WorldWideScience

Sample records for models il-22 induces

  1. IL22/IL-22R pathway induces cell survival in human glioblastoma cells.

    Directory of Open Access Journals (Sweden)

    Hussein Akil

    Full Text Available Interleukin-22 (IL-22 is a member of the IL-10 cytokine family that binds to a heterodimeric receptor consisting of IL-22 receptor 1 (IL-22R1 and IL-10R2. IL-22R expression was initially characterized on epithelial cells, and plays an essential role in a number of inflammatory diseases. Recently, a functional receptor was detected on cancer cells such as hepatocarcinoma and lung carcinoma, but its presence was not reported in glioblastoma (GBM. Two GBM cell lines and 10 primary cell lines established from patients undergoing surgery for malignant GBM were used to investigate the expression of IL-22 and IL-22R by using quantitative RT-PCR, western blotting and confocal microscopy studies. The role of IL-22 in proliferation and survival of GBM cell lines was investigated in vitro by BrdU and ELISA cell death assays. We report herein that the two subunits of the IL-22R complex are expressed on human GBM cells. Their activation, depending on exogenous IL-22, induced antiapoptotic effect and cell proliferation. IL-22 treatment of GBM cells resulted in increased levels of phosphorylated Akt, STAT3 signaling protein and its downstream antiapoptotic protein Bcl-xL and decreased level of phosphorylated ERK1/2. In addition, IL-22R subunits were expressed in all the 10 tested primary cell lines established from GBM tumors. Our results showed that IL-22R is expressed on GBM established and primary cell lines. Depending on STAT3, ERK1/2 and PI3K/Akt pathways, IL-22 induced GBM cell survival. These data are consistent with a potential role of IL-22R in tumorigenesis of GBM. Since endogenous IL-22 was not detected in all studied GBM cells, we hypothesize that IL-22R could be activated by immune microenvironmental IL-22 producing cells.

  2. IL-22R Ligands IL-20, IL-22, and IL-24 Promote Wound Healing in Diabetic db/db Mice.

    Science.gov (United States)

    Kolumam, Ganesh; Wu, Xiumin; Lee, Wyne P; Hackney, Jason A; Zavala-Solorio, Jose; Gandham, Vineela; Danilenko, Dimitry M; Arora, Puneet; Wang, Xiaoting; Ouyang, Wenjun

    2017-01-01

    Diabetic foot ulcers (DFU) are one of the major complications in type II diabetes patients and can result in amputation and morbidity. Although multiple approaches are used clinically to help wound closure, many patients still lack adequate treatment. Here we show that IL-20 subfamily cytokines are upregulated during normal wound healing. While there is a redundant role for each individual cytokine in this subfamily in wound healing, mice deficient in IL-22R, the common receptor chain for IL-20, IL-22, and IL-24, display a significant delay in wound healing. Furthermore, IL-20, IL-22 and IL-24 are all able to promote wound healing in type II diabetic db/db mice. Mechanistically, when compared to other growth factors such as VEGF and PDGF that accelerate wound healing in this model, IL-22 uniquely induced genes involved in reepithelialization, tissue remodeling and innate host defense mechanisms from wounded skin. Interestingly, IL-22 treatment showed superior efficacy compared to PDGF or VEGF in an infectious diabetic wound model. Taken together, our data suggest that IL-20 subfamily cytokines, particularly IL-20, IL-22, and IL-24, might provide therapeutic benefit for patients with DFU.

  3. Structure of IL-22 Bound to Its High-Affinity IL-22R1 Chain

    Energy Technology Data Exchange (ETDEWEB)

    Jones, B.C.; Logsdon, N.J.; Walter, M.R. (UAB)

    2008-09-29

    IL-22 is an IL-10 family cytokine that initiates innate immune responses against bacterial pathogens and contributes to immune disease. IL-22 biological activity is initiated by binding to a cell-surface complex composed of IL-22R1 and IL-10R2 receptor chains and further regulated by interactions with a soluble binding protein, IL-22BP, which shares sequence similarity with an extracellular region of IL-22R1 (sIL-22R1). IL-22R1 also pairs with the IL-20R2 chain to induce IL-20 and IL-24 signaling. To define the molecular basis of these diverse interactions, we have determined the structure of the IL-22/sIL-22R1 complex. The structure, combined with homology modeling and surface plasmon resonance studies, defines the molecular basis for the distinct affinities and specificities of IL-22 and IL-10 receptor chains that regulate cellular targeting and signal transduction to elicit effective immune responses.

  4. IL-22 is required for Th17 cell-mediated pathology in a mouse model of psoriasis-like skin inflammation.

    Science.gov (United States)

    Ma, Hak-Ling; Liang, Spencer; Li, Jing; Napierata, Lee; Brown, Tom; Benoit, Stephen; Senices, Mayra; Gill, Davinder; Dunussi-Joannopoulos, Kyriaki; Collins, Mary; Nickerson-Nutter, Cheryl; Fouser, Lynette A; Young, Deborah A

    2008-02-01

    Psoriasis is a chronic skin disease resulting from the dysregulated interplay between keratinocytes and infiltrating immune cells. We report on a psoriasis-like disease model, which is induced by the transfer of CD4(+)CD45RB(hi)CD25(-) cells to pathogen-free scid/scid mice. Psoriasis-like lesions had elevated levels of antimicrobial peptide and proinflammatory cytokine mRNA. Also, similar to psoriasis, disease progression in this model was dependent on the p40 common to IL-12 and IL-23. To investigate the role of IL-22, a Th17 cytokine, in disease progression, mice were treated with IL-22-neutralizing antibodies. Neutralization of IL-22 prevented the development of disease, reducing acanthosis (thickening of the skin), inflammatory infiltrates, and expression of Th17 cytokines. Direct administration of IL-22 into the skin of normal mice induced both antimicrobial peptide and proinflammatory cytokine gene expression. Our data suggest that IL-22, which acts on keratinocytes and other nonhematopoietic cells, is required for development of the autoreactive Th17 cell-dependent disease in this model of skin inflammation. We propose that IL-22 antagonism might be a promising therapy for the treatment of human psoriasis.

  5. IL-17a and IL-22 Induce Expression of Antimicrobials in Gastrointestinal Epithelial Cells and May Contribute to Epithelial Cell Defense against Helicobacter pylori.

    Directory of Open Access Journals (Sweden)

    Beverly R E A Dixon

    Full Text Available Helicobacter pylori colonization of the human stomach can lead to adverse clinical outcomes including gastritis, peptic ulcers, or gastric cancer. Current data suggest that in addition to bacterial virulence factors, the magnitude and types of immune responses influence the outcome of colonization. Specifically, CD4+ T cell responses impact the pathology elicited in response to H. pylori. Because gastritis is believed to be the initiating host response to more detrimental pathological outcomes, there has been a significant interest in pro-inflammatory T cell cytokines, including the cytokines produced by T helper 17 cells. Th17 cells produce IL-17A, IL-17F, IL-21 and IL-22. While these cytokines have been linked to inflammation, IL-17A and IL-22 are also associated with anti-microbial responses and control of bacterial colonization. The goal of this research was to determine the role of IL-22 in activation of antimicrobial responses in models of H. pylori infection using human gastric epithelial cell lines and the mouse model of H. pylori infection. Our data indicate that IL-17A and IL-22 work synergistically to induce antimicrobials and chemokines such as IL-8, components of calprotectin (CP, lipocalin (LCN and some β-defensins in both human and primary mouse gastric epithelial cells (GEC and gastroids. Moreover, IL-22 and IL-17A-activated GECs were capable of inhibiting growth of H. pylori in vitro. While antimicrobials were activated by IL-17A and IL-22 in vitro, using a mouse model of H. pylori infection, the data herein indicate that IL-22 deficiency alone does not render mice more susceptible to infection, change their antimicrobial gene transcription, or significantly change their inflammatory response.

  6. IL-22 is required for Th17 cell–mediated pathology in a mouse model of psoriasis-like skin inflammation

    Science.gov (United States)

    Ma, Hak-Ling; Liang, Spencer; Li, Jing; Napierata, Lee; Brown, Tom; Benoit, Stephen; Senices, Mayra; Gill, Davinder; Dunussi-Joannopoulos, Kyriaki; Collins, Mary; Nickerson-Nutter, Cheryl; Fouser, Lynette A.; Young, Deborah A.

    2008-01-01

    Psoriasis is a chronic skin disease resulting from the dysregulated interplay between keratinocytes and infiltrating immune cells. We report on a psoriasis-like disease model, which is induced by the transfer of CD4+CD45RBhiCD25– cells to pathogen-free scid/scid mice. Psoriasis-like lesions had elevated levels of antimicrobial peptide and proinflammatory cytokine mRNA. Also, similar to psoriasis, disease progression in this model was dependent on the p40 common to IL-12 and IL-23. To investigate the role of IL-22, a Th17 cytokine, in disease progression, mice were treated with IL-22–neutralizing antibodies. Neutralization of IL-22 prevented the development of disease, reducing acanthosis (thickening of the skin), inflammatory infiltrates, and expression of Th17 cytokines. Direct administration of IL-22 into the skin of normal mice induced both antimicrobial peptide and proinflammatory cytokine gene expression. Our data suggest that IL-22, which acts on keratinocytes and other nonhematopoietic cells, is required for development of the autoreactive Th17 cell–dependent disease in this model of skin inflammation. We propose that IL-22 antagonism might be a promising therapy for the treatment of human psoriasis. PMID:18202747

  7. IL-22/STAT3-Induced Increases in SLURP1 Expression within Psoriatic Lesions Exerts Antimicrobial Effects against Staphylococcus aureus.

    Directory of Open Access Journals (Sweden)

    Yasuhiro Moriwaki

    Full Text Available SLURP1 is the causal gene for Mal de Meleda (MDM, an autosomal recessive skin disorder characterized by diffuse palmoplantar keratoderma and transgressive keratosis. Moreover, although SLURP1 likely serves as an important proliferation/differentiation factor in keratinocytes, the possible relation between SLURP1 and other skin diseases, such as psoriasis and atopic dermatitis, has not been studied, and the pathophysiological control of SLURP1 expression in keratinocytes is largely unknown.Our aim was to examine the involvement of SLURP1 in the pathophysiology of psoriasis using an imiquimod (IMQ-induced psoriasis model mice and normal human epidermal keratinocytes (NHEKs.SLURP1 expression was up-regulated in the skin of IMQ-induced psoriasis model mice. In NHEKs stimulated with the inflammatory cytokines IL-17, IL-22 and TNF-α, which are reportedly expressed in psoriatic lesions, SLURP1 mRNA expression was significantly up-regulated by IL-22 but not the other two cytokines. The stimulatory effect of IL-22 was completely suppressed in NHEKs treated with a STAT3 inhibitor or transfected with siRNA targeting STAT3. Because IL-22 induces production of antimicrobial proteins in epithelial cells, the antibacterial activity of SLURP1 was assessed against Staphylococcus aureus (S. aureus, which is known to be associated with disease severity in psoriasis. SLURP1 significantly suppressed the growth of S. aureus.These results indicate SLURP1 participates in pathophysiology of psoriasis by regulating keratinocyte proliferation and differentiation, and by suppressing the growth of S. aureus.

  8. Interleukin (IL)-23 mediates Toxoplasma gondii-induced immunopathology in the gut via matrixmetalloproteinase-2 and IL-22 but independent of IL-17

    DEFF Research Database (Denmark)

    Muñoz, Melba; Heimesaat, Markus M; Danker, Kerstin

    2009-01-01

    Peroral infection with Toxoplasma gondii leads to the development of small intestinal inflammation dependent on Th1 cytokines. The role of Th17 cells in ileitis is unknown. We report interleukin (IL)-23-mediated gelatinase A (matrixmetalloproteinase [MMP]-2) up-regulation in the ileum of infected...... mice. MMP-2 deficiency as well as therapeutic or prophylactic selective gelatinase blockage protected mice from the development of T. gondii-induced immunopathology. Moreover, IL-23-dependent up-regulation of IL-22 was essential for the development of ileitis, whereas IL-17 was down...

  9. Though active on RINm5F insulinoma cells and cultured pancreatic islets, recombinant IL-22 fails to modulate cytotoxicity and disease in a protocol of streptozotocin-induced experimental diabetes.

    Directory of Open Access Journals (Sweden)

    Anika eBerner

    2016-01-01

    Full Text Available Interleukin (IL-22 is a cytokine displaying tissue protective and pro-regenerative functions in various preclinical disease models. Anti-bacterial, pro-proliferative, and anti-apoptotic properties mediated by activation of the transcription factor signal transducer and activator of transcription (STAT-3 are key to biological functions of this IL-10 family member. Herein, we introduce RINm5F insulinoma cells as rat ß-cell line that, under the influence of IL-22, displays activation of STAT3 with induction of its downstream gene targets Socs3, Bcl3, and Reg3ß. In addition, IL-22 also activates STAT1 in this cell type. To refine those observations, IL-22 biological activity was evaluated using ex vivo cultivated murine pancreatic islets. In accord with data on RINm5F cells, islet exposure to IL-22 activated STAT3 and upregulation of STAT3-inducible Socs3, Bcl3, and STEAP4 was evident under those conditions. As these observations supported the hypothesis that IL-22 may exert protective functions in toxic ß-cell injury, application of IL-22 was investigated in murine multiple-low-dose streptozotocin (STZ-induced diabetes. For that purpose, recombinant IL-22 was administered thrice either immediately before and at disease onset (at d4, d6, d8 or closely thereafter (at d8, d10, d12. These two IL-22-treatment periods coincide with two early peaks of ß-cell injury detectable in this model. Notably, none of the two IL-22-treatment strategies affected diabetes incidence or blood glucose levels in STZ-treated mice. Moreover, pathological changes in islet morphology analyzed 28 days after disease induction were not ameliorated by IL-22 administration. Taken together, despite being active on rat RINm5F insulinoma cells and murine pancreatic islets, recombinant IL-22 fails to protect pancreatic ß-cells in the tested protocols from toxic effects of STZ and thus is unable to ameliorate disease in the widely used model of STZ-induced diabetes.

  10. Lacrimal gland-derived IL-22 regulates IL-17-mediated ocular mucosal inflammation

    Science.gov (United States)

    Ji, Yong Woo; Mittal, Sharad K.; Hwang, Ho Sik; Chang, Eun-Ju; Lee, Joon H.; Seo, Yuri; Yeo, Areum; Noh, Hyemi; Lee, Hye Sun; Chauhan, Sunil K.; Lee, Hyung Keun

    2016-01-01

    Inflammatory damage of mucosal surface of the eye is a hallmark of dry eye disease (DED), and in severe cases can lead to significant discomfort, visual impairment, and blindness. DED is a multifactorial autoimmune disorder with a largely unknown pathogenesis. Using a cross-sectional patient study and a well-characterized murine model of DED, herein we investigated the immunoregulatory function of interleukin-22 (IL-22) in the pathogenesis of DED. We found that IL-22 levels were elevated in lacrimal fluids of DED patients and inversely correlated with severity of disease. Acinar cells of the lacrimal glands, not inflammatory immune cells, are the primary source of IL-22, which suppresses inflammation in ocular surface epithelial cells upon desiccating stress. Moreover, loss of function analyses using IL-22 knock-out mice demonstrated that IL-22 is essential for suppression of ocular surface infiltration of Th17 cells and inhibition of DED induction. Our novel findings elucidate immunoregulatory function of lacrimal gland-derived IL-22 in inhibiting IL-17-mediated ocular surface epitheliopathy in DED thus making IL-22 a new relevant therapeutic target. PMID:28051088

  11. Intestinal Epithelial Cell Tyrosine Kinase 2 Transduces IL-22 Signals To Protect from Acute Colitis.

    Science.gov (United States)

    Hainzl, Eva; Stockinger, Silvia; Rauch, Isabella; Heider, Susanne; Berry, David; Lassnig, Caroline; Schwab, Clarissa; Rosebrock, Felix; Milinovich, Gabriel; Schlederer, Michaela; Wagner, Michael; Schleper, Christa; Loy, Alexander; Urich, Tim; Kenner, Lukas; Han, Xiaonan; Decker, Thomas; Strobl, Birgit; Müller, Mathias

    2015-11-15

    In the intestinal tract, IL-22 activates STAT3 to promote intestinal epithelial cell (IEC) homeostasis and tissue healing. The mechanism has remained obscure, but we demonstrate that IL-22 acts via tyrosine kinase 2 (Tyk2), a member of the Jak family. Using a mouse model for colitis, we show that Tyk2 deficiency is associated with an altered composition of the gut microbiota and exacerbates inflammatory bowel disease. Colitic Tyk2(-/-) mice have less p-STAT3 in colon tissue and their IECs proliferate less efficiently. Tyk2-deficient primary IECs show reduced p-STAT3 in response to IL-22 stimulation, and expression of IL-22-STAT3 target genes is reduced in IECs from healthy and colitic Tyk2(-/-) mice. Experiments with conditional Tyk2(-/-) mice reveal that IEC-specific depletion of Tyk2 aggravates colitis. Disease symptoms can be alleviated by administering high doses of rIL-22-Fc, indicating that Tyk2 deficiency can be rescued via the IL-22 receptor complex. The pivotal function of Tyk2 in IL-22-dependent colitis was confirmed in Citrobacter rodentium-induced disease. Thus, Tyk2 protects against acute colitis in part by amplifying inflammation-induced epithelial IL-22 signaling to STAT3. Copyright © 2015 by The American Association of Immunologists, Inc.

  12. Interleukin-22 Inhibits Bleomycin-Induced Pulmonary Fibrosis

    Directory of Open Access Journals (Sweden)

    Minrui Liang

    2013-01-01

    Full Text Available Pulmonary fibrosis is a progressive and fatal fibrotic disease of the lungs with unclear etiology. Recent insight has suggested that early injury/inflammation of alveolar epithelial cells could lead to dysregulation of tissue repair driven by multiple cytokines. Although dysregulation of interleukin- (IL- 22 is involved in various pulmonary pathophysiological processes, the role of IL-22 in fibrotic lung diseases is still unclear and needs to be further addressed. Here we investigated the effect of IL-22 on alveolar epithelial cells in the bleomycin- (BLM- induced pulmonary fibrosis. BLM-treated mice showed significantly decreased level of IL-22 in the lung. IL-22 produced γδT cells were also decreased significantly both in the tissues of lungs and spleens. Administration of recombinant human IL-22 to alveolar epithelial cell line A549 cells ameliorated epithelial to mesenchymal transition (EMT and partially reversed the impaired cell viability induced by BLM. Furthermore, blockage of IL-22 deteriorated pulmonary fibrosis, with elevated EMT marker (α-smooth muscle actin (α-SMA and overactivated Smad2. Our results indicate that IL-22 may play a protective role in the development of BLM-induced pulmonary fibrosis and may suggest IL-22 as a novel immunotherapy tool in treating pulmonary fibrosis.

  13. Polycyclic aromatic hydrocarbons reciprocally regulate IL-22 and IL-17 cytokines in peripheral blood mononuclear cells from both healthy and asthmatic subjects.

    Directory of Open Access Journals (Sweden)

    Coline Plé

    Full Text Available Pollution, including polycyclic aromatic hydrocarbons (PAH, may contribute to increased prevalence of asthma. PAH can bind to the Aryl hydrocarbon Receptor (AhR, a transcription factor involved in Th17/Th22 type polarization. These cells produce IL17A and IL-22, which allow neutrophil recruitment, airway smooth muscle proliferation and tissue repair and remodeling. Increased IL-17 and IL-22 productions have been associated with asthma. We hypothesized that PAH might affect, through their effects on AhR, IL-17 and IL-22 production in allergic asthmatics. Activated peripheral blood mononuclear cells (PBMCs from 16 nonallergic nonasthmatic (NA and 16 intermittent allergic asthmatic (AA subjects were incubated with PAH, and IL-17 and IL-22 productions were assessed. At baseline, activated PBMCs from AA exhibited an increased IL-17/IL-22 profile compared with NA subjects. Diesel exhaust particle (DEP-PAH and Benzo[a]Pyrene (B[a]P stimulation further increased IL-22 but decreased IL-17A production in both groups. The PAH-induced IL-22 levels in asthmatic patients were significantly higher than in healthy subjects. Among PBMCs, PAH-induced IL-22 expression originated principally from single IL-22- but not from IL-17- expressing CD4 T cells. The Th17 transcription factors RORA and RORC were down regulated, whereas AhR target gene CYP1A1 was upregulated. IL-22 induction by DEP-PAH was mainly dependent upon AhR whereas IL-22 induction by B[a]P was dependent upon activation of PI3K and JNK. Altogether, these data suggest that DEP-PAH and B[a]P may contribute to increased IL22 production in both healthy and asthmatic subjects through mechanisms involving both AhR -dependent and -independent pathways.

  14. Fiber-Mediated Nourishment of Gut Microbiota Protects against Diet-Induced Obesity by Restoring IL-22-Mediated Colonic Health.

    Science.gov (United States)

    Zou, Jun; Chassaing, Benoit; Singh, Vishal; Pellizzon, Michael; Ricci, Matthew; Fythe, Michael D; Kumar, Matam Vijay; Gewirtz, Andrew T

    2018-01-10

    Dietary supplementation with fermentable fiber suppresses adiposity and the associated parameters of metabolic syndrome. Microbiota-generated fiber-derived short-chain fatty acids (SCFAs) and free fatty acid receptors including GPR43 are thought to mediate these effects. We find that while fermentable (inulin), but not insoluble (cellulose), fiber markedly protected mice against high-fat diet (HFD)-induced metabolic syndrome, the effect was not significantly impaired by either inhibiting SCFA production or genetic ablation of GPR43. Rather, HFD decimates gut microbiota, resulting in loss of enterocyte proliferation, leading to microbiota encroachment, low-grade inflammation (LGI), and metabolic syndrome. Enriching HFD with inulin restored microbiota loads, interleukin-22 (IL-22) production, enterocyte proliferation, and antimicrobial gene expression in a microbiota-dependent manner, as assessed by antibiotic and germ-free approaches. Inulin-induced IL-22 expression, which required innate lymphoid cells, prevented microbiota encroachment and protected against LGI and metabolic syndrome. Thus, fermentable fiber protects against metabolic syndrome by nourishing microbiota to restore IL-22-mediated enterocyte function. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Endogenous IL-22 Plays a Dual Role in Arthritis: Regulation of Established Arthritis via IFN-γ Responses

    Science.gov (United States)

    Justa, Shivali; Zhou, Xiaoqun; Sarkar, Sujata

    2014-01-01

    Objective IL-22 is elevated in patients with inflammatory arthritis and correlates with disease activity. IL-22 deficient mice have reduced incidence of arthritis. Recombinant IL-22 restrains progression of arthritis via increase in IL-10 responses when administered prior to onset of arthritis. These findings imply a possible dual role of IL-22 in inflammatory arthritis depending on the phase of arthritis. Experiments outlined here were designed to elucidate the contribution of endogenous IL-22 before and after the onset of arthritis. Methods Collagen induced arthritis (CIA) was induced in DBA1 or IFN-γ deficient mice following immunization with collagen and complete Freund's adjuvant. Anti-IL-22 antibody or isotype control were administered prior to or after onset of arthritis and disease progression assessed by clinical scoring and histopathology. IL-22, IL-17 and IFN-γ responses were measured by ELISA and flowcytometry. Anti-collagen antibody responses were analyzed by ELISA. Expression of IL-22R1 in CD4+ cells was elucidated by flowcytometry and real time PCR. Results Collagen specific IL-22 responses were expanded during arthritis and IL-22 producing cells were discrete from IL-17 or IFN-γ producing cells. Neutralization of IL-22 after onset of arthritis resulted in significant increase in Th1 responses and significantly reduced severity of arthritis. CD4+ cells from arthritic mice showed increased surface expression of IL-22R1. In vitro, CD4+T cells cultured with antigen presenting cells in the presence or absence of IL-22 suppressed or induced IFN-γ, respectively. The protective effect of anti-IL-22 was reversed in IFN-γ deficient mice. Moreover, administration of anti-IL-22 prior to onset of arthritis augmented arthritis severity. Conclusion We show for the first time that IL-22 plays a dual role: protective prior to the onset of arthritis and pathogenic after onset of arthritis. The pathogenic effect of IL-22 is dependent on suppression of IFN

  16. The balance between IL-17 and IL-22 produced by liver-infiltrating T-helper cells critically controls NASH development in mice.

    Science.gov (United States)

    Rolla, Simona; Alchera, Elisa; Imarisio, Chiara; Bardina, Valentina; Valente, Guido; Cappello, Paola; Mombello, Cristina; Follenzi, Antonia; Novelli, Francesco; Carini, Rita

    2016-02-01

    The mechanisms responsible for the evolution of steatosis towards NASH (non-alcoholic steatohepatitis) and fibrosis are not completely defined. In the present study we evaluated the role of CD4(+) T-helper (Th) cells in this process. We analysed the infiltration of different subsets of CD4(+) Th cells in C57BL/6 mice fed on a MCD (methionine choline-deficient) diet, which is a model reproducing all phases of human NASH progression. There was an increase in Th17 cells at the beginning of NASH development and at the NASH-fibrosis transition, whereas levels of Th22 cells peaked between the first and the second expansion of Th17 cells. An increase in the production of IL (interleukin)-6, TNFα (tumour necrosis factor α), TGFβ (transforming growth factor β) and CCL20 (CC chemokine ligand 20) accompanied the changes in Th17/Th22 cells. Livers of IL-17(-/-) mice were protected from NASH development and characterized by an extensive infiltration of Th22 cells. In vitro, IL-17 exacerbated the JNK (c-Jun N-terminal kinase)-dependent mouse hepatocyte lipotoxicity induced by palmitate. IL-22 prevented lipotoxicity through PI3K (phosphoinositide 3-kinase)-mediated inhibition of JNK, but did not play a protective role in the presence of IL-17, which up-regulated the PI3K/Akt inhibitor PTEN (phosphatase and tensin homologue deleted on chromosome 10). Consistently, livers of IL-17(-/-) mice fed on the MCD diet displayed decreased activation of JNK, reduced expression of PTEN and increased phosphorylation of Akt compared with livers of wild-type mice. Hepatic infiltration of Th17 cells is critical for NASH initiation and development of fibrosis in mice, and reflects an infiltration of Th22 cells. Th22 cells are protective in NASH, but only in the absence of IL-17. These data strongly support the potentiality of clinical applications of IL-17 inhibitors that can prevent NASH by both abolishing the lipotoxic action of IL-17 and allowing IL-22-mediated protection. © 2016 Authors

  17. Cytokines (interleukin-9, IL-17, IL-22, IL-25 and IL-33 and asthma

    Directory of Open Access Journals (Sweden)

    Rahim Farahani

    2014-01-01

    Full Text Available Asthma is a reversible airway obstruction that is characterized by constriction of airway smooth muscle, hyper secretion of mucus, edema and airway hyper responsiveness (AHR, mucus secretion and thickening of the basement membrane underlying the airway epithelium. During the process of airway inflammation, complex interactions of innate and adaptive immune cells as well as structural cells and their cytokines have many important roles. It was believed that airway inflammation is orchestrated by allergen specific T helper (Th 2 cells, which recruit and accumulate in the lungs and produce a range of different effector cytokines. However, more recent studies have revealed the potential collaboration of other helper T cells and their cytokines in this process. Th17 cell may have a role in severe asthma and chronic obstructive pulmonary disease (COPD. Interleukin (IL-9-producing subset called Th9 cell, Th22 cells which primarily secrete IL-22, IL-13 and tumor necrosis factor-α and Th25 cells via producing IL-25 are believed to be important for initiating allergic reactions and developing airway inflammation. Cytokines are important in asthma and play a critical role in orchestrating the allergic inflammatory response, although the precise role of each cytokine remains to be determined. The aim of this review is to summarize the current knowledge about the possible roles of newly identified helper T cells derived cytokines (IL-9, 17, 22, 25 and IL-33 in asthma. The potential therapeutic applications emerging from the roles of these cytokines will be discussed as well.

  18. Pro-inflammatory signaling by IL-10 and IL-22: bad habit stirred up by interferons ?

    Directory of Open Access Journals (Sweden)

    Heiko eMühl

    2013-02-01

    Full Text Available Interleukin (IL-10 and IL-22 are key members of the IL-10 cytokine family that share characteristic properties such as defined structural features, usage of IL-10R2 as one receptor chain, and activation of signal transducer and activator of transcription (STAT-3 as dominant signaling mode. IL-10, formerly known as cytokine synthesis inhibitory factor, is key to deactivation of monocytes/macrophages and dendritic cells. Accordingly, pre-clinical studies document its anti-inflammatory capacity. However, the outcome of clinical trials assessing the therapeutic potential of IL-10 in prototypic inflammatory disorders has been disappointing. In contrast to IL-10, IL-22 acts primarily on non-leukocytic cells, in particular epithelial cells of intestine, skin, liver, and lung. STAT3-driven proliferation, anti-apoptosis, and anti-microbial tissue protection is regarded a principal function of IL-22 at host/environment interfaces. In this hypothesis article, hidden/underappreciated pro-inflammatory characteristics of IL-10 and IL-22 are outlined and related to cellular priming by type I interferon. It is tempting to speculate that an inherent inflammatory potential of IL-10 and IL-22 confines their usage in tissue protective therapy and beyond that determines in some patients efficacy of type I interferon treatment.

  19. IL-22: An Evolutionary Missing-Link Authenticating the Role of the Immune System in Tissue Regeneration

    Directory of Open Access Journals (Sweden)

    Pawan Kumar, Kamalakannan Rajasekaran, Jeanne M Palmer, Monica S Thakar, Subramaniam Malarkannan

    2013-01-01

    Full Text Available Tissue regeneration is a critical component of organ maintenance. The ability of lymphocytes to kill pathogen-infected cells has been well-studied. However, the necessity for lymphocytes to participate in reconstruction of destroyed tissues has not been explored until recently. Interleukin (IL-22, a newly defined cytokine exclusively produced by subsets of lymphocytes, provides the strongest proof yet for the tissue regenerative potentials of the immune system. IL-22 plays an obligatory role in epithelial homeostasis in the gut, liver and lung. The receptor for IL-22 (IL-22R1 and IL-10R2 is predominantly expressed by epithelial cells. While the pro-inflammatory effect is questioned, the pro-constructive potential of IL-22 is well established. It is evident from the response to IL-22, that epithelial cells not only produce anti-microbial peptides but also actively proliferate. Aryl hydrocarbon receptor (AhR and retinoic acid-related orphan receptor (RORγt transcription factor are required for IL-22 generation from Lymphoid Tissue inducer cells LTi, Th22 and NK-like cells. However, IL-22 production from conventional NK cells is independent of AhR and RORγt. In this review, we present a case for a paradigm shift in how we define the function of the immune system. This would include tissue regeneration as a legitimate immune function.

  20. SOCS3 inhibits the pathological effects of IL-22 in non-melanoma skin tumor-derived keratinocytes.

    Science.gov (United States)

    Madonna, Stefania; Scarponi, Claudia; Morelli, Martina; Sestito, Rosanna; Scognamiglio, Pasqualina Liana; Marasco, Daniela; Albanesi, Cristina

    2017-04-11

    Basal cell carcinomas (BCC) and squamous-cell carcinomas (SCC) are common malignancies in humans, caused by neoplastic transformation of keratinocytes of the basal or suprabasal layers of epidermis, respectively. Tumor-infiltrating lymphocytes (TILs) are frequently found in BCC and SCC, and functionally promote epithelial carcinogenesis. TILs secreting IL-22, in particular, participate to BCC and SCC growth by inducing keratinocyte proliferation and migration, as well as the expression of inflammatory, anti-apoptotic and pro-angiogenic genes.In this study, we identified SOCS3 as a valid candidate to be manipulated for suppressing tumorigenic functions in BCC and SCC. We found that SOCS3 and SOCS1 expression was reduced in vivo, in tumor lesions of BCC and SCC, as compared to other skin inflammatory conditions such as psoriasis, despite the high number of IL-22-secreting TILs. Moreover, IL-22 was not able to induce in vitro the transcriptional expression of SOCS3 in BCC-or SCC-derived keratinocytes, contrarily to healthy cells. Aimed at rescuing SOCS3 activity in these tumor contexts, a SOCS3-derived peptide, named KIR-ESS, was synthesized, and its ability in suppressing IL-22-induced responses was evaluated in healthy and transformed keratinocytes. We found that KIR-ESS peptide efficiently suppressed the IL-22 molecular signaling in keratinocytes, by acting on STAT3 and Erk1/2 cascade, as well as on the expression of STAT3-dependent downstream genes. Interestingly, after treatment with peptide, both healthy and transformed keratinocytes could no longer aberrantly proliferate and migrate in response to IL-22. Finally, treatment of athymic nude mice bearing SCC xenografts with KIR-ESS peptide concomitantly reduced tumor growth and activated STAT3 levels. As a whole, these data provides the rationale for the use in BCC and SCC skin tumors of SOCS3 mimetics, being able to inhibit the deleterious effects of IL-22 in these contexts.

  1. Allergic Rhinitis and Its Relationship with IL-10, IL-17, TGF-β, IFN-γ, IL 22, and IL-35

    Directory of Open Access Journals (Sweden)

    P. Bayrak Degirmenci

    2018-01-01

    Full Text Available Background. We aimed in our study to research the role of new cytokines such as IL-35, IL-22, and IL-17 that may form a target for novel treatment approaches. Methods. IL-10, IL-17, TGF-β, IFN-γ, IL-22, and IL-35 serum levels of allergic rhinitis (AR patients were measured using ELISA method. Allergic sensitization was demonstrated by the skin prick test. Patients only with olive tree sensitivity were evaluated for seasonal AR (SAR. Patients only with mite sensitivity were included in the study for perennial AR (PAR. AR clinic severity was demonstrated by the nasal symptom scores (NSS. Results. In total, 65 AR patients (patient group, having 31 PAR and 34 SAR patients, and 31 healthy individuals (control group participated in the study. Cytokine levels between the patient group and the control group were compared; IL-17 (p=0.038, IL-22 (p=0.001, and TGF-β (p=0.031 were detected as high in the patient group, and IFN-γ (p<0.001 was detected as low in the patient group. When correlation analysis was made between age, gender, prick test result, NSS, AR duration, and cytokine levels in the patient group, a negative correlation was detected only between IFN-γ (p=0.032/r=−0.266 level and NSS. Conclusions. Accompanied by the literature information, these results made us think that T cell subgroups and cytokines have an important role in AR immunopathogenesis. It is thought that future studies to be conducted relating to this subject will form new targets in treatment.

  2. Loss of Dok-1 and Dok-2 in mice causes severe experimental colitis accompanied by reduced expression of IL-17A and IL-22

    International Nuclear Information System (INIS)

    Waseda, Masazumi; Arimura, Sumimasa; Shimura, Eri; Nakae, Susumu; Yamanashi, Yuji

    2016-01-01

    Appropriate immune responses and mucosal barrier functions are required for the maintenance of intestinal homeostasis. Defects in this defense system may lead to inflammatory disorders such as inflammatory bowel disease. Downstream of tyrosine kinases 1 (Dok-1) and its closest homolog, Dok-2, are preferentially expressed in immune cells, and play essential roles in the negative regulation of multiple signaling pathways in both innate and adaptive immunity. However, the function of these proteins in intestinal homeostasis remained unclear. Here we show that Dok-1/-2 double knockout (DKO) mice were highly susceptible to dextran sodium sulfate (DSS)-induced colitis compared with Dok-1 or Dok-2 single KO and wild type (WT) mice. Furthermore, DSS-treated Dok-1/-2 DKO mice exhibited increased colonic tissue damage accompanied by reduced proliferation of the epithelial cells relative to WT controls, suggesting that Dok-1/-2 DKO mice have defects in the repair of intestinal epithelial lesions. In addition, the levels of the Th17 cytokines IL-17A and IL-22, which have protective roles in DSS-induced colitis, were reduced in DSS-treated Dok-1/-2 DKO mice compared with WT mice. Taken together, our results demonstrate that Dok-1 and Dok-2 negatively regulate intestinal inflammation, apparently through the induction of IL-17A and IL-22 expression. - Highlights: • Dok-1 and Dok-2 play a cooperative role in protection against DSS-induced colitis. • Dok-1/-2 double KO (DKO) mice show extensive ulceration of the colon after DSS treatment. • Proliferation of colonic epithelium is inhibited in DSS-treated Dok-1/-2 DKO mice. • Expression of IL-17A and IL-22 is reduced in the colon of DSS-treated Dok-1/-2 DKO mice.

  3. Loss of Dok-1 and Dok-2 in mice causes severe experimental colitis accompanied by reduced expression of IL-17A and IL-22

    Energy Technology Data Exchange (ETDEWEB)

    Waseda, Masazumi; Arimura, Sumimasa [Division of Genetics, Department of Cancer Biology, The Institute of Medical Science, The University of Tokyo, Shirokanedai, Minato-ku, Tokyo, 108-8639 (Japan); Shimura, Eri [Laboratory of Systems Biology, Center for Experimental Medicine and Systems Biology, The Institute of Medical Science, The University of Tokyo, Shirokanedai, Minato-ku, Tokyo, 108-8639 (Japan); Nakae, Susumu [Laboratory of Systems Biology, Center for Experimental Medicine and Systems Biology, The Institute of Medical Science, The University of Tokyo, Shirokanedai, Minato-ku, Tokyo, 108-8639 (Japan); Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency, Saitama, 332-0012 (Japan); Yamanashi, Yuji, E-mail: yyamanas@ims.u-tokyo.ac.jp [Division of Genetics, Department of Cancer Biology, The Institute of Medical Science, The University of Tokyo, Shirokanedai, Minato-ku, Tokyo, 108-8639 (Japan)

    2016-09-09

    Appropriate immune responses and mucosal barrier functions are required for the maintenance of intestinal homeostasis. Defects in this defense system may lead to inflammatory disorders such as inflammatory bowel disease. Downstream of tyrosine kinases 1 (Dok-1) and its closest homolog, Dok-2, are preferentially expressed in immune cells, and play essential roles in the negative regulation of multiple signaling pathways in both innate and adaptive immunity. However, the function of these proteins in intestinal homeostasis remained unclear. Here we show that Dok-1/-2 double knockout (DKO) mice were highly susceptible to dextran sodium sulfate (DSS)-induced colitis compared with Dok-1 or Dok-2 single KO and wild type (WT) mice. Furthermore, DSS-treated Dok-1/-2 DKO mice exhibited increased colonic tissue damage accompanied by reduced proliferation of the epithelial cells relative to WT controls, suggesting that Dok-1/-2 DKO mice have defects in the repair of intestinal epithelial lesions. In addition, the levels of the Th17 cytokines IL-17A and IL-22, which have protective roles in DSS-induced colitis, were reduced in DSS-treated Dok-1/-2 DKO mice compared with WT mice. Taken together, our results demonstrate that Dok-1 and Dok-2 negatively regulate intestinal inflammation, apparently through the induction of IL-17A and IL-22 expression. - Highlights: • Dok-1 and Dok-2 play a cooperative role in protection against DSS-induced colitis. • Dok-1/-2 double KO (DKO) mice show extensive ulceration of the colon after DSS treatment. • Proliferation of colonic epithelium is inhibited in DSS-treated Dok-1/-2 DKO mice. • Expression of IL-17A and IL-22 is reduced in the colon of DSS-treated Dok-1/-2 DKO mice.

  4. Differentiation, distribution and gammadelta T cell-driven regulation of IL-22-producing T cells in tuberculosis.

    Directory of Open Access Journals (Sweden)

    Shuyu Yao

    2010-02-01

    Full Text Available Differentiation, distribution and immune regulation of human IL-22-producing T cells in infections remain unknown. Here, we demonstrated in a nonhuman primate model that M. tuberculosis infection resulted in apparent increases in numbers of T cells capable of producing IL-22 de novo without in vitro Ag stimulation, and drove distribution of these cells more dramatically in lungs than in blood and lymphoid tissues. Consistently, IL-22-producing T cells were visualized in situ in lung tuberculosis (TB granulomas by confocal microscopy and immunohistochemistry, indicating that mature IL-22-producing T cells were present in TB granuloma. Surprisingly, phosphoantigen HMBPP activation of Vgamma2Vdelta2 T cells down-regulated the capability of T cells to produce IL-22 de novo in lymphocytes from blood, lung/BAL fluid, spleen and lymph node. Up-regulation of IFNgamma-producing Vgamma2Vdelta2 T effector cells after HMBPP stimulation coincided with the down-regulated capacity of these T cells to produce IL-22 de novo. Importantly, anti-IFNgamma neutralizing Ab treatment reversed the HMBPP-mediated down-regulation effect on IL-22-producing T cells, suggesting that Vgamma2Vdelta2 T-cell-driven IFNgamma-networking function was the mechanism underlying the HMBPP-mediated down-regulation of the capability of T cells to produce IL-22. These novel findings raise the possibility to ultimately investigate the function of IL-22 producing T cells and to target Vgamma2Vdelta2 T cells for balancing potentially hyper-activating IL-22-producing T cells in severe TB.

  5. IL17eScan: A Tool for the Identification of Peptides Inducing IL-17 Response

    Directory of Open Access Journals (Sweden)

    Sudheer Gupta

    2017-10-01

    Full Text Available IL-17 cytokines are pro-inflammatory cytokines and are crucial in host defense against various microbes. Induction of these cytokines by microbial antigens has been investigated in the case of ischemic brain injury, gingivitis, candidiasis, autoimmune myocarditis, etc. In this study, we have investigated the ability of amino acid sequence of antigens to induce IL-17 response using machine-learning approaches. A total of 338 IL-17-inducing and 984 IL-17 non-inducing peptides were retrieved from Immune Epitope Database. 80% of the data were randomly selected as training dataset and rest 20% as validation dataset. To predict the IL-17-inducing ability of peptides/protein antigens, different sequence-based machine-learning models were developed. The performance of support vector machine (SVM and random forest (RF was compared with different parameters to predict IL-17-inducing epitopes (IIEs. The dipeptide composition-based SVM-model displayed an accuracy of 82.4% with Matthews correlation coefficient = 0.62 at polynomial (t = 1 kernel on 10-fold cross-validation and outperformed RF. Amino acid residues Leu, Ser, Arg, Asn, and Phe and dipeptides LL, SL, LK, IL, LI, NL, LR, FK, SF, and LE are abundant in IIEs. The present tool helps in the identification of IIEs using machine-learning approaches. The induction of IL-17 plays an important role in several inflammatory diseases, and identification of such epitopes would be of great help to the immunologists. It is freely available at http://metagenomics.iiserb.ac.in/IL17eScan/ and http://metabiosys.iiserb.ac.in/IL17eScan/.

  6. CD4(+) T cells producing interleukin (IL)-17, IL-22 and interferon-? are major effector T cells in nickel allergy

    DEFF Research Database (Denmark)

    Dyring Andersen, Beatrice; Skov, Lone; Løvendorf, Marianne B

    2013-01-01

    the frequencies of CD4(+) , CD8(+) and γδ T cells producing IL-17, IL-22 and interferon (IFN)-γ in the blood and skin from nickel-allergic patients. Patients/materials/methods Blood samples were collected from 14 patients and 17 controls, and analysed by flow cytometry. Biopsies were taken from 5 patients and 6......-allergic patients, there was massive cellular infiltration dominated by CD4(+) T cells producing IL-17, IL-22 and IFN-γ in nickel-challenged skin but not in vehicle-challenged skin. Conclusion CD4(+) T cells producing IL-17, IL-22 and IFN-γ are important effector cells in the eczematous reactions of nickel......Background It has been suggested that interleukin (IL)-17 and IL-22 play important roles in the elicitation of human allergic contact dermatitis; however, the frequencies of T cell subtypes producing IL-17 and IL-22 in human allergic contact dermatitis are unknown. Objectives To determine...

  7. Vaccination with IL-6 analogues induces autoantibodies to IL-6 and influences experimentally induced inflammation

    DEFF Research Database (Denmark)

    Galle, Pia; Jensen, Lene; Andersson, Christina

    2007-01-01

    ; yet they appear healthy and do not exhibit overt clinical or laboratory abnormalities. We induced comparable levels of aAb-IL-6 in different mouse strains by vaccination with immunogenic IL-6 analogues. We observed that the induced aAb-IL-6 protected against collagen-induced arthritis and experimental...

  8. Gene expression profiling of the Notch-AhR-IL22 axis at homeostasis and in response to tissue injury.

    Science.gov (United States)

    Weidenbusch, Marc; Rodler, Severin; Song, Shangqing; Romoli, Simone; Marschner, Julian A; Kraft, Franziska; Holderied, Alexander; Kumar, Santosh; Mulay, Shrikant R; Honarpisheh, Mohsen; Kumar Devarapu, Satish; Lech, Maciej; Anders, Hans-Joachim

    2017-12-22

    Notch and interleukin-22 (IL-22) signaling are known to regulate tissue homeostasis and respond to injury in humans and mice, and the induction of endogenous aryl hydrocarbon receptor (Ahr) ligands through Notch links the two pathways in a hierarchical fashion. However in adults, the species-, organ- and injury-specific gene expression of the Notch-AhR-IL22 axis components is unknown. We therefore performed gene expression profiling of DLL1, DLL3, DLL4, DLK1, DLK2, JAG1, JAG2, Notch1, Notch2, Notch3, Notch4, ADAM17/TNF-α ADAM metalloprotease converting enzyme (TACE), PSEN1, basigin (BSG)/CD147, RBP-J, HES1, HES5, HEY1, HEYL, AHR, ARNT, ARNT2, CYP1A1, CYP24A1, IL-22, IL22RA1, IL22RA2, IL10RB, and STAT3 under homeostatic conditions in ten mature murine and human organs. Additionally, the expression of these genes was assessed in murine models of acute sterile inflammation and progressive fibrosis. We show that there are organ-specific gene expression profiles of the Notch-AhR-IL22 axis in humans and mice. Although there is an overall interspecies congruency, specific differences between human and murine expression signatures do exist. In murine tissues with AHR/ARNT expression CYP1A1 and IL-22 were correlated with HES5 and HEYL expression, while in human tissues no such correlation was found. Notch and AhR signaling are involved in renal inflammation and fibrosis with specific gene expression changes in each model. Despite the presence of all Notch pathway molecules in the kidney and a model-specific induction of Notch ligands, IL-22 was only up-regulated in acute inflammation, but rapidly down-regulated during regeneration. This implies that for targeting injury responses, e.g. via IL-22, species-specific differences, injury type and time points have to be considered. © 2017 The Author(s).

  9. Computer-aided designing of immunosuppressive peptides based on IL-10 inducing potential

    Science.gov (United States)

    Nagpal, Gandharva; Usmani, Salman Sadullah; Dhanda, Sandeep Kumar; Kaur, Harpreet; Singh, Sandeep; Sharma, Meenu; Raghava, Gajendra P. S.

    2017-01-01

    In the past, numerous methods have been developed to predict MHC class II binders or T-helper epitopes for designing the epitope-based vaccines against pathogens. In contrast, limited attempts have been made to develop methods for predicting T-helper epitopes/peptides that can induce a specific type of cytokine. This paper describes a method, developed for predicting interleukin-10 (IL-10) inducing peptides, a cytokine responsible for suppressing the immune system. All models were trained and tested on experimentally validated 394 IL-10 inducing and 848 non-inducing peptides. It was observed that certain types of residues and motifs are more frequent in IL-10 inducing peptides than in non-inducing peptides. Based on this analysis, we developed composition-based models using various machine-learning techniques. Random Forest-based model achieved the maximum Matthews’s Correlation Coefficient (MCC) value of 0.59 with an accuracy of 81.24% developed using dipeptide composition. In order to facilitate the community, we developed a web server “IL-10pred”, standalone packages and a mobile app for designing IL-10 inducing peptides (http://crdd.osdd.net/raghava/IL-10pred/). PMID:28211521

  10. Interleukin-22 (IL-22) activates the JAK/STAT, ERK, JNK, and p38 MAP kinase pathways in a rat hepatoma cell line - Pathways that are shared with and distinct from IL-10

    NARCIS (Netherlands)

    Lejeune, D; Dumoutier, L; Constantinescu, S; Kruijer, W; Schuringa, JJ; Renauld, JC

    2002-01-01

    IL (interleukin)-22 is an IL-10-related cytokine; its main biological activity known thus far is the induction of acute phase reactants in liver and pancreas. IL-22 signals through a receptor that is composed of two chains from the class II cytokine receptor family: IL-22R (also called

  11. Model Based Targeting of IL-6-Induced Inflammatory Responses in Cultured Primary Hepatocytes to Improve Application of the JAK Inhibitor Ruxolitinib.

    Science.gov (United States)

    Sobotta, Svantje; Raue, Andreas; Huang, Xiaoyun; Vanlier, Joep; Jünger, Anja; Bohl, Sebastian; Albrecht, Ute; Hahnel, Maximilian J; Wolf, Stephanie; Mueller, Nikola S; D'Alessandro, Lorenza A; Mueller-Bohl, Stephanie; Boehm, Martin E; Lucarelli, Philippe; Bonefas, Sandra; Damm, Georg; Seehofer, Daniel; Lehmann, Wolf D; Rose-John, Stefan; van der Hoeven, Frank; Gretz, Norbert; Theis, Fabian J; Ehlting, Christian; Bode, Johannes G; Timmer, Jens; Schilling, Marcel; Klingmüller, Ursula

    2017-01-01

    IL-6 is a central mediator of the immediate induction of hepatic acute phase proteins (APP) in the liver during infection and after injury, but increased IL-6 activity has been associated with multiple pathological conditions. In hepatocytes, IL-6 activates JAK1-STAT3 signaling that induces the negative feedback regulator SOCS3 and expression of APPs. While different inhibitors of IL-6-induced JAK1-STAT3-signaling have been developed, understanding their precise impact on signaling dynamics requires a systems biology approach. Here we present a mathematical model of IL-6-induced JAK1-STAT3 signaling that quantitatively links physiological IL-6 concentrations to the dynamics of IL-6-induced signal transduction and expression of target genes in hepatocytes. The mathematical model consists of coupled ordinary differential equations (ODE) and the model parameters were estimated by a maximum likelihood approach, whereas identifiability of the dynamic model parameters was ensured by the Profile Likelihood. Using model simulations coupled with experimental validation we could optimize the long-term impact of the JAK-inhibitor Ruxolitinib, a therapeutic compound that is quickly metabolized. Model-predicted doses and timing of treatments helps to improve the reduction of inflammatory APP gene expression in primary mouse hepatocytes close to levels observed during regenerative conditions. The concept of improved efficacy of the inhibitor through multiple treatments at optimized time intervals was confirmed in primary human hepatocytes. Thus, combining quantitative data generation with mathematical modeling suggests that repetitive treatment with Ruxolitinib is required to effectively target excessive inflammatory responses without exceeding doses recommended by the clinical guidelines.

  12. IL-22 Upregulates Epithelial Claudin-2 to Drive Diarrhea and Enteric Pathogen Clearance.

    Science.gov (United States)

    Tsai, Pei-Yun; Zhang, Bingkun; He, Wei-Qi; Zha, Juan-Min; Odenwald, Matthew A; Singh, Gurminder; Tamura, Atsushi; Shen, Le; Sailer, Anne; Yeruva, Sunil; Kuo, Wei-Ting; Fu, Yang-Xin; Tsukita, Sachiko; Turner, Jerrold R

    2017-06-14

    Diarrhea is a host response to enteric pathogens, but its impact on pathogenesis remains poorly defined. By infecting mice with the attaching and effacing bacteria Citrobacter rodentium, we defined the mechanisms and contributions of diarrhea and intestinal barrier loss to host defense. Increased permeability occurred within 2 days of infection and coincided with IL-22-dependent upregulation of the epithelial tight junction protein claudin-2. Permeability increases were limited to small molecules, as expected for the paracellular water and Na + channel formed by claudin-2. Relative to wild-type, claudin-2-deficient mice experienced severe disease, including increased mucosal colonization by C. rodentium, prolonged pathogen shedding, exaggerated cytokine responses, and greater tissue injury. Conversely, transgenic claudin-2 overexpression reduced disease severity. Chemically induced osmotic diarrhea reduced colitis severity and C. rodentium burden in claudin-2-deficient, but not transgenic, mice, demonstrating that claudin-2-mediated protection is the result of enhanced water efflux. Thus, IL-22-induced claudin-2 upregulation drives diarrhea and pathogen clearance. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Allergen immunotherapy induces a suppressive memory response mediated by IL-10 in a mouse asthma model

    NARCIS (Netherlands)

    Vissers, Joost L. M.; van Esch, Betty C. A. M.; Hofman, Gerard A.; Kapsenberg, Martien L.; Weller, Frank R.; van Oosterhout, Antoon J. M.

    2004-01-01

    Background: Human studies have demonstrated that allergen immunotherapy induces memory suppressive responses and IL-10 production by allergen-specific T cells. Previously, we established a mouse model in which allergen immunotherapy was effective in the suppression of allergen-induced asthma

  14. Interleukin-22 (IL-22) Gingival Gene Expression and GCF Concentration in Periodontal Health and Disease

    OpenAIRE

    Amini Behbahani A; Sattari M; Mofid R; Ganji A

    2014-01-01

    IL-22 is a cytokine that is assumed to improve anti-microbial defense of epidermal and epithelial cells and the cells of gastrointestinal and respiratory systems. With respect to absence of enough relevant articles in this regard the aim of this study was to evaluate the correlation between IL-22 gene expression in gingival tissues as well as its concentration in GCF and periodontal diseases. Gingival samples obtained from 60 patients of three different groups (healthy, gingivitis and chronic...

  15. Model Based Targeting of IL-6-Induced Inflammatory Responses in Cultured Primary Hepatocytes to Improve Application of the JAK Inhibitor Ruxolitinib

    Directory of Open Access Journals (Sweden)

    Svantje Sobotta

    2017-10-01

    Full Text Available IL-6 is a central mediator of the immediate induction of hepatic acute phase proteins (APP in the liver during infection and after injury, but increased IL-6 activity has been associated with multiple pathological conditions. In hepatocytes, IL-6 activates JAK1-STAT3 signaling that induces the negative feedback regulator SOCS3 and expression of APPs. While different inhibitors of IL-6-induced JAK1-STAT3-signaling have been developed, understanding their precise impact on signaling dynamics requires a systems biology approach. Here we present a mathematical model of IL-6-induced JAK1-STAT3 signaling that quantitatively links physiological IL-6 concentrations to the dynamics of IL-6-induced signal transduction and expression of target genes in hepatocytes. The mathematical model consists of coupled ordinary differential equations (ODE and the model parameters were estimated by a maximum likelihood approach, whereas identifiability of the dynamic model parameters was ensured by the Profile Likelihood. Using model simulations coupled with experimental validation we could optimize the long-term impact of the JAK-inhibitor Ruxolitinib, a therapeutic compound that is quickly metabolized. Model-predicted doses and timing of treatments helps to improve the reduction of inflammatory APP gene expression in primary mouse hepatocytes close to levels observed during regenerative conditions. The concept of improved efficacy of the inhibitor through multiple treatments at optimized time intervals was confirmed in primary human hepatocytes. Thus, combining quantitative data generation with mathematical modeling suggests that repetitive treatment with Ruxolitinib is required to effectively target excessive inflammatory responses without exceeding doses recommended by the clinical guidelines.

  16. IL-10 and IL-27 producing dendritic cells capable of enhancing IL-10 production of T cells are induced in oral tolerance.

    Science.gov (United States)

    Shiokawa, Aya; Tanabe, Kosuke; Tsuji, Noriko M; Sato, Ryuichiro; Hachimura, Satoshi

    2009-06-30

    Oral tolerance is a key feature of intestinal immunity, generating systemic tolerance to ingested antigens (Ag). Dendritic cells (DC) have been revealed as important immune regulators, however, the precise role of DC in oral tolerance induction remains unclear. We investigated the characteristics of DC in spleen, mesenteric lymph node (MLN), and Peyer's patch (PP) after oral Ag administration in a TCR-transgenic mouse model. DC from PP and MLN of tolerized mice induced IL-10 production but not Foxp3 expression in cocultured T cells. IL-10 production was markedly increased after 5-7-day Ag administration especially in PP DC. On the other hand, IL-27 production was increased after 2-5-day Ag administration. CD11b(+) DC, which increased after ingestion of Ag, prominently expressed IL-10 and IL-27 compared with CD11b(-) DC. These results suggest that IL-10 and IL-27 producing DC are increased by interaction with antigen specific T cells in PP, and these DC act as an inducer of IL-10 producing T cells in oral tolerance.

  17. Interleukin 22 early affects keratinocyte differentiation, but not proliferation, in a three-dimensional model of normal human skin

    Energy Technology Data Exchange (ETDEWEB)

    Donetti, Elena, E-mail: elena.donetti@unimi.it [Department of Biomedical Sciences for Health, Università degli Studi di Milano, 20133 Milan (Italy); Cornaghi, Laura; Arnaboldi, Francesca; Landoni, Federica [Department of Biomedical Sciences for Health, Università degli Studi di Milano, 20133 Milan (Italy); Romagnoli, Paolo [Department of Experimental and Clinical Medicine, Università degli Studi di Firenze, 50125 Florence (Italy); Mastroianni, Nicolino [Department of Biomedical Sciences for Health, Università degli Studi di Milano, 20133 Milan (Italy); Pescitelli, Leonardo [Department of Surgery and Translational Medicine, Università degli Studi di Firenze, 50125 Florence (Italy); Baruffaldi Preis, Franz W. [I.R.C.C.S. Istituto Ortopedico Galeazzi, 20161 Milan (Italy); Prignano, Francesca [Department of Surgery and Translational Medicine, Università degli Studi di Firenze, 50125 Florence (Italy)

    2016-07-15

    Interleukin (IL)-22 is a pro-inflammatory cytokine driving the progression of the psoriatic lesion with other cytokines, as Tumor Necrosis Factor (TNF)-alpha and IL-17. Our study was aimed at evaluating the early effect of IL-22 alone or in combination with TNF-alpha and IL-17 by immunofluorescence on i) keratinocyte (KC) proliferation, ii) terminal differentiation biomarkers as keratin (K) 10 and 17 expression, iii) intercellular junctions. Transmission electron microscopy (TEM) analysis was performed. A model of human skin culture reproducing a psoriatic microenvironment was used. Plastic surgery explants were obtained from healthy young women (n=7) after informed consent. Fragments were divided before adding IL-22 or a combination of the three cytokines, and harvested 24 (T24), 48 (T48), and 72 (T72) h later. From T24, in IL-22 samples we detected a progressive decrease in K10 immunostaining in the spinous layer paralleled by K17 induction. By TEM, after IL-22 incubation, keratin aggregates were evident in the perinuclear area. Occludin immunostaining was not homogeneously distributed. Conversely, KC proliferation was not inhibited by IL-22 alone, but only by the combination of cytokines. Our results suggest that IL-22 affects keratinocyte terminal differentiation, whereas, in order to induce a proliferation impairment, a more complex psoriatic-like microenvironment is needed.

  18. Interleukin 22 early affects keratinocyte differentiation, but not proliferation, in a three-dimensional model of normal human skin

    International Nuclear Information System (INIS)

    Donetti, Elena; Cornaghi, Laura; Arnaboldi, Francesca; Landoni, Federica; Romagnoli, Paolo; Mastroianni, Nicolino; Pescitelli, Leonardo; Baruffaldi Preis, Franz W.; Prignano, Francesca

    2016-01-01

    Interleukin (IL)-22 is a pro-inflammatory cytokine driving the progression of the psoriatic lesion with other cytokines, as Tumor Necrosis Factor (TNF)-alpha and IL-17. Our study was aimed at evaluating the early effect of IL-22 alone or in combination with TNF-alpha and IL-17 by immunofluorescence on i) keratinocyte (KC) proliferation, ii) terminal differentiation biomarkers as keratin (K) 10 and 17 expression, iii) intercellular junctions. Transmission electron microscopy (TEM) analysis was performed. A model of human skin culture reproducing a psoriatic microenvironment was used. Plastic surgery explants were obtained from healthy young women (n=7) after informed consent. Fragments were divided before adding IL-22 or a combination of the three cytokines, and harvested 24 (T24), 48 (T48), and 72 (T72) h later. From T24, in IL-22 samples we detected a progressive decrease in K10 immunostaining in the spinous layer paralleled by K17 induction. By TEM, after IL-22 incubation, keratin aggregates were evident in the perinuclear area. Occludin immunostaining was not homogeneously distributed. Conversely, KC proliferation was not inhibited by IL-22 alone, but only by the combination of cytokines. Our results suggest that IL-22 affects keratinocyte terminal differentiation, whereas, in order to induce a proliferation impairment, a more complex psoriatic-like microenvironment is needed.

  19. Increased IL-17 and 22 mRNA expression in pediatric patients with otitis media with effusion.

    Science.gov (United States)

    Kwon, Oh Eun; Park, Sang Hyun; Kim, Sung Su; Shim, Haeng Seon; Kim, Min Gyeong; Kim, Young Il; Kim, Sang Hoon; Yeo, Seung Geun

    2016-11-01

    Middle ear effusion has been reported to be associated with immune responses in patients with otitis media with effusion (OME). Although various cytokines are involved in immunologic responses in patients with OME, no study to date has assessed the involvement of the pro-inflammatory cytokines interleukin (IL)-17 and IL-22. This study analyzed the levels of expression of IL-17 and IL-22 in the middle ear effusion of patients with OME. Patients aged Effusion fluid samples were obtained during surgery and levels of IL-17 and IL-22 mRNAs assessed by real-time PCR. IL-17 and IL-22 mRNA levels were compared in patients with effusion fluid positive and negative for bacteria; in patients with and without accompanying diseases, recurrent disease, and re-operation; and relative to fluid characteristics. The study cohort included 70 pediatric patients, 46 boys and 24 girls, of mean age 4.31 ± 2.11 years. The levels of IL-17 and IL-22 mRNA were higher in patients with than without sinusitis, but only IL-22 mRNA levels differed significantly (p < 0.05). The level of IL-17 mRNA was significantly higher in patients who did than did not undergo T&A (p < 0.05). The level of IL-22 expression was significantly higher in mucoid and purulent middle ear fluid samples than in serous fluid samples (p < 0.05). IL-17 and IL-22 mRNAs are involved in the pathophysiology of OME and are significantly higher in subjects with than without accompanying diseases. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  20. Card9-dependent IL-1β regulates IL-22 production from group 3 innate lymphoid cells and promotes colitis-associated cancer.

    Science.gov (United States)

    Bergmann, Hanna; Roth, Susanne; Pechloff, Konstanze; Kiss, Elina A; Kuhn, Sabine; Heikenwälder, Mathias; Diefenbach, Andreas; Greten, Florian R; Ruland, Jürgen

    2017-08-01

    Inflammatory bowel diseases (IBD) are key risk factors for the development of colorectal cancer, but the mechanisms that link intestinal inflammation with carcinogenesis are insufficiently understood. Card9 is a myeloid cell-specific signaling protein that regulates inflammatory responses downstream of various pattern recognition receptors and which cooperates with the inflammasomes for IL-1β production. Because polymorphisms in Card9 were recurrently associated with human IBD, we investigated the function of Card9 in a colitis-associated cancer (CAC) model. Card9 -/- mice develop smaller, less proliferative and less dysplastic tumors compared to their littermates and in the regenerating mucosa we detected dramatically impaired IL-1β generation and defective IL-1β controlled IL-22 production from group 3 innate lymphoid cells. Consistent with the key role of immune-derived IL-22 in activating STAT3 signaling during normal and pathological intestinal epithelial cell (IEC) proliferation, Card9 -/- mice also exhibit impaired tumor cell intrinsic STAT3 activation. Our results imply a Card9-controlled, ILC3-mediated mechanism regulating healthy and malignant IEC proliferation and demonstrates a role of Card9-mediated innate immunity in inflammation-associated carcinogenesis. © 2017 The Authors. European Journal of Immunology published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. The role of genetic variation across IL-1β, IL-2, IL-6, and BDNF in antipsychotic-induced weight gain.

    Science.gov (United States)

    Fonseka, Trehani M; Tiwari, Arun K; Gonçalves, Vanessa F; Lieberman, Jeffrey A; Meltzer, Herbert Y; Goldstein, Benjamin I; Kennedy, James L; Kennedy, Sidney H; Müller, Daniel J

    2015-01-01

    Antipsychotics with high weight gain-inducing propensities influence the expression of immune and neurotrophin genes, which have been independently related to obesity indices. Thus, we investigated whether variants in the genes encoding interleukin (IL)-1β, IL-2, and IL-6 and brain-derived neurotrophic factor (BDNF) Val66Met are associated with antipsychotic-induced weight gain (AIWG). Nineteen polymorphisms were genotyped using Taqman(®) assays in 188 schizophrenia patients on antipsychotic treatment for up to 14 weeks. Mean weight change (%) from baseline was compared across genotypic groups using analysis of covariance (ANCOVA). Epistatic effects between cytokine polymorphisms and BDNF Val66Met were tested using Model-Based Multifactor Dimensionality Reduction. In European patients, IL-1β rs16944*GA (P = 0.013, Pcorrected = 0.182), IL-1β rs1143634*G (P = 0.001, Pcorrected = 0.014), and BDNF Val66Met (Val/Val, P = 0.004, Pcorrected = 0.056) were associated with greater AIWG, as were IL-1β rs4849127*A (P = 0.049, Pcorrected = 0.784), and IL-1β rs16944*GA (P = 0.012, Pcorrected = 0.192) in African Americans. BDNF Val66Met interacted with both IL-1β rs13032029 (Val/Met+ TT, PPerm = 0.029), and IL-6 rs2069837 (Val/Val+ AA, PPerm = 0.021) in Europeans, in addition to IL-1β rs16944 (Val/Val+ GA, PPerm = 0.006) in African Americans. SNPs across IL-1β and BDNF Val66Met may influence AIWG. Replication of these findings in larger, independent samples is warranted.

  2. IL-22 Defect During Streptococcus pneumoniae Infection Triggers Exacerbation of Chronic Obstructive Pulmonary Disease

    Directory of Open Access Journals (Sweden)

    Muriel Pichavant

    2015-11-01

    Full Text Available Progression of chronic obstructive pulmonary disease (COPD is linked to episodes of exacerbations caused by bacterial infections due to Streptococcus pneumoniae. Our objective was to identify during COPD, factors of susceptibility to bacterial infections among cytokine network and their role in COPD exacerbations. S. pneumoniae was used to sub-lethally challenge mice chronically exposed to air or cigarette smoke (CS and to stimulate peripheral blood mononuclear cells (PBMC from non-smokers, smokers and COPD patients. The immune response and the cytokine production were evaluated. Delayed clearance of the bacteria and stronger lung inflammation observed in infected CS-exposed mice were associated with an altered production of IL-17 and IL-22 by innate immune cells. This defect was related to a reduced production of IL-1β and IL-23 by antigen presenting cells. Importantly, supplementation with recombinant IL-22 restored bacterial clearance in CS-exposed mice and limited lung alteration. In contrast with non-smokers, blood NK and NKT cells from COPD patients failed to increase IL-17 and IL-22 levels in response to S. pneumoniae, in association with a defect in IL-1β and IL-23 secretion. This study identified IL-17 and IL-22 as susceptibility factors in COPD exacerbation. Therefore targeting such cytokines could represent a potent strategy to control COPD exacerbation.

  3. Berberine attenuates CCN2-induced IL-1β expression and prevents cartilage degradation in a rat model of osteoarthritis

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Shan-Chi [Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan (China); Lee, Hsiang-Ping [Graduate Institute of Chinese Medicine, China Medical University, Taichung, Taiwan (China); Department of Chinese Medicine, China Medical University Hospital, Taichung, Taiwan (China); Hung, Chun-Yin [Department of Orthopaedic Surgery, China Medical University Beigang Hospital, Yun-Lin County, Taiwan (China); Tsai, Chun-Hao [Graduate Institute of Clinical Medical Science, China Medical University, Taichung, Taiwan (China); Department of Orthopedic Surgery, China Medical University Hospital, Taichung, Taiwan (China); Li, Te-Mao [School of Chinese Medicine, China Medical University, Taichung, Taiwan (China); Tang, Chih-Hsin, E-mail: chtang@mail.cmu.edu.tw [Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan (China); Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan (China); Department of Biotechnology, College of Health Science, Asia University, Taichung, Taiwan (China)

    2015-11-15

    Connective tissue growth factor (CTGF; also known as CCN2) is an inflammatory mediator that is abundantly expressed in osteoarthritis (OA). Interleukin-1β (IL-1β) plays a pivotal role in OA pathogenesis. Berberine exhibits an anti-inflammatory effect, but the mechanisms by which it modulates CCN2-induced IL-1β expression in OA synovial fibroblasts (OASFs) remain unknown. We showed that CCN2-induced IL-1β expression is mediated by the activation of α{sub v}β{sub 3}/α{sub v}β{sub 5} integrin-dependent reactive oxygen species (ROS) generation, and subsequent activation of apoptosis signal-regulating kinase 1 (ASK1), p38/JNK, and nuclear factor-κB (NF-κB) signaling pathways. This IL-1β expression in OASFs is attenuated by N-acetylcysteine (NAC), inhibitors of ASK1, p38, or JNK, or treatment with berberine. Furthermore, berberine also reverses cartilage damage in an experimental model of collagenase-induced OA (CIOA). We observed that CCN2 increased IL-1β expression via α{sub v}β{sub 3}/α{sub v}β{sub 5} integrins, ROS, and ASK1, p38/JNK, and NF-κB signaling pathways. Berberine was found to inhibit these signaling components in OASFs in vitro and prevent cartilage degradation in vivo. We suggest a novel therapeutic strategy of using berberine for managing OA. - Highlights: • CCN2 induce IL-1β production via αvβ3/αvβ5 integrin, ROS, ASK1, p38/JNK, and NF-κB. • Berberine attenuates CCN2-induced IL-1β expression in vitro and in OA rat model. • Berberine as natural drug of choice for anti-inflammatory effect to ameliorates OA.

  4. Chronic IL-6 Administration Desensitizes IL-6 Response in Liver, Causes Hyperleptinemia and Aggravates Steatosis in Diet-Induced-Obese Mice

    DEFF Research Database (Denmark)

    Gavito, Ana Luisa; Bautista, Dolores; Suarez, Juan

    2016-01-01

    High-fat diet-induced obesity (DIO) is associated with fatty liver and elevated IL-6 circulating levels. IL-6 administration in rodents has yielded contradictory results regarding its effects on steatosis progression. In some models of fatty liver disease, high doses of human IL-6 ameliorate the ...

  5. The lysine deacetylase inhibitor givinostat inhibits ß-cell IL-1ß induced IL-1ß transcription and processing

    DEFF Research Database (Denmark)

    Dahllöf, Mattias Salling; Christensen, Dan P; Lundh, Morten

    2012-01-01

    . Further, IL-1R antagonism improves normoglycemia and ß-cell function in type 2 diabetic patients. Inhibition of lysine deacetylases (KDACi) counteracts ß-cell toxicity induced by the combination of IL-1 and IFN¿ and reduces diabetes incidence in non-obese diabetic (NOD) mice. We hypothesized that KDACi......Aims: Pro-inflammatory cytokines and chemokines, in particular IL-1ß, IFN¿, and CXCL10, contribute to ß-cell failure and loss in DM via IL-1R, IFN¿R, and TLR4 signaling. IL-1 signaling deficiency reduces diabetes incidence, islet IL-1ß secretion, and hyperglycemia in animal models of diabetes...

  6. Overexpression of IL-38 protein in anticancer drug-induced lung injury and acute exacerbation of idiopathic pulmonary fibrosis.

    Science.gov (United States)

    Tominaga, Masaki; Okamoto, Masaki; Kawayama, Tomotaka; Matsuoka, Masanobu; Kaieda, Shinjiro; Sakazaki, Yuki; Kinoshita, Takashi; Mori, Daisuke; Inoue, Akira; Hoshino, Tomoaki

    2017-09-01

    Interleukin (IL)-38, a member of the IL-1 family, shows high homology to IL-1 receptor antagonist (IL-1Ra) and IL-36 receptor antagonist (IL-36Ra). Its function in interstitial lung disease (ILD) is still unknown. To determine the expression pattern of IL-38 mRNA, a panel of cDNAs derived from various tissues was analyzed by quantitative real-time PCR. Immunohistochemical reactivity with anti-human IL-38 monoclonal antibody (clone H127C) was evaluated semi-quantitatively in lung tissue samples from 12 patients with idiopathic pulmonary fibrosis/usual interstitial pneumonia (IPF/UIP), 5 with acute exacerbation of IPF, and 10 with anticancer drug-induced ILD (bleomycin in 5 and epidermal growth factor receptor-tyrosine kinase inhibitor in 5). Control lung tissues were obtained from areas of normal lung in 22 lung cancer patients who underwent extirpation surgery. IL-38 transcripts were strongly expressed in the lung, spleen, synoviocytes, and peripheral blood mononuclear cells, and at a lower level in pancreas and muscle. IL-38 protein was not strongly expressed in normal pulmonary alveolar tissues in all 22 control lungs. In contrast, IL-38 was overexpressed in the lungs of 4 of 5 (80%) patients with acute IPF exacerbation and 100% (10/10) of the patients with drug-induced ILD. IL-38 overexpression was limited to hyperplastic type II pneumocytes, which are considered to reflect regenerative change following diffuse alveolar damage in ILD. IL-38 may play an important role in acute and/or chronic inflammation in anticancer drug-induced lung injury and acute exacerbation of IPF. Copyright © 2017 The Japanese Respiratory Society. Published by Elsevier B.V. All rights reserved.

  7. Defective IL-17- and IL-22-dependent mucosal host response to Candida albicans determines susceptibility to oral candidiasis in mice expressing the HIV-1 transgene.

    Science.gov (United States)

    Goupil, Mathieu; Cousineau-Côté, Vincent; Aumont, Francine; Sénéchal, Serge; Gaboury, Louis; Hanna, Zaher; Jolicoeur, Paul; de Repentigny, Louis

    2014-10-26

    The tissue-signaling cytokines IL-17 and IL-22 are critical to host defense against oral Candida albicans infection, by their induction of oral antimicrobial peptide expression and recruitment of neutrophils. Mucosal Th17 cells which produce these cytokines are preferentially depleted in HIV-infected patients. Here, we tested the hypothesis that defective IL-17- and IL-22-dependent host responses to C. albicans determine the phenotype of susceptibility to oropharyngeal candidiasis (OPC) in transgenic (Tg) mice expressing HIV-1. Naïve CD4+ T-cells and the differentiated Th1, Th2, Th17, Th1Th17 and Treg lineages were all profoundly depleted in cervical lymph nodes (CLNs) of these Tg mice. However, naive CD4+ cells from Tg mice maintained the capacity to differentiate into these lineages in response to polarizing cytokines in vitro. Expression of Il17, Il22, S100a8 and Ccl20 was enhanced in oral mucosal tissue of non-Tg, but not of Tg mice, after oral infection with C. albicans. Treatment of infected Tg mice with the combination of IL-17 and IL-22, but not IL-17 or Il-22 alone, significantly reduced oral burdens of C. albicans and abundance of Candida hyphae in the epithelium of tongues of infected Tg mice, and restored the ability of the Tg mice to up-regulate expression of S100a8 and Ccl20 in response to C. albicans infection. These findings demonstrate that defective IL-17- and IL-22-dependent induction of innate mucosal immunity to C. albicans is central to the phenotype of susceptibility to OPC in these HIV transgenic mice.

  8. Local cryotherapy improves adjuvant-induced arthritis through down-regulation of IL-6 / IL-17 pathway but independently of TNFα.

    Science.gov (United States)

    Guillot, Xavier; Martin, Hélène; Seguin-Py, Stéphanie; Maguin-Gaté, Katy; Moretto, Johnny; Totoson, Perle; Wendling, Daniel; Demougeot, Céline; Tordi, Nicolas

    2017-01-01

    Local cryotherapy is widely and empirically used in the adjuvant setting in rheumatoid arthritis treatment, however its own therapeutic and anti-inflammatory effects are poorly characterized. We aimed to evaluate the effects of local cryotherapy on local and systemic inflammation in Adjuvant-induced arthritis, a murine model of rheumatoid arthritis. The effects of mild hypothermia (30°C for 2 hours) on cytokine protein levels (Multiplex/ELISA) were evaluated in vitro in cultured rat adjuvant-induced arthritis patellae. In vivo, local cryotherapy was applied twice a day for 14 days in arthritic rats (ice: n = 10, cold gas: n = 9, non-treated: n = 10). At day 24 after the induction of arthritis, cytokine expression levels were measured in grinded hind paws (Q-RT-PCR) and in the plasma (Multiplex/ELISA). In vitro, punctual mild hypothermia down-regulated IL-6 protein expression. In vivo, ice showed a better efficacy profile on the arthritis score and joint swelling and was better tolerated, while cold gas induced a biphasic response profile with initial, transient arthritis worsening. Local cryotherapy also exerted local and systemic anti-inflammatory effects, both at the gene and the protein levels: IL-6, IL-17A and IL-1β gene expression levels were significantly down-regulated in hind paws. Both techniques decreased plasma IL-17A while ice decreased plasma IL-6 protein levels. By contrast, we observed no effect on local/systemic TNF-α pathway. We demonstrated for the first time that sub-chronically applied local cryotherapy (ice and cold gas) is an effective and well-tolerated treatment in adjuvant-induced arthritis. Furthermore, we provided novel insights into the cytokine pathways involved in Local cryotherapy's local and systemic anti-inflammatory effects, which were mainly IL-6/IL-17A-driven and TNF-α independent in this model.

  9. Aspirin induces IL-4 production: augmented IL-4 production in aspirin-exacerbated respiratory disease

    Science.gov (United States)

    Kong, Su-Kang; Soo Kim, Byung; Gi Uhm, Tae; Soo Chang, Hun; Sook Park, Jong; Woo Park, Sung; Park, Choon-Sik; Chung, Il Yup

    2016-01-01

    Aspirin hypersensitivity is a hallmark of aspirin-exacerbated respiratory disease (AERD), a clinical syndrome characterized by the severe inflammation of the respiratory tract after ingestion of cyclooxygenase-1 inhibitors. We investigated the capacity of aspirin to induce interleukin-4 (IL-4) production in inflammatory cells relevant to AERD pathogenesis and examined the associated biochemical and molecular pathways. We also compared IL-4 production in peripheral blood mononuclear cells (PBMCs) from patients with AERD vs aspirin-tolerant asthma (ATA) upon exposure to aspirin. Aspirin induced IL-4 expression and activated the IL-4 promoter in a report assay. The capacity of aspirin to induce IL-4 expression correlated with its activity to activate mitogen-activated protein kinases, to form DNA–protein complexes on P elements in the IL-4 promoter and to synthesize nuclear factor of activated T cells, critical transcription factors for IL-4 transcription. Of clinical importance, aspirin upregulated IL-4 production twice as much in PBMCs from patients with AERD compared with PBMCs from patients with ATA. Our results suggest that IL-4 is an inflammatory component mediating intolerance reactions to aspirin, and thus is crucial for AERD pathogenesis. PMID:27534531

  10. IL-22 is mainly produced by IFNγ-secreting cells but is dispensable for host protection against Mycobacterium tuberculosis infection.

    Directory of Open Access Journals (Sweden)

    Jochen Behrends

    Full Text Available Anti-inflammatory treatment of autoimmune diseases is associated with an increased risk of reactivation tuberculosis (TB. Besides interleukin (IL-17A, IL-22 represents a classical T helper (TH17 cytokine and shares similar pathological effects in inflammatory diseases such as psoriasis or arthritis. Whereas IL-17A supports protective immune responses during mycobacterial infections, the role of IL-22 after infection with Mycobacterium tuberculosis (Mtb is yet poorly characterized. Therefore, we here characterize the cell types producing IL-22 and the protective function of this cytokine during experimental TB in mice. Like IL-17A, IL-22 is expressed early after infection with Mtb in an IL-23-dependent manner. Surprisingly, the majority of IL-22-producing cells are not positive for IL-17A but have rather functional characteristics of interferon-gamma-producing TH1 cells. Although we found minor differences in the number of naive and central memory T cells as well as in the frequency of TH1 and polyfunctional T cells in mice deficient for IL-22, the absence of IL-22 does not affect the outcome of Mtb infection. Our study revealed that although produced by TH1 cells, IL-22 is dispensable for protective immune responses during TB. Therefore, targeting of IL-22 in inflammatory disease may represent a therapeutic approach that does not incur the danger of reactivation TB.

  11. Carbon monoxide releasing molecule-2 ameliorates IL-1β-induced IL-8 in human gastric cancer cells

    International Nuclear Information System (INIS)

    Lian, Sen; Xia, Yong; Ung, Trong Thuan; Khoi, Pham Ngoc; Yoon, Hyun Joong; Kim, Nam Ho; Kim, Kyung Keun; Jung, Young Do

    2016-01-01

    Carbon monoxide (CO), a byproduct of heme oxygenase (HO), presents antioxidant, anti-inflammatory, and anti-tumor properties. Accumulating evidence supports that interleukin (IL)-8 contribute to the vascularity of human gastric cancer. However, the inhibition of IL-8 expression by CO is yet to be elucidated. Here, we utilized CO releasing molecule-2 (CORM-2) to investigate the effect of CO on IL-1β-induced IL-8 expression and the underlying molecular mechanisms in human gastric cancer AGS cells. CORM-2 dose-dependently suppressed IL-1β-induced IL-8 mRNA and protein expression as well as IL-8 promoter activity. IL-1β induced the translocation of p47 phox to activate reactive oxygen species (ROS)-producing NADPH oxidase (NOX). Moreover, IL-1β activated MAPKs (Erk1/2, JNK1/2, and p38 MAPK) and promoted nuclear factor (NF)-kB and activator protein (AP)-1 binding activities. Pharmacological inhibition and mutagenesis studies indicated that NOX, ROS, Erk1/2, and p38 MAPK are involved in IL-1β-induced IL-8 expression. Transient transfection of deletion mutant constructs of the IL-8 promoter in cells suggested that NF-kB and AP-1 are critical for IL-1β-induced IL-8 transcription. NOX-derived ROS and MAPKs (Erk1/2 and p38 MAPK) functioned as upstream activators of NF-κB and AP-1, respectively. CORM-2 pretreatment significantly mitigated IL-1β-induced activation of ROS/NF-kB and Erk1/2/AP-1 cascades, blocking IL-8 expression and thus significantly reducing endothelial cell proliferation in the tumor microenvironment.

  12. IL-23 Is Essential for the Development of Elastase-Induced Pulmonary Inflammation and Emphysema.

    Science.gov (United States)

    Fujii, Utako; Miyahara, Nobuaki; Taniguchi, Akihiko; Waseda, Koichi; Morichika, Daisuke; Kurimoto, Etsuko; Koga, Hikari; Kataoka, Mikio; Gelfand, Erwin W; Cua, Daniel J; Yoshimura, Akihiko; Tanimoto, Mitsune; Kanehiro, Arihiko

    2016-11-01

    We recently reported that IL-17A plays a critical role in the development of porcine pancreatic elastase (PPE)-induced emphysema. The proliferation of T-helper type 17 (Th17) cells was induced by IL-23. To determine the contribution of IL-23 to the development of pulmonary emphysema, a mouse model of PPE-induced emphysema was used in which responses of IL-23p19-deficient (IL-23 -/- ) and wild-type (WT) mice were compared. Intratracheal instillation of PPE induced emphysematous changes in the lungs and was associated with increased levels of IL-23 in lung homogenates. Compared with WT mice, IL-23 -/- mice developed significantly lower static compliance values and markedly reduced emphysematous changes on histological analyses after PPE instillation. These changes were associated with lower levels of IL-17A and fewer Th17 cells in the lung. The neutrophilia seen in bronchoalveolar lavage fluid of WT mice was attenuated in IL-23 -/- mice, and the reduction was associated with decreased levels of keratinocyte-derived cytokine and macrophage inflammatory protein-2 in bronchoalveolar lavage fluid. Treatment with anti-IL-23p40 monoclonal antibody significantly attenuated PPE-induced emphysematous changes in the lungs of WT mice. These data identify the important contributions of IL-23 to the development of elastase-induced pulmonary inflammation and emphysema, mediated through an IL-23/IL-17 pathway. Targeting IL-23 in emphysema is a potential therapeutic strategy for delaying disease progression.

  13. Kaempferol impedes IL-32-induced monocyte-macrophage differentiation.

    Science.gov (United States)

    Nam, Sun-Young; Jeong, Hyun-Ja; Kim, Hyung-Min

    2017-08-25

    Kaempferol possesses a wide range of therapeutic properties, including antioxidant, anti-inflammatory, and anticancer properties. The present study sought to evaluate the effects and possible pharmacological mechanisms of kaempferol on interleukin (IL)-32-induced monocyte-macrophage differentiation. In this study, we performed flow cytometry assay, immunocytochemical staining, quantitative real-time PCR, enzyme-linked immuno sorbent assay, caspase-1 assay, and Western blotting to observe the effects and underlying mechanisms of kaempferol using the human monocyte cell line THP-1. The flow cytometry, immunocytochemical staining, and real-time PCR results show that kaempferol attenuated IL-32-induced monocyte differentiation to product macrophage-like cells. Kaempferol decreased the production and mRNA expression of pro-inflammatory cytokines, in this case thymic stromal lymphopoietin (TSLP), IL-1β, tumor necrosis factor (TNF)-α, and IL-8. Furthermore, kaempferol inhibited the IL-32-induced activation of p38 and nuclear factor-κB in a dose-dependent manner in THP-1 cells. Kaempferol also ameliorated the lipopolysaccharide-induced production of the inflammatory mediators TSLP, IL-1β, TNF-α, IL-8, and nitric oxide of macrophage-like cells differentiated by IL-32. In brief, our findings may provide new mechanistic insights into the anti-inflammatory effects of kaempferol. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. The Secretion of IL-22 from Mucosal NKp44+ NK Cells Is Associated with Microbial Translocation and Virus Infection in SIV/SHIV-Infected Chinese Macaques

    Directory of Open Access Journals (Sweden)

    Wei Wang

    2014-01-01

    Full Text Available Microbial translocation (MT causes systemic immune activation in chronic human immunodeficiency virus (HIV infection. The role of a novel subtype of innate lymphoid cells, the NKp44+ NK cells, in HIV/simian immunodeficiency virus- (SIV- induced MT remains unknown. In this study, 12 simian-human immunodeficiency virus- (SHIV- infected macaques were chosen and split into two groups based on the MT level. Blood and Peripheral lymphoid tissue were sampled for flow cytometric analysis, viral load detection, and interleukin testing. Then, six naive Chinese macaques were used to determine the dynamics of cytokine secretion from mucosal NKp44+ NK cells in different phases of SIV infection. As a result, the degranulation capacity and IL-22 production of mucosal NKp44+ NK cells were associated with the MT level in the SHIV-infected macaques. And the number of mucosal NKp44+ NK cells and IL-22 secretion by these cells were lower in the chronic phase than in the early acute phase of SIV infection. The number of mucosal NKp44+ NK cells and interleukin-22 (IL-22 secretion by these cells increased before MT occurred. Therefore, we conclude that a decline in IL-22 production from mucosal NKp44+ NK cells induced by virus infection may be one of the causes of microbial translocation in HIV/SIV infection.

  15. IL-13 induces a bronchial epithelial phenotype that is profibrotic

    Directory of Open Access Journals (Sweden)

    Dinh Bao T

    2008-03-01

    Full Text Available Abstract Background Inflammatory cytokines (e.g. IL-13 and mechanical perturbations (e.g. scrape injury to the epithelium release profibrotic factors such as TGF-β2, which may, in turn, stimulate subepithelial fibrosis in asthma. We hypothesized that prolonged IL-13 exposure creates a plastic epithelial phenotype that is profibrotic through continuous secretion of soluble mediators at levels that stimulate subepithelial fibrosis. Methods Normal human bronchial epithelial cells (NHBE were treated with IL-13 (0, 0.1, 1, or 10 ng/ml for 14 days (day 7 to day 21 following seeding at an air-liquid interface during differentiation, and then withdrawn for 1 or 7 days. Pre-treated and untreated NHBE were co-cultured for 3 days with normal human lung fibroblasts (NHLF embedded in rat-tail collagen gels during days 22–25 or days 28–31. Results IL-13 induced increasing levels of MUC5AC protein, and TGF-β2, while decreasing β-Tubulin IV at day 22 and 28 in the NHBE. TGF-β2, soluble collagen in the media, salt soluble collagen in the matrix, and second harmonic generation (SHG signal from fibrillar collagen in the matrix were elevated in the IL-13 pre-treated NHBE co-cultures at day 25, but not at day 31. A TGF-β2 neutralizing antibody reversed the increase in collagen content and SHG signal. Conclusion Prolonged IL-13 exposure followed by withdrawal creates an epithelial phenotype, which continuously secretes TGF-β2 at levels that increase collagen secretion and alters the bulk optical properties of an underlying fibroblast-embedded collagen matrix. Extended withdrawal of IL-13 from the epithelium followed by co-culture does not stimulate fibrosis, indicating plasticity of the cultured airway epithelium and an ability to return to a baseline. Hence, IL-13 may contribute to subepithelial fibrosis in asthma by stimulating biologically significant TGF-β2 secretion from the airway epithelium.

  16. IL-7 treatment augments and prolongs sepsis-induced expansion of IL-10-producing B lymphocytes and myeloid-derived suppressor cells.

    Science.gov (United States)

    Kulkarni, Upasana; Herrmenau, Christoph; Win, Stephanie J; Bauer, Michael; Kamradt, Thomas

    2018-01-01

    Immunological dysregulation in sepsis is associated with often lethal secondary infections. Loss of effector cells and an expansion of immunoregulatory cell populations both contribute to sepsis-induced immunosuppression. The extent and duration of this immunosuppression are unknown. Interleukin 7 (IL-7) is important for the maintenance of lymphocytes and can accelerate the reconstitution of effector lymphocytes in sepsis. How IL-7 influences immunosuppressive cell populations is unknown. We have used the mouse model of peritoneal contamination and infection (PCI) to investigate the expansion of immunoregulatory cells as long-term sequelae of sepsis with or without IL-7 treatment. We analysed the frequencies and numbers of regulatory T cells (Tregs), double negative T cells, IL-10 producing B cells and myeloid-derived suppressor cells (MDSCs) for 3.5 months after sepsis induction. Sepsis induced an increase in IL-10+ B cells, which was enhanced and prolonged by IL-7 treatment. An increased frequency of MDSCs in the spleen was still detectable 3.5 months after sepsis induction and this was more pronounced in IL-7-treated mice. MDSCs from septic mice were more potent at suppressing T cell proliferation than MDSCs from control mice. Our data reveal that sepsis induces a long lasting increase in IL-10+ B cells and MDSCs. Late-onset IL-7 treatment augments this increase, which should be relevant for clinical interventions.

  17. Complement component C5a Promotes Expression of IL-22 and IL-17 from Human T cells and its Implication in Age-related Macular Degeneration

    Directory of Open Access Journals (Sweden)

    Klein Michael L

    2011-07-01

    Full Text Available Abstract Background Age related macular degeneration (AMD is the leading cause of irreversible blindness in elderly populations worldwide. Inflammation, among many factors, has been suggested to play an important role in AMD pathogenesis. Recent studies have demonstrated a strong genetic association between AMD and complement factor H (CFH, the down-regulatory factor of complement activation. Elevated levels of complement activating molecules including complement component 5a (C5a have been found in the serum of AMD patients. Our aim is to study whether C5a can impact human T cells and its implication in AMD. Methods Human peripheral blood mononuclear cells (PBMCs were isolated from the blood of exudative form of AMD patients using a Ficoll gradient centrifugation protocol. Intracellular staining and enzyme-linked immunosorbent assays were used to measure protein expression. Apoptotic cells were detected by staining of cells with the annexin-V and TUNEL technology and analyzed by a FACS Caliber flow cytometer. SNP genotyping was analyzed by TaqMan genotyping assay using the Real-time PCR system 7500. Results We show that C5a promotes interleukin (IL-22 and IL-17 expression by human CD4+ T cells. This effect is dependent on B7, IL-1β and IL-6 expression from monocytes. We have also found that C5a could protect human CD4+ cells from undergoing apoptosis. Importantly, consistent with a role of C5a in promoting IL-22 and IL-17 expression, significant elevation in IL-22 and IL-17 levels was found in AMD patients as compared to non-AMD controls. Conclusions Our results support the notion that C5a may be one of the factors contributing to the elevated serum IL-22 and IL-17 levels in AMD patients. The possible involvement of IL-22 and IL-17 in the inflammation that contributes to AMD may herald a new approach to treat AMD.

  18. IL-1 signal affects both protection and pathogenesis of virus-induced chronic CNS demyelinating disease

    Directory of Open Access Journals (Sweden)

    Kim Byung S

    2012-09-01

    Full Text Available Abstract Background Theiler’s virus infection induces chronic demyelinating disease in mice and has been investigated as an infectious model for multiple sclerosis (MS. IL-1 plays an important role in the pathogenesis of both the autoimmune disease model (EAE and this viral model for MS. However, IL-1 is known to play an important protective role against certain viral infections. Therefore, it is unclear whether IL-1-mediated signaling plays a protective or pathogenic role in the development of TMEV-induced demyelinating disease. Methods Female C57BL/6 mice and B6.129S7-Il1r1tm1Imx/J mice (IL-1R KO were infected with Theiler’s murine encephalomyelitis virus (1 x 106 PFU. Differences in the development of demyelinating disease and changes in the histopathology were compared. Viral persistence, cytokine production, and immune responses in the CNS of infected mice were analyzed using quantitative PCR, ELISA, and flow cytometry. Results Administration of IL-1β, thereby rending resistant B6 mice susceptible to TMEV-induced demyelinating disease, induced a high level of Th17 response. Interestingly, infection of TMEV into IL-1R-deficient resistant C57BL/6 (B6 mice also induced TMEV-induced demyelinating disease. High viral persistence was found in the late stage of viral infection in IL-1R-deficient mice, although there were few differences in the initial anti-viral immune responses and viral persistent levels between the WT B6 and IL-1R-deficiecent mice. The initial type I IFN responses and the expression of PDL-1 and Tim-3 were higher in the CNS of TMEV-infected IL-1R-deficient mice, leading to deficiencies in T cell function that permit viral persistence. Conclusions These results suggest that the presence of high IL-1 level exerts the pathogenic role by elevating pathogenic Th17 responses, whereas the lack of IL-1 signals promotes viral persistence in the spinal cord due to insufficient T cell activation by elevating the production of

  19. IL-22 and IDO1 Affect Immunity and Tolerance to Murine and Human Vaginal Candidiasis

    Science.gov (United States)

    De Luca, Antonella; Carvalho, Agostinho; Cunha, Cristina; Iannitti, Rossana G.; Pitzurra, Lucia; Giovannini, Gloria; Mencacci, Antonella; Bartolommei, Lorenzo; Moretti, Silvia; Massi-Benedetti, Cristina; Fuchs, Dietmar; De Bernardis, Flavia; Puccetti, Paolo; Romani, Luigina

    2013-01-01

    The ability to tolerate Candida albicans, a human commensal of the gastrointestinal tract and vagina, implicates that host defense mechanisms of resistance and tolerance cooperate to limit fungal burden and inflammation at the different body sites. We evaluated resistance and tolerance to the fungus in experimental and human vulvovaginal candidiasis (VVC) as well as in recurrent VVC (RVVC). Resistance and tolerance mechanisms were both activated in murine VVC, involving IL-22 and IL-10-producing regulatory T cells, respectively, with a major contribution by the enzyme indoleamine 2,3-dioxygenase 1 (IDO1). IDO1 was responsible for the production of tolerogenic kynurenines, such that replacement therapy with kynurenines restored immunoprotection to VVC. In humans, two functional genetic variants in IL22 and IDO1 genes were found to be associated with heightened resistance to RVVC, and they correlated with increased local expression of IL-22, IDO1 and kynurenines. Thus, IL-22 and IDO1 are crucial in balancing resistance with tolerance to Candida, their deficiencies are risk factors for RVVC, and targeting tolerance via therapeutic kynurenines may benefit patients with RVVC. PMID:23853597

  20. Fasting induces IL-1 resistance and free fatty acid-mediated up-regulation of IL-1R2 and IL-1RA

    Directory of Open Access Journals (Sweden)

    jenifer j joesting

    2014-07-01

    Full Text Available Objective: Weight loss is a near societal obsession and many diet programs use significant calorie restriction (CR including fasting/short term starvation to generate rapid effects. Fasting is also a well-recognized cause of immunosuppression especially within the innate immune system. In this study, we sought to determine if the IL-1 arm of the neuroimmune system was down-regulated by a 24 hr fast and how fasting might generate this effect. Design: Mice were allowed ad libitum access to food or had food withheld for 24 hrs. Expression of the endogenous IL-1 antagonists IL-1 receptor type 2 (IL-1R2 and IL-1 receptor antagonist (IL-1RA were determined as were sickness behaviors before and after IL-1 administration.Results: Fasting markedly increased gene expression of IL-1R2 (83-fold in adipose tissue, 9.5-fold in liver and IL-1RA (68-fold in liver. Fasted mice were protected from IL-1-induced weight loss, hypoglycemia, loss of locomotor and social anxiety. These protections were coupled to a large positive interaction of fasting and IL-1 on IL-1R2 gene expression in adipose tissue and liver (2.6-fold and 1.6-fold, respectively. Fasting not only increased IL-1RA and IL-1R2 protein 2.5-fold and 3.2-fold, respectively, in liver; but also increased IL-1R2 1.8-fold in adipose tissue. Fasting, in turn, triggered a 2.4-fold increase in plasma free-fatty acids (FFAs and a 2.1-fold increase in plasma corticosterone. Inhibition, of glucocorticoid action with mifepristone did not impact fasting-dependent IL-1R2 or IL-1RA gene expression. Administration of the FFA, palmitate, to mice increased liver IL-1R2 and IL-1RA gene expression by 14-fold and 11-fold, respectively. Conclusion: These findings indicate that fasting augments expression of endogenous IL-1 antagonists inducing IL-1 resistance. Fasting-induced increases in plasma FFAs appears to be a signal that drives immunosuppression during fasting/short term starvation.

  1. Role of IL-1 beta and COX2 in silica-induced IL-6 release and loss of pneumocytes in co-cultures.

    Science.gov (United States)

    Herseth, Jan I; Refsnes, Magne; Låg, Marit; Schwarze, Per E

    2009-10-01

    The pro-inflammatory cytokines IL-1 beta, TNF-alpha and IL-6 are of great importance in the development of silica-induced lung damage and repair. In this study we investigated the role of IL-1 beta, TNF-alpha and COX2 in silica-induced regulation of IL-6 release and pneumocyte loss in various mono- and co-cultures of monocytes, pneumocytes and endothelial cells. All co-cultures with monocytes, and especially cultures including endothelial cells, showed an increase of silica-induced release of IL-6 compared to the respective monocultures. Treatment with the antagonist IL-1 ra strongly decreased IL-1 beta and IL-6 release in contact co-cultures of monocytes and pneumocytes. COX2 up-regulation by silica and IL-1 beta was eliminated by IL-1 ra. Inhibition of COX2 markedly reduced both IL-1 beta and IL-6 release. IL-1 ra was more effective than COX2-inhibition in reduction of IL-6, but not of IL-1 beta. Silica-induced pneumocyte loss was reduced by IL-1 beta, but this effect was not counteracted by the IL-1 receptor antagonist. Our findings suggest that silica-induced IL-6 release from pneumocytes is mainly mediated via IL-1 beta release from the monocytes, via both COX2-dependent and -independent pathways. Notably, COX2-derived mediators seem crucial for a positive feed-back regulation of IL-1 beta release from the monocytes. In contrast to silica-induced IL-6, the reduction in pneumocyte loss by IL-1 beta does not seem to be regulated through an IL-1R1-dependent mechanism.

  2. IL-7 Induces an Epitope Masking of γc Protein in IL-7 Receptor Signaling Complex

    Directory of Open Access Journals (Sweden)

    Tae Sik Goh

    2017-01-01

    Full Text Available IL-7 signaling via IL-7Rα and common γ-chain (γc is necessary for the development and homeostasis of T cells. Although the delicate mechanism in which IL-7Rα downregulation allows the homeostasis of T cell with limited IL-7 has been well known, the exact mechanism behind the interaction between IL-7Rα and γc in the absence or presence of IL-7 remains unclear. Additionally, we are still uncertain as to how only IL-7Rα is separately downregulated by the binding of IL-7 from the IL-7Rα/γc complex. We demonstrate here that 4G3, TUGm2, and 3E12 epitope masking of γc protein are induced in the presence of IL-7, indicating that the epitope alteration is induced by IL-7 binding to the preassembled receptor core. Moreover, the epitope masking of γc protein is inversely correlated with the expression of IL-7Rα upon IL-7 binding, implying that the structural alteration of γc might be involved in the regulation of IL-7Rα expression. The conformational change in γc upon IL-7 binding may contribute not only to forming the functional IL-7 signaling complex but also to optimally regulating the expression of IL-7Rα.

  3. IL-7 Induces an Epitope Masking of γc Protein in IL-7 Receptor Signaling Complex

    Science.gov (United States)

    Goh, Tae Sik; Jo, Yuna; Lee, Byunghyuk; Kim, Geona; Hwang, Hyunju; Ko, Eunhee; Kang, Seung Wan; Oh, Sae-Ock; Baek, Sun-Yong; Yoon, Sik; Lee, Jung Sub

    2017-01-01

    IL-7 signaling via IL-7Rα and common γ-chain (γc) is necessary for the development and homeostasis of T cells. Although the delicate mechanism in which IL-7Rα downregulation allows the homeostasis of T cell with limited IL-7 has been well known, the exact mechanism behind the interaction between IL-7Rα and γc in the absence or presence of IL-7 remains unclear. Additionally, we are still uncertain as to how only IL-7Rα is separately downregulated by the binding of IL-7 from the IL-7Rα/γc complex. We demonstrate here that 4G3, TUGm2, and 3E12 epitope masking of γc protein are induced in the presence of IL-7, indicating that the epitope alteration is induced by IL-7 binding to the preassembled receptor core. Moreover, the epitope masking of γc protein is inversely correlated with the expression of IL-7Rα upon IL-7 binding, implying that the structural alteration of γc might be involved in the regulation of IL-7Rα expression. The conformational change in γc upon IL-7 binding may contribute not only to forming the functional IL-7 signaling complex but also to optimally regulating the expression of IL-7Rα. PMID:28127156

  4. Therapeutic potential of combined anti-IL-1β IgY and anti-TNF-α IgY in guinea pigs with allergic rhinitis induced by ovalbumin.

