Torries, Brian; Shamsaei, Nima
2017-12-01
The effects of different cooling rates, as achieved by varying the interlayer time interval, on the fatigue behavior of additively manufactured Ti-6Al-4V specimens were investigated and modeled via a microstructure-sensitive fatigue model. Comparisons are made between two sets of specimens fabricated via Laser Engineered Net Shaping (LENS™), with variance in interlayer time interval accomplished by depositing either one or two specimens per print operation. Fully reversed, strain-controlled fatigue tests were conducted, with fractography following specimen failure. A microstructure-sensitive fatigue model was calibrated to model the fatigue behavior of both sets of specimens and was found to be capable of correctly predicting the longer fatigue lives of the single-built specimens and the reduced scatter of the double-built specimens; all data points fell within the predicted upper and lower bounds of fatigue life. The time interval effects and the ability to be modeled are important to consider when producing test specimens that are smaller than the production part (i.e., property-performance relationships).
Photoactive devices including porphyrinoids with coordinating additives
Forrest, Stephen R; Zimmerman, Jeramy; Yu, Eric K; Thompson, Mark E; Trinh, Cong; Whited, Matthew; Diev, Vlacheslav
2015-05-12
Coordinating additives are included in porphyrinoid-based materials to promote intermolecular organization and improve one or more photoelectric characteristics of the materials. The coordinating additives are selected from fullerene compounds and organic compounds having free electron pairs. Combinations of different coordinating additives can be used to tailor the characteristic properties of such porphyrinoid-based materials, including porphyrin oligomers. Bidentate ligands are one type of coordinating additive that can form coordination bonds with a central metal ion of two different porphyrinoid compounds to promote porphyrinoid alignment and/or pi-stacking. The coordinating additives can shift the absorption spectrum of a photoactive material toward higher wavelengths, increase the external quantum efficiency of the material, or both.
Petersen, Ashley; Witten, Daniela; Simon, Noah
2016-01-01
We consider the problem of predicting an outcome variable using p covariates that are measured on n independent observations, in a setting in which additive, flexible, and interpretable fits are desired. We propose the fused lasso additive model (FLAM), in which each additive function is estimated to be piecewise constant with a small number of adaptively-chosen knots. FLAM is the solution to a convex optimization problem, for which a simple algorithm with guaranteed convergence to a global optimum is provided. FLAM is shown to be consistent in high dimensions, and an unbiased estimator of its degrees of freedom is proposed. We evaluate the performance of FLAM in a simulation study and on two data sets. Supplemental materials are available online, and the R package flam is available on CRAN.
International Nuclear Information System (INIS)
Rockwood, Laura
2001-01-01
Since the end of the cold war a series of events has changed the circumstances and requirements of the safeguards system. The discovery of a clandestine nuclear weapons program in Iraq, the continuing difficulty in verifying the initial report of Democratic People's Republic of Korea upon entry into force of their safeguards agreement, and the decision of the South African Government to give up its nuclear weapons program and join the Treaty on the Non-Proliferation of Nuclear Weapons have all played a role in an ambitious effort by IAEA Member States and the Secretariat to strengthen the safeguards system. A major milestone in this effort was reached in May 1997 when the IAEA Board of Governors approved a Model Protocol Additional to Safeguards Agreements. The Model Additional Protocol was negotiated over a period of less than a year by an open-ended committee of the Board involving some 70 Member States and two regional inspectorates. The IAEA is now in the process of negotiating additional protocols, State by State, and implementing them. These additional protocols will provide the IAEA with rights of access to information about all activities related to the use of nuclear material in States with comprehensive safeguards agreements and greatly expanded physical access for IAEA inspectors to confirm or verify this information. In conjunction with this, the IAEA is working on the integration of these measures with those provided for in comprehensive safeguards agreements, with a view to maximizing the effectiveness and efficiency, within available resources, the implementation of safeguards. Details concerning the Model Additional Protocol are given. (author)
Business models for additive manufacturing
DEFF Research Database (Denmark)
Hadar, Ronen; Bilberg, Arne; Bogers, Marcel
2015-01-01
a manufacturer-centric to a consumer-centric value logic. A major shift includes a move from centralized to decentralized supply chains, where consumer goods manufacturers can implement a “hybrid” approach with a focus on localization and accessibility or develop a fully personalized model where the consumer...... of creating and capturing value. In this paper, we explore the implications that AM technologies have for manufacturing systems in the new business models that they enable. In particular, we consider how a consumer goods manufacturer can organize the operations of a more open business model when moving from...... effectively takes over the productive activities of the manufacturer. We discuss some of the main implications for research and practice of consumer-centric business models and the changing decoupling point in consumer goods’ manufacturing supply chains....
An Integrated Biochemistry Laboratory, Including Molecular Modeling
Hall, Adele J. Wolfson Mona L.; Branham, Thomas R.
1996-11-01
) experience with methods of protein purification; (iii) incorporation of appropriate controls into experiments; (iv) use of basic statistics in data analysis; (v) writing papers and grant proposals in accepted scientific style; (vi) peer review; (vii) oral presentation of results and proposals; and (viii) introduction to molecular modeling. Figure 1 illustrates the modular nature of the lab curriculum. Elements from each of the exercises can be separated and treated as stand-alone exercises, or combined into short or long projects. We have been able to offer the opportunity to use sophisticated molecular modeling in the final module through funding from an NSF-ILI grant. However, many of the benefits of the research proposal can be achieved with other computer programs, or even by literature survey alone. Figure 1.Design of project-based biochemistry laboratory. Modules (projects, or portions of projects) are indicated as boxes. Each of these can be treated independently, or used as part of a larger project. Solid lines indicate some suggested paths from one module to the next. The skills and knowledge required for protein purification and design are developed in three units: (i) an introduction to critical assays needed to monitor degree of purification, including an evaluation of assay parameters; (ii) partial purification by ion-exchange techniques; and (iii) preparation of a grant proposal on protein design by mutagenesis. Brief descriptions of each of these units follow, with experimental details of each project at the end of this paper. Assays for Lysozyme Activity and Protein Concentration (4 weeks) The assays mastered during the first unit are a necessary tool for determining the purity of the enzyme during the second unit on purification by ion exchange. These assays allow an introduction to the concept of specific activity (units of enzyme activity per milligram of total protein) as a measure of purity. In this first sequence, students learn a turbidimetric assay
SEEPAGE MODEL FOR PA INCLUDING DRIFT COLLAPSE
International Nuclear Information System (INIS)
C. Tsang
2004-01-01
The purpose of this report is to document the predictions and analyses performed using the seepage model for performance assessment (SMPA) for both the Topopah Spring middle nonlithophysal (Tptpmn) and lower lithophysal (Tptpll) lithostratigraphic units at Yucca Mountain, Nevada. Look-up tables of seepage flow rates into a drift (and their uncertainty) are generated by performing numerical simulations with the seepage model for many combinations of the three most important seepage-relevant parameters: the fracture permeability, the capillary-strength parameter 1/a, and the percolation flux. The percolation flux values chosen take into account flow focusing effects, which are evaluated based on a flow-focusing model. Moreover, multiple realizations of the underlying stochastic permeability field are conducted. Selected sensitivity studies are performed, including the effects of an alternative drift geometry representing a partially collapsed drift from an independent drift-degradation analysis (BSC 2004 [DIRS 166107]). The intended purpose of the seepage model is to provide results of drift-scale seepage rates under a series of parameters and scenarios in support of the Total System Performance Assessment for License Application (TSPA-LA). The SMPA is intended for the evaluation of drift-scale seepage rates under the full range of parameter values for three parameters found to be key (fracture permeability, the van Genuchten 1/a parameter, and percolation flux) and drift degradation shape scenarios in support of the TSPA-LA during the period of compliance for postclosure performance [Technical Work Plan for: Performance Assessment Unsaturated Zone (BSC 2002 [DIRS 160819], Section I-4-2-1)]. The flow-focusing model in the Topopah Spring welded (TSw) unit is intended to provide an estimate of flow focusing factors (FFFs) that (1) bridge the gap between the mountain-scale and drift-scale models, and (2) account for variability in local percolation flux due to
Structured Dimensionality Reduction for Additive Model Regression
Fawzi, Alhussein; Fiot, Jean-Baptiste; Chen, Bei; Sinn, Mathieu; Frossard, Pascal
2016-01-01
Additive models are regression methods which model the response variable as the sum of univariate transfer functions of the input variables. Key benefits of additive models are their accuracy and interpretability on many real-world tasks. Additive models are however not adapted to problems involving a large number (e.g., hundreds) of input variables, as they are prone to overfitting in addition to losing interpretability. In this paper, we introduce a novel framework for applying additive ...
Grand unified models including extra Z bosons
International Nuclear Information System (INIS)
Li Tiezhong
1989-01-01
The grand unified theories (GUT) of the simple Lie groups including extra Z bosons are discussed. Under authors's hypothesis there are only SU 5+m SO 6+4n and E 6 groups. The general discussion of SU 5+m is given, then the SU 6 and SU 7 are considered. In SU 6 the 15+6 * +6 * fermion representations are used, which are not same as others in fermion content, Yukawa coupling and broken scales. A conception of clans of particles, which are not families, is suggested. These clans consist of extra Z bosons and the corresponding fermions of the scale. The all of fermions in the clans are down quarks except for the standard model which consists of Z bosons and 15 fermions, therefore, the spectrum of the hadrons which are composed of these down quarks are different from hadrons at present
Seepage Model for PA Including Drift Collapse
International Nuclear Information System (INIS)
Li, G.; Tsang, C.
2000-01-01
The purpose of this Analysis/Model Report (AMR) is to document the predictions and analysis performed using the Seepage Model for Performance Assessment (PA) and the Disturbed Drift Seepage Submodel for both the Topopah Spring middle nonlithophysal and lower lithophysal lithostratigraphic units at Yucca Mountain. These results will be used by PA to develop the probability distribution of water seepage into waste-emplacement drifts at Yucca Mountain, Nevada, as part of the evaluation of the long term performance of the potential repository. This AMR is in accordance with the ''Technical Work Plan for Unsaturated Zone (UZ) Flow and Transport Process Model Report'' (CRWMS M andO 2000 [153447]). This purpose is accomplished by performing numerical simulations with stochastic representations of hydrological properties, using the Seepage Model for PA, and evaluating the effects of an alternative drift geometry representing a partially collapsed drift using the Disturbed Drift Seepage Submodel. Seepage of water into waste-emplacement drifts is considered one of the principal factors having the greatest impact of long-term safety of the repository system (CRWMS M andO 2000 [153225], Table 4-1). This AMR supports the analysis and simulation that are used by PA to develop the probability distribution of water seepage into drift, and is therefore a model of primary (Level 1) importance (AP-3.15Q, ''Managing Technical Product Inputs''). The intended purpose of the Seepage Model for PA is to support: (1) PA; (2) Abstraction of Drift-Scale Seepage; and (3) Unsaturated Zone (UZ) Flow and Transport Process Model Report (PMR). Seepage into drifts is evaluated by applying numerical models with stochastic representations of hydrological properties and performing flow simulations with multiple realizations of the permeability field around the drift. The Seepage Model for PA uses the distribution of permeabilities derived from air injection testing in niches and in the cross drift to
Seepage Model for PA Including Dift Collapse
Energy Technology Data Exchange (ETDEWEB)
G. Li; C. Tsang
2000-12-20
The purpose of this Analysis/Model Report (AMR) is to document the predictions and analysis performed using the Seepage Model for Performance Assessment (PA) and the Disturbed Drift Seepage Submodel for both the Topopah Spring middle nonlithophysal and lower lithophysal lithostratigraphic units at Yucca Mountain. These results will be used by PA to develop the probability distribution of water seepage into waste-emplacement drifts at Yucca Mountain, Nevada, as part of the evaluation of the long term performance of the potential repository. This AMR is in accordance with the ''Technical Work Plan for Unsaturated Zone (UZ) Flow and Transport Process Model Report'' (CRWMS M&O 2000 [153447]). This purpose is accomplished by performing numerical simulations with stochastic representations of hydrological properties, using the Seepage Model for PA, and evaluating the effects of an alternative drift geometry representing a partially collapsed drift using the Disturbed Drift Seepage Submodel. Seepage of water into waste-emplacement drifts is considered one of the principal factors having the greatest impact of long-term safety of the repository system (CRWMS M&O 2000 [153225], Table 4-1). This AMR supports the analysis and simulation that are used by PA to develop the probability distribution of water seepage into drift, and is therefore a model of primary (Level 1) importance (AP-3.15Q, ''Managing Technical Product Inputs''). The intended purpose of the Seepage Model for PA is to support: (1) PA; (2) Abstraction of Drift-Scale Seepage; and (3) Unsaturated Zone (UZ) Flow and Transport Process Model Report (PMR). Seepage into drifts is evaluated by applying numerical models with stochastic representations of hydrological properties and performing flow simulations with multiple realizations of the permeability field around the drift. The Seepage Model for PA uses the distribution of permeabilities derived from air injection testing in
Enhanced battery model including temperature effects
Rosca, B.; Wilkins, S.
2013-01-01
Within electric and hybrid vehicles, batteries are used to provide/buffer the energy required for driving. However, battery performance varies throughout the temperature range specific to automotive applications, and as such, models that describe this behaviour are required. This paper presents a
Olkiluoto surface hydrological modelling: Update 2012 including salt transport modelling
International Nuclear Information System (INIS)
Karvonen, T.
2013-11-01
Posiva Oy is responsible for implementing a final disposal program for spent nuclear fuel of its owners Teollisuuden Voima Oyj and Fortum Power and Heat Oy. The spent nuclear fuel is planned to be disposed at a depth of about 400-450 meters in the crystalline bedrock at the Olkiluoto site. Leakages located at or close to spent fuel repository may give rise to the upconing of deep highly saline groundwater and this is a concern with regard to the performance of the tunnel backfill material after the closure of the tunnels. Therefore a salt transport sub-model was added to the Olkiluoto surface hydrological model (SHYD). The other improvements include update of the particle tracking algorithm and possibility to estimate the influence of open drillholes in a case where overpressure in inflatable packers decreases causing a hydraulic short-circuit between hydrogeological zones HZ19 and HZ20 along the drillhole. Four new hydrogeological zones HZ056, HZ146, BFZ100 and HZ039 were added to the model. In addition, zones HZ20A and HZ20B intersect with each other in the new structure model, which influences salinity upconing caused by leakages in shafts. The aim of the modelling of long-term influence of ONKALO, shafts and repository tunnels provide computational results that can be used to suggest limits for allowed leakages. The model input data included all the existing leakages into ONKALO (35-38 l/min) and shafts in the present day conditions. The influence of shafts was computed using eight different values for total shaft leakage: 5, 11, 20, 30, 40, 50, 60 and 70 l/min. The selection of the leakage criteria for shafts was influenced by the fact that upconing of saline water increases TDS-values close to the repository areas although HZ20B does not intersect any deposition tunnels. The total limit for all leakages was suggested to be 120 l/min. The limit for HZ20 zones was proposed to be 40 l/min: about 5 l/min the present day leakages to access tunnel, 25 l/min from
Compernolle, S.; Ceulemans, K.; Müller, J.-F.
2011-09-01
We present EVAPORATION (Estimation of VApour Pressure of ORganics, Accounting for Temperature, Intramolecular, and Non-additivity effects), a method to predict (subcooled) liquid pure compound vapour pressure p0 of organic molecules that requires only molecular structure as input. The method is applicable to zero-, mono- and polyfunctional molecules. A simple formula to describe log10p0(T) is employed, that takes into account both a wide temperature dependence and the non-additivity of functional groups. In order to match the recent data on functionalised diacids an empirical modification to the method was introduced. Contributions due to carbon skeleton, functional groups, and intramolecular interaction between groups are included. Molecules typically originating from oxidation of biogenic molecules are within the scope of this method: aldehydes, ketones, alcohols, ethers, esters, nitrates, acids, peroxides, hydroperoxides, peroxy acyl nitrates and peracids. Therefore the method is especially suited to describe compounds forming secondary organic aerosol (SOA).
Nonparametric and semiparametric dynamic additive regression models
DEFF Research Database (Denmark)
Scheike, Thomas Harder; Martinussen, Torben
Dynamic additive regression models provide a flexible class of models for analysis of longitudinal data. The approach suggested in this work is suited for measurements obtained at random time points and aims at estimating time-varying effects. Both fully nonparametric and semiparametric models can...... in special cases. We investigate the finite sample properties of the estimators and conclude that the asymptotic results are valid for even samll samples....
Directory of Open Access Journals (Sweden)
S. Compernolle
2011-09-01
Full Text Available We present EVAPORATION (Estimation of VApour Pressure of ORganics, Accounting for Temperature, Intramolecular, and Non-additivity effects, a method to predict (subcooled liquid pure compound vapour pressure p^{0} of organic molecules that requires only molecular structure as input. The method is applicable to zero-, mono- and polyfunctional molecules. A simple formula to describe log_{10}p^{0}(T is employed, that takes into account both a wide temperature dependence and the non-additivity of functional groups. In order to match the recent data on functionalised diacids an empirical modification to the method was introduced. Contributions due to carbon skeleton, functional groups, and intramolecular interaction between groups are included. Molecules typically originating from oxidation of biogenic molecules are within the scope of this method: aldehydes, ketones, alcohols, ethers, esters, nitrates, acids, peroxides, hydroperoxides, peroxy acyl nitrates and peracids. Therefore the method is especially suited to describe compounds forming secondary organic aerosol (SOA.
Generalized Additive Models for Nowcasting Cloud Shading
Czech Academy of Sciences Publication Activity Database
Brabec, Marek; Paulescu, M.; Badescu, V.
2014-01-01
Roč. 101, March (2014), s. 272-282 ISSN 0038-092X R&D Projects: GA MŠk LD12009 Grant - others:European Cooperation in Science and Technology(XE) COST ES1002 Institutional support: RVO:67985807 Keywords : sunshine number * nowcasting * generalized additive model * Markov chain Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 3.469, year: 2014
A generalized additive regression model for survival times
DEFF Research Database (Denmark)
Scheike, Thomas H.
2001-01-01
Additive Aalen model; counting process; disability model; illness-death model; generalized additive models; multiple time-scales; non-parametric estimation; survival data; varying-coefficient models......Additive Aalen model; counting process; disability model; illness-death model; generalized additive models; multiple time-scales; non-parametric estimation; survival data; varying-coefficient models...
Exclusive queueing model including the choice of service windows
Tanaka, Masahiro; Yanagisawa, Daichi; Nishinari, Katsuhiro
2018-01-01
In a queueing system involving multiple service windows, choice behavior is a significant concern. This paper incorporates the choice of service windows into a queueing model with a floor represented by discrete cells. We contrived a logit-based choice algorithm for agents considering the numbers of agents and the distances to all service windows. Simulations were conducted with various parameters of agent choice preference for these two elements and for different floor configurations, including the floor length and the number of service windows. We investigated the model from the viewpoint of transit times and entrance block rates. The influences of the parameters on these factors were surveyed in detail and we determined that there are optimum floor lengths that minimize the transit times. In addition, we observed that the transit times were determined almost entirely by the entrance block rates. The results of the presented model are relevant to understanding queueing systems including the choice of service windows and can be employed to optimize facility design and floor management.
Additive risk survival model with microarray data
Directory of Open Access Journals (Sweden)
Huang Jian
2007-06-01
Full Text Available Abstract Background Microarray techniques survey gene expressions on a global scale. Extensive biomedical studies have been designed to discover subsets of genes that are associated with survival risks for diseases such as lymphoma and construct predictive models using those selected genes. In this article, we investigate simultaneous estimation and gene selection with right censored survival data and high dimensional gene expression measurements. Results We model the survival time using the additive risk model, which provides a useful alternative to the proportional hazards model and is adopted when the absolute effects, instead of the relative effects, of multiple predictors on the hazard function are of interest. A Lasso (least absolute shrinkage and selection operator type estimate is proposed for simultaneous estimation and gene selection. Tuning parameter is selected using the V-fold cross validation. We propose Leave-One-Out cross validation based methods for evaluating the relative stability of individual genes and overall prediction significance. Conclusion We analyze the MCL and DLBCL data using the proposed approach. A small number of probes represented on the microarrays are identified, most of which have sound biological implications in lymphoma development. The selected probes are relatively stable and the proposed approach has overall satisfactory prediction power.
Network reconstruction using nonparametric additive ODE models.
Henderson, James; Michailidis, George
2014-01-01
Network representations of biological systems are widespread and reconstructing unknown networks from data is a focal problem for computational biologists. For example, the series of biochemical reactions in a metabolic pathway can be represented as a network, with nodes corresponding to metabolites and edges linking reactants to products. In a different context, regulatory relationships among genes are commonly represented as directed networks with edges pointing from influential genes to their targets. Reconstructing such networks from data is a challenging problem receiving much attention in the literature. There is a particular need for approaches tailored to time-series data and not reliant on direct intervention experiments, as the former are often more readily available. In this paper, we introduce an approach to reconstructing directed networks based on dynamic systems models. Our approach generalizes commonly used ODE models based on linear or nonlinear dynamics by extending the functional class for the functions involved from parametric to nonparametric models. Concomitantly we limit the complexity by imposing an additive structure on the estimated slope functions. Thus the submodel associated with each node is a sum of univariate functions. These univariate component functions form the basis for a novel coupling metric that we define in order to quantify the strength of proposed relationships and hence rank potential edges. We show the utility of the method by reconstructing networks using simulated data from computational models for the glycolytic pathway of Lactocaccus Lactis and a gene network regulating the pluripotency of mouse embryonic stem cells. For purposes of comparison, we also assess reconstruction performance using gene networks from the DREAM challenges. We compare our method to those that similarly rely on dynamic systems models and use the results to attempt to disentangle the distinct roles of linearity, sparsity, and derivative
Computational Process Modeling for Additive Manufacturing (OSU)
Bagg, Stacey; Zhang, Wei
2015-01-01
Powder-Bed Additive Manufacturing (AM) through Direct Metal Laser Sintering (DMLS) or Selective Laser Melting (SLM) is being used by NASA and the Aerospace industry to "print" parts that traditionally are very complex, high cost, or long schedule lead items. The process spreads a thin layer of metal powder over a build platform, then melts the powder in a series of welds in a desired shape. The next layer of powder is applied, and the process is repeated until layer-by-layer, a very complex part can be built. This reduces cost and schedule by eliminating very complex tooling and processes traditionally used in aerospace component manufacturing. To use the process to print end-use items, NASA seeks to understand SLM material well enough to develop a method of qualifying parts for space flight operation. Traditionally, a new material process takes many years and high investment to generate statistical databases and experiential knowledge, but computational modeling can truncate the schedule and cost -many experiments can be run quickly in a model, which would take years and a high material cost to run empirically. This project seeks to optimize material build parameters with reduced time and cost through modeling.
Dynamic hysteresis modeling including skin effect using diffusion equation model
Energy Technology Data Exchange (ETDEWEB)
Hamada, Souad, E-mail: souadhamada@yahoo.fr [LSP-IE: Research Laboratory, Electrical Engineering Department, University of Batna, 05000 Batna (Algeria); Louai, Fatima Zohra, E-mail: fz_louai@yahoo.com [LSP-IE: Research Laboratory, Electrical Engineering Department, University of Batna, 05000 Batna (Algeria); Nait-Said, Nasreddine, E-mail: n_naitsaid@yahoo.com [LSP-IE: Research Laboratory, Electrical Engineering Department, University of Batna, 05000 Batna (Algeria); Benabou, Abdelkader, E-mail: Abdelkader.Benabou@univ-lille1.fr [L2EP, Université de Lille1, 59655 Villeneuve d’Ascq (France)
2016-07-15
An improved dynamic hysteresis model is proposed for the prediction of hysteresis loop of electrical steel up to mean frequencies, taking into account the skin effect. In previous works, the analytical solution of the diffusion equation for low frequency (DELF) was coupled with the inverse static Jiles-Atherton (JA) model in order to represent the hysteresis behavior for a lamination. In the present paper, this approach is improved to ensure the reproducibility of measured hysteresis loops at mean frequency. The results of simulation are compared with the experimental ones. The selected results for frequencies 50 Hz, 100 Hz, 200 Hz and 400 Hz are presented and discussed.
Stochastic modelling of two-phase flows including phase change
International Nuclear Information System (INIS)
Hurisse, O.; Minier, J.P.
2011-01-01
Stochastic modelling has already been developed and applied for single-phase flows and incompressible two-phase flows. In this article, we propose an extension of this modelling approach to two-phase flows including phase change (e.g. for steam-water flows). Two aspects are emphasised: a stochastic model accounting for phase transition and a modelling constraint which arises from volume conservation. To illustrate the whole approach, some remarks are eventually proposed for two-fluid models. (authors)
Modeling Electric Double-Layers Including Chemical Reaction Effects
DEFF Research Database (Denmark)
Paz-Garcia, Juan Manuel; Johannesson, Björn; Ottosen, Lisbeth M.
2014-01-01
A physicochemical and numerical model for the transient formation of an electric double-layer between an electrolyte and a chemically-active flat surface is presented, based on a finite elements integration of the nonlinear Nernst-Planck-Poisson model including chemical reactions. The model works...
An Additive-Multiplicative Cox-Aalen Regression Model
DEFF Research Database (Denmark)
Scheike, Thomas H.; Zhang, Mei-Jie
2002-01-01
Aalen model; additive risk model; counting processes; Cox regression; survival analysis; time-varying effects......Aalen model; additive risk model; counting processes; Cox regression; survival analysis; time-varying effects...
Including investment risk in large-scale power market models
DEFF Research Database (Denmark)
Lemming, Jørgen Kjærgaard; Meibom, P.
2003-01-01
can be included in large-scale partial equilibrium models of the power market. The analyses are divided into a part about risk measures appropriate for power market investors and a more technical part about the combination of a risk-adjustment model and a partial-equilibrium model. To illustrate...... the analyses quantitatively, a framework based on an iterative interaction between the equilibrium model and a separate risk-adjustment module was constructed. To illustrate the features of the proposed modelling approach we examined how uncertainty in demand and variable costs affects the optimal choice...
Progressive IRP Models for Power Resources Including EPP
Directory of Open Access Journals (Sweden)
Yiping Zhu
2017-01-01
Full Text Available In the view of optimizing regional power supply and demand, the paper makes effective planning scheduling of supply and demand side resources including energy efficiency power plant (EPP, to achieve the target of benefit, cost, and environmental constraints. In order to highlight the characteristics of different supply and demand resources in economic, environmental, and carbon constraints, three planning models with progressive constraints are constructed. Results of three models by the same example show that the best solutions to different models are different. The planning model including EPP has obvious advantages considering pollutant and carbon emission constraints, which confirms the advantages of low cost and emissions of EPP. The construction of progressive IRP models for power resources considering EPP has a certain reference value for guiding the planning and layout of EPP within other power resources and achieving cost and environmental objectives.
Ridge, Lasso and Bayesian additive-dominance genomic models.
Azevedo, Camila Ferreira; de Resende, Marcos Deon Vilela; E Silva, Fabyano Fonseca; Viana, José Marcelo Soriano; Valente, Magno Sávio Ferreira; Resende, Márcio Fernando Ribeiro; Muñoz, Patricio
2015-08-25
A complete approach for genome-wide selection (GWS) involves reliable statistical genetics models and methods. Reports on this topic are common for additive genetic models but not for additive-dominance models. The objective of this paper was (i) to compare the performance of 10 additive-dominance predictive models (including current models and proposed modifications), fitted using Bayesian, Lasso and Ridge regression approaches; and (ii) to decompose genomic heritability and accuracy in terms of three quantitative genetic information sources, namely, linkage disequilibrium (LD), co-segregation (CS) and pedigree relationships or family structure (PR). The simulation study considered two broad sense heritability levels (0.30 and 0.50, associated with narrow sense heritabilities of 0.20 and 0.35, respectively) and two genetic architectures for traits (the first consisting of small gene effects and the second consisting of a mixed inheritance model with five major genes). G-REML/G-BLUP and a modified Bayesian/Lasso (called BayesA*B* or t-BLASSO) method performed best in the prediction of genomic breeding as well as the total genotypic values of individuals in all four scenarios (two heritabilities x two genetic architectures). The BayesA*B*-type method showed a better ability to recover the dominance variance/additive variance ratio. Decomposition of genomic heritability and accuracy revealed the following descending importance order of information: LD, CS and PR not captured by markers, the last two being very close. Amongst the 10 models/methods evaluated, the G-BLUP, BAYESA*B* (-2,8) and BAYESA*B* (4,6) methods presented the best results and were found to be adequate for accurately predicting genomic breeding and total genotypic values as well as for estimating additive and dominance in additive-dominance genomic models.
Modeling heart rate variability including the effect of sleep stages
Soliński, Mateusz; Gierałtowski, Jan; Żebrowski, Jan
2016-02-01
We propose a model for heart rate variability (HRV) of a healthy individual during sleep with the assumption that the heart rate variability is predominantly a random process. Autonomic nervous system activity has different properties during different sleep stages, and this affects many physiological systems including the cardiovascular system. Different properties of HRV can be observed during each particular sleep stage. We believe that taking into account the sleep architecture is crucial for modeling the human nighttime HRV. The stochastic model of HRV introduced by Kantelhardt et al. was used as the initial starting point. We studied the statistical properties of sleep in healthy adults, analyzing 30 polysomnographic recordings, which provided realistic information about sleep architecture. Next, we generated synthetic hypnograms and included them in the modeling of nighttime RR interval series. The results of standard HRV linear analysis and of nonlinear analysis (Shannon entropy, Poincaré plots, and multiscale multifractal analysis) show that—in comparison with real data—the HRV signals obtained from our model have very similar properties, in particular including the multifractal characteristics at different time scales. The model described in this paper is discussed in the context of normal sleep. However, its construction is such that it should allow to model heart rate variability in sleep disorders. This possibility is briefly discussed.
Modelling of additive manufacturing processes: a review and classification
Stavropoulos, Panagiotis; Foteinopoulos, Panagis
2018-03-01
Additive manufacturing (AM) is a very promising technology; however, there are a number of open issues related to the different AM processes. The literature on modelling the existing AM processes is reviewed and classified. A categorization of the different AM processes in process groups, according to the process mechanism, has been conducted and the most important issues are stated. Suggestions are made as to which approach is more appropriate according to the key performance indicator desired to be modelled and a discussion is included as to the way that future modelling work can better contribute to improving today's AM process understanding.
Identifying Clusters with Mixture Models that Include Radial Velocity Observations
Czarnatowicz, Alexis; Ybarra, Jason E.
2018-01-01
The study of stellar clusters plays an integral role in the study of star formation. We present a cluster mixture model that considers radial velocity data in addition to spatial data. Maximum likelihood estimation through the Expectation-Maximization (EM) algorithm is used for parameter estimation. Our mixture model analysis can be used to distinguish adjacent or overlapping clusters, and estimate properties for each cluster.Work supported by awards from the Virginia Foundation for Independent Colleges (VFIC) Undergraduate Science Research Fellowship and The Research Experience @Bridgewater (TREB).
A hydrodynamic model for granular material flows including segregation effects
Directory of Open Access Journals (Sweden)
Gilberg Dominik
2017-01-01
Full Text Available The simulation of granular flows including segregation effects in large industrial processes using particle methods is accurate, but very time-consuming. To overcome the long computation times a macroscopic model is a natural choice. Therefore, we couple a mixture theory based segregation model to a hydrodynamic model of Navier-Stokes-type, describing the flow behavior of the granular material. The granular flow model is a hybrid model derived from kinetic theory and a soil mechanical approach to cover the regime of fast dilute flow, as well as slow dense flow, where the density of the granular material is close to the maximum packing density. Originally, the segregation model has been formulated by Thornton and Gray for idealized avalanches. It is modified and adapted to be in the preferred form for the coupling. In the final coupled model the segregation process depends on the local state of the granular system. On the other hand, the granular system changes as differently mixed regions of the granular material differ i.e. in the packing density. For the modeling process the focus lies on dry granular material flows of two particle types differing only in size but can be easily extended to arbitrary granular mixtures of different particle size and density. To solve the coupled system a finite volume approach is used. To test the model the rotational mixing of small and large particles in a tumbler is simulated.
A hydrodynamic model for granular material flows including segregation effects
Gilberg, Dominik; Klar, Axel; Steiner, Konrad
2017-06-01
The simulation of granular flows including segregation effects in large industrial processes using particle methods is accurate, but very time-consuming. To overcome the long computation times a macroscopic model is a natural choice. Therefore, we couple a mixture theory based segregation model to a hydrodynamic model of Navier-Stokes-type, describing the flow behavior of the granular material. The granular flow model is a hybrid model derived from kinetic theory and a soil mechanical approach to cover the regime of fast dilute flow, as well as slow dense flow, where the density of the granular material is close to the maximum packing density. Originally, the segregation model has been formulated by Thornton and Gray for idealized avalanches. It is modified and adapted to be in the preferred form for the coupling. In the final coupled model the segregation process depends on the local state of the granular system. On the other hand, the granular system changes as differently mixed regions of the granular material differ i.e. in the packing density. For the modeling process the focus lies on dry granular material flows of two particle types differing only in size but can be easily extended to arbitrary granular mixtures of different particle size and density. To solve the coupled system a finite volume approach is used. To test the model the rotational mixing of small and large particles in a tumbler is simulated.
Simple suggestions for including vertical physics in oil spill models
International Nuclear Information System (INIS)
D'Asaro, Eric; University of Washington, Seatle, WA
2001-01-01
Current models of oil spills include no vertical physics. They neglect the effect of vertical water motions on the transport and concentration of floating oil. Some simple ways to introduce vertical physics are suggested here. The major suggestion is to routinely measure the density stratification of the upper ocean during oil spills in order to develop a database on the effect of stratification. (Author)
DEFF Research Database (Denmark)
Isaacs, Steven Howard; Henze, Mogens
1995-01-01
The paper investigates the effect of adding an external carbon source on the rate of denitrification in an alternating activated sludge process including biological P removal. Two carbon sources were examined, acetate and hydrolysate derived from biologically hydrolyzed sludge. Preliminary batch...... that external carbon source addition may serve as a suitable control variable to improve process performance....... process, the addition of either carbon source to the anoxic zone also resulted in an instantaneous and fairly reproducible increase in the denitrification rate. Some release of phosphate associated with the carbon source addition was observed. With respect to nitrogen removal, these results indicate...
2013-09-13
... ENVIRONMENTAL PROTECTION AGENCY [FRL-9900-95--Region 5] Proposed Listing of Additional Waters To Be Included on Indiana's 2010 List of Impaired Waters Under the Clean Water Act AGENCY: Environmental Protection Agency (EPA). ACTION: Reopening of comment period. SUMMARY: EPA is reopening the comment period...
2013-06-14
... ENVIRONMENTAL PROTECTION AGENCY [FRL-9823-3] Proposed Listing of Additional Waters To Be Included on Indiana's 2010 List of Impaired Waters Under Section 303(d) of the Clean Water Act AGENCY... comment. Section 303(d)(2) requires that states submit and EPA approve or disapprove lists of waters for...
Additive manufacturing for consumer-centric business models
DEFF Research Database (Denmark)
Bogers, Marcel; Hadar, Ronen; Bilberg, Arne
2016-01-01
Digital fabrication—including additive manufacturing (AM), rapid prototyping and 3D printing—has the potential to revolutionize the way in which products are produced and delivered to the customer. Therefore, it challenges companies to reinvent their business model—describing the logic of creating...... and capturing value. In this paper, we explore the implications that AM technologies have for manufacturing systems in the new business models that they enable. In particular, we consider how a consumer goods manufacturer can organize the operations of a more open business model when moving from a manufacturer......-centric to a consumer-centric value logic. A major shift includes a move from centralized to decentralized supply chains, where consumer goods manufacturers can implement a “hybrid” approach with a focus on localization and accessibility or develop a fully personalized model where the consumer effectively takes over...
Just Another Gibbs Additive Modeler: Interfacing JAGS and mgcv
Directory of Open Access Journals (Sweden)
Simon N. Wood
2016-12-01
Full Text Available The BUGS language offers a very flexible way of specifying complex statistical models for the purposes of Gibbs sampling, while its JAGS variant offers very convenient R integration via the rjags package. However, including smoothers in JAGS models can involve some quite tedious coding, especially for multivariate or adaptive smoothers. Further, if an additive smooth structure is required then some care is needed, in order to centre smooths appropriately, and to find appropriate starting values. R package mgcv implements a wide range of smoothers, all in a manner appropriate for inclusion in JAGS code, and automates centring and other smooth setup tasks. The purpose of this note is to describe an interface between mgcv and JAGS, based around an R function, jagam, which takes a generalized additive model (GAM as specified in mgcv and automatically generates the JAGS model code and data required for inference about the model via Gibbs sampling. Although the auto-generated JAGS code can be run as is, the expectation is that the user would wish to modify it in order to add complex stochastic model components readily specified in JAGS. A simple interface is also provided for visualisation and further inference about the estimated smooth components using standard mgcv functionality. The methods described here will be un-necessarily inefficient if all that is required is fully Bayesian inference about a standard GAM, rather than the full flexibility of JAGS. In that case the BayesX package would be more efficient.
DEFF Research Database (Denmark)
Isaacs, Steven Howard; Henze, Mogens
1995-01-01
The paper investigates the effect of adding an external carbon source on the rate of denitrification in an alternating activated sludge process including biological P removal. Two carbon sources were examined, acetate and hydrolysate derived from biologically hydrolyzed sludge. Preliminary batch...... experiments performed in 5 liter bottles indicated that the denitrification rate can be instantaneously increased through the addition of either carbon source. The amount by which the rate was increased depended on the amount of carbon added. In the main experiments performed in a pilot scale alternating...... process, the addition of either carbon source to the anoxic zone also resulted in an instantaneous and fairly reproducible increase in the denitrification rate. Some release of phosphate associated with the carbon source addition was observed. With respect to nitrogen removal, these results indicate...
Modeling process-structure-property relationships for additive manufacturing
Yan, Wentao; Lin, Stephen; Kafka, Orion L.; Yu, Cheng; Liu, Zeliang; Lian, Yanping; Wolff, Sarah; Cao, Jian; Wagner, Gregory J.; Liu, Wing Kam
2018-02-01
This paper presents our latest work on comprehensive modeling of process-structure-property relationships for additive manufacturing (AM) materials, including using data-mining techniques to close the cycle of design-predict-optimize. To illustrate the processstructure relationship, the multi-scale multi-physics process modeling starts from the micro-scale to establish a mechanistic heat source model, to the meso-scale models of individual powder particle evolution, and finally to the macro-scale model to simulate the fabrication process of a complex product. To link structure and properties, a highefficiency mechanistic model, self-consistent clustering analyses, is developed to capture a variety of material response. The model incorporates factors such as voids, phase composition, inclusions, and grain structures, which are the differentiating features of AM metals. Furthermore, we propose data-mining as an effective solution for novel rapid design and optimization, which is motivated by the numerous influencing factors in the AM process. We believe this paper will provide a roadmap to advance AM fundamental understanding and guide the monitoring and advanced diagnostics of AM processing.
Compernolle, S.; Ceulemans, K.; Müller, J.-F.
2011-04-01
We present EVAPORATION (Estimation of VApour Pressure of ORganics, Accounting for Temperature, Intramolecular, and Non-additivity effects), a method to predict vapour pressure p0 of organic molecules needing only molecular structure as input. The method is applicable to zero-, mono- and polyfunctional molecules. A simple formula to describe log10p0(T) is employed, that takes into account both a wide temperature dependence and the non-additivity of functional groups. In order to match the recent data on functionalised diacids an empirical modification to the method was introduced. Contributions due to carbon skeleton, functional groups, and intramolecular interaction between groups are included. Molecules typically originating from oxidation of biogenic molecules are within the scope of this method: carbonyls, alcohols, ethers, esters, nitrates, acids, peroxides, hydroperoxides, peroxy acyl nitrates and peracids. Therefore the method is especially suited to describe compounds forming secondary organic aerosol (SOA).
WATEQ3 geochemical model: thermodynamic data for several additional solids
International Nuclear Information System (INIS)
Krupka, K.M.; Jenne, E.A.
1982-09-01
Geochemical models such as WATEQ3 can be used to model the concentrations of water-soluble pollutants that may result from the disposal of nuclear waste and retorted oil shale. However, for a model to competently deal with these water-soluble pollutants, an adequate thermodynamic data base must be provided that includes elements identified as important in modeling these pollutants. To this end, several minerals and related solid phases were identified that were absent from the thermodynamic data base of WATEQ3. In this study, the thermodynamic data for the identified solids were compiled and selected from several published tabulations of thermodynamic data. For these solids, an accepted Gibbs free energy of formation, ΔG 0 /sub f,298/, was selected for each solid phase based on the recentness of the tabulated data and on considerations of internal consistency with respect to both the published tabulations and the existing data in WATEQ3. For those solids not included in these published tabulations, Gibbs free energies of formation were calculated from published solubility data (e.g., lepidocrocite), or were estimated (e.g., nontronite) using a free-energy summation method described by Mattigod and Sposito (1978). The accepted or estimated free energies were then combined with internally consistent, ancillary thermodynamic data to calculate equilibrium constants for the hydrolysis reactions of these minerals and related solid phases. Including these values in the WATEQ3 data base increased the competency of this geochemical model in applications associated with the disposal of nuclear waste and retorted oil shale. Additional minerals and related solid phases that need to be added to the solubility submodel will be identified as modeling applications continue in these two programs
Multiscale and Multiphysics Modeling of Additive Manufacturing of Advanced Materials
Liou, Frank; Newkirk, Joseph; Fan, Zhiqiang; Sparks, Todd; Chen, Xueyang; Fletcher, Kenneth; Zhang, Jingwei; Zhang, Yunlu; Kumar, Kannan Suresh; Karnati, Sreekar
2015-01-01
The objective of this proposed project is to research and develop a prediction tool for advanced additive manufacturing (AAM) processes for advanced materials and develop experimental methods to provide fundamental properties and establish validation data. Aircraft structures and engines demand materials that are stronger, useable at much higher temperatures, provide less acoustic transmission, and enable more aeroelastic tailoring than those currently used. Significant improvements in properties can only be achieved by processing the materials under nonequilibrium conditions, such as AAM processes. AAM processes encompass a class of processes that use a focused heat source to create a melt pool on a substrate. Examples include Electron Beam Freeform Fabrication and Direct Metal Deposition. These types of additive processes enable fabrication of parts directly from CAD drawings. To achieve the desired material properties and geometries of the final structure, assessing the impact of process parameters and predicting optimized conditions with numerical modeling as an effective prediction tool is necessary. The targets for the processing are multiple and at different spatial scales, and the physical phenomena associated occur in multiphysics and multiscale. In this project, the research work has been developed to model AAM processes in a multiscale and multiphysics approach. A macroscale model was developed to investigate the residual stresses and distortion in AAM processes. A sequentially coupled, thermomechanical, finite element model was developed and validated experimentally. The results showed the temperature distribution, residual stress, and deformation within the formed deposits and substrates. A mesoscale model was developed to include heat transfer, phase change with mushy zone, incompressible free surface flow, solute redistribution, and surface tension. Because of excessive computing time needed, a parallel computing approach was also tested. In addition
Process chain modeling and selection in an additive manufacturing context
DEFF Research Database (Denmark)
Thompson, Mary Kathryn; Stolfi, Alessandro; Mischkot, Michael
2016-01-01
This paper introduces a new two-dimensional approach to modeling manufacturing process chains. This approach is used to consider the role of additive manufacturing technologies in process chains for a part with micro scale features and no internal geometry. It is shown that additive manufacturing...... evolving fields like additive manufacturing....
Directory of Open Access Journals (Sweden)
Neira Roberto
2010-06-01
Full Text Available Abstract Background In this study, we used different animal models to estimate genetic and environmental variance components on harvest weight in two populations of Oncorhynchus kisutch, forming two classes i.e. odd- and even-year spawners. Methods The models used were: additive, with and without inbreeding as a covariable (A + F and A respectively; additive plus common environmental due to full-sib families and inbreeding (A + C + F; additive plus parental dominance and inbreeding (A + D + F; and a full model (A + C + D + F. Genetic parameters and breeding values obtained by different models were compared to evaluate the consequences of including non-additive effects on genetic evaluation. Results Including inbreeding as a covariable did not affect the estimation of genetic parameters, but heritability was reduced when dominance or common environmental effects were included. A high heritability for harvest weight was estimated in both populations (even = 0.46 and odd = 0.50 when simple additive models (A + F and A were used. Heritabilities decreased to 0.21 (even and 0.37 (odd when the full model was used (A + C + D + F. In this full model, the magnitude of the dominance variance was 0.19 (even and 0.06 (odd, while the magnitude of the common environmental effect was lower than 0.01 in both populations. The correlation between breeding values estimated with different models was very high in all cases (i.e. higher than 0.98. However, ranking of the 30 best males and the 100 best females per generation changed when a high dominance variance was estimated, as was the case in one of the two populations (even. Conclusions Dominance and common environmental variance may be important components of variance in harvest weight in O. kisutch, thus not including them may produce an overestimation of the predicted response; furthermore, genetic evaluation was seen to be partially affected, since the ranking of selected animals changed with the inclusion of
Including spatial data in nutrient balance modelling on dairy farms
van Leeuwen, Maricke; van Middelaar, Corina; Stoof, Cathelijne; Oenema, Jouke; Stoorvogel, Jetse; de Boer, Imke
2017-04-01
The Annual Nutrient Cycle Assessment (ANCA) calculates the nitrogen (N) and phosphorus (P) balance at a dairy farm, while taking into account the subsequent nutrient cycles of the herd, manure, soil and crop components. Since January 2016, Dutch dairy farmers are required to use ANCA in order to increase understanding of nutrient flows and to minimize nutrient losses to the environment. A nutrient balance calculates the difference between nutrient inputs and outputs. Nutrients enter the farm via purchased feed, fertilizers, deposition and fixation by legumes (nitrogen), and leave the farm via milk, livestock, manure, and roughages. A positive balance indicates to which extent N and/or P are lost to the environment via gaseous emissions (N), leaching, run-off and accumulation in soil. A negative balance indicates that N and/or P are depleted from soil. ANCA was designed to calculate average nutrient flows on farm level (for the herd, manure, soil and crop components). ANCA was not designed to perform calculations of nutrient flows at the field level, as it uses averaged nutrient inputs and outputs across all fields, and it does not include field specific soil characteristics. Land management decisions, however, such as the level of N and P application, are typically taken at the field level given the specific crop and soil characteristics. Therefore the information that ANCA provides is likely not sufficient to support farmers' decisions on land management to minimize nutrient losses to the environment. This is particularly a problem when land management and soils vary between fields. For an accurate estimate of nutrient flows in a given farming system that can be used to optimize land management, the spatial scale of nutrient inputs and outputs (and thus the effect of land management and soil variation) could be essential. Our aim was to determine the effect of the spatial scale of nutrient inputs and outputs on modelled nutrient flows and nutrient use efficiencies
Single-Phase Bundle Flows Including Macroscopic Turbulence Model
Energy Technology Data Exchange (ETDEWEB)
Lee, Seung Jun; Yoon, Han Young [KAERI, Daejeon (Korea, Republic of); Yoon, Seok Jong; Cho, Hyoung Kyu [Seoul National University, Seoul (Korea, Republic of)
2016-05-15
To deal with various thermal hydraulic phenomena due to rapid change of fluid properties when an accident happens, securing mechanistic approaches as much as possible may reduce the uncertainty arising from improper applications of the experimental models. In this study, the turbulence mixing model, which is well defined in the subchannel analysis code such as VIPRE, COBRA, and MATRA by experiments, is replaced by a macroscopic k-e turbulence model, which represents the aspect of mathematical derivation. The performance of CUPID with macroscopic turbulence model is validated against several bundle experiments: CNEN 4x4 and PNL 7x7 rod bundle tests. In this study, the macroscopic k-e model has been validated for the application to subchannel analysis. It has been implemented in the CUPID code and validated against CNEN 4x4 and PNL 7x7 rod bundle tests. The results showed that the macroscopic k-e turbulence model can estimate the experiments properly.
An Additive-Multiplicative Restricted Mean Residual Life Model
DEFF Research Database (Denmark)
Mansourvar, Zahra; Martinussen, Torben; Scheike, Thomas H.
2016-01-01
The mean residual life measures the expected remaining life of a subject who has survived up to a particular time. When survival time distribution is highly skewed or heavy tailed, the restricted mean residual life must be considered. In this paper, we propose an additive-multiplicative restricted...... mean residual life model to study the association between the restricted mean residual life function and potential regression covariates in the presence of right censoring. This model extends the proportional mean residual life model using an additive model as its covariate dependent baseline....... For the suggested model, some covariate effects are allowed to be time-varying. To estimate the model parameters, martingale estimating equations are developed, and the large sample properties of the resulting estimators are established. In addition, to assess the adequacy of the model, we investigate a goodness...
Global atmospheric model for mercury including oxidation by bromine atoms
Directory of Open Access Journals (Sweden)
C. D. Holmes
2010-12-01
Full Text Available Global models of atmospheric mercury generally assume that gas-phase OH and ozone are the main oxidants converting Hg^{0} to Hg^{II} and thus driving mercury deposition to ecosystems. However, thermodynamic considerations argue against the importance of these reactions. We demonstrate here the viability of atomic bromine (Br as an alternative Hg^{0} oxidant. We conduct a global 3-D simulation with the GEOS-Chem model assuming gas-phase Br to be the sole Hg^{0} oxidant (Hg + Br model and compare to the previous version of the model with OH and ozone as the sole oxidants (Hg + OH/O_{3} model. We specify global 3-D Br concentration fields based on our best understanding of tropospheric and stratospheric Br chemistry. In both the Hg + Br and Hg + OH/O_{3} models, we add an aqueous photochemical reduction of Hg^{II} in cloud to impose a tropospheric lifetime for mercury of 6.5 months against deposition, as needed to reconcile observed total gaseous mercury (TGM concentrations with current estimates of anthropogenic emissions. This added reduction would not be necessary in the Hg + Br model if we adjusted the Br oxidation kinetics downward within their range of uncertainty. We find that the Hg + Br and Hg + OH/O_{3} models are equally capable of reproducing the spatial distribution of TGM and its seasonal cycle at northern mid-latitudes. The Hg + Br model shows a steeper decline of TGM concentrations from the tropics to southern mid-latitudes. Only the Hg + Br model can reproduce the springtime depletion and summer rebound of TGM observed at polar sites; the snowpack component of GEOS-Chem suggests that 40% of Hg^{II} deposited to snow in the Arctic is transferred to the ocean and land reservoirs, amounting to a net deposition flux to the Arctic of 60 Mg a^{−1}. Summertime events of depleted Hg^{0} at Antarctic sites due to subsidence are much better simulated by
[Critical of the additive model of the randomized controlled trial].
Boussageon, Rémy; Gueyffier, François; Bejan-Angoulvant, Theodora; Felden-Dominiak, Géraldine
2008-01-01
Randomized, double-blind, placebo-controlled clinical trials are currently the best way to demonstrate the clinical effectiveness of drugs. Its methodology relies on the method of difference (John Stuart Mill), through which the observed difference between two groups (drug vs placebo) can be attributed to the pharmacological effect of the drug being tested. However, this additive model can be questioned in the event of statistical interactions between the pharmacological and the placebo effects. Evidence in different domains has shown that the placebo effect can influence the effect of the active principle. This article evaluates the methodological, clinical and epistemological consequences of this phenomenon. Topics treated include extrapolating results, accounting for heterogeneous results, demonstrating the existence of several factors in the placebo effect, the necessity to take these factors into account for given symptoms or pathologies, as well as the problem of the "specific" effect.
Thematic report: Macroeconomic models including specifically social and environmental aspects
Kratena, Kurt
2015-01-01
WWWforEurope Deliverable No. 8, 30 pages A significant reduction of the global environmental consequences of European consumption and production activities are the main objective of the policy simulations carried out in this paper. For this purpose three different modelling approaches have been chosen. Two macroeconomic models following the philosophy of consistent stock-flow accounting for the main institutional sectors (households, firms, banks, central bank and government) are used for...
Unsteady panel method for complex configurations including wake modeling
CSIR Research Space (South Africa)
Van Zyl, Lourens H
2008-01-01
Full Text Available The calculation of unsteady air loads is an essential step in any aeroelastic analysis. The subsonic doublet lattice method (DLM) is used extensively for this purpose due to its simplicity and reliability. The body models available with the popular...
Geo-additive modelling of malaria in Burundi
Directory of Open Access Journals (Sweden)
Gebhardt Albrecht
2011-08-01
Full Text Available Abstract Background Malaria is a major public health issue in Burundi in terms of both morbidity and mortality, with around 2.5 million clinical cases and more than 15,000 deaths each year. It is still the single main cause of mortality in pregnant women and children below five years of age. Because of the severe health and economic burden of malaria, there is still a growing need for methods that will help to understand the influencing factors. Several studies/researches have been done on the subject yielding different results as which factors are most responsible for the increase in malaria transmission. This paper considers the modelling of the dependence of malaria cases on spatial determinants and climatic covariates including rainfall, temperature and humidity in Burundi. Methods The analysis carried out in this work exploits real monthly data collected in the area of Burundi over 12 years (1996-2007. Semi-parametric regression models are used. The spatial analysis is based on a geo-additive model using provinces as the geographic units of study. The spatial effect is split into structured (correlated and unstructured (uncorrelated components. Inference is fully Bayesian and uses Markov chain Monte Carlo techniques. The effects of the continuous covariates are modelled by cubic p-splines with 20 equidistant knots and second order random walk penalty. For the spatially correlated effect, Markov random field prior is chosen. The spatially uncorrelated effects are assumed to be i.i.d. Gaussian. The effects of climatic covariates and the effects of other spatial determinants are estimated simultaneously in a unified regression framework. Results The results obtained from the proposed model suggest that although malaria incidence in a given month is strongly positively associated with the minimum temperature of the previous months, regional patterns of malaria that are related to factors other than climatic variables have been identified
A thermal lens model including the Soret effect
International Nuclear Information System (INIS)
Cabrera, Humberto; Sira, Eloy; Rahn, Kareem; Garcia-Sucre, Maximo
2009-01-01
In this letter we generalize the thermal lens model to account for the Soret effect in binary liquid mixtures. This formalism permits the precise determination of the Soret coefficient in a steady-state situation. The theory is experimentally verified using the measured values in the ethanol/water mixtures. The time evolution of the Soret signal has been used to derive mass-diffusion times from which mass-diffusion coefficients were calculated. (Author)
Including lateral interactions into microkinetic models of catalytic reactions
DEFF Research Database (Denmark)
Hellman, Anders; Honkala, Johanna Karoliina
2007-01-01
In many catalytic reactions lateral interactions between adsorbates are believed to have a strong influence on the reaction rates. We apply a microkinetic model to explore the effect of lateral interactions and how to efficiently take them into account in a simple catalytic reaction. Three differ...... different approximations are investigated: site, mean-field, and quasichemical approximations. The obtained results are compared to accurate Monte Carlo numbers. In the end, we apply the approximations to a real catalytic reaction, namely, ammonia synthesis....
A stochastic model of gene expression including splicing events
Penim, Flávia Alexandra Mendes
2014-01-01
Tese de mestrado, Bioinformática e Biologia Computacional, Universidade de Lisboa, Faculdade de Ciências, 2014 Proteins carry out the great majority of the catalytic and structural work within an organism. The RNA templates used in their synthesis determines their identity, and this is dictated by which genes are transcribed. Therefore, gene expression is the fundamental determinant of an organism’s nature. The main objective of this thesis was to develop a stochastic computational model a...
Comprehensive European dietary exposure model (CEDEM) for food additives.
Tennant, David R
2016-05-01
European methods for assessing dietary exposures to nutrients, additives and other substances in food are limited by the availability of detailed food consumption data for all member states. A proposed comprehensive European dietary exposure model (CEDEM) applies summary data published by the European Food Safety Authority (EFSA) in a deterministic model based on an algorithm from the EFSA intake method for food additives. The proposed approach can predict estimates of food additive exposure provided in previous EFSA scientific opinions that were based on the full European food consumption database.
Parton recombination model including resonance production. RL-78-040
International Nuclear Information System (INIS)
Roberts, R.G.; Hwa, R.C.; Matsuda, S.
1978-05-01
Possible effects of resonance production on the meson inclusive distribution in the fragmentation region are investigated in the framework of the parton recombination model. From a detailed study of the data on vector-meson production, a reliable ratio of the vector-to-pseudoscalar rates is determined. Then the influence of the decay of the vector mesons on the pseudoscalar spectrum is examined, and the effect found to be no more than 25% for x > 0.5. The normalization of the non-strange antiquark distributions are still higher than those in a quiescent proton. The agreement between the calculated results and data remain very good. 36 references
Extending PSA models including ageing and asset management - 15291
International Nuclear Information System (INIS)
Martorell, S.; Marton, I.; Carlos, S.; Sanchez, A.I.
2015-01-01
This paper proposes a new approach to Ageing Probabilistic Safety Assessment (APSA) modelling, which is intended to be used to support risk-informed decisions on the effectiveness of maintenance management programs and technical specification requirements of critical equipment of Nuclear Power Plants (NPP) within the framework of the Risk Informed Decision Making according to R.G. 1.174 principles. This approach focuses on the incorporation of not only equipment ageing but also effectiveness of maintenance and efficiency of surveillance testing explicitly into APSA models and data. This methodology is applied to a motor-operated valve of the auxiliary feed water system (AFWS) of a PWR. This simple example of application focuses on a critical safety-related equipment of a NPP in order to evaluate the risk impact of considering different approaches to APSA and the combined effect of equipment ageing and maintenance and testing alternatives along NPP design life. The risk impact of several alternatives in maintenance strategy is discussed
Modification of TOUGH2 to Include the Dusty Gas Model for Gas Diffusion; TOPICAL
International Nuclear Information System (INIS)
WEBB, STEPHEN W.
2001-01-01
The GEO-SEQ Project is investigating methods for geological sequestration of CO(sub 2). This project, which is directed by LBNL and includes a number of other industrial, university, and national laboratory partners, is evaluating computer simulation methods including TOUGH2 for this problem. The TOUGH2 code, which is a widely used code for flow and transport in porous and fractured media, includes simplified methods for gas diffusion based on a direct application of Fick's law. As shown by Webb (1998) and others, the Dusty Gas Model (DGM) is better than Fick's Law for modeling gas-phase diffusion in porous media. In order to improve gas-phase diffusion modeling for the GEO-SEQ Project, the EOS7R module in the TOUGH2 code has been modified to include the Dusty Gas Model as documented in this report. In addition, the liquid diffusion model has been changed from a mass-based formulation to a mole-based model. Modifications for separate and coupled diffusion in the gas and liquid phases have also been completed. The results from the DGM are compared to the Fick's law behavior for TCE and PCE diffusion across a capillary fringe. The differences are small due to the relatively high permeability (k= 10(sup -11) m(sup 2)) of the problem and the small mole fraction of the gases. Additional comparisons for lower permeabilities and higher mole fractions may be useful
Additive Intensity Regression Models in Corporate Default Analysis
DEFF Research Database (Denmark)
Lando, David; Medhat, Mamdouh; Nielsen, Mads Stenbo
2013-01-01
We consider additive intensity (Aalen) models as an alternative to the multiplicative intensity (Cox) models for analyzing the default risk of a sample of rated, nonfinancial U.S. firms. The setting allows for estimating and testing the significance of time-varying effects. We use a variety...... of model checking techniques to identify misspecifications. In our final model, we find evidence of time-variation in the effects of distance-to-default and short-to-long term debt. Also we identify interactions between distance-to-default and other covariates, and the quick ratio covariate is significant....... None of our macroeconomic covariates are significant....
Modeling Errors in Daily Precipitation Measurements: Additive or Multiplicative?
Tian, Yudong; Huffman, George J.; Adler, Robert F.; Tang, Ling; Sapiano, Matthew; Maggioni, Viviana; Wu, Huan
2013-01-01
The definition and quantification of uncertainty depend on the error model used. For uncertainties in precipitation measurements, two types of error models have been widely adopted: the additive error model and the multiplicative error model. This leads to incompatible specifications of uncertainties and impedes intercomparison and application.In this letter, we assess the suitability of both models for satellite-based daily precipitation measurements in an effort to clarify the uncertainty representation. Three criteria were employed to evaluate the applicability of either model: (1) better separation of the systematic and random errors; (2) applicability to the large range of variability in daily precipitation; and (3) better predictive skills. It is found that the multiplicative error model is a much better choice under all three criteria. It extracted the systematic errors more cleanly, was more consistent with the large variability of precipitation measurements, and produced superior predictions of the error characteristics. The additive error model had several weaknesses, such as non constant variance resulting from systematic errors leaking into random errors, and the lack of prediction capability. Therefore, the multiplicative error model is a better choice.
International Nuclear Information System (INIS)
Shannon, S.S. Jr.
1978-12-01
This report is a supplement to the HSSR uranium evaluation report for the Pueblo quadrangle (Shannon, 1978), which presented the field and uranium data for the 861 water and 1060 sediment samples collected from 1402 locations in the quadrangle. This supplement presents those data again and the results of subsequent multielement analyses of those HSSR samples. In addition to uranium, the concentrations of 12 elements are presented for the waters and 42 elements for the sediments
Covariate selection for the semiparametric additive risk model
DEFF Research Database (Denmark)
Martinussen, Torben; Scheike, Thomas
2009-01-01
This paper considers covariate selection for the additive hazards model. This model is particularly simple to study theoretically and its practical implementation has several major advantages to the similar methodology for the proportional hazards model. One complication compared...... and study their large sample properties for the situation where the number of covariates p is smaller than the number of observations. We also show that the adaptive Lasso has the oracle property. In many practical situations, it is more relevant to tackle the situation with large p compared with the number...... of observations. We do this by studying the properties of the so-called Dantzig selector in the setting of the additive risk model. Specifically, we establish a bound on how close the solution is to a true sparse signal in the case where the number of covariates is large. In a simulation study, we also compare...
Modeling uranium transport in acidic contaminated groundwater with base addition
Energy Technology Data Exchange (ETDEWEB)
Zhang, Fan [Institute of Tibetan Plateau Research, Chinese Academy of Sciences; Luo, Wensui [ORNL; Parker, Jack C. [University of Tennessee, Knoxville (UTK); Brooks, Scott C [ORNL; Watson, David B [ORNL; Jardine, Philip [University of Tennessee, Knoxville (UTK); Gu, Baohua [ORNL
2011-01-01
This study investigates reactive transport modeling in a column of uranium(VI)-contaminated sediments with base additions in the circulating influent. The groundwater and sediment exhibit oxic conditions with low pH, high concentrations of NO{sub 3}{sup -}, SO{sub 4}{sup 2-}, U and various metal cations. Preliminary batch experiments indicate that additions of strong base induce rapid immobilization of U for this material. In the column experiment that is the focus of the present study, effluent groundwater was titrated with NaOH solution in an inflow reservoir before reinjection to gradually increase the solution pH in the column. An equilibrium hydrolysis, precipitation and ion exchange reaction model developed through simulation of the preliminary batch titration experiments predicted faster reduction of aqueous Al than observed in the column experiment. The model was therefore modified to consider reaction kinetics for the precipitation and dissolution processes which are the major mechanism for Al immobilization. The combined kinetic and equilibrium reaction model adequately described variations in pH, aqueous concentrations of metal cations (Al, Ca, Mg, Sr, Mn, Ni, Co), sulfate and U(VI). The experimental and modeling results indicate that U(VI) can be effectively sequestered with controlled base addition due to sorption by slowly precipitated Al with pH-dependent surface charge. The model may prove useful to predict field-scale U(VI) sequestration and remediation effectiveness.
