Gravitational entropies in LTB dust models
International Nuclear Information System (INIS)
Sussman, Roberto A; Larena, Julien
2014-01-01
We consider generic Lemaître–Tolman–Bondi (LTB) dust models to probe the gravitational entropy proposals of Clifton, Ellis and Tavakol (CET) and of Hosoya and Buchert (HB). We also consider a variant of the HB proposal based on a suitable quasi-local scalar weighted average. We show that the conditions for entropy growth for all proposals are directly related to a negative correlation of similar fluctuations of the energy density and Hubble scalar. While this correlation is evaluated locally for the CET proposal, it must be evaluated in a non-local domain dependent manner for the two HB proposals. By looking at the fulfilment of these conditions at the relevant asymptotic limits we are able to provide a well grounded qualitative description of the full time evolution and radial asymptotic scaling of the three entropies in generic models. The following rigorous analytic results are obtained for the three proposals: (i) entropy grows when the density growing mode is dominant, (ii) all ever-expanding hyperbolic models reach a stable terminal equilibrium characterized by an inhomogeneous entropy maximum in their late time evolution; (iii) regions with decaying modes and collapsing elliptic models exhibit unstable equilibria associated with an entropy minimum (iv) near singularities the CET entropy diverges while the HB entropies converge; (v) the CET entropy converges for all models in the radial asymptotic range, whereas the HB entropies only converge for models asymptotic to a Friedmann–Lemaître–Robertson–Walker background. The fact that different independent proposals yield fairly similar conditions for entropy production, time evolution and radial scaling in generic LTB models seems to suggest that their common notion of a ‘gravitational entropy’ may be a theoretically robust concept applicable to more general spacetimes. (paper)
Entanglement entropy in top-down models
Energy Technology Data Exchange (ETDEWEB)
Jones, Peter A.R.; Taylor, Marika [Mathematical Sciences and STAG Research Centre, University of Southampton,Highfield, Southampton, SO17 1BJ (United Kingdom)
2016-08-26
We explore holographic entanglement entropy in ten-dimensional supergravity solutions. It has been proposed that entanglement entropy can be computed in such top-down models using minimal surfaces which asymptotically wrap the compact part of the geometry. We show explicitly in a wide range of examples that the holographic entanglement entropy thus computed agrees with the entanglement entropy computed using the Ryu-Takayanagi formula from the lower-dimensional Einstein metric obtained from reduction over the compact space. Our examples include not only consistent truncations but also cases in which no consistent truncation exists and Kaluza-Klein holography is used to identify the lower-dimensional Einstein metric. We then give a general proof, based on the Lewkowycz-Maldacena approach, of the top-down entanglement entropy formula.
Entanglement entropy in top-down models
International Nuclear Information System (INIS)
Jones, Peter A.R.; Taylor, Marika
2016-01-01
We explore holographic entanglement entropy in ten-dimensional supergravity solutions. It has been proposed that entanglement entropy can be computed in such top-down models using minimal surfaces which asymptotically wrap the compact part of the geometry. We show explicitly in a wide range of examples that the holographic entanglement entropy thus computed agrees with the entanglement entropy computed using the Ryu-Takayanagi formula from the lower-dimensional Einstein metric obtained from reduction over the compact space. Our examples include not only consistent truncations but also cases in which no consistent truncation exists and Kaluza-Klein holography is used to identify the lower-dimensional Einstein metric. We then give a general proof, based on the Lewkowycz-Maldacena approach, of the top-down entanglement entropy formula.
Models of Geothermal Brine Chemistry
Energy Technology Data Exchange (ETDEWEB)
Nancy Moller Weare; John H. Weare
2002-03-29
Many significant expenses encountered by the geothermal energy industry are related to chemical effects. When the composition, temperature of pressure of the fluids in the geological formation are changed, during reservoir evolution, well production, energy extraction or injection processes, the fluids that were originally at equilibrium with the formation minerals come to a new equilibrium composition, temperature and pressure. As a result, solid material can be precipitated, dissolved gases released and/or heat lost. Most geothermal energy operations experience these phenomena. For some resources, they create only minor problems. For others, they can have serious results, such as major scaling or corrosion of wells and plant equipment, reservoir permeability losses and toxic gas emission, that can significantly increase the costs of energy production and sometimes lead to site abandonment. In future operations that exploit deep heat sources and low permeability reservoirs, new chemical problems involving very high T, P rock/water interactions and unknown injection effects will arise.
An entropy model for artificial grammar learning
Directory of Open Access Journals (Sweden)
Emmanuel Pothos
2010-06-01
Full Text Available A model is proposed to characterize the type of knowledge acquired in Artificial Grammar Learning (AGL. In particular, Shannon entropy is employed to compute the complexity of different test items in an AGL task, relative to the training items. According to this model, the more predictable a test item is from the training items, the more likely it is that this item should be selected as compatible with the training items. The predictions of the entropy model are explored in relation to the results from several previous AGL datasets and compared to other AGL measures. This particular approach in AGL resonates well with similar models in categorization and reasoning which also postulate that cognitive processing is geared towards the reduction of entropy.
An entropy-assisted musculoskeletal shoulder model.
Xu, Xu; Lin, Jia-Hua; McGorry, Raymond W
2017-04-01
Optimization combined with a musculoskeletal shoulder model has been used to estimate mechanical loading of musculoskeletal elements around the shoulder. Traditionally, the objective function is to minimize the summation of the total activities of the muscles with forces, moments, and stability constraints. Such an objective function, however, tends to neglect the antagonist muscle co-contraction. In this study, an objective function including an entropy term is proposed to address muscle co-contractions. A musculoskeletal shoulder model is developed to apply the proposed objective function. To find the optimal weight for the entropy term, an experiment was conducted. In the experiment, participants generated various 3-D shoulder moments in six shoulder postures. The surface EMG of 8 shoulder muscles was measured and compared with the predicted muscle activities based on the proposed objective function using Bhattacharyya distance and concordance ratio under different weight of the entropy term. The results show that a small weight of the entropy term can improve the predictability of the model in terms of muscle activities. Such a result suggests that the concept of entropy could be helpful for further understanding the mechanism of muscle co-contractions as well as developing a shoulder biomechanical model with greater validity. Copyright © 2017 Elsevier Ltd. All rights reserved.
Operator-based linearization for efficient modeling of geothermal processes
Khait, M.; Voskov, D.V.
2018-01-01
Numerical simulation is one of the most important tools required for financial and operational management of geothermal reservoirs. The modern geothermal industry is challenged to run large ensembles of numerical models for uncertainty analysis, causing simulation performance to become a critical issue. Geothermal reservoir modeling requires the solution of governing equations describing the conservation of mass and energy. The robust, accurate and computationally efficient implementation of ...
Entropy Characterization of Random Network Models
Directory of Open Access Journals (Sweden)
Pedro J. Zufiria
2017-06-01
Full Text Available This paper elaborates on the Random Network Model (RNM as a mathematical framework for modelling and analyzing the generation of complex networks. Such framework allows the analysis of the relationship between several network characterizing features (link density, clustering coefficient, degree distribution, connectivity, etc. and entropy-based complexity measures, providing new insight on the generation and characterization of random networks. Some theoretical and computational results illustrate the utility of the proposed framework.
Configurational entropy in brane-world models
Energy Technology Data Exchange (ETDEWEB)
Correa, R.A.C. [CCNH, Universidade Federal do ABC, Santo Andre, SP (Brazil); Rocha, Roldao da [CMCC, Universidade Federal do ABC, Santo Andre, SP (Brazil); International School for Advanced Studies (SISSA), Trieste (Italy)
2015-11-15
In this work we investigate the entropic information on thick brane-world scenarios and its consequences. The brane-world entropic information is studied for the sine-Gordon model and hence the brane-world entropic information measure is shown to be an accurate way for providing the most suitable range for the bulk AdS curvature, in particular from the informational content of physical solutions. Besides, the brane-world configurational entropy is employed to demonstrate a high organisational degree in the structure of the configuration of the system, for large values of a parameter of the sine-Gordon model but the one related to the AdS curvature. The Gleiser and Stamatopoulos procedure is finally applied in order to achieve a precise correlation between the energy of the system and the brane-world configurational entropy. (orig.)
Configurational entropy in brane-world models
Energy Technology Data Exchange (ETDEWEB)
Correa, R. A. C., E-mail: fis04132@gmail.com [CCNH, Universidade Federal do ABC, 09210-580, Santo André, SP (Brazil); Rocha, Roldão da, E-mail: roldao.rocha@ufabc.edu.br [CMCC, Universidade Federal do ABC, 09210-580, Santo André, SP (Brazil); International School for Advanced Studies (SISSA), Via Bonomea 265, 34136, Trieste (Italy)
2015-11-02
In this work we investigate the entropic information on thick brane-world scenarios and its consequences. The brane-world entropic information is studied for the sine-Gordon model and hence the brane-world entropic information measure is shown to be an accurate way for providing the most suitable range for the bulk AdS curvature, in particular from the informational content of physical solutions. Besides, the brane-world configurational entropy is employed to demonstrate a high organisational degree in the structure of the configuration of the system, for large values of a parameter of the sine-Gordon model but the one related to the AdS curvature. The Gleiser and Stamatopoulos procedure is finally applied in order to achieve a precise correlation between the energy of the system and the brane-world configurational entropy.
Configurational entropy in brane-world models
International Nuclear Information System (INIS)
Correa, R. A. C.; Rocha, Roldão da
2015-01-01
In this work we investigate the entropic information on thick brane-world scenarios and its consequences. The brane-world entropic information is studied for the sine-Gordon model and hence the brane-world entropic information measure is shown to be an accurate way for providing the most suitable range for the bulk AdS curvature, in particular from the informational content of physical solutions. Besides, the brane-world configurational entropy is employed to demonstrate a high organisational degree in the structure of the configuration of the system, for large values of a parameter of the sine-Gordon model but the one related to the AdS curvature. The Gleiser and Stamatopoulos procedure is finally applied in order to achieve a precise correlation between the energy of the system and the brane-world configurational entropy
An Instructive Model of Entropy
Zimmerman, Seth
2010-01-01
This article first notes the misinterpretation of a common thought experiment, and the misleading comment that "systems tend to flow from less probable to more probable macrostates". It analyses the experiment, generalizes it and introduces a new tool of investigation, the simplectic structure. A time-symmetric model is built upon this structure,…
Geological model of supercritical geothermal reservoir related to subduction system
Tsuchiya, Noriyoshi
2017-04-01
Following the Great East Japan Earthquake and the accident at the Fukushima Daiichi Nuclear power station on 3.11 (11th March) 2011, geothermal energy came to be considered one of the most promising sources of renewable energy for the future in Japan. The temperatures of geothermal fields operating in Japan range from 200 to 300 °C (average 250 °C), and the depths range from 1000 to 2000 m (average 1500 m). In conventional geothermal reservoirs, the mechanical behavior of the rocks is presumed to be brittle, and convection of the hydrothermal fluid through existing network is the main method of circulation in the reservoir. In order to minimize induced seismicity, a rock mass that is "beyond brittle" is one possible candidate, because the rock mechanics of "beyond brittle" material is one of plastic deformation rather than brittle failure. Supercritical geothermal resources could be evaluated in terms of present volcanic activities, thermal structure, dimension of hydrothermal circulation, properties of fracture system, depth of heat source, depth of brittle factures zone, dimension of geothermal reservoir. On the basis of the GIS, potential of supercritical geothermal resources could be characterized into the following four categories. 1. Promising: surface manifestation d shallow high temperature, 2 Probability: high geothermal gradient, 3 Possibility: Aseismic zone which indicates an existence of melt, 4 Potential : low velocity zone which indicates magma input. Base on geophysical data for geothermal reservoirs, we have propose adequate tectonic model of development of the supercritical geothermal reservoirs. To understand the geological model of a supercritical geothermal reservoir, granite-porphyry system, which had been formed in subduction zone, was investigated as a natural analog of the supercritical geothermal energy system. Quartz veins, hydrothermal breccia veins, and glassy veins are observed in a granitic body. The glassy veins formed at 500-550
Operator-based linearization for efficient modeling of geothermal processes
Khait, M.; Voskov, D.V.
2018-01-01
Numerical simulation is one of the most important tools required for financial and operational management of geothermal reservoirs. The modern geothermal industry is challenged to run large ensembles of numerical models for uncertainty analysis, causing simulation performance to become a critical
Black hole entropy in the O(N) model
International Nuclear Information System (INIS)
Kabat, D.; Shenker, S.H.; Strassler, M.J.
1995-01-01
We consider corrections to the entropy of a black hole from an O(N)-invariant linear σ model. We obtain the entropy from a 1/N expansion of the partition function on a cone. The entropy arises from diagrams which are analogous to those introduced by Susskind and Uglum to explain black hole entropy in string theory. The interpretation of the σ-model entropy depends on scale. At short distances, it has a state counting interpretation, as the entropy of entanglement of the N fields φ a . In the infrared, the effective theory has a single composite field σ∼φ a φ a , and the state counting interpretation of the entropy is lost. copyright 1995 The American Physical Society
Statistical modeling of geopressured geothermal reservoirs
Ansari, Esmail; Hughes, Richard; White, Christopher D.
2017-06-01
Identifying attractive candidate reservoirs for producing geothermal energy requires predictive models. In this work, inspectional analysis and statistical modeling are used to create simple predictive models for a line drive design. Inspectional analysis on the partial differential equations governing this design yields a minimum number of fifteen dimensionless groups required to describe the physics of the system. These dimensionless groups are explained and confirmed using models with similar dimensionless groups but different dimensional parameters. This study models dimensionless production temperature and thermal recovery factor as the responses of a numerical model. These responses are obtained by a Box-Behnken experimental design. An uncertainty plot is used to segment the dimensionless time and develop a model for each segment. The important dimensionless numbers for each segment of the dimensionless time are identified using the Boosting method. These selected numbers are used in the regression models. The developed models are reduced to have a minimum number of predictors and interactions. The reduced final models are then presented and assessed using testing runs. Finally, applications of these models are offered. The presented workflow is generic and can be used to translate the output of a numerical simulator into simple predictive models in other research areas involving numerical simulation.
Development of Genetic Occurrence Models for Geothermal Prospecting
Walker, J. D.; Sabin, A.; Unruh, J.; Monastero, F. C.; Combs, J.
2007-12-01
, including high heat flow, anomalous temperature water wells, high-temperature indications from aqueous geothermometry and geochemistry, Pliocene or younger ages from low-temperature thermochronometers, as well as more obvious factors such as geysers and fumaroles (which by definition will be missing for blind resources). Our occurrence-model strategy inverts the current approach that relies first on obvious evidence of geothermal activity. We evaluated our approach by retrospectively applying the protocol to the characteristics of producing geothermal fields, and in all cases, known resource areas fit the parameters identified from a genetic perspective.
Computational modeling of shallow geothermal systems
Al-Khoury, Rafid
2011-01-01
A Step-by-step Guide to Developing Innovative Computational Tools for Shallow Geothermal Systems Geothermal heat is a viable source of energy and its environmental impact in terms of CO2 emissions is significantly lower than conventional fossil fuels. Shallow geothermal systems are increasingly utilized for heating and cooling of buildings and greenhouses. However, their utilization is inconsistent with the enormous amount of energy available underneath the surface of the earth. Projects of this nature are not getting the public support they deserve because of the uncertainties associated with
Empirical study on entropy models of cellular manufacturing systems
Institute of Scientific and Technical Information of China (English)
Zhifeng Zhang; Renbin Xiao
2009-01-01
From the theoretical point of view,the states of manufacturing resources can be monitored and assessed through the amount of information needed to describe their technological structure and operational state.The amount of information needed to describe cellular manufacturing systems is investigated by two measures:the structural entropy and the operational entropy.Based on the Shannon entropy,the models of the structural entropy and the operational entropy of cellular manufacturing systems are developed,and the cognizance of the states of manufacturing resources is also illustrated.Scheduling is introduced to measure the entropy models of cellular manufacturing systems,and the feasible concepts of maximum schedule horizon and schedule adherence are advanced to quantitatively evaluate the effectiveness of schedules.Finally,an example is used to demonstrate the validity of the proposed methodology.
Entropy in the Tangled Nature Model of evolution
DEFF Research Database (Denmark)
Roach, Ty N.F.; Nulton, James; Sibani, Paolo
2017-01-01
Applications of entropy principles to evolution and ecology are of tantamount importance given the central role spatiotemporal structuring plays in both evolution and ecological succession. We obtain here a qualitative interpretation of the role of entropy in evolving ecological systems. Our...... interpretation is supported by mathematical arguments using simulation data generated by the Tangled Nature Model (TNM), a stochastic model of evolving ecologies. We define two types of configurational entropy and study their empirical time dependence obtained from the data. Both entropy measures increase...... logarithmically with time, while the entropy per individual decreases in time, in parallel with the growth of emergent structures visible from other aspects of the simulation. We discuss the biological relevance of these entropies to describe niche space and functional space of ecosystems, as well as their use...
Inverse geothermal modelling applied to Danish sedimentary basins
DEFF Research Database (Denmark)
Poulsen, Soren E.; Balling, Niels; Bording, Thue S.
2017-01-01
. The numerical model was utilized for predicting and contouring temperatures at 2000 and 3000 m depths and for two main geothermal reservoir units, the Gassum (Lower Jurassic-Upper Triassic) and Bunter/Skagerrak (Triassic) reservoirs, both currently utilized for geothermal energy production. Temperature...... gradients to depths of 2000-3000 m are generally around 25-30. degrees C km(-1), locally up to about 35. degrees C km(-1). Large regions have geothermal reservoirs with characteristic temperatures ranging from ca. 40-50. degrees C, at 1000-1500 m depth, to ca. 80-110. degrees C, at 2500-3500 m, however...
Maximizing entropy of image models for 2-D constrained coding
DEFF Research Database (Denmark)
Forchhammer, Søren; Danieli, Matteo; Burini, Nino
2010-01-01
This paper considers estimating and maximizing the entropy of two-dimensional (2-D) fields with application to 2-D constrained coding. We consider Markov random fields (MRF), which have a non-causal description, and the special case of Pickard random fields (PRF). The PRF are 2-D causal finite...... context models, which define stationary probability distributions on finite rectangles and thus allow for calculation of the entropy. We consider two binary constraints and revisit the hard square constraint given by forbidding neighboring 1s and provide novel results for the constraint that no uniform 2...... £ 2 squares contains all 0s or all 1s. The maximum values of the entropy for the constraints are estimated and binary PRF satisfying the constraint are characterized and optimized w.r.t. the entropy. The maximum binary PRF entropy is 0.839 bits/symbol for the no uniform squares constraint. The entropy...
Entropy of measurement and erasure: Szilard's membrane model revisited
Leff, Harvey S.; Rex, Andrew F.
1994-11-01
It is widely believed that measurement is accompanied by irreversible entropy increase. This conventional wisdom is based in part on Szilard's 1929 study of entropy decrease in a thermodynamic system by intelligent intervention (i.e., a Maxwell's demon) and Brillouin's association of entropy with information. Bennett subsequently argued that information acquisition is not necessarily irreversible, but information erasure must be dissipative (Landauer's principle). Inspired by the ensuing debate, we revisit the membrane model introduced by Szilard and find that it can illustrate and clarify (1) reversible measurement, (2) information storage, (3) decoupling of the memory from the system being measured, and (4) entropy increase associated with memory erasure and resetting.
Characteristics of geothermal structures of Poprad basin in terms of numerical modeling
International Nuclear Information System (INIS)
Bagelova, A.; Fendek, M.
2011-01-01
Poprad basin is one of the promising areas in terms of geothermal resources. In terms of impact on the environment and the exploitation of geothermal waters it is important to quantify the natural geothermal water quantity. One of the most progressive methods of their evaluation is a method of numerical modelling. Before model creation it is necessary to characterize the geothermal structure. Character of hydro-geothermal structure consists of an analysis of Spatial distribution of collectors, hydraulic properties of collectors of geothermal water, pressure and temperature conditions and boundary conditions. Basic characteristics of geothermal energy transfer in the Poprad basin are described. (authors)
Entanglement entropy in a holographic p-wave superconductor model
Directory of Open Access Journals (Sweden)
Li-Fang Li
2015-05-01
Full Text Available In a recent paper, arXiv:1309.4877, a holographic p-wave model has been proposed in an Einstein–Maxwell-complex vector field theory with a negative cosmological constant. The model exhibits rich phase structure depending on the mass and the charge of the vector field. We investigate the behavior of the entanglement entropy of dual field theory in this model. When the above two model parameters change, we observe the second order, first order and zeroth order phase transitions from the behavior of the entanglement entropy at some intermediate temperatures. These imply that the entanglement entropy can indicate not only the occurrence of the phase transition, but also the order of the phase transition. The entanglement entropy is indeed a good probe to phase transition. Furthermore, the “retrograde condensation” which is a sub-dominated phase is also reflected on the entanglement entropy.
Entanglement entropy in a holographic p-wave superconductor model
Energy Technology Data Exchange (ETDEWEB)
Li, Li-Fang, E-mail: lilf@itp.ac.cn [State Key Laboratory of Space Weather, Center for Space Science and Applied Research, Chinese Academy of Sciences, Beijing 100190 (China); Cai, Rong-Gen, E-mail: cairg@itp.ac.cn [State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190 (China); Li, Li, E-mail: liliphy@itp.ac.cn [State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190 (China); Shen, Chao, E-mail: sc@nssc.ac.cn [State Key Laboratory of Space Weather, Center for Space Science and Applied Research, Chinese Academy of Sciences, Beijing 100190 (China)
2015-05-15
In a recent paper, (arXiv:1309.4877), a holographic p-wave model has been proposed in an Einstein–Maxwell-complex vector field theory with a negative cosmological constant. The model exhibits rich phase structure depending on the mass and the charge of the vector field. We investigate the behavior of the entanglement entropy of dual field theory in this model. When the above two model parameters change, we observe the second order, first order and zeroth order phase transitions from the behavior of the entanglement entropy at some intermediate temperatures. These imply that the entanglement entropy can indicate not only the occurrence of the phase transition, but also the order of the phase transition. The entanglement entropy is indeed a good probe to phase transition. Furthermore, the “retrograde condensation” which is a sub-dominated phase is also reflected on the entanglement entropy.
Maximum entropy models of ecosystem functioning
International Nuclear Information System (INIS)
Bertram, Jason
2014-01-01
Using organism-level traits to deduce community-level relationships is a fundamental problem in theoretical ecology. This problem parallels the physical one of using particle properties to deduce macroscopic thermodynamic laws, which was successfully achieved with the development of statistical physics. Drawing on this parallel, theoretical ecologists from Lotka onwards have attempted to construct statistical mechanistic theories of ecosystem functioning. Jaynes’ broader interpretation of statistical mechanics, which hinges on the entropy maximisation algorithm (MaxEnt), is of central importance here because the classical foundations of statistical physics do not have clear ecological analogues (e.g. phase space, dynamical invariants). However, models based on the information theoretic interpretation of MaxEnt are difficult to interpret ecologically. Here I give a broad discussion of statistical mechanical models of ecosystem functioning and the application of MaxEnt in these models. Emphasising the sample frequency interpretation of MaxEnt, I show that MaxEnt can be used to construct models of ecosystem functioning which are statistical mechanical in the traditional sense using a savanna plant ecology model as an example
Maximum entropy models of ecosystem functioning
Energy Technology Data Exchange (ETDEWEB)
Bertram, Jason, E-mail: jason.bertram@anu.edu.au [Research School of Biology, The Australian National University, Canberra ACT 0200 (Australia)
2014-12-05
Using organism-level traits to deduce community-level relationships is a fundamental problem in theoretical ecology. This problem parallels the physical one of using particle properties to deduce macroscopic thermodynamic laws, which was successfully achieved with the development of statistical physics. Drawing on this parallel, theoretical ecologists from Lotka onwards have attempted to construct statistical mechanistic theories of ecosystem functioning. Jaynes’ broader interpretation of statistical mechanics, which hinges on the entropy maximisation algorithm (MaxEnt), is of central importance here because the classical foundations of statistical physics do not have clear ecological analogues (e.g. phase space, dynamical invariants). However, models based on the information theoretic interpretation of MaxEnt are difficult to interpret ecologically. Here I give a broad discussion of statistical mechanical models of ecosystem functioning and the application of MaxEnt in these models. Emphasising the sample frequency interpretation of MaxEnt, I show that MaxEnt can be used to construct models of ecosystem functioning which are statistical mechanical in the traditional sense using a savanna plant ecology model as an example.
Entropy, complexity, and Markov diagrams for random walk cancer models.
Newton, Paul K; Mason, Jeremy; Hurt, Brian; Bethel, Kelly; Bazhenova, Lyudmila; Nieva, Jorge; Kuhn, Peter
2014-12-19
The notion of entropy is used to compare the complexity associated with 12 common cancers based on metastatic tumor distribution autopsy data. We characterize power-law distributions, entropy, and Kullback-Liebler divergence associated with each primary cancer as compared with data for all cancer types aggregated. We then correlate entropy values with other measures of complexity associated with Markov chain dynamical systems models of progression. The Markov transition matrix associated with each cancer is associated with a directed graph model where nodes are anatomical locations where a metastatic tumor could develop, and edge weightings are transition probabilities of progression from site to site. The steady-state distribution corresponds to the autopsy data distribution. Entropy correlates well with the overall complexity of the reduced directed graph structure for each cancer and with a measure of systemic interconnectedness of the graph, called graph conductance. The models suggest that grouping cancers according to their entropy values, with skin, breast, kidney, and lung cancers being prototypical high entropy cancers, stomach, uterine, pancreatic and ovarian being mid-level entropy cancers, and colorectal, cervical, bladder, and prostate cancers being prototypical low entropy cancers, provides a potentially useful framework for viewing metastatic cancer in terms of predictability, complexity, and metastatic potential.
Orren, L. H.; Ziman, G. M.; Jones, S. C.
1981-01-01
A financial accounting model that incorporates physical and institutional uncertainties was developed for geothermal projects. Among the uncertainties it can handle are well depth, flow rate, fluid temperature, and permit and construction times. The outputs of the model are cumulative probability distributions of financial measures such as capital cost, levelized cost, and profit. These outputs are well suited for use in an investment decision incorporating risk. The model has the powerful feature that conditional probability distribution can be used to account for correlations among any of the input variables. The model has been applied to a geothermal reservoir at Heber, California, for a 45-MW binary electric plant. Under the assumptions made, the reservoir appears to be economically viable.
Analysis of entropy models with equality and inequality constraints
Energy Technology Data Exchange (ETDEWEB)
Jefferson, T R; Scott, C H
1979-06-01
Entropy models are emerging as valuable tools in the study of various social problems of spatial interaction. With the development of the modeling has come diversity. Increased flexibility in the model can be obtained by allowing certain constraints to be relaxed from equality to inequality. To provide a better understanding of these entropy models they are analyzed by geometric programming. Dual mathematical programs and algorithms are obtained. 7 references.
Romaguera, M.; Vaughan, R. G.; Ettema, J.; Izquierdo-Verdiguier, E.; Hecker, C. A.; van der Meer, F. D.
This paper explores for the first time the possibilities to use two land surface temperature (LST) time series of different origins (geostationary Meteosat Second Generation satellite data and Noah land surface modelling, LSM), to detect geothermal anomalies and extract the geothermal component of
Romaguera, M.; Vaughan, R. G.; Ettema, J.; Izquierdo-Verdiguier, E.; Hecker, C. A.; van der Meer, F. D.
2017-01-01
This paper explores for the first time the possibilities to use two land surface temperature (LST) time series of different origins (geostationary Meteosat Second Generation satellite data and Noah land surface modelling, LSM), to detect geothermal anomalies and extract the geothermal component of
Sustainable geothermal utilization - Case histories; definitions; research issues and modelling
International Nuclear Information System (INIS)
Axelsson, Gudni
2010-01-01
Sustainable development by definition meets the needs of the present without compromising the ability of future generations to meet their own needs. The Earth's enormous geothermal resources have the potential to contribute significantly to sustainable energy use worldwide as well as to help mitigate climate change. Experience from the use of numerous geothermal systems worldwide lasting several decades demonstrates that by maintaining production below a certain limit the systems reach a balance between net energy discharge and recharge that may be maintained for a long time (100-300 years). Modelling studies indicate that the effect of heavy utilization is often reversible on a time-scale comparable to the period of utilization. Thus, geothermal resources can be used in a sustainable manner either through (1) constant production below the sustainable limit, (2) step-wise increase in production, (3) intermittent excessive production with breaks, and (4) reduced production after a shorter period of heavy production. The long production histories that are available for low-temperature as well as high-temperature geothermal systems distributed throughout the world, provide the most valuable data available for studying sustainable management of geothermal resources, and reservoir modelling is the most powerful tool available for this purpose. The paper presents sustainability modelling studies for the Hamar and Nesjavellir geothermal systems in Iceland, the Beijing Urban system in China and the Olkaria system in Kenya as examples. Several relevant research issues have also been identified, such as the relevance of system boundary conditions during long-term utilization, how far reaching interference from utilization is, how effectively geothermal systems recover after heavy utilization and the reliability of long-term (more than 100 years) model predictions. (author)
The geothermal energy, a model energy
International Nuclear Information System (INIS)
2004-11-01
This book, largely illustrated by photos maps and schemes, takes stock on the knowledge on the geothermal energy, the low and high energy applications and the evolutions. Examples describe the french context and the channels of heat and electric power production. (A.L.B.)
Three-Dimensional Modeling of Fracture Clusters in Geothermal Reservoirs
Energy Technology Data Exchange (ETDEWEB)
Ghassemi, Ahmad [Univ. of Oklahoma, Norman, OK (United States)
2017-08-11
The objective of this is to develop a 3-D numerical model for simulating mode I, II, and III (tensile, shear, and out-of-plane) propagation of multiple fractures and fracture clusters to accurately predict geothermal reservoir stimulation using the virtual multi-dimensional internal bond (VMIB). Effective development of enhanced geothermal systems can significantly benefit from improved modeling of hydraulic fracturing. In geothermal reservoirs, where the temperature can reach or exceed 350oC, thermal and poro-mechanical processes play an important role in fracture initiation and propagation. In this project hydraulic fracturing of hot subsurface rock mass will be numerically modeled by extending the virtual multiple internal bond theory and implementing it in a finite element code, WARP3D, a three-dimensional finite element code for solid mechanics. The new constitutive model along with the poro-thermoelastic computational algorithms will allow modeling the initiation and propagation of clusters of fractures, and extension of pre-existing fractures. The work will enable the industry to realistically model stimulation of geothermal reservoirs. The project addresses the Geothermal Technologies Office objective of accurately predicting geothermal reservoir stimulation (GTO technology priority item). The project goal will be attained by: (i) development of the VMIB method for application to 3D analysis of fracture clusters; (ii) development of poro- and thermoelastic material sub-routines for use in 3D finite element code WARP3D; (iii) implementation of VMIB and the new material routines in WARP3D to enable simulation of clusters of fractures while accounting for the effects of the pore pressure, thermal stress and inelastic deformation; (iv) simulation of 3D fracture propagation and coalescence and formation of clusters, and comparison with laboratory compression tests; and (v) application of the model to interpretation of injection experiments (planned by our
Entropy in the Tangled Nature Model of Evolution
Directory of Open Access Journals (Sweden)
Ty N. F. Roach
2017-04-01
Full Text Available Applications of entropy principles to evolution and ecology are of tantamount importance given the central role spatiotemporal structuring plays in both evolution and ecological succession. We obtain here a qualitative interpretation of the role of entropy in evolving ecological systems. Our interpretation is supported by mathematical arguments using simulation data generated by the Tangled Nature Model (TNM, a stochastic model of evolving ecologies. We define two types of configurational entropy and study their empirical time dependence obtained from the data. Both entropy measures increase logarithmically with time, while the entropy per individual decreases in time, in parallel with the growth of emergent structures visible from other aspects of the simulation. We discuss the biological relevance of these entropies to describe niche space and functional space of ecosystems, as well as their use in characterizing the number of taxonomic configurations compatible with different niche partitioning and functionality. The TNM serves as an illustrative example of how to calculate and interpret these entropies, which are, however, also relevant to real ecosystems, where they can be used to calculate the number of functional and taxonomic configurations that an ecosystem can realize.
Entropies from Markov Models as Complexity Measures of Embedded Attractors
Directory of Open Access Journals (Sweden)
Julián D. Arias-Londoño
2015-06-01
Full Text Available This paper addresses the problem of measuring complexity from embedded attractors as a way to characterize changes in the dynamical behavior of different types of systems with a quasi-periodic behavior by observing their outputs. With the aim of measuring the stability of the trajectories of the attractor along time, this paper proposes three new estimations of entropy that are derived from a Markov model of the embedded attractor. The proposed estimators are compared with traditional nonparametric entropy measures, such as approximate entropy, sample entropy and fuzzy entropy, which only take into account the spatial dimension of the trajectory. The method proposes the use of an unsupervised algorithm to find the principal curve, which is considered as the “profile trajectory”, that will serve to adjust the Markov model. The new entropy measures are evaluated using three synthetic experiments and three datasets of physiological signals. In terms of consistency and discrimination capabilities, the results show that the proposed measures perform better than the other entropy measures used for comparison purposes.
Generalized entropy formalism and a new holographic dark energy model
Sayahian Jahromi, A.; Moosavi, S. A.; Moradpour, H.; Morais Graça, J. P.; Lobo, I. P.; Salako, I. G.; Jawad, A.
