood discharge by up to 70% and highlighting the need for observations with high temporal and spatial coverage. Unfortunately, observations of hydrological states (e.g. soil moisture, snow water equivalent (SWE)) are relatively scarce in the RRB. Satellite remote sensing can fill this need. We use Minnesota's Buffalo River watershed within the RRB as a test case and update the operational CHPS model using modifications based on satellite observations, including AMSR-E SWE and SMOS soil moisture estimates. We evaluate the added forecasting skill of the satellite-enhanced model compared to measured streamflow using hindcasts from 2010-2013.

  6. Enhanced stability of car-following model upon incorporation of short-term driving memory

    Science.gov (United States)

    Liu, Da-Wei; Shi, Zhong-Ke; Ai, Wen-Huan

    2017-06-01

    Based on the full velocity difference model, a new car-following model is developed to investigate the effect of short-term driving memory on traffic flow in this paper. Short-term driving memory is introduced as the influence factor of driver's anticipation behavior. The stability condition of the newly developed model is derived and the modified Korteweg-de Vries (mKdV) equation is constructed to describe the traffic behavior near the critical point. Via numerical method, evolution of a small perturbation is investigated firstly. The results show that the improvement of this new car-following model over the previous ones lies in the fact that the new model can improve the traffic stability. Starting and breaking processes of vehicles in the signalized intersection are also investigated. The numerical simulations illustrate that the new model can successfully describe the driver's anticipation behavior, and that the efficiency and safety of the vehicles passing through the signalized intersection are improved by considering short-term driving memory.

  7. Incorporation of the time aspect into the liability-threshold model for case-control-family data

    DEFF Research Database (Denmark)

    Cederkvist, Luise; Holst, Klaus K.; Andersen, Klaus K.

    2017-01-01

    Familial aggregation and the role of genetic and environmental factors can be investigated through family studies analysed using the liability-threshold model. The liability-threshold model ignores the timing of events including the age of disease onset and right censoring, which can lead...... to estimates that are difficult to interpret and are potentially biased. We incorporate the time aspect into the liability-threshold model for case-control-family data following the same approach that has been applied in the twin setting. Thus, the data are considered as arising from a competing risks setting...... and inverse probability of censoring weights are used to adjust for right censoring. In the case-control-family setting, recognising the existence of competing events is highly relevant to the sampling of control probands. Because of the presence of multiple family members who may be censored at different...

  8. Incorporating GIS data into an agent-based model to support planning policy making for the development of creative industries

    Science.gov (United States)

    Liu, Helin; Silva, Elisabete A.; Wang, Qian

    2016-07-01

    This paper presents an extension to the agent-based model "Creative Industries Development-Urban Spatial Structure Transformation" by incorporating GIS data. Three agent classes, creative firms, creative workers and urban government, are considered in the model, and the spatial environment represents a set of GIS data layers (i.e. road network, key housing areas, land use). With the goal to facilitate urban policy makers to draw up policies locally and optimise the land use assignment in order to support the development of creative industries, the improved model exhibited its capacity to assist the policy makers conducting experiments and simulating different policy scenarios to see the corresponding dynamics of the spatial distributions of creative firms and creative workers across time within a city/district. The spatiotemporal graphs and maps record the simulation results and can be used as a reference by the policy makers to adjust land use plans adaptively at different stages of the creative industries' development process.

  9. A stoichiometric producer-grazer model incorporating the effects of excess food-nutrient content on consumer dynamics.

    Science.gov (United States)

    Peace, Angela; Zhao, Yuqin; Loladze, Irakli; Elser, James J; Kuang, Yang

    2013-08-01

    There has been important progress in understanding ecological dynamics through the development of the theory of ecological stoichiometry. For example, modeling under this framework allows food quality to affect consumer dynamics. While the effects of nutrient deficiency on consumer growth are well understood, recent discoveries in ecological stoichiometry suggest that consumer dynamics are not only affected by insufficient food nutrient content (low phosphorus (P): carbon (C) ratio) but also by excess food nutrient content (high P:C). This phenomenon is known as the stoichiometric knife edge, in which animal growth is reduced not only by food with low P content but also by food with high P content, and needs to be incorporated into mathematical models. Here we present a Lotka-Volterra type model to investigate the growth response of Daphnia to algae of varying P:C ratios capturing the mechanism of the stoichiometric knife edge.

  10. Incorporating rainfall uncertainty in a SWAT model: the river Zenne basin (Belgium) case study

    Science.gov (United States)

    Tolessa Leta, Olkeba; Nossent, Jiri; van Griensven, Ann; Bauwens, Willy

    2013-04-01

    The European Union Water Framework Directive (EU-WFD) called its member countries to achieve a good ecological status for all inland and coastal water bodies by 2015. According to recent studies, the river Zenne (Belgium) is far from this objective. Therefore, an interuniversity and multidisciplinary project "Towards a Good Ecological Status in the river Zenne (GESZ)" was launched to evaluate the effects of wastewater management plans on the river. In this project, different models have been developed and integrated using the Open Modelling Interface (OpenMI). The hydrologic, semi-distributed Soil and Water Assessment Tool (SWAT) is hereby used as one of the model components in the integrated modelling chain in order to model the upland catchment processes. The assessment of the uncertainty of SWAT is an essential aspect of the decision making process, in order to design robust management strategies that take the predicted uncertainties into account. Model uncertainty stems from the uncertainties on the model parameters, the input data (e.g, rainfall), the calibration data (e.g., stream flows) and on the model structure itself. The objective of this paper is to assess the first three sources of uncertainty in a SWAT model of the river Zenne basin. For the assessment of rainfall measurement uncertainty, first, we identified independent rainfall periods, based on the daily precipitation and stream flow observations and using the Water Engineering Time Series PROcessing tool (WETSPRO). Secondly, we assigned a rainfall multiplier parameter for each of the independent rainfall periods, which serves as a multiplicative input error corruption. Finally, we treated these multipliers as latent parameters in the model optimization and uncertainty analysis (UA). For parameter uncertainty assessment, due to the high number of parameters of the SWAT model, first, we screened out its most sensitive parameters using the Latin Hypercube One-factor-At-a-Time (LH-OAT) technique

  11. Incorporating Detailed Chemical Characterization of Biomass Burning Emissions into Air Quality Models

    Science.gov (United States)

    Barsanti, K.; Hatch, L. E.; Yokelson, R. J.; Stockwell, C.; Orlando, J. J.; Emmons, L. K.; Knote, C. J.; Wiedinmyer, C.

    2015-12-01

    Approximately 500 Tg/yr of non-methane organic compounds (NMOCs) are emitted by biomass burning (BB) to the global atmosphere, leading to the photochemical production of ozone (O3) and secondary particulate matter (PM). Until recently, in studies of BB emissions, a significant mass fraction of NMOCs (up to 80%) remained uncharacterized or unidentified. Models used to simulate the air quality impacts of BB thus have relied on very limited chemical characterization of the emitted compounds. During the Fourth Fire Lab at Missoula Experiment (FLAME-IV), an unprecedented fraction of emitted NMOCs were identified and quantified through the application of advanced analytical techniques. Here we use FLAME-IV data to improve BB emissions speciation profiles for individual fuel types. From box model simulations we evaluate the sensitivity of predicted precursor and pollutant concentrations (e.g., formaldehyde, acetaldehyde, and terpene oxidation products) to differences in the emission speciation profiles, for a range of ambient conditions (e.g., high vs. low NOx). Appropriate representation of emitted NMOCs in models is critical for the accurate prediction of downwind air quality. Explicit simulation of hundreds of NMOCs is not feasible; therefore we also investigate the consequences of using existing assumptions and lumping schemes to map individual NMOCs to model surrogates and we consider alternative strategies. The updated BB emissions speciation profiles lead to markedly different surrogate compound distributions than the default speciation profiles, and box model results suggest that these differences are likely to affect predictions of PM and important gas-phase species in chemical transport models. This study highlights the potential for further BB emissions characterization studies, with concerted model development efforts, to improve the accuracy of BB predictions using necessarily simplified mechanisms.

  12. Modeling mode choice behavior incorporating household and individual sociodemographics and travel attributes based on rough sets theory.

    Science.gov (United States)

    Cheng, Long; Chen, Xuewu; Wei, Ming; Wu, Jingxian; Hou, Xianyao

    2014-01-01

    Most traditional mode choice models are based on the principle of random utility maximization derived from econometric theory. Alternatively, mode choice modeling can be regarded as a pattern recognition problem reflected from the explanatory variables of determining the choices between alternatives. The paper applies the knowledge discovery technique of rough sets theory to model travel mode choices incorporating household and individual sociodemographics and travel information, and to identify the significance of each attribute. The study uses the detailed travel diary survey data of Changxing county which contains information on both household and individual travel behaviors for model estimation and evaluation. The knowledge is presented in the form of easily understood IF-THEN statements or rules which reveal how each attribute influences mode choice behavior. These rules are then used to predict travel mode choices from information held about previously unseen individuals and the classification performance is assessed. The rough sets model shows high robustness and good predictive ability. The most significant condition attributes identified to determine travel mode choices are gender, distance, household annual income, and occupation. Comparative evaluation with the MNL model also proves that the rough sets model gives superior prediction accuracy and coverage on travel mode choice modeling.

  13. A kinematic wave model in Lagrangian coordinates incorporating capacity drop: Application to homogeneous road stretches and discontinuities

    Science.gov (United States)

    Yuan, Kai; Knoop, Victor L.; Hoogendoorn, Serge P.

    2017-01-01

    On freeways, congestion always leads to capacity drop. This means the queue discharge rate is lower than the pre-queue capacity. Our recent research findings indicate that the queue discharge rate increases with the speed in congestion, that is the capacity drop is strongly correlated with the congestion state. Incorporating this varying capacity drop into a kinematic wave model is essential for assessing consequences of control strategies. However, to the best of authors' knowledge, no such a model exists. This paper fills the research gap by presenting a Lagrangian kinematic wave model. "Lagrangian" denotes that the new model is solved in Lagrangian coordinates. The new model can give capacity drops accompanying both of stop-and-go waves (on homogeneous freeway section) and standing queues (at nodes) in a network. The new model can be applied in a network operation. In this Lagrangian kinematic wave model, the queue discharge rate (or the capacity drop) is a function of vehicular speed in traffic jams. Four case studies on links as well as at lane-drop and on-ramp nodes show that the Lagrangian kinematic wave model can give capacity drops well, consistent with empirical observations.

  14. Incorporating harvest rates into the sex-age-kill model for white-tailed deer

    Science.gov (United States)

    Norton, Andrew S.; Diefenbach, Duane R.; Rosenberry, Christopher S.; Wallingford, Bret D.

    2013-01-01

    Although monitoring population trends is an essential component of game species management, wildlife managers rarely have complete counts of abundance. Often, they rely on population models to monitor population trends. As imperfect representations of real-world populations, models must be rigorously evaluated to be applied appropriately. Previous research has evaluated population models for white-tailed deer (Odocoileus virginianus); however, the precision and reliability of these models when tested against empirical measures of variability and bias largely is untested. We were able to statistically evaluate the Pennsylvania sex-age-kill (PASAK) population model using realistic error measured using data from 1,131 radiocollared white-tailed deer in Pennsylvania from 2002 to 2008. We used these data and harvest data (number killed, age-sex structure, etc.) to estimate precision of abundance estimates, identify the most efficient harvest data collection with respect to precision of parameter estimates, and evaluate PASAK model robustness to violation of assumptions. Median coefficient of variation (CV) estimates by Wildlife Management Unit, 13.2% in the most recent year, were slightly above benchmarks recommended for managing game species populations. Doubling reporting rates by hunters or doubling the number of deer checked by personnel in the field reduced median CVs to recommended levels. The PASAK model was robust to errors in estimates for adult male harvest rates but was sensitive to errors in subadult male harvest rates, especially in populations with lower harvest rates. In particular, an error in subadult (1.5-yr-old) male harvest rates resulted in the opposite error in subadult male, adult female, and juvenile population estimates. Also, evidence of a greater harvest probability for subadult female deer when compared with adult (≥2.5-yr-old) female deer resulted in a 9.5% underestimate of the population using the PASAK model. Because obtaining

  15. High-resolution Continental Scale Land Surface Model incorporating Land-water Management in United States

    Science.gov (United States)

    Shin, S.; Pokhrel, Y. N.

    2016-12-01

    Land surface models have been used to assess water resources sustainability under changing Earth environment and increasing human water needs. Overwhelming observational records indicate that human activities have ubiquitous and pertinent effects on the hydrologic cycle; however, they have been crudely represented in large scale land surface models. In this study, we enhance an integrated continental-scale land hydrology model named Leaf-Hydro-Flood to better represent land-water management. The model is implemented at high resolution (5km grids) over the continental US. Surface water and groundwater are withdrawn based on actual practices. Newly added irrigation, water diversion, and dam operation schemes allow better simulations of stream flows, evapotranspiration, and infiltration. Results of various hydrologic fluxes and stores from two sets of simulation (one with and the other without human activities) are compared over a range of river basin and aquifer scales. The improved simulations of land hydrology have potential to build consistent modeling framework for human-water-climate interactions.

  16. Analytical solutions for a soil vapor extraction model that incorporates gas phase dispersion and molecular diffusion

    Science.gov (United States)

    Huang, Junqi; Goltz, Mark N.

    2017-06-01

    To greatly simplify their solution, the equations describing radial advective/dispersive transport to an extraction well in a porous medium typically neglect molecular diffusion. While this simplification is appropriate to simulate transport in the saturated zone, it can result in significant errors when modeling gas phase transport in the vadose zone, as might be applied when simulating a soil vapor extraction (SVE) system to remediate vadose zone contamination. A new analytical solution for the equations describing radial gas phase transport of a sorbing contaminant to an extraction well is presented. The equations model advection, dispersion (including both mechanical dispersion and molecular diffusion), and rate-limited mass transfer of dissolved, separate phase, and sorbed contaminants into the gas phase. The model equations are analytically solved by using the Laplace transform with respect to time. The solutions are represented by confluent hypergeometric functions in the Laplace domain. The Laplace domain solutions are then evaluated using a numerical Laplace inversion algorithm. The solutions can be used to simulate the spatial distribution and the temporal evolution of contaminant concentrations during operation of a soil vapor extraction well. Results of model simulations show that the effect of gas phase molecular diffusion upon concentrations at the extraction well is relatively small, although the effect upon the distribution of concentrations in space is significant. This study provides a tool that can be useful in designing SVE remediation strategies, as well as verifying numerical models used to simulate SVE system performance.

  17. A Modeling Framework to Incorporate Effects of Infrastructure in Sociohydrological Systems

    Science.gov (United States)

    Muneepeerakul, R.

    2014-12-01

    In studying coupled natural-human systems, most modeling efforts focus on humans and the natural resources. In reality, however, humans rarely interact with these resources directly; the relationships between humans and resources are mediated by infrastructures. In sociohydrological systems, these include, for example, dams and irrigation canals. These infrastructures have important characteristics such as threshold behavior and a separate entity/organization tasked with maintaining them. These characteristics influence social dynamics within the system, which in turn determines the state of infrastructure and water usage, thereby exerting feedbacks onto the hydrological processes. Infrastructure is thus a necessary ingredient for modeling co-evolution of human and water in sociohydrological systems. A conceptual framework to address this gap has been proposed by Anderies, Janssen, and Ostrom (2004). Here we develop a model to operationalize the framework and report some preliminary results. Simple in its setup, the model highlights the structure of the social dilemmas and how it affects the system's sustainability. The model also offers a platform to explore how the system's sustainability may respond to external shocks from globalization and global climate change.

  18. New systematic methodology for incorporating dynamic heat transfer modelling in multi-phase biochemical reactors.

    Science.gov (United States)

    Fernández-Arévalo, T; Lizarralde, I; Grau, P; Ayesa, E

    2014-09-01

    This paper presents a new modelling methodology for dynamically predicting the heat produced or consumed in the transformations of any biological reactor using Hess's law. Starting from a complete description of model components stoichiometry and formation enthalpies, the proposed modelling methodology has integrated successfully the simultaneous calculation of both the conventional mass balances and the enthalpy change of reaction in an expandable multi-phase matrix structure, which facilitates a detailed prediction of the main heat fluxes in the biochemical reactors. The methodology has been implemented in a plant-wide modelling methodology in order to facilitate the dynamic description of mass and heat throughout the plant. After validation with literature data, as illustrative examples of the capability of the methodology, two case studies have been described. In the first one, a predenitrification-nitrification dynamic process has been analysed, with the aim of demonstrating the easy integration of the methodology in any system. In the second case study, the simulation of a thermal model for an ATAD has shown the potential of the proposed methodology for analysing the effect of ventilation and influent characterization.

  19. Feedstock and Conversion Supply System Design and Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Jacobson, J. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Mohammad, R. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Cafferty, K. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Kenney, K. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Searcy, E. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Hansen, J. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-09-01

    The success of the earlier logistic pathway designs (Biochemical and Thermochemical) from a feedstock perspective was that it demonstrated that through proper equipment selection and best management practices, conventional supply systems (referred to in this report as “conventional designs,” or specifically the 2012 Conventional Design) can be successfully implemented to address dry matter loss, quality issues, and enable feedstock cost reductions that help to reduce feedstock risk of variable supply and quality and enable industry to commercialize biomass feedstock supply chains. The caveat of this success is that conventional designs depend on high density, low-cost biomass with no disruption from incremental weather. In this respect, the success of conventional designs is tied to specific, highly productive regions such as the southeastern U.S. which has traditionally supported numerous pulp and paper industries or the Midwest U.S for corn stover.

  20. Feedstock Supply and Logistics: Biomass as a Commodity

    Energy Technology Data Exchange (ETDEWEB)

    None

    2013-05-06

    The Bioenergy Technologies Office and its partners are developing the technologies and systems needed to sustainably and economically deliver a broad range of biomass in formats that enable their efficient use as feedstocks for biorefineries.

  1. Biodiesel production from low cost and renewable feedstock

    Science.gov (United States)

    Gude, Veera; Grant, Georgene; Patil, Prafulla; Deng, Shuguang

    2013-12-01

    Sustainable biodiesel production should: a) utilize low cost renewable feedstock; b) utilize energy-efficient, nonconventional heating and mixing techniques; c) increase net energy benefit of the process; and d) utilize renewable feedstock/energy sources where possible. In this paper, we discuss the merits of biodiesel production following these criteria supported by the experimental results obtained from the process optimization studies. Waste cooking oil, non-edible (low-cost) oils (Jatropha curcas and Camelina Sativa) and algae were used as feedstock for biodiesel process optimization. A comparison between conventional and non-conventional methods such as microwaves and ultrasound was reported. Finally, net energy scenarios for different biodiesel feedstock options and algae are presented.

  2. Bibliography on Biomass Feedstock Research: 1978-2002

    Energy Technology Data Exchange (ETDEWEB)

    Cushman, J.H.

    2003-05-01

    This report provides bibliographic citations for more than 1400 reports on biomass feedstock development published by Oak Ridge National Laboratory and its collaborators from 1978 through 2002. Oak Ridge National Laboratory is engaged in analysis of biomass resource supplies, research on the sustainability of feedstock resources, and research on feedstock engineering and infrastructure. From 1978 until 2002, Oak Ridge National Laboratory also provided technical leadership for the U.S. Department of Energy's Bioenergy Feedstock Development Program (BFDP), which supported research to identify and develop promising energy crops. This bibliography lists reports published by Oak Ridge National Laboratory and by its collaborators in the BFDP, including graduate student theses and dissertations.

  3. Biodiesel From Alternative Oilseed Feedstocks: Production and Properties

    Science.gov (United States)

    Fatty acid methyl esters were prepared and evaluated as potential biodiesel fuels from several alternative oilseed feedstocks, which included camelina (Camelina sativa L.), coriander (Coriandrum sativum L.), field mustard (Brassica juncea L.), field pennycress (Thlaspi arvense L.), and meadowfoam (L...

  4. Microbial renewable feedstock utilization: A substrate-oriented approach

    NARCIS (Netherlands)

    Rumbold, K.; Buijsen, H.J.J. van; Gray, V.M.; Groenestijn, J.W. van; Overkamp, K.M.; Slomp, R.S.; Werf, M.J. van der; Punt, P.J.

    2010-01-01

    Increasingly lignocellulosic biomass hydrolysates are used as the feedstock for industrial fermentations. These biomass hydrolysates consist of complex mixtures of different fermentable sugars, but also contain inhibitors and salts that affect the performance of the productgenerating microbes. The p

  5. Periglacial processes incorporated into a long-term landscape evolution model

    DEFF Research Database (Denmark)

    Andersen, Jane Lund; Egholm, D.L.; Knudsen, Mads Faurschou

    relating frost-cracking intensity to the mean annual air temperature (MAAT). The model integrates temperature variations in the subsurface following an annually oscillating surface temperature. Hales and Roering (2007) assumed that frost-cracking intensity is a simple function of the temperature gradient......Little is known about the long-term influence of periglacial processes on landscape evolution in cold areas, even though the efficiency of frost cracking on the breakdown of rocks has been documented by observations and experiments. Cold-room laboratory experiments show that a continuous water...... by their model and the elevation of scree deposits in the Southern Alps, New Zealand. This result suggests a link between frost-cracking efficiency and long-term landscape evolution and thus merits further investigations. Anderson et al. (2012) expanded this early model by including the effects of latent heat...

  6. Modeling & Informatics at Vertex Pharmaceuticals Incorporated: our philosophy for sustained impact

    Science.gov (United States)

    McGaughey, Georgia; Patrick Walters, W.

    2016-11-01

    Molecular modelers and informaticians have the unique opportunity to integrate cross-functional data using a myriad of tools, methods and visuals to generate information. Using their drug discovery expertise, information is transformed to knowledge that impacts drug discovery. These insights are often times formulated locally and then applied more broadly, which influence the discovery of new medicines. This is particularly true in an organization where the members are exposed to projects throughout an organization, such as in the case of the global Modeling & Informatics group at Vertex Pharmaceuticals. From its inception, Vertex has been a leader in the development and use of computational methods for drug discovery. In this paper, we describe the Modeling & Informatics group at Vertex and the underlying philosophy, which has driven this team to sustain impact on the discovery of first-in-class transformative medicines.

  7. The design of a wind tunnel VSTOL fighter model incorporating turbine powered engine simulators

    Science.gov (United States)

    Bailey, R. O.; Maraz, M. R.; Hiley, P. E.