Modeling uranium transport in acidic contaminated groundwater with base addition
Energy Technology Data Exchange (ETDEWEB)
Zhang Fan, E-mail: zhangfan@itpcas.ac.cn [Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, P.O. Box 2871, Beijing, 100085 (China); Luo Wensui [Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021 (China); Parker, Jack C. [Institute for a Secure and Sustainable Environment, Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, TN 37996 (United States); Brooks, Scott C.; Watson, David B. [Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Jardine, Philip M. [Biosystems Engineering and Soil Science Department, University of Tennessee, Knoxville, TN 37996 (United States); Gu Baohua [Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States)
2011-06-15
This study investigates reactive transport modeling in a column of uranium(VI)-contaminated sediments with base additions in the circulating influent. The groundwater and sediment exhibit oxic conditions with low pH, high concentrations of NO{sub 3}{sup -}, SO{sub 4}{sup 2-}, U and various metal cations. Preliminary batch experiments indicate that additions of strong base induce rapid immobilization of U for this material. In the column experiment that is the focus of the present study, effluent groundwater was titrated with NaOH solution in an inflow reservoir before reinjection to gradually increase the solution pH in the column. An equilibrium hydrolysis, precipitation and ion exchange reaction model developed through simulation of the preliminary batch titration experiments predicted faster reduction of aqueous Al than observed in the column experiment. The model was therefore modified to consider reaction kinetics for the precipitation and dissolution processes which are the major mechanism for Al immobilization. The combined kinetic and equilibrium reaction model adequately described variations in pH, aqueous concentrations of metal cations (Al, Ca, Mg, Sr, Mn, Ni, Co), sulfate and U(VI). The experimental and modeling results indicate that U(VI) can be effectively sequestered with controlled base addition due to sorption by slowly precipitated Al with pH-dependent surface charge. The model may prove useful to predict field-scale U(VI) sequestration and remediation effectiveness.
Efficient estimation of an additive quantile regression model
Cheng, Y.; de Gooijer, J.G.; Zerom, D.
2009-01-01
In this paper two kernel-based nonparametric estimators are proposed for estimating the components of an additive quantile regression model. The first estimator is a computationally convenient approach which can be viewed as a viable alternative to the method of De Gooijer and Zerom (2003). By
Efficient estimation of an additive quantile regression model
Cheng, Y.; de Gooijer, J.G.; Zerom, D.
2010-01-01
In this paper two kernel-based nonparametric estimators are proposed for estimating the components of an additive quantile regression model. The first estimator is a computationally convenient approach which can be viewed as a viable alternative to the method of De Gooijer and Zerom (2003). By
Efficient estimation of an additive quantile regression model
Cheng, Y.; de Gooijer, J.G.; Zerom, D.
2011-01-01
In this paper, two non-parametric estimators are proposed for estimating the components of an additive quantile regression model. The first estimator is a computationally convenient approach which can be viewed as a more viable alternative to existing kernel-based approaches. The second estimator
The additive hazards model with high-dimensional regressors
DEFF Research Database (Denmark)
Martinussen, Torben
2009-01-01
This paper considers estimation and prediction in the Aalen additive hazards model in the case where the covariate vector is high-dimensional such as gene expression measurements. Some form of dimension reduction of the covariate space is needed to obtain useful statistical analyses. We study...
DEFF Research Database (Denmark)
Cederkvist, Karin; Jensen, Marina Bergen; Holm, Peter Engelund
2017-01-01
% in the dual porosity filter, stressing the importance of including a conservative tracer for correction of contaminant retention values. The method is considered useful in future treatment performance testing of STFs. The observed performance of the STFs is presented in coming papers.......Stormwater treatment facilities (STFs) are becoming increasingly widespread but knowledge on their performance is limited. This is due to difficulties in obtaining representative samples during storm events and documenting removal of the broad range of contaminants found in stormwater runoff...
Single-Index Additive Vector Autoregressive Time Series Models
LI, YEHUA
2009-09-01
We study a new class of nonlinear autoregressive models for vector time series, where the current vector depends on single-indexes defined on the past lags and the effects of different lags have an additive form. A sufficient condition is provided for stationarity of such models. We also study estimation of the proposed model using P-splines, hypothesis testing, asymptotics, selection of the order of the autoregression and of the smoothing parameters and nonlinear forecasting. We perform simulation experiments to evaluate our model in various settings. We illustrate our methodology on a climate data set and show that our model provides more accurate yearly forecasts of the El Niño phenomenon, the unusual warming of water in the Pacific Ocean. © 2009 Board of the Foundation of the Scandinavian Journal of Statistics.
Energy Technology Data Exchange (ETDEWEB)
Morgan, T.L.
1979-11-01
During the summers of 1976 and 1977, 570 water and 1249 sediment samples were collected from 1517 locations within the 18,000-km/sup 2/ area of the Arminto NTMS quadrangle of central Wyoming. Water samples were collected from wells, springs, streams, and artifical ponds; sediment samples were collected from wet and dry streams, springs, and wet and dry ponds. All water samples were analyzed for 13 elements, including uranium, and each sediment sample was analyzed for 43 elements, including uranium and thorium. Uranium concentrations in water samples range from below the detection limit to 84.60 parts per billion (ppb) with a mean of 4.32 ppb. All water sample types except pond water samples were considered as a single population in interpreting the data. Pond water samples were excluded due to possible concentration of uranium by evaporation. Most of the water samples containing greater than 20 ppb uranium grouped into six clusters that indicate possible areas of interest for further investigation. One cluster is associated with the Pumpkin Buttes District, and two others are near the Kaycee and Mayoworth areas of uranium mineralization. The largest cluster is located on the west side of the Powder River Basin. One cluster is located in the central Big Horn Basin and another is in the Wind River Basin; both are in areas underlain by favorable host units. Uranium concentrations in sediment samples range from 0.08 parts per million (ppm) to 115.50 ppm with a mean of 3.50 ppm. Two clusters of sediment samples over 7 ppm were delineated. The first, containing the two highest-concentration samples, corresponds with the Copper Mountain District. Many of the high uranium concentrations in samples in this cluster may be due to contamination from mining or prospecting activity upstream from the sample sites. The second cluster encompasses a wide area in the Wind River Basin along the southern boundary of the quadrangle.
Houwing-Duistermaat, J. J.; Sandkuijl, L. A.; Bergen, A. A.; van Houwelingen, H. C.
1995-01-01
In linkage analysis, estimated recombination fractions between a disease gene and several markers are used to assign the disease gene to a particular chromosome region. For rare diseases, locus heterogeneity leads to different recombination fractions in different families, and a set of pedigrees can
Estimating classification images with generalized linear and additive models.
Knoblauch, Kenneth; Maloney, Laurence T
2008-12-22
Conventional approaches to modeling classification image data can be described in terms of a standard linear model (LM). We show how the problem can be characterized as a Generalized Linear Model (GLM) with a Bernoulli distribution. We demonstrate via simulation that this approach is more accurate in estimating the underlying template in the absence of internal noise. With increasing internal noise, however, the advantage of the GLM over the LM decreases and GLM is no more accurate than LM. We then introduce the Generalized Additive Model (GAM), an extension of GLM that can be used to estimate smooth classification images adaptively. We show that this approach is more robust to the presence of internal noise, and finally, we demonstrate that GAM is readily adapted to estimation of higher order (nonlinear) classification images and to testing their significance.
The additive hazards model with high-dimensional regressors
DEFF Research Database (Denmark)
Martinussen, Torben; Scheike, Thomas
2009-01-01
This paper considers estimation and prediction in the Aalen additive hazards model in the case where the covariate vector is high-dimensional such as gene expression measurements. Some form of dimension reduction of the covariate space is needed to obtain useful statistical analyses. We study...... model. A standard PLS algorithm can also be constructed, but it turns out that the resulting predictor can only be related to the original covariates via time-dependent coefficients. The methods are applied to a breast cancer data set with gene expression recordings and to the well known primary biliary...
International Nuclear Information System (INIS)
Warren, R.G.; George, W.E.; Minor, M.M.; Simi, O.R.; Talcott, C.L.; Hensley, W.K.; Cheadle, J.M. III.
1980-08-01
During 1976 and 1977, 752 water and 843 sediment samples were collected from 1419 locations within the 17 700-km 2 area of the Gillette quadrangle, Wyoming. Water samples were collected primarily from wells, and also from springs, ponds, and streams; sediment samples were collected primarily from stream channels, and also from springs and ponds. Each water sample was analyzed for uranium and each sediment sample was analyzed for 43 elements, including uranium and thorium. Uranium concentrations in water samples range from below the detection limit of 0.02 to 212.20 ppB and have a median of 1.10 ppB. The highest background uranium concentrations, as well as the highest individual uranium values, are in areas where favorable host units for uranium mineralization crop out. These units are the Wasatch and Fort Union formations in the Powder River Basin and the Inyan Kara group in the Black Hills. Uranium concentrations in sediment samples range from 0.64 to 29.83 ppM and have a median of 3.24 ppM. Background uranium concentrations are strongly controlled by the exposed geologic unit, and range from 4 to 8 ppM for the Cretaceous Colorado group to 1 to 3 ppM for the Triassic and Paleozoic units exposed in the Black Hills. Several areas where the Wasatch and Fort Union formations are exposed exhibit uranium concentrations in sediment samples that are slightly, but distinctly, above background values for these units. All of these areas are also associated with notably high uranium concentrations in water samples. Because epigenetic uranium mineralization in economically important areas can exhibit a similar geochemical signature, these areas within the Gillette quadrangle should be further examined for the possible presence of uranium mineralization
International Nuclear Information System (INIS)
Goff, S.J.; Sandoval, W.F.; Gallimore, D.L.; Talcott, C.L.; Martinez, R.G.; Minor, M.E.; Mills, C.F.
1980-06-01
Water and sediment samples were collected and each water sample was analyzed for U, and each sediment sample was analyzed for 43 elements, including U and Th. Uranium concentrations in water samples range from below the detection limit of 0.02 ppB to 702.26 ppB and have a median of 1.73 ppB and a mean of 11.76 ppB. Water samples containing high uranium concentrations generally are associated with known uranium mining activity or units known to be uranium bearing. About one-third of the water samples containing high uranium concentrations were collected from locations within the Pumpkin Buttes and Turnercrest-Ross Districts. Nearly half of the water samples containing high uranium concentrations were collected from locations just west of the Monument Hill and Highland Flats-Box Creek Districts. Similar anomalous uranium concentrations in this region have been reported updip from Exxon's Highland uranium deposits. High uranium concentrations were also found associated with the Lance Creek-Old Woman Anticline District. Uranium concentrations in sediment samples range from 1.14 to 220.70 ppM and have a median of 3.37 ppM and a mean of 4.03 ppM. Throughout the major uranium mining districts of the Powder River Basin, sediment samples with high uranium concentrations were collected from dry streams located near wells producing water samples with high uranium concentrations. High uranium concentrations were also found associated with the Lance Creek oil field where uranium mineralization is known in the White River formation. High uranium concentrations were also found in sediment samples in areas where uranium mineralization is not known. These samples are from dry streams in areas underlain by the White River formation, the Niobrara formation, and the Pierre, Carlisle, Belle Fourche, and Mowry shales
Testing exclusion restrictions and additive separability in sample selection models
DEFF Research Database (Denmark)
Huber, Martin; Mellace, Giovanni
2014-01-01
Standard sample selection models with non-randomly censored outcomes assume (i) an exclusion restriction (i.e., a variable affecting selection, but not the outcome) and (ii) additive separability of the errors in the selection process. This paper proposes tests for the joint satisfaction of these......Standard sample selection models with non-randomly censored outcomes assume (i) an exclusion restriction (i.e., a variable affecting selection, but not the outcome) and (ii) additive separability of the errors in the selection process. This paper proposes tests for the joint satisfaction...... of these assumptions by applying the approach of Huber and Mellace (Testing instrument validity for LATE identification based on inequality moment constraints, 2011) (for testing instrument validity under treatment endogeneity) to the sample selection framework. We show that the exclusion restriction and additive...... separability imply two testable inequality constraints that come from both point identifying and bounding the outcome distribution of the subpopulation that is always selected/observed. We apply the tests to two variables for which the exclusion restriction is frequently invoked in female wage regressions: non...
Process Modeling and Validation for Metal Big Area Additive Manufacturing
Energy Technology Data Exchange (ETDEWEB)
Simunovic, Srdjan [ORNL; Nycz, Andrzej [ORNL; Noakes, Mark W. [ORNL; Chin, Charlie [Dassault Systemes; Oancea, Victor [Dassault Systemes
2017-05-01
Metal Big Area Additive Manufacturing (mBAAM) is a new additive manufacturing (AM) technology based on the metal arc welding. A continuously fed metal wire is melted by an electric arc that forms between the wire and the substrate, and deposited in the form of a bead of molten metal along the predetermined path. Objects are manufactured one layer at a time starting from the base plate. The final properties of the manufactured object are dependent on its geometry and the metal deposition path, in addition to depending on the basic welding process parameters. Computational modeling can be used to accelerate the development of the mBAAM technology as well as a design and optimization tool for the actual manufacturing process. We have developed a finite element method simulation framework for mBAAM using the new features of software ABAQUS. The computational simulation of material deposition with heat transfer is performed first, followed by the structural analysis based on the temperature history for predicting the final deformation and stress state. In this formulation, we assume that two physics phenomena are coupled in only one direction, i.e. the temperatures are driving the deformation and internal stresses, but their feedback on the temperatures is negligible. The experiment instrumentation (measurement types, sensor types, sensor locations, sensor placements, measurement intervals) and the measurements are presented. The temperatures and distortions from the simulations show good correlation with experimental measurements. Ongoing modeling work is also briefly discussed.
Directory of Open Access Journals (Sweden)
Jelena Jovanović
2010-03-01
Full Text Available The research is oriented on improvement of environmental management system (EMS using BSC (Balanced Scorecard model that presents strategic model of measurem ents and improvement of organisational performance. The research will present approach of objectives and environmental management me trics involvement (proposed by literature review in conventional BSC in "Ad Barska plovi dba" organisation. Further we will test creation of ECO-BSC model based on business activities of non-profit organisations in order to improve envir onmental management system in parallel with other systems of management. Using this approach we may obtain 4 models of BSC that includ es elements of environmen tal management system for AD "Barska plovidba". Taking into acc ount that implementation and evaluation need long period of time in AD "Barska plovidba", the final choice will be based on 14598 (Information technology - Software product evaluation and ISO 9126 (Software engineering - Product quality using AHP method. Those standards are usually used for evaluation of quality software product and computer programs that serve in organisation as support and factors for development. So, AHP model will be bas ed on evolution criteria based on suggestion of ISO 9126 standards and types of evaluation from two evaluation teams. Members of team & will be experts in BSC and environmental management system that are not em ployed in AD "Barska Plovidba" organisation. The members of team 2 will be managers of AD "Barska Plovidba" organisation (including manage rs from environmental department. Merging results based on previously cr eated two AHP models, one can obtain the most appropriate BSC that includes elements of environmental management system. The chosen model will present at the same time suggestion for approach choice including ecological metrics in conventional BSC model for firm that has at least one ECO strategic orientation.
Sensitivity analysis of geometric errors in additive manufacturing medical models.
Pinto, Jose Miguel; Arrieta, Cristobal; Andia, Marcelo E; Uribe, Sergio; Ramos-Grez, Jorge; Vargas, Alex; Irarrazaval, Pablo; Tejos, Cristian
2015-03-01
Additive manufacturing (AM) models are used in medical applications for surgical planning, prosthesis design and teaching. For these applications, the accuracy of the AM models is essential. Unfortunately, this accuracy is compromised due to errors introduced by each of the building steps: image acquisition, segmentation, triangulation, printing and infiltration. However, the contribution of each step to the final error remains unclear. We performed a sensitivity analysis comparing errors obtained from a reference with those obtained modifying parameters of each building step. Our analysis considered global indexes to evaluate the overall error, and local indexes to show how this error is distributed along the surface of the AM models. Our results show that the standard building process tends to overestimate the AM models, i.e. models are larger than the original structures. They also show that the triangulation resolution and the segmentation threshold are critical factors, and that the errors are concentrated at regions with high curvatures. Errors could be reduced choosing better triangulation and printing resolutions, but there is an important need for modifying some of the standard building processes, particularly the segmentation algorithms. Copyright © 2015 IPEM. Published by Elsevier Ltd. All rights reserved.
A multistate additive relative survival semi-Markov model.
Gillaizeau, Florence; Dantan, Etienne; Giral, Magali; Foucher, Yohann
2017-08-01
Medical researchers are often interested to investigate the relationship between explicative variables and times-to-events such as disease progression or death. Such multiple times-to-events can be studied using multistate models. For chronic diseases, it may be relevant to consider semi-Markov multistate models because the transition intensities between two clinical states more likely depend on the time already spent in the current state than on the chronological time. When the cause of death for a patient is unavailable or not totally attributable to the disease, it is not possible to specifically study the associations with the excess mortality related to the disease. Relative survival analysis allows an estimate of the net survival in the hypothetical situation where the disease would be the only possible cause of death. In this paper, we propose a semi-Markov additive relative survival (SMRS) model that combines the multistate and the relative survival approaches. The usefulness of the SMRS model is illustrated by two applications with data from a French cohort of kidney transplant recipients. Using simulated data, we also highlight the effectiveness of the SMRS model: the results tend to those obtained if the different causes of death are known.
Estimation of oil toxicity using an additive toxicity model
International Nuclear Information System (INIS)
French, D.
2000-01-01
The impacts to aquatic organisms resulting from acute exposure to aromatic mixtures released from oil spills can be modeled using a newly developed toxicity model. This paper presented a summary of the model development for the toxicity of monoaromatic and polycyclic aromatic hydrocarbon mixtures. This is normally difficult to quantify because oils are mixtures of a variety of hydrocarbons with different toxicities and environmental fates. Also, aromatic hydrocarbons are volatile, making it difficult to expose organism to constant concentrations in bioassay tests. This newly developed and validated model corrects toxicity for time and temperature of exposure. In addition, it estimates the toxicity of each aromatic in the oil-derived mixture. The toxicity of the mixture can be estimated by the weighted sum of the toxicities of the individual compounds. Acute toxicity is estimated as LC50 (lethal concentration to 50 per cent of exposed organisms). Sublethal effects levels are estimated from LC50s. The model was verified with available oil bioassay data. It was concluded that oil toxicity is a function of the aromatic content and composition in the oil as well as the fate and partitioning of those components in the environment. 81 refs., 19 tabs., 1 fig
The protective action decision model: theoretical modifications and additional evidence.
Lindell, Michael K; Perry, Ronald W
2012-04-01
The Protective Action Decision Model (PADM) is a multistage model that is based on findings from research on people's responses to environmental hazards and disasters. The PADM integrates the processing of information derived from social and environmental cues with messages that social sources transmit through communication channels to those at risk. The PADM identifies three critical predecision processes (reception, attention, and comprehension of warnings or exposure, attention, and interpretation of environmental/social cues)--that precede all further processing. The revised model identifies three core perceptions--threat perceptions, protective action perceptions, and stakeholder perceptions--that form the basis for decisions about how to respond to an imminent or long-term threat. The outcome of the protective action decision-making process, together with situational facilitators and impediments, produces a behavioral response. In addition to describing the revised model and the research on which it is based, this article describes three applications (development of risk communication programs, evacuation modeling, and adoption of long-term hazard adjustments) and identifies some of the research needed to address unresolved issues. © 2011 Society for Risk Analysis.
Estimation and variable selection for generalized additive partial linear models
Wang, Li
2011-08-01
We study generalized additive partial linear models, proposing the use of polynomial spline smoothing for estimation of nonparametric functions, and deriving quasi-likelihood based estimators for the linear parameters. We establish asymptotic normality for the estimators of the parametric components. The procedure avoids solving large systems of equations as in kernel-based procedures and thus results in gains in computational simplicity. We further develop a class of variable selection procedures for the linear parameters by employing a nonconcave penalized quasi-likelihood, which is shown to have an asymptotic oracle property. Monte Carlo simulations and an empirical example are presented for illustration. © Institute of Mathematical Statistics, 2011.
Including Effects of Water Stress on Dead Organic Matter Decay to a Forest Carbon Model
Kim, H.; Lee, J.; Han, S. H.; Kim, S.; Son, Y.
2017-12-01
Decay of dead organic matter is a key process of carbon (C) cycling in forest ecosystems. The change in decay rate depends on temperature sensitivity and moisture conditions. The Forest Biomass and Dead organic matter Carbon (FBDC) model includes a decay sub-model considering temperature sensitivity, yet does not consider moisture conditions as drivers of the decay rate change. This study aimed to improve the FBDC model by including a water stress function to the decay sub-model. Also, soil C sequestration under climate change with the FBDC model including the water stress function was simulated. The water stress functions were determined with data from decomposition study on Quercus variabilis forests and Pinus densiflora forests of Korea, and adjustment parameters of the functions were determined for both species. The water stress functions were based on the ratio of precipitation to potential evapotranspiration. Including the water stress function increased the explained variances of the decay rate by 19% for the Q. variabilis forests and 7% for the P. densiflora forests, respectively. The increase of the explained variances resulted from large difference in temperature range and precipitation range across the decomposition study plots. During the period of experiment, the mean annual temperature range was less than 3°C, while the annual precipitation ranged from 720mm to 1466mm. Application of the water stress functions to the FBDC model constrained increasing trend of temperature sensitivity under climate change, and thus increased the model-estimated soil C sequestration (Mg C ha-1) by 6.6 for the Q. variabilis forests and by 3.1 for the P. densiflora forests, respectively. The addition of water stress functions increased reliability of the decay rate estimation and could contribute to reducing the bias in estimating soil C sequestration under varying moisture condition. Acknowledgement: This study was supported by Korea Forest Service (2017044B10-1719-BB01)
Mota, A. R.; Lopes dos Santos, J. M. B.
2014-01-01
Students' misconceptions concerning colour phenomena and the apparent complexity of the underlying concepts--due to the different domains of knowledge involved--make its teaching very difficult. We have developed and tested a teaching device, the addition table of colours (ATC), that encompasses additive and subtractive mixtures in a single…
Thermal modelling of extrusion based additive manufacturing of composite materials
DEFF Research Database (Denmark)
Jensen, Mathias Laustsen; Sonne, Mads Rostgaard; Hattel, Jesper Henri
One of the hottest topics regarding manufacturing these years is additive manufacturing (AM). AM is a young branch of manufacturing techniques, which by nature is disruptive due to its completely different manufacturing approach, wherein material is added instead of removed. By adding material...... of composite parts not feasible by conventional manufacturing techniques. This sets up new requirements to the part verification and validation, while conventional destructive tests become too expensive. This initial study aims to investigate alternative options to this destructive testing by increasing......-butadiene-styrene (ABS) and thermosetting polyurethane (PU) material extrusion processes. During the experimental evaluation of the produced models it is found that some critical material properties needs to be further investigated to increase the precision of the model. It is however also found that even with only...
Primary circuit iodine model addition to IMPAIR-3
Energy Technology Data Exchange (ETDEWEB)
Osetek, D.J.; Louie, D.L.Y. [Los Alamos Technical Associates, Inc., Albuquerque, NM (United States); Guntay, S.; Cripps, R. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)
1996-12-01
As part of a continuing effort to provide the U.S. Department of Energy (DOE) Advanced Reactor Severe Accident Program (ARSAP) with complete iodine analysis capability, a task was undertaken to expand the modeling of IMPAIR-3, an iodine chemistry code. The expanded code will enable the DOE to include detailed iodine behavior in the assessment of severe accident source terms used in the licensing of U.S. Advanced Light Water Reactors (ALWRs). IMPAIR-3 was developed at the Paul Scherrer Institute (PSI), Switzerland, and has been used by ARSAP for the past two years to analyze containment iodine chemistry for ALWR source term analyses. IMPAIR-3 is primarily a containment code but the iodine chemistry inside the primary circuit (the Reactor Coolant System or RCS) may influence the iodine species released into the the containment; therefore, a RCS iodine chemistry model must be implemented in IMPAIR-3 to ensure thorough source term analysis. The ARSAP source term team and the PSI IMPAIR-3 developers are working together to accomplish this task. This cooperation is divided into two phases. Phase I, taking place in 1996, involves developing a stand-alone RCS iodine chemistry program called IMPRCS (IMPAIR -Reactor Coolant System). This program models a number of the chemical and physical processes of iodine that are thought to be important at conditions of high temperature and pressure in the RCS. In Phase II, which is tentatively scheduled for 1997, IMPRCS will be implemented as a subroutine in IMPAIR-3. To ensure an efficient calculation, an interface/tracking system will be developed to control the use of the RCS model from the containment model. These two models will be interfaced in such a way that once the iodine is released from the RCS, it will no longer be tracked by the RCS model but will be tracked by the containment model. All RCS thermal-hydraulic parameters will be provided by other codes. (author) figs., tabs., refs.
Primary circuit iodine model addition to IMPAIR-3
International Nuclear Information System (INIS)
Osetek, D.J.; Louie, D.L.Y.; Guntay, S.; Cripps, R.
1996-01-01
As part of a continuing effort to provide the U.S. Department of Energy (DOE) Advanced Reactor Severe Accident Program (ARSAP) with complete iodine analysis capability, a task was undertaken to expand the modeling of IMPAIR-3, an iodine chemistry code. The expanded code will enable the DOE to include detailed iodine behavior in the assessment of severe accident source terms used in the licensing of U.S. Advanced Light Water Reactors (ALWRs). IMPAIR-3 was developed at the Paul Scherrer Institute (PSI), Switzerland, and has been used by ARSAP for the past two years to analyze containment iodine chemistry for ALWR source term analyses. IMPAIR-3 is primarily a containment code but the iodine chemistry inside the primary circuit (the Reactor Coolant System or RCS) may influence the iodine species released into the the containment; therefore, a RCS iodine chemistry model must be implemented in IMPAIR-3 to ensure thorough source term analysis. The ARSAP source term team and the PSI IMPAIR-3 developers are working together to accomplish this task. This cooperation is divided into two phases. Phase I, taking place in 1996, involves developing a stand-alone RCS iodine chemistry program called IMPRCS (IMPAIR -Reactor Coolant System). This program models a number of the chemical and physical processes of iodine that are thought to be important at conditions of high temperature and pressure in the RCS. In Phase II, which is tentatively scheduled for 1997, IMPRCS will be implemented as a subroutine in IMPAIR-3. To ensure an efficient calculation, an interface/tracking system will be developed to control the use of the RCS model from the containment model. These two models will be interfaced in such a way that once the iodine is released from the RCS, it will no longer be tracked by the RCS model but will be tracked by the containment model. All RCS thermal-hydraulic parameters will be provided by other codes. (author) figs., tabs., refs
Metal Big Area Additive Manufacturing: Process Modeling and Validation
Energy Technology Data Exchange (ETDEWEB)
Simunovic, Srdjan [ORNL; Nycz, Andrzej [ORNL; Noakes, Mark W [ORNL; Chin, Charlie [Dassault Systemes; Oancea, Victor [Dassault Systemes
2017-01-01
Metal Big Area Additive Manufacturing (mBAAM) is a new additive manufacturing (AM) technology for printing large-scale 3D objects. mBAAM is based on the gas metal arc welding process and uses a continuous feed of welding wire to manufacture an object. An electric arc forms between the wire and the substrate, which melts the wire and deposits a bead of molten metal along the predetermined path. In general, the welding process parameters and local conditions determine the shape of the deposited bead. The sequence of the bead deposition and the corresponding thermal history of the manufactured object determine the long range effects, such as thermal-induced distortions and residual stresses. Therefore, the resulting performance or final properties of the manufactured object are dependent on its geometry and the deposition path, in addition to depending on the basic welding process parameters. Physical testing is critical for gaining the necessary knowledge for quality prints, but traversing the process parameter space in order to develop an optimized build strategy for each new design is impractical by pure experimental means. Computational modeling and optimization may accelerate development of a build process strategy and saves time and resources. Because computational modeling provides these opportunities, we have developed a physics-based Finite Element Method (FEM) simulation framework and numerical models to support the mBAAM process s development and design. In this paper, we performed a sequentially coupled heat transfer and stress analysis for predicting the final deformation of a small rectangular structure printed using the mild steel welding wire. Using the new simulation technologies, material was progressively added into the FEM simulation as the arc weld traversed the build path. In the sequentially coupled heat transfer and stress analysis, the heat transfer was performed to calculate the temperature evolution, which was used in a stress analysis to
Global Reference Atmospheric Models, Including Thermospheres, for Mars, Venus and Earth
Justh, Hilary L.; Justus, C. G.; Keller, Vernon W.
2006-01-01
This document is the viewgraph slides of the presentation. Marshall Space Flight Center's Natural Environments Branch has developed Global Reference Atmospheric Models (GRAMs) for Mars, Venus, Earth, and other solar system destinations. Mars-GRAM has been widely used for engineering applications including systems design, performance analysis, and operations planning for aerobraking, entry descent and landing, and aerocapture. Preliminary results are presented, comparing Mars-GRAM with measurements from Mars Reconnaissance Orbiter (MRO) during its aerobraking in Mars thermosphere. Venus-GRAM is based on the Committee on Space Research (COSPAR) Venus International Reference Atmosphere (VIRA), and is suitable for similar engineering applications in the thermosphere or other altitude regions of the atmosphere of Venus. Until recently, the thermosphere in Earth-GRAM has been represented by the Marshall Engineering Thermosphere (MET) model. Earth-GRAM has recently been revised. In addition to including an updated version of MET, it now includes an option to use the Naval Research Laboratory Mass Spectrometer Incoherent Scatter Radar Extended Model (NRLMSISE-00) as an alternate thermospheric model. Some characteristics and results from Venus-GRAM and Earth-GRAM thermospheres are also presented.
Modelling Mediterranean agro-ecosystems by including agricultural trees in the LPJmL model
Fader, M.; von Bloh, W.; Shi, S.; Bondeau, A.; Cramer, W.
2015-11-01
In the Mediterranean region, climate and land use change are expected to impact on natural and agricultural ecosystems by warming, reduced rainfall, direct degradation of ecosystems and biodiversity loss. Human population growth and socioeconomic changes, notably on the eastern and southern shores, will require increases in food production and put additional pressure on agro-ecosystems and water resources. Coping with these challenges requires informed decisions that, in turn, require assessments by means of a comprehensive agro-ecosystem and hydrological model. This study presents the inclusion of 10 Mediterranean agricultural plants, mainly perennial crops, in an agro-ecosystem model (Lund-Potsdam-Jena managed Land - LPJmL): nut trees, date palms, citrus trees, orchards, olive trees, grapes, cotton, potatoes, vegetables and fodder grasses. The model was successfully tested in three model outputs: agricultural yields, irrigation requirements and soil carbon density. With the development presented in this study, LPJmL is now able to simulate in good detail and mechanistically the functioning of Mediterranean agriculture with a comprehensive representation of ecophysiological processes for all vegetation types (natural and agricultural) and in a consistent framework that produces estimates of carbon, agricultural and hydrological variables for the entire Mediterranean basin. This development paves the way for further model extensions aiming at the representation of alternative agro-ecosystems (e.g. agroforestry), and opens the door for a large number of applications in the Mediterranean region, for example assessments of the consequences of land use transitions, the influence of management practices and climate change impacts.
Improving weather predictability by including land-surface model parameter uncertainty
Orth, Rene; Dutra, Emanuel; Pappenberger, Florian
2016-04-01
The land surface forms an important component of Earth system models and interacts nonlinearly with other parts such as ocean and atmosphere. To capture the complex and heterogenous hydrology of the land surface, land surface models include a large number of parameters impacting the coupling to other components of the Earth system model. Focusing on ECMWF's land-surface model HTESSEL we present in this study a comprehensive parameter sensitivity evaluation using multiple observational datasets in Europe. We select 6 poorly constrained effective parameters (surface runoff effective depth, skin conductivity, minimum stomatal resistance, maximum interception, soil moisture stress function shape, total soil depth) and explore their sensitivity to model outputs such as soil moisture, evapotranspiration and runoff using uncoupled simulations and coupled seasonal forecasts. Additionally we investigate the possibility to construct ensembles from the multiple land surface parameters. In the uncoupled runs we find that minimum stomatal resistance and total soil depth have the most influence on model performance. Forecast skill scores are moreover sensitive to the same parameters as HTESSEL performance in the uncoupled analysis. We demonstrate the robustness of our findings by comparing multiple best performing parameter sets and multiple randomly chosen parameter sets. We find better temperature and precipitation forecast skill with the best-performing parameter perturbations demonstrating representativeness of model performance across uncoupled (and hence less computationally demanding) and coupled settings. Finally, we construct ensemble forecasts from ensemble members derived with different best-performing parameterizations of HTESSEL. This incorporation of parameter uncertainty in the ensemble generation yields an increase in forecast skill, even beyond the skill of the default system. Orth, R., E. Dutra, and F. Pappenberger, 2016: Improving weather predictability by
Producing high-accuracy lattice models from protein atomic coordinates including side chains.
Mann, Martin; Saunders, Rhodri; Smith, Cameron; Backofen, Rolf; Deane, Charlotte M
2012-01-01
Lattice models are a common abstraction used in the study of protein structure, folding, and refinement. They are advantageous because the discretisation of space can make extensive protein evaluations computationally feasible. Various approaches to the protein chain lattice fitting problem have been suggested but only a single backbone-only tool is available currently. We introduce LatFit, a new tool to produce high-accuracy lattice protein models. It generates both backbone-only and backbone-side-chain models in any user defined lattice. LatFit implements a new distance RMSD-optimisation fitting procedure in addition to the known coordinate RMSD method. We tested LatFit's accuracy and speed using a large nonredundant set of high resolution proteins (SCOP database) on three commonly used lattices: 3D cubic, face-centred cubic, and knight's walk. Fitting speed compared favourably to other methods and both backbone-only and backbone-side-chain models show low deviation from the original data (~1.5 Å RMSD in the FCC lattice). To our knowledge this represents the first comprehensive study of lattice quality for on-lattice protein models including side chains while LatFit is the only available tool for such models.
Directory of Open Access Journals (Sweden)
D. O. Topping
2005-01-01
Full Text Available This paper describes the inclusion of organic particulate material within the Aerosol Diameter Dependent Equilibrium Model (ADDEM framework described in the companion paper applied to inorganic aerosol components. The performance of ADDEM is analysed in terms of its capability to reproduce the behaviour of various organic and mixed inorganic/organic systems using recently published bulk data. Within the modelling architecture already described two separate thermodynamic models are coupled in an additive approach and combined with a method for solving the Kohler equation in order to develop a tool for predicting the water content associated with an aerosol of known inorganic/organic composition and dry size. For development of the organic module, the widely used group contribution method UNIFAC is employed to explicitly deal with the non-ideality in solution. The UNIFAC predictions for components of atmospheric importance were improved considerably by using revised interaction parameters derived from electro-dynamic balance studies. Using such parameters, the model was found to adequately describe mixed systems including 5–6 dicarboxylic acids, down to low relative humidity conditions. By comparison with electrodynamic balance data, it was also found that the model was capable of capturing the behaviour of aqueous aerosols containing Suwannee River Fulvic acid, a structure previously used to represent the functionality of complex oxidised macromolecules often found in atmospheric aerosols. The additive approach for modelling mixed inorganic/organic systems worked well for a variety of mixtures. As expected, deviations between model predictions and measurements increase with increasing concentration. Available surface tension models, used in evaluating the Kelvin term, were found to reproduce measured data with varying success. Deviations from experimental data increased with increased organic compound complexity. For components only slightly
A curved multi-component aerosol hygroscopicity model framework: Part 2 Including organic compounds
Topping, D. O.; McFiggans, G. B.; Coe, H.
2005-05-01
This paper describes the inclusion of organic particulate material within the Aerosol Diameter Dependent Equilibrium Model (ADDEM) framework described in the companion paper applied to inorganic aerosol components. The performance of ADDEM is analysed in terms of its capability to reproduce the behaviour of various organic and mixed inorganic/organic systems using recently published bulk data. Within the modelling architecture already described two separate thermodynamic models are coupled in an additive approach and combined with a method for solving the Kohler equation in order to develop a tool for predicting the water content associated with an aerosol of known inorganic/organic composition and dry size. For development of the organic module, the widely used group contribution method UNIFAC is employed to explicitly deal with the non-ideality in solution. The UNIFAC predictions for components of atmospheric importance were improved considerably by using revised interaction parameters derived from electro-dynamic balance studies. Using such parameters, the model was found to adequately describe mixed systems including 5-6 dicarboxylic acids, down to low relative humidity conditions. By comparison with electrodynamic balance data, it was also found that the model was capable of capturing the behaviour of aqueous aerosols containing Suwannee River Fulvic acid, a structure previously used to represent the functionality of complex oxidised macromolecules often found in atmospheric aerosols. The additive approach for modelling mixed inorganic/organic systems worked well for a variety of mixtures. As expected, deviations between model predictions and measurements increase with increasing concentration. Available surface tension models, used in evaluating the Kelvin term, were found to reproduce measured data with varying success. Deviations from experimental data increased with increased organic compound complexity. For components only slightly soluble in water
Additive mathematical model of materials aeration classification in separators
Directory of Open Access Journals (Sweden)
V. Ya. Potapov
2017-09-01
Full Text Available The article is devoted to confirmation of a mechanism of aeration classification in drum-shelf friction separators of materials, the components of which are distinguished by a wide range of “sailage” in order to increase the separators efficiency and the quality of finished products in technology of components separation of ore and non-ore materials. Using aerodynamics of bodies of arbitrary shape in a directed air flow, a mathematical model is obtained of aeration classification of particles of material components, depending on their physical properties, unified by an integral criterion of “sailage”, and controlled airflow parameters with separate accounting of influence of particles velocity and flow. Equations are obtained for calculation of geometric parameters of a unit of aeration classification friction drum – shelf separator depending on integral criterion of “sailage” determined by shape, size, density of initial raw material and air viscosity providing for maximum quality of stratification of the feedstock and, as a result, increasing the production efficiency and the quality of the separated material. The efficiency of aeration classification with the use of a controlled air flow is confirmed, as well as sufficient convergence of experimental and calculated data. The additive mathematical model has confirmed the high efficiency of application of aeration classification in drum-type friction separators to improve the quality of stratification with reference to initial raw materials, components of which differ in a wide range of “sailage”.
Analysis of electronic models for solar cells including energy resolved defect densities
Energy Technology Data Exchange (ETDEWEB)
Glitzky, Annegret
2010-07-01
We introduce an electronic model for solar cells including energy resolved defect densities. The resulting drift-diffusion model corresponds to a generalized van Roosbroeck system with additional source terms coupled with ODEs containing space and energy as parameters for all defect densities. The system has to be considered in heterostructures and with mixed boundary conditions from device simulation. We give a weak formulation of the problem. If the boundary data and the sources are compatible with thermodynamic equilibrium the free energy along solutions decays monotonously. In other cases it may be increasing, but we estimate its growth. We establish boundedness and uniqueness results and prove the existence of a weak solution. This is done by considering a regularized problem, showing its solvability and the boundedness of its solutions independent of the regularization level. (orig.)
Including policy and management in socio-hydrology models: initial conceptualizations
Hermans, Leon; Korbee, Dorien
2017-04-01
Socio-hydrology studies the interactions in coupled human-water systems. So far, the use of dynamic models that capture the direct feedback between societal and hydrological systems has been dominant. What has not yet been included with any particular emphasis, is the policy or management layer, which is a central element in for instance integrated water resources management (IWRM) or adaptive delta management (ADM). Studying the direct interactions between human-water systems generates knowledges that eventually helps influence these interactions in ways that may ensure better outcomes - for society and for the health and sustainability of water systems. This influence sometimes occurs through spontaneous emergence, uncoordinated by societal agents - private sector, citizens, consumers, water users. However, the term 'management' in IWRM and ADM also implies an additional coordinated attempt through various public actors. This contribution is a call to include the policy and management dimension more prominently into the research focus of the socio-hydrology field, and offers first conceptual variables that should be considered in attempts to include this policy or management layer in socio-hydrology models. This is done by drawing on existing frameworks to study policy processes throughout both planning and implementation phases. These include frameworks such as the advocacy coalition framework, collective learning and policy arrangements, which all emphasis longer-term dynamics and feedbacks between actor coalitions in strategic planning and implementation processes. A case about longter-term dynamics in the management of the Haringvliet in the Netherlands is used to illustrate the paper.
Directory of Open Access Journals (Sweden)
Saeed Soltani
2015-06-01
Full Text Available To enhance the certainty of the grade block model, it is necessary to increase the number of exploratory drillholes and collect more data from the deposit. The inputs of the process of locating these additional drillholes include the variogram model parameters, locations of the samples taken from the initial drillholes, and the geological block model. The uncertainties of these inputs will lead to uncertainties in the optimal locations of additional drillholes. Meanwhile, the locations of the initial data are crisp, but the variogram model parameters and the geological model have uncertainties due to the limitation of the number of initial data. In this paper, effort has been made to consider the effects of variogram uncertainties on the optimal location of additional drillholes using the fuzzy kriging and solve the locating problem with the genetic algorithm (GA optimization method.A bauxite deposit case study has shown the efficiency of the proposed model.
Degree of multicollinearity and variables involved in linear dependence in additive-dominant models
Directory of Open Access Journals (Sweden)
Juliana Petrini
2012-12-01
Full Text Available The objective of this work was to assess the degree of multicollinearity and to identify the variables involved in linear dependence relations in additive-dominant models. Data of birth weight (n=141,567, yearling weight (n=58,124, and scrotal circumference (n=20,371 of Montana Tropical composite cattle were used. Diagnosis of multicollinearity was based on the variance inflation factor (VIF and on the evaluation of the condition indexes and eigenvalues from the correlation matrix among explanatory variables. The first model studied (RM included the fixed effect of dam age class at calving and the covariates associated to the direct and maternal additive and non-additive effects. The second model (R included all the effects of the RM model except the maternal additive effects. Multicollinearity was detected in both models for all traits considered, with VIF values of 1.03 - 70.20 for RM and 1.03 - 60.70 for R. Collinearity increased with the increase of variables in the model and the decrease in the number of observations, and it was classified as weak, with condition index values between 10.00 and 26.77. In general, the variables associated with additive and non-additive effects were involved in multicollinearity, partially due to the natural connection between these covariables as fractions of the biological types in breed composition.
A curved multi-component aerosol hygroscopicity model framework: 2 Including organics
Topping, D. O.; McFiggans, G. B.; Coe, H.
2004-12-01
This paper describes the inclusion of organic particulate material within the Aerosol Diameter Dependent Equilibrium Model (ADDEM) framework described in the companion paper applied to inorganic aerosol components. The performance of ADDEM is analysed in terms of its capability to reproduce the behaviour of various organic and mixed inorganic/organic systems using recently published bulk data. Within the modelling architecture already described two separate thermodynamic models are coupled in an additive approach and combined with a method for solving the Köhler equation in order to develop a tool for predicting the water content associated with an aerosol of known inorganic/organic composition and dry size. For development of the organic module, the widely used group contribution method UNIFAC is employed to explicitly deal with the non-ideality in solution. The UNIFAC predictions for components of atmospheric importance were improved considerably by using revised interaction parameters derived from electro-dynamic balance studies. Using such parameters, the model was found to adequately describe mixed systems including 5-6 dicarboxylic acids, down to low relative humidity conditions. The additive approach for modelling mixed inorganic/organic systems worked well for a variety of mixtures. As expected, deviations between predicted and measured data increase with increasing concentration. Available surface tension models, used in evaluating the Kelvin term, were found to reproduce measured data with varying success. Deviations from experimental data increased with increased organic compound complexity. For components only slightly soluble in water, significant deviations from measured surface tension depression behaviour were predicted with both model formalisms tested. A Sensitivity analysis showed that such variation is likely to lead to predicted growth factors within the measurement uncertainty for growth factor taken in the sub-saturated regime. Greater
Predictive Model for Environmental Assessment in Additive Manufacturing Process
Le Bourhis , Florent; Kerbrat , Olivier; Dembinski , Lucas; Hascoët , Jean-Yves; Mognol , Pascal
2014-01-01
International audience; Additive Manufacturing is an innovative way to produce parts. However its environmental impact is unknown. To ensure the development of additive manufacturing processes it seems important to develop the concept of DFSAM (Design for Sustainable Additive Manufacturing). In fact, one of the objectives of environmental sustainable manufacturing is to minimize the whole flux consumption (electricity, material and fluids) during manufacturing step. To achieve this goal, it i...
Additional Research Needs to Support the GENII Biosphere Models
Energy Technology Data Exchange (ETDEWEB)
Napier, Bruce A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Snyder, Sandra F. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Arimescu, Carmen [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
2013-11-01
In the course of evaluating the current parameter needs for the GENII Version 2 code (Snyder et al. 2013), areas of possible improvement for both the data and the underlying models have been identified. As the data review was implemented, PNNL staff identified areas where the models can be improved both to accommodate the locally significant pathways identified and also to incorporate newer models. The areas are general data needs for the existing models and improved formulations for the pathway models.
James W. Hardin; Henrik Schmeidiche; Raymond J. Carroll
2003-01-01
This paper discusses and illustrates the method of regression calibration. This is a straightforward technique for fitting models with additive measurement error. We present this discussion in terms of generalized linear models (GLMs) following the notation defined in Hardin and Carroll (2003). Discussion will include specified measurement error, measurement error estimated by replicate error-prone proxies, and measurement error estimated by instrumental variables. The discussion focuses on s...
The Lag Model, a Turbulence Model for Wall Bounded Flows Including Separation
Olsen, Michael E.; Coakley, Thomas J.; Kwak, Dochan (Technical Monitor)
2001-01-01
A new class of turbulence model is described for wall bounded, high Reynolds number flows. A specific turbulence model is demonstrated, with results for favorable and adverse pressure gradient flowfields. Separation predictions are as good or better than either Spalart Almaras or SST models, do not require specification of wall distance, and have similar or reduced computational effort compared with these models.
BioModels: expanding horizons to include more modelling approaches and formats.
Glont, Mihai; Nguyen, Tung V N; Graesslin, Martin; Hälke, Robert; Ali, Raza; Schramm, Jochen; Wimalaratne, Sarala M; Kothamachu, Varun B; Rodriguez, Nicolas; Swat, Maciej J; Eils, Jurgen; Eils, Roland; Laibe, Camille; Malik-Sheriff, Rahuman S; Chelliah, Vijayalakshmi; Le Novère, Nicolas; Hermjakob, Henning
2018-01-04
BioModels serves as a central repository of mathematical models representing biological processes. It offers a platform to make mathematical models easily shareable across the systems modelling community, thereby supporting model reuse. To facilitate hosting a broader range of model formats derived from diverse modelling approaches and tools, a new infrastructure for BioModels has been developed that is available at http://www.ebi.ac.uk/biomodels. This new system allows submitting and sharing of a wide range of models with improved support for formats other than SBML. It also offers a version-control backed environment in which authors and curators can work collaboratively to curate models. This article summarises the features available in the current system and discusses the potential benefit they offer to the users over the previous system. In summary, the new portal broadens the scope of models accepted in BioModels and supports collaborative model curation which is crucial for model reproducibility and sharing. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.
Modelling and control of a microgrid including photovoltaic and wind generation
Hussain, Mohammed Touseef
Extensive increase of distributed generation (DG) penetration and the existence of multiple DG units at distribution level have introduced the notion of micro-grid. This thesis develops a detailed non-linear and small-signal dynamic model of a microgrid that includes PV, wind and conventional small scale generation along with their power electronics interfaces and the filters. The models developed evaluate the amount of generation mix from various DGs for satisfactory steady state operation of the microgrid. In order to understand the interaction of the DGs on microgrid system initially two simpler configurations were considered. The first one consists of microalternator, PV and their electronics, and the second system consists of microalternator and wind system each connected to the power system grid. Nonlinear and linear state space model of each microgrid are developed. Small signal analysis showed that the large participation of PV/wind can drive the microgrid to the brink of unstable region without adequate control. Non-linear simulations are carried out to verify the results obtained through small-signal analysis. The role of the extent of generation mix of a composite microgrid consisting of wind, PV and conventional generation was investigated next. The findings of the smaller systems were verified through nonlinear and small signal modeling. A central supervisory capacitor energy storage controller interfaced through a STATCOM was proposed to monitor and enhance the microgrid operation. The potential of various control inputs to provide additional damping to the system has been evaluated through decomposition techniques. The signals identified to have damping contents were employed to design the supervisory control system. The controller gains were tuned through an optimal pole placement technique. Simulation studies demonstrate that the STATCOM voltage phase angle and PV inverter phase angle were the best inputs for enhanced stability boundaries.
DEFF Research Database (Denmark)
Sun, C; Madsen, P; Lund, M S
2010-01-01
This study investigated the improvement in genetic evaluation of fertility traits by using production traits as secondary traits (MILK = 305-d milk yield, FAT = 305-d fat yield, and PROT = 305-d protein yield). Data including 471,742 records from first lactations of Denmark Holstein cows, covering...... (DATAC1, which only contained the first crop daughters) for proven bulls. In addition, the superiority of the models was evaluated by expected reliability of EBV, calculated from the prediction error variance of EBV. Based on these criteria, the models combining milk production traits showed better model...... stability and predictive ability than single-trait models for all the fertility traits, except for nonreturn rate within 56 d after first service. The stability and predictive ability for the model including MILK or PROT were similar to the model including all 3 milk production traits and better than...
Additive Manufacturing of Anatomical Models from Computed Tomography Scan Data.
Gür, Y
2014-12-01
The purpose of the study presented here was to investigate the manufacturability of human anatomical models from Computed Tomography (CT) scan data via a 3D desktop printer which uses fused deposition modelling (FDM) technology. First, Digital Imaging and Communications in Medicine (DICOM) CT scan data were converted to 3D Standard Triangle Language (STL) format by using In Vaselius digital imaging program. Once this STL file is obtained, a 3D physical version of the anatomical model can be fabricated by a desktop 3D FDM printer. As a case study, a patient's skull CT scan data was considered, and a tangible version of the skull was manufactured by a 3D FDM desktop printer. During the 3D printing process, the skull was built using acrylonitrile-butadiene-styrene (ABS) co-polymer plastic. The printed model showed that the 3D FDM printing technology is able to fabricate anatomical models with high accuracy. As a result, the skull model can be used for preoperative surgical planning, medical training activities, implant design and simulation to show the potential of the FDM technology in medical field. It will also improve communication between medical stuff and patients. Current result indicates that a 3D desktop printer which uses FDM technology can be used to obtain accurate anatomical models.
Multiple Imputation of Predictor Variables Using Generalized Additive Models
de Jong, Roel; van Buuren, Stef; Spiess, Martin
2016-01-01
The sensitivity of multiple imputation methods to deviations from their distributional assumptions is investigated using simulations, where the parameters of scientific interest are the coefficients of a linear regression model, and values in predictor variables are missing at random. The
Directory of Open Access Journals (Sweden)
Talerngsak Angkuraseranee
2010-05-01
Full Text Available The additive and dominance genetic variances of 5,801 Duroc reproductive and growth records were estimated usingBULPF90 PC-PACK. Estimates were obtained for number born alive (NBA, birth weight (BW, number weaned (NW, andweaning weight (WW. Data were analyzed using two mixed model equations. The first model included fixed effects andrandom effects identifying inbreeding depression, additive gene effect and permanent environments effects. The secondmodel was similar to the first model, but included the dominance genotypic effect. Heritability estimates of NBA, BW, NWand WW from the two models were 0.1558/0.1716, 0.1616/0.1737, 0.0372/0.0874 and 0.1584/0.1516 respectively. Proportionsof dominance effect to total phenotypic variance from the dominance model were 0.1024, 0.1625, 0.0470, and 0.1536 for NBA,BW, NW and WW respectively. Dominance effects were found to have sizable influence on the litter size traits analyzed.Therefore, genetic evaluation with the dominance model (Model 2 is found more appropriate than the animal model (Model 1.
Bouvet, J-M; Makouanzi, G; Cros, D; Vigneron, Ph
2016-02-01
Hybrids are broadly used in plant breeding and accurate estimation of variance components is crucial for optimizing genetic gain. Genome-wide information may be used to explore models designed to assess the extent of additive and non-additive variance and test their prediction accuracy for the genomic selection. Ten linear mixed models, involving pedigree- and marker-based relationship matrices among parents, were developed to estimate additive (A), dominance (D) and epistatic (AA, AD and DD) effects. Five complementary models, involving the gametic phase to estimate marker-based relationships among hybrid progenies, were developed to assess the same effects. The models were compared using tree height and 3303 single-nucleotide polymorphism markers from 1130 cloned individuals obtained via controlled crosses of 13 Eucalyptus urophylla females with 9 Eucalyptus grandis males. Akaike information criterion (AIC), variance ratios, asymptotic correlation matrices of estimates, goodness-of-fit, prediction accuracy and mean square error (MSE) were used for the comparisons. The variance components and variance ratios differed according to the model. Models with a parent marker-based relationship matrix performed better than those that were pedigree-based, that is, an absence of singularities, lower AIC, higher goodness-of-fit and accuracy and smaller MSE. However, AD and DD variances were estimated with high s.es. Using the same criteria, progeny gametic phase-based models performed better in fitting the observations and predicting genetic values. However, DD variance could not be separated from the dominance variance and null estimates were obtained for AA and AD effects. This study highlighted the advantages of progeny models using genome-wide information.
Vector generalized linear and additive models with an implementation in R
Yee, Thomas W
2015-01-01
This book presents a statistical framework that expands generalized linear models (GLMs) for regression modelling. The framework shared in this book allows analyses based on many semi-traditional applied statistics models to be performed as a coherent whole. This is possible through the approximately half-a-dozen major classes of statistical models included in the book and the software infrastructure component, which makes the models easily operable. The book’s methodology and accompanying software (the extensive VGAM R package) are directed at these limitations, and this is the first time the methodology and software are covered comprehensively in one volume. Since their advent in 1972, GLMs have unified important distributions under a single umbrella with enormous implications. The demands of practical data analysis, however, require a flexibility that GLMs do not have. Data-driven GLMs, in the form of generalized additive models (GAMs), are also largely confined to the exponential family. This book ...
The additive damage model: a mathematical model for cellular responses to drug combinations.
Jones, Leslie Braziel; Secomb, Timothy W; Dewhirst, Mark W; El-Kareh, Ardith W
2014-09-21
Mathematical models to describe dose-dependent cellular responses to drug combinations are an essential component of computational simulations for predicting therapeutic responses. Here, a new model, the additive damage model, is introduced and tested in cases where varying concentrations of two drugs are applied with a fixed exposure schedule. In the model, cell survival is determined by whether cellular damage, which depends on the concentrations of the drugs, exceeds a lethal threshold, which varies randomly in the cell population with a prescribed statistical distribution. Cellular damage is assumed to be additive, and is expressed as a sum of separate terms for each drug. Each term has a saturable dependence on drug concentration. The model has appropriate behavior over the entire range of drug concentrations, and is predictive, given single-agent dose-response data for each drug. The proposed model is compared with several other models, by testing their ability to fit 24 data sets for platinum-taxane combinations and 21 data sets for various other combinations. The Akaike Information Criterion is used to assess goodness of fit, taking into account the number of unknown parameters in each model. Overall, the additive damage model provides a better fit to the data sets than any previous model. The proposed model provides a basis for computational simulations of therapeutic responses. It predicts responses to drug combinations based on data for each drug acting as a single agent, and can be used as an improved null reference model for assessing synergy in the action of drug combinations. Copyright © 2014 Elsevier Ltd. All rights reserved.
2012-09-01
Pacific Naval Exercise SECNAV Secretary of the Navy SMP U.S Navy Ship Motions Program Ship Motions Program SOA Speed of Advance SSMI Special... SSMI /S, MHS). Additional soundings are derived via GPS-radio occultation measurements. Surface marine wind speeds are assimilated using several...different scatterometers (ASCAT, ERS-2, WindSat, SSMI ) while winds aloft are estimated from atmospheric motion vector (AMV) measurements using water
Mathematical Model of Thyristor Inverter Including a Series-parallel Resonant Circuit
Directory of Open Access Journals (Sweden)
Miroslaw Luft
2008-01-01
Full Text Available The article presents a mathematical model of thyristor inverter including a series-parallel resonant circuit with theaid of state variable method. Maple procedures are used to compute current and voltage waveforms in the inverter.
Mathematical model of thyristor inverter including a series-parallel resonant circuit
Luft, M.; Szychta, E.
2008-01-01
The article presents a mathematical model of thyristor inverter including a series-parallel resonant circuit with the aid of state variable method. Maple procedures are used to compute current and voltage waveforms in the inverter.
Mathematical Model of Thyristor Inverter Including a Series-parallel Resonant Circuit
Miroslaw Luft; Elzbieta Szychta
2008-01-01
The article presents a mathematical model of thyristor inverter including a series-parallel resonant circuit with theaid of state variable method. Maple procedures are used to compute current and voltage waveforms in the inverter.
National Research Council Canada - National Science Library
Boettner, Daisie
2001-01-01
.... This study develops models for a stand-alone Proton Exchange Membrane (PEM) fuel cell stack, a direct-hydrogen fuel cell system including auxiliaries, and a methanol reforming fuel cell system for integration into a vehicle performance simulator...
Tennant, David Robin; Bruyninckx, Chris
2018-03-01
Consumer exposure assessments for food additives are incomplete without information about the proportions of foods in each authorised category that contain the additive. Such information has been difficult to obtain but the Mintel Global New Products Database (GNPD) provides information about product launches across Europe over the past 20 years. These data can be searched to identify products with specific additives listed on product labels and the numbers compared with total product launches for food and drink categories in the same database to determine the frequency of occurrence. There are uncertainties associated with the data but these can be managed by adopting a cautious and conservative approach. GNPD data can be mapped with authorised food categories and with food descriptions used in the EFSA Comprehensive European Food Consumption Surveys Database for exposure modelling. The data, when presented as percent occurrence, could be incorporated into the EFSA ANS Panel's 'brand-loyal/non-brand loyal exposure model in a quantitative way. Case studies of preservative, antioxidant, colour and sweetener additives showed that the impact of including occurrence data is greatest in the non-brand loyal scenario. Recommendations for future research include identifying occurrence data for alcoholic beverages, linking regulatory food codes, FoodEx and GNPD product descriptions, developing the use of occurrence data for carry-over foods and improving understanding of brand loyalty in consumer exposure models.
Modeling of the Direct Current Generator Including the Magnetic Saturation and Temperature Effects
Directory of Open Access Journals (Sweden)
Alfonso J. Mercado-Samur
2013-11-01
Full Text Available In this paper the inclusion of temperature effect on the field resistance on the direct current generator model DC1A, which is valid to stability studies is proposed. First, the linear generator model is presented, after the effect of magnetic saturation and the change in the resistance value due to temperature produced by the field current are included. The comparison of experimental results and model simulations to validate the model is used. A direct current generator model which is a better representation of the generator is obtained. Visual comparison between simulations and experimental results shows the success of the proposed model, because it presents the lowest error of the compared models. The accuracy of the proposed model is observed via Modified Normalized Sum of Squared Errors index equal to 3.8979%.
Atmosphere-soil-vegetation model including CO2 exchange processes: SOLVEG2
International Nuclear Information System (INIS)
Nagai, Haruyasu
2004-11-01
A new atmosphere-soil-vegetation model named SOLVEG2 (SOLVEG version 2) was developed to study the heat, water, and CO 2 exchanges between the atmosphere and land-surface. The model consists of one-dimensional multilayer sub-models for the atmosphere, soil, and vegetation. It also includes sophisticated processes for solar and long-wave radiation transmission in vegetation canopy and CO 2 exchanges among the atmosphere, soil, and vegetation. Although the model usually simulates only vertical variation of variables in the surface-layer atmosphere, soil, and vegetation canopy by using meteorological data as top boundary conditions, it can be used by coupling with a three-dimensional atmosphere model. In this paper, details of SOLVEG2, which includes the function of coupling with atmosphere model MM5, are described. (author)
Modeling of Cementitious Representative Volume Element with Additives
Shahzamanian, M. M.; Basirun, W. J.
CEMHYD3D has been employed to simulate the representative volume element (RVE) of cementitious systems (Type I cement) containing fly ash (Class F) through a voxel-based finite element analysis (FEA) approach. Three-dimensional microstructures composed of voxels are generated for a heterogeneous cementitious material consisting of various constituent phases. The primary focus is to simulate a cementitious RVE containing fly ash and to present the homogenized macromechanical properties obtained from its analysis. Simple kinematic uniform boundary conditions as well as periodic boundary conditions were imposed on the RVE to obtain the principal and shear moduli. Our current work considers the effect of fly ash percentage on the elastic properties based on the mass and volume replacements. RVEs with lengths of 50, 100 and 200μm at different degrees of hydration are generated, and the elastic properties are modeled and simulated. In general, the elastic properties of a cementitious RVE with fly ash replacement for cement based on mass and volume differ from each other. Moreover, the finite element (FE) mesh density effect is studied. Results indicate that mechanical properties decrease with increasing mesh density.
van Lith, PF; Betlem, BHL; Roffel, B
2003-01-01
This paper presents the development of a simple model which describes the product quality and production over time of an experimental batch distillation column, including start-up. The model structure is based on a simple physical framework, which is augmented with fuzzy logic. This provides a way
Enhanced UWB Radio Channel Model for Short-Range Communication Scenarios Including User Dynamics
DEFF Research Database (Denmark)
Kovacs, Istvan Zsolt; Nguyen, Tuan Hung; Eggers, Patrick Claus F.
2005-01-01
channel model represents an enhancement of the existing IEEE 802.15.3a/4a PAN channel model, where antenna and user-proximity effects are not included. Our investigations showed that significant variations of the received wideband power and time-delay signal clustering are possible due the human body...
Including operational data in QMRA model: development and impact of model inputs.
Jaidi, Kenza; Barbeau, Benoit; Carrière, Annie; Desjardins, Raymond; Prévost, Michèle
2009-03-01
A Monte Carlo model, based on the Quantitative Microbial Risk Analysis approach (QMRA), has been developed to assess the relative risks of infection associated with the presence of Cryptosporidium and Giardia in drinking water. The impact of various approaches for modelling the initial parameters of the model on the final risk assessments is evaluated. The Monte Carlo simulations that we performed showed that the occurrence of parasites in raw water was best described by a mixed distribution: log-Normal for concentrations > detection limit (DL), and a uniform distribution for concentrations risks significantly. The mean annual risks for conventional treatment are: 1.97E-03 (removal credit adjusted by log parasite = log spores), 1.58E-05 (log parasite = 1.7 x log spores) or 9.33E-03 (regulatory credits based on the turbidity measurement in filtered water). Using full scale validated SCADA data, the simplified calculation of CT performed at the plant was shown to largely underestimate the risk relative to a more detailed CT calculation, which takes into consideration the downtime and system failure events identified at the plant (1.46E-03 vs. 3.93E-02 for the mean risk).
DEFF Research Database (Denmark)
Andersen, Morten; Vinther, Frank; Ottesen, Johnny T.
2013-01-01
This paper presents a mathematical model of the HPA axis. The HPA axis consists of the hypothalamus, the pituitary and the adrenal glands in which the three hormones CRH, ACTH and cortisol interact through receptor dynamics. Furthermore, it has been suggested that receptors in the hippocampus have...... an influence on the axis.A model is presented with three coupled, non-linear differential equations, with the hormones CRH, ACTH and cortisol as variables. The model includes the known features of the HPA axis, and includes the effects from the hippocampus through its impact on CRH in the hypothalamus...
Formation and reduction of carcinogenic furan in various model systems containing food additives.
Kim, Jin-Sil; Her, Jae-Young; Lee, Kwang-Geun
2015-12-15
The aim of this study was to analyse and reduce furan in various model systems. Furan model systems consisting of monosaccharides (0.5M glucose and ribose), amino acids (0.5M alanine and serine) and/or 1.0M ascorbic acid were heated at 121°C for 25 min. The effects of food additives (each 0.1M) such as metal ions (iron sulphate, magnesium sulphate, zinc sulphate and calcium sulphate), antioxidants (BHT and BHA), and sodium sulphite on the formation of furan were measured. The level of furan formed in the model systems was 6.8-527.3 ng/ml. The level of furan in the model systems of glucose/serine and glucose/alanine increased 7-674% when food additives were added. In contrast, the level of furan decreased by 18-51% in the Maillard reaction model systems that included ribose and alanine/serine with food additives except zinc sulphate. Copyright © 2014 Elsevier Ltd. All rights reserved.
Modeling of Ti-W Solidification Microstructures Under Additive Manufacturing Conditions
Rolchigo, Matthew R.; Mendoza, Michael Y.; Samimi, Peyman; Brice, David A.; Martin, Brian; Collins, Peter C.; LeSar, Richard
2017-07-01
Additive manufacturing (AM) processes have many benefits for the fabrication of alloy parts, including the potential for greater microstructural control and targeted properties than traditional metallurgy processes. To accelerate utilization of this process to produce such parts, an effective computational modeling approach to identify the relationships between material and process parameters, microstructure, and part properties is essential. Development of such a model requires accounting for the many factors in play during this process, including laser absorption, material addition and melting, fluid flow, various modes of heat transport, and solidification. In this paper, we start with a more modest goal, to create a multiscale model for a specific AM process, Laser Engineered Net Shaping (LENS™), which couples a continuum-level description of a simplified beam melting problem (coupling heat absorption, heat transport, and fluid flow) with a Lattice Boltzmann-cellular automata (LB-CA) microscale model of combined fluid flow, solute transport, and solidification. We apply this model to a binary Ti-5.5 wt pct W alloy and compare calculated quantities, such as dendrite arm spacing, with experimental results reported in a companion paper.