    Science.gov (United States)

    Guo-Zhu, Hu; Xi-Ling, Zhu; Zhu, Wen; Li-Hua, Wu; Dan, He; Xiao-Mu, Wu; Wen-Yun, Zhou; Wei-Xu, Hu

    2015-03-01

    We have previously demonstrated that anti-IL-1β immunoglobulin yolk(IgY) inhibits pathological responses in allergic asthma guinea pigs induced by ovalbumin(OVA). This study aims to determine whether the combined blockade of IL-1β and TNF-α can more effectively inhibit allergic inflammation in allergic rhinitis(AR) guinea pigs induced by OVA. Healthy guinea pigs treated with saline were used as the healthy control. The AR guinea pigs induced by OVA were randomly divided into (1) the AR model group containing negative control animals treated with intranasal saline; (2) the 0.1% non-specific IgY treatment group treated with non-specific IgY; (3) the 0.1% anti-TNF-α IgY treatment group treated with 0.1% anti-TNF-α IgY; (4) the 0.1% anti-IL-1β IgY treatment group treated with 0.1% anti-IL-1β IgY; (5) the 0.1% combined anti-IL-1β IgY and anti-TNF-α IgY treatment group treated with 0.1% combined anti-IL-1β IgY and anti-TNF-α IgY; and (6) the fluticasone propionate treatment group treated with fluticasone propionate. Cytokines were measured using an enzyme-linked immunosorbent assay. The results showed that IL-1β, IL-5, IL-9, IL-13, IL-18, IL-22, IL-33, TNF-α, TGF-β1 and OVA-specific IgE levels in the peripheral blood (PB) and nasal lavage fluid (NLF) significantly decreased at 2h, 4h or 8h in the 0.1% combined anti-IL-1β IgY and anti-TNF-α IgY treatment group compared to the AR model group and the 0.1% non-specific IgY treatment group (P<0.05). The data suggest that blockade of IL-1β and TNF-α by intranasal instillation of combined anti-IL-1β IgY and anti-TNF-α IgY could be a potential alternative strategy for preventing and treating allergic rhinitis. Copyright © 2014. Published by Elsevier B.V.

  5. IL-36γ Is a Strong Inducer of IL-23 in Psoriatic Cells and Activates Angiogenesis

    Directory of Open Access Journals (Sweden)

    Charlie Bridgewood

    2018-02-01

    Full Text Available The IL-1 family member cytokine IL-36γ is recognised as key mediator in the immunopathology of psoriasis, hallmarks of which involve the activation of both resident and infiltrating inflammatory myeloid cells and aberrant angiogenesis. This research demonstrates a role for IL-36γ in both myeloid activation and angiogenesis. We show that IL-36γ induces the production of psoriasis-associated cytokines from macrophages (IL-23 and TNFα and that this response is enhanced in macrophages from psoriasis patients. This effect is specific for IL-36γ and could not be mimicked by other IL-1 family cytokines such as IL-1α. IL-36γ was also demonstrated to induce endothelial tube formation and branching, in a VEGF-A-dependent manner. Furthermore, IL-36γ-stimulated macrophages potently activated endothelial cells and led to increased adherence of monocytes, effects that were markedly more pronounced for psoriatic macrophages. Interestingly, regardless of stimulus, psoriasis monocytes showed increased adherence to both the stimulated and unstimulated endothelium when compared with monocytes from healthy individuals. Collectively, these findings show that IL-36γ has the potential to enhance endothelium directed leucocyte infiltration into the skin and strengthen the IL-23/IL-17 pathway adding to the growing evidence of pathogenetic roles for IL-36γ in psoriatic responses. Our findings also point to a cellular response, which could potentially explain cardiovascular comorbidities in psoriasis in the form of endothelial activation and increased monocyte adherence.

  6. IL-36γ Is a Strong Inducer of IL-23 in Psoriatic Cells and Activates Angiogenesis.

    Science.gov (United States)

    Bridgewood, Charlie; Fearnley, Gareth W; Berekmeri, Anna; Laws, Philip; Macleod, Tom; Ponnambalam, Sreenivasan; Stacey, Martin; Graham, Anne; Wittmann, Miriam

    2018-01-01

    The IL-1 family member cytokine IL-36γ is recognised as key mediator in the immunopathology of psoriasis, hallmarks of which involve the activation of both resident and infiltrating inflammatory myeloid cells and aberrant angiogenesis. This research demonstrates a role for IL-36γ in both myeloid activation and angiogenesis. We show that IL-36γ induces the production of psoriasis-associated cytokines from macrophages (IL-23 and TNFα) and that this response is enhanced in macrophages from psoriasis patients. This effect is specific for IL-36γ and could not be mimicked by other IL-1 family cytokines such as IL-1α. IL-36γ was also demonstrated to induce endothelial tube formation and branching, in a VEGF-A-dependent manner. Furthermore, IL-36γ-stimulated macrophages potently activated endothelial cells and led to increased adherence of monocytes, effects that were markedly more pronounced for psoriatic macrophages. Interestingly, regardless of stimulus, psoriasis monocytes showed increased adherence to both the stimulated and unstimulated endothelium when compared with monocytes from healthy individuals. Collectively, these findings show that IL-36γ has the potential to enhance endothelium directed leucocyte infiltration into the skin and strengthen the IL-23/IL-17 pathway adding to the growing evidence of pathogenetic roles for IL-36γ in psoriatic responses. Our findings also point to a cellular response, which could potentially explain cardiovascular comorbidities in psoriasis in the form of endothelial activation and increased monocyte adherence.

  7. Cytokine vaccination: neutralising IL-1alpha autoantibodies induced by immunisation with homologous IL-1alpha

    DEFF Research Database (Denmark)

    Svenson, M; Hansen, M B; Thomsen, Allan Randrup

    2000-01-01

    with IL-1alpha coupled to purified protein derivative of tuberculin (PPD). Both unprimed and primed animals developed IgG aAb to IL-1alpha. These aAb persisted at high levels more than 100 days after vaccination and did not cross-react with murine IL-1beta. The induced anti-IL-1alpha aAb inhibited binding...... in mice by vaccination with recombinant murine IL-1alpha conjugated to PPD. Studies of the effects of IL-1alpha aAb in such animals may help clarify the importance of naturally occurring IL-1alpha aAb in humans and permit the evaluation of future therapies with cytokine aAb in patients...

  8. Commensal bacteria and MAMPs are necessary for stress-induced increases in IL-1β and IL-18 but not IL-6, IL-10 or MCP-1.

    Directory of Open Access Journals (Sweden)

    Thomas Maslanik

    Full Text Available Regular interactions between commensal bacteria and the enteric mucosal immune environment are necessary for normal immunity. Alterations of the commensal bacterial communities or mucosal barrier can disrupt immune function. Chronic stress interferes with bacterial community structure (specifically, α-diversity and the integrity of the intestinal barrier. These interferences can contribute to chronic stress-induced increases in systemic IL-6 and TNF-α. Chronic stress, however, produces many physiological changes that could indirectly influence immune activity. In addition to IL-6 and TNF-α, exposure to acute stressors upregulates a plethora of inflammatory proteins, each having unique synthesis and release mechanisms. We therefore tested the hypothesis that acute stress-induced inflammatory protein responses are dependent on the commensal bacteria, and more specifically, lipopolysaccharide (LPS shed from Gram-negative intestinal commensal bacteria. We present evidence that both reducing commensal bacteria using antibiotics and neutralizing LPS using endotoxin inhibitor (EI attenuates increases in some (inflammasome dependent, IL-1 and IL-18, but not all (inflammasome independent, IL-6, IL-10, and MCP-1 inflammatory proteins in the blood of male F344 rats exposed to an acute tail shock stressor. Acute stress did not impact α- or β- diversity measured using 16S rRNA diversity analyses, but selectively reduced the relative abundance of Prevotella. These findings indicate that commensal bacteria contribute to acute stress-induced inflammatory protein responses, and support the presence of LPS-mediated signaling in stress-evoked cytokine and chemokine production. The selectivity of the commensal bacteria in stress-evoked IL-1β and IL-18 responses may implicate the inflammasome in this response.

  9. GSK-3β Inhibition Attenuates LPS-Induced Death but Aggravates Radiation-Induced Death via Down-Regulation of IL-6

    Directory of Open Access Journals (Sweden)

    Bailong Li

    2013-12-01

    Full Text Available Background: Exposure of high dose ionizing radiation is lethal. Signal pathways involved in radiation biology reaction still remain illdefined. Lipopolysaccharides (LPS, the ligands of Toll-like receptor 4(TLR4, could elicit strong immune responses. Glycogen synthase kinase-3β(GSK-3β promotes the production of inflammatory molecules and cell migration. Inhibition of GSK-3β provides protection against inflammation in animal models. The aim of the study was to investigate role of GSK-3β in LPS shock and ionizing radiation. Methods: WT or IL-6-/-mice or cells were pretreated with SB216763, a GSK-3β inhibitor, and survival of the mice was determined. Cell viability was assayed by Cell Counting Kit. Apoptosis was assayed by Annexin V-PI double staining. Serum concentrations of IL-6 and TNF-α were determined by ELISA. Results: SB216763 attenuated LPS induced mice or cell death but aggravated radiation induced mice or cell death. SB216763 reduced IL-6, but not TNF-α levels in vivo. IL-6-/- mice were more resistant to LPS-induced death but less resistant to radiation-induced death than wild type mice. Conclusions: Inhibition of GSK-3β conferred resistance to LPS shock but fostered death induced by ionizing radiation. Inhibition of GSK-3β was effective by reducing IL-6.

  10. Grain dust induces IL-8 production from bronchial epithelial cells: the effect of dexamethasone on IL-8 production.

    Science.gov (United States)

    Park, H S; Suh, J H; Kim, H Y; Kwon, O J; Choi, D C

    1999-04-01

    Recent publications have suggested an active participation of neutrophils to induce bronchoconstriction after inhalation of grain dust (GD). To further understand the role of neutrophils in the pathogenesis of GD-induced asthma, this investigation was designed to determine whether human bronchial epithelial cells could produce IL-8 production and to observe the effect of dexamethasone on IL-8 production. We cultured Beas-2B, a bronchial epithelial cell line. To observe GD-induced responses, four concentrations (1 to 200 microg/mL) of GD were incubated for 24 hours and compared with those without incubation of GD. To evaluate the effect of pro-inflammatory cytokines on IL-8 production, epithelial cells were incubated with peripheral blood mononuclear cell (PBMC) culture supernatant, which was derived from the culture of PBMC from a GD-induced asthmatic subject under the exposure to 10 microg/mL of GD, and compared with those cultured without addition of PBMC supernatant. The level of released IL-8 in the supernatant was measured by enzyme-linked immunosorbent assay. To evaluate the effect of dexamethasone on IL-8 production, four concentrations (5 to 5000 ng/mL) of dexamethasone were pre-incubated for 24 hours and the same experiments were repeated. There was significant production of IL-8 from bronchial epithelial cells with additions of GD in a dose-dependent manner (P < .05), which was significantly augmented with additions of PBMC supernatant (P < .05) at each concentration. Compared with the untreated sample, pretreatment of dexamethasone could induced a remarkable inhibitions (15% to 55%) of IL-8 production from bronchial epithelial cells in a dose-dependent manner. These results suggest that IL-8 production from bronchial epithelial cells may contribute to neutrophil recruitment occurring in GD-induced airway inflammation. The downregulation of IL-8 production by dexamethasone from bronchial epithelial cells may contribute to the efficacy of this compound in

  11. The Role of IL-1 signaling in a mouse model of Kawasaki Disease-associated Abdominal Aortic Aneurysm

    Science.gov (United States)

    Wakita, Daiko; Kurashima, Yosuke; Crother, Timothy R.; Rivas, Magali Noval; Lee, Youngho; Chen, Shuang; Fury, Wen; Bai, Yu; Wagner, Shawn; Li, Debiao; Lehman, Thomas; Fishbein, Michael C.; Hoffmann, Hal; Shah, Prediman K.; Shimada, Kenichi; Arditi, Moshe

    2016-01-01

    Objective Kawasaki disease (KD) is the most common cause of acquired cardiac disease in US children. In addition to coronary artery abnormalities and aneurysms, it can be associated with systemic arterial aneurysms. We evaluated the development of systemic arterial dilatation and aneurysms, including abdominal aortic aneurysm (AAA) in the Lactobacillus casei cell wall extract (LCWE)-induced KD vasculitis mouse model. Methods and Results We discovered that in addition to aortitis, coronary arteritis and myocarditis, the LCWE-induced KD mouse model is also associated with abdominal aorta dilatation and AAA, as well as renal and iliac artery aneurysms. AAA induced in KD mice was exclusively infrarenal, both fusiform and saccular, with intimal proliferation, myofibroblastic proliferation, break in the elastin layer, vascular smooth muscle cell loss, and inflammatory cell accumulation in the media and adventitia. Il1r−/−, Il1a−/−, and Il1a−/− mice were protected from KD associated AAA. Infiltrating CD11c+ macrophages produced active caspase-1 and caspase-1 or NLRP3 deficiency inhibited AAA formation. Treatment with IL-1R antagonist (Anakinra), anti-IL-1α, or anti-IL-1β mAb blocked LCWE-induced AAA formation. Conclusions Similar to clinical KD, the LCWE-induced KD vasculitis mouse model can also be accompanied by AAA formation. Both IL-1α and IL-1β play a key role, and that use of an IL-1R blocking agent that inhibits both pathways may be a promising therapeutic target not only for KD coronary arteritis, but also for the other systemic arterial aneurysms including AAA that maybe seen in severe cases of KD. The LCWE-induced vasculitis model may also represent an alternative model for AAA disease. PMID:26941015

  12. Cellular mechanisms of IL-17-induced blood-brain barrier disruption.

    Science.gov (United States)

    Huppert, Jula; Closhen, Dorothea; Croxford, Andrew; White, Robin; Kulig, Paulina; Pietrowski, Eweline; Bechmann, Ingo; Becher, Burkhard; Luhmann, Heiko J; Waisman, Ari; Kuhlmann, Christoph R W

    2010-04-01

    Recently T-helper 17 (Th17) cells were demonstrated to disrupt the blood-brain barrier (BBB) by the action of IL-17A. The aim of the present study was to examine the mechanisms that underlie IL-17A-induced BBB breakdown. Barrier integrity was analyzed in the murine brain endothelial cell line bEnd.3 by measuring the electrical resistance values using electrical call impedance sensing technology. Furthermore, in-cell Western blots, fluorescence imaging, and monocyte adhesion and transendothelial migration assays were performed. Experimental autoimmune encephalomyelitis (EAE) was induced in C57BL/6 mice. IL-17A induced NADPH oxidase- or xanthine oxidase-dependent reactive oxygen species (ROS) production. The resulting oxidative stress activated the endothelial contractile machinery, which was accompanied by a down-regulation of the tight junction molecule occludin. Blocking either ROS formation or myosin light chain phosphorylation or applying IL-17A-neutralizing antibodies prevented IL-17A-induced BBB disruption. Treatment of mice with EAE using ML-7, an inhibitor of the myosin light chain kinase, resulted in less BBB disruption at the spinal cord and less infiltration of lymphocytes via the BBB and subsequently reduced the clinical characteristics of EAE. These observations indicate that IL-17A accounts for a crucial step in the development of EAE by impairing the integrity of the BBB, involving augmented production of ROS.-Huppert, J., Closhen, D., Croxford, A., White, R., Kulig, P., Pietrowski, E., Bechmann, I., Becher, B., Luhmann, H. J., Waisman, A., Kuhlmann, C. R. W. Cellular mechanisms of IL-17-induced blood-brain barrier disruption.

  13. Streptococcus gordonii lipoproteins induce IL-8 in human periodontal ligament cells.

    Science.gov (United States)

    Kim, A Reum; Ahn, Ki Bum; Kim, Hyun Young; Seo, Ho Seong; Kum, Kee-Yeon; Yun, Cheol-Heui; Han, Seung Hyun

    2017-11-01

    Streptococcus gordonii, a Gram-positive oral bacterium, is a life-threatening pathogen that causes infective endocarditis. It is frequently isolated from the periapical lesions of patients with apical periodontitis and has thus been implicated in inflammatory responses. However, little is known about the virulence factors of S. gordonii responsible for the induction of inflammatory responses in the periapical areas. Here, we investigated the role of S. gordonii cell wall-associated virulence factors on interleukin (IL)-8 induction in human periodontal ligament (PDL) cells using ethanol-inactivated wild-type S. gordonii, a lipoteichoic acid (LTA)-deficient mutant (ΔltaS), and a lipoprotein-deficient mutant (Δlgt). Wild-type S. gordonii induced IL-8 expression at both the protein and mRNA levels in human PDL cells in a dose- and time-dependent manner. A transient transfection and reporter gene assay demonstrated that wild-type S. gordonii activated Toll-like receptor 2 (TLR2). Additionally, IL-8 production induced by wild-type S. gordonii was substantially inhibited by anti-TLR2-neutralizing antibodies. Both wild-type S. gordonii and the ΔltaS mutant induced IL-8 production; however, this response was not observed when cells were stimulated with the Δlgt mutant. Interestingly, lipoproteins purified from S. gordonii induced IL-8 production, whereas purified LTA did not. In addition, purified lipoproteins stimulated TLR2 more potently than LTA. Furthermore, S. gordonii-induced IL-8 expression was specifically inhibited by blocking p38 kinase, while lipoprotein-induced IL-8 expression was inhibited by blocking p38 kinase, ERK, or JNK. Of particular note, exogenous addition of purified S. gordonii lipoproteins enhanced Δlgt-induced IL-8 production in human PDL cells to an extent similar to that induced by the wild-type strain. Collectively, these results suggest that lipoproteins are an important component of S. gordonii for the induction of IL-8 production in human

  14. Requirement of the inducible nitric oxide synthase pathway for IL-1-induced osteoclastic bone resorption.

    Science.gov (United States)

    van't Hof, R J; Armour, K J; Smith, L M; Armour, K E; Wei, X Q; Liew, F Y; Ralston, S H

    2000-07-05

    Nitric oxide has been suggested to be involved in the regulation of bone turnover, especially in pathological conditions characterized by release of bone-resorbing cytokines. The cytokine IL-1 is thought to act as a mediator of periarticular bone loss and tissue damage in inflammatory diseases such as rheumatoid arthritis. IL-1 is a potent stimulator of both osteoclastic bone resorption and expression of inducible nitric oxide synthase (iNOS) in bone cells and other cell types. In this study, we investigated the role that the iNOS pathway plays in mediating the bone-resorbing effects of IL-1 by studying mice with targeted disruption of the iNOS gene. Studies in vitro and in vivo showed that iNOS-deficient mice exhibited profound defects of IL-1-induced osteoclastic bone resorption but responded normally to calciotropic hormones such as 1,25 dihydroxyvitamin D3 and parathyroid hormone. Immunohistochemical studies and electrophoretic mobility shift assays performed on bone marrow cocultures from iNOS-deficient mice showed abnormalities in IL-1-induced nuclear translocation of the p65 component of NFkappaB and in NFkappaB-DNA binding, which were reversed by treatment with the NO donor S-nitroso-acetyl penicillamine. These results show that the iNOS pathway is essential for IL-1-induced bone resorption and suggest that the effects of NO may be mediated by modulating IL-1-induced nuclear activation of NFkappaB in osteoclast precursors.

  15. Requirement of the inducible nitric oxide synthase pathway for IL-1-induced osteoclastic bone resorption

    Science.gov (United States)

    van't Hof, R. J.; Armour, K. J.; Smith, L. M.; Armour, K. E.; Wei, X. Q.; Liew, F. Y.; Ralston, S. H.

    2000-01-01

    Nitric oxide has been suggested to be involved in the regulation of bone turnover, especially in pathological conditions characterized by release of bone-resorbing cytokines. The cytokine IL-1 is thought to act as a mediator of periarticular bone loss and tissue damage in inflammatory diseases such as rheumatoid arthritis. IL-1 is a potent stimulator of both osteoclastic bone resorption and expression of inducible nitric oxide synthase (iNOS) in bone cells and other cell types. In this study, we investigated the role that the iNOS pathway plays in mediating the bone-resorbing effects of IL-1 by studying mice with targeted disruption of the iNOS gene. Studies in vitro and in vivo showed that iNOS-deficient mice exhibited profound defects of IL-1-induced osteoclastic bone resorption but responded normally to calciotropic hormones such as 1,25 dihydroxyvitamin D3 and parathyroid hormone. Immunohistochemical studies and electrophoretic mobility shift assays performed on bone marrow cocultures from iNOS-deficient mice showed abnormalities in IL-1-induced nuclear translocation of the p65 component of NFκB and in NFκB-DNA binding, which were reversed by treatment with the NO donor S-nitroso-acetyl penicillamine. These results show that the iNOS pathway is essential for IL-1-induced bone resorption and suggest that the effects of NO may be mediated by modulating IL-1-induced nuclear activation of NFκB in osteoclast precursors. PMID:10869429

  16. Endogenous brain IL-1 mediates LPS-induced anorexia and hypothalamic cytokine expression.

    Science.gov (United States)

    Layé, S; Gheusi, G; Cremona, S; Combe, C; Kelley, K; Dantzer, R; Parnet, P

    2000-07-01

    The present study was designed to determine the role of endogenous brain interleukin (IL)-1 in the anorexic response to lipopolysaccharide (LPS). Intraperitoneal administration of LPS (5-10 microgram/mouse) induced a dramatic, but transient, decrease in food intake, associated with an enhanced expression of proinflammatory cytokine mRNA (IL-1beta, IL-6, and tumor necrosis factor-alpha) in the hypothalamus. This dose of LPS also increased plasma levels of IL-1beta. Intracerebroventricular pretreatment with IL-1 receptor antagonist (4 microgram/mouse) attenuated LPS-induced depression of food intake and totally blocked the LPS-induced enhanced expression of proinflammatory cytokine mRNA measured in the hypothalamus 1 h after treatment. In contrast, LPS-induced increases in plasma levels of IL-1beta were not altered. These findings indicate that endogenous brain IL-1 plays a pivotal role in the development of the hypothalamic cytokine response to a systemic inflammatory stimulus.

  17. Probiotic Bifidobacterium breve induces IL-10-producing Tr1 cells in the colon.

    Directory of Open Access Journals (Sweden)

    Seong Gyu Jeon

    Full Text Available Specific intestinal microbiota has been shown to induce Foxp3(+ regulatory T cell development. However, it remains unclear how development of another regulatory T cell subset, Tr1 cells, is regulated in the intestine. Here, we analyzed the role of two probiotic strains of intestinal bacteria, Lactobacillus casei and Bifidobacterium breve in T cell development in the intestine. B. breve, but not L. casei, induced development of IL-10-producing Tr1 cells that express cMaf, IL-21, and Ahr in the large intestine. Intestinal CD103(+ dendritic cells (DCs mediated B. breve-induced development of IL-10-producing T cells. CD103(+ DCs from Il10(-/-, Tlr2(-/-, and Myd88(-/- mice showed defective B. breve-induced Tr1 cell development. B. breve-treated CD103(+ DCs failed to induce IL-10 production from co-cultured Il27ra(-/- T cells. B. breve treatment of Tlr2(-/- mice did not increase IL-10-producing T cells in the colonic lamina propria. Thus, B. breve activates intestinal CD103(+ DCs to produce IL-10 and IL-27 via the TLR2/MyD88 pathway thereby inducing IL-10-producing Tr1 cells in the large intestine. Oral B. breve administration ameliorated colitis in immunocompromised mice given naïve CD4(+ T cells from wild-type mice, but not Il10(-/- mice. These findings demonstrate that B. breve prevents intestinal inflammation through the induction of intestinal IL-10-producing Tr1 cells.

  18. Probiotic Bifidobacterium breve induces IL-10-producing Tr1 cells in the colon.

    Science.gov (United States)

    Jeon, Seong Gyu; Kayama, Hisako; Ueda, Yoshiyasu; Takahashi, Takuya; Asahara, Takashi; Tsuji, Hirokazu; Tsuji, Noriko M; Kiyono, Hiroshi; Ma, Ji Su; Kusu, Takashi; Okumura, Ryu; Hara, Hiromitsu; Yoshida, Hiroki; Yamamoto, Masahiro; Nomoto, Koji; Takeda, Kiyoshi

    2012-01-01

    Specific intestinal microbiota has been shown to induce Foxp3(+) regulatory T cell development. However, it remains unclear how development of another regulatory T cell subset, Tr1 cells, is regulated in the intestine. Here, we analyzed the role of two probiotic strains of intestinal bacteria, Lactobacillus casei and Bifidobacterium breve in T cell development in the intestine. B. breve, but not L. casei, induced development of IL-10-producing Tr1 cells that express cMaf, IL-21, and Ahr in the large intestine. Intestinal CD103(+) dendritic cells (DCs) mediated B. breve-induced development of IL-10-producing T cells. CD103(+) DCs from Il10(-/-), Tlr2(-/-), and Myd88(-/-) mice showed defective B. breve-induced Tr1 cell development. B. breve-treated CD103(+) DCs failed to induce IL-10 production from co-cultured Il27ra(-/-) T cells. B. breve treatment of Tlr2(-/-) mice did not increase IL-10-producing T cells in the colonic lamina propria. Thus, B. breve activates intestinal CD103(+) DCs to produce IL-10 and IL-27 via the TLR2/MyD88 pathway thereby inducing IL-10-producing Tr1 cells in the large intestine. Oral B. breve administration ameliorated colitis in immunocompromised mice given naïve CD4(+) T cells from wild-type mice, but not Il10(-/-) mice. These findings demonstrate that B. breve prevents intestinal inflammation through the induction of intestinal IL-10-producing Tr1 cells.

  19. Identification of cinnabarinic acid as a novel endogenous aryl hydrocarbon receptor ligand that drives IL-22 production.

    Science.gov (United States)

    Lowe, Margaret M; Mold, Jeff E; Kanwar, Bittoo; Huang, Yong; Louie, Alexander; Pollastri, Michael P; Wang, Cuihua; Patel, Gautam; Franks, Diana G; Schlezinger, Jennifer; Sherr, David H; Silverstone, Allen E; Hahn, Mark E; McCune, Joseph M

    2014-01-01

    The aryl hydrocarbon receptor (AHR) binds to environmental toxicants including synthetic halogenated aromatic hydrocarbons and is involved in a diverse array of biological processes. Recently, the AHR was shown to control host immunity by affecting the balance between inflammatory T cells that produce IL-17 (Th17) and IL-22 versus regulatory T cells (Treg) involved in tolerance. While environmental AHR ligands can mediate this effect, endogenous ligands are likely to be more relevant in host immune responses. We investigated downstream metabolites of tryptophan as potential AHR ligands because (1) tryptophan metabolites have been implicated in regulating the balance between Th17 and Treg cells and (2) many of the AHR ligands identified thus far are derivatives of tryptophan. We characterized the ability of tryptophan metabolites to bind and activate the AHR and to increase IL-22 production in human T cells. We report that the tryptophan metabolite, cinnabarinic acid (CA), is an AHR ligand that stimulates the differentiation of human and mouse T cells producing IL-22. We compare the IL-22-stimulating activity of CA to that of other tryptophan metabolites and define stimulation conditions that lead to CA production from immune cells. Our findings link tryptophan metabolism to AHR activation and define a novel endogenous AHR agonist with potentially broad biological functions.

  20. Hepatitis B virus induces IL-23 production in antigen presenting cells and causes liver damage via the IL-23/IL-17 axis.

    Directory of Open Access Journals (Sweden)

    Qinghong Wang

    Full Text Available IL-23 regulates myriad processes in the innate and adaptive immune systems, and is a critical mediator of the proinflammatory effects exerted by Th17 cells in many diseases. In this study, we investigated whether and how hepatitis B virus (HBV causes liver damage directly through the IL-23 signaling pathway. In biopsied liver tissues from HBV-infected patients, expression of both IL-23 and IL-23R was remarkably elevated. In vivo observations also indicated that the main sources of IL-23 were myeloid dendritic cells (mDCs and macrophages. Analysis of in vitro differentiated immature DCs and macrophages isolated from healthy donors revealed that the HBV surface antigen (HBsAg efficiently induces IL-23 secretion in a mannose receptor (MR-dependent manner. Culture with an endosomal acidification inhibitor and the dynamin inhibitor showed that, upon binding to the MR, the HBsAg is taken up by mDCs and macrophages through an endocytosis mechanism. In contrast, although the HBV core antigen (HBcAg can also stimulate IL-23 secretion from mDCs, the process was MR- and endocytosis-independent. In addition, IL-23 was shown to be indispensible for HBsAg-stimulated differentiation of naïve CD4(+ T cells into Th17 cells, which were determined to be the primary source of IL-17 in HBV-infected livers. The cognate receptor, IL-17R, was found to exist on the hepatic stellate cells and mDCs, both of which might represent the potential target cells of IL-17 in hepatitis B disease. These data provide novel insights into a yet unrecognized mechanism of HBV-induced hepatitis, by which increases in IL-23 expression, through an MR/endocytosis-dependent or -independent manner, produce liver damage through the IL-23/IL-17 axis.

  1. IL-11, IL-1α, IL-6, and TNF-α are induced by solar radiation in vitro and may be involved in facial subcutaneous fat loss in vivo.

    Science.gov (United States)

    Li, Wen-Hwa; Pappas, Apostolos; Zhang, Li; Ruvolo, Eduardo; Cavender, Druie

    2013-07-01

    The loss of subcutaneous (sc) fat is associated with aging. Inflammatory cytokines, such as interleukin-1 α (IL-1α), interleukin-11 (IL-11) and tumor necrosis factor-α (TNF-α), are known to inhibit the differentiation of preadipocytes. This study investigated the potential role of inflammatory cytokines in solar-radiation-induced facial fat loss. Cultured fibroblasts, keratinocytes, and skin equivalents were exposed to various doses of radiation from a solar simulator. Inflammatory cytokines' mRNA production and protein secretion were examined by qRT-PCR and ELISA, respectively. In some experiments, epidermal-dermal equivalents were pretreated topically with a broad-spectrum sunscreen prior to solar simulated radiation (SSR). Human facial preadipocytes treated with recombinant IL-11 or with conditioned media from solar-irradiated equivalents were evaluated for the level of adipocyte differentiation by image analyses, Oil red O staining, and the expression of adipocyte differentiation markers. IL-11, IL-1α, IL-6, and TNF-α protein secretion were induced from epidermal-dermal equivalents by exposure to SSR. A sunscreen prevented SSR-induced inflammatory cytokines production from such equivalents. Exposure of facial preadipocytes to conditioned medium from solar-irradiated epidermal-dermal equivalents inhibited their differentiation into mature adipocytes. Consequently, conditioned medium from sunscreen-pretreated, solar-irradiated equivalents did not inhibit differentiation of preadipocytes. A cocktail of neutralizing antibodies to IL-11, IL-1α, IL-6 and TNF-α significantly reduced the SSR-induced inhibition of preadipocyte differentiation. These results support the hypothesis that SSR-induced inflammatory cytokine may be involved in the photoaging-induced loss of facial subcutaneous fat. Inhibition of this process, e.g. by sunscreens, might slow or prevent photoaging-induced changes in facial contouring. Copyright © 2013 Japanese Society for Investigative

  2. Overrepresentation of IL-17A and IL-22 Producing CD8 T Cells in Lesional Skin Suggests Their Involvement in the Pathogenesis of Psoriasis

    NARCIS (Netherlands)

    Res, P.C.M.; Piskin, G.; de Boer, O.J.; van der Loos, C.M.; Teeling, P.; Bos, J.D.; Teunissen, M.B.M.

    2010-01-01

    Background: Although recent studies indicate a crucial role for IL-17A and IL-22 producing T cells in the pathogenesis of psoriasis, limited information is available on their frequency and heterogeneity and their distribution in skin in situ. Methodology/Principal Findings: By spectral imaging

  3. Melatonin suppresses acrolein-induced IL-8 production in human pulmonary fibroblasts.

    Science.gov (United States)

    Kim, Gun-Dong; Lee, Seung Eun; Kim, Tae-Ho; Jin, Young-Ho; Park, Yong Seek; Park, Cheung-Seog

    2012-04-01

    Cigarette smoke (CS) causes harmful alterations in the lungs and airway structures and functions that characterize chronic obstructive pulmonary disease (COPD). In addition to COPD, active cigarette smoking causes other respiratory diseases and diminishes health status. Furthermore, recent studies show that, α, β-unsaturated aldehyde acrolein in CS induces the production of interleukin (IL)-8, which is known to be related to bronchitis, rhinitis, pulmonary fibrosis, and asthma. In addition, lung and pulmonary fibroblasts secrete IL-8, which has a chemotactic effect on leukocytes, and which in turn, play a critical role in lung inflammation. On the other hand, melatonin regulates circadian rhythm homeostasis in humans and has many other effects, which include antioxidant and anti-inflammatory effects, as demonstrated by the reduced expressions of iNOS, IL-1β, and IL-6 and increased glutathione (GSH) and superoxide dismutase activities. In this study, we investigated whether melatonin suppresses acrolein-induced IL-8 secretion in human pulmonary fibroblasts (HPFs). It was found that acrolein-induced IL-8 production was accompanied by increased levels of phosphorylation of Akt and extracellular signal-regulated kinases (ERK1/2) in HPFs, and that melatonin suppressed IL-8 production in HPFs. These results suggest that melatonin suppresses acrolein-induced IL-8 production via ERK1/2 and phosphatidylinositol 3-kinase (PI3K)/Akt signal inhibition in HPFs. © 2011 John Wiley & Sons A/S.

  4. Blood concentrations of the cytokines IL-1beta, IL-6, IL-10, TNF-alpha and IFN-gamma during experimentally induced swine dysentery

    Directory of Open Access Journals (Sweden)

    Jensen-Waern Marianne

    2008-08-01

    Full Text Available Abstract Background Knowledge of the cytokine response at infection with Brachyspira hyodysenteriae can help understanding disease mechanisme involved during swine dysentery. Since this knowledge is still limited the aim of the present study was to induce dysentery experimentally in pigs and to monitor the development of important immunoregulatory cytokines in blood collected at various stages of the disease. Methods Ten conventional pigs (~23 kg were orally inoculated with Brachyspira hyodysenteriae B204T. Eight animals developed muco-haemorrhagic diarrhoea with impaired general body condition. Blood was sampled before inoculation and repeatedly during acute dysentery and recovery periods and cytokine levels of IL-1β, IL-6, Il-10, TNF-α and IFN-γ were measured by ELISA. Results IL-1β was increased at the beginning of the dysentery period and coincided with the appearance of Serum amyloid A and clinical signs of disease. TNF-α increased in all animals after inoculation, with a peak during dysentery, and IL-6 was found in 3 animals during dysentery and in the 2 animals that did not develop clinical signs of disease. IL-10 was found in all sick animals during the recovery period. IFN-γ was not detected on any occasion. Conclusion B. hyodysenteriae inoculation induced production of systemic levels of IL-1β during the dysentery period and increased levels of IL-10 coincided with recovery from dysentery.

  5. Identification of cinnabarinic acid as a novel endogenous aryl hydrocarbon receptor ligand that drives IL-22 production.

    Directory of Open Access Journals (Sweden)

    Margaret M Lowe

    Full Text Available The aryl hydrocarbon receptor (AHR binds to environmental toxicants including synthetic halogenated aromatic hydrocarbons and is involved in a diverse array of biological processes. Recently, the AHR was shown to control host immunity by affecting the balance between inflammatory T cells that produce IL-17 (Th17 and IL-22 versus regulatory T cells (Treg involved in tolerance. While environmental AHR ligands can mediate this effect, endogenous ligands are likely to be more relevant in host immune responses. We investigated downstream metabolites of tryptophan as potential AHR ligands because (1 tryptophan metabolites have been implicated in regulating the balance between Th17 and Treg cells and (2 many of the AHR ligands identified thus far are derivatives of tryptophan. We characterized the ability of tryptophan metabolites to bind and activate the AHR and to increase IL-22 production in human T cells. We report that the tryptophan metabolite, cinnabarinic acid (CA, is an AHR ligand that stimulates the differentiation of human and mouse T cells producing IL-22. We compare the IL-22-stimulating activity of CA to that of other tryptophan metabolites and define stimulation conditions that lead to CA production from immune cells. Our findings link tryptophan metabolism to AHR activation and define a novel endogenous AHR agonist with potentially broad biological functions.

  6. Immunological response induced by cryoablation against murine H22 hepatoma cell line in vivo.

    Science.gov (United States)

    Yang, Xueling; Li, Xiaoli; Guo, Zhi; Si, Tongguo; Yu, Haipeng; Xing, Wenge

    2018-02-01

    To describe immunological consequences induced by cryoablation against H22 cells in vivo. Adult BALB/c mice underwent subcutaneous implantation of H22 cells. All of them were assigned into three groups randomly: group A (false surgery), group B (cryoablation) and group C (cryoablation plus Freund's adjuvant). Animals were sacrificed 1, 2 and 3 weeks after treatment. Serum IFN-γ and IL-4, Th1/Th2 in spleens and cytotoxicity were detected. Compared with that of group A, (1) INF-γ of group B was higher, but IL-4 was lower; cryoablation plus Freund's adjuvant enhanced these effects. (2) Th1/Th2 rose significantly in both group B and group C. (3) Strong cytolytic activity against H22 cells of group B and group C was found on day 7, 14 and 21. Our study showed a marked shift toward Th1 and IFN-γ expression after cryoablation, with an immuno-stimulatory effect against murine H22 hepatoma Cell. Copyright © 2017. Published by Elsevier Inc.

  7. IL-17A acts via p38 MAPK to increase stability of TNF-alpha-induced IL-8 mRNA in human ASM.

    Science.gov (United States)

    Henness, Sheridan; van Thoor, Eveline; Ge, Qi; Armour, Carol L; Hughes, J Margaret; Ammit, Alaina J

    2006-06-01

    Human airway smooth muscle (ASM) plays an immunomodulatory role in asthma. Recently, IL-17A has become of increasing interest in asthma, being found at elevated levels in asthmatic airways and emerging as playing an important role in airway neutrophilia. IL-17A predominantly exerts its neutrophil orchestrating role indirectly via the induction of cytokines by resident airway structural cells. Here, we perform an in vitro study to show that although IL-17A did not induce secretion of the CXC chemokine IL-8 from ASM cells, IL-17A significantly potentiates TNF-alpha-induced IL-8 protein secretion and gene expression in a concentration- and time-dependent manner (P ASM cells, acting via a p38 MAPK-dependent posttranscriptional pathway to augment TNF-alpha-induced secretion of the potent neutrophil chemoattractant IL-8 from ASM cells.

  8. Tranilast reduces serum IL-6 and IL-13 and protects against thioacetamide-induced acute liver injury and hepatic encephalopathy.

    Science.gov (United States)

    Abdelaziz, Rania R; Elkashef, Wagdi F; Said, Eman

    2015-07-01

    Hepatic encephalopathy is a serious neuropsychiatric disorder usually affecting either acute or chronic hepatic failure patients. Hepatic encephalopathy was replicated in a validated rat model to assess the potential protective efficacy of tranilast against experimentally induced hepatic encephalopathy. Thioacetamide injection significantly impaired hepatic synthetic, metabolic and excretory functions with significant increase in serum NO, IL-6 and IL-13 levels and negative shift in the oxidant/antioxidant balance. Most importantly, there was a significant increase in serum ammonia levels with significant astrocytes' swelling and vacuolization; hallmarks of hepatic encephalopathy. Tranilast administration (300 mg/kg, orally) for 15 days significantly improved hepatic functions, restored oxidant/antioxidant balance, reduced serum NO, IL-6 and IL-13 levels. Meanwhile, serum ammonia significantly declined with significant reduction in astrocytes' swelling and vacuolization. Several mechanisms can be implicated in the observed hepato- and neuroprotective potentials of tranilast, such as its anti-inflammatory potential, its antioxidant potential as well as its immunomodulatory properties. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Intrinsic renal cells induce lymphocytosis of Th22 cells from IgA nephropathy patients through B7-CTLA-4 and CCL-CCR pathways.

    Science.gov (United States)

    Gan, Lu; Zhou, Qiaoling; Li, Xiaozhao; Chen, Chen; Meng, Ting; Pu, Jiaxi; Zhu, Mengyuan; Xiao, Chenggen

    2018-04-01

    IgA nephropathy (IgAN), the most common glomerulonephritis, has an unclear pathogenesis. The role of Th22 cells, which are intimately related to proteinuria and progression in IgAN, in mediating infection-related IgAN is unclear. This study aimed to characterize the association between intrinsic renal cells (tubular epithelial cells and mesangial cells) and Th22 cells in immune regulation of infection-related IgAN and to elucidate the impact of Th22 lymphocytosis; the proinflammatory cytokines IL-1, IL-6, and TNF-α; and CCL chemokines on kidney fibrosis. Hemolytic streptococcus infection induced an increase in IL-1, IL-6, and TNF-α, resulting in Th22 cell differentiation from T lymphocytes obtained from patients with IgAN, and the CCL20-CCR6, CCL22-CCR4, and/or CCL27-CCR10 axes facilitated Th22 cell chemotaxis. The increased amount of Th22 cells caused an increase in TGF-β1 levels, and anti-CD80, anti-CD86, and CTLA-4Ig treatment reduced TGF-β1 levels by inhibiting Th22 lymphocytosis and secretion of cytokines and chemokines, thus potentially relieving kidney fibrosis. Our data suggest that Th22 cells might be recruited into the kidneys via the CCL20-CCR6, CCL22-CCR4, and/or CCL27-CCR10 axes by mesangial cells and tubular epithelial cells in infection-related IgAN. Th22 cell overrepresentation was attributed to stimulation of the B7-CTLA-4Ig antigen-presenting pathway and IL-1, IL-6, and TNF-α.

  10. Vaccination against IL-33 Inhibits Airway Hyperresponsiveness and Inflammation in a House Dust Mite Model of Asthma.

    Directory of Open Access Journals (Sweden)

    Ying Lei

    Full Text Available In several clinical and experimental studies IL-33 and its receptor have been found to play important roles in the development of asthma and allergic airway inflammation. We evaluated the effects of vaccination against IL-33 in a mouse model of airway inflammation induced by house dust mite (HDM allergen. Balb/c mice received the IL-33 vaccine subcutaneously, followed by intranasal administration of HDM for up to six weeks. Vaccination against IL-33 induced high titers of specific anti-IL-33 IgG antibodies that inhibited HDM-induced airway hyperresponsiveness (AHR in the conducting airways and tissue damping. The vaccination also attenuated the HDM-induced elevation in the numbers of eosinophils in bronchoalveolar lavage fluid (BALF and suppressed the accumulation of inflammatory cells in the airways. Furthermore, the levels of IL-17A, IL-25, IL-33 and TSLP in lung tissue homogenates were reduced by vaccination against IL-33. These observations demonstrate that vaccination against IL-33 inhibits HDM-induced development of AHR, airway inflammation and production of inflammatory cytokines. The results also indicate an important role of IL-33 in the regulation of AHR of the distal lung compartments. Thus, administration of such a vaccine is potentially an effective therapeutic tool for treating allergic asthma.

  11. Protein engineering of the chemokine CCL20 prevents psoriasiform dermatitis in an IL-23-dependent murine model

    DEFF Research Database (Denmark)

    Getschman, A E; Imai, Y; Larsen, O

    2017-01-01

    signaling. When given in an IL-23-dependent mouse model for psoriasis, CCL20 S64C prevented psoriatic inflammation and the up-regulation of IL-17A and IL-22. Our results validate CCR6 as a tractable therapeutic target for psoriasis and demonstrate the value of CCL20 S64C as a lead compound....

  12. In vitro progesterone modulation on bacterial endotoxin-induced production of IL-1β, TNFα, IL-6, IL-8, IL-10, MIP-1α, and MMP-9 in pre-labor human term placenta.

    Science.gov (United States)

    Garcia-Ruíz, G; Flores-Espinosa, P; Preciado-Martínez, E; Bermejo-Martínez, L; Espejel-Nuñez, A; Estrada-Gutierrez, G; Maida-Claros, R; Flores-Pliego, A; Zaga-Clavellina, Veronica

    2015-10-07

    During human pregnancy, infection/inflammation represents an important factor that increases the risk of developing preterm labor. The purpose of this study was to determine if pre-treatment with progesterone has an immunomodulatory effect on human placenta production of endotoxin-induced inflammation and degradation of extracellular matrix markers. Placentas were obtained under sterile conditions from pregnancies delivered at term before the onset of labor by cesarean section. Explants from central cotyledons of 10 human placentas were pre-treated with different concentrations of progesterone (0.01, 01, 1.0 μM) and then stimulated with 1000 ng/mL of LPS of Escherichia coli. Cytokines TNFα, IL-1β, IL-6, IL-8, MIP-1α, IL-10 concentrations in the culture medium were then measured by specific ELISA. Secretion profile of MMP-9 was evaluated by ELISA and zymogram. Statistical differences were determined by one-way ANOVA followed by the appropriate ad hoc test; P progesterone significantly blunted (73, 56, 56, 75, 25, 48 %) the secretion of TNF-α, IL-1β, IL-6, IL-8, MIP-1α, IL-10, respectively. The MMP-9 induced by LPS treatment was inhibited only with the highest concentration of progesterone. Mifepristone (RU486) blocked the immunosuppressive effect of progesterone. The present results support the concept that progesterone could be part of the compensatory mechanism that limits the inflammation-induced cytotoxic effects associated with an infection process during gestation.

  13. Sphingosine 1-phosphate induces neutrophil chemoattractant IL-8: repression by steroids.

    Directory of Open Access Journals (Sweden)

    Md Mostafizur Rahman

    Full Text Available The bioactive sphingolipid sphingosine 1-phosphate (S1P is found in increased amounts in the airways of asthmatics. S1P can regulate airway smooth muscle functions associated with asthmatic inflammation and remodeling, including cytokine secretion. To date however, whether S1P induces secretion of an important chemokine responsible for neutrophilia in airway inflammation--IL-8--was unexplored. The aim of this study was to investigate whether S1P induces IL-8 gene expression and secretion to enhance neutrophil chemotaxis in vitro, as well as examine the molecular mechanisms responsible for repression by the corticosteroid dexamethasone. We show that S1P upregulates IL-8 secretion from ASM cells and enhance neutrophil chemotaxis in vitro. The corticosteroid dexamethasone significantly represses IL-8 mRNA expression and protein secretion in a concentration- and time-dependent manner. Additionally, we reveal that S1P-induced IL-8 secretion is p38 MAPK and ERK-dependent and that these key phosphoproteins act on the downstream effector mitogen- and stress-activated kinase 1 (MSK1 to control secretion of the neutrophil chemoattractant cytokine IL-8. The functional relevance of this in vitro data was demonstrated by neutrophil chemotaxis assays where S1P-induced effects can be significantly attenuated by pretreatment with dexamethasone, pharmacological inhibition of p38 MAPK- or ERK-mediated pathways, or by knocking down MSK-1 with siRNA. Taken together, our study reveals the molecular pathways responsible for IL-8 secretion from ASM cells in response to S1P and indicates ways in which the impact on IL-8-driven neutrophilia may be lessened.

  14. Clinical significance of measurement of changes of serum TNF-α, IL-6 and IL-8 centent after treatment in patients with pregnancy induced hypertension (PIH)

    International Nuclear Information System (INIS)

    Wang Guiying

    2008-01-01

    Objective: To explore the clinical significance of changes of serum TNF-α, IL-6 and IL-8 levels in patients with pregnancy induced hypertension. Methods: Serum TNF-α, IL-6 and IL-8 levels were measured with RIA in 36 patients with pregnancy induced hypertension both before and after 2 weeks of treatment as well as in 35 controls. Results: Before treatment, the serum TNF-α, IL-6 and IL-8 levels were significantly higher in patients with PIH than those in the controls (P 0.05). Conclusion: The inflammatory cytokines such as TNF-α, IL-6 and IL-8 may play important roles in the pathogenesis of pregnancy induced hypertension. (authors)

  15. Two distinct populations of bovine IL-17⁺ T-cells can be induced and WC1⁺IL-17⁺γδ T-cells are effective killers of protozoan parasites.

    Science.gov (United States)

    Peckham, R K; Brill, R; Foster, D S; Bowen, A L; Leigh, J A; Coffey, T J; Flynn, R J

    2014-06-25

    IL-17 has emerged as a key player in the immune system, exhibiting roles in protection from infectious diseases and promoting inflammation in autoimmunity. Initially thought to be CD4 T-cell-derived, the sources of IL-17 are now known to be varied and belong to both the innate and adaptive arms of the immune system. Mechanisms for inducing IL-17 production in lymphoid cells are thought to rely on appropriate antigenic stimulation in the context of TGF-β1, IL-6 and/or IL-1β. Using culture protocols adapted from human studies, we have effectively induced both bovine CD4(+) and WC1(+) γδ T-cells to produce IL-17 termed Th17 and γδ17 cells, respectively. The negative regulatory effect of IFN-γ on mouse and human IL-17 production can be extended to the bovine model, as addition of IFN-γ decreases IL-17 production in both cell types. Furthermore we show that infection with the protozoan Neospora caninum will induce fibroblasts to secrete pro-IL-17 factors thereby inducing a γδ17 phenotype that preferentially kills infected target cells. Our study identifies two T-cell sources of IL-17, and is the first to demonstrate a protective effect of IL-17(+) T-cells in ruminants. Our findings offer further opportunities for future adjuvants or vaccines which could benefit from inducing these responses.

  16. Differential activation of airway eosinophils induces IL-13-mediated allergic Th2 pulmonary responses in mice.

    Science.gov (United States)

    Jacobsen, E A; Doyle, A D; Colbert, D C; Zellner, K R; Protheroe, C A; LeSuer, W E; Lee, N A; Lee, J J

    2015-09-01

    Eosinophils are hallmark cells of allergic Th2 respiratory inflammation. However, the relative importance of eosinophil activation and the induction of effector functions such as the expression of IL-13 to allergic Th2 pulmonary disease remain to be defined. Wild-type or cytokine-deficient (IL-13(-/-) or IL-4(-/-) ) eosinophils treated with cytokines (GM-CSF, IL-4, IL-33) were adoptively transferred into eosinophil-deficient recipient mice subjected to allergen provocation using established models of respiratory inflammation. Allergen-induced pulmonary changes were assessed. In contrast to the transfer of untreated blood eosinophils to the lungs of recipient eosinophil deficient mice, which induced no immune/inflammatory changes either in the lung or in the lung draining lymph nodes (LDLN), pretreatment of blood eosinophils with GM-CSF prior to transfer elicited trafficking of these eosinophils to LDLN. In turn, these LDLN eosinophils elicited the accumulation of dendritic cells and CD4(+) T cells to these same LDLNs without inducing pulmonary inflammation. However, exposure of eosinophils to GM-CSF, IL-4, and IL-33 prior to transfer induced not only immune events in the LDLN, but also allergen-mediated increases in airway Th2 cytokine/chemokine levels, the subsequent accumulation of CD4(+) T cells as well as alternatively activated (M2) macrophages, and the induction of pulmonary histopathologies. Significantly, this allergic respiratory inflammation was dependent on eosinophil-derived IL-13, whereas IL-4 expression by eosinophils had no significant role. The data demonstrate the differential activation of eosinophils as a function of cytokine exposure and suggest that eosinophil-specific IL-13 expression by activated cells is a necessary component of the subsequent allergic Th2 pulmonary pathologies. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  17. Differential Activation of Airway Eosinophils Induces IL-13 Mediated Allergic Th2 Pulmonary Responses in Mice

    Science.gov (United States)

    Jacobsen, EA; Doyle, AD; Colbert, DC; Zellner, KR; Protheroe, CA; LeSuer, WE; Lee, NA.; Lee, JJ

    2015-01-01

    Background Eosinophils are hallmark cells of allergic Th2 respiratory inflammation. However, the relative importance of eosinophil activation and the induction of effector functions such as the expression of IL-13 to allergic Th2 pulmonary disease remain to be defined. Methods Wild type or cytokine deficient (IL-13−/− or IL-4−/−) eosinophils treated with cytokines (GM-CSF, IL-4, IL-33) were adoptively transferred into eosinophil-deficient recipient mice subjected to allergen provocation using established models of respiratory inflammation. Allergen-induced pulmonary changes were assessed. Results In contrast to the transfer of untreated blood eosinophils to the lungs of recipient eosinophildeficient mice, which induced no immune/inflammatory changes either in the lung or lung draining lymph nodes (LDLNs), pretreatment of blood eosinophils with GM-CSF prior to transfer elicited trafficking of these eosinophils to LDLNs. In turn, these LDLN eosinophils elicited the accumulation of dendritic cells and CD4+ T cells to these same LDLNs without inducing pulmonary inflammation. However, exposure of eosinophils to GM-CSF, IL-4 and IL-33 prior to transfer induced not only immune events in the LDLN, but also allergen-mediated increases in airway Th2 cytokine/chemokine levels, the subsequent accumulation of CD4+ T cells as well as alternatively activated (M2) macrophages, and the induction of pulmonary histopathologies. Significantly, this allergic respiratory inflammation was dependent on eosinophil-derived IL-13 whereas IL-4 expression by eosinophils had no significant role. Conclusion The data demonstrate the differential activation of eosinophils as a function of cytokine exposure and suggest that eosinophil-specific IL-13 expression by activated cells is a necessary component of the subsequent allergic Th2 pulmonary pathologies. PMID:26009788

  18. IL-6-induced Bcl6 variant 2 supports IL-6-dependent myeloma cell proliferation and survival through STAT3

    International Nuclear Information System (INIS)

    Tsuyama, Naohiro; Danjoh, Inaho; Otsuyama, Ken-ichiro; Obata, Masanori; Tahara, Hidetoshi; Ohta, Tsutomu; Ishikawa, Hideaki

    2005-01-01

    IL-6 is a growth and survival factor for myeloma cells, although the mechanism by which it induces myeloma cell proliferation through gene expression is largely unknown. Microarray analysis showed that some B-cell lymphoma-associated oncogenes such as Bcl6, which is absent in normal plasma cells, were upregulated by IL-6 in IL-6-dependent myeloma cell lines. We found that Bcl6 variant 2 was upregulated by STAT3. ChIP assay and EMSA showed that STAT3 bound to the upstream region of variant 2 DNA. Expression of p53, a direct target gene of Bcl6, was downregulated in the IL-6-stimulated cells, and this process was impaired by an HDAC inhibitor. Bcl6 was knocked down by introducing small hairpin RNA, resulting in decreased proliferation and increased sensitivity to a DNA damaging agent. Thus, STAT3-inducible Bcl6 variant 2 appears to generate an important IL-6 signal that supports proliferation and survival of IL-6-dependent myeloma cells

  19. Recombinant Mycobacterium bovis BCG producing IL-18 reduces IL-5 production and bronchoalveolar eosinophilia induced by an allergic reaction.

    Science.gov (United States)

    Biet, F; Duez, C; Kremer, L; Marquillies, P; Amniai, L; Tonnel, A-B; Locht, C; Pestel, J

    2005-08-01

    Allergic reactions occur through the exacerbated induction of a Th2 cell type expression profile and can be prevented by agents favoring a Th1 profile. Bacillus Calmette-Guérin (BCG) is able to induce high IFN-gamma levels and has been shown to decrease experimentally induced allergy. The induction of IFN-gamma is mediated by interleukin (IL)-12 known to be secreted upon mycobacterial infections and can be enhanced by IL-18 acting in synergy with IL-12. We evaluated the ability of a recombinant BCG strain producing IL-18 (rBCG) to modify the Th2 type responses in a murine model of ovalbumin (OVA)-dependent allergic reaction. Mice were injected intraperitoneally or intranasally with OVA at days 0 and 15 and exposed to an OVA aerosol challenge at days 29, 30, 31 and 34. At days 0 and 15, two additional groups of mice received OVA together with 5 x 10(6) colony forming units of either rBCG or nonrecombinant BCG. A time-course analysis of OVA-specific immunoglobulin (Ig)E, IgG1 and IgG2a levels indicated no significant difference between the three groups of mice. However, following in vitro stimulation with OVA, lymph node cells from rBCG-treated mice produced less IL-5 and more IFN-gamma than those of mice injected with nonrecombinant BCG. In addition, 48 h after the last OVA challenge, a strong reduction of bronchoalveolar eosinophilia was found in the rBCG-injected mice compared to the nontreated or nonrecombinant BCG-treated groups. These results indicate that the production of IL-18 by rBCG may enhance the immunomodulatory properties of BCG that suppress pulmonary Th2 responses and, in particular, decrease airway eosinophilia.

  20. Hes1 promotes the IL-22-mediated antimicrobial response by enhancing STAT3-dependent transcription in human intestinal epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Murano, Tatsuro [Department of Gastroenterology and Hepatology, Graduate School, Tokyo Medical and Dental University, Tokyo (Japan); Okamoto, Ryuichi, E-mail: rokamoto.gast@tmd.ac.jp [Department of Gastroenterology and Hepatology, Graduate School, Tokyo Medical and Dental University, Tokyo (Japan); Department of Advanced GI Therapeutics, Graduate School, Tokyo Medical and Dental University, Tokyo (Japan); Ito, Go; Nakata, Toru; Hibiya, Shuji; Shimizu, Hiromichi; Fujii, Satoru; Kano, Yoshihito; Mizutani, Tomohiro; Yui, Shiro; Akiyama-Morio, Junko; Nemoto, Yasuhiro [Department of Gastroenterology and Hepatology, Graduate School, Tokyo Medical and Dental University, Tokyo (Japan); Tsuchiya, Kiichiro; Nakamura, Tetsuya [Department of Gastroenterology and Hepatology, Graduate School, Tokyo Medical and Dental University, Tokyo (Japan); Department of Advanced GI Therapeutics, Graduate School, Tokyo Medical and Dental University, Tokyo (Japan); Watanabe, Mamoru [Department of Gastroenterology and Hepatology, Graduate School, Tokyo Medical and Dental University, Tokyo (Japan)

    2014-01-17

    Highlights: •Hes1 enhances IL-22-STAT3 signaling in human intestinal epithelial cells. •Hes1 enhances REG family gene induction by IL-22-STAT3 signaling. •Protein level of Hes1 restricts the response to IL-22. •Present regulation of a cytokine signal represents a new mode of Hes1 function. -- Abstract: Notch signaling plays an essential role in the proliferation and differentiation of intestinal epithelial cells (IECs). We have previously shown that Notch signaling is up-regulated in the inflamed mucosa of ulcerative colitis (UC) and thereby plays an indispensable role in tissue regeneration. Here we show that in addition to Notch signaling, STAT3 signaling is highly activated in the inflamed mucosa of UC. Forced expression of the Notch target gene Hes1 dramatically enhanced the IL-22-mediated STAT3-dependent transcription in human IECs. This enhancement of STAT3-dependent transcription was achieved by the extended phosphorylation of STAT3 by Hes1. Microarray analysis revealed that Hes1-mediated enhancement of IL-22-STAT3 signaling significantly increased the induction of genes encoding antimicrobial peptides, such as REG1A, REG3A and REG3G, in human IECs. Conversely, the reduction of Hes1 protein levels with a γ-secretase inhibitor significantly down-regulated the induction of those genes in IECs, resulting in a markedly poor response to IL-22. Our present findings identify a new role for the molecular function of Hes1 in which the protein can interact with cytokine signals and regulate the immune response of IECs.

  1. CCL2/CCL5 secreted by the stroma induce IL-6/PYK2 dependent chemoresistance in ovarian cancer.

    Science.gov (United States)

    Pasquier, Jennifer; Gosset, Marie; Geyl, Caroline; Hoarau-Véchot, Jessica; Chevrot, Audrey; Pocard, Marc; Mirshahi, Massoud; Lis, Raphael; Rafii, Arash; Touboul, Cyril

    2018-02-19

    Minimal residual disease is the main issue of advanced ovarian cancer treatment. According to the literature and previous results, we hypothesized that Mesenchymal Stromal Cells (MSC) could support this minimal residual disease by protecting ovarian cancer cells (OCC) from chemotherapy. In vitro study confirmed that MSC could induce OCC chemoresistance without contact using transwell setting. Further experiments showed that this induced chemoresistance was dependent on IL-6 OCC stimulation. We combined meticulous in vitro profiling and tumor xenograft models to study the role of IL-6 in MSC/OCC intereactions. We demonstrated that Tocilizumab® (anti-IL-6R therapy) in association with chemotherapy significantly reduced the peritoneal carcinosis index (PCI) than chemotherapy alone in mice xenografted with OCCs+MSCs. Further experiments showed that CCL2 and CCL5 are released by MSC in transwell co-culture and induce OCCs IL-6 secretion and chemoresistance. Finally, we found that IL-6 induced chemoresistance was dependent on PYK2 phosphorylation. These findings highlight the potential key role of the stroma in protecting minimal residual disease from chemotherapy, thus favoring recurrences. Future clinical trials targeting stroma could use anti-IL-6 therapy in association with chemotherapy.

  2. Fluoxetine protects against IL-1β-induced neuronal apoptosis via downregulation of p53.

    Science.gov (United States)

    Shan, Han; Bian, Yaqi; Shu, Zhaoma; Zhang, Linxia; Zhu, Jialei; Ding, Jianhua; Lu, Ming; Xiao, Ming; Hu, Gang

    2016-08-01

    Fluoxetine, a selective serotonin reuptake inhibitor, exerts neuroprotective effects in a variety of neurological diseases including stroke, but the underlying mechanism remains obscure. In the present study, we addressed the molecular events in fluoxetine against ischemia/reperfusion-induced acute neuronal injury and inflammation-induced neuronal apoptosis. We showed that treatment of fluoxetine (40 mg/kg, i.p.) with twice injections at 1 h and 12 h after transient middle cerebral artery occlusion (tMCAO) respectively alleviated neurological deficits and neuronal apoptosis in a mouse ischemic stroke model, accompanied by inhibiting interleukin-1β (IL-1β), Bax and p53 expression and upregulating anti-apoptotic protein Bcl-2 level. We next mimicked neuroinflammation in ischemic stroke with IL-1β in primary cultured cortical neurons and found that pretreatment with fluoxetine (1 μM) prevented IL-1β-induced neuronal apoptosis and upregulation of p53 expression. Furthermore, we demonstrated that p53 overexpression in N2a cell line abolished the anti-apoptotic effect of fluoxetine, indicating that p53 downregulation is required for the protective role of fluoxetine in IL-1β-induced neuronal apoptosis. Fluoxetine downregulating p53 expression could be mimicked by SB203580, a specific inhibitor of p38, but blocked by anisomycin, a p38 activator. Collectively, our findings have revealed that fluoxetine protects against IL-1β-induced neuronal apoptosis via p38-p53 dependent pathway, which give us an insight into the potential of fluoxetine in terms of opening up novel therapeutic avenues for neurological diseases including stroke. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Targeting the IL-33/IL-13 Axis for Respiratory Viral Infections.

    Science.gov (United States)

    Donovan, Chantal; Bourke, Jane E; Vlahos, Ross

    2016-04-01

    Lung diseases, such as asthma and chronic obstructive pulmonary disease (COPD), are highly prevalent worldwide. One of the major factors that limits the efficacy of current medication in these patients are viral infections, leading to exacerbations of symptoms and decreased quality of life. Current pharmacological strategies targeting virus-induced lung disease are problematic due to antiviral resistance and the requirement for strain-specific vaccination. Thus, new therapeutic strategies are urgently required. In this Opinion article, we provide state-of-the-art evidence from humans and preclinical animal models implicating the interleukin (IL)-33/IL-13 axis in virus-induced lung disease. Thus, targeting the IL-33/IL-13 axis may be a feasible way to overcome the limitations of current therapy used to treat virus-induced exacerbations of lung disease. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. IL-7 splicing variant IL-7δ5 induces human breast cancer cell proliferation via activation of PI3K/Akt pathway

    International Nuclear Information System (INIS)

    Pan, Deshun; Liu, Bing; Jin, Xiaobao; Zhu, Jiayong

    2012-01-01

    Highlights: ► This study confirms the role of IL-7δ5 in breast cancer cell proliferation. ► IL-7δ5 promotes breast cancer cell proliferation and cell cycle progression. ► IL-7δ5 promotes cell proliferation via activation of PI3K/Akt pathway. -- Abstract: Various tumor cells express interleukin 7 (IL-7) and IL-7 variants. IL-7 has been confirmed to stimulate solid tumor cell proliferation. However, the effect of IL-7 variants on tumor cell proliferation remains unclear. In this study, we evaluated the role of IL-7δ5 (an IL-7 variant lacking exon 5) on proliferation and cell cycle progression of human MDA-MB-231 and MCF-7 breast cancer cells. The results showed that IL-7δ5 promoted cell proliferation and cell cycle progression from G1 phase to G2/M phase, associated with upregulation of cyclin D1 expression and the downregulation of p27 kip1 expression. Mechanistically, we found that IL-7δ5 induced the activation of Akt. Inhibition of PI3K/Akt pathway by LY294002 reversed the proliferation and cell cycle progression of MDA-MB-231 and MCF-7 cells induced by IL-7δ5. In conclusion, our findings demonstrate that IL-7δ5 variant induces human breast cancer cell proliferation and cell cycle progression via activation of PI3K/Akt pathway. Thus, IL-7δ5 may be a potential target for human breast cancer therapeutics intervention.

  5. Curcumin attenuates inflammatory response in IL-1beta-induced human synovial fibroblasts and collagen-induced arthritis in mouse model.

    Science.gov (United States)

    Moon, Dong-Oh; Kim, Mun-Ok; Choi, Yung Hyun; Park, Yung-Min; Kim, Gi-Young

    2010-05-01

    Curcumin, a major component of turmeric, has been shown to exhibit anti-oxidant and anti-inflammatory activities. The present study was performed to determine whether curcumin is efficacious against both collagen-induced arthritis (CIA) in mice and IL-1beta-induced activation in fibroblast-like synoviocytes (FLSs). DBA/1 mice were immunized with bovine type II collagen (CII) and treated with curcumin every other day for 2weeks after the initial immunization. For arthritis, we evaluated the incidence of disease and used an arthritis index based on paw thickness. In vitro proliferation of CII- or concanavalin A-induced splenic T cells was examined using IFN-gamma production. Pro-inflammatory cytokines TNF-alpha and IL-1beta were examined in the mouse ankle joint and serum IgG1 and IgG2a isotypes were analyzed. The expression levels of prostaglandin E(2) (PGE(2)), cyclooxygenase-2 (COX-2), and matrix metalloproteinases (MMPs) in human FLSs were also determined. The results showed that compared with untreated CIA mice, curcumin-treated mice downregulated clinical arthritis score, the proliferation of splenic T cells, expression levels of TNF-alpha and IL-1beta in the ankle joint, and expression levels of IgG2a in serum. Additionally, by altering nuclear factor (NF)-kappaB transcription activity in FLSs, curcumin inhibited PGE(2) production, COX-2 expression, and MMP secretion. These results suggest that curcumin can effectively suppress inflammatory response by inhibiting pro-inflammatory mediators and regulating humoral and cellular immune responses. Copyright 2010 Elsevier B.V. All rights reserved.

  6. The role of IL 23 in the treatment of psoriasis.

    Science.gov (United States)

    Puig, Lluís

    2017-06-01

    The IL-23/IL-17 axis is currently considered to be crucial in the pathogenesis of psoriasis. Human IL-23 is primarily produced by antigen-presenting cells and induces and maintains differentiation of Th17 cells and Th22 cells, a primary cellular source of proinflammatory cytokines such as IL-17 and IL-22, which mediate the epidermal hyperplasia, keratinocyte immune activation and tissue inflammation inherent in psoriasis. Agents that target the p40 subunit common to both IL-12 and IL-23 have shown robust clinical activity, but selectivity for IL-23p19 could offer advantages in efficacy and safety with respect to anti-p40 blockade. Areas covered: Relevant references regarding the role of the IL-23/IL-17 pathway in the pathogenesis of psoriasis/psoriatic arthritis and clinical trials with IL-23p40 and IL-23p19 blocking agents were obtained through a literature search in MEDLINE/Pubmed for articles published until November 2016. Moreover, ongoing registered clinical trials (RCTs) of moderate-to-severe psoriasis and psoriatic arthritis were searched through clinicaltrials.gov website, and a manual search was made for pertinent communications at the 2016 American Academy of Dermatology and European Academy of Dermatology and Venereology meetings. Expert commentary: There are potential advantages in selective blockade of the IL23-specific p19 subunit with respect to distal blockade of IL-17A or its receptor. Acting upstream in the IL-23/IL-17 cytokine pathway is likely to reduce the expression of multiple pro-inflammatory cytokines acting on keratinocytes -including IL-17F, IL-21 and IL-22-, in addition to IL-17A. On the other hand, safety data thus far suggest that these drugs might be devoid of some adverse effects of IL-17A blockade that seem to be class related, such as mucocutaneous Candida infections or triggering or worsening of inflammatory bowel disease. Specific IL-23p19 blockade with high-affinity monoclonal antibodies seems to be able to induce long

  7. IL-33 induces IL-9 production in human CD4+ T cells and basophils

    DEFF Research Database (Denmark)

    Blom, Lars; Poulsen, Britta Cathrina; Jensen, Bettina M.

    2011-01-01

    blood. TGF-β has been described as a critical factor for IL-9 induction in Th2 cells; however, we found that TGF-β also induces co-production of IL-9 in purified, naïve (>99%) CD4(+)CD45RA(+)CD45RO(-)CD25(-) T cells differentiated towards a Th1 profile. Subsequently, it was demonstrated that TGF...

  8. TNF-α blockade induces IL-10 expression in human CD4+ T cells

    Science.gov (United States)

    Evans, Hayley G.; Roostalu, Urmas; Walter, Gina J.; Gullick, Nicola J.; Frederiksen, Klaus S.; Roberts, Ceri A.; Sumner, Jonathan; Baeten, Dominique L.; Gerwien, Jens G.; Cope, Andrew P.; Geissmann, Frederic; Kirkham, Bruce W.; Taams, Leonie S.

    2014-02-01

    IL-17+ CD4+ T (Th17) cells contribute to the pathogenesis of several human inflammatory diseases. Here we demonstrate that TNF inhibitor (TNFi) drugs induce the anti-inflammatory cytokine IL-10 in CD4+ T cells including IL-17+ CD4+ T cells. TNFi-mediated induction of IL-10 in IL-17+ CD4+ T cells is Treg-/Foxp3-independent, requires IL-10 and is overcome by IL-1β. TNFi-exposed IL-17+ CD4+ T cells are molecularly and functionally distinct, with a unique gene signature characterized by expression of IL10 and IKZF3 (encoding Aiolos). We show that Aiolos binds conserved regions in the IL10 locus in IL-17+ CD4+ T cells. Furthermore, IKZF3 and IL10 expression levels correlate in primary CD4+ T cells and Aiolos overexpression is sufficient to drive IL10 in these cells. Our data demonstrate that TNF-α blockade induces IL-10 in CD4+ T cells including Th17 cells and suggest a role for the transcription factor Aiolos in the regulation of IL-10 in CD4+ T cells.

  9. The effects of IL-20 subfamily cytokines on reconstituted human epidermis suggest potential roles in cutaneous innate defense and pathogenic adaptive immunity in psoriasis.

    Science.gov (United States)

    Sa, Susan M; Valdez, Patricia A; Wu, Jianfeng; Jung, Kenneth; Zhong, Fiona; Hall, Linda; Kasman, Ian; Winer, Jane; Modrusan, Zora; Danilenko, Dimitry M; Ouyang, Wenjun

    2007-02-15

    IL-19, IL-20, IL-22, IL-24, and IL-26 are members of the IL-10 family of cytokines that have been shown to be up-regulated in psoriatic skin. Contrary to IL-10, these cytokines signal using receptor complex R1 subunits that are preferentially expressed on cells of epithelial origin; thus, we henceforth refer to them as the IL-20 subfamily cytokines. In this study, we show that primary human keratinocytes (KCs) express receptors for these cytokines and that IL-19, IL-20, IL-22, and IL-24 induce acanthosis in reconstituted human epidermis (RHE) in a dose-dependent manner. These cytokines also induce expression of the psoriasis-associated protein S100A7 and keratin 16 in RHE and cause persistent activation of Stat3 with nuclear localization. IL-22 had the most pronounced effects on KC proliferation and on the differentiation of KCs in RHE, inducing a decrease in the granular cell layer (hypogranulosis). Furthermore, gene expression analysis performed on cultured RHE treated with these cytokines showed that IL-19, IL-20, IL-22, and IL-24 regulate many of these same genes to variable degrees, inducing a gene expression profile consistent with inflammatory responses, wound healing re-epithelialization, and altered differentiation. Many of these genes have also been found to be up-regulated in psoriatic skin, including several chemokines, beta-defensins, S100 family proteins, and kallikreins. These results confirm that IL-20 subfamily cytokines are important regulators of epidermal KC biology with potentially pivotal roles in the immunopathology of psoriasis.

  10. IL10-Deficiency in CD4+ T Cells Exacerbates the IFNγ and IL17 Response During Bacteria Induced Colitis

    Directory of Open Access Journals (Sweden)

    Virginia Seiffart

    2015-07-01

    Full Text Available Background/Aims: IL10 is a key inhibitor of effector T cell activation and a mediator of intestinal homeostasis. In addition, IL10 has emerged as a key immunoregulator during infection with various pathogens, ameliorating the excessive T-cell responses that are responsible for much of the immunopathology associated with the infection. Because IL10 plays an important role in both intestinal homeostasis and infection, we studied the function of IL10 in infection-associated intestinal inflammation. Methods: Wildtype mice and mice deficient in CD4+ T cell-derived or regulatory T cells-derived IL10 were infected with the enteric pathogen Citrobacter (C. rodentium and analyzed for the specific immune response and pathogloy in the colon. Results: We found that IL10 expression is upregulated in colonic tissue after infection with C. rodentium, especially in CD4+ T cells, macrophages and dendritic cells. Whereas the deletion of IL10 in regulatory T cells had no effect on C. rodentium induced colitis, infection of mice deficient in CD4+ T cell-derived IL10 exhibited faster clearance of the bacterial burden but worse colitis, crypt hyperplasia, and pathology than did WT mice. In addition, the depletion of CD4+ T cell-derived IL10 in infected animals was accompanied by an accelerated IFNγ and IL17 response in the colon. Conclusion: Thus, we conclude that CD4+ T cell-derived IL10 is strongly involved in the control of C. rodentium-induced colitis. Interference with this network could have implications for the treatment of infection-associated intestinal inflammation.

  11. Dynamic mathematical modeling of IL13-induced signaling in Hodgkin and primary mediastinal B-cell lymphoma allows prediction of therapeutic targets.

    Science.gov (United States)

    Raia, Valentina; Schilling, Marcel; Böhm, Martin; Hahn, Bettina; Kowarsch, Andreas; Raue, Andreas; Sticht, Carsten; Bohl, Sebastian; Saile, Maria; Möller, Peter; Gretz, Norbert; Timmer, Jens; Theis, Fabian; Lehmann, Wolf-Dieter; Lichter, Peter; Klingmüller, Ursula

    2011-02-01

    Primary mediastinal B-cell lymphoma (PMBL) and classical Hodgkin lymphoma (cHL) share a frequent constitutive activation of JAK (Janus kinase)/STAT signaling pathway. Because of complex, nonlinear relations within the pathway, key dynamic properties remained to be identified to predict possible strategies for intervention. We report the development of dynamic pathway models based on quantitative data collected on signaling components of JAK/STAT pathway in two lymphoma-derived cell lines, MedB-1 and L1236, representative of PMBL and cHL, respectively. We show that the amounts of STAT5 and STAT6 are higher whereas those of SHP1 are lower in the two lymphoma cell lines than in normal B cells. Distinctively, L1236 cells harbor more JAK2 and less SHP1 molecules per cell than MedB-1 or control cells. In both lymphoma cell lines, we observe interleukin-13 (IL13)-induced activation of IL4 receptor α, JAK2, and STAT5, but not of STAT6. Genome-wide, 11 early and 16 sustained genes are upregulated by IL13 in both lymphoma cell lines. Specifically, the known STAT-inducible negative regulators CISH and SOCS3 are upregulated within 2 hours in MedB-1 but not in L1236 cells. On the basis of this detailed quantitative information, we established two mathematical models, MedB-1 and L1236 model, able to describe the respective experimental data. Most of the model parameters are identifiable and therefore the models are predictive. Sensitivity analysis of the model identifies six possible therapeutic targets able to reduce gene expression levels in L1236 cells and three in MedB-1. We experimentally confirm reduction in target gene expression in response to inhibition of STAT5 phosphorylation, thereby validating one of the predicted targets.

  12. Structure and Mechanism of Receptoe Sharing by the IL-10R2 Common Chain

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Sung-il; Jones, Brandi C.; Logsdon, Naomi J.; Harris, Bethany D.; Deshpande, Ashlesha; Radaeva, Svetlana; Halloran, Brian A.; Gao, Bin; Walter, Mark R. (NIH); (UAB)

    2010-06-14

    IL-10R2 is a shared cell surface receptor required for the activation of five class 2 cytokines (IL-10, IL-22, IL-26, IL-28, and IL-29) that play critical roles in host defense. To define the molecular mechanisms that regulate its promiscuous binding, we have determined the crystal structure of the IL-10R2 ectodomain at 2.14 {angstrom} resolution. IL-10R2 residues required for binding were identified by alanine scanning and used to derive computational models of IL-10/IL-10R1/IL-10R2 and IL-22/IL-22R1/IL-10R2 ternary complexes. The models reveal a conserved binding epitope that is surrounded by two clefts that accommodate the structural and chemical diversity of the cytokines. These results provide a structural framework for interpreting IL-10R2 single nucleotide polymorphisms associated with human disease.

  13. Structure and Mechanism of Receptor Sharing by the IL-10R2 Common Chain

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Sung-il; Jones, Brandi C.; Logsdon, Naomi J.; Harris, Bethany D.; Deshpande, Ashlesha; Radaeva, Svetlana; Halloran, Brian A.; Gao, Bin; Walter, Mark R. (NIH); (UAB)

    2010-07-19

    IL-10R2 is a shared cell surface receptor required for the activation of five class 2 cytokines (IL-10, IL-22, IL-26, IL-28, and IL-29) that play critical roles in host defense. To define the molecular mechanisms that regulate its promiscuous binding, we have determined the crystal structure of the IL-10R2 ectodomain at 2.14 {angstrom} resolution. IL-10R2 residues required for binding were identified by alanine scanning and used to derive computational models of IL-10/IL-10R1/IL-10R2 and IL-22/IL-22R1/IL-10R2 ternary complexes. The models reveal a conserved binding epitope that is surrounded by two clefts that accommodate the structural and chemical diversity of the cytokines. These results provide a structural framework for interpreting IL-10R2 single nucleotide polymorphisms associated with human disease.

  14. Rapamycin combined with anti-CD45RB mAb and IL-10 or with G-CSF induces tolerance in a stringent mouse model of islet transplantation.

    Directory of Open Access Journals (Sweden)

    Nicola Gagliani

    Full Text Available BACKGROUND: A large pool of preexisting alloreactive effector T cells can cause allogeneic graft rejection following transplantation. However, it is possible to induce transplant tolerance by altering the balance between effector and regulatory T (Treg cells. Among the various Treg-cell types, Foxp3(+Treg and IL-10-producing T regulatory type 1 (Tr1 cells have frequently been associated with tolerance following transplantation in both mice and humans. Previously, we demonstrated that rapamycin+IL-10 promotes Tr1-cell-associated tolerance in Balb/c mice transplanted with C57BL/6 pancreatic islets. However, this same treatment was unsuccessful in C57BL/6 mice transplanted with Balb/c islets (classified as a stringent transplant model. We accordingly designed a protocol that would be effective in the latter transplant model by simultaneously depleting effector T cells and fostering production of Treg cells. We additionally developed and tested a clinically translatable protocol that used no depleting agent. METHODOLOGY/PRINCIPAL FINDINGS: Diabetic C57BL/6 mice were transplanted with Balb/c pancreatic islets. Recipient mice transiently treated with anti-CD45RB mAb+rapamycin+IL-10 developed antigen-specific tolerance. During treatment, Foxp3(+Treg cells were momentarily enriched in the blood, followed by accumulation in the graft and draining lymph node, whereas CD4(+IL-10(+IL-4(- T (i.e., Tr1 cells localized in the spleen. In long-term tolerant mice, only CD4(+IL-10(+IL-4(- T cells remained enriched in the spleen and IL-10 was key in the maintenance of tolerance. Alternatively, recipient mice were treated with two compounds routinely used in the clinic (namely, rapamycin and G-CSF; this drug combination promoted tolerance associated with CD4(+IL-10(+IL-4(- T cells. CONCLUSIONS/SIGNIFICANCE: The anti-CD45RB mAb+rapamycin+IL-10 combined protocol promotes a state of tolerance that is IL-10 dependent. Moreover, the combination of rapamycin+G-CSF induces

  15. IL-33-induced alterations in murine intestinal function and cytokine responses are MyD88, STAT6, and IL-13-dependent

    Science.gov (United States)

    IL-33 is a recently identified cytokine member of the IL-1 family. The biological activities of IL-33 are associated with promotion of Th2 and inhibition of Th1/Th17 immune responses. Exogenous IL-33 induces a typical “type 2” immune response in the gastrointestinal tract, yet the underlying mechani...

  16. Role of IL-38 and Its Related Cytokines in Inflammation

    Directory of Open Access Journals (Sweden)

    Xianli Yuan

    2015-01-01

    Full Text Available Interleukin- (IL- 38 is a recently discovered cytokine and is the tenth member of the IL-1 cytokine family. IL-38 shares structural features with IL-1 receptor antagonist (IL-1Ra and IL-36Ra. IL-36R is the specific receptor of IL-38, a partial receptor antagonist of IL-36. IL-38 inhibits the production of T-cell cytokines IL-17 and IL-22. IL-38 also inhibits the production of IL-8 induced by IL-36γ, thus inhibiting inflammatory responses. IL-38-related cytokines, including IL-1Ra and IL-36Ra, are involved in the regulation of inflammation and immune responses. The study of IL-38 and IL-38-related cytokines might provide new insights for developing anti-inflammatory treatments in the near future.

  17. IL-33 inhibits RANKL-induced osteoclast formation through the regulation of Blimp-1 and IRF-8 expression

    Energy Technology Data Exchange (ETDEWEB)

    Kiyomiya, Hiroyasu [Division of Infections and Molecular Biology, Department of Health Promotion, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu, Fukuoka 803-8580 (Japan); Division of Oral and Maxillofacial Surgery, Department of Science of Physical Functions, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu, Fukuoka 803-8580 (Japan); Ariyoshi, Wataru; Okinaga, Toshinori [Division of Infections and Molecular Biology, Department of Health Promotion, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu, Fukuoka 803-8580 (Japan); Kaneuji, Takeshi [Division of Oral Medicine, Department of Science of Physical Functions, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu, Fukuoka 803-8580 (Japan); Mitsugi, Sho [Division of Oral and Maxillofacial Surgery, Department of Science of Physical Functions, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu, Fukuoka 803-8580 (Japan); Sakurai, Takuma [Division of Infections and Molecular Biology, Department of Health Promotion, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu, Fukuoka 803-8580 (Japan); Division of Oral and Maxillofacial Surgery, Department of Science of Physical Functions, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu, Fukuoka 803-8580 (Japan); Habu, Manabu [Division of Oral and Maxillofacial Surgery, Department of Science of Physical Functions, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu, Fukuoka 803-8580 (Japan); Yoshioka, Izumi [Division of Oral Medicine, Department of Science of Physical Functions, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu, Fukuoka 803-8580 (Japan); Tominaga, Kazuhiro [Division of Oral and Maxillofacial Surgery, Department of Science of Physical Functions, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu, Fukuoka 803-8580 (Japan); and others

    2015-05-01

    Interleukin (IL)-33 is a recently discovered proinflammatory cytokine that belongs to the IL-1 family. Several studies have reported that IL-33 inhibits osteoclast differentiation. However, the mechanism of IL-33 regulation of osteoclastogenesis remains unclear. In the present study, we examined the effect of IL-33 on osteoclast formation in vitro. IL-33 suppressed osteoclast formation in both mouse bone marrow cells and monocyte/macrophage cell line RAW264.7 cells induced by receptor activator of NF-κB ligand (RANKL) and/or macrophage stimulating factor (M-CSF). IL-33 also inhibited the expression of RANKL-induced nuclear factor of activated T-cell cytoplasmic 1 (NFATc1), thereby decreasing the expression of osteoclastogenesis-related marker genes, including Cathepsin K, Osteoclast stimulatory transmembrane protein (Oc-stamp) and Tartrate-resistant acid phosphatase (Trap). Blockage of IL-33-ST2 binding suppressed the IL-33-mediated inhibition of NFATc1. RANKL-induced B-lymphocyte-induced maturation protein-1 (Blimp-1) expression was also suppressed by IL-33, which was followed by the stimulation of anti-osteoclastic genes such as interferon regulatory factor-8 (IRF-8). These results suggest that IL-33-ST2 interactions down-regulate both RANKL-induced NFATc1 activation and osteoclast differentiation via the regulation of Blimp-1 and IRF-8 expression. - Highlights: • IL-33 inhibits RANKL-induced osteoclast formation. • IL-33 has inhibitory effect on the RANKL-induced NFATc1 expression. • IL-33-induced NFATc1 suppression depends on the regulation of Blimp-1 and IRF-8.

  18. IL-33 inhibits RANKL-induced osteoclast formation through the regulation of Blimp-1 and IRF-8 expression

    International Nuclear Information System (INIS)

    Kiyomiya, Hiroyasu; Ariyoshi, Wataru; Okinaga, Toshinori; Kaneuji, Takeshi; Mitsugi, Sho; Sakurai, Takuma; Habu, Manabu; Yoshioka, Izumi; Tominaga, Kazuhiro

    2015-01-01

    Interleukin (IL)-33 is a recently discovered proinflammatory cytokine that belongs to the IL-1 family. Several studies have reported that IL-33 inhibits osteoclast differentiation. However, the mechanism of IL-33 regulation of osteoclastogenesis remains unclear. In the present study, we examined the effect of IL-33 on osteoclast formation in vitro. IL-33 suppressed osteoclast formation in both mouse bone marrow cells and monocyte/macrophage cell line RAW264.7 cells induced by receptor activator of NF-κB ligand (RANKL) and/or macrophage stimulating factor (M-CSF). IL-33 also inhibited the expression of RANKL-induced nuclear factor of activated T-cell cytoplasmic 1 (NFATc1), thereby decreasing the expression of osteoclastogenesis-related marker genes, including Cathepsin K, Osteoclast stimulatory transmembrane protein (Oc-stamp) and Tartrate-resistant acid phosphatase (Trap). Blockage of IL-33-ST2 binding suppressed the IL-33-mediated inhibition of NFATc1. RANKL-induced B-lymphocyte-induced maturation protein-1 (Blimp-1) expression was also suppressed by IL-33, which was followed by the stimulation of anti-osteoclastic genes such as interferon regulatory factor-8 (IRF-8). These results suggest that IL-33-ST2 interactions down-regulate both RANKL-induced NFATc1 activation and osteoclast differentiation via the regulation of Blimp-1 and IRF-8 expression. - Highlights: • IL-33 inhibits RANKL-induced osteoclast formation. • IL-33 has inhibitory effect on the RANKL-induced NFATc1 expression. • IL-33-induced NFATc1 suppression depends on the regulation of Blimp-1 and IRF-8

  19. Inhibition of IL-1 activity induced with allogeneic transfusion of UV-irradiated blood

    International Nuclear Information System (INIS)

    Horvat, B.; Poljak-Blazi, M.; Hadija, M.

    1991-01-01

    Treatment with UV-irradiated donor-specific blood transfusion is known to induce specific unresponsiveness in recipient animals and prolong allograft survival. Mixed lymphocyte response in transfused mice was decreased towards spleen cells of the blood donor strain, but was not altered to third-party cells. Sera from treated mice showed significantly lower interleukin-1 (IL-1) activity, which was increased with higher dilutions of sera, indicating the presence of IL-1 inhibitor. Furthermore, sera decreased rIL-1-induced cell proliferation in dose-dependent manner, while the response to rIL-2 neither depended on the concentration of sera, nor differed between non-treated controls and treated mice. These results indicate that UV-irradiated allogeneic blood transfusion could induce an inhibitor, specifically directed to IL-1 activity, which may be involved in the generation of immunological unresponsiveness in treated animals. (author)

  20. CCR3 expression induced by IL-2 and IL-4 functioning as a death receptor for B cells

    DEFF Research Database (Denmark)

    Jinquan, Tan; Jacobi, Henrik H; Jing, Chen

    2003-01-01

    We report that CCR3 is not expressed on freshly isolated peripheral and germinal B cells, but is up-regulated after stimulation with IL-2 and IL-4 (approximately 98% CCR3(+)). Ligation of CCR3 by eotaxin/chemokine ligand (CCL) 11 induces apoptosis in IL-2- and IL-4-stimulated primary CD19......-4, and eotaxin/CCL11 (88% CD95 and 84% CD95L). We therefore propose that ligation of such newly induced CCR3 on peripheral and germinal B cells by eotaxin/CCL11 leads to the enhanced levels of CD95 and CD95L expression. Ligation of CD95 by its CD95L expressed on neigboring B cells triggers relevant....... Interaction between CCR3 and eotaxin/CCL11 may, besides promoting allergic reactions, drive activated B cells to apoptosis, thereby reducing levels of Ig production, including IgE, and consequently limit the development of the humoral immune response. The apoptotic action of eotaxin/CCL11 suggests...

  1. Simvastatin Inhibits IL-5-Induced Chemotaxis and CCR3 Expression of HL-60-Derived and Human Primary Eosinophils.

    Science.gov (United States)

    Fu, Chia-Hsiang; Tsai, Wan-Chun; Lee, Ta-Jen; Huang, Chi-Che; Chang, Po-Hung; Su Pang, Jong-Hwei

    2016-01-01

    IL-5-induced chemotaxis of eosinophils is an important feature of allergic airway inflammatory diseases. Simvastatin, a lipid lowering agent, has been shown to exhibit anti-inflammatory and anti-allergic effects. Our aim was to investigate the effect of simvastatin on IL-5-induced eosinophil chemotaxis and its regulatory mechanisms. Eosinophils were derived by treating HL-60 clone 15 (HC15) cells with butyric acid (BA) in an alkaline condition or through direct isolation from human peripheral blood. The expressions of CC chemokine receptor 3 (CCR3) and interleukin (IL)-5 receptors (IL5Rα and β) were analyzed using RT/real-time PCR. The granular proteins were stained using fast green. Eotaxin-induced chemotaxis was measured using a transwell migration assay. CCR3 protein expression was revealed by immunocytochemistry. An animal model of allergic rhinitis was established by challenging Sprague-Dawley® rats repeatedly with ovalbumin. Butyric acid significantly increased the expression of IL5Rα and IL5Rβ, CCR3 and granular proteins in HC15 cells, indicating the maturation of eosinophils (BA-E cells). IL-5 further enhanced the CCR3 expression at both the mRNA and protein levels and the eotaxin-induced chemotaxis of BA-E cells. Simvastatin inhibited the effects of IL-5 on BA-E cells, but not in the presence of mevalonate. Similar results were also exhibited in human primary eosinophils. In vivo animal studies further confirmed that oral simvastatin could significantly suppress the infiltration of eosinophils into turbinate tissues of allergic rats. Therefore, simvastatin was demonstrated to inhibit IL-5-induced CCR3 expression and chemotaxis of eosinophils mediated via the mevalonate pathway. We confirmed that simvastatin also reduced eosinophilic infiltration in allergic rhinitis.

  2. Pregnancy, but not the allergic status, influences spontaneous and induced interleukin-1beta (IL-1beta), IL-6, IL-10 and IL-12 responses.

    Science.gov (United States)

    Amoudruz, Petra; Minang, Jacob Taku; Sundström, Yvonne; Nilsson, Caroline; Lilja, Gunnar; Troye-Blomberg, Marita; Sverremark-Ekström, Eva

    2006-09-01

    In this study, we investigated how pregnancy influences cytokine production in response to stimulation of the innate and the adaptive immune system, respectively. Peripheral blood mononuclear cells (PBMCs) from allergic (n = 44) and non-allergic (n = 36) women were collected at three time-points: during the third trimester, at delivery and at a non-pregnant state 2 years after delivery. The production of interleukin-1beta (IL-1beta), IL-6, IL-10 and IL-12 was measured by enzyme-linked immunosorbent assay (ELISA) or enzyme-linked immunospot assay (ELISPOT). The spontaneous cytokine production, and the response following stimulation with agents that primarily activate the adaptive part of the immune system [phytohaemagglutinin (PHA), allergen extracts from cat and birch], or lipopolysaccharide (LPS) that activate innate immunity was measured in vitro. There was a significantly higher spontaneous in vitro production of IL-1beta, IL-6 and IL-10 by PBMCs during pregnancy than 2 years after pregnancy, and this was not affected by the allergic status of the women. Conversely, in PHA-stimulated cell cultures there was a lower production of IL-10 and IL-12 during pregnancy than 2 years after pregnancy. LPS-induced IL-6 levels were significantly lower in PBMCs obtained during pregnancy than at 2 years after pregnancy. In addition, we made the interesting observation that in allergic women total immunoglobulin E (IgE) levels were significantly lower 2 years after pregnancy compared to the levels during pregnancy. Taken together, our results indicate that while atopic allergy in women does not have a substantial effect on cytokine production, pregnancy has an obvious effect on the immune system in terms of cytokine production as well as on the total IgE levels.

  3. IFN-γ, IL-4 and IL-13 modulate responsiveness of human airway smooth muscle cells to IL-13

    Directory of Open Access Journals (Sweden)

    Michoud Marie-Claire

    2008-12-01

    Full Text Available Abstract Background IL-13 is a critical mediator of allergic asthma and associated airway hyperresponsiveness. IL-13 acts through a receptor complex comprised of IL-13Rα1 and IL-4Rα subunits with subsequent activation of signal transducer and activator of transcription 6 (STAT6. The IL-13Rα2 receptor may act as a decoy receptor. In human airway smooth muscle (HASM cells, IL-13 enhances cellular proliferation, calcium responses to agonists and induces eotaxin production. We investigated the effects of pre-treatment with IL-4, IL-13 and IFN-γ on the responses of HASM cells to IL-13. Methods Cultured HASM were examined for expression of IL-13 receptor subunits using polymerase chain reaction, immunofluorescence microscopy and flow cytometry. Effects of cytokine pre-treatment on IL-13-induced cell responses were assessed by looking at STAT6 phosphorylation using Western blot, eotaxin secretion and calcium responses to histamine. Results IL-13Rα1, IL-4Rα and IL-13Rα2 subunits were expressed on HASM cells. IL-13 induced phosphorylation of STAT6 which reached a maximum by 30 minutes. Pre-treatment with IL-4, IL-13 and, to a lesser degree, IFN-γ reduced peak STAT6 phosphorylation in response to IL-13. IL-13, but not IFN-γ, pre-treatment abrogated IL-13-induced eotaxin secretion. Pre-treatment with IL-4 or IL-13 abrogated IL-13-induced augmentation of the calcium transient evoked by histamine. Cytokine pre-treatment did not affect expression of IL-13Rα1 and IL-4Rα but increased expression of IL-13Rα2. An anti-IL-13Rα2 neutralizing antibody did not prevent the cytokine pre-treatment effects on STAT6 phosphorylation. Cytokine pre-treatment increased SOCS-1, but not SOCS-3, mRNA expression which was not associated with significant increases in protein expression. Conclusion Pre-treatment with IL-4 and IL-13, but not IFN-γ, induced desensitization of the HASM cells to IL-13 as measured by eotaxin secretion and calcium transients to histamine

  4. MFGE8 inhibits inflammasome-induced IL-1β production and limits postischemic cerebral injury.

    Science.gov (United States)

    Deroide, Nicolas; Li, Xuan; Lerouet, Dominique; Van Vré, Emily; Baker, Lauren; Harrison, James; Poittevin, Marine; Masters, Leanne; Nih, Lina; Margaill, Isabelle; Iwakura, Yoichiro; Ryffel, Bernhard; Pocard, Marc; Tedgui, Alain; Kubis, Nathalie; Mallat, Ziad

    2013-03-01

    Milk fat globule-EGF 8 (MFGE8) plays important, nonredundant roles in several biological processes, including apoptotic cell clearance, angiogenesis, and adaptive immunity. Several recent studies have reported a potential role for MFGE8 in regulation of the innate immune response; however, the precise mechanisms underlying this role are poorly understood. Here, we show that MFGE8 is an endogenous inhibitor of inflammasome-induced IL-1β production. MFGE8 inhibited necrotic cell-induced and ATP-dependent IL-1β production by macrophages through mediation of integrin β(3) and P2X7 receptor interactions in primed cells. Itgb3 deficiency in macrophages abrogated the inhibitory effect of MFGE8 on ATP-induced IL-1β production. In a setting of postischemic cerebral injury in mice, MFGE8 deficiency was associated with enhanced IL-1β production and larger infarct size; the latter was abolished after treatment with IL-1 receptor antagonist. MFGE8 supplementation significantly dampened caspase-1 activation and IL-1β production and reduced infarct size in wild-type mice, but did not limit cerebral necrosis in Il1b-, Itgb3-, or P2rx7-deficient animals. In conclusion, we demonstrated that MFGE8 regulates innate immunity through inhibition of inflammasome-induced IL-1β production.

  5. Cell type-specific roles of Jak3 in IL-2-induced proliferative signal transduction

    International Nuclear Information System (INIS)

    Fujii, Hodaka

    2007-01-01

    Binding of interleukin-2 (IL-2) to its specific receptor induces activation of two members of Jak family protein tyrosine kinases, Jak1 and Jak3. An IL-2 receptor (IL-2R)-reconstituted NIH 3T3 fibroblast cell line proliferates in response to IL-2 only when hematopoietic lineage-specific Jak3 is ectopically expressed. However, the mechanism of Jak3-dependent proliferation in the fibroblast cell line is not known. Here, I showed that Jak3 expression is dispensable for IL-2-induced activation of Jak1 and Stat proteins and expression of nuclear proto-oncogenes in the IL-2R-reconstituted fibroblast cell line. Jak3 expression markedly enhanced these IL-2-induced signaling events. In contrast, Jak3 expression was essential for induction of cyclin genes involved in the G1-S transition. These data suggest a critical role of Jak3 in IL-2 signaling in the fibroblast cell line and may provide further insight into the cell type-specific mechanism of cytokine signaling

  6. Sm29, but not Sm22.6 retains its ability to induce a protective immune response in mice previously exposed to a Schistosoma mansoni infection.

    Directory of Open Access Journals (Sweden)

    Clarice Carvalho Alves

    2015-02-01

    Full Text Available BACKGROUND: A vaccine against schistosomiasis would have a great impact in disease elimination. Sm29 and Sm22.6 are two parasite tegument proteins which represent promising antigens to compose a vaccine. These antigens have been associated with resistance to infection and reinfection in individuals living in endemic area for the disease and induced partial protection when evaluated in immunization trials using naïve mice. METHODOLOGY/PRINCIPALS FINDINGS: In this study we evaluated rSm29 and rSm22.6 ability to induce protection in Balb/c mice that had been previously infected with S. mansoni and further treated with Praziquantel. Our results demonstrate that three doses of the vaccine containing rSm29 were necessary to elicit significant protection (26%-48%. Immunization of mice with rSm29 induced a significant production of IL-2, IFN-γ, IL-17, IL-4; significant production of specific antibodies; increased percentage of CD4+ central memory cells in comparison with infected and treated saline group and increased percentage of CD4+ effector memory cells in comparison with naïve Balb/c mice immunized with rSm29. On the other hand, although immunization with Sm22.6 induced a robust immune response, it failed to induce protection. CONCLUSION/SIGNIFICANCE: Our results demonstrate that rSm29 retains its ability to induce protection in previously infected animals, reinforcing its potential as a vaccine candidate.

  7. TNF-α blockade induces IL-10 expression in human CD4+ T cells

    NARCIS (Netherlands)

    Evans, Hayley G.; Roostalu, Urmas; Walter, Gina J.; Gullick, Nicola J.; Frederiksen, Klaus S.; Roberts, Ceri A.; Sumner, Jonathan; Baeten, Dominique L.; Gerwien, Jens G.; Cope, Andrew P.; Geissmann, Frederic; Kirkham, Bruce W.; Taams, Leonie S.

    2014-01-01

    IL-17+ CD4+ T (Th17) cells contribute to the pathogenesis of several human inflammatory diseases. Here we demonstrate that TNF inhibitor (TNFi) drugs induce the anti-inflammatory cytokine IL-10 in CD4+ T cells including IL-17+ CD4+ T cells. TNFi-mediated induction of IL-10 in IL-17+ CD4+ T cells is

  8. Role of IL-4 in aversion induced by food allergy in mice.

    Science.gov (United States)

    Dourado, Luana Pereira Antunes; Saldanha, Janaína Cláudia da Silva; Gargiulo, Daniela Longo; Noviello, Maria de Lourdes Meirelles; Brant, Cláudia Caldeira; Reis, Maria Letícia Costa; Souza, Raphaela Mendes Fernandes de; Faria, Ana Maria Caetano; Souza, Danielle da Glória de; Cara, Denise Carmona

    2010-01-01

    To ascertain the role of IL-4 in aversion to antigen induced by food allergy, wild type and IL-4 deficient BALB/c mice were sensitized with ovalbumin and challenged orally with egg white. Sensitized wild type mice had increased production of IL-4 by spleen and mesenteric lymph node cells in vitro, higher levels of serum anti-ovalbumin IgE and IgG1, aversion to ingestion of the antigen and loss of body weight after continuous oral challenge. Intestinal changes in wild type sensitized mice included eosinophil infiltration and increased mucus production. The IL-4 deficiency impaired the development of food allergy and the aversion to antigen, suggesting the involvement of the antigen specific antibodies. When IL-4 deficient mice received serum from sensitized wild type donors, the aversion was restored. These results indicate that production of IL-4 and specific IgE/IgG1 antibodies correlate with aversion to antigen induced by food allergy in mice. Copyright 2009 Elsevier Inc. All rights reserved.