2018-05-01
Recently, the Rényi and Tsallis generalized entropies have extensively been used in order to study various cosmological and gravitational setups. Here, using a special type of generalized entropy, a generalization of both the Rényi and Tsallis entropy, together with holographic principle, we build a new model for holographic dark energy. Thereinafter, considering a flat FRW universe, filled by a pressureless component and the new obtained dark energy model, the evolution of cosmos has been investigated showing satisfactory results and behavior. In our model, the Hubble horizon plays the role of IR cutoff, and there is no mutual interaction between the cosmos components. Our results indicate that the generalized entropy formalism may open a new window to become more familiar with the nature of spacetime and its properties.
Suggestion of a Management Model: Total Entropy Management
Goksel Alpan,; Ismail Efil
2011-01-01
“Entropy” can be defined as the measure of disorder, uncertainty and consumed energy in a system or in the Universe. In the study, entropy concept is used as metaphor and it is aimed to construct the conceptual basis of a new management model which can be utilized to manage all entropy sources effectively. The study is conveyed with a multidisciplinary and holistic approach and by the use of qualitative research techniques. In the study, it is examined the relations of the entropy concept wit...
Entropy model of dissipative structure on corporate social responsibility
Li, Zuozhi; Jiang, Jie
2017-06-01
Enterprise is prompted to fulfill the social responsibility requirement by the internal and external environment. In this complex system, some studies suggest that firms have an orderly or chaotic entropy exchange behavior. Based on the theory of dissipative structure, this paper constructs the entropy index system of corporate social responsibility(CSR) and explores the dissipative structure of CSR through Brusselator model criterion. Picking up listed companies of the equipment manufacturing, the research shows that CSR has positive incentive to negative entropy and promotes the stability of dissipative structure. In short, the dissipative structure of CSR has a positive impact on the interests of stakeholders and corporate social images.
Modeling thermal stress propagation during hydraulic stimulation of geothermal wells
Jansen, Gunnar; Miller, Stephen A.
2017-04-01
A large fraction of the world's water and energy resources are located in naturally fractured reservoirs within the earth's crust. Depending on the lithology and tectonic history of a formation, fracture networks can range from dense and homogeneous highly fractured networks to single large scale fractures dominating the flow behavior. Understanding the dynamics of such reservoirs in terms of flow and transport is crucial to successful application of engineered geothermal systems (also known as enhanced geothermal systems or EGS) for geothermal energy production in the future. Fractured reservoirs are considered to consist of two distinct separate media, namely the fracture and matrix space respectively. Fractures are generally thin, highly conductive containing only small amounts of fluid, whereas the matrix rock provides high fluid storage but typically has much smaller permeability. Simulation of flow and transport through fractured porous media is challenging due to the high permeability contrast between the fractures and the surrounding rock matrix. However, accurate and efficient simulation of flow through a fracture network is crucial in order to understand, optimize and engineer reservoirs. It has been a research topic for several decades and is still under active research. Accurate fluid flow simulations through field-scale fractured reservoirs are still limited by the power of current computer processing units (CPU). We present an efficient implementation of the embedded discrete fracture model, which is a promising new technique in modeling the behavior of enhanced geothermal systems. An efficient coupling strategy is determined for numerical performance of the model. We provide new insight into the coupled modeling of fluid flow, heat transport of engineered geothermal reservoirs with focus on the thermal stress changes during the stimulation process. We further investigate the interplay of thermal and poro-elastic stress changes in the reservoir
The Distributed Geothermal Market Demand Model (dGeo): Documentation
Energy Technology Data Exchange (ETDEWEB)
McCabe, Kevin [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Mooney, Meghan E [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Sigrin, Benjamin O [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Gleason, Michael [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Liu, Xiaobing [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
2017-11-06
The National Renewable Energy Laboratory (NREL) developed the Distributed Geothermal Market Demand Model (dGeo) as a tool to explore the potential role of geothermal distributed energy resources (DERs) in meeting thermal energy demands in the United States. The dGeo model simulates the potential for deployment of geothermal DERs in the residential and commercial sectors of the continental United States for two specific technologies: ground-source heat pumps (GHP) and geothermal direct use (DU) for district heating. To quantify the opportunity space for these technologies, dGeo leverages a highly resolved geospatial database and robust bottom-up, agent-based modeling framework. This design is consistent with others in the family of Distributed Generation Market Demand models (dGen; Sigrin et al. 2016), including the Distributed Solar Market Demand (dSolar) and Distributed Wind Market Demand (dWind) models. dGeo is intended to serve as a long-term scenario-modeling tool. It has the capability to simulate the technical potential, economic potential, market potential, and technology deployment of GHP and DU through the year 2050 under a variety of user-defined input scenarios. Through these capabilities, dGeo can provide substantial analytical value to various stakeholders interested in exploring the effects of various techno-economic, macroeconomic, financial, and policy factors related to the opportunity for GHP and DU in the United States. This report documents the dGeo modeling design, methodology, assumptions, and capabilities.
International Nuclear Information System (INIS)
Wang Ji-Yang; Chen Mo-Xiang; Wang Ji-An; Deng Xiao; Wang Jun; Shen Hsien-Chieh; Hsiung Liang-Ping; Yan Shu-Zhen; Fan Zhi-Cheng; Liu Xiu-Wen
1981-01-01
Geothermal studies have been conducted in China continuosly since the end of the 1950's with renewed activity since 1970. Three areas of research are defined: (1) fundamental theoretical research of geothermics, including subsurface temperatures, terrestrial heat flow and geothermal modeling; (2) exploration for geothermal resources and exploitation of geothermal energy; (3) geothermal studies in mines. (orig./ME)
A comparison of economic evaluation models as applied to geothermal energy technology
Ziman, G. M.; Rosenberg, L. S.
1983-01-01
Several cost estimation and financial cash flow models have been applied to a series of geothermal case studies. In order to draw conclusions about relative performance and applicability of these models to geothermal projects, the consistency of results was assessed. The model outputs of principal interest in this study were net present value, internal rate of return, or levelized breakeven price. The models used were VENVAL, a venture analysis model; the Geothermal Probabilistic Cost Model (GPC Model); the Alternative Power Systems Economic Analysis Model (APSEAM); the Geothermal Loan Guarantee Cash Flow Model (GCFM); and the GEOCOST and GEOCITY geothermal models. The case studies to which the models were applied include a geothermal reservoir at Heber, CA; a geothermal eletric power plant to be located at the Heber site; an alcohol fuels production facility to be built at Raft River, ID; and a direct-use, district heating system in Susanville, CA.
COTHERM: Geophysical Modeling of High Enthalpy Geothermal Systems
Grab, Melchior; Maurer, Hansruedi; Greenhalgh, Stewart
2014-05-01
In recent years geothermal heating and electricity generation have become an attractive alternative energy resource, especially natural high enthalpy geothermal systems such as in Iceland. However, the financial risk of installing and operating geothermal power plants is still high and more needs to be known about the geothermal processes and state of the reservoir in the subsurface. A powerful tool for probing the underground system structure is provided by geophysical techniques, which are able to detect flow paths and fracture systems without drilling. It has been amply demonstrated that small-scale features can be well imaged at shallow depths, but only gross structures can be delineated for depths of several kilometers, where most high enthalpy systems are located. Therefore a major goal of our study is to improve geophysical mapping strategies by multi-method geophysical simulations and synthetic data inversions, to better resolve structures at greater depth, characterize the reservoir and monitor any changes within it. The investigation forms part of project COTHERM - COmbined hydrological, geochemical and geophysical modeling of geoTHERMal systems - in which a holistic and synergistic approach is being adopted to achieve multidisciplinary cooperation and mutual benefit. The geophysical simulations are being performed in combination with hydrothermal fluid flow modeling and chemical fluid rock interaction modeling, to provide realistic constraints on lithology, pressure, temperature and fluid conditions of the subsurface. Two sites in Iceland have been selected for the study, Krafla and Reykjanes. As a starting point for the geophysical modeling, we seek to establish petrophysical relations, connecting rock properties and reservoir conditions with geophysical parameters such as seismic wave speed, attenuation, electrical conductivity and magnetic susceptibility with a main focus on seismic properties. Therefore, we follow a comprehensive approach involving
Irreversible entropy model for damage diagnosis in resistors
Energy Technology Data Exchange (ETDEWEB)
Cuadras, Angel, E-mail: angel.cuadras@upc.edu; Crisóstomo, Javier; Ovejas, Victoria J.; Quilez, Marcos [Instrumentation, Sensor and Interfaces Group, Electronic Engineering Department, Escola d' Enginyeria de Telecomunicació i Aeronàutica de Castelldefels EETAC, Universitat Politècnica de Catalunya, Barcelona Tech (UPC), Castelldefels-Barcelona (Spain)
2015-10-28
We propose a method to characterize electrical resistor damage based on entropy measurements. Irreversible entropy and the rate at which it is generated are more convenient parameters than resistance for describing damage because they are essentially positive in virtue of the second law of thermodynamics, whereas resistance may increase or decrease depending on the degradation mechanism. Commercial resistors were tested in order to characterize the damage induced by power surges. Resistors were biased with constant and pulsed voltage signals, leading to power dissipation in the range of 4–8 W, which is well above the 0.25 W nominal power to initiate failure. Entropy was inferred from the added power and temperature evolution. A model is proposed to understand the relationship among resistance, entropy, and damage. The power surge dissipates into heat (Joule effect) and damages the resistor. The results show a correlation between entropy generation rate and resistor failure. We conclude that damage can be conveniently assessed from irreversible entropy generation. Our results for resistors can be easily extrapolated to other systems or machines that can be modeled based on their resistance.
Irreversible entropy model for damage diagnosis in resistors
International Nuclear Information System (INIS)
Cuadras, Angel; Crisóstomo, Javier; Ovejas, Victoria J.; Quilez, Marcos
2015-01-01
We propose a method to characterize electrical resistor damage based on entropy measurements. Irreversible entropy and the rate at which it is generated are more convenient parameters than resistance for describing damage because they are essentially positive in virtue of the second law of thermodynamics, whereas resistance may increase or decrease depending on the degradation mechanism. Commercial resistors were tested in order to characterize the damage induced by power surges. Resistors were biased with constant and pulsed voltage signals, leading to power dissipation in the range of 4–8 W, which is well above the 0.25 W nominal power to initiate failure. Entropy was inferred from the added power and temperature evolution. A model is proposed to understand the relationship among resistance, entropy, and damage. The power surge dissipates into heat (Joule effect) and damages the resistor. The results show a correlation between entropy generation rate and resistor failure. We conclude that damage can be conveniently assessed from irreversible entropy generation. Our results for resistors can be easily extrapolated to other systems or machines that can be modeled based on their resistance
Field space entanglement entropy, zero modes and Lifshitz models
Huffel, Helmuth; Kelnhofer, Gerald
2017-12-01
The field space entanglement entropy of a quantum field theory is obtained by integrating out a subset of its fields. We study an interacting quantum field theory consisting of massless scalar fields on a closed compact manifold M. To this model we associate its Lifshitz dual model. The ground states of both models are invariant under constant shifts. We interpret this invariance as gauge symmetry and subject the models to proper gauge fixing. By applying the heat kernel regularization one can show that the field space entanglement entropies of the massless scalar field model and of its Lifshitz dual are agreeing.
Field space entanglement entropy, zero modes and Lifshitz models
Directory of Open Access Journals (Sweden)
Helmuth Huffel
2017-12-01
Full Text Available The field space entanglement entropy of a quantum field theory is obtained by integrating out a subset of its fields. We study an interacting quantum field theory consisting of massless scalar fields on a closed compact manifold M. To this model we associate its Lifshitz dual model. The ground states of both models are invariant under constant shifts. We interpret this invariance as gauge symmetry and subject the models to proper gauge fixing. By applying the heat kernel regularization one can show that the field space entanglement entropies of the massless scalar field model and of its Lifshitz dual are agreeing.
Numerical modeling of regional stress distributions for geothermal exploration
Guillon, Theophile; Peter-Borie, Mariane; Gentier, Sylvie; Blaisonneau, Arnold
2017-04-01
Any high-enthalpy unconventional geothermal projectcan be jeopardized by the uncertainty on the presence of the geothermal resource at depth. Indeed, for the majority of such projects the geothermal resource is deeply seated and, with the drilling costs increasing accordingly, must be located as precisely as possible to increase the chance of their economic viability. In order to reduce the "geological risk", i.e., the chance to poorly locate the geothermal resource, a maximum amount of information must be gathered prior to any drilling of exploration and/or operational well. Cross-interpretation from multiple disciplines (e.g., geophysics, hydrology, geomechanics …) should improve locating the geothermal resource and so the position of exploration wells ; this is the objective of the European project IMAGE (grant agreement No. 608553), under which the work presented here was carried out. As far as geomechanics is concerned, in situ stresses can have a great impact on the presence of a geothermal resource since they condition both the regime within the rock mass, and the state of the major fault zones (and hence, the possible flow paths). In this work, we propose a geomechanical model to assess the stress distribution at the regional scale (characteristic length of 100 kilometers). Since they have a substantial impact on the stress distributions and on the possible creation of regional flow paths, the major fault zones are explicitly taken into account. The Distinct Element Method is used, where the medium is modeled as fully deformable blocks representing the rock mass interacting through mechanically active joints depicting the fault zones. The first step of the study is to build the model geometry based on geological and geophysical evidences. Geophysical and structural geology results help positioning the major fault zones in the first place. Then, outcrop observations, structural models and site-specific geological knowledge give information on the fault
Nonsymmetric entropy and maximum nonsymmetric entropy principle
International Nuclear Information System (INIS)
Liu Chengshi
2009-01-01
Under the frame of a statistical model, the concept of nonsymmetric entropy which generalizes the concepts of Boltzmann's entropy and Shannon's entropy, is defined. Maximum nonsymmetric entropy principle is proved. Some important distribution laws such as power law, can be derived from this principle naturally. Especially, nonsymmetric entropy is more convenient than other entropy such as Tsallis's entropy in deriving power laws.
A brief critique of the Adam-Gibbs entropy model
DEFF Research Database (Denmark)
Dyre, J. C.; Hecksher, Tina; Niss, Kristine
2009-01-01
This paper critically discusses the entropy model proposed by Adam and Gibbs in 1965 for the dramatic temperature dependence of glass-forming liquids' average relaxation time, which is one of the most influential models during the last four decades. We discuss the Adam-Gibbs model's theoretical...
Entropy in the classical and quantum polymer black hole models
International Nuclear Information System (INIS)
Livine, Etera R; Terno, Daniel R
2012-01-01
We investigate the entropy counting for black hole horizons in loop quantum gravity (LQG). We argue that the space of 3D closed polyhedra is the classical counterpart of the space of SU(2) intertwiners at the quantum level. Then computing the entropy for the boundary horizon amounts to calculating the density of polyhedra or the number of intertwiners at fixed total area. Following the previous work (Bianchi 2011 Class. Quantum Grav. 28 114006) we dub these the classical and quantum polymer models for isolated horizons in LQG. We provide exact micro-canonical calculations for both models and we show that the classical counting of polyhedra accounts for most of the features of the intertwiner counting (leading order entropy and log-correction), thus providing us with a simpler model to further investigate correlations and dynamics. To illustrate this, we also produce an exact formula for the dimension of the intertwiner space as a density of ‘almost-closed polyhedra’. (paper)
COTHERM: Modelling fluid-rock interactions in Icelandic geothermal systems
Thien, Bruno; Kosakowski, Georg; Kulik, Dmitrii
2014-05-01
Mineralogical alteration of reservoir rocks, driven by fluid circulation in natural or enhanced geothermal systems, is likely to influence the long-term performance of geothermal power generation. A key factor is the change of porosity due to dissolution of primary minerals and precipitation of secondary phases. Porosity changes will affect fluid circulation and solute transport, which, in turn, influence mineralogical alteration. This study is part of the Sinergia COTHERM project (COmbined hydrological, geochemical and geophysical modeling of geotTHERMal systems) that is an integrative research project aimed at improving our understanding of the sub-surface processes in magmatically-driven natural geothermal systems. We model the mineralogical and porosity evolution of Icelandic geothermal systems with 1D and 2D reactive transport models. These geothermal systems are typically high enthalphy systems where a magmatic pluton is located at a few kilometers depth. The shallow plutons increase the geothermal gradient and trigger the circulation of hydrothermal waters with a steam cap forming at shallow depth. We investigate two contrasting geothermal systems: Krafla, for which the water recharge consists of meteoritic water; and Reykjanes, for which the water recharge mainly consists of seawater. The initial rock composition is a fresh basalt. We use the GEM-Selektor geochemical modeling package [1] for calculation of kinetically controlled mineral equilibria between the rock and the ingression water. We consider basalt minerals dissolution kinetics according to Palandri & Kharaka [2]. Reactive surface areas are assumed to be geometric surface areas, and are corrected using a spherical-particle surface/mass relationship. For secondary minerals, we consider the partial equilibrium assuming that the primary mineral dissolution is slow, and the secondary mineral precipitation is fast. Comparison of our modeling results with the mineralogical assemblages observed in the
3D Geological Model for "LUSI" - a Deep Geothermal System
Sohrabi, Reza; Jansen, Gunnar; Mazzini, Adriano; Galvan, Boris; Miller, Stephen A.
2016-04-01
Geothermal applications require the correct simulation of flow and heat transport processes in porous media, and many of these media, like deep volcanic hydrothermal systems, host a certain degree of fracturing. This work aims to understand the heat and fluid transport within a new-born sedimentary hosted geothermal system, termed Lusi, that began erupting in 2006 in East Java, Indonesia. Our goal is to develop conceptual and numerical models capable of simulating multiphase flow within large-scale fractured reservoirs such as the Lusi region, with fractures of arbitrary size, orientation and shape. Additionally, these models can also address a number of other applications, including Enhanced Geothermal Systems (EGS), CO2 sequestration (Carbon Capture and Storage CCS), and nuclear waste isolation. Fractured systems are ubiquitous, with a wide-range of lengths and scales, making difficult the development of a general model that can easily handle this complexity. We are developing a flexible continuum approach with an efficient, accurate numerical simulator based on an appropriate 3D geological model representing the structure of the deep geothermal reservoir. Using previous studies, borehole information and seismic data obtained in the framework of the Lusi Lab project (ERC grant n°308126), we present here the first 3D geological model of Lusi. This model is calculated using implicit 3D potential field or multi-potential fields, depending on the geological context and complexity. This method is based on geological pile containing the geological history of the area and relationship between geological bodies allowing automatic computation of intersections and volume reconstruction. Based on the 3D geological model, we developed a new mesh algorithm to create hexahedral octree meshes to transfer the structural geological information for 3D numerical simulations to quantify Thermal-Hydraulic-Mechanical-Chemical (THMC) physical processes.
Entropy exchange and entanglement in the Jaynes-Cummings model
International Nuclear Information System (INIS)
Boukobza, E.; Tannor, D.J.
2005-01-01
The Jaynes-Cummings model (JCM) is the simplest fully quantum model that describes the interaction between light and matter. We extend a previous analysis by Phoenix and Knight [Ann. Phys. 186, 381 (1988)] of the JCM by considering mixed states of both the light and matter. We present examples of qualitatively different entropic correlations. In particular, we explore the regime of entropy exchange between light and matter, i.e., where the rate of change of the two are anticorrelated. This behavior contrasts with the case of pure light-matter states in which the rate of change of the two entropies are positively correlated and in fact identical. We give an analytical derivation of the anticorrelation phenomenon and discuss the regime of its validity. Finally, we show a strong correlation between the region of the Bloch sphere characterized by entropy exchange and that characterized by minimal entanglement as measured by the negative eigenvalues of the partially transposed density matrix
A Dynamic Model of Information and Entropy
Directory of Open Access Journals (Sweden)
Stuart D. Walker
2010-01-01
Full Text Available We discuss the possibility of a relativistic relationship between information and entropy, closely analogous to the classical Maxwell electro-magnetic wave equations. Inherent to the analysis is the description of information as residing in points of non-analyticity; yet ultimately also exhibiting a distributed characteristic: additionally analogous, therefore, to the wave-particle duality of light. At cosmological scales our vector differential equations predict conservation of information in black holes, whereas regular- and Z-DNA molecules correspond to helical solutions at microscopic levels. We further propose that regular- and Z-DNA are equivalent to the alternative words chosen from an alphabet to maintain the equilibrium of an information transmission system.
Modeling multisite streamflow dependence with maximum entropy copula
Hao, Z.; Singh, V. P.
2013-10-01
Synthetic streamflows at different sites in a river basin are needed for planning, operation, and management of water resources projects. Modeling the temporal and spatial dependence structure of monthly streamflow at different sites is generally required. In this study, the maximum entropy copula method is proposed for multisite monthly streamflow simulation, in which the temporal and spatial dependence structure is imposed as constraints to derive the maximum entropy copula. The monthly streamflows at different sites are then generated by sampling from the conditional distribution. A case study for the generation of monthly streamflow at three sites in the Colorado River basin illustrates the application of the proposed method. Simulated streamflow from the maximum entropy copula is in satisfactory agreement with observed streamflow.
Romaguera, Mireia; Vaughan, R. Greg; Ettema, J.; Izquierdo-Verdiguier, E.; Hecker, C. A.; van der Meer, F.D.
2018-01-01
This paper explores for the first time the possibilities to use two land surface temperature (LST) time series of different origins (geostationary Meteosat Second Generation satellite data and Noah land surface modelling, LSM), to detect geothermal anomalies and extract the geothermal component of LST, the LSTgt. We hypothesize that in geothermal areas the LSM time series will underestimate the LST as compared to the remote sensing data, since the former does not account for the geothermal component in its model.In order to extract LSTgt, two approaches of different nature (physical based and data mining) were developed and tested in an area of about 560 × 560 km2 centered at the Kenyan Rift. Pre-dawn data in the study area during the first 45 days of 2012 were analyzed.The results show consistent spatial and temporal LSTgt patterns between the two approaches, and systematic differences of about 2 K. A geothermal area map from surface studies was used to assess LSTgt inside and outside the geothermal boundaries. Spatial means were found to be higher inside the geothermal limits, as well as the relative frequency of occurrence of high LSTgt. Results further show that areas with strong topography can result in anomalously high LSTgt values (false positives), which suggests the need for a slope and aspect correction in the inputs to achieve realistic results in those areas. The uncertainty analysis indicates that large uncertainties of the input parameters may limit detection of LSTgt anomalies. To validate the approaches, higher spatial resolution images from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data over the Olkaria geothermal field were used. An established method to estimate radiant geothermal flux was applied providing values between 9 and 24 W/m2 in the geothermal area, which coincides with the LSTgt flux rates obtained with the proposed approaches.The proposed approaches are a first step in estimating LSTgt
Bias-based modeling and entropy analysis of PUFs
van den Berg, R.; Skoric, B.; Leest, van der V.
2013-01-01
Physical Unclonable Functions (PUFs) are increasingly becoming a well-known security primitive for secure key storage and anti-counterfeiting. For both applications it is imperative that PUFs provide enough entropy. The aim of this paper is to propose a new model for binary-output PUFs such as SRAM,
Modeling Electric Discharges with Entropy Production Rate Principles
Directory of Open Access Journals (Sweden)
Thomas Christen
2009-12-01
Full Text Available Under which circumstances are variational principles based on entropy production rate useful tools for modeling steady states of electric (gas discharge systems far from equilibrium? It is first shown how various different approaches, as Steenbeck’s minimum voltage and Prigogine’s minimum entropy production rate principles are related to the maximum entropy production rate principle (MEPP. Secondly, three typical examples are discussed, which provide a certain insight in the structure of the models that are candidates for MEPP application. It is then thirdly argued that MEPP, although not being an exact physical law, may provide reasonable model parameter estimates, provided the constraints contain the relevant (nonlinear physical effects and the parameters to be determined are related to disregarded weak constraints that affect mainly global entropy production. Finally, it is additionally conjectured that a further reason for the success of MEPP in certain far from equilibrium systems might be based on a hidden linearity of the underlying kinetic equation(s.
Mixture models with entropy regularization for community detection in networks
Chang, Zhenhai; Yin, Xianjun; Jia, Caiyan; Wang, Xiaoyang
2018-04-01
Community detection is a key exploratory tool in network analysis and has received much attention in recent years. NMM (Newman's mixture model) is one of the best models for exploring a range of network structures including community structure, bipartite and core-periphery structures, etc. However, NMM needs to know the number of communities in advance. Therefore, in this study, we have proposed an entropy regularized mixture model (called EMM), which is capable of inferring the number of communities and identifying network structure contained in a network, simultaneously. In the model, by minimizing the entropy of mixing coefficients of NMM using EM (expectation-maximization) solution, the small clusters contained little information can be discarded step by step. The empirical study on both synthetic networks and real networks has shown that the proposed model EMM is superior to the state-of-the-art methods.
Geothermal probabilistic cost study
Energy Technology Data Exchange (ETDEWEB)
Orren, L.H.; Ziman, G.M.; Jones, S.C.; Lee, T.K.; Noll, R.; Wilde, L.; Sadanand, V.
1981-08-01
A tool is presented to quantify the risks of geothermal projects, the Geothermal Probabilistic Cost Model (GPCM). The GPCM model is used to evaluate a geothermal reservoir for a binary-cycle electric plant at Heber, California. Three institutional aspects of the geothermal risk which can shift the risk among different agents are analyzed. The leasing of geothermal land, contracting between the producer and the user of the geothermal heat, and insurance against faulty performance are examined. (MHR)
Modeling of an Air Conditioning System with Geothermal Heat Pump for a Residential Building
Directory of Open Access Journals (Sweden)
Silvia Cocchi
2013-01-01
Full Text Available The need to address climate change caused by greenhouse gas emissions attaches great importance to research aimed at using renewable energy. Geothermal energy is an interesting alternative concerning the production of energy for air conditioning of buildings (heating and cooling, through the use of geothermal heat pumps. In this work a model has been developed in order to simulate an air conditioning system with geothermal heat pump. A ground source heat pump (GSHP uses the shallow ground as a source of heat, thus taking advantage of its seasonally moderate temperatures. GSHP must be coupled with geothermal exchangers. The model leads to design optimization of geothermal heat exchangers and to verify the operation of the geothermal plant.
Inflation via logarithmic entropy-corrected holographic dark energy model
Energy Technology Data Exchange (ETDEWEB)
Darabi, F.; Felegary, F. [Azarbaijan Shahid Madani University, Department of Physics, Tabriz (Iran, Islamic Republic of); Setare, M.R. [University of Kurdistan, Department of Science, Bijar (Iran, Islamic Republic of)
2016-12-15
We study the inflation in terms of the logarithmic entropy-corrected holographic dark energy (LECHDE) model with future event horizon, particle horizon, and Hubble horizon cut-offs, and we compare the results with those obtained in the study of inflation by the holographic dark energy HDE model. In comparison, the spectrum of primordial scalar power spectrum in the LECHDE model becomes redder than the spectrum in the HDE model. Moreover, the consistency with the observational data in the LECHDE model of inflation constrains the reheating temperature and Hubble parameter by one parameter of holographic dark energy and two new parameters of logarithmic corrections. (orig.)
Inflation via logarithmic entropy-corrected holographic dark energy model
International Nuclear Information System (INIS)
Darabi, F.; Felegary, F.; Setare, M.R.
2016-01-01
We study the inflation in terms of the logarithmic entropy-corrected holographic dark energy (LECHDE) model with future event horizon, particle horizon, and Hubble horizon cut-offs, and we compare the results with those obtained in the study of inflation by the holographic dark energy HDE model. In comparison, the spectrum of primordial scalar power spectrum in the LECHDE model becomes redder than the spectrum in the HDE model. Moreover, the consistency with the observational data in the LECHDE model of inflation constrains the reheating temperature and Hubble parameter by one parameter of holographic dark energy and two new parameters of logarithmic corrections. (orig.)
Entropy - Some Cosmological Questions Answered by Model of Expansive Nondecelerative Universe
Directory of Open Access Journals (Sweden)
Miroslav Sukenik
2003-01-01
Full Text Available Abstract: The paper summarizes the background of Expansive Nondecelerative Universe model and its potential to offer answers to some open cosmological questions related to entropy. Three problems are faced in more detail, namely that of Hawkings phenomenon of black holes evaporation, maximum entropy of the Universe during its evolution, and time evolution of specific entropy.
Ising model on tangled chain - 1: Free energy and entropy
International Nuclear Information System (INIS)
Mejdani, R.
1993-04-01
In this paper we have considered an Ising model defined on tangled chain, in which more bonds have been added to those of pure Ising chain. to understand their competition, particularly between ferromagnetic and antiferromagnetic bonds, we have studied, using the transfer matrix method, some simple analytical calculations and an iterative algorithm, the behaviour of the free energy and entropy, particularly in the zero-field and zero temperature limit, for different configurations of the ferromagnetic tangled chain and different types of addition interaction (ferromagnetic or antiferromagnetic). We found that the condition J=J' between the ferromagnetic interaction J along the chain and the antiferromagnetic interaction J' across the chain is somewhat as a ''transition-region'' condition for this behaviour. Our results indicate also the existence of non-zero entropy at zero temperature. (author). 17 refs, 8 figs
International Nuclear Information System (INIS)
Laplaige, Ph.; Lemale, J.
2008-01-01
Geothermal energy is a renewable energy source which consists in exploiting the heat coming from the Earth. It covers a wide range of techniques and applications which are presented in this article: 1 - the Earth, source of heat: structure of the Earth, geodynamic model and plate tectonics, origin of heat, geothermal gradient and terrestrial heat flux; 2 - geothermal fields and resources; 3 - implementation of geothermal resources: exploration, main characteristic parameters, resource exploitation; 4 - uses of geothermal resources: power generation, thermal uses, space heating and air conditioning heat pumps, district heating, addition of heat pumps; 5 - economical aspects: power generation, heat generation for district heating; 6 - environmental aspects: conditions of implementation, impacts as substitute to fossil fuels; 7 - geothermal energy in France: resources, organisation; 8 - conclusion. (J.S.)
Entanglement generation and entropy growth due to intrinsic decoherence in the Jaynes-Cummings model
International Nuclear Information System (INIS)
Obada, A.-S.F.; Hessian, Hosny A.
2004-01-01
We study how intrinsic decoherence leads to growing entropy and a strong degradation of the maximal generated entanglement in the multiquanta Jaynes-Cummings model. We find an exact solution of the Milburn equation in multiquanta precesses and calculate the partial entropy of the particle (atom or trapped ion) and field subsystem as well as total entropy. As the total entropy is not conserved, and it is shown to increase as time develops, one cannot use the partial field or atomic entropy as a direct measure of particle-field entanglement. For a good entropy measure, we also calculate the negativity of the eigenvalues of the partially transposed density matrix. We find that, at least qualitatively, the difference of the total entropy to the sum of field and atom partial entropies can be also used as an entanglement measure. Our results show that the degree of entanglement is very sensitive to any change in the intrinsic decoherence parameter
Inverse geothermal modelling applied to Danish sedimentary basins
Poulsen, Søren E.; Balling, Niels; Bording, Thue S.; Mathiesen, Anders; Nielsen, Søren B.
2017-10-01
This paper presents a numerical procedure for predicting subsurface temperatures and heat-flow distribution in 3-D using inverse calibration methodology. The procedure is based on a modified version of the groundwater code MODFLOW by taking advantage of the mathematical similarity between confined groundwater flow (Darcy's law) and heat conduction (Fourier's law). Thermal conductivity, heat production and exponential porosity-depth relations are specified separately for the individual geological units of the model domain. The steady-state temperature model includes a model-based transient correction for the long-term palaeoclimatic thermal disturbance of the subsurface temperature regime. Variable model parameters are estimated by inversion of measured borehole temperatures with uncertainties reflecting their quality. The procedure facilitates uncertainty estimation for temperature predictions. The modelling procedure is applied to Danish onshore areas containing deep sedimentary basins. A 3-D voxel-based model, with 14 lithological units from surface to 5000 m depth, was built from digital geological maps derived from combined analyses of reflection seismic lines and borehole information. Matrix thermal conductivity of model lithologies was estimated by inversion of all available deep borehole temperature data and applied together with prescribed background heat flow to derive the 3-D subsurface temperature distribution. Modelled temperatures are found to agree very well with observations. The numerical model was utilized for predicting and contouring temperatures at 2000 and 3000 m depths and for two main geothermal reservoir units, the Gassum (Lower Jurassic-Upper Triassic) and Bunter/Skagerrak (Triassic) reservoirs, both currently utilized for geothermal energy production. Temperature gradients to depths of 2000-3000 m are generally around 25-30 °C km-1, locally up to about 35 °C km-1. Large regions have geothermal reservoirs with characteristic temperatures
Scale Model Simulation of Enhanced Geothermal Reservoir Creation
Gutierrez, M.; Frash, L.; Hampton, J.