Conchúir, Shane Ó.; Der, Bryan S.; Drew, Kevin; Kuroda, Daisuke; Xu, Jianqing; Weitzner, Brian D.; Renfrew, P. Douglas; Sripakdeevong, Parin; Borgo, Benjamin; Havranek, James J.; Kuhlman, Brian; Kortemme, Tanja; Bonneau, Richard; Gray, Jeffrey J.; Das, Rhiju
2013-01-01
The Rosetta molecular modeling software package provides experimentally tested and rapidly evolving tools for the 3D structure prediction and high-resolution design of proteins, nucleic acids, and a growing number of non-natural polymers. Despite its free availability to academic users and improving documentation, use of Rosetta has largely remained confined to developers and their immediate collaborators due to the code’s difficulty of use, the requirement for large computational resources, and the unavailability of servers for most of the Rosetta applications. Here, we present a unified web framework for Rosetta applications called ROSIE (Rosetta Online Server that Includes Everyone). ROSIE provides (a) a common user interface for Rosetta protocols, (b) a stable application programming interface for developers to add additional protocols, (c) a flexible back-end to allow leveraging of computer cluster resources shared by RosettaCommons member institutions, and (d) centralized administration by the RosettaCommons to ensure continuous maintenance. This paper describes the ROSIE server infrastructure, a step-by-step ‘serverification’ protocol for use by Rosetta developers, and the deployment of the first nine ROSIE applications by six separate developer teams: Docking, RNA de novo, ERRASER, Antibody, Sequence Tolerance, Supercharge, Beta peptide design, NCBB design, and VIP redesign. As illustrated by the number and diversity of these applications, ROSIE offers a general and speedy paradigm for serverification of Rosetta applications that incurs negligible cost to developers and lowers barriers to Rosetta use for the broader biological community. ROSIE is available at http://rosie.rosettacommons.org. PMID:23717507
Numerical Acoustic Models Including Viscous and Thermal losses: Review of Existing and New Methods
DEFF Research Database (Denmark)
Andersen, Peter Risby; Cutanda Henriquez, Vicente; Aage, Niels
2017-01-01
This work presents an updated overview of numerical methods including acoustic viscous and thermal losses. Numerical modelling of viscothermal losses has gradually become more important due to the general trend of making acoustic devices smaller. Not including viscothermal acoustic losses...... in such numerical computations will therefore lead to inaccurate or even wrong results. Both, Finite Element Method (FEM) and Boundary Element Method (BEM), formulations are available that incorporate these loss mechanisms. Including viscothermal losses in FEM computations can be computationally very demanding, due...... and BEM method including viscothermal dissipation are compared and investigated....
International Nuclear Information System (INIS)
Obe, Emeka S.; Binder, A.
2011-01-01
A detailed model in direct-phase variables of a synchronous reluctance motor operating at mains voltage and frequency is presented. The model includes the stator and rotor slot openings, the actual winding layout and the reluctance rotor geometry. Hence, all mmf and permeance harmonics are taken into account. It is seen that non-negligible harmonics introduced by slots are present in the inductances computed by the winding function procedure. These harmonics are usually ignored in d-q models. The machine performance is simulated in the stator reference frame to depict the difference between this new direct-phase model including all harmonics and the conventional rotor reference frame d-q model. Saturation is included by using a polynomial fitting the variation of d-axis inductance with stator current obtained by finite-element software FEMAG DC (registered) . The detailed phase-variable model can yield torque pulsations comparable to those obtained from finite elements while the d-q model cannot.
A Two-Account Life Insurance Model for Scenario-Based Valuation Including Event Risk
DEFF Research Database (Denmark)
Jensen, Ninna Reitzel; Schomacker, Kristian Juul
2015-01-01
Using a two-account model with event risk, we model life insurance contracts taking into account both guaranteed and non-guaranteed payments in participating life insurance as well as in unit-linked insurance. Here, event risk is used as a generic term for life insurance events, such as death......, disability, etc. In our treatment of participating life insurance, we have special focus on the bonus schemes “consolidation” and “additional benefits”, and one goal is to formalize how these work and interact. Another goal is to describe similarities and differences between participating life insurance...... and unit-linked insurance. By use of a two-account model, we are able to illustrate general concepts without making the model too abstract. To allow for complicated financial markets without dramatically increasing the mathematical complexity, we focus on economic scenarios. We illustrate the use of our...
Modeling of Temperature-Dependent Noise in Silicon Nanowire FETs including Self-Heating Effects
Anandan, P.; Malathi, N.; Mohankumar, N.
2014-01-01
Silicon nanowires are leading the CMOS era towards the downsizing limit and its nature will be effectively suppress the short channel effects. Accurate modeling of thermal noise in nanowires is crucial for RF applications of nano-CMOS emerging technologies. In this work, a perfect temperature-dependent model for silicon nanowires including the self-heating effects has been derived and its effects on device parameters have been observed. The power spectral density as a function of thermal resi...
L. D. Emberson; W. J. Massman; P. Buker; G. Soja; I. Van De Sand; G. Mills; C. Jacobs
2006-01-01
Currently, stomatal O3 flux and flux-response models only exist for wheat and potato (LRTAP Convention, 2004), as such there is a need to extend these models to include additional crop types. The possibility of establishing robust stomatal flux models for five agricultural crops (tomato, grapevine, sugar beet, maize and sunflower) was investigated. These crops were...
Dipole model analysis of highest precision HERA data, including very low Q2's
International Nuclear Information System (INIS)
Luszczak, A.; Kowalski, H.
2016-12-01
We analyse, within a dipole model, the final, inclusive HERA DIS cross section data in the low χ region, using fully correlated errors. We show, that these highest precision data are very well described within the dipole model framework starting from Q 2 values of 3.5 GeV 2 to the highest values of Q 2 =250 GeV 2 . To analyze the saturation effects we evaluated the data including also the very low 0.35including this region show a preference of the saturation ansatz.
Czamanske, Gerald K.
2002-01-01
The Noril'sk I, Talnakh, and Kharaelakh intrusions of the Noril'sk district host one of the outstanding metal concentrations in the world; contained Cu-Ni resources are comparable to the deposits at Sudbury, Ontario and the platinum group element (PGE) resource is second only to that of the Bushveld Complex. Our opportunity to cooperatively sample and study this district in Siberian Russia arose in 1990 through a memorandum of understanding between the U.S. Geological Survey and the former Ministry of Geology of the U.S.S.R. The world-class significance of these deposits and the possibility that understanding their geologic context, including construction of a credible 'ore-deposit model,' will lead to discovery of similar deposits elsewhere, inspired extensive studies of the ores, the mafic-intrusions which host them, and associated flood basalts.
The No-Core Gamow Shell Model: Including the continuum in the NCSM
Barrett, B R; Michel, N; Płoszajczak, M
2015-01-01
We are witnessing an era of intense experimental efforts that will provide information about the properties of nuclei far from the line of stability, regarding resonant and scattering states as well as (weakly) bound states. This talk describes our formalism for including these necessary ingredients into the No-Core Shell Model by using the Gamow Shell Model approach. Applications of this new approach, known as the No-Core Gamow Shell Model, both to benchmark cases as well as to unstable nuclei will be given.
Karlsson, Hanna; Pettersson, Anders; Larsson, Marcus; Strömberg, Tomas
2011-02-01
Model based analysis of calibrated diffuse reflectance spectroscopy can be used for determining oxygenation and concentration of skin chromophores. This study aimed at assessing the effect of including melanin in addition to hemoglobin (Hb) as chromophores and compensating for inhomogeneously distributed blood (vessel packaging), in a single-layer skin model. Spectra from four humans were collected during different provocations using a twochannel fiber optic probe with source-detector separations 0.4 and 1.2 mm. Absolute calibrated spectra using data from either a single distance or both distances were analyzed using inverse Monte Carlo for light transport and Levenberg-Marquardt for non-linear fitting. The model fitting was excellent using a single distance. However, the estimated model failed to explain spectra from the other distance. The two-distance model did not fit the data well at either distance. Model fitting was significantly improved including melanin and vessel packaging. The most prominent effect when fitting data from the larger separation compared to the smaller separation was a different light scattering decay with wavelength, while the tissue fraction of Hb and saturation were similar. For modeling spectra at both distances, we propose using either a multi-layer skin model or a more advanced model for the scattering phase function.
Conceptualizing a Dynamic Fall Risk Model Including Intrinsic Risks and Exposures.
Klenk, Jochen; Becker, Clemens; Palumbo, Pierpaolo; Schwickert, Lars; Rapp, Kilan; Helbostad, Jorunn L; Todd, Chris; Lord, Stephen R; Kerse, Ngaire
2017-11-01
Falls are a major cause of injury and disability in older people, leading to serious health and social consequences including fractures, poor quality of life, loss of independence, and institutionalization. To design and provide adequate prevention measures, accurate understanding and identification of person's individual fall risk is important. However, to date, the performance of fall risk models is weak compared with models estimating, for example, cardiovascular risk. This deficiency may result from 2 factors. First, current models consider risk factors to be stable for each person and not change over time, an assumption that does not reflect real-life experience. Second, current models do not consider the interplay of individual exposure including type of activity (eg, walking, undertaking transfers) and environmental risks (eg, lighting, floor conditions) in which activity is performed. Therefore, we posit a dynamic fall risk model consisting of intrinsic risk factors that vary over time and exposure (activity in context). eHealth sensor technology (eg, smartphones) begins to enable the continuous measurement of both the above factors. We illustrate our model with examples of real-world falls from the FARSEEING database. This dynamic framework for fall risk adds important aspects that may improve understanding of fall mechanisms, fall risk models, and the development of fall prevention interventions. Copyright © 2017 AMDA – The Society for Post-Acute and Long-Term Care Medicine. Published by Elsevier Inc. All rights reserved.
Modeling of cylindrical surrounding gate MOSFETs including the fringing field effects
International Nuclear Information System (INIS)
Gupta, Santosh K.; Baishya, Srimanta
2013-01-01
A physically based analytical model for surface potential and threshold voltage including the fringing gate capacitances in cylindrical surround gate (CSG) MOSFETs has been developed. Based on this a subthreshold drain current model has also been derived. This model first computes the charge induced in the drain/source region due to the fringing capacitances and considers an effective charge distribution in the cylindrically extended source/drain region for the development of a simple and compact model. The fringing gate capacitances taken into account are outer fringe capacitance, inner fringe capacitance, overlap capacitance, and sidewall capacitance. The model has been verified with the data extracted from 3D TCAD simulations of CSG MOSFETs and was found to be working satisfactorily. (semiconductor devices)
International Nuclear Information System (INIS)
Chen, Y W; Zhang, L F; Huang, J P
2007-01-01
By using theoretical analysis and computer simulations, we develop the Watts-Strogatz network model by including degree distribution, in an attempt to improve the comparison between characteristic path lengths and clustering coefficients predicted by the original Watts-Strogatz network model and those of the real networks with the small-world property. Good agreement between the predictions of the theoretical analysis and those of the computer simulations has been shown. It is found that the developed Watts-Strogatz network model can fit the real small-world networks more satisfactorily. Some other interesting results are also reported by adjusting the parameters in a model degree-distribution function. The developed Watts-Strogatz network model is expected to help in the future analysis of various social problems as well as financial markets with the small-world property
Kim, Young-Hoon; Kim, June Sic; Lee, Sang Kun; Chung, Chun Kee
2017-10-01
Postoperative neurologic outcomes after primary somatosensory cortex (S1) resection have not been well documented. This study was designed to evaluate the neurologic deterioration that follows resection of the S1 areas and to assess the risk factors associated with these morbidities. We reviewed 48 consecutive patients with medically intractable epilepsy who underwent resection of the S1 and/or the adjacent cortex. The 48 patients were categorized into 4 groups according to the resected area as seen on postoperative magnetic resonance images: group 1 (resection of S1 only; n = 4), 2 (the posterior parietal cortex [PPC] only; n = 24), 3 (S1 and PPC; n = 10), and 4 (S1 and precentral gyrus; n = 10). After the resection of S1 areas, 19 patients (40%) experienced neurologic worsening, including 6 (13%) with permanent and 13 (27%) with transient deficits. Patients with permanent deficits included 2 with motor dysphasia, 1 with dysesthesia, 2 with equilibrium impairments, and 1 with fine movement disturbance of the hand. The overall and permanent neurologic risks were 25% and 0% in group 1, 17% and 4% in group 2, 80% and 20% in group 3, and 60% and 30% in group 4, respectively. Multivariate analysis determined that the resection of both S1 and PPC was the only significant risk factor for neurologic deficits (P = 0.002). The neurologic risk of the resection of S1 and/or its adjacent cortical areas was 40%. The additional resection of the PPC was significantly associated with the development of postoperative neurologic impairments. Copyright © 2017 Elsevier Inc. All rights reserved.
International Nuclear Information System (INIS)
Broxton, D.E.
1979-08-01
This report contains data collected during a geochemical survey for uranium in the Billings quadrangle of south-central Montana. Totals of 1665 water and 1424 sediment samples were collected from 1998 locations in the quadrangle. Histograms and statistical data for uranium concentrations in water and sediment samples and thorium concentrations in sediment samples are given. Elemental concentration, field measurement, weather, geologic, and geographic data for each sample location are listed for waters in Appendix I-A and for sediments in Appendix I-B. Uranium/thorium ratios for sediment samples are also included in Appendix I-B. Appendix II describes standard LASL HSSR field and analytical procedures and explains the codes used in Appendix I. In addition to uranium, waters were analyzed for calcium, chromium, cobalt, copper, iron, lead, magnesium, manganese, molybdenum, nickel, titanium, and zinc (Appendix I-A). Sediments were analyzed for uranium and thorium as well as aluminum, antimony, barium, beryllium, bismuth, cadmium, calcium, cerium, cesium, chlorine, chromium, cobalt, copper, dysprosium, europium, gold, hafnium, iron, lanthanum, lead, lithium, lutetium, magnesium, manganese, nickel, niobium, potassium, rubidium, samarium, scandium, silver, sodium, strontium, tantalum, terbium, tin, titanium, tungsten, vanadium, ytterbium, and zinc (Appendix I-B). All elemental analyzes were performed at the LASL. Water samples delayed neutron counting, and plasma-source emission spectroscopy. Sediments were analyzed by delayed neutron counting, neutron activation analysis, x-ray fluorescence, and arc-source emission spectrography
International Nuclear Information System (INIS)
Planner, H.N.
1980-10-01
A total of 1797 locations was sampled over a 19 330-km 2 area, providing an average density of one sample location per 11 km 2 . This report contains results for uranium in water samples and uranium and 42 additional elements in sediment samples. A total of 1279 water samples was collected from streams (1125) and springs (154). Uranium concentrations for all water samples range from below the detection limit of 0.02 ppB to 37.56 ppB. Mean concentrations in streams and springs are 1.05 ppB and 1.19 ppB, respectively. A total of 1784 sediment samples was collected from streams (1590), springs (193), and one pond. Uranium concentrations in sediments range from 1.27 to 223.80 ppM. Statistical mean uranium concentrations for wet stream (8.55 ppM) and spring (7.51 ppM) sediments are found to be greater than their dry counterparts (5.13 ppM and 4.96 ppM, respectively). Field data, recorded at the collection site, are reported with the elemental concentrations for each water and sediment sample listed. These data include a scintillometer determination of the equivalent uranium, pH and conductivity measurements, and geographic and weather information
Including an ocean carbon cycle model into iLOVECLIM (v1.0)
Bouttes, N.; Roche, D.M.V.A.P.; Mariotti, V.; Bopp, L.
2015-01-01
The atmospheric carbon dioxide concentration plays a crucial role in the radiative balance and as such has a strong influence on the evolution of climate. Because of the numerous interactions between climate and the carbon cycle, it is necessary to include a model of the carbon cycle within a
A Novel Mean-Value Model of the Cardiovascular System Including a Left Ventricular Assist Device.
Ochsner, Gregor; Amacher, Raffael; Schmid Daners, Marianne
2017-06-01
Time-varying elastance models (TVEMs) are often used for simulation studies of the cardiovascular system with a left ventricular assist device (LVAD). Because these models are computationally expensive, they cannot be used for long-term simulation studies. In addition, their equilibria are periodic solutions, which prevent the extraction of a linear time-invariant model that could be used e.g. for the design of a physiological controller. In the current paper, we present a new type of model to overcome these problems: the mean-value model (MVM). The MVM captures the behavior of the cardiovascular system by representative mean values that do not change within the cardiac cycle. For this purpose, each time-varying element is manually converted to its mean-value counterpart. We compare the derived MVM to a similar TVEM in two simulation experiments. In both cases, the MVM is able to fully capture the inter-cycle dynamics of the TVEM. We hope that the new MVM will become a useful tool for researchers working on physiological control algorithms. This paper provides a plant model that enables for the first time the use of tools from classical control theory in the field of physiological LVAD control.
Lichtenberger, John P; Tatum, Peter S; Gada, Satyen; Wyn, Mark; Ho, Vincent B; Liacouras, Peter
2018-03-01
This work describes customized, task-specific simulation models derived from 3D printing in clinical settings and medical professional training programs. Simulation models/task trainers have an array of purposes and desired achievements for the trainee, defining that these are the first step in the production process. After this purpose is defined, computer-aided design and 3D printing (additive manufacturing) are used to create a customized anatomical model. Simulation models then undergo initial in-house testing by medical specialists followed by a larger scale beta testing. Feedback is acquired, via surveys, to validate effectiveness and to guide or determine if any future modifications and/or improvements are necessary. Numerous custom simulation models have been successfully completed with resulting task trainers designed for procedures, including removal of ocular foreign bodies, ultrasound-guided joint injections, nerve block injections, and various suturing and reconstruction procedures. These task trainers have been frequently utilized in the delivery of simulation-based training with increasing demand. 3D printing has been integral to the production of limited-quantity, low-cost simulation models across a variety of medical specialties. In general, production cost is a small fraction of a commercial, generic simulation model, if available. These simulation and training models are customized to the educational need and serve an integral role in the education of our military health professionals.
International Nuclear Information System (INIS)
Coolen, F.P.A.
1997-01-01
This paper is intended to make researchers in reliability theory aware of a recently introduced Bayesian model with imprecise prior distributions for statistical inference on failure data, that can also be considered as a robust Bayesian model. The model consists of a multinomial distribution with Dirichlet priors, making the approach basically nonparametric. New results for the model are presented, related to right-censored observations, where estimation based on this model is closely related to the product-limit estimator, which is an important statistical method to deal with reliability or survival data including right-censored observations. As for the product-limit estimator, the model considered in this paper aims at not using any information other than that provided by observed data, but our model fits into the robust Bayesian context which has the advantage that all inferences can be based on probabilities or expectations, or bounds for probabilities or expectations. The model uses a finite partition of the time-axis, and as such it is also related to life-tables
MEMLS3&a: Microwave Emission Model of Layered Snowpacks adapted to include backscattering
Directory of Open Access Journals (Sweden)
M. Proksch
2015-08-01
Full Text Available The Microwave Emission Model of Layered Snowpacks (MEMLS was originally developed for microwave emissions of snowpacks in the frequency range 5–100 GHz. It is based on six-flux theory to describe radiative transfer in snow including absorption, multiple volume scattering, radiation trapping due to internal reflection and a combination of coherent and incoherent superposition of reflections between horizontal layer interfaces. Here we introduce MEMLS3&a, an extension of MEMLS, which includes a backscatter model for active microwave remote sensing of snow. The reflectivity is decomposed into diffuse and specular components. Slight undulations of the snow surface are taken into account. The treatment of like- and cross-polarization is accomplished by an empirical splitting parameter q. MEMLS3&a (as well as MEMLS is set up in a way that snow input parameters can be derived by objective measurement methods which avoid fitting procedures of the scattering efficiency of snow, required by several other models. For the validation of the model we have used a combination of active and passive measurements from the NoSREx (Nordic Snow Radar Experiment campaign in Sodankylä, Finland. We find a reasonable agreement between the measurements and simulations, subject to uncertainties in hitherto unmeasured input parameters of the backscatter model. The model is written in Matlab and the code is publicly available for download through the following website: http://www.iapmw.unibe.ch/research/projects/snowtools/memls.html.
Diehl, S; Zambrano, J; Carlsson, B
2016-01-01
A reduced model of a completely stirred-tank bioreactor coupled to a settling tank with recycle is analyzed in its steady states. In the reactor, the concentrations of one dominant particulate biomass and one soluble substrate component are modelled. While the biomass decay rate is assumed to be constant, growth kinetics can depend on both substrate and biomass concentrations, and optionally model substrate inhibition. Compressive and hindered settling phenomena are included using the Bürger-Diehl settler model, which consists of a partial differential equation. Steady-state solutions of this partial differential equation are obtained from an ordinary differential equation, making steady-state analysis of the entire plant difficult. A key result showing that the ordinary differential equation can be replaced with an approximate algebraic equation simplifies model analysis. This algebraic equation takes the location of the sludge-blanket during normal operation into account, allowing for the limiting flux capacity caused by compressive settling to easily be included in the steady-state mass balance equations for the entire plant system. This novel approach grants the possibility of more realistic solutions than other previously published reduced models, comprised of yet simpler settler assumptions. The steady-state concentrations, solids residence time, and the wastage flow ratio are functions of the recycle ratio. Solutions are shown for various growth kinetics; with different values of biomass decay rate, influent volumetric flow, and substrate concentration. Copyright © 2015 Elsevier Ltd. All rights reserved.
Modelling time course gene expression data with finite mixtures of linear additive models.
Grün, Bettina; Scharl, Theresa; Leisch, Friedrich
2012-01-15
A model class of finite mixtures of linear additive models is presented. The component-specific parameters in the regression models are estimated using regularized likelihood methods. The advantages of the regularization are that (i) the pre-specified maximum degrees of freedom for the splines is less crucial than for unregularized estimation and that (ii) for each component individually a suitable degree of freedom is selected in an automatic way. The performance is evaluated in a simulation study with artificial data as well as on a yeast cell cycle dataset of gene expression levels over time. The latest release version of the R package flexmix is available from CRAN (http://cran.r-project.org/).
DEFF Research Database (Denmark)
Vafamand, Navid; Asemani, Mohammad Hassan; Khayatiyan, Alireza
2018-01-01
criterion, new robust controller design conditions in terms of linear matrix inequalities are derived. Three practical case studies, electric power steering system, a helicopter model and servo-mechanical system, are presented to demonstrate the importance of such class of nonlinear systems comprising......This paper proposes a novel robust controller design for a class of nonlinear systems including hard nonlinearity functions. The proposed approach is based on Takagi-Sugeno (TS) fuzzy modeling, nonquadratic Lyapunov function, and nonparallel distributed compensation scheme. In this paper, a novel...... TS modeling of the nonlinear dynamics with signum functions is proposed. This model can exactly represent the original nonlinear system with hard nonlinearity while the discontinuous signum functions are not approximated. Based on the bounded-input-bounded-output stability scheme and L₁ performance...
A roller chain drive model including contact with guide-bars
DEFF Research Database (Denmark)
Pedersen, Sine Leergaard; Hansen, John Michael; Ambrósio, J. A. C.
2004-01-01
as continuous force. The model of the roller-chain drive now proposed departs from an earlier model where two contact/impact methods are proposed to describe the contact between the rollers of the chain and the teeth of the sprockets. These different formulations are based on unilateral constraints....... In the continuous force method the roller-sprocket contact, is represented by forces applied on each seated roller and in the respective sprocket teeth. These forces are functions of the pseudo penetrations between roller and sprocket, impacting velocities and a restitution coefficient. In the continuous force......A model of a roller chain drive is developed and applied to the simulation and analysis of roller chain drives of large marine diesel engines. The model includes the impact with guide-bars that are the motion delimiter components on the chain strands between the sprockets. The main components...
Prospects for genetically modified non-human primate models, including the common marmoset.
Sasaki, Erika
2015-04-01
Genetically modified mice have contributed much to studies in the life sciences. In some research fields, however, mouse models are insufficient for analyzing the molecular mechanisms of pathology or as disease models. Often, genetically modified non-human primate (NHP) models are desired, as they are more similar to human physiology, morphology, and anatomy. Recent progress in studies of the reproductive biology in NHPs has enabled the introduction of exogenous genes into NHP genomes or the alteration of endogenous NHP genes. This review summarizes recent progress in the production of genetically modified NHPs, including the common marmoset, and future perspectives for realizing genetically modified NHP models for use in life sciences research. Copyright © 2015 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.
International Nuclear Information System (INIS)
Bolivar, S.L.
1980-05-01
Totals of 982 water and 1155 sediment samples were collected from 1962 locations. Samples were collected at the nominal reconnaissnce density of one sample location per 10 km 2 . Water samples were collected from streams, springs, and wells and were analyzed for uranium. Sediment samples, taken from streams and springs, were analyzed for uranium, thorium, and 41 additional elements. Histograms and statistical data for uranium concentrations in water and sediment samples and thorium concentrations in sediment samples are given. Elemental concentration, field measurement, weather, geologic, and geographic data for each sample location are listed for waters and for sediments. U/Th ratios for sediment samples are included. Uranium analyses for water samples and multielement analyses for sediment samples are reported. A supplemental report containing the results of multielement analyses of water samples will be open filed in the near future. Water samples were initially analyzed for uranium by fluorometry. All water samples containing more than 40 ppB uranium were reanalyzed by DNC. Sediments were analyzed for U and Th, as well as Al, Sb, Ba, Be, Bi, Cd, Ca, Ce, Cs, Cl, Cr, Co, Cu, Dy, Eu, Au, Hf, Fe, La, Pb, Li, Lu, Mg, Mn, Ni, Nb, K, Rb, Sa, Sc, Ag, Na, Sr, Ta, Tb, Sn, Ti, W, V, Yb, and Zn. All sediments were analyzed for U by delayed neutron counting. Other elemental concentrations in sediments were determined by neutron activation analysis for 31 elements, by x-ray fluorescence for 9 elements, and by arc-source emission spectroscopy for 2 elements. Analytical results are reported as ppM. Descriptions of procedures used for analysis of water and sediments samples as well as analytical precisions and detection limits are given
Kinetic modelling of anaerobic hydrolysis of solid wastes, including disintegration processes
Energy Technology Data Exchange (ETDEWEB)
García-Gen, Santiago [Department of Chemical Engineering, Institute of Technology, University of Santiago de Compostela, 15782 Santiago de Compostela (Spain); Sousbie, Philippe; Rangaraj, Ganesh [INRA, UR50, Laboratoire de Biotechnologie de l’Environnement, Avenue des Etangs, Narbonne F-11100 (France); Lema, Juan M. [Department of Chemical Engineering, Institute of Technology, University of Santiago de Compostela, 15782 Santiago de Compostela (Spain); Rodríguez, Jorge, E-mail: jrodriguez@masdar.ac.ae [Department of Chemical Engineering, Institute of Technology, University of Santiago de Compostela, 15782 Santiago de Compostela (Spain); Institute Centre for Water and Environment (iWater), Masdar Institute of Science and Technology, PO Box 54224 Abu Dhabi (United Arab Emirates); Steyer, Jean-Philippe; Torrijos, Michel [INRA, UR50, Laboratoire de Biotechnologie de l’Environnement, Avenue des Etangs, Narbonne F-11100 (France)
2015-01-15
Highlights: • Fractionation of solid wastes into readily and slowly biodegradable fractions. • Kinetic coefficients estimation from mono-digestion batch assays. • Validation of kinetic coefficients with a co-digestion continuous experiment. • Simulation of batch and continuous experiments with an ADM1-based model. - Abstract: A methodology to estimate disintegration and hydrolysis kinetic parameters of solid wastes and validate an ADM1-based anaerobic co-digestion model is presented. Kinetic parameters of the model were calibrated from batch reactor experiments treating individually fruit and vegetable wastes (among other residues) following a new protocol for batch tests. In addition, decoupled disintegration kinetics for readily and slowly biodegradable fractions of solid wastes was considered. Calibrated parameters from batch assays of individual substrates were used to validate the model for a semi-continuous co-digestion operation treating simultaneously 5 fruit and vegetable wastes. The semi-continuous experiment was carried out in a lab-scale CSTR reactor for 15 weeks at organic loading rate ranging between 2.0 and 4.7 g VS/L d. The model (built in Matlab/Simulink) fit to a large extent the experimental results in both batch and semi-continuous mode and served as a powerful tool to simulate the digestion or co-digestion of solid wastes.
Results of including geometric nonlinearities in an aeroelastic model of an F/A-18
Buttrill, Carey S.
1989-01-01
An integrated, nonlinear simulation model suitable for aeroelastic modeling of fixed-wing aircraft has been developed. While the author realizes that the subject of modeling rotating, elastic structures is not closed, it is believed that the equations of motion developed and applied herein are correct to second order and are suitable for use with typical aircraft structures. The equations are not suitable for large elastic deformation. In addition, the modeling framework generalizes both the methods and terminology of non-linear rigid-body airplane simulation and traditional linear aeroelastic modeling. Concerning the importance of angular/elastic inertial coupling in the dynamic analysis of fixed-wing aircraft, the following may be said. The rigorous inclusion of said coupling is not without peril and must be approached with care. In keeping with the same engineering judgment that guided the development of the traditional aeroelastic equations, the effect of non-linear inertial effects for most airplane applications is expected to be small. A parameter does not tell the whole story, however, and modes flagged by the parameter as significant also need to be checked to see if the coupling is not a one-way path, i.e., the inertially affected modes can influence other modes.
A numerical model including PID control of a multizone crystal growth furnace
Panzarella, Charles H.; Kassemi, Mohammad
1992-01-01
This paper presents a 2D axisymmetric combined conduction and radiation model of a multizone crystal growth furnace. The model is based on a programmable multizone furnace (PMZF) designed and built at NASA Lewis Research Center for growing high quality semiconductor crystals. A novel feature of this model is a control algorithm which automatically adjusts the power in any number of independently controlled heaters to establish the desired crystal temperatures in the furnace model. The control algorithm eliminates the need for numerous trial and error runs previously required to obtain the same results. The finite element code, FIDAP, used to develop the furnace model, was modified to directly incorporate the control algorithm. This algorithm, which presently uses PID control, and the associated heat transfer model are briefly discussed. Together, they have been used to predict the heater power distributions for a variety of furnace configurations and desired temperature profiles. Examples are included to demonstrate the effectiveness of the PID controlled model in establishing isothermal, Bridgman, and other complicated temperature profies in the sample. Finally, an example is given to show how the algorithm can be used to change the desired profile with time according to a prescribed temperature-time evolution.
Directory of Open Access Journals (Sweden)
Hyein Lim
2013-01-01
Full Text Available Spin-torque oscillator (STO is a promising new technology for the future RF oscillators, which is based on the spin-transfer torque (STT effect in magnetic multilayered nanostructure. It is expected to provide a larger tunability, smaller size, lower power consumption, and higher level of integration than the semiconductor-based oscillators. In our previous work, a circuit-level model of the giant magnetoresistance (GMR STO was proposed. In this paper, we present a physics-based circuit-level model of the magnetic tunnel junction (MTJ-based STO. MTJ-STO model includes the effect of perpendicular torque that has been ignored in the GMR-STO model. The variations of three major characteristics, generation frequency, mean oscillation power, and generation linewidth of an MTJ-STO with respect to the amount of perpendicular torque, are investigated, and the results are applied to our model. The operation of the model was verified by HSPICE simulation, and the results show an excellent agreement with the experimental data. The results also prove that a full circuit-level simulation with MJT-STO devices can be made with our proposed model.
Including Finite Surface Span Effects in Empirical Jet-Surface Interaction Noise Models
Brown, Clifford A.
2016-01-01
The effect of finite span on the jet-surface interaction noise source and the jet mixing noise shielding and reflection effects is considered using recently acquired experimental data. First, the experimental setup and resulting data are presented with particular attention to the role of surface span on far-field noise. These effects are then included in existing empirical models that have previously assumed that all surfaces are semi-infinite. This extended abstract briefly describes the experimental setup and data leaving the empirical modeling aspects for the final paper.
Ward, Logan; Liu, Ruoqian; Krishna, Amar; Hegde, Vinay I.; Agrawal, Ankit; Choudhary, Alok; Wolverton, Chris
2017-07-01
While high-throughput density functional theory (DFT) has become a prevalent tool for materials discovery, it is limited by the relatively large computational cost. In this paper, we explore using DFT data from high-throughput calculations to create faster, surrogate models with machine learning (ML) that can be used to guide new searches. Our method works by using decision tree models to map DFT-calculated formation enthalpies to a set of attributes consisting of two distinct types: (i) composition-dependent attributes of elemental properties (as have been used in previous ML models of DFT formation energies), combined with (ii) attributes derived from the Voronoi tessellation of the compound's crystal structure. The ML models created using this method have half the cross-validation error and similar training and evaluation speeds to models created with the Coulomb matrix and partial radial distribution function methods. For a dataset of 435 000 formation energies taken from the Open Quantum Materials Database (OQMD), our model achieves a mean absolute error of 80 meV/atom in cross validation, which is lower than the approximate error between DFT-computed and experimentally measured formation enthalpies and below 15% of the mean absolute deviation of the training set. We also demonstrate that our method can accurately estimate the formation energy of materials outside of the training set and be used to identify materials with especially large formation enthalpies. We propose that our models can be used to accelerate the discovery of new materials by identifying the most promising materials to study with DFT at little additional computational cost.
Modeling of Temperature-Dependent Noise in Silicon Nanowire FETs including Self-Heating Effects
Directory of Open Access Journals (Sweden)
P. Anandan
2014-01-01
Full Text Available Silicon nanowires are leading the CMOS era towards the downsizing limit and its nature will be effectively suppress the short channel effects. Accurate modeling of thermal noise in nanowires is crucial for RF applications of nano-CMOS emerging technologies. In this work, a perfect temperature-dependent model for silicon nanowires including the self-heating effects has been derived and its effects on device parameters have been observed. The power spectral density as a function of thermal resistance shows significant improvement as the channel length decreases. The effects of thermal noise including self-heating of the device are explored. Moreover, significant reduction in noise with respect to channel thermal resistance, gate length, and biasing is analyzed.
A High-Rate, Single-Crystal Model including Phase Transformations, Plastic Slip, and Twinning
Energy Technology Data Exchange (ETDEWEB)
Addessio, Francis L. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Theoretical Division; Bronkhorst, Curt Allan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Theoretical Division; Bolme, Cynthia Anne [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Explosive Science and Shock Physics Division; Brown, Donald William [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Materials Science and Technology Division; Cerreta, Ellen Kathleen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Materials Science and Technology Division; Lebensohn, Ricardo A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Materials Science and Technology Division; Lookman, Turab [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Theoretical Division; Luscher, Darby Jon [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Theoretical Division; Mayeur, Jason Rhea [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Theoretical Division; Morrow, Benjamin M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Materials Science and Technology Division; Rigg, Paulo A. [Washington State Univ., Pullman, WA (United States). Dept. of Physics. Inst. for Shock Physics
2016-08-09
An anisotropic, rate-dependent, single-crystal approach for modeling materials under the conditions of high strain rates and pressures is provided. The model includes the effects of large deformations, nonlinear elasticity, phase transformations, and plastic slip and twinning. It is envisioned that the model may be used to examine these coupled effects on the local deformation of materials that are subjected to ballistic impact or explosive loading. The model is formulated using a multiplicative decomposition of the deformation gradient. A plate impact experiment on a multi-crystal sample of titanium was conducted. The particle velocities at the back surface of three crystal orientations relative to the direction of impact were measured. Molecular dynamics simulations were conducted to investigate the details of the high-rate deformation and pursue issues related to the phase transformation for titanium. Simulations using the single crystal model were conducted and compared to the high-rate experimental data for the impact loaded single crystals. The model was found to capture the features of the experiments.
He, L Z; Dong, X Y; Sun, Y
1998-01-01
Affinity filtration is a developing protein purification technique that combines the high selectivity of affinity chromatography and the high processing speed of membrane filtration. In this work a lumped kinetic model was developed to describe the whole affinity filtration process, including broth feeding, contaminant washing, and elution steps. Affinity filtration experiments were conducted to evaluate the model using bovine serum albumin as a model protein and a highly substituted Blue Sepharose as an affinity adsorbent. The model with nonadjustable parameters agreed fairly to the experimental results. Thus, the performance of the affinity filtration in processing a crude broth containing contaminant proteins was analyzed by computer simulations using the lumped model. The simulation results show that there is an optimal protein loading for obtaining the maximum recovery yield of the desired protein with a constant purity at each operating condition. The concentration of a crude broth is beneficial in increasing the recovery yield of the desired protein. Using a constant amount of the affinity adsorbent, the recovery yield can be enhanced by decreasing the solution volume in the stirred tank due to the increase of the adsorbent weight fraction. It was found that the lumped kinetic model was simple and useful in analyzing the whole affinity filtration process.
Energy Technology Data Exchange (ETDEWEB)
NONE
1995-12-01
Several safety reports will be produced in the process of planning and constructing the system for disposal of high-level radioactive waste in Sweden. The present report gives a model, with detailed examples, of how these reports should be organized and what steps they should include. In the near future safety reports will deal with the encapsulation plant and the repository. Later reports will treat operation of the handling systems and the repository.
Description of the new version 4.0 of the tritium model UFOTRI including user guide
International Nuclear Information System (INIS)
Raskob, W.
1993-08-01
In view of the future operation of fusion reactors the release of tritium may play a dominant role during normal operation as well as after accidents. Because of its physical and chemical properties which differ significantly from those of other radionuclides, the model UFOTRI for assessing the radiological consequences of accidental tritium releases has been developed. It describes the behaviour of tritium in the biosphere and calculates the radiological impact on individuals and the population due to the direct exposure and by the ingestion pathways. Processes such as the conversion of tritium gas into tritiated water (HTO) in the soil, re-emission after deposition and the conversion of HTO into organically bound tritium, are considered. The use of UFOTRI in its probabilistic mode shows the spectrum of the radiological impact together with the associated probability of occurrence. A first model version was established in 1991. As the ongoing work on investigating the main processes of the tritium behaviour in the environment shows up new results, the model has been improved in several points. The report describes the changes incorporated into the model since 1991. Additionally provides the up-dated user guide for handling the revised UFOTRI version which will be distributed to interested organizations. (orig.) [de
Collisional-radiative model including recombination processes for W27+ ion★
Murakami, Izumi; Sasaki, Akira; Kato, Daiji; Koike, Fumihiro
2017-10-01
We have constructed a collisional-radiative (CR) model for W27+ ions including 226 configurations with n ≤ 9 and ł ≤ 5 for spectroscopic diagnostics. We newly include recombination processes in the model and this is the first result of extreme ultraviolet spectrum calculated for recombining plasma component. Calculated spectra in 40-70 Å range in ionizing and recombining plasma components show similar 3 strong lines and 1 line weak in recombining plasma component at 45-50 Å and many weak lines at 50-65 Å for both components. Recombination processes do not contribute much to the spectrum at around 60 Å for W27+ ion. Dielectronic satellite lines are also minor contribution to the spectrum of recombining plasma component. Dielectronic recombination (DR) rate coefficient from W28+ to W27+ ions is also calculated with the same atomic data in the CR model. We found that larger set of energy levels including many autoionizing states gave larger DR rate coefficients but our rate agree within factor 6 with other works at electron temperature around 1 keV in which W27+ and W28+ ions are usually observed in plasmas. Contribution to the Topical Issue "Atomic and Molecular Data and their Applications", edited by Gordon W.F. Drake, Jung-Sik Yoon, Daiji Kato, and Grzegorz Karwasz.
A 3D model of the oculomotor plant including the pulley system
Viegener, A.; Armentano, R. L.
2007-11-01
Early models of the oculomotor plant only considered the eye globes and the muscles that move them. Recently, connective tissue structures have been found enveloping the extraocular muscles (EOMs) and firmly anchored to the orbital wall. These structures act as pulleys; they determine the functional origin of the EOMs and, in consequence, their effective pulling direction. A three dimensional model of the oculomotor plant, including pulleys, has been developed and simulations in Simulink were performed during saccadic eye movements. Listing's law was implemented based on the supposition that there exists an eye orientation related signal. The inclusion of the pulleys in the model makes this assumption plausible and simplifies the problem of the plant noncommutativity.
Double-gate junctionless transistor model including short-channel effects
International Nuclear Information System (INIS)
Paz, B C; Pavanello, M A; Ávila-Herrera, F; Cerdeira, A
2015-01-01
This work presents a physically based model for double-gate junctionless transistors (JLTs), continuous in all operation regimes. To describe short-channel transistors, short-channel effects (SCEs), such as increase of the channel potential due to drain bias, carrier velocity saturation and mobility degradation due to vertical and longitudinal electric fields, are included in a previous model developed for long-channel double-gate JLTs. To validate the model, an analysis is made by using three-dimensional numerical simulations performed in a Sentaurus Device Simulator from Synopsys. Different doping concentrations, channel widths and channel lengths are considered in this work. Besides that, the series resistance influence is numerically included and validated for a wide range of source and drain extensions. In order to check if the SCEs are appropriately described, besides drain current, transconductance and output conductance characteristics, the following parameters are analyzed to demonstrate the good agreement between model and simulation and the SCEs occurrence in this technology: threshold voltage (V TH ), subthreshold slope (S) and drain induced barrier lowering. (paper)
Directory of Open Access Journals (Sweden)
Michael Drexler
Full Text Available Spatially explicit ecosystem models of all types require an initial allocation of biomass, often in areas where fisheries independent abundance estimates do not exist. A generalized additive modelling (GAM approach is used to describe the abundance of 40 species groups (i.e. functional groups across the Gulf of Mexico (GoM using a large fisheries independent data set (SEAMAP and climate scale oceanographic conditions. Predictor variables included in the model are chlorophyll a, sediment type, dissolved oxygen, temperature, and depth. Despite the presence of a large number of zeros in the data, a single GAM using a negative binomial distribution was suitable to make predictions of abundance for multiple functional groups. We present an example case study using pink shrimp (Farfantepenaeus duroarum and compare the results to known distributions. The model successfully predicts the known areas of high abundance in the GoM, including those areas where no data was inputted into the model fitting. Overall, the model reliably captures areas of high and low abundance for the large majority of functional groups observed in SEAMAP. The result of this method allows for the objective setting of spatial distributions for numerous functional groups across a modeling domain, even where abundance data may not exist.
Directory of Open Access Journals (Sweden)
R. J. Wichink Kruit
2012-12-01
Full Text Available A large shortcoming of current chemistry transport models (CTM for simulating the fate of ammonia in the atmosphere is the lack of a description of the bi-directional surface–atmosphere exchange. In this paper, results of an update of the surface–atmosphere exchange module DEPAC, i.e. DEPosition of Acidifying Compounds, in the chemistry transport model LOTOS-EUROS are discussed. It is shown that with the new description, which includes bi-directional surface–atmosphere exchange, the modeled ammonia concentrations increase almost everywhere, in particular in agricultural source areas. The reason is that by using a compensation point the ammonia lifetime and transport distance is increased. As a consequence, deposition of ammonia and ammonium decreases in agricultural source areas, while it increases in large nature areas and remote regions especially in southern Scandinavia. The inclusion of a compensation point for water reduces the dry deposition over sea and allows reproducing the observed marine background concentrations at coastal locations to a better extent. A comparison with measurements shows that the model results better represent the measured ammonia concentrations. The concentrations in nature areas are slightly overestimated, while the concentrations in agricultural source areas are still underestimated. Although the introduction of the compensation point improves the model performance, the modeling of ammonia remains challenging. Important aspects are emission patterns in space and time as well as a proper approach to deal with the high concentration gradients in relation to model resolution. In short, the inclusion of a bi-directional surface–atmosphere exchange is a significant step forward for modeling ammonia.
Effect of Additional Incentives for Aviation Biofuels: Results from the Biomass Scenario Model
Energy Technology Data Exchange (ETDEWEB)
Vimmerstedt, Laura J [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Newes, Emily K [National Renewable Energy Laboratory (NREL), Golden, CO (United States)
2017-12-05
The National Renewable Energy Laboratory supported the Department of Energy, Bioenergy Technologies Office, with analysis of alternative jet fuels in collaboration with the U.S. Department of Transportation, Federal Aviation Administration. Airlines for America requested additional exploratory scenarios within FAA analytic framework. Airlines for America requested additional analysis using the same analytic framework, the Biomass Scenario Model. The results were presented at a public working meeting of the California Air Resources Board on including alternative jet fuel in the Low Carbon Fuel Standard on March 17, 2017 (https://www.arb.ca.gov/fuels/lcfs/lcfs_meetings/lcfs_meetings.htm). This presentation clarifies and annotates the slides from the public working meeting, and provides a link to the full data set. NREL does not advocate for or against the policies analyzed in this study.
International Nuclear Information System (INIS)
2015-11-01
The demands on nuclear fuel have recently been increasing, and include transient regimes, higher discharge burnup and longer fuel cycles. This has resulted in an increase of loads on fuel and core internals. In order to satisfy these demands while ensuring compliance with safety criteria, new national and international programmes have been launched and advanced modelling codes are being developed. The Fukushima Daiichi accident has particularly demonstrated the need for adequate analysis of all aspects of fuel performance to prevent a failure and also to predict fuel behaviour were an accident to occur.This publication presents the Proceedings of the Technical Meeting on Modelling of Water Cooled Fuel Including Design Basis and Severe Accidents, which was hosted by the Nuclear Power Institute of China (NPIC) in Chengdu, China, following the recommendation made in 2013 at the IAEA Technical Working Group on Fuel Performance and Technology. This recommendation was in agreement with IAEA mid-term initiatives, linked to the post-Fukushima IAEA Nuclear Safety Action Plan, as well as the forthcoming Coordinated Research Project (CRP) on Fuel Modelling in Accident Conditions. At the technical meeting in Chengdu, major areas and physical phenomena, as well as types of code and experiment to be studied and used in the CRP, were discussed. The technical meeting provided a forum for international experts to review the state of the art of code development for modelling fuel performance of nuclear fuel for water cooled reactors with regard to steady state and transient conditions, and for design basis and early phases of severe accidents, including experimental support for code validation. A round table discussion focused on the needs and perspectives on fuel modelling in accident conditions. This meeting was the ninth in a series of IAEA meetings, which reflects Member States’ continuing interest in nuclear fuel issues. The previous meetings were held in 1980 (jointly with
Kim, Sun Jung; Yoo, Il Young
2016-03-01
The purpose of this study was to explain the health promotion behavior of Chinese international students in Korea using a structural equation model including acculturation factors. A survey using self-administered questionnaires was employed. Data were collected from 272 Chinese students who have resided in Korea for longer than 6 months. The data were analyzed using structural equation modeling. The p value of final model is .31. The fitness parameters of the final model such as goodness of fit index, adjusted goodness of fit index, normed fit index, non-normed fit index, and comparative fit index were more than .95. Root mean square of residual and root mean square error of approximation also met the criteria. Self-esteem, perceived health status, acculturative stress and acculturation level had direct effects on health promotion behavior of the participants and the model explained 30.0% of variance. The Chinese students in Korea with higher self-esteem, perceived health status, acculturation level, and lower acculturative stress reported higher health promotion behavior. The findings can be applied to develop health promotion strategies for this population. Copyright © 2016. Published by Elsevier B.V.
Multiple High-Fidelity Modeling Tools for Metal Additive Manufacturing Process Development, Phase I
National Aeronautics and Space Administration — Despite the rapid commercialization of additive manufacturing technology such as selective laser melting, SLM, there are gaps in process modeling and material...
Multiple High-Fidelity Modeling Tools for Metal Additive Manufacturing Process Development, Phase II
National Aeronautics and Space Administration — Despite the rapid commercialization of additive manufacturing technology such as selective laser melting, SLM, there are gaps in process modeling and material...
A structural model for the in vivo human cornea including collagen-swelling interaction.
Cheng, Xi; Petsche, Steven J; Pinsky, Peter M
2015-08-06
A structural model of the in vivo cornea, which accounts for tissue swelling behaviour, for the three-dimensional organization of stromal fibres and for collagen-swelling interaction, is proposed. Modelled as a binary electrolyte gel in thermodynamic equilibrium, the stromal electrostatic free energy is based on the mean-field approximation. To account for active endothelial ionic transport in the in vivo cornea, which modulates osmotic pressure and hydration, stromal mobile ions are shown to satisfy a modified Boltzmann distribution. The elasticity of the stromal collagen network is modelled based on three-dimensional collagen orientation probability distributions for every point in the stroma obtained by synthesizing X-ray diffraction data for azimuthal angle distributions and second harmonic-generated image processing for inclination angle distributions. The model is implemented in a finite-element framework and employed to predict free and confined swelling of stroma in an ionic bath. For the in vivo cornea, the model is used to predict corneal swelling due to increasing intraocular pressure (IOP) and is adapted to model swelling in Fuchs' corneal dystrophy. The biomechanical response of the in vivo cornea to a typical LASIK surgery for myopia is analysed, including tissue fluid pressure and swelling responses. The model provides a new interpretation of the corneal active hydration control (pump-leak) mechanism based on osmotic pressure modulation. The results also illustrate the structural necessity of fibre inclination in stabilizing the corneal refractive surface with respect to changes in tissue hydration and IOP. © 2015 The Author(s).
Khachatryan, V; Sirunyan, A M; Tumasyan, A; Adam, W; Asilar, E; Bergauer, T; Brandstetter, J; Brondolin, E; Dragicevic, M; Erö, J; Friedl, M; Frühwirth, R; Ghete, V M; Hartl, C; Hörmann, N; Hrubec, J; Jeitler, M; Knünz, V; König, A; Krammer, M; Krätschmer, I; Liko, D; Matsushita, T; Mikulec, I; Rabady, D; Rahbaran, B; Rohringer, H; Schieck, J; Schöfbeck, R; Strauss, J; Treberer-Treberspurg, W; Waltenberger, W; Wulz, C-E; Mossolov, V; Shumeiko, N; Suarez Gonzalez, J; Alderweireldt, S; Cornelis, T; De Wolf, E A; Janssen, X; Knutsson, A; Lauwers, J; Luyckx, S; Van De Klundert, M; Van Haevermaet, H; Van Mechelen, P; Van Remortel, N; Van Spilbeeck, A; Abu Zeid, S; Blekman, F; D'Hondt, J; Daci, N; De Bruyn, I; Deroover, K; Heracleous, N; Keaveney, J; Lowette, S; Moreels, L; Olbrechts, A; Python, Q; Strom, D; Tavernier, S; Van Doninck, W; Van Mulders, P; Van Onsem, G P; Van Parijs, I; Barria, P; Brun, H; Caillol, C; Clerbaux, B; De Lentdecker, G; Fasanella, G; Favart, L; Grebenyuk, A; Karapostoli, G; Lenzi, T; Léonard, A; Maerschalk, T; Marinov, A; Perniè, L; Randle-Conde, A; Reis, T; Seva, T; Vander Velde, C; Yonamine, R; Vanlaer, P; Yonamine, R; Zenoni, F; Zhang, F; Adler, V; Beernaert, K; Benucci, L; Cimmino, A; Crucy, S; Dobur, D; Fagot, A; Garcia, G; Gul, M; Mccartin, J; Ocampo Rios, A A; Poyraz, D; Ryckbosch, D; Salva, S; Sigamani, M; Strobbe, N; Tytgat, M; Van Driessche, W; Yazgan, E; Zaganidis, N; Basegmez, S; Beluffi, C; Bondu, O; Brochet, S; Bruno, G; Caudron, A; Ceard, L; Da Silveira, G G; Delaere, C; Favart, D; Forthomme, L; Giammanco, A; Hollar, J; Jafari, A; Jez, P; Komm, M; Lemaitre, V; Mertens, A; Musich, M; Nuttens, C; Perrini, L; Pin, A; Piotrzkowski, K; Popov, A; Quertenmont, L; Selvaggi, M; Vidal Marono, M; Beliy, N; Hammad, G H; Júnior, W L Aldá; Alves, F L; Alves, G A; Brito, L; Correa Martins Junior, M; Hamer, M; Hensel, C; Mora Herrera, C; Moraes, A; Pol, M E; Rebello Teles, P; Belchior Batista Das Chagas, E; Carvalho, W; Chinellato, J; Custódio, A; Da Costa, E M; De Jesus Damiao, D; De Oliveira Martins, C; Fonseca De Souza, S; Huertas Guativa, L M; Malbouisson, H; Matos Figueiredo, D; Mundim, L; Nogima, H; Prado Da Silva, W L; Santoro, A; Sznajder, A; Tonelli Manganote, E J; Vilela Pereira, A; Ahuja, S; Bernardes, C A; De Souza Santos, A; Dogra, S; Fernandez Perez Tomei, T R; Gregores, E M; Mercadante, P G; Moon, C S; Novaes, S F; Padula, Sandra S; Romero Abad, D; Ruiz Vargas, J C; Aleksandrov, A; Hadjiiska, R; Iaydjiev, P; Rodozov, M; Stoykova, S; Sultanov, G; Vutova, M; Dimitrov, A; Glushkov, I; Litov, L; Pavlov, B; Petkov, P; Ahmad, M; Bian, J G; Chen, G M; Chen, H S; Chen, M; Cheng, T; Du, R; Jiang, C H; Plestina, R; Romeo, F; Shaheen, S M; Spiezia, A; Tao, J; Wang, C; Wang, Z; Zhang, H; Asawatangtrakuldee, C; Ban, Y; Li, Q; Liu, S; Mao, Y; Qian, S J; Wang, D; Xu, Z; Avila, C; Cabrera, A; Chaparro Sierra, L F; Florez, C; Gomez, J P; Gomez Moreno, B; Sanabria, J C; Godinovic, N; Lelas, D; Puljak, I; Ribeiro Cipriano, P M; Antunovic, Z; Kovac, M; Brigljevic, V; Kadija, K; Luetic, J; Micanovic, S; Sudic, L; Attikis, A; Mavromanolakis, G; Mousa, J; Nicolaou, C; Ptochos, F; Razis, P A; Rykaczewski, H; Bodlak, M; Finger, M; Finger, M; El Sawy, M; El-Khateeb, E; Elkafrawy, T; Mohamed, A; Salama, E; Calpas, B; Kadastik, M; Murumaa, M; Raidal, M; Tiko, A; Veelken, C; Eerola, P; Pekkanen, J; Voutilainen, M; Härkönen, J; Karimäki, V; Kinnunen, R; Lampén, T; Lassila-Perini, K; Lehti, S; Lindén, T; Luukka, P; Mäenpää, T; Peltola, T; Tuominen, E; Tuominiemi, J; Tuovinen, E; Wendland, L; Talvitie, J; Tuuva, T; Besancon, M; Couderc, F; Dejardin, M; Denegri, D; Fabbro, B; Faure, J L; Favaro, C; Ferri, F; Ganjour, S; Givernaud, A; Gras, P; Hamel de Monchenault, G; Jarry, P; Locci, E; Machet, M; Malcles, J; Rander, J; Rosowsky, A; Titov, M; Zghiche, A; Antropov, I; Baffioni, S; Beaudette, F; Busson, P; Cadamuro, L; Chapon, E; Charlot, C; Dahms, T; Davignon, O; Filipovic, N; Florent, A; Granier de Cassagnac, R; Lisniak, S; Mastrolorenzo, L; Miné, P; Naranjo, I N; Nguyen, M; Ochando, C; Ortona, G; Paganini, P; Pigard, P; Regnard, S; Salerno, R; Sauvan, J B; Sirois, Y; Strebler, T; Yilmaz, Y; Zabi, A; Agram, J-L; Andrea, J; Aubin, A; Bloch, D; Brom, J-M; Buttignol, M; Chabert, E C; Chanon, N; Collard, C; Conte, E; Coubez, X; Fontaine, J-C; Gelé, D; Goerlach, U; Goetzmann, C; Le Bihan, A-C; Merlin, J A; Skovpen, K; Van Hove, P; Gadrat, S; Beauceron, S; Bernet, C; Boudoul, G; Bouvier, E; Carrillo Montoya, C A; Chierici, R; Contardo, D; Courbon, B; Depasse, P; El Mamouni, H; Fan, J; Fay, J; Gascon, S; Gouzevitch, M; Ille, B; Lagarde, F; Laktineh, I B; Lethuillier, M; Mirabito, L; Pequegnot, A L; Perries, S; Ruiz Alvarez, J D; Sabes, D; Sgandurra, L; Sordini, V; Vander Donckt, M; Verdier, P; Viret, S; Toriashvili, T; Lomidze, D
2016-01-01
Jet multiplicity distributions in top quark pair ([Formula: see text]) events are measured in pp collisions at a centre-of-mass energy of 8 TeV with the CMS detector at the LHC using a data set corresponding to an integrated luminosity of 19.7[Formula: see text]. The measurement is performed in the dilepton decay channels ([Formula: see text], [Formula: see text], and [Formula: see text]). The absolute and normalized differential cross sections for [Formula: see text] production are measured as a function of the jet multiplicity in the event for different jet transverse momentum thresholds and the kinematic properties of the leading additional jets. The differential [Formula: see text] and [Formula: see text] cross sections are presented for the first time as a function of the kinematic properties of the leading additional [Formula: see text] jets. Furthermore, the fraction of events without additional jets above a threshold is measured as a function of the transverse momenta of the leading additional jets and the scalar sum of the transverse momenta of all additional jets. The data are compared and found to be consistent with predictions from several perturbative quantum chromodynamics event generators and a next-to-leading order calculation.
A satellite relative motion model including J_2 and J_3 via Vinti's intermediary
Biria, Ashley D.; Russell, Ryan P.
2018-03-01
Vinti's potential is revisited for analytical propagation of the main satellite problem, this time in the context of relative motion. A particular version of Vinti's spheroidal method is chosen that is valid for arbitrary elliptical orbits, encapsulating J_2, J_3, and generally a partial J_4 in an orbit propagation theory without recourse to perturbation methods. As a child of Vinti's solution, the proposed relative motion model inherits these properties. Furthermore, the problem is solved in oblate spheroidal elements, leading to large regions of validity for the linearization approximation. After offering several enhancements to Vinti's solution, including boosts in accuracy and removal of some singularities, the proposed model is derived and subsequently reformulated so that Vinti's solution is piecewise differentiable. While the model is valid for the critical inclination and nonsingular in the element space, singularities remain in the linear transformation from Earth-centered inertial coordinates to spheroidal elements when the eccentricity is zero or for nearly equatorial orbits. The new state transition matrix is evaluated against numerical solutions including the J_2 through J_5 terms for a wide range of chief orbits and separation distances. The solution is also compared with side-by-side simulations of the original Gim-Alfriend state transition matrix, which considers the J_2 perturbation. Code for computing the resulting state transition matrix and associated reference frame and coordinate transformations is provided online as supplementary material.
Seufzer, William J.
2014-01-01
Additive manufacturing is coming into industrial use and has several desirable attributes. Control of the deposition remains a complex challenge, and so this literature review was initiated to capture current modeling efforts in the field of additive manufacturing. This paper summarizes about 10 years of modeling and simulation related to both welding and additive manufacturing. The goals were to learn who is doing what in modeling and simulation, to summarize various approaches taken to create models, and to identify research gaps. Later sections in the report summarize implications for closed-loop-control of the process, implications for local research efforts, and implications for local modeling efforts.
Mohammad, S. Noor
2010-09-01
Semiconductor nanotubes, including carbon nanotubes, have vast potential for new technology development. The fundamental physics and growth kinetics of these nanotubes are still obscured. Various models developed to elucidate the growth suffer from limited applicability. An in-depth investigation of the fundamentals of nanotube growth has, therefore, been carried out. For this investigation, various features of nanotube growth, and the role of the foreign element catalytic agent (FECA) in this growth, have been considered. Observed growth anomalies have been analyzed. Based on this analysis, a new shell model and a general hypothesis have been proposed for the growth. The essential element of the shell model is the seed generated from segregation during growth. The seed structure has been defined, and the formation of droplet from this seed has been described. A modified definition of the droplet exhibiting adhesive properties has also been presented. Various characteristics of the droplet, required for alignment and organization of atoms into tubular forms, have been discussed. Employing the shell model, plausible scenarios for the formation of carbon nanotubes, and the variation in the characteristics of these carbon nanotubes have been articulated. The experimental evidences, for example, for the formation of shell around a core, dipole characteristics of the seed, and the existence of nanopores in the seed, have been presented. They appear to justify the validity of the proposed model. The diversities of nanotube characteristics, fundamentals underlying the creation of bamboo-shaped carbon nanotubes, and the impurity generation on the surface of carbon nanotubes have been elucidated. The catalytic action of FECA on growth has been quantified. The applicability of the proposed model to the nanotube growth by a variety of mechanisms has been elaborated. These mechanisms include the vapor-liquid-solid mechanism, the oxide-assisted growth mechanism, the self
A new model for including the effect of fly ash on biochemical methane potential.
Gertner, Pablo; Huiliñir, César; Pinto-Villegas, Paula; Castillo, Alejandra; Montalvo, Silvio; Guerrero, Lorna
2017-10-01
The modelling of the effect of trace elements on anaerobic digestion, and specifically the effect of fly ash, has been scarcely studied. Thus, the present work was aimed at the development of a new function that allows accumulated methane models to predict the effect of FA on the volume of methane accumulation. For this, purpose five fly ash concentrations (10, 25, 50, 250 and 500mg/L) using raw and pre-treated sewage sludge were used to calibrate the new function, while three fly ash concentrations were used (40, 150 and 350mg/L) for validation. Three models for accumulated methane volume (the modified Gompertz equation, the logistic function, and the transfer function) were evaluated. The results showed that methane production increased in the presence of FA when the sewage sludge was not pre-treated, while with pretreated sludge there is inhibition of methane production at FA concentrations higher than 50mg/L. In the calibration of the proposed function, it fits well with the experimental data under all the conditions, including the inhibition and stimulating zones, with the values of the parameters of the methane production models falling in the range of those reported in the literature. For validation experiments, the model succeeded in representing the behavior of new experiments in both the stimulating and inhibiting zones, with NRMSE and R 2 ranging from 0.3577 to 0.03714 and 0.2209 to 0.9911, respectively. Thus, the proposed model is robust and valid for the studied conditions. Copyright © 2017 Elsevier Ltd. All rights reserved.
Stiffness Model of a 3-DOF Parallel Manipulator with Two Additional Legs
Directory of Open Access Journals (Sweden)
Guang Yu
2014-10-01
Full Text Available This paper investigates the stiffness modelling of a 3-DOF parallel manipulator with two additional legs. The stiffness model in six directions of the 3-DOF parallel manipulator with two additional legs is derived by performing condensation of DOFs for the joint connection and treatment of the fixed-end connections. Moreover, this modelling method is used to derive the stiffness model of the manipulator with zero/one additional legs. Two performance indices are given to compare the stiffness of the parallel manipulators with two additional legs with those of the manipulators with zero/one additional legs. The method not only can be used to derive the stiffness model of a redundant parallel manipulator, but also to model the stiffness of non-redundant parallel manipulators.
A generalized model for optimal transport of images including dissipation and density modulation
Maas, Jan
2015-11-01
© EDP Sciences, SMAI 2015. In this paper the optimal transport and the metamorphosis perspectives are combined. For a pair of given input images geodesic paths in the space of images are defined as minimizers of a resulting path energy. To this end, the underlying Riemannian metric measures the rate of transport cost and the rate of viscous dissipation. Furthermore, the model is capable to deal with strongly varying image contrast and explicitly allows for sources and sinks in the transport equations which are incorporated in the metric related to the metamorphosis approach by Trouvé and Younes. In the non-viscous case with source term existence of geodesic paths is proven in the space of measures. The proposed model is explored on the range from merely optimal transport to strongly dissipative dynamics. For this model a robust and effective variational time discretization of geodesic paths is proposed. This requires to minimize a discrete path energy consisting of a sum of consecutive image matching functionals. These functionals are defined on corresponding pairs of intensity functions and on associated pairwise matching deformations. Existence of time discrete geodesics is demonstrated. Furthermore, a finite element implementation is proposed and applied to instructive test cases and to real images. In the non-viscous case this is compared to the algorithm proposed by Benamou and Brenier including a discretization of the source term. Finally, the model is generalized to define discrete weighted barycentres with applications to textures and objects.