    1981-01-01

    A wind-tunnel model of a supersonic VSTOL fighter aircraft configuration has been developed for use in the evaluation of airframe-propulsion system aerodynamic interactions. The model may be employed with conventional test techniques, where configuration aerodynamics are measured in a flow-through mode and incremental nozzle-airframe interactions are measured in a jet-effects mode, and with the Compact Multimission Aircraft Propulsion Simulator which is capable of the simultaneous simulation of inlet and exhaust nozzle flow fields so as to allow the evaluation of the extent of inlet and nozzle flow field coupling. The basic configuration of the twin-engine model has a geometrically close-coupled canard and wing, and a moderately short nacelle with nonaxisymmetric vectorable exhaust nozzles near the wing trailing edge, and may be converted to a canardless configuration with an extremely short nacelle. Testing is planned to begin in the summer of 1982.

  8. Incorporation of leaf nitrogen observations for biochemical and environmental modeling of photosynthesis and evapotranspiration

    DEFF Research Database (Denmark)

    Boegh, E; Gjetterman, B; Abrahamsen, P

    2007-01-01

    relation to photosynthetic (Rubisco) capacity should also be known to quantify leaf N impacts on canopy photosynthesis. In this study, impacts of the amount and vertical distribution of leaf N contents on canopy photosynthesis were investigated by combining field measurements and photosynthesis modelling....... While most canopy photosynthesis models assume an exponential vertical profile of leaf N contents in the canopy, the field measurements showed that well-fertilized fields may have a uniform or exponential profile, and senescent canopies have reduced levels of N contents in upper leaves. The sensitivity...... of simulated canopy photosynthesis to the different (observed) N profiles was examined using a multi-layer sun/shade biochemically based photosynthesis model and found to be important; ie. for a well-fertilized barley field, the use of exponential instead of uniform vertical N profiles increased the annual...

  9. Eatwell Guide: modelling the dietary and cost implications of incorporating new sugar and fibre guidelines

    DEFF Research Database (Denmark)

    Scarborough, Peter; Kaur, Asha; Cobiac, Linda

    2016-01-01

    Objectives To model food group consumption and price of diet associated with achieving UK dietary recommendations while deviating as little as possible from the current UK diet, in order to support the redevelopment of the UK food-based dietary guidelines (now called the Eatwell Guide). Design...... Optimisation modelling, minimising an objective function of the difference between population mean modelled and current consumption of 125 food groups, and constraints of nutrient and food-based recommendations. Setting The UK. Population Adults aged 19 years and above from the National Diet and Nutrition...... Survey 2008–2011. Main outcome measures Proportion of diet consisting of major foods groups and price of the optimised diet. Results The optimised diet has an increase in consumption of ‘potatoes, bread, rice, pasta and other starchy carbohydrates’ (+69%) and ‘fruit and vegetables’ (+54%) and reductions...

  10. Incorporation of leaf nitrogen observations for biochemical and environmental modeling of photosynthesis and evapotranspiration

    DEFF Research Database (Denmark)

    Boegh, E; Gjetterman, B; Abrahamsen, P

    2007-01-01

    relation to photosynthetic (Rubisco) capacity should also be known to quantify leaf N impacts on canopy photosynthesis. In this study, impacts of the amount and vertical distribution of leaf N contents on canopy photosynthesis were investigated by combining field measurements and photosynthesis modelling....... While most canopy photosynthesis models assume an exponential vertical profile of leaf N contents in the canopy, the field measurements showed that well-fertilized fields may have a uniform or exponential profile, and senescent canopies have reduced levels of N contents in upper leaves. The sensitivity...... of simulated canopy photosynthesis to the different (observed) N profiles was examined using a multi-layer sun/shade biochemically based photosynthesis model and found to be important; ie. for a well-fertilized barley field, the use of exponential instead of uniform vertical N profiles increased the annual...

  11. Modeling & Informatics at Vertex Pharmaceuticals Incorporated: our philosophy for sustained impact

    Science.gov (United States)

    McGaughey, Georgia; Patrick Walters, W.

    2017-03-01

    Molecular modelers and informaticians have the unique opportunity to integrate cross-functional data using a myriad of tools, methods and visuals to generate information. Using their drug discovery expertise, information is transformed to knowledge that impacts drug discovery. These insights are often times formulated locally and then applied more broadly, which influence the discovery of new medicines. This is particularly true in an organization where the members are exposed to projects throughout an organization, such as in the case of the global Modeling & Informatics group at Vertex Pharmaceuticals. From its inception, Vertex has been a leader in the development and use of computational methods for drug discovery. In this paper, we describe the Modeling & Informatics group at Vertex and the underlying philosophy, which has driven this team to sustain impact on the discovery of first-in-class transformative medicines.

  12. Novel Method for Incorporating Model Uncertainties into Gravitational Wave Parameter Estimates

    CERN Document Server

    Moore, Christopher J

    2014-01-01

    Posterior distributions on parameters computed from experimental data using Bayesian techniques are only as accurate as the models used to construct them. In many applications these models are incomplete, which both reduces the prospects of detection and leads to a systematic error in the parameter estimates. In the analysis of data from gravitational wave detectors, for example, accurate waveform templates can be computed using numerical methods, but the prohibitive cost of these simulations means this can only be done for a small handful of parameters. In this work a novel method to fold model uncertainties into data analysis is proposed; the waveform uncertainty is analytically marginalised over using with a prior distribution constructed by using Gaussian process regression to interpolate the waveform difference from a small training set of accurate templates. The method is well motivated, easy to implement, and no more computationally expensive than standard techniques. The new method is shown to perform...

  13. Improving the phenotype predictions of a yeast genome-scale metabolic model by incorporating enzymatic constraints

    DEFF Research Database (Denmark)

    Sanchez, Benjamin J.; Zhang, Xi-Cheng; Nilsson, Avlant

    2017-01-01

    Genome-scale metabolic models (GEMs) are widely used to calculate metabolic phenotypes. They rely on defining a set of constraints, the most common of which is that the production of metabolites and/or growth are limited by the carbon source uptake rate. However, enzyme abundances and kinetics......, which act as limitations on metabolic fluxes, are not taken into account. Here, we present GECKO, a method that enhances a GEM to account for enzymes as part of reactions, thereby ensuring that each metabolic flux does not exceed its maximum capacity, equal to the product of the enzyme's abundance...... with stress, or overexpressing a specific pathway. GECKO also allows to directly integrate quantitative proteomics data; by doing so, we significantly reduced flux variability of the model, in over 60% of metabolic reactions. Additionally, the model gives insight into the distribution of enzyme usage between...

  14. Modeling of lithium-sulfur batteries incorporating the effect of Li2S precipitation

    Science.gov (United States)

    Ren, Y. X.; Zhao, T. S.; Liu, M.; Tan, P.; Zeng, Y. K.

    2016-12-01

    In this work, we present a one-dimensional model for the discharge behavior of lithium-sulfur (Li-S) batteries. In addition to the consideration of multiple-step polysulfide dissolution and reductions, the surface nucleation and growth kinetics coupled with electrochemical reactions is particularly exploited for describing the Li2S precipitation. Unlike previous models that overlook the rate-dependent precipitation phenomenon, our model reveals that discrete Li2S particle growth becomes suppressed at higher rates, resulting in smaller Li2S precipitates with a more uniform particle size distribution and a limited discharge capacity. Experimental discharge curves and discharge product observation adequately confirm our numerical results. It is further predicted that promoting the growth of Li2S particles, including lowering the initial nucleation rate and providing a suitable amount of initial nucleation sites, can efficiently prolong the Li-S battery's discharge capacity.

  15. Development of a used fuel cladding damage model incorporating circumferential and radial hydride responses

    Science.gov (United States)

    Chen, Qiushi; Ostien, Jakob T.; Hansen, Glen

    2014-04-01

    At the completion of the fuel drying process, used fuel Zry4 cladding typically exhibits a significant population of δ-hydride inclusions. These inclusions are in the form of small platelets that are generally oriented both circumferentially and radially within the cladding material. There is concern that radially-oriented hydride inclusions may weaken the cladding material and lead to issues during used fuel storage and transportation processes. A high fidelity model of the mechanical behavior of hydrides has utility in both designing fuel cladding to be more resistant to this hydride-induced weakening and also in suggesting modifications to drying, storage, and transport operations to reduce the impact of hydride formation and/or the avoidance of loading scenarios that could overly stress the radial inclusions. We develop a mechanical model for the Zry4-hydride system that, given a particular morphology of hydride inclusions, allows the calculation of the response of the hydrided cladding under various loading scenarios. The model treats the Zry4 matrix material as J2 elastoplastic, and treats the hydrides as platelets oriented in predefined directions (e.g., circumferentially and radially). The model is hosted by the Albany analysis framework, where a finite element approximation of the weak form of the cladding boundary value problem is solved using a preconditioned Newton-Krylov approach. Instead of forming the required system Jacobian operator directly or approximating its action with a differencing operation, Albany leverages the Trilinos Sacado package to form the Jacobian via automatic differentiation. We present results that describe the performance of the model in comparison with as-fabricated Zry4 as well as HB Robinson fuel cladding. Further, we also present performance results that demonstrate the efficacy of the overall solution method employed to host the model.

  16. Development of a used fuel cladding damage model incorporating circumferential and radial hydride responses

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Qiushi, E-mail: qiushi@clemson.edu [Glenn Department of Civil Engineering, Clemson University, Clemson, SC 29634 (United States); Ostien, Jakob T., E-mail: jtostie@sandia.gov [Mechanics of Materials Dept. 8256, Sandia National Laboratories, P.O. Box 969, Livermore, CA 94551-0969 (United States); Hansen, Glen, E-mail: gahanse@sandia.gov [Computational Multiphysics Dept. 1443, Sandia National Laboratories, P.O. Box 5800, Albuquerque, NM 87185-1321 (United States)

    2014-04-01

    At the completion of the fuel drying process, used fuel Zry4 cladding typically exhibits a significant population of δ-hydride inclusions. These inclusions are in the form of small platelets that are generally oriented both circumferentially and radially within the cladding material. There is concern that radially-oriented hydride inclusions may weaken the cladding material and lead to issues during used fuel storage and transportation processes. A high fidelity model of the mechanical behavior of hydrides has utility in both designing fuel cladding to be more resistant to this hydride-induced weakening and also in suggesting modifications to drying, storage, and transport operations to reduce the impact of hydride formation and/or the avoidance of loading scenarios that could overly stress the radial inclusions. We develop a mechanical model for the Zry4-hydride system that, given a particular morphology of hydride inclusions, allows the calculation of the response of the hydrided cladding under various loading scenarios. The model treats the Zry4 matrix material as J{sub 2} elastoplastic, and treats the hydrides as platelets oriented in predefined directions (e.g., circumferentially and radially). The model is hosted by the Albany analysis framework, where a finite element approximation of the weak form of the cladding boundary value problem is solved using a preconditioned Newton–Krylov approach. Instead of forming the required system Jacobian operator directly or approximating its action with a differencing operation, Albany leverages the Trilinos Sacado package to form the Jacobian via automatic differentiation. We present results that describe the performance of the model in comparison with as-fabricated Zry4 as well as HB Robinson fuel cladding. Further, we also present performance results that demonstrate the efficacy of the overall solution method employed to host the model.

  17. A dimensional model of personality disorder: incorporating DSM Cluster A characteristics.

    Science.gov (United States)

    Tackett, Jennifer L; Silberschmidt, Amy L; Krueger, Robert F; Sponheim, Scott R

    2008-05-01

    The authors articulate an expanded dimensional model of personality pathology to better account for symptoms of DSM-defined Cluster A personality disorders. Two hundred forty participants (98 first-degree relatives of probands with schizophrenia or schizoaffective disorder, 92 community control participants, and 50 first-degree relatives of probands with bipolar disorder) completed a dimensional personality pathology questionnaire, a measure of schizotypal characteristics, and Chapman measures of psychosis proneness. Scales from all questionnaires were subjected to an exploratory factor analysis with varimax rotation. A 5-factor structure of personality pathology emerged from the analyses, with Peculiarity forming an additional factor to the common 4-factor structure of personality pathology (consisting of Introversion, Emotional Dysregulation, Antagonism, and Compulsivity). These results support a 5-factor dimensional model of personality pathology that better accounts for phenomena encompassed by the Cluster A personality disorders in DSM-IV-TR (4th ed., text revised; American Psychiatric Association, 2000). This study has implications for the consideration of a dimensional model of personality disorder in DSM-V by offering a more comprehensive structural model that builds on previous work in this area.

  18. An Improved Atmospheric Vector Radiative Transfer Model Incorporating Rough Ocean Boundaries

    Institute of Scientific and Technical Information of China (English)

    FAN Xue-Hua; CHEN Hong-Bin; HAN Zhi-Gang; LIN Long-Fu

    2010-01-01

    The radiative transfer model (RT3), a vector radiative transfer (VRT) scheme in a plane-parallel at-mosphere, was bounded by a rough ocean surface in this study. The boundary problem was solved using a Fourier series decomposition of the radiation field as a function of the azimuth. For the case of a rough ocean surface, the decomposition was obtained by developing both the Fresnel reflection matrix and the probability distribution of the water facet orientation as Fourier series. The effect of shadowing by ocean surface waves was also considered in the boundary condition. The VRT model can compute the intensity and degree of polarization of the light at the top of the atmosphere (TOA), the ocean surface, and any level of the atmosphere in the ocean-atmosphere system. The results obtained by our model are in good agreement with those computed by Ahmad's model. The simulated results showed that the shadow effects of wave facets on the intensity and the degree of polarization are negligible except at the ocean surface near the grazing angle, possi-bly because we did not consider the effect of white caps.

  19. An explicit surface-potential-based MOSFET model incorporating the quantum mechanical effects

    Science.gov (United States)

    Basu, Dipanjan; Dutta, Aloke K.

    2006-07-01

    An explicit surface-potential-based MOSFET model has been proposed in this work here, which takes into account the quantum mechanical effects that arise in deep-submicron MOSFETs. The coupled Schrödinger's and Poisson's equations have been solved by using a variational wave function approach, as proposed by Fang and Howard. The resulting surface potential model is analytical, technology mapped, and completely continuous over the entire range of operation. The surface potential and the inversion charge density calculated using the proposed model show good match with the results of the numerical simulations obtained from a self-consistent Schrödinger-Poisson solver for a wide range of substrate doping and oxide thickness. The simulated values of the drain current match closely with the experimental results published elsewhere. The device small-signal parameters, e.g., transconductance, output conductance, etc., pass the standard benchmark tests suggested by Suyama and Tsividis qualitatively, thereby validating the approach of the model presented.

  20. Incorporating Artificial Neural Networks in the dynamic thermal-hydraulic model of a controlled cryogenic circuit

    Science.gov (United States)

    Carli, S.; Bonifetto, R.; Savoldi, L.; Zanino, R.

    2015-09-01

    A model based on Artificial Neural Networks (ANNs) is developed for the heated line portion of a cryogenic circuit, where supercritical helium (SHe) flows and that also includes a cold circulator, valves, pipes/cryolines and heat exchangers between the main loop and a saturated liquid helium (LHe) bath. The heated line mimics the heat load coming from the superconducting magnets to their cryogenic cooling circuits during the operation of a tokamak fusion reactor. An ANN is trained, using the output from simulations of the circuit performed with the 4C thermal-hydraulic (TH) code, to reproduce the dynamic behavior of the heated line, including for the first time also scenarios where different types of controls act on the circuit. The ANN is then implemented in the 4C circuit model as a new component, which substitutes the original 4C heated line model. For different operational scenarios and control strategies, a good agreement is shown between the simplified ANN model results and the original 4C results, as well as with experimental data from the HELIOS facility confirming the suitability of this new approach which, extended to an entire magnet systems, can lead to real-time control of the cooling loops and fast assessment of control strategies for heat load smoothing to the cryoplant.

  1. Development of a mission-based funding model for undergraduate medical education: incorporation of quality.

    Science.gov (United States)

    Stagnaro-Green, Alex; Roe, David; Soto-Greene, Maria; Joffe, Russell

    2008-01-01

    Increasing financial pressures, along with a desire to realign resources with institutional priorities, has resulted in the adoption of mission-based funding (MBF) at many medical schools. The lack of inclusion of quality and the time and expense in developing and implementing mission based funding are major deficiencies in the models reported to date. In academic year 2002-2003 New Jersey Medical School developed a model that included both quantity and quality in the education metric and that was departmentally based. Eighty percent of the undergraduate medical education allocation was based on the quantity of undergraduate medical education taught by the department ($7.35 million), and 20% ($1.89 million) was allocated based on the quality of the education delivered. Quality determinations were made by the educational leadership based on student evaluations and departmental compliance with educational administrative requirements. Evolution of the model has included the development of a faculty oversight committee and the integration of peer evaluation in the determination of educational quality. Six departments had a documented increase in quality over time, and one department had a transient decrease in quality. The MBF model has been well accepted by chairs, educational leaders, and faculty and has been instrumental in enhancing the stature of education at our institution.

  2. Incorporating Religiosity into a Developmental Model of Positive Family Functioning across Generations

    Science.gov (United States)

    Spilman, Sarah K.; Neppl, Tricia K.; Donnellan, M. Brent; Schofield, Thomas J.; Conger, Rand D.

    2013-01-01

    This study evaluated a developmental model of intergenerational continuity in religiosity and its association with observed competency in romantic and parent-child relationships across 2 generations. Using multi-informant data from the Family Transitions Project, a 20-year longitudinal study of families that began during early adolescence (N =…

  3. Incorporating Logistics in Freight Transport Demand Models: State-of-the-Art and Research Opportunities

    NARCIS (Netherlands)

    Tavasszy, L.A.; Ruijgrok, K.; Davydenko, I.

    2012-01-01

    Freight transport demand is a demand derived from all the activities needed to move goods between locations of production to locations of consumption, including trade, logistics and transportation. A good representation of logistics in freight transport demand models allows us to predict the effects

  4. Incorporating Retention Time to Refine Models Predicting Thermal Regimes of Stream Networks Across New England

    Science.gov (United States)

    Thermal regimes are a critical factor in models predicting effects of watershed management activities on fish habitat suitability. We have assembled a database of lotic temperature time series across New England (> 7000 station-year combinations) from state and Federal data s...

  5. Incorporating Religiosity into a Developmental Model of Positive Family Functioning across Generations

    Science.gov (United States)

    Spilman, Sarah K.; Neppl, Tricia K.; Donnellan, M. Brent; Schofield, Thomas J.; Conger, Rand D.

    2013-01-01

    This study evaluated a developmental model of intergenerational continuity in religiosity and its association with observed competency in romantic and parent-child relationships across 2 generations. Using multi-informant data from the Family Transitions Project, a 20-year longitudinal study of families that began during early adolescence (N =…

  6. A Probabilistic Model of Visual Working Memory: Incorporating Higher Order Regularities into Working Memory Capacity Estimates

    Science.gov (United States)

    Brady, Timothy F.; Tenenbaum, Joshua B.

    2013-01-01

    When remembering a real-world scene, people encode both detailed information about specific objects and higher order information like the overall gist of the scene. However, formal models of change detection, like those used to estimate visual working memory capacity, assume observers encode only a simple memory representation that includes no…

  7. Predicting the Term Structure of Interest Rates: Incorporating parameter uncertainty, model uncertainty and macroeconomic information

    NARCIS (Netherlands)

    M.D. de Pooter (Michiel); F. Ravazzolo (Francesco); D.J.C. van Dijk (Dick)

    2007-01-01

    textabstractWe forecast the term structure of U.S. Treasury zero-coupon bond yields by analyzing a range of models that have been used in the literature. We assess the relevance of parameter uncertainty by examining the added value of using Bayesian inference compared to frequentist estimation

  8. Process model for ammonia volatilization from anaerobic swine lagoons incorporating varying wind speeds and biogas bubbling

    Science.gov (United States)

    Ammonia volatilization from treatment lagoons varies widely with the total ammonia concentration, pH, temperature, suspended solids, atmospheric ammonia concentration above the water surface, and wind speed. Ammonia emissions were estimated with a process-based mechanistic model integrating ammonia ...

  9. Numerical Computation of a Continuous-thrust State Transition Matrix Incorporating Accurate Hardware and Ephemeris Models

    Science.gov (United States)

    Ellison, Donald; Conway, Bruce; Englander, Jacob

    2015-01-01

    A significant body of work exists showing that providing a nonlinear programming (NLP) solver with expressions for the problem constraint gradient substantially increases the speed of program execution and can also improve the robustness of convergence, especially for local optimizers. Calculation of these derivatives is often accomplished through the computation of spacecraft's state transition matrix (STM). If the two-body gravitational model is employed as is often done in the context of preliminary design, closed form expressions for these derivatives may be provided. If a high fidelity dynamics model, that might include perturbing forces such as the gravitational effect from multiple third bodies and solar radiation pressure is used then these STM's must be computed numerically. We present a method for the power hardward model and a full ephemeris model. An adaptive-step embedded eight order Dormand-Prince numerical integrator is discussed and a method for the computation of the time of flight derivatives in this framework is presented. The use of these numerically calculated derivatieves offer a substantial improvement over finite differencing in the context of a global optimizer. Specifically the inclusion of these STM's into the low thrust missiondesign tool chain in use at NASA Goddard Spaceflight Center allows for an increased preliminary mission design cadence.

  10. Incorporating Protein Biosynthesis into the Saccharomyces cerevisiae Genome-scale Metabolic Model

    DEFF Research Database (Denmark)

    Olivares Hernandez, Roberto

    by a rapidly growing cell. To extend the model including protein synthesis, from the survey of the available literature was possible to identify a few enzymatic reactions and gene functions in the early steps of gene expression for proteins: mRNA transcription, mRNA processing, mRNA export out of the nucleus...

  11. Teaching Note--Incorporating Journal Clubs into Social Work Education: An Exploratory Model

    Science.gov (United States)

    Moore, Megan; Fawley-King, Kya; Stone, Susan I.; Accomazzo, Sarah M.