2012-12-01
Geothermal energy technology has successfully provided a means of generating stable base load electricity for many years. However, implementation has been spatially limited to limited availability of high quality traditional hydro-thermal resources possessing the combination of a shallow high heat flow anomaly and an aquifer with sufficient permeability and continuous fluid recharge. Enhanced Geothermal Systems (EGS) has been proposed as a potential solution to enable additional energy production from the non-conventional hydro-thermal resources. Hydraulic fracturing is considered the primary means of creating functional EGS reservoirs at sites where the permeability of the rock is too limited to allow cost effective heat recovery. EGS reservoir creation requires improved fracturing methodology, rheologically controllable fracturing fluids, and temperature hardened proppants. Although large fracture volumes (several cubic km) have been created in the field, circulating fluid through these full volumes and maintaining fracture volumes have proven difficult. Stimulation technology and methodology as used in the oil and gas industry for sedimentary formations are well developed; however, they have not sufficiently been demonstrated for EGS reservoir creation. Insufficient data and measurements under geothermal conditions make it difficult to directly translate experience from the oil and gas industries to EGS applications. To demonstrate the feasibility of EGS reservoir creation and subsequent geothermal energy production, and to improve the understanding of hydraulic and propping in EGS reservoirs, a heated true-triaxial load cell with a high pressure fluid injection system was developed to simulate an EGS system from stimulation to production. This apparatus is capable of loading a 30x30x30 cubic cm rock sample with independent principal stresses up to 13 MPa while simultaneously providing heating up to 180 degree C. Multiple orientated boreholes of 5 to 10 mm
Geothermal modeling along a two-dimensional crustal profile in Southern Portugal
Czech Academy of Sciences Publication Activity Database
Correia, A.; Šafanda, Jan
2002-01-01
Roč. 34, č. 1 (2002), s. 47-61 ISSN 0264-3707. [Geothermics at the turn of the century. Evora, 03.04.2000-07.04.2000] Institutional research plan: CEZ:AV0Z3012916 Keywords : geothermal modeling * Southern Portugal * surface heat flow * crustal profile Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 1.058, year: 2002
Stimulus-dependent maximum entropy models of neural population codes.
Directory of Open Access Journals (Sweden)
Einat Granot-Atedgi
Full Text Available Neural populations encode information about their stimulus in a collective fashion, by joint activity patterns of spiking and silence. A full account of this mapping from stimulus to neural activity is given by the conditional probability distribution over neural codewords given the sensory input. For large populations, direct sampling of these distributions is impossible, and so we must rely on constructing appropriate models. We show here that in a population of 100 retinal ganglion cells in the salamander retina responding to temporal white-noise stimuli, dependencies between cells play an important encoding role. We introduce the stimulus-dependent maximum entropy (SDME model-a minimal extension of the canonical linear-nonlinear model of a single neuron, to a pairwise-coupled neural population. We find that the SDME model gives a more accurate account of single cell responses and in particular significantly outperforms uncoupled models in reproducing the distributions of population codewords emitted in response to a stimulus. We show how the SDME model, in conjunction with static maximum entropy models of population vocabulary, can be used to estimate information-theoretic quantities like average surprise and information transmission in a neural population.
Evaluation of the St. Lucia geothermal resource: macroeconomic models
Energy Technology Data Exchange (ETDEWEB)
Burris, A.E.; Trocki, L.K.; Yeamans, M.K.; Kolstad, C.D.
1984-08-01
A macroeconometric model describing the St. Lucian economy was developed using 1970 to 1982 economic data. Results of macroeconometric forecasts for the period 1983 through 1985 show an increase in gross domestic product (GDP) for 1983 and 1984 with a decline in 1985. The rate of population growth is expected to exceed GDP growth so that a small decline in per capita GDP will occur. We forecast that garment exports will increase, providing needed employment and foreign exchange. To obtain a longer-term but more general outlook on St. Lucia's economy, and to evaluate the benefit of geothermal energy development, we applied a nonlinear programming model. The model maximizes discounted cumulative consumption.
International Nuclear Information System (INIS)
Le Du, H.; Bouchot, V.; Lopez, S.; Bialkowski, A.; Colnot, A.; Rigollet, C.; Sanjuan, B.; Millot, R.; Brach, M.; Asmundsson, R.; Giroud, N.
2010-01-01
Geothermal energy has shown a revival for several years and should strongly develop in a near future. Its potentiality is virtually unexhaustible. Its uses are multiple and various: individual and collective space heating, heat networks, power generation, heat storage, heat exchanges etc.. Re-launched by the demand of renewable energy sources, geothermal energy has become credible thanks to the scientific works published recently which have demonstrated its economical and technical relevance. Its image to the public is changing as well. However, lot of work remains to do to make geothermal energy a real industry in France. Several brakes have to be removed rapidly which concern the noise pollution of geothermal facilities, the risk of bad results of drillings, the electricity costs etc. This dossier gives an overview of today's main research paths in the domain of geothermal energy: 1 - geothermal energy in France: historical development, surface and deep resources, ambitions of the French national energy plan (pluri-annual investment plan for heat generation, incentives, regional 'climate-air-energy' schemes), specific regulations; 2 - geothermal energy at the city scale - sedimentary basins: Ile-de-France 40 years of Dogger reservoir exploitation, potentialities of clastic reservoirs - the Chaunoy sandstones example; 3 - geothermal power generation: conventional reservoirs - the Bouillante model (Guadeloupe, French Indies); the Soultz-sous-Forets pilot plant (Bas-Rhin, France); the supercritical reservoirs - the Krafla geothermal area (Iceland). (J.S.)
Maximum entropy principle and hydrodynamic models in statistical mechanics
International Nuclear Information System (INIS)
Trovato, M.; Reggiani, L.
2012-01-01
This review presents the state of the art of the maximum entropy principle (MEP) in its classical and quantum (QMEP) formulation. Within the classical MEP we overview a general theory able to provide, in a dynamical context, the macroscopic relevant variables for carrier transport in the presence of electric fields of arbitrary strength. For the macroscopic variables the linearized maximum entropy approach is developed including full-band effects within a total energy scheme. Under spatially homogeneous conditions, we construct a closed set of hydrodynamic equations for the small-signal (dynamic) response of the macroscopic variables. The coupling between the driving field and the energy dissipation is analyzed quantitatively by using an arbitrary number of moments of the distribution function. Analogously, the theoretical approach is applied to many one-dimensional n + nn + submicron Si structures by using different band structure models, different doping profiles, different applied biases and is validated by comparing numerical calculations with ensemble Monte Carlo simulations and with available experimental data. Within the quantum MEP we introduce a quantum entropy functional of the reduced density matrix, the principle of quantum maximum entropy is then asserted as fundamental principle of quantum statistical mechanics. Accordingly, we have developed a comprehensive theoretical formalism to construct rigorously a closed quantum hydrodynamic transport within a Wigner function approach. The theory is formulated both in thermodynamic equilibrium and nonequilibrium conditions, and the quantum contributions are obtained by only assuming that the Lagrange multipliers can be expanded in powers of ħ 2 , being ħ the reduced Planck constant. In particular, by using an arbitrary number of moments, we prove that: i) on a macroscopic scale all nonlocal effects, compatible with the uncertainty principle, are imputable to high-order spatial derivatives both of the
Feedback structure based entropy approach for multiple-model estimation
Institute of Scientific and Technical Information of China (English)
Shen-tu Han; Xue Anke; Guo Yunfei
2013-01-01
The variable-structure multiple-model (VSMM) approach, one of the multiple-model (MM) methods, is a popular and effective approach in handling problems with mode uncertainties. The model sequence set adaptation (MSA) is the key to design a better VSMM. However, MSA methods in the literature have big room to improve both theoretically and practically. To this end, we propose a feedback structure based entropy approach that could find the model sequence sets with the smallest size under certain conditions. The filtered data are fed back in real time and can be used by the minimum entropy (ME) based VSMM algorithms, i.e., MEVSMM. Firstly, the full Markov chains are used to achieve optimal solutions. Secondly, the myopic method together with particle filter (PF) and the challenge match algorithm are also used to achieve sub-optimal solutions, a trade-off between practicability and optimality. The numerical results show that the proposed algorithm provides not only refined model sets but also a good robustness margin and very high accuracy.
Directory of Open Access Journals (Sweden)
Francesco La Vigna
2013-12-01
Full Text Available This work presents the preliminary results of a groundwater and geothermal model applied to the hydrothermal system of the Tivoli- Guidonia plain, located in the east surroundings of Rome. This area, which is characterized by a thick outcropping travertine deposit, has been an important quarry extraction area since roman age. Today the extraction is in deepening helped by a large dewatering action. By an hydrogeological point of view, the travertine aquifer of the Tivoli- Guidonia Plain, is recharged by lateral discharge in the Lucretili and Cornicolani Mts., and by piping trough important regional faults, located in the basal aquiclude, in the central area of the basin. Piping hydrothermal groundwater is the main contribution on flow in the basin. Preliminary simulations of the groundwater-geothermal model, reproduce quite well the heat and mineralization plumes of groundwater observed in the travertine aquifer.
Capital cost models for geothermal power plants and fluid transmission systems. [GEOCOST
Energy Technology Data Exchange (ETDEWEB)
Schulte, S.C.
1977-09-01
The GEOCOST computer program is a simulation model for evaluating the economics of developing geothermal resources. The model was found to be both an accurate predictor of geothermal power production facility costs and a valid designer of such facilities. GEOCOST first designs a facility using thermodynamic optimization routines and then estimates costs for the selected design using cost models. Costs generated in this manner appear to correspond closely with detailed cost estimates made by industry planning groups. Through the use of this model, geothermal power production costs can be rapidly and accurately estimated for many alternative sites making the evaluation process much simpler yet more meaningful.
Singularities and Entropy in Bulk Viscosity Dark Energy Model
International Nuclear Information System (INIS)
Meng Xinhe; Dou Xu
2011-01-01
In this paper bulk viscosity is introduced to describe the effects of cosmic non-perfect fluid on the cosmos evolution and to build the unified dark energy (DE) with (dark) matter models. Also we derive a general relation between the bulk viscosity form and Hubble parameter that can provide a procedure for the viscosity DE model building. Especially, a redshift dependent viscosity parameter ζ ∝ λ 0 + λ 1 (1 + z) n proposed in the previous work [X.H. Meng and X. Dou, Commun. Theor. Phys. 52 (2009) 377] is investigated extensively in this present work. Further more we use the recently released supernova dataset (the Constitution dataset) to constrain the model parameters. In order to differentiate the proposed concrete dark energy models from the well known ΛCDM model, statefinder diagnostic method is applied to this bulk viscosity model, as a complementary to the Om parameter diagnostic and the deceleration parameter analysis performed by us before. The DE model evolution behavior and tendency are shown in the plane of the statefinder diagnostic parameter pair {r, s} as axes where the fixed point represents the ΛCDM model. The possible singularity property in this bulk viscosity cosmology is also discussed to which we can conclude that in the different parameter regions chosen properly, this concrete viscosity DE model can have various late evolution behaviors and the late time singularity could be avoided. We also calculate the cosmic entropy in the bulk viscosity dark energy frame, and find that the total entropy in the viscosity DE model increases monotonously with respect to the scale factor evolution, thus this monotonous increasing property can indicate an arrow of time in the universe evolution, though the quantum version of the arrow of time is still very puzzling. (geophysics, astronomy, and astrophysics)
Synthetic Modeling of A Geothermal System Using Audio-magnetotelluric (AMT) and Magnetotelluric (MT)
Mega Saputra, Rifki; Widodo
2017-04-01
Indonesia has 40% of the world’s potential geothermal resources with estimated capacity of 28,910 MW. Generally, the characteristic of the geothermal system in Indonesia is liquid-dominated systems, which driven by volcanic activities. In geothermal exploration, electromagnetic methods are used to map structures that could host potential reservoirs and source rocks. We want to know the responses of a geothermal system using synthetic data of Audio-magnetotelluric (AMT) and Magnetotelluric (MT). Due to frequency range, AMT and MT data can resolve the shallow and deeper structure, respectively. 1-D models have been performed using AMT and MT data. The results indicate that AMT and MT data give detailed conductivity distribution of geothermal structure.
Geological Model of Supercritical Geothermal Reservoir on the Top of the Magma Chamber
Tsuchiya, N.
2017-12-01
We are conducting supercritical geothermal project, and deep drilling project named as "JBBP: Japan Beyond Brittle Project" The temperatures of geothermal fields operating in Japan range from 200 to 300 °C (average 250 °C), and the depths range from 1000 to 2000 m (average 1500 m). In conventional geothermal reservoirs, the mechanical behavior of the rocks is presumed to be brittle, and convection of the hydrothermal fluid through existing network is the main method of circulation in the reservoir. In order to minimize induced seismicity, a rock mass that is "beyond brittle" is one possible candidate, because the rock mechanics of "beyond brittle" material is one of plastic deformation rather than brittle failure. To understand the geological model of a supercritical geothermal reservoir, granite-porphyry system, which had been formed in subduction zone, was investigated as a natural analog of the supercritical geothermal energy system. Quartz veins, hydrothermal breccia veins, and glassy veins are observed in a granitic body. The glassy veins formed at 500-550 °C under lithostatic pressures, and then pressures dropped drastically. The solubility of silica also dropped, resulting in formation of quartz veins under a hydrostatic pressure regime. Connections between the lithostatic and hydrostatic pressure regimes were key to the formation of the hydrothermal breccia veins, and the granite-porphyry system provides useful information for creation of fracture clouds in supercritical geothermal reservoirs. A granite-porphyry system, associated with hydrothermal activity and mineralization, provides a suitable natural analog for studying a deep-seated geothermal reservoir where stockwork fracture systems are created in the presence of supercritical geothermal fluids. I describe fracture networks and their formation mechanisms using petrology and fluid inclusion studies in order to understand this "beyond brittle" supercritical geothermal reservoir, and a geological
Tsallis Entropy Theory for Modeling in Water Engineering: A Review
Directory of Open Access Journals (Sweden)
Vijay P. Singh
2017-11-01
Full Text Available Water engineering is an amalgam of engineering (e.g., hydraulics, hydrology, irrigation, ecosystems, environment, water resources and non-engineering (e.g., social, economic, political aspects that are needed for planning, designing and managing water systems. These aspects and the associated issues have been dealt with in the literature using different techniques that are based on different concepts and assumptions. A fundamental question that still remains is: Can we develop a unifying theory for addressing these? The second law of thermodynamics permits us to develop a theory that helps address these in a unified manner. This theory can be referred to as the entropy theory. The thermodynamic entropy theory is analogous to the Shannon entropy or the information theory. Perhaps, the most popular generalization of the Shannon entropy is the Tsallis entropy. The Tsallis entropy has been applied to a wide spectrum of problems in water engineering. This paper provides an overview of Tsallis entropy theory in water engineering. After some basic description of entropy and Tsallis entropy, a review of its applications in water engineering is presented, based on three types of problems: (1 problems requiring entropy maximization; (2 problems requiring coupling Tsallis entropy theory with another theory; and (3 problems involving physical relations.
Modeling study of the Pauzhetsky geothermal field, Kamchatka, Russia
Energy Technology Data Exchange (ETDEWEB)
Kiryukhin, A.V. [Institute of Volcanology, Kamchatsky (Russian Federation); Yampolsky, V.A. [Kamchatskburgeotermia State Enterprise, Elizovo (Russian Federation)
2004-08-01
Exploitation of the Pauzhetsky geothermal field started in 1966 with a 5 MW{sub e} power plant. A hydrogeological model of the Pauzhetsky field has been developed based on an integrated analysis of data on lithological units, temperature, pressure, production zones and natural discharge distributions. A one-layer 'well by well' model with specified vertical heat and mass exchange conditions has been used to represent the main features of the production reservoir. Numerical model development was based on the TOUGH2 code [Pruess, 1991. TOUGH2 - A General Purpose Numerical Simulator for Multiphase Fluid and Heat Flow, Lawrence Berkeley National Laboratory Report, Berkeley, CA; Pruess et al., 1999. TOUGH2 User's Guide, Version 2.0, Report LBNL-43134, Lawrence Berkeley National Laboratory, Berkeley, CA] coupled with tables generated by the HOLA wellbore simulator [Aunzo et al., 1991. Wellbore Models GWELL, GWNACL, and HOLA, Users Guide, Draft, 81 pp.]. Lahey Fortran-90 compiler and computer graphical packages (Didger-3, Surfer-8, Grapher-3) were also used to model the development process. The modeling study of the natural-state conditions was targeted on a temperature distribution match to estimate the natural high-temperature upflow parameters: the mass flow-rate was estimated at 220 kg/s with enthalpy of 830-920 kJ/kg. The modeling study for the 1964-2000 exploitation period of the Pauzhetsky geothermal field was targeted at matching the transient reservoir pressure and flowing enthalpies of the production wells. The modeling study of exploitation confirmed that 'double porosity' in the reservoir, with a 10-20% active volume of 'fractures', and a thermo-mechanical response to reinjection (including changes in porosity due to compressibility and expansivity), were the key parameters of the model. The calibrated model of the Pauzhetsky geothermal field was used to forecast reservoir behavior under different exploitation scenarios for
Response of shallow geothermal energy pile from laboratory model tests
Marto, A.; Amaludin, A.
2015-09-01
In shallow geothermal energy pile systems, the thermal loads from the pile, transferred and stored in the soil will cause thermally induced settlement. This factor must be considered in the geotechnical design process to avoid unexpected hazards. Series of laboratory model tests were carried out to study the behaviour of energy piles installed in kaolin soil, subjected to thermal loads and a combination of axial and thermal loads (henceforth known as thermo-axial loads). Six tests which included two thermal load tests (35°C and 40°C) and four thermo-axial load tests (100 N and 200 N, combined with 35°C and 40°C thermal loads) were conducted. To simulate the behaviour of geothermal energy piles during its operation, the thermo-axial tests were carried out by applying an axial load to the model pile head, and a subsequent application of thermal load. The model soil was compacted at 90% maximum dry density and had an undrained shear strength of 37 kPa, thus classified as having a firm soil consistency. The behaviour of model pile, having the ultimate load capacity of 460 N, was monitored using a linear variable displacement transducer, load cell and wire thermocouple, to measure the pile head settlement, applied axial load and model pile temperature. The acquired data from this study was used to define the thermo-axial response characteristics of the energy pile model. In this study, the limiting settlement was defined as 10% of the model pile diameter. For thermal load tests, higher thermal loads induced higher values of thermal settlement. At 40°C thermal load an irreversible settlement was observed after the heating and cooling cycle was applied to the model pile. Meanwhile, the pile response to thermo-axial loads were attributed to soil consistency and the magnitude of both the axial and thermal loads applied to the pile. The higher the thermoaxial loads, the higher the settlements occurred. A slight hazard on the model pile was detected, since the settlement
ACCUMULATED DEFORMATION MODELING OF PERMANENT WAY BASED ON ENTROPY SYSTEM
Directory of Open Access Journals (Sweden)
D. M. Kurhan
2015-07-01
Full Text Available Purpose. The work provides a theoretical research about the possibility of using methods that determine the lifetime of a railway track not only in terms of total stresses, and accounting its structure and dynamic characteristics. The aim of these studies is creation the model of deformations accumulation for assessment of service life of a railway track taking into account these features. Methodology. To simulate a gradual change state during the operation (accumulation of deformations the railway track is presented as a system that consists of many particles of different materials collected in a coherent design. It is appropriate to speak not about the appearance of deformations of a certain size in a certain section of the track, and the probability of such event on the site. If to operate the probability of occurrence of deviations, comfortable state of the system is characterized by the number of breaks of the conditional internal connections. The same state of the system may correspond to different combinations of breaks. The more breaks, the more the number of options changes in the structure of the system appropriate to its current state. Such a process can be represented as a gradual transition from an ordered state to a chaotic one. To describe the characteristics of the system used the numerical value of the entropy. Findings. Its entropy is constantly increasing at system aging. The growth of entropy is expressed by changes in the internal energy of the system, which can be determined using mechanical work forces, which leads to deformation. This gives the opportunity to show quantitative indication of breaking the bonds in the system as a consequence of performing mechanical work. According to the results of theoretical research methods for estimation of the timing of life cycles of railway operation considering such factors as the structure of the flow of trains, construction of the permanent way, the movement of trains at high
Towards the entropy of gravity time-dependent models via the Cardy-Verlinde formula
International Nuclear Information System (INIS)
Obregon, Octavio; Patino, Leonardo; Quevedo, Hernando
2003-01-01
For models with several time-dependent components, generalized entropies can be defined. This is shown for the Bianchi type IX model. We first derive the Cardy-Verlinde formula under the assumption that the first law of thermodynamics is valid. This leads to an explicit expression of the total entropy associated with this type of universe. Assuming the validity of the Cardy entropy formula, we obtain expressions for the corresponding Bekenstein, Bekenstein-Hawking and Hubble entropies. We discuss the validity of the Cardy-Verlinde formula and possible extensions of the outlined procedure to other time-dependent models
Emergence of spacetime dynamics in entropy corrected and braneworld models
International Nuclear Information System (INIS)
Sheykhi, A.; Dehghani, M.H.; Hosseini, S.E.
2013-01-01
A very interesting new proposal on the origin of the cosmic expansion was recently suggested by Padmanabhan [arXiv:1206.4916]. He argued that the difference between the surface degrees of freedom and the bulk degrees of freedom in a region of space drives the accelerated expansion of the universe, as well as the standard Friedmann equation through relation ΔV = Δt(N sur −N bulk ). In this paper, we first present the general expression for the number of degrees of freedom on the holographic surface, N sur , using the general entropy corrected formula S = A/(4L p 2 )+s(A). Then, as two example, by applying the Padmanabhan's idea we extract the corresponding Friedmann equations in the presence of power-law and logarithmic correction terms in the entropy. We also extend the study to RS II and DGP braneworld models and derive successfully the correct form of the Friedmann equations in these theories. Our study further supports the viability of Padmanabhan's proposal
Fluid-rock geochemical interaction for modelling calibration in geothermal exploration in Indonesia
Deon, Fiorenza; Barnhoorn, Auke; Lievens, Caroline; Ryannugroho, Riskiray; Imaro, Tulus; Bruhn, David; van der Meer, Freek; Hutami, Rizki; Sibarani, Besteba; Sule, Rachmat; Saptadij, Nenny; Hecker, Christoph; Appelt, Oona; Wilke, Franziska
2017-04-01
Indonesia with its large, but partially unexplored geothermal potential is one of the most interesting and suitable places in the world to conduct geothermal exploration research. This study focuses on geothermal exploration based on fluid-rock geochemistry/geomechanics and aims to compile an overview on geochemical data-rock properties from important geothermal fields in Indonesia. The research carried out in the field and in the laboratory is performed in the framework of the GEOCAP cooperation (Geothermal Capacity Building program Indonesia- the Netherlands). The application of petrology and geochemistry accounts to a better understanding of areas where operating power plants exist but also helps in the initial exploration stage of green areas. Because of their relevance and geological setting geothermal fields in Java, Sulawesi and the sedimentary basin of central Sumatra have been chosen as focus areas of this study. Operators, universities and governmental agencies will benefit from this approach as it will be applied also to new green-field terrains. By comparing the characteristic of the fluids, the alteration petrology and the rock geochemistry we also aim to contribute to compile an overview of the geochemistry of the important geothermal fields in Indonesia. At the same time the rock petrology and fluid geochemistry will be used as input data to model the reservoir fluid composition along with T-P parameters with the geochemical workbench PHREEQC. The field and laboratory data are mandatory for both the implementation and validation of the model results.
Modeling and Simulation of the Gonghe geothermal field (Qinghai, China) Constrained by Geophysical
Zeng, Z.; Wang, K.; Zhao, X.; Huai, N.; He, R.
2017-12-01
The Gonghe geothermal field in Qinghai is important because of its variety of geothermal resource types. Now, the Gonghe geothermal field has been a demonstration area of geothermal development and utilization in China. It has been the topic of numerous geophysical investigations conducted to determine the depth to and the nature of the heat source, and to image the channel of heat flow. This work focuses on the causes of geothermal fields used numerical simulation method constrained by geophysical data. At first, by analyzing and inverting an magnetotelluric (MT) measurements profile across this area we obtain the deep resistivity distribution. Using the gravity anomaly inversion constrained by the resistivity profile, the density of the basins and the underlying rocks can be calculated. Combined with the measured parameters of rock thermal conductivity, the 2D geothermal conceptual model of Gonghe area is constructed. Then, the unstructured finite element method is used to simulate the heat conduction equation and the geothermal field. Results of this model were calibrated with temperature data for the observation well. A good match was achieved between the measured values and the model's predicted values. At last, geothermal gradient and heat flow distribution of this model are calculated(fig.1.). According to the results of geophysical exploration, there is a low resistance and low density region (d5) below the geothermal field. We recognize that this anomaly is generated by tectonic motion, and this tectonic movement creates a mantle-derived heat upstream channel. So that the anomalous basement heat flow values are higher than in other regions. The model's predicted values simulated using that boundary condition has a good match with the measured values. The simulated heat flow values show that the mantle-derived heat flow migrates through the boundary of the low-resistance low-density anomaly area to the Gonghe geothermal field, with only a small fraction
Modeling research in low-medium temperature geothermal field, Tianjin
Institute of Scientific and Technical Information of China (English)
WANG; Kun(王坤); LI; Chunhua(李春华)
2002-01-01
The geothermal reservoir in Tianjin can be divided into two parts: the upper one is the porous medium reservoir in the Tertiary system; the lower one includes the basement reservoir in Lower Paleozoic and Middle-Upper Proterozoic. Hot springs are exposed in the northern mountain and confined geothermal water is imbedded in the southern plain. The geothermal reservoir is incised by several fractures. In recent years, TDS of the geothermal water have gone up along with the production rate increasing, along the eastern fracture zone (Cangdong Fracture and West Baitangkou Fracture). This means that the northern fracture system is the main seepage channel of the deep circulation geothermal water, and the reservoir has good connection in a certain area and definite direction. The isotopic research about hydrogen and carbon chronology indicates that the main recharge period of geothermal water is the Holocene Epoch, the pluvial and chilly period of 20 kaBP. The karst conduits in weathered carbonate rocks of the Proterozoic and Lower Paleozoic and the northeast regional fracture system are the main feeding channels of Tianjin geothermal water. Since the Holocene epoch, the geothermal water stayed at a sealed warm period. The tracer test in WR45 doublet system shows that the tracer test is a very effective measure for understanding the reservoir's transport nature and predicting the cooling time and transport velocity during the reinjection. 3-D numerical simulation shows that if the reinjection well keeps a suitable distance from the production well, reinjection will be a highly effective measure to extract more thermal energy from the rock matrix. The cooling of the production well will not be a problem.
Numerical modeling of shear stimulation in naturally fractured geothermal reservoirs
Ucar, Eren
2018-01-01
Shear-dilation-based hydraulic stimulations are conducted to create enhanced geothermal systems (EGS) from low permeable geothermal reservoirs, which are initially not amenable to energy production. Reservoir stimulations are done by injecting low-pressurized fluid into the naturally fractured formations. The injection aims to activate critically stressed fractures by decreasing frictional strength and ultimately cause a shear failure. The shear failure leads to a permanent ...
Models, Entropy and Information of Temporal Social Networks
Zhao, Kun; Karsai, Márton; Bianconi, Ginestra
Temporal social networks are characterized by heterogeneous duration of contacts, which can either follow a power-law distribution, such as in face-to-face interactions, or a Weibull distribution, such as in mobile-phone communication. Here we model the dynamics of face-to-face interaction and mobile phone communication by a reinforcement dynamics, which explains the data observed in these different types of social interactions. We quantify the information encoded in the dynamics of these networks by the entropy of temporal networks. Finally, we show evidence that human dynamics is able to modulate the information present in social network dynamics when it follows circadian rhythms and when it is interfacing with a new technology such as the mobile-phone communication technology.
Biophysical model of prokaryotic diversity in geothermal hot springs.
Klales, Anna; Duncan, James; Nett, Elizabeth Janus; Kane, Suzanne Amador
2012-02-01
Recent studies of photosynthetic bacteria living in geothermal hot spring environments have revealed surprisingly complex ecosystems with an unexpected level of genetic diversity. One case of particular interest involves the distribution along hot spring thermal gradients of genetically distinct bacterial strains that differ in their preferred temperatures for reproduction and photosynthesis. In such systems, a single variable, temperature, defines the relevant environmental variation. In spite of this, each region along the thermal gradient exhibits multiple strains of photosynthetic bacteria adapted to several distinct thermal optima, rather than a single thermal strain adapted to the local environmental temperature. Here we analyze microbiology data from several ecological studies to show that the thermal distribution data exhibit several universal features independent of location and specific bacterial strain. These include the distribution of optimal temperatures of different thermal strains and the functional dependence of the net population density on temperature. We present a simple population dynamics model of these systems that is highly constrained by biophysical data and by physical features of the environment. This model can explain in detail the observed thermal population distributions, as well as certain features of population dynamics observed in laboratory studies of the same organisms. © 2012 American Physical Society
Modeling of a deep-seated geothermal system near Tianjin, China.
Xun, Z; Mingyou, C; Weiming, Z; Minglang, L
2001-01-01
A geothermal field is located in deep-seated basement aquifers in the northeastern part of the North China Plain near Tianjin, China. Carbonate rocks of Ordovician and Middle and Upper Proterozoic age on the Cangxian Uplift are capable of yielding 960 to 4200 m3/d of 57 degrees C to 96 degrees C water to wells from a depth of more than 1000 m. A three-dimensional nonisothermal numerical model was used to simulate and predict the spatial and temporal evolution of pressure and temperature in the geothermal system. The density of the geothermal water, which appears in the governing equations, can be expressed as a linear function of pressure, temperature, and total dissolved solids. A term describing the exchange of heat between water and rock is incorporated in the governing heat transport equation. Conductive heat flow from surrounding formations can be considered among the boundary conditions. Recent data of geothermal water production from the system were used for a first calibration of the numerical model. The calibrated model was used to predict the future changes in pressure and temperature of the geothermal water caused by two pumping schemes. The modeling results indicate that both pressure and temperature have a tendency to decrease with time and pumping. The current withdrawal rates and a pumping period of five months followed by a shut-off period of seven months are helpful in minimizing the degradation of the geothermal resource potential in the area.
Constraints and entropy in a model of network evolution
Tee, Philip; Wakeman, Ian; Parisis, George; Dawes, Jonathan; Kiss, István Z.
2017-11-01
Barabási-Albert's "Scale Free" model is the starting point for much of the accepted theory of the evolution of real world communication networks. Careful comparison of the theory with a wide range of real world networks, however, indicates that the model is in some cases, only a rough approximation to the dynamical evolution of real networks. In particular, the exponent γ of the power law distribution of degree is predicted by the model to be exactly 3, whereas in a number of real world networks it has values between 1.2 and 2.9. In addition, the degree distributions of real networks exhibit cut offs at high node degree, which indicates the existence of maximal node degrees for these networks. In this paper we propose a simple extension to the "Scale Free" model, which offers better agreement with the experimental data. This improvement is satisfying, but the model still does not explain why the attachment probabilities should favor high degree nodes, or indeed how constraints arrive in non-physical networks. Using recent advances in the analysis of the entropy of graphs at the node level we propose a first principles derivation for the "Scale Free" and "constraints" model from thermodynamic principles, and demonstrate that both preferential attachment and constraints could arise as a natural consequence of the second law of thermodynamics.
Entropy Error Model of Planar Geometry Features in GIS
Institute of Scientific and Technical Information of China (English)
LI Dajun; GUAN Yunlan; GONG Jianya; DU Daosheng
2003-01-01
Positional error of line segments is usually described by using "g-band", however, its band width is in relation to the confidence level choice. In fact, given different confidence levels, a series of concentric bands can be obtained. To overcome the effect of confidence level on the error indicator, by introducing the union entropy theory, we propose an entropy error ellipse index of point, then extend it to line segment and polygon,and establish an entropy error band of line segment and an entropy error donut of polygon. The research shows that the entropy error index can be determined uniquely and is not influenced by confidence level, and that they are suitable for positional uncertainty of planar geometry features.
Energy Technology Data Exchange (ETDEWEB)
Homuth, Sebastian; Mikisek, Philipp; Goetz, Annette E.; Sass, Ingo [Technische Univ. Darmstadt (Germany). Fachgebiet Angewandte Geothermie
2011-10-24
The thermal variations of the subsurface in the vicinity of a seasonal solar coupled geothermal probe heat storage were modeled using FEFLOW {sup registered} over a period of thirty years. The geothermal probe heat storage consists of eighty boreholes in an area of 85 square meters. The geothermal probes have a depth of 55 m and are mainly located in limestones of the Upper Muschelkalk (Triassic). The geothermal probe heat storage is thermally loaded from April to September. The thermal discharge takes place from October to March. The thermal and hydraulic input data of the model are based on three 80 meter deep geothermal probes (GWM 1-3) in the vicinity of the storage. The cores were completely lithologically, facially and finely stratigraphically affiliated. Measurements of thermal conductivity, permeability, porosity and density of 76 representative samples from the geothermal probe GWM 3 and measurements of the main fracture directions in two reference digestions at Crailsheim enabled a most realistic modeling of the storage. The results of the long-term modeling can be used for a detailed forecasting of the thermal alterations in the subsurface.
Two aspects of black hole entropy in Lanczos-Lovelock models of gravity
Kolekar, Sanved; Kothawala, Dawood; Padmanabhan, T.
2012-03-01
We consider two specific approaches to evaluate the black hole entropy which are known to produce correct results in the case of Einstein’s theory and generalize them to Lanczos-Lovelock models. In the first approach (which could be called extrinsic), we use a procedure motivated by earlier work by Pretorius, Vollick, and Israel, and by Oppenheim, and evaluate the entropy of a configuration of densely packed gravitating shells on the verge of forming a black hole in Lanczos-Lovelock theories of gravity. We find that this matter entropy is not equal to (it is less than) Wald entropy, except in the case of Einstein theory, where they are equal. The matter entropy is proportional to the Wald entropy if we consider a specific mth-order Lanczos-Lovelock model, with the proportionality constant depending on the spacetime dimensions D and the order m of the Lanczos-Lovelock theory as (D-2m)/(D-2). Since the proportionality constant depends on m, the proportionality between matter entropy and Wald entropy breaks down when we consider a sum of Lanczos-Lovelock actions involving different m. In the second approach (which could be called intrinsic), we generalize a procedure, previously introduced by Padmanabhan in the context of general relativity, to study off-shell entropy of a class of metrics with horizon using a path integral method. We consider the Euclidean action of Lanczos-Lovelock models for a class of metrics off shell and interpret it as a partition function. We show that in the case of spherically symmetric metrics, one can interpret the Euclidean action as the free energy and read off both the entropy and energy of a black hole spacetime. Surprisingly enough, this leads to exactly the Wald entropy and the energy of the spacetime in Lanczos-Lovelock models obtained by other methods. We comment on possible implications of the result.