Empirical Validation of a Thermal Model of a Complex Roof Including Phase Change Materials
Directory of Open Access Journals (Sweden)
Stéphane Guichard
2015-12-01
Full Text Available This paper deals with the empirical validation of a building thermal model of a complex roof including a phase change material (PCM. A mathematical model dedicated to PCMs based on the heat apparent capacity method was implemented in a multi-zone building simulation code, the aim being to increase the understanding of the thermal behavior of the whole building with PCM technologies. In order to empirically validate the model, the methodology is based both on numerical and experimental studies. A parametric sensitivity analysis was performed and a set of parameters of the thermal model has been identified for optimization. The use of the generic optimization program called GenOpt® coupled to the building simulation code enabled to determine the set of adequate parameters. We first present the empirical validation methodology and main results of previous work. We then give an overview of GenOpt® and its coupling with the building simulation code. Finally, once the optimization results are obtained, comparisons of the thermal predictions with measurements are found to be acceptable and are presented.
A multiscale model for glioma spread including cell-tissue interactions and proliferation.
Engwer, Christian; Knappitsch, Markus; Surulescu, Christina
2016-04-01
Glioma is a broad class of brain and spinal cord tumors arising from glia cells, which are the main brain cells that can develop into neoplasms. They are highly invasive and lead to irregular tumor margins which are not precisely identifiable by medical imaging, thus rendering a precise enough resection very difficult. The understanding of glioma spread patterns is hence essential for both radiological therapy as well as surgical treatment. In this paper we propose a multiscale model for glioma growth including interactions of the cells with the underlying tissue network, along with proliferative effects. Our current accounting for two subpopulations of cells to accomodate proliferation according to the go-or-grow dichtomoty is an extension of the setting in [16]. As in that paper, we assume that cancer cells use neuronal fiber tracts as invasive pathways. Hence, the individual structure of brain tissue seems to be decisive for the tumor spread. Diffusion tensor imaging (DTI) is able to provide such information, thus opening the way for patient specific modeling of glioma invasion. Starting from a multiscale model involving subcellular (microscopic) and individual (mesoscale) cell dynamics, we perform a parabolic scaling to obtain an approximating reaction-diffusion-transport equation on the macroscale of the tumor cell population. Numerical simulations based on DTI data are carried out in order to assess the performance of our modeling approach.
Habitability of super-Earth planets around other suns: models including Red Giant Branch evolution.
von Bloh, W; Cuntz, M; Schröder, K-P; Bounama, C; Franck, S
2009-01-01
The unexpected diversity of exoplanets includes a growing number of super-Earth planets, i.e., exoplanets with masses of up to several Earth masses and a similar chemical and mineralogical composition as Earth. We present a thermal evolution model for a 10 Earth-mass planet orbiting a star like the Sun. Our model is based on the integrated system approach, which describes the photosynthetic biomass production and takes into account a variety of climatological, biogeochemical, and geodynamical processes. This allows us to identify a so-called photosynthesis-sustaining habitable zone (pHZ), as determined by the limits of biological productivity on the planetary surface. Our model considers solar evolution during the main-sequence stage and along the Red Giant Branch as described by the most recent solar model. We obtain a large set of solutions consistent with the principal possibility of life. The highest likelihood of habitability is found for "water worlds." Only mass-rich water worlds are able to realize pHZ-type habitability beyond the stellar main sequence on the Red Giant Branch.
Effect of including decay chains on predictions of equilibrium-type terrestrial food chain models
International Nuclear Information System (INIS)
Kirchner, G.
1990-01-01
Equilibrium-type food chain models are commonly used for assessing the radiological impact to man from environmental releases of radionuclides. Usually these do not take into account build-up of radioactive decay products during environmental transport. This may be a potential source of underprediction. For estimating consequences of this simplification, the equations of an internationally recognised terrestrial food chain model have been extended to include decay chains of variable length. Example calculations show that for releases from light water reactors as expected both during routine operation and in the case of severe accidents, the build-up of decay products during environmental transport is generally of minor importance. However, a considerable number of radionuclides of potential radiological significance have been identified which show marked contributions of decay products to calculated contamination of human food and resulting radiation dose rates. (author)
Areal rainfall estimation using moving cars - computer experiments including hydrological modeling
Rabiei, Ehsan; Haberlandt, Uwe; Sester, Monika; Fitzner, Daniel; Wallner, Markus
2016-09-01
The need for high temporal and spatial resolution precipitation data for hydrological analyses has been discussed in several studies. Although rain gauges provide valuable information, a very dense rain gauge network is costly. As a result, several new ideas have emerged to help estimating areal rainfall with higher temporal and spatial resolution. Rabiei et al. (2013) observed that moving cars, called RainCars (RCs), can potentially be a new source of data for measuring rain rate. The optical sensors used in that study are designed for operating the windscreen wipers and showed promising results for rainfall measurement purposes. Their measurement accuracy has been quantified in laboratory experiments. Considering explicitly those errors, the main objective of this study is to investigate the benefit of using RCs for estimating areal rainfall. For that, computer experiments are carried out, where radar rainfall is considered as the reference and the other sources of data, i.e., RCs and rain gauges, are extracted from radar data. Comparing the quality of areal rainfall estimation by RCs with rain gauges and reference data helps to investigate the benefit of the RCs. The value of this additional source of data is not only assessed for areal rainfall estimation performance but also for use in hydrological modeling. Considering measurement errors derived from laboratory experiments, the result shows that the RCs provide useful additional information for areal rainfall estimation as well as for hydrological modeling. Moreover, by testing larger uncertainties for RCs, they observed to be useful up to a certain level for areal rainfall estimation and discharge simulation.
Including sugar cane in the agro-ecosystem model ORCHIDEE-STICS
Valade, A.; Vuichard, N.; Ciais, P.; Viovy, N.
2010-12-01
With 4 million ha currently grown for ethanol in Brazil only, approximately half the global bioethanol production in 2005 (Smeets 2008), and a devoted land area expected to expand globally in the years to come, sugar cane is at the heart of the biofuel debate. Indeed, ethanol made from biomass is currently the most widespread option for alternative transportation fuels. It was originally promoted as a carbon neutral energy resource that could bring energy independence to countries and local opportunities to farmers, until attention was drawn to its environmental and socio-economical drawbacks. It is still not clear to which extent it is a solution or a contributor to climate change mitigation. Dynamic Global Vegetation models can help address these issues and quantify the potential impacts of biofuels on ecosystems at scales ranging from on-site to global. The global agro-ecosystem model ORCHIDEE describes water, carbon and energy exchanges at the soil-atmosphere interface for a limited number of natural and agricultural vegetation types. In order to integrate agricultural management to the simulations and to capture more accurately the specificity of crops' phenology, ORCHIDEE has been coupled with the agronomical model STICS. The resulting crop-oriented vegetation model ORCHIDEE-STICS has been used so far to simulate temperate crops such as wheat, corn and soybean. As a generic ecosystem model, each grid cell can include several vegetation types with their own phenology and management practices, making it suitable to spatial simulations. Here, ORCHIDEE-STICS is altered to include sugar cane as a new agricultural Plant functional Type, implemented and parametrized using the STICS approach. An on-site calibration and validation is then performed based on biomass and flux chamber measurements in several sites in Australia and variables such as LAI, dry weight, heat fluxes and respiration are used to evaluate the ability of the model to simulate the specific
On the modelling of semi-insulating GaAs including surface tension and bulk stresses
Energy Technology Data Exchange (ETDEWEB)
Dreyer, W.; Duderstadt, F.
2004-07-01
Necessary heat treatment of single crystal semi-insulating Gallium Arsenide (GaAs), which is deployed in micro- and opto- electronic devices, generate undesirable liquid precipitates in the solid phase. The appearance of precipitates is influenced by surface tension at the liquid/solid interface and deviatoric stresses in the solid. The central quantity for the description of the various aspects of phase transitions is the chemical potential, which can be additively decomposed into a chemical and a mechanical part. In particular the calculation of the mechanical part of the chemical potential is of crucial importance. We determine the chemical potential in the framework of the St. Venant-Kirchhoff law which gives an appropriate stress/strain relation for many solids in the small strain regime. We establish criteria, which allow the correct replacement of the St. Venant-Kirchhoff law by the simpler Hooke law. The main objectives of this study are: (i) We develop a thermo-mechanical model that describes diffusion and interface motion, which both are strongly influenced by surface tension effects and deviatoric stresses. (ii) We give an overview and outlook on problems that can be posed and solved within the framework of the model. (iii) We calculate non-standard phase diagrams, i.e. those that take into account surface tension and non-deviatoric stresses, for GaAs above 786 C, and we compare the results with classical phase diagrams without these phenomena. (orig.)
Moretti, Rocco; Lyskov, Sergey; Das, Rhiju; Meiler, Jens; Gray, Jeffrey J
2018-01-01
The Rosetta molecular modeling software package provides a large number of experimentally validated tools for modeling and designing proteins, nucleic acids, and other biopolymers, with new protocols being added continually. While freely available to academic users, external usage is limited by the need for expertise in the Unix command line environment. To make Rosetta protocols available to a wider audience, we previously created a web server called Rosetta Online Server that Includes Everyone (ROSIE), which provides a common environment for hosting web-accessible Rosetta protocols. Here we describe a simplification of the ROSIE protocol specification format, one that permits easier implementation of Rosetta protocols. Whereas the previous format required creating multiple separate files in different locations, the new format allows specification of the protocol in a single file. This new, simplified protocol specification has more than doubled the number of Rosetta protocols available under ROSIE. These new applications include pK a determination, lipid accessibility calculation, ribonucleic acid redesign, protein-protein docking, protein-small molecule docking, symmetric docking, antibody docking, cyclic toxin docking, critical binding peptide determination, and mapping small molecule binding sites. ROSIE is freely available to academic users at http://rosie.rosettacommons.org. © 2017 The Protein Society.
Pouech, Charlène; Lafay, Florent; Wiest, Laure; Baudot, Robert; Léonard, Didier; Cren-Olivé, Cécile
2014-02-01
The use of polymer materials in industry for product packaging is increasing. The presence of additives in the polymer matrix enables the modification or improvement of the properties and performance of the polymer, but these industries are concerned regarding the extractability of these additives. The quantification of these additives is particularly challenging because of the presence of these substances as contaminants in all the analytical equipment and the diversity of their physicochemical properties. In this context, a multi-residue analytical method was developed for the trace analysis of the twenty main additives (and their degradation products) authorized in plastic products such as pharmaceutical packaging (e.g., antioxidants, release agents, and light absorbers). This analytical method consisted of a solid phase extraction (SPE) followed by an analysis using ultra-high performance liquid chromatography coupled to a tandem mass spectrometer (UHPLC-MS/MS). A comparison of two ionization interfaces and the optimization of the extraction procedure were discussed. The influence of the quality of the solvent type (distilled versus not distilled) and the nature of the SPE cartridges (Polypropylene versus Teflon(®)) were demonstrated. The optimized method exhibited a quantification limit lower than 20 ng mL(-1) and recoveries between 70 % and 120 % for all compounds. Finally, the method was validated according to the ICH directive and was subsequently applied to the extraction of polymers under different pH conditions and storage temperatures. To the best of our knowledge, this study presents the first methodology allowing the simultaneous quantification of 24 additives at low ng mL(-1).
A Hydrological Concept including Lateral Water Flow Compatible with the Biogeochemical Model ForSAFE
Directory of Open Access Journals (Sweden)
Giuliana Zanchi
2016-03-01
Full Text Available The study presents a hydrology concept developed to include lateral water flow in the biogeochemical model ForSAFE. The hydrology concept was evaluated against data collected at Svartberget in the Vindeln Research Forest in Northern Sweden. The results show that the new concept allows simulation of a saturated and an unsaturated zone in the soil as well as water flow that reaches the stream comparable to measurements. The most relevant differences compared to streamflow measurements are that the model simulates a higher base flow in winter and lower flow peaks after snowmelt. These differences are mainly caused by the assumptions made to regulate the percolation at the bottom of the simulated soil columns. The capability for simulating lateral flows and a saturated zone in ForSAFE can greatly improve the simulation of chemical exchange in the soil and export of elements from the soil to watercourses. Such a model can help improve the understanding of how environmental changes in the forest landscape will influence chemical loads to surface waters.
International Nuclear Information System (INIS)
Wang, Y. T.; Xu, L. X.; Gui, Y. X.
2010-01-01
In this paper, we investigate the integrated Sachs-Wolfe effect in the quintessence cold dark matter model with constant equation of state and constant speed of sound in dark energy rest frame, including dark energy perturbation and its anisotropic stress. Comparing with the ΛCDM model, we find that the integrated Sachs-Wolfe (ISW)-power spectrums are affected by different background evolutions and dark energy perturbation. As we change the speed of sound from 1 to 0 in the quintessence cold dark matter model with given state parameters, it is found that the inclusion of dark energy anisotropic stress makes the variation of magnitude of the ISW source uncertain due to the anticorrelation between the speed of sound and the ratio of dark energy density perturbation contrast to dark matter density perturbation contrast in the ISW-source term. Thus, the magnitude of the ISW-source term is governed by the competition between the alterant multiple of (1+3/2xc-circumflex s 2 ) and that of δ de /δ m with the variation of c-circumflex s 2 .
Expanded rock blast modeling capabilities of DMC{_}BLAST, including buffer blasting
Energy Technology Data Exchange (ETDEWEB)
Preece, D.S. [Sandia National Labs., Albuquerque, NM (United States); Tidman, J.P.; Chung, S.H. [ICI Explosives (Canada)
1996-12-31
A discrete element computer program named DMC{_}BLAST (Distinct Motion Code) has been under development since 1987 for modeling rock blasting. This program employs explicit time integration and uses spherical or cylindrical elements that are represented as circles in 2-D. DMC{_}BLAST calculations compare favorably with data from actual bench blasts. The blast modeling capabilities of DMC{_}BLAST have been expanded to include independently dipping geologic layers, top surface, bottom surface and pit floor. The pit can also now be defined using coordinates based on the toe of the bench. A method for modeling decked explosives has been developed which allows accurate treatment of the inert materials (stemming) in the explosive column and approximate treatment of different explosives in the same blasthole. A DMC{_}BLAST user can specify decking through a specific geologic layer with either inert material or a different explosive. Another new feature of DMC{_}BLAST is specification of an uplift angle which is the angle between the normal to the blasthole and a vector defining the direction of explosive loading on particles adjacent to the blasthole. A buffer (choke) blast capability has been added for situations where previously blasted material is adjacent to the free face of the bench preventing any significant lateral motion during the blast.
Sullivan, Kristynn J; Shadish, William R; Steiner, Peter M
2015-03-01
Single-case designs (SCDs) are short time series that assess intervention effects by measuring units repeatedly over time in both the presence and absence of treatment. This article introduces a statistical technique for analyzing SCD data that has not been much used in psychological and educational research: generalized additive models (GAMs). In parametric regression, the researcher must choose a functional form to impose on the data, for example, that trend over time is linear. GAMs reverse this process by letting the data inform the choice of functional form. In this article we review the problem that trend poses in SCDs, discuss how current SCD analytic methods approach trend, describe GAMs as a possible solution, suggest a GAM model testing procedure for examining the presence of trend in SCDs, present a small simulation to show the statistical properties of GAMs, and illustrate the procedure on 3 examples of different lengths. Results suggest that GAMs may be very useful both as a form of sensitivity analysis for checking the plausibility of assumptions about trend and as a primary data analysis strategy for testing treatment effects. We conclude with a discussion of some problems with GAMs and some future directions for research on the application of GAMs to SCDs. (c) 2015 APA, all rights reserved).
Low dose radiation risks for women surviving the a-bombs in Japan: generalized additive model.
Dropkin, Greg
2016-11-24
Analyses of cancer mortality and incidence in Japanese A-bomb survivors have been used to estimate radiation risks, which are generally higher for women. Relative Risk (RR) is usually modelled as a linear function of dose. Extrapolation from data including high doses predicts small risks at low doses. Generalized Additive Models (GAMs) are flexible methods for modelling non-linear behaviour. GAMs are applied to cancer incidence in female low dose subcohorts, using anonymous public data for the 1958 - 1998 Life Span Study, to test for linearity, explore interactions, adjust for the skewed dose distribution, examine significance below 100 mGy, and estimate risks at 10 mGy. For all solid cancer incidence, RR estimated from 0 - 100 mGy and 0 - 20 mGy subcohorts is significantly raised. The response tapers above 150 mGy. At low doses, RR increases with age-at-exposure and decreases with time-since-exposure, the preferred covariate. Using the empirical cumulative distribution of dose improves model fit, and capacity to detect non-linear responses. RR is elevated over wide ranges of covariate values. Results are stable under simulation, or when removing exceptional data cells, or adjusting neutron RBE. Estimates of Excess RR at 10 mGy using the cumulative dose distribution are 10 - 45 times higher than extrapolations from a linear model fitted to the full cohort. Below 100 mGy, quasipoisson models find significant effects for all solid, squamous, uterus, corpus, and thyroid cancers, and for respiratory cancers when age-at-exposure > 35 yrs. Results for the thyroid are compatible with studies of children treated for tinea capitis, and Chernobyl survivors. Results for the uterus are compatible with studies of UK nuclear workers and the Techa River cohort. Non-linear models find large, significant cancer risks for Japanese women exposed to low dose radiation from the atomic bombings. The risks should be reflected in protection standards.
Fuller, Robert G., Ed.; And Others
This is part of a series of 42 Calculus Based Physics (CBP) modules totaling about 1,000 pages. The modules include study guides, practice tests, and mastery tests for a full-year individualized course in calculus-based physics based on the Personalized System of Instruction (PSI). The units are not intended to be used without outside materials;…
Wentz, W. H., Jr.; Ostowari, C.
1983-01-01
Experimental measurements were made to determine the effects of slot gap opening and flap cove shape on flap and airfoil flow fields. Test model was the GA(W)-1 airfoil with 0.30c Fowler flap deflected 35 degrees. Tests were conducted with optimum, wide and narrow gaps, and with three cove shapes. Three test angles were selected, corresponding to pre-stall and post-stall conditions. Reynolds number was 2,200,000 and Mach number was 0.13. Force, surface pressure, total pressure, and split-film turbulence measurements were made. Results were compared with theory for those parameters for which theoretical values were available.
Energy Technology Data Exchange (ETDEWEB)
Chen, Lingen; Kan, Xuxian; Sun, Fengrui; Wu, Feng [College of Naval Architecture and Power, Naval University of Engineering, Wuhan 430033 (China)
2013-07-01
The operation of a universal steady flow endoreversible refrigeration cycle model consisting of a constant thermal-capacity heating branch, two constant thermal-capacity cooling branches and two adiabatic branches is viewed as a production process with exergy as its output. The finite time exergoeconomic performance optimization of the refrigeration cycle is investigated by taking profit rate optimization criterion as the objective. The relations between the profit rate and the temperature ratio of working fluid, between the COP (coefficient of performance) and the temperature ratio of working fluid, as well as the optimal relation between profit rate and the COP of the cycle are derived. The focus of this paper is to search the compromised optimization between economics (profit rate) and the utilization factor (COP) for endoreversible refrigeration cycles, by searching the optimum COP at maximum profit, which is termed as the finite-time exergoeconomic performance bound. Moreover, performance analysis and optimization of the model are carried out in order to investigate the effect of cycle process on the performance of the cycles using numerical example. The results obtained herein include the performance characteristics of endoreversible Carnot, Diesel, Otto, Atkinson, Dual and Brayton refrigeration cycles.
Onishi, Janet C; Park, Joong-Wook; Prado, Julio; Eades, Susan C; Mirza, Mustajab H; Fugaro, Michael N; Häggblom, Max M; Reinemeyer, Craig R
2012-10-12
Carbohydrate overload models of equine acute laminitis are used to study the development of lameness. It is hypothesized that a diet-induced shift in cecal bacterial communities contributes to the development of the pro-inflammatory state that progresses to laminar failure. It is proposed that vasoactive amines, protease activators and endotoxin, all bacterial derived bioactive metabolites, play a role in disease development. Questions regarding the oral bioavailability of many of the bacterial derived bioactive metabolites remain. This study evaluates the possibility that a carbohydrate-induced overgrowth of potentially pathogenic cecal bacteria occurs and that bacterial translocation contributes toward the development of the pro-inflammatory state. Two groups of mixed-breed horses were used, those with laminitis induced by cornstarch (n=6) or oligofructan (n=6) and non-laminitic controls (n=8). Cecal fluid and tissue homogenates of extra-intestinal sites including the laminae were used to enumerate Gram-negative and -positive bacteria. Horses that developed Obel grade2 lameness, revealed a significant overgrowth of potentially pathogenic Gram-positive and Gram-negative intestinal bacteria within the cecal fluid. Although colonization of extra-intestinal sites with potentially pathogenic bacteria was not detected, results of this study indicate that cecal/colonic lymphadenopathy and eosinophilia develop in horses progressing to lameness. It is hypothesized that the pro-inflammatory state in carbohydrate overload models of equine acute laminitis is driven by an immune response to the rapid overgrowth of Gram-positive and Gram-negative cecal bacterial communities in the gut. Further equine research is indicated to study the immunological response, involving the lymphatic system that develops in the model. Copyright © 2012 Elsevier B.V. All rights reserved.
CFD simulations and reduced order modeling of a refrigerator compartment including radiation effects
International Nuclear Information System (INIS)
Bayer, Ozgur; Oskay, Ruknettin; Paksoy, Akin; Aradag, Selin
2013-01-01
Highlights: ► Free convection in a refrigerator is simulated including radiation effects. ► Heat rates are affected drastically when radiation effects are considered. ► 95% of the flow energy can be represented by using one spatial POD mode. - Abstract: Considering the engineering problem of natural convection in domestic refrigerator applications, this study aims to simulate the fluid flow and temperature distribution in a single commercial refrigerator compartment by using the experimentally determined temperature values as the specified constant wall temperature boundary conditions. The free convection in refrigerator applications is evaluated as a three-dimensional (3D), turbulent, transient and coupled non-linear flow problem. Radiation heat transfer mode is also included in the analysis. According to the results, taking radiation effects into consideration does not change the temperature distribution inside the refrigerator significantly; however the heat rates are affected drastically. The flow inside the compartment is further analyzed with a reduced order modeling method called Proper Orthogonal Decomposition (POD) and the energy contents of several spatial and temporal modes that exist in the flow are examined. The results show that approximately 95% of all the flow energy can be represented by only using one spatial mode
Directory of Open Access Journals (Sweden)
Raúl O Martínez-Rincón
Full Text Available Juvenile hormone (JH regulates development and reproductive maturation in insects. The corpora allata (CA from female adult mosquitoes synthesize fluctuating levels of JH, which have been linked to the ovarian development and are influenced by nutritional signals. The rate of JH biosynthesis is controlled by the rate of flux of isoprenoids in the pathway, which is the outcome of a complex interplay of changes in precursor pools and enzyme levels. A comprehensive study of the changes in enzymatic activities and precursor pool sizes have been previously reported for the mosquito Aedes aegypti JH biosynthesis pathway. In the present studies, we used two different quantitative approaches to describe and predict how changes in the individual metabolic reactions in the pathway affect JH synthesis. First, we constructed generalized additive models (GAMs that described the association between changes in specific metabolite concentrations with changes in enzymatic activities and substrate concentrations. Changes in substrate concentrations explained 50% or more of the model deviances in 7 of the 13 metabolic steps analyzed. Addition of information on enzymatic activities almost always improved the fitness of GAMs built solely based on substrate concentrations. GAMs were validated using experimental data that were not included when the model was built. In addition, a system of ordinary differential equations (ODE was developed to describe the instantaneous changes in metabolites as a function of the levels of enzymatic catalytic activities. The results demonstrated the ability of the models to predict changes in the flux of metabolites in the JH pathway, and can be used in the future to design and validate experimental manipulations of JH synthesis.
Euskirchen, E. S.; Patil, V.; Roach, J.; Griffith, B.; McGuire, A. D.
2015-12-01
Dynamic vegetation models (DVMs) have been developed to model the ecophysiological characteristics of plant functional types in terrestrial ecosystems. They have frequently been used to answer questions pertaining to processes such as disturbance, plant succession, and community composition under historical and future climate scenarios. While DVMs have proved useful in these types of applications, it has often been questioned if additional detail, such as including plant dynamics at the species-level and/or including species-specific traits would make these models more accurate and/or broadly applicable. A sub-question associated with this issue is, 'How many species, or what degree of functional diversity, should we incorporate to sustain ecosystem function in modeled ecosystems?' Here, we focus on how the inclusion of additional plant species and trait information may strengthen dynamic vegetation modeling in applications pertaining to: (1) forage for caribou in northern Alaska, (2) above- and belowground carbon storage in the boreal forest and lake margin wetlands of interior Alaska, and (3) arctic tundra and boreal forest leaf phenology. While the inclusion of additional information generally proved valuable in these three applications, this additional detail depends on field data that may not always be available and may also result in increased computational complexity. Therefore, it is important to assess these possible limitations against the perceived need for additional plant species and trait information in the development and application of dynamic vegetation models.
Energy Technology Data Exchange (ETDEWEB)
Morgan, T.L.
1980-08-01
Totals of 1583 water samples and 503 sediment samples were collected from 2028 locations within the 20 000-km/sup 2/ area of the quadrangle at an average density of one location per 9.86 km/sup 2/. Water samples were collected from wells, springs, and streams and were analyzed for uranium. Sediment samples were collected from streams and springs and were analyzed for uranium, thorium, and 41 additional elements. All field and analytical data are listed in the appendixes of this report. Discussion is limited to anomalous samples, which are considered to be those containing over 20 ppB uranium for waters and over 5 ppM uranium for sediments. Uranium concentrations in water samples range from below the detection limit of 0.2 ppB to 1457.65 ppB and average 7.41 ppB. Most of the seventy anomalous water samples (4.4% of all water samples) are grouped spatially into five clusters or areas of interest. Samples in three of the clusters were collected along the north edge of the quadrangle where Mesozoic strata are exposed. The other two clusters are from the central and southern portions where the Quaternary Ogallala formation is exposed. Sediment samples from the quadrangle have uranium concentrations that range from 0.90 ppM to 27.20 ppM and average 3.27 ppM. Fourteen samples (2.8% of all sediment samples) contain over 5 ppM uranium and are considered anomalous. The five samples with the highest concentrations occur where downcutting streams expose Cretaceous units beneath the Quaternary surficial deposits. The remaining anomalous sediment samples were collected from scattered locations and do not indicate any single formation or unit as a potential source for the anomalous concentrations.
International Nuclear Information System (INIS)
Morgan, T.L.
1980-08-01
Totals of 1583 water samples and 503 sediment samples were collected from 2028 locations within the 20 000-km 2 area of the quadrangle at an average density of one location per 9.86 km 2 . Water samples were collected from wells, springs, and streams and were analyzed for uranium. Sediment samples were collected from streams and springs and were analyzed for uranium, thorium, and 41 additional elements. All field and analytical data are listed in the appendixes of this report. Discussion is limited to anomalous samples, which are considered to be those containing over 20 ppB uranium for waters and over 5 ppM uranium for sediments. Uranium concentrations in water samples range from below the detection limit of 0.2 ppB to 1457.65 ppB and average 7.41 ppB. Most of the seventy anomalous water samples (4.4% of all water samples) are grouped spatially into five clusters or areas of interest. Samples in three of the clusters were collected along the north edge of the quadrangle where Mesozoic strata are exposed. The other two clusters are from the central and southern portions where the Quaternary Ogallala formation is exposed. Sediment samples from the quadrangle have uranium concentrations that range from 0.90 ppM to 27.20 ppM and average 3.27 ppM. Fourteen samples (2.8% of all sediment samples) contain over 5 ppM uranium and are considered anomalous. The five samples with the highest concentrations occur where downcutting streams expose Cretaceous units beneath the Quaternary surficial deposits. The remaining anomalous sediment samples were collected from scattered locations and do not indicate any single formation or unit as a potential source for the anomalous concentrations
Xu, Yiming; Smith, Scot E; Grunwald, Sabine; Abd-Elrahman, Amr; Wani, Suhas P; Nair, Vimala D
2017-09-11
Digital soil mapping (DSM) is gaining momentum as a technique to help smallholder farmers secure soil security and food security in developing regions. However, communications of the digital soil mapping information between diverse audiences become problematic due to the inconsistent scale of DSM information. Spatial downscaling can make use of accessible soil information at relatively coarse spatial resolution to provide valuable soil information at relatively fine spatial resolution. The objective of this research was to disaggregate the coarse spatial resolution soil exchangeable potassium (K ex ) and soil total nitrogen (TN) base map into fine spatial resolution soil downscaled map using weighted generalized additive models (GAMs) in two smallholder villages in South India. By incorporating fine spatial resolution spectral indices in the downscaling process, the soil downscaled maps not only conserve the spatial information of coarse spatial resolution soil maps but also depict the spatial details of soil properties at fine spatial resolution. The results of this study demonstrated difference between the fine spatial resolution downscaled maps and fine spatial resolution base maps is smaller than the difference between coarse spatial resolution base maps and fine spatial resolution base maps. The appropriate and economical strategy to promote the DSM technique in smallholder farms is to develop the relatively coarse spatial resolution soil prediction maps or utilize available coarse spatial resolution soil maps at the regional scale and to disaggregate these maps to the fine spatial resolution downscaled soil maps at farm scale.
Fitting additive hazards models for case-cohort studies: a multiple imputation approach.
Jung, Jinhyouk; Harel, Ofer; Kang, Sangwook
2016-07-30
In this paper, we consider fitting semiparametric additive hazards models for case-cohort studies using a multiple imputation approach. In a case-cohort study, main exposure variables are measured only on some selected subjects, but other covariates are often available for the whole cohort. We consider this as a special case of a missing covariate by design. We propose to employ a popular incomplete data method, multiple imputation, for estimation of the regression parameters in additive hazards models. For imputation models, an imputation modeling procedure based on a rejection sampling is developed. A simple imputation modeling that can naturally be applied to a general missing-at-random situation is also considered and compared with the rejection sampling method via extensive simulation studies. In addition, a misspecification aspect in imputation modeling is investigated. The proposed procedures are illustrated using a cancer data example. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.
Energy Technology Data Exchange (ETDEWEB)
Broxton, D.E.; Beyth, M.
1980-07-01
Totals of 1580 water and 1720 sediment samples were collected from 1754 locations in the quadrangle. Elemental concentration, field measurement, weather, geologic, and geographic data for each sample location are listed for waters in Appendix I-A and for sediments in Appendix I-B. Uranium/thorium ratios for sediment samples are also included in Appendix I-B. All elemental analyses were performed at the LASL. Water samples were initially analyzed for uranium by fluorometry. All water samples containing more than 40 parts per billion (ppB) uranium were reanalyzed by delayed-neutron counting (DNC). A supplemental report containing the multielement analyses of water samples will be open filed in the near future. Sediments were analyzed for uranium and thorium as well as aluminum, antimony, arsenic, barium, beryllium, bismuth, cadmium, calcium, cerium, cesium, chlorine, chromium, cobalt, copper, dysprosium, europium, gold, hafnium, iron, lanthanum, lead, lithium, lutetium, magnesium, manganese, nickel, niobium, potassium, rubidium, samarium, selenium, scandium, silver, sodium, strontium, tantalum, terbium, tin, titanium, tungsten, vanadium, ytterbium, zinc, and zirconium. Basic statistics for 40 of these elements are presented. All sediments were analyzed for uranium by delayed-neutron counting. Other elemental concentrations in sediments were determined by neutron-activation analysis for 30 elements, by x-ray fluorescence for 12 elements, and by arc-source emission spectrography for 2 elements. Analytical results for sediments are reported as parts per million.
International Nuclear Information System (INIS)
Shannon, S.S. Jr.
1980-08-01
Totals of 758 water and 1170 sediment samples were collected from 1649 locations in the Levistown quadrangle. Water samples were collected at streams, springs, wells, ponds, and marshes; sediment samples were obtained from streams, springs, and ponds. Histograms and statistical data for uranium concentrations in water and sediment samples and thorium concentrations in sediment samples are given. All samples were collected at the nominal reconnaissance density of one sample location per 10 km 2 . Elemental concentration, field measurement, weather, geologic, and geographic data for each sample location are listed for waters and for sediments. Uranium to thorium (U/Th) ratios for sediment samples are included. Water samples were initially analyzed for uranium by fluorometry. All water samples containing more than 40 ppB U were reanalyzed by delayed-neutron counting. Sediments were analyzed for U and Th as well as Al, Sb, Ba, Be, Bi, Cd, Ca, Ce, Cs, Cl, Cr, Co, Cu, Dy, Eu, Au, Hf, Fe, La, Pb, Li, Lu, Mg, Mn, Ni, Nb, K, Rb, Sa, Sc, Ag, Na, Sr, Ta, Tb, Sn, Ti, W, V, Yb, and Zn. All sediments were analyzed for U by delayed neutron counting. Other elemental concentrations in sediments were determined by neutron activation analysis for 31 elements, by x-ray fluorescence for 9 elements, and by arc-source emission spectrography for 2 elements. Analytical results are reported as parts per million. Descriptions of procedures used for analysis of water and sediments samples as well as analytical precisions and detection limits are given
International Nuclear Information System (INIS)
Shannon, S.S. Jr.; Romero, M.T.; Simi, O.R.; Martell, C.J.; Minor, M.M.; Hensley, W.K.; Mills, C.S.
1980-07-01
This report contains data collected during a geochemical survey (August and September 1977) for uranium in the Torrington National Topographic Map Series quadrangle of east-central Wyoming by the Los Alamos Scientific Laboratory (LASL) as part of the nationwide Hydrogeochemical and Stream Sediment Reconnaissance (HSSR). Totals of 1119 water and 756 sediment samples were collected from 1677 locations in the quadrangle. Histograms and statistical data for uranium concentrations in water and sediment samples and thorium concentrations in sediment samples are given. Elemental concentration, field measurement, weather, geologic, and geographic data for each sample location are listed for waters and for sediments. Uranium/thorium ratios for sediment samples are included. All elemental analyses were performed at the LASL. Water samples were initially analyzed for uranium by fluorometry. All water samples containing more than 40 ppB uranium were reanalyzed by delayed-neutron counting (DNC). Sediments were analyzed for uranium and thorium as well as aluminum, antimony, barium, beryllium, bismuth, cadmium, calcium, cerium, cesium, chlorine, chromium, cobalt, copper, dysprosium, europium, gold, hafnium, iron, lanthanum, lead, lithium, lutetium, magnesium, manganese, nickel, niobium, potassium, rubidium, samarium, scandium, silver, sodium, strontium, tantalum, terbium, tin, titanium, tungsten, vanadium, ytterbium, and zinc. All sediments were analyzed for uranium by DNC. Other elemental concentrations in sediments were determined by neutron-activation analysis for 31 elements, by x-ray fluorescence for 9 elements, and by arc-source emission spectrography for 2 elements. Analytical results for sediments are reported as parts per million
International Nuclear Information System (INIS)
Maassen, L.W.
1981-01-01
In September and October 1979, the Los Alamos Scientific Laboratory (LASL) conducted a detailed geochemical survey for uranium primarily in the Sawatch Range in the eastern part of the Montrose National Topographic Map Series (NTMS) quadrangle, Colorado, as part of the National Hydrogeochemical and Stream Sediment Reconnaissance (HSSR). Totals of 1034 water and 2087 sediment samples were collected from streams and springs from 2088 locations within a 5420-km 2 area. Statistical data for uranium concentrations in water and sediment samples are presented. Elemental concentration, field measurement, weather, geologic, and geographic data for each sample location are listed for waters and for sediments in appendices. Uranium/thorium ratios for sediment samples are also included. This report contains uranium analyses for water samples and multielement analyses for sediment samples. Sediments were analyzed for uranium and thorium as well as Al, Sb, As, Ba, Be, Bi, Cd, Ca, Ce, Cs, Cl, Cr, Co, Cu, Dy, Eu, Au, Hf, Fe, La, Pb, Li, Lu, Mg, Mn, Ni, Nb, K, Rb, Sm, Sc, Se, Ag, Na, Sr, Ta, Tb, Sn, Ti, W, V, Yb, Zn, and Zr. All elemental analyses were performed at the LASL. Water samples were analyzed for uranium by fluorometry. Sediments were analyzed for uranium by delayed neutron counting. Other elemental concentrations in sediments were determined by neutron activation analysis for 31 elements, by x-ray fluorescence for 12 elements, and by arc-source emission spectrography for 2 elements. Descriptions of procedures as analytical precisions and detection limits are given in the appendix
Energy Technology Data Exchange (ETDEWEB)
Paeth, H. [Geographical Institute, University of Wuerzburg, Am Hubland, 97074 Wuerzburg (Germany); Thamm, H.P. [Geographical Institute, University of Bonn, Bonn (Germany)
2007-08-15
Previous studies have highlighted the crucial role of land degradation in tropical African climate. This effect urgently has to be taken into account when predicting future African climate under enhanced greenhouse conditions. Here, we present time slice experiments of African climate until 2025, using a high-resolution regional climate model. A supposable scenario of future land use changes, involving vegetation loss and soil degradation, is prescribed simultaneously with increasing greenhouse-gas concentrations in order to detect, where the different forcings counterbalance or reinforce each other. This proceeding allows us to define the regions of highest vulnerability with respect to future freshwater availability and food security in tropical and subtropical Africa and may provide a decision basis for political measures. The model simulates a considerable reduction in precipitation amount until 2025 over most of tropical Africa, amounting to partly more than 500 mm (20-40% of the annual sum), particularly in the Congo Basin and the Sahel Zone. The change is strongest in boreal summer and basically reflects the pattern of maximum vegetation cover during the seasonal cycle. The related change in the surface energy fluxes induces a substantial near-surface warming by up to 7C. According to the modified temperature gradients over tropical Africa, the summer monsoon circulation intensifies and transports more humid air masses into the southern part of West Africa. This humidifying effect is overcompensated by a remarkable decrease in surface evaporation, leading to the overall drying tendency over most of Africa. Extreme daily rainfall events become stronger in autumn but less intense in spring. Summer and autumn appear to be characterized by more severe heat waves over Subsaharan West Africa. In addition, the Tropical Easterly Jet is weakening, leading to enhanced drought conditions in the Sahel Zone. All these results suggest that the local impact of land
International Nuclear Information System (INIS)
Morgan, T.L.
1981-01-01
This report contains data collected by the Los Alamos Scientific Laboratory (LASL) during a regional geochemical survey for uranium in the Rock Springs National Topographic Map Series (NTMS) quadrangle, southwestern Wyoming, as part of the nationwide hydrogeochemical and Stream Sediment Reconnaissance (HSSR). Totals of 397 water and 1794 sediment samples were collected from 1830 locations in the Rock Springs quadrangle of southern Wyoming during the summer of 1976. The average uranium concentration of all water samples is 6.57 ppb and the average sediment uranium concentration is 3.64 ppM. Elemental concentration, field measurement, weather, geologic, and geographic data for each sample location are listed for waters and for sediments in the appendices. Uranium/thorium ratios for sediment samples are also included. A sample location overlay (Plate I) at 1:250 000 scale for use in conjunction with the Rock Springs NTMS quadrangle sheet (US Geological Survey, 1954) is provided. All elemental analyses were performed at the LASL. Water samples were initially analyzed for uranium by fluorometry. All water samples containing more than 40 ppB uranium were reanalyzed by delayed-neutron counting. Sediments were analyzed for uranium and thorium as well as Al, Sb, Ba, Be, Bi, Cd, Ca, Ce, Cs, Cl, Cr, Co, Cu, Dy, Eu, Au, Hf, Fe, La, Pb, Li, Lu, Mg, Mn, Ni, Nb, K, Rb, Sm, Sc, Ag, Na, Sr, Ta, Tb, Sn, T, W, V, Yb, and Zn. All sediments were analyzed for uranium by delayed-neutron counting. Other elemental concentrations in sediments were determined by neutron-activation analysis for 30 elements, by x-ray fluorescence for 12 elements, and by arc-source emission spectrography for 2 elements. These analytical methods are described briefly in the appendix. This report is simply a data release and is intended to make the data available to the DOE and to the public as quickly as possible
International Nuclear Information System (INIS)
Broxton, D.E.; George, W.E.; Montoya, J.V.; Martell, C.J.; Hensley, W.K.; Hanks, D.
1980-05-01
This report contains data collected during a geochemical survey for uranium in the Butte National Topographic Map Series (NTMS) quadrangle of west-central Montana. Histograms and statistical data for uranium concentrations in water and sediment samples and thorium concentrations in sediment samples are given. Elemental concentration, field measurement, weather, geologic, and geographic data for each sample location are listed for waters and for sediments. Uranium/thorium ratios for sediment samples are also included. This report contains uranium analyses for water samples and multielement analyses for sediment samples. A supplemental report containing the results of multielement analyses of water samples will be open filed in the near future. Sediments were analyzed for uranium and thorium as well as aluminum, antimony, barium, beryllium, bismuth, cadmium, calcium, cerium, cesium, chlorine, chromium, cobalt, copper, dysprosium, europium, gold, hafnium, iron, lanthanum, lead, lithium, lutetium, magnesium, manganese, nickel, niobium, potassium, rubidium, samarium, scandium, silver, sodium, strontium, tantalum, terbium, tin, titanium, tungsten, vanadium, ytterbium, and zinc. All elemental analyses were performed at the LASL. Water samples were initially analyzed for uranium by fluorometry. All water samples containing more than 40 ppB uranium were reanalyzed by delayed-neutron counting (DNC). All sediments were analyzed for uranium by DNC. Other elemental concentrations in sediments were determined by neutron activation analysis for 31 elements, by x-ray fluorescence for 9 elements, and by arc-source emission spectrography for 2 elements. Analytical results for sediments are reported as parts per million. Descriptions of procedures used for analysis of water and sediment samples as well as analytical precisions and detection limits are given
International Nuclear Information System (INIS)
Shannon, S.S. Jr; Sandoval, W.F.; Gallimore, D.L.; Hansel, J.M.; Hensley, W.K.; Pirtle, J.; Macdonell, C.J.
1980-08-01
This report contains data collected during a geochemical survey for uranium in the Ashton National Topographic Map Series quadrangle of eastern Idaho, southwestern Montana, and northwestern Wyoming by the Los Alamos Scientific Laboratory (LASL) as part of the nationwide Hydrogeochemical and Stream Sediment Reconnaissance (HSSR). The LASL is responsible for conducting the HSSR primarily in the Rocky Mountain states of New Mexico, Colorado, Wyoming, and Montana and in Alaska. Totals of 1141 water and 1500 sediment samples were collected from 1539 locations in the quadrangle by a commercial contractor. Water samples were collected at streams, springs, wells, ponds, and marshes; sediment samples were obtained from streams, springs, and ponds. Histograms and statistical data for uranium concentrations in water and sediment samples and thorium concentrations in sediment samples are given. Uranium/thorium ratios for sediment samples are also included. All elemental analyses were performed at the LASL. Water samples were initially analyzed for uranium by fluorometry. All water samples containing more than 40 ppB uranium were reanalyzed by delayed-neutron counting (DNC). Sediments were analyzed for uranium and thorium as well as aluminum, antimony, barium, beryllium, bismuth, cadmium, calcium, cerium, cesium, chlorine, chromium, cobalt, copper, dysprosium, europium, gold, hafnium, iron, lanthanum, lead, lithium, lutetium, magnesium, manganese, nickel, niobium, potassium, rubidium, samarium, scandium, silver, sodium, strontium, tantalum, terbium, tin, titanium, tungsten, vanadium, ytterbium, and zinc. All sediments were analyzed for uranium by DNC. Other elemental concentrations in sediments were determined by neutron activation analysis for 31 elements, by x-ray fluorescence for 9 elements, and by arc-source emission spectrography for 2 elements. Analytical results for sediments are reported as parts per million
International Nuclear Information System (INIS)
Maassen, L.W.; George, W.E.; Apel, C.T.; Hansel, J.M.; Hensley, W.K.; Minor, M.M.; Mills, C.F.
1980-08-01
This report contains data collected during a geochemical survey for uranium in the St. Johns National Topographic Map Series (NTMS) quadrangle of Arizona/New Mexico by the Los Alamos Scientific Laboratory (LASL) as part of the nationwide Hydrogeochemical and Stream Sediment Reconnaissance (HSSR). Totals of 848 water and 1475 sediment samples were collected from 2136 locations in the quadrangle. Histograms and statistical data for uranium concentrations in water and sediment samples and thorium concentrations in sediment samples are given. Listings of the field and uranium data for water samples are given in Appendix I-A. Listings of the field and elemental data for sediment samples are given in Appendix I-B. Uranium/thorium ratios for sediment samples are also included. Appendix II describes standard LASL HSSR field and analytical procedures and explains the codes used in Appendix I. Water samples were initially analyzed for uranium by fluorometry. Water samples collected in 1976 containing more than 10 ppB uranium and those collected in 1979 containing more than 40 ppB uranium were reanalyzed by delayed-neutron counting (DNC). Sediments were analyzed for uranium and thorium as well as aluminum, antimony, barium, beryllium, bismuth, cadmium, calcium, cerium, cesium, chlorine, chromium, cobalt, copper, dysprosium, europium, gold, hafnium, iron, lanthanum, lead, lithium, lutetium, magnesium, manganese, nickel, niobium, potassium, rubidium, samarium, scandium, silver, sodium, strontium, tantalum, terbium, tin, titanium, tungsten, vanadium, ytterbium, and zinc. All sediments were analyzed for uranium by DNC. Other elemental concentrations in sediments were determined by neutron-activation analysis for 31 elements, by x-ray fluorescence for 9 elements, and by arc-source emission spectroscopy for 2 elements. Analytical results for sediments are reported as parts per million
International Nuclear Information System (INIS)
Morgan, T.L.; George, W.E.; Gallimore, D.L.; Hansel, J.M.; Hensley, W.K.; Jackson, C.K.; Bunker, M.E.
1981-01-01
Totals of 397 water and 1794 sediment samples were collected from 1830 locations in the Rock Springs quadrangle of southern Wyoming during the summer of 1976. Water samples were collected from 230 streams, 123 springs, 28 wells, and 16 artificial ponds. Sediment samples were collected from 231 wet streams and 1389 dry streams, 119 wet springs and 8 dry springs 29 artificial ponds and 18 natural ponds. The average uranium concentration of all water samples if 6.57 ppB and the average sediment uranium concentration is 3.64 ppM. Elemental concentration, field measurement, weather, geologic, and geographic data for each sample location are listed for waters and for sediments in Appendices. Uranium/thorium ratios for sediment samples are also included. All elemental analyses were performed at the LASL. Water samples were initially analyzed for uranium by fluorometry. All water samples containing more than 40 ppB uranium were reanalyzed by delayed-neutron counting (DNC). Sediments were analyzed for uranium and thorium as well as aluminum, antimony, barium, beryllium, bismuth, cadmium, calcium, cerium, cesium, chlorine, chromium, cobalt, copper, dysprosium, europium, gold, hafnium, iron, lanthanum, lead, lithium, lutetium, magnesium, manganese, nickel, niobium, potassium, rubidium, samarium, scandium, silver, sodium, strontium, tantalum, terbium, tin, titanium, tungsten, vanadium, ytterbium, and zinc. All sediments were analyzed for uranium by delayed-neutron counting. Other elemental concentrations in sediments were determined by neutron-activation analysis for 30 elements by x-ray fluorescence for 12 elements, and by arc-source emission spectrography for 2 elements. These analytical methods are described briefly
International Nuclear Information System (INIS)
Purson, J.D.
1980-08-01
The Los Alamos Scientific Laboratory conducted a geochemical reconnaissance for uranium in the Vernal NTMS quadrangle, Utah/Colorado, in the summers of 1977 and 1978. Totals of 422 water and 1552 sediment samples were collected from 1652 locations. These samples were collected at an average density of one sample location per 11 km 2 over an 18,800 km 2 area. Water samples were collected from streams and springs. Only those samples containing >10 ppB uranium for waters and >8 ppM uranium for sediments are discussed; however, all field and analytical data are included in the appendixes. The uranium concentrations in waters range from below the detection limit of 0.01 ppB to 108.04 ppB, with a mean uranium concentration for all water types of 3.11 ppB. Three clusters of samples containing relatively high uranium values are defined; they are associated with the Duchesne River formation, the Mancos shale, or the Uinta Mountain group and Browns Park formations. A few of the samples having the highest uranium values are associated with host rocks favorable for significant uranium mineralization. Sediments collected in this study have uranium concentrations that range between 0.70 ppM and 56.70 ppM, with a mean of 3.46 ppM. The majority of sediment samples with relatively high uranium concentrations were collected from one area in the Sand Wash basin in the northeastern corner of the quadrangle and are associated with the Wasatch formation. None of the water clusters define areas of significant interest; however, the area having high uranium values in sediments is worthy of further study
de Smet, J.H.
1999-01-01
This thesis elaborates on the evolution of the continental upper mantle based on numerical modelling results. The descriptive and explanatory basis is formed by a numerical thermo-chemical convection model. The model evolution starts in the early Archaean about 4 billion years ago. The model follows
Smet, J.H. de
1999-01-01
This thesis elaborates on the evolution of the continental upper mantle based on numerical modelling results. The descriptive and explanatory basis is formed by a numerical thermo-chemical convection model. The model evolution starts in the early Archaean about 4 billion years ago. The model
Höning, D.; Spohn, T.
2014-12-01
By harvesting solar energy and converting it to chemical energy, photosynthetic life plays an important role in the energy budget of Earth [2]. This leads to alterations of chemical reservoirs eventually affecting the Earth's interior [4]. It further has been speculated [3] that the formation of continents may be a consequence of the evolution life. A steady state model [1] suggests that the Earth without its biosphere would evolve to a steady state with a smaller continent coverage and a dryer mantle than is observed today. We present a model including (i) parameterized thermal evolution, (ii) continental growth and destruction, and (iii) mantle water regassing and outgassing. The biosphere enhances the production rate of sediments which eventually are subducted. These sediments are assumed to (i) carry water to depth bound in stable mineral phases and (ii) have the potential to suppress shallow dewatering of the underlying sediments and crust due to their low permeability. We run a Monte Carlo simulation for various initial conditions and treat all those parameter combinations as success which result in the fraction of continental crust coverage observed for present day Earth. Finally, we simulate the evolution of an abiotic Earth using the same set of parameters but a reduced rate of continental weathering and erosion. Our results suggest that the origin and evolution of life could have stabilized the large continental surface area of the Earth and its wet mantle, leading to the relatively low mantle viscosity we observe at present. Without photosynthetic life on our planet, the Earth would be geodynamical less active due to a dryer mantle, and would have a smaller fraction of continental coverage than observed today. References[1] Höning, D., Hansen-Goos, H., Airo, A., Spohn, T., 2014. Biotic vs. abiotic Earth: A model for mantle hydration and continental coverage. Planetary and Space Science 98, 5-13. [2] Kleidon, A., 2010. Life, hierarchy, and the
Research on model of additional forces of ocean conditions in one-dimensional coolant channel
International Nuclear Information System (INIS)
Qian Libo; Tian Wenxi; Qiu Suizheng; Su Guanghui; Li Yong; Huang Yanping; Yan Xiao
2012-01-01
The effect of different ocean conditions on coolant flow can come down to the differences of additional forces in the momentum equations, thus ocean conditions can be considered by adding the additional forces caused by them to the momentum equations. The model of additional forces of 6 types of typical and relevant coupled ocean conditions is obtained based on the basic momentum equation in the non-inertial reference frame and the one-dimensional coolant channel. (authors)
Lu, Wei; Yang, Qingchun; Martín, Jordi D.; Juncosa, Ricardo
2013-04-01
During the 1990s, groundwater overexploitation has resulted in seawater intrusion in the coastal aquifer of the Shenzhen city, China. Although water supply facilities have been improved and alleviated seawater intrusion in recent years, groundwater overexploitation is still of great concern in some local areas. In this work we present a three-dimensional density-dependent numerical model developed with the FEFLOW code, which is aimed at simulating the extent of seawater intrusion while including tidal effects and different groundwater pumping scenarios. Model calibration, using waterheads and reported chloride concentration, has been performed based on the data from 14 boreholes, which were monitored from May 2008 to December 2009. A fairly good fitness between the observed and computed values was obtained by a manual trial-and-error method. Model prediction has been carried out forward 3 years with the calibrated model taking into account high, medium and low tide levels and different groundwater exploitation schemes. The model results show that tide-induced seawater intrusion significantly affects the groundwater levels and concentrations near the estuarine of the Dasha river, which implies that an important hydraulic connection exists between this river and groundwater, even considering that some anti-seepage measures were taken in the river bed. Two pumping scenarios were considered in the calibrated model in order to predict the future changes in the water levels and chloride concentration. The numerical results reveal a decreased tendency of seawater intrusion if groundwater exploitation does not reach an upper bound of about 1.32 × 104 m3/d. The model results provide also insights for controlling seawater intrusion in such coastal aquifer systems.
The chaos and control of a food chain model supplying additional food to top-predator
International Nuclear Information System (INIS)
Sahoo, Banshidhar; Poria, Swarup
2014-01-01
Highlights: • We propose a chaotic food chain model supplying additional food to top-predator. • Local and global stability conditions are derived in presence of additional food. • Chaos is controlled only by increasing quantity of additional food. • System enters into periodic region and depicts Hopf bifurcations supplying additional food. • This an application of non-chemical methods for controlling chaos. -- Abstract: The control and management of chaotic population is one of the main objectives for constructing mathematical model in ecology today. In this paper, we apply a technique of controlling chaotic predator–prey population dynamics by supplying additional food to top-predator. We formulate a three species predator–prey model supplying additional food to top-predator. Existence conditions and local stability criteria of equilibrium points are determined analytically. Persistence conditions for the system are derived. Global stability conditions of interior equilibrium point is calculated. Theoretical results are verified through numerical simulations. Phase diagram is presented for various quality and quantity of additional food. One parameter bifurcation analysis is done with respect to quality and quantity of additional food separately keeping one of them fixed. Using MATCONT package, we derive the bifurcation scenarios when both the parameters quality and quantity of additional food vary together. We predict the existence of Hopf point (H), limit point (LP) and branch point (BP) in the model for suitable supply of additional food. We have computed the regions of different dynamical behaviour in the quantity–quality parametric plane. From our study we conclude that chaotic population dynamics of predator prey system can be controlled to obtain regular population dynamics only by supplying additional food to top predator. This study is aimed to introduce a new non-chemical chaos control mechanism in a predator–prey system with the
Including Overweight or Obese Students in Physical Education: A Social Ecological Constraint Model
Li, Weidong; Rukavina, Paul
2012-01-01
In this review, we propose a social ecological constraint model to study inclusion of overweight or obese students in physical education by integrating key concepts and assumptions from ecological constraint theory in motor development and social ecological models in health promotion and behavior. The social ecological constraint model proposes…
ETM documentation update – including modelling conventions and manual for software tools
DEFF Research Database (Denmark)
Grohnheit, Poul Erik
, it summarises the work done during 2013, and it also contains presentations for promotion of fusion as a future element in the electricity generation mix and presentations for the modelling community concerning model development and model documentation – in particular for TIAM collaboration workshops....
Wai, Rong-Jong; Yang, Zhi-Wei
2008-10-01
This paper focuses on the development of adaptive fuzzy neural network control (AFNNC), including indirect and direct frameworks for an n-link robot manipulator, to achieve high-precision position tracking. In general, it is difficult to adopt a model-based design to achieve this control objective due to the uncertainties in practical applications, such as friction forces, external disturbances, and parameter variations. In order to cope with this problem, an indirect AFNNC (IAFNNC) scheme and a direct AFNNC (DAFNNC) strategy are investigated without the requirement of prior system information. In these model-free control topologies, a continuous-time Takagi-Sugeno (T-S) dynamic fuzzy model with online learning ability is constructed to represent the system dynamics of an n-link robot manipulator. In the IAFNNC, an FNN estimator is designed to tune the nonlinear dynamic function vector in fuzzy local models, and then, the estimative vector is used to indirectly develop a stable IAFNNC law. In the DAFNNC, an FNN controller is directly designed to imitate a predetermined model-based stabilizing control law, and then, the stable control performance can be achieved by only using joint position information. All the IAFNNC and DAFNNC laws and the corresponding adaptive tuning algorithms for FNN weights are established in the sense of Lyapunov stability analyses to ensure the stable control performance. Numerical simulations and experimental results of a two-link robot manipulator actuated by dc servomotors are given to verify the effectiveness and robustness of the proposed methodologies. In addition, the superiority of the proposed control schemes is indicated in comparison with proportional-differential control, fuzzy-model-based control, T-S-type FNN control, and robust neural fuzzy network control systems.
Utilization of sulfate additives in biomass combustion: fundamental and modeling aspects
DEFF Research Database (Denmark)
Wu, Hao; Jespersen, Jacob Boll; Grell, Morten Nedergaard
2013-01-01
Sulfates, such as ammonium sulfate, aluminum sulfate and ferric sulfate, are effective additives for converting the alkali chlorides released from biomass combustion to the less harmful alkali sulfates. Optimization of the use of these additives requires knowledge on their decomposition rate...... was combined with a detailed gas-phase kinetic model of KCl sulfation and a model of K2SO4 condensation to simulate the sulfation of KCl by ferric sulfate addition. The simulation results showed good agreements with the experiments conducted in a biomass grate-firing combustor, where ferric sulfate...... and elemental sulfur were used as additives. The results indicated that the SO3 released from ferric sulfate decomposition was the main contributor to KCl sulfation and that the effectiveness of ferric sulfate addition was sensitive to the applied temperature conditions. Comparison of the effectiveness...
Modeling the Use of Sulfate Additives for Potassium Chloride Destruction in Biomass Combustion
DEFF Research Database (Denmark)
Wu, Hao; Pedersen, Morten Nedergaard; Jespersen, Jacob Boll
2014-01-01
Potassium chloride, KCl, formed from biomass combustion may lead to ash deposition and corrosion problems in boilers. Sulfates are effective additives for converting KCl to the less harmful K2SO4 and HCl. In the present study, the rate constants for decomposition of ammonium sulfate and aluminum......-dependent distribution of SO2 and SO3 from ammonium sulfate decomposition. On the basis of these data as well as earlier results, a detailed chemical kinetic model for sulfation of KCl by a range of sulfate additives was established. Modeling results were compared to biomass combustion experiments in a bubbling...... fluidized-bed reactor using ammonium sulfate, aluminum sulfate, and ferric sulfate as additives. The simulation results for ammonium sulfate and ferric sulfate addition compared favorably to the experiments. The predictions for aluminum sulfate addition were only partly in agreement with the experimental...
Incorporating additional tree and environmental variables in a lodgepole pine stem profile model
John C. Byrne
1993-01-01
A new variable-form segmented stem profile model is developed for lodgepole pine (Pinus contorta) trees from the northern Rocky Mountains of the United States. I improved estimates of stem diameter by predicting two of the model coefficients with linear equations using a measure of tree form, defined as a ratio of dbh and total height. Additional improvements were...
Testing a Gender Additive Model: The Role of Body Image in Adolescent Depression
Bearman, Sarah Kate; Stice, Eric
2008-01-01
Despite consistent evidence that adolescent girls are at greater risk of developing depression than adolescent boys, risk factor models that account for this difference have been elusive. The objective of this research was to examine risk factors proposed by the "gender additive" model of depression that attempts to partially explain the increased…
Energy Technology Data Exchange (ETDEWEB)
Bae, Sohi; Lee, Ho-Joon; Han, Kyunghwa; Park, Yae-Won; Choi, Yoon Seong; Ahn, Sung Soo; Kim, Jinna; Lee, Seung-Koo [Yonsei University College of Medicine, Department of Radiology, Severance Hospital, Research Institute of Radiological Science, Seoul (Korea, Republic of)
2017-08-15
To determine the relationship between the number of administrations of various gadolinium-based contrast agents (GBCAs) and increased T1 signal intensity in the globus pallidus (GP) and dentate nucleus (DN). This retrospective study included 122 patients who underwent double-dose GBCA-enhanced magnetic resonance imaging. Two radiologists calculated GP-to-thalamus (TH) signal intensity ratio, DN-to-pons signal intensity ratio and relative change (R{sub change}) between the baseline and final examinations. Interobserver agreement was evaluated. The relationships between R{sub change} and several factors, including number of each GBCA administrations, were analysed using a generalized additive model. Six patients (4.9%) received linear GBCAs (mean 20.8 number of administration; range 15-30), 44 patients (36.1%) received macrocyclic GBCAs (mean 26.1; range 14-51) and 72 patients (59.0%) received both types of GBCAs (mean 31.5; range 12-65). Interobserver agreement was almost perfect (0.99; 95% CI: 0.99-0.99). R{sub change} (DN:pons) was associated with gadodiamide (p = 0.006) and gadopentetate dimeglumine (p < 0.001), but not with other GBCAs. R{sub change} (GP:TH) was not associated with GBCA administration. Previous administration of linear agents gadoiamide and gadopentetate dimeglumine is associated with increased T1 signal intensity in the DN, whereas macrocyclic GBCAs do not show an association. (orig.)
DEFF Research Database (Denmark)
Hadrup, Niels; Taxvig, Camilla; Pedersen, Mikael
2013-01-01
and compared to the experimental mixture data. Mixture 1 contained environmental chemicals adjusted in ratio according to human exposure levels. Mixture 2 was a potency adjusted mixture containing five pesticides. Prediction of testosterone effects coincided with the experimental Mixture 1 data. In contrast...... was the predominant but not sole driver of the mixtures, suggesting that one chemical alone was not responsible for the mixture effects. In conclusion, the GCA model seemed to be superior to the CA and IA models for the prediction of testosterone effects. A situation with chemicals exerting opposing effects...
Eeuwijk, van F.A.
1996-01-01
In plant breeding it is a common observation to see genotypes react differently to environmental changes. This phenomenon is called genotype by environment interaction. Many statistical approaches for analysing genotype by environment interaction rely heavily on the analysis of variance model.
Directory of Open Access Journals (Sweden)
Natalya Pya
2016-02-01
Full Text Available Background: Measurements of tree heights and diameters are essential in forest assessment and modelling. Tree heights are used for estimating timber volume, site index and other important variables related to forest growth and yield, succession and carbon budget models. However, the diameter at breast height (dbh can be more accurately obtained and at lower cost, than total tree height. Hence, generalized height-diameter (h-d models that predict tree height from dbh, age and other covariates are needed. For a more flexible but biologically plausible estimation of covariate effects we use shape constrained generalized additive models as an extension of existing h-d model approaches. We use causal site parameters such as index of aridity to enhance the generality and causality of the models and to enable predictions under projected changeable climatic conditions. Methods: We develop unconstrained generalized additive models (GAM and shape constrained generalized additive models (SCAM for investigating the possible effects of tree-specific parameters such as tree age, relative diameter at breast height, and site-specific parameters such as index of aridity and sum of daily mean temperature during vegetation period, on the h-d relationship of forests in Lower Saxony, Germany. Results: Some of the derived effects, e.g. effects of age, index of aridity and sum of daily mean temperature have significantly non-linear pattern. The need for using SCAM results from the fact that some of the model effects show partially implausible patterns especially at the boundaries of data ranges. The derived model predicts monotonically increasing levels of tree height with increasing age and temperature sum and decreasing aridity and social rank of a tree within a stand. The definition of constraints leads only to marginal or minor decline in the model statistics like AIC. An observed structured spatial trend in tree height is modelled via 2-dimensional surface
Transverse Crack Modeling and Validation in Rotor Systems, Including Thermal Effects
Directory of Open Access Journals (Sweden)
N. Bachschmid
2003-01-01
Full Text Available This article describes a model that allows the simulation of the static behavior of a transverse crack in a horizontal rotor under the action of weight and other possible static loads and the dynamic behavior of cracked rotating shaft. The crack breathes—that is, the mechanism of the crack's opening and closing is ruled by the stress on the cracked section exerted by the external loads. In a rotor, the stresses are time-dependent and have a period equal to the period of rotation; thus, the crack periodically breathes. An original, simplified model allows cracks of various shapes to be modeled and thermal stresses to be taken into account, as they may influence the opening and closing mechanism. The proposed method was validated by using two criteria. First the crack's breathing mechanism, simulated by the model, was compared with the results obtained by a nonlinear, threedimensional finite element model calculation, and a good agreement in the results was observed. Then the proposed model allowed the development of the equivalent cracked beam. The results of this model were compared with those obtained by the three-dimensional finite element model. Also in this case, there was a good agreement in the results.