    2013-01-01

    This article outlines the implementation of a journal club for master's and doctoral social work students interested in mental health practice. It defines educational journal clubs and discusses the history of journal clubs in medical education and the applicability of the model to social work education. The feasibility of implementing…

  12. Novel method for incorporating model uncertainties into gravitational wave parameter estimates.

    Science.gov (United States)

    Moore, Christopher J; Gair, Jonathan R

    2014-12-19

    Posterior distributions on parameters computed from experimental data using Bayesian techniques are only as accurate as the models used to construct them. In many applications, these models are incomplete, which both reduces the prospects of detection and leads to a systematic error in the parameter estimates. In the analysis of data from gravitational wave detectors, for example, accurate waveform templates can be computed using numerical methods, but the prohibitive cost of these simulations means this can only be done for a small handful of parameters. In this Letter, a novel method to fold model uncertainties into data analysis is proposed; the waveform uncertainty is analytically marginalized over using with a prior distribution constructed by using Gaussian process regression to interpolate the waveform difference from a small training set of accurate templates. The method is well motivated, easy to implement, and no more computationally expensive than standard techniques. The new method is shown to perform extremely well when applied to a toy problem. While we use the application to gravitational wave data analysis to motivate and illustrate the technique, it can be applied in any context where model uncertainties exist.

  13. Teaching for Art Criticism: Incorporating Feldman's Critical Analysis Learning Model in Students' Studio Practice

    Science.gov (United States)

    Subramaniam, Maithreyi; Hanafi, Jaffri; Putih, Abu Talib

    2016-01-01

    This study adopted 30 first year graphic design students' artwork, with critical analysis using Feldman's model of art criticism. Data were analyzed quantitatively; descriptive statistical techniques were employed. The scores were viewed in the form of mean score and frequencies to determine students' performances in their critical ability.…

  14. A multi-component model of the developing retinocollicular pathway incorporating axonal and synaptic growth.

    Directory of Open Access Journals (Sweden)

    Keith B Godfrey

    2009-12-01

    Full Text Available During development, neurons extend axons to different brain areas and produce stereotypical patterns of connections. The mechanisms underlying this process have been intensively studied in the visual system, where retinal neurons form retinotopic maps in the thalamus and superior colliculus. The mechanisms active in map formation include molecular guidance cues, trophic factor release, spontaneous neural activity, spike-timing dependent plasticity (STDP, synapse creation and retraction, and axon growth, branching and retraction. To investigate how these mechanisms interact, a multi-component model of the developing retinocollicular pathway was produced based on phenomenological approximations of each of these mechanisms. Core assumptions of the model were that the probabilities of axonal branching and synaptic growth are highest where the combined influences of chemoaffinity and trophic factor cues are highest, and that activity-dependent release of trophic factors acts to stabilize synapses. Based on these behaviors, model axons produced morphologically realistic growth patterns and projected to retinotopically correct locations in the colliculus. Findings of the model include that STDP, gradient detection by axonal growth cones and lateral connectivity among collicular neurons were not necessary for refinement, and that the instructive cues for axonal growth appear to be mediated first by molecular guidance and then by neural activity. Although complex, the model appears to be insensitive to variations in how the component developmental mechanisms are implemented. Activity, molecular guidance and the growth and retraction of axons and synapses are common features of neural development, and the findings of this study may have relevance beyond organization in the retinocollicular pathway.

  15. Modeling Ear-Canal Acoustics, Incorporating Visco-Thermal Effects and the Influence of the Middle Ear

    Science.gov (United States)

    Gowdy, Lauren E.; Withnell, Robert H.

    2011-11-01

    The ear canal, below about 6 kHz, is well described by a uniform cylinder (sound propagates predominantly as plane waves) with the middle ear being a non-rigid termination. A non-rigid termination can be viewed as altering, as a function of frequency, the acoustic length and radius of the cylinder. It is generally assumed that sound transmission in the ear canal over this frequency range is lossless. This paper presents a method for calculating the influence of visco-thermal losses and the middle ear on ear canal acoustics. The acoustic input impedance was derived from sound pressure measurements in the ear canal and then a nonlinear least-square-fit to the data with a one-dimensional model incorporating visco-thermal losses generated length, radius, and middle ear impedance parameters. It was found that a rigid wall assumption for visco-thermal calculations was insufficient to account for damping in the ear canal. The properties of the ear canal wall (not being a rigid, low-friction surface), incorporated into visco-thermal losses as a scaling factor, provided a better fit to the data. Viscous and thermal losses were both found to affect sound propagation in the ear canal, viscous losses being more significant, altering the acoustic input impedance of the ear primarily in the region of the standing wave frequency. The model data suggests that the middle ear influences ear canal acoustics up to about 3 kHz.

  16. A density dependent delayed predator-prey model with Beddington-DeAngelis type function response incorporating a prey refuge

    Science.gov (United States)

    Tripathi, Jai Prakash; Abbas, Syed; Thakur, Manoj

    2015-05-01

    This paper describes a predator-prey model incorporating a prey refuge. The feeding rate of consumers (predators) per consumer (i.e. functional response) is considered to be of Beddington-DeAngelis type. The Beddington-DeAngelis functional response is similar to the Holling-type II functional response but contains an extra term describing mutual interference by predators. We investigate the role of prey refuge and degree of mutual interference among predators in the dynamics of system. The dynamics of the system is discussed mainly from the point of view of permanence and stability. We obtain conditions that affect the persistence of the system. Local and global asymptotic stability of various equilibrium solutions is explored to understand the dynamics of the model system. The global asymptotic stability of positive interior equilibrium solution is established using suitable Lyapunov functional. The dynamical behaviour of the delayed system is further analyzed through incorporating discrete type gestation delay of predator. It is found that Hopf bifurcation occurs when the delay parameter τ crosses some critical value. The analytical results found in the paper are illustrated with the help of numerical examples.

  17. Incorporation of water vapor transfer in the JULES land surface model: Implications for key soil variables and land surface fluxes

    Science.gov (United States)

    Garcia Gonzalez, Raquel; Verhoef, Anne; Luigi Vidale, Pier; Braud, Isabelle

    2012-05-01

    This study focuses on the mechanisms underlying water and heat transfer in upper soil layers, and their effects on soil physical prognostic variables and the individual components of the energy balance. The skill of the JULES (Joint UK Environment Simulator) land surface model (LSM) to simulate key soil variables, such as soil moisture content and surface temperature, and fluxes such as evaporation, is investigated. The Richards equation for soil water transfer, as used in most LSMs, was updated by incorporating isothermal and thermal water vapor transfer. The model was tested for three sites representative of semiarid and temperate arid climates: the Jornada site (New Mexico, USA), Griffith site (Australia), and Audubon site (Arizona, USA). Water vapor flux was found to contribute significantly to the water and heat transfer in the upper soil layers. This was mainly due to isothermal vapor diffusion; thermal vapor flux also played a role at the Jornada site just after rainfall events. Inclusion of water vapor flux had an effect on the diurnal evolution of evaporation, soil moisture content, and surface temperature. The incorporation of additional processes, such as water vapor flux among others, into LSMs may improve the coupling between the upper soil layers and the atmosphere, which in turn could increase the reliability of weather and climate predictions.

  18. Sophorolipid production from lignocellulosic biomass feedstocks

    Science.gov (United States)

    Samad, Abdul

    The present study investigated the feasibility of production of sophorolipids (SLs) using yeast Candida bombicola grown on hydrolysates derived lignocellulosic feedstock either with or without supplementing oil as extra carbon source. Several researchers have reported using pure sugars and various oil sources for producing SLs which makes them expensive for scale-up and commercial production. In order to make the production process truly sustainable and renewable, we used feedstocks such as sweet sorghum bagasse, corn fiber and corn stover. Without oil supplementation, the cell densities at the end of day-8 was recorded as 9.2, 9.8 and 10.8 g/L for hydrolysate derived from sorghum bagasse, corn fiber, and corn fiber with the addition of yeast extract (YE) during fermentation, respectively. At the end of fermentation, the SL concentration was 3.6 g/L for bagasse and 1.0 g/L for corn fiber hydrolysate. Among the three major sugars utilized by C. bombicola in the bagasse cultures, glucose was consumed at a rate of 9.1 g/L-day; xylose at 1.8 g/L-day; and arabinose at 0.98 g/L-day. With the addition of soybean oil at 100 g/L, cultures with bagasse hydrolysates, corn fiber hydrolysates and standard medium had a cell content of 7.7 g/L; 7.9 g/L; and 8.9 g/L, respectively after 10 days. The yield of SLs from bagasse hydrolysate was 84.6 g/L and corn fiber hydrolysate was15.6 g/L. In the same order, the residual oil in cultures with these two hydrolysates was 52.3 g/L and 41.0 g/L. For this set of experiment; in the cultures with bagasse hydrolysate; utilization rates for glucose, xylose and arabinose was recorded as 9.5, 1.04 and 0.08 g/L-day respectively. Surprisingly, C. bombicola consumed all monomeric sugars and non-sugar compounds in the hydrolysates and cultures with bagasse hydrolysates had higher yield of SLs than those from a standard medium which contained pure glucose at the same concentration. Based on the SL concentrations and considering all sugars consumed

  19. Incorporating the influence of sub-grid heterogeneity in regional-scale contaminant transport models

    CERN Document Server

    Baeumer, Boris; Schumer, Rina

    2013-01-01

    Numerical transport models based on the advection-dispersion equation (ADE) are built on the assumption that sub-grid cell transport is Fickian such that dispersive spreading around the average velocity is symmetric and without significant tailing on the front edge of a solute plume. However, anomalous diffusion in the form of super-diffusion due to preferential pathways in an aquifer has been observed in field data, challenging the assumption of Fickian dispersion at the local scale. This study develops a fully Lagrangian method to simulate sub-grid super-diffusion in a multi-dimensional regional-scale transport. The underlying concept is based on previous observations that solutions to space-fractional ADEs, which can describe super-diffusive dispersion, can be obtained by transforming solutions of classical ADEs. The transformations are equivalent to randomizing particle travel time or relative velocity for each model time step. Here, the time randomizing procedure known as subordination is applied to flow...

  20. Incorporating social contact data in spatio-temporal models for infectious disease spread

    CERN Document Server

    Meyer, Sebastian

    2015-01-01

    Routine public health surveillance of notifiable infectious diseases gives rise to weekly counts of reported cases - possibly stratified by region and/or age group. A well-established approach to the statistical analysis of such surveillance data are endemic-epidemic time-series models. The temporal dependence inherent to communicable diseases is thereby taken into account by an observation-driven formulation conditioning on past counts. Additional spatial dynamics in areal-level counts are largely driven by human travel and can be captured by power-law weights based on the order of adjacency. However, social contacts are highly assortative also with respect to age. For example, characteristic pathways of directly transmitted pathogens are linked to childcare facilities, schools and nursing homes. We therefore investigate how a spatio-temporal endemic-epidemic model can be extended to take social contact data into account. The approach is illustrated in a case study on norovirus gastroenteritis in Berlin, 201...

  1. Incorporating imperfect detection into joint models of communites: A response to Warton et al.

    Science.gov (United States)

    Beissinger, Steven R.; Iknayan, Kelly J.; Guillera-Arroita, Gurutzeta; Zipkin, Elise; Dorazio, Robert; Royle, Andy; Kery, Marc

    2016-01-01

    Warton et al. [1] advance community ecology by describing a statistical framework that can jointly model abundances (or distributions) across many taxa to quantify how community properties respond to environmental variables. This framework specifies the effects of both measured and unmeasured (latent) variables on the abundance (or occurrence) of each species. Latent variables are random effects that capture the effects of both missing environmental predictors and correlations in parameter values among different species. As presented in Warton et al., however, the joint modeling framework fails to account for the common problem of detection or measurement errors that always accompany field sampling of abundance or occupancy, and are well known to obscure species- and community-level inferences.

  2. A Dynamic Economic Dispatch Model Incorporating Wind Power Based on Chance Constrained Programming

    Directory of Open Access Journals (Sweden)

    Wushan Cheng

    2014-12-01

    Full Text Available In order to maintain the stability and security of the power system, the uncertainty and intermittency of wind power must be taken into account in economic dispatch (ED problems. In this paper, a dynamic economic dispatch (DED model based on chance constrained programming is presented and an improved particle swarm optimization (PSO approach is proposed to solve the problem. Wind power is regarded as a random variable and is included in the chance constraint. New formulation of up and down spinning reserve constraints are presented under expectation meaning. The improved PSO algorithm combines a feasible region adjustment strategy with a hill climbing search operation based on the basic PSO. Simulations are performed under three distinct test systems with different generators. Results show that both the proposed DED model and the improved PSO approach are effective.

  3. Incorporating prediction models in the SelfLet framework: a plugin approach

    CERN Document Server

    Calcavecchia, Nicolo' Maria

    2010-01-01

    A complex pervasive system is typically composed of many cooperating \\emph{nodes}, running on machines with different capabilities, and pervasively distributed across the environment. These systems pose several new challenges such as the need for the nodes to manage autonomously and dynamically in order to adapt to changes detected in the environment. To address the above issue, a number of autonomic frameworks has been proposed. These usually offer either predefined self-management policies or programmatic mechanisms for creating new policies at design time. From a more theoretical perspective, some works propose the adoption of prediction models as a way to anticipate the evolution of the system and to make timely decisions. In this context, our aim is to experiment with the integration of prediction models within a specific autonomic framework in order to assess the feasibility of such integration in a setting where the characteristics of dynamicity, decentralization, and cooperation among nodes are import...

  4. Incorporation of Advanced Activation Treatments into CESM/CAM5: Model Evaluation and Impacts on Aerosol Indirect Forcing

    Science.gov (United States)

    Gantt, B.; He, J.; Zhang, X.; Zhang, Y.; Nenes, A.

    2013-12-01

    One of the greatest sources of uncertainty in climate science is the influence of aerosols on clouds through indirect effects, especially processes affecting the activation of aerosols into cloud droplets. Aerosol activation parameterizations incorporate much of the complexity of these processes, but the small differences between parameterizations can have a large impact on the spatiotemporal distribution of activated aerosols and the resulting cloud properties. Currently, most models simulate aerosol activation using the Abdul-Razzak and Ghan [2000] (AR-G00) scheme which derives an empiric calculation of the maximum parcel supersaturation based on the regression of numerical parcel calculations. The Community Atmosphere Model version 5.1.1 within the Community Earth Systems Model version 1.0.5 (CESM/CAM5) is an online-coupled Earth Systems model that simulates the interactions among aerosols, clouds, and radiation. CESM/CAM5 uses the AR-G00 scheme to simulate aerosol activation. In this work, we update CESM/CAM5 by incorporating a series of explicit aerosol activation schemes (Fountoukis and Nenes [2005]; Barahona and Nenes [2007]; Kumar et al. [2009]; and Barahona et al. [2010]) which account for the impacts of insoluble aerosol adsorption, giant cloud condensation nuclei activation kinetics, and entrainment on cloud droplet number concentrations (CDNC). CESM/CAM5 results with the empiric and explicit aerosol activation schemes are evaluated against several global datasets including observed low-level CDNC and satellite-derived cloud optical thickness (COT), liquid water path (LWP), and shortwave cloud forcing (SWCF). Globally, the incorporation of all explicit schemes leads to an average increase in column CDNC of 155%, increase (more negative) in SWCF of 13%, and decrease in surface shortwave radiation of -4%. In terms of climate impacts, these schemes result in an annual mean decrease in surface temperature and precipitation of -0.9 K (~0.2%) and -0.04 mm day

  5. Influence of feedstock type on heavy coker gas oil quality; A influencia do tipo de carga na qualidade do gasoleo pesado de coque

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Claudine T.A.S.; Barros, Francisco C.C. [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil). Centro de Pesquisas (CENPES)

    2004-07-01

    Over the past few years, the great challenge to the Oil Industry has been the processing of increasingly heavier feedstock seeking to meet the growing demand for medium distillates and, at the same time, the reduction of the production of fuel oils. In this scenario, the Delayed Coking Unit (DCU) appears to be an attractive technology for the processing of heavy and ultra heavy crudes. The addition of Asphaltene Residue produced by the Solvent Deasphalting Unit (SDA) to the Vacuum Residue, traditional feedstock of these units, has been a new tendency in the composition of the feedstock, with the intention of converting the residual fractions into value added liquid oil products. Results obtained in pilot plants show that asphaltene residue alters the yield and the quality of the products of the DCU, especially those of Heavy Coker Gas Oil (HKGO) that is incorporated in the feedstock of the Fluid Catalytic Cracking Unit (FCCU). The alteration in the quality of the HKGO negatively impacts on the conservation of the FCCU. The insertion of DCU in refineries that possess SDA in their refining systems has shown itself to be fundamental for the reduction of the production of fuel oils. However, to define the quantity and quality of asphaltene residue to be incorporated in the feedstock of the UCR, the best operating conditions and the necessary project adaptations to this unit are fundamental and they should be analyzed with the objective of maximizing the profitability of the refineries. (author)

  6. A SEASONAL INFLUENZA THEORY AND MATHEMATICAL MODEL INCORPORATING METEOROLOGICAL AND SOCIO- BEHAVIORAL FACTORS

    Institute of Scientific and Technical Information of China (English)

    Zhixiang ZHOU

    2009-01-01

    On the basis of a comprehensive literature review and data analysis of global influenza surveillance,a transmission theory based numerical model is developed to understand the causative factors of influenza seasonality and the biodynamical mechanisms of seasonal flu. The model is applied to simulate the seasonality and weekly activity of influenza in different areas across all continents and climate zones around the world. Model solution and the good matches between model output and actual influenza indexes affirm that influenza activity is highly auto-correlative and relies on determinants of a broad spectrum. Internal dynamic resonance; variations of meteorological elements (solar radiation,precipitation and dewpoint); socio-behavioral influences and herd immunity to circulating strains prove to be the critical explanatory thctors of the seasonality and weekly activity of influenza. In all climate regions,influenza activity is proportional to the exponential of the number of days with precipitation and to the negative exponential of quarter power of sunny hours. Influenza activity is a negative exponential function of dewpoint in temperate and arctic regions and an exponential function of the absolute deviation of dewpoint from its annual mean in the tropics. Epidemics of seasonal influenza could be deemed as the consequence of the dynamic resonance and interactions of determinants. Early interventions (such as opportune vaccination,prompt social distancing,and maintaining incidence well below a baseline) are key to the control and prevention of seasonal influenza. Moderate amount of sunlight exposure or Vitamin D supplementation during rainy and short-day photoperiod seasons,more outdoor activities,and appropriate indoor dewpoint deserve great attention in influenza prevention. To a considerable degree,the study reveals the mechanism of inlluenza seasonality,demonstrating a potential for influenza activity projection. The concept and algorithm can be explored

  7. Finite Element Surface Registration Incorporating Curvature, Volume Preservation, and Statistical Model Information

    Directory of Open Access Journals (Sweden)

    Thomas Albrecht

    2013-01-01

    Full Text Available We present a novel method for nonrigid registration of 3D surfaces and images. The method can be used to register surfaces by means of their distance images, or to register medical images directly. It is formulated as a minimization problem of a sum of several terms representing the desired properties of a registration result: smoothness, volume preservation, matching of the surface, its curvature, and possible other feature images, as well as consistency with previous registration results of similar objects, represented by a statistical deformation model. While most of these concepts are already known, we present a coherent continuous formulation of these constraints, including the statistical deformation model. This continuous formulation renders the registration method independent of its discretization. The finite element discretization we present is, while independent of the registration functional, the second main contribution of this paper. The local discontinuous Galerkin method has not previously been used in image registration, and it provides an efficient and general framework to discretize each of the terms of our functional. Computational efficiency and modest memory consumption are achieved thanks to parallelization and locally adaptive mesh refinement. This allows for the first time the use of otherwise prohibitively large 3D statistical deformation models.

  8. Incorporating microbial ecology into the metabolic modelling of polyphosphate accumulating organisms and glycogen accumulating organisms.

    Science.gov (United States)

    Oehmen, A; Carvalho, G; Lopez-Vazquez, C M; van Loosdrecht, M C M; Reis, M A M

    2010-09-01

    In the enhanced biological phosphorus removal (EBPR) process, the competition between polyphosphate accumulating organisms (PAO) and glycogen accumulating organisms (GAO) has been studied intensively in recent years by both microbiologists and engineers, due to its important effects on phosphorus removal performance and efficiency. This study addresses the impact of microbial ecology on assessing the PAO-GAO competition through metabolic modelling, focussing on reviewing recent developments, discussion of how the results from molecular studies can impact the way we model the process, and offering perspectives for future research opportunities based on unanswered questions concerning PAO and GAO metabolism. Indeed, numerous findings that are seemingly contradictory could in fact be explained by the metabolic behaviour of different sub-groups of PAOs and/or GAOs exposed to different environmental and operational conditions. Some examples include the glycolysis pathway (i.e. Embden-Meyerhof-Parnas (EMP) vs. Entner-Doudoroff (ED)), denitrification capacity, anaerobic tricarboxylic acid (TCA) cycle activity and PAOs' ability to adjust their metabolism to e.g. a GAO-like metabolism. Metabolic modelling may further yield far-reaching influences on practical applications as well, and serves as a bridge between molecular/biochemical research studies and the optimisation of wastewater treatment plant operation. Copyright © 2010 Elsevier Ltd. All rights reserved.

  9. Incorporating temporal heterogeneity in environmental conditions into a somatic growth model

    Science.gov (United States)

    Dzul, Maria C.; Yackulic, Charles B.; Korman, Josh; Yard, Michael D.; Muehlbauer, Jeffrey D.

    2017-01-01

    Evaluating environmental effects on fish growth can be challenging because environmental conditions may vary at relatively fine temporal scales compared to sampling occasions. Here we develop a Bayesian state-space growth model to evaluate effects of monthly environmental data on growth of fish that are observed less frequently (e.g., from mark-recapture data where time between captures can range from months to years). We assess effects of temperature, turbidity duration, food availability, flow variability, and trout abundance on subadult humpback chub (Gila cypha) growth in two rivers, the Colorado River (CR) and the Little Colorado River (LCR), and we use out-of-sample prediction to rank competing models. Environmental covariates explained a high proportion of the variation in growth in both rivers; however, the best growth models were river-specific and included either positive temperature and turbidity duration effects (CR) or positive temperature and food availability effects (LCR). Our approach to analyzing environmental controls on growth should be applicable in other systems where environmental data vary over relatively short time scales compared to animal observations.