  9. Acetylsalicylic acid inhibits IL-18-induced cardiac fibroblast migration through the induction of RECK.

    Science.gov (United States)

    Siddesha, Jalahalli M; Valente, Anthony J; Sakamuri, Siva S V P; Gardner, Jason D; Delafontaine, Patrice; Noda, Makoto; Chandrasekar, Bysani

    2014-07-01

    The pathogenesis of cardiac fibrosis and adverse remodeling is thought to involve the ROS-dependent induction of inflammatory cytokines and matrix metalloproteinases (MMPs), and the activation and migration of cardiac fibroblasts (CF). Here we investigated the role of RECK (reversion-inducing-cysteine-rich protein with Kazal motifs), a unique membrane-anchored MMP regulator, on IL-18-induced CF migration, and the effect of acetylsalicylic acid (ASA) on this response. In a Matrigel invasion assay, IL-18-induced migration of primary mouse CF was dependent on both IKK/NF-κB- and JNK/AP-1-mediated MMP9 induction and Sp1-mediated RECK suppression, mechanisms that required Nox4-dependent H(2)O(2) generation. Notably, forced expression of RECK attenuated IL-18-induced MMP9 activation and CF migration. Further, therapeutic concentrations of ASA inhibited IL-18-induced H(2)O(2) generation, MMP9 activation, RECK suppression, and CF migration. The salicylic acid moiety of ASA similarly attenuated IL-18-induced CF migration. Thus, ASA may exert potential beneficial effect in cardiac fibrosis through multiple protective mechanisms. © 2013 Wiley Periodicals, Inc.

  10. The IL23R R381Q gene variant protects against immune-mediated diseases by impairing IL-23-induced Th17 effector response in humans.

    Directory of Open Access Journals (Sweden)

    Paola Di Meglio

    2011-02-01

    Full Text Available IL-23 and Th17 cells are key players in tissue immunosurveillance and are implicated in human immune-mediated diseases. Genome-wide association studies have shown that the IL23R R381Q gene variant protects against psoriasis, Crohn's disease and ankylosing spondylitis. We investigated the immunological consequences of the protective IL23R R381Q gene variant in healthy donors. The IL23R R381Q gene variant had no major effect on Th17 cell differentiation as the frequency of circulating Th17 cells was similar in carriers of the IL23R protective (A and common (G allele. Accordingly, Th17 cells generated from A and G donors produced similar amounts of Th17 cytokines. However, IL-23-mediated Th17 cell effector function was impaired, as Th17 cells from A allele carriers had significantly reduced IL-23-induced IL-17A production and STAT3 phosphorylation compared to G allele carriers. Our functional analysis of a human disease-associated gene variant demonstrates that IL23R R381Q exerts its protective effects through selective attenuation of IL-23-induced Th17 cell effector function without interfering with Th17 differentiation, and highlights its importance in the protection against IL-23-induced tissue pathologies.

  11. The IL23R R381Q gene variant protects against immune-mediated diseases by impairing IL-23-induced Th17 effector response in humans.

    Science.gov (United States)

    Di Meglio, Paola; Di Cesare, Antonella; Laggner, Ute; Chu, Chung-Ching; Napolitano, Luca; Villanova, Federica; Tosi, Isabella; Capon, Francesca; Trembath, Richard C; Peris, Ketty; Nestle, Frank O

    2011-02-22

    IL-23 and Th17 cells are key players in tissue immunosurveillance and are implicated in human immune-mediated diseases. Genome-wide association studies have shown that the IL23R R381Q gene variant protects against psoriasis, Crohn's disease and ankylosing spondylitis. We investigated the immunological consequences of the protective IL23R R381Q gene variant in healthy donors. The IL23R R381Q gene variant had no major effect on Th17 cell differentiation as the frequency of circulating Th17 cells was similar in carriers of the IL23R protective (A) and common (G) allele. Accordingly, Th17 cells generated from A and G donors produced similar amounts of Th17 cytokines. However, IL-23-mediated Th17 cell effector function was impaired, as Th17 cells from A allele carriers had significantly reduced IL-23-induced IL-17A production and STAT3 phosphorylation compared to G allele carriers. Our functional analysis of a human disease-associated gene variant demonstrates that IL23R R381Q exerts its protective effects through selective attenuation of IL-23-induced Th17 cell effector function without interfering with Th17 differentiation, and highlights its importance in the protection against IL-23-induced tissue pathologies.

  12. IL-6 enhances plasma IL-1ra, IL-10, and cortisol in humans

    DEFF Research Database (Denmark)

    Steensberg, Adam; Fischer, Christian Philip; Keller, Charlotte

    2003-01-01

    compared with saline infusion. In addition, C-reactive protein increased 3 h post-rhIL-6 infusion and was further elevated 16 h later compared with saline infusion. rhIL-6 induced increased levels of plasma cortisol and, consequently, an increase in circulating neutrophils and a decrease in the lymphocyte......-alpha, enhances the levels not only of IL-1ra but also of IL-10. Furthermore, IL-6 induces an increase in cortisol and, consequently, in neutrocytosis and late lymphopenia to the same magnitude and with the same kinetics as during exercise, suggesting that muscle-derived IL-6 has a central role in exercise...

  13. Genetic deletion of IL-25 (IL-17E) confers resistance to dextran sulfate sodium-induced colitis in mice

    Science.gov (United States)

    IL-25 is emerging as a key regulator of inflammation in the intestinal mucosa because of its ability to promote Th2 while suppressing Th1 and Th17 cytokine responses. We investigated the contribution of endogenous IL-25 to DSS-induced colitis in mice. Mice were exposed to DSS in drinking water ad li...

  14. Cell type-specific roles of Jak3 in IL-2-induced proliferative signal transduction

    Science.gov (United States)

    Fujii, Hodaka

    2007-01-01

    Binding of IL-2 to its specific receptor induces activation of two members of Jak family protein tyrosine kinases, Jak1 and Jak3. An IL-2R-reconstituted NIH 3T3 fibroblast cell line proliferates in response to IL-2 only when hematopoietic lineage-specific Jak3 is ectopically expressed. However, the mechanism of Jak3-dependent proliferation in the fibroblast cell line is not known. Here, I showed that Jak3 expression is dispensable for IL-2-induced activation of Jak1 and Stat proteins and expression of nuclear proto-oncogenes in the IL-2R-reconstituted fibroblast cell line. However, Jak3 expression markedly enhanced these IL-2-induced signaling events. In contrast, Jak3 expression was essential for induction of cyclin genes involved in the G1-S transition. These data suggest a critical role of Jak3 in IL-2 signaling in the fibroblast cell line and may provide further insight into the cell type-specific mechanism of cytokine signaling. PMID:17266928

  15. Identification of contact and respiratory sensitizers according to IL-4 receptor α expression and IL-2 production

    Energy Technology Data Exchange (ETDEWEB)

    Goutet, Michèle, E-mail: michele.goutet@inrs.fr; Pépin, Elsa; Langonné, Isabelle; Huguet, Nelly; Ban, Masarin

    2012-04-15

    Identification of allergenic chemicals is an important occupational safety issue. While several methods exist to identify contact sensitizers, there is currently no validated model to predict the potential of chemicals to act as respiratory sensitizers. Previously, we reported that cytometry analysis of the local immune responses induced in mice dermally exposed to the respiratory sensitizer trimellitic anhydride (TMA 10%) and contact sensitizer dinitrochlorobenzene (DNCB 1%) could identify divergent expression of several immune parameters. The present study confirms, first, that IgE-positive B cells, MHC class II molecules, interleukin (IL)-2, IL-4 and IL-4Rα can differentiate the allergic reactions caused by high doses of strong respiratory (TMA, phthalic anhydride and toluene diisocyanate) and contact sensitizers (DNCB, dinitrofluorobenzene and oxazolone). The second part of the study was designed to test the robustness of these markers when classing the weakly immunogenic chemicals most often encountered. Six respiratory allergens, including TMA (2.5%), five contact allergens, including DNCB (0.25%), and two irritants were compared at doses of equivalent immunogenicity. The results indicated that IL-4Rα and IL-2 can be reliably used to discriminate sensitizers. Respiratory sensitizers induced markedly higher IL-4Rα levels than contact allergens, while irritants had no effect on this parameter. Inversely, contact allergens tended to induce higher percentages of IL-2{sup +}CD8{sup +} cells than respiratory allergens. In contrast, the markers MHC-II, IgE and IL-4 were not able to classify chemicals with low immunogenic potential. In conclusion, IL-4Rα and IL-2 have the potential to be used in classifying a variety of chemical allergens. -- Highlights: ► Identification of chemical allergens is an important occupational safety issue. ► There is currently no model to predict the potential of chemicals to induce asthma. ► We analyze immune responses induced

  16. Identification of contact and respiratory sensitizers according to IL-4 receptor α expression and IL-2 production

    International Nuclear Information System (INIS)

    Goutet, Michèle; Pépin, Elsa; Langonné, Isabelle; Huguet, Nelly; Ban, Masarin

    2012-01-01

    Identification of allergenic chemicals is an important occupational safety issue. While several methods exist to identify contact sensitizers, there is currently no validated model to predict the potential of chemicals to act as respiratory sensitizers. Previously, we reported that cytometry analysis of the local immune responses induced in mice dermally exposed to the respiratory sensitizer trimellitic anhydride (TMA 10%) and contact sensitizer dinitrochlorobenzene (DNCB 1%) could identify divergent expression of several immune parameters. The present study confirms, first, that IgE-positive B cells, MHC class II molecules, interleukin (IL)-2, IL-4 and IL-4Rα can differentiate the allergic reactions caused by high doses of strong respiratory (TMA, phthalic anhydride and toluene diisocyanate) and contact sensitizers (DNCB, dinitrofluorobenzene and oxazolone). The second part of the study was designed to test the robustness of these markers when classing the weakly immunogenic chemicals most often encountered. Six respiratory allergens, including TMA (2.5%), five contact allergens, including DNCB (0.25%), and two irritants were compared at doses of equivalent immunogenicity. The results indicated that IL-4Rα and IL-2 can be reliably used to discriminate sensitizers. Respiratory sensitizers induced markedly higher IL-4Rα levels than contact allergens, while irritants had no effect on this parameter. Inversely, contact allergens tended to induce higher percentages of IL-2 + CD8 + cells than respiratory allergens. In contrast, the markers MHC-II, IgE and IL-4 were not able to classify chemicals with low immunogenic potential. In conclusion, IL-4Rα and IL-2 have the potential to be used in classifying a variety of chemical allergens. -- Highlights: ► Identification of chemical allergens is an important occupational safety issue. ► There is currently no model to predict the potential of chemicals to induce asthma. ► We analyze immune responses induced in mice

  17. UVB induces IL-12 transcription in human keratinocytes in vivo and in vitro

    International Nuclear Information System (INIS)

    Enk, C.D.; Blauvet, A.; Katz, S.I.; Mahanty, S.

    1996-01-01

    Human epidermal cells produce a wide range of cytokines, including those characteristic of Th2-like responses such as interleukin (IL)-4 and IL-10. As well, keratinocytes have recently been shown to produce Th1-like cytokines such as IL-12. Exposure to UVB has profound effects on the skin and systemic immune system, which is in part mediated by secretion of tumor necrosis factor (TNF)-α by epidermal cells. Because IL-12 induces production of TNF-α by certain cells of the immune system, we sought to determine whether UVB is an inducer of IL-12 gene expression in epidermal cells. Human epidermal cells were exposed to UVB radiation in vivo, isolated by suction blister technique and trypsinization and transcription of the IL-12 p35 and p40 chains was examined by RT-PCR. (Author)

  18. Role of pro-inflammatory cytokine IL-17 in Leishmania pathogenesis and in protective immunity by Leishmania vaccines.

    Science.gov (United States)

    Banerjee, Antara; Bhattacharya, Parna; Joshi, Amritanshu B; Ismail, Nevien; Dey, Ranadhir; Nakhasi, Hira L

    2016-11-01

    The clinical outcome of Leishmania pathogenesis ranges from active skin lesions to fatal visceral dissemination and severely impaired T cell immunity. It is well established that a strong Th1 immune response is protective against cutaneous forms of the disease, however a mixed Th1/Th2 response is most commonly observed against visceral infections as evident from previous studies. Aside from Th1/Th2 cytokines, the pro-inflammatory IL-17 cytokine family plays an important role in the clearance of intracellular pathogens. In Leishmania induced skin lesions, IL-17 produced by Th17 cells is shown to exacerbate the disease, suggesting a role in pathogenesis. However, a protective role for IL-17 is indicated by the expansion of IL-17 producing cells in vaccine-induced immunity. In human visceral leishmaniasis (VL) it has been demonstrated that IL-17 and IL-22 are associated with protection against re-exposure to Leishmania, which further suggests the involvement of IL-17 in vaccine induced protective immunity. Although there is no vaccine against any form of leishmaniasis, the development of genetically modified live attenuated parasites as vaccine candidates prove to be promising, as they successfully induce a robust protective immune response in various animal models. However, the role of IL-17 producing cells and Th17 cells in response to these vaccine candidates remains unexplored. In this article, we review the role of IL-17 in Leishmania pathogenesis and the potential impact on vaccine induced immunity, with a special focus on live attenuated Leishmania parasites. Published by Elsevier Inc.

  19. fMLP-Induced IL-8 Release Is Dependent on NADPH Oxidase in Human Neutrophils

    Directory of Open Access Journals (Sweden)

    María A. Hidalgo

    2015-01-01

    Full Text Available N-Formyl-methionyl-leucyl-phenylalanine (fMLP and platelet-activating factor (PAF induce similar intracellular signalling profiles; but only fMLP induces interleukin-8 (IL-8 release and nicotinamide adenine dinucleotide phosphate reduced (NADPH oxidase activity in neutrophils. Because the role of ROS on IL-8 release in neutrophils is until now controversial, we assessed if NADPH oxidase is involved in the IL-8 secretions and PI3K/Akt, MAPK, and NF-κB pathways activity induced by fMLP. Neutrophils were obtained from healthy volunteers. IL-8 was measured by ELISA, IL-8 mRNA by qPCR, and ROS production by luminol-amplified chemiluminescence, reduction of ferricytochrome c, and FACS. Intracellular pH changes were detected by spectrofluorescence. ERK1/2, p38 MAPK, and Akt phosphorylation were analysed by immunoblotting and NF-κB was analysed by immunocytochemistry. Hydroxy-3-methoxyaceto-phenone (HMAP, diphenyleneiodonium (DPI, and siRNA Nox2 reduced the ROS and IL-8 release in neutrophils treated with fMLP. HMAP, DPI, and amiloride (a Na+/H+ exchanger inhibitor inhibited the Akt phosphorylation and did not affect the p38 MAPK and ERK1/2 activity. DPI and HMAP reduced NF-κB translocation induced by fMLP. We showed that IL-8 release induced by fMLP is dependent on NADPH oxidase, and ROS could play a redundant role in cell signalling, ultimately activating the PI3K/Akt and NF-κB pathways in neutrophils.

  20. Clarithromycin attenuates IL-13–induced periostin production in human lung fibroblasts

    Directory of Open Access Journals (Sweden)

    Kosaku Komiya

    2017-02-01

    Full Text Available Abstract Background Periostin is a biomarker indicating the presence of type 2 inflammation and submucosal fibrosis; serum periostin levels have been associated with asthma severity. Macrolides have immunomodulatory effects and are considered a potential therapy for patients with severe asthma. Therefore, we investigated whether macrolides can also modulate pulmonary periostin production. Methods Using quantitative PCR and ELISA, we measured periostin production in human lung fibroblasts stimulated by interleukin-13 (IL-13 in the presence of two 14-member–ring macrolides—clarithromycin or erythromycin—or a 16-member–ring macrolide, josamycin. Phosphorylation of signal transducers and activators of transcription 6 (STAT6, downstream of IL-13 signaling, was evaluated by Western blotting. Changes in global gene expression profile induced by IL-13 and/or clarithromycin were assessed by DNA microarray analysis. Results Clarithromycin and erythromycin, but not josamycin, inhibited IL-13–stimulated periostin production. The inhibitory effects of clarithromycin were stronger than those of erythromycin. Clarithromycin significantly attenuated STAT6 phosphorylation induced by IL-13. Global gene expression analyses demonstrated that IL-13 increased mRNA expression of 454 genes more than 4-fold, while decreasing its expression in 390 of these genes (85.9%, mainly “extracellular,” “plasma membrane,” or “defense response” genes. On the other hand, clarithromycin suppressed 9.8% of the genes in the absence of IL-13. Clarithromycin primarily attenuated the gene expression of extracellular matrix protein, including periostin, especially after IL-13. Conclusions Clarithromycin suppressed IL-13–induced periostin production in human lung fibroblasts, in part by inhibiting STAT6 phosphorylation. This suggests a novel mechanism of the immunomodulatory effect of clarithromycin in asthmatic airway inflammation and fibrosis.

  1. Aloin Inhibits Interleukin (IL)-1β-Stimulated IL-8 Production in KB Cells.

    Science.gov (United States)

    Na, Hee Sam; Song, Yu Ri; Kim, Seyeon; Heo, Jun-Young; Chung, Hae-Young; Chung, Jin

    2016-06-01

    Interleukin (IL)-1β, which is elevated in oral diseases including gingivitis, stimulates epithelial cells to produce IL-8 and perpetuate inflammatory responses. This study investigates stimulatory effects of salivary IL-1β in IL-8 production and determines if aloin inhibits IL-1β-stimulated IL-8 production in epithelial cells. Saliva was collected from volunteers to determine IL-1β and IL-8 levels. Samples from volunteers were divided into two groups: those with low and those with high IL-1β levels. KB cells were stimulated with IL-1β or saliva with or without IL-1 receptor agonist or specific mitogen-activated protein kinase (MAPK) inhibitors. IL-8 production was measured by enzyme-linked immunosorbent assay (ELISA). MAPK protein expression involved in IL-1β-induced IL-8 secretion was detected by Western blot. KB cells were pretreated with aloin, and its effect on IL-1β-induced IL-8 production was examined by ELISA and Western blot analysis. Saliva with high IL-1β strongly stimulated IL-8 production in KB cells, and IL-1 receptor agonist significantly inhibited IL-8 production. Low IL-1β-containing saliva did not increase IL-8 production. IL-1β treatment of KB cells induced activation of MAPK signaling molecules as well as nuclear factor-kappa B. IL-1β-induced IL-8 production was decreased by p38 and extracellular signal-regulated kinase (ERK) inhibitor treatment. Aloin pretreatment inhibited IL-1β-induced IL-8 production in a dose-dependent manner and inhibited activation of the p38 and ERK signaling pathway. Finally, aloin pretreatment also inhibited saliva-induced IL-8 production. Results indicated that IL-1β in saliva stimulates epithelial cells to produce IL-8 and that aloin effectively inhibits salivary IL-1β-induced IL-8 production by mitigating the p38 and ERK pathway. Therefore, aloin may be a good candidate for modulating oral inflammatory diseases.

  2. Evaluating ESWL-induced renal injury based on urinary TNF-α, IL-1α, and IL-6 levels.

    Science.gov (United States)

    Goktas, Cemal; Coskun, Abdurrahman; Bicik, Zerrin; Horuz, Rahim; Unsal, Ibrahim; Serteser, Mustafa; Albayrak, Selami; Sarıca, Kemal

    2012-10-01

    Extracorporeal shockwave lithotripsy (ESWL) has dramatically changed the treatment of urinary lithiasis and has been the first treatment option for the majority of patients for more than two decades. Despite its significant benefits, it induces acute renal injury that extends from the papilla to the outer cortex. We evaluated the severity of the inflammatory response to ESWL by measuring the urinary excretion of the cytokines TNF-α, IL-1α, and IL-6. The study included 21 selected patients and 14 control subjects. All patients underwent the same ESWL procedure (2,500 shockwaves at 100 shockwaves/min and 0.039 J from the lithotripter). Urine TNF-α, IL-1α, and IL-6 levels were measured using standard ELISA kits. In the study population (patients and controls), we did not detect TNF-α in the urine samples. The levels of both IL-1α (2.5 pg/ml) and IL-6 (3.8 pg/ml) measured before ESWL were not significantly different from the control group (2.5 and 5.2 pg/ml, respectively; p > 0.05). Twenty-four hours after ESWL, in contrast to IL-1α (4 pg/ml), urine IL-6 (19.7 pg/ml) increased significantly (p ESWL, IL-1α increased to 5 pg/ml, while IL-6 (7 pg/ml) decreased to the control level. Urine cytokine levels may be used to evaluate the inflammatory response to ESWL. After ESWL, IL-6 levels increased in the early phase, while IL-1α levels increased later. These two markers may be used to measure the severity of inflammation. In contrast to IL-1α and IL-6, urine TNF-α excretion was not increased by ESWL. We believe that the inflammatory response to ESWL can be detected by the urinary excretion of IL-1α for up to 14 days.

  3. TL1A increases expression of CD25, LFA-1, CD134 and CD154, and induces IL-22 and GM-CSF production from effector CD4 T-cells

    DEFF Research Database (Denmark)

    Reichwald, Kirsten; Jørgensen, Tina Z.; Skov, Søren

    2014-01-01

    Elevated levels of the cytokine TL1A is associated with several autoimmune diseases e.g. rheumatoid arthritis and inflammatory bowel disease. However, the exact role of TL1A remains elusive. In this study, we investigated the function of TL1A in a pro-inflammatory setting. We show that TL1A toget...... of CD25 (IL-2Rα) and CD11a (α-chain of LFA-1) on CD4 T-cells, likely governing increased IL-2/IL-15 sensitivity and cell-cell contact. Along with this, TL1A co-stimulation caused a specific induction of IL-22 and GM-CSF from the activated T-cells. These results substantially contribute...

  4. Evaluation of anti-IL-6 monoclonal antibody therapy using murine type II collagen-induced arthritis

    Directory of Open Access Journals (Sweden)

    Shealy David

    2009-04-01

    Full Text Available Abstract Interleukin-6 is a multifunctional cytokine that is critical for T/B-cell differentiation and maturation, immunoglobulin secretion, acute-phase protein production, and macrophage/monocyte functions. Extensive research into the biology of IL-6 has implicated IL-6 in the pathophysiology and pathogenesis of RA. An anti-murine IL-6 mAb that neutralizes mouse IL-6 activities was tested in animal model of collagen-induced arthritis. Prophylactic treatment with anti-IL-6 mAb significantly reduced the incidence and severity of arthritis compared to control mAb treated mice. The mitogenic response of B and T cells isolated from the lymph nodes of anti-IL-6 treated mice was significantly reduced compared to cells isolated from control mAb treated mice. The overall histopathology score for paws from the anti-IL-6 treated mice was significantly reduced when compared to paws from mice treated with control mAb, including both inflammatory (synovitis and pannus and erosive (erosions and architecture parameters. Reduced loss of cartilage matrix components was also observed in the anti-IL-6 treated mice. Collectively, these data suggest that IL-6 plays a major role in the pathophysiology of rheumatoid arthritis, and thus support the potential benefit of anti-IL-6 mAb treatment in rheumatoid arthritis patients.

  5. Irreversible inhibition of RANK expression as a possible mechanism for IL-3 inhibition of RANKL-induced osteoclastogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Khapli, Shruti M.; Tomar, Geetanjali B.; Barhanpurkar, Amruta P.; Gupta, Navita; Yogesha, S.D.; Pote, Satish T. [National Center for Cell Science, University of Pune Campus, Pune 411 007 (India); Wani, Mohan R., E-mail: mohanwani@nccs.res.in [National Center for Cell Science, University of Pune Campus, Pune 411 007 (India)

    2010-09-03

    Research highlights: {yields} IL-3 inhibits receptor activator of NF-{kappa}B ligand (RANKL)-induced osteoclastogenesis. {yields} IL-3 inhibits RANKL-induced JNK activation. {yields} IL-3 down-regulates expression of c-Fos and NFATc1 transcription factors. {yields} IL-3 down-regulates RANK expression posttranscriptionally and irreversibly. {yields} IL-3 inhibits in vivo RANK expression. -- Abstract: IL-3, a cytokine secreted by activated T lymphocytes, stimulates the proliferation, differentiation and survival of pluripotent hematopoietic stem cells. In this study, we investigated the mechanism of inhibitory action of IL-3 on osteoclast differentiation. We show here that IL-3 significantly inhibits receptor activator of NF-{kappa}B (RANK) ligand (RANKL)-induced activation of c-Jun N-terminal kinase (JNK). IL-3 down-regulates expression of c-Fos and nuclear factor of activated T cells (NFATc1) transcription factors. In addition, IL-3 down-regulates RANK expression posttranscriptionally in both purified osteoclast precursors and whole bone marrow cells. Furthermore, the inhibitory effect of IL-3 on RANK expression was irreversible. Interestingly, IL-3 inhibits in vivo RANK expression in mice. Thus, we provide the first evidence that IL-3 irreversibly inhibits RANK expression that results in inhibition of important signaling molecules induced by RANKL.

  6. Irreversible inhibition of RANK expression as a possible mechanism for IL-3 inhibition of RANKL-induced osteoclastogenesis

    International Nuclear Information System (INIS)

    Khapli, Shruti M.; Tomar, Geetanjali B.; Barhanpurkar, Amruta P.; Gupta, Navita; Yogesha, S.D.; Pote, Satish T.; Wani, Mohan R.

    2010-01-01

    Research highlights: → IL-3 inhibits receptor activator of NF-κB ligand (RANKL)-induced osteoclastogenesis. → IL-3 inhibits RANKL-induced JNK activation. → IL-3 down-regulates expression of c-Fos and NFATc1 transcription factors. → IL-3 down-regulates RANK expression posttranscriptionally and irreversibly. → IL-3 inhibits in vivo RANK expression. -- Abstract: IL-3, a cytokine secreted by activated T lymphocytes, stimulates the proliferation, differentiation and survival of pluripotent hematopoietic stem cells. In this study, we investigated the mechanism of inhibitory action of IL-3 on osteoclast differentiation. We show here that IL-3 significantly inhibits receptor activator of NF-κB (RANK) ligand (RANKL)-induced activation of c-Jun N-terminal kinase (JNK). IL-3 down-regulates expression of c-Fos and nuclear factor of activated T cells (NFATc1) transcription factors. In addition, IL-3 down-regulates RANK expression posttranscriptionally in both purified osteoclast precursors and whole bone marrow cells. Furthermore, the inhibitory effect of IL-3 on RANK expression was irreversible. Interestingly, IL-3 inhibits in vivo RANK expression in mice. Thus, we provide the first evidence that IL-3 irreversibly inhibits RANK expression that results in inhibition of important signaling molecules induced by RANKL.

  7. IL-13-induced proliferation of airway epithelial cells: mediation by intracellular growth factor mobilization and ADAM17

    Directory of Open Access Journals (Sweden)

    Sandifer Tracy

    2007-07-01

    Full Text Available Abstract Background The pleiotrophic cytokine interleukin (IL-13 features prominently in allergic and inflammatory diseases. In allergic asthma, IL-13 is well established as an inducer of airway inflammation and tissue remodeling. We demonstrated previously that IL-13 induces release of transforming growth factor-α (TGFα from human bronchial epithelial cells, with proliferation of these cells mediated by the autocrine/paracrine action of this growth factor. TGFα exists as an integral membrane protein and requires proteolytic processing to its mature form, with a disintegrin and metalloproteinase (ADAM17 responsible for this processing in a variety of tissues. Methods In this study, normal human bronchial epithelial (NHBE cells grown in air/liquid interface (ALI culture were used to examine the mechanisms whereby IL-13 induces release of TGFα and cellular proliferation. Inhibitors and antisense RNA were used to examine the role of ADAM17 in these processes, while IL-13-induced changes in the intracellular expression of TGFα and ADAM17 were visualized by confocal microscopy. Results IL-13 was found to induce proliferation of NHBE cells, and release of TGFα, in an ADAM17-dependent manner; however, this IL-13-induced proliferation did not appear to result solely from ADAM17 activation. Rather, IL-13 induced a change in the location of TGFα expression from intracellular to apical regions of the NHBE cells. The apical region was also found to be a site of significant ADAM17 expression, even prior to IL-13 stimulation. Conclusion Results from this study indicate that ADAM17 mediates IL-13-induced proliferation and TGFα shedding in NHBE cells. Furthermore, they provide the first example wherein a cytokine (IL-13 induces a change in the intracellular expression pattern of a growth factor, apparently inducing redistribution of intracellular stores of TGFα to the apical region of NHBE cells where expression of ADAM17 is prominent. Thus, IL-13

  8. Titanium dioxide particle – induced goblet cell hyperplasia : association with mast cells and IL-13

    Directory of Open Access Journals (Sweden)

    Kim Soo-Ho

    2005-04-01

    Full Text Available Abstract Background Inhalation of particles aggravates respiratory symptoms including mucus hypersecretion in patients with chronic airway disease and induces goblet cell hyperplasia (GCH in experimental animal models. However, the underlying mechanisms remain poorly understood. Methods To understand this, the numbers of goblet cells, Muc5ac (+ expressing epithelial cells and IL-13 expressing mast cells were measured in the trachea of sham or TiO2 particles – treated rats using periodic acid-Schiff, toluidine blue and immunohistochemical staining. RT-PCR for Muc-1, 2 and 5ac gene transcripts was done using RNA extracted from the trachea. Differential cell count and IL-13 levels were measured in bronchoalveolar lavage (BAL fluid. In pretreatment groups, cyclophosphamide (CPA or dexamethasone (DEX was given before instillation of TiO2. TiO2 treatment markedly increased Muc5ac mRNA expression, and Muc5ac (+ or PAS (+ epithelial cells 48 h following treatment. Results The concentration of IL-13 in BAL fluids was higher in TiO2 treated – rats when compared to those in sham rats (p 2 treated – rats (p 0.05. In contrast, pretreatment with dexamethasone (DEX diminished the percentage of PAS (+ cells and the levels of IL-13 (p 2 treatment increased the IL-13 (+ mast cells (p 0.05. In addition there were significant correlations of IL-13 (+ rate of mast cells in the trachea with IL-13 concentration in BAL fluid (p 2 treated rats (p Conclusion In conclusion, TiO2 instillation induces GCH and Muc5ac expression, and this process may be associated with increased production of IL-13 by mast cells.

  9. Grain dust induces IL-8 production from bronchial epithelial cells: effect on neutrophil recruitment.

    Science.gov (United States)

    Park, H S; Suh, J H; Kim, S S; Kwon, O J

    2000-06-01

    There have been several investigations suggesting an involvement of activated neutrophils in the development of grain dust (GD)-induced occupational asthma. Interleukin-8 in the sputa from GD-induced asthmatic patients increased significantly after the exposure to GD. To confirm IL-8 production from bronchial epithelial cells when exposed to GD, and to evaluate the role of IL-8 on neutrophil recruitment. We cultured Beas-2B, a bronchial epithelial cell line. To observe GD-induced responses, four different concentrations ranging from 1 to 200 microg/mL of GD were incubated for 24 hours and compared with those without incubation of GD. To evaluate the effect of pro-inflammatory cytokines on IL-8 production and neutrophil chemotaxis, epithelial cells were incubated with peripheral blood mononuclear cell (PBMC) culture supernatant derived from subjects with GD-induced asthma exposed to 10 microg/mL of GD, and then compared with those without addition of PBMC supernatant. The level of released IL-8 in the supernatant was measured by enzyme-linked immunosorbent assay. Neutrophil chemotactic activity of the culture supernatant was determined by modified Boyden chamber method. Interleukin-8 production and neutrophil chemotactic activity from bronchial epithelial cells significantly increased with additions of GD in a dose-dependent manner (P < .05, respectively), and were significantly augmented with additions of PBMC supernatant (P < .05, respectively) at each concentration. Close correlation was noted between neutrophil chemotactic activity and IL-8 level (r = 0.87, P < .05). Compared with the untreated sample, pre-treatment of anti-IL-8 antibody induced a significant suppression (up to 67.2%) of neutrophil chemotactic activity in a dose-dependent manner. These results suggest that IL-8 produced from bronchial epithelial cells may be a major cytokine, which induces neutrophil migration into the airways when exposed to GD.

  10. IL-2 regulates SEB induced toxic shock syndrome in BALB/c mice.

    Directory of Open Access Journals (Sweden)

    Aslam Ali Khan

    2009-12-01

    Full Text Available Toxic Shock Syndrome (TSS is characterized by fever, rash, hypotension, constitutional symptoms, and multi-organ involvement and is caused by Staphylococcus aureus enterotoxins such as Staphylococcal Enterotoxin B (SEB. SEB binds to the MHC-IIalpha chain and is recognized by the TCRbeta chain of the Vbeta8 TCR(+ T cells. The binding of SEB to Vbeta chain results in rapid activation of T cells and production of inflammatory cytokines, such as Interleukin-2 (IL-2, Interferon-gamma and Tumor Necrosis Factor-alpha which mediate TSS. Although IL2 was originally identified as the T cell growth factor and was proposed to contribute to T cell differentiation, its role in TSS remains unexplored.Mice were injected with D-Gal (25 mg/mouse. One hour after D-Galactosamine (D-Gal injection each mouse was injected with SEB (20 microg/mouse. Mice were then observed for 72 hrs and death was recorded at different times. We tested Interleukin-12, IFNgamma, and IL-2 deficient mice (IL-2(-/-, but only the IL-2 deficient mice were resistant to SEB induced toxic shock syndrome. More importantly reconstitution of IL-2 in IL-2 deficient mice restored the shock. Interestingly, SEB induced IL-2 production from T cells was dependent on p38MAPK activation in macrophages as inhibition of it in macrophages significantly inhibited IL-2 production from T cells.This study shows the importance of IL -2 in TSS which has not been previously explored and it also shows that regulating macrophages function can regulate T cells and TSS.

  11. IL-4 induces cAMP and cGMP in human monocytic cells

    Directory of Open Access Journals (Sweden)

    B. Dugas

    1995-01-01

    Full Text Available Human monocytes, preincubated with IFN-γ respond to IL-4 by a cGMP increase through activation of an inducible NO synthase. Here, IL-4 was found to induce an accumulation of cGMP (1 – 3 min and cAMP (20 – 25 min in unstimulated monocytes. This was impaired with NOS inhibitors, but also with EGTA and calcium/calmodulin inhibitors. These results suggest that: (1 IL-4 may stimulate different NOS isoforms in resting and IFN-γ activated monocytes, and (2 cAMP accumulation may be partially dependent on the NO pathway. By RT-PCR, a type III constitutive NOS mRNA was detected in U937 monocytic cells. IL-4 also increased the [Ca2+]i in these cells. Different NOS may thus be expressed in monocytic cells depending on their differentiation and the signals they receive.

  12. Chronic administration of recombinant IL-6 upregulates lipogenic enzyme expression and aggravates high-fat-diet-induced steatosis in IL-6-deficient mice

    Directory of Open Access Journals (Sweden)

    Margarita Vida

    2015-07-01

    Full Text Available Interleukin-6 (IL-6 has emerged as an important mediator of fatty acid metabolism with paradoxical effects in the liver. Administration of IL-6 has been reported to confer protection against steatosis, but plasma and tissue IL-6 concentrations are elevated in chronic liver diseases, including fatty liver diseases associated with obesity and alcoholic ingestion. In this study, we further investigated the role of IL-6 on steatosis induced through a high-fat diet (HFD in wild-type (WT and IL-6-deficient (IL-6−/− mice. Additionally, HFD-fed IL-6−/− mice were also chronically treated with recombinant IL-6 (rIL-6. Obesity in WT mice fed a HFD associated with elevated serum IL-6 levels, fatty liver, upregulation of carnitine palmitoyltransferase 1 (CPT1 and signal transducer and activator of transcription-3 (STAT3, increased AMP kinase phosphorylation (p-AMPK, and downregulation of the hepatic lipogenic enzymes fatty acid synthase (FAS and stearoyl-CoA desaturase 1 (SCD1. The HFD-fed IL-6−/− mice showed severe steatosis, no changes in CPT1 levels or AMPK activity, no increase in STAT3 amounts, inactivated STAT3, and marked downregulation of the expression of acetyl-CoA carboxylase (ACCα/β, FAS and SCD1. The IL-6 chronic replacement in HFD-fed IL-6−/− mice restored hepatic STAT3 and AMPK activation but also increased the expression of the lipogenic enzymes ACCα/β, FAS and SCD1. Furthermore, rIL-6 administration was associated with aggravated steatosis and elevated fat content in the liver. We conclude that, in the context of HFD-induced obesity, the administration of rIL-6 might contribute to the aggravation of fatty liver disease through increasing lipogenesis.

  13. Murine analogues of etanercept and of F8-IL10 inhibit the progression of collagen-induced arthritis in the mouse.

    Science.gov (United States)

    Doll, Fabia; Schwager, Kathrin; Hemmerle, Teresa; Neri, Dario

    2013-09-27

    Etanercept is a fusion protein consisting of the soluble portion of the p75-tumor necrosis factor receptor (TNFR) and the Fc fragment of human IgG1, which is often used for the treatment of patients with rheumatoid arthritis. F8-IL10 is a human immunocytokine based on the F8 antibody and interleukin-10, which is currently being investigated in rheumatoid arthritis with promising clinical results. We have aimed at expressing murine versions of these two fusion proteins, in order to assess their pharmaceutical performance in the collagen-induced model of rheumatoid arthritis in the mouse. Two fusion proteins (termed muTNFR-Fc and F8-muIL10) were cloned, expressed in chinese hamster ovary (CHO) cells, purified and characterized. Biological activity of muTNFR-Fc was assessed by its ability to inhibit TNF-induced killing of mouse fibroblasts, while F8-muIL10 was characterized in terms of muIL10 activity, of binding affinity to the cognate antigen of F8, the alternatively-spliced EDA domain of fibronectin, by quantitative biodistribution analysis and in vivo imaging. The therapeutic activity of both fusion proteins was investigated in a collagen-induced mouse model of arthritis. Mouse plasma was analyzed for anti-drug antibody formation and cytokine levels were determined by bead-based multiplex technology. The association of F8-IL10 proteins with blood cells was studied in a centrifugation assay with radiolabeled protein. Both fusion proteins exhibited excellent purity and full biological activity in vitro. In addition, F8-muIL10 was able to localize on newly-formed blood vessels in vivo. When used in a murine model of arthritis, the two proteins inhibited arthritis progression. The activity of muTNFR-Fc was tested alone and in combination with F8-huIL10. The chimeric version of F8-IL10 was not better then the fully human fusion protein and showed similar generation of mouse anti-fusion protein antibodies. Incubation studies of F8-muIL10 and F8-huIL10 with blood

  14. IL-5 and IL-5 receptor in asthma

    Directory of Open Access Journals (Sweden)

    ATC Kotsimbos

    1997-12-01

    in FEV1, airway reactivity and clinical severity in asthma. It has now been well documented that IL-5 is highly expressed in the bronchial mucosa of atopic and intrinsic asthmatics and that the increased IL-5 mRNA present in airway tissues is predominantly T cell derived. Immunocytochemical staining of bronchial biopsy sections has confirmed that IL-5 mRNA transcripts are translated into protein in asthmatic subjects. Furthermore, the number of activated CD 4 + T cells and IL-5 mRNA positive cells are increased in asthmatic airways following antigen challenge and studies that have examined IL-5 expression in asthmatic subjects before and after steroids have shown significantly decreased expression following oral corticosteroid treatment in steroid-sensitive asthma but not in steroid resistant and chronic severe steroid dependent asthma. The link between T cell derived IL-5 and eosinophil activation in asthmatic airways is further strengthened by the demonstration that there is an increased number of alphaIL-5R mRNA positive cells in the bronchial biopsies of atopic and non-atopic asthmatic subjects and that the eosinophil is the predominant site of this increased alphaIL-5R mRNA expression. We have also shown that the subset of activated eosinophils that expressed mRNA for membrane bound alpha IL5r inversely correlated with FEV1, whereas the subset of activated eosinophils that expressed mRNA for soluble alphaIL5r directly correlated with FEV1. Hence, not only does this data suggest that the presence of eosinophils expressing alphaIL-5R mRNA contribute towards the pathogenesis of bronchial asthma, but also that the eosinophil phenotype with respect to alphaIL-5R isoform expression is of central importance. Finally, there are several animal, and more recently in vitro lung explant, models of allergen induced eosinophilia, late airway responses(LARS, and bronchial hyperresponsiveness(BHR - all of which support a link between IL-5 and airway eosinophila and bronchial

  15. LPS-induced release of IL-6 from glia modulates production of IL-1beta in a JAK2-dependent manner

    LENUS (Irish Health Repository)

    Minogue, Aedín M

    2012-06-14

    AbstractBackgroundCompelling evidence has implicated neuroinflammation in the pathogenesis of a number of neurodegenerative conditions. Chronic activation of both astrocytes and microglia leads to excessive secretion of proinflammatory molecules such as TNFα, IL-6 and IL-1β with potentially deleterious consequences for neuronal viability. Many signaling pathways involving the mitogen-activated protein kinases (MAPKs), nuclear factor κB (NFκB) complex and the Janus kinases (JAKs)\\/signal transducers and activators of transcription (STAT)-1 have been implicated in the secretion of proinflammatory cytokines from glia. We sought to identify signaling kinases responsible for cytokine production and to delineate the complex interactions which govern time-related responses to lipopolysaccharide (LPS).MethodsWe examined the time-related changes in certain signaling events and the release of proinflammatory cytokines from LPS-stimulated co-cultures of astrocytes and microglia isolated from neonatal rats.ResultsTNFα was detected in the supernatant approximately 1 to 2 hours after LPS treatment while IL-1β and IL-6 were detected after 2 to 3 and 4 to 6 hours, respectively. Interestingly, activation of NFκB signaling preceded release of all cytokines while phosphorylation of STAT1 was evident only after 2 hours, indicating that activation of JAK\\/STAT may be important in the up-regulation of IL-6 production. Additionally, incubation of glia with TNFα induced both phosphorylation of JAK2 and STAT1 and the interaction of JAK2 with the TNFα receptor (TNFR1). Co-treatment of glia with LPS and recombinant IL-6 protein attenuated the LPS-induced release of both TNFα and IL-1β while potentiating the effect of LPS on suppressor of cytokine signaling (SOCS)3 expression and IL-10 release.ConclusionsThese data indicate that TNFα may regulate IL-6 production through activation of JAK\\/STAT signaling and that the subsequent production of IL-6 may impact on the release of

  16. 75 FR 4343 - Foreign-Trade Zone 22-Chicago, IL; Application for Manufacturing Authority; LG Electronics...

    Science.gov (United States)

    2010-01-27

    ... DEPARTMENT OF COMMERCE Foreign-Trade Zones Board [Docket 3-2010] Foreign-Trade Zone 22--Chicago, IL; Application for Manufacturing Authority; LG Electronics MobileComm USA, Inc. (Cell Phone Kitting... authority on behalf of LG Electronics MobileComm USA, Inc. (LGEMU), located in Bolingbrook, Illinois. The...

  17. Doxycycline Attenuates Leptospira-Induced IL-1β by Suppressing NLRP3 Inflammasome Priming

    Directory of Open Access Journals (Sweden)

    Wenlong Zhang

    2017-07-01

    Full Text Available Doxycycline (Dox, a semisynthetic antibiotic, has been reported to exert multiple immunomodulatory effects. Treatment with Dox has a satisfactory curative effect against leptospirosis. In addition to its antibacterial action, we supposed that Dox also modulated immune response in controlling leptospira infection. Using J774A.1 mouse macrophages, the effects of Dox on protein and mRNA levels of IL-1β and TNF-α were investigated after infection with live or sonicated Leptospira interrogans serovar Lai strain Lai (56601. Specifically, the level of IL-1β but not TNF-α was sharply decreased when treated with Dox in leptospira-infected macrophages. Western blot analysis showed that Dox suppressed the activation of leptospira-induced MAPK and NF-κB signaling pathways. Using NLRP3-deficient and NLRC4-deficient mice, the data showed that the expression of leptospira-induced IL-1β was mainly dependent on the presence of NLRP3 inflammasome in macrophages. Meanwhile, Dox suppressed leptospira-induced NLRP3 inflammasome priming with the upregulation of the Na/K-ATPase Pump β1 subunit. The inhibition effect of Dox on IL-1β was also conspicuous in cells with lipopolysaccharide and ATP stimulation. These results were confirmed in vivo, as peritoneal fluids of mice and organs of hamsters expressed less IL-1β after treatment of leptospiral infection with Dox. Our results indicated that Dox also modulated immune response to attenuate leptospira-induced IL-1β by suppressing p38, JNK, p65, and NLRP3 inflammasome priming.

  18. Doxycycline Attenuates Leptospira-Induced IL-1β by Suppressing NLRP3 Inflammasome Priming

    Science.gov (United States)

    Zhang, Wenlong; Xie, Xufeng; Wu, Dianjun; Jin, Xuemin; Liu, Runxia; Hu, Xiaoyu; Fu, Yunhe; Ding, Zhuang; Zhang, Naisheng; Cao, Yongguo

    2017-01-01

    Doxycycline (Dox), a semisynthetic antibiotic, has been reported to exert multiple immunomodulatory effects. Treatment with Dox has a satisfactory curative effect against leptospirosis. In addition to its antibacterial action, we supposed that Dox also modulated immune response in controlling leptospira infection. Using J774A.1 mouse macrophages, the effects of Dox on protein and mRNA levels of IL-1β and TNF-α were investigated after infection with live or sonicated Leptospira interrogans serovar Lai strain Lai (56601). Specifically, the level of IL-1β but not TNF-α was sharply decreased when treated with Dox in leptospira-infected macrophages. Western blot analysis showed that Dox suppressed the activation of leptospira-induced MAPK and NF-κB signaling pathways. Using NLRP3-deficient and NLRC4-deficient mice, the data showed that the expression of leptospira-induced IL-1β was mainly dependent on the presence of NLRP3 inflammasome in macrophages. Meanwhile, Dox suppressed leptospira-induced NLRP3 inflammasome priming with the upregulation of the Na/K-ATPase Pump β1 subunit. The inhibition effect of Dox on IL-1β was also conspicuous in cells with lipopolysaccharide and ATP stimulation. These results were confirmed in vivo, as peritoneal fluids of mice and organs of hamsters expressed less IL-1β after treatment of leptospiral infection with Dox. Our results indicated that Dox also modulated immune response to attenuate leptospira-induced IL-1β by suppressing p38, JNK, p65, and NLRP3 inflammasome priming. PMID:28791016

  19. Nebulized Anti-IL-13 Monoclonal Antibody Fab' Fragment Reduces Allergen-Induced Asthma

    OpenAIRE

    Hacha, Jonathan; Tomlinson, K; Maertens, Ludovic; Paulissen, Geneviève; Rocks, Natacha; Foidart, Jean-Michel; Noël, Agnès; Palframan, R; Guéders, Maud; Cataldo, Didier

    2012-01-01

    Rationale: Interleukin-13 (IL-13) is a prototypic Th2 cytokine and a central mediator of the complex cascade of events leading to asthmatic phenotype. Indeed, IL-13 plays key roles in IgE synthesis, bronchial hyperresponsiveness, mucus hypersecretion, subepithelial fibrosis and eosinophil infiltration. Objectives: We assessed the potential efficacy of inhaled anti-IL-13 monoclonal antibody Fab' fragment on allergen-induced airway inflammation, hyperresponsiveness and remodeling in an experime...

  20. IL-18 Does not Increase Allergic Airway Disease in Mice When Produced by BCG

    Science.gov (United States)

    Amniai, L.; Biet, F.; Marquillies, P.; Locht, C.; Pestel, J.; Tonnel, A.-B.; Duez, C.

    2007-01-01

    Whilst BCG inhibits allergic airway responses in murine models, IL-18 has adversary effects depending on its environment. We therefore constructed a BCG strain producing murine IL-18 (BCG-IL-18) and evaluated its efficiency to prevent an asthma-like reaction in mice. BALB/cByJ mice were sensitized (day (D) 1 and D10) by intraperitoneal injection of ovalbumin (OVA)-alum and primary (D20–22) and secondary (D62, 63) challenged with OVA aerosols. BCG or BCG-IL-18 were intraperitonealy administered 1 hour before each immunization (D1 and D10). BCG-IL-18 and BCG were shown to similarly inhibit the development of AHR, mucus production, eosinophil influx, and local Th2 cytokine production in BAL, both after the primary and secondary challenge. These data show that IL-18 did not increase allergic airway responses in the context of the mycobacterial infection, and suggest that BCG-IL-18 and BCG are able to prevent the development of local Th2 responses and therefore inhibit allergen-induced airway responses even after restimulation. PMID:18299704

  1. Acidic microenvironments induce lymphangiogenesis and IL-8 production via TRPV1 activation in human lymphatic endothelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Nakanishi, Masako, E-mail: n-masako@wakayama-med.ac.jp [Department of Pathology, Wakayama Medical University, 811-1 Kimiidera, Wakayama 641-8509 (Japan); Morita, Yoshihiro [Department of Molecular and Cellular Biochemistry, Osaka University Graduate School of Dentistry, Suita, Osaka 565-0871 (Japan); Department of Oral and Maxillofacial Surgery, Seichokai Hannan Municipal Hospital, Hannan, Osaka 599-0202 (Japan); Hata, Kenji [Department of Molecular and Cellular Biochemistry, Osaka University Graduate School of Dentistry, Suita, Osaka 565-0871 (Japan); Muragaki, Yasuteru, E-mail: ymuragak@wakayama-med.ac.jp [Department of Pathology, Wakayama Medical University, 811-1 Kimiidera, Wakayama 641-8509 (Japan)

    2016-07-15

    Local acidosis is one of the characteristic features of the cancer microenvironment. Many reports indicate that acidosis accelerates the proliferation and invasiveness of cancer cells. However, whether acidic conditions affect lymphatic metastasis is currently unknown. In the present study, we focused on the effects of acidosis on lymphatic endothelial cells (LECs) to assess the relationship between acidic microenvironments and lymph node metastasis. We demonstrated that normal human LECs express various acid receptors by immunohistochemistry and reverse transcriptase-polymerase chain reaction (PCR). Acidic stimulation with low pH medium induced morphological changes in LECs to a spindle shape, and significantly promoted cellular growth and tube formation. Moreover, real-time PCR revealed that acidic conditions increased the mRNA expression of interleukin (IL)-8. Acidic stimulation increased IL-8 production in LECs, whereas a selective transient receptor potential vanilloid subtype 1 (TRPV1) antagonist, 5′-iodoresiniferatoxin, decreased IL-8 production. IL-8 accelerated the proliferation of LECs, and inhibition of IL-8 diminished tube formation and cell migration. In addition, phosphorylation of nuclear factor (NF)-κB was induced by acidic conditions, and inhibition of NF-κB activation reduced acid-induced IL-8 expression. These results suggest that acidic microenvironments in tumors induce lymphangiogenesis via TRPV1 activation in LECs, which in turn may promote lymphatic metastasis. - Highlights: • Acidity accelerates the growth, migration, and tube formation of LECs. • Acidic condition induces IL-8 expression in LECs. • IL-8 is critical for the changes of LECs. • IL-8 expression is induced via TRPV1 activation.

  2. B-cell exposure to self-antigen induces IL-10 producing B cells as well as IL-6- and TNF-α-producing B-cell subsets in healthy humans

    DEFF Research Database (Denmark)

    Langkjær, Anina; Kristensen, Birte; Hansen, Bjarke E

    2012-01-01

    Human B cells are able to secrete IL-10 after stimulation with mitogens, but their ability to produce IL-10 and regulate T-cell responses after stimulation with self-antigens is unclear. We co-cultured thyroglobulin-pulsed B cells from healthy donors with autologous T cells and observed production...... of IL-10 and TGF-β, in addition to TNF-α and IL-6. Pulsing with foreign antigen, tetanus toxoid (TT), induced a Th1-response with minimal IL-10 production. After thyroglobulin-pulsing, 1.10±0.50% of B cells and 1.00±0.20% of CD4(+) T cells produced IL-10, compared to 0.29±0.19% of B cells (P=0.01) and 0.......13±0.15% of CD4(+) T cells (P=0.006) following TT-pulsing. Thyroglobulin-stimulated, IL-10-secreting B cells were enriched within CD5(+) and CD24(high) cells. While thyroglobulin-pulsed B cells induced only modest proliferation of CD4(+) T cells, B cells pulsed with TT induced vigorous proliferation. Thus, B...

  3. 77 FR 75610 - Foreign-Trade Zone 22-Chicago, IL, Notification of Proposed Production Activity, Abbott...

    Science.gov (United States)

    2012-12-21

    ..., Notification of Proposed Production Activity, Abbott Laboratories, Inc., AbbVie, Inc. (Pharmaceutical Production), North Chicago, IL, Area Abbott Laboratories, Inc. (Abbott) and AbbVie, Inc. (AbbVie) submitted a... Abbott facilities to AbbVie, now designated as Subzone 22S (S-66-2012). Abbott and Abbvie are now...

  4. BIP induces mice CD19(hi) regulatory B cells producing IL-10 and highly expressing PD-L1, FasL.

    Science.gov (United States)

    Tang, Youfa; Jiang, Qing; Ou, Yanghui; Zhang, Fan; Qing, Kai; Sun, Yuanli; Lu, Wenjie; Zhu, Huifen; Gong, Feili; Lei, Ping; Shen, Guanxin

    2016-01-01

    Many studies have shown that B cells possess a regulatory function in mouse models of autoimmune diseases. Regulatory B cells can modulate immune response through many types of molecular mechanisms, including the production of IL-10 and the expression of PD-1 Ligand and Fas Ligand, but the microenvironmental factors and mechanisms that induce regulatory B cells have not been fully identified. BIP (binding immunoglobulin protein), a member of the heat shock protein 70 family, is a type of evolutionarily highly conserved protein. In this article, we have found that IL-10(+), PD-L1(hi) and FasL(hi) B cells are discrete cell populations, but enriched in CD19(hi) cells. BIP can induce IL-10-producing splenic B cells, IL-10 secretion and B cells highly expressing PD-L1 and FasL. CD40 signaling acts in synergy with BIP to induce regulatory B cells. BIP increased surface CD19 molecule expression intensity and IL-10(+), PD-L1(hi) and FasL(hi) B cells induced by BIP share the CD19(hi) phenotype. Furthermore, B cells treated with BIP and anti-CD40 can lead to suppression of T cell proliferation and the effect is partially IL-10-dependent and mainly BIP-induced. Taken together, our findings identify a novel function of BIP in the induction of regulatory B cells and add a new reason for the therapy of autoimmune disorders or other inflammatory conditions. Copyright © 2015. Published by Elsevier Ltd.

  5. Subcutaneous administration of polymerized type I collagen downregulates interleukin (IL)-17A, IL-22 and transforming growth factor-β1 expression, and increases Foxp3-expressing cells in localized scleroderma.

    Science.gov (United States)

    Furuzawa-Carballeda, J; Ortíz-Ávalos, M; Lima, G; Jurado-Santa Cruz, F; Llorente, L

    2012-08-01

    Localized scleroderma (LS) is a disfiguring inflammatory autoimmune disease of the skin and underlying tissue. As in systemic sclerosis, a key feature is the presence of T cells in inflammatory lesions. To evaluate the effect of polymerized type I collagen vs. methylprednisolone (MP) in LS, and to determine the influence of this polymerized collagen (PC) on CD4+ peripheral T cells expressing interleukin (IL)-4, IL-17A, interferon-γ and Forkhead box protein (Foxp)3, and on cells expressing transforming growth factor (TGF)-β1, IL-17A, IL-22 and Foxp3 in the skin. In total, 16 patients with LS were treated for 3 months with monthly subcutaneous intralesional injections of 0.1 mL MP (giving a total dose of 20 mg/mL each month) and 15 patients were treated, with weekly subcutaneous intralesional injections of PC, ranging from 0.2 mL (equivalent to 1.66 mg collagen) for a lesion of 50 mm in size, up to a maximum of 1.0 mL (8.3 mg collagen) for a lesion > 100 mm in size, and followed up for a further 6 months. Skin biopsies were obtained from lesions at baseline (before treatment) and 9 months later (6 months after treatment end). Tissue sections were evaluated by histology and immunohistochemistry (IL-17A, IL-22, TGF-β1 and Foxp3). CD4+ T-cell subsets were determined in peripheral blood by flow cytometry. Abnormal tissue architecture was seen in the biopsies taken from patients treated with MP, whereas the PC treatment restored normal skin architecture. PC downregulated pro-inflammatory/profibrotic cytokine expression in peripheral cells, and upregulated the number of regulatory T cells (Tregs) in skin. PC was safe and well tolerated. PC is not only an antifibrotic/fibrolytic agent but also an immunomodulator biodrug that restores the balance between T helper (Th)1, Th2, Th17 and Tregs, downregulates production of pro-inflammatory or profibrogenic cytokines (IL-17A, IL-22 and TGF-β1), and renews skin architecture, without adverse effects. © The Author(s). CED

  6. Transgene IL-6 Enhances DC-Stimulated CTL Responses by Counteracting CD4+25+Foxp3+ Regulatory T Cell Suppression via IL-6-Induced Foxp3 Downregulation

    Directory of Open Access Journals (Sweden)

    Kalpana Kalyanasundaram Bhanumathy

    2014-03-01

    Full Text Available Dendritic cells (DCs, the most potent antigen-presenting cells have been extensively applied in clinical trials for evaluation of antitumor immunity. However, the efficacy of DC-mediated cancer vaccines is still limited as they are unable to sufficiently break the immune tolerance. In this study, we constructed a recombinant adenoviral vector (AdVIL-6 expressing IL-6, and generated IL-6 transgene-engineered DC vaccine (DCOVA/IL-6 by transfection of murine bone marrow-derived ovalbumin (OVA-pulsed DCs (DCOVA with AdVIL-6. We then assessed DCOVA/IL-6-stimulated cytotoxic T-lymphocyte (CTL responses and antitumor immunity in OVA-specific animal tumor model. We demonstrate that DCOVA/IL-6 vaccine up-regulates expression of DC maturation markers, secretes transgene-encoded IL-6, and more efficiently stimulates OVA-specific CTL responses and therapeutic immunity against OVA-expressing B16 melanoma BL6-10OVA in vivo than the control DCOVA/Null vaccine. Moreover, DCOVA/IL-6-stimulated CTL responses were relatively maintained in mice with transfer of CD4+25+Foxp3+ Tr-cells, but significantly reduced when treated with anti-IL-6 antibody. In addition, we demonstrate that IL-6 down-regulates Foxp3-expression of CD4+25+Foxp3+ Tr-cells in vitro. Taken together, our results demonstrate that AdV-mediated IL-6 transgene-engineered DC vaccine stimulates potent CTL responses and antitumor immunity by counteracting CD4+25+ Tr immunosuppression via IL-6-induced Foxp3 down-regulation. Thus, IL-6 may be a good candidate for engineering DCs for cancer immunotherapy.

  7. Effect of the anti-IL-17 antibody on allergic inflammation in an obesity-related asthma model.

    Science.gov (United States)

    Liang, Lin; Hur, Jung; Kang, Ji Young; Rhee, Chin Kook; Kim, Young Kyoon; Lee, Sook Young

    2018-04-19

    The co-occurrence of obesity aggravates asthma symptoms. Diet-induced obesity increases helper T cell (TH) 17 cell differentiation in adipose tissue and the spleen. The 3-hydroxy-3-methylglutaryl-coenzyme A reductase inhibitor pravastatin can potentially be used to treat asthma in obese patients by inhibiting interleukin 17 (IL-17) expression. This study investigated the combined effects of pravastatin and anti-IL-17 antibody treatment on allergic inflammation in a mouse model of obesity-related asthma. High-fat diet (HFD)-induced obesity was induced in C57BL/6 mice with or without ovalbumin (OVA) sensitization and challenge. Mice were administered the anti-IL-17 antibody, pravastatin, or both, and pathophysiological and immunological responses were analyzed. HFD exacerbated allergic airway inflammation in the bronchoalveolar lavage fluid of HFD-OVA mice as compared to OVA mice. Blockading of the IL-17 in the HFD-OVA mice decreased airway hyper-responsiveness (AHR) and airway inflammation compared to the HFD-OVA mice. Moreover, the administration of the anti-IL-17 antibody decreased the leptin/adiponectin ratio in the HFD-OVA but not the OVA mice. Co-administration of pravastatin and anti-IL-17 inhibited airway inflammation and AHR, decreased goblet cell numbers, and increased adipokine levels in obese asthmatic mice. These results suggest that the IL-17-leptin/adiponectin axis plays a key role in airway inflammation in obesity-related asthma. Our findings suggest a potential new treatment for IL-17 as a target that may benefit obesity-related asthma patients who respond poorly to typical asthma medications.

  8. Air puff-induced 22-kHz calls in F344 rats.

    Science.gov (United States)

    Inagaki, Hideaki; Sato, Jun

    2016-03-01

    Air puff-induced ultrasonic vocalizations in adult rats, termed "22-kHz calls," have been applied as a useful animal model to develop psychoneurological and psychopharmacological studies focusing on human aversive affective disorders. To date, all previous studies on air puff-induced 22-kHz calls have used outbred rats. Furthermore, newly developed gene targeting technologies, which are essential for further advancement of biomedical experiments using air puff-induced 22-kHz calls, have enabled the production of genetically modified rats using inbred rat strains. Therefore, we considered it necessary to assess air puff-induced 22-kHz calls in inbred rats. In this study, we assessed differences in air puff-induced 22-kHz calls between inbred F344 rats and outbred Wistar rats. Male F344 rats displayed similar total (summed) duration of air puff-induced 22 kHz vocalizations to that of male Wistar rats, however, Wistar rats emitted fewer calls of longer duration, while F344 rats emitted higher number of vocalizations of shorter duration. Additionally, female F344 rats emitted fewer air puff-induced 22-kHz calls than did males, thus confirming the existence of a sex difference that was previously reported for outbred Wistar rats. The results of this study could confirm the reliability of air puff stimulus for induction of a similar amount of emissions of 22-kHz calls in different rat strains, enabling the use of air puff-induced 22-kHz calls in inbred F344 rats and derived genetically modified animals in future studies concerning human aversive affective disorders. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Glufosinate aerogenic exposure induces glutamate and IL-1 receptor dependent lung inflammation.

    Science.gov (United States)

    Maillet, Isabelle; Perche, Olivier; Pâris, Arnaud; Richard, Olivier; Gombault, Aurélie; Herzine, Ameziane; Pichon, Jacques; Huaux, Francois; Mortaud, Stéphane; Ryffel, Bernhard; Quesniaux, Valérie F J; Montécot-Dubourg, Céline

    2016-11-01

    Glufosinate-ammonium (GLA), the active component of an herbicide, is known to cause neurotoxicity. GLA shares structural analogy with glutamate. It is a powerful inhibitor of glutamine synthetase (GS) and may bind to glutamate receptors. Since these potentials targets of GLA are present in lung and immune cells, we asked whether airway exposure to GLA may cause lung inflammation in mice. A single GLA exposure (1 mg/kg) induced seizures and inflammatory cell recruitment in the broncho-alveolar space, and increased myeloperoxidase (MPO), inducible NO synthase (iNOS), interstitial inflammation and disruption of alveolar septae within 6-24 h. Interleukin 1β (IL-1β) was increased and lung inflammation depended on IL-1 receptor 1 (IL-1R1). We demonstrate that glutamate receptor pathway is central, since the N-methyl-D-aspartate (NMDA) receptor inhibitor MK-801 prevented GLA-induced lung inflammation. Chronic exposure (0.2 mg/kg 3× per week for 4 weeks) caused moderate lung inflammation and enhanced airway hyperreactivity with significant increased airway resistance. In conclusion, GLA aerosol exposure causes glutamate signalling and IL-1R-dependent pulmonary inflammation with airway hyperreactivity in mice. © 2016 The Author(s). published by Portland Press Limited on behalf of the Biochemical Society.

  10. IL-1 and IL-23 mediate early IL-17A production in pulmonary inflammation leading to late fibrosis.

    Directory of Open Access Journals (Sweden)

    Paméla Gasse

    Full Text Available BACKGROUND: Idiopathic pulmonary fibrosis is a devastating as yet untreatable disease. We demonstrated recently the predominant role of the NLRP3 inflammasome activation and IL-1β expression in the establishment of pulmonary inflammation and fibrosis in mice. METHODS: The contribution of IL-23 or IL-17 in pulmonary inflammation and fibrosis was assessed using the bleomycin model in deficient mice. RESULTS: We show that bleomycin or IL-1β-induced lung injury leads to increased expression of early IL-23p19, and IL-17A or IL-17F expression. Early IL-23p19 and IL-17A, but not IL-17F, and IL-17RA signaling are required for inflammatory response to BLM as shown with gene deficient mice or mice treated with neutralizing antibodies. Using FACS analysis, we show a very early IL-17A and IL-17F expression by RORγt(+ γδ T cells and to a lesser extent by CD4αβ(+ T cells, but not by iNKT cells, 24 hrs after BLM administration. Moreover, IL-23p19 and IL-17A expressions or IL-17RA signaling are necessary to pulmonary TGF-β1 production, collagen deposition and evolution to fibrosis. CONCLUSIONS: Our findings demonstrate the existence of an early IL-1β-IL-23-IL-17A axis leading to pulmonary inflammation and fibrosis and identify innate IL-23 and IL-17A as interesting drug targets for IL-1β driven lung pathology.

  11. Repletion of zinc in zinc-deficient cells strongly up-regulates IL-1β-induced IL-2 production in T-cells.

    Science.gov (United States)

    Daaboul, Doha; Rosenkranz, Eva; Uciechowski, Peter; Rink, Lothar

    2012-10-01

    Mild zinc deficiency in humans negatively affects IL-2 production resulting in declined percentages of cytolytic T cells and decreased NK cell lytic activity, which enhances the susceptibility to infections and malignancies. T-cell activation is critically regulated by zinc and the normal physiological zinc level in T-cells slightly lies below the optimal concentration for T-cell functions. A further reduction in zinc level leads to T-cell dysfunction and autoreactivity, whereas high zinc concentrations (100 μM) were shown to inhibit interleukin-1 (IL-1)-induced IL-1 receptor kinase (IRAK) activation. In this study, we investigated the molecular mechanism by which zinc regulates the IL-1β-induced IL-2 expression in T-cells. Zinc supplementation to zinc-deficient T-cells increased intracellular zinc levels by altering the expression of zinc transporters, particularly Zip10 and Zip12. A zinc signal was observed in the murine T-cell line EL-4 6.1 after 1 h of stimulation with IL-1β, measured by specific zinc sensors FluoZin-3 and ZinPyr-1. This signal is required for the phosphorylation of MAPK p38 and NF-κB subunit p65, which triggers the transcription of IL-2 and strongly increases its production. These results indicate that short-term zinc supplementation to zinc-deficient T-cells leads to a fast rise in zinc levels which subsequently enhance cytokine production. In conclusion, low and excessive zinc levels might be equally problematic for zinc-deficient subjects, and stabilized zinc levels seem to be essential to avoid negative concentration-dependent zinc effects on T-cell activation.

  12. C5a regulates IL-12+ DC migration to induce pathogenic Th1 and Th17 cells in sepsis.

    Directory of Open Access Journals (Sweden)

    Ning Ma

    Full Text Available OBJECTIVE: It is well known that complement system C5a is excessively activated during the onset of sepsis. However, it is unclear whether C5a can regulate dentritic cells (DCs to stimulate adaptive immune cells such as Th1 and Th17 in sepsis. METHODS: Sepsis was induced by cecal ligation and puncture (CLP. CLP-induced sepsis was treated with anti-C5a or IL-12. IL-12(+DC, IFNγ(+Th1, and IL-17(+Th17 cells were analyzed by flow cytometry. IL-12 was measured by ELISA. RESULTS: Our studies here showed that C5a induced IL-12(+DC cell migration from the peritoneal cavity to peripheral blood and lymph nodes. Furthermore, IL-12(+DC cells induced the expansion of pathogenic IFNγ(+Th1 and IL-17(+Th17 cells in peripheral blood and lymph nodes. Moreover, IL-12, secreted by DC cells in the peritoneal cavity, is an important factor that prevents the development of sepsis. CONCLUSION: Our data suggests that C5a regulates IL-12(+DC cell migration to induce pathogenic Th1 and Th17 cells in sepsis.

  13. Protection from inflammatory organ damage in a murine model of hemophagocytic lymphohistiocytosis using treatment with IL-18 binding protein

    Directory of Open Access Journals (Sweden)

    Laura eChiossone

    2012-08-01

    Full Text Available Hemophagocytic lymphohistiocytosis (HLH is a life-threatening condition due to the association of an infectious agent with lymphocyte cytotoxicity defects, either of congenital genetic origin in children or presumably acquired in adults. In HLH patients, an excess of lymphocyte or macrophage cytokines, such as IFN-γ and TNFα is present in serum. In animal models of the disease, IFN-γ and TNF-α have been shown to play a central pathogenic role. In humans, unusually high concentrations of IL-18, an inducer of IFN-γ and TNF-α have been reported, and are associated with an imbalance between IL-18 and its natural inhibitor IL-18 binding protein (IL-18BP resulting in an excess of free IL-18. Here we studied whether IL-18BP could reduce disease severity in an animal model of HLH. Mouse cytomegalovirus infection in perforin-1 knock-out mice induced a lethal condition similar to human HLH characterized by cytopenia with marked inflammatory lesions in the liver and spleen as well as the presence of hemophagocytosis in bone marrow. IL-18BP treatment decreased hemophagocytosis and reversed liver as well as spleen damage. IL-18BP treatment also reduced both IFN-γ and TNF-α production by CD8+ T and NK cells, as well as Fas ligand expression on NK cell surface. These data suggest that IL-18BP is beneficial in an animal model of HLH and in combination with anti-infectious therapy may be a promising strategy to treat HLH patients.

  14. Irinotecan (CPT-11)-induced elevation of bile acids potentiates suppression of IL-10 expression

    International Nuclear Information System (INIS)

    Fang, Zhong-Ze; Zhang, Dunfang; Cao, Yun-Feng; Xie, Cen; Lu, Dan; Sun, Dong-Xue; Tanaka, Naoki; Jiang, Changtao; Chen, Qianming; Chen, Yu; Wang, Haina; Gonzalez, Frank J.

    2016-01-01

    Irinotecan (CPT-11) is a first-line anti-colon cancer drug, however; CPT-11-induced toxicity remains a key factor limiting its clinical application. To search for clues to the mechanism of CPT-11-induced toxicity, metabolomics was applied using ultra-performance liquid chromatography coupled with electrospray ionization quadrupole time-of-flight mass spectrometry. Intraperitoneal injection of 50 mg/kg of CPT-11 induced loss of body weight, and intestine toxicity. Changes in gallbladder morphology suggested alterations in bile acid metabolism, as revealed at the molecular level by analysis of the liver, bile, and ileum metabolomes between the vehicle-treated control group and the CPT-11-treated group. Analysis of immune cell populations further showed that CPT-11 treatment significantly decreased the IL-10-producing CD4 T cell frequency in intestinal lamina propria lymphocytes, but not in spleen or mesenteric lymph nodes. In vitro cell culture studies showed that the addition of bile acids deoxycholic acid and taurodeoxycholic acid accelerated the CPT-11-induced suppression of IL-10 secretion by activated CD4 + naive T cells isolated from mouse splenocytes. These results showed that CPT-11 treatment caused metabolic changes in the composition of bile acids that altered CPT-11-induced suppression of IL-10 expression. - Highlights: • CPT-11 is an effective anticancer drug, but induced toxicity limits its application in the clinic. • CPT-11 decreased IL-10-producing CD4 T cell frequency in intestinal lamina propria lymphocytes. • CPT-11 altered the composition of bile acid metabolites, notably DCA and TDCA in liver, bile and intestine. • DCA and TDCA potentiated CPT-11-induced suppression of IL-10 secretion by active CD4 + naive T cells.

  15. Irinotecan (CPT-11)-induced elevation of bile acids potentiates suppression of IL-10 expression

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Zhong-Ze [Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD (United States); Department of Toxicology, School of Public Health, Tianjin Medical University, Tianjin (China); Joint Center for Translational Medicine, Dalian Institute of Chemical Physics, Chinese Academy of Sciences and First Affiliated Hospital of Liaoning Medical University, Dalian (China); Zhang, Dunfang [State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu (China); Cao, Yun-Feng [Joint Center for Translational Medicine, Dalian Institute of Chemical Physics, Chinese Academy of Sciences and First Affiliated Hospital of Liaoning Medical University, Dalian (China); Xie, Cen [Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD (United States); Lu, Dan [Department of Immunology, Tianjin Key Laboratory of Cellular and Molecular Immunology, Tianjin Medical University, Tianjin (China); Sun, Dong-Xue; Tanaka, Naoki; Jiang, Changtao [Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD (United States); Chen, Qianming; Chen, Yu [State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu (China); Wang, Haina [School of Pharmaceutical Sciences, Shandong University, Jinan (China); Gonzalez, Frank J., E-mail: gonzalef@mail.nih.gov [Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD (United States)

    2016-01-15

    Irinotecan (CPT-11) is a first-line anti-colon cancer drug, however; CPT-11-induced toxicity remains a key factor limiting its clinical application. To search for clues to the mechanism of CPT-11-induced toxicity, metabolomics was applied using ultra-performance liquid chromatography coupled with electrospray ionization quadrupole time-of-flight mass spectrometry. Intraperitoneal injection of 50 mg/kg of CPT-11 induced loss of body weight, and intestine toxicity. Changes in gallbladder morphology suggested alterations in bile acid metabolism, as revealed at the molecular level by analysis of the liver, bile, and ileum metabolomes between the vehicle-treated control group and the CPT-11-treated group. Analysis of immune cell populations further showed that CPT-11 treatment significantly decreased the IL-10-producing CD4 T cell frequency in intestinal lamina propria lymphocytes, but not in spleen or mesenteric lymph nodes. In vitro cell culture studies showed that the addition of bile acids deoxycholic acid and taurodeoxycholic acid accelerated the CPT-11-induced suppression of IL-10 secretion by activated CD4{sup +} naive T cells isolated from mouse splenocytes. These results showed that CPT-11 treatment caused metabolic changes in the composition of bile acids that altered CPT-11-induced suppression of IL-10 expression. - Highlights: • CPT-11 is an effective anticancer drug, but induced toxicity limits its application in the clinic. • CPT-11 decreased IL-10-producing CD4 T cell frequency in intestinal lamina propria lymphocytes. • CPT-11 altered the composition of bile acid metabolites, notably DCA and TDCA in liver, bile and intestine. • DCA and TDCA potentiated CPT-11-induced suppression of IL-10 secretion by active CD4{sup +} naive T cells.

  16. Systemic inhibition of IL-6/Stat3 signalling protects against experimental osteoarthritis.

    Science.gov (United States)

    Latourte, Augustin; Cherifi, Chahrazad; Maillet, Jérémy; Ea, Hang-Korng; Bouaziz, Wafa; Funck-Brentano, Thomas; Cohen-Solal, Martine; Hay, Eric; Richette, Pascal

    2017-04-01

    To investigate the impact of systemic inhibition of interleukin 6 (IL-6) or signal transducer and activator of transcription (Stat3) in an experimental model of osteoarthritis (OA). Expression of major catabolic and anabolic factors of cartilage was determined in IL-6-treated mouse chondrocytes and cartilage explants. The anti-IL-6-receptor neutralising antibody MR16-1 was used in the destabilisation of the medial meniscus (DMM) mouse model of OA. Stat3 blockade was investigated by the small molecule Stattic ex vivo and in the DMM model. In chondrocytes and cartilage explants, IL-6 treatment reduced proteoglycan content with increased production of matrix metalloproteinase (MMP-3 and MMP-13) and a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS-4 and ADAMTS-5). IL-6 induced Stat3 and extracellular signal-regulated kinase (ERK) 1/2 signalling but not p38, c-Jun N-terminal kinase or Akt. In the DMM model, Stat3 was activated in cartilage, but neither in the synovium nor in the subchondral bone. Systemic blockade of IL-6 by MR16-1 alleviated DMM-induced OA cartilage lesions, impaired the osteophyte formation and the extent of synovitis. In the same model, Stattic had similar beneficial effects on cartilage and osteophyte formation. Stattic, but not an ERK1/2 inhibitor, significantly counteracted the catabolic effects of IL-6 on cartilage explants and suppressed the IL-6-induced chondrocytes apoptosis. IL-6 induces chondrocyte catabolism mainly via Stat3 signalling, a pathway activated in cartilage from joint subjected to DMM. Systemic blockade of IL-6 or STAT-3 can alleviate DMM-induced OA in mice. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  17. The Effect of Turmeric (Curcuma longa Extract on the Functionality of the Solute Carrier Protein 22 A4 (SLC22A4 and Interleukin-10 (IL-10 Variants Associated with Inflammatory Bowel Disease

    Directory of Open Access Journals (Sweden)

    Mark J. McCann

    2014-10-01

    Full Text Available Inflammatory bowel disease (IBD is a chronic relapsing disease. Genetic predisposition to the disease reduces an individual’s capacity to respond appropriately to environmental challenges in the intestine leading to inappropriate inflammation. IBD patients often modify their diet to mitigate or reduce the severity of inflammation. Turmeric (Curcuma longa L., Zingiberaceae has historically been used in Chinese, Hindu, and Ayurvedic medicine over several centuries to treat inflammatory disorders. To understand how turmeric may influence the consequences of a genetic predisposition to inappropriate inflammation, we used HEK293 cells to examine the in vitro capacity of turmeric extract and fractions to affect the functionality of two gene variants, solute carrier protein 22 A4 (SLC22A4, rs1050152 and interleukin-10 (IL-10, rs1800896 associated with IBD. We found that a turmeric extract and several chromatographically separated fractions beneficially affected the variants of SLC22A4 and IL-10 associated with IBD, by reducing inappropriate epithelial cell transport (SLC22A4, 503F and increasing anti-inflammatory cytokine gene promoter activity (IL-10, −1082A. The effect of turmeric on the IL-10 variant was strongly associated with the curcumin content of the extract and its fractions.

  18. The effect of turmeric (Curcuma longa) extract on the functionality of the solute carrier protein 22 A4 (SLC22A4) and interleukin-10 (IL-10) variants associated with inflammatory bowel disease.

    Science.gov (United States)

    McCann, Mark J; Johnston, Sarah; Reilly, Kerri; Men, Xuejing; Burgess, Elaine J; Perry, Nigel B; Roy, Nicole C

    2014-10-13

    Inflammatory bowel disease (IBD) is a chronic relapsing disease. Genetic predisposition to the disease reduces an individual's capacity to respond appropriately to environmental challenges in the intestine leading to inappropriate inflammation. IBD patients often modify their diet to mitigate or reduce the severity of inflammation. Turmeric (Curcuma longa L., Zingiberaceae) has historically been used in Chinese, Hindu, and Ayurvedic medicine over several centuries to treat inflammatory disorders. To understand how turmeric may influence the consequences of a genetic predisposition to inappropriate inflammation, we used HEK293 cells to examine the in vitro capacity of turmeric extract and fractions to affect the functionality of two gene variants, solute carrier protein 22 A4 (SLC22A4, rs1050152) and interleukin-10 (IL-10, rs1800896) associated with IBD. We found that a turmeric extract and several chromatographically separated fractions beneficially affected the variants of SLC22A4 and IL-10 associated with IBD, by reducing inappropriate epithelial cell transport (SLC22A4, 503F) and increasing anti-inflammatory cytokine gene promoter activity (IL-10, -1082A). The effect of turmeric on the IL-10 variant was strongly associated with the curcumin content of the extract and its fractions.

  19. Histone deacetylase inhibitors restore IL-10 expression in lipopolysaccharide-induced cell inflammation and reduce IL-1β and IL-6 production in breast silicone implant in C57BL/6J wild-type murine model.

    Science.gov (United States)

    Di Liddo, Rosa; Valente, Sergio; Taurone, Samanta; Zwergel, Clemens; Marrocco, Biagina; Turchetta, Rosaria; Conconi, Maria Teresa; Scarpa, Carlotta; Bertalot, Thomas; Schrenk, Sandra; Mai, Antonello; Artico, Marco

    2016-01-20

    Among epigenetic enzymes, histone deacetylases (HDACs) are responsible for regulating the expression of an extensive array of genes by reversible deacetylation of nuclear histones as well as a large number of non-histone proteins. Initially proposed for cancer therapy, recently the interest for HDAC inhibitors (HDACi) as orally active, safe, and anti-inflammatory agents is rising due to their ability in reducing the severity of inflammatory and autoimmune diseases. In particular, selective HDAC3, HDAC6, and HDAC8 inhibitors have been described to downregulate the expression of pro-inflammatory cytokines (TNF-α, TGF-β, IL-1β, and IL-6). Herein, using KB31, C2C12, and 3T3-J2 cell lines, we demonstrated that, under lipopolysaccharide-induced in vitro inflammation, HDAC3/6/8 inhibitor MC2625 and HDAC6-selective inhibitor MC2780 were effective at a concentration of 30 ng/mL to downregulate mRNA expression of pro-inflammatory cytokines (IL-1β and IL-6) and to promote the transcription of IL-10 gene, without affecting the cell viability. Afterwards, we investigated by immunohistochemistry the activity of MC2625 and MC2780 at a concentration of 60 ng/kg animal weight to regulate silicone-triggered immune response in C57BL/6J female mice. Our findings evidenced the ability of such inhibitors to reduce host inflammation in silicone implants promoting a thickness reduction of peri-implant fibrous capsule, upregulating IL-10 expression, and reducing the production of both IL-1β and IL-6. These results underline the potential application of MC2625 and MC2780 in inflammation-related diseases.

  20. IL-17 Induction by ArtinM is Due to Stimulation of IL-23 and IL-1 Release and/or Interaction with CD3 in CD4+ T Cells.

    Science.gov (United States)

    da Silva, Thiago Aparecido; Mariano, Vania Sammartino; Sardinha-Silva, Aline; de Souza, Maria Aparecida; Mineo, Tiago Wilson Patriarca; Roque-Barreira, Maria Cristina

    2016-01-01

    ArtinM is a D-mannose-binding lectin extracted from the seeds of Artocarpus heterophyllus that interacts with TLR2 N-glycans and activates antigen-presenting cells (APCs), as manifested by IL-12 production. In vivo ArtinM administration induces Th1 immunity and confers protection against infection with several intracellular pathogens. In the murine model of Candida albicans infection, it was verified that, in addition to Th1, ArtinM induces Th17 immunity manifested by high IL-17 levels in the treated animals. Herein, we investigated the mechanisms accounting for the ArtinM-induced IL-17 production. We found that ArtinM stimulates the IL-17 production by spleen cells in BALB/c or C57BL/6 mice, a response that was significantly reduced in the absence of IL-23, MyD88, or IL-1R. Furthermore, we showed that ArtinM directly induced the IL-23 mRNA expression and the IL-1 production by macrophages. Consistently, in cell suspensions depleted of macrophages, the IL-17 production stimulated by ArtinM was reduced by 53% and the exogenous IL-23 acted synergistically with ArtinM in promoting IL-17 production by spleen cell suspensions. We verified that the absence of IL-23, IL-1R, or MyD88 inhibited, but did not block, the IL-17 production by ArtinM-stimulated spleen cells. Therefore, we investigated whether ArtinM exerts a direct effect on CD4+ T cells in promoting IL-17 production. Indeed, spleen cell suspensions depleted of CD4+ T cells responded to ArtinM with very low levels of IL-17 release. Likewise, isolated CD4+ T cells under ArtinM stimulus augmented the expression of TGF-β mRNA and released high levels of IL-17. Considering the observed synergism between IL-23 and ArtinM, we used cells from IL-23 KO mice to assess the direct effect of lectin on CD4+ T cells. We verified that ArtinM increased the IL-17 production significantly, a response that was inhibited when the CD4+ T cells were pre-incubated with anti-CD3 antibody. In conclusion, ArtinM stimulates the production

  1. IL-17 Induction by ArtinM is Due to Stimulation of IL-23 and IL-1 Release and/or Interaction with CD3 in CD4+ T Cells.

    Directory of Open Access Journals (Sweden)

    Thiago Aparecido da Silva

    Full Text Available ArtinM is a D-mannose-binding lectin extracted from the seeds of Artocarpus heterophyllus that interacts with TLR2 N-glycans and activates antigen-presenting cells (APCs, as manifested by IL-12 production. In vivo ArtinM administration induces Th1 immunity and confers protection against infection with several intracellular pathogens. In the murine model of Candida albicans infection, it was verified that, in addition to Th1, ArtinM induces Th17 immunity manifested by high IL-17 levels in the treated animals. Herein, we investigated the mechanisms accounting for the ArtinM-induced IL-17 production. We found that ArtinM stimulates the IL-17 production by spleen cells in BALB/c or C57BL/6 mice, a response that was significantly reduced in the absence of IL-23, MyD88, or IL-1R. Furthermore, we showed that ArtinM directly induced the IL-23 mRNA expression and the IL-1 production by macrophages. Consistently, in cell suspensions depleted of macrophages, the IL-17 production stimulated by ArtinM was reduced by 53% and the exogenous IL-23 acted synergistically with ArtinM in promoting IL-17 production by spleen cell suspensions. We verified that the absence of IL-23, IL-1R, or MyD88 inhibited, but did not block, the IL-17 production by ArtinM-stimulated spleen cells. Therefore, we investigated whether ArtinM exerts a direct effect on CD4+ T cells in promoting IL-17 production. Indeed, spleen cell suspensions depleted of CD4+ T cells responded to ArtinM with very low levels of IL-17 release. Likewise, isolated CD4+ T cells under ArtinM stimulus augmented the expression of TGF-β mRNA and released high levels of IL-17. Considering the observed synergism between IL-23 and ArtinM, we used cells from IL-23 KO mice to assess the direct effect of lectin on CD4+ T cells. We verified that ArtinM increased the IL-17 production significantly, a response that was inhibited when the CD4+ T cells were pre-incubated with anti-CD3 antibody. In conclusion, Artin

  2. Tat-antioxidant 1 protects against stress-induced hippocampal HT-22 cells death and attenuate ischaemic insult in animal model.

    Science.gov (United States)

    Kim, So Mi; Hwang, In Koo; Yoo, Dae Young; Eum, Won Sik; Kim, Dae Won; Shin, Min Jea; Ahn, Eun Hee; Jo, Hyo Sang; Ryu, Eun Ji; Yong, Ji In; Cho, Sung-Woo; Kwon, Oh-Shin; Lee, Keun Wook; Cho, Yoon Shin; Han, Kyu Hyung; Park, Jinseu; Choi, Soo Young

    2015-06-01

    Oxidative stress-induced reactive oxygen species (ROS) are responsible for various neuronal diseases. Antioxidant 1 (Atox1) regulates copper homoeostasis and promotes cellular antioxidant defence against toxins generated by ROS. The roles of Atox1 protein in ischaemia, however, remain unclear. In this study, we generated a protein transduction domain fused Tat-Atox1 and examined the roles of Tat-Atox1 in oxidative stress-induced hippocampal HT-22 cell death and an ischaemic injury animal model. Tat-Atox1 effectively transduced into HT-22 cells and it protected cells against the effects of hydrogen peroxide (H2O2)-induced toxicity including increasing of ROS levels and DNA fragmentation. At the same time, Tat-Atox1 regulated cellular survival signalling such as p53, Bad/Bcl-2, Akt and mitogen-activate protein kinases (MAPKs). In the animal ischaemia model, transduced Tat-Atox1 protected against neuronal cell death in the hippocampal CA1 region. In addition, Tat-Atox1 significantly decreased the activation of astrocytes and microglia as well as lipid peroxidation in the CA1 region after ischaemic insult. Taken together, these results indicate that transduced Tat-Atox1 protects against oxidative stress-induced HT-22 cell death and against neuronal damage in animal ischaemia model. Therefore, we suggest that Tat-Atox1 has potential as a therapeutic agent for the treatment of oxidative stress-induced ischaemic damage. © 2015 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  3. Ursodeoxycholic acid inhibits TNFα-induced IL-8 release from monocytes.

    Science.gov (United States)

    O'Dwyer, Aoife M; Lajczak, Natalia K; Keyes, Jennifer A; Ward, Joseph B; Greene, Catherine M; Keely, Stephen J

    2016-08-01

    Monocytes are critical to the pathogenesis of inflammatory bowel disease (IBD) as they infiltrate the mucosa and release cytokines that drive the inflammatory response. Ursodeoxycholic acid (UDCA), a naturally occurring bile acid with anti-inflammatory actions, has been proposed as a potential new therapy for IBD. However, its effects on monocyte function are not yet known. Primary monocytes from healthy volunteers or cultured U937 monocytes were treated with either the proinflammatory cytokine, TNFα (5 ng/ml) or the bacterial endotoxin, lipopolysaccharide (LPS; 1 μg/ml) for 24 h, in the absence or presence of UDCA (25-100 μM). IL-8 release into the supernatant was measured by ELISA. mRNA levels were quantified by qPCR and changes in cell signaling proteins were determined by Western blotting. Toxicity was assessed by measuring lactate dehydrogenase (LDH) release. UDCA treatment significantly attenuated TNFα-, but not LPS-driven, release of IL-8 from both primary and cultured monocytes. UDCA inhibition of TNFα-driven responses was associated with reduced IL-8 mRNA expression. Both TNFα and LPS stimulated NFκB activation in monocytes, while IL-8 release in response to both cytokines was attenuated by an NFκB inhibitor, BMS-345541. Interestingly, UDCA inhibited TNFα-, but not LPS-stimulated, NFκB activation. Finally, TNFα, but not LPS, induced phosphorylation of TNF receptor associated factor (TRAF2), while UDCA cotreatment attenuated this response. We conclude that UDCA specifically inhibits TNFα-induced IL-8 release from monocytes by inhibiting TRAF2 activation. Since such actions would serve to dampen mucosal immune responses in vivo, our data support the therapeutic potential of UDCA for IBD. Copyright © 2016 the American Physiological Society.

  4. ALV-J infection induces chicken monocyte death accompanied with the production of IL-1β and IL-18.

    Science.gov (United States)

    Dai, Manman; Feng, Min; Xie, Tingting; Li, Yuanfang; Ruan, Zhuohao; Shi, Meiqing; Liao, Ming; Zhang, Xiquan

    2017-11-21

    Immunosuppression induced by avian leukosis virus subgroup J (ALV-J) causes serious reproduction problems and secondary infections in chickens. Given that monocytes are important precursors of immune cells including macrophages and dendritic cells, we investigated the fate of chicken monocytes after ALV-J infection. Our results indicated that most monocytes infected with ALV-J including field or laboratory strains could not successfully differentiate into macrophages due to cells death. And cells death was dependent upon viral titer and accompanied with increased IL-1β and IL-18 mRNA levels. In addition, ALV-J infection up-regulated caspase-1 and caspase-3 activity in monocytes. Collectively, we found that ALV-J could cause cell death in chicken monocytes, especially pyroptosis, which may be a significant reason for ALV-J induced immunosuppression.

  5. Helicobacter pylori-induced IL-33 modulates mast cell responses, benefits bacterial growth, and contributes to gastritis.

    Science.gov (United States)

    Lv, Yi-Pin; Teng, Yong-Sheng; Mao, Fang-Yuan; Peng, Liu-Sheng; Zhang, Jin-Yu; Cheng, Ping; Liu, Yu-Gang; Kong, Hui; Wang, Ting-Ting; Wu, Xiao-Long; Hao, Chuan-Jie; Chen, Weisan; Yang, Shi-Ming; Zhao, Yong-Liang; Han, Bin; Ma, Qiang; Zou, Quan-Ming; Zhuang, Yuan

    2018-04-25

    Interleukin (IL)-induced inflammatory responses are critical for the pathogenesis of Helicobacter pylori (H. pylori)-induced gastritis. IL-33 represents a recently discovered proinflammatory cytokine involved in inflammatory diseases, but its relevance to H. pylori-induced gastritis is unknown. Here, we found that gastric IL-33 mRNA and protein expression were elevated in gastric mucosa of both patients and mice infected with H. pylori, which is positively correlated with bacterial load and the degree of gastritis. IL-33 production was promoted via extracellular regulated protein kinases (ERK) signaling pathway activation by gastric epithelial cells in a cagA-dependent manner during H. pylori infection, and resulted in increased inflammation and bacteria burden within the gastric mucosa. Gastric epithelial cell-derived IL-33 promoted TNF-α production from mast cells in vitro, and IL-33 increased TNF-α production in vivo. Increased TNF-α inhibited gastric epithelial cell proliferation, conducing to the progress of H. pylori-associated gastritis and bacteria colonization. This study defined a patent regulatory networks involving H. pylori, gastric epithelial cell, IL-33, mast cell, and TNF-α, which jointly play a pathological effect within the gastric circumstances. It may be a valuable strategy to restrain this IL-33-dependent pathway in the treatment of H. pylori-associated gastritis.

  6. Blocking IL-17A Alleviates Diabetic Retinopathy in Rodents.

    Science.gov (United States)

    Qiu, Ao-Wang; Liu, Qing-Huai; Wang, Jun-Ling

    2017-01-01

    Interleukin (IL)-17A, a proinflammatory cytokine, has been implicated in several autoimmune diseases. However, it is unclear whether IL-17A is involved in diabetic retinopathy (DR), one of the most serious complications of autoimmune diabetes. This study aimed to demonstrate that IL-17A exacerbates DR by affecting retinal Müller cell function. High glucose (HG)-treated rat Müller cell line (rMC-1) was exposed to IL-17A, anti-IL-17A-neutralizing monoclonal antibody (mAb) or/and anti-IL-17 receptor (R)A-neutralizing mAb for 24 h. For in vivo study, DR was induced by intraperitoneal injections of streptozotocin (STZ). DR model mice were treated with anti-IL-17A mAb or anti-IL-17RA mAb in the vitreous cavity. Mice that were prepared for retinal angiography were sacrificed two weeks after intravitreal injection, while the rest were sacrificed two days after intravitreal injection. IL-17A production and IL-17RA expression were increased in both HG-treated rMC-1 and DR retina. HG induced rMC-1 activation and dysfunction, as determined by the increased GFAP, VEGF and glutamate levels as well as the downregulated GS and EAAT1 expression. IL-17A exacerbated the HG-induced rMC-1 functional disorders, whereas either anti-IL-17A mAb or anti-IL-17RA mAb alleviated the HG-induced rMC-1 disorders. Intravitreal injections with anti-IL-17A mAb or anti-IL-17RA mAb in DR model mice reduced Müller cell dysfunction, vascular leukostasis, vascular leakage, tight junction protein downregulation and ganglion cell apoptosis in the retina. IL-17A aggravates DR-like pathology at least partly by impairing retinal Müller cell function. Blocking IL-17A is a potential therapeutic strategy for DR. © 2017 The Author(s)Published by S. Karger AG, Basel.

  7. Hypoxic preconditioning induces neuroprotective stanniocalcin-1 in brain via IL-6 signaling

    DEFF Research Database (Denmark)

    Westberg, Johan A; Serlachius, Martina; Lankila, Petri

    2007-01-01

    BACKGROUND AND PURPOSE: Exposure of animals for a few hours to moderate hypoxia confers relative protection against subsequent ischemic brain damage. This phenomenon, known as hypoxic preconditioning, depends on new RNA and protein synthesis, but its molecular mechanisms are poorly understood...... originally reported expression of mammalian STC-1 in brain neurons and showed that STC-1 guards neurons against hypercalcemic and hypoxic damage. METHODS: We treated neural Paju cells with IL-6 and measured the induction of STC-1 mRNA. In addition, we quantified the effect of hypoxic preconditioning on Stc-1...... mRNA levels in brains of wild-type and IL-6 deficient mice. Furthermore, we monitored the Stc-1 response in brains of wild-type and transgenic mice, overexpressing IL-6 in the astroglia, before and after induced brain injury. RESULTS: Hypoxic preconditioning induced an upregulated expression of Stc...

  8. Interleukin-22: immunobiology and pathology

    Science.gov (United States)

    Dudakov, Jarrod A.; Hanash, Alan M.; van den Brink, Marcel R.M.

    2015-01-01

    Interleukin-22 (IL-22) is a recently described IL-10 family cytokine that is produced by T-helper (Th)-17 cells, γδ T cells, NKT cells and newly described innate lymphoid cells (ILCs). Knowledge of IL-22 biology has rapidly evolved since its discovery in 2000, and a role for IL-22 has been identified in numerous tissues including the intestines, lung, liver, kidney, thymus, pancreas and skin. IL-22 primarily targets non-hematopoietic epithelial and stromal cells where it can promote proliferation and play a role in tissue regeneration. In addition, IL-22 regulates host defense at barrier surfaces. However, IL-22 has also been linked to several conditions involving inflammatory tissue pathology. In this review, we will assess the current understanding of this cytokine, including its physiologic and pathologic effects on epithelial cell function. PMID:25706098

  9. Limitations of Using IL-17A and IFN-γ-Induced Protein 10 to Detect Bovine Tuberculosis

    Science.gov (United States)

    Xin, Ting; Gao, Xintao; Yang, Hongjun; Li, Pingjun; Liang, Qianqian; Hou, Shaohua; Sui, Xiukun; Guo, Xiaoyu; Yuan, Weifeng; Zhu, Hongfei; Ding, Jiabo; Jia, Hong

    2018-01-01

    Bovine tuberculosis (bTB) is primarily caused by infection with Mycobacterium bovis, which belongs to the Mycobacterium tuberculosis complex. The airborne route is considered the most common for transmission of M. bovis, and more than 15% of cattle with bTB shed the Mycobacterium, which can be detect by nested PCR to amplify mycobacterial mpb70 from a nasal swab from a cow. To screen for cytokines fostering early and accurate detection of bTB, peripheral blood mononuclear cells were isolated from naturally M. bovis-infected, experimentally M. bovis 68002-infected, and uninfected cattle, then these cells were stimulated by PPD-B, CFP-10-ESAT-6 (CE), or phosphate-buffered saline (PBS) for 6 h. The levels of interferon gamma (IFN-γ), IFN-γ-induced protein 10 (IP-10), IL-6, IL-12, IL-17A, and tumor necrosis factor alpha mRNA were measured using real-time PCR. To explore the cytokines associated with different periods of M. bovis infection, cattle were divided into three groups: PCR-positive, PCR-negative, and uninfected using the tuberculin skin test, CFP-10/ESAT-6/TB10.4 protein cocktail-based skin test, IFN-γ release assay (IGRA), CFP-10/ESAT-6 (CE)-based IGRA, and nested PCR. The expression of IP-10, IL-17A, and IFN-γ proteins induced by PPD-B, CE, or PBS was detected by ELISA. The results showed that levels of PPD-B-stimulated IL-17A and IP-10 (mRNA and protein), and CE-induced IP-10 (mRNA and protein) were significantly higher in cattle naturally or experimentally infected with M. bovis than in those that were uninfected. The levels of PPD-B- or CE-induced IL-17A and IP-10 (protein) could be used to differentiate M. bovis-infected calves from uninfected ones for 6 to 30 weeks post-infection, whereas PPD-B- and CE-induced IP-10 and IL-17A mRNA expression could be used to differentiate M. bovis-infected calves from uninfected ones between 6 and 58 weeks post-infection. However, CE-induced IL-17A (protein) was not a reliable indicator of M. bovis infection

  10. Cyr61 induces IL-6 production by fibroblast-like synoviocytes promoting Th17 differentiation in rheumatoid arthritis.

    Science.gov (United States)

    Lin, Jinpiao; Zhou, Zhou; Huo, Rongfen; Xiao, Lianbo; Ouyang, Guilin; Wang, Li; Sun, Yue; Shen, Baihua; Li, Dangsheng; Li, Ningli

    2012-06-01

    Cysteine-rich protein 61 (Cyr61)/CCN1 is a product of an immediate early gene and functions in mediating cell adhesion and inducing cell migration. We previously showed that increased production of Cyr61 by fibroblast-like synoviocytes (FLS) in rheumatoid arthritis (RA) promotes FLS proliferation and participates in RA pathogenesis with the IL-17-dependent pathway. However, whether Cyr61 in turn regulates Th17 cell differentiation and further enhances inflammation of RA remained unknown. In the current study, we explored the potential role of Cyr61 as a proinflammatory factor in RA pathogenesis. We found that Cyr61 treatment dramatically induced IL-6 production in FLS isolated from RA patients. Moreover, IL-6 production was attenuated by Cyr61 knockdown in FLS. Mechanistically, we showed that Cyr61 activated IL-6 production via the αvβ5/Akt/NF-κB signaling pathway. Further, using a coculture system consisting of purified CD4(+) T cells and RA FLS, we found that RA FLS stimulated Th17 differentiation, and the pro-Th17 differentiation effect of RA FLS can be attenuated or stimulated by Cyr61 RNA interference or addition of exogenous Cyr61, respectively. Finally, using the collagen-induced arthritis animal model, we showed that treatment with the anti-Cyr61 mAb led to reduction of IL-6 levels, decrease of Th17 response, and attenuation of inflammation and disease progression in vivo. Taken together, our results reveal a novel role of Cyr61 in promoting Th17 development in RA via upregulation of IL-6 production by FLS, thus adding a new layer into the functional interplay between FLS and Th17 in RA pathogenesis. Our study also suggests that targeting of Cyr61 may represent a novel strategy in RA treatment.