A model for firm-specific strategic wisdom : including illustrations and 49 guiding questions
van Straten, Roeland Peter
2017-01-01
This PhD thesis provides an answer to the question ‘How may one think strategically’. It does so by presenting a new prescriptive ‘Model for Firm-Specific Strategic Wisdom’. This Model aims to guide any individual strategist in his or her thinking from a state of firm-specific ‘ignorance’ to a state
Complete Loss and Thermal Model of Power Semiconductors Including Device Rating Information
DEFF Research Database (Denmark)
Ma, Ke; Bahman, Amir Sajjad; Beczkowski, Szymon
2015-01-01
models, only the electrical loadings are focused and treated as design variables, while the device rating is normally pre-defined by experience with limited design flexibility. Consequently, a more complete loss and thermal model is proposed in this paper, which takes into account not only the electrical...
Numerical models of single- and double-negative metamaterials including viscous and thermal losses
DEFF Research Database (Denmark)
Cutanda Henriquez, Vicente; Sánchez-Dehesa, José
2017-01-01
detailed understanding on how viscous and thermal losses affect the setups at different frequencies. The modeling of a simpler single-negative metamaterial also broadens this overview. Both setups have been modeled with quadratic BEM meshes. Each sample, scaled at two different sizes, has been represented...
Gasification of biomass in a fixed bed downdraft gasifier--a realistic model including tar.
Barman, Niladri Sekhar; Ghosh, Sudip; De, Sudipta
2012-03-01
This study presents a model for fixed bed downdraft biomass gasifiers considering tar also as one of the gasification products. A representative tar composition along with its mole fractions, as available in the literature was used as an input parameter within the model. The study used an equilibrium approach for the applicable gasification reactions and also considered possible deviations from equilibrium to further upgrade the equilibrium model to validate a range of reported experimental results. Heat balance was applied to predict the gasification temperature and the predicted values were compared with reported results in literature. A comparative study was made with some reference models available in the literature and also with experimental results reported in the literature. Finally a predicted variation of performance of the gasifier by this validated model for different air-fuel ratio and moisture content was also discussed. Copyright © 2011 Elsevier Ltd. All rights reserved.
A viscoplastic model including anisotropic damage for the time dependent behaviour of rock
Pellet, F.; Hajdu, A.; Deleruyelle, F.; Besnus, F.
2005-08-01
This paper presents a new constitutive model for the time dependent mechanical behaviour of rock which takes into account both viscoplastic behaviour and evolution of damage with respect to time. This model is built by associating a viscoplastic constitutive law to the damage theory. The main characteristics of this model are the account of a viscoplastic volumetric strain (i.e. contractancy and dilatancy) as well as the anisotropy of damage. The latter is described by a second rank tensor. Using this model, it is possible to predict delayed rupture by determining time to failure, in creep tests for example. The identification of the model parameters is based on experiments such as creep tests, relaxation tests and quasi-static tests. The physical meaning of these parameters is discussed and comparisons with lab tests are presented. The ability of the model to reproduce the delayed failure observed in tertiary creep is demonstrated as well as the sensitivity of the mechanical response to the rate of loading. The model could be used to simulate the evolution of the excavated damage zone around underground openings.
Energy Technology Data Exchange (ETDEWEB)
Ozolin, Y.E.; Karol, I.L. [Main Geophysical Observatory, St. Petersburg (Russian Federation); Ramaroson, R. [Office National d`Etudes et de Recherches Aerospatiales (ONERA), 92 - Chatillon (France)
1997-12-31
Box model for coupled gaseous and aqueous phases is used for sensitivity study of potential transformation of trace gases in a cloud environment. The rate of this transformation decreases with decreasing of pH in droplets, with decreasing of photodissociation rates inside the cloud and with increasing of the droplet size. Model calculations show the potential formation of H{sub 2}O{sub 2} in aqueous phase and transformation of gaseous HNO{sub 3} into NO{sub x} in a cloud. This model is applied for exploration of aircraft exhausts evolution in plume inside a cloud. (author) 10 refs.
Directory of Open Access Journals (Sweden)
Rosa Ana Salas
2013-11-01
Full Text Available We propose a modeling procedure specifically designed for a ferrite inductor excited by a waveform in time domain. We estimate the loss resistance in the core (parameter of the electrical model of the inductor by means of a Finite Element Method in 2D which leads to significant computational advantages over the 3D model. The methodology is validated for an RM (rectangular modulus ferrite core working in the linear and the saturation regions. Excellent agreement is found between the experimental data and the computational results.
Structured Additive Regression Models: An R Interface to BayesX
Directory of Open Access Journals (Sweden)
Nikolaus Umlauf
2015-02-01
Full Text Available Structured additive regression (STAR models provide a flexible framework for model- ing possible nonlinear effects of covariates: They contain the well established frameworks of generalized linear models and generalized additive models as special cases but also allow a wider class of effects, e.g., for geographical or spatio-temporal data, allowing for specification of complex and realistic models. BayesX is standalone software package providing software for fitting general class of STAR models. Based on a comprehensive open-source regression toolbox written in C++, BayesX uses Bayesian inference for estimating STAR models based on Markov chain Monte Carlo simulation techniques, a mixed model representation of STAR models, or stepwise regression techniques combining penalized least squares estimation with model selection. BayesX not only covers models for responses from univariate exponential families, but also models from less-standard regression situations such as models for multi-categorical responses with either ordered or unordered categories, continuous time survival data, or continuous time multi-state models. This paper presents a new fully interactive R interface to BayesX: the R package R2BayesX. With the new package, STAR models can be conveniently specified using Rs formula language (with some extended terms, fitted using the BayesX binary, represented in R with objects of suitable classes, and finally printed/summarized/plotted. This makes BayesX much more accessible to users familiar with R and adds extensive graphics capabilities for visualizing fitted STAR models. Furthermore, R2BayesX complements the already impressive capabilities for semiparametric regression in R by a comprehensive toolbox comprising in particular more complex response types and alternative inferential procedures such as simulation-based Bayesian inference.
DEFF Research Database (Denmark)
Bahman, Amir Sajjad; Ma, Ke; Blaabjerg, Frede
2018-01-01
Detailed thermal dynamics of high power IGBT modules are important information for the reliability analysis and thermal design of power electronic systems. However, the existing thermal models have their limits to correctly predict these complicated thermal behavior in the IGBTs: The typically used...... thermal model based on one-dimensional RC lumps have limits to provide temperature distributions inside the device, moreover some variable factors in the real-field applications like the cooling and heating conditions of the converter cannot be adapted. On the other hand, the more advanced three......-dimensional thermal models based on Finite Element Method (FEM) need massive computations, which make the long-term thermal dynamics difficult to calculate. In this paper, a new lumped three-dimensional thermal model is proposed, which can be easily characterized from FEM simulations and can acquire the critical...
Advanced Modeling of Ramp Operations including Departure Status at Secondary Airports, Phase I
National Aeronautics and Space Administration — This project addresses three modeling elements relevant to NASA's IADS research and ATD-2 project, two related to ramp operations at primary airports and one related...
Extending the Scope of the Acculturation/Pidginization Model to Include Cognition.
Schumann, John H.
1990-01-01
Examines five cognitive models for second-language acquisition (SLA) and assesses how each might account for the Pidginized interlanguage found in the early stages of second-language acquisition. (23 references) (JL)
An integrated computable general equilibrium model including multiple types and uses of water
Luckmann, Jonas Jens
2015-01-01
Water is a scarce resource in many regions of the world and competition for water is an increasing problem. To countervail this trend policies are needed regulating supply and demand for water. As water is used in many economic activities, water related management decisions usually have complex implications. Economic simulation models have been proven useful to ex-ante assess the consequences of policy changes. Specifically, Computable General Equilibrium (CGE) models are very suitable to ana...
Transverse Crack Modeling and Validation in Rotor Systems Including Thermal Effects
Directory of Open Access Journals (Sweden)
N. Bachschmid
2004-01-01
Full Text Available In this article, a model is described that allows one to simulate the static behavior of a transversal crack in a horizontal rotor, under the action of the weight and other possible static loads and the dynamical behavior of the rotating cracked shaft. The crack “breaths,” i.e., the mechanism of opening and closing of the crack, is ruled by the stress acting on the cracked section due to the external loads; in a rotor the stress is time-depending with a period equal to the period of rotation, thus the crack “periodically breaths.” An original simplified model is described that allows cracks of different shape to be modeled and thermal stresses to be taken into account, since they may influence the opening and closing mechanism. The proposed method has been validated using two criteria. Firstly, the crack “breathing” mechanism, simulated with the model, has been compared with the results obtained by a nonlinear 3-D FEM calculation and a good agreement in the results has been observed. Secondly, the proposed model allows the development of the equivalent cracked beam. The results of this model are compared with those obtained by the above-mentioned 3-D FEM. There is a good agreement in the results, of this case as well.
Including sugar cane in the agro-ecosystem model ORCHIDEE-STICS: calibration and validation
Valade, A.; Vuichard, N.; Ciais, P.; Viovy, N.
2011-12-01
Sugarcane is currently the most efficient bioenergy crop with regards to the energy produced per hectare. With approximately half the global bioethanol production in 2005, and a devoted land area expected to expand globally in the years to come, sugar cane is at the heart of the biofuel debate. Dynamic global vegetation models coupled with agronomical models are powerful and novel tools to tackle many of the environmental issues related to biofuels if they are carefully calibrated and validated against field observations. Here we adapt the agro-terrestrial model ORCHIDEE-STICS for sugar cane simulations. Observation data of LAI are used to evaluate the sensitivity of the model to parameters of nitrogen absorption and phenology, which are calibrated in a systematic way for six sites in Australia and La Reunion. We find that the optimal set of parameters is highly dependent on the sites' characteristics and that the model can reproduce satisfactorily the evolution of LAI. This careful calibration of ORCHIDEE-STICS for sugar cane biomass production for different locations and technical itineraries provides a strong basis for further analysis of the impacts of bioenergy-related land use change on carbon cycle budgets. As a next step, a sensitivity analysis is carried out to estimate the uncertainty of the model in biomass and carbon flux simulation due to its parameterization.
Chougule, Abhijit; Mann, Jakob; Kelly, Mark; Larsen, Gunner C.
2018-02-01
A spectral-tensor model of non-neutral, atmospheric-boundary-layer turbulence is evaluated using Eulerian statistics from single-point measurements of the wind speed and temperature at heights up to 100 m, assuming constant vertical gradients of mean wind speed and temperature. The model has been previously described in terms of the dissipation rate ɛ , the length scale of energy-containing eddies L , a turbulence anisotropy parameter Γ, the Richardson number Ri, and the normalized rate of destruction of temperature variance η _θ ≡ ɛ _θ /ɛ . Here, the latter two parameters are collapsed into a single atmospheric stability parameter z / L using Monin-Obukhov similarity theory, where z is the height above the Earth's surface, and L is the Obukhov length corresponding to Ri,η _θ. Model outputs of the one-dimensional velocity spectra, as well as cospectra of the streamwise and/or vertical velocity components, and/or temperature, and cross-spectra for the spatial separation of all three velocity components and temperature, are compared with measurements. As a function of the four model parameters, spectra and cospectra are reproduced quite well, but horizontal temperature fluxes are slightly underestimated in stable conditions. In moderately unstable stratification, our model reproduces spectra only up to a scale ˜ 1 km. The model also overestimates coherences for vertical separations, but is less severe in unstable than in stable cases.
Cheng, Lei; Li, Yizeng; Grosh, Karl
2013-01-01
An approximate boundary condition is developed in this paper to model fluid shear viscosity at boundaries of coupled fluid-structure system. The effect of shear viscosity is approximated by a correction term to the inviscid boundary condition, written in terms of second order in-plane derivatives of pressure. Both thin and thick viscous boundary layer approximations are formulated; the latter subsumes the former. These approximations are used to develop a variational formation, upon which a viscous finite element method (FEM) model is based, requiring only minor modifications to the boundary integral contributions of an existing inviscid FEM model. Since this FEM formulation has only one degree of freedom for pressure, it holds a great computational advantage over the conventional viscous FEM formulation which requires discretization of the full set of linearized Navier-Stokes equations. The results from thick viscous boundary layer approximation are found to be in good agreement with the prediction from a Navier-Stokes model. When applicable, thin viscous boundary layer approximation also gives accurate results with computational simplicity compared to the thick boundary layer formulation. Direct comparison of simulation results using the boundary layer approximations and a full, linearized Navier-Stokes model are made and used to evaluate the accuracy of the approximate technique. Guidelines are given for the parameter ranges over which the accurate application of the thick and thin boundary approximations can be used for a fluid-structure interaction problem. PMID:23729844
Luo, Rutao; Piovoso, Michael J.; Martinez-Picado, Javier; Zurakowski, Ryan
2012-01-01
Mathematical models based on ordinary differential equations (ODE) have had significant impact on understanding HIV disease dynamics and optimizing patient treatment. A model that characterizes the essential disease dynamics can be used for prediction only if the model parameters are identifiable from clinical data. Most previous parameter identification studies for HIV have used sparsely sampled data from the decay phase following the introduction of therapy. In this paper, model parameters are identified from frequently sampled viral-load data taken from ten patients enrolled in the previously published AutoVac HAART interruption study, providing between 69 and 114 viral load measurements from 3–5 phases of viral decay and rebound for each patient. This dataset is considerably larger than those used in previously published parameter estimation studies. Furthermore, the measurements come from two separate experimental conditions, which allows for the direct estimation of drug efficacy and reservoir contribution rates, two parameters that cannot be identified from decay-phase data alone. A Markov-Chain Monte-Carlo method is used to estimate the model parameter values, with initial estimates obtained using nonlinear least-squares methods. The posterior distributions of the parameter estimates are reported and compared for all patients. PMID:22815727
Modelling of bypass transition including the pseudolaminar part of the boundary layer
Energy Technology Data Exchange (ETDEWEB)
Prihoda, J.; Hlava, T. [Ceska Akademie Ved, Prague (Czech Republic). Inst. of Thermomechanics; Kozel, K. [Ceske Vysoke Uceni Technicke, Prague (Czech Republic). Faculty of Mechanical Engineering
1999-12-01
The boundary-layer transition in turbomachinery is accelerated by a number of parameters, especially by the free-stream turbulence. This so-called bypass transition is usually modelled by means of one-equation or two-equation turbulence models based on turbulent viscosity. Using of transport equations for turbulent energy and for dissipation rate in these models is questionable before the onset of the last stage of the transition, i.e. before the formation of turbulent spots. Used approximations of production and turbulent diffusion are the weak points of turbulence models with turbulent viscosity in the pseudolaminar boundary layer, as the Boussinesq assumption on turbulent viscosity is not fulfilled in this part of the boundary layer. In order to obtain a more reliable prediction of the transitional boundary layer, Mayle and Schulz (1997) proposed for the solution of pseudolaminar boundary layer a special `laminar-kinetic-energy` equation based on the analysis of laminar boundary layer in flows with velocity fluctuations. The effect of production and turbulent diffusion on the development of turbulent energy in the pseudolaminar boundary layer was tested using a two-layer turbulence model. (orig.)
Modelling of bypass transition including the pseudolaminar part of the boundary layer
Energy Technology Data Exchange (ETDEWEB)
Prihoda, J.; Hlava, T. (Ceska Akademie Ved, Prague (Czech Republic). Inst. of Thermomechanics); Kozel, K. (Ceske Vysoke Uceni Technicke, Prague (Czech Republic). Faculty of Mechanical Engineering)
1999-01-01
The boundary-layer transition in turbomachinery is accelerated by a number of parameters, especially by the free-stream turbulence. This so-called bypass transition is usually modelled by means of one-equation or two-equation turbulence models based on turbulent viscosity. Using of transport equations for turbulent energy and for dissipation rate in these models is questionable before the onset of the last stage of the transition, i.e. before the formation of turbulent spots. Used approximations of production and turbulent diffusion are the weak points of turbulence models with turbulent viscosity in the pseudolaminar boundary layer, as the Boussinesq assumption on turbulent viscosity is not fulfilled in this part of the boundary layer. In order to obtain a more reliable prediction of the transitional boundary layer, Mayle and Schulz (1997) proposed for the solution of pseudolaminar boundary layer a special 'laminar-kinetic-energy' equation based on the analysis of laminar boundary layer in flows with velocity fluctuations. The effect of production and turbulent diffusion on the development of turbulent energy in the pseudolaminar boundary layer was tested using a two-layer turbulence model. (orig.)
Estimation of direct effects for survival data by using the Aalen additive hazards model
DEFF Research Database (Denmark)
Martinussen, Torben; Vansteelandt, Stijn; Gerster, Mette
2011-01-01
Aalen's additive regression for the event time, given exposure, intermediate variable and confounders. The second stage involves applying Aalen's additive model, given the exposure alone, to a modified stochastic process (i.e. a modification of the observed counting process based on the first......We extend the definition of the controlled direct effect of a point exposure on a survival outcome, other than through some given, time-fixed intermediate variable, to the additive hazard scale. We propose two-stage estimators for this effect when the exposure is dichotomous and randomly assigned...
Geometric Modeling of Cellular Materials for Additive Manufacturing in Biomedical Field: A Review
Rosso, Stefano; Meneghello, Roberto; Concheri, Gianmaria
2018-01-01
Advances in additive manufacturing technologies facilitate the fabrication of cellular materials that have tailored functional characteristics. The application of solid freeform fabrication techniques is especially exploited in designing scaffolds for tissue engineering. In this review, firstly, a classification of cellular materials from a geometric point of view is proposed; then, the main approaches on geometric modeling of cellular materials are discussed. Finally, an investigation on porous scaffolds fabricated by additive manufacturing technologies is pointed out. Perspectives in geometric modeling of scaffolds for tissue engineering are also proposed. PMID:29487626
Geometric Modeling of Cellular Materials for Additive Manufacturing in Biomedical Field: A Review.
Savio, Gianpaolo; Rosso, Stefano; Meneghello, Roberto; Concheri, Gianmaria
2018-01-01
Advances in additive manufacturing technologies facilitate the fabrication of cellular materials that have tailored functional characteristics. The application of solid freeform fabrication techniques is especially exploited in designing scaffolds for tissue engineering. In this review, firstly, a classification of cellular materials from a geometric point of view is proposed; then, the main approaches on geometric modeling of cellular materials are discussed. Finally, an investigation on porous scaffolds fabricated by additive manufacturing technologies is pointed out. Perspectives in geometric modeling of scaffolds for tissue engineering are also proposed.
Kokkinn, Beverley; Stupans, Ieva
2011-12-01
The pilot project, described in this paper, targeted English as an additional language (EAL) students to facilitate their development of patient counselling communication skills. An interdisciplinary content-based model was developed drawing on an interactional sociolinguistic framework to map language use valued in pharmacy counselling. Evaluation included analysis of successive self-assessments and surveys of students, surveys of teaching staff and final test results. Evaluation indicated that the interdisciplinary model was highly successful in improving EAL students' competency in pharmacy counselling. The model may have possible wider application for education in health professional programmes. © 2011 The Authors. IJPP © 2011 Royal Pharmaceutical Society.
Directory of Open Access Journals (Sweden)
J. J. Yang (杨建俊
2010-06-01
Full Text Available Space-charge effects, being one of the most significant collective effects, play an important role in high intensity cyclotrons. However, for cyclotrons with small turn separation, other existing effects are of equal importance. Interactions of radially neighboring bunches are also present, but their combined effects have not yet been investigated in any great detail. In this paper, a new particle in the cell-based self-consistent numerical simulation model is presented for the first time. The model covers neighboring bunch effects and is implemented in the three-dimensional object-oriented parallel code OPAL-cycl, a flavor of the OPAL framework. We discuss this model together with its implementation and validation. Simulation results are presented from the PSI 590 MeV ring cyclotron in the context of the ongoing high intensity upgrade program, which aims to provide a beam power of 1.8 MW (CW at the target destination.
Jung, Sunwook; Do, Thuy; Sturtevant, John
2015-03-01
For more than five decades, the semiconductor industry has overcome technology challenges with innovative ideas that have continued to enable Moore's Law. It is clear that multi-patterning lithography is vital for 20nm half pitch using 193i. Multi-patterning exposure sequences and pattern multiplication processes can create complicated tolerance accounting due to the variability associated with the component processes. It is essential to ensure good predictive accuracy of compact etch models used in multipatterning simulation. New modelforms have been developed to account for etch bias behavior at 20 nm and below. The new modeling components show good results in terms of global fitness and some improved predication capability for specific features. We've also investigated a new methodology to make the etch model aware of 3D resist profiles.
A Simple Model of Fields Including the Strong or Nuclear Force and a Cosmological Speculation
Directory of Open Access Journals (Sweden)
David L. Spencer
2016-10-01
Full Text Available Reexamining the assumptions underlying the General Theory of Relativity and calling an object's gravitational field its inertia, and acceleration simply resistance to that inertia, yields a simple field model where the potential (kinetic energy of a particle at rest is its capacity to move itself when its inertial field becomes imbalanced. The model then attributes electromagnetic and strong forces to the effects of changes in basic particle shape. Following up on the model's assumption that the relative intensity of a particle's gravitational field is always inversely related to its perceived volume and assuming that all black holes spin, may create the possibility of a cosmic rebound where a final spinning black hole ends with a new Big Bang.
Modeling of the dynamics of wind to power conversion including high wind speed behavior
DEFF Research Database (Denmark)
Litong-Palima, Marisciel; Bjerge, Martin Huus; Cutululis, Nicolaos Antonio
2016-01-01
This paper proposes and validates an efficient, generic and computationally simple dynamic model for the conversion of the wind speed at hub height into the electrical power by a wind turbine. This proposed wind turbine model was developed as a first step to simulate wind power time series...... speed shutdowns and restarts are represented as on–off switching rules that govern the output of the wind turbine at extreme wind speed conditions. The model uses the concept of equivalent wind speed, estimated from the single point (hub height) wind speed using a second-order dynamic filter...... measurements available from the DONG Energy offshore wind farm Horns Rev 2. Copyright © 2015 John Wiley & Sons, Ltd....
Directory of Open Access Journals (Sweden)
P.-L. Blelly
2005-02-01
Full Text Available The TRANSCAR ionospheric model was extended to account for the convection of the magnetic field lines in the auroral and polar ionosphere. A mixed Eulerian-Lagrangian 13-moment approach was used to describe the dynamics of an ionospheric plasma tube. In the present study, one focuses on large scale transports in the polar ionosphere. The model was used to simulate a 35-h period of EISCAT-UHF observations on 16-17 February 1993. The first day was magnetically quiet, and characterized by elevated electron concentrations: the diurnal F_{2} layer reached as much as 10^{12}m^{-3}, which is unusual for a winter and moderate solar activity (F_{10.7}=130 period. An intense geomagnetic event occurred on the second day, seen in the data as a strong intensification of the ionosphere convection velocities in the early afternoon (with the northward electric field reaching 150mVm^{-1} and corresponding frictional heating of the ions up to 2500K. The simulation used time-dependent AMIE outputs to infer flux-tube transports in the polar region, and to provide magnetospheric particle and energy inputs to the ionosphere. The overall very good agreement, obtained between the model and the observations, demonstrates the high ability of the extended TRANSCAR model for quantitative modelling of the high-latitude ionosphere; however, some differences are found which are attributed to the precipitation of electrons with very low energy. All these results are finally discussed in the frame of modelling the auroral ionosphere with space weather applications in mind.
Directory of Open Access Journals (Sweden)
P.-L. Blelly
2005-02-01
Full Text Available The TRANSCAR ionospheric model was extended to account for the convection of the magnetic field lines in the auroral and polar ionosphere. A mixed Eulerian-Lagrangian 13-moment approach was used to describe the dynamics of an ionospheric plasma tube. In the present study, one focuses on large scale transports in the polar ionosphere. The model was used to simulate a 35-h period of EISCAT-UHF observations on 16-17 February 1993. The first day was magnetically quiet, and characterized by elevated electron concentrations: the diurnal F2 layer reached as much as 1012m-3, which is unusual for a winter and moderate solar activity (F10.7=130 period. An intense geomagnetic event occurred on the second day, seen in the data as a strong intensification of the ionosphere convection velocities in the early afternoon (with the northward electric field reaching 150mVm-1 and corresponding frictional heating of the ions up to 2500K. The simulation used time-dependent AMIE outputs to infer flux-tube transports in the polar region, and to provide magnetospheric particle and energy inputs to the ionosphere. The overall very good agreement, obtained between the model and the observations, demonstrates the high ability of the extended TRANSCAR model for quantitative modelling of the high-latitude ionosphere; however, some differences are found which are attributed to the precipitation of electrons with very low energy. All these results are finally discussed in the frame of modelling the auroral ionosphere with space weather applications in mind.
Evaluation of European air quality modelled by CAMx including the volatility basis set scheme
Directory of Open Access Journals (Sweden)
G. Ciarelli
2016-08-01
Full Text Available Four periods of EMEP (European Monitoring and Evaluation Programme intensive measurement campaigns (June 2006, January 2007, September–October 2008 and February–March 2009 were modelled using the regional air quality model CAMx with VBS (volatility basis set approach for the first time in Europe within the framework of the EURODELTA-III model intercomparison exercise. More detailed analysis and sensitivity tests were performed for the period of February–March 2009 and June 2006 to investigate the uncertainties in emissions as well as to improve the modelling of organic aerosol (OA. Model performance for selected gas phase species and PM2.5 was evaluated using the European air quality database AirBase. Sulfur dioxide (SO2 and ozone (O3 were found to be overestimated for all the four periods, with O3 having the largest mean bias during June 2006 and January–February 2007 periods (8.9 pbb and 12.3 ppb mean biases respectively. In contrast, nitrogen dioxide (NO2 and carbon monoxide (CO were found to be underestimated for all the four periods. CAMx reproduced both total concentrations and monthly variations of PM2.5 for all the four periods with average biases ranging from −2.1 to 1.0 µg m−3. Comparisons with AMS (aerosol mass spectrometer measurements at different sites in Europe during February–March 2009 showed that in general the model overpredicts the inorganic aerosol fraction and underpredicts the organic one, such that the good agreement for PM2.5 is partly due to compensation of errors. The effect of the choice of VBS scheme on OA was investigated as well. Two sensitivity tests with volatility distributions based on previous chamber and ambient measurements data were performed. For February–March 2009 the chamber case reduced the total OA concentrations by about 42 % on average. In contrast, a test based on ambient measurement data increased OA concentrations by about 42 % for the same period bringing
Molecular Modeling of Aerospace Polymer Matrices Including Carbon Nanotube-Enhanced Epoxy
Radue, Matthew S.
Carbon fiber (CF) composites are increasingly replacing metals used in major structural parts of aircraft, spacecraft, and automobiles. The current limitations of carbon fiber composites are addressed through computational material design by modeling the salient aerospace matrix materials. Molecular Dynamics (MD) models of epoxies with and without carbon nanotube (CNT) reinforcement and models of pure bismaleimides (BMIs) were developed to elucidate structure-property relationships for improved selection and tailoring of matrices. The influence of monomer functionality on the mechanical properties of epoxies is studied using the Reax Force Field (ReaxFF). From deformation simulations, the Young's modulus, yield point, and Poisson's ratio are calculated and analyzed. The results demonstrate an increase in stiffness and yield strength with increasing resin functionality. Comparison between the network structures of distinct epoxies is further advanced by the Monomeric Degree Index (MDI). Experimental validation demonstrates the MD results correctly predict the relationship in Young's moduli for all epoxies modeled. Therefore, the ReaxFF is confirmed to be a useful tool for studying the mechanical behavior of epoxies. While epoxies have been well-studied using MD, there has been no concerted effort to model cured BMI polymers due to the complexity of the network-forming reactions. A novel, adaptable crosslinking framework is developed for implementing 5 distinct cure reactions of Matrimid-5292 (a BMI resin) and investigating the network structure using MD simulations. The influence of different cure reactions and extent of curing are analyzed on the several thermo-mechanical properties such as mass density, glass transition temperature, coefficient of thermal expansion, elastic moduli, and thermal conductivity. The developed crosslinked models correctly predict experimentally observed trends for various properties. Finally, the epoxies modeled (di-, tri-, and tetra
Modelling of safety barriers including human and organisational factors to improve process safety
DEFF Research Database (Denmark)
Markert, Frank; Duijm, Nijs Jan; Thommesen, Jacob
2013-01-01
Assessment Methodology for IndustrieS, see Salvi et al 2006). ARAMIS employs the bow-tie approach to modelling hazardous scenarios, and it suggests the outcome of auditing safety management to be connected to a semi-quantitative assessment of the quality of safety barriers. ARAMIS discriminates a number...... of safety barrier (passive, automated, or involving human action). Such models are valuable for many purposes, but are difficult to apply to more complex situations, as the influences are to be set individually for each barrier. The approach described in this paper is trying to improve the state...
Energy Technology Data Exchange (ETDEWEB)
Doligez, B.; Eschard, R. [Institut Francais du Petrole, Rueil Malmaison (France); Geffroy, F. [Centre de Geostatistique, Fontainebleau (France)] [and others
1997-08-01
The classical approach to construct reservoir models is to start with a fine scale geological model which is informed with petrophysical properties. Then scaling-up techniques allow to obtain a reservoir model which is compatible with the fluid flow simulators. Geostatistical modelling techniques are widely used to build the geological models before scaling-up. These methods provide equiprobable images of the area under investigation, which honor the well data, and which variability is the same than the variability computed from the data. At an appraisal phase, when few data are available, or when the wells are insufficient to describe all the heterogeneities and the behavior of the field, additional constraints are needed to obtain a more realistic geological model. For example, seismic data or stratigraphic models can provide average reservoir information with an excellent areal coverage, but with a poor vertical resolution. New advances in modelisation techniques allow now to integrate this type of additional external information in order to constrain the simulations. In particular, 2D or 3D seismic derived information grids, or sand-shale ratios maps coming from stratigraphic models can be used as external drifts to compute the geological image of the reservoir at the fine scale. Examples are presented to illustrate the use of these new tools, their impact on the final reservoir model, and their sensitivity to some key parameters.
Yan, Ying; Yi, Grace Y
2016-07-01
Covariate measurement error occurs commonly in survival analysis. Under the proportional hazards model, measurement error effects have been well studied, and various inference methods have been developed to correct for error effects under such a model. In contrast, error-contaminated survival data under the additive hazards model have received relatively less attention. In this paper, we investigate this problem by exploring measurement error effects on parameter estimation and the change of the hazard function. New insights of measurement error effects are revealed, as opposed to well-documented results for the Cox proportional hazards model. We propose a class of bias correction estimators that embraces certain existing estimators as special cases. In addition, we exploit the regression calibration method to reduce measurement error effects. Theoretical results for the developed methods are established, and numerical assessments are conducted to illustrate the finite sample performance of our methods.
The economic production lot size model extended to include more than one production rate
DEFF Research Database (Denmark)
Larsen, Christian
2005-01-01
We study an extension of the economic production lot size model, where more than one production rate can be used during a cycle. Moreover, the production rates, as well as their corresponding runtimes are decision variables. We decompose the problem into two subproblems. First, we show that all...
The economic production lot size model extended to include more than one production rate
DEFF Research Database (Denmark)
Larsen, Christian
2001-01-01
We study an extension of the economic production lot size model, where more than one production rate can be used during a cycle. Moreover, the production rates, as well as their corresponding runtimes are decision variables. First, we show that all production rates should be choosen in the interval...
Static aeroelastic analysis including geometric nonlinearities based on reduced order model
Directory of Open Access Journals (Sweden)
Changchuan Xie
2017-04-01
Full Text Available This paper describes a method proposed for modeling large deflection of aircraft in nonlinear aeroelastic analysis by developing reduced order model (ROM. The method is applied for solving the static aeroelastic and static aeroelastic trim problems of flexible aircraft containing geometric nonlinearities; meanwhile, the non-planar effects of aerodynamics and follower force effect have been considered. ROMs are computational inexpensive mathematical representations compared to traditional nonlinear finite element method (FEM especially in aeroelastic solutions. The approach for structure modeling presented here is on the basis of combined modal/finite element (MFE method that characterizes the stiffness nonlinearities and we apply that structure modeling method as ROM to aeroelastic analysis. Moreover, the non-planar aerodynamic force is computed by the non-planar vortex lattice method (VLM. Structure and aerodynamics can be coupled with the surface spline method. The results show that both of the static aeroelastic analysis and trim analysis of aircraft based on structure ROM can achieve a good agreement compared to analysis based on the FEM and experimental result.
Dusty Plasma Modeling of the Fusion Reactor Sheath Including Collisional-Radiative Effects
International Nuclear Information System (INIS)
Dezairi, Aouatif; Samir, Mhamed; Eddahby, Mohamed; Saifaoui, Dennoun; Katsonis, Konstantinos; Berenguer, Chloe
2008-01-01
The structure and the behavior of the sheath in Tokamak collisional plasmas has been studied. The sheath is modeled taking into account the presence of the dust 2 and the effects of the charged particle collisions and radiative processes. The latter may allow for optical diagnostics of the plasma.
CSIR Research Space (South Africa)
Cooper, Antony K
2011-07-01
Full Text Available -to-date VGI, have led to the integration of VGI into some SDIs. Therefore it is necessary to rethink our formal model of an SDI to accommodate VGI. We started our rethinking process with the SDI stakeholders in an attempt to establish which changes...
Loss and thermal model for power semiconductors including device rating information
DEFF Research Database (Denmark)
Ma, Ke; Bahman, Amir Sajjad; Beczkowski, Szymon
2014-01-01
pre-defined by experience with poor design flexibility. Consequently a more complete loss and thermal model is proposed in this paper, which takes into account not only the electrical loading but also the device rating as input variables. The quantified correlation between the power loss, thermal...
Social Rationality as a Unified Model of Man (Including Bounded Rationality)
Lindenberg, Siegwart
2001-01-01
In 1957, Simon published a collection of his essays under the title of “Models of Man: Social and Rational”. In the preface, he explains the choice for this title: All of the essays “are concerned with laying foundations for a science of man that will comfortably accommodate his dual nature as a
DEFF Research Database (Denmark)
Friis, Lars; Ohlrich, Mogens
2008-01-01
is considered as one or more fuzzy substructures that are known in some statistical sense only. Experiments have shown that such fuzzy substructures often introduce a damping in the master which is much higher than the structural losses account for. A special method for modeling fuzzy substructures with a one...
Situational effects of the school factors included in the dynamic model of educational effectiveness
Creerners, Bert; Kyriakides, Leonidas
We present results of a longitudinal study in which 50 schools, 113 classes and 2,542 Cypriot primary students participated. We tested the validity of the dynamic model of educational effectiveness and especially its assumption that the impact of school factors depends on the current situation of
Modeling the elastic behavior of ductile cast iron including anisotropy in the graphite nodules
DEFF Research Database (Denmark)
Andriollo, Tito; Thorborg, Jesper; Hattel, Jesper Henri
2016-01-01
by means of a 3D periodic unit cell model. In this respect, an explicit procedure to enforce both periodic displacement and periodic traction boundary conditions in ABAQUS is presented, and the importance of fulfilling the traction continuity conditions at the unit cell boundaries is discussed. It is shown...
Saidi, Maryam; Towhidkhah, Farzad; Gharibzadeh, Shahriar; Lari, Abdolaziz Azizi
2013-12-01
Humans perceive the surrounding world by integration of information through different sensory modalities. Earlier models of multisensory integration rely mainly on traditional Bayesian and causal Bayesian inferences for single causal (source) and two causal (for two senses such as visual and auditory systems), respectively. In this paper a new recurrent neural model is presented for integration of visual and proprioceptive information. This model is based on population coding which is able to mimic multisensory integration of neural centers in the human brain. The simulation results agree with those achieved by casual Bayesian inference. The model can also simulate the sensory training process of visual and proprioceptive information in human. Training process in multisensory integration is a point with less attention in the literature before. The effect of proprioceptive training on multisensory perception was investigated through a set of experiments in our previous study. The current study, evaluates the effect of both modalities, i.e., visual and proprioceptive training and compares them with each other through a set of new experiments. In these experiments, the subject was asked to move his/her hand in a circle and estimate its position. The experiments were performed on eight subjects with proprioception training and eight subjects with visual training. Results of the experiments show three important points: (1) visual learning rate is significantly more than that of proprioception; (2) means of visual and proprioceptive errors are decreased by training but statistical analysis shows that this decrement is significant for proprioceptive error and non-significant for visual error, and (3) visual errors in training phase even in the beginning of it, is much less than errors of the main test stage because in the main test, the subject has to focus on two senses. The results of the experiments in this paper is in agreement with the results of the neural model
A catchment-scale groundwater model including sewer pipe leakage in an urban system
Peche, Aaron; Fuchs, Lothar; Spönemann, Peter; Graf, Thomas; Neuweiler, Insa
2016-04-01
Keywords: pipe leakage, urban hydrogeology, catchment scale, OpenGeoSys, HYSTEM-EXTRAN Wastewater leakage from subsurface sewer pipe defects leads to contamination of the surrounding soil and groundwater (Ellis, 2002; Wolf et al., 2004). Leakage rates at pipe defects have to be known in order to quantify contaminant input. Due to inaccessibility of subsurface pipe defects, direct (in-situ) measurements of leakage rates are tedious and associated with a high degree of uncertainty (Wolf, 2006). Proposed catchment-scale models simplify leakage rates by neglecting unsaturated zone flow or by reducing spatial dimensions (Karpf & Krebs, 2013, Boukhemacha et al., 2015). In the present study, we present a physically based 3-dimensional numerical model incorporating flow in the pipe network, in the saturated zone and in the unsaturated zone to quantify leakage rates on the catchment scale. The model consists of the pipe network flow model HYSTEM-EXTAN (itwh, 2002), which is coupled to the subsurface flow model OpenGeoSys (Kolditz et al., 2012). We also present the newly developed coupling scheme between the two flow models. Leakage functions specific to a pipe defect are derived from simulations of pipe leakage using spatially refined grids around pipe defects. In order to minimize computational effort, these leakage functions are built into the presented numerical model using unrefined grids around pipe defects. The resulting coupled model is capable of efficiently simulating spatially distributed pipe leakage coupled with subsurficial water flow in a 3-dimensional environment. References: Boukhemacha, M. A., Gogu, C. R., Serpescu, I., Gaitanaru, D., & Bica, I. (2015). A hydrogeological conceptual approach to study urban groundwater flow in Bucharest city, Romania. Hydrogeology Journal, 23(3), 437-450. doi:10.1007/s10040-014-1220-3. Ellis, J. B., & Revitt, D. M. (2002). Sewer losses and interactions with groundwater quality. Water Science and Technology, 45(3), 195
Including Antenna Models in Microwave Imaging for Breast-Cancer Screening
DEFF Research Database (Denmark)
Rubæk, Tonny; Meincke, Peter
2006-01-01
Microwave imaging is emerging as a tool for screening for breast cancer, but the lack of methods for including the characteristics of the antennas of the imaging systems in the imaging algorithms limits their performance. In this paper, a method for incorporating the full antenna characteristics...
Xue, Yang; Yang, Zhongyang; Wang, Xiaoyan; Lin, Zhipan; Li, Dunxi; Su, Shaofeng
2016-01-01
Casuarina equisetifolia is commonly planted and used in the construction of coastal shelterbelt protection in Hainan Island. Thus, it is critical to accurately estimate the tree biomass of Casuarina equisetifolia L. for forest managers to evaluate the biomass stock in Hainan. The data for this work consisted of 72 trees, which were divided into three age groups: young forest, middle-aged forest, and mature forest. The proportion of biomass from the trunk significantly increased with age (Pbiomass of the branch and leaf decreased, and the biomass of the root did not change. To test whether the crown radius (CR) can improve biomass estimates of C. equisetifolia, we introduced CR into the biomass models. Here, six models were used to estimate the biomass of each component, including the trunk, the branch, the leaf, and the root. In each group, we selected one model among these six models for each component. The results showed that including the CR greatly improved the model performance and reduced the error, especially for the young and mature forests. In addition, to ensure biomass additivity, the selected equation for each component was fitted as a system of equations using seemingly unrelated regression (SUR). The SUR method not only gave efficient and accurate estimates but also achieved the logical additivity. The results in this study provide a robust estimation of tree biomass components and total biomass over three groups of C. equisetifolia. PMID:27002822
Xue, Yang; Yang, Zhongyang; Wang, Xiaoyan; Lin, Zhipan; Li, Dunxi; Su, Shaofeng
2016-01-01
Casuarina equisetifolia is commonly planted and used in the construction of coastal shelterbelt protection in Hainan Island. Thus, it is critical to accurately estimate the tree biomass of Casuarina equisetifolia L. for forest managers to evaluate the biomass stock in Hainan. The data for this work consisted of 72 trees, which were divided into three age groups: young forest, middle-aged forest, and mature forest. The proportion of biomass from the trunk significantly increased with age (Pbiomass of the branch and leaf decreased, and the biomass of the root did not change. To test whether the crown radius (CR) can improve biomass estimates of C. equisetifolia, we introduced CR into the biomass models. Here, six models were used to estimate the biomass of each component, including the trunk, the branch, the leaf, and the root. In each group, we selected one model among these six models for each component. The results showed that including the CR greatly improved the model performance and reduced the error, especially for the young and mature forests. In addition, to ensure biomass additivity, the selected equation for each component was fitted as a system of equations using seemingly unrelated regression (SUR). The SUR method not only gave efficient and accurate estimates but also achieved the logical additivity. The results in this study provide a robust estimation of tree biomass components and total biomass over three groups of C. equisetifolia.
Directory of Open Access Journals (Sweden)
Yang Xue
Full Text Available Casuarina equisetifolia is commonly planted and used in the construction of coastal shelterbelt protection in Hainan Island. Thus, it is critical to accurately estimate the tree biomass of Casuarina equisetifolia L. for forest managers to evaluate the biomass stock in Hainan. The data for this work consisted of 72 trees, which were divided into three age groups: young forest, middle-aged forest, and mature forest. The proportion of biomass from the trunk significantly increased with age (P<0.05. However, the biomass of the branch and leaf decreased, and the biomass of the root did not change. To test whether the crown radius (CR can improve biomass estimates of C. equisetifolia, we introduced CR into the biomass models. Here, six models were used to estimate the biomass of each component, including the trunk, the branch, the leaf, and the root. In each group, we selected one model among these six models for each component. The results showed that including the CR greatly improved the model performance and reduced the error, especially for the young and mature forests. In addition, to ensure biomass additivity, the selected equation for each component was fitted as a system of equations using seemingly unrelated regression (SUR. The SUR method not only gave efficient and accurate estimates but also achieved the logical additivity. The results in this study provide a robust estimation of tree biomass components and total biomass over three groups of C. equisetifolia.
Numerical models of single- and double-negative metamaterials including viscous and thermal losses
DEFF Research Database (Denmark)
Cutanda Henriquez, Vicente; Sánchez-Dehesa, José
2017-01-01
Negative index acoustic metamaterials are artificial structures made of subwavelength units arranged in a lattice, whose effective acoustic parameters, bulk modulus and mass density, can be negative. In these materials, sound waves propagate inside the periodic structure, assumed rigid, showing...... extraordinary properties. We are interested in two particular cases: a double-negative metamaterial, where both parameters are negative at some frequencies, and a single-negative metamaterial with negative bulk modulus within a broader frequency band. In previous research involving the double-negative...... detailed understanding on how viscous and thermal losses affect the setups at different frequencies. The modeling of a simpler single-negative metamaterial also broadens this overview. Both setups have been modeled with quadratic BEM meshes. Each sample, scaled at two different sizes, has been represented...
Directory of Open Access Journals (Sweden)
Vieira Verónica M
2012-08-01
Full Text Available Abstract Background Although daily emergency department (ED data is a source of information that often includes residence, its potential for space-time analyses at the individual level has not been fully explored. We propose that ED data collected for surveillance purposes can also be used to inform spatial and temporal patterns of disease using generalized additive models (GAMs. This paper describes the methods for adapting GAMs so they can be applied to ED data. Methods GAMs are an effective approach for modeling spatial and temporal distributions of point-wise data, producing smoothed surfaces of continuous risk while adjusting for confounders. In addition to disease mapping, the method allows for global and pointwise hypothesis testing and selection of statistically optimum degree of smoothing using standard statistical software. We applied a two-dimensional GAM for location to ED data of overlapping calendar time using a locally-weighted regression smoother. To illustrate our methods, we investigated the association between participants’ address and the risk of gastrointestinal illness in Cape Cod, Massachusetts over time. Results The GAM space-time analyses simultaneously smooth in units of distance and time by using the optimum degree of smoothing to create data frames of overlapping time periods and then spatially analyzing each data frame. When resulting maps are viewed in series, each data frame contributes a movie frame, allowing us to visualize changes in magnitude, geographic size, and location of elevated risk smoothed over space and time. In our example data, we observed an underlying geographic pattern of gastrointestinal illness with risks consistently higher in the eastern part of our study area over time and intermittent variations of increased risk during brief periods. Conclusions Spatial-temporal analysis of emergency department data with GAMs can be used to map underlying disease risk at the individual-level and view
2011-03-01
Hypothesized that snow plows wear down mountain road pavement markings. 2007 Craig et al. -Edge lines degrade slower than center/skip lines 2007...retroreflectivity to create the models. They discovered that paint pavement markings last 80% longer on Portland Cement Concrete than Asphalt Concrete at low AADT...retroreflectivity, while yellow markings lost 21%. Lu and Barter attributed the sizable degradation to snow removal, sand application, and studded
An earth outgoing longwave radiation climate model. II - Radiation with clouds included
Yang, Shi-Keng; Smith, G. Louis; Bartman, Fred L.
1988-01-01
The model of the outgoing longwave radiation (OLWR) of Yang et al. (1987) is modified by accounting for the presence of clouds and their influence on OLWR. Cloud top temperature was adjusted so that the calculation agreed with NOAA scanning radiometer measurements. Cloudy sky cases were calculated for global average, zonal average, and worldwide distributed cases. The results were found to agree well with satellite observations.
Sparse Additive Ordinary Differential Equations for Dynamic Gene Regulatory Network Modeling.
Wu, Hulin; Lu, Tao; Xue, Hongqi; Liang, Hua
2014-04-02
The gene regulation network (GRN) is a high-dimensional complex system, which can be represented by various mathematical or statistical models. The ordinary differential equation (ODE) model is one of the popular dynamic GRN models. High-dimensional linear ODE models have been proposed to identify GRNs, but with a limitation of the linear regulation effect assumption. In this article, we propose a sparse additive ODE (SA-ODE) model, coupled with ODE estimation methods and adaptive group LASSO techniques, to model dynamic GRNs that could flexibly deal with nonlinear regulation effects. The asymptotic properties of the proposed method are established and simulation studies are performed to validate the proposed approach. An application example for identifying the nonlinear dynamic GRN of T-cell activation is used to illustrate the usefulness of the proposed method.
Campbell, C. L.; Brown, C. T. A.; Wood, K.; Moseley, H.
2016-11-01
Most existing theoretical models of photodynamic therapy (PDT) assume a uniform initial distribution of the photosensitive molecule, Protoporphyrin IX (PpIX). This is an adequate assumption when the prodrug is systematically administered; however for topical PDT this is no longer a valid assumption. Topical application and subsequent diffusion of the prodrug results in an inhomogeneous distribution of PpIX, especially after short incubation times, prior to light illumination. In this work a theoretical simulation of PDT where the PpIX distribution depends on the incubation time and the treatment modality is described. Three steps of the PpIX production are considered. The first is the distribution of the topically applied prodrug, the second in the conversion from the prodrug to PpIX and the third is the light distribution which affects the PpIX distribution through photobleaching. The light distribution is modelled using a Monte Carlo radiation transfer model and indicates treatment depths of around 2 mm during daylight PDT and approximately 3 mm during conventional PDT. The results suggest that treatment depths are not only limited by the light penetration but also by the PpIX distribution.
Situational effects of the school factors included in the dynamic model of educational effectiveness
Directory of Open Access Journals (Sweden)
Bert Creemers
2009-08-01
Full Text Available We present results of a longitudinal study in which 50 schools, 113 classes and 2,542 Cypriot primary students participated. We tested the validity of the dynamic model of educational effectiveness and especially its assumption that the impact of school factors depends on the current situation of the school and on the type of problems/difficulties the school is facing. Reference is made to the methods used to test this assumption of the dynamic model by measuring school effectiveness in mathematics, Greek language, and religious education over two consecutive school years. The main findings are as follows. School factors were found to have situational effects. Specifically, the development of a school policy for teaching and the school evaluation of policy for teaching were found to have stronger effects in schools where the quality of teaching at classroom level was low. Moreover, time stability in the effectiveness status of schools was identified and thereby changes in the functioning of schools were found not to have a significant impact on changes in the effectiveness status of schools. Implications of the findings for the development of the dynamic model and suggestions for further research are presented.
Comparison of lead isotopes with source apportionment models, including SOM, for air particulates
International Nuclear Information System (INIS)
Gulson, Brian; Korsch, Michael; Dickson, Bruce; Cohen, David; Mizon, Karen; Michael Davis, J.
2007-01-01
We have measured high precision lead isotopes in PM 2.5 particulates from a highly-trafficked site (Mascot) and rural site (Richmond) in the Sydney Basin, New South Wales, Australia to compare with isotopic data from total suspended particulates (TSP) from other sites in the Sydney Basin and evaluate relationships with source fingerprints obtained from multi-element PM 2.5 data. The isotopic data for the period 1998 to 2004 show seasonal peaks and troughs that are more pronounced in the rural site for the PM 2.5 .samples but are consistent with the TSP. The Self Organising Map (SOM) method has been applied to the multi-element PM 2.5 data to evaluate its use in obtaining fingerprints for comparison with standard statistical procedures (ANSTO model). As seasonal effects are also significant for the multi-element data, the SOM modelling is reported as site and season dependent. At the Mascot site, the ANSTO model exhibits decreasing 206 Pb/ 204 Pb ratios with increasing contributions of fingerprints for 'secondary smoke' (industry), 'soil', 'smoke' and 'seaspray'. Similar patterns were shown by SOM winter fingerprints for both sites. At the rural site, there are large isotopic variations but for the majority of samples these are not associated with increased contributions from the main sources with the ANSTO model. For two winter sampling times, there are increased contributions from 'secondary industry', 'smoke', 'soil' and seaspray with one time having a source or sources of Pb similar to that of Mascot. The only positive relationship between increasing 206 Pb/ 204 Pb ratio and source contributions is found at the rural site using the SOM summer fingerprints, both of which show a significant contribution from sulphur. Several of the fingerprints using either model have significant contributions from black carbon (BC) and/or sulphur (S) that probably derive from diesel fuels and industrial sources. Increased contributions from sources with the SOM summer
Optimizing simulated fertilizer additions using a genetic algorithm with a nutrient uptake model
Wendell P. Cropper; N.B. Comerford
2005-01-01
Intensive management of pine plantations in the southeastern coastal plain typically involves weed and pest control, and the addition of fertilizer to meet the high nutrient demand of rapidly growing pines. In this study we coupled a mechanistic nutrient uptake model (SSAND, soil supply and nutrient demand) with a genetic algorithm (GA) in order to estimate the minimum...
Parametrically Guided Generalized Additive Models with Application to Mergers and Acquisitions Data.
Fan, Jianqing; Maity, Arnab; Wang, Yihui; Wu, Yichao
2013-01-01
Generalized nonparametric additive models present a flexible way to evaluate the effects of several covariates on a general outcome of interest via a link function. In this modeling framework, one assumes that the effect of each of the covariates is nonparametric and additive. However, in practice, often there is prior information available about the shape of the regression functions, possibly from pilot studies or exploratory analysis. In this paper, we consider such situations and propose an estimation procedure where the prior information is used as a parametric guide to fit the additive model. Specifically, we first posit a parametric family for each of the regression functions using the prior information (parametric guides). After removing these parametric trends, we then estimate the remainder of the nonparametric functions using a nonparametric generalized additive model, and form the final estimates by adding back the parametric trend. We investigate the asymptotic properties of the estimates and show that when a good guide is chosen, the asymptotic variance of the estimates can be reduced significantly while keeping the asymptotic variance same as the unguided estimator. We observe the performance of our method via a simulation study and demonstrate our method by applying to a real data set on mergers and acquisitions.
Declarations pursuant to the Articles 2 and 3 of the Model Additional Protocol
International Nuclear Information System (INIS)
Fernandez Moreno, Sonia
2001-01-01
Articles 2 and 3 of the Model Additional Protocol specify the content and the time limits of the information to be provided by the States into the framework of the Safeguard Agreements. To standardize the presentation of this information the IAEA has prepared guidelines for the preparation of the documents. A detailed explanation of the guidelines is given in the paper
2013-02-22
... (202) 863-2893, facsimile (202) 863-2898, or via the Internet at http://www.bcpiweb.com . In addition, the Virtual Workshop may be accessed via the Internet at http://www.fcc.gov/blog/wcb-cost-model... this proceeding. The Bureau will not rely on anonymous comments posted during the workshop in reaching...
2017-11-01
The addition or removal of flow from a stream affects the water surface downstream and possibly upstream. The extent of such effects is generally determined by modeling the receiving stream. Guidance that concisely describes how far up/downstream a h...
A Bayesian Additive Model for Understanding Public Transport Usage in Special Events
DEFF Research Database (Denmark)
Rodrigues, Filipe; Borysov, Stanislav S.; Ribeiro, Bernardete
2017-01-01
additive model with Gaussian process components that combines smart card records from public transport with context information about events that is continuously mined from the Web. We develop an efficient approximate inference algorithm using expectation propagation, which allows us to predict the total...
Discontinuity of Family Planning in Nigeria: A Geo-Additive Model ...
African Journals Online (AJOL)
PROF. OLIVER OSUAGWA
2015-06-01
Jun 1, 2015 ... This study explored the factors associated with discontinuance of Family Planning (FP) in Nigeria. A geo-additive model was ... education, wealth, religion, culture are responsible for women's attitude to ..... Planning Indicators by Wealth in Two South Asian Countries. www.cpc.unc.edu/measure. 25. Nyauchi ...
Deliyianni, Eleni; Gagatsis, Athanasios; Elia, Iliada; Panaoura, Areti
2016-01-01
The aim of this study was to propose and validate a structural model in fraction and decimal number addition, which is founded primarily on a synthesis of major theoretical approaches in the field of representations in Mathematics and also on previous research on the learning of fractions and decimals. The study was conducted among 1,701 primary…
Modeling the use of sulfate additives for potassium chloride destruction in biomass combustion
DEFF Research Database (Denmark)
Wu, Hao; Grell, Morten Nedergaard; Jespersen, Jacob Boll
2013-01-01
was affected by the decomposition temperature. Based on the experimental data, a model was proposed to simulate the sulfation of KCl by different sulfate addition, and the simulation results were compared with pilot-scale experiments conducted in a bubbling fluidized bed reactor. The simulation results...
Extending Galactic Habitable Zone Modeling to Include the Emergence of Intelligent Life.
Morrison, Ian S; Gowanlock, Michael G
2015-08-01
Previous studies of the galactic habitable zone have been concerned with identifying those regions of the Galaxy that may favor the emergence of complex life. A planet is deemed habitable if it meets a set of assumed criteria for supporting the emergence of such complex life. In this work, we extend the assessment of habitability to consider the potential for life to further evolve to the point of intelligence--termed the propensity for the emergence of intelligent life, φI. We assume φI is strongly influenced by the time durations available for evolutionary processes to proceed undisturbed by the sterilizing effects of nearby supernovae. The times between supernova events provide windows of opportunity for the evolution of intelligence. We developed a model that allows us to analyze these window times to generate a metric for φI, and we examine here the spatial and temporal variation of this metric. Even under the assumption that long time durations are required between sterilizations to allow for the emergence of intelligence, our model suggests that the inner Galaxy provides the greatest number of opportunities for intelligence to arise. This is due to the substantially higher number density of habitable planets in this region, which outweighs the effects of a higher supernova rate in the region. Our model also shows that φI is increasing with time. Intelligent life emerged at approximately the present time at Earth's galactocentric radius, but a similar level of evolutionary opportunity was available in the inner Galaxy more than 2 Gyr ago. Our findings suggest that the inner Galaxy should logically be a prime target region for searches for extraterrestrial intelligence and that any civilizations that may have emerged there are potentially much older than our own.
International Nuclear Information System (INIS)
Tournassat, Christophe; Gaucher, Eric C.; Leupin, Olivier X.; Wersin, Paul
2010-01-01
Document available in extended abstract form only. An in-situ test in the Opalinus Clay formation, termed pore water Chemistry (PC) experiment, was run for a period of five years. It was based on the concept of diffusive equilibration whereby traced water with a composition close to that expected in the formation was continuously circulated and monitored in a packed off borehole. The main original focus was to obtain reliable data on the pH/pCO 2 of the pore water, but because of unexpected microbially- induced redox reactions, the objective was then changed to elucidate the biogeochemical processes happening in the borehole and to understand their impact on pH/pCO 2 and pH in the low permeability clay formation. The biologically perturbed chemical evolution of the PC experiment was simulated with reactive transport models. The aim of this modelling exercise was to develop a 'minimal-' model able to reproduce the chemical evolution of the PC experiment, i.e. the chemical evolution of solute inorganic and organic compounds (organic carbon, dissolved inorganic carbon etc...) that are coupled with each other through the simultaneous occurrence of biological transformation of solute or solid compounds, in-diffusion and out-diffusion of solute species and precipitation/dissolution of minerals (in the borehole and in the formation). An accurate description of the initial chemical conditions in the surrounding formation together with simplified kinetics rule mimicking the different phases of bacterial activities allowed reproducing the evolution of all main measured parameters (e.g. pH, TOC). Analyses from the overcoring and these simulations evidence the high buffer capacity of Opalinus clay regarding chemical perturbations due to bacterial activity. This pH buffering capacity is mainly attributed to the carbonate system as well as to the clay surfaces reactivity. Glycerol leaching from the pH-electrode might be the primary organic source responsible for
Directory of Open Access Journals (Sweden)
Zheng-Hui Xie
2017-06-01
Full Text Available Carbon emissions and water use are two major kinds of human activities. To reveal whether these two activities can modify the hydrological cycle and climate system in China, we conducted two sets of numerical experiments using regional climate model RegCM4. In the first experiment used to study the climatic responses to human carbon emissions, the model were configured over entire China because the impacts of carbon emissions can be detected across the whole country. Results from the first experiment revealed that near-surface air temperature may significantly increase from 2007 to 2059 at a rate exceeding 0.1 °C per decade in most areas across the country; southwestern and southeastern China also showed increasing trends in summer precipitation, with rates exceeding 10 mm per decade over the same period. In summer, only northern China showed an increasing trend of evapotranspiration, with increase rates ranging from 1 to 5 mm per decade; in winter, increase rates ranging from 1 to 5 mm per decade were observed in most regions. These effects are believed to be caused by global warming from human carbon emissions. In the second experiment used to study the effects of human water use, the model were configured over a limited region—Haihe River Basin in the northern China, because compared with the human carbon emissions, the effects of human water use are much more local and regional, and the Haihe River Basin is the most typical region in China that suffers from both intensive human groundwater exploitation and surface water diversion. We incorporated a scheme of human water regulation into RegCM4 and conducted the second experiment. Model outputs showed that the groundwater table severely declined by ∼10 m in 1971–2000 through human groundwater over-exploitation in the basin; in fact, current conditions are so extreme that even reducing the pumping rate by half cannot eliminate the groundwater depletion cones observed in the area
Walzer, Amy S; Czopp, Alexander M
2011-01-01
The stereotype content model (SCM) posits that warmth and competence are the key components underlying judgments about social groups. Because competence can encompass different components (e.g., intelligence, talent) different group members may be perceived to be competent for different reasons. Therefore, we believe it may be important to specify the type of competence being assessed when examining perceptions of groups that are positively stereotyped (i.e., Black athletes and musical Blacks). Consistent with the SCM, these subgroups were perceived as high in competence-talent but not in competence-intelligence and low in warmth. Both the intelligence and talent frame of competence fit in the SCM's social structural hypothesis.
Directory of Open Access Journals (Sweden)
Manar E. Selim
2015-01-01
Full Text Available Background: Gold nanoparticles (AuNPs have a wide range of applications in various fields. This study provides an understanding of the modulatory effects of AuNPs on an antioxidant system in male Wistar diabetic rats with autism spectrum disorder (ASD. Normal littermates fed by control mothers were injected with citrate buffer alone and served as normal, untreated controls controlin this study. Diabetes mellitus (DM was induced by administering a single intraperitoneal injection of streptozotocin (STZ (100 mg/kg to the pups of (ND diabetic group, which had been fasted overnight. Autistic pups from mothers that had received a single intraperitoneal injection of 600 mg/kg sodium valproate on day 12.5 after conception were randomly divided into 2 groups (n 2 7/group as follow; administering single intraperitoneal injection of streptozotocin (STZ ( (100 mg/kg to the overnight fasted autistic pups of (AD autistic diabetic group. The treatment was started on the 5th day after STZ injection with the same dose as in group II and it was considered as 1st day of treatment with gold nanoparticles for 7 days to each rat of (group IV treated autistic diabetic group(TAD at a dosage of 2.5 mg/kg. b. wt. Results: At this dose of administration AuNPs, the activities of hepatic superoxide dismutase (SOD, glutathione peroxidase (GPx, and catalase were greater in group TAD compared with the control group (P 0.05 in the liver of autistic diabetic AuNPs -supplemented rats, whereas reduced glutathione was markedly higher than in control rats, especially after administration of AuNPs. Moreover, the kidney functions in addition to the fat profile scoring supported the protective potential of that dose of AuNPs. The beta cells revealed euchromatic nuclei with no evidence of separation of nuclear membrane. Conclusions: Our results showed that AuNPs improved many of the oxidative stress parameters (SOD, GPx and, CAT, plasma antioxidant capacity (ORAC and lipid profile
Description and Application of A Model of Seepage under A Weir Including Mechanical Clogging
Directory of Open Access Journals (Sweden)
Sroka Zbigniew
2014-07-01
Full Text Available The paper discusses seepage flow under a damming structure (a weir in view of mechanical clogging in a thin layer at the upstream site. It was assumed that in this layer flow may be treated as one-dimensional (perpendicular to the layer, while elsewhere flow was modelled as two-dimensional. The solution in both zones was obtained in the discrete form using the finite element method and the Euler method. The effect of the clogging layer on seepage flow was modelled using the third kind boundary condition. Seepage parameters in the clogging layer were estimated based on laboratory tests conducted by Skolasińska [2006]. Typical problem was taken to provide simulation and indicate how clogging affects the seepage rate and other parameters of the flow. Results showed that clogging at the upstream site has a significant effect on the distribution of seepage velocity and hydraulic gradients. The flow underneath the structure decreases with time, but these changes are relatively slow.
International Nuclear Information System (INIS)
Merchant, Thomas E.; Kiehna, Erin N.; Li Chenghong; Shukla, Hemant; Sengupta, Saikat; Xiong Xiaoping; Gajjar, Amar; Mulhern, Raymond K.
2006-01-01
Purpose: Model the effects of radiation dosimetry on IQ among pediatric patients with central nervous system (CNS) tumors. Methods and Materials: Pediatric patients with CNS embryonal tumors (n = 39) were prospectively evaluated with serial cognitive testing, before and after treatment with postoperative, risk-adapted craniospinal irradiation (CSI) and conformal primary-site irradiation, followed by chemotherapy. Differential dose-volume data for 5 brain volumes (total brain, supratentorial brain, infratentorial brain, and left and right temporal lobes) were correlated with IQ after surgery and at follow-up by use of linear regression. Results: When the dose distribution was partitioned into 2 levels, both had a significantly negative effect on longitudinal IQ across all 5 brain volumes. When the dose distribution was partitioned into 3 levels (low, medium, and high), exposure to the supratentorial brain appeared to have the most significant impact. For most models, each Gy of exposure had a similar effect on IQ decline, regardless of dose level. Conclusions: Our results suggest that radiation dosimetry data from 5 brain volumes can be used to predict decline in longitudinal IQ. Despite measures to reduce radiation dose and treatment volume, the volume that receives the highest dose continues to have the greatest effect, which supports current volume-reduction efforts
An Improved Heat Budget Estimation Including Bottom Effects for General Ocean Circulation Models
Carder, Kendall; Warrior, Hari; Otis, Daniel; Chen, R. F.