White, Jeremy T.; Karakhanian, Arkadi; Connor, Chuck; Connor, Laura; Hughes, Joseph D.; Malservisi, Rocco; Wetmore, Paul
2015-01-01
An appreciable challenge in volcanology and geothermal resource development is to understand the relationships between volcanic systems and low-enthalpy geothermal resources. The enthalpy of an undeveloped geothermal resource in the Karckar region of Armenia is investigated by coupling geophysical and hydrothermal modeling. The results of 3-dimensional inversion of gravity data provide key inputs into a hydrothermal circulation model of the system and associated hot springs, which is used to evaluate possible geothermal system configurations. Hydraulic and thermal properties are specified using maximum a priori estimates. Limited constraints provided by temperature data collected from an existing down-gradient borehole indicate that the geothermal system can most likely be classified as low-enthalpy and liquid dominated. We find the heat source for the system is likely cooling quartz monzonite intrusions in the shallow subsurface and that meteoric recharge in the pull-apart basin circulates to depth, rises along basin-bounding faults and discharges at the hot springs. While other combinations of subsurface properties and geothermal system configurations may fit the temperature distribution equally well, we demonstrate that the low-enthalpy system is reasonably explained based largely on interpretation of surface geophysical data and relatively simple models.
A Hybrid Physical and Maximum-Entropy Landslide Susceptibility Model
Directory of Open Access Journals (Sweden)
Jerry Davis
2015-06-01
Full Text Available The clear need for accurate landslide susceptibility mapping has led to multiple approaches. Physical models are easily interpreted and have high predictive capabilities but rely on spatially explicit and accurate parameterization, which is commonly not possible. Statistical methods can include other factors influencing slope stability such as distance to roads, but rely on good landslide inventories. The maximum entropy (MaxEnt model has been widely and successfully used in species distribution mapping, because data on absence are often uncertain. Similarly, knowledge about the absence of landslides is often limited due to mapping scale or methodology. In this paper a hybrid approach is described that combines the physically-based landslide susceptibility model “Stability INdex MAPping” (SINMAP with MaxEnt. This method is tested in a coastal watershed in Pacifica, CA, USA, with a well-documented landslide history including 3 inventories of 154 scars on 1941 imagery, 142 in 1975, and 253 in 1983. Results indicate that SINMAP alone overestimated susceptibility due to insufficient data on root cohesion. Models were compared using SINMAP stability index (SI or slope alone, and SI or slope in combination with other environmental factors: curvature, a 50-m trail buffer, vegetation, and geology. For 1941 and 1975, using slope alone was similar to using SI alone; however in 1983 SI alone creates an Areas Under the receiver operator Curve (AUC of 0.785, compared with 0.749 for slope alone. In maximum-entropy models created using all environmental factors, the stability index (SI from SINMAP represented the greatest contributions in all three years (1941: 48.1%; 1975: 35.3; and 1983: 48%, with AUC of 0.795, 0822, and 0.859, respectively; however; using slope instead of SI created similar overall AUC values, likely due to the combined effect with plan curvature indicating focused hydrologic inputs and vegetation identifying the effect of root cohesion
Maximum entropy production: Can it be used to constrain conceptual hydrological models?
M.C. Westhoff; E. Zehe
2013-01-01
In recent years, optimality principles have been proposed to constrain hydrological models. The principle of maximum entropy production (MEP) is one of the proposed principles and is subject of this study. It states that a steady state system is organized in such a way that entropy production is maximized. Although successful applications have been reported in...
Black Hole Entropy Calculation in a Modified Thin Film Model Jingyi ...
Indian Academy of Sciences (India)
Abstract. The thin film model is modified to calculate the black hole entropy. The difference from the original method is that the Parikh–. Wilczek tunnelling framework is introduced and the self-gravitation of the emission particles is taken into account. In terms of our improvement, if the entropy is still proportional to the area, ...
Parameters Tuning of Model Free Adaptive Control Based on Minimum Entropy
Institute of Scientific and Technical Information of China (English)
Chao Ji; Jing Wang; Liulin Cao; Qibing Jin
2014-01-01
Dynamic linearization based model free adaptive control(MFAC) algorithm has been widely used in practical systems, in which some parameters should be tuned before it is successfully applied to process industries. Considering the random noise existing in real processes, a parameter tuning method based on minimum entropy optimization is proposed,and the feature of entropy is used to accurately describe the system uncertainty. For cases of Gaussian stochastic noise and non-Gaussian stochastic noise, an entropy recursive optimization algorithm is derived based on approximate model or identified model. The extensive simulation results show the effectiveness of the minimum entropy optimization for the partial form dynamic linearization based MFAC. The parameters tuned by the minimum entropy optimization index shows stronger stability and more robustness than these tuned by other traditional index,such as integral of the squared error(ISE) or integral of timeweighted absolute error(ITAE), when the system stochastic noise exists.
On the maximum-entropy/autoregressive modeling of time series
Chao, B. F.
1984-01-01
The autoregressive (AR) model of a random process is interpreted in the light of the Prony's relation which relates a complex conjugate pair of poles of the AR process in the z-plane (or the z domain) on the one hand, to the complex frequency of one complex harmonic function in the time domain on the other. Thus the AR model of a time series is one that models the time series as a linear combination of complex harmonic functions, which include pure sinusoids and real exponentials as special cases. An AR model is completely determined by its z-domain pole configuration. The maximum-entropy/autogressive (ME/AR) spectrum, defined on the unit circle of the z-plane (or the frequency domain), is nothing but a convenient, but ambiguous visual representation. It is asserted that the position and shape of a spectral peak is determined by the corresponding complex frequency, and the height of the spectral peak contains little information about the complex amplitude of the complex harmonic functions.
Entropy-Based Model for Interpreting Life Systems in Traditional Chinese Medicine
Directory of Open Access Journals (Sweden)
Guo-lian Kang
2008-01-01
Full Text Available Traditional Chinese medicine (TCM treats qi as the core of the human life systems. Starting with a hypothetical correlation between TCM qi and the entropy theory, we address in this article a holistic model for evaluating and unveiling the rule of TCM life systems. Several new concepts such as acquired life entropy (ALE, acquired life entropy flow (ALEF and acquired life entropy production (ALEP are propounded to interpret TCM life systems. Using the entropy theory, mathematical models are established for ALE, ALEF and ALEP, which reflect the evolution of life systems. Some criteria are given on physiological activities and pathological changes of the body in different stages of life. Moreover, a real data-based simulation shows life entropies of the human body with different ages, Cold and Hot constitutions and in different seasons in North China are coincided with the manifestations of qi as well as the life evolution in TCM descriptions. Especially, based on the comparative and quantitative analysis, the entropy-based model can nicely describe the evolution of life entropies in Cold and Hot individuals thereby fitting the Yin–Yang theory in TCM. Thus, this work establishes a novel approach to interpret the fundamental principles in TCM, and provides an alternative understanding for the complex life systems.
DEFF Research Database (Denmark)
Salimzadeh, Saeed; Paluszny, Adriana; Nick, Hamidreza M.
2018-01-01
A fully coupled thermal-hydraulic-mechanical (THM) finite element model is presented for fractured geothermal reservoirs. Fractures are modelled as surface discontinuities within a three-dimensional matrix. Non-isothermal flow through the rock matrix and fractures are defined and coupled to a mec......A fully coupled thermal-hydraulic-mechanical (THM) finite element model is presented for fractured geothermal reservoirs. Fractures are modelled as surface discontinuities within a three-dimensional matrix. Non-isothermal flow through the rock matrix and fractures are defined and coupled....... The model has been validated against several analytical solutions, and applied to study the effects of the deformable fractures on the injection of cold water in fractured geothermal systems. Results show that the creation of flow channelling due to the thermal volumetric contraction of the rock matrix...
Numerical Simulation of Entropy Growth for a Nonlinear Evolutionary Model of Random Markets
Directory of Open Access Journals (Sweden)
Mahdi Keshtkar
2016-01-01
Full Text Available In this communication, the generalized continuous economic model for random markets is revisited. In this model for random markets, agents trade by pairs and exchange their money in a random and conservative way. They display the exponential wealth distribution as asymptotic equilibrium, independently of the effectiveness of the transactions and of the limitation of the total wealth. In the current work, entropy of mentioned model is defined and then some theorems on entropy growth of this evolutionary problem are given. Furthermore, the entropy increasing by simulation on some numerical examples is verified.
Studies on entanglement entropy for Hubbard model with hole-doping and external magnetic field
International Nuclear Information System (INIS)
Yao, K.L.; Li, Y.C.; Sun, X.Z.; Liu, Q.M.; Qin, Y.; Fu, H.H.; Gao, G.Y.
2005-01-01
By using the density matrix renormalization group (DMRG) method for the one-dimensional (1D) Hubbard model, we have studied the von Neumann entropy of a quantum system, which describes the entanglement of the system block and the rest of the chain. It is found that there is a close relation between the entanglement entropy and properties of the system. The hole-doping can alter the charge-charge and spin-spin interactions, resulting in charge polarization along the chain. By comparing the results before and after the doping, we find that doping favors increase of the von Neumann entropy and thus also favors the exchange of information along the chain. Furthermore, we calculated the spin and entropy distribution in external magnetic filed. It is confirmed that both the charge-charge and the spin-spin interactions affect the exchange of information along the chain, making the entanglement entropy redistribute
Entropy-based model for miRNA isoform analysis.
Directory of Open Access Journals (Sweden)
Shengqin Wang
Full Text Available MiRNAs have been widely studied due to their important post-transcriptional regulatory roles in gene expression. Many reports have demonstrated the evidence of miRNA isoform products (isomiRs in high-throughput small RNA sequencing data. However, the biological function involved in these molecules is still not well investigated. Here, we developed a Shannon entropy-based model to estimate isomiR expression profiles of high-throughput small RNA sequencing data extracted from miRBase webserver. By using the Kolmogorov-Smirnov statistical test (KS test, we demonstrated that the 5p and 3p miRNAs present more variants than the single arm miRNAs. We also found that the isomiR variant, except the 3' isomiR variant, is strongly correlated with Minimum Free Energy (MFE of pre-miRNA, suggesting the intrinsic feature of pre-miRNA should be one of the important factors for the miRNA regulation. The functional enrichment analysis showed that the miRNAs with high variation, particularly the 5' end variation, are enriched in a set of critical functions, supporting these molecules should not be randomly produced. Our results provide a probabilistic framework for miRNA isoforms analysis, and give functional insights into pre-miRNA processing.
Bianchi, Eugenio; De Lorenzo, Tommaso; Smerlak, Matteo
2015-06-01
We study the dynamics of vacuum entanglement in the process of gravitational collapse and subsequent black hole evaporation. In the first part of the paper, we introduce a covariant regularization of entanglement entropy tailored to curved spacetimes; this regularization allows us to propose precise definitions for the concepts of black hole "exterior entropy" and "radiation entropy." For a Vaidya model of collapse we find results consistent with the standard thermodynamic properties of Hawking radiation. In the second part of the paper, we compute the vacuum entanglement entropy of various spherically-symmetric spacetimes of interest, including the nonsingular black hole model of Bardeen, Hayward, Frolov and Rovelli-Vidotto and the "black hole fireworks" model of Haggard-Rovelli. We discuss specifically the role of event and trapping horizons in connection with the behavior of the radiation entropy at future null infinity. We observe in particular that ( i) in the presence of an event horizon the radiation entropy diverges at the end of the evaporation process, ( ii) in models of nonsingular evaporation (with a trapped region but no event horizon) the generalized second law holds only at early times and is violated in the "purifying" phase, ( iii) at late times the radiation entropy can become negative (i.e. the radiation can be less correlated than the vacuum) before going back to zero leading to an up-down-up behavior for the Page curve of a unitarily evaporating black hole.
Guglielmetti, L.; Comina, C.; Abdelfettah, Y.; Schill, E.; Mandrone, G.
2013-11-01
Thermal sources are common manifestations of geothermal energy resources in Alpine regions. The up-flow of the fluid is well-known to be often linked to cross-cutting fault zones providing a significant volume of fractures. Since conventional exploration methods are challenging in such areas of high topography and complicated logistics, 3D geological modeling based on structural investigation becomes a useful tool for assessing the overall geology of the investigated sites. Geological modeling alone is, however, less effective if not integrated with deep subsurface investigations that could provide a first order information on geological boundaries and an imaging of geological structures. With this aim, in the present paper the combined use of 3D geological modeling and gravity surveys for geothermal prospection of a hydrothermal area in the western Alps was carried out on two sites located in the Argentera Massif (NW Italy). The geothermal activity of the area is revealed by thermal anomalies with surface evidences, such as hot springs, at temperatures up to 70 °C. Integration of gravity measurements and 3D modeling investigates the potential of this approach in the context of geothermal exploration in Alpine regions where a very complex geological and structural setting is expected. The approach used in the present work is based on the comparison between the observed gravity and the gravity effect of the 3D geological models, in order to enhance local effects related to the geothermal system. It is shown that a correct integration of 3D modeling and detailed geophysical survey could allow a better characterization of geological structures involved in geothermal fluids circulation. Particularly, gravity inversions have successfully delineated the continuity in depth of low density structures, such as faults and fractured bands observed at the surface, and have been of great help in improving the overall geological model.
Modeling Highly Buoyant Flows in the Castel Giorgio: Torre Alfina Deep Geothermal Reservoir
Directory of Open Access Journals (Sweden)
Giorgio Volpi
2018-01-01
Full Text Available The Castel Giorgio-Torre Alfina (CG-TA, central Italy is a geothermal reservoir whose fluids are hosted in a carbonate formation at temperatures ranging between 120°C and 210°C. Data from deep wells suggest the existence of convective flow. We present the 3D numerical model of the CG-TA to simulate the undisturbed natural geothermal field and investigate the impacts of the exploitation process. The open source finite-element code OpenGeoSys is applied to solve the coupled systems of partial differential equations. The commercial software FEFLOW® is also used as additional numerical constraint. Calculated pressure and temperature have been calibrated against data from geothermal wells. The flow field displays multicellular convective patterns that cover the entire geothermal reservoir. The resulting thermal plumes protrude vertically over 3 km at Darcy velocity of about 7⁎10-8 m/s. The analysis of the exploitation process demonstrated the sustainability of a geothermal doublet for the development of a 5 MW pilot plant. The buoyant circulation within the geothermal system allows the reservoir to sustain a 50-year production at a flow rate of 1050 t/h. The distance of 2 km, between the production and reinjection wells, is sufficient to prevent any thermal breakthrough within the estimated operational lifetime. OGS and FELFOW results are qualitatively very similar with differences in peak velocities and temperatures. The case study provides valuable guidelines for future exploitation of the CG-TA deep geothermal reservoir.
Sustainability analysis of the Ahuachapan geothermal field: management and modeling
Energy Technology Data Exchange (ETDEWEB)
Monterrosa, Manuel; Montalvo Lopez, Francisco E. [LaGeo S.A. de C.V., Reservoir Engineering, 15 Av. Sur, Colonia Utila, Santa Tecla, La Libertad (El Salvador)
2010-12-15
The Ahuachapan geothermal field (AGF) is located in north western El Salvador. To date, 53 wells (20 producers and 8 injectors) have been drilled in the Ahuachapan geothermal field and the adjacent Chipilapa area. Over the past 33 years, 550 Mtonnes have been extracted from the reservoir, and the reservoir pressure has declined by more than 15 bars. By 1985, the large pressure drawdown due to over-exploitation of the resource reduced the power generation capacity to only 45 MW{sub e}. Several activities were carried out in the period 1997-2005 as part of ''stabilization'' and ''optimization'' projects to increase the electric energy generation to 85 MW{sub e}, with a total mass extraction of 850 kg/s. LaGeo is assessing the sustainability of geothermal reservoir utilization. Preliminary results indicate the planned power production and mass extraction (95 MW, 900 kg/s) cannot be sustained for more than 50 years using current power plant technology. To sustain the exploitation for at least 100 years, the following changes should be implemented: (1) improve the gathering system using large-diameter steam pipelines, (2) expand the exploitation area to the southeast and southwest, and (3) reduce the inlet pressure of the turbines to less than 4 bars. (author)
Better temperature predictions in geothermal modelling by improved quality of input parameters
DEFF Research Database (Denmark)
Fuchs, Sven; Bording, Thue Sylvester; Balling, N.
2015-01-01
Thermal modelling is used to examine the subsurface temperature field and geothermal conditions at various scales (e.g. sedimentary basins, deep crust) and in the framework of different problem settings (e.g. scientific or industrial use). In such models, knowledge of rock thermal properties...
Ugarte, Juan P; Orozco-Duque, Andrés; Tobón, Catalina; Kremen, Vaclav; Novak, Daniel; Saiz, Javier; Oesterlein, Tobias; Schmitt, Clauss; Luik, Armin; Bustamante, John
2014-01-01
There is evidence that rotors could be drivers that maintain atrial fibrillation. Complex fractionated atrial electrograms have been located in rotor tip areas. However, the concept of electrogram fractionation, defined using time intervals, is still controversial as a tool for locating target sites for ablation. We hypothesize that the fractionation phenomenon is better described using non-linear dynamic measures, such as approximate entropy, and that this tool could be used for locating the rotor tip. The aim of this work has been to determine the relationship between approximate entropy and fractionated electrograms, and to develop a new tool for rotor mapping based on fractionation levels. Two episodes of chronic atrial fibrillation were simulated in a 3D human atrial model, in which rotors were observed. Dynamic approximate entropy maps were calculated using unipolar electrogram signals generated over the whole surface of the 3D atrial model. In addition, we optimized the approximate entropy calculation using two real multi-center databases of fractionated electrogram signals, labeled in 4 levels of fractionation. We found that the values of approximate entropy and the levels of fractionation are positively correlated. This allows the dynamic approximate entropy maps to localize the tips from stable and meandering rotors. Furthermore, we assessed the optimized approximate entropy using bipolar electrograms generated over a vicinity enclosing a rotor, achieving rotor detection. Our results suggest that high approximate entropy values are able to detect a high level of fractionation and to locate rotor tips in simulated atrial fibrillation episodes. We suggest that dynamic approximate entropy maps could become a tool for atrial fibrillation rotor mapping.
Ugarte, Juan P.; Orozco-Duque, Andrés; Tobón, Catalina; Kremen, Vaclav; Novak, Daniel; Saiz, Javier; Oesterlein, Tobias; Schmitt, Clauss; Luik, Armin; Bustamante, John
2014-01-01
There is evidence that rotors could be drivers that maintain atrial fibrillation. Complex fractionated atrial electrograms have been located in rotor tip areas. However, the concept of electrogram fractionation, defined using time intervals, is still controversial as a tool for locating target sites for ablation. We hypothesize that the fractionation phenomenon is better described using non-linear dynamic measures, such as approximate entropy, and that this tool could be used for locating the rotor tip. The aim of this work has been to determine the relationship between approximate entropy and fractionated electrograms, and to develop a new tool for rotor mapping based on fractionation levels. Two episodes of chronic atrial fibrillation were simulated in a 3D human atrial model, in which rotors were observed. Dynamic approximate entropy maps were calculated using unipolar electrogram signals generated over the whole surface of the 3D atrial model. In addition, we optimized the approximate entropy calculation using two real multi-center databases of fractionated electrogram signals, labeled in 4 levels of fractionation. We found that the values of approximate entropy and the levels of fractionation are positively correlated. This allows the dynamic approximate entropy maps to localize the tips from stable and meandering rotors. Furthermore, we assessed the optimized approximate entropy using bipolar electrograms generated over a vicinity enclosing a rotor, achieving rotor detection. Our results suggest that high approximate entropy values are able to detect a high level of fractionation and to locate rotor tips in simulated atrial fibrillation episodes. We suggest that dynamic approximate entropy maps could become a tool for atrial fibrillation rotor mapping. PMID:25489858
Energy Technology Data Exchange (ETDEWEB)
Kiryukhin, Alexey V. [Institute of Volcanology and Seismology FEB RAS, Piip-9, P-Kamchatsky 683006 (Russian Federation); Asaulova, Natalia P. [Kamchatskburgeotemia Enterprise, Krasheninnikova-1, Thermalny, Kamchatka 684035 (Russian Federation); Finsterle, Stefan [Lawrence Berkeley National Laboratory, MS 90-1116, One Cyclotron Road, Berkeley, CA 94720 (United States)
2008-10-15
A three-dimensional numerical model of the Pauzhetsky geothermal field has been developed based on a conceptual hydrogeological model of the system. It extends over a 13.6-km{sup 2} area and includes three layers: (1) a base layer with inflow; (2) a geothermal reservoir; and (3) an upper layer with discharge and recharge/infiltration areas. Using the computer program iTOUGH2 [Finsterle, S., 2004. Multiphase inverse modeling: review and iTOUGH2 applications. Vadose Zone J. 3, 747-762], the model is calibrated to a total of 13,675 calibration points, combining natural-state and 1960-2006 exploitation data. The principal model parameters identified and estimated by inverse modeling include the fracture permeability and fracture porosity of the geothermal reservoir, the initial natural upflow rate, the base-layer porosity, and the permeabilities of the infiltration zones. Heat and mass balances derived from the calibrated model helped identify the sources of the geothermal reserves in the field. With the addition of five make-up wells, simulation forecasts for the 2007-2032 period predict a sustainable average steam production of 29 kg/s, which is sufficient to maintain the generation of 6.8 MWe at the Pauzhetsky power plant. (author)
ENTROPY CHARACTERISTICS IN MODELS FOR COORDINATION OF NEIGHBORING ROAD SECTIONS
Directory of Open Access Journals (Sweden)
N. I. Kulbashnaya
2016-01-01
Full Text Available The paper considers an application of entropy characteristics as criteria to coordinate traffic conditions at neighboring road sections. It has been proved that the entropy characteristics are widely used in the methods that take into account information influence of the environment on drivers and in the mechanisms that create such traffic conditions which ensure preservation of the optimal level of driver’s emotional tension during the drive. Solution of such problem is considered in the aspect of coordination of traffic conditions at neighboring road sections that, in its turn, is directed on exclusion of any driver’s transitional processes. Methodology for coordination of traffic conditions at neighboring road sections is based on the E. V. Gavrilov’s concept on coordination of some parameters of road sections which can be expressed in the entropy characteristics. The paper proposes to execute selection of coordination criteria according to accident rates because while moving along neighboring road sections traffic conditions change drastically that can result in creation of an accident situation. Relative organization of a driver’s perception field and driver’s interaction with the traffic environment has been selected as entropy characteristics. Therefore, the given characteristics are made conditional to the road accidents rate. The investigation results have revealed a strong correlation between the relative organization of the driver’s perception field and the relative organization of the driver’s interaction with the traffic environment and the accident rate. Results of the executed experiment have proved an influence of the accident rate on the investigated entropy characteristics.
Entropy analysis on non-equilibrium two-phase flow models
International Nuclear Information System (INIS)
Karwat, H.; Ruan, Y.Q.
1995-01-01
A method of entropy analysis according to the second law of thermodynamics is proposed for the assessment of a class of practical non-equilibrium two-phase flow models. Entropy conditions are derived directly from a local instantaneous formulation for an arbitrary control volume of a structural two-phase fluid, which are finally expressed in terms of the averaged thermodynamic independent variables and their time derivatives as well as the boundary conditions for the volume. On the basis of a widely used thermal-hydraulic system code it is demonstrated with practical examples that entropy production rates in control volumes can be numerically quantified by using the data from the output data files. Entropy analysis using the proposed method is useful in identifying some potential problems in two-phase flow models and predictions as well as in studying the effects of some free parameters in closure relationships
Entropy analysis on non-equilibrium two-phase flow models
Energy Technology Data Exchange (ETDEWEB)
Karwat, H.; Ruan, Y.Q. [Technische Universitaet Muenchen, Garching (Germany)
1995-09-01
A method of entropy analysis according to the second law of thermodynamics is proposed for the assessment of a class of practical non-equilibrium two-phase flow models. Entropy conditions are derived directly from a local instantaneous formulation for an arbitrary control volume of a structural two-phase fluid, which are finally expressed in terms of the averaged thermodynamic independent variables and their time derivatives as well as the boundary conditions for the volume. On the basis of a widely used thermal-hydraulic system code it is demonstrated with practical examples that entropy production rates in control volumes can be numerically quantified by using the data from the output data files. Entropy analysis using the proposed method is useful in identifying some potential problems in two-phase flow models and predictions as well as in studying the effects of some free parameters in closure relationships.
International Nuclear Information System (INIS)
Bianchi, Eugenio; Lorenzo, Tommaso De; Smerlak, Matteo
2015-01-01
We study the dynamics of vacuum entanglement in the process of gravitational collapse and subsequent black hole evaporation. In the first part of the paper, we introduce a covariant regularization of entanglement entropy tailored to curved spacetimes; this regularization allows us to propose precise definitions for the concepts of black hole “exterior entropy” and “radiation entropy.” For a Vaidya model of collapse we find results consistent with the standard thermodynamic properties of Hawking radiation. In the second part of the paper, we compute the vacuum entanglement entropy of various spherically-symmetric spacetimes of interest, including the nonsingular black hole model of Bardeen, Hayward, Frolov and Rovelli-Vidotto and the “black hole fireworks” model of Haggard-Rovelli. We discuss specifically the role of event and trapping horizons in connection with the behavior of the radiation entropy at future null infinity. We observe in particular that (i) in the presence of an event horizon the radiation entropy diverges at the end of the evaporation process, (ii) in models of nonsingular evaporation (with a trapped region but no event horizon) the generalized second law holds only at early times and is violated in the “purifying” phase, (iii) at late times the radiation entropy can become negative (i.e. the radiation can be less correlated than the vacuum) before going back to zero leading to an up-down-up behavior for the Page curve of a unitarily evaporating black hole.
Energy Technology Data Exchange (ETDEWEB)
Finsterle, Stefan; Kiryukhin, A.V.; Asaulova, N.P.; Finsterle, S.
2008-04-01
A three-dimensional numerical model of the Pauzhetsky geothermal field has been developed based on a conceptual hydrogeological model of the system. It extends over a 13.6-km2 area and includes three layers: (1) a base layer with inflow; (2) a geothermal reservoir; and (3) an upper layer with discharge and recharge/infiltration areas. Using the computer program iTOUGH2 (Finsterle, 2004), the model is calibrated to a total of 13,675 calibration points, combining natural-state and 1960-2006 exploitation data. The principal model parameters identified and estimated by inverse modeling include the fracture permeability and fracture porosity of the geothermal reservoir, the initial natural upflow rate, the base-layer porosity, and the permeabilities of the infiltration zones. Heat and mass balances derived from the calibrated model helped identify the sources of the geothermal reserves in the field. With the addition of five makeup wells, simulation forecasts for the 2007-2032 period predict a sustainable average steam production of 29 kg/s, which is sufficient to maintain the generation of 6.8 MWe at the Pauzhetsky power plant.
Energy Technology Data Exchange (ETDEWEB)
Blackwell, D.D.
1998-04-25
During this first quarter of the second year of the contract activity has involved several different tasks. The author has continued to work on three tasks most intensively during this quarter: the task of implementing the data base for geothermal system temperature-depth, the maintenance of the WWW site with the heat flow and gradient data base, and finally the development of a modeling capability for analysis of the geothermal system exploration data. The author has completed the task of developing a data base template for geothermal system temperature-depth data that can be used in conjunction with the regional data base that he had already developed and is now implementing it. Progress is described.
Dynamic modeling of а heating system using geothermal energy and storage tank
Directory of Open Access Journals (Sweden)
Milanović Predrag D.
2012-01-01
Full Text Available This paper analyzes a greenhouse heating system using geothermal energy and storage tank and the possibility of utilization of insufficient amount of heat from geothermal sources during the periods with low outside air temperatures. Crucial for these analyses is modelling of the necessary yearly energy requirements for greenhouse heating. The results of these analyses enable calculation of an appropriate storage tank capacity so that the energy efficiency of greenhouse heating system with geothermal energy could be significantly improved. [Acknowledgement. This work was supported by Ministry of Science and Technology Development of the Republic of Serbia through the National Energy Efficiency Program (Grant 18234 A. The authors are thankful to the stuff and management of the Company “Farmakom MB PIK 7. juli - Debrc” for their assistance during the realization of this project.
Down-Hole Heat Exchangers: Modelling of a Low-Enthalpy Geothermal System for District Heating
Directory of Open Access Journals (Sweden)
M. Carlini
2012-01-01
Full Text Available In order to face the growing energy demands, renewable energy sources can provide an alternative to fossil fuels. Thus, low-enthalpy geothermal plants may play a fundamental role in those areas—such as the Province of Viterbo—where shallow groundwater basins occur and conventional geothermal plants cannot be developed. This may lead to being fuelled by locally available sources. The aim of the present paper is to exploit the heat coming from a low-enthalpy geothermal system. The experimental plant consists in a down-hole heat exchanger for civil purposes and can supply thermal needs by district heating. An implementation in MATLAB environment is provided in order to develop a mathematical model. As a consequence, the amount of withdrawable heat can be successfully calculated.
Simulation-economic model of using the geothermal energy of Uzbekistan
International Nuclear Information System (INIS)
Mukhamedov, R.S.; Yuksel, B.
1990-01-01
Although a wide range of estimates with different authors have the common view that Soviet Central Asia is a region ranking among the first in the USSR in terms of geothermal resources which are economically feasible for exploitation. Uzbekistan has the highest potential in the region. The areas inside the republic's territory which have particularly high geothermal energy potential are: the Fergana fracture, specifically the Adrusman-Chust anomaly, the Ustyurt plateau, the southern coast of the Aral Sea, and a group of small artesian basins in the heart of the Kyzyl Kum desert. The ultimate goal of this paper is to construct a simulation-economic model with the following characteristics: minimum effect on the ecological situation in the republic; minimum cost; heat and mass transfer in geological and geothermal structures; economic parameters for different technological systems
Thermal modeling of step-out targets at the Soda Lake geothermal field, Churchill County, Nevada
Dingwall, Ryan Kenneth
Temperature data at the Soda Lake geothermal field in the southeastern Carson Sink, Nevada, highlight an intense thermal anomaly. The geothermal field produces roughly 11 MWe from two power producing facilities which are rated to 23 MWe. The low output is attributed to the inability to locate and produce sufficient volumes of fluid at adequate temperature. Additionally, the current producing area has experienced declining production temperatures over its 40 year history. Two step-out targets adjacent to the main field have been identified that have the potential to increase production and extend the life of the field. Though shallow temperatures in the two subsidiary areas are significantly less than those found within the main anomaly, measurements in deeper wells (>1,000 m) show that temperatures viable for utilization are present. High-pass filtering of the available complete Bouguer gravity data indicates that geothermal flow is present within the shallow sediments of the two subsidiary areas. Significant faulting is observed in the seismic data in both of the subsidiary areas. These structures are highlighted in the seismic similarity attribute calculated as part of this study. One possible conceptual model for the geothermal system(s) at the step-out targets indicated upflow along these faults from depth. In order to test this hypothesis, three-dimensional computer models were constructed in order to observe the temperatures that would result from geothermal flow along the observed fault planes. Results indicate that the observed faults are viable hosts for the geothermal system(s) in the step-out areas. Subsequently, these faults are proposed as targets for future exploration focus and step-out drilling.
D'Arpa, S.; Zaccarelli, N.; Bruno, D. E.; Leucci, G.; Uricchio, V. F.; Zurlini, G.