  10. A rat experimental model of glaucoma incorporating rapid-onset elevation of intraocular pressure

    Science.gov (United States)

    Smedowski, Adrian; Pietrucha-Dutczak, Marita; Kaarniranta, Kai; Lewin-Kowalik, Joanna

    2014-01-01

    Glaucoma is a chronic disease that causes structural and functional damage to retinal ganglion cells (RGC). The currently employed therapeutic options are not sufficient to prevent vision loss in patients with glaucoma; therefore, there is a need to develop novel therapies, which requires the creation of functional, repeatable and easy-to-utilize animal models for use in pre-clinical studies. The currently available models ensure only low to moderate damage in optic nerves, with high variation in the outcomes and poor repeatability. We have developed an effective and reproducible rat glaucoma model based on a previous idea for a “Bead Model” in mice, which could be useful in future glaucoma research. Additionally, in an attempt to achieve rapid elevation of Intraocular Pressure (IOP), we included an initial “high-pressure injury” as part of this method, which serves as the equivalent of a severe glaucoma attack. These modifications made it possible to achieve longer lasting IOP elevation with chronic damage of retinal ganglion cells. PMID:25081302

  11. A Partition-Based Active Contour Model Incorporating Local Information for Image Segmentation

    Directory of Open Access Journals (Sweden)

    Jiao Shi

    2014-01-01

    Full Text Available Active contour models are always designed on the assumption that images are approximated by regions with piecewise-constant intensities. This assumption, however, cannot be satisfied when describing intensity inhomogeneous images which frequently occur in real world images and induced considerable difficulties in image segmentation. A milder assumption that the image is statistically homogeneous within different local regions may better suit real world images. By taking local image information into consideration, an enhanced active contour model is proposed to overcome difficulties caused by intensity inhomogeneity. In addition, according to curve evolution theory, only the region near contour boundaries is supposed to be evolved in each iteration. We try to detect the regions near contour boundaries adaptively for satisfying the requirement of curve evolution theory. In the proposed method, pixels within a selected region near contour boundaries have the opportunity to be updated in each iteration, which enables the contour to be evolved gradually. Experimental results on synthetic and real world images demonstrate the advantages of the proposed model when dealing with intensity inhomogeneity images.

  12. A partition-based active contour model incorporating local information for image segmentation.

    Science.gov (United States)

    Shi, Jiao; Wu, Jiaji; Paul, Anand; Jiao, Licheng; Gong, Maoguo

    2014-01-01

    Active contour models are always designed on the assumption that images are approximated by regions with piecewise-constant intensities. This assumption, however, cannot be satisfied when describing intensity inhomogeneous images which frequently occur in real world images and induced considerable difficulties in image segmentation. A milder assumption that the image is statistically homogeneous within different local regions may better suit real world images. By taking local image information into consideration, an enhanced active contour model is proposed to overcome difficulties caused by intensity inhomogeneity. In addition, according to curve evolution theory, only the region near contour boundaries is supposed to be evolved in each iteration. We try to detect the regions near contour boundaries adaptively for satisfying the requirement of curve evolution theory. In the proposed method, pixels within a selected region near contour boundaries have the opportunity to be updated in each iteration, which enables the contour to be evolved gradually. Experimental results on synthetic and real world images demonstrate the advantages of the proposed model when dealing with intensity inhomogeneity images.

  13. Incorporating institutions and collective action into a sociohydrological model of flood resilience

    Science.gov (United States)

    Yu, David J.; Sangwan, Nikhil; Sung, Kyungmin; Chen, Xi; Merwade, Venkatesh

    2017-02-01

    Stylized sociohydrological models have mainly used social memory aspects such as community awareness or sensitivity to connect hydrologic change and social response. However, social memory alone does not satisfactorily capture the details of how human behavior is translated into collective action for water resources governance. Nor is it the only social mechanism by which the two-way feedbacks of sociohydrology can be operationalized. This study contributes toward bridging of this gap by developing a sociohydrological model of a flood resilience that includes two additional components: (1) institutions for collective action, and (2) connections to an external economic system. Motivated by the case of community-managed flood protection systems (polders) in coastal Bangladesh, we use the model to understand critical general features that affect long-term resilience of human-flood systems. Our findings suggest that occasional adversity can enhance long-term resilience. Allowing some hydrological variability to enter into the polder can increase its adaptive capacity for resilience through the preservation of social norm for collective action. Further, there are potential trade-offs associated with optimization of flood resistance through structural measures. By reducing sensitivity to floods, the system may become more fragile under the double impact of floods and economic change.

  14. Information spreading on mobile communication networks: A new model that incorporates human behaviors

    Science.gov (United States)

    Ren, Fei; Li, Sai-Ping; Liu, Chuang

    2017-03-01

    Recently, there is a growing interest in the modeling and simulation based on real social networks among researchers in multi-disciplines. Using an empirical social network constructed from the calling records of a Chinese mobile service provider, we here propose a new model to simulate the information spreading process. This model takes into account two important ingredients that exist in real human behaviors: information prevalence and preferential spreading. The fraction of informed nodes when the system reaches an asymptotically stable state is primarily determined by information prevalence, and the heterogeneity of link weights would slow down the information diffusion. Moreover, the sizes of blind clusters which consist of connected uninformed nodes show a power-law distribution, and these uninformed nodes correspond to a particular portion of nodes which are located at special positions in the network, namely at the edges of large clusters or inside the clusters connected through weak links. Since the simulations are performed on a real world network, the results should be useful in the understanding of the influences of social network structures and human behaviors on information propagation.

  15. Absorbed dose evaluation based on a computational voxel model incorporating distinct cerebral structures

    Energy Technology Data Exchange (ETDEWEB)

    Brandao, Samia de Freitas; Trindade, Bruno; Campos, Tarcisio P.R. [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil)]. E-mail: samiabrandao@gmail.com; bmtrindade@yahoo.com; campos@nuclear.ufmg.br

    2007-07-01

    Brain tumors are quite difficult to treat due to the collateral radiation damages produced on the patients. Despite of the improvements in the therapeutics protocols for this kind of tumor, involving surgery and radiotherapy, the failure rate is still extremely high. This fact occurs because tumors can not often be totally removed by surgery since it may produce some type of deficit in the cerebral functions. Radiotherapy is applied after the surgery, and both are palliative treatments. During radiotherapy the brain does not absorb the radiation dose in homogeneous way, because the various density and chemical composition of tissues involved. With the intention of evaluating better the harmful effects caused by radiotherapy it was developed an elaborated cerebral voxel model to be used in computational simulation of the irradiation protocols of brain tumors. This paper presents some structures function of the central nervous system and a detailed cerebral voxel model, created in the SISCODES program, considering meninges, cortex, gray matter, white matter, corpus callosum, limbic system, ventricles, hypophysis, cerebellum, brain stem and spinal cord. The irradiation protocol simulation was running in the MCNP5 code. The model was irradiated with photons beam whose spectrum simulates a linear accelerator of 6 MV. The dosimetric results were exported to SISCODES, which generated the isodose curves for the protocol. The percentage isodose curves in the brain are present in this paper. (author)

  16. A Mock Circulatory System Incorporating a Compliant 3D-Printed Anatomical Model to Investigate Pulmonary Hemodynamics.

    Science.gov (United States)

    Knoops, Paul G M; Biglino, Giovanni; Hughes, Alun D; Parker, Kim H; Xu, Linzhang; Schievano, Silvia; Torii, Ryo

    2017-07-01

    A realistic mock circulatory system (MCS) could be a valuable in vitro testbed to study human circulatory hemodynamics. The objective of this study was to design a MCS replicating the pulmonary arterial circulation, incorporating an anatomically representative arterial model suitable for testing clinically relevant scenarios. A second objective of the study was to ensure the system's compatibility with magnetic resonance imaging (MRI) for additional measurements. A latex pulmonary arterial model with two generations of bifurcations was manufactured starting from a 3D-printed mold reconstructed from patient data. The model was incorporated into a MCS for in vitro hydrodynamic measurements. The setup was tested under physiological pulsatile flow conditions and results were evaluated using wave intensity analysis (WIA) to investigate waves traveling in the arterial system. Increased pulmonary vascular resistance (IPVR) was simulated as an example of one pathological scenario. Flow split between right and left pulmonary artery was found to be realistic (54 and 46%, respectively). No substantial difference in pressure waveform was observed throughout the various generations of bifurcations. Based on WIA, three main waves were identified in the main pulmonary artery (MPA), that is, forward compression wave, backward compression wave, and forward expansion wave. For IPVR, a rise in mean pressure was recorded in the MPA, within the clinical range of pulmonary arterial hypertension. The feasibility of using the MCS in the MRI scanner was demonstrated with the MCS running 2 h consecutively while acquiring preliminary MRI data. This study shows the development and verification of a pulmonary MCS, including an anatomically correct, compliant latex phantom. The setup can be useful to explore a wide range of hemodynamic questions, including the development of patient- and pathology-specific models, considering the ease and low cost of producing rapid prototyping molds, and the

  17. Incorporation of Fuzzy Sets and Earned Value Management into a Cost-Time Trade-off Model

    Directory of Open Access Journals (Sweden)

    Mostafa Salari

    2014-01-01

    Full Text Available Time-cost trade-off (TCT problem is a well-known subject in the project scheduling contexts. None of previous studies in this area of research emphasize on the incorporation of the TCT problem into the started project’s performance in order to present a comprehensive model for scheduling and controlling the project in its whole life. The aim of this paper is to provide a novel control mechanism which includes scheduling the project prior to start date, monitoring the project’s performance through the execution, predicting future performance of the project, determining the necessity for re-scheduling, and providing an approach for re-scheduling of the project. In the proposed model, several options with specific time and cost have been considered for the initiation of each activity. These options make different paths for the construction of the project. Due to vagueness and imprecision presented in real case projects, the time and cost behavior for each option has been presumed as fuzzy numbers. Earned Value Management (EVM has been then utilized for measuring project performance and ultimately, statistical modeling has been also employed in predicting the future trend of EVM’s indices. The model has resulted in selection of the best path for implementation purpose among all available paths. Moreover, the proposed model provides the advantage of assessing the possibility of rescheduling process. An illustrative case has been studied to analyze the application of the proposed model .

  18. Incorporation of SemiSpan SuperSonic Transport (S4T) Aeroservoelastic Models into SAREC-ASV Simulation

    Science.gov (United States)

    Christhilf, David M.; Pototzky, Anthony S.; Stevens, William L.

    2010-01-01

    The Simulink-based Simulation Architecture for Evaluating Controls for Aerospace Vehicles (SAREC-ASV) was modified to incorporate linear models representing aeroservoelastic characteristics of the SemiSpan SuperSonic Transport (S4T) wind-tunnel model. The S4T planform is for a Technology Concept Aircraft (TCA) design from the 1990s. The model has three control surfaces and is instrumented with accelerometers and strain gauges. Control laws developed for wind-tunnel testing for Ride Quality Enhancement, Gust Load Alleviation, and Flutter Suppression System functions were implemented in the simulation. The simulation models open- and closed-loop response to turbulence and to control excitation. It provides time histories for closed-loop stable conditions above the open-loop flutter boundary. The simulation is useful for assessing the potential impact of closed-loop control rate and position saturation. It also provides a means to assess fidelity of system identification procedures by providing time histories for a known plant model, with and without unmeasured turbulence as a disturbance. Sets of linear models representing different Mach number and dynamic pressure conditions were implemented as MATLAB Linear Time Invariant (LTI) objects. Configuration changes were implemented by selecting which LTI object to use in a Simulink template block. A limited comparison of simulation versus wind-tunnel results is shown.

  19. Modelling and analysis of an open-loop induction motor drive incorporating the effect of inverter dead-time

    Indian Academy of Sciences (India)

    Anirudh Guha; G Narayanan

    2016-02-01

    The objective of this paper is to study the influence of inverter dead-time on steady as well as dynamic operation of an open-loop induction motor drive fed from a voltage source inverter (VSI). Towards this goal, this paper presents a systematic derivation of a dynamic model for an inverter-fed induction motor, incorporating the effect of inverter dead-time, in the synchronously revolving dq reference frame. Simulation results based on this dynamic model bring out the impact of inverter dead-time on both the transient response and steady-state operation of the motor drive. For the purpose of steady-state analysis, the dynamic model of the motor drive is used to derive a steady-state model, which is found to be non-linear. The steady-state model shows that the impact of dead-time can be seen as an additional resistance in the stator circuit, whose value depends on the stator current. Towards precise evaluation of this dead-time equivalent resistance, an analytical expression is proposed for the same in terms of inverter dead-time, switching frequency, modulation index and load impedance. The notion of dead-time equivalent resistance is shown to simplify the solution of the non-linear steady-state model. The analytically evaluated steady-state solutions are validated through numerical simulations and experiments.

  20. Bayesian random effect models incorporating real-time weather and traffic data to investigate mountainous freeway hazardous factors.

    Science.gov (United States)

    Yu, Rongjie; Abdel-Aty, Mohamed; Ahmed, Mohamed

    2013-01-01

    Freeway crash occurrences are highly influenced by geometric characteristics, traffic status, weather conditions and drivers' behavior. For a mountainous freeway which suffers from adverse weather conditions, it is critical to incorporate real-time weather information and traffic data in the crash frequency study. In this paper, a Bayesian inference method was employed to model one year's crash data on I-70 in the state of Colorado. Real-time weather and traffic variables, along with geometric characteristics variables were evaluated in the models. Two scenarios were considered in this study, one seasonal and one crash type based case. For the methodology part, the Poisson model and two random effect models with a Bayesian inference method were employed and compared in this study. Deviance Information Criterion (DIC) was utilized as a comparison factor. The correlated random effect models outperformed the others. The results indicate that the weather condition variables, especially precipitation, play a key role in the crash occurrence models. The conclusions imply that different active traffic management strategies should be designed based on seasons, and single-vehicle crashes have different crash mechanism compared to multi-vehicle crashes.

  1. A 3-D probabilistic stability model incorporating the variability of root reinforcement

    Science.gov (United States)

    Cislaghi, Alessio; Chiaradia, Enrico; Battista Bischetti, Gian

    2016-04-01

    Process-oriented models of hillslope stability have a great potentiality to improve spatially-distributed landslides hazard analyses. At the same time, they may have severe limitations and among them the variability and uncertainty of the parameters play a key role. In this context, the application of a probabilistic approach through Monte Carlo techniques can be the right practice to deal with the variability of each input parameter by considering a proper probability distribution. In forested areas an additional point must be taken into account: the reinforcement due to roots permeating the soil and its variability and uncertainty. While the probability distributions of geotechnical and hydrological parameters have been widely investigated, little is known concerning the variability and the spatial heterogeneity of root reinforcement. Moreover, there are still many difficulties in measuring and in evaluating such a variable. In our study we aim to: i) implement a robust procedure to evaluate the variability of root reinforcement as a probabilistic distribution, according to the stand characteristics of forests, such as the trees density, the average diameter at breast height, the minimum distance among trees, and (ii) combine a multidimensional process-oriented model with a Monte Carlo Simulation technique, to obtain a probability distribution of the Factor of Safety. The proposed approach has been applied to a small Alpine area, mainly covered by a coniferous forest and characterized by steep slopes and a high landslide hazard. The obtained results show a good reliability of the model according to the landslide inventory map. At the end, our findings contribute to improve the reliability of landslide hazard mapping in forested areas and help forests managers to evaluate different management scenarios.

  2. Incorporating the user perspective into a proposed model for assessing success of SHS implementations

    Directory of Open Access Journals (Sweden)

    Hans Holtorf

    2015-10-01

    Full Text Available Modern energy can contribute to development in multiple ways while approximately 20% of world's populations do not yet have access to electricity. Solar Home Systems (SHSs consists of a PV module, a charge controller and a battery supply in the range of 100 Wh/d in Sunbelt countries. The question addressed in this paper is how SHS users approach success of their systems and how these user's views can be integrated in to an existing model of success. Information was obtained on the user's approach to their SHSs by participatory observation, interviews with users and by self-observation undertaken by the lead author while residing under SHS electricity supply conditions. It was found that success of SHSs from the users' point of view is related to the ability of these systems to reduce the burdens of supplying energy services to homesteads. SHSs can alleviate some energy supply burdens, and they can improve living conditions by enabling communication on multiple levels and by addressing convenience and safety concerns. However, SHSs do not contribute to the energy services which are indispensable for survival, nor to the thermal energy services required and desired in dwellings of Sunbelt countries. The elements of three of the four components of our previously proposed model of success have been verified and found to be appropriate, namely the user's self-set goals, their importance and SHSs' success factors. The locally appropriate, and scientifically satisfactory, measurement of the level of achievement of self-set goals, the fourth component of our model of success, remains an interesting area for future research.

  3. Gasification reactivity and ash sintering behaviour of biomass feedstocks

    Energy Technology Data Exchange (ETDEWEB)

    Moilanen, A.; Nasrullah, M.

    2011-12-15

    Char gasification reactivity and ash sintering properties of forestry biomass feedstocks selected for large-scale gasification process was characterised. The study was divided into two parts: (1) Internal variation of the reactivity and the ash sintering of feedstocks. (2) Measurement of kinetic parameters of char gasification reactions to be used in the modelling of a gasifier. The tests were carried out in gases relevant to pressurized oxygen gasification, i.e. steam and carbon dioxide, as well as their mixtures with the product gases H{sub 2} and CO. The work was based on experimental measurements using pressurized thermobalance. In the tests, the temperatures were below 1000 deg C, and the pressure range was between 1 and 20 bar. In the first part, it was tested the effect of growing location, storage, plant parts and debarking method. The following biomass types were tested: spruce bark, pine bark, aspen bark, birch bark, forestry residue, bark feedstock mixture, stump chips and hemp. Thick pine bark had the lowest reactivity (instantaneous reaction rate 14%/min) and hemp the highest (250%/min); all other biomasses laid between these values. There was practically no difference in the reactivities among the spruce barks collected from the different locations. For pine bark, the differences were greater, but they were probably due to the thickness of the bark rather than to the growth location. For the spruce barks, the instantaneous reaction rate measured at 90% fuel conversion was 100%/min, for pine barks it varied between 14 and 75%/min. During storage, quite large local differences in reactivity seem to develop. Stump had significantly lower reactivity compared with the others. No clear difference in the reactivity was observed between barks obtained with the wet and dry debarking, but, the sintering of the ash was more enhanced for the bark from dry debarking. Char gasification rate could not be modelled in the gas mixture of H{sub 2}O + CO{sub 2} + H{sub 2

  4. Eatwell Guide: modelling the dietary and cost implications of incorporating new sugar and fibre guidelines

    Science.gov (United States)

    Scarborough, Peter; Cobiac, Linda; Owens, Paul; Parlesak, Alexandr; Sweeney, Kate; Rayner, Mike

    2016-01-01

    Objectives To model food group consumption and price of diet associated with achieving UK dietary recommendations while deviating as little as possible from the current UK diet, in order to support the redevelopment of the UK food-based dietary guidelines (now called the Eatwell Guide). Design Optimisation modelling, minimising an objective function of the difference between population mean modelled and current consumption of 125 food groups, and constraints of nutrient and food-based recommendations. Setting The UK. Population Adults aged 19 years and above from the National Diet and Nutrition Survey 2008–2011. Main outcome measures Proportion of diet consisting of major foods groups and price of the optimised diet. Results The optimised diet has an increase in consumption of ‘potatoes, bread, rice, pasta and other starchy carbohydrates’ (+69%) and ‘fruit and vegetables’ (+54%) and reductions in consumption of ‘beans, pulses, fish, eggs, meat and other proteins’ (−24%), ‘dairy and alternatives’ (−21%) and ‘foods high in fat and sugar’ (−53%). Results within food groups show considerable variety (eg, +90% for beans and pulses, −78% for red meat). The modelled diet would cost £5.99 (£5.93 to £6.05) per adult per day, very similar to the cost of the current diet: £6.02 (£5.96 to £6.08). The optimised diet would result in increased consumption of n-3 fatty acids and most micronutrients (including iron and folate), but decreased consumption of zinc and small decreases in consumption of calcium and riboflavin. Conclusions To achieve the UK dietary recommendations would require large changes in the average diet of UK adults, including in food groups where current average consumption is well within the recommended range (eg, processed meat) or where there are no current recommendations (eg, dairy). These large changes in the diet will not lead to significant changes in the price of the diet. PMID:28003292

  5. Approximate solution of a model of biological immune responses incorporating delay.

    Science.gov (United States)

    Fowler, A C

    1981-01-01

    A model of the humoral immune response, proposed by Dibrov, Livshits and Volkenstein (1977b), in which the antibody production by a constant target cell population depends on the antigenic stimulation at earlier times, is considered from an analytic standpoint. A method of approximation based on a consideration of the asymptotic limit of "large" delay in the antibody response is shown to be applicable, and to give results similar to those obtained numerically by the above authors. The relevance of this type of approximation to other systems exhibiting "outbreak" phenomena is discussed.

  6. Two-site adsolubilization model of incorporation of fluoromonomers into fluorosurfactants formed on cotton fabric.

    Science.gov (United States)

    Hanumansetty, Srinivas; O'Rear, Edgar

    2014-04-01

    The adsorption of surfactants and adsolubilization of organic compounds on knit cotton fabric are fundamentally important in admicellar polymerization to impart characteristics like water repellency, stain resistance, and flame retardancy. The main objective of this research is to study adsorption and adsolubilization of fluororsurfactants and fluoromonomers used to obtain water repellency characteristics. Adsorption of nonionic (fluoroaliphatic amine oxide) and cationic (fluoroaliphatic quaternary ammonium surfactant) fluororsurfactants at the interface of cotton is investigated with and without fluoroacrylate monomers. A two-site adsolubilization model was used to predict the aggregation number of fluorosurfactant.

  7. An expanded Notch-Delta model exhibiting long-range patterning and incorporating MicroRNA regulation.

    Directory of Open Access Journals (Sweden)

    Jerry S Chen

    2014-06-01

    Full Text Available Notch-Delta signaling is a fundamental cell-cell communication mechanism that governs the differentiation of many cell types. Most existing mathematical models of Notch-Delta signaling are based on a feedback loop between Notch and Delta leading to lateral inhibition of neighboring cells. These models result in a checkerboard spatial pattern whereby adjacent cells express opposing levels of Notch and Delta, leading to alternate cell fates. However, a growing body of biological evidence suggests that Notch-Delta signaling produces other patterns that are not checkerboard, and therefore a new model is needed. Here, we present an expanded Notch-Delta model that builds upon previous models, adding a local Notch activity gradient, which affects long-range patterning, and the activity of a regulatory microRNA. This model is motivated by our experiments in the ascidian Ciona intestinalis showing that the peripheral sensory neurons, whose specification is in part regulated by the coordinate activity of Notch-Delta signaling and the microRNA miR-124, exhibit a sparse spatial pattern whereby consecutive neurons may be spaced over a dozen cells apart. We perform rigorous stability and bifurcation analyses, and demonstrate that our model is able to accurately explain and reproduce the neuronal pattern in Ciona. Using Monte Carlo simulations of our model along with miR-124 transgene over-expression assays, we demonstrate that the activity of miR-124 can be incorporated into the Notch decay rate parameter of our model. Finally, we motivate the general applicability of our model to Notch-Delta signaling in other animals by providing evidence that microRNAs regulate Notch-Delta signaling in analogous cell types in other organisms, and by discussing evidence in other organisms of sparse spatial patterns in tissues where Notch-Delta signaling is active.