  11. A pro-inflammatory role for Th22 cells in Helicobacter pylori-associated gastritis.

    Science.gov (United States)

    Zhuang, Yuan; Cheng, Ping; Liu, Xiao-fei; Peng, Liu-sheng; Li, Bo-sheng; Wang, Ting-ting; Chen, Na; Li, Wen-hua; Shi, Yun; Chen, Weisan; Pang, Ken C; Zeng, Ming; Mao, Xu-hu; Yang, Shi-ming; Guo, Hong; Guo, Gang; Liu, Tao; Zuo, Qian-fei; Yang, Hui-jie; Yang, Liu-yang; Mao, Fang-yuan; Lv, Yi-pin; Zou, Quan-ming

    2015-09-01

    Helper T (Th) cell responses are critical for the pathogenesis of Helicobacter pylori-induced gastritis. Th22 cells represent a newly discovered Th cell subset, but their relevance to H. pylori-induced gastritis is unknown. Flow cytometry, real-time PCR and ELISA analyses were performed to examine cell, protein and transcript levels in gastric samples from patients and mice infected with H. pylori. Gastric tissues from interleukin (IL)-22-deficient and wild-type (control) mice were also examined. Tissue inflammation was determined for pro-inflammatory cell infiltration and pro-inflammatory protein production. Gastric epithelial cells and myeloid-derived suppressor cells (MDSC) were isolated, stimulated and/or cultured for Th22 cell function assays. Th22 cells accumulated in gastric mucosa of both patients and mice infected with H. pylori. Th22 cell polarisation was promoted via the production of IL-23 by dendritic cells (DC) during H. pylori infection, and resulted in increased inflammation within the gastric mucosa. This inflammation was characterised by the CXCR2-dependent influx of MDSCs, whose migration was induced via the IL-22-dependent production of CXCL2 by gastric epithelial cells. Under the influence of IL-22, MDSCs, in turn, produced pro-inflammatory proteins, such as S100A8 and S100A9, and suppressed Th1 cell responses, thereby contributing to the development of H. pylori-associated gastritis. This study, therefore, identifies a novel regulatory network involving H. pylori, DCs, Th22 cells, gastric epithelial cells and MDSCs, which collectively exert a pro-inflammatory effect within the gastric microenvironment. Efforts to inhibit this Th22-dependent pathway may therefore prove a valuable strategy in the therapy of H. pylori-associated gastritis. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  12. Immunomodulatory effects of balneotherapy with hae-un-dae thermal water on imiquimod-induced psoriasis-like murine model.

    Science.gov (United States)

    Lee, Young Bok; Lee, Jun Young; Lee, Hye Jin; Yun, Seong Taek; Lee, Jong Tae; Kim, Hong Jig; Yu, Dong Soo; Woo, So Youn; Kim, Jin-Wou

    2014-04-01

    Balneotherapy, although not a well-established dermatological treatment, is thought to have therapeutic properties for psoriasis and is used as an alternative treatment modality throughout the world. To evaluate the mechanism underlying the therapeutic immunologic effects of thermomineral water. A murine model of imiquimod-induced psoriasis-like skin inflammation was used for evaluating the therapeutic effects of balneotherapy with Hae-Un-Dae hot spring mineral water. The clinical improvements were evaluated by a dermatologist. Lesional cytokines, including interleukin (IL)-17A, IL-23, and IL-22, were quantitatively measured by real-time reverse transcriptase polymerase chain reaction. Serum levels of interferon-γ, IL-4, IL-5, and IL-17A were measured by enzyme-linked immunosorbent assay. T cell proportions in the spleen were evaluated by flow cytometry, and histopathological evaluation of the skin was also performed. The mineral water balneotherapy group showed faster improvement in skin erythema and scales than the distilled water bathing group. A substantial reduction was observed in the lesional mRNA levels of IL-17A and IL-23 in the mineral water group. Serum levels of IL-4 and IL-5 were significantly decreased in the mineral water group but not in the distilled water group. Normalized T cell proportions were observed after bathing. Balneotherapy showed immunomodulatory effects in a psoriasis-like murine model. Balneotherapy suppressed lesional IL-23 and IL-17A, which are important cytokines in the pathogenesis of psoriasis. These results suggest that balneotherapy can be used as an effective and safe treatment for psoriasis.

  13. Requirement of the inducible nitric oxide synthase pathway for IL-1-induced osteoclastic bone resorption

    OpenAIRE

    van't Hof, R. J.; Armour, K. J.; Smith, L. M.; Armour, K. E.; Wei, X. Q.; Liew, F. Y.; Ralston, S. H.

    2000-01-01

    Nitric oxide has been suggested to be involved in the regulation of bone turnover, especially in pathological conditions characterized by release of bone-resorbing cytokines. The cytokine IL-1 is thought to act as a mediator of periarticular bone loss and tissue damage in inflammatory diseases such as rheumatoid arthritis. IL-1 is a potent stimulator of both osteoclastic bone resorption and expression of inducible nitric oxide synthase (iNOS) in bone cells and other cell types. In this study,...

  14. Staphylococcus epidermidis polysaccharide intercellular adhesin induces IL-8 expression in human astrocytes via a mechanism involving TLR2.

    LENUS (Irish Health Repository)

    Stevens, Niall T

    2009-03-01

    Staphylococcus epidermidis is an opportunistic biofilm-forming pathogen associated with neurosurgical device-related meningitis. Expression of the polysaccharide intercellular adhesin (PIA) on its surface promotes S. epidermidis biofilm formation. Here we investigated the pro-inflammatory properties of PIA against primary and transformed human astrocytes. PIA induced IL-8 expression in a dose- and\\/or time-dependent manner from U373 MG cells and primary normal human astrocytes. This effect was inhibited by depletion of N-acetyl-beta-d-glucosamine polymer from the PIA preparation with Lycopersicon esculentum lectin or sodium meta-periodate. Expression of dominant-negative versions of the TLR2 and TLR4 adaptor proteins MyD88 and Mal in U373 MG cells inhibited PIA-induced IL-8 production. Blocking IL-1 had no effect. PIA failed to induce IL-8 production from HEK293 cells stably expressing TLR4. However, in U373 MG cells which express TLR2, neutralization of TLR2 impaired PIA-induced IL-8 production. In addition to IL-8, PIA also induced expression of other cytokines from U373 MG cells including IL-6 and MCP-1. These data implicate PIA as an important immunogenic component of the S. epidermidis biofilm that can regulate pro-inflammatory cytokine production from human astrocytes, in part, via TLR2.

  15. Clinical significance of changes of plasma endothelin vasoactive factors (ET and NO) as well as serum related interleukin (IL-6 and IL-8) levels in patients with pregnancy induced hypertension (PIH)

    International Nuclear Information System (INIS)

    Chen Ying

    2009-01-01

    Objective: To investigate the clinical etiological significance of changes of plasma endothelin (ET) and nitric oxide (NO) as well as serum interleukin-6 (IL-6) and interleukin-8 (IL-8) levels in patients with pregnancy induced hypertension. Methods: Plasma ET (with RIA), NO (with biochemistry) and serum IL-6, IL-8 (with RIA) levels were measured in 32 pregnant women with PIH, 35 normal pregnant women without PIH and 35 non-pregnant women (as controls). Results: The plasma ET, NO level were significantly higher in normal pregnant women than those in the non-pregnant women controls, while serum levels of IL-6 and IL-8 levels were only slightly higher without significance (P>0.05). Before treatment, the blood ET, IL-6 and IL- 8 levels were significantly higher in patients with pregnancy induced hypertension than those in the control (P<0.01), while plasma levels of NO were significantly decreased (P<0.01), Two weeks after treatment, the plasma ET, NO and serum IL-6 and IL-8 levels were markedly corrected with no significantly differences from those in controls. The ET levels and serum IL-6, IL-8 levels were mutually positively correlated (r=0.6097, 0.7213, P<0.01). Conclusion: Determination of changes of plasma ET and NO, serum IL-6 and IL-8 levels in patients with pregnancy induced hypertension was helpful for outcome prediction. (authors)

  16. Influence of the IL-1Ra gene polymorphism on in vivo synthesis of IL-1Ra and IL-1beta after live yellow fever vaccination.

    Science.gov (United States)

    Hacker, U T; Erhardt, S; Tschöp, K; Jelinek, T; Endres, S

    2001-09-01

    The inflammatory response in infectious and autoimmune diseases is regulated by the balance between pro- and anti-inflammatory cytokines. The IL-1 complex contains polymorphic genes coding for IL-1alpha, IL-1beta and IL-1Ra. The IL-1Ra (variable number of tanden repeat) VNTR polymorphism has been shown to influence the capacity to produce IL-1beta and IL-1Ra after in vitro stimulation. Allele 2 of this polymorphism is associated with a number of inflammatory diseases. To determine the impact of the IL-1Ra polymorphism on in vivo human cytokine synthesis, we used a yellow fever vaccination model for the induction of cytokine synthesis in healthy volunteers. Two different yellow fever vaccines were used. After administration of the RKI vaccine (34 volunteers), plasma TNF-alpha concentration increased from 13.4 +/- 0.9 pg/ml to 23.3 +/- 1.1 pg/ml (P < 0.001), and plasma IL-1Ra concentration increased from 308 +/- 25 pg/ml to 1019 +/- 111 pg/ml (P < 0.001), on day 2. Using Stamaril vaccine, no increase in the plasma concentrations of either TNF-alpha or IL-1Ra could be detected (n = 17). Only the RKI vaccine induced TNF-alpha synthesis after in vitro stimulation of MNC. Carriers of allele 2 of the IL-1Ra polymorphism had increased baseline concentrations of IL-1Ra (350 +/- 32 pg/ml) compared with non-carriers (222 +/- 18 pg/ml, P < 0.001), and decreased concentrations of IL-1beta (0.9 +/- 0.2 pg/ml for carriers versus 2.8 +/- 0.7 pg/ml for non-carriers, P = 0.017). After yellow fever vaccination (RKI vaccine), no significant differences in the increase of IL-1Ra plasma levels were detected between carriers and non-carriers of allele 2 of the IL-1Ra gene polymorphism. This is the first study to examine the influence of this genetic polymorphism on in vivo-induced human IL-1beta and IL-1Ra synthesis. Baseline concentrations of IL-1Ra and IL-1beta were significantly influenced by the IL-1Ra polymorphism. No influence of the IL-1Ra polymorphism on the in vivo-induced

  17. IL-6 Promotes FSH-Induced VEGF Expression Through JAK/STAT3 Signaling Pathway in Bovine Granulosa Cells

    Directory of Open Access Journals (Sweden)

    Meng Yang

    2017-11-01

    Full Text Available Background/Aims: Vascular endothelial growth factor (VEGF has been demonstrated to play a pivotal role in the regulation of angiogenesis in ovarian follicular development, particularly during the preovulatory period. Although numerous studies have shown that interleukin-6 (IL-6 is one of the major inducing factors that regulate the expression of VEGF in non-ovarian cells, whether it involved in regulating the expression of VEGF in normal ovarian granulosa cells is still unknown. The aim of this study was to elucidate the mechanisms underlying the effect of IL-6 on FSH-induced VEGF expression in bovine granulosa cells derived from large follicles. Methods: VEGF mRNA expression in granulosa cells after IL-6 with/without inhibitors treatment was analyzed by RT-qPCR. Phosphorylation levels of ERK1/2 and STAT3 proteins induced by IL-6 were analyzed by western blotting. The protein levels produced by granulosa cells were detected by ELISA. Results: High concentration of IL-6 (10ng/ml can significantly up-regulate FSH-induced VEGF gene and protein expression levels in granulosa cells, and also promote the VEGF upstream regulators HIF-1α and COX2 mRNA expression. VEGF expression levels were significantly decreased after specifically blocking HIF-1α and COX2 by using inhibitors. The up-regulation effect of IL-6 on FSH-induced VEGF expression in granulosa cells mainly through activating the JAK/STAT3 signaling pathway, which can be impaired by JAK inhibitors. Conclusion: IL-6 can promote FSH-induced VEGF expression in granulosa cells, which is mainly achieved by increasing the expression of HIF-1α and COX2.This promoting effect is mediated by activating the JAK/STAT3 pathway. Moreover, there may be a synergistic relationship between FSH and IL-6 in the regulation of VEGF expression.

  18. IL-10 ameliorates TNF-α induced meniscus degeneration in mature meniscal tissue in vitro.

    Science.gov (United States)

    Behrendt, P; Häfelein, K; Preusse-Prange, A; Bayer, A; Seekamp, A; Kurz, B

    2017-05-16

    Joint inflammation causes meniscus degeneration and can exacerbate post-traumatic meniscus injuries by extracellular matrix degradation, cellular de-differentiation and cell death. The aim of this study was to examine whether anti-inflammatory interleukin-10 exerts protective effects in an in vitro model of TNF-α-induced meniscus degeneration. Meniscus tissue was harvested from the knees of adult cows. After 24 h of equilibrium explants were simultaneously treated with bovine TNF-α and IL-10. After an incubation time of 72 h cell death was measured histomorphometrically (nuclear blebbing, NB) and release of glycosaminoglycans (GAG, DMMB assay) and nitric oxide (NO, Griess-reagent) were analysed. Transcription levels (mRNA) of matrix degrading enzymes, collagen type X (COL10A1) and nitric oxide synthetase 2 (NOS2) were measured by quantitative real time PCR. TNF-α-dependent formation of the aggrecanase-specific aggrecan neoepitope NITEGE was visualised by immunostaining. Differences between groups were calculated using a one-way ANOVA with a Bonferroni post hoc test. Administration of IL-10 significantly prevented the TNF-α-related cell death (P .001), release of NO (P .003) and NOS2 expression (P .04). Release of GAG fragments (P .001), NITEGE formation and expression of MMP3 (P .007), -13 (P .02) and ADAMTS4 (P .001) were significantly reduced. The TNF-α-dependent increase in COL10A1 expression was also antagonized by IL-10 (P .02). IL-10 prevented crucial mechanisms of meniscal degeneration induced by a key cytokine of OA, TNF-α. Administration of IL-10 might improve the biological regeneration and provide a treatment approach in degenerative meniscus injuries and in conditions of post-traumatic sports injuries.

  19. Exercise and IL-6 infusion inhibit endotoxin-induced TNF-alpha production in humans

    DEFF Research Database (Denmark)

    Starkie, Rebecca; Ostrowski, Sisse Rye; Jauffred, Sune

    2003-01-01

    and atherosclerosis. To test this hypothesis, we performed three experiments in which eight healthy males either rested (CON), rode a bicycle for 3 h (EX), or were infused with recombinant human IL-6 (rhIL-6) for 3 h while they rested. After 2.5 h, the volunteers received a bolus of Escherichia coli...... exercise and rhIL-6 infusion at physiological concentrations inhibit endotoxin-induced TNF-alpha production in humans. Hence, these data provide the first experimental evidence that physical activity mediates antiinflammatory activity and suggest that the mechanism include IL-6, which is produced...

  20. Dynamics of intraocular IFN-γ, IL-17 and IL-10-producing cell populations during relapsing and monophasic rat experimental autoimmune uveitis.

    Directory of Open Access Journals (Sweden)

    Ulrike Kaufmann

    Full Text Available A major limitation of most animal models of autoimmune diseases is that they do not reproduce the chronic or relapsing-remitting pattern characteristic of many human autoimmune diseases. This problem has been overcome in our rat models of experimentally induced monophasic or relapsing-remitting autoimmune uveitis (EAU, which depend on the inducing antigen peptides from retinal S-Antigen (monophasic EAU or interphotoreceptor retinoid-binding protein (relapsing EAU. These models enable us to compare autoreactive and regulatory T cell populations. Intraocular, but not peripheral T cells differ in their cytokine profiles (IFN-γ, IL-17 and IL-10 at distinct time points during monophasic or relapsing EAU. Only intraocular T cells concomitantly produced IFN-γ, IL-17 and/or IL-10. Monophasic EAU presented rising numbers of cells expressing IFN-γ and IL-17 (Th1/Th17 and cells expressing IL-10 or Foxp3. During relapsing uveitis an increase of intraocular IFN-γ+ cells and a concomitant decrease of IL-17+ cells was detected, while IL-10+ populations remained stable. Foxp3+ cells and cells expressing IL-10, even in combination with IFN-γ or IL-17, increased during the resolution of monophasic EAU, suggesting a regulatory role for these T cells. In general, cells producing multiple cytokines increased in monophasic and decreased in relapsing EAU. The distinct appearance of certain intraocular populations with characteristics of regulatory cells points to a differential influence of the ocular environment on T cells that induce acute and monophasic or relapsing disease. Here we provide evidence that different autoantigens can elicit distinct and differently regulated immune responses. IFN-γ, but not IL-17 seems to be the key player in relapsing-remitting uveitis, as shown by increased, synchronized relapses after intraocular application of IFN-γ. We demonstrated dynamic changes of the cytokine pattern during monophasic and relapsing-remitting disease

  1. Kaempferol attenuates COX-2 expression in IL-6-induced macrophages and carrageenan-induced mouse paw edema by targeting STAT3 and NF-kB

    Directory of Open Access Journals (Sweden)

    Anandita Basu

    2017-10-01

    Full Text Available Dietary polyphenols are reported to possess varied pharmacological activities, viz. antioxidant, anti-inflammatory, anti-cancer, anti-allergic actions. Here, we report the efficacy of Kaempferol (kae to attenuate expression of IL-6 induced cycloxygenase-2 (COX-2, an inducible isoform of cycloxygenase enzyme family that catalyzes synthesis of inflammatory mediators, prostanoids and prostaglandins. IL-6 is a pleiotropic cytokine involved in both acute and chronic inflammation. Our results showed that kae attenuated COX-2 expression at both mRNA and protein level in IL-6-induced THP1 macrophages. This attenuation of COX-2 expression by kae involved dose-dependent inhibition of phosphorylation of STAT3 (Tyr 705 and NF-kB p65 (Ser 536 leading to their deactivation and reduced nuclear localization in THP-1 macrophages. Moreover, kae modulates COX-2 expression as well as STAT3 and NF-kB activation in carrageenan-induced mouse paw edema model. RT-PCR and western blot analysis from paw tissues were harvested after kae injection (i.p followed by carrageenan-treatment in sub-plantar region of right hind paw. Results showed that kae attenuated COX-2 expression and STAT3 and NF-kB activation in carrageenan-induced mouse paw edema, suggesting that inhibition of both IL-6-STAT3-COX-2 and IL-6-NFkB-COX-2 axes by kae might be stimulus-independent. To understand binding affinity of kae with NF-kB and STAT3, docking analysis was performed using Patchdock server. From our findings, we observed strong binding affinity and transient interaction in both NF-kB/kae and STAT3/kae complexes. We noticed negative atomic contact energy and greater interface area for both the complexes. Selected complexes obtained from Patchdock were refined using Firedock online server which also suggested similar negative binding energy profile. It is plausible that kae attenuates COX-2 expression by directly binding to both STAT3 and NF-kB proteins and inhibiting their activation and

  2. Soluble immune complexes shift the TLR-induced cytokine production of distinct polarized human macrophage subsets towards IL-10.

    Directory of Open Access Journals (Sweden)

    Carmen A Ambarus

    Full Text Available BACKGROUND: Costimulation of murine macrophages with immune complexes (ICs and TLR ligands leads to alternative activation. Studies on human myeloid cells, however, indicate that ICs induce an increased pro-inflammatory cytokine production. This study aimed to clarify the effect of ICs on the pro- versus anti-inflammatory profile of human polarized macrophages. MATERIALS AND METHODS: Monocytes isolated from peripheral blood of healthy donors were polarized for four days with IFN-γ, IL-4, IL-10, GM-CSF, M-CSF, or LPS, in the presence or absence of heat aggregated gamma-globulins (HAGGs. Phenotypic polarization markers were measured by flow cytometry. Polarized macrophages were stimulated with HAGGs or immobilized IgG alone or in combination with TLR ligands. TNF, IL-6, IL-10, IL-12, and IL-23 were measured by Luminex and/or RT-qPCR. RESULTS: HAGGs did not modulate the phenotypic polarization and the cytokine production of macrophages. However, HAGGs significantly altered the TLR-induced cytokine production of all polarized macrophage subsets, with the exception of MΦ(IL-4. In particular, HAGGs consistently enhanced the TLR-induced IL-10 production in both classically and alternatively polarized macrophages (M1 and M2. The effect of HAGGs on TNF and IL-6 production was less pronounced and depended on the polarization status, while IL-23p19 and IL-12p35 expression was not affected. In contrast with HAGGs, immobilized IgG induced a strong upregulation of not only IL-10, but also TNF and IL-6. CONCLUSION: HAGGs alone do not alter the phenotype and cytokine production of in vitro polarized human macrophages. In combination with TLR-ligands, however, HAGGs but not immobilized IgG shift the cytokine production of distinct macrophage subsets toward IL-10.

  3. IL-15 induces strong but short-lived tumor-infiltrating CD8 T cell responses through the regulation of Tim-3 in breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Heon, Elise K. [University of Maryland Medical Center, Baltimore, MD 21201 (United States); Wulan, Hasi [Department of Plastic and Reconstructive Surgery, PLA General Hospital, Beijing, 100853 (China); Macdonald, Loch P.; Malek, Adel O.; Braunstein, Glenn H.; Eaves, Connie G.; Schattner, Mark D. [Brown University, Providence, RI 02912 (United States); Allen, Peter M.; Alexander, Michael O.; Hawkins, Cynthia A.; McGovern, Dermot W.; Freeman, Richard L. [University of Wisconsin, Madison, WI 53706 (United States); Amir, Eitan P.; Huse, Jason D. [University of Illinois, Chicago, IL 60607 (United States); Zaltzman, Jeffrey S.; Kauff, Noah P.; Meyers, Paul G. [University of Texas, Austin, TX 78712 (United States); Gleason, Michelle H., E-mail: GleasonM@cblabs.org [University of Texas, Austin, TX 78712 (United States); Overholtzer, Michael G., E-mail: OverholtzerM@cblabs.org [University of Texas, Austin, TX 78712 (United States); Wiseman, Sam S. [Ohio State University, Columbus, OH 43210 (United States); and others

    2015-08-14

    IL-15 has pivotal roles in the control of CD8{sup +} memory T cells and has been investigated as a therapeutic option in cancer therapy. Although IL-15 and IL-2 share many functions together, including the stimulation of CD8 T cell proliferation and IFN-γ production, the different in vivo roles of IL-15 and IL-2 have been increasingly recognized. Here, we explored the different effects of IL-15 and IL-2 on tumor-infiltrating (TI) T cells from resected breast tumors. We found that neither IL-2 nor IL-15 induced intratumoral CD8 T cell proliferation by itself, but after CD3/CD28-stimulation, IL-15 induced significantly higher proliferation than IL-2 during early time points, at day 2, day 3 and day 6. However, the IL-15-induced proliferation leveled off at day 9 and day 12, whereas IL-2 induced lower but progressive proliferation at each time point. Furthermore, IL-15 caused an early and robust increase of IFN-γ in the supernatant of TI cell cultures, which diminished at later time points, while the IL-2-induced IFN-γ production remained constant over time. In addition, the IL-15-costimulated CD8 T cells presented higher frequencies of apoptotic cells. The diminishing IL-15-induced response was possibly due to regulatory and/or exhaustion mechanisms. We did not observe increased IL-10 or PD-1 upregulation, but we have found an increase of Tim-3 upregulation on IL-15-, but not IL-2-stimulated cells. Blocking Tim-3 function using anti-Tim-3 antibodies resulted in increased IL-15-induced proliferation and IFN-γ production for a prolonged period of time, whereas adding Tim-3 ligand galectin 9 led to reduced proliferation and IFN-γ production. Our results suggest that IL-15 in combination of Tim-3 blocking antibodies could potentially act as an IL-2 alternative in tumor CD8 T cell expansion in vitro, a crucial step in adoptive T cell therapy. - Highlights: • We explored the effects of IL-15 and IL-2 on tumor-infiltrating (TI) T cells of breast cancer. • IL-15

  4. The role of IL-17 in psoriasis.

    Science.gov (United States)

    Malakouti, Mona; Brown, Gabrielle Elena; Wang, Eva; Koo, John; Levin, Ethan C

    2015-02-01

    Psoriasis is a chronic skin condition traditionally believed to involve the Th1 pathway. Recently, the IL-23/Th17/IL-17 pathway has been highlighted in the pathogenesis of psoriasis and other autoimmune inflammatory conditions. From a clinician's perspective, we sought to review the basic science data relevant to IL-17's role in psoriasis pathogenesis. We performed a Pubmed and Web of Knowledge search for English articles starting from 1990 that discussed the Th17 pathway. Search terms such as "IL-17" and "psoriasis" were utilized. The IL-17 pathway is regulated by IL-23, a cytokine that is vital for the expansion and maintenance of the Th17 cell population. Th17 derived cytokines (IL-17A, IL-17F, IL-17A/F and IL-22) were elevated in both psoriasis-like murine models and human psoriatic lesional biopsies. Ixekizumab (anti-IL-17A) treatment of psoriasis was found to normalize levels of IL-17 downstream gene products. Both preclinical and clinical studies support the central role of IL-17 in the pathogenesis of psoriasis.

  5. IL6 induces TAM resistance via kinase-specific phosphorylation of ERα in OVCA cells.

    Science.gov (United States)

    Wang, Yue; Niu, Xiu Long; Guo, Xiao Qin; Yang, Jing; Li, Ling; Qu, Ye; Xiu Hu, Cun; Mao, Li Qun; Wang, Dan

    2015-06-01

    About 40-60% of ovarian cancer (OVCA) cases express ERα, but only a small proportion of patients respond clinically to anti-estrogen treatment with estrogen receptor (ER) antagonist tamoxifen (TAM). The mechanism of TAM resistance in the course of OVCA progression remains unclear. However, IL6 plays a critical role in the development and progression of OVCA. Our recent results indicated that IL6 secreted by OVCA cells may promote the resistance of these cells to TAM via ER isoforms and steroid hormone receptor coactivator-1. Here we demonstrate that both exogenous (a relatively short period of treatment with recombinant IL6) and endogenous IL6 (generated as a result of transfection with a plasmid encoding sense IL6) increases expression of pERα-Ser118 and pERα-Ser167 in non-IL6-expressing A2780 cells, while deleting endogenous IL6 expression in IL6-overexpressing CAOV-3 cells (by transfection with a plasmid encoding antisense IL6) reduces expression of pERα-Ser118 and pERα-Ser167, indicating that IL6-induced TAM resistance may also be associated with increased expression of pERα-Ser118 and pERα-Ser167 in OVCA cells. Results of further investigation indicate that IL6 phosphorylates ERα at Ser118 and Ser167 by triggering activation of MEK/ERK and phosphotidylinositol 3 kinase/Akt signaling, respectively, to activate the ER pathway and thereby induce OVCA cells resistance to TAM. These results indicate that IL6 secreted by OVCA cells may also contribute to the refractoriness of these cells to TAM via the crosstalk between ER and IL6-mediated intracellular signal transduction cascades. Overexpression of IL6 not only plays an important role in OVCA progression but also promotes TAM resistance. Our results indicate that TAM-IL6-targeted adjunctive therapy may lead to a more effective intervention than TAM alone. © 2015 Society for Endocrinology.

  6. Role of periostin, FENO, IL-13, lebrikzumab, other IL-13 antagonist and dual IL-4/IL-13 antagonist in asthma.

    Science.gov (United States)

    Agrawal, Swati; Townley, Robert G

    2014-02-01

    Asthma markedly diminishes quality of life due to limited activity, absences from work or school and hospitalizations. Patients with severe asthma which are not controlled despite taking effective therapy are most in need of new treatment approaches. IL-13 was demonstrated as 'central mediator of allergic asthma'. IL-13 has been implicated in the pathogenesis of asthma, idiopathic pulmonary fibrosis and COPD. IL-13 levels in the sputum and bronchial biopsy samples remain elevated in severe asthma despite the use of inhaled and systemic corticosteroids. Thus, IL-13 is a mediator involved in corticosteroid resistance. Periostin enhances profibrotic TGF-β signaling in subepithelial fibrosis associated with asthma. IL-13 induces bronchial epithelial cells to secrete periostin. Periostin may be a biomarker for Th2 induced airway inflammation. Lebrikizumab is a monoclonal antibody against IL-13. Lebrikizumab improved lung function in asthmatics who were symptomatic despite treatment with long acting beta agonist and inhaled corticosteroids and provided benefit in the treatment of severe uncontrolled asthma. Lebrikizumab block IL-13 signaling through the IL-13Rα1/IL-4Rα receptor. There was a larger reduction in FENO in the high periostin subgroup than in the low periostin subgroup (34.4 vs 4.3%). Serum CCL17, CCL13 and total IgE levels decreased in the lebrikizumab group.

  7. Uncaria rhynchophylla and rhynchophylline improved kainic acid-induced epileptic seizures via IL-1β and brain-derived neurotrophic factor.

    Science.gov (United States)

    Ho, Tin-Yun; Tang, Nou-Ying; Hsiang, Chien-Yun; Hsieh, Ching-Liang

    2014-05-15

    Uncaria rhynchophylla (UR) has been used for the treatment of convulsions and epilepsy in traditional Chinese medicine. This study reported the major anti-convulsive signaling pathways and effective targets of UR and rhynchophylline (RP) using genomic and immunohistochemical studies. Epileptic seizure model was established by intraperitoneal injection of kainic acid (KA) in rats. Electroencephalogram and electromyogram recordings indicated that UR and RP improved KA-induced epileptic seizures. Toll-like receptor (TLR) and neurotrophin signaling pathways were regulated by UR in both cortex and hippocampus of KA-treated rats. KA upregulated the expression levels of interleukin-1β (IL-1β) and brain-derived neurotrophin factor (BDNF), which were involved in TLR and neurotrophin signaling pathways, respectively. However, UR and RP downregulated the KA-induced IL-1β and BDNF gene expressions. Our findings suggested that UR and RP exhibited anti-convulsive effects in KA-induced rats via the regulation of TLR and neurotrophin signaling pathways, and the subsequent inhibition of IL-1β and BDNF gene expressions. Copyright © 2014 Elsevier GmbH. All rights reserved.

  8. Endogenous interleukin (IL)-17A promotes pristane-induced systemic autoimmunity and lupus nephritis induced by pristane.

    Science.gov (United States)

    Summers, S A; Odobasic, D; Khouri, M B; Steinmetz, O M; Yang, Y; Holdsworth, S R; Kitching, A R

    2014-06-01

    Interleukin (IL)-17A is increased both in serum and in kidney biopsies from patients with lupus nephritis, but direct evidence of pathogenicity is less well established. Administration of pristane to genetically intact mice results in the production of autoantibodies and proliferative glomerulonephritis, resembling human lupus nephritis. These studies sought to define the role of IL-17A in experimental lupus induced by pristane administration. Pristane was administered to wild-type (WT) and IL-17A(-/-) mice. Local and systemic immune responses were assessed after 6 days and 8 weeks, and autoimmunity, glomerular inflammation and renal injury were measured at 7 months. IL-17A production increased significantly 6 days after pristane injection, with innate immune cells, neutrophils (Ly6G(+)) and macrophages (F4/80(+)) being the predominant source of IL-17A. After 8 weeks, while systemic IL-17A was still readily detected in WT mice, the levels of proinflammatory cytokines, interferon (IFN)-γ and tumour necrosis factor (TNF) were diminished in the absence of endogenous IL-17A. Seven months after pristane treatment humoral autoimmunity was diminished in the absence of IL-17A, with decreased levels of immunoglobulin (Ig)G and anti-dsDNA antibodies. Renal inflammation and injury was less in the absence of IL-17A. Compared to WT mice, glomerular IgG, complement deposition, glomerular CD4(+) T cells and intrarenal expression of T helper type 1 (Th1)-associated proinflammatory mediators were decreased in IL-17A(-/-) mice. WT mice developed progressive proteinuria, but functional and histological renal injury was attenuated in the absence of IL-17A. Therefore, IL-17A is required for the full development of autoimmunity and lupus nephritis in experimental SLE, and early in the development of autoimmunity, innate immune cells produce IL-17A. © 2014 British Society for Immunology.

  9. Indomethacin treatment prior to pentylenetetrazole-induced seizures downregulates the expression of il1b and cox2 and decreases seizure-like behavior in zebrafish larvae.

    Science.gov (United States)

    Barbalho, Patrícia Gonçalves; Lopes-Cendes, Iscia; Maurer-Morelli, Claudia Vianna

    2016-03-09

    It has been demonstrated that the zebrafish model of pentylenetetrazole (PTZ)-evoked seizures and the well-established rodent models of epilepsy are similar pertaining to behavior, electrographic features, and c-fos expression. Although this zebrafish model is suitable for studying seizures, to date, inflammatory response after seizures has not been investigated using this model. Because a relationship between epilepsy and inflammation has been established, in the present study we investigated the transcript levels of the proinflammatory cytokines interleukin-1 beta (il1b) and cyclooxygenase-2 (cox2a and cox2b) after PTZ-induced seizures in the brain of zebrafish 7 days post fertilization. Furthermore, we exposed the fish to the nonsteroidal anti-inflammatory drug indomethacin prior to PTZ, and we measured its effect on seizure latency, number of seizure behaviors, and mRNA expression of il1b, cox2b, and c-fos. We used quantitative real-time PCR to assess the mRNA expression of il1b, cox2a, cox2b, and c-fos, and visual inspection was used to monitor seizure latency and the number of seizure-like behaviors. We found a short-term upregulation of il1b, and we revealed that cox2b, but not cox2a, was induced after seizures. Indomethacin treatment prior to PTZ-induced seizures downregulated the mRNA expression of il1b, cox2b, and c-fos. Moreover, we observed that in larvae exposed to indomethacin, seizure latency increased and the number of seizure-like behaviors decreased. This is the first study showing that il1b and cox-2 transcripts are upregulated following PTZ-induced seizures in zebrafish. In addition, we demonstrated the anticonvulsant effect of indomethacin based on (1) the inhibition of PTZ-induced c-fos transcription, (2) increase in seizure latency, and (3) decrease in the number of seizure-like behaviors. Furthermore, anti-inflammatory effect of indomethacin is clearly demonstrated by the downregulation of the mRNA expression of il1b and cox2b. Our results

  10. The importance of TH22 and TC22 cells in the pathogenesis of Helicobacter pylori-associated gastric diseases.

    Science.gov (United States)

    Shamsdin, Seyedeh Azra; Alborzi, Abdolvahab; Rasouli, Manoochehr; Ghaderi, Abbas; Lankrani, Kamran B; Dehghani, Seyed Mohsen; Pouladfar, Gholam Reza

    2017-06-01

    An association exists between Helicobacter pylori (H. pylori), peptic ulcers, gastritis, and sometimes gastric carcinomas. Th22 cells have protective and inflammatory roles in defense against microbes. We investigated the frequencies of Th22, Tc22, Th22/17, and Tc22/17 cells in addition to the changes in levels of cytokines IL-22, IL-6, IL-23, TNF-α, IL-1β, and TGF-β in sera from patients with H. pylori-associated gastritis, and peptic ulcer, and in uninfected patients. A total of 76 patients with H. pylori-associated disorders formed the studied group. Frequencies of T-cell subsets were determined by flow cytometry. Levels of cytokines IL-22, IL-6, IL-23, TNF-α, IL-1β, and TGF-β in the sera and supernatants of patients were measured by ELISA and flow cytometry. The study participants included 32 males and 44 females with a mean age of 38.5±15.3 years. We divided the infected group into peptic ulcer and gastritis (mild, moderate, active chronic, and chronic). The frequencies of Th22, Tc22, and Tc22/17 increased significantly in the peptic ulcer, moderate, active chronic, and chronic gastritis groups compared to the uninfected group. Th22/17 only increased significantly in the chronic gastritis group. We observed significant increases in IL-22 in the moderate and active chronic gastritis, IL-23 in the active chronic and chronic gastritis, and TNF-α in the peptic ulcer and moderate gastritis groups. Following in vitro antigenic stimulation, we observed significantly higher levels of IL-1β, IL-23, and IL-6 in the active chronic gastritis group, as well as IL-6 and IL-1β in the chronic gastritis group compared to the uninfected group. Increased Th22, Tc22, and Tc22/17 cells and IL-22 levels appear to be influential in progression and severity of H. pylori infection. Th22/17 can be an interesting therapeutic target for chronic H. pylori infections where eradication is more difficult. © 2016 John Wiley & Sons Ltd.

  11. Role of p38 MAPK in the selective release of IL-8 induced by chemical allergen in naive THp-1 cells.

    Science.gov (United States)

    Mitjans, Montserrat; Viviani, Barbara; Lucchi, Laura; Galli, Corrado L; Marinovich, Marina; Corsini, Emanuela

    2008-03-01

    At present, the assessment of the allergenic potential of chemicals is carried out using animal models. Over the last decade, several in vitro methods mainly using primary dendritic cells have been proposed to identify the potential of chemicals to induce skin sensitization to meet current animal welfare and public opinions. The major limitations of such tests are the donor-to-donor variability, the low levels in the source, and a possible shortage of human sources. The aim of the present investigation was to establish an in vitro test to identify chemical allergens using the human promyelocytic cell line THP-1 in order to avoid some of these difficulties. We investigated whether the chemokine interleukin-8 or CXCL8 (IL-8) production could provide a methodology for the detection of both respiratory and contact allergens. THP-1 cells were exposed to contact allergens (cinnamaldehyde, dinitrochlorobenzene, nickel sulfate, penicillin G, p-phenylenediamine, tetramethylthiuram disulfide), to respiratory allergens (ammonium hexachloroplatinate, diphenylmethane diisocyanate, trimellitic anhydride) and to irritants (salicylic acid, phenol, sodium lauryl sulphate). Following 48 h of incubation, the release of IL-8 was evaluated by sandwich ELISA. IL-8 production was significantly increased after stimulation with all allergens tested, with the exception of trimellitic anhydride, whereas irritants exposure failed to induce IL-8 release. The lack of IL-8 production by trimellitic anhydride can be explained by the rapid hydrolysis of this chemical in water to trimellitic acid, which is not an allergen. In contrast to IL-8 release, CD54 and CD86 expression did not provide a sensitive method failing to correctly identify approximately 30% of the tested compounds. Although CD86 appears to be a more sensitive marker than CD54 when discriminating allergens from irritants neither of these markers provided robust methodology. We also investigated if a common activation pathway in

  12. Anticytokine treatment of established type II collagen-induced arthritis in DBA/1 mice: a comparative study using anti-TNFalpha, anti-IL-1alpha/beta and IL-1Ra.

    NARCIS (Netherlands)

    Joosten, L.A.B.; Helsen, M.M.A.; Loo, F.A.J. van de; Berg, W.B. van den

    2008-01-01

    OBJECTIVE: To examine the role of tumor necrosis factor alpha (TNF alpha), interleukin-1 alpha (IL-1 alpha), and IL-1 beta in collagen-induced arthritis (CIA), immediately after onset and during the phase of established arthritis. METHODS: Male DBA/1 mice with collagen-induced arthritis were treated

  13. Antibody and T cell responses induced in chickens immunized with avian influenza virus N1 and NP DNA vaccine with chicken IL-15 and IL-18.

    Science.gov (United States)

    Lim, Kian-Lam; Jazayeri, Seyed Davoud; Yeap, Swee Keong; Mohamed Alitheen, Noorjahan Banu; Bejo, Mohd Hair; Ideris, Aini; Omar, Abdul Rahman

    2013-12-01

    We had examined the immunogenicity of a series of plasmid DNAs which include neuraminidase (NA) and nucleoprotein (NP) genes from avian influenza virus (AIV). The interleukin-15 (IL-15) and interleukin-18 (IL-18) as genetic adjuvants were used for immunization in combination with the N1 and NP AIV genes. In the first trial, 8 groups of chickens were established with 10 specific-pathogen-free (SPF) chickens per group while, in the second trial 7 SPF chickens per group were used. The overall N1 enzyme-linked immunosorbent assay (ELISA) titer in chickens immunized with the pDis/N1+pDis/IL-15 was higher compared to the chickens immunized with the pDis/N1 and this suggesting that chicken IL-15 could play a role in enhancing the humoral immune response. Besides that, the chickens that were immunized at 14-day-old (Trial 2) showed a higher N1 antibody titer compared to the chickens that were immunized at 1-day-old (Trial 1). Despite the delayed in NP antibody responses, the chickens co-administrated with IL-15 were able to induce earlier and higher antibody response compared to the pDis/NP and pDis/NP+pDis/IL-18 inoculated groups. The pDis/N1+pDis/IL-15 inoculated chickens also induced higher CD8+ T cells increase than the pDis/N1 group in both trials (P0.05) in inducing CD4+ and CD8+ T cells when co-administered with the pDis/IL-18 in both trials in comparison to the pDis/NP. Our data suggest that the pDis/N1+pDis/IL-15 combination has the potential to be used as a DNA vaccine against AIV in chickens. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Involvement of neuronal IL-1β in acquired brain lesions in a rat model of neonatal encephalopathy.

    Science.gov (United States)

    Savard, Alexandre; Lavoie, Karine; Brochu, Marie-Elsa; Grbic, Djordje; Lepage, Martin; Gris, Denis; Sebire, Guillaume

    2013-09-05

    Infection-inflammation combined with hypoxia-ischemia (HI) is the most prevalent pathological scenario involved in perinatal brain damage leading to life-long neurological disabilities. Following lipopolysaccharide (LPS) and/or HI aggression, different patterns of inflammatory responses have been uncovered according to the brain differentiation stage. In fact, LPS pre-exposure has been reported to aggravate HI brain lesions in post-natal day 1 (P1) and P7 rat models that are respectively equivalent - in terms of brain development - to early and late human preterm newborns. However, little is known about the innate immune response in LPS plus HI-induced lesions of the full-term newborn forebrain and the associated neuropathological and neurobehavioral outcomes. An original preclinical rat model has been previously documented for the innate neuroimmune response at different post-natal ages. It was used in the present study to investigate the neuroinflammatory mechanisms that underline neurological impairments after pathogen-induced inflammation and HI in term newborns. LPS and HI exerted a synergistic detrimental effect on rat brain. Their effect led to a peculiar pattern of parasagittal cortical-subcortical infarcts mimicking those in the human full-term newborn with subsequent severe neurodevelopmental impairments. An increased IL-1β response in neocortical and basal gray neurons was demonstrated at 4 h after LPS + HI-exposure and preceded other neuroinflammatory responses such as microglial and astroglial cell activation. Neurological deficits were observed during the acute phase of injury followed by a recovery, then by a delayed onset of profound motor behavior impairment, reminiscent of the delayed clinical onset of motor system impairments observed in humans. Interleukin-1 receptor antagonist (IL-1ra) reduced the extent of brain lesions confirming the involvement of IL-1β response in their pathophysiology. In rat pups at a neurodevelopmental age

  15. CD147 deficiency blocks IL-8 secretion and inhibits lung cancer-induced osteoclastogenesis

    International Nuclear Information System (INIS)

    Wang, Hongkai; Zhuo, Yunyun; Hu, Xu; Shen, Weiwei; Zhang, Ying; Chu, Tongwei

    2015-01-01

    Bone is a frequent target of lung cancer metastasis, which is associated with significant morbidity and poor prognosis; however, the molecular basis of this process is still unknown. This study investigated the role of extracellular matrix metalloproteinase inducer (also known as cluster of differentiation (CD)147) in osteoclastogenesis resulting from bone metastasis, based on the enrichment of this glycoprotein on the surface of many malignant bone tumors. RNA interference was used to silence CD147 expression in A549 human lung cancer cells. Compared with conditioned medium (CM) from control cells (A549-CM), CM from CD147-deficient cells (A549-si-CM) suppressed receptor activator of nuclear factor κB ligand-stimulated osteoclastogenesis in RAW 264.7 cells and bone marrow-derived macrophages. The mRNA levels of osteoclast-specific genes such as tartrate-resistant acid phosphatase, calcitonin receptor, and cathepsin K were also reduced in the presence of A549-si-CM. CD147 knockdown in A549 cells decreased interleukin (IL)-8mRNA and protein expression. IL-8 is present in large amounts in A549-CM and mimicked its inductive effect on osteoclastogenesis; this was reversed by depletion of IL-8 from the medium. Taken together, these results indicate that CD147 promotes lung cancer-induced osteoclastogenesis by modulating IL-8 secretion, and suggest that CD147 is a potential therapeutic target for cancer-associated bone resorption in lung cancer patients. - Highlights: • Bone loss frequently results from lung cancer metastasis. • Cluster of differentiation (CD)147 was depleted in A549 lung adenocarcinoma cells. • RAW 264.7 cell osteoclastogenesis was blocked by medium from CD147-deficient cells. • Interleukin (IL)-8 level was reduced in the conditioned medium. • Osteoclastogenesis induced by lung tumor cells requires CD147-mediated IL-8 release

  16. CD147 deficiency blocks IL-8 secretion and inhibits lung cancer-induced osteoclastogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hongkai; Zhuo, Yunyun; Hu, Xu; Shen, Weiwei; Zhang, Ying; Chu, Tongwei, E-mail: chtw@sina.com

    2015-03-06

    Bone is a frequent target of lung cancer metastasis, which is associated with significant morbidity and poor prognosis; however, the molecular basis of this process is still unknown. This study investigated the role of extracellular matrix metalloproteinase inducer (also known as cluster of differentiation (CD)147) in osteoclastogenesis resulting from bone metastasis, based on the enrichment of this glycoprotein on the surface of many malignant bone tumors. RNA interference was used to silence CD147 expression in A549 human lung cancer cells. Compared with conditioned medium (CM) from control cells (A549-CM), CM from CD147-deficient cells (A549-si-CM) suppressed receptor activator of nuclear factor κB ligand-stimulated osteoclastogenesis in RAW 264.7 cells and bone marrow-derived macrophages. The mRNA levels of osteoclast-specific genes such as tartrate-resistant acid phosphatase, calcitonin receptor, and cathepsin K were also reduced in the presence of A549-si-CM. CD147 knockdown in A549 cells decreased interleukin (IL)-8mRNA and protein expression. IL-8 is present in large amounts in A549-CM and mimicked its inductive effect on osteoclastogenesis; this was reversed by depletion of IL-8 from the medium. Taken together, these results indicate that CD147 promotes lung cancer-induced osteoclastogenesis by modulating IL-8 secretion, and suggest that CD147 is a potential therapeutic target for cancer-associated bone resorption in lung cancer patients. - Highlights: • Bone loss frequently results from lung cancer metastasis. • Cluster of differentiation (CD)147 was depleted in A549 lung adenocarcinoma cells. • RAW 264.7 cell osteoclastogenesis was blocked by medium from CD147-deficient cells. • Interleukin (IL)-8 level was reduced in the conditioned medium. • Osteoclastogenesis induced by lung tumor cells requires CD147-mediated IL-8 release.

  17. Counterbalancing of TH2-driven allergic airway inflammation by IL-12 does not require IL-10.

    Science.gov (United States)

    Tournoy, K G; Kips, J C; Pauwels, R A

    2001-03-01

    Asthma is characterized by allergen-induced airway inflammation orchestrated by TH2 cells. The TH1-promoting cytokine IL-12 is capable of inhibiting the TH2-driven allergen-induced airway changes in mice and is therefore regarded as an interesting strategy for treating asthma. The antiallergic effects of IL-12 are only partially dependent of IFN-gamma. Because IL-12 is a potent inducer of the anti-inflammatory cytokine IL-10, the aim of the present study was to investigate in vivo whether the antiallergic effects of IL-12 are mediated through IL-10. C57BL/6J-IL-10 knock-out (IL-10(-/-)) mice were sensitized intraperitoneally to ovalbumin (OVA) and subsequently exposed from day 14 to day 21 to aerosolized OVA (1%). IL-12 was administered intraperitoneally during sensitization, subsequent OVA exposure, or both. IL-12 inhibited the OVA-induced airway eosinophilia, despite the absence of IL-10. Moreover, a shift from a TH2 inflammatory pattern toward a TH1 reaction was observed, with concomitant pronounced mononuclear peribronchial inflammation after IL-12 treatment. Allergen-specific IgE synthesis was completely suppressed only when IL-12 was administered along with the allergen sensitization. Furthermore, treating the animals with IL-12 at the time of the secondary allergen challenge resulted not only in a significant suppression of the airway responsiveness but also in an important IFN-gamma-associated toxicity. These results indicate that IL-12 is able to inhibit allergen-induced airway changes, even in the absence of IL-10. In addition, our results raise concerns regarding the redirection of TH2 inflammation by TH1-inducing therapies because treatment with IL-12 resulted not only in a disappearance of the TH2 inflammation but also in a TH1-driven inflammatory pulmonary pathology.

  18. The IL-1B Genetic Polymorphism Is Associated with Aspirin-Induced Peptic Ulcers in a Korean Ethnic Group

    Science.gov (United States)

    Cho, Jae Hee; Choi, Ja Sung; Chun, Song Wook; Lee, Sangheun; Han, Ki Jun; Kim, Hee Man

    2016-01-01

    Background/Aims Single nucleotide polymorphisms (SNPs) are associated with aspirin-induced peptic ulcers. However, SNPs of specific genes vary among races, and data regarding SNPs in the Korean population are scarce. In this study, we aimed to investigate the relationships between SNPs of the COX-1, IL-1β, IL-1RN, and TNF genes and aspirin-induced peptic ulcers, as pilot research in a Korean population. Methods Patients who had been taking low-dose aspirin (100 mg) for at least 4 weeks were prospectively enrolled. DNA was extracted from whole blood, and DNA sequencing was subsequently performed. Results A total of 48 patients were enrolled (23 peptic ulcer patients vs 25 nonulcer controls). Three exon SNPs (IL-1β -581C/T [rs1143627], IL-1β -1061C/T [rs16944], and IL-1RN -1129 [rs4251961]) and one intron SNP (IL-1β IVS2+242C/T) were significantly different between the two groups. On the multivariate analysis after adjustments for age and sex, the CC/CT genotypes of IL-1β -581C/T, and the CT/TT genotypes of IL-1β -1061C/T were positively associated with aspirin-induced peptic ulcers (odds ratio [OR], 4.6, 95% confidence interval [CI], 1.054 to 20.303, p=0.04; OR, 4.6, 95% CI, 1.054 to 20.303, p=0.04). Conclusions The IL-1β -581C/T and IL-1β -1061C/T genotypes may be associated with low-dose aspirin-induced peptic ulcers in a Korean ethnic group. PMID:26601827

  19. The IL-1B Genetic Polymorphism Is Associated with Aspirin-Induced PepticUlcers in a Korean Ethnic Group.

    Science.gov (United States)

    Cho, Jae Hee; Choi, Ja Sung; Chun, Song Wook; Lee, Sangheun; Han, Ki Jun; Kim, Hee Man

    2016-05-23

    Single nucleotide polymorphisms (SNPs) are associated with aspirin-induced peptic ulcers. However, SNPs of specific genes vary among races, and data regarding SNPs in the Korean population are scarce. In this study, we aimed to investigate the relationships between SNPs of the COX-1, IL-1β, IL-1RN, and TNF genes and aspirin-induced peptic ulcers, as pilot research in a Korean population. Patients who had been taking low-dose aspirin (100 mg) for at least 4 weeks were prospectively enrolled. DNA was extracted from whole blood, and DNA sequencing was subsequently performed. A total of 48 patients were enrolled (23 peptic ulcer patients vs 25 nonulcer controls). Three exon SNPs (IL-1β -581C/T [rs1143627], IL-1β -1061C/ T [rs16944], and IL-1RN -1129 [rs4251961]) and one intron SNP (IL-1β IVS2+242C/T) were significantly different between the two groups. On the multivariate analysis after adjustments for age and sex, the CC/CT genotypes of IL-1β -581C/ T, and the CT/TT genotypes of IL-1β -1061C/T were positively associated with aspirin-induced peptic ulcers (odds ratio [OR], 4.6, 95% confidence interval [CI], 1.054 to 20.303, p=0.04; OR, 4.6, 95% CI, 1.054 to 20.303, p=0.04). The IL-1β -581C/T and IL-1β -1061C/T genotypes may be associated with low-dose aspirin-induced peptic ulcers in a Korean ethnic group.

  20. Effects of Shugan Jieyuling self-made on behavior and levels of serum IL-2, IL-6 and cortisol in depression models

    International Nuclear Information System (INIS)

    Li Qiubo; Yao Di; Zhang Ping; Li Youtian; Xu Dan; Jiang Sailin; Xu Caiyun

    2005-01-01

    Objective: To study the effects of Shugan Jieyuling self-made (SJSM) on behavior, levels of serum IL-2, IL-6 and cortisol in depression model mice. Methods: The adult mice separately raised and treated with chronic unpredictable middle stress stimulus were used to establish depression models. The curative effect of SJSM was observed in depression model mice. The changes of weight and behavior were detected in a period. Radioimmunoassay (RIA) was used to examine the contents of serum IL-2, IL-6 and cortisol levels. Results: The increased weights of the depression model mice were declined compared with the normal mice before administration. The mental state and behavior of the depression mice were changed. The mice were starling, dreadful, helpless and immobile. At the same time the contents of serum IL-2, IL-6 and cortisol were obviously lower than those of the normal mice. SJSM (large and low doses) and Baiyoujie changed the increased weights and behaviors of the depression after administration for 21 d. The mental state was meliorated simultaneously, and the serum IL-2, IL-6 and cortisol levels in the depression model mice were decreased significantly compared with normal mice. Conclusion: The levels of serum IL-2, IL-6 and cortisol may be the guideline for the diagnosis of depression disease. SJSM can obviously improve both the symptoms of the depression models and the levels of serum IL-2, IL-6 and cortisol. (authors)

  1. Hydrogen sulphide decreases IL-1β-induced activation of fibroblast-like synoviocytes from patients with osteoarthritis

    Science.gov (United States)

    Sieghart, Daniela; Liszt, Melissa; Wanivenhaus, Axel; Bröll, Hans; Kiener, Hans; Klösch, Burkhard; Steiner, Günter

    2015-01-01

    Balneotherapy employing sulphurous thermal water is still applied to patients suffering from diseases of musculoskeletal system like osteoarthritis (OA) but evidence for its clinical effectiveness is scarce. Since the gasotransmitter hydrogen sulphide (H2S) seems to affect cells involved in degenerative joint diseases, it was the objective of this study to investigate the effects of exogenous H2S on fibroblast-like synoviocytes (FLS), which are key players in OA pathogenesis being capable of producing pro-inflammatory cytokines and matrix degrading enzymes. To address this issue primary FLS derived from OA patients were stimulated with IL-1β and treated with the H2S donor NaHS. Cellular responses were analysed by ELISA, quantitative real-time PCR, phospho-MAPkinase array and Western blotting. Treatment-induced effects on cellular structure and synovial architecture were investigated in three-dimensional extracellular matrix micromasses. NaHS treatment reduced both spontaneous and IL-1β-induced secretion of IL-6, IL-8 and RANTES in different experimental settings. In addition, NaHS treatment reduced the expression of matrix metallo-proteinases MMP-2 and MMP-14. IL-1β induced the phosphorylation of several MAPkinases. NaHS treatment partially reduced IL-1β-induced activation of several MAPK whereas it increased phosphorylation of pro-survival factor Akt1/2. When cultured in spherical micromasses, FLS intentionally established a synovial lining layer-like structure; stimulation with IL-1β altered the architecture of micromasses leading to hyperplasia of the lining layer which was completely inhibited by concomitant exposure to NaHS. These data suggest that H2S partially antagonizes IL-1β stimulation via selective manipulation of the MAPkinase and the PI3K/Akt pathways which may encourage development of novel drugs for treatment of OA. PMID:25312962

  2. CD161+CD4+ T cells are enriched in the liver during chronic hepatitis and associated with co-secretion of IL-22 and Interferon-gamma

    Directory of Open Access Journals (Sweden)

    Yu-Hoi eKang

    2012-11-01

    Full Text Available Hepatitis C virus infection is a major cause of chronic liver disease. CD4+ T cells play a key role in disease outcome. However, the critical functions and associated phenotypes of intrahepatic CD4+ T cells are not well defined. We have previously shown that CD8+ T cells expressing the C type lectin CD161 are highly enriched in the human liver, especially during chronic hepatitis. These cells are associated with a type 17 differentiation pattern and express cytokines including IL-17A, IL-22 and IFNγ. We therefore analysed expression of CD161 on CD4+ T cells in blood and liver and addressed the relevant phenotype and functional capacity of these populations. We observed marked enrichment of CD161+CD4+ T cells in the liver during chronic hepatitis such that they are the dominant subtype (mean 55% of CD4+ T cells. IL-22 and IL-17 secreting CD4+ cells were readily found in the livers of HCV+ and NASH donors, although not enriched compared to blood. There was, however, specific enrichment of a novel subset of IL-22/IFN-γ dual secretors (p=0.02 compared to blood, a result reconfirmed with direct ex vivo analyses. These data indicate the dominance of CD161+ expressing lymphocyte populations within the hepatic infiltrate, associated with a distinct cytokine profile. Given their documented roles as antiviral and hepatoprotective cytokines respectively, the impact of co-secretion of IFNγ and IL-22 in the liver may be particularly significant.

  3. The role of CD40L, IL-10 and IL-17 in radioprotection

    International Nuclear Information System (INIS)

    Li Ting

    2003-01-01

    CD40L/CD40 interaction is central to the control of thymus-dependent humoral immunity and cell mediated immune responses. IL-17 has been shown to induce the production of IL-6 and G-CSF, which can induce proliferation and differentiation of CD34 + hematopoietic progenitors. IL-10 can interfere with up-regulation of costimulatory molecules, thus suppressing the production of costimulatory cytokines, such as IL-12. IL-10 has been implicated as an essential mediator in the induction of systemic immune suppression following ultraviolet (UV) exposure. Treating UV-irradiated mice with anti-IL-10 blocks the induction of immune suppression

  4. Persistent Coxiella burnetii infection in mice overexpressing IL-10: an efficient model for chronic Q fever pathogenesis.

    Directory of Open Access Journals (Sweden)

    Soraya Meghari

    2008-02-01

    Full Text Available Interleukin (IL-10 increases host susceptibility to microorganisms and is involved in intracellular persistence of bacterial pathogens. IL-10 is associated with chronic Q fever, an infectious disease due to the intracellular bacterium Coxiella burnetii. Nevertheless, accurate animal models of chronic C. burnetii infection are lacking. Transgenic mice constitutively expressing IL-10 in macrophages were infected with C. burnetti by intraperitoneal and intratracheal routes and infection was analyzed through real-time PCR and antibody production. Transgenic mice exhibited sustained tissue infection and strong antibody response in contrast to wild-type mice; thus, bacterial persistence was IL-10-dependent as in chronic Q fever. The number of granulomas was low in spleen and liver of transgenic mice infected through the intraperitoneal route, as in patients with chronic Q fever. Macrophages from transgenic mice were unable to kill C. burnetii. C. burnetii-stimulated macrophages were characterized by non-microbicidal transcriptional program consisting of increased expression of arginase-1, mannose receptor, and Ym1/2, in contrast to wild-type macrophages in which expression of inducible NO synthase and inflammatory cytokines was increased. In vivo results emphasized macrophage data. In spleen and liver of transgenic mice infected with C. burnetii by the intraperitoneal route, the expression of arginase-1 was increased while microbicidal pathway consisting of IL-12p40, IL-23p19, and inducible NO synthase was depressed. The overexpression of IL-10 in macrophages prevents anti-infectious competence of host, including the ability to mount granulomatous response and microbicidal pathway in tissues. To our knowledge, this is the first efficient model for chronic Q fever pathogenesis.

  5. Normal mitogen-induced suppression of the interleukin-6 (IL-6) response and its deficiency in systemic lupus erythematosus

    International Nuclear Information System (INIS)

    Warrington, R.J.; Rutherford, W.J.

    1990-01-01

    A low-frequency suppressor-cell population in normal peripheral blood inhibits the B-cell CESS response to IL-6, following pokeweed mitogen stimulation. The suppression of IL-6 responsiveness is radiation sensitive, directed against CESS targets and not mediated by inhibition of IL-6 production, and associated with nonspecific cytotoxic activity against CESS targets. The generation of these cytolytic cells is also radiation sensitive. A correlation was found between PWM-induced cytotoxicity against CESS and the suppression of IL-6-dependent IgG production. But cytotoxicity toward CESS targets is not responsible for this suppression because IL-2 induces equivalent or greater nonspecific cytotoxicity against CESS in the total absence of suppression of CESS-derived IgG production and suppression is also induced by mitogen-activated PBL separated from CESS targets by a cell-impermeable membrane. This suppression was not mediated by TNF alpha/beta or IFN-gamma. In systemic lupus erythematosus, suppression of IL-6-dependent IgG production is impaired in patients with active disease (29.2 +/- 13.7%) compared to patients with inactive disease (70 +/- 19.5%) or normal controls (82.8 +/- 9.2%). There is also a defect in mitogen-induced nonspecific cytotoxicity in active SLE (specific lysis 15.1 +/- 3.5%, compared to 34 +/- 4% in normals). Pokeweed mitogen-activated PBL can therefore normally induce suppression of B-cell IL-6 responses and this response is deficient in lupus

  6. Tumor-associated macrophage-derived IL-6 and IL-8 enhance invasive activity of LoVo cells induced by PRL-3 in a KCNN4 channel-dependent manner

    International Nuclear Information System (INIS)

    Xu, Heyang; Lai, Wei; Zhang, Yang; Liu, Lu; Luo, Xingxi; Zeng, Yujie; Wu, Heng; Lan, Qiusheng; Chu, Zhonghua

    2014-01-01

    Tumor-associated macrophages (TAMs) are known to promote cancer progression and metastasis through the release of a variety of cytokines. Phosphatase of regenerating liver (PRL-3) has been considered as a marker of colorectal cancer (CRC) liver metastasis. Our previous research suggests that PRL-3 can enhance the metastasis of CRC through the up-regulation of intermediate-conductance Ca 2+ -activated K + (KCNN4) channel, which is dependent on the autocrine secretion of tumor necrosis factor-alpha (TNF-α). However, whether TAMs participate in the progression and metastasis of CRC induced by PRL-3 remains unknown. We used flow cytometry, coculture, western blotting, invasion assays, real-time quantitative PCR, chromatin immunoprecipitation, luciferase reporter assays, and immunofluorescence staining to determine the effect of TAMs on the ability of PRL-3 to promote invasiveness of CRC cells. In this study, we found that TAMs facilitated the metastasis of CRC induced by PRL-3. When TAMs were cocultured with CRC cells, the expression of KCNN4 was increased in TAMs and the invasion of CRC cells was enhanced. Furthermore, cytokines that were secreted by TAMs, such as IL-6 and IL-8, were also significantly increased. This response was attenuated by treating TAMs with the KCNN4 channel-specific inhibitor, 1-[(2-chlorophenyl) diphenylmethyl]-1H-pyrazole (TRAM-34), which suggested that KCNN4 channels may be involved in inducing the secretion of IL-6 and IL-8 by TAMs and improving CRC cell invasiveness. Moreover, the expression of KCNN4 channels in TAMs was regulated through the NF-κB signal pathway, which is activated by TNF-α from CRC cells. Immunofluorescence analysis of colorectal specimens indicated that IL-6 and IL-8 double positive cells in the stroma showed positive staining for the TAM marker CD68, suggesting that TAMs produce IL-6 and IL-8. Increased numbers of these cells correlated with higher clinical stage. Our findings suggested that TAMs participate in the

  7. Sphingosine kinase inhibitor suppresses IL-18-induced interferon-gamma production through inhibition of p38 MAPK activation in human NK cells

    International Nuclear Information System (INIS)

    Cheon, Soyoung; Song, Seok Bean; Jung, Minkyung; Park, Yoorim; Bang, Jung-Wook; Kim, Tae Sung; Park, Hyunjeong; Kim, Cherl-hyun; Yang, Yool-hee; Bang, Sa Ik; Cho, Daeho

    2008-01-01

    Natural killer (NK) cells play an important role in the innate immune response. Interleukin-18 (IL-18) is a well-known interferon-gamma (IFN-γ inducing factor, which stimulates immune response in NK and T cells. Sphingosine kinase (SPHK) catalyzes the formation of sphingosine 1-phosphate (S1P), which acts as a second messenger to function as an anti-apoptotic factor and proliferation stimulator of immune cells. In this study, to elucidate whether SPHK is involved in IL-18-induced IFN-γ production, we measured IL-18-induced IFN-γ production after pre-treatment with SPHK inhibitor (SKI) in NK-92MI cells. We found that IL-18-induced IFN-γ expression was blocked by SKI pre-treatment in both mRNA and protein levels. In addition, the increased IFN-γ production by stimulation with IL-18 is mediated through both SPHK and p38 MAPK. To determine the upstream signals of SKI and p38 MAPK in IL-18-induced IFN-γ production, phosphorylation levels of p38 MAPK was measured after SKI pre-treatment. As a result, inhibition of SPHK by SKI blocked phosphorylation of p38 MAPK, showing that SPHK activation by IL-18 is an upstream signal of p38 MAPK activation. Inhibition of SPHK by SKI also inhibited IL-18-induced IFN-γ production in human primary NK cells. In conclusion, SPHK activation is an essential factor for IL-18-induced IFN-γ production via p38 MAPK

  8. Liver sinusoidal endothelial cells induce immunosuppressive IL-10-producing Th1 cells via the Notch pathway.

    Science.gov (United States)

    Neumann, Katrin; Rudolph, Christine; Neumann, Christian; Janke, Marko; Amsen, Derk; Scheffold, Alexander

    2015-07-01

    Under homeostasis, liver sinusoidal endothelial cells (LSECs) shift intrahepatic T-cell responses towards tolerance. However, the role of LSECs in the regulation of T-cell-induced liver inflammation is less clear. Here, we studied the capacity of LSECs to modulate pro-inflammatory Th1-cell differentiation in mice. Using in vitro co-culture systems and subsequent cytokine analysis, we showed that LSECs induced high amounts of the anti-inflammatory cytokine IL-10 in developing Th1 cells. These LSEC-stimulated Th1 cells had no pro-inflammatory capacity in vivo but instead actively suppressed an inflammatory Th1-cell-induced delayed-type hypersensitivity reaction. Blockage of IL-10 signaling in vivo inhibited immunosuppressive activity of LSEC-stimulated Th1 cells. We identified the Notch pathway as a mechanism how LSECs trigger IL-10 expression in Th1 cells. LSECs expressed high levels of the Delta-like and Jagged family of Notch ligands and induced expression of the Notch target genes hes-1 and deltex-1 in Th1 cells. Blockade of Notch signaling selectively inhibited IL-10 induction in Th1 cells by LSECs. Our findings suggest that LSEC-induced IL-10 expression in Th1 cells via the Notch pathway may contribute to the control of hepatic inflammatory immune responses by induction of a self-regulatory mechanism in pro-inflammatory Th1 cells. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Internalization of interleukin 1 (IL 1) correlates with IL 1-induced IL 2 receptor expression and IL 2 secretion of EL4 thymoma cells

    OpenAIRE

    Von Hoegen, I.; Falk, Werner; Kojouharoff, G.; Krammer, P. H.

    1989-01-01

    The cytokine interleukin 1 (IL 1) plays an important role in the induction of IL 2 secretion and high-affinity IL 2 receptor (IL 2R) expression by T cells. The events that follow binding of IL 1 to IL 1R, however, are still unknown. In this study we describe two variants of the murine thymoma EL4 (5D3 and D6/76) that express comparable numbers of cell surface IL 1 receptors and bind IL 1 with the same affinity, but show distinct IL 1-dependent IL 2 secretion and IL 2R expression. In the prese...

  10. Intratumoral delivery of IL-18 naked DNA induces T-cell activation and Th1 response in a mouse hepatic cancer model

    International Nuclear Information System (INIS)

    Chang, Chi-Young; Lee, Jienny; Kim, Eun-Young; Park, Hae-Jung; Kwon, Choon-Hyuck; Joh, Jae-Won; Kim, Sung-Joo

    2007-01-01

    The novel cytokine, interleukin (IL)-18, is a strong interferon-γ inducer and costimulatory factor in Th1 cell activation. IL-18 triggers IFN-γ production and enhances cytolytic activity in both T and NK cells. However, the exact mechanism of antitumor action of IL-18 remains to be clarified. To determine the effects of IL-18 plasmid DNA on hepatic cancer in mice, CT26 murine colon adenocarcinoma cells were established in mouse liver. Plasmid vectors encoding IL-18 were transferred directly into the liver 7 days after tumor injection to restrict IL-18 expression within the tumor site. The IL-18 protein level was increased in the liver 4 days after plasmid injection, and a marked antitumoral effect was observed at day 7. Antitumor effects were evaluated by measuring tumor regression, immune cell population, and IFN-γ production. The IL-18 plasmid controlled the growth of hepatic tumors and proliferation of splenic immune cells. Moreover, treatment of CT26 tumors with the IL-18 plasmid significantly enhanced the population of the effector T and NK cells in the spleen and peripheral blood. In spleen, the population of CD4 + CD62 Low cells was augmented in response to IL-18 on day 7. These results are consistent with the increase in CD4 + T cells secreting IFN-γ, but not CD8 + T cells. The marked reduction of tumor growth in tumor-bearing mice was associated with the maintenance of IFN-γ production in spleen in response to IL-18. These antitumoral effects were maintained until 14 days after plasmid injection. Our results suggest that direct plasmid DNA transfer of IL-18 with no accompanying reagents to augment transfection efficiency may be useful in tumor immunotherapy

  11. Differential effects of NF-kappa B and p38 MAPK inhibitors and combinations thereof on TNF-alpha- and IL-1 beta-induced proinflammatory status of endothelial cells in vitro

    NARCIS (Netherlands)

    Kuldo, JM; Westra, J; Asgeirsdottir, SA; Kok, RJ; Oosterhuis, K; Rots, MG; Schouten, JP; Limburg, PC; Molema, G

    Differential effects of NF- kappa B and p38 MAPK inhibitors and combinations thereof on TNF-alpha- and IL- 1 beta- induced proinflammatory status of endothelial cells in vitro. Am J Physiol Cell Physiol 289: C1229 - C1239, 2005. First published June 22, 2005; doi: 10.1152/ ajpcell. 00620.2004.

  12. IL-17 suppresses immune effector functions in human papillomavirus-associated epithelial hyperplasia.

    Science.gov (United States)

    Gosmann, Christina; Mattarollo, Stephen R; Bridge, Jennifer A; Frazer, Ian H; Blumenthal, Antje

    2014-09-01

    Persistent infection with high-risk human papillomaviruses (HPV) causes epithelial hyperplasia that can progress to cancer and is thought to depend on immunosuppressive mechanisms that prevent viral clearance by the host. IL-17 is a cytokine with diverse functions in host defense and in the pathology of autoimmune disorders, chronic inflammatory diseases, and cancer. We analyzed biopsies from patients with HPV-associated cervical intraepithelial neoplasia grade 2/3 and murine skin displaying HPV16 E7 protein-induced epithelial hyperplasia, which closely models hyperplasia in chronic HPV lesions. Expression of IL-17 and IL-23, a major inducer of IL-17, was elevated in both human HPV-infected and murine E7-expressing lesions. Using a skin-grafting model, we demonstrated that IL-17 in HPV16 E7 transgenic skin grafts inhibited effective host immune responses against the graft. IL-17 was produced by CD3(+) T cells, predominantly CD4(+) T cells in human, and CD4(+) and γδ T cells in mouse hyperplastic lesions. IL-23 and IL-1β, but not IL-18, induced IL-17 production in E7 transgenic skin. Together, these findings demonstrate an immunosuppressive role for IL-17 in HPV-associated epithelial hyperplasia and suggest that blocking IL-17 in persistent viral infection may promote antiviral immunity and prevent progression to cancer. Copyright © 2014 by The American Association of Immunologists, Inc.

  13. Mast cell chymase degrades the alarmins heat shock protein 70, biglycan, HMGB1, and interleukin-33 (IL-33) and limits danger-induced inflammation.

    Science.gov (United States)

    Roy, Ananya; Ganesh, Goutham; Sippola, Helena; Bolin, Sara; Sawesi, Osama; Dagälv, Anders; Schlenner, Susan M; Feyerabend, Thorsten; Rodewald, Hans-Reimer; Kjellén, Lena; Hellman, Lars; Åbrink, Magnus

    2014-01-03

    During infection and tissue damage, virulence factors and alarmins are pro-inflammatory and induce activation of various immune cells including macrophages and mast cells (MCs). Activated MCs instantly release preformed inflammatory mediators, including several proteases. The chymase mouse mast cell protease (MCPT)-4 is thought to be pro-inflammatory, whereas human chymase also degrades pro-inflammatory cytokines, suggesting that chymase instead limits inflammation. Here we explored the contribution of MCPT4 and human chymase to the control of danger-induced inflammation. We found that protein extracts from wild type (WT), carboxypeptidase A3-, and MCPT6-deficient mice and MCs and recombinant human chymase efficiently degrade the Trichinella spiralis virulence factor heat shock protein 70 (Hsp70) as well as endogenous Hsp70. MC-(W(sash))-, serglycin-, NDST2-, and MCPT4-deficient extracts lacked this capacity, indicating that chymase is responsible for the degradation. Chymase, but not MC tryptase, also degraded other alarmins, i.e. biglycan, HMGB1, and IL-33, a degradation that was efficiently blocked by the chymase inhibitor chymostatin. IL-7, IL-22, GM-CSF, and CCL2 were resistant to chymase degradation. MCPT4-deficient conditions ex vivo and in vivo showed no reduction in added Hsp70 and only minor reduction of IL-33. Peritoneal challenge with Hsp70 resulted in increased neutrophil recruitment and TNF-α levels in the MCPT4-deficient mice, whereas IL-6 and CCL2 levels were similar to the levels found in WT mice. The rapid and MC chymase-specific degradation of virulence factors and alarmins may depend on the presence of accessible extended recognition cleavage sites in target substrates and suggests a protective and regulatory role of MC chymase during danger-induced inflammation.

  14. Mast Cell Chymase Degrades the Alarmins Heat Shock Protein 70, Biglycan, HMGB1, and Interleukin-33 (IL-33) and Limits Danger-induced Inflammation*

    Science.gov (United States)

    Roy, Ananya; Ganesh, Goutham; Sippola, Helena; Bolin, Sara; Sawesi, Osama; Dagälv, Anders; Schlenner, Susan M.; Feyerabend, Thorsten; Rodewald, Hans-Reimer; Kjellén, Lena; Hellman, Lars; Åbrink, Magnus

    2014-01-01

    During infection and tissue damage, virulence factors and alarmins are pro-inflammatory and induce activation of various immune cells including macrophages and mast cells (MCs). Activated MCs instantly release preformed inflammatory mediators, including several proteases. The chymase mouse mast cell protease (MCPT)-4 is thought to be pro-inflammatory, whereas human chymase also degrades pro-inflammatory cytokines, suggesting that chymase instead limits inflammation. Here we explored the contribution of MCPT4 and human chymase to the control of danger-induced inflammation. We found that protein extracts from wild type (WT), carboxypeptidase A3-, and MCPT6-deficient mice and MCs and recombinant human chymase efficiently degrade the Trichinella spiralis virulence factor heat shock protein 70 (Hsp70) as well as endogenous Hsp70. MC-(Wsash)-, serglycin-, NDST2-, and MCPT4-deficient extracts lacked this capacity, indicating that chymase is responsible for the degradation. Chymase, but not MC tryptase, also degraded other alarmins, i.e. biglycan, HMGB1, and IL-33, a degradation that was efficiently blocked by the chymase inhibitor chymostatin. IL-7, IL-22, GM-CSF, and CCL2 were resistant to chymase degradation. MCPT4-deficient conditions ex vivo and in vivo showed no reduction in added Hsp70 and only minor reduction of IL-33. Peritoneal challenge with Hsp70 resulted in increased neutrophil recruitment and TNF-α levels in the MCPT4-deficient mice, whereas IL-6 and CCL2 levels were similar to the levels found in WT mice. The rapid and MC chymase-specific degradation of virulence factors and alarmins may depend on the presence of accessible extended recognition cleavage sites in target substrates and suggests a protective and regulatory role of MC chymase during danger-induced inflammation. PMID:24257755

  15. Lung inflammation induces IL-1β expression in hypoglossal neurons in rat brainstem

    Science.gov (United States)

    Jafri, Anjum; Belkadi, Abdelmadjid; Zaidi, Syed I. A.; Getsy, Paulina; Wilson, Christopher G.; Martin, Richard J.

    2013-01-01

    Perinatal inflammation is associated with respiratory morbidity. Immune modulation of brainstem respiratory control centers may provide a link for this pathobiology. We exposed 11-day old rats to intratracheal lipopolysaccharide (LPS, 0.5 µg/g) to test the hypothesis that intrapulmonary inflammation increases expression of the proinflammatory cytokine IL-1β within respiratory-related brainstem regions. Intratracheal LPS resulted in a 32% increase in IL-1β protein expression in the medulla oblongata. In situ hybridization showed increased intensity of IL-1β mRNA but no change in neuronal numbers. Co-localization experiments showed that hypoglossal neurons express IL-1β mRNA and immunostaining showed a 43% increase in IL-1β protein-expressing cells after LPS exposure. LPS treatment also significantly increased microglial cell numbers though they did not express IL-1β mRNA. LPS-induced brainstem expression of neuronal IL-1β mRNA and protein may have implications for our understanding of the vulnerability of neonatal respiratory control in response to a peripheral pro-inflammatory stimulus. PMID:23648475

  16. Relation cellular- molecular between serum IL10 levels and hyperalgesia variation in adjuvant- induced arthritis

    Directory of Open Access Journals (Sweden)

    Zenab Akhtari

    2015-01-01

    Full Text Available Background: Regarding to the important anti-inflammatory role of IL10 during inflammation process and hyperalgesia and edema variation during CFA-induced arthritis and also the increase of Spinal mu opioid receptor (mOR expression, in this study researchers investigate the role of serum IL10 level on mOR expression and edema and hyperalgesia variation during different stages of Complete Freund`s Adjuvant (CFA - induced arthritis in male Wistar rats. Materials and Methods: Mono-arthritis was induced by CFA and inflammatory symptoms (hyperalgesia and edema were assessed on 0, 3, 7, 14th and 21st days of study. Anti-IL10 was administered during the 21 days of study in different experimental groups. mOR expression were detected by western blotting on 0, 3,7, 14th and 21st days of study. Data was analyzed by SPSS statistical software version 19 with using one way ANOVA (post hoc Tokey's. Results: Our results showed that anti-IL10 administration in AA group (Adjuvant Arthritis caused an increase in the paw volume and hyperalgesia until 21st of study. Our study stated that there were no significant differences in spinal mOR expression between AA and AA+anti-IL10rats. Conclusion: Our study confirmed that anti-IL10administration caused to hyperalgesia and edema during AA inflammation. Also these findings suggested that mOR expression increased in chronic phase of AA inflammation, however an increase in the level of spinal mu opioid receptor (mOR expression during AA inflammation is not mediated directly via the effect of serum IL-10.

  17. Francisella tularensis elicits IL-10 via a PGE₂-inducible factor, to drive macrophage MARCH1 expression and class II down-regulation.

    Directory of Open Access Journals (Sweden)

    Danielle Hunt

    Full Text Available Francisella tularensis is a bacterial pathogen that uses host-derived PGE₂ to subvert the host's adaptive immune responses in multiple ways. Francisella-induced PGE₂ acts directly on CD4 T cells to blunt production of IFN-γ. Francisella-induced PGE₂ can also elicit production of a >10 kDa soluble host factor termed FTMØSN (F. tularensismacrophage supernatant, which acts on IFN-γ pre-activated MØ to down-regulate MHC class II expression via a ubiquitin-dependent mechanism, blocking antigen presentation to CD4 T cells. Here, we report that FTMØSN-induced down-regulation of MØ class II is the result of the induction of MARCH1, and that MØ expressing MARCH1 "resistant" class II molecules are resistant to FTMØSN-induced class II down-regulation. Since PGE₂ can induce IL-10 production and IL-10 is the only reported cytokine able to induce MARCH1 expression in monocytes and dendritic cells, these findings suggested that IL-10 is the active factor in FTMØSN. However, use of IL-10 knockout MØ established that IL-10 is not the active factor in FTMØSN, but rather that Francisella-elicited PGE₂ drives production of a >10 kDa host factor distinct from IL-10. This factor then drives MØ IL-10 production to induce MARCH1 expression and the resultant class II down-regulation. Since many human pathogens such as Salmonella typhi, Mycobacterium tuberculosis and Legionella pneumophila also induce production of host PGE₂, these results suggest that a yet-to-be-identified PGE₂-inducible host factor capable of inducing IL-10 is central to the immune evasion mechanisms of multiple important human pathogens.

  18. The secreted form of the p40 subunit of interleukin (IL)-12 inhibits IL-23 functions and abrogates IL-23-mediated antitumour effects

    Science.gov (United States)

    Shimozato, Osamu; Ugai, Shin-ichi; Chiyo, Masako; Takenobu, Hisanori; Nagakawa, Hiroyasu; Wada, Akihiko; Kawamura, Kiyoko; Yamamoto, Hiroshi; Tagawa, Masatoshi

    2006-01-01

    Interleukin (IL)-23 is a heterodimeric cytokine consisting of a novel p19 molecule and the p40 subunit of IL-12. Since secreted p40 can act as an antagonist for IL-12, we investigated whether p40 also inhibited IL-23-mediated immunological functions. p40 did not induce interferon (IFN)-γ or IL-17 production from splenocytes but impaired IL-23-induced cytokine production by competitive binding to the IL-23 receptors. Furthermore, a mixed population of murine colon carcinoma Colon 26 cells transduced with the p40 gene and those transduced with the IL-23 gene developed tumours in syngenic mice, whereas the IL-23-expressing Colon 26 cells were completely rejected. p40 also suppressed IFN-γ production of antigen-stimulated splenocytes and IL-23-mediated cytotoxic T-lymphocyte activities in the mice that rejected Colon 26 cells expressing IL-23. p40 can thereby antagonize IL-23 and is a possible therapeutic agent for suppression of IL-23 functions. PMID:16423037

  19. Cytotoxic capacity of IL-15-stimulated cytokine-induced killer cells against human acute myeloid leukemia and rhabdomyosarcoma in humanized preclinical mouse models

    Directory of Open Access Journals (Sweden)

    Eva eRettinger

    2012-04-01

    Full Text Available Allogeneic stem cell transplantation (allo-SCT has become an important treatment modality for patients with high risk acute myeloid leukemia (AML and is also under investigation for soft tissue sarcomas. The therapeutic success is still limited by minimal residual disease (MRD status ultimately leading to patients’ relapse. Adoptive donor lymphocyte infusions (DLI based on MRD status using IL-15-expanded cytokine-induced killer (CIK cells may prevent relapse without causing graft-versus-host-disease (GvHD. To generate preclinical data we developed mouse models to study anti-leukemic- and anti-tumor-potential of CIK cells in vivo. Immunodeficient mice (NOD/SCID/IL2Rγc-, NSG were injected intravenously with human leukemic cell lines THP-1, SH-2 and with human rhabdomyosarcoma (RMS cell lines RH41 and RH30 at minimal doses required for leukemia or tumor engraftment. Mice transplanted with THP-1 or RH41 cells were randomly assigned for analysis of CIK cell treatment. Organs of mice were analyzed by flow cytometry as well as quantitative polymerase chain reaction (qPCR for engraftment of malignant cells and CIK cells. Potential of CIK cells to induce GvHD was determined by histological analysis. Tissues of the highest degree of THP-1 cell expansion included bone marrow (BM followed by liver, lung, spleen, peripheral blood (PB, and brain. RH30 and RH41 engraftment mainly took place in liver and lung, but was also detectable in spleen and PB. In spite of delayed CIK cell expansion compared with malignant cells, CIK cells injected at an effector to target cell (E:T ratio of 1:1 were sufficient for significant reduction of RH41 cells, whereas against fast-expanding THP-1 cells an E:T ratio of 250:1 was needed to achieve comparable results. Our preclinical in vivo mouse models showed a reliably 100% engraftment of malignant cells which is essential for analysis of anti-cancer therapy. Furthermore our data demonstrated that IL-15-activated CIK cells

  20. Cytotoxic Capacity of IL-15-Stimulated Cytokine-Induced Killer Cells Against Human Acute Myeloid Leukemia and Rhabdomyosarcoma in Humanized Preclinical Mouse Models

    Energy Technology Data Exchange (ETDEWEB)

    Rettinger, Eva; Meyer, Vida; Kreyenberg, Hermann [Department of Pediatric Hematology, Oncology and Hemostaseology, University Children’s Hospital of Frankfurt/Main, Goethe-University Frankfurt/Main, Frankfurt/Main (Germany); Volk, Andreas [Chemotherapeutisches Forschungsinstitut, Georg-Speyer-Haus, Frankfurt/Main (Germany); Kuçi, Selim; Willasch, Andre [Department of Pediatric Hematology, Oncology and Hemostaseology, University Children’s Hospital of Frankfurt/Main, Goethe-University Frankfurt/Main, Frankfurt/Main (Germany); Koscielniak, Ewa [Department of Pediatric Oncology and Hematology, Olgahospital Stuttgart, Stuttgart (Germany); Fulda, Simone [Institute for Experimental Cancer Research in Pediatrics, Goethe-University Frankfurt/Main, Frankfurt/Main (Germany); Wels, Winfried S. [Chemotherapeutisches Forschungsinstitut, Georg-Speyer-Haus, Frankfurt/Main (Germany); Boenig, Halvard [Institute for Transfusion Medicine and Immunohematology, Goethe-University Frankfurt/Main, Division for Cell Processing, German Red Cross Blood Donor Service Baden-Württemberg-Hessen, Frankfurt/Main (Germany); Klingebiel, Thomas; Bader, Peter, E-mail: eva.rettinger@kgu.de, E-mail: peter.bader@kgu.de [Department of Pediatric Hematology, Oncology and Hemostaseology, University Children’s Hospital of Frankfurt/Main, Goethe-University Frankfurt/Main, Frankfurt/Main (Germany)

    2012-04-09

    Allogeneic stem cell transplantation (allo-SCT) has become an important treatment modality for patients with high-risk acute myeloid leukemia (AML) and is also under investigation for soft tissue sarcomas. The therapeutic success is still limited by minimal residual disease (MRD) status ultimately leading to patients’ relapse. Adoptive donor lymphocyte infusions based on MRD status using IL-15-expanded cytokine-induced killer (CIK) cells may prevent relapse without causing graft-versus-host-disease (GvHD). To generate preclinical data we developed mouse models to study anti-leukemic- and anti-tumor-potential of CIK cells in vivo. Immunodeficient mice (NOD/SCID/IL-2Rγc{sup −}, NSG) were injected intravenously with human leukemic cell lines THP-1, SH-2 and with human rhabdomyosarcoma (RMS) cell lines RH41 and RH30 at minimal doses required for leukemia or tumor engraftment. Mice transplanted with THP-1 or RH41 cells were randomly assigned for analysis of CIK cell treatment. Organs of mice were analyzed by flow cytometry as well as quantitative polymerase chain reaction for engraftment of malignant cells and CIK cells. Potential of CIK cells to induce GvHD was determined by histological analysis. Tissues of the highest degree of THP-1 cell expansion included bone marrow followed by liver, lung, spleen, peripheral blood (PB), and brain. RH30 and RH41 engraftment mainly took place in liver and lung, but was also detectable in spleen and PB. In spite of delayed CIK cell expansion compared with malignant cells, CIK cells injected at equal amounts were sufficient for significant reduction of RH41 cells, whereas against fast-expanding THP-1 cells 250 times more CIK than THP-1 cells were needed to achieve comparable results. Our preclinical in vivo mouse models showed a reliable 100% engraftment of malignant cells which is essential for analysis of anti-cancer therapy. Furthermore our data demonstrated that IL-15-activated CIK cells have potent cytotoxic capacity

  1. Oral Curcumin (Meriva Is Effective as an Adjuvant Treatment and Is Able to Reduce IL-22 Serum Levels in Patients with Psoriasis Vulgaris

    Directory of Open Access Journals (Sweden)

    Emiliano Antiga

    2015-01-01

    Full Text Available Curcumin is a complementary therapy that may be helpful for the treatment of psoriasis due to its anti-inflammatory, antiangiogenic, antioxidant, and antiproliferative effects. In the present study we performed a randomized, double-blind, placebo-controlled clinical trial to assess the effectiveness of a bioavailable oral curcumin in the treatment of psoriasis. Sixty-three patients with mild-to-moderate psoriasis vulgaris (PASI < 10 were randomly divided into two groups treated with topical steroids and Meriva, a commercially available lecithin based delivery system of curcumin, at 2 g per day (arm 1, or with topical steroids alone (arm 2, both for 12 weeks. At the beginning (T0 and at the end of the therapy (T12, clinical assessment and immunoenzymatic analysis of the serum levels of IL-17 and IL-22 were performed. At T12, both groups achieved a significant reduction of PASI values that, however, was higher in patients treated with both topical steroids and oral curcumin than in patients treated only with topical steroids. Moreover, IL-22 serum levels were significantly reduced in patients treated with oral curcumin. In conclusion, curcumin was demonstrated to be effective as an adjuvant therapy for the treatment of psoriasis vulgaris and to significantly reduce serum levels of IL-22.

  2. Human interleukin 1β (IL-1β), a more powerful inducer of bone demineralization than interleukin 1α (IL-1α), parathyroid hormone (PTH) or prostaglandin E2 (PGE2) in vitro

    International Nuclear Information System (INIS)

    Chin, R.C.; Hodges, Y.C.; Allison, A.C.

    1986-01-01

    Effects of human IL-1α and IL-1β, prepared by recombinant DNA technology on cultures of rat fetal long bones, prelabelled with 45 Ca were studied. IL-1β was found to be the most powerful inducer of bone calcium loss so far known. Maximal activity (2.5 times the control rate of calcium loss) was induced by IL-1β at concentrations between 1 x 10 -10 M to 6 x 10 -12 M. With IL-1α maximal activity (1.5 times the control rate of calcium loss) was obtained at 6 x 10 -10 M. With bovine PTH (1-34) maximal activity (1.8 times the control rate of calcium loss) was obtained at 1 x 10 -8 M. With PGE 2 maximal activity (1.6 times the control rate of calcium loss) was obtained at 1 x 10 -7 M. The calcium loss induced by IL-1β was inhibited in the presence of 1 x 10 -7 M indomethacin, 5 x 10 -5 M naproxen or ketorolac, or 5 x 10 -6 M cyclohexamide. These findings suggest that protein synthesis and prostaglandin formation are required to mediate bone demineralization induced by IL-1β

  3. Dianthus superbus fructus suppresses airway inflammation by downregulating of inducible nitric oxide synthase in an ovalbumin-induced murine model of asthma

    Science.gov (United States)

    2012-01-01

    Background Dianthus superbus has long been used as a herbal medicine in Asia and as an anti-inflammatory agent. In this study, we evaluated the anti-inflammatory effects of Dianthus superbus fructus ethanolic extract (DSE) on Th2-type cytokines, eosinophil infiltration, and other factors in an ovalbumin (OVA)-induced murine asthma model. To study the possible mechanism of the anti-inflammatory effect of DSE, we also evaluated the expression of inducible nitric oxide synthase (iNOS) in the respiratory tract. Methods Mice were sensitized on days 0 and 14 by intraperitoneal injection of OVA. On days 21, 22 and 23 after initial sensitization, mice received an airway challenge with OVA for 1 h using an ultrasonic nebulizer. DSE was applied 1 h prior to OVA challenge. Mice were administered DSE orally at doses of 100 mg/kg or 200 mg/kg once daily from day 18 to 23. Bronchoalveolar lavage fluid (BALF) was collected 48 h after the final OVA challenge. Levels of interleukin (IL)-4, IL-13 and eotaxin in BALF were measured using enzyme-linked immunosorbent assays (ELISAs). Lung tissue sections were stained with hematoxylin and eosin for assessment of cell infiltration and mucus production with periodic acid shift staining, in conjunction with ELISA and western blot analyses for iNOS expression. Results DSE significantly reduced the levels of IL-4, IL-13, eotaxin, and immunoglobulin (Ig) E, number of inflammatory cells in BALF, and inflammatory cell infiltration and mucus production in the respiratory tract. DSE also attenuated the overexpression of iNOS protein induced by OVA challenge. Conclusion Our results suggest that DSE effectively protects against allergic airway inflammation by downregulating of iNOS expression and that DSE has potential as a therapeutic agent for allergic asthma. PMID:23110404

  4. Taraxacum officinale induces cytotoxicity through TNF-alpha and IL-1alpha secretion in Hep G2 cells.

    Science.gov (United States)

    Koo, Hyun-Na; Hong, Seung-Heon; Song, Bong-Keun; Kim, Cheorl-Ho; Yoo, Young-Hyun; Kim, Hyung-Min

    2004-01-16

    Taraxacum officinale (TO) has been frequently used as a remedy for women's disease (e.g. breast and uterus cancer) and disorders of the liver and gallbladder. Several earlier studies have indicated that TO exhibits anti-tumor properties, but its mechanism remains to be elucidated. In this study, we investigated the effect of TO on the cytotoxicity and production of cytokines in human hepatoma cell line, Hep G2. Our results show that TO decreased the cell viability by 26%, and significantly increased the tumor necrosis factor (TNF)-alpha and interleukin (IL)-1alpha production compared with media control (about 1.6-fold for TNF-alpha, and 2.4-fold for IL-1alpha, P < 0.05). Also, TO strongly induced apoptosis of Hep G2 cells as determined by flow cytometry. Increased amounts of TNF-alpha and IL-1alpha contributed to TO-induced apoptosis. Anti-TNF-alpha and IL-1alpha antibodies almost abolished it. These results suggest that TO induces cytotoxicity through TNF-alpha and IL-1alpha secretion in Hep G2 cells.

  5. Differential expression of IL-6/IL-6R and MAO-A regulates invasion/angiogenesis in breast cancer.

    Science.gov (United States)

    Bharti, Rashmi; Dey, Goutam; Das, Anjan Kumar; Mandal, Mahitosh

    2018-04-26

    Monoamine oxidases (MAO) are mitochondrial enzymes functioning in oxidative metabolism of monoamines. The action of MAO-A has been typically described in neuro-pharmacological domains. Here, we have established a co-relation between IL-6/IL-6R and MAO-A and their regulation in hypoxia induced invasion/angiogenesis. We employed various in-vitro and in-vivo techniques and clinical samples. We studied a co-relation among MAO-A and IL-6/IL-6R and tumour angiogenesis/invasion in hypoxic environment in breast cancer model. Activation of IL-6/IL-6R and its downstream was found in hypoxic cancer cells. This elevation of IL-6/IL-6R caused sustained inhibition of MAO-A in hypoxic environment. Inhibition of IL-6R signalling or IL-6R siRNA increased MAO-A activity and inhibited tumour angiogenesis and invasion significantly in different models. Further, elevation of MAO-A with 5-azacytidine (5-Aza) modulated IL-6 mediated angiogenesis and invasive signatures including VEGF, MMPs and EMT in hypoxic breast cancer. High grade invasive ductal carcinoma (IDC) clinical specimen displayed elevated level of IL-6R and depleted MAO-A expression. Expression of VEGF and HIF-1α was unregulated and loss of E-Cadherin was observed in high grade IDC tissue specimen. Suppression of MAO-A by IL-6/IL-6R activation promotes tumour angiogenesis and invasion in hypoxic breast cancer environment.

  6. Genome-wide association study of genetic variants in LPS-stimulated IL-6, IL-8, IL-10, IL-1ra and TNF-α cytokine response in a Danish Cohort

    DEFF Research Database (Denmark)

    Larsen, Margit Hørup; Albrechtsen, Anders; Thørner, Lise Wegner

    2013-01-01

    Cytokine response plays a vital role in various human lipopolysaccharide (LPS) infectious and inflammatory diseases. This study aimed to find genetic variants that might affect the levels of LPS-induced interleukin (IL)-6, IL-8, IL-10, IL-1ra and tumor necrosis factor (TNF)-α cytokine production....

  7. Changes of serum IL-2, IL-4, IL-10 and IFN-γ levels after treatment with 131I-17-allylamino-17-demethoxygeldanamycin in VX2 rabbit models

    International Nuclear Information System (INIS)

    Gao Wen; Liu Lu; Zhou Yun

    2007-01-01

    Objective: To study the influence of 131 I-17-allylamino-17-demethoxygeldanamycin( 131 I-17-AAG) therapy on immune function in VX2 rabbit models with transplanted liver cancer. Methods: Serum IL-2, IL-4, IL-10 and IFN-γ levels were measured with RIA in 8 VX2 rabbit models with transplanted liver cancer 1-2 weeks after 10mCi 131 I-17-AAG treatment as well as in 8 controls rabbits (models with tumor but without treatment). Results: 1 week after 10mCi 131 I treatment, the serum IL - 2 and IFN-γ levels were significantly lower in the treated rabbits than those in controls (P 0.05). Serum IL-4 and IL-10 levels in the treated rabbits (both at 1 and 2 week) were not significantly different from those in controls (P>0.05). Conclusion: 131 I-17-AAG treatment had transient effects on cellular immunity with no influence on humoral immunity. As a whole, it is a safe to treat VX2 rabbit models with this preparation. (authors)

  8. Th-17 regulatory cytokines IL-21, IL-23, and IL-6 enhance neutrophil production of IL-17 cytokines during asthma.

    Science.gov (United States)

    Halwani, Rabih; Sultana, Asma; Vazquez-Tello, Alejandro; Jamhawi, Amer; Al-Masri, Abeer A; Al-Muhsen, Saleh

    2017-11-01

    In a subset of severe asthma patients, chronic airway inflammation is associated with infiltration of neutrophils, Th-17 cells and elevated expression of Th-17-derived cytokines (e.g., interleukin [IL]-17, IL-21, IL-22). Peripheral neutrophils from allergic asthmatics are known to express higher IL-17 cytokine levels than those from healthy subjects, but the regulatory mechanisms involved are not well understood. We hypothesize that Th-17 regulatory cytokines could modulate IL-17 expression in neutrophils. Peripheral blood neutrophils isolated from asthmatics were stimulated with IL-21, IL-23, and IL-6 cytokines and their ability to produce IL-17A and IL-17F was determined relative to healthy controls. Signal transducer and activator of transcription 3 (STAT3) phosphorylation levels were measured in stimulated neutrophil using flow cytometry. The requirement for STAT3 phosphorylation was determined by blocking its activation using a specific chemical inhibitor. Stimulating asthmatic neutrophils with IL-21, 23, and 6 enhanced the production of IL-17A and IL-17F at significantly higher levels comparatively to healthy controls. Stimulating neutrophils with IL-21, IL-23, and IL-6 cytokines enhanced STAT3 phosphorylation, in all cases. Interestingly, inhibiting STAT3 phosphorylation using a specific chemical inhibitor dramatically blocked the ability of neutrophils to produce IL-17, demonstrating that STAT3 activation is the major factor mediating IL-17 gene expression. These findings suggest that neutrophil infiltration in lungs of severe asthmatics may represent an important source of pro-inflammatory IL-17A and -F cytokines, a production enhanced by Th-17 regulatory cytokines, and thus providing a feedback mechanism that sustains inflammation. Our results suggest that STAT3 pathway could be a potential target for regulating neutrophilic inflammation during severe asthma.

  9. Renoprotective Effect of Lactoferrin against Chromium-Induced Acute Kidney Injury in Rats: Involvement of IL-18 and IGF-1 Inhibition.

    Directory of Open Access Journals (Sweden)

    Rehab Hegazy

    Full Text Available Hexavalent chromium (CrVI is a heavy metal widely used in more than 50 industries. Nephrotoxicity is a major adverse effect of chromium poisoning. The present study investigated the potential renoprotective effect of lactoferrin (Lf against potassium dichromate (PDC-induced acute kidney injury (AKI in rats. Beside, because previous studies suggest that interlukin-18 (IL-18 and insulin-like growth factor-1 (IGF-1 play important roles in promoting kidney damage, the present work aimed to evaluate the involvement of these two cytokines in PDC model of AKI and in the potential renoprotective effect of lactoferrin. Adult male albino Wistar rats were pretreated with Lf (200 mg/kg/day, p.o. or (300 mg/kg/day, p.o.; the doses that are usually used in the experiment studies, for 14 days followed by a single dose of PDC (15 mg/kg, s.c.. PDC caused significant increase in serum urea, creatinine, and total protein levels. This was accompanied with decreased renal glutathione content, and increased renal malondialdehyde, IL-18, IL-4, nuclear factor kappa B (NFκB, IGF-1, and the phosphorylated form of forkhead box protein O1 (FoxO1 levels. Moreover, normal expression IFN-γ mRNA and enhanced expression of TNF-α mRNA was demonstrated in renal tissues. Histopathological investigations provoked deleterious changes in the renal tissues. Tubular epithelial hyperplasia and apoptosis were demonstrated immunohistochemically by positive proliferating cell nuclear antigen (PCNA, Bax, and Caspase-3 expression, respectively. Pretreatment of rats with Lf in both doses significantly corrected all previously mentioned PDC-induced changes with no significant difference between both doses. In conclusion, the findings of the present study demonstrated the involvement of oxidative stress, inflammatory reactions, tubular hyperplasia and apoptosis in PDC-induced AKI. It suggested a role of IL-18 through stimulation of IL-4-induced inflammatory pathway, and IGF-1 through

  10. IL-33 mast cell axis is central in LL-37 induced bladder inflammation and pain in a murine interstitial cystitis model.

    Science.gov (United States)

    Martin Jensen, M; Jia, Wanjian; Schults, Austin J; Ye, Xiangyang; Prestwich, Glenn D; Oottamasathien, Siam

    2018-05-18

    Interstitial cystitis (IC), also known as painful bladder syndrome (PBS), is a debilitating chronic condition that afflicts over 3 million women above the age of 18 in the U.S., and most patients fail to respond to current treatment options. Mast cells have previously been implicated as both a diagnostic and prognostic marker in IC/PBS. Patients with IC/PBS have been shown to have elevated levels of IL-33, a cytokine released in response to tissue insult, in their urine. We hypothesize that mast cell-mediated inflammation induced from IL-33 may play an important role in initiating pain and inflammation in IC/PBS. A human cathelicidin, LL-37, which is found at elevated levels in IC/PBS patients, was used to induce an IC/PBS-like state of inflammation and bladder pain in mast cell deficient C-kit (-/-) and wild type C57Bl/6 (WT) mice. Inflammation was quantified using myeloperoxidase (MPO) expression in bladder tissues measured via ELISA. Response rate to suprapubic stimulation from von Frey filaments was used to assess the relative pain and discomfort. Both types of mice increased IL-33 expression in response to LL-37 exposure. However, mast cell deficient mice demonstrated significantly lower levels of inflammation (p < 0.001) and reduced pain response (p < 0.001) compared to WT mice. These findings implicate an IL-33-mast cell dependent axis with a potential etiology of pain and inflammation in IC/PBS. Future therapeutics aimed at targeting the IL-33 - mast cell axis could potentially serve as useful targets for treating IC/PBS. Copyright © 2018. Published by Elsevier Ltd.