2012-04-01
Geothermal heat can be used directly in many applications (agro-industrial processes, sanitary hot water production, heating/cooling systems, etc.). These applications respond to energetic and environmental sustainability criteria, ensuring substantial energy savings with low environmental impacts. In particular, in Mediterranean cultural landscapes the exploitation of geothermal energy offers a valuable alternative compared to other exploitation systems more land-consuming and visual-impact. However, low enthalpy geothermal energy applications at regional scale, require careful design and planning to fully exploit benefits and reduce drawbacks. We propose a first example of application of a Geographically Weighted Regression (GWR) for the modeling of geothermal potential in the Apulia Region (South Italy) by integrating hydrological (e.g. depth to water table, water speed and temperature), geological-geotechnical (e.g. lithology, thermal conductivity) parameters and land-use indicators. The GWR model can effectively cope with data quality, spatial anisotropy, lack of stationarity and presence of discontinuities in the underlying data maps. The geothermal potential assessment required a good knowledge of the space-time variation of the numerous parameters related to the status of geothermal resource, a contextual analysis of spatial and environmental features, as well as the presence and nature of regulations or infrastructures constraints. We create an ad hoc geodatabase within ArcGIS 10 collecting relevant data and performing a quality assessment. Cross-validation shows high level of consistency of the spatial local models, as well as error maps can depict areas of lower reliability. Based on low enthalpy geothermal potential map created, a first zoning of the study area is proposed, considering four level of possible exploitation. Such zoning is linked and refined by the actual legal constraints acting at regional or province level as enforced by the regional
Chao, Anne; Jost, Lou; Hsieh, T C; Ma, K H; Sherwin, William B; Rollins, Lee Ann
2015-01-01
Shannon entropy H and related measures are increasingly used in molecular ecology and population genetics because (1) unlike measures based on heterozygosity or allele number, these measures weigh alleles in proportion to their population fraction, thus capturing a previously-ignored aspect of allele frequency distributions that may be important in many applications; (2) these measures connect directly to the rich predictive mathematics of information theory; (3) Shannon entropy is completely additive and has an explicitly hierarchical nature; and (4) Shannon entropy-based differentiation measures obey strong monotonicity properties that heterozygosity-based measures lack. We derive simple new expressions for the expected values of the Shannon entropy of the equilibrium allele distribution at a neutral locus in a single isolated population under two models of mutation: the infinite allele model and the stepwise mutation model. Surprisingly, this complex stochastic system for each model has an entropy expressable as a simple combination of well-known mathematical functions. Moreover, entropy- and heterozygosity-based measures for each model are linked by simple relationships that are shown by simulations to be approximately valid even far from equilibrium. We also identify a bridge between the two models of mutation. We apply our approach to subdivided populations which follow the finite island model, obtaining the Shannon entropy of the equilibrium allele distributions of the subpopulations and of the total population. We also derive the expected mutual information and normalized mutual information ("Shannon differentiation") between subpopulations at equilibrium, and identify the model parameters that determine them. We apply our measures to data from the common starling (Sturnus vulgaris) in Australia. Our measures provide a test for neutrality that is robust to violations of equilibrium assumptions, as verified on real world data from starlings.
Directory of Open Access Journals (Sweden)
Anne Chao
Full Text Available Shannon entropy H and related measures are increasingly used in molecular ecology and population genetics because (1 unlike measures based on heterozygosity or allele number, these measures weigh alleles in proportion to their population fraction, thus capturing a previously-ignored aspect of allele frequency distributions that may be important in many applications; (2 these measures connect directly to the rich predictive mathematics of information theory; (3 Shannon entropy is completely additive and has an explicitly hierarchical nature; and (4 Shannon entropy-based differentiation measures obey strong monotonicity properties that heterozygosity-based measures lack. We derive simple new expressions for the expected values of the Shannon entropy of the equilibrium allele distribution at a neutral locus in a single isolated population under two models of mutation: the infinite allele model and the stepwise mutation model. Surprisingly, this complex stochastic system for each model has an entropy expressable as a simple combination of well-known mathematical functions. Moreover, entropy- and heterozygosity-based measures for each model are linked by simple relationships that are shown by simulations to be approximately valid even far from equilibrium. We also identify a bridge between the two models of mutation. We apply our approach to subdivided populations which follow the finite island model, obtaining the Shannon entropy of the equilibrium allele distributions of the subpopulations and of the total population. We also derive the expected mutual information and normalized mutual information ("Shannon differentiation" between subpopulations at equilibrium, and identify the model parameters that determine them. We apply our measures to data from the common starling (Sturnus vulgaris in Australia. Our measures provide a test for neutrality that is robust to violations of equilibrium assumptions, as verified on real world data from starlings.
Landau damping: the mechanics model and its ultimate entropy gain
International Nuclear Information System (INIS)
Hannay, J H; Kluge, Michel
2011-01-01
Classical mechanics has only been invoked to account for Landau damping in a rather half-hearted way, alongside plasma perturbation theory. In particular this invocation is essential for the study of the saturation, or post-linear (or 'nonlinear') regime of the damping initiated by Dawson and O'Neill. By embracing mechanics wholeheartedly here, with its attendant phase space, one can access results, old and new, cleanly and directly, and with one fewer numerical integration for the post-linear regime. By using a summation technique familiar in semiclassical quantum mechanics (Poisson summation), the one remaining numerical integration can be much improved in accuracy. Also accessible from mechanics is the ultimate entropy gain. Though zero for any finite time (in the absence of coarse graining), the entropy gain is ultimately non-zero (at infinite time the required coarse graining is zero). It is calculated analytically by using the appropriate asymptotics, hitherto not fully exploited.
Chaos control in an economic model via minimum entropy strategy
Energy Technology Data Exchange (ETDEWEB)
Salarieh, Hassan [Center of Excellence in Design, Robotics and Automation, Department of Mechanical Engineering, Sharif University of Technology, P.O. Box 11365-9567, Tehran (Iran, Islamic Republic of)], E-mail: salarieh@mech.sharif.edu; Alasty, Aria [Center of Excellence in Design, Robotics and Automation, Department of Mechanical Engineering, Sharif University of Technology, P.O. Box 11365-9567, Tehran (Iran, Islamic Republic of); National Research Institute for Science Policy (NRISP), Soheil Street, Shirazi Avenue, Tehran (Iran, Islamic Republic of)], E-mail: aalasti@sharif.edu
2009-04-30
In this paper, minimum entropy algorithm for controlling chaos, is applied to a Cournot duopoly with different constant marginal costs, as a discrete-time dynamical system which shows chaotic behavior. The ME control is implemented through delayed feedback. It is assumed that the equations of the dynamical system are not known, so the feedback gain cannot be obtained analytically from the system equations. In the ME method the feedback gain is obtained adaptively in such a way that the entropy of the system converges to zero, hence a fixed point of the system will be stabilized. Application of the proposed method with different economic control strategies is numerically investigated. Simulation results show the effectiveness of the ME method for controlling chaos in economic systems with unknown equations.
Application of a computer model to the study of the geothermic field of Mofete, Italy
Energy Technology Data Exchange (ETDEWEB)
Giannone, G.; Turriani, C; Pistellie, E
1984-01-01
The aim of the study was to develop a reliable and comprehensive reservoir simulation package for a better understanding of ''in-situ'' processes pertinent to geothermal reservoir hydrodynamics and thermodynamics, and to enable an assessment of optimum reservoir management strategies as to production and reinjection policies. The study consists of four parts: The first deals with the computer programme. This is based on a programme called ''CHARG''developed in the US. Some adaptation was necessary. The second part concerns the fall-off and pit-tests of the geothermal well close to Naples ''Mofete 2''. This has been a crucial test for the CHARG model using asymmetric cylindrical coordinates and 14 different layers. Part three deals with predictions about longevity of the geothermal field of Mofete. The area is divided into 2500 blocs distibuted over 14 layers. Several configurations (various numbers of production and reinjection wells) have been tested. The last chapter delas with a comparison between the ISMES reservoir model, based on the finite elements approach and the AGIP model (finite differences). Both models give nearly the same results when applied to the geothermal field of Travale.
Hydrogeochemistry and reservoir model of Fuzhou geothermal field, China
Huang, H. F.; Goff, Fraser
1986-03-01
Fuzhou geothermal field is a low- to intermediate-temperature geothermal system consisting of meteoric water that circulates deeply along faults. The area of the field is about 9 km 2 but it is elongated in a NNW-trending direction. Fluids in the field are controlled by a series of four NNW extensional faults in Cretaceous granitic basement (Fuzhou fault zone). These faults feed warm waters into overlying permeable Quaternary sediments. The hydrothermal system consists of north and south parts whose chemical compositions are subtly different. In the northern part the system discharges sulfate/chloride waters with relatively low chloride concentrations, but in the south the system discharges chloride waters having relatively high chloride concentrations. Maximum wellhead temperatures are 97°C, which agrees with the chalcedony geothermometer in many cases. Based on the solubility of quartz, the deep-reservoir temperature cannot exceed 123 to 131°C. From heat and mass balance calculations, we conclude that the present total extracted capacity of fluid from the reservoir (20,000 tons/day) could be doubled without noticeable drawdown. We estimate the recoverable heat in the reservoir to be about 1.71 × 10 11 MJ.
3D Geothermal Modelling of the Mount Amiata Hydrothermal System in Italy
Directory of Open Access Journals (Sweden)
Paolo Fulignati
2014-11-01
Full Text Available In this paper we build a subsurface model that helps in visualizing and understanding the structural framework, geology and their interactions with the Mt. Amiata geothermal system. Modelling in 3D provides the possibility to interpolate the geometry of structures and is an effective way of understanding geological features. The 3D modelling approach appears to be crucial for further progress in the reconstruction of the assessment of the geothermal model of Mt. Amiata. Furthermore, this model is used as the basis of a 3D numerical thermo-fluid-dynamic model of the existing reservoir(s. The integration between borehole data and numerical modelling results allows reconstructing the temperature distribution in the subsoil of the Mt. Amiata area.
Nielsen, Lars Henrik; Sparre Andersen, Morten; Balling, Niels; Boldreel, Lars Ole; Fuchs, Sven; Leth Hjuler, Morten; Kristensen, Lars; Mathiesen, Anders; Olivarius, Mette; Weibel, Rikke
2017-04-01
Knowledge of structural, hydraulic and thermal conditions of the subsurface is fundamental for the planning and use of hydrothermal energy. In the framework of a project under the Danish Research program 'Sustainable Energy and Environment' funded by the 'Danish Agency for Science, Technology and Innovation', fundamental geological and geophysical information of importance for the utilization of geothermal energy in Denmark was compiled, analyzed and re-interpreted. A 3D geological model was constructed and used as structural basis for the development of a national subsurface temperature model. In that frame, all available reflection seismic data were interpreted, quality controlled and integrated to improve the regional structural understanding. The analyses and interpretation of available relevant data (i.e. old and new seismic profiles, core and well-log data, literature data) and a new time-depth conversion allowed a consistent correlation of seismic surfaces for whole Denmark and across tectonic features. On this basis, new topologically consistent depth and thickness maps for 16 geological units from the top pre-Zechstein to the surface were drawn. A new 3D structural geological model was developed with special emphasis on potential geothermal reservoirs. The interpretation of petrophysical data (core data and well-logs) allows to evaluate the hydraulic and thermal properties of potential geothermal reservoirs and to develop a parameterized numerical 3D conductive subsurface temperature model. Reservoir properties and quality were estimated by integrating petrography and diagenesis studies with porosity-permeability data. Detailed interpretation of the reservoir quality of the geological formations was made by estimating net reservoir sandstone thickness based on well-log analysis, determination of mineralogy including sediment provenance analysis, and burial history data. New local surface heat-flow values (range: 64-84 mW/m2) were determined for the Danish
Entropy correlation and entanglement for mixed states in an algebraic model
International Nuclear Information System (INIS)
Hou Xiwen; Chen Jinghua; Wan Mingfang; Ma Zhongqi
2009-01-01
As an alternative with potential connections to actual experiments, other than the systems more usually used in the field of entanglement, the dynamics of entropy correlation and entanglement between two anharmonic vibrations in a well-established algebraic model, with parameters extracted from fitting to highly excited spectral experimental results for molecules H 2 O and SO 2 , is studied in terms of the linear entropy and two negativities for various initial states that are respectively taken to be the mixed density matrices of thermal states and squeezed states on each mode. For a suitable parameter in initial states the entropies in two stretches can show positive correlation or anti-correlation. And the linear entropy of each mode is positively correlated with the negativities just for the mixed-squeezed states with small parameters in H 2 O while they do not display any correlation in other cases. For the mixed-squeezed states the negativities exhibit dominantly positive correlations with an effective mutual entropy. The differences in the linear entropy and the negativities between H 2 O and SO 2 are discussed as well. Those are useful for molecular quantum computing and quantum information processing
Neuronal Entropy-Rate Feature of Entopeduncular Nucleus in Rat Model of Parkinson's Disease.
Darbin, Olivier; Jin, Xingxing; Von Wrangel, Christof; Schwabe, Kerstin; Nambu, Atsushi; Naritoku, Dean K; Krauss, Joachim K; Alam, Mesbah
2016-03-01
The function of the nigro-striatal pathway on neuronal entropy in the basal ganglia (BG) output nucleus, i.e. the entopeduncular nucleus (EPN) was investigated in the unilaterally 6-hyroxydopamine (6-OHDA)-lesioned rat model of Parkinson's disease (PD). In both control subjects and subjects with 6-OHDA lesion of dopamine (DA) the nigro-striatal pathway, a histological hallmark for parkinsonism, neuronal entropy in EPN was maximal in neurons with firing rates ranging between 15 and 25 Hz. In 6-OHDA lesioned rats, neuronal entropy in the EPN was specifically higher in neurons with firing rates above 25 Hz. Our data establishes that the nigro-striatal pathway controls neuronal entropy in motor circuitry and that the parkinsonian condition is associated with abnormal relationship between firing rate and neuronal entropy in BG output nuclei. The neuronal firing rates and entropy relationship provide putative relevant electrophysiological information to investigate the sensory-motor processing in normal condition and conditions such as movement disorders.
Development of Models to Simulate Tracer Tests for Characterization of Enhanced Geothermal Systems
Energy Technology Data Exchange (ETDEWEB)
Williams, Mark D.; Reimus, Paul; Vermeul, Vincent R.; Rose, Peter; Dean, Cynthia A.; Watson, Tom B.; Newell, D.; Leecaster, Kevin; Brauser, Eric
2013-05-01
A recent report found that power and heat produced from enhanced (or engineered) geothermal systems (EGSs) could have a major impact on the U.S energy production capability while having a minimal impact on the environment. EGS resources differ from high-grade hydrothermal resources in that they lack sufficient temperature distribution, permeability/porosity, fluid saturation, or recharge of reservoir fluids. Therefore, quantitative characterization of temperature distributions and the surface area available for heat transfer in EGS is necessary for the design and commercial development of the geothermal energy of a potential EGS site. The goal of this project is to provide integrated tracer and tracer interpretation tools to facilitate this characterization. This project was initially focused on tracer development with the application of perfluorinated tracer (PFT) compounds, non-reactive tracers used in numerous applications from atmospheric transport to underground leak detection, to geothermal systems, and evaluation of encapsulated PFTs that would release tracers at targeted reservoir temperatures. After the 2011 midyear review and subsequent discussions with the U.S. Department of Energy Geothermal Technology Program (GTP), emphasis was shifted to interpretive tool development, testing, and validation. Subsurface modeling capabilities are an important component of this project for both the design of suitable tracers and the interpretation of data from in situ tracer tests, be they single- or multi-well tests. The purpose of this report is to describe the results of the tracer and model development for simulating and conducting tracer tests for characterizing EGS parameters.
International Nuclear Information System (INIS)
Moog, Helge C.; Regenspurg, Simona; Voigt, Wolfgang
2015-02-01
The concept for geothermal energy application for electricity generation can be differentiated into three compartments: In the geologic compartment cooled fluid is pressed into a porous or fractured rock formation, in the borehole compartment a hot fluid is pumped to the surface and back into the geothermal reservoir, in the aboveground facility the energy is extracted from the geothermal fluid by heat exchangers. Pressure and temperature changes influence the thermodynamic equilibrium of a system. The modeling of a geothermal system has therefore to consider besides the mass transport the heat transport and consequently changing solution compositions and the pressure/temperature effected chemical equilibrium. The GEODAT project is aimed to simulate the reactive mass transport in a geothermal reservoir in the North German basin (Gross Schoenebeck). The project was performed by the cooperation of three partners: Geoforschungsinstitut Potsdam, Bergakademie Freiberg and GRS.
Environmental Impacts of a Multi-Borehole Geothermal System: Model Sensitivity Study
Krol, M.; Daemi, N.
2017-12-01
Problems associated with fossil fuel consumption has increased worldwide interest in discovering and developing sustainable energy systems. One such system is geothermal heating, which uses the constant temperature of the ground to heat or cool buildings. Since geothermal heating offers low maintenance, high heating/cooling comfort, and a low carbon footprint, compared to conventional systems, there has been an increasing trend in equipping large buildings with geothermal heating. However, little is known on the potential environmental impact geothermal heating can have on the subsurface, such as the creation of subsurface thermal plumes or changes in groundwater flow dynamics. In the present study, the environmental impacts of a closed-loop, ground source heat pump (GSHP) system was examined with respect to different system parameters. To do this a three-dimensional model, developed using FEFLOW, was used to examine the thermal plumes resulting from ten years of operation of a vertical closed-loop GSHP system with multiple boreholes. A required thermal load typical of an office building located in Canada was calculated and groundwater flow and heat transport in the geological formation was simulated. Consequently, the resulting thermal plumes were studied and a sensitivity analysis was conducted to determine the effect of different parameters like groundwater flow and soil type on the development and movement of thermal plumes. Since thermal plumes can affect the efficiency of a GSHP system, this study provides insight into important system parameters.
Query construction, entropy, and generalization in neural-network models
Sollich, Peter
1994-05-01
We study query construction algorithms, which aim at improving the generalization ability of systems that learn from examples by choosing optimal, nonredundant training sets. We set up a general probabilistic framework for deriving such algorithms from the requirement of optimizing a suitable objective function; specifically, we consider the objective functions entropy (or information gain) and generalization error. For two learning scenarios, the high-low game and the linear perceptron, we evaluate the generalization performance obtained by applying the corresponding query construction algorithms and compare it to training on random examples. We find qualitative differences between the two scenarios due to the different structure of the underlying rules (nonlinear and ``noninvertible'' versus linear); in particular, for the linear perceptron, random examples lead to the same generalization ability as a sequence of queries in the limit of an infinite number of examples. We also investigate learning algorithms which are ill matched to the learning environment and find that, in this case, minimum entropy queries can in fact yield a lower generalization ability than random examples. Finally, we study the efficiency of single queries and its dependence on the learning history, i.e., on whether the previous training examples were generated randomly or by querying, and the difference between globally and locally optimal query construction.
Entropy Parameter M in Modeling a Flow Duration Curve
Directory of Open Access Journals (Sweden)
Yu Zhang
2017-12-01
Full Text Available A flow duration curve (FDC is widely used for predicting water supply, hydropower, environmental flow, sediment load, and pollutant load. Among different methods of constructing an FDC, the entropy-based method, developed recently, is appealing because of its several desirable characteristics, such as simplicity, flexibility, and statistical basis. This method contains a parameter, called entropy parameter M, which constitutes the basis for constructing the FDC. Since M is related to the ratio of the average streamflow to the maximum streamflow which, in turn, is related to the drainage area, it may be possible to determine M a priori and construct an FDC for ungauged basins. This paper, therefore, analyzed the characteristics of M in both space and time using streamflow data from 73 gauging stations in the Brazos River basin, Texas, USA. Results showed that the M values were impacted by reservoir operation and possibly climate change. The values were fluctuating, but relatively stable, after the operation of the reservoirs. Parameter M was found to change inversely with the ratio of average streamflow to the maximum streamflow. When there was an extreme event, there occurred a jump in the M value. Further, spatially, M had a larger value if the drainage area was small.
Directory of Open Access Journals (Sweden)
Chellaboina Vijaysekhar
2005-01-01
Full Text Available We develop thermodynamic models for discrete-time large-scale dynamical systems. Specifically, using compartmental dynamical system theory, we develop energy flow models possessing energy conservation, energy equipartition, temperature equipartition, and entropy nonconservation principles for discrete-time, large-scale dynamical systems. Furthermore, we introduce a new and dual notion to entropy; namely, ectropy, as a measure of the tendency of a dynamical system to do useful work and grow more organized, and show that conservation of energy in an isolated thermodynamic system necessarily leads to nonconservation of ectropy and entropy. In addition, using the system ectropy as a Lyapunov function candidate, we show that our discrete-time, large-scale thermodynamic energy flow model has convergent trajectories to Lyapunov stable equilibria determined by the system initial subsystem energies.
International Nuclear Information System (INIS)
Rummel, F.; Kappelmeyer, O.; Herde, O.A.
1992-01-01
Objective of this brochure is to present the subject Geothermics and the possible use of geothermal energy to the public. The following aspects will be refered to: -present energy situation -geothermal potential -use of geothermal energy -environemental aspects -economics. In addition, it presents an up-dated overview of geothermal projects funded by the German government, and a list of institutions and companies active in geothermal research and developments. (orig./HP) [de
Stock Selection for Portfolios Using Expected Utility-Entropy Decision Model
Directory of Open Access Journals (Sweden)
Jiping Yang
2017-09-01
Full Text Available Yang and Qiu proposed and then recently improved an expected utility-entropy (EU-E measure of risk and decision model. When segregation holds, Luce et al. derived an expected utility term, plus a constant multiplies the Shannon entropy as the representation of risky choices, further demonstrating the reasonability of the EU-E decision model. In this paper, we apply the EU-E decision model to selecting the set of stocks to be included in the portfolios. We first select 7 and 10 stocks from the 30 component stocks of Dow Jones Industrial Average index, and then derive and compare the efficient portfolios in the mean-variance framework. The conclusions imply that efficient portfolios composed of 7(10 stocks selected using the EU-E model with intermediate intervals of the tradeoff coefficients are more efficient than that composed of the sets of stocks selected using the expected utility model. Furthermore, the efficient portfolio of 7(10 stocks selected by the EU-E decision model have almost the same efficient frontier as that of the sample of all stocks. This suggests the necessity of incorporating both the expected utility and Shannon entropy together when taking risky decisions, further demonstrating the importance of Shannon entropy as the measure of uncertainty, as well as the applicability of the EU-E model as a decision-making model.
Configurational Information as Potentially Negative Entropy: The Triple Helix Model
Directory of Open Access Journals (Sweden)
Loet Leydesdorff
2008-10-01
Full Text Available Configurational information is generated when three or more sources of variance interact. The variations not only disturb each other relationally, but by selecting upon each other, they are also positioned in a configuration. A configuration can be stabilized and/or globalized. Different stabilizations can be considered as second-order variation, and globalization as a second-order selection. The positive manifestations and the negative selections operate upon one another by adding and reducing uncertainty, respectively. Reduction of uncertainty in a configuration can be measured in bits of information. The variables can also be considered as dimensions of the probabilistic entropy in the system(s under study. The configurational information then provides us with a measure of synergy within a complex system. For example, the knowledge base of an economy can be considered as such a synergy in the otherwise virtual (that is, fourth dimension of a regime
International Nuclear Information System (INIS)
Nancy Moller Weare
2006-01-01
This final report describes the results of a research program we carried out over a five-year (3/1999-9/2004) period with funding from a Department of Energy geothermal FDP grant (DE-FG07-99ID13745) and from other agencies. The goal of research projects in this program were to develop modeling technologies that can increase the understanding of geothermal reservoir chemistry and chemistry-related energy production processes. The ability of computer models to handle many chemical variables and complex interactions makes them an essential tool for building a fundamental understanding of a wide variety of complex geothermal resource and production chemistry. With careful choice of methodology and parameterization, research objectives were to show that chemical models can correctly simulate behavior for the ranges of fluid compositions, formation minerals, temperature and pressure associated with present and near future geothermal systems as well as for the very high PT chemistry of deep resources that is intractable with traditional experimental methods. Our research results successfully met these objectives. We demonstrated that advances in physical chemistry theory can be used to accurately describe the thermodynamics of solid-liquid-gas systems via their free energies for wide ranges of composition (X), temperature and pressure. Eight articles on this work were published in peer-reviewed journals and in conference proceedings. Four are in preparation. Our work has been presented at many workshops and conferences. We also considerably improved our interactive web site (geotherm.ucsd.edu), which was in preliminary form prior to the grant. This site, which includes several model codes treating different XPT conditions, is an effective means to transfer our technologies and is used by the geothermal community and other researchers worldwide. Our models have wide application to many energy related and other important problems (e.g., scaling prediction in petroleum
Dynamic Modeling and Simulation of Deep Geothermal Electric Submersible Pumping Systems
Directory of Open Access Journals (Sweden)
Julian Kullick
2017-10-01
Full Text Available Deep geothermal energy systems employ electric submersible pumps (ESPs in order to lift geothermal fluid from the production well to the surface. However, rough downhole conditions and high flow rates impose heavy strain on the components, leading to frequent failures of the pump system. As downhole sensor data is limited and often unrealible, a detailed and dynamical model system will serve as basis for deeper understanding and analysis of the overall system behavior. Furthermore, it allows to design model-based condition monitoring and fault detection systems, and to improve controls leading to a more robust and efficient operation. In this paper, a detailed state-space model of the complete ESP system is derived, covering the electrical, mechanical and hydraulic subsystems. Based on the derived model, the start-up phase of an exemplary yet realistic ESP system in the Megawatt range—located at a setting depth of 950 m and producing geothermal fluid of 140 ∘ C temperature at a rate of 0.145 m 3 s − 1 —is simulated in MATLAB/Simulink. The simulation results show that the system reaches a stable operating point with realistic values. Furthermore, the effect of self-excitation between the filter capacitor and the motor inductor can clearly be observed. A full set of parameters is provided, allowing for direct model implementation and reproduction of the presented results.
Software Code Smell Prediction Model Using Shannon, Rényi and Tsallis Entropies
Directory of Open Access Journals (Sweden)
Aakanshi Gupta
2018-05-01
Full Text Available The current era demands high quality software in a limited time period to achieve new goals and heights. To meet user requirements, the source codes undergo frequent modifications which can generate the bad smells in software that deteriorate the quality and reliability of software. Source code of the open source software is easily accessible by any developer, thus frequently modifiable. In this paper, we have proposed a mathematical model to predict the bad smells using the concept of entropy as defined by the Information Theory. Open-source software Apache Abdera is taken into consideration for calculating the bad smells. Bad smells are collected using a detection tool from sub components of the Apache Abdera project, and different measures of entropy (Shannon, Rényi and Tsallis entropy. By applying non-linear regression techniques, the bad smells that can arise in the future versions of software are predicted based on the observed bad smells and entropy measures. The proposed model has been validated using goodness of fit parameters (prediction error, bias, variation, and Root Mean Squared Prediction Error (RMSPE. The values of model performance statistics ( R 2 , adjusted R 2 , Mean Square Error (MSE and standard error also justify the proposed model. We have compared the results of the prediction model with the observed results on real data. The results of the model might be helpful for software development industries and future researchers.
The role of helium and other noble gases in the modelling of geothermal systems
International Nuclear Information System (INIS)
Hulston, J.R.
1994-01-01
A model of the geothermal system in which deep circulating groundwater containing noble gases at air saturated water concentrations mixes with hot fluids of mantle origin at depth is described. It is proposed that the 3 He/heat ratio should be similar to that observed in mid-ocean ridge systems, in which case the 3 He to atmospheric argon ratio in geothermal discharges would be an indicator o the likely heat content of a system. As a first test of this hypothesis the noble gas results of Mazor et al. (1990) have been presented as the 3 He/heat ratios for Wairakei and early Mokai wells and fumaroles. Their simplified boiling model has been used to correct for the effects of gas-water separation which occurs in underground boiling. At Wairakei, the resultant range of 3 He/heat values is 140-8500 atoms 3 He mW -1 s -1 , similar (except for the lowest values) to the range measured in mid ocean ridges. Further work is needed, but the available data show that the technique has promise for the modelling of deep geothermal systems and providing input to simulation models currently being used in reservoir engineering. The technique has potential to distinguish between stored heat systems and renewing systems. (author). 8 refs., 2 figs., 1 tab
Huang, Feimin; Li, Tianhong; Yu, Huimin; Yuan, Difan
2018-06-01
We are concerned with the global existence and large time behavior of entropy solutions to the one-dimensional unipolar hydrodynamic model for semiconductors in the form of Euler-Poisson equations in a bounded interval. In this paper, we first prove the global existence of entropy solution by vanishing viscosity and compensated compactness framework. In particular, the solutions are uniformly bounded with respect to space and time variables by introducing modified Riemann invariants and the theory of invariant region. Based on the uniform estimates of density, we further show that the entropy solution converges to the corresponding unique stationary solution exponentially in time. No any smallness condition is assumed on the initial data and doping profile. Moreover, the novelty in this paper is about the unform bound with respect to time for the weak solutions of the isentropic Euler-Poisson system.
Make-up wells drilling cost in financial model for a geothermal project
Oktaviani Purwaningsih, Fitri; Husnie, Ruly; Afuar, Waldy; Abdurrahman, Gugun
2017-12-01
After commissioning of a power plant, geothermal reservoir will encounter pressure decline, which will affect wells productivity. Therefore, further drilling is carried out to enhance steam production. Make-up wells are production wells drilled inside an already confirmed reservoir to maintain steam production in a certain level. Based on Sanyal (2004), geothermal power cost consists of three components, those are capital cost, O&M cost and make-up drilling cost. The make-up drilling cost component is a major part of power cost which will give big influence in a whole economical value of the project. The objective of this paper it to analyse the make-up wells drilling cost component in financial model of a geothermal power project. The research will calculate make-up wells requirements, drilling costs as a function of time and how they influence the financial model and affect the power cost. The best scenario in determining make-up wells strategy in relation with the project financial model would be the result of this research.
Thermo-mechanical models of the European lithosphere for geothermal exploration
Limberger, Jon; van Wees, Jan-Diederik; Tesauro, Magdala; Bonté, Damien; Lipsey, Lindsay; Beekman, Fred; Cloetingh, Sierd
2015-04-01
One of the critical exploration parameters for geothermal systems is the subsurface temperature. Temperature data are reliable up to a depth of 1 km in most parts of Europe. Accordingly, the robustness of temperature estimation rapidly decreases with depth, as temperature data from wells become sparser and unevenly distributed. We developed a two-layer temperature model for assessing the prospective resource base of enhanced geothermal systems in Europe. The surface heat flow and the Moho depth were used to constrain the radiogenic heat production in the upper crust. Only conduction was considered for heat transfer. The most recent and comprehensive regional temperature models and maps available were directly used to constrain the 3D temperature distribution up to a depth of 6 km. The model shows high average geothermal gradients of up to 60 °C in volcanically active regions such as Iceland, parts of Italy, Greece and Turkey. Temperatures at 5 km depth range between 40 °C and 310 °C and at 10 km depth between 80 °C and 590 °C. However, this direct use of regional models is not fully consistent with the calculated and observed heat flow. Furthermore, only fixed thermal conductivity values were assigned to the sediments and the crystalline basement. As part of the EU FP7-funded Integrated Methods for Advanced Geothermal Exploration (IMAGE) project we are going to develop a methodology to obtain a more advanced 3D lithosphere-scale thermal model of Europe. This will include a more realistic distribution of thermal properties, according with lithological variations of the European crust. Further improvements of the thermal model, aiming at consistency between temperature and heat flow observations and tectonic model predictions, will be obtained by adopting data assimilation techniques derived from reservoir engineering best practices. The newly derived thermal model of the European lithosphere together with compositional data will be used to estimate the strength
Institute of Scientific and Technical Information of China (English)
李春先; 方卯发
2003-01-01
We study the squeezing for a two-level atom in the Jaynes-Cummings model with intensity-dependent coupling using quantum information entropy, and examine the influences of the initial state of the system on the squeezed component number and direction of the information entropy squeezing. Our results show that, the squeezed component number depends on the atomic initial distribution angle, while the squeezed direction is determined by both the phases of the atom and the field for the information entropy squeezing. Quantum information entropy is shown to be a remarkable precision measure for atomic squeezing.
Institute of Scientific and Technical Information of China (English)
李春先; 方卯发; 等
2003-01-01
We study the squeezing for a two-level atom in the Jaynes-Cumings model with intensity-dependent coupling using quantum information entropy,and examine the influences of the initial state of the system on the squeezed component number and direction of the information entropy squeezing.Our results show that,the squeezed component number depends on the atomic initial distribution angle,while the squeezed direction is determined by both the phases of the atom and the field for the information entropy squeezing.Quantum information entropy is shown to be a remarkable precision measure for atomic squeezing.
Using maximum entropy modeling to identify and prioritize red spruce forest habitat in West Virginia
Nathan R. Beane; James S. Rentch; Thomas M. Schuler
2013-01-01
Red spruce forests in West Virginia are found in island-like distributions at high elevations and provide essential habitat for the endangered Cheat Mountain salamander and the recently delisted Virginia northern flying squirrel. Therefore, it is important to identify restoration priorities of red spruce forests. Maximum entropy modeling was used to identify areas of...
Esscher transforms and the minimal entropy martingale measure for exponential Lévy models
DEFF Research Database (Denmark)
Hubalek, Friedrich; Sgarra, C.
In this paper we offer a systematic survey and comparison of the Esscher martingale transform for linear processes, the Esscher martingale transform for exponential processes, and the minimal entropy martingale measure for exponential lévy models and present some new results in order to give...
International Nuclear Information System (INIS)
Haluska, Oscar P.; Tangir, Daniel; Perri, Matias S.
2002-01-01
A general overview of geothermal energy is given that includes a short description of the active and stable areas in the world. The possibilities of geothermal development in Argentina are analyzed taking into account the geothermal fields of the country. The environmental benefits of geothermal energy are outlined
Canet, Carles; Trillaud, Frederic; Prol-Ledesma, Rosa María; González-Hernández, Galia; Peláez, Berenice; Hernández-Cruz, Berenice; Sánchez-Córdova, María M.