  8. A stage structured mosquito model incorporating effects of precipitation and daily temperature fluctuations.

    Science.gov (United States)

    Wang, Xia; Tang, Sanyi; Cheke, Robert A

    2016-12-21

    An outbreak of dengue fever in Guangdong province in 2014 was the most serious outbreak ever recorded in China. Given the known positive correlation between the abundance of mosquitoes and the number of dengue fever cases, a stage structured mosquito model was developed to investigate the cause of the large abundance of mosquitoes in 2014 and its implications for outbreaks of the disease. Data on the Breteau index (number of containers positive for larvae per 100 premises investigated), temperature and precipitation were used for model fitting. The egg laying rate, the development rate and the mortality rates of immatures and adults were obtained from the estimated parameters. Moreover, effects of daily fluctuations of temperature on these parameters were obtained and the effects of temperature and precipitation were analyzed by simulations. Our results indicated that the abundance of mosquitoes depended not only on the total annual precipitation but also on the distribution of the precipitation. The daily mean temperature had a nonlinear relationship with the abundance of mosquitoes, and large diurnal temperature differences can reduce the abundance of mosquitoes. In addition, effects of increasing precipitation and temperature were interdependent. Our findings suggest that the large abundance of mosquitoes in 2014 was mainly caused by the distribution of the precipitation. In the perspective of mosquito control, our results reveal that it is better to clear water early and spray insecticide between April and August in case of limited resources.

  9. INCORPORATING PRIOR BELIEF IN THE GENERAL PATH MODEL: A COMPARISON OF INFORMATION SOURCES

    Directory of Open Access Journals (Sweden)

    JAMIE COBLE

    2014-12-01

    Full Text Available The general path model (GPM is one approach for performing degradation-based, or Type III, prognostics. The GPM fits a parametric function to the collected observations of a prognostic parameter and extrapolates the fit to a failure threshold. This approach has been successfully applied to a variety of systems when a sufficient number of prognostic parameter observations are available. However, the parametric fit can suffer significantly when few data are available or the data are very noisy. In these instances, it is beneficial to include additional information to influence the fit to conform to a prior belief about the evolution of system degradation. Bayesian statistical approaches have been proposed to include prior information in the form of distributions of expected model parameters. This requires a number of run-to-failure cases with tracked prognostic parameters; these data may not be readily available for many systems. Reliability information and stressor-based (Type I and Type II, respectively prognostic estimates can provide the necessary prior belief for the GPM. This article presents the Bayesian updating framework to include prior information in the GPM and compares the efficacy of including different information sources on two data sets.

  10. On the tectonics and metallogenesis of West Africa: a model incorporating new geophysical data

    Science.gov (United States)

    Hastings, David A.

    1982-01-01

    The gold, diamond and manganese deposits of Ghana have attracted commercial interest, but appropriate geophysical data to delineate the tectonic setting of these and other deposits have been lacking until recently. Recent gravity surveys, however, now cover about 75% of the country. When used in a synthesis of the sometimes contradictory existing theories about the geology and metallogenesis of West Africa, the available gravity, magnetic, and seismic data lead to a preliminary tectonic model that postulates rifting at the time of the (1800-2000 m.y. old) Eburnean orogeny and is consistent with the occurrences of mineral deposits in the region. In this model, diamond-bearing kimberlites formed during the commencement of rifting during the Eburnean orogenesis. Later emplacement of kimberlites was associated with the initiation of Mesozoic rifting of Gondwanaland. Primary gold vein deposits were probably formed by the migration of hydrothermal fluids (associated with the formation of granitoids) into dilatant zones, such as rift-related faults and anticlinal axial areas, toward the end of the Eburnean orogeny. At this time, the major concordant granitoids were formed, with smaller plutonic granitoids forming on the fringes of the concordant masses as partial melting fractions of the latter. Sedimentary manganese deposits were formed along the margins of rift lakes toward the end of the orogeny.

  11. Genetic Modification of Short Rotation Poplar Biomass Feedstock for Efficient Conversion to Ethanol

    Energy Technology Data Exchange (ETDEWEB)

    Dinus, R.J.

    2000-08-30

    The Bioenergy Feedstock Development Program, Environmental Sciences Division, Oak Ridge National Laboratory is developing poplars (Populus species and hybrids) as sources of renewable energy, i.e., ethanol. Notable increases in adaptability, volume productivity, and pest/stress resistance have been achieved via classical selection and breeding and intensified cultural practices. Significant advances have also been made in the efficiencies of harvesting and handling systems. Given these and anticipated accomplishments, program leaders are considering shifting some attention to genetically modifying feedstock physical and chemical properties, so as to improve the efficiency with which feedstocks can be converted to ethanol. This report provides an in-depth review and synthesis of opportunities for and feasibilities of genetically modifying feedstock qualities via classical selection and breeding, marker-aided selection and breeding, and genetic transformation. Information was collected by analysis of the literature, with emphasis on that published since 1995, and interviews with prominent scientists, breeders, and growers. Poplar research is well advanced, and literature is abundant. The report therefore primarily reflects advances in poplars, but data from other species, particularly other shortrotation hardwoods, are incorporated to fill gaps. An executive summary and recommendations for research, development, and technology transfer are provided immediately after the table of contents. The first major section of the report describes processes most likely to be used for conversion of poplar biomass to ethanol, the various physical and chemical properties of poplar feedstocks, and how such properties are expected to affect process efficiency. The need is stressed for improved understanding of the impact of change on both overall process and individual process step efficiencies. The second part documents advances in trait measurement instrumentation and methodology

  12. A Simple Biomineralization Model to Explain Li, Mg, and Sr Incorporation into Aragonitic Foraminifera and Corals

    Science.gov (United States)

    Marchitto, T. M.; Bryan, S. P.; Montagna, P.

    2011-12-01

    The relationships between growth temperature and individual metal/Ca ratios in biogenic aragonites may be fundamentally perturbed by at least two processes: Ca pumping and Rayleigh fractionation. We suggest that the ratio Li/Mg is insensitive to both processes. Theoretically this is because the two elements experience negligible leakage through the Ca pump and very low partitioning into aragonite, leading to relatively constant Li/Mg in the calcifying fluid. This behavior may be related to the small ionic radii of both elements compared to Ca. As a result, Li/Mg is well explained by the temperature dependence of Li and Mg partitioning into inorganic aragonite, lending promise to its utility as a paleothermometer. Coral Sr/Ca is shown to be consistent with this model if the Ca pump is leaky with respect to Sr.

  13. A Compliant Bistable Mechanism Design Incorporating Elastica Buckling Beam Theory and Pseudo-Rigid-Body Model

    DEFF Research Database (Denmark)

    Sönmez, Ümit; Tutum, Cem Celal

    2008-01-01

    In this work, a new compliant bistable mechanism design is introduced. The combined use of pseudo-rigid-body model (PRBM) and the Elastica buckling theory is presented for the first time to analyze the new design. This mechanism consists of the large deflecting straight beams, buckling beams......, and a slider. The kinematic analysis of this new mechanism is studied, using nonlinear Elastica buckling beam theory, the PRBM of a large deflecting cantilever beam, the vector loop closure equations, and numerically solving nonlinear algebraic equations. A design method of the bistable mechanism...... and the buckling Elastica solution for an original compliant mechanism kinematic analysis. New compliant mechanism designs are presented to highlight where such combined kinematic analysis is required....

  14. Teaching For Art Criticism: Incorporating Feldman’s Critical Analysis Learning Model In Students’ Studio Practice

    Directory of Open Access Journals (Sweden)

    Maithreyi Subramaniam

    2016-01-01

    Full Text Available This study adopted 30 first year graphic design students’ artwork, with critical analysis using Feldman’s model of art criticism. Data were analyzed quantitatively; descriptive statistical techniques were employed. The scores were viewed in the form of mean score and frequencies to determine students’ performances in their critical ability. Pearson Correlation Coefficient was used to find out the correlation between students’ studio practice and art critical ability scores. The findings showed most students performed slightly better than average in the critical analyses and performed best in selecting analysis among the four dimensions assessed. In the context of the students’ studio practice and critical ability, findings showed there are some connections between the students’ art critical ability and studio practice.

  15. A model for hydraulic redistribution incorporating coupled soil-root moisture transport

    Directory of Open Access Journals (Sweden)

    G. G. Amenu

    2007-10-01

    Full Text Available One of the adaptive strategies of vegetation, particularly in water limited ecosystems, is the development of deep roots and the use of hydraulic redistribution which enables them to make optimal use of resources available throughout the soil column. Hydraulic redistribution refers to roots acting as a preferential pathway for the movement of water from wet to dry soil layers driven by the moisture gradient – be it from the shallow to deep layers or vice versa. This occurs during the nighttime while during the daytime moisture movement is driven to fulfill the transpiration demand at the canopy. In this study, we develop a model to investigate the effect of hydraulic redistribution by deep roots on the terrestrial climatology. Sierra Nevada eco-region is chosen as the study site which has wet winters and dry summers. Hydraulic redistribution enables the movement of moisture from the upper soil layers to deeper zones during the wet months and this moisture is then available to meet the transpiration demand during the late dry season. It results in significant alteration of the profiles of soil moisture and water uptake as well as increase in the canopy transpiration, carbon assimilation, and the associated water-use-efficiency during the dry summer season. This also makes the presence of roots in deeper soil layers much more important than their proportional abundance would otherwise dictate. Comparison with observations of latent heat from a flux tower demonstrates improved predictability and provides validation of the model results. Hydraulic redistribution serves as a mechanism for the interaction between the variability of deep layer soil-moisture and the land-surface climatology and could have significant implications for seasonal and sub-seasonal climate prediction.

  16. A model for hydraulic redistribution incorporating coupled soil-root moisture transport

    Directory of Open Access Journals (Sweden)

    G. G. Amenu

    2008-01-01

    Full Text Available One of the adaptive strategies of vegetation, particularly in water limited ecosystems, is the development of deep roots and the use of hydraulic redistribution which enables them to make optimal use of resources available throughout the soil column. Hydraulic redistribution refers to roots acting as a preferential pathway for the movement of water from wet to dry soil layers driven by the moisture gradient – be it from the shallow to deep layers or vice versa. This occurs during the nighttime while during the daytime moisture movement is driven to fulfill the transpiration demand at the canopy. In this study, we develop a model to investigate the effect of hydraulic redistribution by deep roots on the terrestrial climatology. Sierra Nevada eco-region is chosen as the study site which has wet winters and dry summers. Hydraulic redistribution enables the movement of moisture from the upper soil layers to deeper zones during the wet months and this moisture is then available to meet the transpiration demand during the late dry season. It results in significant alteration of the profiles of soil moisture and water uptake as well as increase in the canopy transpiration, carbon assimilation, and the associated water-use-efficiency during the dry summer season. This also makes the presence of roots in deeper soil layers much more important than their proportional abundance would otherwise dictate. Comparison with observations of latent heat from a flux tower demonstrates improved predictability and provides validation of the model results. Hydraulic redistribution serves as a mechanism for the interaction between the variability of deep layer soil-moisture and the land-surface climatology and could have significant implications for seasonal and sub-seasonal climate prediction.

  17. A battery model that fully couples mechanics and electrochemistry at both particle and electrode levels by incorporation of particle interaction

    Science.gov (United States)

    Wu, Bin; Lu, Wei

    2017-08-01

    This paper develops a multi-scale mechanical-electrochemical model which enables fully coupled mechanics and electrochemistry at both particle and electrode levels. At the particle level, solid diffusion is modeled using a generalized chemical potential to capture the effects of mechanical stress and phase transformation. At the electrode level, the stress arising from particle interaction is incorporated in a continuum model. This particle interaction stress is in addition to the traditional concept of intercalation stress inside isolated particles. The particle and continuum electrode levels are linked by the particle interaction stress as loads on the particle surface, and by consideration of stress on the electrochemical reaction rate on the particle surface. The effect of mechanical stress on electrochemical reaction results in a stress-dependent over-potential between particle and electrolyte. Stress gradient in an electrode leads to inhomogeneous intercalation/deintercalation currents for particles depending on their interaction stress with neighbors, resulting in stress gradient induced inhomogeneous state of charge. Conversely, non-uniform intercalation/deintercalation currents in an electrode lead to stress between particles. With this model we have an important finding: an electrochemically inactive region in an electrode causes stress built-up. This model provides a powerful tool to address various problems such as fracture in-between particles.

  18. Improvement of hydrogen solubility and entrainment in hydrocracker feedstocks. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Kabadi, V.N.

    1997-02-01

    The project consisted of two tasks: (1) development of a thermodynamic model for hydrogen solubility in hydrocarbons and extension of this model to predict solubility of hydrogen in hydrocracker feedstocks at conditions similar to those of hydrocracking operations, and (2) design and construction of a gas solubility apparatus to measure solubility of hydrogen in hydrocarbons and in hydrocracker feedstocks. The theoretical work proposed was fully accomplished by developing a sophisticated model for hydrogen solubility in hydrocarbons and in hydrocracker feedstocks at advanced temperatures and pressures. The proposed experimental work ran into a number of obstacles, especially to get the original and newly designed on-line sampling technique to function properly. A number of calibrations and tests for reproducibility were necessary to assure the accuracy of measured data. Although a very well designed gas solubility apparatus was built, not much time was left to generate significant hydrogen solubility data. The plans are to use the apparatus in future to measure hydrogen solubility data in liquid fuels to facilitate more efficient design of fuel conversion systems.

  19. Incorporating Groundwater Dynamics and Surface/Subsurface Runoff Mechanisms in Regional Climate Modeling over River Basins in China

    Institute of Scientific and Technical Information of China (English)

    QIN Peihua; XIE Zhenghui; YUAN Xing

    2013-01-01

    To improve the capability of numerical modeling of climate-groundwater interactions,a groundwater component and new surface/subsurface runoff schemes were incorporated into the regional climate model RegCM3,renamed RegCM3_Hydro.20-year simulations from both models were used to investigate the effects of groundwater dynamics and surface/subsurface runoff parameterizations on regional climate over seven river basins in China.A comparison of results shows that RegCM3_Hydro reduced the positive biases of annual and summer (June,July,August) precipitation over six river basins,while it slightly increased the bias over the Huaihe River Basin in eastern China.RegCM3_Hydro also reduced the cold bias of surface air temperature from RegCM3 across years,especially for the Haihe and the Huaihe river basins,with significant bias reductions of 0.80℃ and 0.88℃,respectively.The spatial distribution and seasonal variations of water table depth were also well captured.With the new surface and subsurface runoff schemes,RegCM3_Hydro increased annual surface runoff by 0.11-0.62 mm d-1 over the seven basins.Though previous studies found that incorporating a groundwater component tends to increase soil moisture due to the consideration of upward groundwater recharge,our present work shows that the modified runoff schemes cause less infiltration,which outweigh the recharge from groundwater and result in drier soil,and consequently cause less latent heat and more sensible heat over most of the basins.

  20. Incorporation of advanced aerosol activation treatments into CESM/CAM5: model evaluation and impacts on aerosol indirect effects

    Science.gov (United States)

    Gantt, B.; He, J.; Zhang, X.; Zhang, Y.; Nenes, A.

    2014-07-01

    One of the greatest sources of uncertainty in the science of anthropogenic climate change is from aerosol-cloud interactions. The activation of aerosols into cloud droplets is a direct microphysical linkage between aerosols and clouds; parameterizations of this process link aerosol with cloud condensation nuclei (CCN) and the resulting indirect effects. Small differences between parameterizations can have a large impact on the spatiotemporal distributions of activated aerosols and the resulting cloud properties. In this work, we incorporate a series of aerosol activation schemes into the Community Atmosphere Model version 5.1.1 within the Community Earth System Model version 1.0.5 (CESM/CAM5) which include factors such as insoluble aerosol adsorption and giant cloud condensation nuclei (CCN) activation kinetics to understand their individual impacts on global-scale cloud droplet number concentration (CDNC). Compared to the existing activation scheme in CESM/CAM5, this series of activation schemes increase the computation time by ~10% but leads to predicted CDNC in better agreement with satellite-derived/in situ values in many regions with high CDNC but in worse agreement for some regions with low CDNC. Large percentage changes in predicted CDNC occur over desert and oceanic regions, owing to the enhanced activation of dust from insoluble aerosol adsorption and reduced activation of sea spray aerosol after accounting for giant CCN activation kinetics. Comparison of CESM/CAM5 predictions against satellite-derived cloud optical thickness and liquid water path shows that the updated activation schemes generally improve the low biases. Globally, the incorporation of all updated schemes leads to an average increase in column CDNC of 150% and an increase (more negative) in shortwave cloud forcing of 12%. With the improvement of model-predicted CDNCs and better agreement with most satellite-derived cloud properties in many regions, the inclusion of these aerosol activation

  1. Roadmap for Agriculture Biomass Feedstock Supply in the United States

    Energy Technology Data Exchange (ETDEWEB)

    J. Richard Hess; Thomas D. Foust; Reed Hoskinson; David Thompson

    2003-11-01

    The Biomass Research and Development Technical Advisory Committee established a goal that biomass will supply 5% of the nation’s power, 20% of its transportation fuels, and 25% of its chemicals by 2030. These combined goals are approximately equivalent to 30% of the country’s current petroleum consumption. The benefits of a robust biorefinery industry supplying this amount of domestically produced power, fuels, and products are considerable, including decreased demand for imported oil, revenue to the depressed agricultural industry, and revitalized rural economies. A consistent supply of highquality, low-cost feedstock is vital to achieving this goal. This biomass roadmap defines the research and development (R&D) path to supplying the feedstock needs of the biorefinery and to achieving the important national goals set for biomass. To meet these goals, the biorefinery industry must be more sustainable than the systems it will replace. Sustainability hinges on the economic profitability of all participants, on environmental impact of every step in the process, and on social impact of the product and its production. In early 2003, a series of colloquies were held to define and prioritize the R&D needs for supplying feedstock to the biorefinery in a sustainable manner. These colloquies involved participants and stakeholders in the feedstock supply chain, including growers, transporters, equipment manufacturers, and processors as well as environmental groups and others with a vested interest in ensuring the sustainability of the biorefinery. From this series of colloquies, four high-level strategic goals were set for the feedstock area: • Biomass Availability – By 2030, 1 billion dry tons of lignocellulosic feedstock is needed annually to achieve the power, fuel, and chemical production goals set by the Biomass Research and Development Technology Advisory Production Committee • Sustainability – Production and use of the 1 billion dry tons annually must be

  2. An innovative land use regression model incorporating meteorology for exposure analysis.

    Science.gov (United States)

    Su, Jason G; Brauer, Michael; Ainslie, Bruce; Steyn, Douw; Larson, Timothy; Buzzelli, Michael

    2008-02-15

    The advent of spatial analysis and geographic information systems (GIS) has led to studies of chronic exposure and health effects based on the rationale that intra-urban variations in ambient air pollution concentrations are as great as inter-urban differences. Such studies typically rely on local spatial covariates (e.g., traffic, land use type) derived from circular areas (buffers) to predict concentrations/exposures at receptor sites, as a means of averaging the annual net effect of meteorological influences (i.e., wind speed, wind direction and insolation). This is the approach taken in the now popular land use regression (LUR) method. However spatial studies of chronic exposures and temporal studies of acute exposures have not been adequately integrated. This paper presents an innovative LUR method implemented in a GIS environment that reflects both temporal and spatial variability and considers the role of meteorology. The new source area LUR integrates wind speed, wind direction and cloud cover/insolation to estimate hourly nitric oxide (NO) and nitrogen dioxide (NO(2)) concentrations from land use types (i.e., road network, commercial land use) and these concentrations are then used as covariates to regress against NO and NO(2) measurements at various receptor sites across the Vancouver region and compared directly with estimates from a regular LUR. The results show that, when variability in seasonal concentration measurements is present, the source area LUR or SA-LUR model is a better option for concentration estimation.

  3. TOWARD MORE REALISTIC ANALYTIC MODELS OF THE HELIOTAIL: INCORPORATING MAGNETIC FLATTENING VIA DISTORTION FLOWS

    Energy Technology Data Exchange (ETDEWEB)

    Kleimann, Jens; Fichtner, Horst [Ruhr-Universität Bochum, Fakultät für Physik und Astronomie, Institut für Theoretische Physik IV, Bochum (Germany); Röken, Christian [Universität Regensburg, Fakultät für Mathematik, Regensburg (Germany); Heerikhuisen, Jacob, E-mail: jk@tp4.rub.de, E-mail: hf@tp4.rub.de, E-mail: christian.roeken@mathematik.uni-regensburg.de, E-mail: jacob.heerikhuisen@uah.edu [Department of Space Science and Center for Space Plasma and Aeronomic Research, University of Alabama in Huntsville, Huntsville, AL 35899 (United States)

    2016-01-01

    Both physical arguments and simulations of the global heliosphere indicate that the tailward heliopause is flattened considerably in the direction perpendicular to both the incoming flow and the large-scale interstellar magnetic field. Despite this fact, all of the existing global analytical models of the outer heliosheath's magnetic field assume a circular cross section of the heliotail. To eliminate this inconsistency, we introduce a mathematical procedure by which any analytically or numerically given magnetic field can be deformed in such a way that the cross sections along the heliotail axis attain freely prescribed, spatially dependent values for their total area and aspect ratio. The distorting transformation of this method honors both the solenoidality condition and the stationary induction equation with respect to an accompanying flow field, provided that both constraints were already satisfied for the original magnetic and flow fields prior to the transformation. In order to obtain realistic values for the above parameters, we present the first quantitative analysis of the heliotail's overall distortion as seen in state-of-the-art three-dimensional hybrid MHD–kinetic simulations.