2001-01-01
This paper studies the effects of the underwater light field on heat-budget calculations of general ocean circulation models for shallow waters. The presence of a bottom significantly alters the estimated heat budget in shallow waters, which affects the corresponding thermal stratification and hence modifies the circulation. Based on the data collected during the COBOP field experiment near the Bahamas, we have used a one-dimensional turbulence closure model to show the influence of the bottom reflection and absorption on the sea surface temperature field. The water depth has an almost one-to-one correlation with the temperature rise. Effects of varying the bottom albedo by replacing the sea grass bed with a coral sand bottom, also has an appreciable effect on the heat budget of the shallow regions. We believe that the differences in the heat budget for the shallow areas will have an influence on the local circulation processes and especially on the evaporative and long-wave heat losses for these areas. The ultimate effects on humidity and cloudiness of the region are expected to be significant as well.
Sacchi, Mattia; Balleza, Daniel; Vena, Giulia; Puia, Giulia; Facci, Paolo; Alessandrini, Andrea
2015-05-01
Amphiphilic molecules which have a biological effect on specific membrane proteins, could also affect lipid bilayer properties possibly resulting in a modulation of the overall membrane behavior. In light of this consideration, it is important to study the possible effects of amphiphilic molecule of pharmacological interest on model systems which recapitulate some of the main properties of the biological plasma membranes. In this work we studied the effect of a neurosteroid, Allopregnanolone (3α,5α-tetrahydroprogesterone or Allo), on a model bilayer composed by the ternary lipid mixture DOPC/bSM/chol. We chose ternary mixtures which present, at room temperature, a phase coexistence of liquid ordered (Lo) and liquid disordered (Ld) domains and which reside near to a critical point. We found that Allo, which is able to strongly partition in the lipid bilayer, induces a marked increase in the bilayer area and modifies the relative proportion of the two phases favoring the Ld phase. We also found that the neurosteroid shifts the miscibility temperature to higher values in a way similarly to what happens when the cholesterol concentration is decreased. Interestingly, an isoform of Allo, isoAllopregnanolone (3β,5α-tetrahydroprogesterone or isoAllo), known to inhibit the effects of Allo on GABAA receptors, has an opposite effect on the bilayer properties. Copyright © 2015 Elsevier B.V. All rights reserved.
Modelling the Colour of Strawberry Spread During Storage, Including Effects of Technical Variations
Directory of Open Access Journals (Sweden)
Kadivec Mirta
2016-12-01
Full Text Available The colour of freshly processed strawberry spread changes relatively rapidly from a bright red to a dull red, which then makes its appearance generally less acceptable for consumers. The colours of strawberry spreads following several processing conditions were measured under different storage conditions. Additional sugar and colorant had only slight effects on the colour decay, while exclusion of oxygen and daylight did not affect this process. The only condition that clearly maintained the freshly processed appearance was storage at 4°C. Hexagonal bottles were filled with the strawberry spreads and their colour was repeatedly measured at the six sides of the bottles, using a Minolta chroma meter. Data were analysed using non-linear indexed regression analysis based on a logistic function for the three colour aspect of a*, b* and L*. This technology allowed the determination of the variation in these data in terms of improved reliability (R2adj, >90%. It also allowed better interpretation of the processes involved. All variations in the data could be attributed to technical variation.
NB-PLC channel modelling with cyclostationary noise addition & OFDM implementation for smart grid
Thomas, Togis; Gupta, K. K.
2016-03-01
Power line communication (PLC) technology can be a viable solution for the future ubiquitous networks because it provides a cheaper alternative to other wired technology currently being used for communication. In smart grid Power Line Communication (PLC) is used to support communication with low rate on low voltage (LV) distribution network. In this paper, we propose the channel modelling of narrowband (NB) PLC in the frequency range 5 KHz to 500 KHz by using ABCD parameter with cyclostationary noise addition. Behaviour of the channel was studied by the addition of 11KV/230V transformer, by varying load location and load. Bit error rate (BER) Vs signal to noise ratio SNR) was plotted for the proposed model by employing OFDM. Our simulation results based on the proposed channel model show an acceptable performance in terms of bit error rate versus signal to noise ratio, which enables communication required for smart grid applications.
Lian, Yanping; Lin, Stephen; Yan, Wentao; Liu, Wing Kam; Wagner, Gregory J.
2018-01-01
In this paper, a parallelized 3D cellular automaton computational model is developed to predict grain morphology for solidification of metal during the additive manufacturing process. Solidification phenomena are characterized by highly localized events, such as the nucleation and growth of multiple grains. As a result, parallelization requires careful treatment of load balancing between processors as well as interprocess communication in order to maintain a high parallel efficiency. We give a detailed summary of the formulation of the model, as well as a description of the communication strategies implemented to ensure parallel efficiency. Scaling tests on a representative problem with about half a billion cells demonstrate parallel efficiency of more than 80% on 8 processors and around 50% on 64; loss of efficiency is attributable to load imbalance due to near-surface grain nucleation in this test problem. The model is further demonstrated through an additive manufacturing simulation with resulting grain structures showing reasonable agreement with those observed in experiments.
Energy Technology Data Exchange (ETDEWEB)
Stratakis, G.A.; Pontikakis, G.N.; Stamatelos, A.M. [University of Thessaly, Volos (Greece). Mechanical and Industrial Engineering Dept.
2004-07-01
In this paper, an experimental validation procedure is applied to an improved one-dimensional model of fuel additive assisted regeneration of a diesel particulate filter. Full-scale tests on an engine bench of the regeneration behaviour of a diesel filter fitted to a modern diesel engine run on catalyst-doped fuel are employed for this purpose. The main objectives of the validation procedure concern the ability of the model to predict the effects of exhaust mass flowrate, initial soot loading mass, volatile organic fraction of the soot and additive concentration in the fuel. The results of the validation procedure are intended to demonstrate the scope and extent of applicability of models of this type to real-world design and optimization studies with diesel filters. (author)
Energy Technology Data Exchange (ETDEWEB)
Tom, N.; Lawson, M.; Yu, Y. H.
2015-04-20
WEC-Sim is a midfidelity numerical tool for modeling wave energy conversion devices. The code uses the MATLAB SimMechanics package to solve multibody dynamics and models wave interactions using hydrodynamic coefficients derived from frequency-domain boundary-element methods. This paper presents the new modeling features introduced in the latest release of WEC-Sim. The first feature discussed conversion of the fluid memory kernel to a state-space form. This enhancement offers a substantial computational benefit after the hydrodynamic body-to-body coefficients are introduced and the number of interactions increases exponentially with each additional body. Additional features include the ability to calculate the wave-excitation forces based on the instantaneous incident wave angle, allowing the device to weathervane, as well as import a user-defined wave elevation time series. A review of the hydrodynamic theory for each feature is provided and the successful implementation is verified using test cases.
Including temperature in a wavefunction description of the dynamics of the quantum Rabi model
Werther, Michael; Grossmann, Frank
2018-01-01
We present a wavefunction methodology to account for finite temperature initial conditions in the quantum Rabi model. The approach is based on the Davydov Ansatz together with a statistical sampling of the canonical harmonic oscillator initial density matrix. Equations of motion are gained from a variational principle and numerical results are compared to those of the thermal Hamiltonian approach. For a system consisting of a single spin and a single oscillator and for moderate coupling strength, we compare our new results with full quantum ones as well as with other Davydov-type results based on alternative sampling/summation strategies. All of these perform better than the ones based on the thermal Hamiltonian approach. The best agreement is shown by a Boltzmann weighting of individual eigenstate propagations. Extending this to a bath of many oscillators will, however, be very demanding numerically. The use of any one of the investigated stochastic sampling approaches will then be favorable.
Directory of Open Access Journals (Sweden)
Korhan Ozgan
2013-01-01
Full Text Available Dynamic analysis of foundation plate-beam systems with transverse shear deformation is presented using modified Vlasov foundation model. Finite element formulation of the problem is derived by using an 8-node (PBQ8 finite element based on Mindlin plate theory for the plate and a 2-node Hughes element based on Timoshenko beam theory for the beam. Selective reduced integration technique is used to avoid shear locking problem for the evaluation of the stiffness matrices for both the elements. The effect of beam thickness, the aspect ratio of the plate and subsoil depth on the response of plate-beam-soil system is analyzed. Numerical examples show that the displacement, bending moments and shear forces are changed significantly by adding the beams.
Directory of Open Access Journals (Sweden)
Bloch Isabelle
2007-01-01
Full Text Available This paper describes a system for optical music recognition (OMR in case of monophonic typeset scores. After clarifying the difficulties specific to this domain, we propose appropriate solutions at both image analysis level and high-level interpretation. Thus, a recognition and segmentation method is designed, that allows dealing with common printing defects and numerous symbol interconnections. Then, musical rules are modeled and integrated, in order to make a consistent decision. This high-level interpretation step relies on the fuzzy sets and possibility framework, since it allows dealing with symbol variability, flexibility, and imprecision of music rules, and merging all these heterogeneous pieces of information. Other innovative features are the indication of potential errors and the possibility of applying learning procedures, in order to gain in robustness. Experiments conducted on a large data base show that the proposed method constitutes an interesting contribution to OMR.
Energy-based fatigue model for shape memory alloys including thermomechanical coupling
Zhang, Yahui; Zhu, Jihong; Moumni, Ziad; Van Herpen, Alain; Zhang, Weihong
2016-03-01
This paper is aimed at developing a low cycle fatigue criterion for pseudoelastic shape memory alloys to take into account thermomechanical coupling. To this end, fatigue tests are carried out at different loading rates under strain control at room temperature using NiTi wires. Temperature distribution on the specimen is measured using a high speed thermal camera. Specimens are tested to failure and fatigue lifetimes of specimens are measured. Test results show that the fatigue lifetime is greatly influenced by the loading rate: as the strain rate increases, the fatigue lifetime decreases. Furthermore, it is shown that the fatigue cracks initiate when the stored energy inside the material reaches a critical value. An energy-based fatigue criterion is thus proposed as a function of the irreversible hysteresis energy of the stabilized cycle and the loading rate. Fatigue life is calculated using the proposed model. The experimental and computational results compare well.
ECO: a generic eutrophication model including comprehensive sediment-water interaction.
Smits, Johannes G C; van Beek, Jan K L
2013-01-01
The content and calibration of the comprehensive generic 3D eutrophication model ECO for water and sediment quality is presented. Based on a computational grid for water and sediment, ECO is used as a tool for water quality management to simulate concentrations and mass fluxes of nutrients (N, P, Si), phytoplankton species, detrital organic matter, electron acceptors and related substances. ECO combines integral simulation of water and sediment quality with sediment diagenesis and closed mass balances. Its advanced process formulations for substances in the water column and the bed sediment were developed to allow for a much more dynamic calculation of the sediment-water exchange fluxes of nutrients as resulting from steep concentration gradients across the sediment-water interface than is possible with other eutrophication models. ECO is to more accurately calculate the accumulation of organic matter and nutrients in the sediment, and to allow for more accurate prediction of phytoplankton biomass and water quality in response to mitigative measures such as nutrient load reduction. ECO was calibrated for shallow Lake Veluwe (The Netherlands). Due to restoration measures this lake underwent a transition from hypertrophic conditions to moderately eutrophic conditions, leading to the extensive colonization by submerged macrophytes. ECO reproduces observed water quality well for the transition period of ten years. The values of its process coefficients are in line with ranges derived from literature. ECO's calculation results underline the importance of redox processes and phosphate speciation for the nutrient return fluxes. Among other things, the results suggest that authigenic formation of a stable apatite-like mineral in the sediment can contribute significantly to oligotrophication of a lake after a phosphorus load reduction.
Energy Technology Data Exchange (ETDEWEB)
Kissick, Michael W; Mo Xiaohu; McCall, Keisha C; Mackie, Thomas R [Department of Medical Physics, Wisconsin Institutes for Medical Research, 111 Highland Avenue, University of Wisconsin-Madison, Madison, WI 53705 (United States); Schubert, Leah K [Radiation Oncology Department, University of Nebraska Medical Center, Omaha, NE 68198 (United States); Westerly, David C, E-mail: mwkissick@wisc.ed [Department of Radiation Oncology, University of Colorado Denver, Aurora, CO 80045 (United States)
2010-05-21
The aim of the study was to demonstrate a potential alternative scenario for accurate dose-painting (non-homogeneous planned dose) delivery at 1 cm beam width with helical tomotherapy (HT) in the presence of 1 cm, three-dimensional, intra-fraction respiratory motion, but without any active motion management. A model dose-painting experiment was planned and delivered to the average position (proper phase of a 4DCT scan) with three spherical PTV levels to approximate dose painting to compensate for hypothetical hypoxia in a model lung tumor. Realistic but regular motion was produced with the Washington University 4D Motion Phantom. A small spherical Virtual Water(TM) phantom was used to simulate a moving lung tumor inside of the LUNGMAN(TM) anthropomorphic chest phantom to simulate realistic heterogeneity uncertainties. A piece of 4 cm Gafchromic EBT(TM) film was inserted into the 6 cm diameter sphere. TomoTherapy, Inc., DQA(TM) software was used to verify the delivery performed on a TomoTherapy Hi-Art II(TM) device. The dose uncertainty in the purposeful absence of motion management and in the absence of large, low frequency drifts (periods greater than the beam width divided by the couch velocity) or randomness in the breathing displacement yields very favorable results. Instead of interference effects, only small blurring is observed because of the averaging of many breathing cycles and beamlets and the avoidance of interference. Dose painting during respiration with helical tomotherapy is feasible in certain situations without motion management. A simple recommendation is to make respiration as regular as possible without low frequency drifting. The blurring is just small enough to suggest that it may be acceptable to deliver without motion management if the motion is equal to the beam width or smaller (at respiration frequencies) when registered to the average position.
International Nuclear Information System (INIS)
Kissick, Michael W; Mo Xiaohu; McCall, Keisha C; Mackie, Thomas R; Schubert, Leah K; Westerly, David C
2010-01-01
The aim of the study was to demonstrate a potential alternative scenario for accurate dose-painting (non-homogeneous planned dose) delivery at 1 cm beam width with helical tomotherapy (HT) in the presence of 1 cm, three-dimensional, intra-fraction respiratory motion, but without any active motion management. A model dose-painting experiment was planned and delivered to the average position (proper phase of a 4DCT scan) with three spherical PTV levels to approximate dose painting to compensate for hypothetical hypoxia in a model lung tumor. Realistic but regular motion was produced with the Washington University 4D Motion Phantom. A small spherical Virtual Water(TM) phantom was used to simulate a moving lung tumor inside of the LUNGMAN(TM) anthropomorphic chest phantom to simulate realistic heterogeneity uncertainties. A piece of 4 cm Gafchromic EBT(TM) film was inserted into the 6 cm diameter sphere. TomoTherapy, Inc., DQA(TM) software was used to verify the delivery performed on a TomoTherapy Hi-Art II(TM) device. The dose uncertainty in the purposeful absence of motion management and in the absence of large, low frequency drifts (periods greater than the beam width divided by the couch velocity) or randomness in the breathing displacement yields very favorable results. Instead of interference effects, only small blurring is observed because of the averaging of many breathing cycles and beamlets and the avoidance of interference. Dose painting during respiration with helical tomotherapy is feasible in certain situations without motion management. A simple recommendation is to make respiration as regular as possible without low frequency drifting. The blurring is just small enough to suggest that it may be acceptable to deliver without motion management if the motion is equal to the beam width or smaller (at respiration frequencies) when registered to the average position.
Landau quantized dynamics and spectra for group-VI dichalcogenides, including a model quantum wire
Horing, Norman J. M.
2017-06-01
This work is concerned with the derivation of the Green's function for Landau-quantized carriers in the Group-VI dichalcogenides. In the spatially homogeneous case, the Green's function is separated into a Peierls phase factor and a translationally invariant part which is determined in a closed form integral representation involving only elementary functions. The latter is expanded in an eigenfunction series of Laguerre polynomials. These results for the retarded Green's function are presented in both position and momentum representations, and yet another closed form representation is derived in circular coordinates in terms of the Bessel wave function of the second kind (not to be confused with the Bessel function). The case of a quantum wire is also addressed, representing the quantum wire in terms of a model one-dimensional δ (x ) -potential profile. This retarded Green's function for propagation directly along the wire is determined exactly in terms of the corresponding Green's function for the system without the δ (x ) -potential, and the Landau quantized eigenenergy dispersion relation is examined. The thermodynamic Green's function for the dichalcogenide carriers in a normal magnetic field is formulated here in terms of its spectral weight, and its solution is presented in a momentum/integral representation involving only elementary functions, which is subsequently expanded in Laguerre eigenfunctions and presented in both momentum and position representations.
Landau quantized dynamics and spectra for group-VI dichalcogenides, including a model quantum wire
Directory of Open Access Journals (Sweden)
Norman J. M. Horing
2017-06-01
Full Text Available This work is concerned with the derivation of the Green’s function for Landau-quantized carriers in the Group-VI dichalcogenides. In the spatially homogeneous case, the Green’s function is separated into a Peierls phase factor and a translationally invariant part which is determined in a closed form integral representation involving only elementary functions. The latter is expanded in an eigenfunction series of Laguerre polynomials. These results for the retarded Green’s function are presented in both position and momentum representations, and yet another closed form representation is derived in circular coordinates in terms of the Bessel wave function of the second kind (not to be confused with the Bessel function. The case of a quantum wire is also addressed, representing the quantum wire in terms of a model one-dimensional δ(x-potential profile. This retarded Green’s function for propagation directly along the wire is determined exactly in terms of the corresponding Green’s function for the system without the δ(x-potential, and the Landau quantized eigenenergy dispersion relation is examined. The thermodynamic Green’s function for the dichalcogenide carriers in a normal magnetic field is formulated here in terms of its spectral weight, and its solution is presented in a momentum/integral representation involving only elementary functions, which is subsequently expanded in Laguerre eigenfunctions and presented in both momentum and position representations.
Cheng, Guang
2014-02-01
We consider efficient estimation of the Euclidean parameters in a generalized partially linear additive models for longitudinal/clustered data when multiple covariates need to be modeled nonparametrically, and propose an estimation procedure based on a spline approximation of the nonparametric part of the model and the generalized estimating equations (GEE). Although the model in consideration is natural and useful in many practical applications, the literature on this model is very limited because of challenges in dealing with dependent data for nonparametric additive models. We show that the proposed estimators are consistent and asymptotically normal even if the covariance structure is misspecified. An explicit consistent estimate of the asymptotic variance is also provided. Moreover, we derive the semiparametric efficiency score and information bound under general moment conditions. By showing that our estimators achieve the semiparametric information bound, we effectively establish their efficiency in a stronger sense than what is typically considered for GEE. The derivation of our asymptotic results relies heavily on the empirical processes tools that we develop for the longitudinal/clustered data. Numerical results are used to illustrate the finite sample performance of the proposed estimators. © 2014 ISI/BS.
Study of abrasive resistance of foundries models obtained with use of additive technology
Ol'khovik, Evgeniy
2017-10-01
A problem of determination of resistance of the foundry models and patterns from ABS (PLA) plastic, obtained by the method of 3D printing with using FDM additive technology, to abrasive wear and resistance in the environment of foundry sand mould is considered in the present study. The description of a technique and equipment for tests of castings models and patterns for wear is provided in the article. The manufacturing techniques of models with the use of the 3D printer (additive technology) are described. The scheme with vibration load was applied to samples tests. For the most qualitative research of influence of sandy mix on plastic, models in real conditions of abrasive wear have been organized. The results also examined the application of acrylic paintwork to the plastic model and a two-component coating. The practical offers and recommendation on production of master models with the use of FDM technology allowing one to reach indicators of durability, exceeding 2000 cycles of moulding in foundry sand mix, are described.
The effect of tailor-made additives on crystal growth of methyl paraben: Experiments and modelling
Cai, Zhihui; Liu, Yong; Song, Yang; Guan, Guoqiang; Jiang, Yanbin
2017-03-01
In this study, methyl paraben (MP) was selected as the model component, and acetaminophen (APAP), p-methyl acetanilide (PMAA) and acetanilide (ACET), which share the similar molecular structure as MP, were selected as the three tailor-made additives to study the effect of tailor-made additives on the crystal growth of MP. HPLC results indicated that the MP crystals induced by the three additives contained MP only. Photographs of the single crystals prepared indicated that the morphology of the MP crystals was greatly changed by the additives, but PXRD and single crystal diffraction results illustrated that the MP crystals were the same polymorph only with different crystal habits, and no new crystal form was found compared with other references. To investigate the effect of the additives on the crystal growth, the interaction between additives and facets was discussed in detail using the DFT methods and MD simulations. The results showed that APAP, PMAA and ACET would be selectively adsorbed on the growth surfaces of the crystal facets, which induced the change in MP crystal habits.
Use of additive technologies for practical working with complex models for foundry technologies
Olkhovik, E.; Butsanets, A. A.; Ageeva, A. A.
2016-07-01
The article presents the results of research of additive technology (3D printing) application for developing a geometrically complex model of castings parts. Investment casting is well known and widely used technology for the production of complex parts. The work proposes the use of a 3D printing technology for manufacturing models parts, which are removed by thermal destruction. Traditional methods of equipment production for investment casting involve the use of manual labor which has problems with dimensional accuracy, and CNC technology which is less used. Such scheme is low productive and demands considerable time. We have offered an alternative method which consists in printing the main knots using a 3D printer (PLA and ABS) with a subsequent production of castings models from them. In this article, the main technological methods are considered and their problems are discussed. The dimensional accuracy of models in comparison with investment casting technology is considered as the main aspect.
DEFF Research Database (Denmark)
Wu, Hao; Jespersen, Jacob Boll; Aho, Martti
2013-01-01
Potassium chloride, KCl, formed from critical ash-forming elements released during combustion may lead to severe ash deposition and corrosion problems in biomass-fired boilers. Ferric sulfate, Fe2(SO4)3 is an effective additive, which produces sulfur oxides (SO2 and SO3) to convert KCl to the less...... harmful K2SO4. In the present study the decomposition of ferric sulfate is studied in a fast-heating rate thermogravimetric analyzer (TGA), and a kinetic model is proposed to describe the decomposition process. The yields of SO2 and SO3 from ferric sulfate decomposition are investigated in a laboratory......-scale tube reactor. It is revealed that approximately 40% of the sulfur is released as SO3, the remaining fraction being released as SO2. The proposed decomposition model of ferric sulfate is combined with a detailed gas phase kinetic model of KCl sulfation, and a simplified model of K2SO4 condensation...
DEFF Research Database (Denmark)
Martinez Lopez, Brais; Gontard, Nathalie; Peyron, Stephane
2018-01-01
A reliable prediction of migration levels of plastic additives into food requires a robust estimation of diffusivity. Predictive modelling of diffusivity as recommended by the EU commission is carried out using a semi-empirical equation that relies on two polymer-dependent parameters. These param......A reliable prediction of migration levels of plastic additives into food requires a robust estimation of diffusivity. Predictive modelling of diffusivity as recommended by the EU commission is carried out using a semi-empirical equation that relies on two polymer-dependent parameters....... These parameters were determined for the polymers most used by packaging industry (LLDPE, HDPE, PP, PET, PS, HIPS) from the diffusivity data available at that time. In the specific case of general purpose polystyrene, the diffusivity data published since then shows that the use of the equation with the original...
An additive-multiplicative mean residual life model for right-censored data.
Cai, Jingheng; He, Haijin; Song, Xinyuan; Sun, Liuquan
2017-05-01
Many studies have focused on determining the effect of the body mass index (BMI) on the mortality in different cohorts. In this article, we propose an additive-multiplicative mean residual life (MRL) model to assess the effects of BMI and other risk factors on the MRL function of survival time in a cohort of Chinese type 2 diabetic patients. The proposed model can simultaneously manage additive and multiplicative risk factors and provide a comprehensible interpretation of their effects on the MRL function of interest. We develop an estimation procedure through pseudo partial score equations to obtain parameter estimates. We establish the asymptotic properties of the proposed estimators and conduct simulations to demonstrate the performance of the proposed method. The application of the procedure to a study on the life expectancy of type 2 diabetic patients reveals new insights into the extension of the life expectancy of such patients. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
The Additive Risk Model for Estimation of Effect of Haplotype Match in BMT Studies
DEFF Research Database (Denmark)
Scheike, Thomas; Martinussen, T; Zhang, MJ
2011-01-01
leads to a missing data problem. We show how Aalen's additive risk model can be applied in this setting with the benefit that the time-varying haplomatch effect can be easily studied. This problem has not been considered before, and the standard approach where one would use the expected-maximization (EM......) algorithm cannot be applied for this model because the likelihood is hard to evaluate without additional assumptions. We suggest an approach based on multivariate estimating equations that are solved using a recursive structure. This approach leads to an estimator where the large sample properties can...... be developed using product-integration theory. Small sample properties are investigated using simulations in a setting that mimics the motivating haplomatch problem....
Medero, Rafael; García-Rodríguez, Sylvana; François, Christopher J; Roldán-Alzate, Alejandro
2017-03-21
Non-invasive hemodynamic assessment of total cavopulmonary connection (TCPC) is challenging due to the complex anatomy. Additive manufacturing (AM) is a suitable alternative for creating patient-specific in vitro models for flow measurements using four-dimensional (4D) Flow MRI. These in vitro systems have the potential to serve as validation for computational fluid dynamics (CFD), simulating different physiological conditions. This study investigated three different AM technologies, stereolithography (SLA), selective laser sintering (SLS) and fused deposition modeling (FDM), to determine differences in hemodynamics when measuring flow using 4D Flow MRI. The models were created using patient-specific MRI data from an extracardiac TCPC. These models were connected to a perfusion pump circulating water at three different flow rates. Data was processed for visualization and quantification of velocity, flow distribution, vorticity and kinetic energy. These results were compared between each model. In addition, the flow distribution obtained in vitro was compared to in vivo. The results showed significant difference in velocities measured at the outlets of the models that required internal support material when printing. Furthermore, an ultrasound flow sensor was used to validate flow measurements at the inlets and outlets of the in vitro models. These results were highly correlated to those measured with 4D Flow MRI. This study showed that commercially available AM technologies can be used to create patient-specific vascular models for in vitro hemodynamic studies at reasonable costs. However, technologies that do not require internal supports during manufacturing allow smoother internal surfaces, which makes them better suited for flow analyses. Copyright © 2017 Elsevier Ltd. All rights reserved.
Samadhi, TMAA; Sumihartati, Atin
2016-02-01
The most critical stage in a garment industry is sewing process, because generally, it consists of a number of operations and a large number of sewing machines for each operation. Therefore, it requires a balancing method that can assign task to work station with balance workloads. Many studies on assembly line balancing assume a new assembly line, but in reality, due to demand fluctuation and demand increased a re-balancing is needed. To cope with those fluctuating demand changes, additional capacity can be carried out by investing in spare sewing machine and paying for sewing service through outsourcing. This study develops an assembly line balancing (ALB) model on existing line to cope with fluctuating demand change. Capacity redesign is decided if the fluctuation demand exceeds the available capacity through a combination of making investment on new machines and outsourcing while considering for minimizing the cost of idle capacity in the future. The objective of the model is to minimize the total cost of the line assembly that consists of operating costs, machine cost, adding capacity cost, losses cost due to idle capacity and outsourcing costs. The model develop is based on an integer programming model. The model is tested for a set of data of one year demand with the existing number of sewing machines of 41 units. The result shows that additional maximum capacity up to 76 units of machine required when there is an increase of 60% of the average demand, at the equal cost parameters..
Dessens, O.
2017-12-01
Within the last IPCC AR5 a large and systematic sensitivity study around available technologies and timing of policies applied in IAMs to achieve the 2°C target has been conducted. However the simple climate representations included in IAMs are generally tuned to the results of ensemble means. This may result in hiding within the ensemble mean results possible challenging mitigation pathways for the economy or the technology future scenarios. This work provides new insights on the sensitivity of the socio-economic response to different climate factors under a 2°C climate change target in order to help guide future efforts to reduce uncertainty in the climate mitigation decisions. The main objective is to understand and bring new insights on how future global warming will affect the natural biochemical feedbacks on the climate system and what could be the consequences of these feedbacks on the anthropogenic emission pathways with a specific focus on the energy-economy system. It specifically focuses on three issues of the climate representation affecting the energy system transformation and GHG emissions pathways: 1- Impacts of the climate sensitivity (or TCR); 2- Impacts of warming on the radiative forcing (cloudiness,...); 3- Impacts of warming on the carbon cycle (carbon cycle feedback). We use the integrated assessment model TIAM-UCL to examine the mitigation pathways compatible with the 2C target depending on assumptions regarding the 3 issues of the climate representation introduced above. The following key conclusions drawn from this study are that mitigation to 2°C is still possible under strong climate sensitivity (TCR), strong carbon cycle amplification or positive radiative forcing feedback. However, this level of climate mitigation will require a significant transformation in the way we produce and consume energy. Carbon capture and sequestration on electricity generation, industry and biomass is part of the technology pool needed to achieve this
Directory of Open Access Journals (Sweden)
Etsuji Suzuki
Full Text Available Multilevel analyses are ideally suited to assess the effects of ecological (higher level and individual (lower level exposure variables simultaneously. In applying such analyses to measures of ecologies in epidemiological studies, individual variables are usually aggregated into the higher level unit. Typically, the aggregated measure includes responses of every individual belonging to that group (i.e. it constitutes a self-included measure. More recently, researchers have developed an aggregate measure which excludes the response of the individual to whom the aggregate measure is linked (i.e. a self-excluded measure. In this study, we clarify the substantive and technical properties of these two measures when they are used as exposures in multilevel models.Although the differences between the two aggregated measures are mathematically subtle, distinguishing between them is important in terms of the specific scientific questions to be addressed. We then show how these measures can be used in two distinct types of multilevel models-self-included model and self-excluded model-and interpret the parameters in each model by imposing hypothetical interventions. The concept is tested on empirical data of workplace social capital and employees' systolic blood pressure.Researchers assume group-level interventions when using a self-included model, and individual-level interventions when using a self-excluded model. Analytical re-parameterizations of these two models highlight their differences in parameter interpretation. Cluster-mean centered self-included models enable researchers to decompose the collective effect into its within- and between-group components. The benefit of cluster-mean centering procedure is further discussed in terms of hypothetical interventions.When investigating the potential roles of aggregated variables, researchers should carefully explore which type of model-self-included or self-excluded-is suitable for a given situation
Suzuki, Etsuji; Yamamoto, Eiji; Takao, Soshi; Kawachi, Ichiro; Subramanian, S V
2012-01-01
Multilevel analyses are ideally suited to assess the effects of ecological (higher level) and individual (lower level) exposure variables simultaneously. In applying such analyses to measures of ecologies in epidemiological studies, individual variables are usually aggregated into the higher level unit. Typically, the aggregated measure includes responses of every individual belonging to that group (i.e. it constitutes a self-included measure). More recently, researchers have developed an aggregate measure which excludes the response of the individual to whom the aggregate measure is linked (i.e. a self-excluded measure). In this study, we clarify the substantive and technical properties of these two measures when they are used as exposures in multilevel models. Although the differences between the two aggregated measures are mathematically subtle, distinguishing between them is important in terms of the specific scientific questions to be addressed. We then show how these measures can be used in two distinct types of multilevel models-self-included model and self-excluded model-and interpret the parameters in each model by imposing hypothetical interventions. The concept is tested on empirical data of workplace social capital and employees' systolic blood pressure. Researchers assume group-level interventions when using a self-included model, and individual-level interventions when using a self-excluded model. Analytical re-parameterizations of these two models highlight their differences in parameter interpretation. Cluster-mean centered self-included models enable researchers to decompose the collective effect into its within- and between-group components. The benefit of cluster-mean centering procedure is further discussed in terms of hypothetical interventions. When investigating the potential roles of aggregated variables, researchers should carefully explore which type of model-self-included or self-excluded-is suitable for a given situation, particularly
A QCD derivation of the additive quark model from two and three gluon exchanges
International Nuclear Information System (INIS)
Lipkin, H.J.
1982-06-01
The contributions to the Pomeron from two and three gluon exchanges are shown to give the correct combinatorial factors for the additive quark model relation between meson and baryon Pomeron couplings, even though two-quark and three-quark operators are involved. Similar results hold for the contributions to hadron masses from three-gluon vertices as well as one-gluon exchange. The color algebra reduces the multiquark couplings to a linear function of quark number. (author)
Teeling, M.V.M.T.; Turrin, M.; de Ruiter, P.; Turrin, Michela; Peters, Brady; O'Brien, William; Stouffs, Rudi; Dogan, Timur
2017-01-01
This paper presents a parametric approach to an integrated and performance-oriented design, from the conceptual design phase towards materialization. The novelty occurs in the use of parametric models as a way of integrating multidisciplinary design constraints, from daylight optimization to the additive manufacturing process. The work focuses on the case of a customized sun-shading system that tailors daylighting effects for a fully glazed façade of the alleged PULSE building.The overall wor...
Development of a QTL-environment-based predictive model for node addition rate in common bean.
Zhang, Li; Gezan, Salvador A; Eduardo Vallejos, C; Jones, James W; Boote, Kenneth J; Clavijo-Michelangeli, Jose A; Bhakta, Mehul; Osorno, Juan M; Rao, Idupulapati; Beebe, Stephen; Roman-Paoli, Elvin; Gonzalez, Abiezer; Beaver, James; Ricaurte, Jaumer; Colbert, Raphael; Correll, Melanie J
2017-05-01
This work reports the effects of the genetic makeup, the environment and the genotype by environment interactions for node addition rate in an RIL population of common bean. This information was used to build a predictive model for node addition rate. To select a plant genotype that will thrive in targeted environments it is critical to understand the genotype by environment interaction (GEI). In this study, multi-environment QTL analysis was used to characterize node addition rate (NAR, node day - 1 ) on the main stem of the common bean (Phaseolus vulgaris L). This analysis was carried out with field data of 171 recombinant inbred lines that were grown at five sites (Florida, Puerto Rico, 2 sites in Colombia, and North Dakota). Four QTLs (Nar1, Nar2, Nar3 and Nar4) were identified, one of which had significant QTL by environment interactions (QEI), that is, Nar2 with temperature. Temperature was identified as the main environmental factor affecting NAR while day length and solar radiation played a minor role. Integration of sites as covariates into a QTL mixed site-effect model, and further replacing the site component with explanatory environmental covariates (i.e., temperature, day length and solar radiation) yielded a model that explained 73% of the phenotypic variation for NAR with root mean square error of 16.25% of the mean. The QTL consistency and stability was examined through a tenfold cross validation with different sets of genotypes and these four QTLs were always detected with 50-90% probability. The final model was evaluated using leave-one-site-out method to assess the influence of site on node addition rate. These analyses provided a quantitative measure of the effects on NAR of common beans exerted by the genetic makeup, the environment and their interactions.
Generalized Additive Models for Location Scale and Shape (GAMLSS) in R
D. Mikis Stasinopoulos; Robert A. Rigby
2007-01-01
GAMLSS is a general framework for fitting regression type models where the distribution of the response variable does not have to belong to the exponential family and includes highly skew and kurtotic continuous and discrete distribution. GAMLSS allows all the parameters of the distribution of the response variable to be modelled as linear/non-linear or smooth functions of the explanatory variables. This paper starts by defining the statistical framework of GAMLSS, then describes the curren...
Comparison of prosthetic models produced by traditional and additive manufacturing methods.
Park, Jin-Young; Kim, Hae-Young; Kim, Ji-Hwan; Kim, Jae-Hong; Kim, Woong-Chul
2015-08-01
The purpose of this study was to verify the clinical-feasibility of additive manufacturing by comparing the accuracy of four different manufacturing methods for metal coping: the conventional lost wax technique (CLWT); subtractive methods with wax blank milling (WBM); and two additive methods, multi jet modeling (MJM), and micro-stereolithography (Micro-SLA). Thirty study models were created using an acrylic model with the maxillary upper right canine, first premolar, and first molar teeth. Based on the scan files from a non-contact blue light scanner (Identica; Medit Co. Ltd., Seoul, Korea), thirty cores were produced using the WBM, MJM, and Micro-SLA methods, respectively, and another thirty frameworks were produced using the CLWT method. To measure the marginal and internal gap, the silicone replica method was adopted, and the silicone images obtained were evaluated using a digital microscope (KH-7700; Hirox, Tokyo, Japan) at 140X magnification. Analyses were performed using two-way analysis of variance (ANOVA) and Tukey post hoc test (α=.05). The mean marginal gaps and internal gaps showed significant differences according to tooth type (Pmanufacturing method (Pmanufacturing methods were within a clinically allowable range, and, thus, the clinical use of additive manufacturing methods is acceptable as an alternative to the traditional lost wax-technique and subtractive manufacturing.
van Lith, P.F.; van Lith, Pascal F.; Betlem, Bernardus H.L.; Roffel, B.
2003-01-01
This paper presents the development of a simple model which describes the product quality and production over time of an experimental batch distillation column, including start-up. The model structure is based on a simple physical framework, which is augmented with fuzzy logic. This provides a way
Yeo, Soyoung; Lee, Suro; Park, Hyunjoon; Shin, Heuynkil; Holzapfel, Wilhelm; Huh, Chul Sung
2016-12-01
Enforced restrictions on the use of antibiotics as growth promoters (AGPs) in animal production have prompted investigations into alternative feed additives in recent decades. Probiotics are currently the main feed additive used in livestock. However, the selection of probiotic candidates relies on human-based methods and little is known about the verification criteria for host-specific selection. We investigated the probiotic potential of Lactobacillus salivarius strains isolated from fed pig feces for their use as porcine feed additives. Two methods were developed that simulated the pig gastrointestinal (GI) tract and the intestinal epithelium, and these were compared with human-based in vitro methods and used for selecting porcine probiotics. Lactobacillus salivarius strain LS6 was identified as a promising probiotic strain for potential use as a porcine feed additive. This strain prevented disruption of the epithelial integrity of pig small intestine (PSI) cells by inhibiting the adherence of enterotoxigenic Escherichia coli K88. It also showed high survival rates in the in vitro pig GI tract model and good adhesion to PSI cells. We propose that host target-specific screening and validation methods are important tools in the development of effective probiotic feed additives, and this approach may support future-oriented agriculture.
Generalized Additive Models for Location Scale and Shape (GAMLSS in R
Directory of Open Access Journals (Sweden)
D. Mikis Stasinopoulos
2007-11-01
Full Text Available GAMLSS is a general framework for fitting regression type models where the distribution of the response variable does not have to belong to the exponential family and includes highly skew and kurtotic continuous and discrete distribution. GAMLSS allows all the parameters of the distribution of the response variable to be modelled as linear/non-linear or smooth functions of the explanatory variables. This paper starts by defining the statistical framework of GAMLSS, then describes the current implementation of GAMLSS in R and finally gives four different data examples to demonstrate how GAMLSS can be used for statistical modelling.
GenoGAM: genome-wide generalized additive models for ChIP-Seq analysis.
Stricker, Georg; Engelhardt, Alexander; Schulz, Daniel; Schmid, Matthias; Tresch, Achim; Gagneur, Julien
2017-08-01
Chromatin immunoprecipitation followed by deep sequencing (ChIP-Seq) is a widely used approach to study protein-DNA interactions. Often, the quantities of interest are the differential occupancies relative to controls, between genetic backgrounds, treatments, or combinations thereof. Current methods for differential occupancy of ChIP-Seq data rely however on binning or sliding window techniques, for which the choice of the window and bin sizes are subjective. Here, we present GenoGAM (Genome-wide Generalized Additive Model), which brings the well-established and flexible generalized additive models framework to genomic applications using a data parallelism strategy. We model ChIP-Seq read count frequencies as products of smooth functions along chromosomes. Smoothing parameters are objectively estimated from the data by cross-validation, eliminating ad hoc binning and windowing needed by current approaches. GenoGAM provides base-level and region-level significance testing for full factorial designs. Application to a ChIP-Seq dataset in yeast showed increased sensitivity over existing differential occupancy methods while controlling for type I error rate. By analyzing a set of DNA methylation data and illustrating an extension to a peak caller, we further demonstrate the potential of GenoGAM as a generic statistical modeling tool for genome-wide assays. Software is available from Bioconductor: https://www.bioconductor.org/packages/release/bioc/html/GenoGAM.html . gagneur@in.tum.de. Supplementary information is available at Bioinformatics online.
Parity Symmetry and Parity Breaking in the Quantum Rabi Model with Addition of Ising Interaction
International Nuclear Information System (INIS)
Wang Qiong; He Zhi; Yao Chun-Mei
2015-01-01
We explore the possibility to generate new parity symmetry in the quantum Rabi model after a bias is introduced. In contrast to a mathematical treatment in a previous publication [J. Phys. A 46 (2013) 265302], we consider a physically realistic method by involving an additional spin into the quantum Rabi model to couple with the original spin by an Ising interaction, and then the parity symmetry is broken as well as the scaling behavior of the ground state by introducing a bias. The rule can be found that the parity symmetry is broken by introducing a bias and then restored by adding new degrees of freedom. Experimental feasibility of realizing the models under discussion is investigated. (paper)
Ko, Yi-An; Mukherjee, Bhramar; Smith, Jennifer A.; Park, Sung Kyun; Kardia, Sharon L.R.; Allison, Matthew A.; Vokonas, Pantel S.; Chen, Jinbo; Diez-Roux, Ana V.
2014-01-01
While there has been extensive research developing gene-environment interaction (GEI) methods in case-control studies, little attention has been given to sparse and efficient modeling of GEI in longitudinal studies. In a two-way table for GEI with rows and columns as categorical variables, a conventional saturated interaction model involves estimation of a specific parameter for each cell, with constraints ensuring identifiability. The estimates are unbiased but are potentially inefficient because the number of parameters to be estimated can grow quickly with increasing categories of row/column factors. On the other hand, Tukey’s one degree of freedom (df) model for non-additivity treats the interaction term as a scaled product of row and column main effects. Due to the parsimonious form of interaction, the interaction estimate leads to enhanced efficiency and the corresponding test could lead to increased power. Unfortunately, Tukey’s model gives biased estimates and low power if the model is misspecified. When screening multiple GEIs where each genetic and environmental marker may exhibit a distinct interaction pattern, a robust estimator for interaction is important for GEI detection. We propose a shrinkage estimator for interaction effects that combines estimates from both Tukey’s and saturated interaction models and use the corresponding Wald test for testing interaction in a longitudinal setting. The proposed estimator is robust to misspecification of interaction structure. We illustrate the proposed methods using two longitudinal studies — the Normative Aging Study and the Multi-Ethnic Study of Atherosclerosis. PMID:25112650
Kamminga, Tjerko; Slagman, Simen-Jan; Bijlsma, Jetta J E; Martins Dos Santos, Vitor A P; Suarez-Diez, Maria; Schaap, Peter J
2017-10-01
Mycoplasma hyopneumoniae is cultured on large-scale to produce antigen for inactivated whole-cell vaccines against respiratory disease in pigs. However, the fastidious nutrient requirements of this minimal bacterium and the low growth rate make it challenging to reach sufficient biomass yield for antigen production. In this study, we sequenced the genome of M. hyopneumoniae strain 11 and constructed a high quality constraint-based genome-scale metabolic model of 284 chemical reactions and 298 metabolites. We validated the model with time-series data of duplicate fermentation cultures to aim for an integrated model describing the dynamic profiles measured in fermentations. The model predicted that 84% of cellular energy in a standard M. hyopneumoniae cultivation was used for non-growth associated maintenance and only 16% of cellular energy was used for growth and growth associated maintenance. Following a cycle of model-driven experimentation in dedicated fermentation experiments, we were able to increase the fraction of cellular energy used for growth through pyruvate addition to the medium. This increase in turn led to an increase in growth rate and a 2.3 times increase in the total biomass concentration reached after 3-4 days of fermentation, enhancing the productivity of the overall process. The model presented provides a solid basis to understand and further improve M. hyopneumoniae fermentation processes. Biotechnol. Bioeng. 2017;114: 2339-2347. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Modeling Data Containing Outliers using ARIMA Additive Outlier (ARIMA-AO)
Saleh Ahmar, Ansari; Guritno, Suryo; Abdurakhman; Rahman, Abdul; Awi; Alimuddin; Minggi, Ilham; Arif Tiro, M.; Kasim Aidid, M.; Annas, Suwardi; Utami Sutiksno, Dian; Ahmar, Dewi S.; Ahmar, Kurniawan H.; Abqary Ahmar, A.; Zaki, Ahmad; Abdullah, Dahlan; Rahim, Robbi; Nurdiyanto, Heri; Hidayat, Rahmat; Napitupulu, Darmawan; Simarmata, Janner; Kurniasih, Nuning; Andretti Abdillah, Leon; Pranolo, Andri; Haviluddin; Albra, Wahyudin; Arifin, A. Nurani M.
2018-01-01
The aim this study is discussed on the detection and correction of data containing the additive outlier (AO) on the model ARIMA (p, d, q). The process of detection and correction of data using an iterative procedure popularized by Box, Jenkins, and Reinsel (1994). By using this method we obtained an ARIMA models were fit to the data containing AO, this model is added to the original model of ARIMA coefficients obtained from the iteration process using regression methods. In the simulation data is obtained that the data contained AO initial models are ARIMA (2,0,0) with MSE = 36,780, after the detection and correction of data obtained by the iteration of the model ARIMA (2,0,0) with the coefficients obtained from the regression Zt = 0,106+0,204Z t‑1+0,401Z t‑2‑329X 1(t)+115X 2(t)+35,9X 3(t) and MSE = 19,365. This shows that there is an improvement of forecasting error rate data.
ADDITION TO THE QUASI-BIOLOGICAL MODEL OF RADIOGENIC CANCER MORBIDITY
Directory of Open Access Journals (Sweden)
A. Т. Gubin
2017-01-01
Full Text Available Object: The purpose was to refine the quasi-biological model of the incidence of radiogenic solid cancer (published by the authors earlier in the journal “Radiation hygiene” to ensure better consistency with the Japanese cohort data and with the ICRP model in part of the description of the effect of age at exposure.Results: Initial presuppositions of a mathematical model was supplemented by the assumption that stem cells, received the “pre-cancerous” defect of DNA, with a higher probability compared to the intact cells follow the path of reproduction but not of differentiation. Structure of the refined model and its properties did not change, but one parameter was added. Analysis of the base mathematical relations of the supplemented model showed that there was no contradiction between the models of radiogenic cancer incidence presented in the Publication 103 ICRP and in the UNSCEAR 2006, despite their external differences.Conclusion: Further work with the model requires the verification of parameter values by comparison with the epidemiological data, primarily with data on the incidence of solid cancers in the Japanese cohort. However, since some of the assumptions of the model, including the new one, are not purely radiobiological, it would require analysis of a wider range of biological and cancer patterns.
International Nuclear Information System (INIS)
Defraene, Gilles; Van den Bergh, Laura; Al-Mamgani, Abrahim; Haustermans, Karin; Heemsbergen, Wilma; Van den Heuvel, Frank; Lebesque, Joos V.
2012-01-01
Purpose: To study the impact of clinical predisposing factors on rectal normal tissue complication probability modeling using the updated results of the Dutch prostate dose-escalation trial. Methods and Materials: Toxicity data of 512 patients (conformally treated to 68 Gy [n = 284] and 78 Gy [n = 228]) with complete follow-up at 3 years after radiotherapy were studied. Scored end points were rectal bleeding, high stool frequency, and fecal incontinence. Two traditional dose-based models (Lyman-Kutcher-Burman (LKB) and Relative Seriality (RS) and a logistic model were fitted using a maximum likelihood approach. Furthermore, these model fits were improved by including the most significant clinical factors. The area under the receiver operating characteristic curve (AUC) was used to compare the discriminating ability of all fits. Results: Including clinical factors significantly increased the predictive power of the models for all end points. In the optimal LKB, RS, and logistic models for rectal bleeding and fecal incontinence, the first significant (p = 0.011–0.013) clinical factor was “previous abdominal surgery.” As second significant (p = 0.012–0.016) factor, “cardiac history” was included in all three rectal bleeding fits, whereas including “diabetes” was significant (p = 0.039–0.048) in fecal incontinence modeling but only in the LKB and logistic models. High stool frequency fits only benefitted significantly (p = 0.003–0.006) from the inclusion of the baseline toxicity score. For all models rectal bleeding fits had the highest AUC (0.77) where it was 0.63 and 0.68 for high stool frequency and fecal incontinence, respectively. LKB and logistic model fits resulted in similar values for the volume parameter. The steepness parameter was somewhat higher in the logistic model, also resulting in a slightly lower D 50 . Anal wall DVHs were used for fecal incontinence, whereas anorectal wall dose best described the other two endpoints. Conclusions
International Nuclear Information System (INIS)
Shao, Zhen; Yang, Shan-Lin; Gao, Fei
2014-01-01
Highlights: • A new stationary time series smoothing-based semiparametric model is established. • A novel semiparametric additive model based on piecewise smooth is proposed. • We model the uncertainty of data distribution for mid-term electricity forecasting. • We provide efficient long horizon simulation and extraction for external variables. • We provide stable and accurate density predictions for mid-term electricity demand. - Abstract: Accurate mid-term electricity demand forecasting is critical for efficient electric planning, budgeting and operating decisions. Mid-term electricity demand forecasting is notoriously complicated, since the demand is subject to a range of external drivers, such as climate change, economic development, which will exhibit monthly, seasonal, and annual complex variations. Conventional models are based on the assumption that original data is stable and normally distributed, which is generally insignificant in explaining actual demand pattern. This paper proposes a new semiparametric additive model that, in addition to considering the uncertainty of the data distribution, includes practical discussions covering the applications of the external variables. To effectively detach the multi-dimensional volatility of mid-term demand, a novel piecewise smooth method which allows reduction of the data dimensionality is developed. Besides, a semi-parametric procedure that makes use of bootstrap algorithm for density forecast and model estimation is presented. Two typical cases in China are presented to verify the effectiveness of the proposed methodology. The results suggest that both meteorological and economic variables play a critical role in mid-term electricity consumption prediction in China, while the extracted economic factor is adequate to reveal the potentially complex relationship between electricity consumption and economic fluctuation. Overall, the proposed model can be easily applied to mid-term demand forecasting, and
Seo, Seulgi; Ka, Mi-Hyun; Lee, Kwang-Geun
2014-07-09
The effect of various food additives on the formation of carcinogenic 4(5)-methylimidazole (4-MI) in a caramel model system was investigated. The relationship between the levels of 4-MI and various pyrazines was studied. When glucose and ammonium hydroxide were heated, the amount of 4-MI was 556 ± 1.3 μg/mL, which increased to 583 ± 2.6 μg/mL by the addition of 0.1 M of sodium sulfite. When various food additives, such as 0.1 M of iron sulfate, magnesium sulfate, zinc sulfate, tryptophan, and cysteine were added, the amount of 4-MI was reduced to 110 ± 0.7, 483 ± 2.0, 460 ± 2.0, 409 ± 4.4, and 397 ± 1.7 μg/mL, respectively. The greatest reduction, 80%, occurred with the addition of iron sulfate. Among the 12 pyrazines, 2-ethyl-6-methylpyrazine with 4-MI showed the highest correlation (r = -0.8239).
Ghent, R.; Phillips, R.; Hansen, V.; Nunes, D.
2002-12-01
We have previously reported on the development of very short-wavelength (30 km [1, 2]. We simulated the initiation and growth of VST using finite-element models with uniform composition and elasto-visco-plastic rheology undergoing simultaneous cooling and shortening. The models were constrained by Magellan SAR imagery and motivated by the current plume hypothesis for crustal plateau origin [3, 4]. We determined that VST developed only in models with surface temperatures near 1000 K and elevated thermal gradients derived from a halfspace cooling model with initial uniform temperatures of 1200-1400 K. Model rheological profiles indicated a truly viscoplastic character, in which both creep and plastic mechanisms were significant at shallow depths. The resulting topography showed both very short-wavelength components and slightly longer-wavelength, low amplitude folds, as is common in Venusian crustal plateau fold belts. New simulations with greater spatial extent and higher mesh resolution allow further exploration of the interplay between viscous and plastic processes during VST development. Wider models allow more detailed investigation of viscous folding on the 1-4 km scale. We also employ temperature-dependent thermal conductivity [5] to better represent the thermal behavior of the model crust. The additional insight and expanded parameter space provided by these new models allow us to place improved constraints on the early thermal and mechanical evolution of crustal plateaus. [1] Ghent, R.R., R.J. Phillips, V.L. Hansen, and D.C. Nunes, Eos Trans. AGU, 83(19), Spring Meet. Suppl., Abstract P21A-05, 2002. [2] Ghent, R.R., R.J. Phillips, and V.L. Hansen, 2001, Eos Trans. AGU, 82(47), Spring Meet. Suppl., Abstract T41B-0865, 2001. [3] Hansen, V.L. and J.J. Willis, Icarus, 132, 321-343, 1998. [4] Phillips, R.J. and V.L. Hansen, Science, 279, p1492, 1998. [5] Hofmeister, A, Science, 283, p1699, 1999.
Lumped mass model of a 1D metastructure for vibration suppression with no additional mass
Reichl, Katherine K.; Inman, Daniel J.
2017-09-01
The article examines the effectiveness of metastructures for vibration suppression from a weight standpoint. Metastructures, a metamaterial inspired concept, are structures with distributed vibration absorbers. In automotive and aerospace industries, it is critical to have low levels of vibrations while also using lightweight materials. Previous work has shown that metastructures are effective at mitigating vibrations, but do not consider the effects of mass. This work takes mass into consideration by comparing a structure with vibration absorbers to a structure of equal mass with no absorbers. These structures are modeled as one-dimensional lumped mass models, chosen for simplicity. Results compare both the steady-state and the transient responses. As a quantitative performance measure, the H2 norm, which is related to the area under the frequency response function, is calculated and compared for both the metastructure and the baseline structure. These results show that it is possible to obtain a favorable vibration response without adding additional mass to the structure. Additionally, the performance measure is utilized to optimize the geometry of the structure, determine the optimal ratio of mass in the absorber to mass of the host structure, and determine the frequencies of the absorbers. The dynamic response of this model is verified using a finite element analysis.
International Nuclear Information System (INIS)
Volovik, S.V.; Dyadyusha, G.G.; Staninets, V.I.
1987-01-01
On the basis of the concept of polarity (philicity) of free radicals as proposed by the authors, within the framework of methods of qualitative surfaces of potential energy (linear combinations of configurations of fragments) and stabilization energy, an effective model has been developed for the regioselectivity and reactivity of radicals in processes of addition. A critical examination is made of certain key aspects of the change in regiochemistry and reactivity with changes in the electronic structure of the free radical and substrate. The dominant trends in regioselectivity and reactivity in processes of free-radical addition to olefins are controlled by electronic effects and can be predicted by analyzing interactions of diabatic potential energy surfaces or orbital interactions for a system consisting of a free radical and an unsaturated substrate
Analysis of time to event outcomes in randomized controlled trials by generalized additive models.
Directory of Open Access Journals (Sweden)
Christos Argyropoulos
Full Text Available Randomized Controlled Trials almost invariably utilize the hazard ratio calculated with a Cox proportional hazard model as a treatment efficacy measure. Despite the widespread adoption of HRs, these provide a limited understanding of the treatment effect and may even provide a biased estimate when the assumption of proportional hazards in the Cox model is not verified by the trial data. Additional treatment effect measures on the survival probability or the time scale may be used to supplement HRs but a framework for the simultaneous generation of these measures is lacking.By splitting follow-up time at the nodes of a Gauss Lobatto numerical quadrature rule, techniques for Poisson Generalized Additive Models (PGAM can be adopted for flexible hazard modeling. Straightforward simulation post-estimation transforms PGAM estimates for the log hazard into estimates of the survival function. These in turn were used to calculate relative and absolute risks or even differences in restricted mean survival time between treatment arms. We illustrate our approach with extensive simulations and in two trials: IPASS (in which the proportionality of hazards was violated and HEMO a long duration study conducted under evolving standards of care on a heterogeneous patient population.PGAM can generate estimates of the survival function and the hazard ratio that are essentially identical to those obtained by Kaplan Meier curve analysis and the Cox model. PGAMs can simultaneously provide multiple measures of treatment efficacy after a single data pass. Furthermore, supported unadjusted (overall treatment effect but also subgroup and adjusted analyses, while incorporating multiple time scales and accounting for non-proportional hazards in survival data.By augmenting the HR conventionally reported, PGAMs have the potential to support the inferential goals of multiple stakeholders involved in the evaluation and appraisal of clinical trial results under proportional and
Adler, Stephen L.
2013-06-01
We continue our exploration of whether the flyby anomalies can be explained by scattering of spacecraft nucleons from dark matter gravitationally bound to the Earth, with the addition of data from five new flybys to that from the original six. We continue to use our model in which inelastic and elastic scatterers populate shells generated by the precession of circular orbits with normals tilted with respect to the Earth's axis. With 11 data points and eight parameters in the model, a statistically meaningful fit is obtained with a chi-squared of 2.7. We give plots of the anomalous acceleration along the spacecraft trajectory, and the cumulative velocity change, for the five flybys which exhibit a significant nonzero anomaly. We also discuss implications of the fit for dark matter-nucleon cross-sections, give the prediction of our fit for the anomaly to be expected from the future Juno flyby, and give predictions of our fit for flyby orbit orientation changes. In addition, we give formulas for estimating the flyby temperature increase caused by dark matter inelastic scattering, and for the fraction of flyby nucleons undergoing such scatters. Finally, for circular satellite orbits, we give a table of predicted secular changes in orbit radius. These are much too large to be reasonable — comparing with data for COBE and GP-B supplied to us by Edward Wright (after the first version of this paper was posted), we find that our model predicts changes in orbit radius that are too large by many orders of magnitude. So the model studied here is ruled out. We conclude that further modeling of the flyby anomalies must simultaneously attempt to fit constraints coming from satellite orbits.
Topsoil organic carbon content of Europe, a new map based on a generalised additive model
de Brogniez, Delphine; Ballabio, Cristiano; Stevens, Antoine; Jones, Robert J. A.; Montanarella, Luca; van Wesemael, Bas
2014-05-01
There is an increasing demand for up-to-date spatially continuous organic carbon (OC) data for global environment and climatic modeling. Whilst the current map of topsoil organic carbon content for Europe (Jones et al., 2005) was produced by applying expert-knowledge based pedo-transfer rules on large soil mapping units, the aim of this study was to replace it by applying digital soil mapping techniques on the first European harmonised geo-referenced topsoil (0-20 cm) database, which arises from the LUCAS (land use/cover area frame statistical survey) survey. A generalized additive model (GAM) was calibrated on 85% of the dataset (ca. 17 000 soil samples) and a backward stepwise approach selected slope, land cover, temperature, net primary productivity, latitude and longitude as environmental covariates (500 m resolution). The validation of the model (applied on 15% of the dataset), gave an R2 of 0.27. We observed that most organic soils were under-predicted by the model and that soils of Scandinavia were also poorly predicted. The model showed an RMSE of 42 g kg-1 for mineral soils and of 287 g kg-1 for organic soils. The map of predicted OC content showed the lowest values in Mediterranean countries and in croplands across Europe, whereas highest OC content were predicted in wetlands, woodlands and in mountainous areas. The map of standard error of the OC model predictions showed high values in northern latitudes, wetlands, moors and heathlands, whereas low uncertainty was mostly found in croplands. A comparison of our results with the map of Jones et al. (2005) showed a general agreement on the prediction of mineral soils' OC content, most probably because the models use some common covariates, namely land cover and temperature. Our model however failed to predict values of OC content greater than 200 g kg-1, which we explain by the imposed unimodal distribution of our model, whose mean is tilted towards the majority of soils, which are mineral. Finally, average
Ren, Junjie; Guo, Ping
2017-11-01
The real fluid flow in porous media is consistent with the mass conservation which can be described by the nonlinear governing equation including the quadratic gradient term (QGT). However, most of the flow models have been established by ignoring the QGT and little work has been conducted to incorporate the QGT into the flow model of the multiple fractured horizontal (MFH) well with stimulated reservoir volume (SRV). This paper first establishes a semi-analytical model of an MFH well with SRV including the QGT. Introducing the transformed pressure and flow-rate function, the nonlinear model of a point source in a composite system including the QGT is linearized. Then the Laplace transform, principle of superposition, numerical discrete method, Gaussian elimination method and Stehfest numerical inversion are employed to establish and solve the seepage model of the MFH well with SRV. Type curves are plotted and the effects of relevant parameters are analyzed. It is found that the nonlinear effect caused by the QGT can increase the flow capacity of fluid flow and influence the transient pressure positively. The relevant parameters not only have an effect on the type curve but also affect the error in the pressure calculated by the conventional linear model. The proposed model, which is consistent with the mass conservation, reflects the nonlinear process of the real fluid flow, and thus it can be used to obtain more accurate transient pressure of an MFH well with SRV.
Han, Seung-Ryong; Guikema, Seth D; Quiring, Steven M
2009-10-01
Electric power is a critical infrastructure service after hurricanes, and rapid restoration of electric power is important in order to minimize losses in the impacted areas. However, rapid restoration of electric power after a hurricane depends on obtaining the necessary resources, primarily repair crews and materials, before the hurricane makes landfall and then appropriately deploying these resources as soon as possible after the hurricane. This, in turn, depends on having sound estimates of both the overall severity of the storm and the relative risk of power outages in different areas. Past studies have developed statistical, regression-based approaches for estimating the number of power outages in advance of an approaching hurricane. However, these approaches have either not been applicable for future events or have had lower predictive accuracy than desired. This article shows that a different type of regression model, a generalized additive model (GAM), can outperform the types of models used previously. This is done by developing and validating a GAM based on power outage data during past hurricanes in the Gulf Coast region and comparing the results from this model to the previously used generalized linear models.
Kifle, Yimer Wasihun; Hens, Niel; Faes, Christel
2017-11-01
This paper formulates and compares a general class of spatiotemporal models for univariate space-time geostatistical data. The implementation of stochastic partial differential equation (SPDE) approach combined with integrated nested Laplace approximation into the R-INLA package makes it computationally feasible to use spatiotemporal models. However, the impact of specifying models with and without space-time interaction is unclear. We formulate an extensive class of additive and coupled spatiotemporal SPDE models and investigate the distinction between them by (1) Extending their temporal effect, allowing a random walk process in time, (2) varying the spatial correlation function and (3) running a simulation study to assess the effect of misspecifying the spatial and temporal models, and to assess the generalizability of our results to a higher number of locations. Our methods are illustrated with Culicoides data from Belgium. The Bayesian spatial predictions showed that the highest prevalence of Culicoides species was found in the Northeastern and central parts of Belgium during summer. Copyright © 2017 Elsevier Ltd. All rights reserved.
AlRamadan, Abdullah S.
2015-10-01
The demand for fuels with high anti-knock quality has historically been rising, and will continue to increase with the development of downsized and turbocharged spark-ignition engines. Butanol isomers, such as 2-butanol and tert-butanol, have high octane ratings (RON of 105 and 107, respectively), and thus mixed butanols (68.8% by volume of 2-butanol and 31.2% by volume of tert-butanol) can be added to the conventional petroleum-derived gasoline fuels to improve octane performance. In the present work, the effect of mixed butanols addition to gasoline surrogates has been investigated in a high-pressure shock tube facility. The ignition delay times of mixed butanols stoichiometric mixtures were measured at 20 and 40bar over a temperature range of 800-1200K. Next, 10vol% and 20vol% of mixed butanols (MB) were blended with two different toluene/n-heptane/iso-octane (TPRF) fuel blends having octane ratings of RON 90/MON 81.7 and RON 84.6/MON 79.3. These MB/TPRF mixtures were investigated in the shock tube conditions similar to those mentioned above. A chemical kinetic model was developed to simulate the low- and high-temperature oxidation of mixed butanols and MB/TPRF blends. The proposed model is in good agreement with the experimental data with some deviations at low temperatures. The effect of mixed butanols addition to TPRFs is marginal when examining the ignition delay times at high temperatures. However, when extended to lower temperatures (T < 850K), the model shows that the mixed butanols addition to TPRFs causes the ignition delay times to increase and hence behaves like an octane booster at engine-like conditions. © 2015 The Combustion Institute.