2015-10-01
Acoculco is a geothermal prospective area hosted by a volcanic caldera complex in the eastern Trans-Mexican Volcanic Belt. Surface manifestations are scarce and consist of gas discharges (CO2-rich) and acid-sulfate springs of low temperature, whereas hydrothermal explosive activity is profusely manifested by meter-scale craters and mounds of hydrothermal debris and breccias. Silicic alteration extends for several square kilometers around the zone with gas manifestations and explosive features, affecting surficial volcanic rocks, primarily tuffs and breccias. In the subsurface, an argillic alteration zone (ammonium illite) extends down to a depth of ∼ 600 m, and underneath it a propylitic zone (epidote-calcite-chlorite) occurs down to ∼ 1000 m. Thermal logs from an exploratory borehole (EAC-1, drilled in 1995 down to 1810 m) showed a conductive heat transfer regime under high geothermal gradient (∼ 140 °C/1000 m). In contrast, the thermal profile established from temperatures of homogenization of fluid inclusions-measured on core samples from the same drill hole-suggests that convection occurred in the past through the upper ~ 1400 m of the geothermal system. A drop in permeability due to the precipitation of alteration minerals would have triggered the cessation of the convective heat transfer regime to give place to a conductive one. With the purpose of determining when the transition of heat transfer regime occurred, we developed a 1D model that simulates the time-depth distribution of temperature. According to our numerical simulations, this transition happened ca. 7000 years ago; this date is very recent compared to the lifespan of the geothermal system. In addition, radiocarbon chronology indicates that the hydrothermal explosive activity postdates the end of the convective heat transfer regime, having dated at least three explosive events, at 4867-5295, 1049-1417 and 543-709 y cal. BP. Therefore, hydrothermal explosions arise from the self-sealing of
[GSH fermentation process modeling using entropy-criterion based RBF neural network model].
Tan, Zuoping; Wang, Shitong; Deng, Zhaohong; Du, Guocheng
2008-05-01
The prediction accuracy and generalization of GSH fermentation process modeling are often deteriorated by noise existing in the corresponding experimental data. In order to avoid this problem, we present a novel RBF neural network modeling approach based on entropy criterion. It considers the whole distribution structure of the training data set in the parameter learning process compared with the traditional MSE-criterion based parameter learning, and thus effectively avoids the weak generalization and over-learning. Then the proposed approach is applied to the GSH fermentation process modeling. Our results demonstrate that this proposed method has better prediction accuracy, generalization and robustness such that it offers a potential application merit for the GSH fermentation process modeling.
Application of SNODAS and hydrologic models to enhance entropy-based snow monitoring network design
Keum, Jongho; Coulibaly, Paulin; Razavi, Tara; Tapsoba, Dominique; Gobena, Adam; Weber, Frank; Pietroniro, Alain
2018-06-01
Snow has a unique characteristic in the water cycle, that is, snow falls during the entire winter season, but the discharge from snowmelt is typically delayed until the melting period and occurs in a relatively short period. Therefore, reliable observations from an optimal snow monitoring network are necessary for an efficient management of snowmelt water for flood prevention and hydropower generation. The Dual Entropy and Multiobjective Optimization is applied to design snow monitoring networks in La Grande River Basin in Québec and Columbia River Basin in British Columbia. While the networks are optimized to have the maximum amount of information with minimum redundancy based on entropy concepts, this study extends the traditional entropy applications to the hydrometric network design by introducing several improvements. First, several data quantization cases and their effects on the snow network design problems were explored. Second, the applicability the Snow Data Assimilation System (SNODAS) products as synthetic datasets of potential stations was demonstrated in the design of the snow monitoring network of the Columbia River Basin. Third, beyond finding the Pareto-optimal networks from the entropy with multi-objective optimization, the networks obtained for La Grande River Basin were further evaluated by applying three hydrologic models. The calibrated hydrologic models simulated discharges using the updated snow water equivalent data from the Pareto-optimal networks. Then, the model performances for high flows were compared to determine the best optimal network for enhanced spring runoff forecasting.
On the Entropy Based Associative Memory Model with Higher-Order Correlations
Directory of Open Access Journals (Sweden)
Masahiro Nakagawa
2010-01-01
Full Text Available In this paper, an entropy based associative memory model will be proposed and applied to memory retrievals with an orthogonal learning model so as to compare with the conventional model based on the quadratic Lyapunov functional to be minimized during the retrieval process. In the present approach, the updating dynamics will be constructed on the basis of the entropy minimization strategy which may be reduced asymptotically to the above-mentioned conventional dynamics as a special case ignoring the higher-order correlations. According to the introduction of the entropy functional, one may involve higer-order correlation effects between neurons in a self-contained manner without any heuristic coupling coefficients as in the conventional manner. In fact we shall show such higher order coupling tensors are to be uniquely determined in the framework of the entropy based approach. From numerical results, it will be found that the presently proposed novel approach realizes much larger memory capacity than that of the quadratic Lyapunov functional approach, e.g., associatron.
a Matlab Toolbox for Basin Scale Fluid Flow Modeling Applied to Hydrology and Geothermal Energy
Alcanie, M.; Lupi, M.; Carrier, A.
2017-12-01
Recent boosts in the development of geothermal energy were fostered by the latest oil crises and by the need of reducing CO2 emissions generated by the combustion of fossil fuels. Various numerical codes (e.g. FEHM, CSMP++, HYDROTHERM, TOUGH) have thus been implemented for the simulation and quantification of fluid flow in the upper crust. One possible limitation of such codes is the limited accessibility and the complex structure of the simulators. For this reason, we began to develop a Hydrothermal Fluid Flow Matlab library as part of MRST (Matlab Reservoir Simulation Toolbox). MRST is designed for the simulation of oil and gas problems including carbon capture storage. However, a geothermal module is still missing. We selected the Geneva Basin as a natural laboratory because of the large amount of data available in the region. The Geneva Basin has been intensely investigated in the past with exploration wells, active seismic and gravity surveys. In addition, the energy strategy of Switzerland promotes the development of geothermal energy that lead to recent geophysical prospections. Previous and ongoing projects have shown the geothermal potential of the Geneva Basin but a consistent fluid flow model assessing the deep circulation in the region is yet to be defined. The first step of the study was to create the basin-scale static model. We integrated available active seismic, gravity inversions and borehole data to describe the principal geologic and tectonic features of the Geneva Basin. Petrophysical parameters were obtained from available and widespread well logs. This required adapting MRST to standard text format file imports and outline a new methodology for quick static model creation in an open source environment. We implemented several basin-scale fluid flow models to test the effects of petrophysical properties on the circulation dynamics of deep fluids in the Geneva Basin. Preliminary results allow the identification of preferential fluid flow
Mulyana, Cukup; Adiprana, Reza; Saad, Aswad H.; M. Ridwan, H.; Muhammad, Fajar
2016-02-01
The scarcity of fossil energy accelerates the development of geothermal power plant in Indonesia. The main issue is how to minimize the energy loss from the geothermal working fluid so that the power generated can be increased. In some of geothermal power plant, the hot water which is resulted from flashing is flown to injection well, and steam out from turbine is condensed in condenser, while the temperature and pressure of the working fluid is still high. The aim of this research is how the waste energy can be re-used as energy source to generate electric power. The step of the research is started by studying the characteristics of geothermal fluid out from the well head. The temperature of fluid varies from 140°C - 250°C, the pressure is more than 7 bar and the fluid phase are liquid, gas, or mixing phase. Dry steam power plant is selected for vapor dominated source, single or multiple flash power plant is used for dominated water with temperature > 225°C, while the binary power plant is used for low temperature of fluid enthalpy, the calculated power of these double and triple flash power plant are 50% of W1+W2. At the last step, the steam out from the turbine of unit 3 with the temperature 150°C is used as a heat source for binary cycle power plant named unit 4, while the hot water from the flasher is used as a heat source for the other binary cycle named unit 5 resulted power W5+W6 or 15% of W1+W2. Using this integrated model the power increased 75% from the original one.
Modelling geothermal conditions in part of the Szczecin Trough - the Chociwel area
Miecznik, Maciej; Sowiżdżał, Anna; Tomaszewska, Barbara; Pająk, Leszek
2015-09-01
The Chociwel region is part of the Szczecin Trough and constitutes the northeastern segment of the extended Szczecin-Gorzów Synclinorium. Lower Jurassic reservoirs of high permeability of up to 1145 mD can discharge geothermal waters with a rate exceeding 250 m3/h and temperatures reach over 90°C in the lowermost part of the reservoirs. These conditions provide an opportunity to generate electricity from heat accumulated in geothermal waters using binary ORC (Organic Rankine Cycle) systems. A numerical model of the natural state and exploitation conditions was created for the Chociwel area with the use of TOUGH2 geothermal simulator (i.e., integral finite-difference method). An analysis of geological and hydrogeothermal data indicates that the best conditions are found to the southeast of the town of Chociwel, where the bottom part of the reservoir reaches 3 km below ground. This would require drilling two new wells, namely one production and one injection. Simulated production with a flow rate of 275 m3/h, a temperature of 89°C at the wellhead, 30°C injection temperature and wells being 1.2 km separated from each other leads to a small temperature drop and moderate requirements for pumping power over a 50 years' time span. The ORC binary system can produce at maximum 592.5 kW gross power with the R227ea found as the most suitable working fluid. Geothermal brine leaving the ORC system with a temperature c. 53°C can be used for other purposes, namely mushroom growing, balneology, swimming pools, soil warming, de-icing, fish farming and for heat pumps.
Modelling geothermal conditions in part of the Szczecin Trough – the Chociwel area
Directory of Open Access Journals (Sweden)
Miecznik Maciej
2015-09-01
Full Text Available The Chociwel region is part of the Szczecin Trough and constitutes the northeastern segment of the extended Szczecin-Gorzów Synclinorium. Lower Jurassic reservoirs of high permeability of up to 1145 mD can discharge geothermal waters with a rate exceeding 250 m3/h and temperatures reach over 90°C in the lowermost part of the reservoirs. These conditions provide an opportunity to generate electricity from heat accumulated in geothermal waters using binary ORC (Organic Rankine Cycle systems. A numerical model of the natural state and exploitation conditions was created for the Chociwel area with the use of TOUGH2 geothermal simulator (i.e., integral finite-difference method. An analysis of geological and hydrogeothermal data indicates that the best conditions are found to the southeast of the town of Chociwel, where the bottom part of the reservoir reaches 3 km below ground. This would require drilling two new wells, namely one production and one injection. Simulated production with a flow rate of 275 m3/h, a temperature of 89°C at the wellhead, 30°C injection temperature and wells being 1.2 km separated from each other leads to a small temperature drop and moderate requirements for pumping power over a 50 years’ time span. The ORC binary system can produce at maximum 592.5 kW gross power with the R227ea found as the most suitable working fluid. Geothermal brine leaving the ORC system with a temperature c. 53°C can be used for other purposes, namely mushroom growing, balneology, swimming pools, soil warming, de-icing, fish farming and for heat pumps.
Augustin, Matthias Albert
2015-01-01
This monograph focuses on the numerical methods needed in the context of developing a reliable simulation tool to promote the use of renewable energy. One very promising source of energy is the heat stored in the Earth’s crust, which is harnessed by so-called geothermal facilities. Scientists from fields like geology, geo-engineering, geophysics and especially geomathematics are called upon to help make geothermics a reliable and safe energy production method. One of the challenges they face involves modeling the mechanical stresses at work in a reservoir. The aim of this thesis is to develop a numerical solution scheme by means of which the fluid pressure and rock stresses in a geothermal reservoir can be determined prior to well drilling and during production. For this purpose, the method should (i) include poroelastic effects, (ii) provide a means of including thermoelastic effects, (iii) be inexpensive in terms of memory and computational power, and (iv) be flexible with regard to the locations of data ...
BRISENT: An Entropy-Based Model for Bridge-Pier Scour Estimation under Complex Hydraulic Scenarios
Directory of Open Access Journals (Sweden)
Alonso Pizarro
2017-11-01
Full Text Available The goal of this paper is to introduce the first clear-water scour model based on both the informational entropy concept and the principle of maximum entropy, showing that a variational approach is ideal for describing erosional processes under complex situations. The proposed bridge–pier scour entropic (BRISENT model is capable of reproducing the main dynamics of scour depth evolution under steady hydraulic conditions, step-wise hydrographs, and flood waves. For the calibration process, 266 clear-water scour experiments from 20 precedent studies were considered, where the dimensionless parameters varied widely. Simple formulations are proposed to estimate BRISENT’s fitting coefficients, in which the ratio between pier-diameter and sediment-size was the most critical physical characteristic controlling scour model parametrization. A validation process considering highly unsteady and multi-peaked hydrographs was carried out, showing that the proposed BRISENT model reproduces scour evolution with high accuracy.
Fault Detection and Diagnosis for Gas Turbines Based on a Kernelized Information Entropy Model
Directory of Open Access Journals (Sweden)
Weiying Wang
2014-01-01
Full Text Available Gas turbines are considered as one kind of the most important devices in power engineering and have been widely used in power generation, airplanes, and naval ships and also in oil drilling platforms. However, they are monitored without man on duty in the most cases. It is highly desirable to develop techniques and systems to remotely monitor their conditions and analyze their faults. In this work, we introduce a remote system for online condition monitoring and fault diagnosis of gas turbine on offshore oil well drilling platforms based on a kernelized information entropy model. Shannon information entropy is generalized for measuring the uniformity of exhaust temperatures, which reflect the overall states of the gas paths of gas turbine. In addition, we also extend the entropy to compute the information quantity of features in kernel spaces, which help to select the informative features for a certain recognition task. Finally, we introduce the information entropy based decision tree algorithm to extract rules from fault samples. The experiments on some real-world data show the effectiveness of the proposed algorithms.
Fault detection and diagnosis for gas turbines based on a kernelized information entropy model.
Wang, Weiying; Xu, Zhiqiang; Tang, Rui; Li, Shuying; Wu, Wei
2014-01-01
Gas turbines are considered as one kind of the most important devices in power engineering and have been widely used in power generation, airplanes, and naval ships and also in oil drilling platforms. However, they are monitored without man on duty in the most cases. It is highly desirable to develop techniques and systems to remotely monitor their conditions and analyze their faults. In this work, we introduce a remote system for online condition monitoring and fault diagnosis of gas turbine on offshore oil well drilling platforms based on a kernelized information entropy model. Shannon information entropy is generalized for measuring the uniformity of exhaust temperatures, which reflect the overall states of the gas paths of gas turbine. In addition, we also extend the entropy to compute the information quantity of features in kernel spaces, which help to select the informative features for a certain recognition task. Finally, we introduce the information entropy based decision tree algorithm to extract rules from fault samples. The experiments on some real-world data show the effectiveness of the proposed algorithms.
The simplest maximum entropy model for collective behavior in a neural network
International Nuclear Information System (INIS)
Tkačik, Gašper; Marre, Olivier; Mora, Thierry; Amodei, Dario; Bialek, William; Berry II, Michael J
2013-01-01
Recent work emphasizes that the maximum entropy principle provides a bridge between statistical mechanics models for collective behavior in neural networks and experiments on networks of real neurons. Most of this work has focused on capturing the measured correlations among pairs of neurons. Here we suggest an alternative, constructing models that are consistent with the distribution of global network activity, i.e. the probability that K out of N cells in the network generate action potentials in the same small time bin. The inverse problem that we need to solve in constructing the model is analytically tractable, and provides a natural ‘thermodynamics’ for the network in the limit of large N. We analyze the responses of neurons in a small patch of the retina to naturalistic stimuli, and find that the implied thermodynamics is very close to an unusual critical point, in which the entropy (in proper units) is exactly equal to the energy. (paper)
Bistability, non-ergodicity, and inhibition in pairwise maximum-entropy models.
Rostami, Vahid; Porta Mana, PierGianLuca; Grün, Sonja; Helias, Moritz
2017-10-01
Pairwise maximum-entropy models have been used in neuroscience to predict the activity of neuronal populations, given only the time-averaged correlations of the neuron activities. This paper provides evidence that the pairwise model, applied to experimental recordings, would produce a bimodal distribution for the population-averaged activity, and for some population sizes the second mode would peak at high activities, that experimentally would be equivalent to 90% of the neuron population active within time-windows of few milliseconds. Several problems are connected with this bimodality: 1. The presence of the high-activity mode is unrealistic in view of observed neuronal activity and on neurobiological grounds. 2. Boltzmann learning becomes non-ergodic, hence the pairwise maximum-entropy distribution cannot be found: in fact, Boltzmann learning would produce an incorrect distribution; similarly, common variants of mean-field approximations also produce an incorrect distribution. 3. The Glauber dynamics associated with the model is unrealistically bistable and cannot be used to generate realistic surrogate data. This bimodality problem is first demonstrated for an experimental dataset from 159 neurons in the motor cortex of macaque monkey. Evidence is then provided that this problem affects typical neural recordings of population sizes of a couple of hundreds or more neurons. The cause of the bimodality problem is identified as the inability of standard maximum-entropy distributions with a uniform reference measure to model neuronal inhibition. To eliminate this problem a modified maximum-entropy model is presented, which reflects a basic effect of inhibition in the form of a simple but non-uniform reference measure. This model does not lead to unrealistic bimodalities, can be found with Boltzmann learning, and has an associated Glauber dynamics which incorporates a minimal asymmetric inhibition.
Chiverton, John P; Ige, Olubisi; Barnett, Stephanie J; Parry, Tony
2017-11-01
This paper is concerned with the modeling and analysis of the orientation and distance between steel fibers in X-ray micro-tomography data. The advantage of combining both orientation and separation in a model is that it helps provide a detailed understanding of how the steel fibers are arranged, which is easy to compare. The developed models are designed to summarize the randomness of the orientation distribution of the steel fibers both locally and across an entire volume based on multiscale entropy. Theoretical modeling, simulation, and application to real imaging data are shown here. The theoretical modeling of multiscale entropy for orientation includes a proof showing the final form of the multiscale taken over a linear range of scales. A series of image processing operations are also included to overcome interslice connectivity issues to help derive the statistical descriptions of the orientation distributions of the steel fibers. The results demonstrate that multiscale entropy provides unique insights into both simulated and real imaging data of steel fiber reinforced concrete.
Renewability of geothermal resources
Energy Technology Data Exchange (ETDEWEB)
O' Sullivan, Michael; Yeh, Angus [Department of Engineering Science, University of Auckland, Auckland (New Zealand); Mannington, Warren [Contact Energy Limited, Taupo (New Zealand)
2010-12-15
In almost all geothermal projects worldwide, the rate of extraction of heat energy exceeds the pre-exploitation rate of heat flow from depth. For example, current production of geothermal heat from the Wairakei-Tauhara system exceeds the natural recharge of heat by a factor of 4.75. Thus, the current rate of heat extraction from Wairakei-Tauhara is not sustainable on a continuous basis, and the same statement applies to most other geothermal projects. Nevertheless, geothermal energy resources are renewable in the long-term because they would fully recover to their pre-exploitation state after an extended shut-down period. The present paper considers the general issue of the renewability of geothermal resources and uses computer modeling to investigate the renewability of the Wairakei-Tauhara system. In particular, modeling is used to simulate the recovery of Wairakei-Tauhara after it is shut down in 2053 after a hundred years of production. (author)
Maximum Entropy Discrimination Poisson Regression for Software Reliability Modeling.
Chatzis, Sotirios P; Andreou, Andreas S
2015-11-01
Reliably predicting software defects is one of the most significant tasks in software engineering. Two of the major components of modern software reliability modeling approaches are: 1) extraction of salient features for software system representation, based on appropriately designed software metrics and 2) development of intricate regression models for count data, to allow effective software reliability data modeling and prediction. Surprisingly, research in the latter frontier of count data regression modeling has been rather limited. More specifically, a lack of simple and efficient algorithms for posterior computation has made the Bayesian approaches appear unattractive, and thus underdeveloped in the context of software reliability modeling. In this paper, we try to address these issues by introducing a novel Bayesian regression model for count data, based on the concept of max-margin data modeling, effected in the context of a fully Bayesian model treatment with simple and efficient posterior distribution updates. Our novel approach yields a more discriminative learning technique, making more effective use of our training data during model inference. In addition, it allows of better handling uncertainty in the modeled data, which can be a significant problem when the training data are limited. We derive elegant inference algorithms for our model under the mean-field paradigm and exhibit its effectiveness using the publicly available benchmark data sets.
Yao, K. L.; Li, Y. C.; Sun, X. Z.; Liu, Q. M.; Qin, Y.; Fu, H. H.; Gao, G. Y.
2005-10-01
By using the density matrix renormalization group (DMRG) method for the one-dimensional (1D) Hubbard model, we have studied the von Neumann entropy of a quantum system, which describes the entanglement of the system block and the rest of the chain. It is found that there is a close relation between the entanglement entropy and properties of the system. The hole-doping can alter the charge charge and spin spin interactions, resulting in charge polarization along the chain. By comparing the results before and after the doping, we find that doping favors increase of the von Neumann entropy and thus also favors the exchange of information along the chain. Furthermore, we calculated the spin and entropy distribution in external magnetic filed. It is confirmed that both the charge charge and the spin spin interactions affect the exchange of information along the chain, making the entanglement entropy redistribute.
Ito, Sosuke
2016-01-01
The transfer entropy is a well-established measure of information flow, which quantifies directed influence between two stochastic time series and has been shown to be useful in a variety fields of science. Here we introduce the transfer entropy of the backward time series called the backward transfer entropy, and show that the backward transfer entropy quantifies how far it is from dynamics to a hidden Markov model. Furthermore, we discuss physical interpretations of the backward transfer entropy in completely different settings of thermodynamics for information processing and the gambling with side information. In both settings of thermodynamics and the gambling, the backward transfer entropy characterizes a possible loss of some benefit, where the conventional transfer entropy characterizes a possible benefit. Our result implies the deep connection between thermodynamics and the gambling in the presence of information flow, and that the backward transfer entropy would be useful as a novel measure of information flow in nonequilibrium thermodynamics, biochemical sciences, economics and statistics. PMID:27833120
Energy Technology Data Exchange (ETDEWEB)
Karami, K; Khaledian, M S [Department of Physics, University of Kurdistan, Pasdaran Street, Sanandaj (Iran, Islamic Republic of); Jamil, Mubasher, E-mail: KKarami@uok.ac.ir, E-mail: MS.Khaledian@uok.ac.ir, E-mail: mjamil@camp.nust.edu.pk [Center for Advanced Mathematics and Physics (CAMP), National University of Sciences and Technology (NUST), Islamabad (Pakistan)
2011-02-15
Here we consider the entropy-corrected version of the holographic dark energy (DE) model in the non-flat universe. We obtain the equation of state parameter in the presence of interaction between DE and dark matter. Moreover, we reconstruct the potential and the dynamics of the quintessence, tachyon, K-essence and dilaton scalar field models according to the evolutionary behavior of the interacting entropy-corrected holographic DE model.
Directory of Open Access Journals (Sweden)
Hujun He
2017-01-01
Full Text Available The prediction and risk classification of collapse is an important issue in the process of highway construction in mountainous regions. Based on the principles of information entropy and Mahalanobis distance discriminant analysis, we have produced a collapse hazard prediction model. We used the entropy measure method to reduce the influence indexes of the collapse activity and extracted the nine main indexes affecting collapse activity as the discriminant factors of the distance discriminant analysis model (i.e., slope shape, aspect, gradient, and height, along with exposure of the structural face, stratum lithology, relationship between weakness face and free face, vegetation cover rate, and degree of rock weathering. We employ postearthquake collapse data in relation to construction of the Yingxiu-Wolong highway, Hanchuan County, China, as training samples for analysis. The results were analyzed using the back substitution estimation method, showing high accuracy and no errors, and were the same as the prediction result of uncertainty measure. Results show that the classification model based on information entropy and distance discriminant analysis achieves the purpose of index optimization and has excellent performance, high prediction accuracy, and a zero false-positive rate. The model can be used as a tool for future evaluation of collapse risk.
Partition Function and Configurational Entropy in Non-Equilibrium States: A New Theoretical Model
Directory of Open Access Journals (Sweden)
Akira Takada
2018-03-01
Full Text Available A new model of non-equilibrium thermodynamic states has been investigated on the basis of the fact that all thermodynamic variables can be derived from partition functions. We have thus attempted to define partition functions for non-equilibrium conditions by introducing the concept of pseudo-temperature distributions. These pseudo-temperatures are configurational in origin and distinct from kinetic (phonon temperatures because they refer to the particular fragments of the system with specific energies. This definition allows thermodynamic states to be described either for equilibrium or non-equilibrium conditions. In addition; a new formulation of an extended canonical partition function; internal energy and entropy are derived from this new temperature definition. With this new model; computational experiments are performed on simple non-interacting systems to investigate cooling and two distinct relaxational effects in terms of the time profiles of the partition function; internal energy and configurational entropy.
Inferring Pairwise Interactions from Biological Data Using Maximum-Entropy Probability Models.
Directory of Open Access Journals (Sweden)
Richard R Stein
2015-07-01
Full Text Available Maximum entropy-based inference methods have been successfully used to infer direct interactions from biological datasets such as gene expression data or sequence ensembles. Here, we review undirected pairwise maximum-entropy probability models in two categories of data types, those with continuous and categorical random variables. As a concrete example, we present recently developed inference methods from the field of protein contact prediction and show that a basic set of assumptions leads to similar solution strategies for inferring the model parameters in both variable types. These parameters reflect interactive couplings between observables, which can be used to predict global properties of the biological system. Such methods are applicable to the important problems of protein 3-D structure prediction and association of gene-gene networks, and they enable potential applications to the analysis of gene alteration patterns and to protein design.
Modeling and optimization of geothermal power plants using the binary fluid cycle
Energy Technology Data Exchange (ETDEWEB)
Walter, R.A.
1976-09-01
A computer simulation of a binary fluid cycle power plant for use with geothermal energy sources, and the subsequent optimization of this power plant type over a range of geothermal source conditions are described. The optimization technique employed for this analysis was based upon the principle of maximum use of geothermal energy.
Directory of Open Access Journals (Sweden)
Hans J. Haubold
2013-09-01
Full Text Available An entropy for the scalar variable case, parallel to Havrda-Charvat entropy, was introduced by the first author, and the properties and its connection to Tsallis non-extensive statistical mechanics and the Mathai pathway model were examined by the authors in previous papers. In the current paper, we extend the entropy to cover the scalar case, multivariable case, and matrix variate case. Then, this measure is optimized under different types of restrictions, and a number of models in the multivariable case and matrix variable case are obtained. Connections of these models to problems in statistical and physical sciences are pointed out. An application of the simplest case of the pathway model to the interpretation of solar neutrino data by applying standard deviation analysis and diffusion entropy analysis is provided.
Energy Technology Data Exchange (ETDEWEB)
Garcia-Valladares, O.; Santoyo, E. [Centro de Investigacion en Energia (UNAM), Privada Xochicalco s/n, Temixco, Mor. 62580 (Mexico); Sanchez-Upton, P. [Posgrado en Ingenieria (Energia), UNAM, Privada Xochicalco s/n, Temixco, Mor. 62580 (Mexico)
2006-07-15
One dimensional steady and transient numerical modeling for describing the heat and fluid dynamic transport inside geothermal wells has been conducted. The mass, momentum and energy governing equations were solved using a segregated numerical scheme. Discretized governing equations for the fluid flow were coupled and solved with a fully implicit step by step method. The mathematical formulation used suitable empirical correlations for estimating the convective heat transfer coefficients as well as the shear stress and the void fraction parameters. Heat conduction across the wellbore materials was solved by an implicit central difference numerical scheme using the tri-diagonal matrix algorithm (TDMA). The flow characteristics of producer geothermal wells (pressure, temperature, enthalpy, heat fluxes, etc.) at each depth node were computed. Analytical data reported in the literature were used to validate the numerical capability of the wellbore simulator developed for this study (GEOWELLS). This simulator, together with another computer code (ORKISZEWSKI), was applied for modeling the heat and fluid flow processes inside some wells drilled in Mexican geothermal fields. The simulated pressure and temperature profiles were statistically compared against stable measured field data (through the computation of the residual sum of squares and Chi-square). A good agreement between the simulated and measured profiles of pressure and temperature was consistently obtained, having the best matching results for the GEOWELLS predictions. An analysis of the sensitivity and uncertainty was finally conducted to estimate the confidence to be accorded the simulation results predicted by GEOWELLS. Matching the sensitivity to variations in some input parameters (e.g., pressure, temperature, enthalpy and void fraction) was examined. The void fraction was identified as one of the most important parameters that affect the GEOWELLS simulations for matching measured field data correctly
International Nuclear Information System (INIS)
Garcia-Valladares, O.; Sanchez-Upton, P.; Santoyo, E.
2006-01-01
One dimensional steady and transient numerical modeling for describing the heat and fluid dynamic transport inside geothermal wells has been conducted. The mass, momentum and energy governing equations were solved using a segregated numerical scheme. Discretized governing equations for the fluid flow were coupled and solved with a fully implicit step by step method. The mathematical formulation used suitable empirical correlations for estimating the convective heat transfer coefficients as well as the shear stress and the void fraction parameters. Heat conduction across the wellbore materials was solved by an implicit central difference numerical scheme using the tri-diagonal matrix algorithm (TDMA). The flow characteristics of producer geothermal wells (pressure, temperature, enthalpy, heat fluxes, etc.) at each depth node were computed. Analytical data reported in the literature were used to validate the numerical capability of the wellbore simulator developed for this study (GEOWELLS). This simulator, together with another computer code (ORKISZEWSKI), was applied for modeling the heat and fluid flow processes inside some wells drilled in Mexican geothermal fields. The simulated pressure and temperature profiles were statistically compared against stable measured field data (through the computation of the residual sum of squares and Chi-square). A good agreement between the simulated and measured profiles of pressure and temperature was consistently obtained, having the best matching results for the GEOWELLS predictions. An analysis of the sensitivity and uncertainty was finally conducted to estimate the confidence to be accorded the simulation results predicted by GEOWELLS. Matching the sensitivity to variations in some input parameters (e.g., pressure, temperature, enthalpy and void fraction) was examined. The void fraction was identified as one of the most important parameters that affect the GEOWELLS simulations for matching measured field data correctly
Pola, Marco; Cacace, Mauro; Fabbri, Paolo; Piccinini, Leonardo; Zampieri, Dario; Dalla Libera, Nico
2017-04-01
As one of the largest and most extensive utilized geothermal system in northern Italy, the Euganean Geothermal System (EGS, Veneto region, NE Italy) has long been the subject of still ongoing studies. Hydrothermal waters feeding the system are of meteoric origin and infiltrate in the Veneto Prealps, to the north of the main geothermal area. The waters circulate for approximately 100 km in the subsurface of the central Veneto, outflowing with temperatures from 65°C to 86°C to the southwest near the cities of Abano Terme and Montegrotto Terme. The naturally emerging waters are mainly used for balneotherapeutic purposes, forming the famous Euganean spa district. This preferential outflow is thought to have a relevant structural component producing a high secondary permeability localized within an area of limited extent (approx. 25 km2). This peculiar structure is associated with a local network of fractures resulting from transtentional tectonics of the regional Schio-Vicenza fault system (SVFS) bounding the Euganean Geothermal Field (EGF). In the present study, a revised conceptual hydrothermal model for the EGS based on the regional hydrogeology and structural geology is proposed. Particularly, this work aims to quantify: (1) the role of the regional SVFS, and (2) the impact of the high density local fractures mesh beneath the EGF on the regional-to-local groundwater flow circulation at depths and its thermal configuration. 3D coupled flow and heat transport numerical simulations inspired by the newly developed conceptual model are carried out to properly quantify the results from these interactions. Consistently with the observations, the obtained results provide indication for temperatures in the EGF reservoir being higher than in the surrounding areas, despite a uniform basal regional crustal heat inflow. In addition, they point to the presence of a structural causative process for the localized outflow, in which deep-seated groundwater is preferentially
International Nuclear Information System (INIS)
Anon.
1992-01-01
This chapter discusses the role of geothermal energy may have on the energy future of the US. The topics discussed in the chapter include historical aspects of geothermal energy, the geothermal resource, hydrothermal fluids, electricity production, district heating, process heating, geopressured brines, technology and costs, hot dry rock, magma, and environmental and siting issues
An improved thin film brick-wall model of black hole entropy
Liu Wen Biao
2001-01-01
The authors improve the brick-wall model to take only the contribution of a thin film near the event horizon into account. This improvement not only gives them a satisfactory result, but also avoids some drawbacks in the original brick-wall method such as the little mass approximation, neglecting logarithm term, and taking the term L/sup 3/ as the contribution of the vacuum surrounding a black hole. It is found that there is an intrinsic relation between the event horizon and the entropy. The event horizon is the characteristic of a black hole, so the entropy calculating of a black hole is also naturally related to its horizon. (12 refs).
Evaluation of Intensive Construction Land Use in the Emerging City Based on PSR-Entropy model
Jia, Yuanyuan; Lei, Guangyu
2018-01-01
A comprehensive understanding of emerging city land utilization and the evaluation of intensive land use in the Emerging City will provide the comprehensive and reliable technical basis for the planning and management. It is an important node. According to the Han cheng from 2008 to 2016 years of land use, based on PSR-Entropy model of land use evaluation system, using entropy method to determine the index weight, the introduction of comprehensive index method to evaluate the degree of land use. The results show that the intensive land use comprehensive evaluation index of Han cheng increased from 2008 to 2015, but the land intensive use can not achieve the standards. The potential of further enhancing space is relatively large.
Troiano, Antonio; Giulia di Giuseppe, Maria; Petrillo, Zaccaria; Troise, Claudia; de Natale, Giuseppe
2010-05-01
Campi Flegrei caldera is characterized by large ground movements, well known since Roman times. Superimposed to a general secular subsidence occurring at a rate of 1.5-2.0 cm/year, an episode of sharp uplift is in progress since 1969, with peak rates up to 1 m/year (in 1982-1984), similar to another episode which culminated with the 1538 eruption. Peak uplift episodes are often followed by some amount of subsidence, which prevent a simple interpretation in terms of purely magmatic inflation phenomena. Such up and down episodes of ground deformations are rather common at large calderas, like in Yellowstone (USA), Long Valley (USA), etc. Here we propose an interpretation based on a mixed mechanical-fluid-dynamical model, in which part of the uplift is generated by increase of water pressure in the shallow geothermal system, as a response to rapid inflow of magmatic fluids exsolved from a deeper magma chamber. We use the program THOUGH2 to model the changes of temperature and pressure in the geothermal system due to the magmatic fluids inflow. Changes in pressure in the caldera volume are then used to compute ground deformations. This way, a theoretical time evolution of ground deformation has been obtained, which compares well with the observed one, if appropriate values of permeability are used. We discuss the implication of such a model for eruption forecast purposes, and the extent at which the required values of permeability can be really representative of the real medium.