  4. A heat transfer model for incorporating carbon foam fabrics in firefighter's garment

    Science.gov (United States)

    Elgafy, Ahmed; Mishra, Sarthak

    2014-04-01

    In the present work, a numerical study was performed to predict and investigate the performance of a thermal protection system for firefighter's garment consisting of carbon foam fabric in both the outer shell and the thermal liner elements. Several types of carbon foam with different thermal conductivity, porosity, and density were introduced to conduct a parametric study. Additionally, the thickness of the introduced carbon foam fabrics was varied to acquire optimum design. Simulation was conducted for a square planar 2D geometry of the clothing comprising of different fabric layers and a double precision pressure-based implicit solver, under transient state condition was used. The new anticipated thermal protection system was tested under harsh thermal environmental conditions that firefighters are exposed to. The parametric study showed that employing carbon foam fabric with one set of designed parameters, weight reduction of 33 % in the outer shell, 56 % in the thermal liner and a temperature reduction of 2 % at the inner edge of the garment was achieved when compared to the traditional firefighter garment model used by Song et al. (Int J Occup Saf Ergon 14:89-106, 2008). Also, carbon foam fabric with another set of designed parameters resulted in a weight reduction of 25 % in the outer shell, 28 % in the thermal liner and a temperature reduction of 6 % at the inner edge of the garment. As a result, carbon foam fabrics make the firefighter's garment more protective, durable, and lighter in weight.

  5. Modelling how incorporation of divalent cations affects calcite wettability–implications for biomineralisation and oil recovery

    Science.gov (United States)

    Andersson, M. P.; Dideriksen, K.; Sakuma, H.; Stipp, S. L. S.

    2016-06-01

    Using density functional theory and geochemical speciation modelling, we predicted how solid-fluid interfacial energy is changed, when divalent cations substitute into a calcite surface. The effect on wettability can be dramatic. Trace metal uptake can impact organic compound adsorption, with effects for example, on the ability of organisms to control crystal growth and our ability to predict the wettability of pore surfaces. Wettability influences how easily an organic phase can be removed from a surface, either organic compounds from contaminated soil or crude oil from a reservoir. In our simulations, transition metals substituted exothermically into calcite and more favourably into sites at the surface than in the bulk, meaning that surface properties are more strongly affected than results from bulk experiments imply. As a result of divalent cation substitution, calcite-fluid interfacial energy is significantly altered, enough to change macroscopic contact angle by tens of degrees. Substitution of Sr, Ba and Pb makes surfaces more hydrophobic. With substitution of Mg and the transition metals, calcite becomes more hydrophilic, weakening organic compound adsorption. For biomineralisation, this provides a switch for turning on and off the activity of organic crystal growth inhibitors, thereby controlling the shape of the associated mineral phase.

  6. Searching for the true diet of marine predators: incorporating Bayesian priors into stable isotope mixing models.

    Directory of Open Access Journals (Sweden)

    André Chiaradia

    Full Text Available Reconstructing the diet of top marine predators is of great significance in several key areas of applied ecology, requiring accurate estimation of their true diet. However, from conventional stomach content analysis to recent stable isotope and DNA analyses, no one method is bias or error free. Here, we evaluated the accuracy of recent methods to estimate the actual proportion of a controlled diet fed to a top-predator seabird, the Little penguin (Eudyptula minor. We combined published DNA data of penguins scats with blood plasma δ(15N and δ(13C values to reconstruct the diet of individual penguins fed experimentally. Mismatch between controlled (true ingested diet and dietary estimates obtained through the separately use of stable isotope and DNA data suggested some degree of differences in prey assimilation (stable isotope and digestion rates (DNA analysis. In contrast, combined posterior isotope mixing model with DNA Bayesian priors provided the closest match to the true diet. We provided the first evidence suggesting that the combined use of these complementary techniques may provide better estimates of the actual diet of top marine predators- a powerful tool in applied ecology in the search for the true consumed diet.

  7. Incorporating the gut microbiota into models of human and non-human primate ecology and evolution.

    Science.gov (United States)

    Amato, Katherine R

    2016-01-01

    The mammalian gut is home to a diverse community of microbes. Advances in technology over the past two decades have allowed us to examine this community, the gut microbiota, in more detail, revealing a wide range of influences on host nutrition, health, and behavior. These host-gut microbe interactions appear to shape host plasticity and fitness in a variety of contexts, and therefore represent a key factor missing from existing models of human and non-human primate ecology and evolution. However, current studies of the gut microbiota tend to include limited contextual data or are clinical, making it difficult to directly test broad anthropological hypotheses. Here, I review what is known about the animal gut microbiota and provide examples of how gut microbiota research can be integrated into the study of human and non-human primate ecology and evolution with targeted data collection. Specifically, I examine how the gut microbiota may impact primate diet, energetics, disease resistance, and cognition. While gut microbiota research is proliferating rapidly, especially in the context of humans, there remain important gaps in our understanding of host-gut microbe interactions that will require an anthropological perspective to fill. Likewise, gut microbiota research will be an important tool for filling remaining gaps in anthropological research.

  8. Incorporating induced seismicity in the 2014 United States National Seismic Hazard Model: results of the 2014 workshop and sensitivity studies

    Science.gov (United States)

    Petersen, Mark D.; Mueller, Charles S.; Moschetti, Morgan P.; Hoover, Susan M.; Rubinstein, Justin L.; Llenos, Andrea L.; Michael, Andrew J.; Ellsworth, William L.; McGarr, Arthur F.; Holland, Austin A.; Anderson, John G.

    2015-01-01

    The U.S. Geological Survey National Seismic Hazard Model for the conterminous United States was updated in 2014 to account for new methods, input models, and data necessary for assessing the seismic ground shaking hazard from natural (tectonic) earthquakes. The U.S. Geological Survey National Seismic Hazard Model project uses probabilistic seismic hazard analysis to quantify the rate of exceedance for earthquake ground shaking (ground motion). For the 2014 National Seismic Hazard Model assessment, the seismic hazard from potentially induced earthquakes was intentionally not considered because we had not determined how to properly treat these earthquakes for the seismic hazard analysis. The phrases “potentially induced” and “induced” are used interchangeably in this report, however it is acknowledged that this classification is based on circumstantial evidence and scientific judgment. For the 2014 National Seismic Hazard Model update, the potentially induced earthquakes were removed from the NSHM’s earthquake catalog, and the documentation states that we would consider alternative models for including induced seismicity in a future version of the National Seismic Hazard Model. As part of the process of incorporating induced seismicity into the seismic hazard model, we evaluate the sensitivity of the seismic hazard from induced seismicity to five parts of the hazard model: (1) the earthquake catalog, (2) earthquake rates, (3) earthquake locations, (4) earthquake Mmax (maximum magnitude), and (5) earthquake ground motions. We describe alternative input models for each of the five parts that represent differences in scientific opinions on induced seismicity characteristics. In this report, however, we do not weight these input models to come up with a preferred final model. Instead, we present a sensitivity study showing uniform seismic hazard maps obtained by applying the alternative input models for induced seismicity. The final model will be released after

  9. Development of Advanced Continuum Models that Incorporate Nanomechanical Deformation into Engineering Analysis.

    Energy Technology Data Exchange (ETDEWEB)

    Zimmerman, Jonathan A.; Jones, Reese E.; Templeton, Jeremy Alan; McDowell, David L.; Mayeur, Jason R.; Tucker, Garritt J.; Bammann, Douglas J.; Gao, Huajian

    2008-09-01

    Materials with characteristic structures at nanoscale sizes exhibit significantly different mechani-cal responses from those predicted by conventional, macroscopic continuum theory. For example,nanocrystalline metals display an inverse Hall-Petch effect whereby the strength of the materialdecreases with decreasing grain size. The origin of this effect is believed to be a change in defor-mation mechanisms from dislocation motion across grains and pileup at grain boundaries at mi-croscopic grain sizes to rotation of grains and deformation within grain boundary interface regionsfor nanostructured materials. These rotational defects are represented by the mathematical conceptof disclinations. The ability to capture these effects within continuum theory, thereby connectingnanoscale materials phenomena and macroscale behavior, has eluded the research community.The goal of our project was to develop a consistent theory to model both the evolution ofdisclinations and their kinetics. Additionally, we sought to develop approaches to extract contin-uum mechanical information from nanoscale structure to verify any developed continuum theorythat includes dislocation and disclination behavior. These approaches yield engineering-scale ex-pressions to quantify elastic and inelastic deformation in all varieties of materials, even those thatpossess highly directional bonding within their molecular structures such as liquid crystals, cova-lent ceramics, polymers and biological materials. This level of accuracy is critical for engineeringdesign and thermo-mechanical analysis is performed in micro- and nanosystems. The researchproposed here innovates on how these nanoscale deformation mechanisms should be incorporatedinto a continuum mechanical formulation, and provides the foundation upon which to develop ameans for predicting the performance of advanced engineering materials.4 AcknowledgmentThe authors acknowledge helpful discussions with Farid F. Abraham, Youping Chen, Terry J

  10. Incorporating transportation network modeling tools within transportation economic impact studies of disasters

    Directory of Open Access Journals (Sweden)

    Yi Wen

    2014-08-01

    Full Text Available Transportation system disruption due to a disaster results in "ripple effects" throughout the entire transportation system of a metropolitan region. Many researchers have focused on the economic costs of transportation system disruptions in transportation-related industries, specifïcally within commerce and logistics, in the assessment of the regional economic costs. However, the foundation of an assessment of the regional economic costs of a disaster needs to include the evaluation of consumer surplus in addition to the direct cost for reconstruction of the regional transportation system. The objective of this study is to propose a method to estimate the regional consumer surplus based on indirect economic costs of a disaster on intermodal transportation systems in the context of diverting vehicles and trains. The computational methods used to assess the regional indirect economic costs sustained by the highway and railroad system can utilize readily available state departments of transportation (DOTs and metropolitan planning organizations (MPOs traffic models allowing prioritization of regional recovery plans after a disaster and strengthening of infrastructure before a disaster. Hurricane Katrina is one of the most devastating hurricanes in the history of the United States. Due to the significance of Hurricane Katrina, a case study is presented to evaluate consumer surplus in the Gulf Coast Region of Mississippi. Results from the case study indicate the costs of rerouting and congestion delays in the regional highway system and the rent costs of right-of-way in the regional railroad system are major factors of the indirect costs in the consumer surplus.

  11. Influence of chemical group composition of feedstock on results from catalytic cracking

    Energy Technology Data Exchange (ETDEWEB)

    Zhorov, Y.M.; Panchenkov, G.M.; Pivovarova, N.A.

    1983-01-01

    The work reported here is aimed at determining whether it is the distillation range of the chemical composition of the feed that influences the results obtained in catalytic cracking. For a quantitative evaluation of the influence of feedstock chemical composition on the cracking results, a linear equation relating the naptha yield to the contents of the group components is derived. The equation indicates that the ''light'' aromatics form considerable amounts of naptha, whereas the ''heavy'' aromatics retard the cracking. These relationships can be used in developing a mathematical model of the process and in selecting the severity of preliminary treating of catalytic cracking feedstocks.

  12. Image quality analysis of high-density diffuse optical tomography incorporating a subject-specific head model

    Directory of Open Access Journals (Sweden)

    Yuxuan eZhan

    2012-05-01

    Full Text Available High-density diffuse optical tomography (HD-DOT methods have shown significant improvement in localization accuracy and image resolution compared to traditional topographic near infrared spectroscopy (NIRS of the human brain. In this work we provide a comprehensive evaluation of image quality in visual cortex mapping via a simulation study with the use of an anatomical head model derived from MRI data of a human subject. A model of individual head anatomy provides the surface shape and internal structure that allow for the construction of a more realistic physical model for the forward problem, as well as the use of a structural constraint in the inverse problem. The HD-DOT model utilized here incorporates multiple source-detector separations with continuous-wave data with added noise based on experimental results. To evaluate image quality we quantify the localization error and localized volume at half maximum (LVHM throughout a region of interest (ROI within the visual cortex and systematically analyze the use of whole brain tissue spatial constraint within image reconstruction. Our results demonstrate that an image quality with less than 10 mm in localization error and 1000 m3 in LVHM can be obtained up to 13 mm below the scalp surface with a typical unconstrained reconstruction and up to 18 mm deep when a spatial constraint based on the brain tissue is utilized.

  13. Photocatalytic degradation and reactor modeling of 17α-ethynylestradiol employing titanium dioxide-incorporated foam concrete.

    Science.gov (United States)

    Wang, Yuming; Li, Yi; Zhang, Wenlong; Wang, Qing; Wang, Dawei

    2015-03-01

    Photocatalytic degradation of 17α-ethynylestradiol (EE2) using TiO2 photocatalysts incorporated with foam concrete (TiO2/FC) was investigated for the first time. Scanning electron microscopy (SEM) study of the samples revealed a narrow air void size distribution on the surface of FC cubes on with 5 wt% addition of P25 TiO2, and TiO2 particles were distributed heterogeneously on the surface of TiO2/FC samples. The sorption and photocatalytic degradation of EE2 with UV-light irradiation by TiO2/FC cubes were investigated. Adsorption capacity of EE2 by the TiO2/FC and blank foam concrete (FC) samples were similar, while the degradation rates showed a great difference. More than 50 % of EE2 was removed by TiO2/FC within 3.5 h, compared with 5 % by blank FC. The EE2 removal process was then studied in a photoreactor modified from ultraviolet disinfection pool and constructed with TiO2/FC materials. An integrated model including a plate adsorption-scattering model and a modified flow diffusion model was established to simulate the photocatalytic degradation process with different radiation fields, contaminant load, and flow velocity. A satisfactory agreement was observed between the model simulations and experimental results, showing a potential for the design and scale-up of the modified photocatalytic reactor.

  14. Global Hopf bifurcation analysis of an susceptible-infective-removed epidemic model incorporating media coverage with time delay.

    Science.gov (United States)

    Zhao, Huitao; Zhao, Miaochan

    2017-12-01

    An susceptible-infective-removed epidemic model incorporating media coverage with time delay is proposed. The stability of the disease-free equilibrium and endemic equilibrium is studied. And then, the conditions which guarantee the existence of local Hopf bifurcation are given. Furthermore, we show that the local Hopf bifurcation implies the global Hopf bifurcation after the second critical value of delay. The obtained results show that the time delay in media coverage can not affect the stability of the disease-free equilibrium when the basic reproduction number is less than unity. However, the time delay affects the stability of the endemic equilibrium and produces limit cycle oscillations while the basic reproduction number is greater than unity. Finally, some examples for numerical simulations are included to support the theoretical prediction.

  15. Segmenting multiple overlapping objects via a hybrid active contour model incorporating shape priors: applications to digital pathology

    Science.gov (United States)

    Ali, Sahirzeeshan; Madabhushi, Anant

    2011-03-01

    Active contours and active shape models (ASM) have been widely employed in image segmentation. A major limitation of active contours, however, is in their (a) inability to resolve boundaries of intersecting objects and to (b) handle occlusion. Multiple overlapping objects are typically segmented out as a single object. On the other hand, ASMs are limited by point correspondence issues since object landmarks need to be identified across multiple objects for initial object alignment. ASMs are also are constrained in that they can usually only segment a single object in an image. In this paper, we present a novel synergistic boundary and region-based active contour model that incorporates shape priors in a level set formulation. We demonstrate an application of these synergistic active contour models using multiple level sets to segment nuclear and glandular structures on digitized histopathology images of breast and prostate biopsy specimens. Unlike previous related approaches, our model is able to resolve object overlap and separate occluded boundaries of multiple objects simultaneously. The energy functional of the active contour is comprised of three terms. The first term comprises the prior shape term, modeled on the object of interest, thereby constraining the deformation achievable by the active contour. The second term, a boundary based term detects object boundaries from image gradients. The third term drives the shape prior and the contour towards the object boundary based on region statistics. The results of qualitative and quantitative evaluation on 100 prostate and 14 breast cancer histology images for the task of detecting and segmenting nuclei, lymphocytes, and glands reveals that the model easily outperforms two state of the art segmentation schemes (Geodesic Active Contour (GAC) and Roussons shape based model) and resolves up to 92% of overlapping/occluded lymphocytes and nuclei on prostate and breast cancer histology images.

  16. Towards a Predictive Thermodynamic Model of Oxidation States of Uranium Incorporated in Fe (hydr) oxides

    Energy Technology Data Exchange (ETDEWEB)

    Bagus, Paul S. [Univ. of North Texas, Denton, TX (United States)

    2013-01-01

    -Level Excited States: Consequences For X-Ray Absorption Spectroscopy”, J. Elec. Spectros. and Related Phenom., 200, 174 (2015) describes our first application of these methods. As well as applications to problems and materials of direct interest for our PNNL colleagues, we have pursued applications of fundamental theoretical significance for the analysis and interpretation of XPS and XAS spectra. These studies are important for the development of the fields of core-level spectroscopies as well as to advance our capabilities for applications of interest to our PNNL colleagues. An excellent example is our study of the surface core-level shifts, SCLS, for the surface and bulk atoms of an oxide that provides a new approach to understanding how the surface electronic of oxides differs from that in the bulk of the material. This work has the potential to lead to a new key to understanding the reactivity of oxide surfaces. Our theoretical studies use cluster models with finite numbers of atoms to describe the properties of condensed phases and crystals. This approach has allowed us to focus on the local atomistic, chemical interactions. For these clusters, we obtain orbitals and spinors through the solution of the Hartree-Fock, HF, and the fully relativistic Dirac HF equations. These orbitals are used to form configuration mixing wavefunctions which treat the many-body effects responsible for the open shell angular momentum coupling and for the satellites of the core-level spectra. Our efforts have been in two complementary directions. As well as the applications described above, we have placed major emphasis on the enhancement and extension of our theoretical and computational capabilities so that we can treat complex systems with a greater range of many-body effects. Noteworthy accomplishments in terms of method development and enhancement have included: (1) An improvement in our treatment of the large matrices that must be handled when many-body effects are treated. (2

  17. Development and use of bioenergy feedstocks for semi-arid and arid lands.

    Science.gov (United States)

    Cushman, John C; Davis, Sarah C; Yang, Xiaohan; Borland, Anne M

    2015-07-01

    Global climate change is predicted to increase heat, drought, and soil-drying conditions, and thereby increase crop sensitivity to water vapour pressure deficit, resulting in productivity losses. Increasing competition between agricultural freshwater use and municipal or industrial uses suggest that crops with greater heat and drought durability and greater water-use efficiency will be crucial for sustainable biomass production systems in the future. Agave (Agavaceae) and Opuntia (Cactaceae) represent highly water-use efficient bioenergy crops that could diversify bioenergy feedstock supply yet preserve or expand feedstock production into semi-arid, abandoned, or degraded agricultural lands, and reclaim drylands. Agave and Opuntia are crassulacean acid metabolism species that can achieve high water-use efficiencies and grow in water-limited areas with insufficient precipitation to support traditional C3 or C4 bioenergy crops. Both Agave and Opuntia have the potential to produce above-ground biomass rivalling that of C3 and C4 crops under optimal growing conditions. The low lignin and high amorphous cellulose contents of Agave and Opuntia lignocellulosic biomass will be less recalcitrant to deconstruction than traditional feedstocks, as confirmed by pretreatments that improve saccharification of Agave. Refined environmental productivity indices and geographical information systems modelling have provided estimates of Agave and Opuntia biomass productivity and terrestrial sequestration of atmospheric CO2; however, the accuracy of such modelling efforts can be improved through the expansion of field trials in diverse geographical settings. Lastly, life cycle analysis indicates that Agave would have productivity, life cycle energy, and greenhouse gas balances comparable or superior to those of traditional bioenergy feedstocks, but would be far more water-use efficient.

  18. An in silico model of the ubiquitin-proteasome system that incorporates normal homeostasis and age-related decline

    Directory of Open Access Journals (Sweden)

    Proctor Carole J

    2007-03-01

    Full Text Available Abstract Background The ubiquitin-proteasome system is responsible for homeostatic degradation of intact protein substrates as well as the elimination of damaged or misfolded proteins that might otherwise aggregate. During ageing there is a decline in proteasome activity and an increase in aggregated proteins. Many neurodegenerative diseases are characterised by the presence of distinctive ubiquitin-positive inclusion bodies in affected regions of the brain. These inclusions consist of insoluble, unfolded, ubiquitinated polypeptides that fail to be targeted and degraded by the proteasome. We are using a systems biology approach to try and determine the primary event in the decline in proteolytic capacity with age and whether there is in fact a vicious cycle of inhibition, with accumulating aggregates further inhibiting proteolysis, prompting accumulation of aggregates and so on. A stochastic model of the ubiquitin-proteasome system has been developed using the Systems Biology Mark-up Language (SBML. Simulations are carried out on the BASIS (Biology of Ageing e-Science Integration and Simulation system and the model output is compared to experimental data wherein levels of ubiquitin and ubiquitinated substrates are monitored in cultured cells under various conditions. The model can be used to predict the effects of different experimental procedures such as inhibition of the proteasome or shutting down the enzyme cascade responsible for ubiquitin conjugation. Results The model output shows good agreement with experimental data under a number of different conditions. However, our model predicts that monomeric ubiquitin pools are always depleted under conditions of proteasome inhibition, whereas experimental data show that monomeric pools were depleted in IMR-90 cells but not in ts20 cells, suggesting that cell lines vary in their ability to replenish ubiquitin pools and there is the need to incorporate ubiquitin turnover into the model. Sensitivity

  19. KINETIC MODELING OF A FISCHER-TROPSCH REACTION OVER A COBALT CATALYST IN A SLURRY BUBBLE COLUMN REACTOR FOR INCORPORATION INTO A COMPUTATIONAL MULTIPHASE FLUID DYNAMICS MODEL

    Energy Technology Data Exchange (ETDEWEB)

    Anastasia Gribik; Doona Guillen, PhD; Daniel Ginosar, PhD

    2008-09-01

    Currently multi-tubular fixed bed reactors, fluidized bed reactors, and slurry bubble column reactors (SBCRs) are used in commercial Fischer Tropsch (FT) synthesis. There are a number of advantages of the SBCR compared to fixed and fluidized bed reactors. The main advantage of the SBCR is that temperature control and heat recovery are more easily achieved. The SBCR is a multiphase chemical reactor where a synthesis gas, comprised mainly of H2 and CO, is bubbled through a liquid hydrocarbon wax containing solid catalyst particles to produce specialty chemicals, lubricants, or fuels. The FT synthesis reaction is the polymerization of methylene groups [-(CH2)-] forming mainly linear alkanes and alkenes, ranging from methane to high molecular weight waxes. The Idaho National Laboratory is developing a computational multiphase fluid dynamics (CMFD) model of the FT process in a SBCR. This paper discusses the incorporation of absorption and reaction kinetics into the current hydrodynamic model. A phased approach for incorporation of the reaction kinetics into a CMFD model is presented here. Initially, a simple kinetic model is coupled to the hydrodynamic model, with increasing levels of complexity added in stages. The first phase of the model includes incorporation of the absorption of gas species from both large and small bubbles into the bulk liquid phase. The driving force for the gas across the gas liquid interface into the bulk liquid is dependent upon the interfacial gas concentration in both small and large bubbles. However, because it is difficult to measure the concentration at the gas-liquid interface, coefficients for convective mass transfer have been developed for the overall driving force between the bulk concentrations in the gas and liquid phases. It is assumed that there are no temperature effects from mass transfer of the gas phases to the bulk liquid phase, since there are only small amounts of dissolved gas in the liquid phase. The product from the

  20. Spatial Analysis of Biomass Resources within a Socio-Ecologically Heterogeneous Region: Identifying Opportunities for a Mixed Feedstock Stream

    Directory of Open Access Journals (Sweden)

    Kirby Calvert

    2014-02-01

    Full Text Available Local bioenergy will play a crucial role in national and regional sustainable energy strategies. Effective siting and feedstock procurement strategies are critical to the development and implementation of bioenergy systems. This paper aims to improve spatial decision-support in this domain by shifting focus from homogenous (forestry or agricultural regions toward heterogeneous regions—i.e., areas with a presence of both forestry and agricultural activities; in this case, eastern Ontario, Canada. Multiple land-cover and resource map series are integrated in order to produce a spatially distributed GIS-based model of resource availability. These data are soft-linked with spreadsheet-based linear models in order to estimate and compare the quantity and supply-cost of the full range of non-food bioenergy feedstock available to a prospective developer, and to assess the merits of a mixed feedstock stream relative to a homogenous feedstock stream. The method is applied to estimate bioenergy production potentials and biomass supply-cost curves for a number of cities in the study region. Comparisons of biomass catchment areas; supply-cost curves; resource density maps; and resource flow charts demonstrate considerable strategic and operational advantages to locating a facility within the region’s “transition zone” between forestry and agricultural activities. Existing and emerging bioenergy technologies that are feedstock agnostic and therefore capable of accepting a mixed-feedstock stream are reviewed with emphasis on “intermediates” such as wood pellets; biogas; and bio-oils, as well as bio-industrial clusters.