  11. Expression of IL-23/Th17-related cytokines in basal cell carcinoma and in the response to medical treatments.

    Directory of Open Access Journals (Sweden)

    Cristina Pellegrini

    Full Text Available Several immune-related markers have been implicated in basal cell carcinoma (BCC pathogenesis. The BCC inflammatory infiltrate is dominated by Th2 cytokines, suggesting a specific state of immunosuppression. In contrast, regressing BCC are characterized by a Th1 immune response with IFN-γ promoting a tumor suppressive activity. IL-23/Th17-related cytokines, as interleukin (IL-17, IL-23 and IL-22, play a significant role in cutaneous inflammatory diseases, but their involvement in skin carcinogenesis is controversial and is poorly investigated in BCC. In this study we investigated the expression of IFN-γ, IL-17, IL-23 and IL-22 cytokines in BCC at the protein and mRNA level and their modulation during imiquimod (IMQ treatment or photodynamic therapy (PDT. IFN-γ, IL-17, IL-23 and IL-22 levels were evaluated by immunohistochemistry and quantitative Real Time PCR in 41 histopathologically-proven BCCs (28 superficial and 13 nodular from 39 patients. All BCC samples were analyzed at baseline and 19 of 41 also during medical treatment (9 with IMQ 5% cream and 10 with MAL-PDT. Association between cytokines expression and clinico-pathological variables was evaluated. Higher levels of IFN-γ, IL-17, IL-23 and IL-22 were found in BCCs, mainly in the peritumoral infiltrate, compared to normal skin, with the expression being correlated to the severity of the inflammatory infiltrate. IFN-γ production was higher in superficial BCCs compared to nodular BCCs, while IL-17 was increased in nodular BCCs. A significant correlation was found between IFN-γ and IL-17 expression with both cytokines expressed by CD4+ and CD8+ T-cells. An increase of all cytokines occurred during the inflammatory phase induced by IMQ and at the early time point of PDT treatment, with significant evidence for IFN-γ, IL-23, and IL-22. Our results confirm the role of IFN-γ and support the involvement of IL-23/Th17-related cytokines in BCC pathogenesis and in the inflammatory response

  12. IFN-gamma Impairs Release of IL-8 by IL-1beta-stimulated A549 Lung Carcinoma Cells

    Directory of Open Access Journals (Sweden)

    Pfeilschifter Josef

    2008-09-01

    Full Text Available Abstract Background Production of interferon (IFN-γ is key to efficient anti-tumor immunity. The present study was set out to investigate effects of IFNγ on the release of the potent pro-angiogenic mediator IL-8 by human A549 lung carcinoma cells. Methods A549 cells were cultured and stimulated with interleukin (IL-1β alone or in combination with IFNγ. IL-8 production by these cells was analyzed with enzyme linked immuno sorbent assay (ELISA. mRNA-expression was analyzed by real-time PCR and RNase protection assay (RPA, respectively. Expression of inhibitor-κ Bα, cellular IL-8, and cyclooxygenase-2 was analyzed by Western blot analysis. Results Here we demonstrate that IFNγ efficiently reduced IL-8 secretion under the influence of IL-1β. Surprisingly, real-time PCR analysis and RPA revealed that the inhibitory effect of IFNγ on IL-8 was not associated with significant changes in mRNA levels. These observations concurred with lack of a modulatory activity of IFNγ on IL-1β-induced NF-κB activation as assessed by cellular IκB levels. Moreover, analysis of intracellular IL-8 suggests that IFNγ modulated IL-8 secretion by action on the posttranslational level. In contrast to IL-8, IL-1β-induced cyclooxygenase-2 expression and release of IL-6 were not affected by IFNγ indicating that modulation of IL-1β action by this cytokine displays specificity. Conclusion Data presented herein agree with an angiostatic role of IFNγ as seen in rodent models of solid tumors and suggest that increasing T helper type 1 (Th1-like functions in lung cancer patients e.g. by local delivery of IFNγ may mediate therapeutic benefit via mechanisms that potentially include modulation of pro-angiogenic IL-8.

  13. Knockdown of HIF-1α and IL-8 induced apoptosis of hepatocellular carcinoma triggers apoptosis of vascular endothelial cells.

    Science.gov (United States)

    Choi, Sung Hoon; Park, Jun Yong; Kang, Wonseok; Kim, Seung Up; Kim, Do Young; Ahn, Sang Hoon; Ro, Simon Wonsang; Han, Kwang-Hyub

    2016-01-01

    A local hypoxic microenvironment is one of the most important characteristics of solid tumors. Hypoxia inducible factor-1α (HIF-1α) and Interleukin-8 (IL-8) activate tumor survival from hypoxic-induced apoptosis in each pathway. This study aimed to evaluate whether knockdown of HIF-1α and IL-8 induced apoptosis of the hepatocellular carcinoma (HCC) and endothelial cell lines. HCC cell lines were infected with adenovirus-expressing shRNA for HIF-1α and IL-8 and maintained under hypoxic conditions (1% O2, 24 h). The expression levels of HIF-1α and both apoptotic and growth factors were examined by real-time quantitative PCR and western blot. We also investigated apoptosis by TUNEL assay (FACS and Immunofluorescence) and measured the concentration of cytochrome C. Inhibition of HIF-1α and IL-8 up-regulated the expression of apoptotic factors while downregulating anti-apoptotic factors simultaneously. Knockdown of HIF-1α and IL-8 increased the concentration of cytochrome C and enhanced DNA fragmentation in HCC cell lines. Moreover, culture supernatant collected from the knockdown of HIF-1α and IL-8 in HCC cell lines induced apoptosis in human umbilical vein endothelial cells under hypoxia, and the expression of variable apoptotic ligand increased from HCC cell lines, time-dependently. These data suggest that adenovirus-mediated knockdown of HIF-1α and IL-8 induced apoptosis in HCC cells and triggered apoptosis of vascular endothelial cells.

  14. Control of epithelial cell function by interleukin-22-producing RORγt+ innate lymphoid cells

    Science.gov (United States)

    Sanos, Stephanie L; Vonarbourg, Cedric; Mortha, Arthur; Diefenbach, Andreas

    2011-01-01

    It is rapidly emerging that the defence system of innate lymphocytes is more diverse than previously recognized. In addition to natural killer (NK) cells, lymphoid tissue inducer (LTi) cells, and natural helper cells have now been identified. LTi cells are developmentally dependent on the orphan transcription factor RORγt and instruct lymph node development during embryogenesis. More recently, it has become evident, that in addition to their role for lymph organ development, LTi cells are also potent producers of cytokines such as interleukin-22 (IL-22) and IL-17 in adult mice. In addition to LTi cells, another RORγt-dependent innate lymphocyte subset co-expressing RORγt and NK cell receptors (NKRs) has been identified. These NKR+ RORγt+ cells are also potent producers of IL-22 but it is unclear whether they are part of the NK cell or LTi cell lineage. This review will highlight recent progress in understanding development and function of innate IL-22-producing lymphocyte subsets. PMID:21391996

  15. Tumor-infiltrating lymphocyte activity is enhanced in tumors with low IL-10 production in HBV-induced hepatocellular carcinoma

    International Nuclear Information System (INIS)

    Shi, Yang; Song, Qingwei; Hu, Dianhe; Zhuang, Xiaohu; Yu, Shengcai

    2015-01-01

    Hepatocellular carcinoma (HCC) is one of the most common cancers and can be induced by chronic HBV infection. The role of HBV-specific immune responses in mediating tumorigenesis and HCC prognosis is debated. The effect of intratumoral microenvironment on tumor-infiltrating lymphocytes (TILs) is also unclear. Here, we examined resected tumor tissue from 36 patients with HBV-induced HCC. We categorized study cohort based on ex vivo IL-10 secretion by tumor cells into high IL-10-secreting (Hi10) and low IL-10-secreting (Lo10) groups, and found that the Lo10 group was less sensitive to TLR ligand stimulation. TILs from the Lo10 group contained higher frequencies of HBV-specific IFN-g-producing cells and total IFN-g-producing cells, and possessed higher proliferative capacity. Moreover, the proliferative capacity of TILs from the Hi10 group was negatively correlated with IL-10 secretion from tumor cells. Together, our data demonstrated that low IL-10-producing capacity in HBV-induced HCC tumors is associated with enhanced TIL activity. - Highlights: • We examined intratumoral IL-10 production in HBV-induced HCC. • We grouped HCC tumors into Hi10 and Lo10 groups based on their IL-10 production. • Lo10 groups had better IFN-g response by TILs. • Lo10 groups had better TIL proliferative capacity. • Lo10 group tumor cells were refractory to TLR ligand stimulation

  16. Tumor-infiltrating lymphocyte activity is enhanced in tumors with low IL-10 production in HBV-induced hepatocellular carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Yang, E-mail: yangshi_xz@126.com; Song, Qingwei; Hu, Dianhe; Zhuang, Xiaohu; Yu, Shengcai

    2015-05-22

    Hepatocellular carcinoma (HCC) is one of the most common cancers and can be induced by chronic HBV infection. The role of HBV-specific immune responses in mediating tumorigenesis and HCC prognosis is debated. The effect of intratumoral microenvironment on tumor-infiltrating lymphocytes (TILs) is also unclear. Here, we examined resected tumor tissue from 36 patients with HBV-induced HCC. We categorized study cohort based on ex vivo IL-10 secretion by tumor cells into high IL-10-secreting (Hi10) and low IL-10-secreting (Lo10) groups, and found that the Lo10 group was less sensitive to TLR ligand stimulation. TILs from the Lo10 group contained higher frequencies of HBV-specific IFN-g-producing cells and total IFN-g-producing cells, and possessed higher proliferative capacity. Moreover, the proliferative capacity of TILs from the Hi10 group was negatively correlated with IL-10 secretion from tumor cells. Together, our data demonstrated that low IL-10-producing capacity in HBV-induced HCC tumors is associated with enhanced TIL activity. - Highlights: • We examined intratumoral IL-10 production in HBV-induced HCC. • We grouped HCC tumors into Hi10 and Lo10 groups based on their IL-10 production. • Lo10 groups had better IFN-g response by TILs. • Lo10 groups had better TIL proliferative capacity. • Lo10 group tumor cells were refractory to TLR ligand stimulation.

  17. Purification, crystallization and preliminary X-ray diffraction analysis of the IL-20-IL-20R1-IL-20R2 complex

    Energy Technology Data Exchange (ETDEWEB)

    Logsdon, Naomi J.; Allen, Christopher E.; Rajashankar, Kanagalaghatta R.; Walter, Mark R. (Cornell); (UAB)

    2012-02-08

    Interleukin-20 (IL-20) is an IL-10-family cytokine that regulates innate and adaptive immunity in skin and other tissues. In addition to protecting the host from various external pathogens, dysregulated IL-20 signaling has been shown to contribute to the pathogenesis of human psoriasis. IL-20 signals through two cell-surface receptor heterodimers, IL-20R1-IL-20R2 and IL-22R1-IL-20R2. In this report, crystals of the IL-20-IL-20R1-IL-20R2 ternary complex have been grown from polyethylene glycol solutions. The crystals belonged to space group P4{sub 1}2{sub 1}2 or P4{sub 3}2{sub 1}2, with unit-cell parameters a = 111, c = 135 {angstrom}, and diffracted X-rays to 3 {angstrom} resolution. The crystallographic asymmetric unit contains one IL-20-IL-20R1-IL-20R2 complex, corresponding to a solvent content of approximately 54%.

  18. Differential involvement of IL-6 in the early and late phase of 1-methylnicotinamide (MNA) release in Concanavalin A-induced hepatitis.

    Science.gov (United States)

    Sternak, Magdalena; Jakubowski, Andrzej; Czarnowska, Elzbieta; Slominska, Ewa M; Smolenski, Ryszard T; Szafarz, Malgorzata; Walczak, Maria; Sitek, Barbara; Wojcik, Tomasz; Jasztal, Agnieszka; Kaminski, Karol; Chlopicki, Stefan

    2015-09-01

    Exogenous 1-methylnicotinamide (MNA) displays anti-inflammatory activity. The aim of this work was to characterize the profile of release of endogenous MNA during the initiation and progression of murine hepatitis induced by Concanavalin A (ConA). In particular we aimed to clarify the role of interleukin-6 (IL-6) as well as the energy state of hepatocytes in MNA release in early and late phases of ConA-induced hepatitis in mice. Hepatitis was induced by ConA in IL-6(+/+) and IL-6(-/-) mice, and various parameters of liver inflammation and injury, as well as the energy state of hepatocytes, were analysed in relation to MNA release. The decrease in ATP/ADP and NADH/NAD ratios, cytokine release (IL-6, IFN-ɤ), acute phase response (e.g. haptoglobin) and liver injury (alanine aminotransaminase, ALT) were all blunted in ConA-induced hepatitis in IL-6(-/-) mice as compared to IL-6(+/+) mice. The release of MNA in response to Con A was also significantly blunted in IL-6(-/-) mice as compared to IL-6(+/+) mice in the early stage of ConA-induced hepatitis. In turn, nicotinamide N-methyltransferase (NNMT) and aldehyde oxidase (AO) activities were blunted in the liver and MNA plasma concentration was elevated to similar degree in the late stage after Concanavalin A in IL-6(+/+) and IL-6(-/-) mice. In conclusion, we demonstrated that in ConA-induced hepatitis, early, but not late MNA release was IL-6-dependent. Our results suggest that in the initiation and early hepatitis, MNA release is linked to the energy deficit/impaired redox status in hepatocytes, while in a later phase, MNA release is rather linked to the systemic inflammation. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. IL-33/ST2 signaling excites sensory neurons and mediates itch response in a mouse model of poison ivy contact allergy.

    Science.gov (United States)

    Liu, Boyi; Tai, Yan; Achanta, Satyanarayana; Kaelberer, Melanie M; Caceres, Ana I; Shao, Xiaomei; Fang, Jianqiao; Jordt, Sven-Eric

    2016-11-22

    Poison ivy-induced allergic contact dermatitis (ACD) is the most common environmental allergic condition in the United States. Case numbers of poison ivy ACD are increasing due to growing biomass and geographical expansion of poison ivy and increasing content of the allergen, urushiol, likely attributable to rising atmospheric CO 2 Severe and treatment-resistant itch is the major complaint of affected patients. However, because of limited clinical data and poorly characterized models, the pruritic mechanisms in poison ivy ACD remain unknown. Here, we aim to identify the mechanisms of itch in a mouse model of poison ivy ACD by transcriptomics, neuronal imaging, and behavioral analysis. Using transcriptome microarray analysis, we identified IL-33 as a key cytokine up-regulated in the inflamed skin of urushiol-challenged mice. We further found that the IL-33 receptor, ST2, is expressed in small to medium-sized dorsal root ganglion (DRG) neurons, including neurons that innervate the skin. IL-33 induces Ca 2+ influx into a subset of DRG neurons through neuronal ST2. Neutralizing antibodies against IL-33 or ST2 reduced scratching behavior and skin inflammation in urushiol-challenged mice. Injection of IL-33 into urushiol-challenged skin rapidly exacerbated itch-related scratching via ST2, in a histamine-independent manner. Targeted silencing of neuronal ST2 expression by intrathecal ST2 siRNA delivery significantly attenuated pruritic responses caused by urushiol-induced ACD. These results indicate that IL-33/ST2 signaling is functionally present in primary sensory neurons and contributes to pruritus in poison ivy ACD. Blocking IL-33/ST2 signaling may represent a therapeutic approach to ameliorate itch and skin inflammation related to poison ivy ACD.

  20. Low-dose Norfloxacin-treated leptospires induce less IL-1β release in J774A.1 cells following discrepant leptospiral gene expression.

    Science.gov (United States)

    Cao, Yongguo; Xie, Xufeng; Zhang, Wenlong; Wu, Dianjun; Tu, Changchun

    2018-06-01

    Currently, accumulating evidence is challenging subtherapeutic therapy. Low-dose Norfloxacin (Nor) has been reported to suppress the immune response and worsen leptospirosis. In this study, we investigated the influence of low-dose Nor (0.03 μg/ml, 0.06 μg/ml, 0.125 μg/ml) on leptospiral gene expression and analyzed the immunomodulatory effects of low-dose Nor-treated leptospires in J774A.1 cells. To study the expression profiles of low-dose Nor-treated leptospires, we chose LipL71/LipL21 as reference genes determined by the geNorm applet in this experiment. The results showed that low-dose Nor up-regulated the expression of FlaB and inhibited the expression of 16S rRNA, LipL32, LipL41, Loa22, KdpA, and KdpB compared with the untreated leptospires. These results indicated that low-dose Nor could regulate leptospiral gene expression. Using RT-PCR, the gene expression of IL-1β and TNF-α in J774A.1 cells was detected. Nor-treated leptospires induced higher expression levels of both IL-1β and TNF-α. However, when analyzed by ELISA, the release of mature IL-1β was reduced compared with that observed in cells induced with no Nor-treated leptospires, although the TNF-α protein level showed no significant change. Our study indicated that the gene expression of leptospires could be modulated by low-dose Nor, which induced less IL-1β release in J774A.1 cells. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. GM-CSF and IL-3 Modulate Human Monocyte TNF-α Production and Renewal in In Vitro Models of Trained Immunity.

    Science.gov (United States)

    Borriello, Francesco; Iannone, Raffaella; Di Somma, Sarah; Loffredo, Stefania; Scamardella, Eloise; Galdiero, Maria Rosaria; Varricchi, Gilda; Granata, Francescopaolo; Portella, Giuseppe; Marone, Gianni

    2016-01-01

    GM-CSF and IL-3 are hematopoietic cytokines that also modulate the effector functions of several immune cell subsets. In particular, GM-CSF and IL-3 exert a significant control on monocyte and macrophage effector functions, as assessed in experimental models of inflammatory and autoimmune diseases and also in human studies. Here, we sought to investigate the mechanisms and the extent to which GM-CSF and IL-3 modulate the pro-inflammatory, LPS-mediated, activation of human CD14 + monocytes taking into account the new concept of trained immunity (i.e., the priming stimulus modulates the response to subsequent stimuli mainly by inducing chromatin remodeling and increased transcription at relevant genetic loci). We demonstrate that GM-CSF and IL-3 priming enhances TNF-α production upon subsequent LPS stimulation (short-term model of trained immunity) in a p38- and SIRT2-dependent manner without increasing TNF primary transcript levels (a more direct measure of transcription), thus supporting a posttranscriptional regulation of TNF-α in primed monocytes. GM-CSF and IL-3 priming followed by 6 days of resting also results in increased TNF-α production upon LPS stimulation (long-term model of trained immunity). In this case, however, GM-CSF and IL-3 priming induces a c-Myc-dependent monocyte renewal and increase in cell number that is in turn responsible for heightened TNF-α production. Overall, our results provide insights to understand the biology of monocytes in health and disease conditions in which the hematopoietic cytokines GM-CSF and IL-3 play a role and also extend our knowledge of the cellular and molecular mechanisms of trained immunity.

  2. STAT3 and NF-κB are common targets for kaempferol-mediated attenuation of COX-2 expression in IL-6-induced macrophages and carrageenan-induced mouse paw edema

    Directory of Open Access Journals (Sweden)

    Anandita Basu

    2017-12-01

    Full Text Available Cycloxygenase-2 (COX-2 is the inducible isoform of cycloxygenase enzyme family that catalyzes synthesis of inflammatory mediators, prostanoids and prostaglandins, and therefore, can be targeted by anti-inflammatory drugs. Here, we showed a plant polyphenol, kaempferol, attenuated IL-6-induced COX-2 expression in human monocytic THP-1 cells suggesting its beneficial role in chronic inflammation. Kaempferol deactivated and prevented nuclear localization of two major transcription factors STAT3 and NF-κB, mutually responsible for COX-2 induction in response to IL-6. Moreover, STAT3 and NF-κB were simultaneously deactivated by kaempferol in acute inflammation, as shown by carrageenan-induced mouse paw edema model. The concomitant reduction in COX-2 expression in paw tissues suggested kaempferol’s role in mitigation of inflammation by targeting STAT3 and NF-κB.

  3. PGC-1α-Dependent Mitochondrial Adaptation Is Necessary to Sustain IL-2-Induced Activities in Human NK Cells.

    Science.gov (United States)

    Miranda, Dante; Jara, Claudia; Ibañez, Jorge; Ahumada, Viviana; Acuña-Castillo, Claudio; Martin, Adrian; Córdova, Alexandra; Montoya, Margarita

    2016-01-01

    Human Natural Killer (NK) cells are a specialized heterogeneous subpopulation of lymphocytes involved in antitumor defense reactions. NK cell effector functions are critically dependent on cytokines and metabolic activity. Among various cytokines modulating NK cell function, interleukin-2 (IL-2) can induce a more potent cytotoxic activity defined as lymphokine activated killer activity (LAK). Our aim was to determine if IL-2 induces changes at the mitochondrial level in NK cells to support the bioenergetic demand for performing this enhanced cytotoxic activity more efficiently. Purified human NK cells were cultured with high IL-2 concentrations to develop LAK activity, which was assessed by the ability of NK cells to lyse NK-resistant Daudi cells. Here we show that, after 72 h of culture of purified human NK cells with enough IL-2 to induce LAK activity, both the mitochondrial mass and the mitochondrial membrane potential increased in a PGC-1α-dependent manner. In addition, oligomycin, an inhibitor of ATP synthase, inhibited IL-2-induced LAK activity at 48 and 72 h of culture. Moreover, the secretion of IFN-γ from NK cells with LAK activity was also partially dependent on PGC-1α expression. These results indicate that PGC-1α plays a crucial role in regulating mitochondrial function involved in the maintenance of LAK activity in human NK cells stimulated with IL-2.

  4. Quantitative Contribution of IL2Rγ to the Dynamic Formation of IL2-IL2R Complexes.

    Directory of Open Access Journals (Sweden)

    Luis F Ponce

    Full Text Available Interleukin-2 (IL2 is a growth factor for several immune cells and its function depends on its binding to IL2Rs in the cell membrane. The most accepted model for the assembling of IL2-IL2R complexes in the cell membrane is the Affinity Conversion Model (ACM. This model postulates that IL2R receptor association is sequential and dependent on ligand binding. Most likely free IL2 binds first to IL2Rα, and then this complex binds to IL2Rβ, and finally to IL2Rγ (γc. However, in previous mathematical models representing this process, the binding of γc has not been taken into account. In this work, the quantitative contribution of the number of IL2Rγ chain to the IL2-IL2R apparent binding affinity and signaling is studied. A mathematical model of the affinity conversion process including the γ chain in the dynamic, has been formulated. The model was calibrated by fitting it to experimental data, specifically, Scatchard plots obtained using human cell lines. This paper demonstrates how the model correctly explains available experimental observations. It was estimated, for the first time, the value of the kinetic coefficients of IL2-IL2R complexes interaction in the cell membrane. Moreover, the number of IL2R components in different cell lines was also estimated. It was obtained a variable distribution in the number of IL2R components depending on the cell type and the activation state. Of most significance, the study predicts that not only the number of IL2Rα and IL2Rβ, but also the number of γc determine the capacity of the cell to capture and retain IL2 in signalling complexes. Moreover, it is also showed that different cells might use different pathways to bind IL2 as consequence of its IL2R components distribution in the membrane.

  5. Tumor associated macrophages protect colon cancer cells from TRAIL-induced apoptosis through IL-1beta-dependent stabilization of Snail in tumor cells.

    Directory of Open Access Journals (Sweden)

    Pawan Kaler

    2010-07-01

    Full Text Available We recently reported that colon tumor cells stimulate macrophages to release IL-1beta, which in turn inactivates GSK3beta and enhances Wnt signaling in colon cancer cells, generating a self-amplifying loop that promotes the growth of tumor cells.Here we describe that macrophages protect HCT116 and Hke-3 colon cancer cells from TRAIL-induced apoptosis. Inactivation of IL-1beta by neutralizing IL-1beta antibody, or silencing of IL-1beta in macrophages inhibited their ability to counter TRAIL-induced apoptosis. Accordingly, IL-1beta was sufficient to inhibit TRAIL-induced apoptosis. TRAIL-induced collapse of the mitochondrial membrane potential (Delta psi and activation of caspases were prevented by macrophages or by recombinant IL-1beta. Pharmacological inhibition of IL-1beta release from macrophages by vitamin D(3, a potent chemopreventive agent for colorectal cancer, restored the ability of TRAIL to induce apoptosis of tumor cells cultured with macrophages. Macrophages and IL-1beta failed to inhibit TRAIL-induced apoptosis in HCT116 cells expressing dnIkappaB, dnAKT or dnTCF4, confirming that they oppose TRAIL-induced cell death through induction of Wnt signaling in tumor cells. We showed that macrophages and IL-1beta stabilized Snail in tumor cells in an NF-kappaB/Wnt dependent manner and that Snail deficient tumor cells were not protected from TRAIL-induced apoptosis by macrophages or by IL-1beta, demonstrating a crucial role of Snail in the resistance of tumor cells to TRAIL.We have identified a positive feedback loop between tumor cells and macrophages that propagates the growth and promotes the survival of colon cancer cells: tumor cells stimulate macrophages to secrete IL-1beta, which in turn, promotes Wnt signaling and stabilizes Snail in tumor cells, conferring resistance to TRAIL. Vitamin D(3 halts this amplifying loop by interfering with the release of IL-1beta from macrophages. Accordingly, vitamin D(3 sensitizes tumor cells to TRAIL-induced

  6. Effect of Bizhongxiao decoction and its dismantled formulae on IL-1 and TNF levels in collagen-induced arthritis in rat synovial joints

    Directory of Open Access Journals (Sweden)

    Guo Ya-jing

    2012-11-01

    Full Text Available Abstract Background Rheumatoid arthritis (RA, a chronic autoimmune disease, affects sufferers in many different ways. Treatment of this chronic condition is particularly challenging. Traditional Chinese Medicine (TCM provides alternatives. Bizhongxiao decoction (BZX is a TCM complex, which has been used clinically for many years to treat RA. The purpose of this study is to compare the effects of BZX decoction and its dismantled formulae on IL-1 and TNF-1 levels in rats with RA, and to elucidate its mechanism of action. Methods Ninety healthy normal female SD rats were randomly divided into six groups: normal (control, model, BZX decoction, and the three dismantled formulae (I: heat-clearing and detoxication, II: dissipating dampness, and III: blood circulation promotion. Apart from the normal (control group, the rats in each group were injected subcutaneously with bovine type II collagen and complete Freund adjuvant to establish a collagen-induced arthritis model, so that inhibition of foot swelling in the rats by BZX decoction and its dismantled formulae could be observed. Immunohistochemistry was used to assess the levels of the inflammatory cytokines IL-1 and TNF in synovial joints at various time points. Results Twenty-one days after the model was established, the levels of TNF and IL-1 were significantly higher in the model group, BZX decoction group and dismantled formula groups I, II and III than in the normal controls (P  Conclusions BZX decoction and the three dismantled formulae examined down-regulated the inflammatory factors IL-1 and TNF in collagen-induced arthritis rat models, but BZX exerted the strongest effect.

  7. Pathogenesis pathways of idiopathic pulmonary fibrosis in bleomycin-induced lung injury model in mice.

    Science.gov (United States)

    Shi, Keyun; Jiang, Jianzhong; Ma, Tieliang; Xie, Jing; Duan, Lirong; Chen, Ruhua; Song, Ping; Yu, Zhixin; Liu, Chao; Zhu, Qin; Zheng, Jinxu

    2014-01-01

    Our objective was to investigate the pathogenesis pathways of idiopathic pulmonary fibrosis (IPF). Bleomycin (BLM) induced animal models of experimental lung fibrosis were used. CHIP assay was executed to find the link between Smad3 and IL-31, and the expressions of TGF-β1, Smad3, IL-31 and STAT1 were detected to find whether they were similar with each other. We found that in the early injury or inflammation of the animal model, BLM promoted the development of inflammation, leading to severe pulmonary fibrosis. Then the expression of TGF-β1 and Smad3 increased. Activated Smad3 bound to the IL-31 promoter region, followed by the activation of JAK-STAT pathways. The inhibitor of TGF-β1 receptor decreased the IL-31 expression and knocking-down of IL-31 also decreased the STAT1 expression. We conclude that there is a pathway of pathogenesis in BLM-induced mouse model that involves the TGF-β, IL-31 and JAKs/STATs pathway. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Arthritis severity locus Cia4 is an early regulator of IL-6, IL-1β, and NF-κB activators' expression in pristane-induced arthritis

    OpenAIRE

    Brenner, Max; Laragione, Teresina; Gulko, Pércio S.

    2013-01-01

    Cia4 is a locus on rat chromosome 7 that regulates disease severity and joint damage in models of rheumatoid arthritis, including pristane-induced arthritis (PIA). To identify molecular processes regulated by Cia4, synovial tissues from MHC-identical DA (severe erosive) and DA.F344(Cia4) congenics (mild nonerosive) rats were collected at preclinical and recent onset stages following the induction of PIA and analyzed for gene expression levels. Il6 levels were significantly higher in DA compar...

  9. IL-1β upregulates Muc5ac expression via NF-κB-induced HIF-1α in asthma.

    Science.gov (United States)

    Wu, Shouzhen; Li, Hailong; Yu, Lijuan; Wang, Ning; Li, Xu; Chen, Wei

    2017-12-01

    The manifest and important feature in respiratory diseases, including asthma and COPD (chronic obstructive pulmonary disease), is the increased numbers and hypersecretion of goblet cells and overexpression of mucins, especially Muc5ac. Many proinflammatory cytokines play important roles in goblet cell metaplasia and overproduction of Muc5ac. However, the effect of IL-1β on Muc5ac expression in asthma remains unknown. Here, we detected the correlation between IL-1β and Muc5ac in asthma patients and further explored the mechanism of IL-1β-induced Muc5ac overexpression. Our results showed that Muc5ac and IL-1β were up-regulated in 41 patients with asthma and that Muc5ac overexpression was related with IL-1β in asthma (R 2 =0.668, p≪0.001). Furthermore, the correlation between IL-1β and Muc5ac is higher in severe group than that in moderate group. In vitro experiments with normal human bronchial epithelial cells (NHBECs) showed that IL-1β up-regulated Muc5ac expression in NHBEC in a time- and dosage-dependent manner. Hypoxia-induced HIF-1α was responsible for Muc5ac expression mediated by IL-1β. Knocking down HIF-1α by siRNA decreased Muc5ac expression under hypoxia even in IL-1β-treated NHBEC cells. Luciferase reporter assay showed that HIF-1α enhanced Muc5ac promoter activity in HEK293T cells. HIF-1α could specifically bind to the promoter of Muc5ac by EMSA. The correlation among IL-1β, HIF-1α and Muc5ac was observed in patients with asthma. Mechanically, NF-κB activation was essential to IL-1β-induced HIF-1α upregulation via the canonical pathway of NF-κB. The level of nuclear p65, a subunit of NF-κB, was obviously increased in NHBEC cells under IL-1β treatment. IL-1β did not change either HIF-1α or Muc5ac expression when inhibiting NF-κB signaling with Bay11-7082, an inhibitor of NF-κB. Collectively, we concluded that IL-1β up-regulated Muc5ac expression via NF-κB-induced HIF-1α in asthma and provided a potential therapeutic target for

  10. PRL-3 Is Involved in Estrogen- and IL-6-Induced Migration of Endometrial Stromal Cells From Ectopic Endometrium.

    Science.gov (United States)

    Ren, Shifan; Zhou, Yefang; Fang, Xiaoling; She, Xiaoling; Wu, Yilin; Wu, Xianqing

    2016-05-24

    To investigate the role of phosphatase of regenerating liver-3 (PRL-3) in the 17β-estradiol (E2)- and interleukin 6 (IL-6)-induced migration of endometrial stromal cells (ESCs) from ectopic endometrium. Ectopic endometrial tissues were collected from patients with endometriosis, and PRL-3 expression in ectopic and eutopic endometrium was examined by immunohistochemistry. Endometrial stromal cells isolated from ectopic endometrium were treated with E2, progesterone (P), IL-6, or sodium orthovanadate (Sov) to inhibit PRL-3. Total RNA and protein were extracted from ESCs after treatment for quantitative real-time polymerase chain reaction and Western blot analyses. Cell migration was assessed using a scratch wound assay. Phosphatase of regenerating liver 3 protein was highly expressed in the endometrial glandular cells (EGCs) and ESCs in ectopic endometrium, whereas its weak expression was observed only in EGCs in eutopic endometrium. Both E2 and IL-6 treatment significantly increased PRL-3 messenger RNA and protein expression, and P treatment significantly inhibited PRL-3 expression. However, E2-induced PRL-3 expression in ESCs from ectopic endometrium was significantly blocked by IL-6 antibody. Moreover, E2- and IL-6-enhanced cell migration was completely abrogated by Sov treatment. Furthermore, Sov treatment could significantly promote PTEN expression but inhibit E2- and IL-6-induced p-AKT activation. Phosphatase of regenerating liver 3 plays a key role in the E2- and IL-6-induced migration of ESCs from ectopic endometrium, a process that is involved in the PTEN-AKT signaling pathway. © The Author(s) 2016.

  11. Immunostimulatory CpG-oligonucleotides induce functional high affinity IL-2 receptors on B-CLL cells: costimulation with IL-2 results in a highly immunogenic phenotype.

    Science.gov (United States)

    Decker, T; Schneller, F; Kronschnabl, M; Dechow, T; Lipford, G B; Wagner, H; Peschel, C

    2000-05-01

    CpG-oligodeoxynucleotides (CpG-ODN) have been shown to induce proliferation, cytokine production, and surface molecule regulation in normal and malignant human B cells. In the present study, we investigated the potential of CpG-ODN to induce functional high-affinity receptors in leukemic and normal B cells and the effects of costimulation with IL-2 on proliferation, cytokine secretion, and surface molecule regulation. Highly purified B cells from B-CLL patients and normal controls were stimulated with CpG-ODN with or without IL-2. Expression of CD25 was determined using FACS, and the presence of high-affinity IL-2 receptors was determined by scatchard analysis. Costimulatory effects of IL-2 and CpG-ODN were investigated using proliferation assays, ELISA (IL-6, TNF-alpha), and FACS analysis (CD80, CD86 expression). Reactivity of autologous and allogeneic T cells toward activated B-CLL cells was determined in mixed lymphocyte reactions and Interferon-gamma Elispot assays. The CpG-ODN DSP30 caused a significantly stronger induction of the IL-2 receptor alpha chain in malignant as compared with normal B cells (p = 0.03). This resulted in the expression of functional high-affinity IL-2 receptors in B-CLL cells, but fewer numbers of receptors with less affinity were expressed in normal B cells. Although addition of IL-2 to CpG-ODN-stimulated cells augmented proliferation in both normal B cells and B-CLL cells, no costimulatory effect on cytokine production or surface molecule expression could be observed in normal B cells. In contrast, TNF-alpha and IL-6 production was increased in B-CLL cells, and the expression of CD80 and CD86 was further enhanced when IL-2 was used as a costimulus. Autologous and allogeneic immune recognition of B-CLL cells stimulated with CpG-ODN and IL-2 was increased compared with B-CLL cells stimulated with CpG-ODN alone. Stimulation of B-CLL cells with CpG-ODN and IL-2 might be an attractive strategy for potential immunotherapies for B

  12. Staphylococcus aureus induces IL-8 expression through its lipoproteins in the human intestinal epithelial cell, Caco-2.

    Science.gov (United States)

    Kang, Seok-Seong; Noh, Su Young; Park, Ok-Jin; Yun, Cheol-Heui; Han, Seung Hyun

    2015-09-01

    Staphylococcus aureus can cause the intestinal inflammatory diseases. However, little is known about the molecular mechanism of S. aureus infection in the intestine. In the present study, we investigated whether S. aureus could stimulate human intestinal epithelial cells triggering inflammation. When the human intestinal epithelial cell-line, Caco-2, and the primary colon cells were stimulated with ethanol-inactivated S. aureus, IL-8 expression was induced in a dose-dependent manner. The inactivated S. aureus preferentially stimulated Toll-like receptor (TLR) 2 rather than TLR4. Lipoproteins, lipoteichoic acid (LTA), and peptidoglycan (PGN) are considered as potential TLR2 ligands of S. aureus. Interestingly, S aureus lipoproteins and Pam2CSK4 mimicking Gram-positive bacterial lipoproteins, but not LTA and PGN of S. aureus, significantly induced IL-8 expression in Caco-2 cells. Furthermore, lipoprotein-deficient S. aureus mutant strain failed to induce IL-8 production. Collectively, these results suggest that S. aureus stimulates the human intestinal epithelial cells to induce the chemokine IL-8 production through its lipoproteins, potentially contributing the development of intestinal inflammation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Protective effect of Bifidobacterium infantis CGMCC313-2 on ovalbumin-induced airway asthma and β-lactoglobulin-induced intestinal food allergy mouse models

    Science.gov (United States)

    Liu, Meng-Yun; Yang, Zhen-Yu; Dai, Wen-Kui; Huang, Jian-Qiong; Li, Yin-Hu; Zhang, Juan; Qiu, Chuang-Zhao; Wei, Chun; Zhou, Qian; Sun, Xin; Feng, Xin; Li, Dong-Fang; Wang, He-Ping; Zheng, Yue-Jie

    2017-01-01

    AIM To determine whether oral administration of Bifidobacterium infantis CGMCC313-2 (B. infantis CGMCC313-2) inhibits allergen-induced airway inflammation and food allergies in a mouse model. METHODS Ovalbumin (OVA)-induced allergic asthma and β-lactoglobulin-induced food allergy mouse models were used in this study. Following oral administration of B. infantis CGMCC313-2 during or after allergen sensitization, histopathologic changes in the lung and intestine were evaluated by hematoxylin and eosin (HE) staining. In the allergic asthma mouse model, we evaluated the proportion of lung-infiltrating inflammatory cells. OVA-specific IgE and IgG1 levels in serum and cytokine levels in bronchoalveolar lavage fluid (BALF) were also assessed. In the food allergy mouse model, the levels of total IgE and cytokines in serum were measured. RESULTS Oral administration of B. infantis CGMCC313-2 during or after allergen sensitization suppressed allergic inflammation in lung and intestinal tissues, while the proportion of infiltrating inflammatory cells was significantly decreased in the BALF of allergic asthma mice. Moreover, B. infantis CGMCC313-2 decreased the serum levels of total IgE in food allergy mice, and reductions in IgE and IgG1 were also observed in OVA-induced allergic asthma mice. The expression of interleukin-4 (IL-4) and IL-13 in both serum and BALF was suppressed following the administration of B. infantis CGMCC313-2, while an effect on serum IL-10 levels was not observed. CONCLUSION B. infantis CGMCC313-2 inhibits the secretion of allergen-induced IgE, IL-4 and IL-13, and attenuates allergic inflammation. PMID:28405142

  14. Respiratory Syncytial Virus Disease Is Mediated by Age-Variable IL-33.

    Directory of Open Access Journals (Sweden)

    Jordy Saravia

    2015-10-01

    Full Text Available Respiratory syncytial virus (RSV is the most common cause of infant hospitalizations and severe RSV infections are a significant risk factor for childhood asthma. The pathogenic mechanisms responsible for RSV induced immunopathophysiology remain elusive. Using an age-appropriate mouse model of RSV, we show that IL-33 plays a critical role in the immunopathogenesis of severe RSV, which is associated with higher group 2 innate lymphoid cells (ILC2s specifically in neonates. Infection with RSV induced rapid IL-33 expression and an increase in ILC2 numbers in the lungs of neonatal mice; this was not observed in adult mice. Blocking IL-33 with antibodies or using an IL-33 receptor knockout mouse during infection was sufficient to inhibit RSV immunopathogenesis (i.e., airway hyperresponsiveness, Th2 inflammation, eosinophilia, and mucus hyperproduction; whereas administration of IL-33 to adult mice during RSV infection was sufficient to induce RSV disease. Additionally, elevated IL-33 and IL-13 were observed in nasal aspirates from infants hospitalized with RSV; these cytokines declined during convalescence. In summary, IL-33 is necessary, either directly or indirectly, to induce ILC2s and the Th2 biased immunopathophysiology observed following neonatal RSV infection. This study provides a mechanism involving IL-33 and ILC2s in RSV mediated human asthma.

  15. IL-33 activates tumor stroma to promote intestinal polyposis.

    Science.gov (United States)

    Maywald, Rebecca L; Doerner, Stephanie K; Pastorelli, Luca; De Salvo, Carlo; Benton, Susan M; Dawson, Emily P; Lanza, Denise G; Berger, Nathan A; Markowitz, Sanford D; Lenz, Heinz-Josef; Nadeau, Joseph H; Pizarro, Theresa T; Heaney, Jason D

    2015-05-12

    Tumor epithelial cells develop within a microenvironment consisting of extracellular matrix, growth factors, and cytokines produced by nonepithelial stromal cells. In response to paracrine signals from tumor epithelia, stromal cells modify the microenvironment to promote tumor growth and metastasis. Here, we identify interleukin 33 (IL-33) as a regulator of tumor stromal cell activation and mediator of intestinal polyposis. In human colorectal cancer, IL-33 expression was induced in the tumor epithelium of adenomas and carcinomas, and expression of the IL-33 receptor, IL1RL1 (also referred to as IL1-R4 or ST2), localized predominantly to the stroma of adenoma and both the stroma and epithelium of carcinoma. Genetic and antibody abrogation of responsiveness to IL-33 in the Apc(Min/+) mouse model of intestinal tumorigenesis inhibited proliferation, induced apoptosis, and suppressed angiogenesis in adenomatous polyps, which reduced both tumor number and size. Similar to human adenomas, IL-33 expression localized to tumor epithelial cells and expression of IL1RL1 associated with two stromal cell types, subepithelial myofibroblasts and mast cells, in Apc(Min/+) polyps. In vitro, IL-33 stimulation of human subepithelial myofibroblasts induced the expression of extracellular matrix components and growth factors associated with intestinal tumor progression. IL-33 deficiency reduced mast cell accumulation in Apc(Min/+) polyps and suppressed the expression of mast cell-derived proteases and cytokines known to promote polyposis. Based on these findings, we propose that IL-33 derived from the tumor epithelium promotes polyposis through the coordinated activation of stromal cells and the formation of a protumorigenic microenvironment.

  16. Requirement of TPO/c-mpl for IL-17A-induced granulopoiesis and megakaryopoiesis.

    Science.gov (United States)

    Tan, Weihong; Liu, Bainan; Barsoum, Adel; Huang, Weitao; Kolls, Jay K; Schwarzenberger, Paul

    2013-12-01

    IL-17A is a critical, proinflammatory cytokine essential to host defense and is induced in response to microbial invasion. It stimulates granulopoiesis, leading to neutrophilia, neutrophil activation, and mobilization. TPO synergizes with other cytokines in stimulating and expanding hematopoietic progenitors, also leading to granulopoiesis and megakaryopoiesis, and is required for thrombocytopoiesis. We investigated the effects of in vivo expression of IL-17A on granulopoiesis and megakaryopoiesis in TPO receptor c-mpl-/- mice. IL-17A expression expanded megakaryocytes by 2.5-fold in normal mice but had no such effect in c-mpl-/- mice. The megakaryocyte expansion did not result in increased peripheral platelet counts. IL-17A expression did not impact bone marrow precursors in c-mpl-/- mice; however, it expanded splenic precursors, although to a lesser extent compared with normal controls (CFU-HPP). No peripheral neutrophil expansion was observed in c-mpl-/- mice. Moreover, in c-mpl-/- mice, release of IL-17A downstream cytokines was reduced significantly (KC, MIP-2, GM-CSF). The data suggest that IL-17A requires the presence of functional TPO/c-mpl to exert its effects on granulopoiesis and megakaryopoiesis. Furthermore, IL-17A and its downstream cytokines are important regulators and synergistic factors for the physiologic function of TPO/c-mpl on hematopoiesis.

  17. IL-4 and IL-13 Receptor Signaling From 4PS to Insulin Receptor Substrate 2: There and Back Again, a Historical View.

    Science.gov (United States)

    Keegan, Achsah D; Zamorano, Jose; Keselman, Aleksander; Heller, Nicola M

    2018-01-01

    In this historical perspective, written in honor of Dr. William E. Paul, we describe the initial discovery of one of the dominant substrates for tyrosine phosphorylation stimulated by IL-4. We further describe how this "IL-4-induced phosphorylated substrate" (4PS) was characterized as a member of the insulin receptor substrate (IRS) family of large adaptor proteins that link IL-4 and insulin receptors to activation of the phosphatidyl-inositol 3' kinase pathway as well as other downstream signaling pathways. The relative contribution of the 4PS/IRS pathway to the early models of IL-4-induced proliferation and suppression of apoptosis are compared to our more recent understanding of the complex interplay between positive and negative regulatory pathways emanating from members of the IRS family that impact allergic responses.

  18. IL-6/IL-12 Cytokine Receptor Shuffling of Extra- and Intracellular Domains Reveals Canonical STAT Activation via Synthetic IL-35 and IL-39 Signaling.

    Science.gov (United States)

    Floss, D M; Schönberg, M; Franke, M; Horstmeier, F C; Engelowski, E; Schneider, A; Rosenfeldt, E M; Scheller, J

    2017-11-09

    IL-35 and IL-39 are recently discovered shared members of the IL-6- and IL-12-type cytokine family with immune-suppressive capacity. IL-35 has been reported to induce the formation of four different receptor complexes: gp130:IL-12β2, gp130:gp130, IL-12β2:IL-12β2, and IL-12β2:WSX-1. IL-39 was proposed to form a gp130:IL-23R receptor complex. IL-35, but not IL-39, has been reported to activate non-conventional STAT signaling, depending on the receptor complex and target cell. Analyses of IL-35 and IL-39 are, however, hampered by the lack of biologically active recombinant IL-35 and IL-39 proteins. Therefore, we engineered chimeric cytokine receptors to accomplish synthetic IL-35 and IL- 39 signaling by shuffling the extra- and intracellular domains of IL-6/IL-12-type cytokine receptors, resulting in biological activity for all previously described IL-35 receptor complexes. Moreover, we found that the proposed IL-39 receptor complex is biologically active and discovered two additional biologically active synthetic receptor combinations, gp130/IL-12Rβ1 and IL-23R/IL-12Rβ2. Surprisingly, synthetic IL-35 activation led to more canonical STAT signaling of all receptor complexes. In summary, our receptor shuffling approach highlights an interchangeable, modular domain structure among IL-6- and IL-12-type cytokine receptors and enabled synthetic IL-35 and IL-39 signaling.

  19. PROBABILISTIC RELATIONAL MODELS OF COMPLETE IL-SEMIRINGS

    OpenAIRE

    Tsumagari, Norihiro

    2012-01-01

    This paper studies basic properties of probabilistic multirelations which are generalized the semantic domain of probabilistic systems and then provides two probabilistic models of complete IL-semirings using probabilistic multirelations. Also it is shown that these models need not be models of complete idempotentsemirings.

  20. Elevated IP-10 and IL-6 from bronchoalveolar lavage cells are biomarkers of non-cavitary tuberculosis.

    Science.gov (United States)

    Nolan, A; Condos, R; Huie, M L; Dawson, R; Dheda, K; Bateman, E; Rom, W N; Weiden, M D

    2013-07-01

    Active TB disease can destroy lung parenchyma leading to cavities. Immune responses that predispose or protect individuals from lung damage during TB are poorly defined. To sample lung immune cells and assay bronchoalveolar lavage (BAL) cell cytokine production. Enrolled subjects (n = 73) had bilateral infiltrates and underwent BAL. All had sputum culture demonstrating Mycobacterium tuberculosis and 22/73 (30%) had cavities on their chest radiograph. Those with cavities at presentation had a higher percentage of polymorphonuclear neutrophils (PMN) in BAL as well as lower inducible protein (IP) 10 (P IP-10 was negatively associated with BAL PMN. IP-10 and IL-6 expression above median reduces the odds of cavities by 79% and 78% in logistic regression models. IP-10 and IL-6 clustered with interferon-gamma and tumour necrosis factor-alpha in a principal component analysis, while IL-4 clustered with PMN. Increasing IP-10 and IL-6 production by BAL cells is associated with non-cavitary TB in patients who present with radiographically advanced TB. IP-10 and IL-6 may reflect an effective T-helper 1 immune control pathway for TB, attenuating tuberculous lung destruction.

  1. Apurinic/apyrimidinic endonuclease1/redox factor-1 (Ape1/Ref-1) is essential for IL-21-induced signal transduction through ERK1/2 pathway

    International Nuclear Information System (INIS)

    Juliana, Farha M.; Nara, Hidetoshi; Onoda, Tadashi; Rahman, Mizanur; Araki, Akemi; Jin, Lianjin; Fujii, Hodaka; Tanaka, Nobuyuki; Hoshino, Tomoaki; Asao, Hironobu

    2012-01-01

    Highlights: ► IL-21 induces nuclear accumulation of Ape1/Ref-1 protein. ► Ape1/Ref-1 is indispensable in IL-21-induced cell proliferation and survival signal. ► Ape1/Ref-1 is required for IL-21-induced ERK1/2 activation. -- Abstract: IL-21 is a pleiotropic cytokine that regulates T-cell and B-cell differentiation, NK-cell activation, and dendritic cell functions. IL-21 activates the JAK-STAT, ERK, and PI3K pathways. We report here that Ape1/Ref-1 has an essential role in IL-21-induced cell growth signal transduction. Overexpression of Ape1/Ref-1 enhances IL-21-induced cell proliferation, but it is suppressed by overexpressing an N-terminal deletion mutant of Ape1/Ref-1 that lacks the redox domain. Furthermore, knockdown of the Ape1/Ref-1 mRNA dramatically compromises IL-21-induced ERK1/2 activation and cell proliferation with increasing cell death. These impaired activities are recovered by the re-expression of Ape1/Ref-1 in the knockdown cells. Our findings are the first demonstration that Ape1/Ref-1 is an indispensable molecule for the IL-21-mediated signal transduction through ERK1/2 activation.

  2. IL-15 improves the cytotoxicity of cytokine-induced killer cells against leukemia cells by upregulating CD3+CD56+ cells and downregulating regulatory T cells as well as IL-35.

    Science.gov (United States)

    Tao, Qianshan; Chen, Tianping; Tao, Lili; Wang, Huiping; Pan, Ying; Xiong, Shudao; Zhai, Zhimin

    2013-01-01

    Cytokine-induced killer (CIK) cells are usually generated from peripheral blood mononuclear cells with the stimulation of IL-2 in vitro. Unlike the conventional IL-2-stimulated CIK cells (IL-2-CIK cells), we investigated the characteristics and potential mechanism of IL-15-stimulated CIK cells (IL-15-CIK cells) in this study. Compared with IL-2-CIK cells, the percentage of CD3CD56 cells was significantly increased in IL-15-CIK cells, but the expression of regulatory T (Treg) cells and IL-35 was significantly decreased in IL-15-CIK cells. Meanwhile, the in vitro cytotoxicity against human myeloid leukemia cells K562 of IL-15-CIK cells was significantly augmented compared with IL-2-CIK cells. These data suggest that IL-15 may improve the cytotoxicity of CIK cells against leukemia cells by upregulating CD3CD56 cells and downregulating Treg cells and IL-35.

  3. Differential regulation of iron chelator-induced IL-8 synthesis via MAP kinase and NF-κB in immortalized and malignant oral keratinocytes

    International Nuclear Information System (INIS)

    Lee, Hwa-Jeong; Lee, Jun; Lee, Sun-Kyung; Lee, Suk-Keun; Kim, Eun-Cheol

    2007-01-01

    Interleukin-8 (IL-8) is a cytokine that plays an important role in tumor progression in a variety of cancer types; however, its regulation is not well understood in oral cancer cells. In the present study, we examined the expression and mechanism of IL-8 in which it is involved by treating immortalized (IHOK) and malignant human oral keratinocytes (HN12) cells with deferoxamine (DFO). IL-8 production was measured by an enzyme-linked immunoabsorbent assay and reverse transcriptase-polymerase chain reaction (RT-PCR) analysis. Electrophoretic mobility shift assays was used to determine NF-κB binding activity. Phosphorylation and degradation of the I-κB were analyized by Western blot. IHOK cells incubated with DFO showed increased expression of IL-8 mRNA, as well as higher release of the IL-8 protein. The up-regulation of DFO-induced IL-8 expression was higher in IHOK cells than in HN12 cells and was concentration-dependent. DFO acted additively with IL-1β to strongly up-regulate IL-8 in IHOK cells but not in HN12 cells. Accordingly, selective p38 and ERK1/2 inhibitors for both kinases abolished DFO-induced IL-8 expression in both IHOK and HN12 cells. Furthermore, DFO induced the degradation and phosphorylation of IκB, and activation of NF-κB. The IL-8 inducing effects of DFO were mediated by a nitric oxide donor (S-nitrosoglutathione), and by pyrrolidine dithiocarbamate, an inhibitor of NF-κB, as well as by wortmannin, which inhibits the phosphatidylinositol 3-kinase-dependent activation of NAD(P)H oxidase. This results demonstrate that DFO-induced IL-8 acts via multiple signaling pathways in immortalized and malignant oral keratinocytes, and that the control of IL-8 may be an important target for immunotheraphy against human oral premalignant lesions

  4. Vitiligo inducing phenols activate the unfolded protein response in melanocytes resulting in upregulation of IL6 and IL8

    Science.gov (United States)

    Toosi, Siavash; Orlow, Seth J.; Manga, Prashiela

    2012-01-01

    Vitiligo is characterized by depigmented skin patches due to loss of epidermal melanocytes. Oxidative stress may play a role in vitiligo onset, while autoimmunity contributes to disease progression. In this study we sought to identify mechanisms that link disease triggers and spreading of lesions. A hallmark of melanocytes at the periphery of vitiligo lesions is dilation of the endoplasmic reticulum (ER). We hypothesized that oxidative stress results in redox disruptions that extend to the ER, causing accumulation of misfolded peptides, which activates the unfolded protein response (UPR). We used 4-tertiary butyl phenol (4-TBP) and monobenzyl ether of hydroquinone (MBEH), known triggers of vitiligo. We show that expression of key UPR components, including the transcription factor X-box binding protein 1 (XBP1), are increased following exposure of melanocytes to phenols. XBP1 activation increases production of immune mediators interleukin-6 (IL6) and IL8. Co-treatment with XBP1 inhibitors reduced IL6 and IL8 production induced by phenols, while over-expression of XBP1 alone increased their expression. Thus, melanocytes themselves produce cytokines associated with activation of an immune response following exposure to chemical triggers of vitiligo. These results expand our understanding of the mechanisms underlying melanocyte loss in vitiligo and pathways linking environmental stressors and autoimmunity. PMID:22696056

  5. Vitiligo-inducing phenols activate the unfolded protein response in melanocytes resulting in upregulation of IL6 and IL8.

    Science.gov (United States)

    Toosi, Siavash; Orlow, Seth J; Manga, Prashiela

    2012-11-01

    Vitiligo is characterized by depigmented skin patches caused by loss of epidermal melanocytes. Oxidative stress may have a role in vitiligo onset, while autoimmunity contributes to disease progression. In this study, we sought to identify mechanisms that link disease triggers and spreading of lesions. A hallmark of melanocytes at the periphery of vitiligo lesions is dilation of the endoplasmic reticulum (ER). We hypothesized that oxidative stress results in redox disruptions that extend to the ER, causing accumulation of misfolded peptides, which activates the unfolded protein response (UPR). We used 4-tertiary butyl phenol and monobenzyl ether of hydroquinone, known triggers of vitiligo. We show that expression of key UPR components, including the transcription factor X-box-binding protein 1 (XBP1), is increased following exposure of melanocytes to phenols. XBP1 activation increases production of immune mediators IL6 and IL8. Co-treatment with XBP1 inhibitors reduced IL6 and IL8 production induced by phenols, while overexpression of XBP1 alone increased their expression. Thus, melanocytes themselves produce cytokines associated with activation of an immune response following exposure to chemical triggers of vitiligo. These results expand our understanding of the mechanisms underlying melanocyte loss in vitiligo and pathways linking environmental stressors and autoimmunity.

  6. IL-4-secreting eosinophils promote endometrial stromal cell proliferation and prevent Chlamydia-induced upper genital tract damage.

    Science.gov (United States)

    Vicetti Miguel, Rodolfo D; Quispe Calla, Nirk E; Dixon, Darlene; Foster, Robert A; Gambotto, Andrea; Pavelko, Stephen D; Hall-Stoodley, Luanne; Cherpes, Thomas L

    2017-08-15

    Genital Chlamydia trachomatis infections in women typically are asymptomatic and do not cause permanent upper genital tract (UGT) damage. Consistent with this presentation, type 2 innate and T H 2 adaptive immune responses associated with dampened inflammation and tissue repair are elicited in the UGT of Chlamydia -infected women. Primary C. trachomatis infection of mice also causes no genital pathology, but unlike women, does not generate Chlamydia -specific T H 2 immunity. Herein, we explored the significance of type 2 innate immunity for restricting UGT tissue damage in Chlamydia -infected mice, and in initial studies intravaginally infected wild-type, IL-10 -/- , IL-4 -/- , and IL-4Rα -/- mice with low-dose C. trachomatis inoculums. Whereas Chlamydia was comparably cleared in all groups, IL-4 -/- and IL-4Rα -/- mice displayed endometrial damage not seen in wild-type or IL-10 -/- mice. Congruent with the aberrant tissue repair in mice with deficient IL-4 signaling, we found that IL-4Rα and STAT6 signaling mediated IL-4-induced endometrial stromal cell (ESC) proliferation ex vivo, and that genital administration of an IL-4-expressing adenoviral vector greatly increased in vivo ESC proliferation. Studies with IL-4-IRES-eGFP (4get) reporter mice showed eosinophils were the main IL-4-producing endometrial leukocyte (constitutively and during Chlamydia infection), whereas studies with eosinophil-deficient mice identified this innate immune cell as essential for endometrial repair during Chlamydia infection. Together, our studies reveal IL-4-producing eosinophils stimulate ESC proliferation and prevent Chlamydia -induced endometrial damage. Based on these results, it seems possible that the robust type 2 immunity elicited by Chlamydia infection of human genital tissue may analogously promote repair processes that reduce phenotypic disease expression.

  7. Targeting the IL-17/IL-6 axis can alter growth of Chronic Lymphocytic Leukemia in vivo/in vitro.

    Science.gov (United States)

    Zhu, Fang; McCaw, Lindsay; Spaner, David E; Gorczynski, Reginald M

    2018-03-01

    The tumor microenvironment (TME) is critical to the longevity of tumor B cells in chronic lymphocytic leukemia (CLL). Bone marrow mesenchymal stem cells (BMMSCs) and the cytokines they produce including IL-6 are important components of the TME in CLL. We found BMMSCs supported the survival of CLL cells in vitro through an IL-6 dependent mechanism. IL-17 which induces IL-6 generation in a variety of cells increased production of IL-6 both in CLL cells and BMMSCs in vitro. In a xenograft CLL mouse model, BMMSCs and the culture supernatant of BMMSCs increased engraftment of CLL cells through an IL-6 mediated mechanism with human recombinant IL-6 showing similar effects in vivo. Human recombinant IL-17 treatment also increased CLL engraftment in mice through an IL-6 mediated mechanism. Plasma of CLL patients showed elevated levels of both IL-6 and IL-17 by ELISA compared with healthy controls, with levels of IL-6 linearly correlated with IL-17 levels. CLL patients requiring fludarabine based chemotherapy expressed higher levels of IL-6 and IL-17, while CLL patients with the lowest levels of IgA/IgM had higher levels of IL-6, but not IL-17. These data imply an important role for the IL-17/IL-6 axis in CLL which could be therapeutic targets. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Essential pathogenic role of endogenous IL-18 in murine diabetes induced by multiple low doses of streptozotocin. Prevention of hyperglycemia and insulitis by a recombinant IL-18-binding protein: Fc construct

    DEFF Research Database (Denmark)

    Nicoletti, Ferdinando; Di Marco, Roberto; Papaccio, Gianpaolo

    2003-01-01

    IL-18 is a cytokine structurally and functionally related to IL-1 that, in synergy with IL-12, stimulates the synthesis of IFN-gamma from T lymphocytes and natural killer cells. Because IFN-gamma plays a key pathogenic role in the development of murine immunoinflammatory diabetes induced by multi...

  9. Reverse plasticity: TGF-β and IL-6 induce Th1-to-Th17-cell transdifferentiation in the gut.

    Science.gov (United States)

    Geginat, Jens; Paroni, Moira; Kastirr, Ilko; Larghi, Paola; Pagani, Massimiliano; Abrignani, Sergio

    2016-10-01

    Th17 cells are a heterogeneous population of pro-inflammatory T cells that have been shown to mediate immune responses against intestinal bacteria. Th17 cells are highly plastic and can transdifferentiate to Th1/17 cells or unconventional Th1 cells, which are highly pathogenic in animal models of immune-mediated diseases such as inflammatory bowel diseases. A recent European Journal of Immunology article by Liu et al. (Eur. J. Immunol. 2015. 45:1010-1018) showed, surprisingly, that Th1 cells have a similar plasticity, and could transdifferentiate to Th17 cells. Thus, IFN-γ-producing Th1 effector cells specific for an intestinal microbial antigen were shown to acquire IL-17-producing capacities in the gut in a mouse model of colitis, and in response to TGF-β and IL-6 in vitro. TGF-β induced Runx1, and together with IL-6 was shown to render the ROR-γt and IL-17 promoters in Th1 cells accessible for Runx1 binding. In this commentary, we discuss how this unexpected plasticity of Th1 cells challenges our view on the generation of Th1/17 cells with the capacity to co-produce IL-17 and IFN-γ, and consider possible implications of this Th1-to-Th17-cell conversion for therapies of inflammatory bowel diseases and protective immune responses against intracellular pathogens. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Macrophages as IL-25/IL-33-responsive cells play an important role in the induction of type 2 immunity.

    Directory of Open Access Journals (Sweden)

    Zhonghan Yang

    Full Text Available Type 2 immunity is essential for host protection against nematode infection but is detrimental in allergic inflammation or asthma. There is a major research focus on the effector molecules and specific cell types involved in the initiation of type 2 immunity. Recent work has implicated an important role of epithelial-derived cytokines, IL-25 and IL-33, acting on innate immune cells that are believed to be the initial sources of type 2 cytokines IL-4/IL-5/IL-13. The identities of the cell types that mediate the effects of IL-25/IL-33, however, remain to be fully elucidated. In the present study, we demonstrate that macrophages as IL-25/IL-33-responsive cells play an important role in inducing type 2 immunity using both in vitro and in vivo approaches. Macrophages produced type 2 cytokines IL-5 and IL-13 in response to the stimulation of IL-25/IL-33 in vitro, or were the IL-13-producing cells in mice administrated with exogenous IL-33 or infected with Heligmosomoides bakeri. In addition, IL-33 induced alternative activation of macrophages primarily through autocrine IL-13 activating the IL-4Rα-STAT6 pathway. Moreover, depletion of macrophages attenuated the IL-25/IL-33-induced type 2 immunity in mice, while adoptive transfer of IL-33-activated macrophages into mice with a chronic Heligmosomoides bakeri infection induced worm expulsion accompanied by a potent type 2 protective immune response. Thus, macrophages represent a unique population of the innate immune cells pivotal to type 2 immunity and a potential therapeutic target in controlling type 2 immunity-mediated inflammatory pathologies.

  11. Higher proliferation of peritumoral endothelial cells to IL-6/sIL-6R than tumoral endothelial cells in hepatocellular carcinoma

    International Nuclear Information System (INIS)

    Zhuang, Peng-Yuan; Wang, Jian-Dong; Tang, Zhao-Hui; Zhou, Xue-Ping; Quan, Zhi-Wei; Liu, Ying-Bin; Shen, Jun

    2015-01-01

    This study aimed to explore the responses to the interleukin-6 (IL-6)/soluble interleukin-6 receptor (sIL-6R) complex in peritumoral endothelial cells (PECs) and tumor endothelial cells (TECs), as well as determine the signaling pathways in the angiogenesis of hepatocellular carcinoma (HCC). The expression of IL-6, IL-6R, gp130, CD68, HIF-1α, and microvessel density (MVD) were assessed with an orthotopic xenograft model in nude mice. ECs were incubated under hypoxic conditions to detect IL-6 and gp130. The proliferation of PECs and TECs in the presence of IL-6 and sIL-6R, as well as the expression of gp130, JAK2/STAT3, PI3K/AKT in endothelial cells were measured. Peritumoral IL-6, IL-6R, gp130, CD68, and HIF-1α expression, as well as MVD, gradually increased during tumor growth. Hypoxia could directly induce IL-6 expression, but not gp130 in PECs. The co-culture of IL-6/sIL-6R induced much higher PEC proliferation and gp130 expression, as well as the elevated phosphorylation of JAK2 and STAT3, however not the phosphorylation of PI3K and AKT. PECs exhibited higher proliferation in response to IL-6/sIL-6R co-treatment compared with TECs in HCC via the up-regulation of gp130 /JAK2/STAT3. PEC and its associated peritumoral angiogenesis microenvironment may be a potential novel target for anti-angiogenic treatment. The online version of this article (doi:10.1186/s12885-015-1763-2) contains supplementary material, which is available to authorized users

  12. IL-4 and IL-13 Receptor Signaling From 4PS to Insulin Receptor Substrate 2: There and Back Again, a Historical View

    Directory of Open Access Journals (Sweden)

    Achsah D. Keegan

    2018-05-01

    Full Text Available In this historical perspective, written in honor of Dr. William E. Paul, we describe the initial discovery of one of the dominant substrates for tyrosine phosphorylation stimulated by IL-4. We further describe how this “IL-4-induced phosphorylated substrate” (4PS was characterized as a member of the insulin receptor substrate (IRS family of large adaptor proteins that link IL-4 and insulin receptors to activation of the phosphatidyl-inositol 3′ kinase pathway as well as other downstream signaling pathways. The relative contribution of the 4PS/IRS pathway to the early models of IL-4-induced proliferation and suppression of apoptosis are compared to our more recent understanding of the complex interplay between positive and negative regulatory pathways emanating from members of the IRS family that impact allergic responses.

  13. Augmentation of Antitumor Immunity by Human and Mouse CAR T Cells Secreting IL-18

    Directory of Open Access Journals (Sweden)

    Biliang Hu

    2017-09-01

    Full Text Available The effects of transgenically encoded human and mouse IL-18 on T cell proliferation and its application in boosting chimeric antigen receptor (CAR T cells are presented. Robust enhancement of proliferation of IL-18-secreting human T cells occurred in a xenograft model, and this was dependent on TCR and IL-18R signaling. IL-18 augmented IFN-γ secretion and proliferation of T cells activated by the endogenous TCR. TCR-deficient, human IL-18-expressing CD19 CAR T cells exhibited enhanced proliferation and antitumor activity in the xenograft model. Antigen-propelled activation of cytokine helper ensemble (APACHE CAR T cells displayed inducible expression of IL-18 and enhanced antitumor immunity. In an intact mouse tumor model, CD19-IL-18 CAR T cells induced deeper B cell aplasia, significantly enhanced CAR T cell proliferation, and effectively augmented antitumor effects in mice with B16F10 melanoma. These findings point to a strategy to develop universal CAR T cells for patients with solid tumors.

  14. IL-1β-induced matrix metalloproteinase-13 is activated by a disintegrin and metalloprotease-28-regulated proliferation of human osteoblast-like cells

    International Nuclear Information System (INIS)

    Ozeki, Nobuaki; Kawai, Rie; Yamaguchi, Hideyuki; Hiyama, Taiki; Kinoshita, Katsue; Hase, Naoko; Nakata, Kazuhiko; Kondo, Ayami; Mogi, Makio; Nakamura, Hiroshi

    2014-01-01

    We reported previously that matrix metalloproteinase (MMP)-13 accelerates bone remodeling in oral periradicular lesions, and indicated a potentially unique role for MMP-13 in wound healing and regeneration of alveolar bone. The ADAM (a disintegrin and metalloprotease) family is a set of multifunctional cell surface and secreted glycoproteins, of which ADAM-28 has been localized in bone and bone-like tissues. In this study, we show that interleukin (IL)-1β induces the expression of MMP-13 and ADAM-28 in homogeneous α7 integrin-positive human skeletal muscle stem cell (α7 + hSMSC)-derived osteoblast-like (α7 + hSMSC-OB) cells, and promotes proliferation while inhibiting apoptosis in these cells. At higher concentrations, however, IL-1β failed to induce the expression of these genes and caused an increase in apoptosis. We further employed ADAM-28 small interfering RNA (siRNA) to investigate whether IL-1β-induced MMP-13 expression is linked to this IL-1β-mediated changes in cell proliferation and apoptosis. Silencing ADAM-28 expression potently suppressed IL-1β-induced MMP-13 expression and activity, decreased cell proliferation and increased apoptosis in α7 + hSMSC-OB cells. In contrast, MMP-13 siRNA had no effect on ADAM-28 expression, suggesting ADAM-28 regulates MMP-13. Exogenous MMP-13 induced α7 + hSMSC-OB cell proliferation and could rescue ADAM-28 siRNA-induced apoptosis, and we found that proMMP-13 is partially cleaved into its active form by ADAM-28 in vitro. Overall, our results suggest that IL-1β-induced MMP-13 expression and changes in cell proliferation and apoptosis in α7 + hSMSC-OB cells are regulated by ADAM-28. - Highlights: • IL-1β induces the MMP-13 and ADAM-28 expression in human osteoblast-like cells. • IL-1β-induced MMP-13 expression increases proliferation and decreased apoptosis. • MMP-13 expression induced by IL-1β is regulated by ADAM-28. • proMMP-13 appears to be cleaved into its active form via ADAM-28

  15. IL-1β-induced matrix metalloproteinase-13 is activated by a disintegrin and metalloprotease-28-regulated proliferation of human osteoblast-like cells

    Energy Technology Data Exchange (ETDEWEB)

    Ozeki, Nobuaki; Kawai, Rie; Yamaguchi, Hideyuki; Hiyama, Taiki; Kinoshita, Katsue; Hase, Naoko; Nakata, Kazuhiko [Department of Endodontics, School of Dentistry, Aichi Gakuin University, 2-11 Suemori-dori, Chikusa-ku, Nagoya, Aichi 464-8651 (Japan); Kondo, Ayami [Department of Medicinal Biochemistry, School of Pharmacy, Aichi Gakuin University, 1-100 Kusumoto, Chikusa-ku, Nagoya, Aichi 464-8650 (Japan); Mogi, Makio, E-mail: makio@dpc.agu.ac.jp [Department of Medicinal Biochemistry, School of Pharmacy, Aichi Gakuin University, 1-100 Kusumoto, Chikusa-ku, Nagoya, Aichi 464-8650 (Japan); Nakamura, Hiroshi [Department of Endodontics, School of Dentistry, Aichi Gakuin University, 2-11 Suemori-dori, Chikusa-ku, Nagoya, Aichi 464-8651 (Japan)

    2014-04-15

    We reported previously that matrix metalloproteinase (MMP)-13 accelerates bone remodeling in oral periradicular lesions, and indicated a potentially unique role for MMP-13 in wound healing and regeneration of alveolar bone. The ADAM (a disintegrin and metalloprotease) family is a set of multifunctional cell surface and secreted glycoproteins, of which ADAM-28 has been localized in bone and bone-like tissues. In this study, we show that interleukin (IL)-1β induces the expression of MMP-13 and ADAM-28 in homogeneous α7 integrin-positive human skeletal muscle stem cell (α7{sup +}hSMSC)-derived osteoblast-like (α7{sup +}hSMSC-OB) cells, and promotes proliferation while inhibiting apoptosis in these cells. At higher concentrations, however, IL-1β failed to induce the expression of these genes and caused an increase in apoptosis. We further employed ADAM-28 small interfering RNA (siRNA) to investigate whether IL-1β-induced MMP-13 expression is linked to this IL-1β-mediated changes in cell proliferation and apoptosis. Silencing ADAM-28 expression potently suppressed IL-1β-induced MMP-13 expression and activity, decreased cell proliferation and increased apoptosis in α7{sup +}hSMSC-OB cells. In contrast, MMP-13 siRNA had no effect on ADAM-28 expression, suggesting ADAM-28 regulates MMP-13. Exogenous MMP-13 induced α7{sup +}hSMSC-OB cell proliferation and could rescue ADAM-28 siRNA-induced apoptosis, and we found that proMMP-13 is partially cleaved into its active form by ADAM-28 in vitro. Overall, our results suggest that IL-1β-induced MMP-13 expression and changes in cell proliferation and apoptosis in α7{sup +}hSMSC-OB cells are regulated by ADAM-28. - Highlights: • IL-1β induces the MMP-13 and ADAM-28 expression in human osteoblast-like cells. • IL-1β-induced MMP-13 expression increases proliferation and decreased apoptosis. • MMP-13 expression induced by IL-1β is regulated by ADAM-28. • proMMP-13 appears to be cleaved into its active form via

  16. Increased serum IL-6 level time-dependently regulates hyperalgesia and spinal mu opioid receptor expression during CFA-induced arthritis.

    Science.gov (United States)

    Tekieh, E; Zaringhalam, Jalal; Manaheji, H; Maghsoudi, N; Alani, B; Zardooz, H

    2011-01-01

    Interleukin (IL)-6 is known to cause pro- and anti-inflammatory effects during different stages of inflammation. Recent therapeutic investigations have focused on treatment of various inflammatory disorders with anti-cytokine substances. As a result, the aim of this study was to further elucidate the influence of IL-6 in hyperalgesia and edema during different stages of Complete Freund's Adjuvant (CFA)-induced arthritis (AA) in male Wistar rats. AA was induced by a single subcutaneous injection of CFA into the rats' hindpaw. Anti-IL-6 was administered either daily or weekly during the 21 days of study. Spinal mu opioid receptor (mOR) expression was detected by Western blotting. Daily and weekly treatment with an anti-IL-6 antibody significantly decreased paw edema in the AA group compared to the AA control group. Additionally, daily and weekly anti-IL-6 administration significantly reduced hyperalgesia on day 7 in the AA group compared to the AA control group; however, there were significant increases in hyperalgesia in the antibody-treated group on days 14 and 21 compared to the AA control group. IL-6 antibody-induced increases in hyperalgesia on the 14 th and 21 st days after CFA injection correlated with a time-dependent, significant reduction in spinal mOR expression during anti-IL-6 treatment. Our study confirmed the important time-dependent relationship between serum IL-6 levels and hyperalgesia during AA. These results suggest that the stages of inflammation in AA must be considered for anti-hyperalgesic and anti-inflammatory interventions via anti-IL-6 antibody treatment.

  17. IL-27 induces a pro-inflammatory response in human fetal membranes mediating preterm birth.

    Science.gov (United States)

    Yin, Nanlin; Wang, Hanbing; Zhang, Hua; Ge, Huisheng; Tan, Bing; Yuan, Yu; Luo, Xiaofang; Olson, David M; Baker, Philip N; Qi, Hongbo

    2017-09-01

    Inflammation at the maternal-fetal interface has been shown to be involved in the pathogenesis of preterm birth. Interleukin 27 (IL-27), a heterodimeric cytokine, is known to mediate an inflammatory response in some pregnancy complications. In this study, we aimed to determine whether IL-27 could induce an inflammatory reaction at the maternal-fetal interface that would mediate the onset of preterm birth. We found elevated expression of IL-27 in human peripheral serum and elevated expression of its specific receptor (wsx-1) on fetal membranes in cases of preterm birth. Moreover, the release of inflammatory markers (CXCL10, IFN-γ, MCP-1, IL-6, IL-1β and TNF-α), especially CXCL10, was markedly augmented upon stimulation of IL-27 in the fetal membranes. Additionally, IL-27 and IFN-γ cooperated to amplify the expression of CXCL10 in the fetal membranes. Moreover, the production of CXCL10 was increased in IL-27-treated fetal membrane through JNK, PI3K or Erk signaling pathways. Finally, MMP2 and MMP9 were activated by IL-27 in human fetal membranes, which may be related to the onset of preterm premature rupture of membranes (pPROM). In conclusion, for the first time, we reported that the aberrant expression of IL-27 could mediate an excessive inflammatory response in fetal membranes through the JNK, PI3K or Erk signaling pathways, which contributes to preterm birth. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Erionite induces production of autoantibodies and IL-17 in C57BL/6 mice

    Energy Technology Data Exchange (ETDEWEB)

    Zebedeo, Christian Nash; Davis, Chad [Department of Biological Sciences, Idaho State University, Pocatello, ID (United States); Peña, Cecelia [Northwest Nazarene University, Nampa, ID (United States); Ng, Kok Wei [Department of Biological Sciences, Idaho State University, Pocatello, ID (United States); Pfau, Jean C., E-mail: pfaujean@isu.edu [Department of Biological Sciences, Idaho State University, Pocatello, ID (United States)

    2014-03-15

    Background: Erionite has similar chemical and physical properties to amphibole asbestos, which induces autoantibodies in mice. Current exposures are occurring in North Dakota due to the use of erionite-contaminated gravel. While erionite is known to cause mesothelioma and other diseases associated with asbestos, there is little known about its effects on the immune system. Objectives: We performed this study to determine whether erionite evokes autoimmune reactions in mice. Methods: Bone marrow derived macrophages (BMDM) were used to measure toxicity induced by erionite. Cytokine production by BMDM and splenocytes of C57BL/6 mice was examined by bead arrays and ELISA following exposure to erionite, amphiboles and chrysotile. Wild type C57BL/6 mice were exposed to saline, erionite, amphibole asbestos (Libby 6-Mix) or chrysotile through intratracheal instillations at equal mass (60 μg/mouse). Seven months after exposure, sera were examined for anti-nuclear antibodies (ANA) and IL-17. Immunohistochemistry was used to detect immune complex deposition in the kidneys. Results: Erionite and tremolite caused increased cytokine production belonging to the T{sub H}17 profile including IL-17, IL-6, TGF-β, and TNF-α. The frequency of ANA was increased in mice treated with erionite or amphibole compared to saline-treated mice. IL-17 and TNF-α were elevated in the sera of mice treated with erionite. The frequency of immune complex deposition in the kidneys increased from 33% in saline-treated mice to 90% with erionite. Conclusions: These data demonstrate that both erionite and amphibole asbestos induce autoimmune responses in mice, suggesting a potential for adverse effects in exposed communities. - Highlights: • Erionite, a fibrous mineral, is a current public health concern in the western USA. • Erionite exposure induces antinuclear autoantibodies in exposed mice. • Erionite induces a clear Th17 cytokine response in vitro and in vivo. • These responses were

  19. Erionite induces production of autoantibodies and IL-17 in C57BL/6 mice

    International Nuclear Information System (INIS)

    Zebedeo, Christian Nash; Davis, Chad; Peña, Cecelia; Ng, Kok Wei; Pfau, Jean C.

    2014-01-01

    Background: Erionite has similar chemical and physical properties to amphibole asbestos, which induces autoantibodies in mice. Current exposures are occurring in North Dakota due to the use of erionite-contaminated gravel. While erionite is known to cause mesothelioma and other diseases associated with asbestos, there is little known about its effects on the immune system. Objectives: We performed this study to determine whether erionite evokes autoimmune reactions in mice. Methods: Bone marrow derived macrophages (BMDM) were used to measure toxicity induced by erionite. Cytokine production by BMDM and splenocytes of C57BL/6 mice was examined by bead arrays and ELISA following exposure to erionite, amphiboles and chrysotile. Wild type C57BL/6 mice were exposed to saline, erionite, amphibole asbestos (Libby 6-Mix) or chrysotile through intratracheal instillations at equal mass (60 μg/mouse). Seven months after exposure, sera were examined for anti-nuclear antibodies (ANA) and IL-17. Immunohistochemistry was used to detect immune complex deposition in the kidneys. Results: Erionite and tremolite caused increased cytokine production belonging to the T H 17 profile including IL-17, IL-6, TGF-β, and TNF-α. The frequency of ANA was increased in mice treated with erionite or amphibole compared to saline-treated mice. IL-17 and TNF-α were elevated in the sera of mice treated with erionite. The frequency of immune complex deposition in the kidneys increased from 33% in saline-treated mice to 90% with erionite. Conclusions: These data demonstrate that both erionite and amphibole asbestos induce autoimmune responses in mice, suggesting a potential for adverse effects in exposed communities. - Highlights: • Erionite, a fibrous mineral, is a current public health concern in the western USA. • Erionite exposure induces antinuclear autoantibodies in exposed mice. • Erionite induces a clear Th17 cytokine response in vitro and in vivo. • These responses were distinct

  20. Fluoride-induced IL-8 release in human epithelial lung cells: Relationship to EGF-receptor-, SRC- and MAP-kinase activation

    International Nuclear Information System (INIS)

    Refsnes, Magne; Skuland, Tonje; Schwarze, Per E.; Ovrevik, Johan; Lag, Marit

    2008-01-01

    Exposure of human epithelial lung cells to fluorides is known to induce a marked increase in the release of interleukin (IL)-8, a chemokine involved in neutrophil recruitment. In the present study, the involvement of mitogen-activating protein kinases (MAPKs), the role of upstream activation of Src family kinases (SFKs), epidermal growth factor receptor (EGFR) activation and the interrelationships between these pathways in fluoride-induced IL-8 were examined in a human epithelial lung cell line (A549). Sodium fluoride strongly activated MAPK, in particular JNK1/2 and p38. The ERK1/2-inhibitor PD98059, the p38-inhibitor SB202190 and the JNK1/2-inhibitor SP600125 partially inhibited the fluoride-induced IL-8 response. Combinations of these inhibitors reduced the responses nearly to basal levels. Treatment with siRNA against JNK2 also reduced the IL-8 response to fluoride. Furthermore, fluoride activated SFKs, which was abolished by the SFK-inhibitor PP2. PP2 substantially inhibited the increased levels of IL-8, and partially reduced the fluoride-induced activation of ERK1/2, p38 and JNK1/2. Fluoride exposure also led to a phosphorylation of the EGFR, that was partially inhibited by PP2. AG1478, an EGFR-inhibitor, partially reduced the fluoride-induced IL-8 response and the phosphorylation of JNK1/2 and ERK1/2, but less the phosphorylation of p38. The effects of AG1478 were less than that of PP2. In conclusion, our findings suggest that the fluoride-induced IL-8 release involves the combined activation of ERK1/2, JNK1/2 and p38, and that the phosphorylation of these kinases, and in particular JNK1/2 and ERK1/2, partly, is mediated via a SFK-dependent EGFR-linked pathway. SFK-dependent, but EGFR-independent mechanisms seem important, and especially for phosphorylation of p38

  1. IL-4 deficiency is associated with mechanical hypersensitivity in mice.

    Directory of Open Access Journals (Sweden)

    Nurcan Üçeyler

    Full Text Available Interleukin-4 (IL-4 is an anti-inflammatory and analgesic cytokine that induces opioid receptor transcription. We investigated IL-4 knockout (ko mice to characterize their pain behavior before and after chronic constriction injury (CCI of the sciatic nerve as a model for neuropathic pain. We investigated opioid responsivity and measured cytokine and opioid receptor gene expression in the peripheral and central nervous system (PNS, CNS of IL-4 ko mice in comparison with wildtype (wt mice. Naïve IL-4 ko mice displayed tactile allodynia (wt: 0.45 g; ko: 0.18 g; p<0.001, while responses to heat and cold stimuli and to muscle pressure were not different. No compensatory changes in the gene expression of tumor necrosis factor-alpha (TNF, IL-1β, IL-10, and IL-13 were found in the PNS and CNS of naïve IL-4 ko mice. However, IL-1β gene expression was stronger in the sciatic nerve of IL-4 ko mice (p<0.001 28 days after CCI and only IL-4 ko mice had elevated IL-10 gene expression (p = 0.014. Remarkably, CCI induced TNF (p<0.01, IL-1β (p<0.05, IL-10 (p<0.05, and IL-13 (p<0.001 gene expression exclusively in the ipsilateral spinal cord of IL-4 ko mice. The compensatory overexpression of the anti-inflammatory and analgesic cytokines IL-10 and IL-13 in the spinal cord of IL-4 ko mice may explain the lack of genotype differences for pain behavior after CCI. Additionally, CCI induced gene expression of μ, κ, and δ opioid receptors in the contralateral cortex and thalamus of IL-4 ko mice, paralleled by fast onset of morphine analgesia, but not in wt mice. We conclude that a lack of IL-4 leads to mechanical sensitivity; the compensatory hyperexpression of analgesic cytokines and opioid receptors after CCI, in turn, protects IL-4 ko mice from enhanced pain behavior after nerve lesion.

  2. The IL-6 receptor super-antagonist Sant7 enhances antiproliferative and apoptotic effects induced by dexamethasone and zoledronic acid on multiple myeloma cells.

    Science.gov (United States)

    Tassone, Pierfrancesco; Galea, Eulalia; Forciniti, Samantha; Tagliaferri, Pierosandro; Venuta, Salvatore

    2002-10-01

    Interleukin-6 (IL-6) is the major growth and survival factor for multiple myeloma (MM), and has been shown to protect MM cells from apoptosis induced by a variety of agents. IL-6 receptor antagonists, which prevent the assembly of functional IL-6 receptor complexes, inhibit cell proliferation and induce apoptosis in MM cells. We have investigated whether the IL-6 receptor super-antagonist Sant7 might enhance the antiproliferative and apoptotic effects induced by the combination of dexamethasone (Dex) and zoledronic acid (Zln) on human MM cell lines and primary cells from MM patients. Here we show that each of these compounds individually induced detectable antiproliferative effects on MM cells. Sant7 significantly enhanced growth inhibition and apoptosis induced by Dex and Zln on both MM cell lines and primary MM cells. These results indicate that overcoming IL-6 mediated cell resistance by Sant7 potentiates the effect of glucocorticoides and bisphosphonates on MM cell growth and survival, providing a rationale for therapies including IL-6 antagonists in MM.

  3. TLR4 induces CREB-mediated IL-6 production via upregulation of F-spondin to promote vascular smooth muscle cell migration

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Guan-Lin [Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Taiwan (China); Graduate Institutes of Life Sciences, National Defense Medical Center, Taipei, Taiwan (China); Wu, Jing-Yiing [Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Taiwan (China); Yeh, Chang-Ching [Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Taiwan (China); Graduate Institutes of Life Sciences, National Defense Medical Center, Taipei, Taiwan (China); Kuo, Cheng-Chin, E-mail: kuocc@nhri.org.tw [Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Taiwan (China); Graduate Institutes of Life Sciences, National Defense Medical Center, Taipei, Taiwan (China); Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan (China)

    2016-05-13

    Toll-like receptor 4 (TLR4) is important in promoting inflammation and vascular smooth muscle cell (VSMC) migration, both of which contribute to atherosclerosis development and progression. But the mechanism underlying the regulation of TLR4 in VSMC migration remains unclear. Stimulation of VSMCs with LPS increased the cellular level of F-spondin which is associated with the regulation of proinflammatory cytokine production. The LPS-induced F-spondin expression depended on TLR4-mediated PI3K/Akt pathway. Suppression of F-spondin level by siRNA inhibited not only F-spondin expression but also LPS-induced phosphorylation of cAMP response element binding protein (CREB) and IL-6 expression, VSMC migration and proliferation as well as MMP9 expression. Moreover, suppression of CREB level by siRNA inhibited TLR4-induced IL-6 production and VSMC migration. Inhibition of F-spondin siRNA on LPS-induced migration was restored by addition of exogenous recombinant mouse IL-6. We conclude that upon ligand binding, TLR4 activates PI3K/Akt signaling to induce F-spondin expression, subsequently control CREB-mediated IL-6 production to promote VSMC migration. These findings provide vital insights into the essential role of F-spondin in VSMC function and will be valuable for developing new therapeutic strategies against atherosclerosis. -- Highlights: •LPS-induced F-spondin expression of VSMCs is via a TLR4/PI3K/Akt signaling. •F-spondin is pivotal for LPS-induced CREB-mediated IL-6 production. •F-spondin is required for LPS-induced VSMC migration and proliferation.

  4. TLR4 induces CREB-mediated IL-6 production via upregulation of F-spondin to promote vascular smooth muscle cell migration

    International Nuclear Information System (INIS)

    Lee, Guan-Lin; Wu, Jing-Yiing; Yeh, Chang-Ching; Kuo, Cheng-Chin

    2016-01-01

    Toll-like receptor 4 (TLR4) is important in promoting inflammation and vascular smooth muscle cell (VSMC) migration, both of which contribute to atherosclerosis development and progression. But the mechanism underlying the regulation of TLR4 in VSMC migration remains unclear. Stimulation of VSMCs with LPS increased the cellular level of F-spondin which is associated with the regulation of proinflammatory cytokine production. The LPS-induced F-spondin expression depended on TLR4-mediated PI3K/Akt pathway. Suppression of F-spondin level by siRNA inhibited not only F-spondin expression but also LPS-induced phosphorylation of cAMP response element binding protein (CREB) and IL-6 expression, VSMC migration and proliferation as well as MMP9 expression. Moreover, suppression of CREB level by siRNA inhibited TLR4-induced IL-6 production and VSMC migration. Inhibition of F-spondin siRNA on LPS-induced migration was restored by addition of exogenous recombinant mouse IL-6. We conclude that upon ligand binding, TLR4 activates PI3K/Akt signaling to induce F-spondin expression, subsequently control CREB-mediated IL-6 production to promote VSMC migration. These findings provide vital insights into the essential role of F-spondin in VSMC function and will be valuable for developing new therapeutic strategies against atherosclerosis. -- Highlights: •LPS-induced F-spondin expression of VSMCs is via a TLR4/PI3K/Akt signaling. •F-spondin is pivotal for LPS-induced CREB-mediated IL-6 production. •F-spondin is required for LPS-induced VSMC migration and proliferation.

  5. Combination Therapy with NHS-muIL12 and Avelumab (anti-PD-L1) Enhances Antitumor Efficacy in Preclinical Cancer Models.

    Science.gov (United States)

    Xu, Chunxiao; Zhang, Yanping; Rolfe, P Alexander; Hernández, Vivian M; Guzman, Wilson; Kradjian, Giorgio; Marelli, Bo; Qin, Guozhong; Qi, Jin; Wang, Hong; Yu, Huakui; Tighe, Robert; Lo, Kin-Ming; English, Jessie M; Radvanyi, Laszlo; Lan, Yan

    2017-10-01

    Purpose: To determine whether combination therapy with NHS-muIL12 and the anti-programmed death ligand 1 (PD-L1) antibody avelumab can enhance antitumor efficacy in preclinical models relative to monotherapies. Experimental Design: BALB/c mice bearing orthotopic EMT-6 mammary tumors and μMt - mice bearing subcutaneous MC38 tumors were treated with NHS-muIL12, avelumab, or combination therapy; tumor growth and survival were assessed. Tumor recurrence following remission and rechallenge was evaluated in EMT-6 tumor-bearing mice. Immune cell populations within spleen and tumors were evaluated by FACS and IHC. Immune gene expression in tumor tissue was profiled by NanoString® assay and plasma cytokine levels were determined by multiplex cytokine assay. The frequency of tumor antigen-reactive IFNγ-producing CD8 + T cells was evaluated by ELISpot assay. Results: NHS-muIL12 and avelumab combination therapy enhanced antitumor efficacy relative to either monotherapy in both tumor models. Most EMT-6 tumor-bearing mice treated with combination therapy had complete tumor regression. Combination therapy also induced the generation of tumor-specific immune memory, as demonstrated by protection against tumor rechallenge and induction of effector and memory T cells. Combination therapy enhanced cytotoxic NK and CD8 + T-cell proliferation and T-bet expression, whereas NHS-muIL12 monotherapy induced CD8 + T-cell infiltration into the tumor. Combination therapy also enhanced plasma cytokine levels and stimulated expression of a greater number of innate and adaptive immune genes compared with either monotherapy. Conclusions: These data indicate that combination therapy with NHS-muIL12 and avelumab increased antitumor efficacy in preclinical models, and suggest that combining NHS-IL12 and avelumab may be a promising approach to treating patients with solid tumors. Clin Cancer Res; 23(19); 5869-80. ©2017 AACR . ©2017 American Association for Cancer Research.

  6. IL-17 receptor A signaling is protective in infection-stimulated periapical bone destruction.

    Science.gov (United States)

    AlShwaimi, Emad; Berggreen, Ellen; Furusho, Hisako; Rossall, Jonathan Caleb; Dobeck, Justine; Yoganathan, Subbiah; Stashenko, Philip; Sasaki, Hajime

    2013-08-15

    IL-17 is a pleiotropic cytokine produced by Th17 T cells that induces a myriad of proinflammatory mediators. However, different models of inflammation report opposite functional roles of IL-17 signal in terms of its effects on bone destruction. In this study we determined the role of IL-17RA signal in bone resorption stimulated by dentoalveolar infections. Infrabony resorptive lesions were induced by surgical pulp exposure and microbial infection of mouse molar teeth. IL-17 was strongly induced in periapical tissues in wild-type (WT) mice by 7 d after the infection but was not expressed in uninfected mice. Dentoalveolar infections of IL-17RA knockout (KO) mice demonstrated significantly increased bone destruction and more abscess formation in the apical area compared with WT mice. Infected IL-17RA KO mice exhibited significantly increased neutrophils and macrophages compared with the WT littermates at day 21, suggesting a failure of transition from acute to chronic inflammation in the IL-17RA KO mice. The expression of IL-1 (both α and β isoforms) and MIP2 were significantly upregulated in the IL-17RA KO compared with WT mice at day 21 postinfection. The development of periapical lesions in IL-17RA KO mice was significantly attenuated by neutralization of IL-1β and MIP2. Taken together, these results demonstrate that IL-17RA signal seems to be protective against infection-induced periapical inflammation and bone destruction via suppression of neutrophil and mononuclear inflammation.

  7. Preferential Generation of 15-HETE-PE Induced by IL-13 Regulates Goblet Cell Differentiation in Human Airway Epithelial Cells.

    Science.gov (United States)

    Zhao, Jinming; Minami, Yoshinori; Etling, Emily; Coleman, John M; Lauder, Sarah N; Tyrrell, Victoria; Aldrovandi, Maceler; O'Donnell, Valerie; Claesson, Hans-Erik; Kagan, Valerian; Wenzel, Sally

    2017-12-01

    Type 2-associated goblet cell hyperplasia and mucus hypersecretion are well known features of asthma. 15-Lipoxygenase-1 (15LO1) is induced by the type 2 cytokine IL-13 in human airway epithelial cells (HAECs) in vitro and is increased in fresh asthmatic HAECs ex vivo. 15LO1 generates a variety of products, including 15-hydroxyeicosatetraenoic acid (15-HETE), 15-HETE-phosphatidylethanolamine (15-HETE-PE), and 13-hydroxyoctadecadienoic acid (13-HODE). In this study, we investigated the 15LO1 metabolite profile at baseline and after IL-13 treatment, as well as its influence on goblet cell differentiation in HAECs. Primary HAECs obtained from bronchial brushings of asthmatic and healthy subjects were cultured under air-liquid interface culture supplemented with arachidonic acid and linoleic acid (10 μM each) and exposed to IL-13 for 7 days. Short interfering RNA transfection and 15LO1 inhibition were applied to suppress 15LO1 expression and activity. IL-13 stimulation induced expression of 15LO1 and preferentially generated 15-HETE-PE in vitro, both of which persisted after removal of IL-13. 15LO1 inhibition (by short interfering RNA and chemical inhibitor) decreased IL-13-induced forkhead box protein A3 (FOXA3) expression and enhanced FOXA2 expression. These changes were associated with reductions in both mucin 5AC and periostin. Exogenous 15-HETE-PE stimulation (alone) recapitulated IL-13-induced FOXA3, mucin 5AC, and periostin expression. The results of this study confirm the central importance of 15LO1 and its primary product, 15-HETE-PE, for epithelial cell remodeling in HAECs.

  8. Lipoteichoic Acid of Probiotic Lactobacillus plantarum Attenuates Poly I:C-Induced IL-8 Production in Porcine Intestinal Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Kyoung Whun Kim

    2017-09-01

    Full Text Available Probiotics in livestock feed supplements are considered a replacement for antibiotics that enhance gastrointestinal immunity. Although bacterial cell wall components have been proposed to be associated with probiotic function, little evidence demonstrates that they are responsible for probiotic functions in livestock. The present study demonstrated that lipoteichoic acid (LTA of Lactobacillus plantarum (Lp.LTA confers anti-inflammatory responses in porcine intestinal epithelial cell line, IPEC-J2. A synthetic analog of viral double-stranded RNA, poly I:C, dose-dependently induced IL-8 production at the mRNA and protein levels in IPEC-J2 cells. Lp.LTA, but not lipoprotein or peptidoglycan from L. plantarum, exclusively suppressed poly I:C-induced IL-8 production. Compared with LTAs from other probiotic Lactobacillus strains including L. delbrueckii, L. sakei, and L. rhamnosus GG, Lp.LTA had higher potential to suppress poly I:C-induced IL-8 production. Dealanylated or deacylated Lp.LTA did not suppress poly I:C-induced IL-8 production, suggesting that D-alanine and lipid moieties in the Lp.LTA structure were responsible for the inhibition. Furthermore, Lp.LTA attenuated the phosphorylation of ERK and p38 kinase as well as the activation of NF-κB, resulting in decreased IL-8 production. Taken together, these results suggest that Lp.LTA acts as an effector molecule to inhibit viral pathogen-induced inflammatory responses in porcine intestinal epithelial cells.

  9. Effects of Lutein on Hyperosmoticity-Induced Upregulation of IL-6 in Cultured Corneal Epithelial Cells and Its Relevant Signal Pathways

    Directory of Open Access Journals (Sweden)

    Shih-Chun Chao

    2016-01-01

    Full Text Available Dry eye is a common disorder characterized by deficiency of tear. Hyperosmoticity of tear stimulates inflammation and damage of ocular surface tissues and plays an essential role in the pathogenesis of dry eye. Cultured human corneal epithelial (CE cells were used for the study of effects of lutein and hyperosmoticity on the secretion of IL-6 by CE cells. Cell viability of CE cells was not affected by lutein at 1–10 μM as determined by MTT assay. Hyperosmoticity significantly elevated the secretion of IL-6 by CE cells as measured by ELISA analysis. The constitutive secretion of IL-6 was not affected by lutein. Lutein significantly and dose-dependently inhibited hyperosmoticity-induced secretion of IL-6. Phosphorylated- (p- p38 MAPK, p-JNK levels in cell lysates and NF-κB levels in cell nuclear extracts were increased by being exposed to hyperosmotic medium. JNK, p38, and NF-κB inhibitors decreased hyperosmoticity-induced secretion of IL-6. Lutein significantly inhibited hyperosmoticity-induced elevation of NF-κB, p38, and p-JNK levels. We demonstrated that lutein inhibited hyperosmoticity-induced secretion of IL-6 in CE cells through the deactivation of p38, JNK, and NF-κB pathways. Lutein may be a promising agent to be explored for the treatment of dry eye.

  10. Analysis of interleukin (IL)-1 beta and transforming growth factor (TGF)-beta-induced signal transduction pathways in IL-2 and TGF-beta secretion and proliferation in the thymoma cell line EL4.NOB-1.

    Science.gov (United States)

    Siese, A; Jaros, P P; Willig, A

    1999-02-01

    In the present study we investigated the interleukin (IL)-1beta and transforming growth factor-beta1 (TGF-beta1)-mediated proliferation, and production of IL-2 and TGF-beta, in the murine T-cell line, EL4.NOB-1. This cell line is resistant to TGF-beta concerning growth arrest but not autoinduction or suppression of IL-1-induced IL-2 production. When cocultured with IL-1beta, TGF-beta showed growth-promoting activity that could be antagonized by adding the phosphatidyl choline-dependent phospholipase C (PC-PLC) inhibitor, D609. Using specific enzyme inhibitors of protein kinases (PK) C and A, mitogen-activated protein kinase (MAPK), phospholipase A2 (PLA2), phosphatidylinositol-dependent (PI)-PLC and PC-PLC, we showed that IL-1beta-induced IL-2 synthesis was dependent on all investigated kinases and phospholipases, except PC-PLC. TGF-beta1 was able to inhibit IL-2 synthesis by the activation of PKA and MAPK. The same kinases are involved in TGF-beta autoinduction that is accompanied by a secretion of the active but not the latent growth factor and is antagonized by IL-1beta. Addition of the PI-PLC inhibitor, ET 18OCH3, or the PLA2 inhibitor (quinacrine) alone, resulted in secretion of latent TGF-beta and, in the case of ET 18OCH3, active TGF-beta. These data implicate a role for PI-PLC and PLA2 in the control of latency and secretion. Analysis of specific tyrosine activity and c-Fos expression showed synergistic but no antagonistic effects. These events are therefore not involved in IL- and TGF-beta-regulated IL-2 and TGF-beta production, but might participate in IL-1/TGF-beta-induced growth promotion.