A Software Technology Transition Entropy Based Engineering Model
2002-03-01
Systems Basics, p273). (Prigogine 1997 p81). It is not the place of this research to provide a mathematical formalism with theorems and lemmas. Rather...science). The ancient philosophers, 27 Pythagoras , Protagoras, Socrates, and Plato start the first discourse (the message) that has continued...unpacking of the technology "message" from Pythagoras . This process is characterized by accumulation learning, modeled by learning curves in
Beaujean, J.; Kemna, A.; Engesgaard, P. K.; Hermans, T.; Vandenbohede, A.; Nguyen, F.
2013-12-01
While coastal aquifers are being stressed due to climate changes and excessive groundwater withdrawals require characterizing efficiently seawater intrusion (SWI) dynamics, production of geothermal energy is increasingly being used to hinder global warming. To study these issues, we need both robust measuring technologies and reliable predictions based on numerical models. SWI models are currently calibrated using borehole observations. Similarly, geothermal models depend mainly on the temperature field at few locations. Electrical resistivity tomography (ERT) can be used to improve these models given its high sensitivity to TDS and temperature and its relatively high lateral resolution. Inherent geophysical limitations, such as the resolution loss, can affect the overall quality of the ERT images and also prevent the correct recovery of the desired hydrochemical property. We present an uncoupled and coupled hydrogeophysical inversion to calibrate SWI and thermohydrogeologic models using ERT. In the SWI models, we demonstrate with two synthetic benchmarks (homogeneous and heterogeneous coastal aquifers) the ability of cumulative sensitivity-filtered ERT images using surface-only data to recover the hydraulic conductivity. Filtering of ERT-derived data at depth, where resolution is poorer, and the model errors make the dispersivity more difficult to estimate. In the coupled approach, we showed that parameter estimation is significantly improved because regularization bias is replaced by forward modeling only. Our efforts are currently focusing on applying the uncoupled/coupled approaches on a real life case study using field data from the site of Almeria, SE Spain. In the thermohydrogeologic models, the most sensitive hydrologic parameters responsible for heat transport are estimated from surface ERT-derived temperatures and ERT resistance data. A real life geothermal experiment that took place on the Campus De Sterre of Ghent University, Belgium and a synthetic
Energy Technology Data Exchange (ETDEWEB)
Fehler, Michael [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)
2017-04-19
The primary objective of this project was to improve our ability to predict performance of an Enhanced Geothermal System (EGS) reservoir over time by relating, in a quantitative manner, microseismic imaging with fluid and temperature changes within the reservoir. Historically, microseismic data have been used qualitatively to place bounds on the growth of EGS reservoirs created by large hydraulic fracturing experiments. Previous investigators used an experimentally based fracture opening relationship (fracture aperture as a function of pressure), the spatial extent of microseismic events, and some assumptions about fracture frequency to determine the size of an EGS reservoir created during large pumping tests. We addressed a number of issues (1) locating microearthquakes that occur during hydraulic fracturing, (2) obtaining more information about a reservoir than the microearthquake locations from the microearthquake data, for example, information about the seismic velocity structure of the reservoir or the scattering of seismic waves within the reservoir, (3) developing an improved methodology for estimating properties of fractures that intersect wellbores in a reservoir, and (4) developing a conceptual model for explaining the downward growth of observed seismicity that accompanies some hydraulic injections into geothermal reservoirs. We used two primary microseismic datasets for our work. The work was motivated by a dataset from the Salak Geothermal Field in Indonesia where seismicity accompanying a hydraulic injection was observed to migrate downward. We also used data from the Soultz EGS site in France. We also used Vertical Seismic Profiling data from a well in the United States. The work conducted is of benefit for characterizing reservoirs that are created by hydraulic fracturing for both EGS and for petroleum recovery.
RNA Thermodynamic Structural Entropy.
Garcia-Martin, Juan Antonio; Clote, Peter
2015-01-01
Conformational entropy for atomic-level, three dimensional biomolecules is known experimentally to play an important role in protein-ligand discrimination, yet reliable computation of entropy remains a difficult problem. Here we describe the first two accurate and efficient algorithms to compute the conformational entropy for RNA secondary structures, with respect to the Turner energy model, where free energy parameters are determined from UV absorption experiments. An algorithm to compute the derivational entropy for RNA secondary structures had previously been introduced, using stochastic context free grammars (SCFGs). However, the numerical value of derivational entropy depends heavily on the chosen context free grammar and on the training set used to estimate rule probabilities. Using data from the Rfam database, we determine that both of our thermodynamic methods, which agree in numerical value, are substantially faster than the SCFG method. Thermodynamic structural entropy is much smaller than derivational entropy, and the correlation between length-normalized thermodynamic entropy and derivational entropy is moderately weak to poor. In applications, we plot the structural entropy as a function of temperature for known thermoswitches, such as the repression of heat shock gene expression (ROSE) element, we determine that the correlation between hammerhead ribozyme cleavage activity and total free energy is improved by including an additional free energy term arising from conformational entropy, and we plot the structural entropy of windows of the HIV-1 genome. Our software RNAentropy can compute structural entropy for any user-specified temperature, and supports both the Turner'99 and Turner'04 energy parameters. It follows that RNAentropy is state-of-the-art software to compute RNA secondary structure conformational entropy. Source code is available at https://github.com/clotelab/RNAentropy/; a full web server is available at http
RNA Thermodynamic Structural Entropy.
Directory of Open Access Journals (Sweden)
Juan Antonio Garcia-Martin
Full Text Available Conformational entropy for atomic-level, three dimensional biomolecules is known experimentally to play an important role in protein-ligand discrimination, yet reliable computation of entropy remains a difficult problem. Here we describe the first two accurate and efficient algorithms to compute the conformational entropy for RNA secondary structures, with respect to the Turner energy model, where free energy parameters are determined from UV absorption experiments. An algorithm to compute the derivational entropy for RNA secondary structures had previously been introduced, using stochastic context free grammars (SCFGs. However, the numerical value of derivational entropy depends heavily on the chosen context free grammar and on the training set used to estimate rule probabilities. Using data from the Rfam database, we determine that both of our thermodynamic methods, which agree in numerical value, are substantially faster than the SCFG method. Thermodynamic structural entropy is much smaller than derivational entropy, and the correlation between length-normalized thermodynamic entropy and derivational entropy is moderately weak to poor. In applications, we plot the structural entropy as a function of temperature for known thermoswitches, such as the repression of heat shock gene expression (ROSE element, we determine that the correlation between hammerhead ribozyme cleavage activity and total free energy is improved by including an additional free energy term arising from conformational entropy, and we plot the structural entropy of windows of the HIV-1 genome. Our software RNAentropy can compute structural entropy for any user-specified temperature, and supports both the Turner'99 and Turner'04 energy parameters. It follows that RNAentropy is state-of-the-art software to compute RNA secondary structure conformational entropy. Source code is available at https://github.com/clotelab/RNAentropy/; a full web server is available at http
International Nuclear Information System (INIS)
Woodruff, J.L.; Takahashi, P.K.
1990-01-01
The spa business, part of the health and fitness industry that has sprung up in recent years, is highly successful world-wide. The most traditional type of spa is the geothermal spa, found in geothermal areas around the world. In Japan, for example, some 2,000 geothermal spas and resorts generate $6 billion annually. Hawaii has an ideal environment for geothermal spas, and several locations in the islands could supply warm mineral water for spa development. Hawaii receives about 6 million visitors annually, a high percentage of whom are familiar with the relaxing and therapeutic value of geothermal spas, virtually guaranteeing the success of this industry in Hawaii. Presently, Hawaii does not have a single geothermal spa. This paper reports that the geothermal spa business is an industry whose time has come, an industry that offers very promising investment opportunities, and one that would improve the economy while expanding the diversity of pleasurable vacation options in Hawaii
Development And Application Of A Hydrothermal Model For The Salton Sea Geothermal Field, California
Energy Technology Data Exchange (ETDEWEB)
Kasameyer, P.; Younker, L.; Hanson, J.
1984-01-01
A simple lateral flow model adequately explains many of the features associated with the Salton Sea Geothermal Field. Earthquake swarms, a magnetic anomaly, and aspects of the gravity anomaly are all indirect evidence for the igneous activity which is the ultimate source of heat for the system. Heat is transferred from this area of intrusion by lateral spreading of hot water in a reservoir beneath an impermeable cap rock. A two dimensional analytic model encompassing this transport mechanism matches general features of the thermal anomaly and has been used to estimate the age of the presently observed thermal system. The age is calculated by minimizing the variance between the observed surface heat-flow data and the model. Estimates of the system age for this model range from 3,000 to 20,000 years.
Sainsbury-Martinez, Felix; Browning, Matthew; Miesch, Mark; Featherstone, Nicholas A.
2018-01-01
Low-Mass stars are typically fully convective, and as such their dynamics may differ significantly from sun-like stars. Here we present a series of 3D anelastic HD and MHD simulations of fully convective stars, designed to investigate how the meridional circulation, the differential rotation, and residual entropy are affected by both varying stellar parameters, such as the luminosity or the rotation rate, and by the presence of a magnetic field. We also investigate, more specifically, a theoretical model in which isorotation contours and residual entropy (σ‧ = σ ‑ σ(r)) are intrinsically linked via the thermal wind equation (as proposed in the Solar context by Balbus in 2009). We have selected our simulation parameters in such as way as to span the transition between Solar-like differential rotation (fast equator + slow poles) and ‘anti-Solar’ differential rotation (slow equator + fast poles), as characterised by the convective Rossby number and △Ω. We illustrate the transition from single-celled to multi-celled MC profiles, and from positive to negative latitudinal entropy gradients. We show that an extrapolation involving both TWB and the σ‧/Ω link provides a reasonable estimate for the interior profile of our fully convective stars. Finally, we also present a selection of MHD simulations which exhibit an almost unsuppressed differential rotation profile, with energy balances remaining dominated by kinetic components.
Directory of Open Access Journals (Sweden)
José Ernesto Nájera-Carpio
2015-07-01
Full Text Available In this work, the irreversible processes in light heating of Silicon (Si and Germanium (Ge thin films are examined. Each film is exposed to light irradiation with radiative and convective boundary conditions. Heat, electron and hole transport and generation-recombination processes of electron-hole pairs are studied in terms of a phenomenological model obtained from basic principles of irreversible thermodynamics. We present an analysis of the contributions to the entropy production in the stationary state due to the dissipative effects associated with electron and hole transport, generation-recombination of electron-hole pairs as well as heat transport. The most significant contribution to the entropy production comes from the interaction of light with the medium in both Si and Ge. This interaction includes two processes, namely, the generation of electron-hole pairs and the transferring of energy from the absorbed light to the lattice. In Si the following contribution in magnitude comes from the heat transport. In Ge all the remaining contributions to entropy production have nearly the same order of magnitude. The results are compared and explained addressing the differences in the magnitude of the thermodynamic forces, Onsager’s coefficients and transport properties of Si and Ge.
Directory of Open Access Journals (Sweden)
Omowunmi Isafiade
2013-09-01
Full Text Available This work investigates robots' perception in underground terrains (mines and tunnels using statistical region merging (SRM and the entropy models. A probabilistic approach based on the local entropy is employed. The entropy is measured within a fixed window on a stream of mine and tunnel frames to compute features used in the segmentation process, while SRM reconstructs the main structural components of an imagery by a simple but effective statistical analysis. An investigation is conducted on different regions of the mine, such as the shaft, stope and gallery, using publicly available mine frames, with a stream of locally captured mine images. Furthermore, an investigation is also conducted on a stream of dynamic underground tunnel image frames, using the XBOX Kinect 3D sensors. The Kinect sensors produce streams of red, green and blue (RGB and depth images of 640 × 480 resolution at 30 frames per second. Integrating the depth information into drivability gives a strong cue to the analysis, which detects 3D results augmenting drivable and non-drivable regions in 2D. The results of the 2D and 3D experiment with different terrains, mines and tunnels, together with the qualitative and quantitative evaluations, reveal that a good drivable region can be detected in dynamic underground terrains.
Energy Technology Data Exchange (ETDEWEB)
Moller, Nancy; Weare J. H.
2008-05-29
Successful exploitation of the vast amount of heat stored beneath the earth’s surface in hydrothermal and fluid-limited, low permeability geothermal resources would greatly expand the Nation’s domestic energy inventory and thereby promote a more secure energy supply, a stronger economy and a cleaner environment. However, a major factor limiting the expanded development of current hydrothermal resources as well as the production of enhanced geothermal systems (EGS) is insufficient knowledge about the chemical processes controlling subsurface fluid flow. With funding from past grants from the DOE geothermal program and other agencies, we successfully developed advanced equation of state (EOS) and simulation technologies that accurately describe the chemistry of geothermal reservoirs and energy production processes via their free energies for wide XTP ranges. Using the specific interaction equations of Pitzer, we showed that our TEQUIL chemical models can correctly simulate behavior (e.g., mineral scaling and saturation ratios, gas break out, brine mixing effects, down hole temperatures and fluid chemical composition, spent brine incompatibilities) within the compositional range (Na-K-Ca-Cl-SO4-CO3-H2O-SiO2-CO2(g)) and temperature range (T < 350°C) associated with many current geothermal energy production sites that produce brines with temperatures below the critical point of water. The goal of research carried out under DOE grant DE-FG36-04GO14300 (10/1/2004-12/31/2007) was to expand the compositional range of our Pitzer-based TEQUIL fluid/rock interaction models to include the important aluminum and silica interactions (T < 350°C). Aluminum is the third most abundant element in the earth’s crust; and, as a constituent of aluminosilicate minerals, it is found in two thirds of the minerals in the earth’s crust. The ability to accurately characterize effects of temperature, fluid mixing and interactions between major rock-forming minerals and hydrothermal and
Yustin Kamah, Muhammad; Armando, Adilla; Larasati Rahmani, Dinda; Paramitha, Shabrina
2017-12-01
Geophysical methods such as gravity and magnetotelluric methods commonly used in conventional and unconventional energy exploration, notably for exploring geothermal prospect. They used to identify the subsurface geology structures which is estimated as a path of fluid flow. This study was conducted in Kamojang Geothermal Field with the aim of highlighting the volcanic lineament in West Java, precisely in Guntur-Papandayan chain where there are three geothermal systems. Kendang Fault has predominant direction NE-SW, identified by magnetotelluric techniques and gravity data processing techniques. Gravity techniques such as spectral analysis, derivative solutions, and Euler deconvolution indicate the type and geometry of anomaly. Magnetotelluric techniques such as inverse modeling and polar diagram are required to know subsurface resistivity charactersitics and major orientation. Furthermore, the result from those methods will be compared to geology information and some section of well data, which is sufficiently suitable. This research is very useful to trace out another potential development area.
How fast can we learn maximum entropy models of neural populations?
Energy Technology Data Exchange (ETDEWEB)
Ganmor, Elad; Schneidman, Elad [Department of Neuroscience, Weizmann Institute of Science, Rehovot 76100 (Israel); Segev, Ronen, E-mail: elad.ganmor@weizmann.ac.i, E-mail: elad.schneidman@weizmann.ac.i [Department of Life Sciences and Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva 84105 (Israel)
2009-12-01
Most of our knowledge about how the brain encodes information comes from recordings of single neurons. However, computations in the brain are carried out by large groups of neurons. Modelling the joint activity of many interacting elements is computationally hard because of the large number of possible activity patterns and limited experimental data. Recently it was shown in several different neural systems that maximum entropy pairwise models, which rely only on firing rates and pairwise correlations of neurons, are excellent models for the distribution of activity patterns of neural populations, and in particular, their responses to natural stimuli. Using simultaneous recordings of large groups of neurons in the vertebrate retina responding to naturalistic stimuli, we show here that the relevant statistics required for finding the pairwise model can be accurately estimated within seconds. Furthermore, while higher order statistics may, in theory, improve model accuracy, they are, in practice, harmful for times of up to 20 minutes due to sampling noise. Finally, we demonstrate that trading accuracy for entropy may actually improve model performance when data is limited, and suggest an optimization method that automatically adjusts model constraints in order to achieve good performance.
How fast can we learn maximum entropy models of neural populations?
International Nuclear Information System (INIS)
Ganmor, Elad; Schneidman, Elad; Segev, Ronen
2009-01-01
Most of our knowledge about how the brain encodes information comes from recordings of single neurons. However, computations in the brain are carried out by large groups of neurons. Modelling the joint activity of many interacting elements is computationally hard because of the large number of possible activity patterns and limited experimental data. Recently it was shown in several different neural systems that maximum entropy pairwise models, which rely only on firing rates and pairwise correlations of neurons, are excellent models for the distribution of activity patterns of neural populations, and in particular, their responses to natural stimuli. Using simultaneous recordings of large groups of neurons in the vertebrate retina responding to naturalistic stimuli, we show here that the relevant statistics required for finding the pairwise model can be accurately estimated within seconds. Furthermore, while higher order statistics may, in theory, improve model accuracy, they are, in practice, harmful for times of up to 20 minutes due to sampling noise. Finally, we demonstrate that trading accuracy for entropy may actually improve model performance when data is limited, and suggest an optimization method that automatically adjusts model constraints in order to achieve good performance.
An 18 Moments Model for Dense Gases: Entropy and Galilean Relativity Principles without Expansions
Directory of Open Access Journals (Sweden)
M. Cristina Carrisi
2015-01-01
Full Text Available The 14 moments model for dense gases, introduced in the last few years by Arima, Taniguchi, Ruggeri and Sugiyama, is here extended up to 18 moments. They have found the closure of the balance equations up to a finite order with respect to equilibrium; it is also possible to impose for that model the entropy and Galilean relativity principles up to whatever order with respect to equilibrium, but by using Taylor’s expansion. Here, the exact solution is found, without expansions, but a bigger number of moments has to be considered and reasons will be shown suggesting that this number is at least 18.
International Nuclear Information System (INIS)
Kolb, E.W.; Lindley, D.; Seckel, D.
1984-01-01
For a cosmological model with d noncompact and D compact spatial dimensions and symmetry R 1 x S/sup d/ x S/sup D/, we calculate the entropy produced in d dimensions due to the compactification of D dimensions and show it too small to be of cosmological interest. Although insufficient entropy is produced in the model we study, the contraction of extra dimensions does lead to entropy production. We discuss modifications of our assumptions, including changing our condition for decoupling of the extra dimensions, which may lead to a large entropy production and change our conclusions
Adjoint entropy vs topological entropy
Giordano Bruno, Anna
2012-01-01
Recently the adjoint algebraic entropy of endomorphisms of abelian groups was introduced and studied. We generalize the notion of adjoint entropy to continuous endomorphisms of topological abelian groups. Indeed, the adjoint algebraic entropy is defined using the family of all finite-index subgroups, while we take only the subfamily of all open finite-index subgroups to define the topological adjoint entropy. This allows us to compare the (topological) adjoint entropy with the known topologic...
Entropy-Based Experimental Design for Optimal Model Discrimination in the Geosciences
Directory of Open Access Journals (Sweden)
Wolfgang Nowak
2016-11-01
Full Text Available Choosing between competing models lies at the heart of scientific work, and is a frequent motivation for experimentation. Optimal experimental design (OD methods maximize the benefit of experiments towards a specified goal. We advance and demonstrate an OD approach to maximize the information gained towards model selection. We make use of so-called model choice indicators, which are random variables with an expected value equal to Bayesian model weights. Their uncertainty can be measured with Shannon entropy. Since the experimental data are still random variables in the planning phase of an experiment, we use mutual information (the expected reduction in Shannon entropy to quantify the information gained from a proposed experimental design. For implementation, we use the Preposterior Data Impact Assessor framework (PreDIA, because it is free of the lower-order approximations of mutual information often found in the geosciences. In comparison to other studies in statistics, our framework is not restricted to sequential design or to discrete-valued data, and it can handle measurement errors. As an application example, we optimize an experiment about the transport of contaminants in clay, featuring the problem of choosing between competing isotherms to describe sorption. We compare the results of optimizing towards maximum model discrimination with an alternative OD approach that minimizes the overall predictive uncertainty under model choice uncertainty.
Transplanckian entanglement entropy
International Nuclear Information System (INIS)
Chang, Darwin; Chu, C.-S.; Lin Fengli
2004-01-01
The entanglement entropy of the event horizon is known to be plagued by the UV divergence due to the infinitely blue-shifted near horizon modes. In this Letter we calculate the entanglement entropy using the transplanckian dispersion relation, which has been proposed to model the quantum gravity effects. We show that, very generally, the entropy is rendered UV finite due to the suppression of high energy modes effected by the transplanckian dispersion relation
Directory of Open Access Journals (Sweden)
M. E. Haji Abadi
2013-09-01
Full Text Available In this paper, the continuous optimal control theory is used to model and solve the maximum entropy problem for a continuous random variable. The maximum entropy principle provides a method to obtain least-biased probability density function (Pdf estimation. In this paper, to find a closed form solution for the maximum entropy problem with any number of moment constraints, the entropy is considered as a functional measure and the moment constraints are considered as the state equations. Therefore, the Pdf estimation problem can be reformulated as the optimal control problem. Finally, the proposed method is applied to estimate the Pdf of the hourly electricity prices of New England and Ontario electricity markets. Obtained results show the efficiency of the proposed method.
Properties of Linear Entropy in k-Photon Jaynes-Cummings Model with Stark Shift and Kerr-Like Medium
International Nuclear Information System (INIS)
Liao Qinghong; Wang Yueyuan; Liu Shutian; Ahmad, Muhammad Ashfaq
2010-01-01
The time evolution of the linear entropy of an atom in k-photon Jaynes-Cummings model is investigated taking into consideration Stark shift and Kerr-like medium. The effect of both the Stark shift and Kerr-like medium on the linear entropy is analyzed using a numerical technique for the field initially in coherent state and in even coherent state. The results show that the presence of the Kerr-like medium and Stark shift has an important effect on the properties of the entropy and entanglement. It is also shown that the setting of the initial state plays a significant role in the evolution of the linear entropy and entanglement. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)
Modelling of Thermal Behavior of Borehole Heat Exchangers of Geothermal Heat Pump Heating Systems
Directory of Open Access Journals (Sweden)
Gornov V.F.
2016-01-01
Full Text Available This article reports results of comparing the accuracy of the software package “INSOLAR.GSHP.12”, modeling non-steady thermal behavior of geothermal heat pump heating systems (GHCS and of the similar model “conventional” using finite difference methods for solving spatial non-steady problems of heat conductivity. The software package is based on the method of formulating mathematical models of thermal behavior of ground low-grade heat collection systems developed by INSOLAR group of companies. Equations of mathematical model of spatial non-steady thermal behavior of ground mass of low-grade heat collection system obtained by the developed method have been solved analytically that significantly reduced computing time spent by the software complex “INSOLAR.GSHP.12” for calculations. The method allows to turn aside difficulties associated with information uncertainty of mathematical models of the ground thermal behavior and approximation of external factors affecting the ground. Use of experimentally obtained information about the ground natural thermal behavior in the software package allows to partially take into account the whole complex of factors (such as availability of groundwater, their velocity and thermal behavior, structure and arrangement of ground layers, the Earth’s thermal background, precipitation, phase transformations of moisture in the pore space, and more, significantly influencing the formation of thermal behavior of the ground mass of a low-grade geothermal heat collection system. Numerical experiments presented in the article confirmed the high convergence of the results obtained through the software package “INSOLAR.GSHP.12” with solutions obtained by conventional finite-difference methods.
Quasi-exact solvability and entropies of the one-dimensional regularised Calogero model
Pont, Federico M.; Osenda, Omar; Serra, Pablo
2018-05-01
The Calogero model can be regularised through the introduction of a cutoff parameter which removes the divergence in the interaction term. In this work we show that the one-dimensional two-particle regularised Calogero model is quasi-exactly solvable and that for certain values of the Hamiltonian parameters the eigenfunctions can be written in terms of Heun’s confluent polynomials. These eigenfunctions are such that the reduced density matrix of the two-particle density operator can be obtained exactly as well as its entanglement spectrum. We found that the number of non-zero eigenvalues of the reduced density matrix is finite in these cases. The limits for the cutoff distance going to zero (Calogero) and infinity are analysed and all the previously obtained results for the Calogero model are reproduced. Once the exact eigenfunctions are obtained, the exact von Neumann and Rényi entanglement entropies are studied to characterise the physical traits of the model. The quasi-exactly solvable character of the model is assessed studying the numerically calculated Rényi entropy and entanglement spectrum for the whole parameter space.
Data integration and conceptual modelling of the Larderello geothermal area, Italy
Manzella, Adele; Gola, Gianluca; Bertini, Giovanni; Bonini, Marco; Botteghi, Serena; Brogi, Andrea; De Franco, Roberto; Dini, Andrea; Donato, Assunta; Gianelli, Giovanni; Liotta, Domenico; Montanari, Domenico; Montegrossi, Giordano; Petracchini, Lorenzo; Ruggieri, Giovanni; Santilano, Alessandro; Scrocca, Davide; Trumpy, Eugenio
2017-04-01
The Larderello geothermal field, located in southern Tuscany (Italy), is one of the most important long-living hydrothermal system in the world. The inner zone of the Northern Apennines is characterized by high heat flow, well constrained by several hundred measurements deriving from both shallow boreholes and deep exploration wells. It is widely accepted that the interplay among extensional tectonics, thinning of the previously overthickened crust and lithosphere, and magmatism related to crustal melting and hybridism, controlled the NW-SE trending geothermal anomaly occurring in southern Tuscany. At Larderello, the geothermal exploitation started at the beginning of the last century from the shallow evaporite-carbonate reservoir (about 700 - 1000 m b.g.l. on average) hosting a super-heated steam with temperature ranging from 150°C to 260°C. A deep exploration program was carried out in the early 1980s. Deep boreholes found a super-heated steam-dominated system hosted in the metamorphic basement (about 2500 - 4000 m b.g.l), characterized by temperatures ranging from 300°C to 350°C. In the SW part of the Larderello area (Lago locality), a temperature exceeding 400°C was measured down to 3000 m b.s.l. The 2D and 3D seismic exploration activities provided evidences of a seismic marker, locally showing bright spot features, defining the top of a deeper reflective crustal interval, named as "K-horizon". The K-horizon has not yet been drilled, but some boreholes approached it. This seismic reflector exhibits interesting positive correlation with the maximum peak of the hypocentre distribution of low-magnitude earthquakes and, at the same time, its shape coincides with the thermal anomaly distribution, in plain view. The review and updating of the velocity and resistivity models suggest the existence of over-pressurized fluids, likely of magmatic and/or thermo-metamorphic origin, which originate the seismic velocity anomalies. The upward migration and storage of the
Geology and Conceptual Model of the Domuyo Geothermal Area, Patagonia, Argentina
Fragoso, A. S.; Ferrari, L.; Norini, G.
2017-12-01
Cerro Domuyo is the highest mountain in Patagonia and its western slope is characterized by thermal springs with boiling fluids as well as silicic domes and pyroclastic deposits that suggest the existence of a geothermal reservoir. Early studies proposed that the thermal springs were fault-controlled and the reservoir was located in a graben bounded by E-W normal faults. A recent geochemical study estimated a temperature of 220ºC for the fluid reservoir and a thermal energy release of 1.1 GW, one of the world largest advective heat flux from a continental volcanic center. We carried out a geologic survey and U-Pb and U-Th geochronologic study to elaborate an updated conceptual model for the Domuyo geothermal area. Our study indicates that the Domuyo Volcanic Complex (DVC) is a dome complex overlying an older, Middle Miocene to Pliocene volcanic sequence widely exposed to the southwest and to the north, which in turn covers: 1) the Jurassice-Early Creteacoeus Neuquen marine sedimentary succession, 2) silicic ignimbrites dated at 186.7 Ma and, 3) the Paleozoic metamorphic basement intruded by 288 Ma granite bodies. These pre-Cenozoic successions are involved in dominantly N-S trending folds and thrust faults later displaced by E-W striking normal faults with a right lateral component of motion that underlie the DVC. The volcanic cycle forming the DVC is distinctly bimodal with the emplacement of massive silicic domes but also less voluminous olivine basalts on its southern slope. The central dome underwent a major collapse that produced 0.35 km3 of ash and block flow and associated pyroclastic flows that filled the valley to the southwest up to 30 km from the source. This was followed by a voluminous effusive activity that formed silicic domes dated between 254-322 Ky, which is inferred to overlain a partially molten silicic magma chamber. Integrating the geologic model with magnetotelluric and gravity surveys we developed a conceptual model of the geothermal system
Modelling streambank erosion potential using maximum entropy in a central Appalachian watershed
Directory of Open Access Journals (Sweden)
J. Pitchford
2015-03-01
Full Text Available We used maximum entropy to model streambank erosion potential (SEP in a central Appalachian watershed to help prioritize sites for management. Model development included measuring erosion rates, application of a quantitative approach to locate Target Eroding Areas (TEAs, and creation of maps of boundary conditions. We successfully constructed a probability distribution of TEAs using the program Maxent. All model evaluation procedures indicated that the model was an excellent predictor, and that the major environmental variables controlling these processes were streambank slope, soil characteristics, bank position, and underlying geology. A classification scheme with low, moderate, and high levels of SEP derived from logistic model output was able to differentiate sites with low erosion potential from sites with moderate and high erosion potential. A major application of this type of modelling framework is to address uncertainty in stream restoration planning, ultimately helping to bridge the gap between restoration science and practice.
Periodic matrix population models: growth rate, basic reproduction number, and entropy.
Bacaër, Nicolas
2009-10-01
This article considers three different aspects of periodic matrix population models. First, a formula for the sensitivity analysis of the growth rate lambda is obtained that is simpler than the one obtained by Caswell and Trevisan. Secondly, the formula for the basic reproduction number R0 in a constant environment is generalized to the case of a periodic environment. Some inequalities between lambda and R0 proved by Cushing and Zhou are also generalized to the periodic case. Finally, we add some remarks on Demetrius' notion of evolutionary entropy H and its relationship to the growth rate lambda in the periodic case.
Manzella A.
2017-01-01
Geothermal technologies use renewable energy resources to generate electricity and direct use of heat while producing very low levels of greenhouse-gas (GHG) emissions. Geothermal energy is the thermal energy stored in the underground, including any contained fluid, which is available for extraction and conversion into energy products. Electricity generation, which nowadays produces 73.7 TWh (12.7 GW of capacity) worldwide, usually requires geothermal resources temperatures of over 100 °C. Fo...
EEG entropy measures in anesthesia
Directory of Open Access Journals (Sweden)
Zhenhu eLiang
2015-02-01
Full Text Available Objective: Entropy algorithms have been widely used in analyzing EEG signals during anesthesia. However, a systematic comparison of these entropy algorithms in assessing anesthesia drugs’ effect is lacking. In this study, we compare the capability of twelve entropy indices for monitoring depth of anesthesia (DoA and detecting the burst suppression pattern (BSP, in anesthesia induced by GA-BAergic agents.Methods: Twelve indices were investigated, namely Response Entropy (RE and State entropy (SE, three wavelet entropy (WE measures (Shannon WE (SWE, Tsallis WE (TWE and Renyi WE (RWE, Hilbert-Huang spectral entropy (HHSE, approximate entropy (ApEn, sample entropy (SampEn, Fuzzy entropy, and three permutation entropy (PE measures (Shannon PE (SPE, Tsallis PE (TPE and Renyi PE (RPE. Two EEG data sets from sevoflurane-induced and isoflu-rane-induced anesthesia respectively were selected to assess the capability of each entropy index in DoA monitoring and BSP detection. To validate the effectiveness of these entropy algorithms, phar-macokinetic / pharmacodynamic (PK/PD modeling and prediction probability analysis were applied. The multifractal detrended fluctuation analysis (MDFA as a non-entropy measure was compared.Results: All the entropy and MDFA indices could track the changes in EEG pattern during different anesthesia states. Three PE measures outperformed the other entropy indices, with less baseline vari-ability, higher coefficient of determination and prediction probability, and RPE performed best; ApEn and SampEn discriminated BSP best. Additionally, these entropy measures showed an ad-vantage in computation efficiency compared with MDFA.Conclusion: Each entropy index has its advantages and disadvantages in estimating DoA. Overall, it is suggested that the RPE index was a superior measure.Significance: Investigating the advantages and disadvantages of these entropy indices could help improve current clinical indices for monitoring DoA.