  1. Vermicompost derived from different feedstocks as a plant growth medium.

    Science.gov (United States)

    Warman, P R; Anglopez, M J

    2010-06-01

    This study determined feedstock effects on earthworm populations and the quality of resulting vermicomposts produced from different types of feedstocks using different vermicomposting durations. Feedstock combinations (Kitchen Paper Waste (KPW), Kitchen Yard Waste (KYW), Cattle Manure Yard Waste (CMY)), three durations of vermicomposting (45, 68 or 90 days), and two seed germination methods (with two concentrations of vermicompost) for radish, marigold and upland cress, served as the independent variables. The worms (Eisenia fetida) doubled their weight by day 68 in KPW and CMY vermicomposts and day 90 KPW vermicompost produced the greatest weight of worms. The direct seed germination method (seeding into soil or vermicompost-soil mixtures) indicated that KPW and KYW feedstocks decreased germination compared to the control, even in mature vermicompost. Seed germination was greater in the water extract method; however, most of the vermicompost extracts suppressed germination of the three seed species compared to the water controls. Vermicomposts from all three feedstocks increased leaf area and biomass compared to the control, especially in the 10% vermicompost:soil mix. Thus, seed germination and leaf area or plant biomass for these three species are contrasting vermicompost quality indicators.

  2. Incorporation of expert variability into breast cancer treatment recommendation in designing clinical protocol guided fuzzy rule system models.

    Science.gov (United States)

    Garibaldi, Jonathan M; Zhou, Shang-Ming; Wang, Xiao-Ying; John, Robert I; Ellis, Ian O

    2012-06-01

    It has been often demonstrated that clinicians exhibit both inter-expert and intra-expert variability when making difficult decisions. In contrast, the vast majority of computerized models that aim to provide automated support for such decisions do not explicitly recognize or replicate this variability. Furthermore, the perfect consistency of computerized models is often presented as a de facto benefit. In this paper, we describe a novel approach to incorporate variability within a fuzzy inference system using non-stationary fuzzy sets in order to replicate human variability. We apply our approach to a decision problem concerning the recommendation of post-operative breast cancer treatment; specifically, whether or not to administer chemotherapy based on assessment of five clinical variables: NPI (the Nottingham Prognostic Index), estrogen receptor status, vascular invasion, age and lymph node status. In doing so, we explore whether such explicit modeling of variability provides any performance advantage over a more conventional fuzzy approach, when tested on a set of 1310 unselected cases collected over a fourteen year period at the Nottingham University Hospitals NHS Trust, UK. The experimental results show that the standard fuzzy inference system (that does not model variability) achieves overall agreement to clinical practice around 84.6% (95% CI: 84.1-84.9%), while the non-stationary fuzzy model can significantly increase performance to around 88.1% (95% CI: 88.0-88.2%), p<0.001. We conclude that non-stationary fuzzy models provide a valuable new approach that may be applied to clinical decision support systems in any application domain.

  3. Thermal remote sensing of surface soil water content with partial vegetation cover for incorporation into climate models

    Science.gov (United States)

    Gillies, Robert R.; Carlson, Toby N.

    1995-01-01

    This study outlines a method for the estimation of regional patterns of surface moisture availability (M(sub 0)) and fractional vegetation (Fr) in the presence of spatially variable vegetation cover. The method requires relating variations in satellite-derived (NOAA, Advanced Very High Resolution Radiometer (AVHRR)) surface radiant temperature to a vegetation index (computed from satellite visible and near-infrared data) while coupling this association to an inverse modeling scheme. More than merely furnishing surface soil moisture values, the method constitues a new conceptual and practical approach for combining thermal infrared and vegetation index measurements for incorporating the derived values of M(sub 0) into hydrologic and atmospheric prediction models. Application of the technique is demonstrated for a region in and around the city of Newcastle upon Tyne situated in the northeast of England. A regional estimate of M(sub 0) is derived and is probabbly good for fractional vegetation cover up to 80% before errors in the estimated soil water content become unacceptably large. Moreover, a normalization scheme is suggested from which a nomogram, `universal triangle,' is constructed and is seen to fit the observed data well. The universal triangle also simplifies the inclusion of remotely derived M(sub 0) in hydrology and meteorological models and is perhaps a practicable step toward integrating derived data from satellite measurements in weather forecasting.

  4. Research and Application of Fire Forecasting Model for Electric Transmission Lines Incorporating Meteorological Data and Human Activities

    Directory of Open Access Journals (Sweden)

    Jiazheng Lu

    2016-01-01

    Full Text Available Recently, there is a rise in frequency of fires which pose a serious threat to the safety operation of electric transmission lines. Several ultrahigh voltage (UHV electric transmission lines, including Fufeng line, Jinsu line, Longzheng line, and Changnan line, showed many times tripping or bipolar latching caused by fire disasters. Fire disasters have tended to be the biggest threat to the safety operation of electric transmission lines and even can cause power grid collapse in some severe situations. Researchers have made much research on fires forecasting. However, these studies are mainly concentrated on predicting fires based on measured or forecasting meteorological data and do not take into account the effect of human activities. In fact, fire disasters have a very close relationship with human activities. In our research, a fire prediction model is proposed incorporating meteorological data as well as human activities. And this model is applied in Hunan province and Anhui province, which seriously suffer from fire disasters. The results show that the model has good prediction precision and can be a powerful tool for practical application.

  5. Thermal remote sensing of surface soil water content with partial vegetation cover for incorporation into climate models

    Science.gov (United States)

    Gillies, Robert R.; Carlson, Toby N.

    1995-01-01

    This study outlines a method for the estimation of regional patterns of surface moisture availability (M(sub 0)) and fractional vegetation (Fr) in the presence of spatially variable vegetation cover. The method requires relating variations in satellite-derived (NOAA, Advanced Very High Resolution Radiometer (AVHRR)) surface radiant temperature to a vegetation index (computed from satellite visible and near-infrared data) while coupling this association to an inverse modeling scheme. More than merely furnishing surface soil moisture values, the method constitues a new conceptual and practical approach for combining thermal infrared and vegetation index measurements for incorporating the derived values of M(sub 0) into hydrologic and atmospheric prediction models. Application of the technique is demonstrated for a region in and around the city of Newcastle upon Tyne situated in the northeast of England. A regional estimate of M(sub 0) is derived and is probabbly good for fractional vegetation cover up to 80% before errors in the estimated soil water content become unacceptably large. Moreover, a normalization scheme is suggested from which a nomogram, `universal triangle,' is constructed and is seen to fit the observed data well. The universal triangle also simplifies the inclusion of remotely derived M(sub 0) in hydrology and meteorological models and is perhaps a practicable step toward integrating derived data from satellite measurements in weather forecasting.

  6. The role of microalgae as biodiesel feedstock in a tropical setting: Economics, agro-energy competitiveness, and potential impacts on regional agricultural feedstock production

    Science.gov (United States)

    Boll, Matias G.

    The objective of this study is to obtain a realistic evaluation of the potential role of microalgae as a biodiesel feedstock in a tropical setting. First, microalgae economics are estimated, including the detailed design of a 400 ha microalgae open pond production farm together with the microalgae biomass and crude oil production costs calculations. Sensitivity analysis and a stochastic evaluation of the microalgae venture chances for profit are also included. Next, microalgae potential for biodiesel production is compared to traditional oil crops such as soybeans and African palm. This comparison is performed using the Northeast Region (NER) of Brazil as background. Six potential biodiesel feedstock sources produced in the NER and microalgae are compared considering selected environmental, economic and social sustainability indicators. Finally, in the third chapter, the study proposes a cropland allocation model for the NER. The model aims to offer insights to the decision maker concerning biofuel development strategies and their impact on regional agricultural feedstock production. In the model, cropland allocation among three agriculture feedstock sectors, namely staple food, commodity export and biofuel is optimized through the use of the multiple objective technique referred to as compromise programming (CP). Our results indicate a projected microalgae total production cost of R 78,359 ha-1 (US43,533), which has a breakdown as follows: R 34,133 ha-1 (US18,963) for operating costs and R 44,226 ha-1 (US24,570) for overhead (ownership) costs. Our stochastic analysis indicates that microalgae production under the conditions assumed in the baseline scenario of this study has a 0% chance to present a positive NPV for a microalgae crude oil price of R 1.86. This price corresponds to an international oil price around US 77 bbl-1. To obtain a reasonable investment return (IRR = 12%) from the microalgae farm, an international oil price as high as US 461 bbl-1 is

  7. A hierarchy of dynamic plume models incorporating uncertainty: Volume 5, Pennsylvania State University mesoscale model (PSU-MM): Final report

    Energy Technology Data Exchange (ETDEWEB)

    Lewellen, W.S.; Sykes, R.I.; Parker, S.F.; Henn, D.S.; Seaman, N.L.; Stauffer, D.R.; Warner, T.T.

    1989-02-01

    An existing mesoscale model (the Penn State University/National Center for Atmospheric Research mesoscale model) was extended for use with a PUFF-type plume model. By including a fine-mesh 2 km nested-grid and the assimilation of 4-dimensional data, horizontally variable hourly-average meteorological conditions can be simulated up to 300 km downwind of stack emissions in complex terrain. In 4 days of tests (32 90-minute periods) against meteorological observations obtained in moderately complex terrain, wind-speed uncertainties are usually less than 3.3 m/s, and direction errors are less than 40/degree/ for winds less than 1 m/s. The performance of this model was also compared on 3 days (20 hours) with a locally homogeneous meteorological data assimilation model when both were coupled to a new second order closure integrated puff model (SCIPUFF). Use of the new mesoscale model slightly reduced the deviations between simulated and observed concentrations of SF/sub 6/ tracer, even within 50 km. At distances longer than 50 km (not tested) it is expected that use of the mesoscale model would further improve dispersion simulations. 8 refs., 26 figs., 6 tabs.

  8. Modelling sediment dynamics due to hillslope-river interactions : incorporating fluvial behaviour in landscape evolution model LAPSUS

    NARCIS (Netherlands)

    Baartman, Jantiene E. M.; van Gorp, Wouter; Temme, Arnaud J. A. M.; Schoorl, Jeroen M.

    2012-01-01

    Landscape evolution models (LEMs) simulate the three-dimensional development of landscapes over time. Different LEMs have different foci, e.g. erosional behaviour, river dynamics, the fluvial domain, hillslopes or a combination. LEM LAPSUS is a relatively simple cellular model operating on timescale

  9. Incorporating Field Studies into Species Distribution and Climate Change Modelling: A Case Study of the Koomal Trichosurus vulpecula hypoleucus (Phalangeridae).

    Science.gov (United States)

    Molloy, Shaun W; Davis, Robert A; van Etten, Eddie J B

    2016-01-01

    Species distribution models (SDMs) are an effective way of predicting the potential distribution of species and their response to environmental change. Most SDMs apply presence data to a relatively generic set of predictive variables such as climate. However, this weakens the modelling process by overlooking the responses to more cryptic predictive variables. In this paper we demonstrate a means by which data gathered from an intensive animal trapping study can be used to enhance SDMs by combining field data with bioclimatic modelling techniques to determine the future potential distribution for the koomal (Trichosurus vulpecula hypoleucus). The koomal is a geographically isolated subspecies of the common brushtail possum, endemic to south-western Australia. Since European settlement this taxon has undergone a significant reduction in distribution due to its vulnerability to habitat fragmentation, introduced predators and tree/shrub dieback caused by a virulent group of plant pathogens of the genus Phytophthora. An intensive field study found: 1) the home range for the koomal rarely exceeded 1 km in in length at its widest point; 2) areas heavily infested with dieback were not occupied; 3) gap crossing between patches (>400 m) was common behaviour; 4) koomal presence was linked to the extent of suitable vegetation; and 5) where the needs of koomal were met, populations in fragments were demographically similar to those found in contiguous landscapes. We used this information to resolve a more accurate SDM for the koomal than that created from bioclimatic data alone. Specifically, we refined spatial coverages of remnant vegetation and dieback, to develop a set of variables that we combined with selected bioclimatic variables to construct models. We conclude that the utility value of an SDM can be enhanced and given greater resolution by identifying variables that reflect observed, species-specific responses to landscape parameters and incorporating these responses

  10. Deletion of the pflA gene in Escherichia coli LS5218 and its effects on the production of polyhydroxyalkanoates using beechwood xylan as a feedstock

    Science.gov (United States)

    Salamanca-Cardona, Lucia; Scheel, Ryan A; Lundgren, Benjamin R; Stipanovic, Arthur J; Matsumoto, Ken'ichiro; Taguchi, Seiichi; Nomura, Christopher T

    2014-01-01

    Engineering of microorganisms to directly utilize plant biomass as a feedstock for the biosynthesis of value-added products such as bioplastics is the aim of consolidated bioprocessing. In previous research we successfully engineered E. coli LS5218 to produce polyhydroxyalkanoates (PHAs) from xylan. In this study we report further genetic modifications to Escherichia coli LS5218 in order to increase the lactic acid (LA) fraction in poly(lactic acid-co-3-hydroxyalkanoate) P(LA-co-HA) copolymers. Deletion of the pflA gene resulted in increased content of LA repeating units in the copolymers by over 3-fold compared with the wild type; however, this increase was offset by reduced yields in cell mass. Additionally, when acetate was used as a feedstock LA monomer incorporation reached 18.5 (mol%), which suggests that acetate can be used as a feedstock for the production of P(LA-co-HA) copolymers by E. coli. PMID:25482228

  11. An Overview of Composting Based on Variable Feedstock Material

    Directory of Open Access Journals (Sweden)

    Kadir Aeslina Abdul

    2016-01-01

    Full Text Available Composting is a biological treatment method that provides a potential sustainable way to convert food waste into organic compost. In composting, the feedstock material is an important item to ensure the success of the composting process. This paper reviewed the process of composting based on implementation different types of feedstock, namely: 1 animal waste such as cow dung, poultry litter, swine manure and chicken manure; and 2 agricultural waste such as sawdust, rice straw, bran, bagasse, banana waste and pine chip. The result for poultry litter, cow manure, swine manure, sawdust and rice straw has C/N ratio lower than 20 at final composting process which is considered as satisfactory level for compost maturity. As a conclusion, the selection of the feedstock material is based on the characteristics of the material itself and the selection of materials is important for the quality of compost.

  12. Bioprocessing of bio-based chemicals produced from lignocellulosic feedstocks.

    Science.gov (United States)

    Kawaguchi, Hideo; Hasunuma, Tomohisa; Ogino, Chiaki; Kondo, Akihiko

    2016-12-01

    The feedstocks used for the production of bio-based chemicals have recently expanded from edible sugars to inedible and more recalcitrant forms of lignocellulosic biomass. To produce bio-based chemicals from renewable polysaccharides, several bioprocessing approaches have been developed and include separate hydrolysis and fermentation (SHF), simultaneous saccharification and fermentation (SSF), and consolidated bioprocessing (CBP). In the last decade, SHF, SSF, and CBP have been used to generate macromolecules and aliphatic and aromatic compounds that are capable of serving as sustainable, drop-in substitutes for petroleum-based chemicals. The present review focuses on recent progress in the bioprocessing of microbially produced chemicals from renewable feedstocks, including starch and lignocellulosic biomass. In particular, the technological feasibility of bio-based chemical production is discussed in terms of the feedstocks and different bioprocessing approaches, including the consolidation of enzyme production, enzymatic hydrolysis of biomass, and fermentation.

  13. Cost Methodology for Biomass Feedstocks: Herbaceous Crops and Agricultural Residues

    Energy Technology Data Exchange (ETDEWEB)

    Turhollow Jr, Anthony F [ORNL; Webb, Erin [ORNL; Sokhansanj, Shahabaddine [ORNL

    2009-12-01

    This report describes a set of procedures and assumptions used to estimate production and logistics costs of bioenergy feedstocks from herbaceous crops and agricultural residues. The engineering-economic analysis discussed here is based on methodologies developed by the American Society of Agricultural and Biological Engineers (ASABE) and the American Agricultural Economics Association (AAEA). An engineering-economic analysis approach was chosen due to lack of historical cost data for bioenergy feedstocks. Instead, costs are calculated using assumptions for equipment performance, input prices, and yield data derived from equipment manufacturers, research literature, and/or standards. Cost estimates account for fixed and variable costs. Several examples of this costing methodology used to estimate feedstock logistics costs are included at the end of this report.

  14. New catalysts improves heavy feedstock hydro-cracking

    Energy Technology Data Exchange (ETDEWEB)

    Hoek, A.; Huizinga, T.; Esener, A.A.; Maxwell, I.E.; Stork, W. (Koninklijke/Shell Laboratorium, Amsterdam (NL)); van de Meerakker, F.J. (Shell Internationale Petroleum Maatschappij BV, The Hauge (NL)); Sy, O. (Shell Canada Ltd., Oakville, Ontario (CA))

    1991-04-22

    A new zeolite-Y-based second-stage hydrocracking catalyst, designated S-703, has been developed by Shell. Laboratory testing and commercial use show it has significantly improved performance with respect to gas make and middle-distillate selectivity in processing heavy feedstocks when compared to a Shell catalyst, S-753, developed earlier. Further, the new catalyst exhibits enhanced stability. Extensive laboratory testing of the S-703 catalyst has been carried out under single-stage, stacked- bed, two-stage-flow, and series-flow conditions. Commercial experience with the new catalyst has now been obtained in several units. To date, the commercial results have confirmed the laboratory results in terms of the superior, heavy- feedstock processing performance of the new catalyst in all respects. Because the trend toward heavier feedstocks is expected to continue, it is likely that catalysts such as S- 703 will find increasing applications in hydrocrackers in the future.

  15. Ensiling corn stover: effect of feedstock preservation on particleboard performance.

    Science.gov (United States)

    Ren, Haiyu; Richard, Tom L; Chen, Zhilin; Kuo, Monlin; Bian, Yilin; Moore, Kenneth J; Patrick, Patricia

    2006-01-01

    Ensilage is a truncated solid-state fermentation in which anaerobically produced organic acids accumulate to reduce pH and limit microbial activity. Ensilage can be used to both preserve and pretreat biomass feedstock for further downstream conversion into chemicals, fuels, and/or fiber products. This study examined the ensilage of enzyme-treated corn stover as a feedstock for particleboard manufacturing. Corn stover at three different particle size ranges (ensilage process, as indicated by sustained lower pH (P ensilage process. Compared with fresh stover, the ensilage process did increase IB of stover particleboard by 33% (P ensilage can be used as a long-term feedstock preservation method for particleboard production from corn stover. Enzyme-amended ensilage not only improved stover preservation but also enhanced the properties of particleboard products.

  16. Effects of milling and active surfactants on rheological behavior of powder injection molding feedstock

    Institute of Scientific and Technical Information of China (English)

    范景莲; 黄伯云; 曲选辉

    2001-01-01

    The effects of milling and active surfactants on the rheological behavior of powder injection molding feedstock were discussed. The feedstock consists of traditional compositional 90W-7Ni-3Fe powder mixture and a wax based polymer binder. Before mixing feedstock, the powder mixture was milled for different times in a QM-1 high-energy ball mill. The viscosity of the feedstock was examined in a capillary rheometer. The rheological behavior was evaluated from viscosity data. The results show that the feedstock belongs to a pseudoplastic fluid, milling decreases viscosity of the feedstock and the sensitivity of viscosity to shear strain rate. The flowability, rheology and powder loading of this feedstock are improved by milling. Active surfactants such as stearic acid (SA) and di-n-octyl-o-phthalate (DOP) have great influences on the rheological properties of the feedstock. DOP improves the flowability and rheological stability of the feedstock further.