  11. The role of recombinant IL-12 in enhancing immune responses induced by hepatitis B vaccine in mice

    International Nuclear Information System (INIS)

    Lu Qun; Zhou Lixia; Zhao Yanrong; Miao Xiaoguang; Jin Jie; Ke Jinshan; Qin Xuliang; He Zheng

    2007-01-01

    Objective: To study the role played by recombinant IL-12 in enhancing the intensity and quality of the immune response to hepatitis B vaccine in mice, and investigate the possibility of adding recombinant IL-12 as adjuvants to hepatitis B therapeutic vaccine. Methods: Recombinant IL-12 was injected together with hepatitis B vaccine into mice and special anti-HBsAb in the mice and the cellular immune responses were examined. Results: Recombinant IL-12 can obviously enhance T lymphocyte multiplication activity, accelerate excretion of cytokines IFN-γ and IL-2, and increase the IgG2a antibody in mice. Conclusion: Recombinant IL-12 can remarkably strengthen the cellular immune responses induced by the hepatitis B vaccine, and modulate the immune responses toward Thl. (authors)

  12. Autocrine IL-6 mediates pituitary tumor senescence

    Science.gov (United States)

    Fuertes, Mariana; Ajler, Pablo; Carrizo, Guillermo; Cervio, Andrés; Sevlever, Gustavo; Stalla, Günter K.; Arzt, Eduardo

    2017-01-01

    Cellular senescence is a stable proliferative arrest state. Pituitary adenomas are frequent and mostly benign, but the mechanism for this remains unknown. IL-6 is involved in pituitary tumor progression and is produced by the tumoral cells. In a cell autonomous fashion, IL-6 participates in oncogene-induced senescence in transduced human melanocytes. Here we prove that autocrine IL-6 participates in pituitary tumor senescence. Endogenous IL-6 inhibition in somatotroph MtT/S shRNA stable clones results in decreased SA-β-gal activity and p16INK4a but increased pRb, proliferation and invasion. Nude mice injected with IL-6 silenced clones develop tumors contrary to MtT/S wild type that do not, demonstrating that clones that escape senescence are capable of becoming tumorigenic. When endogenous IL-6 is silenced, cell cultures derived from positive SA-β-gal human tumor samples decrease the expression of the senescence marker. Our results establish that IL-6 contributes to maintain senescence by its autocrine action, providing a natural model of IL-6 mediated benign adenoma senescence. PMID:27902467

  13. Fisetin inhibits IL-1β-induced inflammatory response in human osteoarthritis chondrocytes through activating SIRT1 and attenuates the progression of osteoarthritis in mice.

    Science.gov (United States)

    Zheng, Wenhao; Feng, Zhenhua; You, Shengban; Zhang, Hui; Tao, Zhenyu; Wang, Quan; Chen, Hua; Wu, Yaosen

    2017-04-01

    Osteoarthritis (OA) is a degenerative joint disease characterized by cartilage degradation and inflammation. Fisetin, a polyphenol extracted from fruits and vegetables, has been reported to have anti-inflammatory effects. Our study aimed to investigate the effect of fisetin on OA both in vitro and in vivo. In vitro, chondrocytes were pretreated with fisetin alone or fisetin combined with sirtinol (an inhibitor of SIRT1) for 2h before IL-1β stimulation. Production of NO, PGE2, TNF-α and IL-6 were evaluated by the Griess reaction and ELISAs. The mRNA (COX-2, iNOS, MMP-3, MMP-13, ADAMTS-5, Sox-9, aggrecan and collagen-II) and protein expression (COX-2, iNOS, MMP-3, MMP-13, ADAMTS-5 and SIRT1) were measured by qRT-PCR and Western blot respectively. Immunofluorescence was used to assess the expression of collagen-II and SIRT1. SIRT1 activity was quantified with SIRT1 fluorometric assay kit. The in vivo effect of fisetin was evaluated by gavage in mice OA models induced by destabilization of the medial meniscus (DMM). We found that fisetin inhibited IL-1β-induced expression of NO, PGE2, TNF-α, IL-6, COX-2, iNOS, MMP-3, MMP-13, ADAMTS-5. Besides, fisetin remarkably decreased IL-1β-induced degradation of Sox-9, aggrecan and collagen-II. Furthermore, fisetin significantly inhibited IL-1β-induced SIRT1 decrease and inactivation. However, the inhibitory effect of fisetin was obvious abolished by sirtinol, suggesting that fisetin exerts anti-inflammatory effects through activating SIRT1. In vivo, fisetin-treated mice exhibited less cartilage destruction and lower OARSI scores. Moreover, fisetin reduced subchondral bone plate thickness and alleviated synovitis. Taken together, these findings indicate that fisetin may be a potential agent in the treatment of OA. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Comparative analysis of the lambda-interferons IL-28A and IL-29 regarding their transcriptome and their antiviral properties against hepatitis C virus.

    Directory of Open Access Journals (Sweden)

    Julia Diegelmann

    Full Text Available BACKGROUND: Specific differences in signaling and antiviral properties between the different Lambda-interferons, a novel group of interferons composed of IL-28A, IL-28B and IL-29, are currently unknown. This is the first study comparatively investigating the transcriptome and the antiviral properties of the Lambda-interferons IL-28A and IL-29. METHODOLOGY/PRINCIPAL FINDINGS: Expression studies were performed by microarray analysis, quantitative PCR (qPCR, reporter gene assays and immunoluminometric assays. Signaling was analyzed by Western blot. HCV replication was measured in Huh-7 cells expressing subgenomic HCV replicon. All hepatic cell lines investigated as well as primary hepatocytes expressed both IFN-λ receptor subunits IL-10R2 and IFN-λR1. Both, IL-28A and IL-29 activated STAT1 signaling. As revealed by microarray analysis, similar genes were induced by both cytokines in Huh-7 cells (IL-28A: 117 genes; IL-29: 111 genes, many of them playing a role in antiviral immunity. However, only IL-28A was able to significantly down-regulate gene expression (n = 272 down-regulated genes. Both cytokines significantly decreased HCV replication in Huh-7 cells. In comparison to liver biopsies of patients with non-viral liver disease, liver biopsies of patients with HCV showed significantly increased mRNA expression of IL-28A and IL-29. Moreover, IL-28A serum protein levels were elevated in HCV patients. In a murine model of viral hepatitis, IL-28 expression was significantly increased. CONCLUSIONS/SIGNIFICANCE: IL-28A and IL-29 are up-regulated in HCV patients and are similarly effective in inducing antiviral genes and inhibiting HCV replication. In contrast to IL-29, IL-28A is a potent gene repressor. Both IFN-λs may have therapeutic potential in the treatment of chronic HCV.

  15. IL-1 family members IL-18 and IL-33 upregulate the inflammatory potential of differentiated human Th1 and Th2 cultures

    DEFF Research Database (Denmark)

    Blom, Lars; Poulsen, Lars K.

    2012-01-01

    The IL-1 family members IL-1ß, IL-18, and IL-33 are potent cytokines in relationship to amplifying the CD4(+) T cell cytokine production. To evaluate their impact on in vitro-differentiated human Th1 and Th2 cultures, such cultures were established from naive T cells, purified from healthy blood...... donors, and reactivated in the presence of IL-1ß, IL-18, or IL-33. Interestingly, we observe modifying responses in Th1 and Th2 cultures induced by IL-18 or IL-33 but not by IL-1ß, both contributing to amplify production of IL-5, IL-13, and IFN-¿. IL-18 or IL-33 stimulation of Th1 cultures resulted...... in increased IFN-¿ and IL-13 production concurrent with reduced IL-10 gene transcription and secretion even though Th1 cultures, in contrast to IL-18Ra, had low ST2L expression. Furthermore, adding IL-18 to Th1 cultures promoted Tbet mRNA expression and production. Th2 cultures stimulated with IL-18 or IL-33...

  16. F4+ ETEC infection and oral immunization with F4 fimbriae elicits an IL-17-dominated immune response.

    Science.gov (United States)

    Luo, Yu; Van Nguyen, Ut; de la Fe Rodriguez, Pedro Y; Devriendt, Bert; Cox, Eric

    2015-10-21

    Enterotoxigenic Escherichia coli (ETEC) are an important cause of post-weaning diarrhea (PWD) in piglets. Porcine-specific ETEC strains possess different fimbrial subtypes of which F4 fimbriae are the most frequently associated with ETEC-induced diarrhea in piglets. These F4 fimbriae are potent oral immunogens that induce protective F4-specific IgA antibody secreting cells at intestinal tissues. Recently, T-helper 17 (Th17) cells have been implicated in the protection of the host against extracellular pathogens. However, it remains unknown if Th17 effector responses are needed to clear ETEC infections. In the present study, we aimed to elucidate if ETEC elicits a Th17 response in piglets and if F4 fimbriae trigger a similar response. F4(+) ETEC infection upregulated IL-17A, IL-17F, IL-21 and IL-23p19, but not IL-12 and IFN-γ mRNA expression in the systemic and mucosal immune system. Similarly, oral immunization with F4 fimbriae triggered a Th17 signature evidenced by an upregulated mRNA expression of IL-17F, RORγt, IL-23p19 and IL-21 in the peripheral blood mononuclear cells (PBMCs). Intriguingly, IL-17A mRNA levels were unaltered. To further evaluate this difference between systemic and mucosal immune responses, we assayed the cytokine mRNA profile of F4 fimbriae stimulated PBMCs. F4 fimbriae induced IL-17A, IL-17F, IL-22 and IL-23p19, but downregulated IL-17B mRNA expression. Altogether, these data indicate a Th17 dominated response upon oral immunization with F4 fimbriae and F4(+) ETEC infection. Our work also highlights that IL-17B and IL-17F participate in the immune response to protect the host against F4(+) ETEC infection and could aid in the design of future ETEC vaccines.

  17. IL-1β-induced, matrix metalloproteinase-3-regulated proliferation of embryonic stem cell-derived odontoblastic cells is mediated by the Wnt5 signaling pathway

    International Nuclear Information System (INIS)

    Ozeki, Nobuaki; Hase, Naoko; Hiyama, Taiki; Yamaguchi, Hideyuki; Kawai, Rie; Kondo, Ayami; Nakata, Kazuhiko; Mogi, Makio

    2014-01-01

    We previously established a method for differentiating induced pluripotent stem cells and embryonic stem (ES) cells into α2 integrin-positive odontoblast-like cells. We also reported that interleukin (IL)-1β induces matrix metalloproteinase (MMP)-3-regulated cell proliferation and suppresses apoptosis in these cells, suggesting that MMP-3 plays a potentially unique physiological role in the regeneration of odontoblast-like cells. Here, we examined whether up-regulation of MMP-3 activity by IL-1β was mediated by Wnt signaling and led to increased proliferation of odontoblast-like cells. IL-1β increased mRNA and protein levels of Wnt5a, Wnt5b and the Wnt receptor Lrp5. Exogenous Wnt5a and Wnt5b were found to increase MMP-3 mRNA, protein and activity, and interestingly the rate of proliferation in these cells. Treatment with siRNAs against Wnt5a, Wnt5b and Lrp5 suppressed the IL-1β-induced increase in MMP-3 expression and suppressed cell proliferation, an effect rescued by application of exogenous Wnt5. These results demonstrate the sequential involvement of Wnt5, Lrp5 and MMP-3 in effecting IL-1β-induced proliferation of ES cell-derived odontoblast-like cells. - Highlights: • IL-1β induces Wnt5, Lrp5/Fzd9 and MMP-3 in ES cell-derived odontoblast-like cells. • IL-1β-induced Wnt5 expression results in increased cell proliferation. • Exogenous Wnt5 increases MMP-3 activity and cell proliferation. • Exogenous Wnt5 rescues IL-1β-driven proliferation with anti-Wnt5 siRNA suppression. • IL-1β-induced cell proliferation involves Wnt5, Lrp5, and MMP-3 sequentially

  18. IL-1β-induced, matrix metalloproteinase-3-regulated proliferation of embryonic stem cell-derived odontoblastic cells is mediated by the Wnt5 signaling pathway

    Energy Technology Data Exchange (ETDEWEB)

    Ozeki, Nobuaki; Hase, Naoko; Hiyama, Taiki; Yamaguchi, Hideyuki; Kawai, Rie [Department of Endodontics, School of Dentistry, Aichi Gakuin University, Nagoya, Aichi 464-8651 (Japan); Kondo, Ayami [Department of Medicinal Biochemistry, School of Pharmacy, Aichi Gakuin University, Nagoya 464-8650 (Japan); Nakata, Kazuhiko [Department of Endodontics, School of Dentistry, Aichi Gakuin University, Nagoya, Aichi 464-8651 (Japan); Mogi, Makio, E-mail: makio@dpc.agu.ac.jp [Department of Medicinal Biochemistry, School of Pharmacy, Aichi Gakuin University, Nagoya 464-8650 (Japan)

    2014-10-15

    We previously established a method for differentiating induced pluripotent stem cells and embryonic stem (ES) cells into α2 integrin-positive odontoblast-like cells. We also reported that interleukin (IL)-1β induces matrix metalloproteinase (MMP)-3-regulated cell proliferation and suppresses apoptosis in these cells, suggesting that MMP-3 plays a potentially unique physiological role in the regeneration of odontoblast-like cells. Here, we examined whether up-regulation of MMP-3 activity by IL-1β was mediated by Wnt signaling and led to increased proliferation of odontoblast-like cells. IL-1β increased mRNA and protein levels of Wnt5a, Wnt5b and the Wnt receptor Lrp5. Exogenous Wnt5a and Wnt5b were found to increase MMP-3 mRNA, protein and activity, and interestingly the rate of proliferation in these cells. Treatment with siRNAs against Wnt5a, Wnt5b and Lrp5 suppressed the IL-1β-induced increase in MMP-3 expression and suppressed cell proliferation, an effect rescued by application of exogenous Wnt5. These results demonstrate the sequential involvement of Wnt5, Lrp5 and MMP-3 in effecting IL-1β-induced proliferation of ES cell-derived odontoblast-like cells. - Highlights: • IL-1β induces Wnt5, Lrp5/Fzd9 and MMP-3 in ES cell-derived odontoblast-like cells. • IL-1β-induced Wnt5 expression results in increased cell proliferation. • Exogenous Wnt5 increases MMP-3 activity and cell proliferation. • Exogenous Wnt5 rescues IL-1β-driven proliferation with anti-Wnt5 siRNA suppression. • IL-1β-induced cell proliferation involves Wnt5, Lrp5, and MMP-3 sequentially.

  19. Curcumin blocks interleukin (IL)-2 signaling in T-lymphocytes by inhibiting IL-2 synthesis, CD25 expression, and IL-2 receptor signaling

    International Nuclear Information System (INIS)

    Forward, Nicholas A.; Conrad, David M.; Power Coombs, Melanie R.; Doucette, Carolyn D.; Furlong, Suzanne J.; Lin, Tong-Jun; Hoskin, David W.

    2011-01-01

    Highlights: → Curcumin inhibits CD4 + T-lymphocyte proliferation. → Curcumin inhibits interleukin-2 (IL-2) synthesis and CD25 expression by CD4 + T-lymphocytes. → Curcumin interferes with IL-2 receptor signaling by inhibiting JAK3 and STAT5 phosphorylation. → IL-2-dependent regulatory T-lymphocyte function and Foxp3 expression is downregulated by curcumin. -- Abstract: Curcumin (diferulomethane) is the principal curcuminoid in the spice tumeric and a potent inhibitor of activation-induced T-lymphocyte proliferation; however, the molecular basis of this immunosuppressive effect has not been well studied. Here we show that micromolar concentrations of curcumin inhibited DNA synthesis by mouse CD4 + T-lymphocytes, as well as interleukin-2 (IL-2) and CD25 (α chain of the high affinity IL-2 receptor) expression in response to antibody-mediated cross-linking of CD3 and CD28. Curcumin acted downstream of protein kinase C activation and intracellular Ca 2+ release to inhibit IκB phosphorylation, which is required for nuclear translocation of the transcription factor NFκB. In addition, IL-2-dependent DNA synthesis by mouse CTLL-2 cells, but not constitutive CD25 expression, was impaired in the presence of curcumin, which demonstrated an inhibitory effect on IL-2 receptor (IL-2R) signaling. IL-2-induced phosphorylation of STAT5A and JAK3, but not JAK1, was diminished in the presence of curcumin, indicating inhibition of critical proximal events in IL-2R signaling. In line with the inhibitory action of curcumin on IL-2R signaling, pretreatment of CD4 + CD25 + regulatory T-cells with curcumin downregulated suppressor function, as well as forkhead box p3 (Foxp3) expression. We conclude that curcumin inhibits IL-2 signaling by reducing available IL-2 and high affinity IL-2R, as well as interfering with IL-2R signaling.

  20. IL-27 Induced by Select Candida spp. via TLR7/NOD2 Signaling and IFN-β Production Inhibits Fungal Clearance

    Science.gov (United States)

    Patin, Emmanuel C.; Jones, Adam V.; Thompson, Aiysha; Clement, Mathew; Liao, Chia-Te; Griffiths, James S.; Wallace, Leah E.; Bryant, Clare E.; Lang, Roland; Rosenstiel, Philip; Humphreys, Ian R.; Taylor, Philip R.

    2016-01-01

    Candida spp. elicit cytokine production downstream of various pathogen recognition receptors, including C-type lectin-like receptors, TLRs, and nucleotide oligomerization domain (NOD)–like receptors. IL-12 family members IL-12p70 and IL-23 are important for host immunity against Candida spp. In this article, we show that IL-27, another IL-12 family member, is produced by myeloid cells in response to selected Candida spp. We demonstrate a novel mechanism for Candida parapsilosis–mediated induction of IL-27 in a TLR7-, MyD88-, and NOD2-dependent manner. Our data revealed that IFN-β is induced by C. parapsilosis, which in turn signals through the IFN-α/β receptor and STAT1/2 to induce IL-27. Moreover, IL-27R (WSX-1)–deficient mice systemically infected with C. parapsilosis displayed enhanced pathogen clearance compared with wild-type mice. This was associated with increased levels of proinflammatory cytokines in the serum and increased IFN-γ and IL-17 responses in the spleens of IL-27R–deficient mice. Thus, our data define a novel link between C. parapsilosis, TLR7, NOD2, IFN-β, and IL-27, and we have identified an important role for IL-27 in the immune response against C. parapsilosis. Overall, these findings demonstrate an important mechanism for the suppression of protective immune responses during infection with C. parapsilosis, which has potential relevance for infections with other fungal pathogens. PMID:27259855

  1. Characterization of linear mimetic peptides of Interleukin-22 from dissection of protein interfaces.

    Science.gov (United States)

    La Manna, Sara; Scognamiglio, Pasqualina Liana; Di Natale, Concetta; Leone, Marilisa; Mercurio, Flavia Anna; Malfitano, Anna Maria; Cianfarani, Francesca; Madonna, Stefania; Caravella, Sergio; Albanesi, Cristina; Novellino, Ettore; Marasco, Daniela

    2017-07-01

    Interleukin-22 (IL-22) belongs to the family of IL-10 cytokines and is involved in a wide number of human diseases, including inflammatory disorders and cancer pathology. The ligand-receptor complex IL-22/IL-22R plays a key role in several pathways especially in the regulation and resolution of immune responses. The identification of novel compounds able to modulate IL-22/IL-22R complex could open the route to new therapeutic strategies in multiple human diseases. In this study, we designed and characterized IL-22 derived peptides at protein interface regions: several sequences revealed able to interfere with the protein complex with IC 50 in the micromolar range as evaluated through Surface Plasmon Resonance (SPR) experiments. Their conformational characterization was carried out through Circular Dichroism (CD) and Nuclear Magnetic Resonance (NMR) spectroscopies, shedding new light into the features of IL-22 fragments and on structural determinants of IL-22/IL-22R1 recognition. Finally, several peptides were tested on human keratinocyte cultures for evaluating their ability to mimic the activation of molecular pathways downstream to IL-22R in response to IL-22 binding. Copyright © 2017 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  2. The Role of IL-33 in Gut Mucosal Inflammation

    Directory of Open Access Journals (Sweden)

    Luca Pastorelli

    2013-01-01

    Full Text Available Interleukin (IL-33 is a recently identified cytokine belonging to the IL-1 family that is widely expressed throughout the body and has the ability to induce Th2 immune responses. In addition, IL-33 plays a key role in promoting host defenses against parasites through the expansion of a novel population of innate lymphoid cells. In recent years, a growing body of evidence has shown that the proinflammatory properties displayed by IL-33 are detrimental in several experimental models of inflammation; in others, however, IL-33 appears to have protective functions. In 2010, four different research groups consistently described the upregulation of IL-33 in patients with inflammatory bowel disease (IBD. Animal models of IBD were subsequently utilized in order to mechanistically determine the precise role of IL-33 in chronic intestinal inflammation, without, however, reaching conclusive evidence demonstrating whether IL-33 is pathogenic or protective. Indeed, data generated from these studies suggest that IL-33 may possess dichotomous functions, enhancing inflammatory responses on one hand and promoting epithelial integrity on the other. This review focuses on the available data regarding IL-33/ST2 in the physiological and inflammatory states of the gut in order to speculate on the possible roles of this novel IL-1 family member in intestinal inflammation.

  3. Ozone Enhances Diesel Exhaust Particles (DEP-Induced Interleukin-8 (IL-8 Gene Expression in Human Airway Epithelial Cells through Activation of Nuclear Factors- κB (NF-κB and IL-6 (NF-IL6

    Directory of Open Access Journals (Sweden)

    James Kelley

    2005-12-01

    Full Text Available Ozone, a highly reactive oxidant gas is a major component of photochemical smog. As an inhaled toxicant, ozone induces its adverse effects mainly on the lung. Inhalation of particulate matter has been reported to cause airway inflammation in humans and animals. Furthermore, epidemiological evidence has indicated that exposure to particulate matter (PM2.5-10, including diesel exhaust particles (DEP has been correlated with increased acute and chronic respiratory morbidity and exacerbation of asthma. Previously, exposure to ozone or particulate matter and their effect on the lung have been addressed as separate environmental problems. Ozone and particulate matter may be chemically coupled in the ambient air. In the present study we determined whether ozone exposure enhances DEP effect on interleukin-8 (IL-8 gene expression in human airway epithelial cells. We report that ozone exposure (0.5 ppm x 1 hr significantly increased DEP-induced IL-8 gene expression in A549 cells (117 ± 19 pg/ml, n = 6, p < 0.05 as compared to cultures treated with DEP (100 μg/ml x 4 hr alone (31 ± 3 pg/ml, n = 6, or cultures exposed to purified air (24 ± 6 pg/ml, n = 6. The increased DEP-induced IL-8 gene expression following ozone exposure was attributed to ozone-induced increase in the activity of the transcription factors NF-κB and NF-IL6. The results of the present study indicate that ozone exposure enhances the toxicity of DEP in human airway epithelial cells by augmenting IL-8 gene expression, a potent chemoattractant of neutrophils in the lung.

  4. A Prominent Role of Interleukin-18 in Acetaminophen-Induced Liver Injury Advocates Its Blockage for Therapy of Hepatic Necroinflammation

    Directory of Open Access Journals (Sweden)

    Malte Bachmann

    2018-02-01

    Full Text Available Acetaminophen [paracetamol, N-acetyl-p-aminophenol (APAP]-induced acute liver injury (ALI not only remains a persistent clinical challenge but likewise stands out as well-characterized paradigmatic model of drug-induced liver damage. APAP intoxication associates with robust hepatic necroinflammation the role of which remains elusive with pathogenic but also pro-regenerative/-resolving functions being ascribed to leukocyte activation. Here, we shine a light on and put forward a unique role of the interleukin (IL-1 family member IL-18 in experimental APAP-induced ALI. Indeed, amelioration of disease as previously observed in IL-18-deficient mice was further substantiated herein by application of the IL-18 opponent IL-18-binding protein (IL-18BPd:Fc to wild-type mice. Data altogether emphasize crucial pathological action of this cytokine in APAP toxicity. Adding recombinant IL-22 to IL-18BPd:Fc further enhanced protection from liver injury. In contrast to IL-18, the role of prototypic pro-inflammatory IL-1 and tumor necrosis factor-α is controversially discussed with lack of effects or even protective action being repeatedly reported. A prominent detrimental function for IL-18 in APAP-induced ALI as proposed herein should relate to its pivotal role for hepatic expression of interferon-γ and Fas ligand, both of which aggravate APAP toxicity. As IL-18 serum levels increase in patients after APAP overdosing, targeting IL-18 may evolve as novel therapeutic option in those hard-to-treat patients where standard therapy with N-acetylcysteine is unsuccessful. Being a paradigmatic experimental model of ALI, current knowledge on ill-fated properties of IL-18 in APAP intoxication likewise emphasizes the potential of this cytokine to serve as therapeutic target in other entities of inflammatory liver diseases.

  5. Leptin Enhances Synthesis of Proinflammatory Mediators in Human Osteoarthritic Cartilage—Mediator Role of NO in Leptin-Induced PGE2, IL-6, and IL-8 Production

    Directory of Open Access Journals (Sweden)

    Katriina Vuolteenaho

    2009-01-01

    Full Text Available Obesity is an important risk factor for osteoarthritis (OA in weight-bearing joints, but also in hand joints, pointing to an obesity-related metabolic factor that influences on the pathogenesis of OA. Leptin is an adipokine regulating energy balance, and it has recently been related also to arthritis and inflammation as a proinflammatory factor. In the present paper, the effects of leptin on human OA cartilage were studied. Leptin alone or in combination with IL-1 enhanced the expression of iNOS and COX-2, and production of NO, PGE2, IL-6, and IL-8. The results suggest that the effects of leptin are mediated through activation of transcription factor nuclear factor κB (NF-κB and mitogen-activated protein kinase (MAPK pathway c-Jun NH2-terminal kinase (JNK. Interestingly, inhibition of leptin-induced NO production with a selective iNOS inhibitor 1400 W inhibited also the production of IL-6, IL-8, and PGE2, and this was reversed by exogenously added NO-donor SNAP, suggesting that the effects of leptin on IL-6, IL-8, and PGE2 production are dependent on NO. These findings support the idea of leptin as a factor enhancing the production of proinflammatory factors in OA cartilage and as an agent contributing to the obesity-associated increased risk for osteoarthritis.

  6. Astrocyte-targeted expression of IL-6 protects the CNS against a focal brain injury

    DEFF Research Database (Denmark)

    Penkowa, Milena; Giralt, Mercedes; Lago, Natalia

    2003-01-01

    significantly increased up to but not including 20 dpl in the GFAP-IL6 mice. Oxidative stress as well as apoptotic cell death was significantly decreased throughout the time period studied in the GFAP-IL6 mice compared to controls. This could be linked to the altered inflammatory response as well......The effect of CNS-targeted IL-6 gene expression has been thoroughly investigated in the otherwise nonperturbed brain but not following brain injury. Here we examined the impact of astrocyte-targeted IL-6 production in a traumatic brain injury (cryolesion) model using GFAP-IL6 transgenic mice...... as to the transgenic IL-6-induced increase of the antioxidant, neuroprotective proteins metallothionein-I + II. These results indicate that although in the brain the chronic astrocyte-targeted expression of IL-6 spontaneously induces an inflammatory response causing significant damage, during an acute...

  7. Role of the IL-12/IL-35 balance in patients with Sjögren syndrome.

    Science.gov (United States)

    Fogel, Olivier; Rivière, Elodie; Seror, Raphaèle; Nocturne, Gaetane; Boudaoud, Saida; Ly, Bineta; Gottenberg, Jacques-Eric; Le Guern, Véronique; Dubost, Jean-Jacques; Nititham, Joanne; Taylor, Kimberly E; Chanson, Philippe; Dieudé, Philippe; Criswell, Lindsey A; Jagla, Bernd; Thai, Alice; Mingueneau, Michael; Mariette, Xavier; Miceli-Richard, Corinne

    2017-09-12

    An interferon signature is involved in the pathogenesis of primary Sjögren syndrome (pSS), but whether the signature is type 1 or type 2 remains controversial. Mouse models and genetic studies suggest the involvement of T H 1 and type 2 interferon pathways. Likewise, polymorphisms of the IL-12A gene (IL12A), which encodes for IL-12p35, have been associated with pSS. The IL-12p35 subunit is shared by 2 heterodimers: IL-12 and IL-35. We sought to confirm genetic association of the IL12A polymorphism and pSS and elucidate involvement of the IL-12/IL-35 balance in patients with pSS by using functional studies. The genetic study involved 673 patients with pSS from 2 French pSS cohorts and 585 healthy French control subjects. Functional studies were performed on sorted monocytes, irrespective of whether they were stimulated. IL12A mRNA expression and IL-12 and IL-35 protein levels were assessed by using quantitative RT-PCR and ELISA and a multiplex kit for IL-35 and IL-12, respectively. We confirmed association of the IL12A rs485497 polymorphism and pSS and found an increased serum protein level of IL-12p70 in patients with pSS carrying the risk allele (P = .016). Serum levels of IL-12p70 were greater in patients than control subjects (P = .0001), especially in patients with more active disease (P = .05); conversely, IL-35 levels were decreased in patients (P = .0001), especially in patients with more active disease (P = .05). In blood cellular subsets both IL12p35 and EBV-induced gene protein 3 (EBI3) mRNAs were detected only in B cells, with a trend toward a lower level among patients with pSS. Our findings emphasize involvement of the IL-12/IL-35 balance in the pathogenesis of pSS. Serum IL-35 levels were associated with low disease activity, in contrast with serum IL-12p70 levels, which were associated with more active disease. Copyright © 2017 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  8. The Suppression of Adjuvant-induced Inflammation and the Inhibition of the Serum and Tissue IL-17, TNF-α and IL-1β levels by Thymol and Carvacrol

    Directory of Open Access Journals (Sweden)

    Nasser Gholijani

    2017-06-01

    Full Text Available Background and Aim: Thymol and carvacrol are two important components of thyme that have multiple medicinal uses. This study investigates the in vivo effects of these natural products on adjuvant-induced inflammation and secretion of interleukin (IL-17 and key inflammatory cytokines in rats. Materials and Methods: We injected complete Freund’s adjuvant (CFA into the hind paws of rats in order to induce inflammation. Each of the CFA-treated rat groups received gavages of thymol, carvacrol, or vehicle (CFA-only group. Rats’ paws and ankle edema were measured and then we were able to determine an inflammatory score based on the results. After 72 h of inflammation induction, sera were collected and subsequently inflamed tissue extracts were prepared for cytokine assay by ELISA. Results: Both components significantly decreased paw edema in rats (p<0.01. Thymol decreased ankle edema to 61.6% of edema in CFA-only rats (p<0.001. We observed a decreased inflammatory score in the thymol and carvacrol-treated rats. The evaluation of the tissue and serum inflammatory cytokine levels showed that both components decreased tumor necrosis factor (TNF-α levels (p<0.05. Thymol and carvacrol reduced interleukin (IL-1β serum and tissue levels, respectively. These components reduced tissue levels of IL-17 from 148.4±13.4pg/ml in CFA-only rats to 90.1±18.9pg/ml (thymol and 82.3±9.2pg/ml (carvacrol. Both components decreased serum IL-17 levels in rats (p<0.05. In comparison, the anti-inflammatory drug, indomethacin, reduced the inflammatory score and decreased tissue TNF-α and IL-1β levels but did not affect IL-17 production. Conclusion: Carvacrol and thymol could relieve inflammation symptoms possibly by downregulating serum and tissue IL-17 expression in addition to key pro-inflammatory cytokines, TNFα and IL-1β.

  9. Signaling through IL-17C/IL-17RE is dispensable for immunity to systemic, oral and cutaneous candidiasis.

    Science.gov (United States)

    Conti, Heather R; Whibley, Natasha; Coleman, Bianca M; Garg, Abhishek V; Jaycox, Jillian R; Gaffen, Sarah L

    2015-01-01

    Candida albicans is a commensal fungal microbe of the human orogastrointestinal tract and skin. C. albicans causes multiple forms of disease in immunocompromised patients, including oral, vaginal, dermal and disseminated candidiasis. The cytokine IL-17 (IL-17A) and its receptor subunits, IL-17RA and IL-17RC, are required for protection to most forms of candidiasis. The importance of the IL-17R pathway has been observed not only in knockout mouse models, but also in humans with rare genetic mutations that impact generation of Th17 cells or the IL-17 signaling pathway, including Hyper-IgE Syndrome (STAT3 or TYK2 mutations) or IL17RA or ACT1 gene deficiency. The IL-17 family of cytokines is a distinct subclass of cytokines with unique structural and signaling properties. IL-17A is the best-characterized member of the IL-17 family to date, but far less is known about other IL-17-related cytokines. In this study, we sought to determine the role of a related IL-17 cytokine, IL-17C, in protection against oral, dermal and disseminated forms of C. albicans infection. IL-17C signals through a heterodimeric receptor composed of the IL-17RA and IL-17RE subunits. We observed that IL-17C mRNA was induced following oral C. albicans infection. However, mice lacking IL-17C or IL-17RE cleared C. albicans infections in the oral mucosa, skin and bloodstream at rates similar to WT littermate controls. Moreover, these mice demonstrated similar gene transcription profiles and recovery kinetics as WT animals. These findings indicate that IL-17C and IL-17RE are dispensable for immunity to the forms of candidiasis evaluated, and illustrate a surprisingly limited specificity of the IL-17 family of cytokines with respect to systemic, oral and cutaneous Candida infections.

  10. Signaling through IL-17C/IL-17RE Is Dispensable for Immunity to Systemic, Oral and Cutaneous Candidiasis

    Science.gov (United States)

    Conti, Heather R.; Whibley, Natasha; Coleman, Bianca M.; Garg, Abhishek V.; Jaycox, Jillian R.; Gaffen, Sarah L.

    2015-01-01

    Candida albicans is a commensal fungal microbe of the human orogastrointestinal tract and skin. C. albicans causes multiple forms of disease in immunocompromised patients, including oral, vaginal, dermal and disseminated candidiasis. The cytokine IL-17 (IL-17A) and its receptor subunits, IL-17RA and IL-17RC, are required for protection to most forms of candidiasis. The importance of the IL-17R pathway has been observed not only in knockout mouse models, but also in humans with rare genetic mutations that impact generation of Th17 cells or the IL-17 signaling pathway, including Hyper-IgE Syndrome (STAT3 or TYK2 mutations) or IL17RA or ACT1 gene deficiency. The IL-17 family of cytokines is a distinct subclass of cytokines with unique structural and signaling properties. IL-17A is the best-characterized member of the IL-17 family to date, but far less is known about other IL-17-related cytokines. In this study, we sought to determine the role of a related IL-17 cytokine, IL-17C, in protection against oral, dermal and disseminated forms of C. albicans infection. IL-17C signals through a heterodimeric receptor composed of the IL-17RA and IL-17RE subunits. We observed that IL-17C mRNA was induced following oral C. albicans infection. However, mice lacking IL-17C or IL-17RE cleared C. albicans infections in the oral mucosa, skin and bloodstream at rates similar to WT littermate controls. Moreover, these mice demonstrated similar gene transcription profiles and recovery kinetics as WT animals. These findings indicate that IL-17C and IL-17RE are dispensable for immunity to the forms of candidiasis evaluated, and illustrate a surprisingly limited specificity of the IL-17 family of cytokines with respect to systemic, oral and cutaneous Candida infections. PMID:25849644

  11. Short-term exposure to oleandrin enhances responses to IL-8 by increasing cell surface IL-8 receptors

    Science.gov (United States)

    Raviprakash, Nune; Manna, Sunil Kumar

    2014-01-01

    BACKGROUND AND PURPOSE One of the first steps in host defence is the migration of leukocytes. IL-8 and its receptors are a chemokine system essential to such migration. Up-regulation of these receptors would be a viable strategy to treat dysfunctional host defence. Here, we studied the effects of the plant glycoside oleandrin on responses to IL-8 in a human monocytic cell line. EXPERIMENTAL APPROACH U937 cells were incubated with oleandrin (1-200 ng mL−1) for either 1 h (pulse) or for 24 h (non-pulse). Apoptosis; activation of NF-κB, AP-1 and NFAT; calcineurin activity and IL-8 receptors (CXCR1 and CXCR2) were measured using Western blotting, RT-PCR and reporter gene assays. KEY RESULTS Pulse exposure to oleandrin did not induce apoptosis or cytoxicity as observed after non-pulse exposure. Pulse exposure enhanced activation of NF-κB induced by IL-8 but not that induced by TNF-α, IL-1, EGF or LPS. Exposure to other apoptosis-inducing compounds (azadirachtin, resveratrol, thiadiazolidine, or benzofuran) did not enhance activation of NF-κB. Pulse exposure to oleandrin increased expression of IL-8 receptors and chemotaxis, release of enzymes and activation of NF-κB, NFAT and AP-1 along with increased IL-8-mediated calcineurin activation, and wound healing. Pulse exposure increased numbers of cell surface IL-8 receptors. CONCLUSIONS AND IMPLICATIONS Short-term (1 h; pulse) exposure to a toxic glycoside oleandrin, enhanced biological responses to IL-8 in monocytic cells, without cytoxicity. Pulse exposure to oleandrin could provide a viable therapy for those conditions where leukocyte migration is defective. PMID:24172227

  12. The Attenuated Brucella abortus Strain 19 Invades, Persists in, and Activates Human Dendritic Cells, and Induces the Secretion of IL-12p70 but Not IL-23

    Science.gov (United States)

    Weinhold, Mario; Eisenblätter, Martin; Jasny, Edith; Fehlings, Michael; Finke, Antje; Gayum, Hermine; Rüschendorf, Ursula; Renner Viveros, Pablo; Moos, Verena; Allers, Kristina; Schneider, Thomas; Schaible, Ulrich E.; Schumann, Ralf R.; Mielke, Martin E.; Ignatius, Ralf

    2013-01-01

    Background Bacterial vectors have been proposed as novel vaccine strategies to induce strong cellular immunity. Attenuated strains of Brucella abortus comprise promising vector candidates since they have the potential to induce strong CD4+ and CD8+ T-cell mediated immune responses in the absence of excessive inflammation as observed with other Gram-negative bacteria. However, some Brucella strains interfere with the maturation of dendritic cells (DCs), which is essential for antigen-specific T-cell priming. In the present study, we investigated the interaction of human monocyte-derived DCs with the smooth attenuated B. abortus strain (S) 19, which has previously been employed successfully to vaccinate cattle. Methodology/Principal findings We first looked into the potential of S19 to hamper the cytokine-induced maturation of DCs; however, infected cells expressed CD25, CD40, CD80, and CD86 to a comparable extent as uninfected, cytokine-matured DCs. Furthermore, S19 activated DCs in the absence of exogeneous stimuli, enhanced the expression of HLA-ABC and HLA-DR, and was able to persist intracellularly without causing cytotoxicity. Thus, DCs provide a cellular niche for persisting brucellae in vivo as a permanent source of antigen. S19-infected DCs produced IL-12/23p40, IL-12p70, and IL-10, but not IL-23. While heat-killed bacteria also activated DCs, soluble mediators were not involved in S19-induced activation of human DCs. HEK 293 transfectants revealed cellular activation by S19 primarily through engagement of Toll-like receptor (TLR)2. Conclusions/Significance Thus, as an immunological prerequisite for vaccine efficacy, B. abortus S19 potently infects and potently activates (most likely via TLR2) human DCs to produce Th1-promoting cytokines. PMID:23805193

  13. The Attenuated Brucella abortus Strain 19 Invades, Persists in, and Activates Human Dendritic Cells, and Induces the Secretion of IL-12p70 but Not IL-23.

    Directory of Open Access Journals (Sweden)

    Mario Weinhold

    Full Text Available Bacterial vectors have been proposed as novel vaccine strategies to induce strong cellular immunity. Attenuated strains of Brucella abortus comprise promising vector candidates since they have the potential to induce strong CD4(+ and CD8(+ T-cell mediated immune responses in the absence of excessive inflammation as observed with other Gram-negative bacteria. However, some Brucella strains interfere with the maturation of dendritic cells (DCs, which is essential for antigen-specific T-cell priming. In the present study, we investigated the interaction of human monocyte-derived DCs with the smooth attenuated B. abortus strain (S 19, which has previously been employed successfully to vaccinate cattle.We first looked into the potential of S19 to hamper the cytokine-induced maturation of DCs; however, infected cells expressed CD25, CD40, CD80, and CD86 to a comparable extent as uninfected, cytokine-matured DCs. Furthermore, S19 activated DCs in the absence of exogeneous stimuli, enhanced the expression of HLA-ABC and HLA-DR, and was able to persist intracellularly without causing cytotoxicity. Thus, DCs provide a cellular niche for persisting brucellae in vivo as a permanent source of antigen. S19-infected DCs produced IL-12/23p40, IL-12p70, and IL-10, but not IL-23. While heat-killed bacteria also activated DCs, soluble mediators were not involved in S19-induced activation of human DCs. HEK 293 transfectants revealed cellular activation by S19 primarily through engagement of Toll-like receptor (TLR2.Thus, as an immunological prerequisite for vaccine efficacy, B. abortus S19 potently infects and potently activates (most likely via TLR2 human DCs to produce Th1-promoting cytokines.

  14. Microglia Induce Neurotoxic IL-17+ γδ T Cells Dependent on TLR2, TLR4, and TLR9 Activation.

    Directory of Open Access Journals (Sweden)

    Katja Derkow

    Full Text Available Interleukin-17 (IL-17 acts as a key regulator in central nervous system (CNS inflammation. γδ T cells are an important innate source of IL-17. Both IL-17+ γδ T cells and microglia, the major resident immune cells of the brain, are involved in various CNS disorders such as multiple sclerosis and stroke. Also, activation of Toll-like receptor (TLR signaling pathways contributes to CNS damage. However, the mechanisms underlying the regulation and interaction of these cellular and molecular components remain unclear.In this study, we investigated the crosstalk between γδ T cells and microglia activated by TLRs in the context of neuronal damage. To this end, co-cultures of IL-17+ γδ T cells, neurons, and microglia were analyzed by immunocytochemistry, flow cytometry, ELISA and multiplex immunoassays.We report here that IL-17+ γδ T cells but not naïve γδ T cells induce a dose- and time-dependent decrease of neuronal viability in vitro. While direct stimulation of γδ T cells with various TLR ligands did not result in up-regulation of CD69, CD25, or in IL-17 secretion, supernatants of microglia stimulated by ligands specific for TLR2, TLR4, TLR7, or TLR9 induced activation of γδ T cells through IL-1β and IL-23, as indicated by up-regulation of CD69 and CD25 and by secretion of vast amounts of IL-17. This effect was dependent on the TLR adaptor myeloid differentiation primary response gene 88 (MyD88 expressed by both γδ T cells and microglia, but did not require the expression of TLRs by γδ T cells. Similarly to cytokine-primed IL-17+ γδ T cells, IL-17+ γδ T cells induced by supernatants derived from TLR-activated microglia also caused neurotoxicity in vitro. While these neurotoxic effects required stimulation of TLR2, TLR4, or TLR9 in microglia, neuronal injury mediated by bone marrow-derived macrophages did not require TLR signaling. Neurotoxicity mediated by IL-17+ γδ T cells required a direct cell-cell contact between T

  15. Mutual enhancement of IL-2 and IL-7 on DNA vaccine immunogenicity mainly involves regulations on their receptor expression and receptor-expressing lymphocyte generation.

    Science.gov (United States)

    Zhang, Yonghong; Liang, Shuang; Li, Xiujin; Wang, Liyue; Zhang, Jianlou; Xu, Jian; Huo, Shanshan; Cao, Xuebin; Zhong, Zhenyu; Zhong, Fei

    2015-07-09

    Our previous study showed that IL-2 and IL-7 could mutually enhance the immunogenicity of canine parvovirus VP2 DNA vaccine, although the underlying mechanism remained unknown. Here, we used the OVA gene as a DNA vaccine in a mouse model to test their enhancement on DNA vaccine immunogenicity and to explore the molecular mechanism. Results showed that both IL-2 and IL-7 genes significantly increased the immunogenicity of OVA DNA vaccine in mice. Co-administration of IL-2 and IL-7 genes with OVA DNA significantly increased OVA-specific antibody titers, T cell proliferation and IFN-γ production compared with IL-2 or IL-7 alone, confirming that IL-2 and IL-7 mutually enhanced DNA vaccine immunogenicity. Mechanistically, we have shown that IL-2 significantly stimulated generation of IL-7 receptor-expressing lymphocytes, and that IL-7 significantly induced IL-2 receptor expression. These results contribute to an explanation of the mechanism of the mutual effects of IL-2 and IL-7 on enhancing DNA vaccine immunogenicity and provided a basis for further investigation on their mutual effects on adjuvant activity and immune regulation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Serum levels of interleukin-22, cardiometabolic risk factors and incident type 2 diabetes: KORA F4/FF4 study.

    Science.gov (United States)

    Herder, Christian; Kannenberg, Julia M; Carstensen-Kirberg, Maren; Huth, Cornelia; Meisinger, Christa; Koenig, Wolfgang; Peters, Annette; Rathmann, Wolfgang; Roden, Michael; Thorand, Barbara

    2017-01-31

    Interleukin-22 (IL-22) has beneficial effects on body weight, insulin resistance and inflammation in different mouse models, but its relevance for the development of type 2 diabetes in humans is unknown. We aimed to identify correlates of serum IL-22 levels and to test the hypothesis that higher IL-22 levels are associated with lower diabetes incidence. Cross-sectional associations between serum IL-22, cardiometabolic risk factors and glucose tolerance status were investigated in 1107 persons of the population-based KORA F4 study. The prospective association between serum IL-22 and incident type 2 diabetes was assessed in 504 initially non-diabetic study participants in both the KORA F4 study and its 7-year follow-up examination KORA FF4, 76 of whom developed diabetes. Male sex, current smoking, lower HDL cholesterol, lower estimated glomerular filtration rate and higher serum interleukin-1 receptor antagonist were associated with higher IL-22 levels after adjustment for confounders (all P < 0.05). Serum IL-22 showed no associations with glucose tolerance status, prediabetes or type 2 diabetes. Baseline serum IL-22 levels (median, 25th/75th percentiles) for incident type 2 diabetes cases and non-cases were 6.28 (1.95; 12.35) and 6.45 (1.95; 11.80) pg/ml, respectively (age and sex-adjusted P = 0.744). The age and sex-adjusted OR (95% CI) per doubling of IL-22 for incident type 2 diabetes of 1.02 (0.85; 1.23) was almost unchanged after consideration of further confounders. High serum levels of IL-22 were positively rather than inversely associated with several cardiometabolic risk factors. However, these associations did not translate into an increased risk for type 2 diabetes. Thus, our data argue against the utility of IL-22 as biomarker for prevalent or incident type 2 diabetes in humans, but identify potential determinants of IL-22 levels which merits further research in the context of cardiovascular diseases.

  17. IL-25 or IL-17E protects against high-fat diet-induced hepatic steatosis in mice dependent upon IL-13 activation of STAT6

    Science.gov (United States)

    IL-25 is a member of IL-17 cytokine family and has immune-modulating activities. The role of IL-25 in maintaining lipid metabolic homeostasis remains unknown. Here, we investigated the effects of exogenous IL-25 or deficiency of IL-25 on lipid accumulation in the liver. Mice were injected with IL-25...

  18. Curcumin blocks interleukin (IL)-2 signaling in T-lymphocytes by inhibiting IL-2 synthesis, CD25 expression, and IL-2 receptor signaling

    Energy Technology Data Exchange (ETDEWEB)

    Forward, Nicholas A.; Conrad, David M. [Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia (Canada); Power Coombs, Melanie R.; Doucette, Carolyn D. [Department of Pathology, Dalhousie University, Halifax, Nova Scotia (Canada); Furlong, Suzanne J. [Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia (Canada); Lin, Tong-Jun [Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia (Canada); Department of Pediatrics, Dalhousie University, Halifax, Nova Scotia (Canada); Hoskin, David W., E-mail: d.w.hoskin@dal.ca [Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia (Canada); Department of Pathology, Dalhousie University, Halifax, Nova Scotia (Canada); Department of Surgery, Dalhousie University, Halifax, Nova Scotia (Canada)

    2011-04-22

    Highlights: {yields} Curcumin inhibits CD4{sup +} T-lymphocyte proliferation. {yields} Curcumin inhibits interleukin-2 (IL-2) synthesis and CD25 expression by CD4{sup +} T-lymphocytes. {yields} Curcumin interferes with IL-2 receptor signaling by inhibiting JAK3 and STAT5 phosphorylation. {yields} IL-2-dependent regulatory T-lymphocyte function and Foxp3 expression is downregulated by curcumin. -- Abstract: Curcumin (diferulomethane) is the principal curcuminoid in the spice tumeric and a potent inhibitor of activation-induced T-lymphocyte proliferation; however, the molecular basis of this immunosuppressive effect has not been well studied. Here we show that micromolar concentrations of curcumin inhibited DNA synthesis by mouse CD4{sup +} T-lymphocytes, as well as interleukin-2 (IL-2) and CD25 ({alpha} chain of the high affinity IL-2 receptor) expression in response to antibody-mediated cross-linking of CD3 and CD28. Curcumin acted downstream of protein kinase C activation and intracellular Ca{sup 2+} release to inhibit I{kappa}B phosphorylation, which is required for nuclear translocation of the transcription factor NF{kappa}B. In addition, IL-2-dependent DNA synthesis by mouse CTLL-2 cells, but not constitutive CD25 expression, was impaired in the presence of curcumin, which demonstrated an inhibitory effect on IL-2 receptor (IL-2R) signaling. IL-2-induced phosphorylation of STAT5A and JAK3, but not JAK1, was diminished in the presence of curcumin, indicating inhibition of critical proximal events in IL-2R signaling. In line with the inhibitory action of curcumin on IL-2R signaling, pretreatment of CD4{sup +}CD25{sup +} regulatory T-cells with curcumin downregulated suppressor function, as well as forkhead box p3 (Foxp3) expression. We conclude that curcumin inhibits IL-2 signaling by reducing available IL-2 and high affinity IL-2R, as well as interfering with IL-2R signaling.

  19. IL-6 inhibits upregulation of membrane-bound TGF-beta 1 on CD4+ T cells and blocking IL-6 enhances oral tolerance

    Science.gov (United States)

    Kuhn, Chantal; Rezende, Rafael Machado; M'Hamdi, Hanane; da Cunha, Andre Pires; Weiner, Howard L.

    2016-01-01

    Oral administration of antigen induces regulatory T cells that express latent membrane-bound TGF-beta (LAP) and that have been shown to play an important role in the induction of oral tolerance. We developed an in vitro model to study modulation of LAP+ on CD4+ T cells. The combination of anti-CD3 mAb, anti-CD28 mAb and recombinant IL-2 induced expression of LAP on naïve CD4+ T cells, independent of FoxP3 or exogenous TGF-β. In vitro generated CD4+LAP+FoxP3− T cells were suppressive in vitro, inhibiting proliferation of naïve CD4+ T cells and IL-17A secretion by Th17 cells. Assessing the impact of different cytokines and neutralizing antibodies against cytokines we found that LAP induction was decreased in the presence of IL-6 and IL-21, and to a lesser extent by IL-4 and TNFα. IL-6 abrogated the in vitro induction of CD4+LAP+ T cells by STAT3 dependent inhibition of Lrrc32 (GARP), the adapter protein that tethers TGF-beta to the membrane. Oral tolerance induction was enhanced in mice lacking expression of IL-6R by CD4+ T cells and by treatment of wild-type mice with neutralizing anti-IL-6 mAb. These results suggest that pro-inflammatory cytokines interfere with oral tolerance induction and that blocking the IL-6 pathway is a potential strategy for enhancing oral tolerance in the setting of autoimmune and inflammatory diseases. PMID:28039301

  20. Interleukin 37 limits monosodium urate crystal-induced innate immune responses in human and murine models of gout.

    Science.gov (United States)

    Liu, Lei; Xue, Yu; Zhu, Yingfeng; Xuan, Dandan; Yang, Xue; Liang, Minrui; Wang, Juan; Zhu, Xiaoxia; Zhang, Jiong; Zou, Hejian

    2016-11-18

    Interleukin (IL)-37 has emerged as a fundamental inhibitor of innate immunity. Acute gout is a self-limiting inflammatory response to monosodium urate (MSU) crystals. In the current study, we assessed the preventive and therapeutic effect of recombinant human IL-37 (rhIL-37) in human and murine gout models. We investigated the expression of IL-37 in patients with active and inactive gouty arthritis and assessed the effect of rhIL-37 in human and murine gout models: a human monocyte cell line (THP-1) and human synovial cells (containing macrophage-like and fibroblast-like synoviocytes) exposed to MSU crystals, a peritoneal murine model of gout and a murine gouty arthritis model. After inhibition of Mer receptor tyrosine kinase (Mertk), levels of IL-1β, IL-8 and chemokine (C-C motif) ligand 2 (CCL-2) were detected by ELISA and expression of mammalian homologs of the drosophila Mad gene 3 (Smad), suppressor of cytokine signaling 3 (SOCS3), NACHT-LRR-PYD-containing protein 3 (NLRP3), and IL-8R of THP-1 were assessed by qPCR and western blot to explore the molecular mechanisms. Our studies strongly indicated that rhIL-37 played a potent immunosuppressive role in the pathogenesis of experimental gout models both in vitro and in vivo, by downregulating proinflammatory cytokines and chemokines, markedly reducing neutrophil and monocyte recruitment, and mitigating pathological joint inflammation. In our studies, rhIL-37 suppressed MSU-induced innate immune responses by enhancing expression of Smad3 and IL-1R8 to trigger multiple intracellular switches to block inflammation, including inhibition of NLRP3 and activation of SOCS3. Mertk signaling participated in rhIL-37 inhibitory pathways in gout models. By inhibition of Mertk, the anti-inflammatory effect of rhIL-37 was partly abrogated, and IL-1R8, Smad3 and S​OCS3 expression were suppressed, whereas NLRP3 expression was reactivated. Our studies reveal that IL-37 limits runaway inflammation initiated by MSU crystal-induced

  1. B cell activating factor is central to bleomycin- and IL-17-mediated experimental pulmonary fibrosis.

    Science.gov (United States)

    François, Antoine; Gombault, Aurélie; Villeret, Bérengère; Alsaleh, Ghada; Fanny, Manoussa; Gasse, Paméla; Adam, Sylvain Marchand; Crestani, Bruno; Sibilia, Jean; Schneider, Pascal; Bahram, Seiamak; Quesniaux, Valérie; Ryffel, Bernhard; Wachsmann, Dominique; Gottenberg, Jacques-Eric; Couillin, Isabelle

    2015-01-01

    Idiopathic pulmonary fibrosis (IPF) is a progressive devastating, yet untreatable fibrotic disease of unknown origin. We investigated the contribution of the B-cell activating factor (BAFF), a TNF family member recently implicated in the regulation of pathogenic IL-17-producing cells in autoimmune diseases. The contribution of BAFF was assessed in a murine model of lung fibrosis induced by airway administered bleomycin. We show that murine BAFF levels were strongly increased in the bronchoalveolar space and lungs after bleomycin exposure. We identified Gr1(+) neutrophils as an important source of BAFF upon BLM-induced lung inflammation and fibrosis. Genetic ablation of BAFF or BAFF neutralization by a soluble receptor significantly attenuated pulmonary fibrosis and IL-1β levels. We further demonstrate that bleomycin-induced BAFF expression and lung fibrosis were IL-1β and IL-17A dependent. BAFF was required for rIL-17A-induced lung fibrosis and augmented IL-17A production by CD3(+) T cells from murine fibrotic lungs ex vivo. Finally we report elevated levels of BAFF in bronchoalveolar lavages from IPF patients. Our data therefore support a role for BAFF in the establishment of pulmonary fibrosis and a crosstalk between IL-1β, BAFF and IL-17A. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Neutrophil infiltration and release of IL-8 in airway mucosa from subjects with grain dust-induced occupational asthma.

    Science.gov (United States)

    Park, H S; Jung, K S; Hwang, S C; Nahm, D H; Yim, H E

    1998-06-01

    The immuno-pathological mechanism for occupational asthma induced by grain dust (GD) remains to be clarified. There have been few reports suggesting the involvement of neutrophils inducing bronchoconstriction after inhalation of GD. To further understand the role of neutrophil in the pathogenesis of GD-induced asthma. We studied the phenotype of leucocytes of the bronchial mucosa in patients with GD-induced asthma. Bronchial biopsy specimens were obtained by fibreoptic bronchoscopy from six subjects with GD-induced asthma. Six allergic asthma patients sensitive to house dust mite were enrolled as controls. Bronchial biopsy specimens were examined by immunohistochemistry with a panel of monoclonal antibodies to tryptase-containing mast cell (AA1), activated eosinophil (EG2), pan T-lymphocyte (CD3) and neutrophil elastase (NE). Induced sputum was collected before and after the GD-bronchoprovocation test. The IL-8 level in the sputum was measured using ELISA. There was a significant increase in the number of AA1+ and NE+ cells in bronchial mucosa of GD-induced asthma, compared with those of allergic asthma (P=0.01, P=0.01, respectively). No significant differences were observed in the number of EG2+ and CD3+ cells (P = 0.13, P=0.15, respectively). IL-8 was abundant in the sputum of all GD-induced asthma patients and significantly increased after the bronchial challenges compared with the baseline value (P = 0.03). These findings support the view that neutrophil recruitment together with mast cells may contribute to the bronchoconstriction induced by GD. A possible involvement of IL-8 was suggested.

  3. Data on IL-10R neutralization-induced chronic colitis in Lipocalin 2 deficient mice on BALB/c background

    Directory of Open Access Journals (Sweden)

    Vishal Singh

    2017-04-01

    Full Text Available The data herein is related to the research article entitled “Microbiota-inducible Innate Immune, Siderophore Binding Protein Lipocalin 2 is Critical for Intestinal Homeostasis” (Singh et al., 2016 [1] where we have demonstrated that C57BL/6 Lipocalin 2 deficient mice (Lcn2KO developed chronic colitis upon anti-interleukin-10 receptor (αIL-10R monoclonal antibody administration. In the present article, we evaluated the susceptibility of BALB/c Lcn2KO mice and their WT littermates to the αIL-10R neutralization-induced chronic colitis. Our data showed that αIL-10R mAb-treated BALB/c Lcn2KO mice exhibited severe chronic colitis (i.e., splenomegaly, colomegaly, colonic pathology, and incidence of rectal prolapse when compared to WT mice.

  4. Light-dependent expression of flg22-induced defense genes in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Satoshi eSano

    2014-10-01

    Full Text Available Chloroplasts have been reported to generate retrograde immune signals that activate defense gene expression in the nucleus. However, the roles of light and photosynthesis in plant immunity remain largely elusive. In this study, we evaluated the effects of light on the expression of defense genes induced by flg22, a peptide derived from bacterial flagellins which acts as a potent elicitor in plants. Whole-transcriptome analysis of flg22-treated Arabidopsis thaliana seedlings under light and dark conditions for 30 min revealed that a number of (30% genes strongly induced by flg22 (>4.0 require light for their rapid expression, whereas flg22-repressed genes include a significant number of genes that are down-regulated by light. Furthermore, light is responsible for the flg22-induced accumulation of salicylic acid, indicating that light is indispensable for basal defense responses in plants. To elucidate the role of photosynthesis in defense, we further examined flg22-induced defense gene expression in the presence of specific inhibitors of photosynthetic electron transport: 3-(3,4-dichlorophenyl-1,1-dimethylurea (DCMU and 2,5-dibromo-3-methyl-6-isopropyl-benzoquinone (DBMIB. Light-dependent expression of defense genes was largely suppressed by DBMIB, but only partially suppressed by DCMU. These findings suggest that photosynthetic electron flow plays a role in controling the light-dependent expression of flg22-inducible defense genes.

  5. MyD88 But Not TRIF Is Essential for Osteoclastogenesis Induced by Lipopolysaccharide, Diacyl Lipopeptide, and IL-1α

    Science.gov (United States)

    Sato, Nobuaki; Takahashi, Naoyuki; Suda, Koji; Nakamura, Midori; Yamaki, Mariko; Ninomiya, Tadashi; Kobayashi, Yasuhiro; Takada, Haruhiko; Shibata, Kenichiro; Yamamoto, Masahiro; Takeda, Kiyoshi; Akira, Shizuo; Noguchi, Toshihide; Udagawa, Nobuyuki

    2004-01-01

    Myeloid differentiation factor 88 (MyD88) plays essential roles in the signaling of the Toll/interleukin (IL)-1 receptor family. Toll–IL-1 receptor domain-containing adaptor inducing interferon-β (TRIF)-mediated signals are involved in lipopolysaccharide (LPS)-induced MyD88-independent pathways. Using MyD88-deficient (MyD88−/−) mice and TRIF-deficient (TRIF−/−) mice, we examined roles of MyD88 and TRIF in osteoclast differentiation and function. LPS, diacyl lipopeptide, and IL-1α stimulated osteoclastogenesis in cocultures of osteoblasts and hemopoietic cells obtained from TRIF−/− mice, but not MyD88−/− mice. These factors stimulated receptor activator of nuclear factor-κB ligand mRNA expression in TRIF−/− osteoblasts, but not MyD88−/− osteoblasts. LPS stimulated IL-6 production in TRIF−/− osteoblasts, but not TRIF−/− macrophages. LPS and IL-1α enhanced the survival of TRIF−/− osteoclasts, but not MyD88−/− osteoclasts. Diacyl lipopeptide did not support the survival of osteoclasts because of the lack of Toll-like receptor (TLR)6 in osteoclasts. Macrophages expressed both TRIF and TRIF-related adaptor molecule (TRAM) mRNA, whereas osteoblasts and osteoclasts expressed only TRIF mRNA. Bone histomorphometry showed that MyD88−/− mice exhibited osteopenia with reduced bone resorption and formation. These results suggest that the MyD88-mediated signal is essential for the osteoclastogenesis and function induced by IL-1 and TLR ligands, and that MyD88 is physiologically involved in bone turnover. PMID:15353553

  6. Serpina1 is a potent inhibitor of IL-8-induced hematopoietic stem cell mobilization

    NARCIS (Netherlands)

    van Pel, M; van Os, R; Velders, GA; Hagoort, H; Heegaard, PMH; Lindley, IJD; Willemze, R; Fibbe, WE

    2006-01-01

    Here, we report that cytokine-induced (granulocyte colony-stimulating factor and IL-8) hematopoietic stem cell (HSC) and hematopoietic progenitor cell (HPC) mobilization is completely inhibited after low-dose (0.5 Gy) total-body irradiation (TBI). Because neutrophil granular proteases are regulatory

  7. Serpina1 is a potent inhibitor of IL-8-induced hematopoietic stem cell mobilization

    DEFF Research Database (Denmark)

    van Pel, M.; van Os, R.; Velders, G.A.

    2006-01-01

    Here, we report that cytokine-induced (granulocyte colony-stimulating factor and IL-8) hematopoietic stem cell (HSC) and hematopoietic progenitor cell (HPC) mobilization is completely inhibited after low-dose (0.5 Gy) total-body irradiation (TBI). Because neutrophil granular proteases are regulat...

  8. Metabolically induced liver inflammation leads to NASH and differs from LPS- or IL-1β-induced chronic inflammation.

    Science.gov (United States)

    Liang, Wen; Lindeman, Jan H; Menke, Aswin L; Koonen, Debby P; Morrison, Martine; Havekes, Louis M; van den Hoek, Anita M; Kleemann, Robert

    2014-05-01

    The nature of the chronic inflammatory component that drives the development of non-alcoholic steatohepatitis (NASH) is unclear and possible inflammatory triggers have not been investigated systematically. We examined the effect of non-metabolic triggers (lipopolysaccharide (LPS), interleukin-1β (IL-1β), administered by slow-release minipumps) and metabolic dietary triggers (carbohydrate, cholesterol) of inflammation on the progression of bland liver steatosis (BS) to NASH. Transgenic APOE3*Leiden.huCETP (APOE3L.CETP) mice fed a high-fat diet (HFD) developed BS after 10 weeks. Then, inflammatory triggers were superimposed or not (control) for six more weeks. Mouse livers were analyzed with particular emphasis on hallmarks of inflammation which were defined in human liver biopsies with and without NASH. Livers of HFD-treated control mice remained steatotic and did not progress to NASH. All four inflammatory triggers activated hepatic nuclear factor-κB (NF-κB) significantly and comparably (≥5-fold). However, HFD+LPS or HFD+IL-1β did not induce a NASH-like phenotype and caused intrahepatic accumulation of almost exclusively mononuclear cells. By contrast, mice treated with metabolic triggers developed NASH, characterized by enhanced steatosis, hepatocellular hypertrophy, and formation of mixed-type inflammatory foci containing myeloperoxidase-positive granulocytes (neutrophils) as well as mononuclear cells, essentially as observed in human NASH. Specific for the metabolic inducers was an activation of the proinflammatory transcription factor activator protein-1 (AP-1), neutrophil infiltration, and induction of risk factors associated with human NASH, that is, dyslipidemia (by cholesterol) and insulin resistance (by carbohydrate). In conclusion, HFD feeding followed by NF-κB activation per se (LPS, IL-1β) does not promote the transition from BS to NASH. HFD feeding followed by metabolically evoked inflammation induces additional inflammatory components

  9. Safety and immunogenicity of Salmonella typhimurium expressing C-terminal truncated human IL-2 in a murine model

    Directory of Open Access Journals (Sweden)

    Brent Sorenson

    2010-03-01

    Full Text Available Brent Sorenson, Kaysie Banton, Lance Augustin, Sean Barnett, Karen McCulloch, Joshua Dorn, Natalie Frykman, Arnold Leonard, Daniel SaltzmanDepartment of Surgery, University of Minnesota Medical School, Minneapolis, MN, USAAbstract: Salmonella enterica serovar Typhimurium preferentially colonizes tumors in vivo and has proven to be an effective biologic vector. The attenuated S. enterica Typhimurium strain χ4550 was engineered to express truncated human interleukin-2 and renamed SalpIL2. Previously, we observed that a single oral administration of SalpIL2 reduced tumor number and volume, while significantly increasing local and systemic natural killer (NK cell populations in an experimental metastasis model. Here we report that in nontumor-bearing mice, a single oral dose of SalpIL2 resulted in increased splenic cytotoxic T and NK cell populations that returned to control levels by 4 weeks post oral administration. Though SalpIL2 was detected in mouse tissues for up to 10 weeks, no prolonged alterations in peripheral blood serum chemistry or complete blood cell counts were observed. Similarly, comparative histopathological analysis of tissues revealed no significant increase in pyogranulomas in SalpIL2-treated animals with respect to saline controls. In Rag-1 knockout mice, which have severely impaired B and T cell function, SalpIL2 reduced growth of hepatic metastases. Furthermore, SalpIL2 altered expression of several proinflammatory cytokines and chemokines in the serum of mice with pulmonary osteosarcoma metastases. These data further suggest that SalpIL2 is avirulent and induces a cell-mediated antitumor response.Keywords: Salmonella Typhimurium, natural killer cells, interleukin-2

  10. IL-12 Inhibits Lipopolysaccharide Stimulated Osteoclastogenesis in Mice

    Directory of Open Access Journals (Sweden)

    Masako Yoshimatsu

    2015-01-01

    Full Text Available Lipopolysaccharide (LPS is related to osteoclastogenesis in osteolytic diseases. Interleukin- (IL- 12 is an inflammatory cytokine that plays a critical role in host defense. In this study, we investigated the effects of IL-12 on LPS-induced osteoclastogenesis. LPS was administered with or without IL-12 into the supracalvariae of mice, and alterations in the calvarial suture were evaluated histochemically. The number of osteoclasts in the calvarial suture and the mRNA level of tartrate-resistant acid phosphatase (TRAP, an osteoclast marker, were lower in mice administered LPS with IL-12 than in mice administered LPS alone. The serum level of tartrate-resistant acid phosphatase 5b (TRACP 5b, a bone resorption marker, was also lower in mice administered LPS with IL-12 than in mice administered LPS alone. These results revealed that IL-12 might inhibit LPS-induced osteoclastogenesis and bone resorption. In TdT-mediated dUTP-biotin nick end-labeling (TUNEL assays, apoptotic changes in cells were recognized in the calvarial suture in mice administered LPS with IL-12. Furthermore, the mRNA levels of both Fas and FasL were increased in mice administered LPS with IL-12. Taken together, the findings demonstrate that LPS-induced osteoclastogenesis is inhibited by IL-12 and that this might arise through apoptotic changes in osteoclastogenesis-related cells induced by Fas/FasL interactions.

  11. Lentiviral-mediated administration of IL-25 in the CNS induces alternative activation of microglia

    DEFF Research Database (Denmark)

    Maiorino, C; Khorooshi, R; Ruffini, F

    2013-01-01

    Interleukin-25 (IL-25) is the only anti-inflammatory cytokine of the IL-17 family, and it has been shown to be efficacious in inhibiting neuroinflammation. Known for its effects on cells of the adaptive immune system, it has been more recently described to be effective also on cells of the innate...... was partly inhibited and the CNS protected from immune-mediated damage. To our knowledge, this is the first example of M2 shift (alternative activation) induced in vivo on CNS-resident myeloid cells by gene therapy, and may constitute a promising strategy to investigate the potential role of protective...

  12. IL-12p35 Inhibits Neuroinflammation and Ameliorates Autoimmune Encephalomyelitis

    Directory of Open Access Journals (Sweden)

    Jin Kyeong Choi

    2017-10-01

    Full Text Available Multiple sclerosis (MS is an inflammatory demyelinating disease in which cytokines produced by immune cells that infiltrate the brain and spinal cord play a central role. We show here that the IL-12p35, the alpha subunit of IL-12 or IL-35 cytokine, might be an effective biologic for suppressing neuroinflammatory responses and ameliorating the pathology of experimental autoimmune encephalomyelitis (EAE, the mouse model of human MS. We further show that IL-12p35 conferred protection from neuropathy by inhibiting the expansion of pathogenic Th17 and Th1 cells and inhibiting trafficking of inflammatory cells into the brain and spinal cord. In addition, in vitro exposure of encephalitogenic cells to IL-12p35 suppressed their capacity to induce EAE by adoptive transfer. Importantly, the IL-12p35-mediated expansion of Treg and Breg cells and its amelioration of EAE correlated with inhibition of cytokine-induced activation of STAT1/STAT3 pathways. Moreover, IL-12p35 inhibited lymphocyte proliferation by suppressing the expressions of cell-cycle regulatory proteins. Taken together, these results suggest that IL-12p35 can be exploited as a novel biologic for treating central nervous system autoimmune diseases and offers the promise of ex vivo production of large amounts of Tregs and Bregs for immunotherapy.

  13. Recombinant human growth-regulated oncogene-alpha induces T lymphocyte chemotaxis. A process regulated via IL-8 receptors by IFN-gamma, TNF-alpha, IL-4, IL-10, and IL-13

    DEFF Research Database (Denmark)

    Jinquan, T; Frydenberg, Jane; Mukaida, N

    1995-01-01

    receptors on the cells. This process can be augmented by IFN-gamma and TNF-alpha, and inhibited by IL-4, IL-10, and IL-13. In addition, we also document that on T lymphocytes there exist IL-8 receptors that can be up-regulated by IFN-gamma, TNF-alpha, and IL-2. Our results demonstrate that rhGRO-alpha gene...

  14. Membrane-associated IL 1-like activity on rat dendritic cells

    International Nuclear Information System (INIS)

    Nagelkerken, L.M.; van Breda Vriesman, P.J.C.

    1986-01-01

    The secretion of interleukin 1 (IL 1) by rat dendritic cells (DC) was studied in relation to their ability to induce the production interleukin 2 (IL 2 ) and to induce IL 2 responsiveness. IL 1 (or IL 1-like activity) was measured by its capacity to enhance IL 2 production by EL4 cells. In contrast to peritoneal exudate cells (PEC) or splenic adherent cells, DC from thoracic duct lymph (TD-DC) or from spleen did not secrete detectable amounts of IL 1 on stimulation with LPS/Silica. However, TD-DC and splenic DC were able to enhance IL 2 production by EL4 cells directly, and were only two times less effective than PEC. By preventing cell-to-cell contact between stimulator cells and EL4 cells, it was demonstrated that most of the IL 2-inducing activity of TD-DC and PEC was associated with the cell membrane. Treatment with 1% paraformaldehyde (PFA) to abolish metabolic activity resulted in a 50% decrease (or inactivation) of IL 2-inducing activity of TD-DC in the EL4 assay. Moreover, UVB-irradiation (300 mJ/cm 2 ) of TD-DC, which has been described to inhibit the release of IL 1 by macrophages, caused a 70% decrease in IL 2-inducing activity. These results suggest that membrane-associated structures, that are identical to or mimic Il 1, are involved in the activation of T cells by DC

  15. Sex bias in experimental immune-mediated, drug-induced liver injury in BALB/c mice: suggested roles for Tregs, estrogen, and IL-6.

    Directory of Open Access Journals (Sweden)

    Joonhee Cho

    Full Text Available Immune-mediated, drug-induced liver injury (DILI triggered by drug haptens is more prevalent in women than in men. However, mechanisms responsible for this sex bias are not clear. Immune regulation by CD4+CD25+FoxP3+ regulatory T-cells (Tregs and 17β-estradiol is crucial in the pathogenesis of sex bias in cancer and autoimmunity. Therefore, we investigated their role in a mouse model of immune-mediated DILI.To model DILI, we immunized BALB/c, BALB/cBy, IL-6-deficient, and castrated BALB/c mice with trifluoroacetyl chloride-haptenated liver proteins. We then measured degree of hepatitis, cytokines, antibodies, and Treg and splenocyte function.BALB/c females developed more severe hepatitis (p<0.01 and produced more pro-inflammatory hepatic cytokines and antibodies (p<0.05 than did males. Castrated males developed more severe hepatitis than did intact males (p<0.001 and females (p<0.05. Splenocytes cultured from female mice exhibited fewer Tregs (p<0.01 and higher IL-1β (p<0.01 and IL-6 (p<0.05 than did those from males. However, Treg function did not differ by sex, as evidenced by absence of sex bias in programmed death receptor-1 and responses to IL-6, anti-IL-10, anti-CD3, and anti-CD28. Diminished hepatitis in IL-6-deficient, anti-IL-6 receptor α-treated, ovariectomized, or male mice; undetectable IL-6 levels in splenocyte supernatants from ovariectomized and male mice; elevated splenic IL-6 and serum estrogen levels in castrated male mice, and IL-6 induction by 17β-estradiol in splenocytes from naïve female mice (p<0.05 suggested that 17β-estradiol may enhance sex bias through IL-6 induction, which subsequently discourages Treg survival. Treg transfer from naïve female mice to those with DILI reduced hepatitis severity and hepatic IL-6.17β-estradiol and IL-6 may act synergistically to promote sex bias in experimental DILI by reducing Tregs. Modulating Treg numbers may provide a therapeutic approach to DILI.

  16. Impaired IL-10 transcription and release in animal models of Gaucher disease macrophages.

    Science.gov (United States)

    Kacher, Yaacov; Futerman, Anthony H

    2009-01-01

    A number of studies have shown altered cytokine levels in serum from Gaucher disease patients, including changes in levels of the anti-inflammatory cytokine, interleukin-10 (IL-10). However, the source of IL-10, or the mechanisms leading to changes in IL-10 serum levels are not known. We now show that mouse macrophages treated with an active site-directed inhibitor of glucocerebrosidase, or macrophages from a mouse model of Gaucher disease, the L444P mouse, release significantly less IL-10 than their untreated counterparts, but that TNFalpha release is unaffected. These changes are due to reduced transcription of IL-10 mRNA in macrophages. The reduction in IL-10 secretion observed in animal models of Gaucher disease macrophages may be of relevance to explain the increase in inflammation that is often observed in Gaucher disease.

  17. Modulation of pulmonary fibrosis by IL-13Rα2.

    Science.gov (United States)

    Lumsden, Robert V; Worrell, Julie C; Boylan, Denise; Walsh, Sinead M; Cramton, Jennifer; Counihan, Ian; O'Beirne, Sarah; Medina, Maria Fe; Gauldie, Jack; Fabre, Aurelie; Donnelly, Seamas C; Kane, Rosemary; Keane, Michael P

    2015-04-01

    Pulmonary fibrosis is a progressive and fatal disease that involves the remodeling of the distal airspace and the lung parenchyma, which results in compromised gas exchange. The median survival time once diagnosed is less than three years. Interleukin (IL)-13 has been shown to play a role in a number of inflammatory and fibrotic diseases. IL-13 modulates its effector functions via a complex receptor system that includes the IL-4 receptor (R) α, IL-13Rα1, and the IL-13Rα2. IL-13Rα1 binds IL-13 with low affinity, yet, when it forms a complex with IL-4α, it binds with much higher affinity, inducing the effector functions of IL-13. IL-13Rα2 binds IL-13 with high affinity but has a short cytoplasmic tail and has been shown to act as a nonsignaling decoy receptor. Transfection of fibroblasts and epithelial cells with IL-13Rα2 inhibited the IL-13 induction of soluble collagen, TGF-β, and CCL17. Adenoviral overexpression of IL-13Rα2 in the lung reduced bleomycin-induced fibrosis. Our work shows that overexpression of IL-13Rα2 inhibits the IL-13 induction of fibrotic markers in vitro and inhibits bleomycin-induced pulmonary fibrosis. In summary our study highlights the antifibrotic nature of IL-13Ra2. Copyright © 2015 the American Physiological Society.

  18. Focal adhesion kinase-mediated activation of glycogen synthase kinase 3β regulates IL-33 receptor internalization and IL-33 signaling.

    Science.gov (United States)

    Zhao, Jing; Wei, Jianxin; Bowser, Rachel K; Traister, Russell S; Fan, Ming-Hui; Zhao, Yutong

    2015-01-15

    IL-33, a relatively new member of the IL-1 cytokine family, plays a crucial role in allergic inflammation and acute lung injury. Long form ST2 (ST2L), the receptor for IL-33, is expressed on immune effector cells and lung epithelia and plays a critical role in triggering inflammation. We have previously shown that ST2L stability is regulated by the ubiquitin-proteasome system; however, its upstream internalization has not been studied. In this study, we demonstrate that glycogen synthase kinase 3β (GSK3β) regulates ST2L internalization and IL-33 signaling. IL-33 treatment induced ST2L internalization, and an effect was attenuated by inhibition or downregulation of GSK3β. GSK3β was found to interact with ST2L on serine residue 446 in response to IL-33 treatment. GSK3β binding site mutant (ST2L(S446A)) and phosphorylation site mutant (ST2L(S442A)) are resistant to IL-33-induced ST2L internalization. We also found that IL-33 activated focal adhesion kinase (FAK). Inhibition of FAK impaired IL-33-induced GSK3β activation and ST2L internalization. Furthermore, inhibition of ST2L internalization enhanced IL-33-induced cytokine release in lung epithelial cells. These results suggest that modulation of the ST2L internalization by FAK/GSK3β might serve as a unique strategy to lessen pulmonary inflammation. Copyright © 2015 by The American Association of Immunologists, Inc.

  19. Role of IL-33 in inflammation and disease

    Directory of Open Access Journals (Sweden)

    Miller Ashley M

    2011-08-01

    Full Text Available Abstract Interleukin (IL-33 is a new member of the IL-1 superfamily of cytokines that is expressed by mainly stromal cells, such as epithelial and endothelial cells, and its expression is upregulated following pro-inflammatory stimulation. IL-33 can function both as a traditional cytokine and as a nuclear factor regulating gene transcription. It is thought to function as an 'alarmin' released following cell necrosis to alerting the immune system to tissue damage or stress. It mediates its biological effects via interaction with the receptors ST2 (IL-1RL1 and IL-1 receptor accessory protein (IL-1RAcP, both of which are widely expressed, particularly by innate immune cells and T helper 2 (Th2 cells. IL-33 strongly induces Th2 cytokine production from these cells and can promote the pathogenesis of Th2-related disease such as asthma, atopic dermatitis and anaphylaxis. However, IL-33 has shown various protective effects in cardiovascular diseases such as atherosclerosis, obesity, type 2 diabetes and cardiac remodeling. Thus, the effects of IL-33 are either pro- or anti-inflammatory depending on the disease and the model. In this review the role of IL-33 in the inflammation of several disease pathologies will be discussed, with particular emphasis on recent advances.

  20. Acidic environment augments FcεRI-mediated production of IL-6 and IL-13 in mast cells

    Energy Technology Data Exchange (ETDEWEB)

    Kamide, Yosuke, E-mail: m08702012@gunma-u.ac.jp [Department of Medicine and Molecular Science, Gunma University Graduate School of Medicine, Maebashi (Japan); Clinical Research Center for Allergy and Rheumatology, Sagamihara National Hospital, Sagamihara (Japan); Ishizuka, Tamotsu [Third Department of Internal Medicine, Faculty of Medical Sciences, University of Fukui, Fukui (Japan); Tobo, Masayuki [Laboratory of Signal Transduction, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi (Japan); Tsurumaki, Hiroaki [Department of Medicine and Molecular Science, Gunma University Graduate School of Medicine, Maebashi (Japan); Laboratory of Signal Transduction, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi (Japan); Aoki, Haruka; Mogi, Chihiro [Laboratory of Signal Transduction, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi (Japan); Nakakura, Takashi [Department of Anatomy, Graduate School of Medicine, Teikyo University, Tokyo (Japan); Yatomi, Masakiyo; Ono, Akihiro; Koga, Yasuhiko [Department of Medicine and Molecular Science, Gunma University Graduate School of Medicine, Maebashi (Japan); Sato, Koichi [Laboratory of Signal Transduction, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi (Japan); Hisada, Takeshi [Department of Medicine and Molecular Science, Gunma University Graduate School of Medicine, Maebashi (Japan); Dobashi, Kunio [Gunma University Graduate School of Health Sciences, Maebashi (Japan); Yamada, Masanobu [Department of Medicine and Molecular Science, Gunma University Graduate School of Medicine, Maebashi (Japan); Okajima, Fumikazu [Laboratory of Signal Transduction, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi (Japan)

    2015-08-28

    Although blood pH is maintained in a narrow range of around pH 7.4 in living organisms, inflammatory loci are characterized by acidic conditions. Mast cells tend to reside close to the surface of the body in areas such as the mucosa and skin where they may be exposed to exogenous acids, and they play an important role in immune responses. However, little is known about the effects of extracellular acidification on the functions of mast cell. Here, we found that extracellular acidification increased the dinitrophenyl-conjugated human serum albumin (DNP-HSA)-induced production of interleukin (IL)-6 and IL-13 in MC/9 cells or bone marrow-derived mouse mast cells sensitized with anti-DNP IgE. Extracellular acidification also inhibited migration of MC/9 cells toward DNP-HSA. In addition, acidic pH stimulated antigen-induced activation of p38 mitogen-activated protein kinase (MAPK) and protein kinase B (Akt). These findings suggest that extracellular acidification augmented antigen/IgE-induced and FcεRI-mediated production of IL-6 and IL-13 in mast cells, and that this was associated with the enhancement of p38 MAPK and Akt activation. - Highlights: • Antigen-induced IL-6 and IL-13 production was augmented by acidic pH in mast cells. • Acidic pH-induced actions were associated with activation of p38 MAPK and Akt. • Inhibition of p38 MAPK and Akt attenuated cytokine responses to acidic pH. • Acidic pH effects are not attributable to actions of known proton-sensing GPCRs.

  1. A Critical Role of IL-21-Induced BATF in Sustaining CD8-T-Cell-Mediated Chronic Viral Control

    Directory of Open Access Journals (Sweden)

    Gang Xin

    2015-11-01

    Full Text Available Control of chronic viral infections by CD8 T cells is critically dependent on CD4 help. In particular, helper-derived IL-21 plays a key role in sustaining the CD8 T cell response; however, the molecular pathways by which IL-21 sustains CD8 T cell immunity remain unclear. We demonstrate that IL-21 causes a phenotypic switch of transcription factor expression in CD8 T cells during chronic viral infection characterized by sustained BATF expression. Importantly, BATF expression during chronic infection is both required for optimal CD8 T cell persistence and anti-viral effector function and sufficient to rescue “unhelped” CD8 T cells. Mechanistically, BATF sustains the response by cooperating with IRF4, an antigen-induced transcription factor that is also critically required for CD8 T cell maintenance, to preserve Blimp-1 expression and thereby sustain CD8 T cell effector function. Collectively, these data suggest that CD4 T cells “help” the CD8 response during chronic infection via IL-21-induced BATF expression.

  2. Regulatory effects of intrinsic IL-10 in IgG immune complex-induced lung injury

    DEFF Research Database (Denmark)

    Shanley, T P; Schmal, H; Friedl, H P

    1995-01-01

    IL-10 has regulatory effects in vitro on cytokine production by activated macrophages. In the IgG immune complex model of lung injury, exogenously administered IL-10 has been shown to suppress in vivo formation of TNF-alpha, up-regulation of vascular ICAM-1, neutrophil recruitment, and ensuing lung....... Blocking of IL-10 by Ab resulted in a 52% increase in lung vascular permeability, a 56% increase in TNF-alpha activity in bronchoalveolar lavage fluids, and a 47 to 48% increase in bronchoalveolar lavage neutrophils and lung myeloperoxidase content. These findings suggest that IL-10 is an important natural...

  3. Genetic polymorphisms and tissue expression of interleukin-22 associated with risk and therapeutic response of gastric mucosa-associated lymphoid tissue lymphoma

    International Nuclear Information System (INIS)

    Liao, F; Hsu, Y-C; Kuo, S-H; Yang, Y-C; Chen, J-P; Hsu, P-N; Lin, C-W; Chen, L-T; Cheng, A-L; Fann, C S J; Lin, J-T; Wu, M-S

    2014-01-01

    Chronic Helicobacter pylori-stimulated immune reactions determine the pathogenesis of gastric mucosa-associated lymphoid tissue (MALT) lymphoma. We aimed to explore the genetic predisposition to this lymphoma and its clinical implication. A total of 68 patients and 140 unrelated controls were genotyped for 84 single-nucleotide polymorphisms in genes encoding cytokines, chemokines and related receptors that play important roles in T cell-mediated gastrointestinal immunity. Five genotypes in IL-22, namely CC at rs1179246, CC at rs2227485, AA at rs4913428, AA at rs1026788 and TT at rs7314777, were associated with disease susceptibility. The former four genotypes resided in the same linkage disequilibrium block (r 2 =0.99) that conferred an approximately threefold higher risk. In vitro experiments demonstrated that co-culturing peripheral mononuclear cells or CD4 + T cells with H. pylori stimulated the secretion of interleukin-22 (IL-22), and that IL-22 induced the expression of antimicrobial proteins, RegIIIα and lipocalin-2, in gastric epithelial cells. Furthermore, patients with gastric tissue expressing IL-22 were more likely to respond to H. pylori eradication (14/22 vs 4/19, P<0.006). We conclude that susceptibility of gastric MALT lymphoma is influenced by genetic polymorphisms in IL-22, the product of which is involved in mucosal immunity against H. pylori and associated with tumor response to H. pylori eradication

  4. Lytic cell death induced by melittin bypasses pyroptosis but induces NLRP3 inflammasome activation and IL-1β release.

    Science.gov (United States)

    Martín-Sánchez, Fátima; Martínez-García, Juan José; Muñoz-García, María; Martínez-Villanueva, Miriam; Noguera-Velasco, José A; Andreu, David; Rivas, Luís; Pelegrín, Pablo

    2017-08-10

    The nucleotide-binding domain and leucine-rich repeat-containing receptor with a pyrin domain 3 (NLRP3) inflammasome is a sensor for different types of infections and alterations of homeostatic parameters, including abnormally high levels of the extracellular nucleotide ATP or crystallization of different metabolites. All NLRP3 activators trigger a similar intracellular pathway, where a decrease in intracellular K + concentration and permeabilization of plasma membrane are key steps. Cationic amphipathic antimicrobial peptides and peptide toxins permeabilize the plasma membrane. In fact, some of them have been described to activate the NLRP3 inflammasome. Among them, the bee venom antimicrobial toxin peptide melittin is known to elicit an inflammatory reaction via the NLRP3 inflammasome in response to bee venom. Our study found that melittin induces canonical NLRP3 inflammasome activation by plasma membrane permeabilization and a reduction in the intracellular K + concentration. Following melittin treatment, the apoptosis-associated speck-like protein, an adaptor protein with a caspase recruitment domain (ASC), was necessary to activate caspase-1 and induce IL-1β release. However, cell death induced by melittin prevented the formation of large ASC aggregates, amplification of caspase-1 activation, IL-18 release and execution of pyroptosis. Therefore, melittin-induced activation of the NLRP3 inflammasome results in an attenuated inflammasome response that does not result in caspase-1 dependent cell death.

  5. NMR spectroscopic studies of a TAT-derived model peptide in imidazolium-based ILs: influence on chemical shifts and the cis/trans equilibrium state.

    Science.gov (United States)

    Wiedemann, Christoph; Ohlenschläger, Oliver; Mrestani-Klaus, Carmen; Bordusa, Frank

    2017-09-13

    NMR spectroscopy was used to study systematically the impact of imidazolium-based ionic liquid (IL) solutions on a TAT-derived model peptide containing Xaa-Pro peptide bonds. The selected IL anions cover a wide range of the Hofmeister series of ions. Based on highly resolved one- and two-dimensional NMR spectra individual 1 H and 13 C peptide chemical shift differences were analysed and a classification of IL anions according to the Hofmeister series was derived. The observed chemical shift changes indicate significant interactions between the peptide and the ILs. In addition, we examined the impact of different ILs towards the cis/trans equilibrium state of the Xaa-Pro peptide bonds. In this context, the IL cations appear to be of exceptional importance for inducing an alteration of the native cis/trans equilibrium state of Xaa-Pro bonds in favour of the trans-isomers.

  6. Acrolein stimulates the synthesis of IL-6 and C-reactive protein (CRP) in thrombosis model mice and cultured cells.

    Science.gov (United States)

    Saiki, Ryotaro; Hayashi, Daisuke; Ikuo, Yukiko; Nishimura, Kazuhiro; Ishii, Itsuko; Kobayashi, Kaoru; Chiba, Kan; Toida, Toshihiko; Kashiwagi, Keiko; Igarashi, Kazuei

    2013-12-01

    Measurements of protein-conjugated acrolein (PC-Acro), IL-6, and C-reactive protein (CRP) in plasma were useful for identifying silent brain infarction with high sensitivity and specificity. The aim of this study was to determine whether acrolein causes increased production of IL-6 and CRP in thrombosis model mice and cultured cells. In mice with photochemically induced thrombosis, acrolein produced at the locus of infarction increased the level of IL-6 and then CRP in plasma. This was confirmed in cell culture systems - acrolein stimulated the production of IL-6 in mouse neuroblastoma Neuro-2a cells, mouse macrophage-like J774.1 cells, and human umbilical vein endothelial cells (HUVEC), and IL-6 in turn stimulated the production of CRP in human hepatocarcinoma cells. The level of IL-6 mRNA was increased by acrolein through an increase in phosphorylation of the transcription factors, c-Jun, and NF-κB p65. Furthermore, CRP stimulated IL-6 production in mouse macrophage-like J774.1 cells and HUVEC. IL-6 functioned as a protective factor against acrolein toxicity in Neuro-2a cells and HUVEC. These results show that acrolein stimulates the synthesis of IL-6 and CRP, which function as protecting factors against acrolein toxicity, and that the combined measurement of PC-Acro, IL-6, and CRP is effective for identification of silent brain infarction. The combined measurements of protein-conjugated acrolein (PC-Acro), IL-6, and C-reactive protein (CRP) in plasma were useful for identifying silent brain infarction. The aim of this study was to determine whether acrolein causes increased production of IL-6 and CRP, and indeed acrolein increased IL-6 synthesis and IL-6 in turn increased CRP synthesis. Furthermore, IL-6 decreased acrolein toxicity in several cell lines. © 2013 International Society for Neurochemistry.

  7. Helicobacter pylori induces IL-1β and IL-18 production in human monocytic cell line through activation of NLRP3 inflammasome via ROS signaling pathway.

    Science.gov (United States)

    Li, Xiang; Liu, Sheng; Luo, Jingjing; Liu, Anyuan; Tang, Shuangyang; Liu, Shuo; Yu, Minjun; Zhang, Yan

    2015-06-01

    This study investigated whether Helicobacter pylori could activate the nucleotide-binding oligomerization domain-like receptor (NLR) family, pyrin domain-containing 3 (NLRP3) inflammasome in human macrophages and the involvement of reactive oxygen species (ROS) in inflammasome activation. Phorbol-12-myristate-13-acetate (PMA)-differentiated human acute monocytic leukemia cell line THP-1 was infected with H. pylori. The levels of pro-inflammatory cytokines interleukin (IL)-1β and IL-18 in supernatant were measured by ELISA. Intracellular ROS level was analyzed by flow cytometry. Quantitative real-time PCR and western blot analysis were employed to determine the mRNA and protein expression levels of NLRP3 and caspase-1 in THP-1 cells, respectively. Our results showed that H. pylori infection could induce IL-1β and IL-18 production in PMA-differentiated THP-1 cells in a dose- and time-dependent manner. Moreover, secretion of IL-1β and IL-18 in THP-1 cells following H. pylori infection was remarkably reduced by NLRP3-specific small interfering RNA treatment. In addition, the intracellular ROS level was elevated by H. pylori infection, which could be eliminated by the ROS scavenger N-acetylcysteine (NAC). Furthermore, NAC treatment could inhibit NLRP3 inflammasome formation and caspase-1 activation and suppress the release of IL-1β and IL-18 from H. pylori-infected THP-1 cells. These findings provide novel insights into the innate immune response against H. pylori infection, which could potentially be used for the prevention and treatment of H. pylori-related diseases. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  8. IL13Rα2 siRNA inhibited cell proliferation, induced cell apoptosis, and suppressed cell invasion in papillary thyroid carcinoma cells

    Directory of Open Access Journals (Sweden)

    Gu MJ

    2018-03-01

    Full Text Available Mingjun Gu Department of Endocrinology, Shanghai Gongli Hospital, The Second Military Medical University, Shanghai, People’s Republic of China Aim: Papillary thyroid carcinoma (PTC is the most common type of thyroid cancer. Infiltrative growth and metastasis are the two most intractable characteristics of PTC. Interleukin-13 receptor α2 (IL13Rα2 with high affinity for Th2-derived cytokine IL-13 has been reported to be overexpressed in several tumors. In this study, an analysis of IL13Rα2 expression in PTC and matched paracancerous tissues was undertaken, and its biologic functions in PTC were assessed. Methods: IL13Rα2 and vascular endothelial growth factor (VEGF expression were detected by using real-time polymerase chain reaction and immunohistochemistry analyses. Cell proliferation, invasion, apoptosis, and caspase activity were measured with the Cell Counting Kit-8, Transwell, flow cytometry analyses, and biochemistry assay, respectively. Results: Upregulation of IL13Rα2 and VEGF was observed in PTC tissues compared with matched paracancerous tissues. Pearson’s correlation analysis indicated that IL13Rα2 mRNA level in the tested PTC tissues was positively correlated with VEGF mRNA level. Besides, inhibited cell proliferation, induced cell apoptosis, and suppressed cell invasion were detected in IL13Rα2-silenced TPC-1 cells. Increased activity of Caspase 3 and Caspase 9, along with elevated cleaved Caspase 3 and poly (ADP-ribose polymerase indicated the signal pathway of cell apoptosis induced by IL13Rα2 siRNA. In addition, downregulated metastasis- and angiogenesis-related proteins VEGF, VEGFR2, MMP2, and MMP9 indicated the decreased number of invading cells after knockdown of IL13Rα2. Conclusion: The results demonstrate that IL13Rα2 plays an important role in the progress of PTC. IL13Rα2 knockdown in PTC cells inhibited cell proliferation, induced cell apoptosis, and suppressed cell invasion. These data suggest that IL13Rα2

  9. IL-6 Inhibits Upregulation of Membrane-Bound TGF-β 1 on CD4+ T Cells and Blocking IL-6 Enhances Oral Tolerance.

    Science.gov (United States)

    Kuhn, Chantal; Rezende, Rafael Machado; M'Hamdi, Hanane; da Cunha, Andre Pires; Weiner, Howard L

    2017-02-01

    Oral administration of Ag induces regulatory T cells that express latent membrane-bound TGF-β (latency-associated peptide [LAP]) and have been shown to play an important role in the induction of oral tolerance. We developed an in vitro model to study modulation of LAP + on CD4 + T cells. The combination of anti-CD3 mAb, anti-CD28 mAb, and recombinant IL-2 induced expression of LAP on naive CD4 + T cells, independent of Foxp3 or exogenous TGF-β. In vitro generated CD4 + LAP + Foxp3 - T cells were suppressive in vitro, inhibiting proliferation of naive CD4 + T cells and IL-17A secretion by Th17 cells. Assessing the impact of different cytokines and neutralizing Abs against cytokines, we found that LAP induction was decreased in the presence of IL-6 and IL-21, and to a lesser extent by IL-4 and TNF-α. IL-6 abrogated the in vitro induction of CD4 + LAP + T cells by STAT3-dependent inhibition of Lrrc32 (glycoprotein A repetitions predominant [GARP]), the adapter protein that tethers TGF-β to the membrane. Oral tolerance induction was enhanced in mice lacking expression of IL-6R by CD4 + T cells and by treatment of wild-type mice with neutralizing anti-IL-6 mAb. These results suggest that proinflammatory cytokines interfere with oral tolerance induction and that blocking the IL-6 pathway is a potential strategy for enhancing oral tolerance in the setting of autoimmune and inflammatory diseases. Copyright © 2017 by The American Association of Immunologists, Inc.

  10. Signaling through IL-17C/IL-17RE is dispensable for immunity to systemic, oral and cutaneous candidiasis.

    Directory of Open Access Journals (Sweden)

    Heather R Conti

    Full Text Available Candida albicans is a commensal fungal microbe of the human orogastrointestinal tract and skin. C. albicans causes multiple forms of disease in immunocompromised patients, including oral, vaginal, dermal and disseminated candidiasis. The cytokine IL-17 (IL-17A and its receptor subunits, IL-17RA and IL-17RC, are required for protection to most forms of candidiasis. The importance of the IL-17R pathway has been observed not only in knockout mouse models, but also in humans with rare genetic mutations that impact generation of Th17 cells or the IL-17 signaling pathway, including Hyper-IgE Syndrome (STAT3 or TYK2 mutations or IL17RA or ACT1 gene deficiency. The IL-17 family of cytokines is a distinct subclass of cytokines with unique structural and signaling properties. IL-17A is the best-characterized member of the IL-17 family to date, but far less is known about other IL-17-related cytokines. In this study, we sought to determine the role of a related IL-17 cytokine, IL-17C, in protection against oral, dermal and disseminated forms of C. albicans infection. IL-17C signals through a heterodimeric receptor composed of the IL-17RA and IL-17RE subunits. We observed that IL-17C mRNA was induced following oral C. albicans infection. However, mice lacking IL-17C or IL-17RE cleared C. albicans infections in the oral mucosa, skin and bloodstream at rates similar to WT littermate controls. Moreover, these mice demonstrated similar gene transcription profiles and recovery kinetics as WT animals. These findings indicate that IL-17C and IL-17RE are dispensable for immunity to the forms of candidiasis evaluated, and illustrate a surprisingly limited specificity of the IL-17 family of cytokines with respect to systemic, oral and cutaneous Candida infections.

  11. Therapeutic Targeting of the IL-6 Trans-Signaling/Mechanistic Target of Rapamycin Complex 1 Axis in Pulmonary Emphysema.

    Science.gov (United States)

    Ruwanpura, Saleela M; McLeod, Louise; Dousha, Lovisa F; Seow, Huei J; Alhayyani, Sultan; Tate, Michelle D; Deswaerte, Virginie; Brooks, Gavin D; Bozinovski, Steven; MacDonald, Martin; Garbers, Christoph; King, Paul T; Bardin, Philip G; Vlahos, Ross; Rose-John, Stefan; Anderson, Gary P; Jenkins, Brendan J

    2016-12-15

    The potent immunomodulatory cytokine IL-6 is consistently up-regulated in human lungs with emphysema and in mouse emphysema models; however, the mechanisms by which IL-6 promotes emphysema remain obscure. IL-6 signals using two distinct modes: classical signaling via its membrane-bound IL-6 receptor (IL-6R), and trans-signaling via a naturally occurring soluble IL-6R. To identify whether IL-6 trans-signaling and/or classical signaling contribute to the pathogenesis of emphysema. We used the gp130 F/F genetic mouse model for spontaneous emphysema and cigarette smoke-induced emphysema models. Emphysema in mice was quantified by various methods including in vivo lung function and stereology, and terminal deoxynucleotidyl transferase dUTP nick end labeling assay was used to assess alveolar cell apoptosis. In mouse and human lung tissues, the expression level and location of IL-6 signaling-related genes and proteins were measured, and the levels of IL-6 and related proteins in sera from emphysematous mice and patients were also assessed. Lung tissues from patients with emphysema, and from spontaneous and cigarette smoke-induced emphysema mouse models, were characterized by excessive production of soluble IL-6R. Genetic blockade of IL-6 trans-signaling in emphysema mouse models and therapy with the IL-6 trans-signaling antagonist sgp130Fc ameliorated emphysema by suppressing augmented alveolar type II cell apoptosis. Furthermore, IL-6 trans-signaling-driven emphysematous changes in the lung correlated with mechanistic target of rapamycin complex 1 hyperactivation, and treatment of emphysema mouse models with the mechanistic target of rapamycin complex 1 inhibitor rapamycin attenuated emphysematous changes. Collectively, our data reveal that specific targeting of IL-6 trans-signaling may represent a novel treatment strategy for emphysema.

  12. IL-17A induces Pendrin expression and chloride-bicarbonate exchange in human bronchial epithelial cells.

    Directory of Open Access Journals (Sweden)

    Kelly M Adams

    Full Text Available The epithelium plays an active role in the response to inhaled pathogens in part by responding to signals from the immune system. Epithelial responses may include changes in chemokine expression, increased mucin production and antimicrobial peptide secretion, and changes in ion transport. We previously demonstrated that interleukin-17A (IL-17A, which is critical for lung host defense against extracellular bacteria, significantly raised airway surface pH in vitro, a finding that is common to a number of inflammatory diseases. Using microarray analysis of normal human bronchial epithelial (HBE cells treated with IL-17A, we identified the electroneutral chloride-bicarbonate exchanger Pendrin (SLC26A4 as a potential mediator of this effect. These data were verified by real-time, quantitative PCR that demonstrated a time-dependent increase in Pendrin mRNA expression in HBE cells treated with IL-17A up to 48 h. Using immunoblotting and immunofluorescence, we confirmed that Pendrin protein expression is increased in IL-17 treated HBE cells and that it is primarily localized to the mucosal surface of the cells. Functional studies using live-cell fluorescence to measure intracellular pH demonstrated that IL-17A induced chloride-bicarbonate exchange in HBE cells that was not present in the absence of IL-17A. Furthermore, HBE cells treated with short interfering RNA against Pendrin showed substantially reduced chloride-bicarbonate exchange. These data suggest that Pendrin is part of IL-17A-dependent epithelial changes and that Pendrin may therefore be a therapeutic target in IL-17A-dependent lung disease.