Diffo Kaze, Arnaud; Maas, Stefan; Arnoux, Pierre-Jean; Wolf, Claude; Pape, Dietrich
2017-12-07
Results of finite element (FE) analyses can give insight into musculoskeletal diseases if physiological boundary conditions, which include the muscle forces during specific activities of daily life, are considered in the FE modelling. So far, many simplifications of the boundary conditions are currently made. This study presents an approach for FE modelling of the lower limb for which muscle forces were included. The stance phase of normal gait was simulated. Muscle forces were calculated using a musculoskeletal rigid body (RB) model of the human body, and were subsequently applied to a FE model of the lower limb. It was shown that the inertial forces are negligible during the stance phase of normal gait. The contact surfaces between the parts within the knee were modelled as bonded. Weak springs were attached to the distal tibia for numerical reasons. Hip joint reaction forces from the RB model and those from the FE model were similar in magnitude with relative differences less than 16%. The forces of the weak spring were negligible compared to the applied muscle forces. The maximal strain was 0.23% in the proximal region of the femoral diaphysis and 1.7% in the contact zone between the tibia and the fibula. The presented approach based on FE modelling by including muscle forces from inverse dynamic analysis of musculoskeletal RB model can be used to perform analyses of the lower limb with very realistic boundary conditions. In the present form, this model can be used to better understand the loading, stresses and strains of bones in the knee area and hence to analyse osteotomy fixation devices.
Directory of Open Access Journals (Sweden)
Chelsea Uggenti
2018-03-01
Full Text Available We begin with a detailed study of a delayed SI model of disease transmission with immigration into both classes. The incidence function allows for a nonlinear dependence on the infected population, including mass action and saturating incidence as special cases. Due to the immigration of infectives, there is no disease-free equilibrium and hence no basic reproduction number. We show there is a unique endemic equilibrium and that this equilibrium is globally asymptotically stable for all parameter values. The results include vector-style delay and latency-style delay. Next, we show that previous global stability results for an SEI model and an SVI model that include immigration of infectives and non-linear incidence but not delay can be extended to systems with vector-style delay and latency-style delay.
Energy Technology Data Exchange (ETDEWEB)
Jack Istok; Melora Park; James McKinley; Chongxuan Liu; Lee Krumholz; Anne Spain; Aaron Peacock; Brett Baldwin
2007-04-19
The overall goal of this project is to develop and test a thermodynamic network model for predicting the effects of substrate additions and environmental perturbations on microbial growth, community composition and system geochemistry. The hypothesis is that a thermodynamic analysis of the energy-yielding growth reactions performed by defined groups of microorganisms can be used to make quantitative and testable predictions of the change in microbial community composition that will occur when a substrate is added to the subsurface or when environmental conditions change.
Additional Model Datasets and Results to Accelerate the Verification and Validation of RELAP-7
Energy Technology Data Exchange (ETDEWEB)
Yoo, Jun Soo [Idaho National Lab. (INL), Idaho Falls, ID (United States); Choi, Yong Joon [Idaho National Lab. (INL), Idaho Falls, ID (United States)
2016-11-01
The RELAP-7 code verification and validation activities are ongoing under the code assessment plan proposed in the previous document (INL-EXT-16-40015). Among the list of V&V test problems in the ‘RELAP-7 code V&V RTM (Requirements Traceability Matrix)’, the RELAP-7 7-equation model has been tested with additional demonstration problems and the results of these tests are reported in this document. In this report, we describe the testing process, the test cases that were conducted, and the results of the evaluation.
Adnan, F. A.; Romlay, F. R. M.; Shafiq, M.
2018-04-01
Owing to the advent of the industrial revolution 4.0, the need for further evaluating processes applied in the additive manufacturing application particularly the computational process for slicing is non-trivial. This paper evaluates a real-time slicing algorithm for slicing an STL formatted computer-aided design (CAD). A line-plane intersection equation was applied to perform the slicing procedure at any given height. The application of this algorithm has found to provide a better computational time regardless the number of facet in the STL model. The performance of this algorithm is evaluated by comparing the results of the computational time for different geometry.
DEFF Research Database (Denmark)
Pedersen, Michael J.; Born, Stephen; Neuenschwander, Ulrich
2018-01-01
The kinetics of sequential addition of a distinct Grignard species onto a lactone is studied by flow chemistry. The experimental data are shown to be consistent with a kinetic model based on four reaction steps, reaction of ester to magnesium hemiacetal, rearrangement to ketone (forward...... and backward) and reaction of ketone to tertiary alcohol upon quenching. The experimental derived reaction mechanism is supported by ab initio molecular computations, and the predicted activation energy is in good agreement with the experimental observations. The Grignard reaction follows a substrate...
Assessing the effect, on animal model, of mixture of food additives, on the water balance.
Friedrich, Mariola; Kuchlewska, Magdalena
2013-01-01
The purpose of this study was to determine, on the animal model, the effect of modification of diet composition and administration of selected food additives on water balance in the body. The study was conducted with 48 males and 48 females (separately for each sex) of Wistar strain rats divided into four groups. For drinking, the animals from groups I and III were receiving water, whereas the animals from groups II and IV were administered 5 ml of a solution of selected food additives (potassium nitrate - E 252, sodium nitrite - E 250, benzoic acid - E 210, sorbic acid - E 200, and monosodium glutamate - E 621). Doses of the administered food additives were computed taking into account the average intake by men, expressed per body mass unit. Having drunk the solution, the animals were provided water for drinking. The mixture of selected food additives applied in the experiment was found to facilitate water retention in the body both in the case of both male and female rats, and differences observed between the volume of ingested fluids and the volume of excreted urine were statistically significant in the animals fed the basal diet. The type of feed mixture provided to the animals affected the site of water retention - in the case of animals receiving the basal diet analyses demonstrated a significant increase in water content in the liver tissue, whereas in the animals fed the modified diet water was observed to accumulate in the vascular bed. Taking into account the fact of water retention in the vascular bed, the effects of food additives intake may be more adverse in the case of females.
Evaluation of 3D Additively Manufactured Canine Brain Models for Teaching Veterinary Neuroanatomy.
Schoenfeld-Tacher, Regina M; Horn, Timothy J; Scheviak, Tyler A; Royal, Kenneth D; Hudson, Lola C
Physical specimens are essential to the teaching of veterinary anatomy. While fresh and fixed cadavers have long been the medium of choice, plastinated specimens have gained widespread acceptance as adjuncts to dissection materials. Even though the plastination process increases the durability of specimens, these are still derived from animal tissues and require periodic replacement if used by students on a regular basis. This study investigated the use of three-dimensional additively manufactured (3D AM) models (colloquially referred to as 3D-printed models) of the canine brain as a replacement for plastinated or formalin-fixed brains. The models investigated were built based on a micro-MRI of a single canine brain and have numerous practical advantages, such as durability, lower cost over time, and reduction of animal use. The effectiveness of the models was assessed by comparing performance among students who were instructed using either plastinated brains or 3D AM models. This study used propensity score matching to generate similar pairs of students. Pairings were based on gender and initial anatomy performance across two consecutive classes of first-year veterinary students. Students' performance on a practical neuroanatomy exam was compared, and no significant differences were found in scores based on the type of material (3D AM models or plastinated specimens) used for instruction. Students in both groups were equally able to identify neuroanatomical structures on cadaveric material, as well as respond to questions involving application of neuroanatomy knowledge. Therefore, we postulate that 3D AM canine brain models are an acceptable alternative to plastinated specimens in teaching veterinary neuroanatomy.
DEFF Research Database (Denmark)
Vansteelandt, S.; Martinussen, Torben; Tchetgen, E. J Tchetgen
2014-01-01
We consider additive hazard models (Aalen, 1989) for the effect of a randomized treatment on a survival outcome, adjusting for auxiliary baseline covariates. We demonstrate that the Aalen least-squares estimator of the treatment effect parameter is asymptotically unbiased, even when the hazard...... that, in view of its robustness against model misspecification, Aalen least-squares estimation is attractive for evaluating treatment effects on a survival outcome in randomized experiments, and the primary reasons to consider baseline covariate adjustment in such settings could be interest in subgroup......'s dependence on time or on the auxiliary covariates is misspecified, and even away from the null hypothesis of no treatment effect. We furthermore show that adjustment for auxiliary baseline covariates does not change the asymptotic variance of the estimator of the effect of a randomized treatment. We conclude...
Hybrid 2D-3D modelling of GTA welding with filler wire addition
Traidia, Abderrazak
2012-07-01
A hybrid 2D-3D model for the numerical simulation of Gas Tungsten Arc welding is proposed in this paper. It offers the possibility to predict the temperature field as well as the shape of the solidified weld joint for different operating parameters, with relatively good accuracy and reasonable computational cost. Also, an original approach to simulate the effect of immersing a cold filler wire in the weld pool is presented. The simulation results reveal two important observations. First, the weld pool depth is locally decreased in the presence of filler metal, which is due to the energy absorption by the cold feeding wire from the hot molten pool. In addition, the weld shape, maximum temperature and thermal cycles in the workpiece are relatively well predicted even when a 2D model for the arc plasma region is used. © 2012 Elsevier Ltd. All rights reserved.
Multiple imputation with non-additively related variables: Joint-modeling and approximations.
Kim, Soeun; Belin, Thomas R; Sugar, Catherine A
2016-09-19
This paper investigates multiple imputation methods for regression models with interacting continuous and binary predictors when continuous variable may be missing. Usual implementations for parametric multiple imputation assume a multivariate normal structure for the variables, which is not satisfied for a binary variable nor its interaction with a continuous variable. To accommodate interactions, missing covariates are multiply imputed from conditional distribution in a manner consistent with the joint model. Alternative imputation methods under multivariate normal assumptions are also considered as candidate approximations and evaluated in a simulation study. The results suggest that the joint modeling procedure performs generally well across a wide range of scenarios and so do the approximation methods that incorporate interactions in the model appropriately by stratification. It is critical to include interactions in the imputation model as failure to do so may result in low coverage and bias. We apply the joint modeling approach and approximation methods in the study of childhood trauma with gender × trauma interaction. © The Author(s) 2016.
Quantifying spatial disparities in neonatal mortality using a structured additive regression model.
Directory of Open Access Journals (Sweden)
Lawrence N Kazembe
Full Text Available BACKGROUND: Neonatal mortality contributes a large proportion towards early childhood mortality in developing countries, with considerable geographical variation at small areas within countries. METHODS: A geo-additive logistic regression model is proposed for quantifying small-scale geographical variation in neonatal mortality, and to estimate risk factors of neonatal mortality. Random effects are introduced to capture spatial correlation and heterogeneity. The spatial correlation can be modelled using the Markov random fields (MRF when data is aggregated, while the two dimensional P-splines apply when exact locations are available, whereas the unstructured spatial effects are assigned an independent Gaussian prior. Socio-economic and bio-demographic factors which may affect the risk of neonatal mortality are simultaneously estimated as fixed effects and as nonlinear effects for continuous covariates. The smooth effects of continuous covariates are modelled by second-order random walk priors. Modelling and inference use the empirical Bayesian approach via penalized likelihood technique. The methodology is applied to analyse the likelihood of neonatal deaths, using data from the 2000 Malawi demographic and health survey. The spatial effects are quantified through MRF and two dimensional P-splines priors. RESULTS: Findings indicate that both fixed and spatial effects are associated with neonatal mortality. CONCLUSIONS: Our study, therefore, suggests that the challenge to reduce neonatal mortality goes beyond addressing individual factors, but also require to understanding unmeasured covariates for potential effective interventions.
Guarana Provides Additional Stimulation over Caffeine Alone in the Planarian Model
Moustakas, Dimitrios; Mezzio, Michael; Rodriguez, Branden R.; Constable, Mic Andre; Mulligan, Margaret E.; Voura, Evelyn B.
2015-01-01
The stimulant effect of energy drinks is primarily attributed to the caffeine they contain. Many energy drinks also contain other ingredients that might enhance the tonic effects of these caffeinated beverages. One of these additives is guarana. Guarana is a climbing plant native to the Amazon whose seeds contain approximately four times the amount of caffeine found in coffee beans. The mix of other natural chemicals contained in guarana seeds is thought to heighten the stimulant effects of guarana over caffeine alone. Yet, despite the growing use of guarana as an additive in energy drinks, and a burgeoning market for it as a nutritional supplement, the science examining guarana and how it affects other dietary ingredients is lacking. To appreciate the stimulant effects of guarana and other natural products, a straightforward model to investigate their physiological properties is needed. The planarian provides such a system. The locomotor activity and convulsive response of planarians with substance exposure has been shown to provide an excellent system to measure the effects of drug stimulation, addiction and withdrawal. To gauge the stimulant effects of guarana we studied how it altered the locomotor activity of the planarian species Dugesia tigrina. We report evidence that guarana seeds provide additional stimulation over caffeine alone, and document the changes to this stimulation in the context of both caffeine and glucose. PMID:25880065
Guarana provides additional stimulation over caffeine alone in the planarian model.
Directory of Open Access Journals (Sweden)
Dimitrios Moustakas
Full Text Available The stimulant effect of energy drinks is primarily attributed to the caffeine they contain. Many energy drinks also contain other ingredients that might enhance the tonic effects of these caffeinated beverages. One of these additives is guarana. Guarana is a climbing plant native to the Amazon whose seeds contain approximately four times the amount of caffeine found in coffee beans. The mix of other natural chemicals contained in guarana seeds is thought to heighten the stimulant effects of guarana over caffeine alone. Yet, despite the growing use of guarana as an additive in energy drinks, and a burgeoning market for it as a nutritional supplement, the science examining guarana and how it affects other dietary ingredients is lacking. To appreciate the stimulant effects of guarana and other natural products, a straightforward model to investigate their physiological properties is needed. The planarian provides such a system. The locomotor activity and convulsive response of planarians with substance exposure has been shown to provide an excellent system to measure the effects of drug stimulation, addiction and withdrawal. To gauge the stimulant effects of guarana we studied how it altered the locomotor activity of the planarian species Dugesia tigrina. We report evidence that guarana seeds provide additional stimulation over caffeine alone, and document the changes to this stimulation in the context of both caffeine and glucose.
Bioadhesive agents in addition to oral contrast media - evaluation in an animal model
International Nuclear Information System (INIS)
Conrad, R.; Schneider, G.; Textor, J.; Schild, H.H.; Fimmers, R.
1998-01-01
Purpose: To evaluate the additional effect of bioadhesives in combination with iotrolan and barium as oral contrast media in an animal model. Method: The bioadhesives Noveon, CMC, Tylose and Carbopol 934 were added to iotrolan and barium. The solutions were administered to rabbits by a feeding tube. The animals were investigated by computed tomography (CT) and radiography after 0,5, 4, 12, 24 and in part after 48 hours. Mucosal coating and contrast filling of the bowel were evaluated. Results: Addition of bioadhesives to oral contrast media effected long-term contrast in the small intestine and colon, but no improvement in continuous filling and coating of the gastrointestinal tract was detected. Mucosal coating was seen only in short regions of the caecum and small intestine. In CT the best results for coating were observed with tylose and CMC, in radiography additionally with carbopol and noveon. All contrast medium solutions were well tolerated. Conclusion: The evaluated contrast medium solutions with bioadhesives have shown long-term contrast but no improvement in coating in comparison to conventional oral contrast media. (orig.) [de
Jain, Prateek; Yadav, Chandan; Agarwal, Amit; Chauhan, Yogesh Singh
2017-08-01
We present a surface potential based analytical model for double gate tunnel field effect transistor (DGTFET) for the current, terminal charges, and terminal capacitances. The model accounts for the effect of the mobile charge in the channel and captures the device physics in depletion as well as in the strong inversion regime. The narrowing of the tunnel barrier in the presence of mobile charges in the channel is incorporated via modeling of the inverse decay length, which is constant under channel depletion condition and bias dependent under inversion condition. To capture the ambipolar current behavior in the model, tunneling at the drain junction is also included. The proposed model is validated against TCAD simulation data and it shows close match with the simulation data.
2006-10-01
conditions was stabilized on a large two-dimensional slot Bunsen burner . It was found that the turbulent burning velocity of Bunsen flames depends...burning velocity of Bunsen flames are inadequate because they should include two additional parameters: mean velocity Ū and burner width W. These...corru- gated) flame with well-defined boundary conditions was stabilized on a large two-dimensional slot Bunsen burner . It was found that the turbulent
Directory of Open Access Journals (Sweden)
Wendi Liu
2015-01-01
Full Text Available The aim of the present study is to apply simple ODE models in the area of modeling the spread of emerging infectious diseases and show the importance of model selection in estimating parameters, the basic reproduction number, turning point, and final size. To quantify the plausibility of each model, given the data and the set of four models including Logistic, Gompertz, Rosenzweg, and Richards models, the Bayes factors are calculated and the precise estimates of the best fitted model parameters and key epidemic characteristics have been obtained. In particular, for Ebola the basic reproduction numbers are 1.3522 (95% CI (1.3506, 1.3537, 1.2101 (95% CI (1.2084, 1.2119, 3.0234 (95% CI (2.6063, 3.4881, and 1.9018 (95% CI (1.8565, 1.9478, the turning points are November 7,November 17, October 2, and November 3, 2014, and the final sizes until December 2015 are 25794 (95% CI (25630, 25958, 3916 (95% CI (3865, 3967, 9886 (95% CI (9740, 10031, and 12633 (95% CI (12515, 12750 for West Africa, Guinea, Liberia, and Sierra Leone, respectively. The main results confirm that model selection is crucial in evaluating and predicting the important quantities describing the emerging infectious diseases, and arbitrarily picking a model without any consideration of alternatives is problematic.
2011-01-01
Background Valve dysfunction is a common cardiovascular pathology. Despite significant clinical research, there is little formal study of how valve dysfunction affects overall circulatory dynamics. Validated models would offer the ability to better understand these dynamics and thus optimize diagnosis, as well as surgical and other interventions. Methods A cardiovascular and circulatory system (CVS) model has already been validated in silico, and in several animal model studies. It accounts for valve dynamics using Heaviside functions to simulate a physiologically accurate "open on pressure, close on flow" law. However, it does not consider real-time valve opening dynamics and therefore does not fully capture valve dysfunction, particularly where the dysfunction involves partial closure. This research describes an updated version of this previous closed-loop CVS model that includes the progressive opening of the mitral valve, and is defined over the full cardiac cycle. Results Simulations of the cardiovascular system with healthy mitral valve are performed, and, the global hemodynamic behaviour is studied compared with previously validated results. The error between resulting pressure-volume (PV) loops of already validated CVS model and the new CVS model that includes the progressive opening of the mitral valve is assessed and remains within typical measurement error and variability. Simulations of ischemic mitral insufficiency are also performed. Pressure-Volume loops, transmitral flow evolution and mitral valve aperture area evolution follow reported measurements in shape, amplitude and trends. Conclusions The resulting cardiovascular system model including mitral valve dynamics provides a foundation for clinical validation and the study of valvular dysfunction in vivo. The overall models and results could readily be generalised to other cardiac valves. PMID:21942971
Directory of Open Access Journals (Sweden)
Moonen Marie
2011-09-01
Full Text Available Abstract Background Valve dysfunction is a common cardiovascular pathology. Despite significant clinical research, there is little formal study of how valve dysfunction affects overall circulatory dynamics. Validated models would offer the ability to better understand these dynamics and thus optimize diagnosis, as well as surgical and other interventions. Methods A cardiovascular and circulatory system (CVS model has already been validated in silico, and in several animal model studies. It accounts for valve dynamics using Heaviside functions to simulate a physiologically accurate "open on pressure, close on flow" law. However, it does not consider real-time valve opening dynamics and therefore does not fully capture valve dysfunction, particularly where the dysfunction involves partial closure. This research describes an updated version of this previous closed-loop CVS model that includes the progressive opening of the mitral valve, and is defined over the full cardiac cycle. Results Simulations of the cardiovascular system with healthy mitral valve are performed, and, the global hemodynamic behaviour is studied compared with previously validated results. The error between resulting pressure-volume (PV loops of already validated CVS model and the new CVS model that includes the progressive opening of the mitral valve is assessed and remains within typical measurement error and variability. Simulations of ischemic mitral insufficiency are also performed. Pressure-Volume loops, transmitral flow evolution and mitral valve aperture area evolution follow reported measurements in shape, amplitude and trends. Conclusions The resulting cardiovascular system model including mitral valve dynamics provides a foundation for clinical validation and the study of valvular dysfunction in vivo. The overall models and results could readily be generalised to other cardiac valves.
Jackson, C. E., Jr.
1977-01-01
A sample problem library containing 20 problems covering most facets of Nastran Thermal Analyzer modeling is presented. Areas discussed include radiative interchange, arbitrary nonlinear loads, transient temperature and steady-state structural plots, temperature-dependent conductivities, simulated multi-layer insulation, and constraint techniques. The use of the major control options and important DMAP alters is demonstrated.
The biobehavioral family model: testing social support as an additional exogenous variable.
Woods, Sarah B; Priest, Jacob B; Roush, Tara
2014-12-01
This study tests the inclusion of social support as a distinct exogenous variable in the Biobehavioral Family Model (BBFM). The BBFM is a biopsychosocial approach to health that proposes that biobehavioral reactivity (anxiety and depression) mediates the relationship between family emotional climate and disease activity. Data for this study included married, English-speaking adult participants (n = 1,321; 55% female; M age = 45.2 years) from the National Comorbidity Survey Replication, a nationally representative epidemiological study of the frequency of mental disorders in the United States. Participants reported their demographics, marital functioning, social support from friends and relatives, anxiety and depression (biobehavioral reactivity), number of chronic health conditions, and number of prescription medications. Confirmatory factor analyses supported the items used in the measures of negative marital interactions, social support, and biobehavioral reactivity, as well as the use of negative marital interactions, friends' social support, and relatives' social support as distinct factors in the model. Structural equation modeling indicated a good fit of the data to the hypothesized model (χ(2) = 846.04, p = .000, SRMR = .039, CFI = .924, TLI = .914, RMSEA = .043). Negative marital interactions predicted biobehavioral reactivity (β = .38, p social support, inversely (β = -.16, p social support as a predicting factor in the model. © 2014 Family Process Institute.
Cich, Matthew J.; Guillaume, Alexandre; Drouin, Brian; Benner, D. Chris
2017-06-01
Multispectrum analysis can be a challenge for a variety of reasons. It can be computationally intensive to fit a proper line shape model especially for high resolution experimental data. Band-wide analyses including many transitions along with interactions, across many pressures and temperatures are essential to accurately model, for example, atmospherically relevant systems. Labfit is a fast multispectrum analysis program originally developed by D. Chris Benner with a text-based interface. More recently at JPL a graphical user interface was developed with the goal of increasing the ease of use but also the number of potential users. The HTP lineshape model has been added to Labfit keeping it up-to-date with community standards. Recent analyses using labfit will be shown to demonstrate its ability to competently handle large experimental datasets, including high order lineshape effects, that are otherwise unmanageable.
Xu, Mao; Li, Xiaoxi; Wang, Jun; Guo, Xiangyang
2014-01-01
Airway management is crucial in clinical anesthesia. Many complications associated with airway management result from unexpected difficult airway, but predicting a difficult airway is a major challenge. We investigated the efficacy of a new combined model including radiological indicators to predict difficult airway in patients undergoing surgery for cervical spondylosis, a population with a high incidence of difficult airway. We randomly enrolled 303 patients scheduled for elective surgery for cervical spondylosis at Peking University Third Hospital between August 2012 and March 2013. Preoperatively, patients were evaluated for difficult airway according to a clinical index and parameters on lateral cervical radiographs and magnetic resonance images. Difficult airway was defined as Cormack-Lehane grades III-IV. Logistic regression was used to identify a combined (clinical and radiological) model for difficult airway. A receiver operating characteristic (ROC) curve was used to describe the effectiveness of prediction. We identified three clinical predictive factors using the ROC curve: mouth opening, sternomental distance, and neck mobility. We created a clinical model using three factors: gender, age, and mouth opening, with odds ratios (OR) of 0.370, 1.034, and 0.358, respectively. Using the clinical and radiological parameters, we formulated a combined model with five risk factors: gender, mouth opening, atlanto-occipital gap, the angle from the second to sixth cervical vertebraes in the neutral position, and the angle difference of d (the angle between the laryngeal axis and the epiglottic axis) from the neutral position to extension (OR: 0.107, 0.355, 0.846, 1.057, and 0.952, respectively). The sensitivity and specificity of the combined model were 80.0% and 65.7%, respectively, and the ROC curve confirmed that the combined model was better than any single clinical predictor and the clinical model. The efficacy of the combined model including both clinical and
Esposito, Gabriele; van Bavel, René; Baranowski, Tom; Duch-Brown, Néstor
2016-08-01
The theory of planned behavior (TPB) has received its fair share of criticism lately, including calls for it to retire. We contribute to improving the theory by testing extensions such as the model of goal-directed behavior (MGDB, which adds desire and anticipated positive and negative emotions) applied to physical activity (PA) intention. We also test the inclusion of a descriptive norms construct as an addition to the subjective norms construct, also applied to PA, resulting in two additional models: TPB including descriptive norms (TPB + DN) and MGDB including descriptive norms (MGDB + DN). The study is based on an online survey of 400 young adult Internet users, previously enrolled in a subject pool. Confirmatory factor analysis (CFA) showed that TPB and TPB + DN were not fit for purpose, while MGDB and MGDB + DN were. Structural equation modelling (SEM) conducted on MGDB and MGDB + DN showed that the inclusion of descriptive norms took over the significance of injunctive norms, and increased the model's account of total variance in intention to be physically active. © The Author(s) 2016.
Computational and Mathematical Model with Phase Change and Metal Addition Applied to GMAW
Directory of Open Access Journals (Sweden)
Alfredo dos Santos Maia Neto
2017-01-01
Full Text Available This work presents a 3D computational/mathematical model to solve the heat diffusion equation with phase change, considering metal addition, complex geometry, and thermal properties varying with temperature. The finite volume method was used and the computational code was implemented in C++, using a Borland compiler. Experimental tests considering workpieces of stainless steel AISI 304 were carried out for validation of the thermal model. Inverse techniques based on Golden Section method were used to estimate the heat transfer rate to the workpieces. Experimental temperatures were measured using thermocouples type J—in a total of 07 (seven—all connected to the welded workpiece and the Agilent 34970A data logger. The workpieces were chamfered in a 45° V-groove in which liquid metal was added on only one weld pass. An innovation presented in this work when compared to other works in scientific literature was the geometry of the weld pool. The good relation between experimental and simulated data confirmed the quality and robustness of the thermal model proposed in this work.
Modeling additional solar constraints on a human being inside a room
Energy Technology Data Exchange (ETDEWEB)
Thellier, Francoise; Monchoux, Francoise; Bonnis-Sassi, Michel; Lartigue, Berengere [Laboratoire Physique de l' Homme Appliquee a Son Environnement (PHASE), Universite Paul Sabatier, 118, route de Narbonne, F-31062 Toulouse Cedex 9 (France)
2008-04-15
Sun fluxes induce additional heterogeneous thermal constraints in buildings and may also lead to discomfort for the inhabitant. To calculate the local thermal sensation of a human being totally or partially situated in the sunlight, the solar radiation inside a room and its detailed distribution on parts of the human body are modeled. The present study focuses on the solar gains part of a complete modeling tool simulating an occupied building. The irradiated areas are calculated with a ray tracing method taking shadow into account. Solar fluxes are computed. Fluxes can be absorbed by each surface or reflected. The reflected fluxes are then absorbed at the next impact. A multi-node thermoregulation model (MARCL) represents the thermal behavior of the human body and all its heat exchanges with the environment. The thermal transient simulation of the whole occupied building is performed in TRNSYS simulation software. In the case presented here, the results show that, when a person is inside the building, the skin and clothing temperatures of the irradiated segments increase more or less depending on the segments but the global thermal equilibrium of the body is maintained thanks to strong physiological reactions. (author)
International Nuclear Information System (INIS)
Serinaldi, Francesco
2011-01-01
In the context of the liberalized and deregulated electricity markets, price forecasting has become increasingly important for energy company's plans and market strategies. Within the class of the time series models that are used to perform price forecasting, the subclasses of methods based on stochastic time series and causal models commonly provide point forecasts, whereas the corresponding uncertainty is quantified by approximate or simulation-based confidence intervals. Aiming to improve the uncertainty assessment, this study introduces the Generalized Additive Models for Location, Scale and Shape (GAMLSS) to model the dynamically varying distribution of prices. The GAMLSS allow fitting a variety of distributions whose parameters change according to covariates via a number of linear and nonlinear relationships. In this way, price periodicities, trends and abrupt changes characterizing both the position parameter (linked to the expected value of prices), and the scale and shape parameters (related to price volatility, skewness, and kurtosis) can be explicitly incorporated in the model setup. Relying on the past behavior of the prices and exogenous variables, the GAMLSS enable the short-term (one-day ahead) forecast of the entire distribution of prices. The approach was tested on two datasets from the widely studied California Power Exchange (CalPX) market, and the less mature Italian Power Exchange (IPEX). CalPX data allow comparing the GAMLSS forecasting performance with published results obtained by different models. The study points out that the GAMLSS framework can be a flexible alternative to several linear and nonlinear stochastic models. - Research Highlights: ► Generalized Additive Models for Location, Scale and Shape (GAMLSS) are used to model electricity prices' time series. ► GAMLSS provide the entire dynamicaly varying distribution function of prices resorting to a suitable set of covariates that drive the instantaneous values of the parameters
Directory of Open Access Journals (Sweden)
Pancrazio Bertaccini
2012-01-01
Full Text Available Vehicular traffic plays an important role in atmospheric pollution and can be used as one of the key predictors in air-quality forecasting models. The models that can account for the role of traffic are especially valuable in urban areas, where high pollutant concentrations are often observed during particular times of day (rush hour and year (winter. In this paper, we develop a generalized additive models approach to analyze the behavior of concentrations of nitrogen dioxide (NO2, and particulate matter (PM10, collected at the environmental monitoring stations distributed throughout the city of Turin, Italy, from December 2003 to April 2005. We describe nonlinear relationships between predictors and pollutants, that are adjusted for unobserved time-varying confounders. We examine several functional forms for the traffic variable and find that a simple form can often provide adequate modeling power. Our analysis shows that there is a saturation effect of traffic on NO2, while such saturation is less evident in models linking traffic to PM10 behavior, having adjusted for meteorological covariates. Moreover, we consider the proposed models separately by seasons and highlight similarities and differences in the predictors’ partial effects. Finally, we show how forecasting can help in evaluating traffic regulation policies.
International Nuclear Information System (INIS)
Sartori, E.; Schuler, W.
1992-01-01
Software and data for nuclear energy applications are acquired, tested and distributed by several information centres; in particular, relevant computer codes are distributed internationally by the OECD/NEA Data Bank (France) and by ESTSC and EPIC/RSIC (United States). This activity is coordinated among the centres and is extended outside the OECD area through an arrangement with the IAEA. This article proposes more specifically a scheme for acquiring, storing and distributing atmospheric tracer experiment data (ATE) required for verification of atmospheric dispersion models especially the most advanced ones including topographic effects and specific to the local and meso-scale. These well documented data sets will form a valuable complement to the set of atmospheric dispersion computer codes distributed internationally. Modellers will be able to gain confidence in the predictive power of their models or to verify their modelling skills. (au)
International Nuclear Information System (INIS)
Marsolat, F; De Marzi, L; Mazal, A; Pouzoulet, F
2016-01-01
In proton therapy, the relative biological effectiveness (RBE) depends on various types of parameters such as linear energy transfer (LET). An analytical model for LET calculation exists (Wilkens’ model), but secondary particles are not included in this model. In the present study, we propose a correction factor, L sec , for Wilkens’ model in order to take into account the LET contributions of certain secondary particles. This study includes secondary protons and deuterons, since the effects of these two types of particles can be described by the same RBE-LET relationship. L sec was evaluated by Monte Carlo (MC) simulations using the GATE/GEANT4 platform and was defined by the ratio of the LET d distributions of all protons and deuterons and only primary protons. This method was applied to the innovative Pencil Beam Scanning (PBS) delivery systems and L sec was evaluated along the beam axis. This correction factor indicates the high contribution of secondary particles in the entrance region, with L sec values higher than 1.6 for a 220 MeV clinical pencil beam. MC simulations showed the impact of pencil beam parameters, such as mean initial energy, spot size, and depth in water, on L sec . The variation of L sec with these different parameters was integrated in a polynomial function of the L sec factor in order to obtain a model universally applicable to all PBS delivery systems. The validity of this correction factor applied to Wilkens’ model was verified along the beam axis of various pencil beams in comparison with MC simulations. A good agreement was obtained between the corrected analytical model and the MC calculations, with mean-LET deviations along the beam axis less than 0.05 keV μm −1 . These results demonstrate the efficacy of our new correction of the existing LET model in order to take into account secondary protons and deuterons along the pencil beam axis. (paper)
Effect of Various Food Additives on the Levels of 4(5)-Methylimidazole in a Soy Sauce Model System.
Lee, Sumin; Lee, Jung-Bin; Hwang, Junho; Lee, Kwang-Geun
2016-01-01
In this study, the effect of food additives such as iron sulfate, magnesium sulfate, zinc sulfate, citric acid, gallic acid, and ascorbic acid on the reduction of 4(5)-methylimidazole (4(5)-MI) was investigated using a soy sauce model system. The concentration of 4(5)-MI in the soy sauce model system with 5% (v/v) caramel colorant III was 1404.13 μg/L. The reduction rate of 4(5)-MI level with the addition of 0.1M additives followed in order: iron sulfate (81%) > zinc sulfate (61%) > citric acid (40%) > gallic acid (38%) > ascorbic acid (24%) > magnesium sulfate (13%). Correlations between 4(5)-MI levels and the physicochemical properties of soy sauce, including the amount of caramel colorant, pH value, and color differences, were determined. The highest correlations were found between 4(5)-MI levels and the amount of caramel colorant and pH values (r(2) = 0.9712, r(2) = 0.9378). The concentration of caramel colorants in 8 commercial soy sauces were estimated, and ranged from 0.01 to 1.34% (v/v). © 2015 Institute of Food Technologists®
Directory of Open Access Journals (Sweden)
Yong Zhao
1997-01-01
Full Text Available A nonlinear three dimensional (3D single rack model and a nonlinear 3D whole pool multi-rack model are developed for the spent fuel storage racks of a nuclear power plant (NPP to determine impacts and frictional motion responses when subjected to 3D excitations from the supporting building floor. The submerged free standing rack system and surrounding water are coupled due to hydrodynamic fluid-structure interaction (FSI using potential theory. The models developed have features that allow consideration of geometric and material nonlinearities including (1 the impacts of fuel assemblies to rack cells, a rack to adjacent racks or pool walls, and rack support legs to the pool floor; (2 the hydrodynamic coupling of fuel assemblies with their storing racks, and of a rack with adjacent racks, pool walls, and the pool floor; and (3 the dynamic motion behavior of rocking, twisting, and frictional sliding of rack modules. Using these models 3D nonlinear time history dynamic analyses are performed per the U.S. Nuclear Regulatory Commission (USNRC criteria. Since few such modeling, analyses, and results using both the 3D single and whole pool multiple rack models are available in the literature, this paper emphasizes description of modeling and analysis techniques using the SOLVIA general purpose nonlinear finite element code. Typical response results with different Coulomb friction coefficients are presented and discussed.
Martínez-López, Brais; Gontard, Nathalie; Peyron, Stéphane
2018-03-01
A reliable prediction of migration levels of plastic additives into food requires a robust estimation of diffusivity. Predictive modelling of diffusivity as recommended by the EU commission is carried out using a semi-empirical equation that relies on two polymer-dependent parameters. These parameters were determined for the polymers most used by packaging industry (LLDPE, HDPE, PP, PET, PS, HIPS) from the diffusivity data available at that time. In the specific case of general purpose polystyrene, the diffusivity data published since then shows that the use of the equation with the original parameters results in systematic underestimation of diffusivity. The goal of this study was therefore, to propose an update of the aforementioned parameters for PS on the basis of up to date diffusivity data, so the equation can be used for a reasoned overestimation of diffusivity.
Additive Manufacturing of PLA and CF/PLA Binding Layer Specimens via Fused Deposition Modeling
Li, Yuhang; Gao, Shiyou; Dong, Rongmei; Ding, Xuebing; Duan, Xiaoxi
2018-02-01
As one of the most popular additive manufacturing techniques, fused deposition modeling (FDM) is successfully applied in aerospace, automotive, architecture, and other fields to fabricate thermoplastic parts. Unfortunately, as a result of the limited nature of the mechanical properties and mass in raw materials, there is a pressing need to improve mechanical properties and reduce weight for FDM parts. Therefore, this paper presents an experiment of a special polylactic acid (PLA) and carbon fiber (CF)/PLA-laminated experimental specimen fabricated using the FDM process. The mechanical properties and mass analysis of the new composites for the PLA and CF/PLA binding layer specimen are investigated experimentally. Through the experimental analysis, one can conclude that the mass of laminated specimen is lighter than the CF/PLA specimen, and the tensile and flexural mechanical properties are higher than the pure PLA specimen.
Additive Manufacturing of PLA and CF/PLA Binding Layer Specimens via Fused Deposition Modeling
Li, Yuhang; Gao, Shiyou; Dong, Rongmei; Ding, Xuebing; Duan, Xiaoxi
2018-01-01
As one of the most popular additive manufacturing techniques, fused deposition modeling (FDM) is successfully applied in aerospace, automotive, architecture, and other fields to fabricate thermoplastic parts. Unfortunately, as a result of the limited nature of the mechanical properties and mass in raw materials, there is a pressing need to improve mechanical properties and reduce weight for FDM parts. Therefore, this paper presents an experiment of a special polylactic acid (PLA) and carbon fiber (CF)/PLA-laminated experimental specimen fabricated using the FDM process. The mechanical properties and mass analysis of the new composites for the PLA and CF/PLA binding layer specimen are investigated experimentally. Through the experimental analysis, one can conclude that the mass of laminated specimen is lighter than the CF/PLA specimen, and the tensile and flexural mechanical properties are higher than the pure PLA specimen.
Kantzos, C. A.; Cunningham, R. W.; Tari, V.; Rollett, A. D.
2017-12-01
Characterizing complex surface topologies is necessary to understand stress concentrations created by rough surfaces, particularly those made via laser power-bed additive manufacturing (AM). Synchrotron-based X-ray microtomography (μ XCT ) of AM surfaces was shown to provide high resolution detail of surface features and near-surface porosity. Using the CT reconstructions to instantiate a micromechanical model indicated that surface notches and near-surface porosity both act as stress concentrators, while adhered powder carried little to no load. Differences in powder size distribution had no direct effect on the relevant surface features, nor on stress concentrations. Conventional measurements of surface roughness, which are highly influenced by adhered powder, are therefore unlikely to contain the information relevant to damage accumulation and crack initiation.
Reinnervated Split-Muscle Technique for Creating Additional Myoelectric Sites in an Animal Model.
Deslivia, Maria Florencia; Lee, Hyun-Joo; Zulkarnain, Rizki Fajar; Zhu, Bin; Adikrishna, Arnold; Jeon, In-Ho; Kim, Keehoon
2016-12-01
This study proposes a novel reinnervated split-muscle operation to create additional myoelectric sites as sources of command signals of myoelectric prostheses for enhanced dexterous hand-to-wrist motions. The aim of this study was to investigate the postprocedure electromyographic properties of the muscles as distinct myoelectric sites in a rat model. The reinnervated split-muscle group (n = 6) had the gastrocnemius muscle separated along its longitudinal axis and nerves transferred to each new muscle (peroneal nerve to lateral muscle head and tibial to medial one); the non-split-muscle group (n = 6) only had nerve transfers with its muscle intact. Functional testing was conducted after 10 weeks. The main parameter is the difference in mean electromyographic amplitude between the new muscles, with greater values indicating better separability. After the reinnervated split-muscle procedure, there is a significant increase of the average ratio between two muscles compared with the control group, from 0.44 (range, 0.02 to 0.86) to 0.77 (range, 0.35 to 0.98) (p = 0.011). In addition, compared with the non-split muscle group, nerve transfer in the split-muscle group is more successful in reaching its intended target muscle. A reinnervated split-muscle procedure could be beneficial for acquiring a more precise and discrete command signal in upper limb amputees, thus enabling the creation of more dexterous prosthetic arm.
Modelling and Design of HF RFID Passive Transponders with Additional Energy Harvester
Directory of Open Access Journals (Sweden)
Piotr Jankowski-Mihułowicz
2013-01-01
Full Text Available The huge progress in electronics technology and RFID technique gives the opportunity to implement additional features in transponders. It should be noted that either passive or semipassive transponders are supplied with energy that is derived from the electromagnetic field generated by the read/write device and its antenna. This power source is used to conduct radio-communication process and excess energy could be used to power the extra electronic circuits, but the problem is to determine the additional power load impact on the RFID system proper operation and size of interrogation zone. The ability to power the supplementary electronic blocks applied in the HF passive transponders is discussed in detail this paper. The simulation model and test samples with a harvester that recovers energy from the electromagnetic field of read/write device and its antenna have been developed in order to conduct investigations. The harvested energy has been utilized to supply a microprocessor acquisition block for LTCC pressure sensor developed in research previously described by authors.
Aggregation of gluten proteins in model dough after fibre polysaccharide addition.
Nawrocka, Agnieszka; Szymańska-Chargot, Monika; Miś, Antoni; Wilczewska, Agnieszka Z; Markiewicz, Karolina H
2017-09-15
FT-Raman spectroscopy, thermogravimetry and differential scanning calorimetry were used to study changes in structure of gluten proteins and their thermal properties influenced by four dietary fibre polysaccharides (microcrystalline cellulose, inulin, apple pectin and citrus pectin) during development of a model dough. The flour reconstituted from wheat starch and wheat gluten was mixed with the polysaccharides in five concentrations: 3%, 6%, 9%, 12% and 18%. The obtained results showed that all polysaccharides induced similar changes in secondary structure of gluten proteins concerning formation of aggregates (1604cm -1 ), H-bonded parallel- and antiparallel-β-sheets (1690cm -1 ) and H-bonded β-turns (1664cm -1 ). These changes concerned mainly glutenins since β-structures are characteristic for them. The observed structural changes confirmed hypothesis about partial dehydration of gluten network after polysaccharides addition. The gluten aggregation and dehydration processes were also reflected in the DSC results, while the TGA ones showed that gluten network remained thermally stable after polysaccharides addition. Copyright © 2017 Elsevier Ltd. All rights reserved.
Chirombo, James; Lowe, Rachel; Kazembe, Lawrence
2014-01-01
Background After years of implementing Roll Back Malaria (RBM) interventions, the changing landscape of malaria in terms of risk factors and spatial pattern has not been fully investigated. This paper uses the 2010 malaria indicator survey data to investigate if known malaria risk factors remain relevant after many years of interventions. Methods We adopted a structured additive logistic regression model that allowed for spatial correlation, to more realistically estimate malaria risk factors. Our model included child and household level covariates, as well as climatic and environmental factors. Continuous variables were modelled by assuming second order random walk priors, while spatial correlation was specified as a Markov random field prior, with fixed effects assigned diffuse priors. Inference was fully Bayesian resulting in an under five malaria risk map for Malawi. Results Malaria risk increased with increasing age of the child. With respect to socio-economic factors, the greater the household wealth, the lower the malaria prevalence. A general decline in malaria risk was observed as altitude increased. Minimum temperatures and average total rainfall in the three months preceding the survey did not show a strong association with disease risk. Conclusions The structured additive regression model offered a flexible extension to standard regression models by enabling simultaneous modelling of possible nonlinear effects of continuous covariates, spatial correlation and heterogeneity, while estimating usual fixed effects of categorical and continuous observed variables. Our results confirmed that malaria epidemiology is a complex interaction of biotic and abiotic factors, both at the individual, household and community level and that risk factors are still relevant many years after extensive implementation of RBM activities. PMID:24991915
Glynn, Robert J; Colditz, Graham A; Tamimi, Rulla M; Chen, Wendy Y; Hankinson, Susan E; Willett, Walter W; Rosner, Bernard
2017-08-01
A breast cancer risk prediction rule previously developed by Rosner and Colditz has reasonable predictive ability. We developed a re-fitted version of this model, based on more than twice as many cases now including women up to age 85, and further extended it to a model that distinguished risk factor prediction of tumors with different estrogen/progesterone receptor status. We compared the calibration and discriminatory ability of the original, the re-fitted, and the type-specific models. Evaluation used data from the Nurses' Health Study during the period 1980-2008, when 4384 incident invasive breast cancers occurred over 1.5 million person-years. Model development used two-thirds of study subjects and validation used one-third. Predicted risks in the validation sample from the original and re-fitted models were highly correlated (ρ = 0.93), but several parameters, notably those related to use of menopausal hormone therapy and age, had different estimates. The re-fitted model was well-calibrated and had an overall C-statistic of 0.65. The extended, type-specific model identified several risk factors with varying associations with occurrence of tumors of different receptor status. However, this extended model relative to the prediction of any breast cancer did not meaningfully reclassify women who developed breast cancer to higher risk categories, nor women remaining cancer free to lower risk categories. The re-fitted Rosner-Colditz model has applicability to risk prediction in women up to age 85, and its discrimination is not improved by consideration of varying associations across tumor subtypes.
Jamshidi, Kambiz; Salehi, Jawad A.
2005-05-01
This paper describes a study of the performance of various configurations for placing multiple optical amplifiers in a typical coherent ultrashort light pulse code-division multiple access (CULP-CDMA) communication system using the additive noise model. For this study, a comprehensive performance analysis was developed that takes into account multiple-access noise, noise due to optical amplifiers, and thermal noise using the saddle-point approximation technique. Prior to obtaining the overall system performance, the input/output statistical models for different elements of the system such as encoders/decoders,star coupler, and optical amplifiers were obtained. Performance comparisons between an ideal and lossless quantum-limited case and a typical CULP-CDMA with various losses exhibit more than 30 dB more power requirement to obtain the same bit-error rate (BER). Considering the saturation effect of optical amplifiers, this paper discusses an algorithm for amplifiers' gain setting in various stages of the network in order to overcome the nonlinear effects on signal modulation in optical amplifiers. Finally, using this algorithm,various configurations of multiple optical amplifiers in CULP-CDMA are discussed and the rules for the required optimum number of amplifiers are shown with their corresponding optimum locations to be implemented along the CULP-CDMA system.
Generalized additive models reveal the intrinsic complexity of wood formation dynamics.
Cuny, Henri E; Rathgeber, Cyrille B K; Kiessé, Tristan Senga; Hartmann, Felix P; Barbeito, Ignacio; Fournier, Meriem
2013-04-01
The intra-annual dynamics of wood formation, which involves the passage of newly produced cells through three successive differentiation phases (division, enlargement, and wall thickening) to reach the final functional mature state, has traditionally been described in conifers as three delayed bell-shaped curves followed by an S-shaped curve. Here the classical view represented by the 'Gompertz function (GF) approach' was challenged using two novel approaches based on parametric generalized linear models (GLMs) and 'data-driven' generalized additive models (GAMs). These three approaches (GFs, GLMs, and GAMs) were used to describe seasonal changes in cell numbers in each of the xylem differentiation phases and to calculate the timing of cell development in three conifer species [Picea abies (L.), Pinus sylvestris L., and Abies alba Mill.]. GAMs outperformed GFs and GLMs in describing intra-annual wood formation dynamics, showing two left-skewed bell-shaped curves for division and enlargement, and a right-skewed bimodal curve for thickening. Cell residence times progressively decreased through the season for enlargement, whilst increasing late but rapidly for thickening. These patterns match changes in cell anatomical features within a tree ring, which allows the separation of earlywood and latewood into two distinct cell populations. A novel statistical approach is presented which renews our understanding of xylogenesis, a dynamic biological process in which the rate of cell production interplays with cell residence times in each developmental phase to create complex seasonal patterns.
Dong, Wenming; Wan, Jiamin
2014-06-17
Many aquifers contaminated by U(VI)-containing acidic plumes are composed predominantly of quartz-sand sediments. The F-Area of the Savannah River Site (SRS) in South Carolina (USA) is an example. To predict U(VI) mobility and natural attenuation, we conducted U(VI) adsorption experiments using the F-Area plume sediments and reference quartz, goethite, and kaolinite. The sediments are composed of ∼96% quartz-sand and 3-4% fine fractions of kaolinite and goethite. We developed a new humic acid adsorption method for determining the relative surface area abundances of goethite and kaolinite in the fine fractions. This method is expected to be applicable to many other binary mineral pairs, and allows successful application of the component additivity (CA) approach based surface complexation modeling (SCM) at the SRS F-Area and other similar aquifers. Our experimental results indicate that quartz has stronger U(VI) adsorption ability per unit surface area than goethite and kaolinite at pH ≤ 4.0. Our modeling results indicate that the binary (goethite/kaolinite) CA-SCM under-predicts U(VI) adsorption to the quartz-sand dominated sediments at pH ≤ 4.0. The new ternary (quartz/goethite/kaolinite) CA-SCM provides excellent predictions. The contributions of quartz-sand, kaolinite, and goethite to U(VI) adsorption and the potential influences of dissolved Al, Si, and Fe are also discussed.
Directory of Open Access Journals (Sweden)
Andreas Diomedes Soteriades
2015-10-01
Full Text Available Applying holistic indicators to assess dairy farm efficiency is essential for sustainable milk production. Data Envelopment Analysis (DEA has been instrumental for the calculation of such indicators. However, ‘additive’ DEA models have been rarely used in dairy research. This study presented an additive model known as slacks-based measure (SBM of efficiency and its advantages over DEA models used in most past dairy studies. First, SBM incorporates undesirable outputs as actual outputs of the production process. Second, it identifies the main production factors causing inefficiency. Third, these factors can be ‘priced’ to estimate the cost of inefficiency. The value of SBM for efficiency analyses was demonstrated with a comparison of four contrasting dairy management systems in terms of technical and environmental efficiency. These systems were part of a multiple-year breeding and feeding systems experiment (two genetic lines: select vs. control; and two feeding strategies: high forage vs. low forage, where the latter involved a higher proportion of concentrated feeds where detailed data were collected to strict protocols. The select genetic herd was more technically and environmentally efficient than the control herd, regardless of feeding strategy. However, the efficiency performance of the select herd was more volatile from year to year than that of the control herd. Overall, technical and environmental efficiency were strongly and positively correlated, suggesting that when technically efficient, the four systems were also efficient in terms of undesirable output reduction. Detailed data such as those used in this study are increasingly becoming available for commercial herds through precision farming. Therefore, the methods presented in this study are growing in importance.
International Nuclear Information System (INIS)
Ghavanloo, Esmaeal; Fazelzadeh, S. Ahmad; Rafii-Tabar, Hashem
2014-01-01
Nonlocal and surface effects significantly influence the mechanical response of nanomaterials and nanostructures. In this work, the breathing mode of a circular nanowire is studied on the basis of the nonlocal continuum model. Both the surface elastic properties and surface inertia effect are included. Nanowires can be modeled as long cylindrical solid objects. The classical model is reformulated using the nonlocal differential constitutive relations of Eringen and Gurtin–Murdoch surface continuum elasticity formalism. A new frequency equation for the breathing mode of nanowires, including small scale effect, surface stress and surface inertia is presented by employing the Bessel functions. Numerical results are computed, and are compared to confirm the validity and accuracy of the proposed method. Furthermore, the model is used to elucidate the effect of nonlocal parameter, the surface stress, the surface inertia and the nanowire orientation on the breathing mode of several types of nanowires with size ranging from 0.5 to 4 nm. Our results reveal that the combined surface and small scale effects are significant for nanowires with diameter smaller than 4 nm.
Ghavanloo, Esmaeal; Fazelzadeh, S. Ahmad; Rafii-Tabar, Hashem
2014-05-01
Nonlocal and surface effects significantly influence the mechanical response of nanomaterials and nanostructures. In this work, the breathing mode of a circular nanowire is studied on the basis of the nonlocal continuum model. Both the surface elastic properties and surface inertia effect are included. Nanowires can be modeled as long cylindrical solid objects. The classical model is reformulated using the nonlocal differential constitutive relations of Eringen and Gurtin-Murdoch surface continuum elasticity formalism. A new frequency equation for the breathing mode of nanowires, including small scale effect, surface stress and surface inertia is presented by employing the Bessel functions. Numerical results are computed, and are compared to confirm the validity and accuracy of the proposed method. Furthermore, the model is used to elucidate the effect of nonlocal parameter, the surface stress, the surface inertia and the nanowire orientation on the breathing mode of several types of nanowires with size ranging from 0.5 to 4 nm. Our results reveal that the combined surface and small scale effects are significant for nanowires with diameter smaller than 4 nm.
Sakowski, Barbara; Edwards, Daryl; Dickens, Kevin
2014-01-01
Modeling droplet condensation via CFD codes can be very tedious, time consuming, and inaccurate. CFD codes may be tedious and time consuming in terms of using Lagrangian particle tracking approaches or particle sizing bins. Also since many codes ignore conduction through the droplet and or the degradating effect of heat and mass transfer if noncondensible species are present, the solutions may be inaccurate. The modeling of a condensing spray chamber where the significant size of the water droplets and the time and distance these droplets take to fall, can make the effect of droplet conduction a physical factor that needs to be considered in the model. Furthermore the presence of even a relatively small amount of noncondensible has been shown to reduce the amount of condensation [Ref 1]. It is desirable then to create a modeling tool that addresses these issues. The path taken to create such a tool is illustrated. The application of this tool and subsequent results are based on the spray chamber in the Spacecraft Propulsion Research Facility (B2) located at NASA's Plum Brook Station that tested an RL-10 engine. The platform upon which the condensation physics is modeled is SINDAFLUINT. The use of SINDAFLUINT enables the ability to model various aspects of the entire testing facility, including the rocket exhaust duct flow and heat transfer to the exhaust duct wall. The ejector pumping system of the spray chamber is also easily implemented via SINDAFLUINT. The goal is to create a transient one dimensional flow and heat transfer model beginning at the rocket, continuing through the condensing spray chamber, and finally ending with the ejector pumping system. However the model of the condensing spray chamber may be run independently of the rocket and ejector systems detail, with only appropriate mass flow boundary conditions placed at the entrance and exit of the condensing spray chamber model. The model of the condensing spray chamber takes into account droplet
Zheng, Han; Kimber, Alan; Goodwin, Victoria A; Pickering, Ruth M
2018-01-01
A common design for a falls prevention trial is to assess falling at baseline, randomize participants into an intervention or control group, and ask them to record the number of falls they experience during a follow-up period of time. This paper addresses how best to include the baseline count in the analysis of the follow-up count of falls in negative binomial (NB) regression. We examine the performance of various approaches in simulated datasets where both counts are generated from a mixed Poisson distribution with shared random subject effect. Including the baseline count after log-transformation as a regressor in NB regression (NB-logged) or as an offset (NB-offset) resulted in greater power than including the untransformed baseline count (NB-unlogged). Cook and Wei's conditional negative binomial (CNB) model replicates the underlying process generating the data. In our motivating dataset, a statistically significant intervention effect resulted from the NB-logged, NB-offset, and CNB models, but not from NB-unlogged, and large, outlying baseline counts were overly influential in NB-unlogged but not in NB-logged. We conclude that there is little to lose by including the log-transformed baseline count in standard NB regression compared to CNB for moderate to larger sized datasets. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Watt, James; Webster, Thomas F; Schlezinger, Jennifer J
2016-09-01
The vast array of potential environmental toxicant combinations necessitates the development of efficient strategies for predicting toxic effects of mixtures. Current practices emphasize the use of concentration addition to predict joint effects of endocrine disrupting chemicals in coexposures. Generalized concentration addition (GCA) is one such method for predicting joint effects of coexposures to chemicals and has the advantage of allowing for mixture components to have differences in efficacy (ie, dose-response curve maxima). Peroxisome proliferator-activated receptor gamma (PPARγ) is a nuclear receptor that plays a central role in regulating lipid homeostasis, insulin sensitivity, and bone quality and is the target of an increasing number of environmental toxicants. Here, we tested the applicability of GCA in predicting mixture effects of therapeutic (rosiglitazone and nonthiazolidinedione partial agonist) and environmental PPARγ ligands (phthalate compounds identified using EPA's ToxCast database). Transcriptional activation of human PPARγ1 by individual compounds and mixtures was assessed using a peroxisome proliferator response element-driven luciferase reporter. Using individual dose-response parameters and GCA, we generated predictions of PPARγ activation by the mixtures, and we compared these predictions with the empirical data. At high concentrations, GCA provided a better estimation of the experimental response compared with 3 alternative models: toxic equivalency factor, effect summation and independent action. These alternatives provided reasonable fits to the data at low concentrations in this system. These experiments support the implementation of GCA in mixtures analysis with endocrine disrupting compounds and establish PPARγ as an important target for further studies of chemical mixtures. © The Author 2016. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e
Directory of Open Access Journals (Sweden)
Peter A Appleby
Full Text Available Recently, we presented a study of adult neurogenesis in a simplified hippocampal memory model. The network was required to encode and decode memory patterns despite changing input statistics. We showed that additive neurogenesis was a more effective adaptation strategy compared to neuronal turnover and conventional synaptic plasticity as it allowed the network to respond to changes in the input statistics while preserving representations of earlier environments. Here we extend our model to include realistic, spatially driven input firing patterns in the form of grid cells in the entorhinal cortex. We compare network performance across a sequence of spatial environments using three distinct adaptation strategies: conventional synaptic plasticity, where the network is of fixed size but the connectivity is plastic; neuronal turnover, where the network is of fixed size but units in the network may die and be replaced; and additive neurogenesis, where the network starts out with fewer initial units but grows over time. We confirm that additive neurogenesis is a superior adaptation strategy when using realistic, spatially structured input patterns. We then show that a more biologically plausible neurogenesis rule that incorporates cell death and enhanced plasticity of new granule cells has an overall performance significantly better than any one of the three individual strategies operating alone. This adaptation rule can be tailored to maximise performance of the network when operating as either a short- or long-term memory store. We also examine the time course of adult neurogenesis over the lifetime of an animal raised under different hypothetical rearing conditions. These growth profiles have several distinct features that form a theoretical prediction that could be tested experimentally. Finally, we show that place cells can emerge and refine in a realistic manner in our model as a direct result of the sparsification performed by the dentate gyrus
A ¤nonparametric dynamic additive regression model for longitudinal data
DEFF Research Database (Denmark)
Martinussen, T.; Scheike, T. H.
2000-01-01
dynamic linear models, estimating equations, least squares, longitudinal data, nonparametric methods, partly conditional mean models, time-varying-coefficient models......dynamic linear models, estimating equations, least squares, longitudinal data, nonparametric methods, partly conditional mean models, time-varying-coefficient models...
Directory of Open Access Journals (Sweden)
H. Kettle
2009-08-01
Full Text Available Biogeochemical models of the ocean carbon cycle are frequently validated by, or tuned to, satellite chlorophyll data. However, ocean carbon cycle models are required to accurately model the movement of carbon, not chlorophyll, and due to the high variability of the carbon to chlorophyll ratio in phytoplankton, chlorophyll is not a robust proxy for carbon. Using inherent optical property (IOP inversion algorithms it is now possible to also derive the amount of light backscattered by the upper ocean (b_{b} which is related to the amount of particulate organic carbon (POC present. Using empirical relationships between POC and b_{b}, a 1-D marine biogeochemical model is used to simulate b_{b} at 490 nm thereby allowing the model to be compared with both remotely-sensed chlorophyll or b_{b} data. Here I investigate the possibility of using b_{b} in conjunction with chlorophyll data to help constrain the parameters in a simple 1-D NPZD model. The parameters of the biogeochemical model are tuned with a genetic algorithm, so that the model is fitted to either chlorophyll data or to both chlorophyll and b_{b} data at three sites in the Atlantic with very different characteristics. Several inherent optical property (IOP algorithms are available for estimating b_{b}, three of which are used here. The effect of the different b_{b} datasets on the behaviour of the tuned model is examined to ascertain whether the uncertainty in b_{b} is significant. The results show that the addition of b_{b} data does not consistently alter the same model parameters at each site and in fact can lead to some parameters becoming less well constrained, implying there is still much work to be done on the mechanisms relating chlorophyll to POC and b_{b} within the model. However, this study does indicate that
Directory of Open Access Journals (Sweden)
Aschengrau Ann
2006-06-01
Full Text Available Abstract Background Mapping spatial distributions of disease occurrence and risk can serve as a useful tool for identifying exposures of public health concern. Disease registry data are often mapped by town or county of diagnosis and contain limited data on covariates. These maps often possess poor spatial resolution, the potential for spatial confounding, and the inability to consider latency. Population-based case-control studies can provide detailed information on residential history and covariates. Results Generalized additive models (GAMs provide a useful framework for mapping point-based epidemiologic data. Smoothing on location while controlling for covariates produces adjusted maps. We generate maps of odds ratios using the entire study area as a reference. We smooth using a locally weighted regression smoother (loess, a method that combines the advantages of nearest neighbor and kernel methods. We choose an optimal degree of smoothing by minimizing Akaike's Information Criterion. We use a deviance-based test to assess the overall importance of location in the model and pointwise permutation tests to locate regions of significantly increased or decreased risk. The method is illustrated with synthetic data and data from a population-based case-control study, using S-Plus and ArcView software. Conclusion Our goal is to develop practical methods for mapping population-based case-control and cohort studies. The method described here performs well for our synthetic data, reproducing important features of the data and adequately controlling the covariate. When applied to the population-based case-control data set, the method suggests spatial confounding and identifies statistically significant areas of increased and decreased odds ratios.
Directory of Open Access Journals (Sweden)
Gordana Delić
2017-12-01
Full Text Available From its beginnings, up to a few years ago, additive manufacturing technology was able to produce models or prototypes which have limited use, because of materials mechanical properties. With advancement and invention of new materials, this is changing. Now, it is possible to create 3D prints that can be used as final products or functional tools, using technology and materials with low environmental impact. The goal of this study was to examine opportunities for production of paper embossing tools by fused deposition modelling (FDM 3D printing. This study emphasises the use of environmentally friendly poly-lactic acid (PLA materials in FDM technology, contrary to the conventional method using metal alloys and acids. Embossing of line elements and letters using 3D printed embossing tools was done on six different types of paper. Embossing force was applied using SHIMADZU EZ-LX Compact Tabletop Testing Machine. Each type of paper was repeatedly embossed using different values of embossing force (in 250 N increments, starting at 1000 N to determine the optimal embossing force for each specific paper type. When determined, the optimal embossing force was used on ten samples for each paper type. Results of embossing were analysed and evaluated. The analysis consisted of investigating the effects of the applied embossing force and characteristics such as paper basis weight, paper structure, surface characteristic and fibre direction of the paper. Results show that paper characteristics determine the embossing force required for achieving a good embossing result. This means that with the right amount of embossing force, letters and borderlines can be equally well formed by the embossing process regardless of paper weight, surface characteristics, etc. Embossing tools produced in this manner can be used in case of the embossing elements that are not complex. The reason for this is the limitation of FDM technology and lack of precision needed for fine
Directory of Open Access Journals (Sweden)
Cong Guan
2015-06-01
Full Text Available In this article, the operation of a large two-stroke marine diesel engine including various cases with turbocharger cut-out was thoroughly investigated by using a modular zero-dimensional engine model built in MATLAB/Simulink environment. The model was developed by using as a basis an in-house modular mean value engine model, in which the existing cylinder block was replaced by a more detailed one that is capable of representing the scavenging ports-cylinder-exhaust valve processes. Simulation of the engine operation at steady state conditions was performed and the derived engine performance parameters were compared with the respective values obtained by the engine shop trials. The investigation of engine operation under turbocharger cut-out conditions in the region from 10% to 50% load was carried out and the influence of turbocharger cut-out on engine performance including the in-cylinder parameters was comprehensively studied. The recommended schedule for the combination of the turbocharger cut-out and blower activation was discussed for the engine operation under part load conditions. Finally, the influence of engine operating strategies on the annual fuel savings, CO2 emissions reduction and blower operating hours for a Panamax container ship operating at slow steaming conditions is presented and discussed.
Design and modeling of an additive manufactured thin shell for x-ray astronomy
Feldman, Charlotte; Atkins, Carolyn; Brooks, David; Watson, Stephen; Cochrane, William; Roulet, Melanie; Willingale, Richard; Doel, Peter
2017-09-01
Future X-ray astronomy missions require light-weight thin shells to provide large collecting areas within the weight limits of launch vehicles, whilst still delivering angular resolutions close to that of Chandra (0.5 arc seconds). Additive manufacturing (AM), also known as 3D printing, is a well-established technology with the ability to construct or `print' intricate support structures, which can be both integral and light-weight, and is therefore a candidate technique for producing shells for space-based X-ray telescopes. The work described here is a feasibility study into this technology for precision X-ray optics for astronomy and has been sponsored by the UK Space Agency's National Space Technology Programme. The goal of the project is to use a series of test samples to trial different materials and processes with the aim of developing a viable path for the production of an X-ray reflecting prototype for astronomical applications. The initial design of an AM prototype X-ray shell is presented with ray-trace modelling and analysis of the X-ray performance. The polishing process may cause print-through from the light-weight support structure on to the reflecting surface. Investigations in to the effect of the print-through on the X-ray performance of the shell are also presented.