  17. Impacts of near-future cultivation of biofuel feedstocks on atmospheric composition and local air quality

    Directory of Open Access Journals (Sweden)

    K. Ashworth

    2012-01-01

    Full Text Available Large-scale production of feedstock crops for biofuels will lead to land use changes. We quantify the effects of realistic land use change scenarios for biofuel feedstock production on isoprene emissions and hence atmospheric composition and chemistry using the HadGEM2 model. Two feedstocks are considered: oil palm for biodiesel in the tropics and short rotation coppice (SRC in the mid-latitudes. In total, 69 Mha of oil palm and 9 Mha of SRC are planted, each sufficient to replace just over 1% of projected global fossil fuel demand in 2020. Both planting scenarios result in increases in total global annual isoprene emissions of about 1%. In each case, changes in surface concentrations of ozone and biogenic secondary organic aerosol (bSOA are substantial at the regional scale, with implications for air quality standards. However, the changes in tropospheric burden of ozone and the OH radical, and hence effects on global climate, are negligible. Over SE Asia, one region of oil palm planting, increases in annual mean surface ozone and bSOA concentrations reach over 3 ppbv (+11% and 0.4 μg m−3 (+10% respectively for parts of Borneo, with monthly mean increases of up to 6.5 ppbv (+25% and 0.5 μg m−3 (+12%. Under the SRC scenario, Europe experiences monthly mean changes of over 0.6 ppbv (+1% and 0.1 μg m−3 (+5% in June and July, with peak increases of over 2 ppbv (+3% and 0.5 μg m−3 (+8 %. That appreciable regional atmospheric impacts result from low level planting scenarios demonstrates the need to include changes in emissions of reactive trace gases such as isoprene in life cycle assessments performed on potential biofuel feedstocks.

  18. Impacts of near-future cultivation of biofuel feedstocks on atmospheric composition and local air quality

    Science.gov (United States)

    Ashworth, K.; Folberth, G.; Hewitt, C. N.; Wild, O.

    2012-01-01

    Large-scale production of feedstock crops for biofuels will lead to land use changes. We quantify the effects of realistic land use change scenarios for biofuel feedstock production on isoprene emissions and hence atmospheric composition and chemistry using the HadGEM2 model. Two feedstocks are considered: oil palm for biodiesel in the tropics and short rotation coppice (SRC) in the mid-latitudes. In total, 69 Mha of oil palm and 9 Mha of SRC are planted, each sufficient to replace just over 1% of projected global fossil fuel demand in 2020. Both planting scenarios result in increases in total global annual isoprene emissions of about 1%. In each case, changes in surface concentrations of ozone and biogenic secondary organic aerosol (bSOA) are substantial at the regional scale, with implications for air quality standards. However, the changes in tropospheric burden of ozone and the OH radical, and hence effects on global climate, are negligible. Over SE Asia, one region of oil palm planting, increases in annual mean surface ozone and bSOA concentrations reach over 3 ppbv (+11%) and 0.4 μg m-3 (+10%) respectively for parts of Borneo, with monthly mean increases of up to 6.5 ppbv (+25%) and 0.5 μg m-3 (+12%). Under the SRC scenario, Europe experiences monthly mean changes of over 0.6 ppbv (+1%) and 0.1 μg m-3 (+5%) in June and July, with peak increases of over 2 ppbv (+3%) and 0.5 μg m-3 (+8 %). That appreciable regional atmospheric impacts result from low level planting scenarios demonstrates the need to include changes in emissions of reactive trace gases such as isoprene in life cycle assessments performed on potential biofuel feedstocks.

  19. Optimal Distribution of Biofuel Feedstocks within Marginal Land in the USA

    Science.gov (United States)

    Jaiswal, D.

    2015-12-01

    The United States can have 43 to 123 Mha of marginal land to grow second generation biofuel feedstocks. A physiological and biophysical model (BioCro) was run using 30 yr climate data (NARR) and SSURGO soil data for the conterminous United Stated to simulate growth of miscanthus, switchgrass, sugarcane, and short rotation coppice. Overlay analyses of the regional maps of predicted yields and marginal land suggest maximum availability of 0.33, 1.15, 1.13, and 1.89 PG year-1 of biomass from sugarcane, willow, switchgrass, and miscanthus, respectively. Optimal distribution of these four biofuel feedstocks within the marginal land in the USA can provide up to 2 PG year-1 of biomass for the production of second generation of biofuel without competing for crop land used for food production. This approach can potentially meet a significant fraction of liquid fuel demand in the USA and reduce greenhouse gas emission while ensuring that current crop land under food production is not used for growing biofuel feedstocks.

  20. Numerical Modeling of Regional Windblown Dust in the Pacific Northwest:Incorporation of an Improved Dust Emission Model

    Science.gov (United States)

    Sundram, I.; Claiborn, C.; Strand, T.; Lamb, B.; Chandler, D.; Saxton, K.

    2003-12-01

    Soil erosion by wind is a serious consequence of dryland agriculture in eastern Washington where the main adverse effects are loss of nutrient rich soil, reduced visibility during dust storms and regional air quality impacts in downwind populated areas. A multidisciplinary research effort to study windblown dust in central and eastern Washington was initiated under the Columbia Plateau PM 10 (CP 3) program. As part of this study, wind erosion and windblown dust emissions were measured in impacted population centers and a transport and dispersion model was developed for the region. The modeling system includes the use of a prognostic meteorological model, Mesoscale Metorological Model Version 5 (MM5), coupled with the CALMET/CALGRID Eularian modeling pair and a new dust emission module (EMIT-PM), developed specifically for this region from extensive soil sampling, portable wind tunnel measurements and intensive field campaigns. Surface wind observations were integrated into the diagnostic meteorological model, CALMET, along with wind fields generated by MM5 for six dust storm events that occurred in November 1990, October 1991, September 1993, November 1993, August 1996 and September 1999. Area dust emissions were generated using the CALMET wind fields along with detailed soil and land use maps in the EMIT-PM model and these hourly, gridded emissions were then used in CALGRID, which calculated hourly averaged concentrations of PM10 (particulate matter of aerodynamic diameter < 10 μ m) throughout the modeling domain. The predicted 24-hour average concentrations compared favorably to observed concentrations that were measured at selected locations within the modeling domain. For all the simulated events, with the exception of the August 1996 event, ratios of observed to predicted concentrations were within a range of 0.5 to 6.0. Because these ratios' were obtained without the need for a calibrated dust constant, it appears that the EMIT-PM provides an improved

  1. Stochastic modeling of phosphorus transport in the Three Gorges Reservoir by incorporating variability associated with the phosphorus partition coefficient

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Lei; Fang, Hongwei; Xu, Xingya; He, Guojian; Zhang, Xuesong; Reible, Danny

    2017-08-01

    Phosphorus (P) fate and transport plays a crucial role in the ecology of rivers and reservoirs in which eutrophication is limited by P. A key uncertainty in models used to help manage P in such systems is the partitioning of P to suspended and bed sediments. By analyzing data from field and laboratory experiments, we stochastically characterize the variability of the partition coefficient (Kd) and derive spatio-temporal solutions for P transport in the Three Gorges Reservoir (TGR). We formulate a set of stochastic partial different equations (SPDEs) to simulate P transport by randomly sampling Kd from the measured distributions, to obtain statistical descriptions of the P concentration and retention in the TGR. The correspondence between predicted and observed P concentrations and P retention in the TGR combined with the ability to effectively characterize uncertainty suggests that a model that incorporates the observed variability can better describe P dynamics and more effectively serve as a tool for P management in the system. This study highlights the importance of considering parametric uncertainty in estimating uncertainty/variability associated with simulated P transport.

  2. On the effects of circulation, sediment resuspension and biological incorporation by diatoms in an ocean model of aluminium

    CERN Document Server

    van Hulten, Marco; Middag, Rob; de Baar, Hein; Gehlen, Marion; Dutay, Jean-Claude; Tagliabue, Alessandro

    2014-01-01

    The distribution of dissolved aluminium in the West Atlantic Ocean shows a mirror image with that of dissolved silicic acid, hinting at intricate interactions between the ocean cycling of Al and Si. The marine biogeochemistry of Al is of interest because of its potential impact on diatom opal remineralisation, hence Si availability. Furthermore, the dissolved Al concentration at the surface ocean has been used as a tracer for dust input, dust being the most important source of the bio-essential trace element iron to the ocean. Previously, the dissolved concentration of Al was simulated reasonably well with only a dust source, and scavenging by adsorption on settling biogenic debris as the only removal process. Here we explore the impacts of (i) a sediment source of Al in the Northern Hemisphere (especially north of ~40{\\deg}N), (ii) the imposed velocity field, and (iii) biological incorporation of Al on the modelled Al distribution in the ocean. The sediment source clearly improves the model results, and usin...

  3. Fuzzy Case-Based Reasoning in Product Style Acquisition Incorporating Valence-Arousal-Based Emotional Cellular Model

    Directory of Open Access Journals (Sweden)

    Fuqian Shi

    2012-01-01

    Full Text Available Emotional cellular (EC, proposed in our previous works, is a kind of semantic cell that contains kernel and shell and the kernel is formalized by a triple- L = , where P denotes a typical set of positive examples relative to word-L, d is a pseudodistance measure on emotional two-dimensional space: valence-arousal, and δ is a probability density function on positive real number field. The basic idea of EC model is to assume that the neighborhood radius of each semantic concept is uncertain, and this uncertainty will be measured by one-dimensional density function δ. In this paper, product form features were evaluated by using ECs and to establish the product style database, fuzzy case based reasoning (FCBR model under a defined similarity measurement based on fuzzy nearest neighbors (FNN incorporating EC was applied to extract product styles. A mathematical formalized inference system for product style was also proposed, and it also includes uncertainty measurement tool emotional cellular. A case study of style acquisition of mobile phones illustrated the effectiveness of the proposed methodology.

  4. Macroalgae as a Biomass Feedstock: A Preliminary Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Roesijadi, Guritno; Jones, Susanne B.; Snowden-Swan, Lesley J.; Zhu, Yunhua

    2010-09-26

    A thorough of macroalgae analysis as a biofuels feedstock is warranted due to the size of this biomass resource and the need to consider all potential sources of feedstock to meet current biomass production goals. Understanding how to harness this untapped biomass resource will require additional research and development. A detailed assessment of environmental resources, cultivation and harvesting technology, conversion to fuels, connectivity with existing energy supply chains, and the associated economic and life cycle analyses will facilitate evaluation of this potentially important biomass resource.

  5. Incorporating moisture content in modeling the surface energy balance of debris-covered Changri Nup Glacier, Nepal

    Science.gov (United States)

    Giese, Alexandra; Boone, Aaron; Morin, Samuel; Lejeune, Yves; Wagnon, Patrick; Dumont, Marie; Hawley, Robert

    2016-04-01

    Glaciers whose ablation zones are covered in supraglacial debris comprise a significant portion of glaciers in High Mountain Asia and two-thirds in the South Central Himalaya. Such glaciers evade traditional proxies for mass balance because they are difficult to delineate remotely and because they lose volume via thinning rather than via retreat. Additionally, their surface energy balance is significantly more complicated than their clean counterparts' due to a conductive heat flux from the debris-air interface to the ice-debris boundary, where melt occurs. This flux is a function of the debris' thickness; thermal, radiative, and physical properties; and moisture content. To date, few surface energy balance models have accounted for debris moisture content and phase changes despite the fact that they are well-known to affect fluxes of mass, latent heat, and conduction. In this study, we introduce a new model, ISBA-DEB, which is capable of solving not only the heat equation but also moisture transport and retention in the debris. The model is based upon Meteo-France's Interactions between Soil, Biosphere, and Atmosphere (ISBA) soil and vegetation model, significantly adapted for debris and coupled with the snowpack model Crocus within the SURFEX platform. We drive the model with continuous ERA-Interim reanalysis data, adapted to the local topography (i.e. considering local elevation and shadowing) and downscaled and de-biased using 5 years of in-situ meteorological data at Changri Nup glacier [(27.859N, 86.847E)] in the Khumbu Himal. The 1-D model output is then evaluated through comparison with measured temperature in and ablation under a 10-cm thick debris layer on Changri Nup. We have found that introducing a non-equilibrium model for water flow, rather than using the mixed-form Richard's equation alone, promotes greater consistency with moisture observations. This explicit incorporation of moisture processes improves simulation of the snow-debris-ice column

  6. Incorporating a Generic Model of Subcutaneous Insulin Absorption into the AIDA v4 Diabetes Simulator 3. Early Plasma Insulin Determinations

    Science.gov (United States)

    Lehmann, Eldon D.; Tarín, Cristina; Bondia, Jorge; Teufel, Edgar; Deutsch, Tibor

    2009-01-01

    Introduction AIDA is an interactive educational diabetes simulator that has been available without charge via the Internet for over 12 years. Recent articles have described the incorporation of a novel generic model of insulin absorption into AIDA as a way of enhancing its capabilities. The basic model components to be integrated have been overviewed, with the aim being to provide simulations of regimens utilizing insulin analogues, as well as insulin doses greater than 40 IU (the current upper limit within the latest release of AIDA [v4.3a]). Some preliminary calculated insulin absorption results have also recently been described. Methods This article presents the first simulated plasma insulin profiles from the integration of the generic subcutaneous insulin absorption model, and the currently implemented model in AIDA for insulin disposition. Insulin absorption has been described by the physiologically based model of Tarín and colleagues. A single compartment modeling approach has been used to specify how absorbed insulin is distributed in, and eliminated from, the human body. To enable a numerical solution of the absorption model, a spherical subcutaneous depot for the injected insulin dose has been assumed and spatially discretized into shell compartments with homogeneous concentrations, having as its center the injection site. The number of these compartments will depend on the dose and type of insulin. Insulin inflow arises as the sum of contributions to the different shells. For this report the first bench testing of plasma insulin determinations has been done. Results Simulated plasma insulin profiles are provided for currently available insulin preparations, including a rapidly acting insulin analogue (e.g., lispro/Humalog or aspart/Novolog), a short-acting (regular) insulin preparation (e.g., Actrapid), intermediate-acting insulins (both Semilente and neutral protamine Hagedorn types), and a very long-acting insulin analogue (e.g., glargine/Lantus), as

  7. Evaluating the Capacity of Global CO2 Flux and Atmospheric Transport Models to Incorporate New Satellite Observations

    Science.gov (United States)

    Kawa, S. R.; Collatz, G. J.; Erickson, D. J.; Denning, A. S.; Wofsy, S. C.; Andrews, A. E.

    2007-01-01

    As we enter the new era of satellite remote sensing for CO2 and other carbon cyclerelated quantities, advanced modeling and analysis capabilities are required to fully capitalize on the new observations. Model estimates of CO2 surface flux and atmospheric transport are required for initial constraints on inverse analyses, to connect atmospheric observations to the location of surface sources and sinks, and ultimately for future projections of carbon-climate interactions. For application to current, planned, and future remotely sensed CO2 data, it is desirable that these models are accurate and unbiased at time scales from less than daily to multi-annual and at spatial scales from several kilometers or finer to global. Here we focus on simulated CO2 fluxes from terrestrial vegetation and atmospheric transport mutually constrained by analyzed meteorological fields from the Goddard Modeling and Assimilation Office for the period 1998 through 2006. Use of assimilated meteorological data enables direct model comparison to observations across a wide range of scales of variability. The biospheric fluxes are produced by the CASA model at lxi degrees on a monthly mean basis, modulated hourly with analyzed temperature and sunlight. Both physiological and biomass burning fluxes are derived using satellite observations of vegetation, burned area (as in GFED-2), and analyzed meteorology. For the purposes of comparison to CO2 data, fossil fuel and ocean fluxes are also included in the transport simulations. In this presentation we evaluate the model's ability to simulate CO2 flux and mixing ratio variability in comparison to in situ observations at sites in Northern mid latitudes and the continental tropics. The influence of key process representations is inferred. We find that the model can resolve much of the hourly to synoptic variability in the observations, although there are limits imposed by vertical resolution of boundary layer processes. The seasonal cycle and its

  8. A modified Wright-Fisher model that incorporates Ne: A variant of the standard model with increased biological realism and reduced computational complexity.

    Science.gov (United States)

    Zhao, Lei; Gossmann, Toni I; Waxman, David

    2016-03-21

    The Wright-Fisher model is an important model in evolutionary biology and population genetics. It has been applied in numerous analyses of finite populations with discrete generations. It is recognised that real populations can behave, in some key aspects, as though their size that is not the census size, N, but rather a smaller size, namely the effective population size, Ne. However, in the Wright-Fisher model, there is no distinction between the effective and census population sizes. Equivalently, we can say that in this model, Ne coincides with N. The Wright-Fisher model therefore lacks an important aspect of biological realism. Here, we present a method that allows Ne to be directly incorporated into the Wright-Fisher model. The modified model involves matrices whose size is determined by Ne. Thus apart from increased biological realism, the modified model also has reduced computational complexity, particularly so when Ne⪡N. For complex problems, it may be hard or impossible to numerically analyse the most commonly-used approximation of the Wright-Fisher model that incorporates Ne, namely the diffusion approximation. An alternative approach is simulation. However, the simulations need to be sufficiently detailed that they yield an effective size that is different to the census size. Simulations may also be time consuming and have attendant statistical errors. The method presented in this work may then be the only alternative to simulations, when Ne differs from N. We illustrate the straightforward application of the method to some problems involving allele fixation and the determination of the equilibrium site frequency spectrum. We then apply the method to the problem of fixation when three alleles are segregating in a population. This latter problem is significantly more complex than a two allele problem and since the diffusion equation cannot be numerically solved, the only other way Ne can be incorporated into the analysis is by simulation. We have

  9. Recent Progresses in Incorporating Human Land-Water Management into Global Land Surface Models Toward Their Integration into Earth System Models

    Science.gov (United States)

    Pokhrel, Yadu N.; Hanasaki, Naota; Wada, Yoshihide; Kim, Hyungjun

    2016-01-01

    The global water cycle has been profoundly affected by human land-water management. As the changes in the water cycle on land can affect the functioning of a wide range of biophysical and biogeochemical processes of the Earth system, it is essential to represent human land-water management in Earth system models (ESMs). During the recent past, noteworthy progress has been made in large-scale modeling of human impacts on the water cycle but sufficient advancements have not yet been made in integrating the newly developed schemes into ESMs. This study reviews the progresses made in incorporating human factors in large-scale hydrological models and their integration into ESMs. The study focuses primarily on the recent advancements and existing challenges in incorporating human impacts in global land surface models (LSMs) as a way forward to the development of ESMs with humans as integral components, but a brief review of global hydrological models (GHMs) is also provided. The study begins with the general overview of human impacts on the water cycle. Then, the algorithms currently employed to represent irrigation, reservoir operation, and groundwater pumping are discussed. Next, methodological deficiencies in current modeling approaches and existing challenges are identified. Furthermore, light is shed on the sources of uncertainties associated with model parameterizations, grid resolution, and datasets used for forcing and validation. Finally, representing human land-water management in LSMs is highlighted as an important research direction toward developing integrated models using ESM frameworks for the holistic study of human-water interactions within the Earths system.

  10. A neural network for incorporating the thermal effect on the magnetic hysteresis of the 3F3 material using the Jiles–Atherton model

    Energy Technology Data Exchange (ETDEWEB)

    Nouicer, A., E-mail: nouicer_abdelmadjid@yahoo.fr [Electrical engineering department, University of Skikda, BP26 Route Elhadaik, Skikda 21000 (Algeria); Nouicer, E., E-mail: n_elamine@yahoo.fr [Department of physics, University of Constantine1, Route Ain Elbey, Constantine 25000 (Algeria); Feliachi, Mouloud, E-mail: mouloud.feliachi@univ-nantes.fr [IREENA-Université de Nantes, PRES-L’UNAM, IUT, Saint-Nazaire (France)

    2015-01-01

    The present paper deals with the temperature dependent modeling approach for the generation of hysteresis loops of ferromagnetic materials. The physical model is developed to study the effect of temperature on the magnetic hysteresis loop using the Jiles–Atherton (J–A) model. The thermal effects were incorporated through temperature dependent hysteresis parameters of JA model. The temperature-dependent J–A model was validated by measurements made on the ferrite material. The results of proposed model were in good agreement with the measurements. - Highlights: • We incorporate the thermal effect on the magnetic hysteresis of the 3F3 material. • We use the Jiles–Atherton model. • A neural network is used to learn the variation of M{sub s} and H{sub c} with the temperature. • k≈H{sub c}, the rest of the J–A model parameters (α, c) are calculated analytically. • The parameter a is treated as a constant.

  11. Green biodiesel production: a review on feedstock, catalyst, monolithic reactor, and supercritical fluid technology

    Directory of Open Access Journals (Sweden)

    Rizo Edwin Gumba

    2016-09-01

    Full Text Available The advancement of alternative energy is primarily catalyzed by the negative environmental impacts and energy depletion caused by the excessive usage of fossil fuels. Biodiesel has emerged as a promising substitute to petrodiesel because it is biodegradable, less toxic, and reduces greenhouse gas emission. Apart from that, biodiesel can be used as blending component or direct replacements for diesel fuel in automotive engines. A diverse range of methods have been reported for the conversion of renewable feedstocks (vegetable oil or animal fat into biodiesel with transesterification being the most preferred method. Nevertheless, the cost of producing biodiesel is higher compared to fossil fuel, thus impeding its commercialization potentials. The limited source of reliable feedstock and the underdeveloped biodiesel production route have prevented the full-scale commercialization of biodiesel in many parts of the world. In a recent development, a new technology that incorporates monoliths as support matrices for enzyme immobilization in supercritical carbon dioxide (SC-CO2 for continuous biodiesel production has been proposed to solve the problem. The potential of SC-CO2 system to be applied in enzymatic reactors is not well documented and hence the purpose of this review is to highlight the previous studies conducted as well as the future direction of this technology.

  12. Interactions of woody biofuel feedstock production systems with water resources: Considerations for sustainability.

    Energy Technology Data Exchange (ETDEWEB)

    Trettin, Carl,C.; Amatya, Devendra; Coleman, Mark.

    2008-07-01

    Abstract. Water resources are important for the production of woody biofuel feedstocks. It is necessary to ensure that production systems do not adversely affect the quantity or quality of surface and ground water. The effects of woody biomass plantations on water resources are largely dependent on the prior land use and the management regime. Experience from both irrigated and non-irrigated systems has demonstrated that woody biofuel production systems do not impair water quality. Water quality actually improves from conversion of idle or degraded agricultural lands to woody biomass plantations. Site water balance may be altered by cultivation of woody biomass plantations relative to agricultural use, due to increases in evapostranspiration (ET) and storage. Incorporation of woody biomass production plantations within the landscape provides an opportunity to improve the quality of runoff water and soil conservation. Given the centrality of water resources to the sustainability of ecosystem services and other values derived, the experience with woody biofuels feedstock production systems is positive. Keywords. Sh