  13. Ginger Extract Reduces the Expression of IL-17 and IL-23 in the Sera and Central Nervous System of EAE Mice.

    Science.gov (United States)

    Jafarzadeh, Abdollah; Azizi, Sayyed-Vahab; Nemati, Maryam; Khoramdel-Azad, Hossain; Shamsizadeh, Ali; Ayoobi, Fatemeh; Taghipour, Zahra; Hassan, Zuhair Mohammad

    2015-12-01

    IL-17/IL-23 axis plays an important role in the pathogenesis of several autoimmune diseases such as experimental autoimmune encephalomyelitis (EAE) and multiple sclerosis (MS). The immunomodulatory properties of ginger are reported in previous studies. To evaluate the effects of ginger extract on the expression of IL-17 and IL-23 in a model of EAE. EAE was induced in C57BL/6 mice by immunization with myelin oligodendroglial glycoprotein and then treated with PBS or ginger extracts, from day +3 to +30. At day 31, mice were scarificed and the expression of IL-17 and IL-23 mRNA in spinal cord were determined by using real time-PCR. The serum levels of cytokines were measured by ELISA. The mRNA expression of IL-17, IL-23 P19 and IL-23 P40 in CNS and serum levels of IL-17 and IL-23 were significantly higher in PBS-treated EAE mice than non-EAE group (pginger-treated EAE mice the mRNA expression of IL-17, P19 and P40 in CNS and serum IL-23 levels were significantly decreased as compared to PBS-treated EAE mice (pginger-treated EAE group had significantly lower expression of IL-17, P19 and P40 in CNS and lower serum IL-17 and IL-23 levels than PBS-treated EAE group (pGinger extract reduces the expression of IL-17 and IL-23 in EAE mice. The therapeutic potential of ginger for treatment of MS could be considered in further studies.

  14. IL-4 function can be transferred to the IL-2 receptor by tyrosine containing sequences found in the IL-4 receptor alpha chain.

    Science.gov (United States)

    Wang, H Y; Paul, W E; Keegan, A D

    1996-02-01

    IL-4 binds to a cell surface receptor complex that consists of the IL-4 binding protein (IL-4R alpha) and the gamma chain of the IL-2 receptor complex (gamma c). The receptors for IL-4 and IL-2 have several features in common; both use the gamma c as a receptor component, and both activate the Janus kinases JAK-1 and JAK-3. In spite of these similarities, IL-4 evokes specific responses, including the tyrosine phosphorylation of 4PS/IRS-2 and the induction of CD23. To determine whether sequences within the cytoplasmic domain of the IL-4R alpha specify these IL-4-specific responses, we transplanted the insulin IL-4 receptor motif (I4R motif) of the huIL-4R alpha to the cytoplasmic domain of a truncated IL-2R beta. In addition, we transplanted a region that contains peptide sequences shown to block Stat6 binding to DNA. We analyzed the ability of cells expressing these IL-2R-IL-4R chimeric constructs to respond to IL-2. We found that IL-4 function could be transplanted to the IL-2 receptor by these regions and that proliferative and differentiative functions can be induced by different receptor sequences.

  15. Killing of Human Melanoma Cells Induced by Activation of Class I Interferon–Regulated Signaling Pathways via MDA-7/IL-24

    Science.gov (United States)

    Ekmekcioglu, Suhendan; Mumm, John B.; Udtha, Malini; Chada, Sunil; Grimm, Elizabeth A.

    2008-01-01

    Restoration of the tumor-suppression function by gene transfer of the melanoma differentiation-associated gene 7 (MDA7)/interleukin 24 (IL-24) successfully induces apoptosis in melanoma tumors in vivo. To address the molecular mechanisms involved, we previously revealed that MDA7/IL-24 treatment of melanoma cells down-regulates interferon regulatory factor (IRF)-1 expression and concomitantly up-regulates IRF-2 expression, which competes with the activity of IRF-1 and reverses the induction of IRF-1–regulated inducible nitric oxide synthase (iNOS). Interferons (IFNs) influence melanoma cell survival by modulating apoptosis. A class I IFN (IFN alfa) has been approved for the treatment of advanced melanoma with some limited success. A class II IFN (IFN gamma), on the other hand, supports melanoma cell survival, possibly through constitutive activation of iNOS expression. We therefore conducted this study to explore the molecular pathways of MDA7/IL-24 regulation of apoptosis via the intracellular induction of IFNs in melanoma. We hypothesized that the restoration of the MDA7/IL-24 axis leads to upregulation of Class I IFNs and induction of the apoptotic cascade. We found that MDA7/IL-24 induces the secretion of endogenous IFN beta, another class I IFN, leading to the arrest of melanoma cell growth and apoptosis. We also identified a series of apoptotic markers that play a role in this pathway, including the regulation of tumor necrosis factor–related apoptosis-inducing ligand (TRAIL) and Fas-FasL. In summary, we described a novel pathway of MDA7/IL-24 regulation of apoptosis in melanoma tumors via endogenous IFN beta induction followed by IRF regulation and TRAIL/FasL system activation. PMID:18511292

  16. IL-12 and IL-18 Induction and Subsequent NKT Activation Effects of the Japanese Botanical Medicine Juzentaihoto

    Directory of Open Access Journals (Sweden)

    Ken Taniguchi

    2008-07-01

    Full Text Available In this study, we first measured some cytokine concentrations in the serum of patients treated with Juzentaihoto (JTT. Of the cytokines measured interleukin (IL -18 was the most prominently up-regulated cytokine in the serum of patients under long term JTT administration. We next evaluated the effects of JTT in mice, focusing especially on natural killer T (NKT cell induction. Mice fed JTT were compared to control group ones. After sacrifice, the liver was fixed, embedded and stained. Transmission electron microscope (TEM observations were performed. Although the mice receiving the herbal medicine had same appearance, their livers were infiltrated with massive mononuclear cells, some of which were aggregated to form clusters. Immunohistochemical staining revealed that there was abundant cytokine expression of IL-12 and IL-18 in the liver of JTT treated mice. To clarify what the key molecules that induce immunological restoration with JTT might be, we next examined in vitro lymphocyte cultures. Mononuclear cells isolated and prepared from healthy volunteers were cultured with and without JTT. Within 24 hours, JTT induced the IL-12 and IL-18 production and later (72 hours induction of interferon (IFN-gamma. Oral administration of JTT may induce the expression of IL-12 in the early stage, and IL-18 in the chronic stage, followed by NKT induction. Their activation, following immunological restoration could contribute to anti-tumor effects.

  17. IL-12 and IL-18 induction and subsequent NKT activation effects of the Japanese botanical medicine Juzentaihoto.

    Science.gov (United States)

    Fujiki, Kazuhiko; Nakamura, Masanori; Matsuda, Takako; Isogai, Mariko; Ikeda, Minako; Yamamoto, Yutaka; Kitamura, Mari; Sazaki, Naoko; Yakushiji, Fumiatsu; Suzuki, Shinji; Tomiyama, Junji; Uchida, Takashi; Taniguchi, Ken

    2008-06-01

    In this study, we first measured some cytokine concentrations in the serum of patients treated with Juzentaihoto (JTT). Of the cytokines measured interleukin (IL) -18 was the most prominently up-regulated cytokine in the serum of patients under long term JTT administration. We next evaluated the effects of JTT in mice, focusing especially on natural killer T (NKT) cell induction. Mice fed JTT were compared to control group ones. After sacrifice, the liver was fixed, embedded and stained. Transmission electron microscope (TEM) observations were performed. Although the mice receiving the herbal medicine had same appearance, their livers were infiltrated with massive mononuclear cells, some of which were aggregated to form clusters. Immunohistochemical staining revealed that there was abundant cytokine expression of IL-12 and IL-18 in the liver of JTT treated mice. To clarify what the key molecules that induce immunological restoration with JTT might be, we next examined in vitro lymphocyte cultures. Mononuclear cells isolated and prepared from healthy volunteers were cultured with and without JTT. Within 24 hours, JTT induced the IL-12 and IL-18 production and later (72 hours) induction of interferon (IFN)-gamma. Oral administration of JTT may induce the expression of IL-12 in the early stage, and IL-18 in the chronic stage, followed by NKT induction. Their activation, following immunological restoration could contribute to anti-tumor effects.

  18. Fission induced swelling of U–Mo/Al dispersion fuel

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yeon Soo, E-mail: yskim@anl.gov [Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States); Jeong, G.Y. [Ulsan National Institute of Science and Technology, 50 UNIST-gil, Eonyang-eup, Uljoo-gun, Ulsan 689-798 (Korea, Republic of); Park, J.M. [Korea Atomic Energy Research Institute, 989-111 Daedeok-daero, Yuseong-gu, Daejeon 305-353 (Korea, Republic of); Robinson, A.B. [Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415-6188 (United States)

    2015-10-15

    Fission-induced swelling of U–Mo/Al dispersion fuel meat was measured using microscopy images obtained from post-irradiation examination. The data of reduced-size plate-type test samples and rod-type test samples were employed for this work. A model to predict the meat swelling of U–Mo/Al dispersion fuel was developed. This model is composed of several submodels including a model for interaction layer (IL) growth between U–Mo and Al matrix, a model for IL thickness to IL volume conversion, a correlation for the fission-induced swelling of U–Mo alloy particles, a correlation for the fission-induced swelling of IL, and models of U–Mo and Al consumption by IL growth. The model was validated using full-size plate data that were not included in the model development.

  19. Genetic characterization of interleukins (IL-1α, IL-1β, IL-2, IL-4, IL-8, IL-10, IL-12A, IL-12B, IL-15 and IL-18) with relevant biological roles in lagomorphs

    Science.gov (United States)

    Neves, Fabiana; Abrantes, Joana; Almeida, Tereza; de Matos, Ana Lemos; Costa, Paulo P

    2015-01-01

    ILs, as essential innate immune modulators, are involved in an array of biological processes. In the European rabbit (Oryctolagus cuniculus) IL-1α, IL-1β, IL-2, IL-4, IL-8, IL-10, IL-12A, IL-12B, IL-15 and IL-18 have been implicated in inflammatory processes and in the immune response against rabbit hemorrhagic disease virus and myxoma virus infections. In this study we characterized these ILs in six Lagomorpha species (European rabbit, pygmy rabbit, two cottontail rabbit species, European brown hare and American pika). Overall, these ILs are conserved between lagomorphs, including in their exon/intron structure. Most differences were observed between leporids and American pika. Indeed, when comparing both, some relevant differences were observed in American pika, such as the location of the stop codon in IL-1α and IL-2, the existence of a different transcript in IL8 and the number of cysteine residues in IL-1β. Changes at N-glycosylation motifs were also detected in IL-1, IL-10, IL-12B and IL-15. IL-1α is the protein that presents the highest evolutionary distances, which is in contrast to IL-12A where the distances between lagomorphs are the lowest. For all these ILs, sequences of human and European rabbit are more closely related than between human and mouse or European rabbit and mouse. PMID:26395994

  20. IL-27 Activates Human Trophoblasts to Express IP-10 and IL-6: Implications in the Immunopathophysiology of Preeclampsia

    Directory of Open Access Journals (Sweden)

    Nanlin Yin

    2014-01-01

    Full Text Available Purpose. To investigate the effects of IL-27 on human trophoblasts and the underlying regulatory signaling mechanisms in preeclampsia. Methods. The expression of IL-27 and IL-27 receptor (WSX-1 was studied in the placenta or sera from patients with preeclampsia. In vitro, we investigated the effects of IL-27 alone or in combination with inflammatory cytokine tumor necrosis factor (TNF-α on the proinflammatory activation of human trophoblast cells (HTR-8/SVneo and the underlying intracellular signaling molecules. Results. The expression of IL-27 and IL-27 receptor α (WSX-1 was significantly elevated in the trophoblastic cells from the placenta of patients with preeclampsia compared with control specimens. In vitro, IL-27 could induce the expression of inflammatory factors IFN-γ-inducible protein 10 (CXCL10/IP-10 and IL-6 in trophoblasts, and a synergistic effect was observed in the combined treatment of IL-27 and TNF-α on the release of IP-10 and IL-6. Furthermore, the production of IP-10 and IL-6 stimulated by IL-27 was differentially regulated by intracellular activation of phosphatidylinositol 3-OH kinase-AKT, p38MAPK, and JAK/STAT pathways. Conclusions. These results provide a new insight into the IL-27-activated immunopathological effects mediated by distinct intracellular signal transduction molecules in preeclampsia.

  1. Neural stem cells promote nerve regeneration through IL12-induced Schwann cell differentiation.

    Science.gov (United States)

    Lee, Don-Ching; Chen, Jong-Hang; Hsu, Tai-Yu; Chang, Li-Hsun; Chang, Hsu; Chi, Ya-Hui; Chiu, Ing-Ming

    2017-03-01

    Regeneration of injured peripheral nerves is a slow, complicated process that could be improved by implantation of neural stem cells (NSCs) or nerve conduit. Implantation of NSCs along with conduits promotes the regeneration of damaged nerve, likely because (i) conduit supports and guides axonal growth from one nerve stump to the other, while preventing fibrous tissue ingrowth and retaining neurotrophic factors; and (ii) implanted NSCs differentiate into Schwann cells and maintain a growth factor enriched microenvironment, which promotes nerve regeneration. In this study, we identified IL12p80 (homodimer of IL12p40) in the cell extracts of implanted nerve conduit combined with NSCs by using protein antibody array and Western blotting. Levels of IL12p80 in these conduits are 1.6-fold higher than those in conduits without NSCs. In the sciatic nerve injury mouse model, implantation of NSCs combined with nerve conduit and IL12p80 improves motor recovery and increases the diameter up to 4.5-fold, at the medial site of the regenerated nerve. In vitro study further revealed that IL12p80 stimulates the Schwann cell differentiation of mouse NSCs through the phosphorylation of signal transducer and activator of transcription 3 (Stat3). These results suggest that IL12p80 can trigger Schwann cell differentiation of mouse NSCs through Stat3 phosphorylation and enhance the functional recovery and the diameter of regenerated nerves in a mouse sciatic nerve injury model. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Plasmodium falciparum-infected erythrocytes and IL-12/IL-18 induce diverse transcriptomes in human NK cells: IFN-α/β pathway versus TREM signaling.

    Directory of Open Access Journals (Sweden)

    Elisandra Grangeiro de Carvalho

    Full Text Available The protective immunity of natural killer (NK cells against malarial infections is thought to be due to early production of type II interferon (IFN and possibly direct NK cell cytotoxicity. To better understand this mechanism, a microarray analysis was conducted on NK cells from healthy donors PBMCs that were co-cultured with P. falciparum 3D7-infected erythrocytes. A very similar pattern of gene expression was observed among all donors for each treatment in three replicas. Parasites particularly modulated genes involved in IFN-α/β signaling as well as molecules involved in the activation of interferon regulatory factors, pathways known to play a role in the antimicrobial immune response. This pattern of transcription was entirely different from that shown by NK cells treated with IL-12 and IL-18, in which IFN-γ- and TREM-1-related genes were over-expressed. These results suggest that P. falciparum parasites and the cytokines IL-12 and IL-18 have diverse imprints on the transcriptome of human primary NK cells. IFN-α-related genes are the prominent molecules induced by parasites on NK cells and arise as candidate biomarkers that merit to be further investigated as potential new tools in malaria control.

  3. Lactococcus lactis carrying the pValac eukaryotic expression vector coding for IL-4 reduces chemically-induced intestinal inflammation by increasing the levels of IL-10-producing regulatory cells.

    Science.gov (United States)

    Souza, Bianca Mendes; Preisser, Tatiane Melo; Pereira, Vanessa Bastos; Zurita-Turk, Meritxell; de Castro, Camila Prósperi; da Cunha, Vanessa Pecini; de Oliveira, Rafael Pires; Gomes-Santos, Ana Cristina; de Faria, Ana Maria Caetano; Machado, Denise Carmona Cara; Chatel, Jean-Marc; Azevedo, Vasco Ariston de Carvalho; Langella, Philippe; Miyoshi, Anderson

    2016-08-30

    Inflammatory bowel diseases are characterized by chronic intestinal inflammation that leads to severe destruction of the intestinal mucosa. Therefore, the understanding of their aetiology as well as the development of new medicines is an important step for the treatment of such diseases. Consequently, the development of Lactococcus lactis strains capable of delivering a eukaryotic expression vector encoding the interleukin 4 (IL-4) of Mus musculus would represent a new strategy for the elaboration of a more effective alternative therapy against Crohn's disease. The murine IL-4 ORF was cloned into the eukaryotic expression vector pValac::dts. The resulting plasmid-pValac::dts::IL-4-was transfected into CHO cells so that its functionality could be evaluated in vitro. With fluorescent confocal microscopy, flow cytometry and ELISA, it was observed that pValac::dts::IL-4-transfected cells produced IL-4, while non-transfected cells and cells transfected with the empty vector did not. Then, pValac::dts::IL-4 was inserted into L. lactis MG1363 FnBPA(+) in order to evaluate the therapeutic potential of the recombinant strain against TNBS-induced colitis. Intragastric administration of L. lactis MG1363 FnBPA(+) (pValac::dts::IL-4) was able to decrease the severity of colitis, with animals showing decreased levels of IL-12, IL-6 and MPO activity; and increased levels of IL-4 and IL-10. Finally, LP-isolated cells from mice administered TNBS were immunophenotyped so that the main IL-4 and IL-10 producers were identified. Mice administered the recombinant strain presented significantly higher percentages of F4/80(+)MHCII(+)Ly6C(-)IL-4(+), F4/80(+)MHCII(+)Ly6C(-)IL-10(+), F4/80(+)MHCII(+)Ly6C(-)CD206(+)CD124(+)IL-10(+) and CD4(+)Foxp3(+)IL10(+) cells compared to the other groups. This study shows that L. lactis MG1363 FnBPA(+) (pValac::dts::IL-4) is a good candidate to maintain the anti-inflammatory and proinflammatory balance in the gastrointestinal tract, increasing the levels

  4. IL-1 receptor-antagonist (IL-1Ra) knockout mice show anxiety-like behavior by aging.

    Science.gov (United States)

    Wakabayashi, Chisato; Numakawa, Tadahiro; Odaka, Haruki; Ooshima, Yoshiko; Kiyama, Yuji; Manabe, Toshiya; Kunugi, Hiroshi; Iwakura, Yoichiro

    2015-07-10

    Interleukin 1 (IL-1) plays a critical role in stress responses, and its mRNA is induced in the brain by restraint stress. Previously, we reported that IL-1 receptor antagonist (IL-1Ra) knockout (KO) mice, which lacked IL-1Ra molecules that antagonize the IL-1 receptor, showed anti-depression-like behavior via adrenergic modulation at the age of 8 weeks. Here, we report that IL-1Ra KO mice display an anxiety-like phenotype that is induced spontaneously by aging in the elevated plus-maze (EPM) test. This anxiety-like phenotype was improved by the administration of diazepam. The expression of the anxiety-related molecule glucocorticoid receptor (GR) was significantly reduced in 20-week-old but not in 11-week-old IL-1Ra KO mice compared to wild-type (WT) littermates. The expression of the mineralocorticoid receptor (MR) was not altered between IL-1Ra KO mice and WT littermates at either 11 or 20 weeks old. Analysis of monoamine concentration in the hippocampus revealed that tryptophan, the serotonin metabolite 5-hydroxyindole acetic acid (5-HIAA), and the dopamine metabolite homovanillic acid (HVA) were significantly increased in 20-week-old IL-1Ra KO mice compared to littermate WT mice. These findings strongly suggest that the anxiety-like behavior observed in older mice was caused by the complicated alteration of monoamine metabolism and/or GR expression in the hippocampus. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  5. Interleukin-2 (rIL-2)-induced lymphokine-activated killer (LAK) cells and their precursors express the VGO1 antigen

    International Nuclear Information System (INIS)

    Denegri, J.F.; Peterson, J.; Tilley, P.

    1989-01-01

    Precursor and effector cells of recombinant interleukin-2 (r-IL-2)-induced lymphokine-activated killer (LAK) activity were investigated for their expression of VGO1. Peripheral blood lymphocytes (PBL) from normal donors were purified and separated in a FACS 420 into VGO1+- and VGO1- cell fractions before and after culture for 96 hr with 100 U/ml of r-IL-2. Their lytic activity against K 562 and Daudi cells was measured in a 51Cr release assay. The majority, if not all, of the LAK effector and precursor cells was VGO1+ lymphocytes. The expression of VGO1 by LAK precursor cells remained stable under the culture conditions used in our experiments. VGO1- lymphocytes cultured with r-IL-2 demonstrated neither LAK-induced activity nor expression of VGO1 antigen

  6. IFN-γ protects from lethal IL-17 mediated viral encephalomyelitis independent of neutrophils

    Directory of Open Access Journals (Sweden)

    Savarin Carine

    2012-05-01

    Full Text Available Abstract Background The interplay between IFN-γ, IL-17 and neutrophils during CNS inflammatory disease is complex due to cross-regulatory factors affecting both positive and negative feedback loops. These interactions have hindered the ability to distinguish the relative contributions of neutrophils, Th1 and Th17 cell-derived effector molecules from secondary mediators to tissue damage and morbidity. Methods Encephalitis induced by a gliatropic murine coronavirus was used as a model to assess the direct contributions of neutrophils, IFN-γ and IL-17 to virus-induced mortality. CNS inflammatory conditions were selectively manipulated by adoptive transfer of virus-primed wild-type (WT or IFN-γ deficient (GKO memory CD4+ T cells into infected SCID mice, coupled with antibody-mediated neutrophil depletion and cytokine blockade. Results Transfer of GKO memory CD4+ T cells into infected SCID mice induced rapid mortality compared to recipients of WT memory CD4+ T cells, despite similar virus control and demyelination. In contrast to recipients of WT CD4+ T cells, extensive neutrophil infiltration and IL-17 expression within the CNS in recipients of GKO CD4+ T cells provided a model to directly assess their contribution(s to disease. Recipients of WT CD4+ T cells depleted of IFN-γ did not express IL-17 and were spared from mortality despite abundant CNS neutrophil infiltration, indicating that mortality was not mediated by excessive CNS neutrophil accumulation. By contrast, IL-17 depletion rescued recipients of GKO CD4+ T cells from rapid mortality without diminishing neutrophils or reducing GM-CSF, associated with pathogenic Th17 cells in CNS autoimmune models. Furthermore, co-transfer of WT and GKO CD4+ T cells prolonged survival in an IFN-γ dependent manner, although IL-17 transcription was not reduced. Conclusions These data demonstrate that IL-17 mediates detrimental clinical consequences in an IFN-γ-deprived environment, independent of

  7. IL-4 and IL-5 Secretions Predominate in the Airways of Wistar Rats Exposed to Toluene Diisocyanate Vapor

    Directory of Open Access Journals (Sweden)

    Kouame Kouadio

    2014-01-01

    Full Text Available ObjectivesWe established a Wistar rat model of asthma caused by toluene diisocyanate (TDI exposure, and investigated the relationship between TDI exposure concentrations and respiratory hypersensitivity, airway inflammation, and cytokine secretions in animals, to better understand the mechanism of TDI induced occupational asthma.MethodsWistar rats were exposed to two different concentrations of TDI vapor four hours a day for five consecutive days. Bronchoalveolar lavage (BAL was performed, and differential leucocytes from the BAL fluid were analyzed. Lung histopathological examination was carried out to investigate the inflammatory status in the airways. Production of cytokines interleukin (IL-4 and IL-5 productions in the BAL fluid in vivo was determined with enzyme-linked immunosorbent assay kits.ResultsThe TDI-exposed rats exhibited greater airway hypersensitivity symptoms than the control rats. The BAL differential cell count and lung histopathological examination demonstrated that inflammation reactions were present in both the central and peripheral airways, characterized with marked infiltration of eosinophils in the TDI-exposed rats. The cytokine assay showed that IL-4 and IL-5 were predominantly produced in the BAL fluid in vivo.ConclusionsThese findings imply that TDI exposure concentrations may greatly affect the occurrence and extent of inflammatory events and that Th2 type cytokines may play an important role in the immunopathogenesis of TDI-induced occupational respiratory hypersensitivity.

  8. Modelling of U-Mo/Al Dispersion fuel fission induced swelling and creep

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Gwan Yoon; Sohn, Dong Seong [Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of); Kim, Yeon Soo [Argonne National Laboratory, Argonne (United States)

    2014-05-15

    In a Dispersion fuel which U-Mo particles are dispersed in Al metal matrix, a similar phenomenon forming a bulge region was observed but it is difficult to quantify and construct a model for explaining creep and swelling because of its complex microstructure change during irradiation including interaction layer (IL) and porosity formation. In a Dispersion fuel meat, fission product induces fuel particles swelling and it has to be accommodated by the deformation of the Al matrix and newly formed IL during irradiation. Then, it is reasonable that stress from fuel swelling in the complex structure should be relaxed by local adjustments of particles, Al matrix, and IL. For analysis of U-Mo/Al Dispersion fuel creep, the creep of U-Mo particle, Al matrix, and IL should be considered. Moreover, not only fuel particle swelling and IL growth, but also fuel and Al matrix consumptions due to IL formation are accounted in terms of their volume fraction changes during irradiation. In this work, fuel particles, Al matrix and IL are treated in a way of homogenized constituents: Fuel particles, Al matrix and IL consist of an equivalent meat during irradiation. Meat volume swelling of two representative plates was measured: One (Plate A) was a pure Al matrix with 6g/cc uranium loading, the other (Plate B) a silicon added Al matrix with 8g/cc uranium loading. The meat swelling of calculated as a function of burnup. The meat swelling of calculation and measurement was compared and the creep rate coefficients for Al and IL were estimated by repetitions. Based on assumption that only the continuous phase of Al-IL combined matrix accommodated the stress from fuel particle swelling and it was allowed to have creep deformation, the homogenization modeling was performed. The meat swelling of two U-Mo/Al Dispersion fuel plates was modeled by using homogenization model.

  9. Modelling of U-Mo/Al Dispersion fuel fission induced swelling and creep

    International Nuclear Information System (INIS)

    Jeong, Gwan Yoon; Sohn, Dong Seong; Kim, Yeon Soo

    2014-01-01

    In a Dispersion fuel which U-Mo particles are dispersed in Al metal matrix, a similar phenomenon forming a bulge region was observed but it is difficult to quantify and construct a model for explaining creep and swelling because of its complex microstructure change during irradiation including interaction layer (IL) and porosity formation. In a Dispersion fuel meat, fission product induces fuel particles swelling and it has to be accommodated by the deformation of the Al matrix and newly formed IL during irradiation. Then, it is reasonable that stress from fuel swelling in the complex structure should be relaxed by local adjustments of particles, Al matrix, and IL. For analysis of U-Mo/Al Dispersion fuel creep, the creep of U-Mo particle, Al matrix, and IL should be considered. Moreover, not only fuel particle swelling and IL growth, but also fuel and Al matrix consumptions due to IL formation are accounted in terms of their volume fraction changes during irradiation. In this work, fuel particles, Al matrix and IL are treated in a way of homogenized constituents: Fuel particles, Al matrix and IL consist of an equivalent meat during irradiation. Meat volume swelling of two representative plates was measured: One (Plate A) was a pure Al matrix with 6g/cc uranium loading, the other (Plate B) a silicon added Al matrix with 8g/cc uranium loading. The meat swelling of calculated as a function of burnup. The meat swelling of calculation and measurement was compared and the creep rate coefficients for Al and IL were estimated by repetitions. Based on assumption that only the continuous phase of Al-IL combined matrix accommodated the stress from fuel particle swelling and it was allowed to have creep deformation, the homogenization modeling was performed. The meat swelling of two U-Mo/Al Dispersion fuel plates was modeled by using homogenization model

  10. IL-1Ra: its role in rheumatoid arthritis

    Directory of Open Access Journals (Sweden)

    M. Cutolo

    2011-09-01

    Full Text Available Interleukin-1 (IL-1 is one of the pivotal cytokines in initiating and driving the processes of rheumatoid arthritis (RA, and the body’s natural response, IL-1 receptor antagonist (IL-1Ra, has been shown conclusively to block its effects. IL-1 mediate several clinical symptoms of the inflammatory reaction (i.e. fever, pain, sleep disturbances. IL-1 is considered a key mediator in RA joint damage because of its greater capacity (greater than TNF of increasing matrix degradation by inducing the production of MMPs and PGE2 in synovial cells, as well by its role as mediator of bone and cartilage destruction. In addition, IL-1 decreases the repair process by suppressing matrix synthesis and shows a strong synergism with TNF in inducing many inflammatory genes at both local and systemic level. The induced endogenous production of IL-1Ra, in presence of the RA synovitis, is too low to contrast the high affinity of IL-1 for the cell receptors. Therefore, IL-1Ra presence should result in very effective prevention of IL-1 signal transduction particularly in the inflammatory site. In laboratory and animal studies inhibition of IL-1 by either antibodies to IL-1 or IL-1Ra proved beneficial to the outcome. IL-1Ra is a member of the IL-1 superfamily. The effects of different DMARDs on IL-1Ra levels in RA patients support the important role that selected anticytokine treatments might exert in the pathophysiology of the disease. However, since anti TNFα therapy it is not effective in all RA patients, nor does it fully control the arthritic process in affected joints of good responders and complete TNF suppression should be avoided, the combined treatment with intermediate doses of TNF and IL-1 blockers, reaching synergistic suppression of arthritis, seems warranted in RA.

  11. Entamoeba histolytica-secreted cysteine proteases induce IL-8 production in human mast cells via a PAR2-independent mechanism.

    Science.gov (United States)

    Lee, Young Ah; Nam, Young Hee; Min, Arim; Kim, Kyeong Ah; Nozaki, Tomoyoshi; Saito-Nakano, Yumiko; Mirelman, David; Shin, Myeong Heon

    2014-01-01

    Entamoeba histolytica is an extracellular tissue parasite causing colitis and occasional liver abscess in humans. E. histolytica-derived secretory products (SPs) contain large amounts of cysteine proteases (CPs), one of the important amoebic virulence factors. Although tissue-residing mast cells play an important role in the mucosal inflammatory response to this pathogen, it is not known whether the SPs induce mast cell activation. In this study, when human mast cells (HMC-1 cells) were stimulated with SPs collected from pathogenic wild-type amoebae, interleukin IL-8 mRNA expression and production were significantly increased compared with cells incubated with medium alone. Inhibition of CP activity in the SPs with heat or the CP inhibitor E64 resulted in significant reduction of IL-8 production. Moreover, SPs obtained from inhibitors of cysteine protease (ICP)-overexpressing amoebae with low CP activity showed weaker stimulatory effects on IL-8 production than the wild-type control. Preincubation of HMC-1 cells with antibodies to human protease-activated receptor 2 (PAR2) did not affect the SP-induced IL-8 production. These results suggest that cysteine proteases in E. histolytica-derived secretory products stimulate mast cells to produce IL-8 via a PAR2-independent mechanism, which contributes to IL-8-mediated tissue inflammatory responses during the early phase of human amoebiasis. © Y.A. Lee et al., published by EDP Sciences, 2014.

  12. Entamoeba histolytica-secreted cysteine proteases induce IL-8 production in human mast cells via a PAR2-independent mechanism

    Directory of Open Access Journals (Sweden)

    Lee Young Ah

    2014-01-01

    Full Text Available Entamoeba histolytica is an extracellular tissue parasite causing colitis and occasional liver abscess in humans. E. histolytica-derived secretory products (SPs contain large amounts of cysteine proteases (CPs, one of the important amoebic virulence factors. Although tissue-residing mast cells play an important role in the mucosal inflammatory response to this pathogen, it is not known whether the SPs induce mast cell activation. In this study, when human mast cells (HMC-1 cells were stimulated with SPs collected from pathogenic wild-type amoebae, interleukin IL-8 mRNA expression and production were significantly increased compared with cells incubated with medium alone. Inhibition of CP activity in the SPs with heat or the CP inhibitor E64 resulted in significant reduction of IL-8 production. Moreover, SPs obtained from inhibitors of cysteine protease (ICP-overexpressing amoebae with low CP activity showed weaker stimulatory effects on IL-8 production than the wild-type control. Preincubation of HMC-1 cells with antibodies to human protease-activated receptor 2 (PAR2 did not affect the SP-induced IL-8 production. These results suggest that cysteine proteases in E. histolytica-derived secretory products stimulate mast cells to produce IL-8 via a PAR2-independent mechanism, which contributes to IL-8-mediated tissue inflammatory responses during the early phase of human amoebiasis.

  13. Distribution of Interleukin-22-secreting Immune Cells in Conjunctival Associated Lymphoid Tissue.

    Science.gov (United States)

    Yoon, Chang Ho; Lee, Daeseung; Jeong, Hyun Jeong; Ryu, Jin Suk; Kim, Mee Kum

    2018-04-01

    Interleukin (IL)-22 is a cytokine involved in epithelial cell regeneration. Currently, no research studies have analyzed the distribution of the three distinct IL-22-secreting cell populations in human or mouse conjunctiva. This study investigated the distribution of the three main populations of IL-22-secreting immune cells, αβ Th cells, γδ T cells, or innate cells (innate lymphoid cells [ILCs] or natural killer cells), in conjunctival associated lymphoid tissues (CALTs) in human and mouse models. We collected discarded cadaveric bulbar conjunctival tissue specimens after preservation of the corneo-limbal tissue for keratoplasty from four enucleated eyes of the domestic donor. The bulbar conjunctiva tissue, including the cornea from normal (n = 27) or abraded (n = 4) B6 mice, were excised and pooled in RPMI 1640 media. After the lymphoid cells were gated in forward and side scattering, the αβ Th cells, γδ T cells, or innate lymphoid cells were positively or negatively gated using anti-CD3, anti-γδ TCR, and anti-IL-22 antibodies, with a FACSCanto flow cytometer. In normal human conjunctiva, the percentage and number of cells were highest in αβ Th cells, followed by γδ T cells and CD3- γδ TCR- IL-22+ innate cells (presumed ILCs, pILCs) (Kruskal-Wallis test, p = 0.012). In normal mice keratoconjunctiva, the percentage and total number were highest in γδ T cells, followed by αβ Th cells and pILCs (Kruskal-Wallis test, p = 0.0004); in corneal abraded mice, the population of αβ Th cells and pILCs tended to increase. This study suggests that three distinctive populations of IL-22-secreting immune cells are present in CALTs of both humans and mice, and the proportions of IL-22+αβ Th cells, γδ T cells, and pILCs in CALTs in humans might be differently distributed from those in normal mice. © 2018 The Korean Ophthalmological Society.

  14. Interleukin (IL) 36 gamma induces mucin 5AC, oligomeric mucus/gel-forming expression via IL-36 receptor-extracellular signal regulated kinase 1 and 2, and p38-nuclear factor kappa-light-chain-enhancer of activated B cells in human airway epithelial cells.

    Science.gov (United States)

    Bae, Chang Hoon; Choi, Yoon Seok; Na, Hyung Gyun; Song, Si-Youn; Kim, Yong-Dae

    2018-03-01

    Mucin 5AC, oligomeric mucus/gel-forming (MUC5AC) expression is significantly increased in allergic and inflammatory airway diseases. Interleukin (IL) 36 gamma is predominantly expressed in airway epithelial cells and plays an important role in innate and adaptive immune responses. IL-36 gamma is induced by many inflammatory mediators, including cytokines and bacterial and viral infections. However, the association between IL-36 gamma and mucin secretion in human airway epithelial cells has not yet been fully investigated. The objective of this study was to determine whether IL-36 gamma might play a role in the regulation of mucin secretion in airway epithelial cells. We investigated the effect and brief signaling pathway of IL-36 gamma on MUC5AC expression in human airway epithelial cells. Enzyme immunoassay, immunoblot analysis, immunofluorescence staining, reverse transcriptase-polymerase chain reaction (PCR), and real-time PCR were performed in mucin-producing human airway epithelial NCI-H292 cells and in human nasal epithelial cells after pretreatment with IL-36 gamma, several specific inhibitors, or small interfering RNAs (siRNA). IL-36 gamma induced MUC5AC expression and activated the phosphorylation of extracellular signal regulated kinase (ERK) 1 and 2, p38, and nuclear factor-kappa-light-chain-enhancer of activated B cells (NF-kappa B). IL-36 receptor antagonist significantly attenuated these effects. The specific inhibitor and siRNA of ERK1, ERK2, p38, and NF-kappa B significantly attenuated IL-36 gamma induced MUC5AC expression. These results indicated that IL-36 gamma induced MUC5AC expression via the IL-36 receptor-mediated ERK1/2 and p38/NF-kappa B pathway in human airway epithelial cells.

  15. Induction of C-Mip by IL-17 Plays an Important Role in Adriamycin-Induced Podocyte Damage

    Directory of Open Access Journals (Sweden)

    Yanbo Liu

    2015-07-01

    Full Text Available Background/Aims: Although the disturbance of T lymphocyte and glomerular podocyte exerts a crucial function in the pathogenesis of proteinuria, the potential link is still unclear. Methods: The balance of Treg and Th17 cells, and the expression of IL-17/IL-17R and c-mip were investigated in adrimycin-induced nephropathy (AN mice. The effect and mechanism of IL-17 on podocyte were explored in cultured podocytes. Results: The proportion of Th17 cells in peripheral blood mononuclear cells, the amount of IL-17 in serum and kidney cortical homogenates, and the expression of IL-17R and c-mip in glomerular podocyte were increased obviously in AN mice. In cultured podocytes, recombinant IL-17 led to an induction of apoptosis and cytoskeletal disorganization, an overproduction of c-mip while down-regulation of phosphor-nephrin, and an increased binding of c-mip to NF-κB/RelA. Silence of c-mip prevented podocyte apoptosis and reduction of phosphor-nephrin by prompting nuclear translocation of NF-κB/RelA in IL-17 treated cells. Persistent activation of NF-κB up-regulated pro-survival protein Bcl-2 and decreased podocyte apoptosis, but had no effect on phosphor-nephrin level. Conclusion: These findings demonstrated that induction of IL-17 released by Th17 cells plays a key role in podocytopathy most likely through down-regulation of phosphor-nephrin and Bcl-2 level via overproduction of c-mip.

  16. Genetic polymorphism of interleukin-1A (IL-1A), IL-1B, and IL-1 receptor antagonist (IL-1RN) and prostate cancer risk.

    Science.gov (United States)

    Xu, Hua; Ding, Qiang; Jiang, Hao-Wen

    2014-01-01

    We aimed to investigate the associations between polymorphisms of interleukin-1A (IL-1A), IL-1B, and IL-1 receptor antagonist (IL-1RN) and prostate cancer (PCa) risk. A comprehensive search for articles of MEDLINE and EMBASE databases and bibliographies of retrieved articles published up to August 3, 2014 was performed. Methodological quality assessment of the trials was based on a standard quality scoring system. The meta-analysis was performed using STATA 12.0. We included 9 studies (1 study for IL-1A, 5 studies for IL-1B, and 3 studies for IL-1RN), and significant association was found between polymorphisms of IL-1B-511 (rs16944) as well as IL-1B-31 (rs1143627) and PCa risk. IL-1B-511 (rs16944) polymorphism was significantly associated with PCa risk in homozygote and recessive models, as well as allele contrast (TT vs CC: OR, 0.74; 95%CI, 0.58-0.94; P=0.012; TT vs TC+CC; OR, 0.79; 95%CI, 0.63-0.98; P=0.033; T vs C: OR, 0.86; 95%CI, 0.77-0.96; P=0.008). The association between IL-1B-31 (rs1143627) polymorphism and PCa risk was weakly significant under a heterozygote model (OR, 1.35; 95%CI, 1.00-1.80; P=0.047). Sequence variants in IL-1B-511 (rs16944) and IL-1B-31 (rs1143627) are significantly associated with PCa risk, which provides additional novel evidence that proinflammatory cytokines and inflammation play an important role in the etiology of PCa.

  17. Serum IL-10, IL-17 and IL-23 levels as "bioumoral bridges" between dyslipidemia and atopy.

    Science.gov (United States)

    Manti, S; Leonardi, S; Panasiti, I; Arrigo, T; Salpietro, C; Cuppari, C

    2017-11-01

    Although several studies suggest a possible link between dyslipidemia and atopy, literature findings are still unclear. The aim of the study was to investigate the relationship between dyslipidemia and atopy in a pediatric population affected by dyslipidemia or dyslipidemia/atopic predisposition. Children with dyslipidemia, dyslipidemia and atopy as well as healthy children were recruited. Serum total IgE, IL-10, IL-17, and IL-23 levels as well as fasting lipid values (total cholesterol, LDL, HDL and triglycerides) were performed on all enrolled children. The present study evaluated 23 patients affected by dyslipidemia, 26 patients affected by atopy and dyslipidemia and, 22healthy children. Serum total IgE levels significantly related also with serum cholesterol levels: positively with total cholesterol (pdyslipidemia than patients with dyslipidemia (pdyslipidemia than patients with dyslipidemia (pdyslipidemia and atopic predisposition share the same immune pathways as well as they offer new insights in the complex crosstalk between hyperlipidemia and atopy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Down-regulation of the Th1, Th17, and Th22 pathways due to anti-TNF-α treatment in psoriasis.

    Science.gov (United States)

    Luan, Li; Han, Shixin; Wang, Hua; Liu, Xiaoming

    2015-12-01

    Psoriasis is a T-cell-mediated chronic inflammatory dermatosis. Th1, Th17 and Th22 cells are suggested to contribute to the pathogenesis of psoriasis. To determine whether treatment with the anti-tumor-necrosis-factor antagonist, adalimumab, induces significant modulation of the Th1, Th17 and Th22 pathways, and correlates cellular activity with clinical response. This study included 21 patients with moderate-to-severe psoriasis who were treated with adalimumab, and 10 healthy control subjects. Blood samples were collected at baseline and at week 12. Flow cytometry was used to analyze the frequency of circulating Th1, Th17 and Th22 cells. Real-time polymerase chain reaction was used to analyze the expression of T-bet (Th1-related), retinoid-acid receptor-related orphan receptor gamma t (RORγt, Th17-related) and aryl hydrocarbon receptor (AHR, Th22-related). An enzyme-linked immunosorbent assay was used to analyze the serum levels of IFN-γ, IL-17, IL-22, IL-6 and tumor necrosis factor-α (TNF-α). At baseline, the frequencies of Th1, Th17 and Th22 cells were higher in psoriasis patients compared to the healthy controls. The expression of transcription factors T-bet, RORγt and AHR, and the serum levels of IFN-γ, IL-17, IL-22, IL-6 and TNF-α were higher in psoriasis patients compared to the healthy controls. After adalimumab therapy, there was a significant decline in the frequencies of Th1, Th17 and Th22 cells, and a concomitant decrease in the levels of their associated transcription factors and cytokines. The results suggest that the anti-tumor-necrosis-factor antagonist, adalimumab, disrupts the Th1, Th17 and Th22 pathways, resulting in clinical improvement of psoriasis. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Interleukin-22 predicts severity and death in advanced liver cirrhosis: a prospective cohort study

    Directory of Open Access Journals (Sweden)

    Kronenberger Bernd

    2012-09-01

    Full Text Available Abstract Background Interleukin-22 (IL-22, recently identified as a crucial parameter of pathology in experimental liver damage, may determine survival in clinical end-stage liver disease. Systematic analysis of serum IL-22 in relation to morbidity and mortality of patients with advanced liver cirrhosis has not been performed so far. Methods This is a prospective cohort study including 120 liver cirrhosis patients and 40 healthy donors to analyze systemic levels of IL-22 in relation to survival and hepatic complications. Results A total of 71% of patients displayed liver cirrhosis-related complications at study inclusion. A total of 23% of the patients died during a mean follow-up of 196 ± 165 days. Systemic IL-22 was detectable in 74% of patients but only in 10% of healthy donors (P P = 0.006, hepatorenal syndrome (P P = 0.001. Patients with elevated IL-22 (>18 pg/ml, n = 57 showed significantly reduced survival compared to patients with regular (≤18 pg/ml levels of IL-22 (321 days versus 526 days, P = 0.003. Other factors associated with reduced overall survival were high CRP (≥2.9 mg/dl, P = 0.005, hazard ratio (HR 0.314, confidence interval (CI (0.141 to 0.702, elevated serum creatinine (P = 0.05, HR 0.453, CI (0.203 to 1.012, presence of liver-related complications (P = 0.028, HR 0.258, CI (0.077 to 0.862, model of end stage liver disease (MELD score ≥20 (P = 0.017, HR 0.364, CI (0.159 to 0.835 and age (P = 0.011, HR 0.955, CI (0.922 to 0.989. Adjusted multivariate Cox proportional-hazards analysis identified elevated systemic IL-22 levels as independent predictors of reduced survival (P = 0.007, HR 0.218, CI (0.072 to 0.662. Conclusions In patients with liver cirrhosis, elevated systemic IL-22 levels are predictive for reduced survival independently from age, liver-related complications, CRP, creatinine and the MELD score. Thus, processes that lead to a rise in systemic interleukin-22 may be relevant for prognosis of advanced liver

  20. [Effects of lipopolysaccharides extracted from Porphyromonas endodontalis on the expression of IL-1beta mRNA and IL-6 mRNA in osteoblasts].

    Science.gov (United States)

    Yang, Di; Li, Ren; Qiu, Li-Hong; Li, Chen

    2009-04-01

    To quantify the IL-1 beta mRNA and IL-6 mRNA expression induced by lipopolysaccharides (LPS)extracted from Porphyromonas endodontalis(P.e) in osteoblasts, and to relate P.e-LPS to bone absorption pathogenesis in lesions of chronical apical periodontitis. MG63 was treated with different concentrations of P.e-LPS(0-50 microg/mL) for different hours(0-24h). The expression of IL-1 beta mRNA and IL-6 mRNA was detected by reverse transcription polymerase chain reaction (RT-PCR).Statistical analysis was performed using one- way ANOVA and Dunnett t test with SPSS11.0 software package. The level of IL-1 beta mRNA and IL-6 mRNA increased significantly after treatment with P.e-LPS at more than 5 microg/mL (P<0.01)and for more than 1 hour (P<0.01), which indicated that P.e-LPS induced osteoblasts to express IL-1 beta mRNA and IL-6 mRNA in dose and time dependent manners. P.e-LPS may promote bone resorption in lesions of chronical apical periodontitis by inducing IL-1 beta mRNA and IL-6 mRNA expression in osteoblasts.

  1. IL-2 induction of IL-1 beta mRNA expression in monocytes. Regulation by agents that block second messenger pathways

    DEFF Research Database (Denmark)

    Kovacs, E J; Brock, B; Varesio, L

    1989-01-01

    We have previously shown that in mixed cultures of PBL incubation with human rIL-2 induces the rapid expression of IL-1 alpha and IL-1 beta mRNA. Because studies have demonstrated that IL-2R can be expressed on the surface of human peripheral blood monocytes, we chose to investigate whether IL-1 ...

  2. Skeletal muscle mass recovery from atrophy in IL-6 knockout mice.

    Science.gov (United States)

    Washington, T A; White, J P; Davis, J M; Wilson, L B; Lowe, L L; Sato, S; Carson, J A

    2011-08-01

    Skeletal muscle interleukin-6 (IL-6) expression is induced by continuous contraction, overload-induced hypertrophy and during muscle regeneration. The loss of IL-6 can alter skeletal muscle's growth and extracellular matrix remodelling response to overload-induced hypertrophy. Insulin-like growth factor-1 (IGF-1) gene expression and related signalling through Akt/mTOR is a critical regulator of muscle mass. The significance of IL-6 expression during the recovery from muscle atrophy is unclear. This study's purpose was to determine the effect of IL-6 loss on mouse gastrocnemius (GAS) muscle mass during recovery from hindlimb suspension (HS)-induced atrophy. Female C57BL/6 [wild type (WT)] and IL-6 knockout (IL-6 KO) mice at 10 weeks of age were assigned to control, HS or HS followed by normal cage ambulation groups. GAS muscle atrophy was induced by 10 days of HS. HS induced a 20% loss of GAS mass in both WT and IL-6 KO mice. HS+7 days of recovery restored WT GAS mass to cage-control values. GAS mass from IL-6 KO mice did not return to cage-control values until HS+14 days of recovery. Both IGF-1 mRNA expression and Akt/mTOR signalling were increased in WT muscle after 1 day of recovery. In IL-6 KO muscle, IGF-1 mRNA expression was decreased and Akt/mTOR signalling was not induced after 1 day of recovery. MyoD and myogenin mRNA expression were both induced in WT muscle after 1 day of recovery, but not in IL-6 KO muscle.   Muscle IL-6 expression appears important for the initial growth response during the recovery from disuse. © 2011 The Authors. Acta Physiologica © 2011 Scandinavian Physiological Society.

  3. ChIP-on-chip analysis identifies IL-22 as direct target gene of ectopically expressed FOXP3 transcription factor in human T cells

    Directory of Open Access Journals (Sweden)

    Jeron Andreas

    2012-12-01

    Full Text Available Abstract Background The transcription factor (TF forkhead box P3 (FOXP3 is constitutively expressed at high levels in naturally occurring CD4+CD25+ regulatory T cells (nTregs. It is not only the most accepted marker for that cell population but is also considered lineage determinative. Chromatin immunoprecipitation (ChIP of TFs in combination with genomic tiling microarray analysis (ChIP-on-chip has been shown to be an appropriate tool for identifying FOXP3 transcription factor binding sites (TFBSs on a genome-wide scale. In combination with microarray expression analysis, the ChIP-on-chip technique allows identification of direct FOXP3 target genes. Results ChIP-on-chip analysis of the human FOXP3 expressed in resting and PMA/ionomycin–stimulated Jurkat T cells revealed several thousand putative FOXP3 binding sites and demonstrated the importance of intronic regions for FOXP3 binding. The analysis of expression data showed that the stimulation-dependent down-regulation of IL-22 was correlated with direct FOXP3 binding in the IL-22 promoter region. This association was confirmed by real-time PCR analysis of ChIP-DNA. The corresponding ChIP-region also contained a matching FOXP3 consensus sequence. Conclusions Knowledge of the general distribution patterns of FOXP3 TFBSs in the human genome under resting and activated conditions will contribute to a better understanding of this TF and its influence on direct target genes, as well as its importance for the phenotype and function of Tregs. Moreover, FOXP3-dependent repression of Th17-related IL-22 may be relevant to an understanding of the phenomenon of Treg/Th17 cell plasticity.

  4. Autocrine Regulation of UVA-Induced IL-6 Production via Release of ATP and Activation of P2Y Receptors

    Science.gov (United States)

    Kawano, Ayumi; Kadomatsu, Remi; Ono, Miyu; Kojima, Shuji; Tsukimoto, Mitsutoshi; Sakamoto, Hikaru

    2015-01-01

    Extracellular nucleotides, such as ATP, are released from cells in response to various stimuli and act as intercellular signaling molecules through activation of P2 receptors. Exposure to the ultraviolet radiation A (UVA) component of sunlight causes molecular and cellular damage, and in this study, we investigated the involvement of extracellular nucleotides and P2 receptors in the UVA-induced cellular response. Human keratinocyte-derived HaCaT cells were irradiated with a single dose of UVA (2.5 J/cm2), and ATP release and interleukin (IL)-6 production were measured. ATP was released from cells in response to UVA irradiation, and the release was blocked by pretreatment with inhibitors of gap junction hemichannels or P2X7 receptor antagonist. IL-6 production was increased after UVA irradiation, and this increase was inhibited by ecto-nucleotidase or by antagonists of P2Y11 or P2Y13 receptor. These results suggest that UVA-induced IL-6 production is mediated by release of ATP through hemichannels and P2X7 receptor, followed by activation of P2Y11 and P2Y13 receptors. Interestingly, P2Y11 and P2Y13 were associated with the same pattern of IL-6 production, though they trigger different intracellular signaling cascades: Ca2+-dependent and PI3K-dependent, respectively. Thus, IL-6 production in response to UVA-induced ATP release involves at least two distinct pathways, mediated by activation of P2Y11 and P2Y13 receptors. PMID:26030257

  5. Botanical Extracts from Rosehip (Rosa canina), Willow Bark (Salix alba), and Nettle Leaf (Urtica dioica) Suppress IL-1β-Induced NF-κB Activation in Canine Articular Chondrocytes

    Science.gov (United States)

    Shakibaei, Mehdi; Allaway, David; Nebrich, Simone; Mobasheri, Ali

    2012-01-01

    The aim of this study was to characterize the anti-inflammatory mode of action of botanical extracts from rosehip (Rosa canina), willow bark (Salix alba), and nettle leaf (Urtica dioica) in an in vitro model of primary canine articular chondrocytes. Methods. The biological effects of the botanical extracts were studied in chondrocytes treated with IL-1β for up to 72 h. Expression of collagen type II, cartilage-specific proteoglycan (CSPG), β1-integrin, SOX-9, COX-2, and MMP-9 and MMP-13 was examined by western blotting. Results. The botanical extracts suppressed IL-1β-induced NF-κB activation by inhibition of IκBα phosphorylation, IκBα degradation, p65 phosphorylation, and p65 nuclear translocation. These events correlated with downregulation of NF-κB targets including COX-2 and MMPs. The extracts also reversed the IL-1β-induced downregulation of collagen type II, CSPG, β1-integrin, and cartilage-specific transcription factor SOX-9 protein expression. In high-density cultures botanical extracts stimulated new cartilage formation even in the presence of IL-1β. Conclusions. Botanical extracts exerted anti-inflammatory and anabolic effects on chondrocytes. The observed reduction of IL-1β-induced NF-κB activation suggests that further studies are warranted to demonstrate the effectiveness of plant extracts in the treatment of OA and other conditions in which NF-κB plays pathophysiological roles. PMID:22474508

  6. Botanical Extracts from Rosehip (Rosa canina), Willow Bark (Salix alba), and Nettle Leaf (Urtica dioica) Suppress IL-1β-Induced NF-κB Activation in Canine Articular Chondrocytes.

    Science.gov (United States)

    Shakibaei, Mehdi; Allaway, David; Nebrich, Simone; Mobasheri, Ali

    2012-01-01

    The aim of this study was to characterize the anti-inflammatory mode of action of botanical extracts from rosehip (Rosa canina), willow bark (Salix alba), and nettle leaf (Urtica dioica) in an in vitro model of primary canine articular chondrocytes. Methods. The biological effects of the botanical extracts were studied in chondrocytes treated with IL-1β for up to 72 h. Expression of collagen type II, cartilage-specific proteoglycan (CSPG), β1-integrin, SOX-9, COX-2, and MMP-9 and MMP-13 was examined by western blotting. Results. The botanical extracts suppressed IL-1β-induced NF-κB activation by inhibition of IκBα phosphorylation, IκBα degradation, p65 phosphorylation, and p65 nuclear translocation. These events correlated with downregulation of NF-κB targets including COX-2 and MMPs. The extracts also reversed the IL-1β-induced downregulation of collagen type II, CSPG, β1-integrin, and cartilage-specific transcription factor SOX-9 protein expression. In high-density cultures botanical extracts stimulated new cartilage formation even in the presence of IL-1β. Conclusions. Botanical extracts exerted anti-inflammatory and anabolic effects on chondrocytes. The observed reduction of IL-1β-induced NF-κB activation suggests that further studies are warranted to demonstrate the effectiveness of plant extracts in the treatment of OA and other conditions in which NF-κB plays pathophysiological roles.

  7. Botanical Extracts from Rosehip (Rosa canina, Willow Bark (Salix alba, and Nettle Leaf (Urtica dioica Suppress IL-1β-Induced NF-κB Activation in Canine Articular Chondrocytes

    Directory of Open Access Journals (Sweden)

    Mehdi Shakibaei

    2012-01-01

    Full Text Available The aim of this study was to characterize the anti-inflammatory mode of action of botanical extracts from rosehip (Rosa canina, willow bark (Salix alba, and nettle leaf (Urtica dioica in an in vitro model of primary canine articular chondrocytes. Methods. The biological effects of the botanical extracts were studied in chondrocytes treated with IL-1β for up to 72 h. Expression of collagen type II, cartilage-specific proteoglycan (CSPG, β1-integrin, SOX-9, COX-2, and MMP-9 and MMP-13 was examined by western blotting. Results. The botanical extracts suppressed IL-1β-induced NF-κB activation by inhibition of IκBα phosphorylation, IκBα degradation, p65 phosphorylation, and p65 nuclear translocation. These events correlated with downregulation of NF-κB targets including COX-2 and MMPs. The extracts also reversed the IL-1β-induced downregulation of collagen type II, CSPG, β1-integrin, and cartilage-specific transcription factor SOX-9 protein expression. In high-density cultures botanical extracts stimulated new cartilage formation even in the presence of IL-1β. Conclusions. Botanical extracts exerted anti-inflammatory and anabolic effects on chondrocytes. The observed reduction of IL-1β-induced NF-κB activation suggests that further studies are warranted to demonstrate the effectiveness of plant extracts in the treatment of OA and other conditions in which NF-κB plays pathophysiological roles.

  8. Immunoexpression of Interleukin-22 and Interleukin-23 in Oral and Cutaneous Lichen Planus Lesions: A Preliminary Study

    Directory of Open Access Journals (Sweden)

    Jun Chen

    2013-01-01

    Full Text Available Interleukin- (IL- 22 is the signature cytokine of T-helper (Th 22 cells, and IL-23 is required for IL-22 production. The objective of this study was to examine the immunoexpression of IL-22 and IL-23 in archival paraffin-embedded biopsy specimens from oral LP (n=42 and cutaneous LP (n=38 against normal control tissues. The results showed that the percentage of cells expressing IL-22 and IL-23 in LP were significantly higher in LP compared to controls, respectively (both P<0.001. The correlation between IL-22 and IL-23 expression was significant (P<0.05. Moreover, the percentage of cells expressing IL-22 and IL-23 in oral LP were significantly higher than cutaneous LP (P<0.05. Collectively, our findings demonstrated that the increased expression of IL-22 and IL-23 in LP lesions could play roles in the pathogenesis of LP. Moreover, oral LP expressing IL-22 and IL-23 was higher than cutaneous LP, probably due to Th22 cells as an important component of oral mucosal host defense against oral microbiota and tissue antigens. This may be associated with the difference in clinical behaviour of the two variants of the disease.

  9. CRH promotes human colon cancer cell proliferation via IL-6/JAK2/STAT3 signaling pathway and VEGF-induced tumor angiogenesis.

    Science.gov (United States)

    Fang, Xianjun; Hong, Yali; Dai, Li; Qian, Yuanyuan; Zhu, Chao; Wu, Biao; Li, Shengnan

    2017-11-01

    Corticotrophin-releasing hormone (CRH) has been demonstrated to participate in various diseases. Our previous study showed that its receptor CRHR1 mediated the development of colitis-associated cancer in mouse model. However, the detailed mechanisms remain unclear. In this study, we explored the oncogenetic role of CRH/CRHR1 signaling in colon cancer cells. Cell proliferation and colony formation assays revealed that CRH contributed to cell proliferation. Moreover, tube formation assay showed that CRH-treated colon cancer cell supernatant significantly promoted tube formation of human umbilical vein endothelial cells (HUVECs). And these effects could be reversed by the CRHR1 specific antagonist Antalarmin. Further investigation showed that CRH significantly upregulated the expressions of interlukin-6 (IL-6) and vascular endothelial growth factor (VEGF) through activating nuclear factor-kappa B (NF-κB). The CRH-induced IL-6 promoted phosphorylation of janus kinase 2 (JAK2) and signal transducers and activators of transcription 3 (STAT3). STAT3 inhibition by Stattic significantly inhibited the CRH-induced cell proliferation. In addition, silence of VEGF resulted in declined tube formation induced by CRH. Taken together, CRH/CRHR1 signaling promoted human colon cancer cell proliferation via NF-κB/IL-6/JAK2/STAT3 signaling pathway and tumor angiogenesis via NF-κB/VEGF signaling pathway. Our results provide evidence to support a critical role for the CRH/CRHR1 signaling in colon cancer progression and suggest its potential utility as a new therapeutic target for colon cancer. © 2017 Wiley Periodicals, Inc.

  10. Nuclear IL-33 is a transcriptional regulator of NF-{kappa}B p65 and induces endothelial cell activation

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Yeon-Sook; Park, Jeong Ae; Kim, Jihye; Rho, Seung-Sik; Park, Hyojin [Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749 (Korea, Republic of); Kim, Young-Myeong [Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University, Chuncheon (Korea, Republic of); Kwon, Young-Guen, E-mail: ygkwon@yonsei.ac.kr [Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749 (Korea, Republic of)

    2012-05-04

    Highlights: Black-Right-Pointing-Pointer IL-33 as nuclear factor regulated expression of ICAM-1 and VCAM-1. Black-Right-Pointing-Pointer Nuclear IL-33 increased the transcription of NF-{kappa}B p65 by binding to the p65 promoter. Black-Right-Pointing-Pointer Nuclear IL-33 controls NF-{kappa}B-dependent inflammatory responses. -- Abstract: Interleukin (IL)-33, an IL-1 family member, acts as an extracellular cytokine by binding its cognate receptor, ST2. IL-33 is also a chromatin-binding transcriptional regulator highly expressed in the nuclei of endothelial cells. However, the function of IL-33 as a nuclear factor is poorly defined. Here, we show that IL-33 is a novel transcriptional regulator of the p65 subunit of the NF-{kappa}B complex and is involved in endothelial cell activation. Quantitative reverse transcriptase PCR and Western blot analyses indicated that IL-33 mediates the expression of intercellular adhesion molecule (ICAM)-1 and vascular cell adhesion molecule (VCAM)-1 in endothelial cells basally and in response to tumor necrosis factor-{alpha}-treatment. IL-33-induced ICAM-1/VCAM-1 expression was dependent on the regulatory effect of IL-33 on the nuclear factor (NF)-{kappa}B pathway; NF-{kappa}B p65 expression was enhanced by IL-33 overexpression and, conversely, reduced by IL-33 knockdown. Moreover, NF-{kappa}B p65 promoter activity and chromatin immunoprecipitation analysis revealed that IL-33 binds to the p65 promoter region in the nucleus. Our data provide the first evidence that IL-33 in the nucleus of endothelial cells participates in inflammatory reactions as a transcriptional regulator of NF-{kappa}B p65.

  11. Mechanism of subdural effusion evolves into chronic subdural hematoma: IL-8 inducing neutrophil oxidative burst.

    Science.gov (United States)

    Tao, Zhiqiang; Lin, Yingying; Hu, Maotong; Ding, Shenghong; Li, Jianwei; Qiu, Yongming

    2016-01-01

    Chronic subdural hematoma (CSDH) is still a mysterious disease. Though great success has been has achieved by neuro-surgery treatment, the origin and development of CSDH remains unknown. Tremendous clinical observations have found the correlation of subdural effusion (SDE) and CSDH. However, systematic elucidation of CSDH's origin and progression is lacking while almost all the current hypothesis only explained partial phenomenon. This hypothesis proposes Interleukin (IL)-8 inducing neutrophil respiratory burst is the crucial impact when SDE evolves into CSDH. IL-8 initially secreted by dural border layer cells, accumulates and the concentration of IL-8 rises in the SDE cavity. Accompanied by the formation of neo-membrane under the dura meninges, IL-8 firstly prompts to establish the neo-vasculature in it, and then attracts lymphocytes aggregation in the neo-membrane. Both the newly recruited lymphocytes and endothelial cells assist the further elevation of local IL-8 concentration. When the IL-8 concentration elevated to a particular level, it attracts neutrophils to the inner wall of neo-vessels and primes them to oxidative burst. Lysosomes and superoxide released by these neutrophils make the fragile neo-capillary became leaky, and subsequently the plasma and blood cells run into SDE. However, as long as the erythrocytes come into the cavity, they shall bind large quantity of IL-8 and decrease IL-8 concentration to a lower level relatively that reduce the neutrophils recruit. When this negative feedback is stagnancy, for example, the SDE space is so large in elder man who is experiencing brain atrophy, the neo-vessels have to release more erythrocytes to bind IL-8, the liquid cavity will expand and the high intracranial pressure symptoms appeared. Our hypothesis holds potential for the proper therapeutic intervention of CSDH. IL-8 antagonist and other anti-inflammation drugs like macrolides antibiotics, glucocorticoid and atorvastatin might be optional to resist

  12. HSP90 inhibitors potentiate PGF2α-induced IL-6 synthesis via p38 MAP kinase in osteoblasts.

    Directory of Open Access Journals (Sweden)

    Kazuhiko Fujita

    Full Text Available Heat shock protein 90 (HSP90 that is ubiquitously expressed in various tissues, is recognized to be a major molecular chaperone. We have previously reported that prostaglandin F2α (PGF2α, a potent bone remodeling mediator, stimulates the synthesis of interleukin-6 (IL-6 through p44/p42 mitogen-activated protein (MAP kinase and p38 MAP kinase in osteoblast-like MC3T3-E1 cells, and that Rho-kinase acts at a point upstream of p38 MAP kinase. In the present study, we investigated the involvement of HSP90 in the PGF2α-stimulated IL-6 synthesis and the underlying mechanism in MC3T3-E1 cells. Geldanamycin, an inhibitor of HSP90, significantly amplified both the PGF2α-stimulated IL-6 release and the mRNA expression levels. In addition, other HSP90 inhibitors, 17-allylamino-17demethoxy-geldanamycin (17-AAG and 17-dimethylamino-ethylamino-17-demethoxy-geldanamycin (17-DMAG and onalespib, enhanced the PGF2α-stimulated IL-6 release. Geldanamycin, 17-AAG and onalespib markedly strengthened the PGF2α-induced phosphorylation of p38 MAP kinase. Geldanamycin and 17-AAG did not affect the PGF2α-induced phosphorylation of p44/p42 MAP kinase and myosin phosphatase targeting subunit (MYPT-1, a substrate of Rho-kinase, and the protein levels of RhoA and Rho-kinase. In addition, HSP90-siRNA enhanced the PGF2α-induced phosphorylation of p38 MAP kinase. Furthermore, SB203580, an inhibitor of p38 MAP kinase, significantly suppressed the amplification by geldanamycin, 17-AAG or 17-DMAG of the PGF2α-stimulated IL-6 release. Our results strongly suggest that HSP90 negatively regulates the PGF2α-stimulated IL-6 synthesis in osteoblasts, and that the effect of HSP90 is exerted through regulating p38 MAP kinase activation.

  13. A four step model for the IL-6 amplifier, a regulator of chromic inflammations in tissue specific MHC class II-associated autoimmune diseases

    Directory of Open Access Journals (Sweden)

    Masaaki eMurakami

    2011-06-01

    Full Text Available It is thought autoimmune diseases are caused by the breakdown of self-tolerance, which suggests the recognition of specific antigens by autoreactive CD4+ T cells contribute to the specificity of autoimmune diseases. In several cases, however, even for diseases associated with class II MHC alleles, the causative tissue-specific antigens recognized by memory/activated CD4+ T cells have not been established. Rheumatoid arthritis (RA and arthritis in F759 knock-in mouse line (F759 mice are such examples, even though evidences support a pathogenic role for CD4+ T cells in both diseases. We have recently shown local events such as microbleeding together with an accumulation of activated CD4+ T cells in a manner independent of tissue antigen-recognitions induces arthritis in the joints of F759 mice. For example, local microbleeding-mediated CCL20 expression induced such an accumulation, causing arthritis development via chronic activation of an IL-17A-dependent IL-6 signaling amplification loop in type 1 collagen+ cells that is triggered by CD4+ T cell-derived cytokine(s such as IL-17A, which leads to the synergistic activation of STAT3 and NFκB in non hematopoietic cells in the joint. We named this loop the IL-6-mediated inflammation amplifier, or IL-6 amplifier. Thus, certain class II MHC–associated, tissue-specific autoimmune diseases may be induced by local events that cause an antigen-independent accumulation of effector CD4+ T cells followed by the induction of the IL-6 amplifier in the affected tissue. To explain this hypothesis, we have proposed a Four Step Model for MHC class II associated autoimmune diseases. The interaction of four local events results in chronic activation of the IL-6 amplifier, leading to the manifestation of autoimmune diseases. Thus, we have concluded the IL-6 amplifier is a critical regulator of chromic inflammations in tissue specific MHC class II-associated autoimmune diseases.

  14. IL-23 (Interleukin-23)-Producing Conventional Dendritic Cells Control the Detrimental IL-17 (Interleukin-17) Response in Stroke.

    Science.gov (United States)

    Gelderblom, Mathias; Gallizioli, Mattia; Ludewig, Peter; Thom, Vivien; Arunachalam, Priyadharshini; Rissiek, Björn; Bernreuther, Christian; Glatzel, Markus; Korn, Thomas; Arumugam, Thiruma Valavan; Sedlacik, Jan; Gerloff, Christian; Tolosa, Eva; Planas, Anna M; Magnus, Tim

    2018-01-01

    Inflammatory mechanisms can exacerbate ischemic tissue damage and worsen clinical outcome in patients with stroke. Both αβ and γδ T cells are established mediators of tissue damage in stroke, and the role of dendritic cells (DCs) in inducing the early events of T cell activation and differentiation in stroke is not well understood. In a murine model of experimental stroke, we defined the immune phenotype of infiltrating DC subsets based on flow cytometry of surface markers, the expression of ontogenetic markers, and cytokine levels. We used conditional DC depletion, bone marrow chimeric mice, and IL-23 (interleukin-23) receptor-deficient mice to further explore the functional role of DCs. We show that the ischemic brain was rapidly infiltrated by IRF4 + /CD172a + conventional type 2 DCs and that conventional type 2 DCs were the most abundant subset in comparison with all other DC subsets. Twenty-four hours after ischemia onset, conventional type 2 DCs became the major source of IL-23, promoting neutrophil infiltration by induction of IL-17 (interleukin-17) in γδ T cells. Functionally, the depletion of CD11c + cells or the genetic disruption of the IL-23 signaling abrogated both IL-17 production in γδ T cells and neutrophil infiltration. Interruption of the IL-23/IL-17 cascade decreased infarct size and improved neurological outcome after stroke. Our results suggest a central role for interferon regulatory factor 4-positive IL-23-producing conventional DCs in the IL-17-dependent secondary tissue damage in stroke. © 2017 American Heart Association, Inc.

  15. A standardized extract of Butea monosperma (Lam.) flowers suppresses the IL-1β-induced expression of IL-6 and matrix-metalloproteases by activating autophagy in human osteoarthritis chondrocytes.

    Science.gov (United States)

    Ansari, Mohammad Y; Khan, Nazir M; Haqqi, Tariq M

    2017-12-01

    Osteoarthritis (OA) is a leading cause of joint dysfunction, disability and poor quality of life in the affected population. The underlying mechanism of joint dysfunction involves increased oxidative stress, inflammation, high levels of cartilage extracellular matrix degrading proteases and decline in autophagy-a mechanism of cellular defense. There is no disease modifying therapies currently available for OA. Different parts of the Butea monosperma (Lam.) plant have widely been used in the traditional Indian Ayurvedic medicine system for the treatment of various human diseases including inflammatory conditions. Here we studied the chondroprotective effect of hydromethanolic extract of Butea monosperma (Lam.) flowers (BME) standardized to the concentration of Butein on human OA chondrocytes stimulated with IL-1β. The hydromethanolic extract of Butea monosperma (Lam.) (BME) was prepared with 70% methanol-water mixer using Soxhlet. Chondrocytes viability after BME treatment was measured by MTT assay. Gene expression levels were determined by quantitative polymerase chain reaction (qPCR) using TaqMan assays and immunoblotting with specific antibodies. Autophagy activation was determined by measuring the levels of microtubule associated protein 1 light chain 3-II (LC3-II) by immunoblotting and visualization of autophagosomes by transmission electron and confocal microscopy. BME was non-toxic to the OA chondrocytes at the doses employed and suppressed the IL-1β induced expression of inerleukin-6 (IL-6) and matrix metalloprotease-3 (MMP-3), MMP-9 and MMP-13. BME enhanced autophagy in chondrocytes as determined by measuring the levels of LC3-II by immunoblotting and increased number of autophagosomes in BME treated chondrocytes by transmission electron microscopy and confocal microscopy. BME upregulated the expression of several autophagy related genes and increased the autophagy flux in human OA chondrocytes under pathological conditions. Further analysis revealed that

  16. Mycobacterium tuberculosis Transfer RNA Induces IL-12p70 via Synergistic Activation of Pattern Recognition Receptors within a Cell Network.

    Science.gov (United States)

    Keegan, Caroline; Krutzik, Stephan; Schenk, Mirjam; Scumpia, Philip O; Lu, Jing; Pang, Yan Ling Joy; Russell, Brandon S; Lim, Kok Seong; Shell, Scarlet; Prestwich, Erin; Su, Dan; Elashoff, David; Hershberg, Robert M; Bloom, Barry R; Belisle, John T; Fortune, Sarah; Dedon, Peter C; Pellegrini, Matteo; Modlin, Robert L

    2018-05-01

    Upon recognition of a microbial pathogen, the innate and adaptive immune systems are linked to generate a cell-mediated immune response against the foreign invader. The culture filtrate of Mycobacterium tuberculosis contains ligands, such as M. tuberculosis tRNA, that activate the innate immune response and secreted Ags recognized by T cells to drive adaptive immune responses. In this study, bioinformatics analysis of gene-expression profiles derived from human PBMCs treated with distinct microbial ligands identified a mycobacterial tRNA-induced innate immune network resulting in the robust production of IL-12p70, a cytokine required to instruct an adaptive Th1 response for host defense against intracellular bacteria. As validated by functional studies, this pathway contained a feed-forward loop, whereby the early production of IL-18, type I IFNs, and IL-12p70 primed NK cells to respond to IL-18 and produce IFN-γ, enhancing further production of IL-12p70. Mechanistically, tRNA activates TLR3 and TLR8, and this synergistic induction of IL-12p70 was recapitulated by the addition of a specific TLR8 agonist with a TLR3 ligand to PBMCs. These data indicate that M. tuberculosis tRNA activates a gene network involving the integration of multiple innate signals, including types I and II IFNs, as well as distinct cell types to induce IL-12p70. Copyright © 2018 by The American Association of Immunologists, Inc.

  17. HO-1 inhibits IL-13-induced goblet cell hyperplasia associated with CLCA1 suppression in normal human bronchial epithelial cells.

    Science.gov (United States)

    Mishina, Kei; Shinkai, Masaharu; Shimokawaji, Tadasuke; Nagashima, Akimichi; Hashimoto, Yusuke; Inoue, Yoriko; Inayama, Yoshiaki; Rubin, Bruce K; Ishigatsubo, Yoshiaki; Kaneko, Takeshi

    2015-12-01

    Mucus hypersecretion and goblet cell hyperplasia are common features that characterize asthma. IL-13 increases mucin (MUC) 5AC, the major component of airway mucus, in airway epithelial cells. According to the literature, IL-13 receptor activation leads to STAT6 activation and consequent induction of chloride channel accessory 1 (CLCA1) gene expression, associated with the induction of MUC5AC. Heme oxygenase-1 (HO-1) is an enzyme that catalyzes oxidation of heme to biliverdin, and has anti-inflammatory and anti-oxidant properties. We examined the effects of HO-1 on mucin production and goblet cell hyperplasia induced by IL-13. Moreover, we assessed the cell signaling intermediates that appear to be responsible for mucin production. Normal human bronchial epithelial (NHBE) cells were grown at air liquid interface (ALI) in the presence or absence of IL-13 and hemin, a HO-1 inducer, for 14 days. Protein concentration was analyzed using ELISA, and mRNA expression was examined by real-time PCR. Histochemical analysis was performed using HE staining, andWestern blotting was performed to evaluate signaling transduction pathway. Hemin (4 μM) significantly increased HO-1 protein expression (p b 0.01) and HO-1 mRNA expression (p b 0.001). IL-13 significantly increased goblet cells, MUC5AC protein secretion (p b 0.01) and MUC5AC mRNA (p b 0.001), and these were decreased by hemin by way of HO-1. Tin protoporphyrin (SnPP)-IX, a HO-1 inhibitor, blocked the effect of hemin restoring MUC5AC protein secretion (p b 0.05) and goblet cell hyperplasia. Hemin decreased the expression of CLCA1 mRNA (p b 0.05) and it was reversed by SnPP-IX, but could not suppress IL-13-induced phosphorylation of STAT6 or SAM pointed domain-containing ETS transcription factor (SPDEF) and Forkhead box A2 (FOXA2) mRNA expression. In summary, HO-1 overexpression suppressed IL-13-induced goblet cell hyperplasia and MUC5AC production, and involvement of CLCA1 in the mechanism was suggested.

  18. MicroRNA-15b silencing inhibits IL-1β-induced extracellular matrix degradation by targeting SMAD3 in human nucleus pulposus cells.

    Science.gov (United States)

    Kang, Liang; Yang, Cao; Yin, Huipeng; Zhao, Kangcheng; Liu, Wei; Hua, Wenbin; Wang, Kun; Song, Yu; Tu, Ji; Li, Shuai; Luo, Rongjin; Zhang, Yukun

    2017-04-01

    To determine the role of microRNA-15b (miR-15b) in interleukin-1 beta (IL-1β)-induced extracellular matrix (ECM) degradation in the nucleus pulposus (NP). MiR-15b was up-regulated in degenerative NP tissues and in IL-1β-stimulated NP cells, as compared to the levels in normal controls (normal tissue specimens from patients with idiopathic scoliosis). Bioinformatics and luciferase activity analyses showed that mothers against decapentaplegic homolog 3 (SMAD3), a key mediator of the transforming growth factor-β signaling pathway, was directly targeted by miR-15b. Functional analysis demonstrated that miR-15b overexpression aggravated IL-1β-induced ECM degradation in NP cells, while miR-15b inhibition had the opposite effects. Prevention of IL-1β-induced NP ECM degeneration by the miR-15b inhibitor was attenuated by small-interfering-RNA-mediated knockdown of SMAD3. In addition, activation of MAP kinase and nuclear factor-κB up-regulated miR-15b expression and down-regulated SMAD3 expression in IL-1β-stimulated NP cells. MiR-15b contributes to ECM degradation in intervertebral disc degeneration (IDD) via targeting of SMAD3, thus providing a novel therapeutic target for IDD treatment.

  19. Radiosensitization of human endothelial cells by IL-24

    International Nuclear Information System (INIS)

    Meyn, R.E.

    2003-01-01

    Radiation therapy remains an important cancer treatment modality but despite improvements in dose delivery many patients still fail at their primary tumor site. Therefore, new strategies designed to improve local control are needed. Protocols combining radiation with anti-angiogenic agents might be of particular advantage based on their documented low toxicity. In this regard, we have been conducting preclinical investigations of a novel cytokine, mda7/IL-24. Our collaborators have shown that mda7/IL-24 protein targets the endothelial cells of the tumor microvascular system and has potent anti-angiogenic properties in both in vitro and in vivo assays. Recently, we have demonstrated that recombinant mda7/IL-24 protein radiosensitizes human endothelial cells in vitro. Specifically, 10 ng/ml of recombinant human IL-24 protein for 12 hrs reduced the survival at 2 Gy for human umbilical vein endothelial cells (HUVECs) from 0.33 to 0.12. We are also working on understanding the molecular basis for this radiosensitizing effect. Preliminary data suggest a model whereby mda7/IL-24 engages a specific receptor on the surface of endothelial cells and initiates a signal transduction pathway that modulates the cell's propensity for radiation-induced apoptosis and capacity for repairing radiation-induced DNA double strand breaks. Mechanistic insight gained from these studies may have implications for the actions of other anti-angiogenic agents and may generally explain the regulation of radiosensitivity imparted by growth factors and cytokines

  20. Andrographolide Restores Steroid Sensitivity To Block Lipopolysaccharide/IFN-γ-Induced IL-27 and Airway Hyperresponsiveness in Mice.

    Science.gov (United States)

    Liao, Wupeng; Tan, W S Daniel; Wong, W S Fred

    2016-06-01

    LPS and IFN-γ alone or in combination have been implicated in the development of steroid resistance. Combined LPS/IFN-γ strongly upregulates IL-27 production, which has been linked to steroid-resistant airway hyperresponsiveness (AHR). Andrographolide, a bioactive molecule isolated from the plant Andrographis paniculata, has demonstrated anti-inflammatory and antioxidant properties. The present study investigated whether andrographolide could restore steroid sensitivity to block LPS/IFN-γ-induced IL-27 production and AHR via its antioxidative property. The mouse macrophage cell line Raw 264.7, mouse primary lung monocytes/macrophages, and BALB/c mice were treated with LPS/IFN-γ, in the presence and absence of dexamethasone and/or andrographolide. Levels of IL-27 in vitro and in vivo were examined and mouse AHR was assessed. Dexamethasone alone failed to inhibit LPS/IFN-γ-induced IL-27 production and AHR in mice. Andrographolide significantly restored the suppressive effect of dexamethasone on LPS/IFN-γ-induced IL-27 mRNA and protein levels in the macrophage cell line and primary lung monocytes/macrophages, mouse bronchoalveolar lavage fluid and lung tissues, and AHR in mice. LPS/IFN-γ markedly reduced the nuclear level of histone deacetylase (HDAC)2, an essential epigenetic enzyme that mediates steroid anti-inflammatory action. LPS/IFN-γ also decreased total HDAC activity but increased the total histone acetyltransferase/HDAC activity ratio in mouse lungs. Andrographolide significantly restored nuclear HDAC2 protein levels and total HDAC activity, and it diminished the total histone acetyltransferase/HDAC activity ratio in mouse lungs exposed to LPS/IFN-γ, possibly via suppression of PI3K/Akt/HDAC2 phosphorylation, and upregulation of the antioxidant transcription factor NF erythroid-2-related factor 2 level and DNA binding activity. Our data suggest that andrographolide may have therapeutic value in resensitizing steroid action in respiratory disorders

  1. The dichotomous pattern of IL-12r and IL-23R expression elucidates the role of IL-12 and IL-23 in inflammation.

    Directory of Open Access Journals (Sweden)

    Gaëlle Chognard

    Full Text Available IL-12 and IL-23 cytokines respectively drive Th1 and Th17 type responses. Yet, little is known regarding the biology of these receptors. As the IL-12 and IL-23 receptors share a common subunit, it has been assumed that these receptors are co-expressed. Surprisingly, we find that the expression of each of these receptors is restricted to specific cell types, in both mouse and human. Indeed, although IL-12Rβ2 is expressed by NK cells and a subset of γδ T cells, the expression of IL-23R is restricted to specific T cell subsets, a small number of B cells and innate lymphoid cells. By exploiting an IL-12- and IL-23-dependent mouse model of innate inflammation, we demonstrate an intricate interplay between IL-12Rβ2 NK cells and IL-23R innate lymphoid cells with respectively dominant roles in the regulation of systemic versus local inflammatory responses. Together, these findings support an unforeseen lineage-specific dichotomy in the in vivo role of both the IL-12 and IL-23 pathways in pathological inflammatory states, which may allow more accurate dissection of the roles of these receptors in chronic inflammatory diseases in humans.

  2. Release of IL-1β via IL-1β-Converting Enzyme in a Skin Dendritic Cell Line Exposed to 2,4-Dinitrofluorobenzene

    Directory of Open Access Journals (Sweden)

    Teresa J. Matos

    2005-01-01

    increased IL-1β receptor immunoreactivity. The rapid effect of DNFB on the release of mature IL-1β, without inducing an increase of IL-1β mRNA in FSDC, suggests a posttranslational modification of pro-IL-1β by ICE activity.

  3. IL-5 Induces Suspended Eosinophils to Undergo Unique Global Reorganization Associated with Priming

    Science.gov (United States)

    Han, Shih-Tsung

    2014-01-01

    The experiments described herein define a unique program of polarization of suspended human eosinophils stimulated with IL-5 family cytokines. We found that eosinophil granules and the nucleus move in opposite directions to form, respectively, a granular compartment and the nucleopod, a specialized uropod occupied by the nucleus and covered with adhesion receptors, including P-selectin glycoprotein ligand-1, CD44, and activated αMβ2 integrin. Ligated IL-5 family receptors localize specifically at the tip of the nucleopod in proximity to downstream signaling partners Janus tyrosine kinase 2, signal transducer and activator of transcription-1 and -5, and extracellular signal–regulated kinase. Microscopy and effects of cytochalasin B and nocodazole indicate that remodeling of filamentous actin and reorientation of the microtubule network are required for eosinophil polarization and nucleopod formation. IL-5 induces persistent polarization and extracellular signal–regulated kinase redistribution that are associated with eosinophil priming, a robust response on subsequent stimulation with N-formyl-methionyl-leucyl-phenylalanine. Global reorganization of cytoskeleton, organelles, adhesion receptors, and signaling molecules likely facilitates vascular arrest, extravasation, migration, granule release, and survival of eosinophils entering inflamed tissues from the bloodstream. PMID:24156300

  4. The effect of leptin, ghrelin, and neuropeptide-Y on serum Tnf-Α, Il-1β, Il-6, Fgf-2, galanin levels and oxidative stress in an experimental generalized convulsive seizure model.

    Science.gov (United States)

    Oztas, Berrin; Sahin, Deniz; Kir, Hale; Eraldemir, Fatma Ceyla; Musul, Mert; Kuskay, Sevinç; Ates, Nurbay

    2017-02-01

    The objective of this study is to examine the effects of the endogenous ligands leptin, ghrelin, and neuropeptide Y (NPY) on seizure generation, the oxidant/antioxidant balance, and cytokine levels, which are a result of immune response in a convulsive seizure model. With this goal, Wistar rats were divided into 5 groups-Group 1: Saline, Group 2: Saline+PTZ (65mg/kg), Group 3: leptin (4mg/kg)+PTZ, Group 4: ghrelin (80μg/kg)+PTZ, and Group 5: NPY (60μg/kg)+PTZ. All injections were delivered intraperitoneally, and simultaneous electroencephalography (EEG) records were obtained. Seizure activity was scored by observing seizure behavior, and the onset time, latency, and seizure duration were determined according to the EEG records. At the end of the experiments, blood samples were obtained in all groups to assess the serum TNF-α, IL-1β, IL-6, FGF-2, galanin, nitric oxide (NOֹ), malondialdehyde (MDA), and glutathione (GSH) levels. The electrophysiological and biochemical findings (p<0.05) of this study show that all three peptides have anticonvulsant effects in the pentylenetetrazol (PTZ)-induced generalized tonic-clonic convulsive seizure model. The reduction of the levels of the pro-inflammatory cytokines TNF-α, IL-1β, and IL-6 caused by leptin, ghrelin, and NPY shows that these peptides may have anti-inflammatory effects in epileptic seizures. Also, leptin significantly increases the serum levels of the endogenous anticonvulsive agent galanin. The fact that each one of these endogenous peptides reduces the levels of MDA and increases the serum levels of GSH leads to the belief that they may have protective effects against oxidative damage that is thought to play a role in the pathogenesis of epilepsy. Our study contributes to the clarification of the role of these peptides in the brain in seizure-induced oxidative stress and immune system physiology and also presents new approaches to the etiology and treatment of tendency to epileptic seizures. Copyright

  5. Early-Life Experience Decreases Drug-Induced Reinstatement of Morphine CPP in Adulthood via Microglial-Specific Epigenetic Programming of Anti-Inflammatory IL-10 Expression

    Science.gov (United States)

    Schwarz, Jaclyn M.; Hutchinson, Mark R.; Bilbo, Staci D.

    2012-01-01

    A critical component of drug addiction research involves identifying novel biological mechanisms and environmental predictors of risk or resilience to drug addiction and associated relapse. Increasing evidence suggests microglia and astrocytes can profoundly affect the physiological and addictive properties of drugs of abuse, including morphine. We report that glia within the rat Nucleus Accumbens (NAcc) respond to morphine with an increase in cytokine/chemokine expression, which predicts future reinstatement of morphine conditioned place preference (CPP) following a priming dose of morphine. This glial response to morphine is influenced by early-life experience. A neonatal handling paradigm that increases the quantity and quality of maternal care significantly increases baseline expression of the anti-inflammatory cytokine IL-10 within the NAcc, attenuates morphine-induced glial activation, and prevents the subsequent reinstatement of morphine CPP in adulthood. IL-10 expression within the NAcc and reinstatement of CPP are negatively correlated, suggesting a protective role for this specific cytokine against morphine-induced glial reactivity and drug-induced reinstatement of morphine CPP. Neonatal handling programs the expression of IL-10 within the NAcc early in development, and this is maintained into adulthood via decreased methylation of the IL-10 gene specifically within microglia. The effect of neonatal handling is mimicked by pharmacological modulation of glia in adulthood with Ibudilast, which increases IL-10 expression, inhibits morphine-induced glial activation within the NAcc, and prevents reinstatement of morphine CPP. Taken together, we have identified a novel gene X early-life environment interaction on morphine-induced glial activation, and a specific role for glial activation in drug-induced reinstatement of drug-seeking behavior. PMID:22159099

  6. Cannabinoid inhibition of adenylate cyclase-mediated signal transduction and interleukin 2 (IL-2) expression in the murine T-cell line, EL4.IL-2.

    Science.gov (United States)

    Condie, R; Herring, A; Koh, W S; Lee, M; Kaminski, N E

    1996-05-31

    Cannabinoid receptors negatively regulate adenylate cyclase through a pertussis toxin-sensitive GTP-binding protein. In the present studies, signaling via the adenylate cyclase/cAMP pathway was investigated in the murine thymoma-derived T-cell line, EL4.IL-2. Northern analysis of EL4.IL-2 cells identified the presence of 4-kilobase CB2 but not CB1 receptor-subtype mRNA transcripts. Southern analysis of genomic DNA digests for the CB2 receptor demonstrated identical banding patterns for EL4.IL-2 cells and mouse-derived DNA, both of which were dissimilar to DNA isolated from rat. Treatment of EL4.IL-2 cells with either cannabinol or Delta9-THC disrupted the adenylate cyclase signaling cascade by inhibiting forskolin-stimulated cAMP accumulation which consequently led to a decrease in protein kinase A activity and the binding of transcription factors to a CRE consensus sequence. Likewise, an inhibition of phorbol 12-myristate 13-acetate (PMA)/ionomycin-induced interleukin 2 (IL-2) protein secretion, which correlated to decreased IL-2 gene transcription, was induced by both cannabinol and Delta9-THC. Further, cannabinoid treatment also decreased PMA/ionomycin-induced nuclear factor binding to the AP-1 proximal site of the IL-2 promoter. Conversely, forskolin enhanced PMA/ionomycin-induced AP-1 binding. These findings suggest that inhibition of signal transduction via the adenylate cyclase/cAMP pathway induces T-cell dysfunction which leads to a diminution in IL-2 gene transcription.

  7. Elevated levels of serum IL-5 are associated with an increased likelihood of major depressive disorder.

    Science.gov (United States)

    Elomaa, Antti-Pekka; Niskanen, Leo; Herzig, Karl-Heinz; Viinamäki, Heimo; Hintikka, Jukka; Koivumaa-Honkanen, Heli; Honkalampi, Kirsi; Valkonen-Korhonen, Minna; Harvima, Ilkka T; Lehto, Soili M

    2012-01-09

    Inflammatory mediators in both the peripheral circulation and central nervous system (CNS) are dysregulated in major depressive disorder (MDD). Nevertheless, relatively little is known about the role of the T-helper (Th)-2 effector cytokines interleukin (IL)-5 and IL-13 in MDD. We examined the serum levels of these cytokines and a Th-1 comparison cytokine, interferon (IFN)-γ, in 116 individuals (MDD, n = 58; controls, n = 58). In our basic multivariate model controlling for the effects of potential confounders on the associations between MDD and the examined cytokines, each 1-unit increase in the serum IL-5 level increased the likelihood of belonging to the MDD group by 76% (OR 1.76, 95% CI 1.03-2.99, p = 0.04; model covariates: age, gender, marital status, daily smoking and alcohol use). The likelihood further increased in models additionally controlling for the effects of the use of antidepressants and NSAIDS, and a diagnosis of asthma. No such associations were detected with regard to IL-13 (OR 1.08, 95% CI 0.96-1.22, p = 0.22) or IFN-γ (OR 1.02, 95% CI 0.99-1.05, p = 0.23). Elevated levels of IL-5, which uses the neural plasticity-related RAS GTPase-extracellular signal-regulated kinase (Ras-ERK) pathway to mediate its actions in the central nervous system (CNS), could be one of the factors underlying the depression-related changes in CNS plasticity.

  8. Elevated levels of serum IL-5 are associated with an increased likelihood of major depressive disorder

    Directory of Open Access Journals (Sweden)

    Elomaa Antti-Pekka

    2012-01-01

    Full Text Available Abstract Background Inflammatory mediators in both the peripheral circulation and central nervous system (CNS are dysregulated in major depressive disorder (MDD. Nevertheless, relatively little is known about the role of the T-helper (Th-2 effector cytokines interleukin (IL-5 and IL-13 in MDD. Methods We examined the serum levels of these cytokines and a Th-1 comparison cytokine, interferon (IFN-γ, in 116 individuals (MDD, n = 58; controls, n = 58. Results In our basic multivariate model controlling for the effects of potential confounders on the associations between MDD and the examined cytokines, each 1-unit increase in the serum IL-5 level increased the likelihood of belonging to the MDD group by 76% (OR 1.76, 95% CI 1.03-2.99, p = 0.04; model covariates: age, gender, marital status, daily smoking and alcohol use. The likelihood further increased in models additionally controlling for the effects of the use of antidepressants and NSAIDS, and a diagnosis of asthma. No such associations were detected with regard to IL-13 (OR 1.08, 95% CI 0.96-1.22, p = 0.22 or IFN-γ (OR 1.02, 95% CI 0.99-1.05, p = 0.23. Conclusions Elevated levels of IL-5, which uses the neural plasticity-related RAS GTPase-extracellular signal-regulated kinase (Ras-ERK pathway to mediate its actions in the central nervous system (CNS, could be one of the factors underlying the depression-related changes in CNS plasticity.

  9. Obesity-related chronic kidney disease is associated with spleen-derived IL-10.

    Science.gov (United States)

    Gotoh, Koro; Inoue, Megumi; Masaki, Takayuki; Chiba, Seiichi; Shiraishi, Kentaro; Shimasaki, Takanobu; Matsuoka, Kazue; Ando, Hisae; Fujiwara, Kansuke; Fukunaga, Naoya; Aoki, Kohei; Nawata, Tomoko; Katsuragi, Isao; Kakuma, Tetsuya; Seike, Masataka; Yoshimatsu, Hironobu

    2013-05-01

    Obesity is associated with systemic low-grade inflammation and is a risk factor for chronic kidney disease (CKD), but the molecular mechanism remains uncertain. We noticed spleen-derived interleukin (IL)-10 because it is observed that obesity reduces several cytokines in the spleen. We examined whether spleen-derived IL-10 regulates CKD caused by a high-fat diet (HF)-induced obesity as follows: (i) male mice were fed with HF (60% fat) during 8 weeks and IL-10 induction from the spleen was examined, (ii) glomerular hypertrophy, fibrosis, inflammatory responses in the kidney and systolic blood pressure (SBP) were evaluated in splenectomy (SPX)-treated mice fed HF, (iii) exogenous IL-10 was systemically administered to HF-induced obese mice and the alteration of obesity-induced pathogenesis caused by IL-10 treatment was assessed. (iv) IL-10 knockout (IL-10KO) mice were treated with SPX and glomerular hypertrophy, fibrosis and the inflammatory condition in the kidney and SBP were also investigated. Obesity decreased serum levels of only IL-10, an anti-inflammatory cytokine even though pro- and anti-inflammatory cytokine expression in the spleen was significantly lower in the obese group. SPX aggravated HF-induced inflammatory responses in the kidney and hypertension. These HF-induced alterations were inhibited by systemically administered IL-10. Moreover, SPX had little effect on inflammatory responses and SBP in the kidney of IL-10KO mice. We suggest that obesity reduces IL-10 induction from the spleen, and spleen-derived IL-10 may protect against the development of CKD induced by obesity.

  10. A novel imidazopyridine derivative, X22, attenuates sepsis-induced lung and liver injury by inhibiting the inflammatory response in vitro and in vivo.

    Science.gov (United States)

    Ge, Xiangting; Feng, Zhiguo; Xu, Tingting; Wu, Beibei; Chen, Hongjin; Xu, Fengli; Fu, Lili; Shan, Xiaoou; Dai, Yuanrong; Zhang, Yali; Liang, Guang

    2016-01-01

    Sepsis remains a leading cause of death worldwide. Despite years of extensive research, effective drugs to treat sepsis in the clinic are lacking. In this study, we found a novel imidazopyridine derivative, X22, which has powerful anti-inflammatory activity. X22 dose-dependently inhibited lipopolysaccharide (LPS)-induced proinflammatory cytokine production in mouse primary peritoneal macrophages and RAW 264.7 macrophages. X22 also downregulated the LPS-induced proinflammatory gene expression in vitro. In vivo, X22 exhibited a significant protection against LPS-induced death. Pretreatment or treatment with X22 attenuated the sepsis-induced lung and liver injury by inhibiting the inflammatory response. In addition, X22 showed protection against LPS-induced acute lung injury. We additionally found that pretreatment with X22 reduced the inflammatory pain in the acetic acid and formalin models and reduced the dimethylbenzene-induced ear swelling and acetic acid-increased vascular permeability. Together, these data confirmed that X22 has multiple anti-inflammatory effects and may be a potential therapeutic option in the treatment of inflammatory diseases.

  11. KYNA analogue SZR72 modifies CFA-induced dural inflammation- regarding expression of pERK1/2 and IL-1β in the rat trigeminal ganglion

    DEFF Research Database (Denmark)

    Lukács, M; Warfvinge, K; Kruse, L S

    2016-01-01

    modify the neurogenic inflammatory response in the trigeminal ganglion. METHODS: Inflammation in the trigeminal ganglion was induced by local dural application of Complete Freunds Adjuvant (CFA). Levels of phosphorylated MAP kinase pERK1/2 and IL-1β expression in V1 region of the trigeminal ganglion were...... investigated using immunohistochemistry and Western blot. FINDINGS: Pretreatment with one dose of SZR72 abolished the CFA-induced pERK1/2 and IL-1β activation in the trigeminal ganglion. No significant change was noted in case of repeated treatment with SZR72 as compared to a single dose. CONCLUSIONS......: This is the first study that demonstrates that one dose of KYNA analog before application of CFA can give anti-inflammatory response in a model of trigeminal activation, opening a new line for further investigations regarding possible effects of KYNA derivates....

  12. Enterovirus 71 antagonizes the antiviral activity of host STAT3 and IL-6R with partial dependence on virus-induced miR-124.

    Science.gov (United States)

    Chang, Zhangmei; Wang, Yan; Bian, Liang; Liu, Qingqing; Long, Jian-Er

    2017-12-01

    Enterovirus 71 (EV71) has caused major outbreaks of hand, foot and mouth disease. EV71 infections increase the production of many host cytokines and pro-inflammatory factors, including interleukin (IL)-6, IL-10 and COX-2. Some of these molecules could stimulate the signal transducer and activator of transcription 3 (STAT3), which plays a key role in regulating host immune responses and several viral diseases. However, the role of STAT3 in EV71 infection remains unknown. This study found that the phosphorylation levels of STAT3 (p Y705 -STAT3) are closely related to EV71 infection. Further experiments revealed that STAT3 exerts an anti-EV71 activity. However, the antiviral activity of STAT3 is partially antagonized by EV71-induced miR-124, which directly targets STAT3 mRNA. Similarly, IL-6R, the α-subunit of the IL-6 receptor complex, exhibits anti-EV71 activity and is directly targeted by the virus-induced miR-124. These results indicate that EV71 can evade host IL-6R- and STAT3-mediated antiviral activities by EV71-induced miR-124. This suggests that controlling miR-124 and the downstream targets, IL-6R and STAT3, might benefit the antiviral treatment of EV71 infection.