Exposure as Duration and Distance in Telematics Motor Insurance Using Generalized Additive Models
Directory of Open Access Journals (Sweden)
Jean-Philippe Boucher
2017-09-01
Full Text Available In Pay-As-You-Drive (PAYD automobile insurance, the premium is fixed based on the distance traveled, while in usage-based insurance (UBI the driving patterns of the policyholder are also considered. In those schemes, drivers who drive more pay a higher premium compared to those with the same characteristics who drive only occasionally, because the former are more exposed to the risk of accident. In this paper, we analyze the simultaneous effect of the distance traveled and exposure time on the risk of accident by using Generalized Additive Models (GAM. We carry out an empirical application and show that the expected number of claims (1 stabilizes once a certain number of accumulated distance-driven is reached and (2 it is not proportional to the duration of the contract, which is in contradiction to insurance practice. Finally, we propose to use a rating system that takes into account simultaneously exposure time and distance traveled in the premium calculation. We think that this is the trend the automobile insurance market is going to follow with the eruption of telematics data.
Ghosh, Supriyo
2018-01-01
Additive manufacturing (AM) processes produce parts with improved physical, chemical, and mechanical properties compared to conventional manufacturing processes. In AM processes, intricate part geometries are produced from multicomponent alloy powder, in a layer-by-layer fashion with multipass laser melting, solidification, and solid-state phase transformations, in a shorter manufacturing time, with minimal surface finishing, and at a reasonable cost. However, there is an increasing need for post-processing of the manufactured parts via, for example, stress relieving heat treatment and hot isostatic pressing to achieve homogeneous microstructure and properties at all times. Solidification in an AM process controls the size, shape, and distribution of the grains, the growth morphology, the elemental segregation and precipitation, the subsequent solid-state phase changes, and ultimately the material properties. The critical issues in this process are linked with multiphysics (such as fluid flow and diffusion of heat and mass) and multiscale (lengths, times and temperature ranges) challenges that arise due to localized rapid heating and cooling during AM processing. The alloy chemistry-process-microstructure-property-performance correlation in this process will be increasingly better understood through multiscale modeling and simulation.
Statistical inference for the additive hazards model under outcome-dependent sampling.
Yu, Jichang; Liu, Yanyan; Sandler, Dale P; Zhou, Haibo
2015-09-01
Cost-effective study design and proper inference procedures for data from such designs are always of particular interests to study investigators. In this article, we propose a biased sampling scheme, an outcome-dependent sampling (ODS) design for survival data with right censoring under the additive hazards model. We develop a weighted pseudo-score estimator for the regression parameters for the proposed design and derive the asymptotic properties of the proposed estimator. We also provide some suggestions for using the proposed method by evaluating the relative efficiency of the proposed method against simple random sampling design and derive the optimal allocation of the subsamples for the proposed design. Simulation studies show that the proposed ODS design is more powerful than other existing designs and the proposed estimator is more efficient than other estimators. We apply our method to analyze a cancer study conducted at NIEHS, the Cancer Incidence and Mortality of Uranium Miners Study, to study the risk of radon exposure to cancer.
Brückner, F.; Lepski, D.; Beyer, E.
2007-09-01
In laser cladding thermal contraction of the initially liquid coating during cooling causes residual stresses and possibly cracks. Preweld or postweld heating using inductors can reduce the thermal strain difference between coating and substrate and thus reduce the resulting stress. The aim of this work is to better understand the influence of various thermometallurgical and mechanical phenomena on stress evolution and to optimize the induction-assisted laser cladding process to get crack-free coatings of hard materials at high feed rates. First, an analytical one-dimensional model is used to visualize the most important features of stress evolution for a Stellite coating on a steel substrate. For more accurate studies, laser cladding is simulated including the powder-beam interaction, the powder catchment by the melt pool, and the self-consistent calculation of temperature field and bead shape. A three-dimensional finite element model and the required equivalent heat sources are derived from the results and used for the transient thermomechanical analysis, taking into account phase transformations and the elastic-plastic material behavior with strain hardening. Results are presented for the influence of process parameters such as feed rate, heat input, and inductor size on the residual stresses at a single bead of Stellite coatings on steel.
Directory of Open Access Journals (Sweden)
Emilio Benfenati
2009-07-01
Full Text Available Optimal descriptors calculated with the simplified molecular input line entry system (SMILES have been utilized in modeling of carcinogenicity as continuous values (logTD50. These descriptors can be calculated using correlation weights of SMILES attributes calculated by the Monte Carlo method. A considerable subset of these attributes includes rare attributes. The use of these rare attributes can lead to overtraining. One can avoid the influence of the rare attributes if their correlation weights are fixed to zero. A function, limS, has been defined to identify rare attributes. The limS defines the minimum number of occurrences in the set of structures of the training (subtraining set, to accept attributes as usable. If an attribute is present less than limS, it is considered “rare”, and thus not used. Two systems of building up models were examined: 1. classic training-test system; 2. balance of correlations for the subtraining and calibration sets (together, they are the original training set: the function of the calibration set is imitation of a preliminary test set. Three random splits into subtraining, calibration, and test sets were analysed. Comparison of abovementioned systems has shown that balance of correlations gives more robust prediction of the carcinogenicity for all three splits (split 1: rtest2=0.7514, stest=0.684; split 2: rtest2=0.7998, stest=0.600; split 3: rtest2=0.7192, stest=0.728.
International Nuclear Information System (INIS)
Darcel, C.; Davy, P.; Le Goc, R.; Dreuzy, J.R. de; Bour, O.
2009-11-01
the other, addresses the issue of the nature of the transition. We develop a new 'mechanistic' model that could help in modeling why and where this transition can occur. The transition between both regimes would occur for a fracture length of 1-10 m and even at a smaller scale for the few outcrops that follow the self-similar density model. A consequence for the disposal issue is that the model that is likely to apply in the 'blind' scale window between 10-100 m is the self-similar model as it is defined for large-scale lineaments. The self-similar model, as it is measured for some outcrops and most lineament maps, is definitely worth being investigated as a reference for scales above 1-10 m. In the rest of the report, we develop a methodology for incorporating uncertainty and variability into the DFN modeling. Fracturing properties arise from complex processes which produce an intrinsic variability; characterizing this variability as an admissible variation of model parameter or as the division of the site into subdomains with distinct DFN models is a critical point of the modeling effort. Moreover, the DFN model encompasses a part of uncertainty, due to data inherent uncertainties and sampling limits. Both effects must be quantified and incorporated into the DFN site model definition process. In that context, all available borehole data including recording of fracture intercept positions, pole orientation and relative uncertainties are used as the basis for the methodological development and further site model assessment. An elementary dataset contains a set of discrete fracture intercepts from which a parent orientation/density distribution can be computed. The elementary bricks of the site, from which these initial parent density distributions are computed, rely on the former Single Hole Interpretation division of the boreholes into sections whose local boundaries are expected to reflect - locally - geology and fracturing properties main characteristics. From that
Energy Technology Data Exchange (ETDEWEB)
Scot Martin
2013-01-31
The chemical evolution of secondary-organic-aerosol (SOA) particles and how this evolution alters their cloud-nucleating properties were studied. Simplified forms of full Koehler theory were targeted, specifically forms that contain only those aspects essential to describing the laboratory observations, because of the requirement to minimize computational burden for use in integrated climate and chemistry models. The associated data analysis and interpretation have therefore focused on model development in the framework of modified kappa-Koehler theory. Kappa is a single parameter describing effective hygroscopicity, grouping together several separate physicochemical parameters (e.g., molar volume, surface tension, and van't Hoff factor) that otherwise must be tracked and evaluated in an iterative full-Koehler equation in a large-scale model. A major finding of the project was that secondary organic materials produced by the oxidation of a range of biogenic volatile organic compounds for diverse conditions have kappa values bracketed in the range of 0.10 +/- 0.05. In these same experiments, somewhat incongruently there was significant chemical variation in the secondary organic material, especially oxidation state, as was indicated by changes in the particle mass spectra. Taken together, these findings then support the use of kappa as a simplified yet accurate general parameter to represent the CCN activation of secondary organic material in large-scale atmospheric and climate models, thereby greatly reducing the computational burden while simultaneously including the most recent mechanistic findings of laboratory studies.
Haqshenas, S. R.; Ford, I. J.; Saffari, N.
2018-01-01
Effects of acoustic waves on a phase transformation in a metastable phase were investigated in our previous work [S. R. Haqshenas, I. J. Ford, and N. Saffari, "Modelling the effect of acoustic waves on nucleation," J. Chem. Phys. 145, 024315 (2016)]. We developed a non-equimolar dividing surface cluster model and employed it to determine the thermodynamics and kinetics of crystallisation induced by an acoustic field in a mass-conserved system. In the present work, we developed a master equation based on a hybrid Szilard-Fokker-Planck model, which accounts for mass transportation due to acoustic waves. This model can determine the kinetics of nucleation and the early stage of growth of clusters including the Ostwald ripening phenomenon. It was solved numerically to calculate the kinetics of an isothermal sonocrystallisation process in a system with mass transportation. The simulation results show that the effect of mass transportation for different excitations depends on the waveform as well as the imposed boundary conditions and tends to be noticeable in the case of shock waves. The derivations are generic and can be used with any acoustic source and waveform.
DEFF Research Database (Denmark)
Frimann Nielsen, Rasmus; Haglind, Fredrik; Larsen, Ulrik
2014-01-01
the efficiency of machinery systems. The wet sulphuric acid process is an effective way of removing flue gas sulphur oxides from land-based coal-fired power plants. Moreover, organic Rankine cycles (ORC) are suitable for heat to power conversion for low temperature heat sources. This paper describes the design...... and modeling of a highly efficient machinery system which includes the removal of exhaust gas sulphur oxides. The system consists of a two-stroke diesel engine, the wet sulphuric process for sulphur removal, a conventional steam Rankine cycle and an ORC. Results of numerical modeling efforts suggest...... that an ORC placed after the conventional waste heat recovery system is able to extract the sulphuric acid from the exhaust gas, while at the same time increase the combined cycle thermal efficiency by 2.6%. The findings indicate that the technology has potential in marine applications regarding both energy...
Energy Technology Data Exchange (ETDEWEB)
Morais, Keli Cristiane Correia; Ribeiro, Robert Luis Lara; Santos, Kassiana Ribeiro dos; Mariano, Andre Bellin [Mariano Center for Research and Development of Sustainable Energy (NPDEAS), Curitiba, PR (Brazil); Vargas, Jose Viriato Coelho [Departament of Mechanical Engineering, Federal University of Parana (UFPR) Curitiba, PR (Brazil)
2010-07-01
The Brazilian National Program for Bio fuel Production has been encouraging diversification of feedstock for biofuel production. One of the most promising alternatives is the use of microalgae biomass for biofuel production. The cultivation of microalgae is conducted in aquatic systems, therefore microalgae oil production does not compete with agricultural land. Microalgae have greater photosynthetic efficiency than higher plants and are efficient fixing CO{sub 2}. The challenge is to reduce production costs, which can be minimized by increasing productivity and oil biomass. Aiming to increase the production of microalgae biomass, mixotrophic cultivation, with the addition of glycerol has been shown to be very promising. During the production of biodiesel from microalgae there is availability of glycerol as a side product of the transesterification reaction, which could be used as organic carbon source for microalgae mixotrophic growth, resulting in increased biomass productivity. In this paper, to study the effect of glycerol in experimental conditions, the batch culture of the diatom Phaeodactylum tricornutum was performed in a 2-liter flask in a temperature and light intensity controlled room. During 16 days of cultivation, the number of cells per ml was counted periodically in a Neubauer chamber. The calculation of dry biomass in the control experiment (without glycerol) was performed every two days by vacuum filtration. In the dry biomass mixotrophic experiment with glycerol concentration of 1.5 M, the number of cells was assessed similarly in the 10{sup th} and 14{sup th} days of cultivation. Through a volume element methodology, a mathematical model was written to calculate the microalgae growth rate. It was used an equation that describes the influence of irradiation and concentration of nutrients in the growth of microalgae. A simulation time of 16 days was used in the computations, with initial concentration of 0.1 g l{sup -1}. In order to compare
Energy Technology Data Exchange (ETDEWEB)
Darcel, C. (Itasca Consultants SAS (France)); Davy, P.; Le Goc, R.; Dreuzy, J.R. de; Bour, O. (Geosciences Rennes, UMR 6118 CNRS, Univ. def Rennes, Rennes (France))
2009-11-15
the lineament scale (k{sub t} = 2) on the other, addresses the issue of the nature of the transition. We develop a new 'mechanistic' model that could help in modeling why and where this transition can occur. The transition between both regimes would occur for a fracture length of 1-10 m and even at a smaller scale for the few outcrops that follow the self-similar density model. A consequence for the disposal issue is that the model that is likely to apply in the 'blind' scale window between 10-100 m is the self-similar model as it is defined for large-scale lineaments. The self-similar model, as it is measured for some outcrops and most lineament maps, is definitely worth being investigated as a reference for scales above 1-10 m. In the rest of the report, we develop a methodology for incorporating uncertainty and variability into the DFN modeling. Fracturing properties arise from complex processes which produce an intrinsic variability; characterizing this variability as an admissible variation of model parameter or as the division of the site into subdomains with distinct DFN models is a critical point of the modeling effort. Moreover, the DFN model encompasses a part of uncertainty, due to data inherent uncertainties and sampling limits. Both effects must be quantified and incorporated into the DFN site model definition process. In that context, all available borehole data including recording of fracture intercept positions, pole orientation and relative uncertainties are used as the basis for the methodological development and further site model assessment. An elementary dataset contains a set of discrete fracture intercepts from which a parent orientation/density distribution can be computed. The elementary bricks of the site, from which these initial parent density distributions are computed, rely on the former Single Hole Interpretation division of the boreholes into sections whose local boundaries are expected to reflect - locally - geology
Kim, Sun Bean; Yoon, Myoungho; Ku, Nam Su; Kim, Min Hyung; Song, Je Eun; Ahn, Jin Young; Jeong, Su Jin; Kim, Changsoo; Kwon, Hee-Dae; Lee, Jeehyun; Smith, Davey M; Choi, Jun Yong
2014-01-01
Multiple prevention measures have the possibility of impacting HIV incidence in South Korea, including early diagnosis, early treatment, and pre-exposure prophylaxis (PrEP). We investigated how each of these interventions could impact the local HIV epidemic, especially among men who have sex with men (MSM), who have become the major risk group in South Korea. A mathematical model was used to estimate the effects of each these interventions on the HIV epidemic in South Korea over the next 40 years, as compared to the current situation. We constructed a mathematical model of HIV infection among MSM in South Korea, dividing the MSM population into seven groups, and simulated the effects of early antiretroviral therapy (ART), early diagnosis, PrEP, and combination interventions on the incidence and prevalence of HIV infection, as compared to the current situation that would be expected without any new prevention measures. Overall, the model suggested that the most effective prevention measure would be PrEP. Even though PrEP effectiveness could be lessened by increased unsafe sex behavior, PrEP use was still more beneficial than the current situation. In the model, early diagnosis of HIV infection was also effectively decreased HIV incidence. However, early ART did not show considerable effectiveness. As expected, it would be most effective if all interventions (PrEP, early diagnosis and early treatment) were implemented together. This model suggests that PrEP and early diagnosis could be a very effective way to reduce HIV incidence in South Korea among MSM.
Dehghan, Azizallah; Khanjani, Narges; Bahrampour, Abbas; Goudarzi, Gholamreza; Yunesian, Masoud
2018-03-20
Some epidemiological evidence has shown a relation between ambient air pollution and adverse health outcomes. The aim of this study was to investigate the effect of air pollution on mortality from respiratory diseases in Tehran, Iran. In this ecological study, air pollution data was inquired from the Tehran Province Environmental Protection Agency and the Tehran Air Quality Control Company. Meteorological data was collected from the Tehran Meteorology Organization and mortality data from the Tehran Cemetery Mortality Registration. Generalized Additive Models (GAM) was used for data analysis with different lags, up to 15 days. A 10-unit increase in all pollutants except CO (1-unit) was used to compute the Relative Risk of deaths. During 2005 until 2014, 37,967 respiratory deaths occurred in Tehran in which 21,913 (57.7%) were male. The strongest relationship between NO 2 and PM 10 and respiratory death was seen on the same day (lag 0), and was respectively (RR = 1.04, 95% CI: 1.02-1.07) and (RR = 1.03, 95% CI: 1.02-1.04). O 3 and PM 2.5 had the strongest relationship with respiratory deaths on lag 2 and 1 respectively, and the RR was equal to 1.03, 95% CI: 1.01-1.05 and 1.06, 95% CI: 1.02-1.10 respectively. NO 2 , O 3 , PM 10 and PM 2.5 also showed significant relations with respiratory deaths in the older age groups. The findings of this study showed that O 3 , NO 2 , PM 10 and PM 2.5 air pollutants were related to respiratory deaths in Tehran. Reducing ambient air pollution can save lives in Tehran.
Neumann, Rebecca B; Cardon, Zoe G; Teshera-Levye, Jennifer; Rockwell, Fulton E; Zwieniecki, Maciej A; Holbrook, N Michele
2014-04-01
The movement of water from moist to dry soil layers through the root systems of plants, referred to as hydraulic redistribution (HR), occurs throughout the world and is thought to influence carbon and water budgets and ecosystem functioning. The realized hydrologic, biogeochemical and ecological consequences of HR depend on the amount of redistributed water, whereas the ability to assess these impacts requires models that correctly capture HR magnitude and timing. Using several soil types and two ecotypes of sunflower (Helianthus annuus L.) in split-pot experiments, we examined how well the widely used HR modelling formulation developed by Ryel et al. matched experimental determination of HR across a range of water potential driving gradients. H. annuus carries out extensive night-time transpiration, and although over the last decade it has become more widely recognized that night-time transpiration occurs in multiple species and many ecosystems, the original Ryel et al. formulation does not include the effect of night-time transpiration on HR. We developed and added a representation of night-time transpiration into the formulation, and only then was the model able to capture the dynamics and magnitude of HR we observed as soils dried and night-time stomatal behaviour changed, both influencing HR. © 2013 John Wiley & Sons Ltd.
Three dimensional models in uro-oncology: a future built with additive fabrication.
Manning, Todd G; O'Brien, Jonathan S; Christidis, Daniel; Perera, Marlon; Coles-Black, Jasamine; Chuen, Jason; Bolton, Damien M; Lawrentschuk, Nathan
2018-04-01
Three-dimensional (3D) printing was invented in 1983 but has only just begun to influence medicine and surgery. Conversion of digital images into physical models demonstrates promise to revolutionize multiple domains of surgery. In the field of uro-oncology, researchers and clinicians have recognized the potential of this technology and are working towards making it an integral part of urological practice. We review current literature regarding 3D printing and other 3D technology in the field of urology. A comprehensive assessment of contemporary literature was performed according to a modified PRISMA analysis for the purposes of this narrative review article. Medical databases that were searched included: Web of Science, EMBASE and Cochrane databases. Articles assessed were limited only to English-language peer-reviewed articles published between 1980 and 2017. The search terms used were "3D", "3-dimensional", "printing", "printing technology", "urology", "surgery". Acceptable articles were reviewed and incorporated for their merit and relevance with preference given for articles with high impact, original research and recent advances. Thirty-five publications were included in final analysis and discussion. The area of 3D printing in Urology shows promising results, but further research is required and cost reduction must occur before clinicians fully embrace its use. As costs continue to decline and diversity of materials continues to expand, research and clinical utilization will increase. Recent advances have demonstrated the potential of this technology in the realms of education and surgical optimization. The generation of personalized organs using 3D printing scaffolding remains the 'holy grail' of this technology.
Carroll, Raymond
2009-04-23
We consider the efficient estimation of a regression parameter in a partially linear additive nonparametric regression model from repeated measures data when the covariates are multivariate. To date, while there is some literature in the scalar covariate case, the problem has not been addressed in the multivariate additive model case. Ours represents a first contribution in this direction. As part of this work, we first describe the behavior of nonparametric estimators for additive models with repeated measures when the underlying model is not additive. These results are critical when one considers variants of the basic additive model. We apply them to the partially linear additive repeated-measures model, deriving an explicit consistent estimator of the parametric component; if the errors are in addition Gaussian, the estimator is semiparametric efficient. We also apply our basic methods to a unique testing problem that arises in genetic epidemiology; in combination with a projection argument we develop an efficient and easily computed testing scheme. Simulations and an empirical example from nutritional epidemiology illustrate our methods.
de Monserrat, Albert; Morgan, Jason P.
2016-04-01
Materials in Earth's interior are exposed to thermomechanical (e.g. variations in stress/pressure and temperature) and chemical (e.g. phase changes, serpentinization, melting) processes that are associated with volume changes. Most geodynamical codes assume the incompressible Boussinesq approximation, where changes in density due to temperature or phase change effect buoyancy, yet volumetric changes are not allowed, and mass is not locally conserved. Elastic stresses induced by volume changes due to thermal expansion, serpentinization, and melt intrusion should cause 'cold' rocks to brittlely fail at ~1% strain. When failure/yielding is an important rheological feature, we think it plausible that volume-change-linked stresses may have a significant influence on the localization of deformation. Here we discuss a new Lagrangian formulation for "elasto-compressible -visco-plastic" flow. In this formulation, the continuity equation has been generalised from a Boussinesq incompressible formulation to include recoverable, elastic, volumetric deformations linked to the local state of mean compressive stress. This formulation differs from the 'anelastic approximation' used in compressible viscous flow in that pressure- and temperature- dependent volume changes are treated as elastic deformation for a given pressure, temperature, and composition/phase. This leads to a visco-elasto-plastic formulation that can model the effects of thermal stresses, pressure-dependent volume changes, and local phase changes. We use a modified version of the (Miliman-based) FEM code M2TRI to run a set of numerical experiments for benchmarking purposes. Three benchmarks are being used to assess the accuracy of this formulation: (1) model the effects on density of a compressible mantle under the influence of gravity; (2) model the deflection of a visco-elastic beam under the influence of gravity, and its recovery when gravitational loading is artificially removed; (3) Modelling the stresses
Oral, Elif; Gélis, Céline; Bonilla, Luis Fabián; Delavaud, Elise
2017-12-01
Numerical modelling of seismic wave propagation, considering soil nonlinearity, has become a major topic in seismic hazard studies when strong shaking is involved under particular soil conditions. Indeed, when strong ground motion propagates in saturated soils, pore pressure is another important parameter to take into account when successive phases of contractive and dilatant soil behaviour are expected. Here, we model 1-D seismic wave propagation in linear and nonlinear media using the spectral element numerical method. The study uses a three-component (3C) nonlinear rheology and includes pore-pressure excess. The 1-D-3C model is used to study the 1987 Superstition Hills earthquake (ML 6.6), which was recorded at the Wildlife Refuge Liquefaction Array, USA. The data of this event present strong soil nonlinearity involving pore-pressure effects. The ground motion is numerically modelled for different assumptions on soil rheology and input motion (1C versus 3C), using the recorded borehole signals as input motion. The computed acceleration-time histories show low-frequency amplification and strong high-frequency damping due to the development of pore pressure in one of the soil layers. Furthermore, the soil is found to be more nonlinear and more dilatant under triaxial loading compared to the classical 1C analysis, and significant differences in surface displacements are observed between the 1C and 3C approaches. This study contributes to identify and understand the dominant phenomena occurring in superficial layers, depending on local soil properties and input motions, conditions relevant for site-specific studies.
Directory of Open Access Journals (Sweden)
Sun-Ah Hwang
2016-04-01
Full Text Available Although close relationships between the water quality of streams and the types of land use within their watersheds have been well-documented in previous studies, many aspects of these relationships remain unclear. We examined the relationships between urban land use and water quality using data collected from 527 sample points in five major rivers in Korea—the Han, Geum, Nakdong, Younsan, and Seomjin Rivers. Water quality data were derived from samples collected and analyzed under the guidelines of the Korean National Aquatic Ecological Monitoring Program, and land use was quantified using products provided by the Korean Ministry of the Environment, which were used to create a Geographic Information System. Linear models (LMs and generalized additive models were developed to describe the relationships between urban land use and stream water quality, including biological oxygen demand (BOD, total nitrogen (TN, and total phosphorous (TP. A comparison between LMs and non-linear models (in terms of R2 and Akaike’s information criterion values indicated that the general additive models had a better fit and suggested a non-linear relationship between urban land use and water quality. Non-linear models for BOD, TN, and TP showed that each parameter had a similar relationship with urban land use, which had two breakpoints. The non-linear models suggested that the relationships between urban land use and water quality could be categorized into three regions, based on the proportion of urban land use. In moderate urban land use conditions, negative impacts of urban land use on water quality were observed, which confirmed the findings of previous studies. However, the relationships were different in very low urbanization or very high urbanization conditions. Our results could be used to develop strategies for more efficient stream restoration and management, which would enhance water quality based on the degree of urbanization in watersheds. In
Thelen, Brian; French, Nancy H F; Koziol, Benjamin W; Billmire, Michael; Owen, Robert Chris; Johnson, Jeffrey; Ginsberg, Michele; Loboda, Tatiana; Wu, Shiliang
2013-11-05
A study of the impacts on respiratory health of the 2007 wildland fires in and around San Diego County, California is presented. This study helps to address the impact of fire emissions on human health by modeling the exposure potential of proximate populations to atmospheric particulate matter (PM) from vegetation fires. Currently, there is no standard methodology to model and forecast the potential respiratory health effects of PM plumes from wildland fires, and in part this is due to a lack of methodology for rigorously relating the two. The contribution in this research specifically targets that absence by modeling explicitly the emission, transmission, and distribution of PM following a wildland fire in both space and time. Coupled empirical and deterministic models describing particulate matter (PM) emissions and atmospheric dispersion were linked to spatially explicit syndromic surveillance health data records collected through the San Diego Aberration Detection and Incident Characterization (SDADIC) system using a Generalized Additive Modeling (GAM) statistical approach. Two levels of geographic aggregation were modeled, a county-wide regional level and division of the county into six sub regions. Selected health syndromes within SDADIC from 16 emergency departments within San Diego County relevant for respiratory health were identified for inclusion in the model. The model captured the variability in emergency department visits due to several factors by including nine ancillary variables in addition to wildfire PM concentration. The model coefficients and nonlinear function plots indicate that at peak fire PM concentrations the odds of a person seeking emergency care is increased by approximately 50% compared to non-fire conditions (40% for the regional case, 70% for a geographically specific case). The sub-regional analyses show that demographic variables also influence respiratory health outcomes from smoke. The model developed in this study allows a
Directory of Open Access Journals (Sweden)
Camilo Saavedra
2014-07-01
Full Text Available Single-species models have been commonly used to assess fish stocks in the past. Since these models have relatively simple data requirements, they sometimes provide the only tool available to assess the status of a stock when data are not enough to develop more complex models. However, these models have been criticized for several reasons since they provide reference points independently for each species assessed ignoring their interactions. For example, several studies suggest that even more substantial reductions in fishing mortality may be necessary to ensure MSY is reached when taking into consideration multiespecies interactions. Therefore, and as Pauly et al. (1998 stated, single-species analysis may mislead researchers and managers into neglecting the gear and trophic interactions which ultimately determine stocks long-term yields and ecosystem health. Ecosystem or multispecies models offer a number of advantages over single-species models. As stated in the workshop “Incorporating ecosystem considerations into stock assessments and management advice” (Mace, 2000 two general improvements are: a better appreciation of the fishing on ecosystem structure and function, and a better appreciation of the need to consider de value of marine ecosystems for functions other than harvesting fish. As disadvantages, multispecies models are statistically complex and include trophic relationships requiring more information (e.g. good estimations of biological parameters of each species and generally a full quantification of the diet sometimes available though the analysis of stomach contents. To reduce the number of species and therefore the amount of information needed, Minimum Realistic Models (MRMs represent an intermediate level of complexity, where only the subset of the ecosystem, important for the issue under consideration, is modeled. This approach offers the advantage of allowing a refinement of our estimates and can help answer more targeted
Samsudin, Hayati; Auras, Rafael; Burgess, Gary; Dolan, Kirk; Soto-Valdez, Herlinda
2018-03-01
A two-step solution based on the boundary conditions of Crank's equations for mass transfer in a film was developed. Three driving factors, the diffusion (D), partition (K p,f ) and convective mass transfer coefficients (h), govern the sorption and/or desorption kinetics of migrants from polymer films. These three parameters were simultaneously estimated. They provide in-depth insight into the physics of a migration process. The first step was used to find the combination of D, K p,f and h that minimized the sums of squared errors (SSE) between the predicted and actual results. In step 2, an ordinary least square (OLS) estimation was performed by using the proposed analytical solution containing D, K p,f and h. Three selected migration studies of PLA/antioxidant-based films were used to demonstrate the use of this two-step solution. Additional parameter estimation approaches such as sequential and bootstrap were also performed to acquire a better knowledge about the kinetics of migration. The proposed model successfully provided the initial guesses for D, K p,f and h. The h value was determined without performing a specific experiment for it. By determining h together with D, under or overestimation issues pertaining to a migration process can be avoided since these two parameters are correlated. Copyright © 2017 Elsevier Ltd. All rights reserved.
Shoda, Munehito; Yokoyama, Takaaki; Suzuki, Takeru K.
2018-02-01
We propose a novel one-dimensional model that includes both shock and turbulence heating and qualify how these processes contribute to heating the corona and driving the solar wind. Compressible MHD simulations allow us to automatically consider shock formation and dissipation, while turbulent dissipation is modeled via a one-point closure based on Alfvén wave turbulence. Numerical simulations were conducted with different photospheric perpendicular correlation lengths {λ }0, which is a critical parameter of Alfvén wave turbulence, and different root-mean-square photospheric transverse-wave amplitudes δ {v}0. For the various {λ }0, we obtain a low-temperature chromosphere, high-temperature corona, and supersonic solar wind. Our analysis shows that turbulence heating is always dominant when {λ }0≲ 1 {Mm}. This result does not mean that we can ignore the compressibility because the analysis indicates that the compressible waves and their associated density fluctuations enhance the Alfvén wave reflection and therefore the turbulence heating. The density fluctuation and the cross-helicity are strongly affected by {λ }0, while the coronal temperature and mass-loss rate depend weakly on {λ }0.
Energy Technology Data Exchange (ETDEWEB)
Guerrero Angulo, Jose Oscar [Universidad Autonoma de Sinaloa (Mexico); Arreguin Cortes, Felipe [Instituto Mexicano de Tecnologia del Agua, Jiutepec, Morelos (Mexico)
2002-03-01
This paper presents a hydraulic simulation model for drinking water networks, including elements that are currently not considered household connections, spatially variable flowrate distribution pipelines, and tee secondary network. This model is determined by solving the equations needed for a conventional model following an indirect procedure for the solution of large equations systems. Household connection performance is considered as dependent of water pressure and the way in which users operate the taps of such intakes. This approach allows a better a acquaintance with the drinking water supply networks performance as well as solving problems that demand a more precise hydraulic simulation, such as water quality variations, leaks in networks, and the influence of home water tanks as regulating devices. [Spanish] Se presenta un modelo de simulacion hidraulica para redes de agua potable en el cual se incluyen elementos que no se toman en cuenta actualmente, como las tomas domiciliarias, los tubos de distribucion con gastos espacialmente variado y la red secundaria, resolviendo el numero de ecuaciones que seria necesario plantear en un modelo convencional mediante un procedimiento indirecto para la solucion de grandes sistemas de ecuaciones. En las tomas domiciliarias se considera que su funcionamiento depende de las presiones y la forma en que los usuarios operan las llaves de las mismas. Este planteamiento permite conocer mejor el funcionamiento de las redes de abastecimiento de agua potable y solucionar problemas que requieren de una simulacion hidraulica mas precisa, como el comportamiento de la calidad del agua, las fugas en las redes y la influencia reguladora de los tinacos de las casas.
Application of power addition as modelling technique for flow processes: Two case studies
CSIR Research Space (South Africa)
de Wet, P
2010-05-01
Full Text Available through diaphragm valve and the fluidisation of a packed bed, are analysed as case studies. Empirical results are investigated for possible asymptotic bounds where after power addition is applied to the functional dependencies. The outcome is compared...
Multi-Scale Modeling of Crack Nucleation and Growth in Additively Manufactured Alloys
National Aeronautics and Space Administration — Additive manufacturing (AM) promises growth in design space, increased speed of production, and decreased cost to aircraft and space technology engineering. For this...
National Aeronautics and Space Administration — This Phase I program addresses the challenge of gaining the necessary knowledge needed to support certification of additive manufacturing (AM) hardware and achieving...
National Aeronautics and Space Administration — Additive manufacturing of metal parts is experiencing strong growth as powder bed machines in particular become more widely available. Although parts are being...
Materials Testing and Cost Modeling for Composite Parts Through Additive Manufacturing
2016-04-30
related to production quantities 9 Bulk-forming processes 0.11-5.82 kWh/kg for injection molding 0.62-7.78 kWh/kg for metal casting Subtractive...in manufacturing aircraft components. The additive process provides a possible means to reduce an aircraft’s lifecycle cost (LCC), but the effects...of changed process parameters of additive manufacturing machines on final material characteristics are not well known. This research explores these
Energy Technology Data Exchange (ETDEWEB)
Grotjans, H.
1998-04-01
In the current Software Engineering Module (SEM2) three additional test cases have been investigated, as listed in Chapter 2. For all test cases it has been shown that the computed results are grid independent. This has been done by systematic grid refinement studies. The main objective of the current SEM2 was the verification and validation of the new wall function implementation for the k-{epsilon} mode and the SMC-model. Analytical relations and experimental data have been used for comparison of the computational results. The agreement of the results is good. Therefore, the correct implementation of the new wall function has been demonstrated. As the results in this report have shown, a consistent grid refinement can be done for any test case. This is an important improvement for industrial applications, as no model specific requirements must be considered during grid generation. (orig.)
2013-05-29
... (202) 863-2893, facsimile (202) 863-2898, or via the Internet at http://www.bcpiweb.com . In addition, the Virtual Workshop may be accessed via the Internet at http://www.fcc.gov/blog/wcb-cost-model... anonymous comments posted during the workshop in reaching decisions regarding the model. Participants should...
DEFF Research Database (Denmark)
Lindblom, Erik Ulfson; Press-Kristensen, Kåre; Vanrolleghem, P.A.
2009-01-01
with the endocrine disrupting XOC bisphenol-A (BPA) in an activated sludge process with real wastewater were used to hypothesize an ASM-based process model including aerobic growth of a specific BPA-degrading microorganism and sorption of BPA to sludge. A parameter estimation method was developed, which...
DEFF Research Database (Denmark)
Sonne, Mads Rostgaard; Hattel, Jesper Henri
In this work, a numerical finite element model for friction stir welding of 2024-T3 aluminum alloy, consisting of a heat transfer analysis and a sequentially coupled quasi-static stress analysis is proposed. Metallurgical softening of the material is properly considered and included...
International Nuclear Information System (INIS)
Goff, S.; George, W.E.; Apel, C.T.; Hansel, J.M.; Fuka, M.A.; Bunker, M.E.; Hanks, D.
1981-04-01
Totals of 22 water and 140 sediment samples were collected from 148 locations in the study area. The study area, in the north-central portion of the Vernal NTMS quadrangle, is covered by four 7-1/2' topographic maps: Dutch John, Goslin Mountain, and Clav Basin, Utah; and Willow Creek Butte, Utah/Colorado. Additional HSSR data are available for the entire Vernal quadrangle (Purson, 1980). All field and analytical data are presented in Appendix I. Figure 1 is an index and sample location map that can be used in conjunction with the 1:250,000-scale topographic map of the Vernal quadrangle (USGS, 1954). Standarized field, analytical, and data base management procedures were followed in all phases of the study. These procedures are described briefly in Appendix II-A and in reports by Sharp (1977), Hues et al (1977), Sharp and Aamodt (1978), Cheadle (1977), and Kosiewicz (1979). The data presented in Appendix I are available on magnetic tape from GJOIS Project, Union Carbide Corporation (UCC-ND), Computer Applications Department, 4500 North Building, Oak Ridge National Laboratory, P.O. Box X, Oak Ridge, Tennessee 37830. Because this is simply a data release, intended to make the data available to the DOE and the public as quickly as possible, no discussion of the geology of the region, uranium occurrences, or data evaluation is included
Khadilkar, Aditi B.
combustors and gasifiers is initiated at the particle-level by low-melting components rich in iron- and calcium-based minerals. Although the bulk ash chemical composition does not indicate potential for agglomeration, study of particle-level heterogeneities revealed that agglomeration can begin at lower temperatures than the fluidized bed operating temperatures of 850 °C. After initiation at the particle-level, more slag is observed to form from alumino-silicate components at about 50 to 100 °C higher temperatures caused by changes in the system, and agglomerate growth propagates in the bed. A post-mortem study of ash agglomerates using SEM-EDX helped to identify stages of agglomerate growth. Additionally, the modeling methodology developed was used to simulate agglomerate growth in a laboratory-scale fluidized bed combustor firing palm shells (biomass), reported in the literature. A comparison of the defluidization time obtained by simulations to the experimental values reported in the case-study was made for the different operating conditions studied. This indicated that although the simulation results were comparable to those reported in the case study, modifications such as inclusion of heat transfer calculations to determine particle temperature resulting from carbon conversion would improve the predictive capabilities. (Abstract shortened by ProQuest.).
Mechanisms and modeling of the effects of additives on the nitrogen oxides emission
Kundu, Krishna P.; Nguyen, H. Lee; Kang, M. Paul
1991-01-01
A theoretical study on the emission of the oxides of nitrogen in the combustion of hydrocarbons is presented. The current understanding of the mechanisms and the rate parameters for gas phase reactions were used to calculate the NO(x) emission. The possible effects of different chemical species on thermal NO(x), on a long time scale were discussed. The mixing of these additives at various stages of combustion were considered and NO(x) concentrations were calculated; effects of temperatures were also considered. The chemicals such as hydrocarbons, H2, CH3OH, NH3, and other nitrogen species were chosen as additives in this discussion. Results of these calculations can be used to evaluate the effects of these additives on the NO(x) emission in the industrial combustion system.
Istrate, A. G.; Marchant, P.; Tauris, T. M.; Langer, N.; Stancliffe, R. J.; Grassitelli, L.
2016-10-01
A large number of extremely low-mass helium white dwarfs (ELM WDs) have been discovered in recent years. The majority of them are found in close binary systems suggesting they are formed either through a common-envelope phase or via stable mass transfer in a low-mass X-ray binary (LMXB) or a cataclysmic variable (CV) system. Here, we investigate the formation of these objects through the LMXB channel with emphasis on the proto-WD evolution in environments with different metallicities. We study for the first time the combined effects of rotational mixing and element diffusion (e.g. gravitational settling, thermal and chemical diffusion) on the evolution of proto-WDs and on the cooling properties of the resulting WDs. We present state-of-the-art binary stellar evolution models computed with MESA for metallicities of Z = 0.02, 0.01, 0.001 and 0.0002, producing WDs with masses between 0.16-0.45 M⊙. Our results confirm that element diffusion plays a significant role in the evolution of proto-WDs that experience hydrogen shell flashes. The occurrence of these flashes produces a clear dichotomy in the cooling timescales of ELM WDs, which has important consequences e.g. for the age determination of binary millisecond pulsars. In addition, we confirm that the threshold mass at which this dichotomy occurs depends on metallicity. Rotational mixing is found to counteract the effect of gravitational settling in the surface layers of young, bloated ELM proto-WDs and therefore plays a key role in determining their surface chemical abundances, I.e. the observed presence of metals in their atmospheres. We predict that these proto-WDs have helium-rich envelopes through a significant part of their lifetime. This is of great importance as helium is a crucial ingredient in the driving of the κ-mechanism suggested for the newly observed ELM proto-WD pulsators. However, we find that the number of hydrogen shell flashes and, as a result, the hydrogen envelope mass at the beginning of
Conceptual performance model for deep in situ recycled pavements with cement and bitumen additives
CSIR Research Space (South Africa)
Steyn, WJvdM
2001-10-01
Full Text Available structure is monitored together with environmental parameters. Based on this information, and associated laboratory testing data, a model for the performance of these pavements is currently being developed. The model is currently based on the results of APT...
Directory of Open Access Journals (Sweden)
GERMÁN LOBOS
2015-12-01
Full Text Available ABSTRACT The traditional method of net present value (NPV to analyze the economic profitability of an investment (based on a deterministic approach does not adequately represent the implicit risk associated with different but correlated input variables. Using a stochastic simulation approach for evaluating the profitability of blueberry (Vaccinium corymbosum L. production in Chile, the objective of this study is to illustrate the complexity of including risk in economic feasibility analysis when the project is subject to several but correlated risks. The results of the simulation analysis suggest that the non-inclusion of the intratemporal correlation between input variables underestimate the risk associated with investment decisions. The methodological contribution of this study illustrates the complexity of the interrelationships between uncertain variables and their impact on the convenience of carrying out this type of business in Chile. The steps for the analysis of economic viability were: First, adjusted probability distributions for stochastic input variables (SIV were simulated and validated. Second, the random values of SIV were used to calculate random values of variables such as production, revenues, costs, depreciation, taxes and net cash flows. Third, the complete stochastic model was simulated with 10,000 iterations using random values for SIV. This result gave information to estimate the probability distributions of the stochastic output variables (SOV such as the net present value, internal rate of return, value at risk, average cost of production, contribution margin and return on capital. Fourth, the complete stochastic model simulation results were used to analyze alternative scenarios and provide the results to decision makers in the form of probabilities, probability distributions, and for the SOV probabilistic forecasts. The main conclusion shown that this project is a profitable alternative investment in fruit trees in
Pires, Flávio de Oliveira; de Oliveira Pires, Flávio
2013-07-01
According to Thomas Kuhn, the scientific progress of any discipline could be distinguished by a pre-paradigm phase, a normal science phase and a revolution phase. The science advances when a scientific revolution takes place after silent period of normal science and the scientific community moves ahead to a paradigm shift. I suggest there has been a recent change of course in the direction of the exercise science. According to the 'current paradigm', exercise would be probably limited by alterations in either central command or peripheral skeletal muscles, and fatigue would be developed in a task-dependent manner. Instead, the central governor model (GCM) has proposed that all forms of exercise are centrally-regulated, the central nervous system would calculate the metabolic cost required to complete a task in order to avoid catastrophic body failure. Some have criticized the CGM and supported the traditional interpretation, but recently the scientific community appears to have begun an intellectual trajectory to accept this theory. First, the increased number of citations of articles that have supported the CGM could indicate that the community has changed the focus. Second, relevant journals have devoted special editions to promote the debate on subjects challenged by the CGM. Finally, scientists from different fields have recognized mechanisms included in the CGM to understand the exercise limits. Given the importance of the scientific community in demarcating a Kuhnian paradigm shift, I suggest that these three aspects could indicate an increased acceptance of a centrally-regulated effort model, to understand the limits of exercise.
Fleige, Lisa E; Sahyoun, Nadine R; Murphy, Suzanne P
2010-02-01
Current micronutrient levels in Public Law 480 fortified blended foods (FBF) may not be appropriate for all food aid beneficiaries, particularly infants and/or young children and pregnant and/or lactating women. A simulation model was developed to determine the micronutrient fortification levels to include in FBF for food aid programs with the goal of reducing the risk of inadequate micronutrient intakes without exceeding the tolerable upper intake level (UL) for any recipient group. For each micronutrient, the age and gender group with the highest daily Recommended Nutrient Intake (RNI) relative to energy requirement was identified and the effect of providing different percentages of that RNI (66, 75, and 100%) was simulated. In this modeling exercise, we also examined consumption of the FBF at 25 (the usual level), 50, and 100% of daily energy requirement. Results indicated that 2 FBF products are needed: a complementary food for age 6-36 mo and a supplementary food for the older groups. Both of the FBF could be fortified to supply at least 75% of the RNI to all groups, without exceeding the UL for most nutrients, if consumed at 25% of the energy requirement. Even if consumed at 50% of energy requirements, mean intakes of most micronutrients would not exceed the UL, although at 100% of the energy requirement, several micronutrients were undesirably high. We conclude that fortifying an FBF to provide 75% of the RNI would be appropriate for most micronutrients, but this level of fortification would not be appropriate for long-term consumption of the FBF at 100% of the energy requirements.
International Nuclear Information System (INIS)
Short, D.R.
1980-01-01
Results are presented from computer calculations based upon an improved diffusion-kinetic model of the spur which includes a novel initial distribution for the hydrated electron and an approximate mathematical treatment of the overlap of spurs in three dimensions. Experimental data for the decay of the hydrated electron and hydroxyl radical before one in electron-pulse-irradated, solute-free and air-free water are fit wihtin experimental uncertainty by adjustment of the initial spatial distributions of spur intermediates and the average energy deposited in the spur. Using the same values of these parameters, the hydrated electron decay is computed for times from 1 ps 10 μs after the radiatio pulse. The results of such calcuations for various conditions of pulse dose and concentrations of scavengers of individual primary chemical species in the spur are compared with corresponding experimental data obtained predominantly from water and aqueous solutions irradiated with 10 to 15 MeV electron pulses. Very good agreement between calculated and experimental hydrated electron decay in pure water is observed for the entire time range studied when a pulse dose of approximately 7900 rads is modeled, but the calcuated and experimental curves are observed to deviate for times greater than 10 ns nanoseconds when low pulse doses and low scavenger concentrations are considered. It is shown that this deviation is experimental and calculated hydrated electron decay cannot be explained by assuming the presence of a hydrated electron scavenging impurity nor by employing a distribution of nearest neighbor interspur distances to refine the overlap approximation
Fitzenz, D. D.; Nyst, M.; Apel, E. V.; Muir-Wood, R.
2014-12-01
The recent Canterbury earthquake sequence (CES) renewed public and academic awareness concerning the clustered nature of seismicity. Multiple event occurrence in short time and space intervals is reminiscent of aftershock sequences, but aftershock is a statistical definition, not a label one can give an earthquake in real-time. Aftershocks are defined collectively as what creates the Omori event rate decay after a large event or are defined as what is taken away as "dependent events" using a declustering method. It is noteworthy that depending on the declustering method used on the Canterbury earthquake sequence, the number of independent events varies a lot. This lack of unambiguous definition of aftershocks leads to the need to investigate the amount of clustering inherent in "declustered" risk models. This is the task we concentrate on in this contribution. We start from a background source model for the Canterbury region, in which 1) centroids of events of given magnitude are distributed using a latin-hypercube lattice, 2) following the range of preferential orientations determined from stress maps and focal mechanism, 3) with length determined using the local scaling relationship and 4) rates from a and b values derived from the declustered pre-2010 catalog. We then proceed to create tens of thousands of realizations of 6 to 20 year periods, and we define criteria to identify which successions of events in the region would be perceived as a sequence. Note that the spatial clustering expected is a lower end compared to a fully uniform distribution of events. Then we perform the same exercise with rates and b-values determined from the catalog including the CES. If the pre-2010 catalog was long (or rich) enough, then the computed "stationary" rates calculated from it would include the CES declustered events (by construction, regardless of the physical meaning of or relationship between those events). In regions of low seismicity rate (e.g., Canterbury before
Braak, ter C.J.F.; Kourmpetis, Y.I.A.; Kiers, H.A.L.; Bink, M.C.A.M.
2009-01-01
Let Q be a given n×n square symmetric matrix of nonnegative elements between 0 and 1, similarities. Fuzzy clustering results in fuzzy assignment of individuals to K clusters. In additive fuzzy clustering, the n×K fuzzy memberships matrix P is found by least-squares approximation of the off-diagonal
ter Braak, Cajo J. F.; Kourmpetis, Yiannis; Kiers, Henk A. L.; Bink, Marco C. A. M.
2009-01-01
Let Q be a given n x n square symmetric matrix of nonnegative elements between 0 and 1, e.g. similarities. Fuzzy clustering results in fuzzy assignment of individuals to K clusters. In additive fuzzy clustering, the n x K fuzzy memberships matrix P is found by least-squares approximation of the
Numerical modeling of the strand deposition flow in extrusion-based additive manufacturing
DEFF Research Database (Denmark)
Comminal, Raphaël; Serdeczny, Marcin P.; Pedersen, David B.
2018-01-01
-based additive manufacturing, as well as the surface roughness of the fabricated part. Under the assumptions of an isothermal Newtonian fluid and a creeping laminar flow, the deposition flow is controlled by two parameters: the gap distance between the extrusion nozzle and the substrate, and the velocity ratio...
Additive effects of dietary glycotoxins and androgen excess on the kidney of a female rat model
Directory of Open Access Journals (Sweden)
Sotiria Palimeri
2016-06-01
Conclusions: The above mentioned data suggest that dietary glycotoxins, in combination with increased androgen exposure, exert a more profound negative impact on the kidney of an androgenized female rat model that mimics the metabolic characteristics of polycystic ovary syndrome.
Possibilities of Preoperative Medical Models Made by 3D Printing or Additive Manufacturing.
Salmi, Mika
2016-01-01
Most of the 3D printing applications of preoperative models have been focused on dental and craniomaxillofacial area. The purpose of this paper is to demonstrate the possibilities in other application areas and give examples of the current possibilities. The approach was to communicate with the surgeons with different fields about their needs related preoperative models and try to produce preoperative models that satisfy those needs. Ten different kinds of examples of possibilities were selected to be shown in this paper and aspects related imaging, 3D model reconstruction, 3D modeling, and 3D printing were presented. Examples were heart, ankle, backbone, knee, and pelvis with different processes and materials. Software types required were Osirix, 3Data Expert, and Rhinoceros. Different 3D printing processes were binder jetting and material extrusion. This paper presents a wide range of possibilities related to 3D printing of preoperative models. Surgeons should be aware of the new possibilities and in most cases help from mechanical engineering side is needed.
International Nuclear Information System (INIS)
Andersson, M.; Beale, S.B.; Espinoza, M.; Wu, Z.; Lehnert, W.
2016-01-01
on the transport processes inside the porous GDL are extensively discussed. The selection of a computational approach, for the two-phase flow within a GDL or GC, for example, should be based on the computational resources available, concerns about time and scale (microscale, cell scale, stack scale or system scale), as well as accuracy requirements. One important feature, included in some computational approaches, is the possibility to track the front between the liquid and the gas phases. To build a PEFC model, one must make a large number of assumptions. Some assumptions have a negligible effect on the results and reliability of the model. However, other assumptions may significantly affect the result. It is strongly recommended in any modeling paper to clearly state the assumptions being implemented, for others to be able to judge the work. It is important to note that a large fraction of the expressions that presently are used to describe the transport processes inside PEFC GDLs were originally developed to describe significantly different systems, such as sand or rocks. Moreover, the flow pattern maps and pressure drop correlations of two phase flow in micro channels may not be applicable for GCs due to one side wall being porous, with the resulting interaction between the GDL and GC.
In-line monitoring and reverse 3D model reconstruction in additive manufacturing
DEFF Research Database (Denmark)
Pedersen, David Bue; Hansen, Hans Nørgaard; Nielsen, Jakob Skov
2010-01-01
Additive manufacturing allows for close-to unrestrained geometrical freedom in part design. The ability to manufacture geometries of such complexity is however limited by the fact that it proves difficult to verify tolerances of these parts. Tolerancs of featuress that are inaccessible with tradi......Additive manufacturing allows for close-to unrestrained geometrical freedom in part design. The ability to manufacture geometries of such complexity is however limited by the fact that it proves difficult to verify tolerances of these parts. Tolerancs of featuress that are inaccessible...... with traditional measuring equipment such as Coordinate Measurement Machines (CMM's) can not easily be verified. This paradox is addresses by the proposal of an in-line reverse engineering and 3D reconstruction method that alows for a true to scale reconstruction of a part that is being additivelymanufactures on 3...
Krasnoveikin, V. A.; Druzhinin, N. V.; Rubtsov, V. E.; Filippov, A. V.; Tarasov, S. Yu.
2017-12-01
Additive manufacturing is a promising process to develop the multicomponent polymer-matrix composites. The carbon-reinforced versions of such composites possess a low weight and a high specific strength. Here we present the results of studies of numerical and experimental modal analyses of a framework structure made of a composite material by both aforementioned approaches. The numerical test results and those obtained from the laser Doppler vibrometry show the good agreement for several oscillation modes.
Energy Technology Data Exchange (ETDEWEB)
Rao, Rekha R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Celina, Mathias C. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Giron, Nicholas Henry [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Long, Kevin Nicholas [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Russick, Edward M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2015-01-01
We are developing computational models to help understand manufacturing processes, final properties and aging of structural foam, polyurethane PMDI. Th e resulting model predictions of density and cure gradients from the manufacturing process will be used as input to foam heat transfer and mechanical models. BKC 44306 PMDI-10 and BKC 44307 PMDI-18 are the most prevalent foams used in structural parts. Experiments needed to parameterize models of the reaction kinetics and the equations of motion during the foam blowing stages were described for BKC 44306 PMDI-10 in the first of this report series (Mondy et al. 2014). BKC 44307 PMDI-18 is a new foam that will be used to make relatively dense structural supports via over packing. It uses a different catalyst than those in the BKC 44306 family of foams; hence, we expect that the reaction kineti cs models must be modified. Here we detail the experiments needed to characteriz e the reaction kinetics of BKC 44307 PMDI-18 and suggest parameters for the model based on these experiments. In additi on, the second part of this report describes data taken to provide input to the preliminary nonlinear visco elastic structural response model developed for BKC 44306 PMDI-10 foam. We show that the standard cu re schedule used by KCP does not fully cure the material, and, upon temperature elevation above 150°C, oxidation or decomposition reactions occur that alter the composition of the foam. These findings suggest that achieving a fully cured foam part with this formulation may be not be possible through therma l curing. As such, visco elastic characterization procedures developed for curing thermosets can provide only approximate material properties, since the state of the material continuously evolves during tests.
DEFF Research Database (Denmark)
Thiessen, K.M.; Andersson, Kasper Grann; Batandjieva, B.
2009-01-01
The Urban Remediation Working Group of the International Atomic Energy Agency's EMRAS (Environmental Modelling for Radiation Safety) program was organized to address issues of remediation assessment modelling for urban areas contaminated with dispersed radionuclides. The present paper describes t...
Blower, Sally; Go, Myong-Hyun
2011-01-01
Abstract Mathematical models are useful tools for understanding and predicting epidemics. A recent innovative modeling study by Stehle and colleagues addressed the issue of how complex models need to be to ensure accuracy. The authors collected data on face-to-face contacts during a two-day conference. They then constructed a series of dynamic social contact networks, each of which was used to model an epidemic generated by a fast-spreading airborne pathogen. Intriguingly, Stehle and colleagu...
Energy Technology Data Exchange (ETDEWEB)
Shah, N. K. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Park, W. Y. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Gerke, B. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
2017-08-30
, the highest-efficiency RAC models employ the low-GWP refrigerants R-32 or R-290. • RACs are available in most regions and worldwide that surpass the highest efficiency levels recognized by labeling programs. • Fixed-speed RACs using high-GWP and ozone-depleting R-22 refrigerant still dominate the market in many emerging economies. There is significant scope to improve RAC efficiency and transition to low-GWP refrigerants using commercially available technology and to design market-transformation programs for high-efficiency, low-GWP equipment including standards, labeling, procurement, and incentive programs.
DEFF Research Database (Denmark)
Torto, Lorenzo; Cester, Andrea; Rizzo, Antonio
2017-01-01
We developed an improved model to fit the photocurrent density versus voltage in organic solar cells. The model has been validated by fitting data from P3HT:PCBM solar cells. Our model quantitatively accounts for the band bending near the electrodes caused by charge accumulation in the active layer...
Stauffer, Reto; Mayr, Georg J; Messner, Jakob W; Umlauf, Nikolaus; Zeileis, Achim
2017-06-15
Flexible spatio-temporal models are widely used to create reliable and accurate estimates for precipitation climatologies. Most models are based on square root transformed monthly or annual means, where a normal distribution seems to be appropriate. This assumption becomes invalid on a daily time scale as the observations involve large fractions of zero observations and are limited to non-negative values. We develop a novel spatio-temporal model to estimate the full climatological distribution of precipitation on a daily time scale over complex terrain using a left-censored normal distribution. The results demonstrate that the new method is able to account for the non-normal distribution and the large fraction of zero observations. The new climatology provides the full climatological distribution on a very high spatial and temporal resolution, and is competitive with, or even outperforms existing methods, even for arbitrary locations.
Finite element modeling of deposition of ceramic material during SLM additive manufacturing
Directory of Open Access Journals (Sweden)
Chen Qiang
2016-01-01
Full Text Available A three dimensional model for material deposition in Selective Laser Melting (SLM with application to Al2O3-ZrO2 eutectic ceramic is presented. As the material is transparent to laser, dopants are added to increase the heat absorption efficiency. Based on Beer-Lambert law, a volumetric heat source model taking into account the material absorption is derived. The Level Set method with multiphase homogenization is used to track the shape of deposed bead and the thermodynamic is coupled to calculate the melting-solidification path. The shrinkage during consolidation from powder to compact medium is modeled by a compressible Newtonian constitutive law. A semi-implicit formulation of surface tension is used, which permits a stable resolution to capture the gas-liquid interface. The formation of droplets is obtained and slight waves of melt pool are observed. The influence of different process parameters on temperature distribution, melt pool profiles and bead shapes is discussed.
O'Connor, Richard J; Flaherty, Brian P; Quinio Edwards, Beth; Kozlowski, Lynn T
2003-08-01
Tomar analyzed the CDC's Teenage Attitudes and Practices Survey (TAPS) and reported smokeless tobacco may act as a starter product for or gateway to cigarettes. Regular smokeless tobacco users at baseline were said to be 3.45 times more likely than never users of smokeless tobacco to become cigarette smokers after 4 years (95% CI=1.84-6.47). However, this analysis did not take into account well-known psychosocial predictors of smoking initiation. We reanalyzed TAPS to assess whether including psychosocial predictors of smoking affected the smokeless tobacco gateway effect. Experimenting with smoking, OR=2.09 (95% CI=1.51-2.90); below average school performance, OR=9.32 (95% CI=4.18-20.77); household members smoking, OR=1.49 (95% CI=1.13-1.95); frequent depressive symptoms, OR=2.19 (95% CI=1.25-3.84); fighting, OR=1.48 (95% CI=1.08-2.03); and motorcycle riding, OR=1.42 (95% CI=1.06-1.91) diminished the effect of both regular, OR=1.68 (95% CI=.83-3.41), and never regular smokeless tobacco use, OR=1.41 (95% CI=.96-2.05), to be statistically unreliable. Analyzing results from a sample of true never smokers (never a single puff) showed a similar pattern of results. Our results indicate that complex multivariate models are needed to evaluate recruitment to smoking and single factors that are important in that process. Tomar's analysis should not be used as reliable evidence that smokeless tobacco may be a starter product for cigarettes.
DEFF Research Database (Denmark)
Johansen, Per; Rømer, Daniel; Andersen, Torben Ole
2014-01-01
The increasing interest in hydraulic transmissions in wind and wave energy applications has created an incentive for the development of high efficiency fluid power machinery. Modeling and analysis of fluid power machinery loss mechanisms are necessary in order to accommodate this demand. At present...... fully coupled thermo-elastic models has been used to simulate and study loss mechanisms in various tribological interfaces. Consequently, a reasonable focus of further development is to couple the interface models and the rigid body mechanics of fluid power machinery. The focus of the current paper...... is a multibody dynamics model of a radial piston fluid power motor, which connects the rigid bodies through models of the transient hydrodynamic lubrication pressure in the joint clearance. A finite volume approach is used to model the pressure dynamics of the fluid film lubrication. The model structure...
Additive gamma frailty models with applications to competing risks in related individuals
DEFF Research Database (Denmark)
Eriksson, Frank; Scheike, Thomas
2015-01-01
Epidemiological studies of related individuals are often complicated by the fact that follow-up on the event type of interest is incomplete due to the occurrence of other events. We suggest a class of frailty models with cause-specific hazards for correlated competing events in related individual...
Additional disinfection with a modified salt solution in a root canal model
van der Waal, S.V.; Oonk, C.A.M.; Nieman, S.H.; Wesselink, P.R.; de Soet, J.J.; Crielaard, W.
2015-01-01
Objectives The aim of this study is to investigate the disinfecting properties of a modified salt solution (MSS) and calcium hydroxide (Ca(OH)2) in a non-direct-contact ex-vivo model. Methods Seventy-four single-canal roots infected with Enterococcus faecalis were treated with 1% sodium hypochlorite
Teeling, M.V.M.T.; Turrin, M.; de Ruiter, P.; Turrin, Michela; Peters, Brady; O'Brien, William; Stouffs, Rudi; Dogan, Timur
2017-01-01
This paper presents a parametric approach to an integrated and performance-oriented design, from the conceptual design phase towards materialization. The novelty occurs in the use of parametric models as a way of integrating multidisciplinary design constraints, from daylight optimization to the
Hoh, C Y; Cord-Ruwisch, R
1996-09-05
The classical Michaelis-Menten model is widely used as the basis for modeling of a number of biological systems. As the model does not consider the inhibitory effect of endproducts that accumulate in virtually all bioprocesses, it is often modified to prevent the overestimation of reaction rates when products have accumulated. Traditional approaches of model modification use the inclusion of irreversible, competitive, and noncompetitive inhibition factors. This article demonstrates that these inhibition factors are insufficient to predict product inhibition of reactions that are close the dynamic equilibrium. All models investigated were found to violate thermodynamic laws as they predicted positive reaction rates for reactions that were endergonic due to high endproduct concentrations. For modeling of biological processes that operate close to the dynamic equilibrium (e.g., anaerobic processes), it is critical to prevent the prediction of positive reaction rates when the reaction has already reached the dynamic equilibrium. This can be achieved by using a reversible kinetic model. However, the major drawback of the reversible kinetic model is the large number of empirical parameters it requires. These parameters are difficult to determine and prone to experimental error. For this reason, the reversible model is not practical in the modeling of biological processes.This article uses the fundamentals of steady-state kinetics and thermodynamics to establish an equation for the reversible kinetic model that is of practical use in bio-process modeling. The behavior of this equilibrium-based model is compared with Michaelis-Menten-based models that use traditional inhibition factors. The equilibrium-based model did not require any empirical inhibition factor to correctly predict when reaction rates must be zero due to the free energy change being zero. For highly exergonic reactions, the equilibrium-based model did not deviate significantly from the Michaelis
Lindblom, Erik; Press-Kristensen, Kåre; Vanrolleghem, Peter A; Mikkelsen, Peter S; Henze, Mogens
2009-07-01
The perspective of this work is to develop a model, which can be used to better understand and optimize wastewater treatment plants that are able to remove xenobiotic organic compounds (XOCs) in combination with removal of traditional pollutants. Results from dynamic experiments conducted with the endocrine disrupting XOC bisphenol-A (BPA) in an activated sludge process with real wastewater were used to hypothesize an ASM-based process model including aerobic growth of a specific BPA-degrading microorganism and sorption of BPA to sludge. A parameter estimation method was developed, which simultaneously utilizes steady-state background concentrations and dynamic step response data, as well as conceptual simplifications of the plant configuration. Validation results show that biodegradation of BPA is sensitive to operational conditions before and during the experiment and that the proposed model structure is capable of capturing important characteristics of the observed BPA removal, thus increasing the potential for generalizing knowledge obtained from plant specific experiments.
Dogn, Li-hu; Li, Feng-ri; Song, Yu-wen
2015-03-01
Based on the biomass data of 276 sampling trees of Pinus koraiensis, Abies nephrolepis, Picea koraiensis and Larix gmelinii, the mono-element and dual-element additive system of biomass equations for the four conifer species was developed. The model error structure (additive vs. multiplicative) of the allometric equation was evaluated using the likelihood analysis, while nonlinear seemly unrelated regression was used to estimate the parameters in the additive system of biomass equations. The results indicated that the assumption of multiplicative error structure was strongly supported for the biomass equations of total and tree components for the four conifer species. Thus, the