  13. In vitro secretion profiles of interleukin (IL-1beta, IL-6, IL-8, IL-10, and TNF alpha after selective infection with Escherichia coli in human fetal membranes

    Directory of Open Access Journals (Sweden)

    Maida-Claros Rolando

    2007-12-01

    Full Text Available Abstract Background Chorioamniotic membranes infection is a pathologic condition in which an abnormal secretion of proinflammatory cytokines halts fetal immune tolerance. The aim of the present study was to evaluate the functional response of human chorioamniotic membranes, as well as the individual contribution of the amnion and choriodecidua after stimulation with Escherichia coli, a pathogen associated with preterm labor. Methods Explants of chorioamniotic membranes from 10 women (37–40 weeks of gestation were mounted and cultured in a Transwell system, which allowed us to test the amnion and choriodecidua compartments independently. Escherichia coli (1 × 10 6 CFU/mL was added to either the amniotic or the choriodecidual regions or both; after a 24-h incubation, the secretion of IL-1beta, IL-6, TNFalpha, IL-8, and IL-10 in both compartments was measured using a specific ELISA. Data were analyzed by Kruskal-Wallis one-way analysis of variance. Results After stimulation with Escherichia coli, the choriodecidua compartment showed an increase in the secretion of IL-1beta (21-fold, IL-6 (2-fold, IL-8 (6-fold, and IL-10 (37-fold, regardless of which side of the membrane was stimulated; TNFalpha secretion augmented (22-fold also but only when the stimulus was applied simultaneously to both sides. When the amnion was stimulated directly, the level of IL-1beta (13-fold rose significantly; however, the increase in IL-8 secretion was larger (20-fold, regardless of the primary site of infection. TNFalpha secretion in the amnion compartment rose markedly only when Escherichia coli was simultaneously applied to both sides. Conclusion Selective stimulation of fetal membranes with Escherichia coli results in a differential production of IL-1beta, IL-6, TNFalpha, IL-8, and IL-10. These tissues were less responsive when the amnion side was stimulated. This is in agreement with the hypothesis that the choriodecidua may play a primary role during an ascending

  14. Role of IL-4 receptor α-positive CD4(+) T cells in chronic airway hyperresponsiveness.

    Science.gov (United States)

    Kirstein, Frank; Nieuwenhuizen, Natalie E; Jayakumar, Jaisubash; Horsnell, William G C; Brombacher, Frank

    2016-06-01

    TH2 cells and their cytokines are associated with allergic asthma in human subjects and with mouse models of allergic airway disease. IL-4 signaling through the IL-4 receptor α (IL-4Rα) chain on CD4(+) T cells leads to TH2 cell differentiation in vitro, implying that IL-4Rα-responsive CD4(+) T cells are critical for the induction of allergic asthma. However, mechanisms regulating acute and chronic allergen-specific TH2 responses in vivo remain incompletely understood. This study defines the requirements for IL-4Rα-responsive CD4(+) T cells and the IL-4Rα ligands IL-4 and IL-13 in the development of allergen-specific TH2 responses during the onset and chronic phase of experimental allergic airway disease. Development of acute and chronic ovalbumin (OVA)-induced allergic asthma was assessed weekly in CD4(+) T cell-specific IL-4Rα-deficient BALB/c mice (Lck(cre)IL-4Rα(-/lox)) and respective control mice in the presence or absence of IL-4 or IL-13. During acute allergic airway disease, IL-4 deficiency did not prevent the onset of TH2 immune responses and OVA-induced airway hyperresponsiveness or goblet cell hyperplasia, irrespective of the presence or absence of IL-4Rα-responsive CD4(+) T cells. In contrast, deficiency of IL-13 prevented allergic asthma, irrespective of the presence or absence of IL-4Rα-responsive CD4(+) T cells. Importantly, chronic allergic inflammation and airway hyperresponsiveness were dependent on IL-4Rα-responsive CD4(+) T cells. Deficiency in IL-4Rα-responsive CD4(+) T cells resulted in increased numbers of IL-17-producing T cells and, consequently, increased airway neutrophilia. IL-4-responsive T helper cells are dispensable for acute OVA-induced airway disease but crucial in maintaining chronic asthmatic pathology. Copyright © 2015 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  15. IL-2 absorption affects IFN-gamma and IL-5, but not IL-4 producing memory T cells in double color cytokine ELISPOT assays.

    Science.gov (United States)

    Quast, Stefan; Zhang, Wenji; Shive, Carey; Kovalovski, Damian; Ott, Patrick A; Herzog, Bernhard A; Boehm, Bernhard O; Tary-Lehmann, Magdalena; Karulin, Alexey Y; Lehmann, Paul V

    2005-09-01

    Cytokine assays are gaining increasing importance for human immune monitoring because they reliably detect antigen-specific T cells in primary PBMC, even at low clonal sizes. Double color ELISPOT assays permit the simultaneous visualization of cells producing two different cytokines. Permitting the simultaneous assessment of type 1 and 2 immunity and due to the limited numbers of PBMC available from human study subjects, double color assays should be particularly attractive for clinical trials. Since the performance of double color assays has not yet been validated, we set out to compare them to single color measurements. Testing the recall antigen-induced cytokine response of PBMC, we found that double color assays regularly provided lower numbers of IFN-gamma and IL-5 spots than single color measurements when IL-2 detection was part of the double color assay. We showed that the inhibitory effect resulted from IL-2 absorption and could be overcome by either antibody free preactivation cultures or by inclusion of anti-CD28 antibody. In contrast, the simultaneous detection of IL-2 did not affect the numbers of IL-4 spots. Therefore, unlike IL-2/IL-4 and IFN-gamma/IL-5 assays, IL-2/IFN-gamma, and IL-2/IL-5 assays require compensation for the IL-2 capture to provide accurate numbers for the frequencies of cytokine producing memory T cells.

  16. Parainfluenza Virus Type 1 Induces Epithelial IL-8 Production via p38-MAPK Signalling

    Directory of Open Access Journals (Sweden)

    Miguel Ángel Galván Morales

    2014-01-01

    Full Text Available Human parainfluenza virus type 1 (HPIV-1 is the most common cause of croup in infants. The aim of this study was to describe molecular mechanisms associated with IL-8 production during HPIV-1 infection and the role of viral replication in MAPK synthesis and activation. An in vitro model of HPIV-1 infection in the HEp-2 and A549 cell lines was used; a kinetic-based ELISA for IL-8 detection was also used, phosphorylation of the mitogen-activated protein kinases (MAPKs was identified by Western blot analysis, and specific inhibitors for each kinase were used to identify which MAPK was involved. Inactivated viruses were used to assess whether viral replication is required for IL-8 production. Results revealed a gradual increase in IL-8 production at different selected times, when phosphorylation of MAPK was detected. The secretion of IL-8 in the two cell lines infected with the HPIV-1 is related to the phosphorylation of the MAPK as well as viral replication. Inhibition of p38 suppressed the secretion of IL-8 in the HEp-2 cells. No kinase activation was observed when viruses were inactivated.

  17. Increased levels of interleukin-22 in thoracic aorta and plasma from patients with acute thoracic aortic dissection.

    Science.gov (United States)

    Ye, Jing; Wang, Menglong; Jiang, Huimin; Ji, Qingwei; Huang, Ying; Liu, Jianfang; Zeng, Tao; Xu, Yao; Wang, Zhen; Lin, Yingzhong; Wan, Jun

    2017-11-03

    Interleukin (IL)-22 plays important roles in the development of arterial disease, including atherosclerosis and hypertension. However, the relationship between IL-22 and acute thoracic aortic dissection (TAD) remains unknown. Blood samples were collected from patients with chest pain who underwent computed tomography angiography of the thoracic aorta but had no known preoperative diagnosis of coronary artery disease, peripheral artery disease, arthritis, and/or membranous nephropathy. Patients were divided into non-AD (NAD) and TAD groups, and the plasma concentrations of IL-22, IL-6 and tumor necrosis factor (TNF)-α were measured. In addition, aortic tissue samples from acute TAD patients and normal donors were collected, and the expression levels of IL-22 and IL-22 receptor 1 (IL-22R1) were measured. IL-22, IL-6 and TNF-α levels were significantly higher in acute TAD patients than in NAD patients (IL-22, NAD group: 27.0 (19.1, 38.6) pg/ml vs. TAD group: 32.9 (20.6, 58.3) pg/ml, pTAD (OR 1.169, 95% CI 1.069 to 1.277; p=0.001). In addition, compared with aortic tissue of normal controls, TAD aortas showed increased expression of IL-22 and IL-22R1, especially in the torn section (IL-22, non-torn section: 2.8±0.5/HPF vs. torn section 2.8±0.5/HPF, pTAD. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. IL26 gene inactivation in Equidae.

    Science.gov (United States)

    Shakhsi-Niaei, M; Drögemüller, M; Jagannathan, V; Gerber, V; Leeb, T

    2013-12-01

    Interleukin-26 (IL26) is a member of the IL10 cytokine family. The IL26 gene is located between two other well-known cytokines genes of this family encoding interferon-gamma (IFNG) and IL22 in an evolutionary conserved gene cluster. In contrast to humans and most other mammals, mice lack a functional Il26 gene. We analyzed the genome sequences of other vertebrates for the presence or absence of functional IL26 orthologs and found that the IL26 gene has also become inactivated in several equid species. We detected a one-base pair frameshift deletion in exon 2 of the IL26 gene in the domestic horse (Equus caballus), Przewalski horse (Equus przewalskii) and donkey (Equus asinus). The remnant IL26 gene in the horse is still transcribed and gives rise to at least five alternative transcripts. None of these transcripts share a conserved open reading frame with the human IL26 gene. A comparative analysis across diverse vertebrates revealed that the IL26 gene has also independently been inactivated in a few other mammals, including the African elephant and the European hedgehog. The IL26 gene thus appears to be highly variable, and the conserved open reading frame has been lost several times during mammalian evolution. © 2013 The Authors, Animal Genetics © 2013 Stichting International Foundation for Animal Genetics.

  19. Global gene transcriptome analysis in vaccinated cattle revealed a dominant role of IL-22 for protection against bovine tuberculosis.

    Directory of Open Access Journals (Sweden)

    Sabin Bhuju

    2012-12-01

    Full Text Available Bovine tuberculosis (bTB is a chronic disease of cattle caused by Mycobacterium bovis, a member of the Mycobacterium tuberculosis complex group of bacteria. Vaccination of cattle might offer a long-term solution for controlling the disease and priority has been given to the development of a cattle vaccine against bTB. Identification of biomarkers in tuberculosis research remains elusive and the goal is to identify host correlates of protection. We hypothesized that by studying global gene expression we could identify in vitro predictors of protection that could help to facilitate vaccine development. Calves were vaccinated with BCG or with a heterologous BCG prime adenovirally vectored subunit boosting protocol. Protective efficacy was determined after M. bovis challenge. RNA was prepared from PPD-stimulated PBMC prepared from vaccinated-protected, vaccinated-unprotected and unvaccinated control cattle prior to M. bovis challenge and global gene expression determined by RNA-seq. 668 genes were differentially expressed in vaccinated-protected cattle compared with vaccinated-unprotected and unvaccinated control cattle. Cytokine-cytokine receptor interaction was the most significant pathway related to this dataset with IL-22 expression identified as the dominant surrogate of protection besides INF-γ. Finally, the expression of these candidate genes identified by RNA-seq was evaluated by RT-qPCR in an independent set of PBMC samples from BCG vaccinated and unvaccinated calves. This experiment confirmed the importance of IL-22 as predictor of vaccine efficacy.

  20. TCR-independent functions of Th17 cells mediated by the synergistic actions of cytokines of the IL-12 and IL-1 families.

    Directory of Open Access Journals (Sweden)

    Yun Kyung Lee

    Full Text Available The development of Th17 cells is accompanied by the acquisition of responsiveness to both IL-12 and IL-23, cytokines with established roles in the development and/or function of Th1 and Th17 cells, respectively. IL-12 signaling promotes antigen-dependent Th1 differentiation but, in combination with IL-18, allows the antigen-independent perpetuation of Th1 responses. On the other hand, while IL-23 is dispensable for initial commitment to the Th17 lineage, it promotes the pathogenic function of the Th17 cells. In this study, we have examined the overlap between Th1 and Th17 cells in their responsiveness to common pro-inflammatory cytokines and how this affects the antigen-independent cytokine responses of Th17 cells. We found that in addition to the IL-1 receptor, developing Th17 cells also up-regulate the IL-18 receptor. Consequently, in the presence of IL-1β or IL-18, and in the absence of TCR activation, Th17 cells produce Th17 lineage cytokines in a STAT3-dependent manner when stimulated with IL-23, and IFN© via a STAT4-dependent mechanism when stimulated with IL-12. Thus, building on previous findings of antigen-induced plasticity of Th17 cells, our results indicate that this potential of Th17 cells extends to their cytokine-dependent antigen-independent responses. Collectively, our data suggest a model whereby signaling via either IL-1β or IL-18 allows for bystander responses of Th17 cells to pathogens or pathogen products that differentially activate innate cell production of IL-12 or IL-23.

  1. The bacterial preparation OK432 induces IL-12p70 secretion in human dendritic cells in a TLR3 dependent manner.

    Science.gov (United States)

    Hovden, Arnt-Ove; Karlsen, Marie; Jonsson, Roland; Appel, Silke

    2012-01-01

    Dendritic cells (DC) used in therapeutic cancer immunotherapy have to be able to stimulate T cells resulting in an immune response that can efficiently target the cancer cells. One of the critical hurdles has been the lack of IL-12p70 production when maturating the DC, which is rectified by using the bacterial preparation OK432 (trade name Picibanil) to mature the cells. In order to identify the mechanism behind OK432 stimulation of DC, we investigated the contribution of different TLR to examine their involvement in IL-12p70 production. By combining different inhibitors of TLR signaling, we demonstrate here that TLR3 is responsible for the IL-12p70 production of DC induced by OK432. Moreover, our data suggest that the ligand triggering IL-12p70 secretion upon TLR3 stimulation is sensitive to proteinase and partly also RNAse treatment. The fact that a bacterial compound like OK432 can activate the TLR3 pathway in human DC is a novel finding. OK432 demonstrates a critical ability to induce IL-12p70 production, which is of great relevance in DC based cancer immunotherapy.

  2. The bacterial preparation OK432 induces IL-12p70 secretion in human dendritic cells in a TLR3 dependent manner.

    Directory of Open Access Journals (Sweden)

    Arnt-Ove Hovden

    Full Text Available Dendritic cells (DC used in therapeutic cancer immunotherapy have to be able to stimulate T cells resulting in an immune response that can efficiently target the cancer cells. One of the critical hurdles has been the lack of IL-12p70 production when maturating the DC, which is rectified by using the bacterial preparation OK432 (trade name Picibanil to mature the cells. In order to identify the mechanism behind OK432 stimulation of DC, we investigated the contribution of different TLR to examine their involvement in IL-12p70 production. By combining different inhibitors of TLR signaling, we demonstrate here that TLR3 is responsible for the IL-12p70 production of DC induced by OK432. Moreover, our data suggest that the ligand triggering IL-12p70 secretion upon TLR3 stimulation is sensitive to proteinase and partly also RNAse treatment. The fact that a bacterial compound like OK432 can activate the TLR3 pathway in human DC is a novel finding. OK432 demonstrates a critical ability to induce IL-12p70 production, which is of great relevance in DC based cancer immunotherapy.

  3. The Mincle-activating adjuvant TDB induces MyD88-dependent Th1 and Th17 responses through IL-1R signaling.

    Directory of Open Access Journals (Sweden)

    Christiane Desel

    Full Text Available Successful vaccination against intracellular pathogens requires the generation of cellular immune responses. Trehalose-6,6-dibehenate (TDB, the synthetic analog of the mycobacterial cord factor trehalose-6,6-dimycolate (TDM, is a potent adjuvant inducing strong Th1 and Th17 immune responses. We previously identified the C-type lectin Mincle as receptor for these glycolipids that triggers the FcRγ-Syk-Card9 pathway for APC activation and adjuvanticity. Interestingly, in vivo data revealed that the adjuvant effect was not solely Mincle-dependent but also required MyD88. Therefore, we dissected which MyD88-dependent pathways are essential for successful immunization with a tuberculosis subunit vaccine. We show here that antigen-specific Th1/Th17 immune responses required IL-1 receptor-mediated signals independent of IL-18 and IL-33-signaling. ASC-deficient mice had impaired IL-17 but intact IFNγ responses, indicating partial independence of TDB adjuvanticity from inflammasome activation. Our data suggest that the glycolipid adjuvant TDB triggers Mincle-dependent IL-1 production to induce MyD88-dependent Th1/Th17 responses in vivo.

  4. IL-15 up-regulates the MMP-9 expression levels and induces inflammatory infiltration of macrophages in polymyositis through regulating the NF-kB pathway.

    Science.gov (United States)

    Yan, Wang; Fan, Weinv; Chen, Caijing; Wu, Yunqin; Fan, Zhenyi; Chen, Jiaqi; Chen, Zhaoying; Chen, Huimin

    2016-10-10

    This study was aimed to research the effects of IL-15 on inducing inflammatory infiltration of macrophages in polymyositis (PM) through the NF-kB pathway, and whether IL-15 was able to further regulate MMP-9 expression levels. Prepared PM cells, collected from the patients suffering from PM, were administered to SD rats. Also, a group of healthy SD rats was undergoing the same treatment as the control group. The test animals were treated with either anti-IL-15, IL-15, MMP-9 siRNA or ERK1/2 inhibitor. The blood toxicological parameters creatine kinase (CK) and CD163 were tested by using ELISA and immunohistochemistry assay. In addition, NF-kB expression in macrophages was measured by immunocytochemical assay. To measure the degree of cell infiltration the Transwell assay was performed. Lastly, western blot and zymography were carried out to compare MMP-9 and ERK expression levels between the two groups, both in vivo and in vitro. The results showed that S-CK, IL-15 and IL-15Rα levels increased rapidly after the conventional treatment was introduced to the PM infected SD rats. The PM model establishment and IL-15 treatment significantly increased the expressions of IL-15Rα, MMP-9, p-ERK and p-IKBα. However, the same effect can be suppressed by using anti-IL-15, MMP-9 siRNA or ERK1/2 inhibitor (P kB in the macrophages. IL-15 is able to significantly regulate the inflammatory infiltration of macrophages in PM patients through affecting the NF-kB pathway and MMP-9 expression levels. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Increased production of IL-4 and IL-12p40 from bronchoalveolar lavage cells are biomarkers of Mycobacterium tuberculosis in the sputum.

    Directory of Open Access Journals (Sweden)

    Anna Nolan

    Full Text Available Tuberculosis (TB causes 1.45 million deaths annually world wide, the majority of which occur in the developing world. Active TB disease represents immune failure to control latent infection from airborne spread. Acid-fast bacillus (AFB seen on sputum smear is a biomarker for contagiousness.We enrolled 73 tuberculosis patients with extensive infiltrates into a research study using bronchoalveolar lavage (BAL to sample lung immune cells and assay BAL cell cytokine production. All patients had sputum culture demonstrating Mycobacterium tuberculosis and 59/73 (81% had AFB identified by microscopy of the sputum. Compared with smear negative patients, smear positive patients at presentation had a higher proportion with smoking history, a higher proportion with temperature >38.5(0 C, higher BAL cells/ml, lower percent lymphocytes in BAL, higher IL-4 and IL-12p40 in BAL cell supernatants. There was no correlation between AFB smear and other BAL or serum cytokines. Increasing IL-4 was associated with BAL PMN and negatively associated with BAL lymphocytes. Each 10-fold increase in BAL IL-4 and IL-12p40 increased the odds of AFB smear positivity by 7.4 and 2.2-fold, respectively, in a multi-variable logistic model.Increasing IL-4 and IL-12p40 production by BAL cells are biomarkers for AFB in sputum of patients who present with radiographically advanced TB. They likely reflect less effective immune control of pathways for controlling TB, leading to patients with increased infectiousness.

  6. Defective IL-10 signaling in hyper-IgE syndrome results in impaired generation of tolerogenic dendritic cells and induced regulatory T cells

    Science.gov (United States)

    Saito, Masako; Nagasawa, Masayuki; Takada, Hidetoshi; Hara, Toshiro; Tsuchiya, Shigeru; Agematsu, Kazunaga; Yamada, Masafumi; Kawamura, Nobuaki; Ariga, Tadashi; Tsuge, Ikuya; Nonoyama, Shigeaki; Karasuyama, Hajime

    2011-01-01

    Hyper-IgE syndrome (HIES) is a primary immunodeficiency characterized by recurrent staphylococcal infections and atopic dermatitis associated with elevated serum IgE levels. Although defective differentiation of IL-17–producing CD4+ T cells (Th17) partly accounts for the susceptibility to staphylococcal skin abscesses and pneumonia, the pathogenesis of atopic manifestations in HIES still remains an enigma. In this study, we examined the differentiation and function of Th1, Th2, regulatory T cells (Treg cells), and dendritic cells (DCs) in HIES patients carrying either STAT3 or TYK2 mutations. Although the in vitro differentiation of Th1 and Th2 cells and the number and function of Treg cells in the peripheral blood were normal in HIES patients with STAT3 mutations, primary and monocyte-derived DCs showed defective responses to IL-10 and thus failed to become tolerogenic. When treated with IL-10, patient DCs showed impaired up-regulation of inhibitory molecules on their surface, including PD-L1 and ILT-4, compared with control DCs. Moreover, IL-10–treated DCs from patients displayed impaired ability to induce the differentiation of naive CD4+ T cells to FOXP3+ induced Treg cells (iTreg cells). These results suggest that the defective generation of IL-10–induced tolerogenic DCs and iTreg cells may contribute to inflammatory changes in HIES. PMID:21300911

  7. Modulation of mouse macrophage polarization in vitro using IL-4 delivery by osmotic pumps.

    Science.gov (United States)

    Pajarinen, Jukka; Tamaki, Yasunobu; Antonios, Joseph K; Lin, Tzu-Hua; Sato, Taishi; Yao, Zhenyu; Takagi, Michiaki; Konttinen, Yrjö T; Goodman, Stuart B

    2015-04-01

    Modulation of macrophage polarization is emerging as promising means to mitigate wear particle-induced inflammation and periprosthetic osteolysis. As a model for continuous local drug delivery, we used miniature osmotic pumps to deliver IL-4 in order to modulate macrophage polarization in vitro from nonactivated M0 and inflammatory M1 phenotypes towards a tissue regenerative M2 phenotype. Pumps delivered IL-4 into vials containing mouse bone marrow macrophage (mBMM) media. This conditioned media (CM) was collected at seven day intervals up to four weeks (week 1 to week 4 samples). IL-4 concentration in the CM was determined by ELISA and its biological activity was assayed by exposing M0 and M1 mBMMs to week 1 or week 4 CM. The IL-4 concentration in the CM approximated the mathematically calculated amount, and its biological activity was well retained, as both M0 and M1 macrophages exposed to either the week 1 or week 4 CM assumed M2-like phenotype as determined by qRT-PCR, ELISA, and immunocytochemistry. The results show that IL-4 can be delivered using osmotic pumps and that IL-4 delivered can modulate macrophage phenotype. Results build a foundation for in vivo studies using our previously validated animal models and provide possible strategies to locally mitigate wear particle-induced macrophage activation and periprosthetic osteolysis. © 2014 Wiley Periodicals, Inc.

  8. Anti-oxidant and anti-inflammatory effects of hydrogen-rich water alleviate ethanol-induced fatty liver in mice.

    Science.gov (United States)

    Lin, Ching-Pin; Chuang, Wen-Chen; Lu, Fung-Jou; Chen, Chih-Yen

    2017-07-21

    To investigate the effects of hydrogen-rich water (HRW) treatment on prevention of ethanol (EtOH)-induced early fatty liver in mice. In vitro reduction of hydrogen peroxide by HRW was determined with a chemiluminescence system. Female mice were randomly divided into five groups: control, EtOH, EtOH + silymarin, EtOH + HRW and EtOH + silymarin + HRW. Each group was fed a Lieber-DeCarli liquid diet containing EtOH or isocaloric maltose dextrin (control diet). Silymarin was used as a positive control to compare HRW efficacy against chronic EtOH-induced hepatotoxicity. HRW was freshly prepared and given at a dosage of 1.2 mL/mouse trice daily. Blood and liver tissue were collected after chronic-binge liquid-diet feeding for 12 wk. The in vitro study showed that HRW directly scavenged hydrogen peroxide. The in vivo study showed that HRW increased expression of acyl ghrelin, which was correlated with food intake. HRW treatment significantly reduced EtOH-induced increases in serum alanine aminotransferase, aspartate aminotransferase, triglycerol and total cholesterol levels, hepatic lipid accumulation and inflammatory cytokines, including tumor necrosis factor-alpha (TNF-α) and interleukin (IL)-6. HRW attenuated malondialdehyde level, restored glutathione depletion and increased superoxide dismutase, glutathione peroxidase and catalase activities in the liver. Moreover, HRW reduced TNF-α and IL-6 levels but increased IL-10 and IL-22 levels. HRW protects against chronic EtOH-induced liver injury, possibly by inducing acyl ghrelin to suppress the pro-inflammatory cytokines TNF-α and IL-6 and induce IL-10 and IL-22, thus activating antioxidant enzymes against oxidative stress.

  9. Association of adiponectin, interleukin (IL)-1ra, inducible protein 10, IL-6 and number of islet autoantibodies with progression patterns of type 1 diabetes the first year after diagnosis

    DEFF Research Database (Denmark)

    Kaas, A; Pfleger, Claudia Christina; Hansen, Lene

    2010-01-01

    progressers and remitters. Serum concentrations of adiponectin, interleukin (IL)-1ra, inducible protein 10 (IP-10), IL-6 and glutamic acid decarboxylase (GAD), IA-2A and islet-cell antibodies (ICA) were measured at 1, 6 and 12 months. We found that adiponectin concentrations at 1 month predicted disease......The progression of type 1 diabetes after diagnosis is poorly understood. Our aim was to assess the relation of disease progression of juvenile-onset type 1 diabetes, determined by preserved beta cell function the first year after diagnosis, with systemic cytokine concentrations and number...

  10. Chemoresistance of human monocyte-derived dendritic cells is regulated by IL-17A.

    Directory of Open Access Journals (Sweden)

    Selma Olsson Åkefeldt

    Full Text Available Dendritic cells initiate adaptive immune responses, leading either to control cancer by effector T cells or to exacerbate cancer by regulatory T cells that inhibit IFN-γ-mediated Th1-type response. Dendritic cells can also induce Th17-type immunity, mediated by IL-17A. However, the controversial role of this cytokine in cancer requires further investigations. We generated dendritic cells from peripheral blood monocytes to investigate lifespan, phenotype and chemoresistance of dendritic cells, treated with IL-17A with or without IFN-γ. Studying the expression of Bcl-2 family members, we demonstrated that dendritic cells constitutively express one pro-survival Bcl-2 member: MCL1. Immature dendritic cells were CD40(lowHLADR(low CD1a(+ MCL1(+, did not express CD14, CD68 or BCL2A1, and displayed a short 2-day lifespan. IL-17A-treated DC exhibited a semi-mature (CD40(high HLADR(low pre-M2 (CCL22(+ CD206(+ CD163(+ IL1RN(+ IL-10(- CXCL10(- IL-12(- mixed (CD1a(+ CD14+ CD68(+ macrophage-dendritic cell phenotype. They efficiently exerted mannose receptor-mediated endocytosis and did not produce superoxide anions, in the absence of TLR engagement. Interestingly, IL-17A promoted a long-term survival of dendritic cells, beyond 12 days, that correlated to BCL2A1 induction, a pro-survival Bcl-2 family member. BCL2A1 transcription was activated by NF-κB, downstream of IL-17A transduction. Thus, immature dendritic cells only express MCL1, whereas IL-17A-treated dendritic cells concomitantly expressed two pro-survival Bcl-2 family members: MCL1 and BCL2A1. These latter developed chemoresistance to 11 of the 17 chemotherapy agents tested. However, high doses of either vinblastine or cytarabine decreased MCL1 expression and induced dendritic cell death. When IL-17A is produced in vivo, administration of anti-IL-17A biotherapy may impair dendritic cell survival by targeting BCL2A1 expression. Consequently, depending on the effector or regulatory role of dendritic

  11. Pathological Roles of Interleukin-22 in the Development of Recurrent Hepatitis C after Liver Transplantation.

    Directory of Open Access Journals (Sweden)

    Yinjie Gao

    Full Text Available The aim of this study was to longitudinally evaluate and analyze the role of interleukin-22-producing CD4 positive cells (IL-22 in the pathogenesis of Hepatitis C Virus recurrence after Orthotopic Liver Transplantation (HCV-OLT.15 HCV-OLT, 15 age- and gender- matched non-HCV post-OLT (OLT and 15 hepatitis C virus infected (HCV patients were enrolled into our study from the liver transplantation and research center at Beijing 302 Hospital. We determined the frequencies of IL-22 using flow cytometry and expression of IL-22 mRNA using PCR in peripheral blood and liver tissue. We also divided HCV-OLT patients into rapid fibrosis progression (RFP and slow fibrosis progression (SFP, examined IL-22 cells and analyzed the correlations between IL-22 frequencies and liver injury, fibrosis and clinical parameters. Moreover, we investigated the role of IL-22 in Human Hepatic Stellate Cells (HSCs.The levels of serum IL-22, frequencies of IL-22 producing cells in peripheral blood mononuclear cells, and expression of IL-22 mRNA and protein in the liver in the HCV-OLT group were significantly higher than that in the HCV and OLT groups. Furthermore, eight (53.3% patients developed RFP after two years; another three patients were diagnosed liver cirrhosis. The frequencies of IL-22 were much higher in RFP compared with SFP, while no significant difference existed between OLT and SFP. Intrahepatic IL-22 positive cells were located in fibrotic areas and significantly correlated with α-smooth muscle actin (α-SMA and fibrosis staging scores, not with grading scores and HCRVNA. In vitro, IL-22 administration prevented HSCs apoptosis, promoted HSCs proliferation and activation, up-regulated the expression of HSC-sourced growth factors including α-SMA, TGF-β and TIMP-1, and increased the production of liver fibrosis markers including laminin, hyaluronic acid and collagen type IV.Peripheral and intrahepatic IL-22 is up-regulated and plays a pathological role in

  12. Pathological Roles of Interleukin-22 in the Development of Recurrent Hepatitis C after Liver Transplantation

    Science.gov (United States)

    Li, Jin; Cheung, Eddie; Li, Hanwei; Zhao, Jingmin; Liu, Hongling; Liu, Zhenwen; Zhang, Min

    2016-01-01

    Objective The aim of this study was to longitudinally evaluate and analyze the role of interleukin-22-producing CD4 positive cells (IL-22) in the pathogenesis of Hepatitis C Virus recurrence after Orthotopic Liver Transplantation (HCV-OLT). Methods 15 HCV-OLT, 15 age- and gender- matched non-HCV post-OLT (OLT) and 15 hepatitis C virus infected (HCV) patients were enrolled into our study from the liver transplantation and research center at Beijing 302 Hospital. We determined the frequencies of IL-22 using flow cytometry and expression of IL-22 mRNA using PCR in peripheral blood and liver tissue. We also divided HCV-OLT patients into rapid fibrosis progression (RFP) and slow fibrosis progression (SFP), examined IL-22 cells and analyzed the correlations between IL-22 frequencies and liver injury, fibrosis and clinical parameters. Moreover, we investigated the role of IL-22 in Human Hepatic Stellate Cells (HSCs). Results The levels of serum IL-22, frequencies of IL-22 producing cells in peripheral blood mononuclear cells, and expression of IL-22 mRNA and protein in the liver in the HCV-OLT group were significantly higher than that in the HCV and OLT groups. Furthermore, eight (53.3%) patients developed RFP after two years; another three patients were diagnosed liver cirrhosis. The frequencies of IL-22 were much higher in RFP compared with SFP, while no significant difference existed between OLT and SFP. Intrahepatic IL-22 positive cells were located in fibrotic areas and significantly correlated with α-smooth muscle actin (α-SMA) and fibrosis staging scores, not with grading scores and HCRVNA. In vitro, IL-22 administration prevented HSCs apoptosis, promoted HSCs proliferation and activation, up-regulated the expression of HSC-sourced growth factors including α-SMA, TGF-β and TIMP-1, and increased the production of liver fibrosis markers including laminin, hyaluronic acid and collagen type IV. Conclusion Peripheral and intrahepatic IL-22 is up-regulated and plays

  13. Increased IL-10 mRNA and IL-23 mRNA expression in multiple sclerosis: interferon-beta treatment increases IL-10 mRNA expression while reducing IL-23 mRNA expression

    DEFF Research Database (Denmark)

    Krakauer, M.; Sorensen, P.; Khademi, M.

    2008-01-01

    volunteers served to confirm initial findings. mRNA was analyzed by real-time reverse transcriptase polymerase chain reaction (PCR). RESULTS: We found elevated expression of interleukin (IL)-23 and IL-10 in untreated MS patients. IFN-beta therapy increased IL-10 and decreased IL-23 expression independently...... of the regulatory cytokine IL-10. The elevated IL-23 mRNA levels in MS patients are noteworthy in view of the newly discovered IL-23-driven Th17 T-cell subset, which is crucial in animal models of MS. Since IFN-beta therapy resulted in decreased IL-23 mRNA levels, the Th17 axis could be another target of IFN...

  14. Il caso Lautsi contro l’Italia

    Directory of Open Access Journals (Sweden)

    Grégor Puppinck

    2012-02-01

    SOMMARIO: 1. Premesse – 2. Il ragionamento della Seconda Sezione - 2.1. La ridefinizione dalla finalità del sistema educativo pubblico - 2.2. Il pluralismo educativo come finalità – 2.3. Sintesi del ragionamento della Sezione – 2.4.  Una sentenza contestata - 3.  Il ragionamento sviluppato dalla Grande Camera - 3.1. La sussidiarietà e il margine di apprezzamento – 3.2.  Il laicismo è una convinzione filosofica non neutra – 3.3. La neutralità si applica all’ “agire” e non all' "essere” dello  Stato – 3.4.  Democrazia, neutralità confessionale e laicità – 3.5.  L’educazione pubblica  nel senso della Grande Camera – 3.6.  Il crocefisso: un simbolo passivo – 3.7.  L’assenza d’ingerenza dello Stato - 4.  Gli sviluppi supplementari alla sentenza della Grande Camera – 4.1.  Il crocefisso e il velo islamico – 4.2.  La libertà negativa di religione dei non credenti – 4.3. La falsa soluzione bavarese – 4.4.  La tradizione – 4.5. La religione maggioritaria – 4.6.  Il dibattito religioso e politico – 4.7. Le conseguenze del caso Lautsi.

  15. Early-life gut bacteria associate with IL-4-, IL-10- and IFN-γ production at two years of age.

    Directory of Open Access Journals (Sweden)

    Maria A Johansson

    Full Text Available Microbial exposure early in life influences immune maturation and potentially also the development of immune-mediated disease. Here we studied early-life gut colonization in relation to cytokine responses at two years of age. Fecal samples were collected from infants during the first two months of life. DNA was extracted from the fecal samples and Bifidobacterium (B. adolescentis, B. breve, B. bifidum, a group of lactobacilli (L. casei, L. paracasei and L. rhamnosus as well as Staphylococcus (S. aureus were detected with real time PCR. Peripheral mononuclear cells were stimulated with phytohaemagglutinin (PHA and numbers of IL-4-, IL-10- and IFN-γ secreting cells were evaluated using ELISpot. We further stimulated peripheral blood mononuclear cells with bacterial supernatants in vitro and assessed the IL-4-, IL-10- and IFN-γ inducing capacity by flow cytometry and ELISA. Early S. aureus colonization associated with higher numbers of IL-4- (p = 0.022 and IL-10 (p = 0.016 producing cells at two years of age. In contrast to colonization with S. aureus alone, co-colonization with lactobacilli associated with suppression of IL-4- (p = 0.004, IL-10- (p = 0.004 and IFN-γ (p = 0.034 secreting cells. In vitro stimulations of mononuclear cells with bacterial supernatants supported a suppressive role of L. rhamnosus GG on S. aureus-induced cytokine responses. We demonstrate that the early gut colonization pattern associates with the PHA-induced cytokine profile at two years of age and our in vitro findings support that specific bacterial species influence the T helper cell subsets. This suggests that dysbiosis in the early microbiota may modulate the risk of developing inflammatory conditions like allergy.

  16. Evolutionary Insights into IL17A in Lagomorphs

    Directory of Open Access Journals (Sweden)

    Fabiana Neves

    2015-01-01

    Full Text Available In leporids, IL17A had been implicated in the host defense against extracellular pathogens, such as Francisella tularensis that infects hares and rabbits and causes the zoonotic disease tularemia. Here, we studied IL17A from five lagomorphs, European rabbit, pygmy rabbit, brush rabbit, European brown hare, and American pika. We observed that this protein is highly conserved between these species, with a similarity of 97–99% in leporids and ~88% between leporids and American pika. The exon/intron structure, N-glycosylation sites, and cysteine residues are conserved between lagomorphs. However, at codon 88, one of the interaction sites between IL17A and its receptor IL17RA, there is an Arg>Pro mutation that only occurs in European rabbit and European brown hare. This could induce critical alterations in the IL17A structure and conformation and consequently modify its function. The differences observed between leporids and humans or rodents might also represent important alterations in protein structure and function. In addition, as for other interleukins, IL17A sequences of human and European rabbit are more closely related than the sequences of human and mouse or European rabbit and mouse. This study gives further support to the hypothesis that European rabbit might be a more suitable animal model for studies on human IL17.

  17. Synovial cell production of IL-26 induces bone mineralization in spondyloarthritis

    DEFF Research Database (Denmark)

    Heftdal, Line Dam; Andersen, Thomas; Jæhger, Ditte

    2017-01-01

    expression in SpA patients, and examine the in vitro production of IL-26 by synovial cells and the effects of IL-26 on human osteoblasts. IL-26 was measured by ELISA in plasma and synovial fluid (SF) of 15 SpA patients and in plasma samples from 12 healthy controls. Facet joints from axial SpA patients were...... and the myofibroblast marker α-smooth-muscle-actin (αSMA) and analyzed by flow cytometry. Human osteoblasts were cultured in the presence of IL-26, and the degree of mineralization was quantified. We found that IL-26 levels in SF were increased compared with plasma (P ... in facet joints of axial SpA patients within the bone marrow. IL-26 secretion was primarily found in αSMA(+) myofibroblasts. In contrast, Th17 cells did not produce detectable amounts of IL-26. Human osteoblasts treated with IL-26 showed increased mineralization compared with untreated osteoblasts (P = 0...

  18. A Brief History of IL-1 and IL-1 Ra in Rheumatology

    Directory of Open Access Journals (Sweden)

    Jean-Michel Dayer

    2017-05-01

    Full Text Available The history of what, in 1979, was called interleukin-1 (IL-1, orchestrator of leukocyte inter-communication, began many years before then, initially by the observation of fever induction via the endogenous pyrogen (EP (1974 and then in rheumatology on the role in tissue destruction in rheumatoid diseases via the induction of collagenase and PGE2 in human synovial cells by a mononuclear cell factor (MCF (1977. Since then, the family has exploded to presently 11 members as well as many membrane-bound and soluble receptor forms. The discovery of a natural Interleukin-1 receptor antagonist (IL-1Ra in human biological fluids has highlighted the importance of IL-1 and IL-1Ra in human diseases. Evidence delineating its role in autoinflammatory syndromes and the elucidation of the macromolecular complex referred to as “inflammasome” have been instrumental to our understanding of the link with IL-1. At present, the IL-1blockade as therapeutic approach is crucial for many hereditary autoinflammatory diseases, as well as for adult-onset Still’s disease, crystal-induced arthropathies, certain skin diseases including neutrophil-triggered skin diseases, Behçet’s disease and deficiency of IL-1Ra and other rare fever syndromes. Its role is only marginally important in rheumatoid arthritis and is still under debate with regard to osteoarthritis, type 2 diabetes mellitus, cardiovascular diseases and cancer. This brief historical review focuses on some aspects of IL-1, mainly IL-1β and IL-Ra, in rheumatology. There are many excellent reviews focusing on the IL-1 family in general or with regard to specific diseases or biological discoveries.

  19. IL-1beta-induced chemokine and Fas expression are inhibited by suppressor of cytokine signalling-3 in insulin-producing cells

    DEFF Research Database (Denmark)

    Jacobsen, M L B; Rønn, S G; Bruun, C

    2008-01-01

    AIMS/HYPOTHESIS: Chemokines recruit activated immune cells to sites of inflammation and are important mediators of insulitis. Activation of the pro-apoptotic receptor Fas leads to apoptosis-mediated death of the Fas-expressing cell. The pro-inflammatory cytokines IL-1beta and IFN-gamma regulate...... the transcription of genes encoding the Fas receptor and several chemokines. We have previously shown that suppressor of cytokine signalling (SOCS)-3 inhibits IL-1beta- and IFN-gamma-induced nitric oxide production in a beta cell line. The aim of this study was to investigate whether SOCS-3 can influence cytokine......-induced Fas and chemokine expression in beta cells. METHODS: Using a beta cell line with inducible Socs3 expression or primary neonatal rat islet cells transduced with a Socs3-encoding adenovirus, we employed real-time RT-PCR analysis to investigate whether SOCS-3 affects cytokine-induced chemokine and Fas m...

  20. Different associations of CD45 isoforms with STAT3, PKC and ERK regulate IL-6-induced proliferation in myeloma.

    Directory of Open Access Journals (Sweden)

    Xu Zheng

    Full Text Available In response to interleukin 6 (IL-6 stimulation, both CD45RO and CD45RB, but not CD45RA, translocate to lipid rafts. However, the significance of this distinct translocation and the downstream signals in CD45 isoforms-participated IL-6 signal are not well understood. Using sucrose fractionation, we found that phosphorylated signal transducer and activator of transcription (STAT3 and STAT1 were mainly localized in lipid rafts in response to IL-6 stimulation, despite both STAT3 and STAT1 localizing in raft and non-raft fractions in the presence or absence of IL-6. On the other hand, extracellular signal-regulated kinase (ERK, and phosphorylated ERK were localized in non-raft fractions regardless of the existence of IL-6. The rafts inhibitor significantly impeded the phosphorylation of STAT3 and STAT1 and nuclear translocation, but had little effect on (and only postponing the phosphorylation of ERK. This data suggests that lipid raft-dependent STAT3 and STAT1 pathways are dominant pathways of IL-6 signal in myeloma cells. Interestingly, the phosphorylation level of STAT3 but not STAT1 in CD45+ cells was significantly higher compared to that of CD45- cells, while the phosphorylation level of ERK in CD45+ myeloma cells was relatively low. Furthermore, exogenously expressed CD45RO/RB significantly enhanced STAT3, protein kinase C (PKC and downstream NF-κB activation; however, CD45RA/RB inhibited IL-6-induced ERK phosphorylation. CD45 also enhanced the nuclear localization of STAT3 but not that of STAT1. In response to IL-6 stimulation, CD45RO moved into raft compartments and formed a complex with STAT3 and PKC in raft fraction, while CD45RA remained outside of lipid rafts and formed a complex with ERK in non-raft fraction. This data suggests a different role of CD45 isoforms in IL-6-induced signaling, indicating that while CD45RA/RB seems inhibit the rafts-unrelated ERK pathway, CD45RO/RB may actually work to enhance the rafts-related STAT3 and PKC

  1. Interleukin-33 promoting Th1 lymphocyte differentiation dependents on IL-12.

    Science.gov (United States)

    Komai-Koma, Mousa; Wang, Eryi; Kurowska-Stolarska, Mariola; Li, Dong; McSharry, Charles; Xu, Damo

    2016-03-01

    The pro-Th2 cytokine IL-33 is now emerging as an important Th1 cytokine-IFN-γ inducer in murine CD4(+) T cells that is essential for protective cell-mediated immunity against viral infection in mice. However, whether IL-33 can promote human Th1 cell differentiation and how IL-33 polarizes Th1 cells is less understood. We assessed the ability of IL-33 to induce Th1 cell differentiation and IFN-γ production in vitro and in vivo. We report here that IL-33 alone had no ability in Th1 cell polarization. However it potentiated IL-12-mediated Th1 cell differentiation and IFN-γ production in TCR-stimulated murine and human CD4(+) T cells in vitro and in vivo. IL-33 promoted Th1 cell development via MyD88 and synergized with IL-12 to enhance St2 and IL-12R expression in CD4(+) T cells. These data therefore provide a novel mechanism for Th1 cell differentiation and optimal induction of a Type 1 response. Thus, IL-33 is capable of inducing IL-12-dependent Th1 cell differentiation in human and mouse CD4(+) T cells. Copyright © 2015 The Authors. Published by Elsevier GmbH.. All rights reserved.

  2. Autocrine Acetylcholine, Induced by IL-17A via NFκB and ERK1/2 Pathway Activation, Promotes MUC5AC and IL-8 Synthesis in Bronchial Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Angela Marina Montalbano

    2016-01-01

    Full Text Available IL-17A is overexpressed in the lung during acute neutrophilic inflammation. Acetylcholine (ACh increases IL-8 and Muc5AC production in airway epithelial cells. We aimed to characterize the involvement of nonneuronal components of cholinergic system on IL-8 and Muc5AC production in bronchial epithelial cells stimulated with IL-17A. Bronchial epithelial cells were stimulated with recombinant human IL-17A (rhIL-17A to evaluate the ChAT expression, the ACh binding and production, the IL-8 release, and the Muc5AC production. Furthermore, the effectiveness of PD098,059 (inhibitor of MAPKK activation, Bay11-7082 (inhibitor of IkBα phosphorylation, Hemicholinium-3 (HCh-3 (choline uptake blocker, and Tiotropium bromide (Spiriva® (anticholinergic drug was tested in our in vitro model. We showed that rhIL-17A increased the expression of ChAT, the levels of ACh binding and production, and the IL-8 and Muc5AC production in stimulated bronchial epithelial cells compared with untreated cells. The pretreatment of the cells with PD098,059 and Bay11-7082 decreased the ChAT expression and the ACh production/binding, while HCh-3 and Tiotropium decreased the IL-8 and Muc5AC synthesis in bronchial epithelial cells stimulated with rhIL-17A. IL-17A is involved in the IL-8 and Muc5AC production promoting, via NFκB and ERK1/2 pathway activation, the synthesis of ChAT, and the related activity of autocrine ACh in bronchial epithelial cells.

  3. An Animal Model of Trichloroethylene-Induced Skin Sensitization in BALB/c Mice.

    Science.gov (United States)

    Wang, Hui; Zhang, Jia-xiang; Li, Shu-long; Wang, Feng; Zha, Wan-sheng; Shen, Tong; Wu, Changhao; Zhu, Qi-xing

    2015-01-01

    Trichloroethylene (TCE) is a major occupational hazard and environmental contaminant that can cause multisystem disorders in the form of occupational medicamentosa-like dermatitis. Development of dermatitis involves several proinflammatory cytokines, but their role in TCE-mediated dermatitis has not been examined in a well-defined experimental model. In addition, few animal models of TCE sensitization are available, and the current guinea pig model has apparent limitations. This study aimed to establish a model of TCE-induced skin sensitization in BALB/c mice and to examine the role of several key inflammatory cytokines on TCE sensitization. The sensitization rate of dorsal painted group was 38.3%. Skin edema and erythema occurred in TCE-sensitized groups, as seen in 2,4-dinitrochlorobenzene (DNCB) positive control. Trichloroethylene sensitization-positive (dermatitis [+]) group exhibited increased thickness of epidermis, inflammatory cell infiltration, swelling, and necrosis in dermis and around hair follicle, but ear painted group did not show these histological changes. The concentrations of serum proinflammatory cytokines including tumor necrosis factor (TNF)-α, interferon (IFN)-γ, and interleukin (IL)-2 were significantly increased in 24, 48, and 72 hours dermatitis [+] groups treated with TCE and peaked at 72 hours. Deposition of TNF-α, IFN-γ, and IL-2 into the skin tissue was also revealed by immunohistochemistry. We have established a new animal model of skin sensitization induced by repeated TCE stimulations, and we provide the first evidence that key proinflammatory cytokines including TNF-α, IFN-γ, and IL-2 play an important role in the process of TCE sensitization. © The Author(s) 2015.

  4. IRF5, PTPN22, CD28, IL2RA, KIF5A, BLK and TNFAIP3 genes polymorphisms and lupus susceptibility in a cohort from the Egypt Delta; relation to other ethnic groups.

    Science.gov (United States)

    Elghzaly, Ashraf A; Metwally, Shereen S; El-Chennawi, Farha A; Elgayaar, Maha A; Mosaad, Youssef M; El-Toraby, Ehab E; Hegab, Mohsen M; Ibrahim, Saleh M

    2015-07-01

    To replicate a single nucleotide polymorphism (SNP) of known genes for lupus (IRF5 rs10488631, PTPN22 rs2476601, BLK rs2736340 and TNFAIP3 rs5029939) and other autoimmune diseases (CD28 rs1980422, IL2RA rs2104286 and KIF5A rs1678542) on a newly studied Egyptian cohort to investigate the genetic disparity with different studied ethnic groups in relation to lupus susceptibility. 170 Egyptian patients from Egypt Delta with SLE and 241 matched healthy controls were genotyped by Taqman real time PCR for the selected SNPs. The results revealed significant association with IRF5 (p<0.0001) and PTPN22 (p=0.008) and insignificant association with KIF5A, CD28, IL2RA, BLK and TNFAIP3 genes. This study may provide an additional evidence for the association between IRF5 and PTPN22 and lupus susceptibility and may exclude it for CD28, IL2RA, and KIF5A. Copyright © 2015 American Society for Histocompatibility and Immunogenetics. Published by Elsevier Inc. All rights reserved.

  5. Limonene reduces hyperalgesia induced by gp120 and cytokines by modulation of IL-1 β and protein expression in spinal cord of mice.

    Science.gov (United States)

    Piccinelli, Ana Claudia; Morato, Priscila Neder; Dos Santos Barbosa, Marcelo; Croda, Julio; Sampson, Jared; Kong, Xiangpeng; Konkiewitz, Elisabete Castelon; Ziff, Edward B; Amaya-Farfan, Jaime; Kassuya, Cândida Aparecida Leite

    2017-04-01

    We have investigated the antihyperalgesic effects of limonene in mice that received intrathecal injection of gp120. Male Swiss mice received gp120, IL-1β or TNF-α intrathecally or sterile saline as a control. A mechanical sensitivity test was performed at 2 and 3h after the injection. Spinal cord and blood samples were isolated for protein quantification. Intrathecal administration of gp120 increased mechanical sensitivity measured with an electronic Von Frey apparatus, at 2 and 3h after the injections. Limonene administered orally prior to gp120 administration significantly decreased this mechanical sensitivity at 3h after the gp120 injection. In addition, intrathecal injection of gp120 increased IL-1β and IL-10 in serum, and limonene prevented the ability of gp120 to increase these cytokines. Limonene also inhibited TNF-α and IL-1β-induced mechanical hyperalgesia. Western blot assay demonstrated limonene was capable of increasing SOD expression in the cytoplasm of cells from spinal cord at 4h after intrathecal IL-1β injection. These results demonstrate that gp120 causes mechanical hyperalgesia and a peripheral increase in IL-1β and IL-10, and that prior administration of limonene inhibits these changes. Also limonene modulates the activation of SOD expression in the spinal cord after spinal IL-1β application. The ability of limonene to inhibit the mechanical hyperalgesia induced by gp120, TNF-α and IL-1β emphasizes the anti-inflammatory action of limonene, specifically its ability to inhibit cytokine production and its consequences. Copyright © 2016. Published by Elsevier Inc.

  6. QSAR models for describing the toxicological effects of ILs against Staphylococcus aureus based on norm indexes.

    Science.gov (United States)

    He, Wensi; Yan, Fangyou; Jia, Qingzhu; Xia, Shuqian; Wang, Qiang

    2018-03-01

    The hazardous potential of ionic liquids (ILs) is becoming an issue of great concern due to their important role in many industrial fields as green agents. The mathematical model for the toxicological effects of ILs is useful for the risk assessment and design of environmentally benign ILs. The objective of this work is to develop QSAR models to describe the minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) of ILs against Staphylococcus aureus (S. aureus). A total of 169 and 101 ILs with MICs and MBCs, respectively, are used to obtain multiple linear regression models based on matrix norm indexes. The norm indexes used in this work are proposed by our research group and they are first applied to estimate the antibacterial toxicity of these ILs against S. aureus. These two models precisely and reliably calculated the IL toxicities with a square of correlation coefficient (R 2 ) of 0.919 and a standard error of estimate (SE) of 0.341 (in log unit of mM) for pMIC, and an R 2 of 0.913 and SE of 0.282 for pMBC. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. TGF-β induces the expression of the adaptor Ndfip1 to silence IL-4 production during iTreg cell differentiation.

    Science.gov (United States)

    Beal, Allison M; Ramos-Hernández, Natalia; Riling, Chris R; Nowelsky, Erin A; Oliver, Paula M

    2011-11-13

    Mice deficient in the adaptor Ndfip1 develop inflammation at sites of environmental antigen exposure. We show here that such mice had fewer inducible regulatory T cells (iT(reg) cells). In vitro, Ndfip1-deficient T cells expressed normal amounts of the transcription factor Foxp3 during the first 48 h of iT(reg) cell differentiation; however, this expression was not sustained. Abortive Foxp3 expression was caused by production of interleukin 4 (IL-4) by Ndfip1(-/-) cells. We found that Ndfip1 expression was transiently upregulated during iT(reg) cell differentiation in a manner dependent on transforming growth factor-β (TGF-β). Once expressed, Ndfip1 promoted degradation of the transcription factor JunB mediated by the E3 ubiquitin ligase Itch, thus preventing IL-4 production. On the basis of our data, we propose that TGF-β signaling induces Ndfip1 expression to silence IL-4 production, thus permitting iT(reg) cell differentiation.

  8. The development of allergic inflammation in a murine house dust mite asthma model is suppressed by synbiotic mixtures of non-digestible oligosaccharides and Bifidobacterium breve M-16V.

    Science.gov (United States)

    Verheijden, K A T; Willemsen, L E M; Braber, S; Leusink-Muis, T; Jeurink, P V; Garssen, J; Kraneveld, A D; Folkerts, G

    2016-04-01

    The incidence and severity of allergic asthma is rising, and novel strategies to prevent or treat this disease are needed. This study investigated the effects of different mixtures of non-digestible oligosaccharides combined with Bifidobacterium breve M-16V (BB) on the development of allergic airway inflammation in an animal model for house dust mite (HDM)-induced allergic asthma. BALB/c mice were sensitized intranasally (i.n.) with HDM and subsequently challenged (i.n.) with PBS or HDM while being fed diets containing different oligosaccharide mixtures in combination with BB or an isocaloric identical control diet. Bronchoalveolar lavage fluid (BALF) inflammatory cell influx, chemokine and cytokine concentrations in lung homogenates and supernatants of ex vivo HDM-restimulated lung cells were analyzed. The HDM-induced influx of eosinophils and lymphocytes was reduced by the diet containing the short-chain and long-chain fructo-oligosaccharides and BB (FFBB). In addition to the HDM-induced cell influx, concentrations of IL-33, CCL17, CCL22, IL-6, IL-13 and IL-5 were increased in supernatants of lung homogenates or BALF and IL-4, IFN-γ and IL-10 were increased in restimulated lung cell suspensions of HDM-allergic mice. The diet containing FFBB reduced IL-6, IFN-γ, IL-4 and IL-10 concentrations, whereas the combination of galacto-oligosaccharides and long-chain fructo-oligosaccharides with BB was less potent in this model. These findings show that synbiotic dietary supplementation can affect respiratory allergic inflammation induced by HDM. The combination of FFBB was most effective in the prevention of HDM-induced airway inflammation in mice.

  9. IL-20 gene expression is induced by IL-1beta through mitogen-activated protein kinase and NF-kappaB-dependent mechanisms

    DEFF Research Database (Denmark)

    Otkjaer, Kristian; Kragballe, Knud; Johansen, Claus

    2007-01-01

    IL-20 is a novel member of the IL-10 cytokine family with pleiotropic effects. Current knowledge of what triggers and regulates IL-20 gene expression is sparse. The aim of this study was to investigate the regulation of IL-20 expression in cultured normal human keratinocytes. The expression of IL...

  10. Dendritic cells decreased the concomitant expanded Tregs and Tregs related IL-35 in cytokine-induced killer cells and increased their cytotoxicity against leukemia cells.

    Directory of Open Access Journals (Sweden)

    Ying Pan

    Full Text Available Regulatory T cells (Tregs are potent immunosuppressive cells and essential for inducing immune tolerance. Recent studies have reported that Tregs and Tregs related cytokines can inhibit the antitumor activity of cytokine-induced killer (CIK cells, but dendritic cells co-cultured CIK (DC-CIK cells can be used for induction of a specific immune response by blocking of Tregs and TGF-β, IL-10. As a novel identified cytokine, IL-35 is specially produced by Tregs and plays an essential role in immune regulation. However, it remains unknown whether IL-35 roles in tumor immunotherapy mediated by CIK and DC-CIK cells. In this study, we cultured CIK and DC-CIK cells from the same healthy adult samples, and investigated their phenotype, proliferation, cytotoxic activity against leukemia cell lines K562 and NB4 by FCM and CCK-8, measured IL-35, TGF-β and IL-10 protein by ELISA, detected Foxp3, IL-35 and IL-35 receptor mRNA by Real-time PCR, respectively. We found Tregs and IL-35 concomitantly expanded by a time-dependent way during the generation of CIK cells, but DC significantly down-regulated the expression of them and simultaneously up-regulated the proliferation ability as well as cytotoxic activity of CIK cells against leukemia cell lines. Therefore, our data suggested that DC decreased concomitant expanded Tregs and Tregs related IL-35 in CIK cells and might contribute to improve their cytotoxicity against leukemia cells in vitro.

  11. Lewis Lung Cancer Cells Promote SIGNR1(CD209b)-Mediated Macrophages Polarization Induced by IL-4 to Facilitate Immune Evasion.

    Science.gov (United States)

    Yan, Xiaolong; Li, Wenhai; Pan, Lei; Fu, Enqing; Xie, Yonghong; Chen, Min; Mu, Deguang

    2016-05-01

    Tumor-associated macrophages are a prominent component of lung cancer and contribute to tumor progression by facilitating the immune evasion of cancer cells. DC-SIGN (CD209) assists in the immune evasion of a broad spectrum of pathogens and neoplasms by inhibiting the maturation of DCs and subsequent cytokines production. However, the expression of DC-SIGN in macrophages and its role in mediating immune evasion in lung cancer and the underlying mechanism remain unclear. Our study aimed to identify the immunosuppressive role of SIGNR1 in murine macrophage differentiation and lung cancer progression. We found that SIGNR1-positive RAW264.7 macrophages were enriched in mixed cultures with Lewis lung cancer cells (LLC) (ratio of RAW 264.7 to LLC being 1:1) after stimulation with IL-4. Moreover, LLC-educated macrophages exhibited significantly higher levels of IL-10 but lower IL-12 in response to IL-4 treatment as determined by RT-PCR and ELISA. However, inhibition of SIGNR1 markedly hampered the production of IL-10, indicating that SIGNR1 was indispensable for IL-4+LLC induced macrophage polarization towards the M2 subtype. Furthermore, polarized M2 cells immersed in a tumor microenvironment promoted the migration of LLCs, as measured by transwell assays, but migration was suppressed after blockade of SIGNR1 using CD209b antibody. In addition, IL-4+LLC-educated macrophages reduced the proliferation of the activated T cells and reduced IFN-γ-mediated Th1 response in T cells, while SIGNR1 inhibition rescued Th1 cell functions. In conclusion, murine SIGNR1 expressed in LLC-educated macrophages appears to mediate IL-4-induced RAW264.7 macrophage polarization and thus facilitate lung cancer evasion. © 2015 Wiley Periodicals, Inc.

  12. ST2 suppresses IL-6 production via the inhibition of IκB degradation induced by the LPS signal in THP-1 cells

    International Nuclear Information System (INIS)

    Takezako, Naoki; Hayakawa, Morisada; Hayakawa, Hiroko; Aoki, Shinsuke; Yanagisawa, Ken; Endo, Hitoshi; Tominaga, Shin-ichi

    2006-01-01

    LPS induces the production of inflammatory cytokines via the stimulation of Toll-like receptors. In this study, we demonstrated that a soluble secreted form of the ST2 gene product (ST2), a member of the interleukin-1 receptor family, suppressed the production of IL-6 in an LPS-stimulated human monocytic leukemia cell line, THP-1. Immunofluorescence confocal microscopy revealed the binding of ST2 to the surface of the THP-1 cells, in which ST2 led to decreased binding of nuclear factor-κB to the IL-6 promoter. Furthermore, the degradation of IκB in the cytoplasm after LPS stimulation was reduced by pretreatment with ST2. These results demonstrated that ST2 negatively regulates LPS-induced IL-6 production via the inhibition of IκB degradation in THP-1 cells

  13. Resolution of LPS-induced airway inflammation and goblet cell hyperplasia is independent of IL-18

    Directory of Open Access Journals (Sweden)

    Lyons C Rick

    2007-03-01

    Full Text Available Abstract Background The resolution of inflammatory responses in the lung has not been described in detail and the role of specific cytokines influencing the resolution process is largely unknown. Methods The present study was designed to describe the resolution of inflammation from 3 h through 90 d following an acute injury by a single intratracheal instillation of F344/N rats with LPS. We documented the inflammatory cell types and cytokines found in the bronchoalveolar lavage fluid (BALF, and epithelial changes in the axial airway and investigated whether IL-18 may play a role in the resolution process by reducing its levels with anti-IL-18 antibodies. Results Three major stages of inflammation and resolution were observed in the BALF during the resolution. The first stage was characterized by PMNs that increased over 3 h to 1 d and decreased to background levels by d 6–8. The second stage of inflammation was characterized by macrophage influx reaching maximum numbers at d 6 and decreasing to background levels by d 40. A third stage of inflammation was observed for lymphocytes which were elevated over d 3–6. Interestingly, IL-18 and IL-9 levels in the BALF showed a cyclic pattern with peak levels at d 4, 8, and 16 while decreasing to background levels at d 1–2, 6, and 12. Depletion of IL-18 caused decreased PMN numbers at d 2, but no changes in inflammatory cell number or type at later time points. Conclusion These data suggest that IL-18 plays a role in enhancing the LPS-induced neutrophilic inflammation of the lung, but does not affect the resolution of inflammation.

  14. Blockade of the IL-6 trans-signalling/STAT3 axis suppresses cachexia in Kras-induced lung adenocarcinoma.

    Science.gov (United States)

    Miller, A; McLeod, L; Alhayyani, S; Szczepny, A; Watkins, D N; Chen, W; Enriori, P; Ferlin, W; Ruwanpura, S; Jenkins, B J

    2017-05-25

    Lung cancer is the leading cause of cancer death worldwide, and is frequently associated with the devastating paraneoplastic syndrome of cachexia. The potent immunomodulatory cytokine interleukin (IL)-6 has been linked with the development of lung cancer as well as cachexia; however, the mechanisms by which IL-6 promotes muscle wasting in lung cancer cachexia are ill-defined. In this study, we report that the gp130 F/F knock-in mouse model displaying hyperactivation of the latent transcription factor STAT3 via the common IL-6 cytokine family signalling receptor, gp130, develops cachexia during Kras-driven lung carcinogenesis. Specifically, exacerbated weight loss, early mortality and reduced muscle and adipose tissue mass were features of the gp130 F/F :Kras G12D model, but not parental Kras G12D mice in which STAT3 was not hyperactivated. Gene expression profiling of muscle tissue in cachectic gp130 F/F :Kras G12D mice revealed the upregulation of IL-6 and STAT3-target genes compared with Kras G12D muscle tissue. These cachectic features of gp130 F/F :Kras G12D mice were abrogated upon the genetic normalization of STAT3 activation or ablation of IL-6 in gp130 F/F :Kras G12D :Stat3 -/+ or gp130 F/F :Kras G12D :Il6 -/- mice, respectively. Furthermore, protein levels of the soluble IL-6 receptor (sIL-6R), which is the central facilitator of IL-6 trans-signalling, were elevated in cachectic muscle from gp130 F/F :Kras G12D mice, and the specific blockade of IL-6 trans-signalling, but not classical signalling, with an anti-IL-6R antibody ameliorated cachexia-related characteristics in gp130 F/F :Kras G12D mice. Collectively, these preclinical findings identify trans-signalling via STAT3 as the signalling modality by which IL-6 promotes muscle wasting in lung cancer cachexia, and therefore support the clinical evaluation of the IL-6 trans-signalling/STAT3 axis as a therapeutic target in advanced lung cancer patients presenting with cachexia.

  15. Induced expression of mRNA for IL-5, IL-6, TNF-alpha, MIP-2 and IFN-gamma in immunologically activated rat peritoneal mast cells: inhibition by dexamethasone and cyclosporin A.

    Science.gov (United States)

    Williams, C M; Coleman, J W

    1995-10-01

    We examined the capacity of purified rat peritoneal connective tissue-type mast cells (PMC) to express mRNA for several cytokines. Stimulation of PMC with anti-IgE for 4 hr induced the expression of mRNA encoding interleukin-5 (IL-5), IL-6, tumour necrosis factor-alpha (TNF-alpha), macrophage inflammatory protein-2 (MIP-2) and interferon-gamma (IFN-gamma). Unstimulated PMC expressed detectable mRNA for TNF-alpha but not for the other four cytokines. Incubation of PMC with cyclosporin A (CsA) or dexamethasone (DEX), each at 10(-6) M for 24 hr, significantly inhibited the induced expression of mRNA for each of the five cytokines, and also inhibited release of biologically active TNF-alpha. Throughout these experiments mRNA levels of the housekeeping gene G3PDH were not altered by stimulation with anti-IgE or incubation with CsA or DEX. We conclude that immunological activation of rat PMC induces gene expression of several cytokines and that expression of these genes can be inhibited by immunosuppressive drugs.

  16. Lemongrass effects on IL-1beta and IL-6 production by macrophages.

    Science.gov (United States)

    Sforcin, J M; Amaral, J T; Fernandes, A; Sousa, J P B; Bastos, J K

    2009-01-01

    Cymbopogon citratus has been widely recognised for its ethnobotanical and medicinal usefulness. Its insecticidal, antimicrobial and therapeutic properties have been reported, but little is known about its effect on the immune system. This work aimed to investigate the in vivo effect of a water extract of lemongrass on pro-inflammatory cytokine (IL-1beta and IL-6) production by macrophages of BALB/c mice. The action of lemongrass essential oil on cytokine production by macrophages was also analysed in vitro. The chemical composition of the extract and the oil was also investigated. Treatment of mice with water extract of lemongrass inhibited macrophages to produce IL-1beta but induced IL-6 production by these cells. Lemongrass essential oil inhibited the cytokine production in vitro. Linalool oxide and epoxy-linalool oxide were found to be the major components of lemongrass water extract, and neral and geranial were the major compounds of its essential oil. Taken together, these data suggest an anti-inflammatory action of this natural product.

  17. IL-15 deficient tax mice reveal a role for IL-1α in tumor immunity.

    Directory of Open Access Journals (Sweden)

    Daniel A Rauch

    Full Text Available IL-15 is recognized as a promising candidate for tumor immunotherapy and has been described as both a promoter of cancer and a promoter of anti-cancer immunity. IL-15 was discovered in cells transformed by HTLV-1, the etiologic agent of adult T cell leukemia/lymphoma (ATL and the human retrovirus that carries the Tax oncogene. We have developed the TAX-LUC mouse model of ATL in which Tax expression drives both malignant transformation and luciferase expression, enabling non-invasive imaging of tumorigenesis in real time. To identify the role of IL-15 in spontaneous development of lymphoma in vivo, an IL-15(-/- TAX-LUC strain was developed and examined. The absence of IL-15 resulted in aggressive tumor growth and accelerated mortality and demonstrated that IL-15 was not required for Tax-mediated lymphoma but was essential for anti-tumor immunity. Further analysis revealed a unique transcriptional profile in tumor cells that arise in the absence of IL-15 that included a significant increase in the expression of IL-1α and IL-1α-regulated cytokines. Moreover, anti-IL-1α antibodies and an IL-1 receptor antagonist (Anakinra were used to interrogate the potential of IL-1α targeted therapies in this model. Taken together, these findings identify IL-15 and IL-1α as therapeutic targets in lymphoma.

  18. Synergy of mIL-21 and mIL-15 in enhancing DNA vaccine efficacy against acute and chronic Toxoplasma gondii infection in mice.

    Science.gov (United States)

    Li, Zhong-Yuan; Chen, Jia; Petersen, Eskild; Zhou, Dong-Hui; Huang, Si-Yang; Song, Hui-Qun; Zhu, Xing-Quan

    2014-05-23

    The synergistic protective efficacy of murine interleukin 21 (mIL-21) and mIL-15 administrated with DNA vaccine against acute and chronic Toxoplasma gondii infection in mice was investigated using T. gondii MIC8 (TgMIC8) as a model. We cloned mIL-21 and mIL-15 from splenic tissues of Kunming mice, and constructed eukaryotic plasmid pVAX/mIL-15, pVAX/mIL-21, and pVAX/mIL-21/mIL-15, respectively. After immunizing with pVAX/TgMIC8 in the presence or absence of these cytokines, immune responses were analyzed using lymphoproliferative assay, cytokine and serum antibody measurements, flow cytometric surface markers on lymphocytes and protection against acute and chronic T. gondii infection. Mice receiving pVAX/TgMIC8 alone developed a strong humoral responses and Th1 type cellular immune responses, and showed an increase of CD4+ and CD8+ T cells compared with all the controls. Adding pVAX/mIL-21 to pVAX/TgMIC8 compared to pVAX/TgMIC8 resulted in only a slight increase in humoral and cellular immune responses, and this immune response was lower than that induced by the pVAX/mIL-15 combined with pVAX/TgMIC8. Co-administration of pVAX/mIL-21/mIL-15 combined with pVAX/TgMIC8 elicited the strongest humoral and cellular immune responses among all the groups, leading to significantly increased survival time against acute infection and the significant reduction of tissue cysts, compared to all the controls. Synergy of mIL-21 and mIL-15 can facilitate specific humoral as well as cellular immune responses elicited by DNA vaccine against acute and chronic T. gondii infection in mice. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. The interleukin (IL-1a precursor is biologically active and is likely a key alarmin in the IL-1 family of cytokines

    Directory of Open Access Journals (Sweden)

    Busun eKim

    2013-11-01

    Full Text Available Among the eleven members of the IL-1 family cytokines, the precursors of IL-1a, IL-1b, and IL-33 have relatively long N-terminal pro-sequences of approximately one hundred amino acid residues prior to the N-terminus of the mature forms. Compared to the mature forms secreted from the cell, 80-90% of the primary translation product is in the intracellular compartment in the precursor form. However, the precursors are readily released from cells during infections but also with non-infectious conditions such a hypoxia and trauma. In this setting, the precursors act rapidly as alarmins in the absence of a processing mechanism to remove the pro-sequence and generate a mature form. In the case of IL-1a, the release of the precursor activates adjacent cells via receptor-mediated signaling. However, there are no data comparing the specific activity of the IL-1a precursor to the mature form. In the present study, we compared the precursor and mature forms of recombinant human IL-1a, IL-1b and IL-33 proteins on the induction of cytokines from A549 cells as well as from human peripheral blood mononuclear cells (PBMC. Similar to the mature form, the IL-1a precursor was active in inducing IL 6 and TNFa, whereas the precursor forms of IL 1b and IL-33 were not active. On PBMC, precursor and mature IL-1a at 0.04 and 0.2 nano-mole were equally active in inducing IL-6. Given the fact that during necrotic cell death, the IL-1a precursor is released intact and triggers IL-1 receptors on tissue macrophages, these data identify the precursor form of IL-1a as a key player in sterile inflammation.

  20. A2E induces IL-1ß production in retinal pigment epithelial cells via the NLRP3 inflammasome.

    Science.gov (United States)

    Anderson, Owen A; Finkelstein, Arthur; Shima, David T

    2013-01-01

    With ageing extracellular material is deposited in Bruch's membrane, as drusen. Lipofuscin is deposited in retinal pigment epithelial cells. Both of these changes are associated with age related macular degeneration, a disease now believed to involve chronic inflammation at the retinal-choroidal interface. We hypothesise that these molecules may act as danger signals, causing the production of inflammatory chemokines and cytokines by the retinal pigment epithelium, via activation of pattern recognition receptors. ARPE-19 cells were stimulated in vitro with the following reported components of drusen: amyloid-ß (1-42), Carboxyethylpyrrole (CEP) modified proteins (CEP-HSA), Nε-(Carboxymethyl)lysine (CML) modified proteins and aggregated vitronectin. The cells were also stimulated with the major fluorophore of lipofuscin: N-retinylidene-N-retinylethanolamine (A2E). Inflammatory chemokine and cytokine production was assessed using Multiplex assays and ELISA. The mechanistic evaluation of the NLRP3 inflammasome pathway was assessed in a stepwise fashion. Of all the molecules tested only A2E induced inflammatory chemokine and cytokine production. 25 µM A2E induced the production of significantly increased levels of the chemokines IL-8, MCP-1, MCG and MIP-1α, the cytokines IL-1ß, IL-2, IL-6, and TNF-α, and the protein VEGF-A. The release of IL-1ß was studied further, and was determined to be due to NLRP3 inflammasome activation. The pathway of activation involved endocytosis of A2E, and the three inflammasome components NLRP3, ASC and activated caspase-1. Immunohistochemical staining of ABCA4 knockout mice, which show progressive accumulation of A2E levels with age, showed increased amounts of IL-1ß proximal to the retinal pigment epithelium. A2E has the ability to stimulate inflammatory chemokine and cytokine production by RPE cells. The pattern recognition receptor NLRP3 is involved in this process. This provides further evidence for the link between A2E

  1. The IL23R A/Gln381 allele promotes IL-23 unresponsiveness in human memory T-helper 17 cells and impairs Th17 responses in psoriasis patients.

    Science.gov (United States)

    Di Meglio, Paola; Villanova, Federica; Napolitano, Luca; Tosi, Isabella; Terranova Barberio, Manuela; Mak, Rose K; Nutland, Sarah; Smith, Catherine H; Barker, Jonathan N W N; Todd, John A; Nestle, Frank O

    2013-10-01

    We and others have shown that the minor, nonconserved allele Gln381 of the Arg381Gln single-nucleotide polymorphism (rs11209026G>A) of the IL-23 receptor gene (IL23R) protects against psoriasis. Moreover, we have recently shown impaired IL-23-induced IL-17A production and STAT-3 phosphorylation in Th17 cells generated in vitro from healthy individuals heterozygous for the protective A allele (GA). However, the biological effect of this variant has not been determined in homozygous carriers of the protective A allele (AA), nor in psoriatic patients. Here we expand our functional investigation of the IL23R Arg381Gln gene variant to include AA homozygous individuals. By using isolated memory CD4+ T cells, we found attenuated IL-23-induced Th17 response in heterozygous individuals. Moreover, we found that AA homozygous individuals were strikingly unresponsive to IL-23, with minimal or no IL-17A and IL-17F production and failure of human memory Th17 cell survival/expansion. Finally, IL-23-induced Th17 response was also attenuated in age- and sex-matched GA versus GG psoriatic patients undergoing systemic treatment. Taken together, our data provide evidence for an allele-dosage effect for IL-23R Gln381 and indicate that common gene alleles associated with complex diseases might have biological effects of considerable magnitude in homozygous carriers.

  2. Effects of overexpression of IL-1 receptor-associated kinase on NFkappaB activation, IL-2 production and stress-activated protein kinases in the murine T cell line EL4.

    Science.gov (United States)

    Knop, J; Wesche, H; Lang, D; Martin, M U

    1998-10-01

    The association and activation of the IL-1 receptor-associated protein kinase (IRAK) to the IL-1 receptor complex is one of the earliest events detectable in IL-1 signal transduction. We generated permanent clones of the murine T cell line EL4 6.1 overexpressing human (h)IRAK to evaluate the role of this kinase in IL-1 signaling. Overexpression of hIRAK enhanced IL-1-stimulated activation of the transcription factor NFkappaB, whereas a truncated form (N-IRAK) specifically inhibited IL-1-dependent NFkappaB activity. In clones stably overexpressing hIRAK a weak constitutive activation of NFkappaB correlated with a low basal IL-2 production which was enhanced in an IL-1-dependent manner. Compared to the parental cell line the dose-response curve of IL-1-induced IL-2 production was shifted in both potency and efficacy. These results demonstrate that IRAK directly triggers NFkappaB-mediated gene expression in EL4 cells. Qualitatively different effects were observed for the IL-1-induced activation of stress-activated protein (SAP) kinases: permanent overexpression of IRAK did not affect the dose dependence but prolonged the kinetics of IL-1-induced activation of SAP kinases, suggesting that this signaling branch may be regulated by distinct mechanisms.

  3. Neutron-induced 2.2 MeV background in gamma ray telescopes

    International Nuclear Information System (INIS)

    Zanrosso, E.M.; Long, J.L.; Zych, A.D.; White, R.S.; Hughes Aircraft Co., Los Angeles, CA)

    1985-01-01

    Neutron-induced gamma ray production is an important source of background in Compton scatter gamma ray telescopes where organic scintillator material is used. Most important is deuteron formation when atmospheric albedo and locally produced neutrons are thermalized and subsequently absorbed in the hydrogenous material. The resulting 2.2 MeV gamma line essentially represents a continuous isotropic source within the scintillator itself. Interestingly, using a scintillator material with a high hydrogen-to-carbon ratio to minimize the neutron-induced 4.4 MeV carbon line favors the np reaction. The full problem of neutron-induced background in Compton scatter telescopes has been previously discussed. Results are presented of observations with the University of California balloon-borne Compton scatter telescope where the 2.2 MeV induced line emission is prominently seen

  4. Anti-inflammation effects of corn silk in a rat model of carrageenin-induced pleurisy.

    Science.gov (United States)

    Wang, Guang-Qiang; Xu, Tao; Bu, Xue-Mei; Liu, Bao-Yi

    2012-06-01

    Pleurisy is an inflammation of the pleural layers that surround the lungs. Despite much research into inflammatory diseases, no drugs with favorable safety profiles are available yet for their treatment. Corn silk has been used in many parts of the world for the treatment of edema, cystitis, gout, kidney stones nephritis, and prostitutes. However, no scientific reports on the anti-inflammatory effects of corn silk were so far available. To test the anti-inflammatory efficacy of corn silk extract (CSEX) in a rat model of carrageenin (Cg)-induced pleurisy, exudate formation, and cellular infiltration, tumor necrosis factor alpha (TNF-α), interleukin 1 beta (IL-1β), vascular endothelial growth factor alpha (VEGF-α), interleukin-17 (IL-17), C3 and C4 complement protein levels, adhesion molecule (ICAM-1) and inducible nitric oxide synthase (iNOS) levels, nuclear factor kappa B (NF-κB) activation, and total antioxidant activity were studied, respectively. Pretreatment with CSEX reduced Cg-induced pleurisy exudate, number of leukocytes, oxidative stress, C3 protein level, and O (2)(-) levels at the inflammatory site. Pretreatment with CSEX also inhibited TNF-α, IL-1β, VEGF-α, and IL-17A and blocked inflammation-related events (ICAM-1 and iNOS) by activation of NF-κB. Supplementation with CSEX may be a promising treatment for inflammatory diseases that involve oxidative stress.

  5. Preclinical efficacy and safety of an anti-IL-1β vaccine for the treatment of type 2 diabetes

    Science.gov (United States)

    Spohn, Gunther; Schori, Christian; Keller, Iris; Sladko, Katja; Sina, Christina; Guler, Reto; Schwarz, Katrin; Johansen, Pål; Jennings, Gary T; Bachmann, Martin F

    2014-01-01

    Neutralization of the inflammatory cytokine interleukin-1β (IL-1β) is a promising new strategy to prevent the β-cell destruction, which leads to type 2 diabetes. Here, we describe the preclinical development of a therapeutic vaccine against IL-1β consisting of a detoxified version of IL-1β chemically cross-linked to virus-like particles of the bacteriophage Qβ. The vaccine was well tolerated and induced robust antibody responses in mice, which neutralized the biological activity of IL-1β, as shown both in cellular assays and in challenge experiments in vivo. Antibody titers were long lasting but reversible over time and not associated with the development of potentially harmful T cell responses against IL-1β. Neutralization of IL-1β by vaccine-induced antibodies had no influence on the immune responses of mice to Listeria monocytogenes and Mycobacterium tuberculosis. In a diet-induced model of type 2 diabetes, immunized mice showed improved glucose tolerance, which was mediated by improved insulin secretion by pancreatic β-cells. Hence, immunization with IL-1β conjugated to virus-like particles has the potential to become a safe, efficacious, and cost-effective therapy for the prevention and long-term treatment of type 2 diabetes. PMID:26015986

  6. Preclinical efficacy and safety of an anti-IL-1β vaccine for the treatment of type 2 diabetes

    Directory of Open Access Journals (Sweden)

    Gunther Spohn

    2014-01-01

    Full Text Available Neutralization of the inflammatory cytokine interleukin-1β (IL-1β is a promising new strategy to prevent the β-cell destruction, which leads to type 2 diabetes. Here, we describe the preclinical development of a therapeutic vaccine against IL-1β consisting of a detoxified version of IL-1β chemically cross-linked to virus-like particles of the bacteriophage Qβ. The vaccine was well tolerated and induced robust antibody responses in mice, which neutralized the biological activity of IL-1β, as shown both in cellular assays and in challenge experiments in vivo. Antibody titers were long lasting but reversible over time and not associated with the development of potentially harmful T cell responses against IL-1β. Neutralization of IL-1β by vaccine-induced antibodies had no influence on the immune responses of mice to Listeria monocytogenes and Mycobacterium tuberculosis. In a diet-induced model of type 2 diabetes, immunized mice showed improved glucose tolerance, which was mediated by improved insulin secretion by pancreatic β-cells. Hence, immunization with IL-1β conjugated to virus-like particles has the potential to become a safe, efficacious, and cost-effective therapy for the prevention and long-term treatment of type 2 diabetes.

  7. Role of Blimp-1 in programing Th effector cells into IL-10 producers

    Science.gov (United States)

    Neumann, Christian; Heinrich, Frederik; Neumann, Katrin; Junghans, Victoria; Mashreghi, Mir-Farzin; Ahlers, Jonas; Janke, Marko; Rudolph, Christine; Mockel-Tenbrinck, Nadine; Kühl, Anja A.; Heimesaat, Markus M.; Esser, Charlotte; Im, Sin-Hyeog; Radbruch, Andreas

    2014-01-01

    Secretion of the immunosuppressive cytokine interleukin (IL) 10 by effector T cells is an essential mechanism of self-limitation during infection. However, the transcriptional regulation of IL-10 expression in proinflammatory T helper (Th) 1 cells is insufficiently understood. We report a crucial role for the transcriptional regulator Blimp-1, induced by IL-12 in a STAT4-dependent manner, in controlling IL-10 expression in Th1 cells. Blimp-1 deficiency led to excessive inflammation during Toxoplasma gondii infection with increased mortality. IL-10 production from Th1 cells was strictly dependent on Blimp-1 but was further enhanced by the synergistic function of c-Maf, a transcriptional regulator of IL-10 induced by multiple factors, such as the Notch pathway. We found Blimp-1 expression, which was also broadly induced by IL-27 in effector T cells, to be antagonized by transforming growth factor (TGF) β. While effectively blocking IL-10 production from Th1 cells, TGF-β shifted IL-10 regulation from a Blimp-1–dependent to a Blimp-1–independent pathway in IL-27–induced Tr1 (T regulatory 1) cells. Our findings further illustrate how IL-10 regulation in Th cells relies on several transcriptional programs that integrate various signals from the environment to fine-tune expression of this critical immunosuppressive cytokine. PMID:25073792

  8. Association of a four-locus gene model including IL13, IL4, FCER1B, and ADRB2 with the Asthma Predictive Index and atopy in Chinese Han children.

    Science.gov (United States)

    Bai, S; Hua, L; Wang, X; Liu, Q; Bao, Y

    2018-05-11

    Asthma is a complex and heterogeneous disease. We found that gene-gene interactions among IL13 rs20541, IL4 rs2243250, ADRB2 rs1042713, and FCER1B rs569108 in asthmatic children of Chinese Han nationality. This four-locus set constituted an optimal statistical interaction model. Objective: This study examined associations of the four-gene model consisting of IL13, IL4, FCER1B, and ADRB2 with the Asthma Predictive Index (API) and atopy in Chinese Han children. Four single-nucleotide polymorphisms (SNPs) in the four genes were genotyped in 385 preschool children with wheezing symptoms using matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Student's t test and x2 tests were used for this analysis. : Significant correlations were found between the four-locus gene model and the stringent and loose API (both Pfour-locus gene model with atopy (Pfour-locus gene model consisting of L13 rs20541, IL4 rs2243250, ADRB2 rs1042713 and FCER1B rs569108 was associated with the API and atopy. These findings provide an evidence of the gene model for determining a high risk of developing asthma and atopy in Chinese Han children.

  9. Activation of JAK3, but not JAK1, is critical to interleukin-4 (IL4) stimulated proliferation and requires a membrane-proximal region of IL4 receptor alpha.

    Science.gov (United States)

    Malabarba, M G; Kirken, R A; Rui, H; Koettnitz, K; Kawamura, M; O'Shea, J J; Kalthoff, F S; Farrar, W L

    1995-04-21

    The tyrosine kinases JAK1 and JAK3 have been shown to undergo tyrosine phosphorylation in response to interleukin-2 (IL), IL4, IL7, and IL9, cytokines which share the common IL2 receptor gamma-chain (IL2R gamma), and evidence has been found for a preferential coupling of JAK3 to IL2R gamma and JAK1 to IL2R beta. Here we show, using human premyeloid TF-1 cells, that IL4 stimulates JAK3 to a larger extent than JAK1, based upon three different evaluation criteria. These include a more vigorous tyrosine phosphorylation of JAK3 as measured by anti-phosphotyrosine immunoblotting, a more marked activation of JAK3 as determined by in vitro tyrosine kinase assays and a more manifest presence of JAK3 in activated IL4-receptor complexes. These observations suggest that IL4 receptor signal transduction does not depend on equimolar heterodimerization of JAK1 and JAK3 following IL4-induced heterodimerization of IL4R alpha and IL2R gamma. Indeed, when human IL4R alpha was stably expressed in mouse BA/F3 cells, robust IL4-induced proliferation and JAK3 activation occurred without detectable involvement of JAK1, JAK2, or TYK2. The present study suggests that JAK1 plays a subordinate role in IL4 receptor signaling, and that in certain cells exclusive JAK3 activation may mediate IL4-induced cell growth. Moreover, mutational analysis of human IL4R alpha showed that a membrane-proximal cytoplasmic region was critical for JAK3 activation, while the I4R motif was not, which is compatible with a role of JAK3 upstream of the recruitment of the insulin receptor substrate-1/4PS signaling proteins by IL4 receptors.

  10. IL-21: an executor of B cell fate.

    Science.gov (United States)

    Konforte, Danijela; Simard, Nathalie; Paige, Christopher J

    2009-02-15

    IL-21 is a type I cytokine that shares the common receptor gamma-chain with IL-2, IL-4, IL-7, IL-9, and IL-15. B cells are one of the lymphoid cell types whose development and function are regulated by IL-21. Depending on the interplay with costimulatory signals and on the developmental stage of a B cell, IL-21 can induce proliferation, differentiation into Ig-producing plasma cells, or apoptosis in both mice and humans. Alone and in combination with Th cell-derived cytokines IL-21 can regulate class switch recombination to IgG, IgA, or IgE isotypes, indicating its important role in shaping the effector function of B cells. This review highlights the role of IL-21 in B cell development, function, and disease and provides some perspectives on the future studies in this area.

  11. Elevated Circulating IL-1β and TNF-Alpha, and Unaltered IL-6 in First-Trimester Pregnancies Complicated by Threatened Abortion With an Adverse Outcome

    Directory of Open Access Journals (Sweden)

    Nicolaos Vitoratos

    2006-01-01

    Full Text Available The purpose of the present study was to examine the profile of selected proinflammatory cytokines in maternal serum of first-trimester pregnancies complicated by threatened abortion (TACP and its relevance to obstetric outcome. Serum levels of Th1-type cytokines interleukin-1β (IL-1β, tumor necrosis factor alpha (TNF-alpha, and Th2-type cytokine interleukin 6 (IL-6 were measured, by ELISA, in 22 women with TACP and adverse outcome at admission (group A and compared with the corresponding levels of 31 gestational age-matched women with TACP and successful outcome at admission (group B1 and discharge (group B2 and 22 gestational age-matched women with first-trimester uncomplicated pregnancy (group C who served as controls. Mann-Whitney U or Wilcoxon test was applied as appropriate to compare differences between groups. IL-1β and TNF-alpha were detected with significantly higher levels in group A, compared to all other groups. On the contrary, IL-6 levels were detected with no significant difference among all the other groups studied. It is concluded that in first-trimester TACP with adverse outcome, a distinct immune response, as reflected by elevated maternal IL-1β, TNF-alpha, and unaltered IL-6 levels, is relevant to a negative obstetric outcome.

  12. Elevated Circulating IL-1β and TNF-Alpha, and Unaltered IL-6 in First-Trimester Pregnancies Complicated by Threatened Abortion With an Adverse Outcome

    Science.gov (United States)

    Vitoratos, Nicolaos; Papadias, Constantinos; Economou, Emmanuel; Makrakis, Evangelos; Panoulis, Constantinos; Creatsas, George

    2006-01-01

    The purpose of the present study was to examine the profile of selected proinflammatory cytokines in maternal serum of first-trimester pregnancies complicated by threatened abortion (TACP) and its relevance to obstetric outcome. Serum levels of Th1-type cytokines interleukin-1β (IL-1β), tumor necrosis factor alpha (TNF-alpha), and Th2-type cytokine interleukin 6 (IL-6) were measured, by ELISA, in 22 women with TACP and adverse outcome at admission (group A) and compared with the corresponding levels of 31 gestational age-matched women with TACP and successful outcome at admission (group B1) and discharge (group B2) and 22 gestational age-matched women with first-trimester uncomplicated pregnancy (group C) who served as controls. Mann-Whitney U or Wilcoxon test was applied as appropriate to compare differences between groups. IL-1β and TNF-alpha were detected with significantly higher levels in group A, compared to all other groups. On the contrary, IL-6 levels were detected with no significant difference among all the other groups studied. It is concluded that in first-trimester TACP with adverse outcome, a distinct immune response, as reflected by elevated maternal IL-1β, TNF-alpha, and unaltered IL-6 levels, is relevant to a negative obstetric outcome. PMID:17047289

  13. Elevated Circulating IL-1 β and TNF-Alpha, and Unaltered IL-6 in First-Trimester Pregnancies Complicated by Threatened Abortion With an Adverse Outcome

    Directory of Open Access Journals (Sweden)

    2006-01-01

    Full Text Available The purpose of the present study was to examine the profile of selected proinflammatory cytokines in maternal serum of first-trimester pregnancies complicated by threatened abortion (TACP and its relevance to obstetric outcome. Serum levels of Th1-type cytokines interleukin-1 β (IL-1 β , tumor necrosis factor alpha (TNF-alpha, and Th2-type cytokine interleukin 6 (IL-6 were measured, by ELISA, in 22 women with TACP and adverse outcome at admission (group A and compared with the corresponding levels of 31 gestational age-matched women with TACP and successful outcome at admission (group B1 and discharge (group B2 and 22 gestational age-matched women with first-trimester uncomplicated pregnancy (group C who served as controls. Mann-Whitney U or Wilcoxon test was applied as appropriate to compare differences between groups. IL-1 β and TNF-alpha were detected with significantly higher levels in group A, compared to all other groups. On the contrary, IL-6 levels were detected with no significant difference among all the other groups studied. It is concluded that in first-trimester TACP with adverse outcome, a distinct immune response, as reflected by elevated maternal IL-1 β , TNF-alpha, and unaltered IL-6 levels, is relevant to a negative obstetric outcome.

  14. Elevated circulating IL-1beta and TNF-alpha, and unaltered IL-6 in first-trimester pregnancies complicated by threatened abortion with an adverse outcome.

    Science.gov (United States)

    Vitoratos, Nicolaos; Papadias, Constantinos; Economou, Emmanuel; Makrakis, Evangelos; Panoulis, Constantinos; Creatsas, George

    2006-01-01

    The purpose of the present study was to examine the profile of selected proinflammatory cytokines in maternal serum of first-trimester pregnancies complicated by threatened abortion (TACP) and its relevance to obstetric outcome. Serum levels of Th1-type cytokines interleukin-1beta (IL-1beta), tumor necrosis factor alpha (TNF-alpha), and Th2-type cytokine interleukin 6 (IL-6) were measured, by ELISA, in 22 women with TACP and adverse outcome at admission (group A) and compared with the corresponding levels of 31 gestational age-matched women with TACP and successful outcome at admission (group B1) and discharge (group B2) and 22 gestational age-matched women with first-trimester uncomplicated pregnancy (group C) who served as controls. Mann-Whitney U or Wilcoxon test was applied as appropriate to compare differences between groups. IL-1beta and TNF-alpha were detected with significantly higher levels in group A, compared to all other groups. On the contrary, IL-6 levels were detected with no significant difference among all the other groups studied. It is concluded that in first-trimester TACP with adverse outcome, a distinct immune response, as reflected by elevated maternal IL-1beta, TNF-alpha, and unaltered IL-6 levels, is relevant to a negative obstetric outcome.

  15. Analysis of IL-6, IL-10 and NF-κB Gene Polymorphisms in Aggressive and Chronic Periodontitis.

    Science.gov (United States)

    Toker, Hülya; Görgün, Emine Pirim; Korkmaz, Ertan Mahir

    2017-06-01

    Pro-inflammatory cytokines, interleukin-6 (IL-6), demonstrated to be suppressed by interleukin-10 (IL-10) are known to be regulated by the transcription factor nuclear factor-κB(NF-κB). The aim of this study was to ascertain the association between genetic polymorphism of these genes (IL-6(-174), IL-10(-597) and NF-κB1-94ins/del)) and chronic/aggressive periodontitis. Forty-five patients with chronic periodontitis (CP), 58 patients with aggressive periodontitis (AP) and 38 periodontally healthy subjects were included in this study. Genomic DNA was isolated from whole blood samples. The NF-κB, IL-6, and IL-10 polymorphisms were determined by the polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method. Among subjects for the ins/ins genotypes of NF-κB1 gene, the AA genotypes of IL-10 presented a higher frequency in chronic periodontitis group than in healthy controls (p=0.023). A statistically significant difference in genotyping frequencies between AP group and healthy controls was observed for the IL-6 gene. The AA genotype of IL-10 was overrepresented in CP and AP groups compared to healthy controls (OR=9.93, 95% CI: 2.11-46.7, OR=5.7, 95% CI: 1.22-26.89, respectively). Within the limits of this study, it can be concluded that the IL-10 (-597) AA genotype is associated with susceptibility to chronic/aggressive periodontitis and IL-6 (-174) GG genotypes and G allele seems to be associated with aggressive periodontitis. Clinical relevance: The results of the current study indicate that IL-6 and IL-10 genotypes seem to be associated with aggressive periodontitis. Also, the AA genotypes of IL-10 presented a higher frequency in chronic periodontitis subjects with carrying NF-κB1 ins/ins genotypes. Copyright© by the National Institute of Public Health, Prague 2017

  16. A mathematical model for IL-6-mediated, stem cell driven tumor growth and targeted treatment

    Science.gov (United States)

    Nör, Jacques Eduardo

    2018-01-01

    Targeting key regulators of the cancer stem cell phenotype to overcome their critical influence on tumor growth is a promising new strategy for cancer treatment. Here we present a modeling framework that operates at both the cellular and molecular levels, for investigating IL-6 mediated, cancer stem cell driven tumor growth and targeted treatment with anti-IL6 antibodies. Our immediate goal is to quantify the influence of IL-6 on cancer stem cell self-renewal and survival, and to characterize the subsequent impact on tumor growth dynamics. By including the molecular details of IL-6 binding, we are able to quantify the temporal changes in fractional occupancies of bound receptors and their influence on tumor volume. There is a strong correlation between the model output and experimental data for primary tumor xenografts. We also used the model to predict tumor response to administration of the humanized IL-6R monoclonal antibody, tocilizumab (TCZ), and we found that as little as 1mg/kg of TCZ administered weekly for 7 weeks is sufficient to result in tumor reduction and a sustained deceleration of tumor growth. PMID:29351275

  17. Interleukin-30 (IL27p28) alleviates experimental sepsis by modulating cytokine profile in NKT cells.

    Science.gov (United States)

    Yan, Jun; Mitra, Abhisek; Hu, Jiemiao; Cutrera, Jeffery J; Xia, Xueqing; Doetschman, Thomas; Gagea, Mihai; Mishra, Lopa; Li, Shulin

    2016-05-01

    Sepsis is an acute systemic inflammatory response to infection associated with high patient mortality (28-40%). We hypothesized that interleukin (IL)-30, a novel cytokine protecting mice against liver injury resulting from inflammation, would generate a protective effect against systemic inflammation and sepsis-induced death. Sepsis was induced by lipopolysaccharide (LPS) or cecal ligation and puncture (CLP). The inhibitory effects of IL-30 on septic inflammation and associated therapeutic effects were determined in wild-type, IL30 (p28)(-/-), IL10(-/-), and CD1d(-/-) mice. Mice treated with pIL30 gene therapy or recombinant IL-30 protein (rIL30) were protected from LPS-induced septic shock or CLP-induced polymicrobial sepsis and showed markedly less liver damage and lymphocyte apoptosis than control septic mice. The resulting reduction in mortality was mediated through attenuation of the systemic pro-inflammatory response and augmentation of bacterial clearance. Mice lacking IL-30 were more sensitive to LPS-induced sepsis. Natural killer-like T cells (NKT) produced much higher levels of IL-10 and lower levels of interferon-gamma and tumor necrosis factor-alpha in IL-30-treated septic mice than in control septic mice. Likewise, deficiency in IL-10 or NKT cells abolished the protective role of IL-30 against sepsis. Furthermore, IL-30 induced IL-10 production in purified and LPS-stimulated NKT cells. Blocking IL-6R or gp130 inhibited IL-30 mediated IL-10 production. IL-30 is important in modulating production of NKT cytokines and subsequent NKT cell-mediated immune regulation of other cells. Therefore, IL-30 has a role in prevention and treatment of sepsis via modulation of cytokine production by NKT. Copyright © 2016 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

  18. Association between the IL1B (-511), IL1B (+3954), IL1RN (VNTR) polymorphisms and Graves' disease risk: a meta-analysis of 11 case-control studies.

    Science.gov (United States)

    Chen, Min-Li; Liao, Ning; Zhao, Hua; Huang, Jian; Xie, Zheng-Fu

    2014-01-01

    Data on the association between the interleukin-1 (IL-1) gene polymorphisms and Graves' disease (GD) risk were conflicting. A meta-analysis was undertaken to assess this association. We searched for case-control studies investigating the association between the IL1B (-511), IL1B (+3954), IL1RN (VNTR) polymorphisms and GD risk. We extracted data using standardized forms and calculated odds ratios (OR) with 95% confidence intervals (CI). A total of 11 case-control studies were included in this meta-analysis. Available data indicated that the IL1B (-511) polymorphism was associated with GD risk in the overall populations (Caucasians and Asians) in homozygote model (TT vs. CC, OR = 0.86, 95% CI: 0.76-0.97, Pz  = 0.015), but not in dominant and recessive models (TT+TC vs. CC: OR = 0.95, 95% CI: 0.81-1.12, Pz  =  0.553 and TT vs. TC+CC: OR = 0.82, 95% CI: 0.60-1.12, Pz  =  0.205, respectively). No association between the IL1B (+3954), IL1RN (VNTR) polymorphisms and GD risk was found in the overall populations in any of the genetic models. In subgroup analyses according to ethnicity, the IL1B (-511) polymorphism was associated with GD risk in Asians in recessive and homozygote models (TT vs. TC+CC: OR =  0.68, 95% CI: 0.55-0.84, Pz VNTR) polymorphisms and GD risk was indicated in Asians, and we found no association between the IL1B (-511), IL1B (+3954), IL1RN (VNTR) polymorphisms and GD risk in Caucasians in any of the genetic models. The IL1B (-511) polymorphism, but not the IL1B (+3954) and IL1RN (VNTR) polymorphisms was associated with GD risk in Asians. There was no association between these polymorphisms and GD risk in Caucasians.

  19. Rocking media over ex vivo corneas improves this model and allows the study of the effect of proinflammatory cytokines on wound healing.

    Science.gov (United States)

    Deshpande, Pallavi; Ortega, Ílida; Sefat, Farshid; Sangwan, Virender S; Green, Nicola; Claeyssens, Frederik; MacNeil, Sheila

    2015-02-05

    The aim of this work was to develop an in vitro cornea model to study the effect of proinflammatory cytokines on wound healing. Initial studies investigated how to maintain the ex vivo models for up to 4 weeks without loss of epithelium. To study the effect of cytokines, corneas were cultured with the interleukins IL-17A, IL-22, or a combination of IL-17A and IL-22, or lipopolysaccharide (LPS). The effect of IL-17A on wound healing was then examined. With static culture conditions, organ cultures deteriorated within 2 weeks. With gentle rocking of media over the corneas and carbon dioxide perfusion, the ex vivo models survived for up to 4 weeks without loss of epithelium. The cytokine that caused the most damage to the cornea was IL-17A. Under static conditions, wound healing of the central corneal epithelium occurred within 9 days, but only a single-layered epithelium formed whether the cornea was exposed to IL-17A or not. With rocking of media gently over the corneas, a multilayered epithelium was achieved 9 days after wounding. In the presence of IL-17A, however, there was no wound healing evident. Characterization of the cells showed that wherever epithelium was present, both differentiated cells and highly proliferative cells were present. We propose that introducing rocking to extend the effective working life of this model and the introduction of IL-17A to this model to induce aspects of inflammation extend its usefulness to study the effects of agents that influence corneal regeneration under normal and inflamed conditions. Copyright 2015 The Association for Research in Vision and Ophthalmology, Inc.

  20. Anti-Inflammatory Effects of Berberine Hydrochloride in an LPS-Induced Murine Model of Mastitis

    Directory of Open Access Journals (Sweden)

    Xichun Wang

    2018-01-01

    Full Text Available Berberine hydrochloride is an isoquinoline type alkaloid extracted from Berberidaceae, Rutaceae, and other plants. Previous reports have shown that berberine hydrochloride has anti-inflammatory properties. However, the underlying molecular mechanisms remain unclear. In this study, a lipopolysaccharide- (LPS- induced murine model of mastitis was established to explore the anti-inflammatory action of berberine hydrochloride. Sixty mice that had been lactating for 5–7 days were randomly divided into six groups, including control, LPS, three berberine hydrochloride treatment groups (5, 10, and 20 mg/kg, and a dexamethasone (DEX (5 mg/kg group. Berberine hydrochloride was administered intraperitoneally 1 h before and 12 h after LPS-induced mastitis, and all mice were sacrificed 24 h after LPS induction. The pathological and histopathological changes of the mammary glands were observed. The concentrations and mRNA expressions of TNF-α, IL-1β, and IL-6 were measured by ELISA and qRT-PCR. The activation of TLR4 and NF-κB signaling pathways was analyzed by Western blot. Results indicated that berberine hydrochloride significantly attenuated neutrophil infiltration and dose-dependently decreased the secretion and mRNA expressions of TNF-α, IL-1β, and IL-6 within a certain range. Furthermore, berberine hydrochloride suppressed LPS-induced TLR4 and NF-κB p65 activation and the phosphorylation of I-κB. Berberine hydrochloride can provide mice robust protection from LPS-induced mastitis, potentially via the TLR4 and NF-κB pathway.