Hydrochemistry and geothermometrical modeling of low-temperature Panticosa geothermal system (Spain)
Asta, Maria P.; Gimeno, Maria J.; Auqué, Luis F.; Gómez, Javier; Acero, Patricia; Lapuente, Pilar
2012-08-01
The chemical characteristics of the low-temperature geothermal system of Panticosa (Spain) were investigated in order to determine the water temperature at the reservoir and to identify the main geochemical processes that affect the water composition during the ascent of the thermal waters. In general, the studied waters are similar to other geothermal systems in the Pyrenees, belonging to the group of granite-related alkaline thermal waters (high pH, low total dissolved solids, very low magnesium concentration, and sodium as the dominant cation). According to the alkaline pH of these waters, they have a very low CO2 partial pressure, bicarbonate is the dominant anion and silica is partially ionized as H3SiO4-. The unusually active acid-base pairs (HCO3-/CO32 - and, mainly, H4SiO4/H3SiO4-) act as homogeneous pH buffers and contribute to the total alkalinity in these alkaline waters. On the basis of the study of the conservative elements, a mixing process between a hot and a cold end-member has been identified. Additionally, in order to determinate the water temperature at the reservoir, several geothermometric techniques have been applied, including both geothermometrical modeling and classical geothermometrical calculations. The geothermometrical modeling seems to indicate that thermal waters re-equilibrate with respect to calcite and kaolinite during their ascent to the surface. Modeling results suggest that these thermal waters would be in equilibrium with respect to albite, K-feldspar, quartz, calcite, kaolinite and zoisite at a similar temperature of 90 ± 20 °C in the reservoir, which is in good agreement with the results obtained by applying the classical geothermometers.
Directory of Open Access Journals (Sweden)
Kostas Alexandridis
2013-06-01
Full Text Available Assessing spatial model performance often presents challenges related to the choice and suitability of traditional statistical methods in capturing the true validity and dynamics of the predicted outcomes. The stochastic nature of many of our contemporary spatial models of land use change necessitate the testing and development of new and innovative methodologies in statistical spatial assessment. In many cases, spatial model performance depends critically on the spatially-explicit prior distributions, characteristics, availability and prevalence of the variables and factors under study. This study explores the statistical spatial characteristics of statistical model assessment of modeling land use change dynamics in a seven-county study area in South-Eastern Wisconsin during the historical period of 1963–1990. The artificial neural network-based Land Transformation Model (LTM predictions are used to compare simulated with historical land use transformations in urban/suburban landscapes. We introduce a range of Bayesian information entropy statistical spatial metrics for assessing the model performance across multiple simulation testing runs. Bayesian entropic estimates of model performance are compared against information-theoretic stochastic entropy estimates and theoretically-derived accuracy assessments. We argue for the critical role of informational uncertainty across different scales of spatial resolution in informing spatial landscape model assessment. Our analysis reveals how incorporation of spatial and landscape information asymmetry estimates can improve our stochastic assessments of spatial model predictions. Finally our study shows how spatially-explicit entropic classification accuracy estimates can work closely with dynamic modeling methodologies in improving our scientific understanding of landscape change as a complex adaptive system and process.
A conceptual geochemical model of the geothermal system at Surprise Valley, CA
Fowler, Andrew P. G.; Ferguson, Colin; Cantwell, Carolyn A.; Zierenberg, Robert A.; McClain, James; Spycher, Nicolas; Dobson, Patrick
2018-03-01
Characterizing the geothermal system at Surprise Valley (SV), northeastern California, is important for determining the sustainability of the energy resource, and mitigating hazards associated with hydrothermal eruptions that last occurred in 1951. Previous geochemical studies of the area attempted to reconcile different hot spring compositions on the western and eastern sides of the valley using scenarios of dilution, equilibration at low temperatures, surface evaporation, and differences in rock type along flow paths. These models were primarily supported using classical geothermometry methods, and generally assumed that fluids in the Lake City mud volcano area on the western side of the valley best reflect the composition of a deep geothermal fluid. In this contribution, we address controls on hot spring compositions using a different suite of geochemical tools, including optimized multicomponent geochemistry (GeoT) models, hot spring fluid major and trace element measurements, mineralogical observations, and stable isotope measurements of hot spring fluids and precipitated carbonates. We synthesize the results into a conceptual geochemical model of the Surprise Valley geothermal system, and show that high-temperature (quartz, Na/K, Na/K/Ca) classical geothermometers fail to predict maximum subsurface temperatures because fluids re-equilibrated at progressively lower temperatures during outflow, including in the Lake City area. We propose a model where hot spring fluids originate as a mixture between a deep thermal brine and modern meteoric fluids, with a seasonally variable mixing ratio. The deep brine has deuterium values at least 3 to 4‰ lighter than any known groundwater or high-elevation snow previously measured in and adjacent to SV, suggesting it was recharged during the Pleistocene when meteoric fluids had lower deuterium values. The deuterium values and compositional characteristics of the deep brine have only been identified in thermal springs and
Health impacts of geothermal energy
International Nuclear Information System (INIS)
Layton, D.W.; Anspaugh, L.R.
1982-01-01
Geothermal resources are used to produce electrical energy and to supply heat for non-electric applications like residential heating and crop drying. The utilization of geothermal energy consists of the extraction of hot water or steam from an underground reservoir followed by different methods of surface processing along with the disposal of liquid, gaseous, and even solid wastes. The focus of this paper is on electric power production using geothermal resources greater than 150 0 C because this form of geothermal energy utilization has the most serious health-related consequences. Based on measurements and experience at existing geothermal power plants, atmospheric emissions of non-condensing gases such as hydrogen sulphide and benzene pose the greatest hazards to public health. Surface and ground waters contaminated by discharges of spent geothermal fluids constitute another health hazard. In this paper it is shown that hydrogen sulphide emissions from most geothermal power plants are apt to cause odour annoyances among members of the exposed public -some of whom can detect this gas at concentrations as low as 0.002 ppmv. A risk-assessment model is used to estimate the lifetime risk of incurring leukaemia from atmospheric benzene caused by 2000 MW(e) of geothermal development in California's Imperial Valley. Also assessed is the risk of skin cancer due to the ingestion of river water in New Zealand that is contaminated by waste geothermal fluids containing arsenic. Finally, data on the occurrence of occupational disease in the geothermal industry is briefly summarized. (author)
Energy efficiency model for small/medium geothermal heat pump systems
Directory of Open Access Journals (Sweden)
Staiger Robert
2015-06-01
Full Text Available Heating application efficiency is a crucial point for saving energy and reducing greenhouse gas emissions. Today, EU legal framework conditions clearly define how heating systems should perform, how buildings should be designed in an energy efficient manner and how renewable energy sources should be used. Using heat pumps (HP as an alternative “Renewable Energy System” could be one solution for increasing efficiency, using less energy, reducing the energy dependency and reducing greenhouse gas emissions. This scientific article will take a closer look at the different efficiency dependencies of such geothermal HP (GHP systems for domestic buildings (small/medium HP. Manufacturers of HP appliances must document the efficiency, so called COP (Coefficient of Performance in the EU under certain standards. In technical datasheets of HP appliances, these COP parameters give a clear indication of the performance quality of a HP device. HP efficiency (COP and the efficiency of a working HP system can vary significantly. For this reason, an annual efficiency statistic named “Seasonal Performance Factor” (SPF has been defined to get an overall efficiency for comparing HP Systems. With this indicator, conclusions can be made from an installation, economy, environmental, performance and a risk point of view. A technical and economic HP model shows the dependence of energy efficiency problems in HP systems. To reduce the complexity of the HP model, only the important factors for efficiency dependencies are used. Dynamic and static situations with HP´s and their efficiency are considered. With the latest data from field tests of HP Systems and the practical experience over the last 10 years, this information will be compared with one of the latest simulation programs with the help of two practical geothermal HP system calculations. With the result of the gathered empirical data, it allows for a better estimate of the HP system efficiency, their
Dynamics of Entropy in Quantum-like Model of Decision Making
Basieva, Irina; Khrennikov, Andrei; Asano, Masanari; Ohya, Masanori; Tanaka, Yoshiharu
2011-03-01
We present a quantum-like model of decision making in games of the Prisoner's Dilemma type. By this model the brain processes information by using representation of mental states in complex Hilbert space. Driven by the master equation the mental state of a player, say Alice, approaches an equilibrium point in the space of density matrices. By using this equilibrium point Alice determines her mixed (i.e., probabilistic) strategy with respect to Bob. Thus our model is a model of thinking through decoherence of initially pure mental state. Decoherence is induced by interaction with memory and external environment. In this paper we study (numerically) dynamics of quantum entropy of Alice's state in the process of decision making. Our analysis demonstrates that this dynamics depends nontrivially on the initial state of Alice's mind on her own actions and her prediction state (for possible actions of Bob.)
Copula Entropy coupled with Wavelet Neural Network Model for Hydrological Prediction
Wang, Yin; Yue, JiGuang; Liu, ShuGuang; Wang, Li
2018-02-01
Artificial Neural network(ANN) has been widely used in hydrological forecasting. in this paper an attempt has been made to find an alternative method for hydrological prediction by combining Copula Entropy(CE) with Wavelet Neural Network(WNN), CE theory permits to calculate mutual information(MI) to select Input variables which avoids the limitations of the traditional linear correlation(LCC) analysis. Wavelet analysis can provide the exact locality of any changes in the dynamical patterns of the sequence Coupled with ANN Strong non-linear fitting ability. WNN model was able to provide a good fit with the hydrological data. finally, the hybrid model(CE+WNN) have been applied to daily water level of Taihu Lake Basin, and compared with CE ANN, LCC WNN and LCC ANN. Results showed that the hybrid model produced better results in estimating the hydrograph properties than the latter models.
Entropy and Graph Based Modelling of Document Coherence using Discourse Entities
DEFF Research Database (Denmark)
Petersen, Casper; Lioma, Christina; Simonsen, Jakob Grue
2015-01-01
We present two novel models of document coherence and their application to information retrieval (IR). Both models approximate document coherence using discourse entities, e.g. the subject or object of a sentence. Our first model views text as a Markov process generating sequences of discourse...... entities (entity n-grams); we use the entropy of these entity n-grams to approximate the rate at which new information appears in text, reasoning that as more new words appear, the topic increasingly drifts and text coherence decreases. Our second model extends the work of Guinaudeau & Strube [28......] that represents text as a graph of discourse entities, linked by different relations, such as their distance or adjacency in text. We use several graph topology metrics to approximate different aspects of the discourse flow that can indicate coherence, such as the average clustering or betweenness of discourse...
International Nuclear Information System (INIS)
Kappelmeyer, O.
1991-01-01
Geothermal energy is the natural heat of the earth. It represents an inexhaustible source of energy. In many countries, which are mostly located within the geothermal belts of the world, geothermal energy is being used since many decades for electricity generation and direct heating applications comprising municipal, industrial and agricultural heating. Outside the geothermal anomalous volcanic regions, hot ground water from deep rock formations at temperatures above 70 o C is used for process heat and space heating. Low prices for gas and oil hinder the development of geothermal plants in areas outside positive geothermal anomalies; the cost of drilling to reach depths, where temperatures are above 50 o C to 70 o C, is high. The necessary total investment per MW th installed capacity is in the order of 5 Mio- DM/MW th (3 Mio $/MW th ). Experience shows, that an economic break even with oil is reached at an oil price of 30$ per barrel or if an adequate bonus for the clean, environmentally compatible production of geothermal heat is granted. Worldwide the installed electric capacity of geothermal power plants is approximately 6 000 MW e . About 15 000 MW th of thermal capacity is being extracted for process heat and space heat. The importance of the terrestrial heat as an energy resource would be substantially increased, if the heat, stored in the hot crystalline basement could be extracted at economical production costs. Geothermal energy is a competitive energy source in areas with high geothermal gradients (relative low cost for drilling) and would be competitive in areas with normal geothermal gradients, if a fair compensation for environmental implications from fossil and nuclear power production would be granted. (author) 2 figs., 1 tab., 6 refs
A Novel Entropy-Based Decoding Algorithm for a Generalized High-Order Discrete Hidden Markov Model
Directory of Open Access Journals (Sweden)
Jason Chin-Tiong Chan
2018-01-01
Full Text Available The optimal state sequence of a generalized High-Order Hidden Markov Model (HHMM is tracked from a given observational sequence using the classical Viterbi algorithm. This classical algorithm is based on maximum likelihood criterion. We introduce an entropy-based Viterbi algorithm for tracking the optimal state sequence of a HHMM. The entropy of a state sequence is a useful quantity, providing a measure of the uncertainty of a HHMM. There will be no uncertainty if there is only one possible optimal state sequence for HHMM. This entropy-based decoding algorithm can be formulated in an extended or a reduction approach. We extend the entropy-based algorithm for computing the optimal state sequence that was developed from a first-order to a generalized HHMM with a single observational sequence. This extended algorithm performs the computation exponentially with respect to the order of HMM. The computational complexity of this extended algorithm is due to the growth of the model parameters. We introduce an efficient entropy-based decoding algorithm that used reduction approach, namely, entropy-based order-transformation forward algorithm (EOTFA to compute the optimal state sequence of any generalized HHMM. This EOTFA algorithm involves a transformation of a generalized high-order HMM into an equivalent first-order HMM and an entropy-based decoding algorithm is developed based on the equivalent first-order HMM. This algorithm performs the computation based on the observational sequence and it requires OTN~2 calculations, where N~ is the number of states in an equivalent first-order model and T is the length of observational sequence.
Directory of Open Access Journals (Sweden)
S. Sugiharto
2014-08-01
Full Text Available Measurement of vapor flow in geothermal pipe faces great challenges due to fast fluids flow in high-temperature and high-pressure environment. In present study the flow rate measurement has been performed to characterization the geothermal vapor flow in a pipe. The experiment was carried out in a pipe which is connected to a geothermal production well, KMJ-14. The pipe has a 10” outside diameter and contains dry vapor at a pressure of 8 kg/cm2 and a temperature of 170 oC. Krypton-85 gas isotope (85Kr has been injected into the pipe. Three collimated radiation detectors positioned respectively at 127, 177 and 227m from injection point were used to obtain experimental data which represent radiotracer residence time distribution (RTD in the pipe. The last detector at the position of 227 m did not respond, which might be due to problems in cable connections. Flow properties calculated using mean residence time (MRT shows that the flow rate of the vapor in pipe is 10.98 m/s, much faster than fluid flow commonly found in various industrial process plants. Best fitting evaluated using dedicated software developed by IAEA expert obtained the Péclet number Pe as 223. This means that the flow of vapor of geothermal fluids in pipe is plug flow in character. The molecular diffusion coefficient is 0.45 m2/s, calculated from the axial dispersion model.
International Nuclear Information System (INIS)
Beretta, Gian Paolo
2006-01-01
We discuss a nonlinear model for relaxation by energy redistribution within an isolated, closed system composed of noninteracting identical particles with energy levels e i with i=1,2,...,N. The time-dependent occupation probabilities p i (t) are assumed to obey the nonlinear rate equations τ dp i /dt=-p i ln p i -α(t)p i -β(t)e i p i where α(t) and β(t) are functionals of the p i (t)'s that maintain invariant the mean energy E=Σ i=1 N e i p i (t) and the normalization condition 1=Σ i=1 N p i (t). The entropy S(t)=-k B Σ i=1 N p i (t)ln p i (t) is a nondecreasing function of time until the initially nonzero occupation probabilities reach a Boltzmann-like canonical distribution over the occupied energy eigenstates. Initially zero occupation probabilities, instead, remain zero at all times. The solutions p i (t) of the rate equations are unique and well defined for arbitrary initial conditions p i (0) and for all times. The existence and uniqueness both forward and backward in time allows the reconstruction of the ancestral or primordial lowest entropy state. By casting the rate equations in terms not of the p i 's but of their positive square roots √(p i ), they unfold from the assumption that time evolution is at all times along the local direction of steepest entropy ascent or, equivalently, of maximal entropy generation. These rate equations have the same mathematical structure and basic features as the nonlinear dynamical equation proposed in a series of papers ending with G. P. Beretta, Found. Phys. 17, 365 (1987) and recently rediscovered by S. Gheorghiu-Svirschevski [Phys. Rev. A 63, 022105 (2001);63, 054102 (2001)]. Numerical results illustrate the features of the dynamics and the differences from the rate equations recently considered for the same problem by M. Lemanska and Z. Jaeger [Physica D 170, 72 (2002)]. We also interpret the functionals k B α(t) and k B β(t) as nonequilibrium generalizations of the thermodynamic-equilibrium Massieu
Brehme, Marc; Koschmieder, Steffen; Montazeri, Maryam; Copland, Mhairi; Oehler, Vivian G.; Radich, Jerald P.; Brümmendorf, Tim H.; Schuppert, Andreas
2016-04-01
Modelling the parameters of multistep carcinogenesis is key for a better understanding of cancer progression, biomarker identification and the design of individualized therapies. Using chronic myeloid leukemia (CML) as a paradigm for hierarchical disease evolution we show that combined population dynamic modelling and CML patient biopsy genomic analysis enables patient stratification at unprecedented resolution. Linking CD34+ similarity as a disease progression marker to patient-derived gene expression entropy separated established CML progression stages and uncovered additional heterogeneity within disease stages. Importantly, our patient data informed model enables quantitative approximation of individual patients’ disease history within chronic phase (CP) and significantly separates “early” from “late” CP. Our findings provide a novel rationale for personalized and genome-informed disease progression risk assessment that is independent and complementary to conventional measures of CML disease burden and prognosis.
Generalized second law of thermodynamics for non-canonical scalar field model with corrected-entropy
International Nuclear Information System (INIS)
Das, Sudipta; Mamon, Abdulla Al; Debnath, Ujjal
2015-01-01
In this work, we have considered a non-canonical scalar field dark energy model in the framework of flat FRW background. It has also been assumed that the dark matter sector interacts with the non-canonical dark energy sector through some interaction term. Using the solutions for this interacting non-canonical scalar field dark energy model, we have investigated the validity of generalized second law (GSL) of thermodynamics in various scenarios using first law and area law of thermodynamics. For this purpose, we have assumed two types of horizons viz apparent horizon and event horizon for the universe and using first law of thermodynamics, we have examined the validity of GSL on both apparent and event horizons. Next, we have considered two types of entropy-corrections on apparent and event horizons. Using the modified area law, we have examined the validity of GSL of thermodynamics on apparent and event horizons under some restrictions of model parameters. (orig.)
Geothermal systems: Principles and case histories
Rybach, L.; Muffler, L. J. P.
The classification of geothermal systems is considered along with the geophysical and geochemical signatures of geothermal systems, aspects of conductive heat transfer and regional heat flow, and geothermal anomalies and their plate tectonic framework. An investigation of convective heat and mass transfer in hydrothermal systems is conducted, taking into account the mathematical modelling of hydrothermal systems, aspects of idealized convective heat and mass transport, plausible models of geothermal reservoirs, and preproduction models of hydrothermal systems. Attention is given to the prospecting for geothermal resources, the application of water geochemistry to geothermal exploration and reservoir engineering, heat extraction from geothermal reservoirs, questions of geothermal resource assessment, and environmental aspects of geothermal energy development. A description is presented of a number of case histories, taking into account the low enthalpy geothermal resource of the Pannonian Basin in Hungary, the Krafla geothermal field in Northeast Iceland, the geothermal system of the Jemez Mountains in New Mexico, and extraction-reinjection at the Ahuachapan geothermal field in El Salvador.
The EGS Collab Project: Stimulation Investigations for Geothermal Modeling Analysis and Validation
Blankenship, D.; Kneafsey, T. J.
2017-12-01
The US DOE's EGS Collab project team is establishing a suite of intermediate-scale ( 10-20 m) field test beds for coupled stimulation and interwell flow tests. The multiple national laboratory and university team is designing the tests to compare measured data to models to improve measurement and modeling toolsets available for use in field sites and investigations such as DOE's Frontier Observatory for Research in Geothermal Energy (FORGE) Project. Our tests will be well-controlled, in situexperiments focused on rock fracture behavior, seismicity, and permeability enhancement. Pre- and post-test modeling will allow for model prediction and validation. High-quality, high-resolution geophysical and other fracture characterization data will be collected, analyzed, and compared with models and field observations to further elucidate the basic relationships between stress, induced seismicity, and permeability enhancement. Coring through the stimulated zone after tests will provide fracture characteristics that can be compared to monitoring data and model predictions. We will also observe and quantify other key governing parameters that impact permeability, and attempt to understand how these parameters might change throughout the development and operation of an Enhanced Geothermal System (EGS) project with the goal of enabling commercial viability of EGS. The Collab team will perform three major experiments over the three-year project duration. Experiment 1, intended to investigate hydraulic fracturing, will be performed in the Sanford Underground Research Facility (SURF) at 4,850 feet depth and will build on kISMET Project findings. Experiment 2 will be designed to investigate hydroshearing. Experiment 3 will investigate changes in fracturing strategies and will be further specified as the project proceeds. The tests will provide quantitative insights into the nature of stimulation (e.g., hydraulic fracturing, hydroshearing, mixed-mode fracturing, thermal fracturing
Ji-Yang, Wang; Mo-Xiang, Chen; Ji-An, Wang; Xiao, Deng; Jun, Wang; Hsien-Chieh, Shen; Liang-Ping, Hsiung; Shu-Zhen, Yan; Zhi-Cheng, Fan; Xiu-Wen, Liu; Ge-Shan, Huang; Wen-Ren, Zhang; Hai-Hui, Shao; Rong-Yan, Zhang
1981-01-01
Geothermal studies have been conducted in China continuously since the end of the 1950's with renewed activity since 1970. Three areas of research are defined: (1) fundamental theoretical research on geothermics, including subsurface temperatures, terrestrial heat flow and geothermal modeling; (2) exploration for geothermal resources and exploitation of geothermal energy; and (3) geothermal studies in mines. Regional geothermal studies have been conducted recently in North China and more than 2000 values of subsurface temperature have been obtained. Temperatures at a depth of 300 m generally range from 20 to 25°C with geothermal gradients from 20 to 40°C/km. These values are regarded as an average for the region with anomalies related to geological factors. To date, 22 reliable heat flow data from 17 sites have been obtained in North China and the data have been categorized according to fault block tectonics. The average heat flow value at 16 sites in the north is 1.3 HFU, varying from 0.7 to 1.8 HFU. It is apparent that the North China fault block is characterized by a relatively high heat flow with wide variations in magnitude compared to the mean value for similar tectonic units in other parts of the world. It is suggested that although the North China fault block can be traced back to the Archaean, the tectonic activity has been strengthening since the Mesozoic resulting in so-called "reactivation of platform" with large-scale faulting and magmatism. Geothermal resources in China are extensive; more than 2000 hot springs have been found and there are other manifestations including geysers, hydrothermal explosions, hydrothermal steam, fumaroles, high-temperature fountains, boiling springs, pools of boiling mud, etc. In addition, there are many Meso-Cenozoic sedimentary basins with widespread aquifers containing geothermal water resources in abundance. The extensive exploration and exploitation of these geothermal resources began early in the 1970's. Since then
Using Improved Entropy-Cloud Model to Select High-Speed Railway Express Freight Train Service Sites
Directory of Open Access Journals (Sweden)
Wencheng Huang
2017-01-01
Full Text Available High-speed railway (HSR express freight train service sites selection is critical to the development of China’s Third Party Logistics market. In this paper, we formulate an improved entropy-cloud model based approach to solve the HSR express sites selection problem for the first time. The basic data of the indicators, for example, existing railway network conditions, traffic environment, express freight market demand, and policy, will be used as the inputs. We apply improved entropy method to obtain each subindicator’s weight. The cloud model will be used to select and classify each station under evaluation.
Energy Technology Data Exchange (ETDEWEB)
Anderson, Arlene [United States Department of Energy; Blackwell, David [Southern Methodist University; Chickering, Cathy [Southern Methodist University; Boyd, Toni [Oregon Institute of Technology; Horne, Roland [Stanford University; MacKenzie, Matthew [Uberity Technology Corporation; Moore, Joseph [University of Utah; Nickull, Duane [Uberity Technology Corporation; Richard, Stephen [Arizona Geological survey; Shevenell, Lisa A. [University of Nevada, Reno
2013-01-01
To satisfy the critical need for geothermal data to ad- vance geothermal energy as a viable renewable ener- gy contender, the U.S. Department of Energy is in- vesting in the development of the National Geother- mal Data System (NGDS). This paper outlines efforts among geothermal data providers nationwide to sup- ply cutting edge geo-informatics. NGDS geothermal data acquisition, delivery, and methodology are dis- cussed. In particular, this paper addresses the various types of data required to effectively assess geother- mal energy potential and why simple links to existing data are insufficient. To create a platform for ready access by all geothermal stakeholders, the NGDS in- cludes a work plan that addresses data assets and re- sources of interest to users, a survey of data provid- ers, data content models, and how data will be ex- changed and promoted, as well as lessons learned within the geothermal community.
Using Graph and Vertex Entropy to Compare Empirical Graphs with Theoretical Graph Models
Directory of Open Access Journals (Sweden)
Tomasz Kajdanowicz
2016-09-01
Full Text Available Over the years, several theoretical graph generation models have been proposed. Among the most prominent are: the Erdős–Renyi random graph model, Watts–Strogatz small world model, Albert–Barabási preferential attachment model, Price citation model, and many more. Often, researchers working with real-world data are interested in understanding the generative phenomena underlying their empirical graphs. They want to know which of the theoretical graph generation models would most probably generate a particular empirical graph. In other words, they expect some similarity assessment between the empirical graph and graphs artificially created from theoretical graph generation models. Usually, in order to assess the similarity of two graphs, centrality measure distributions are compared. For a theoretical graph model this means comparing the empirical graph to a single realization of a theoretical graph model, where the realization is generated from the given model using an arbitrary set of parameters. The similarity between centrality measure distributions can be measured using standard statistical tests, e.g., the Kolmogorov–Smirnov test of distances between cumulative distributions. However, this approach is both error-prone and leads to incorrect conclusions, as we show in our experiments. Therefore, we propose a new method for graph comparison and type classification by comparing the entropies of centrality measure distributions (degree centrality, betweenness centrality, closeness centrality. We demonstrate that our approach can help assign the empirical graph to the most similar theoretical model using a simple unsupervised learning method.
Configurational entropy as a tool to select a physical thick brane model
Chinaglia, M.; Cruz, W. T.; Correa, R. A. C.; de Paula, W.; Moraes, P. H. R. S.
2018-04-01
We analize braneworld scenarios via a configurational entropy (CE) formalism. Braneworld scenarios have drawn attention mainly due to the fact that they can explain the hierarchy problem and unify the fundamental forces through a symmetry breaking procedure. Those scenarios localize matter in a (3 + 1) hypersurface, the brane, which is inserted in a higher dimensional space, the bulk. Novel analytical braneworld models, in which the warp factor depends on a free parameter n, were recently released in the literature. In this article we will provide a way to constrain this parameter through the relation between information and dynamics of a system described by the CE. We demonstrate that in some cases the CE is an important tool in order to provide the most probable physical system among all the possibilities. In addition, we show that the highest CE is correlated to a tachyonic sector of the configuration, where the solutions for the corresponding model are dynamically unstable.
Rényi Entropies from Random Quenches in Atomic Hubbard and Spin Models
Elben, A.; Vermersch, B.; Dalmonte, M.; Cirac, J. I.; Zoller, P.
2018-02-01
We present a scheme for measuring Rényi entropies in generic atomic Hubbard and spin models using single copies of a quantum state and for partitions in arbitrary spatial dimensions. Our approach is based on the generation of random unitaries from random quenches, implemented using engineered time-dependent disorder potentials, and standard projective measurements, as realized by quantum gas microscopes. By analyzing the properties of the generated unitaries and the role of statistical errors, with respect to the size of the partition, we show that the protocol can be realized in existing quantum simulators and used to measure, for instance, area law scaling of entanglement in two-dimensional spin models or the entanglement growth in many-body localized systems.
Han, Yongming; Long, Chang; Geng, Zhiqiang; Zhang, Keyu
2018-01-01
Environmental protection and carbon emission reduction play a crucial role in the sustainable development procedure. However, the environmental efficiency analysis and evaluation based on the traditional data envelopment analysis (DEA) cross model is subjective and inaccurate, because all elements in a column or a row of the cross evaluation matrix (CEM) in the traditional DEA cross model are given the same weight. Therefore, this paper proposes an improved environmental DEA cross model based on the information entropy to analyze and evaluate the carbon emission of industrial departments in China. The information entropy is applied to build the entropy distance based on the turbulence of the whole system, and calculate the weights in the CEM of the environmental DEA cross model in a dynamic way. The theoretical results show that the new weight constructed based on the information entropy is unique and optimal globally by using the Monte Carlo simulation. Finally, compared with the traditional environmental DEA and DEA cross model, the improved environmental DEA cross model has a better efficiency discrimination ability based on the data of industrial departments in China. Moreover, the proposed model can obtain the potential of carbon emission reduction of industrial departments to improve the energy efficiency. Copyright © 2017 Elsevier Ltd. All rights reserved.
Modeling study of the natural state of the Heber geothermal field, California
Energy Technology Data Exchange (ETDEWEB)
Lippmann, M.J.; Bodvarsson, G.S.
1983-06-01
As a first step in simulating the behavior of the Heber field under exploitation, the system is modeled in its natural (pre-exploitation) state. Using Lawrence Berkeley Laboratory's (LBL) computer code PT and a radially symmetric model, a reasonable match between published and calculated temperature and pressure distributions is obtained. The results of the study indicate that the Heber geothermal system is created by the upflow of hot water through a central zone of higher permeability. The model shows that in its natural state the system is recharged at depth by a 15 MW(thermal) convective heat source. The existence of a radially symmetric convection pattern, whose axis coincides with that of the Heber anomaly is suggested. At the lower part of the ascending hot water plume, the deep recharge water mixes with colder water moving laterally towards the axis of the system. On the upper part, the rising plume spreads radially outward before reaching the bottom of the caprock, at 550 m depth. The model results suggest that the caprock is quite permeable, with convection controlling the temperature distribution. The low permeability of the upper zones in the outer region of the system may be due to mineral precipitation.
Doe, T.; McLaren, R.; Finilla, A.
2017-12-01
An enduring legacy of Paul Witherspoon and his students and colleagues has been both the development of geothermal energy and the bases of modern fractured-rock hydrogeology. One of the seminal contributions to the geothermal field was Gringarten, Witherspoon, and Ohnishi's analytical models for enhanced geothermal systems. Although discrete fracture network (DFN) modeling developed somewhat independently in the late 1970s, Paul Witherspoon's foresight in promoting underground in situ testing at the Stripa Mine in Sweden was a major driver in Lawrence Berkeley Laboratory's contributions to its development.This presentation looks extensions of Gringarten's analytical model into discrete fracture network modeling as a basis for providing further insights into the challenges and opportunities of engineered geothermal systems. The analytical solution itself has many insightful applications beyond those presented in the original paper. The definition of dimensionless time by itself shows that thermal breakthrough has a second power dependence on surface area and on flow rate. The fracture intensity also plays a strong role, as it both increases the surface area and decrease his flow rate per fracture. The improvement of EGS performance with fracture intensity reaches a limit where thermal depletion of the rock lags only slightly behind the thermal breakthrough of cold water in the fracture network.Simple network models, which couple a DFN generator (FracMan) with a hydrothermally coupled flow solver (HydroGeoSphere) expand on Gringarten's concepts to show that realistic heterogeneity of spacing and transmissivity significantly degrades EGS performance. EGS production in networks of stimulated fractures initially follows Gringarten's type curves, with a later deviation is the smaller rock blocks thermally deplete and the entire stimulated volume acts as a single sink. Three-dimensional models of EGS performance show the critical importance of the relative magnitudes of
Energy Technology Data Exchange (ETDEWEB)
Johnston, Henry [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Wang, Cong [Colorado School of Mines; Winterfeld, Philip [Colorado School of Mines; Wu, Yu-Shu [Colorado School of Mines
2018-02-14
An efficient modeling approach is described for incorporating arbitrary 3D, discrete fractures, such as hydraulic fractures or faults, into modeling fracture-dominated fluid flow and heat transfer in fractured geothermal reservoirs. This technique allows 3D discrete fractures to be discretized independently from surrounding rock volume and inserted explicitly into a primary fracture/matrix grid, generated without including 3D discrete fractures in prior. An effective computational algorithm is developed to discretize these 3D discrete fractures and construct local connections between 3D fractures and fracture/matrix grid blocks of representing the surrounding rock volume. The constructed gridding information on 3D fractures is then added to the primary grid. This embedded fracture modeling approach can be directly implemented into a developed geothermal reservoir simulator via the integral finite difference (IFD) method or with TOUGH2 technology This embedded fracture modeling approach is very promising and computationally efficient to handle realistic 3D discrete fractures with complicated geometries, connections, and spatial distributions. Compared with other fracture modeling approaches, it avoids cumbersome 3D unstructured, local refining procedures, and increases computational efficiency by simplifying Jacobian matrix size and sparsity, while keeps sufficient accuracy. Several numeral simulations are present to demonstrate the utility and robustness of the proposed technique. Our numerical experiments show that this approach captures all the key patterns about fluid flow and heat transfer dominated by fractures in these cases. Thus, this approach is readily available to simulation of fractured geothermal reservoirs with both artificial and natural fractures.
International Nuclear Information System (INIS)
Vuataz, F.-D.
2005-01-01
This article gives a general overview of the past and present development of geothermal energy worldwide and a more detailed one in Switzerland. Worldwide installed electrical power using geothermal energy sources amounts to 8900 MW el . Worldwide utilization of geothermal energy for thermal applications amounts to 28,000 MW th . The main application (56.5%) is ground-coupled heat pumps, others are thermal spas and swimming pools (17.7%), space heating (14.9%), heating of greenhouses (4.8%), fish farming (2.2%), industrial uses (1,8%), cooling and melting of snow (1.2%), drying of agricultural products (0.6 %). Switzerland has become an important user of geothermal energy only in the past 25 years. Earlier, only the exploitation of geothermal springs (deep aquifers) in Swiss thermal baths had a long tradition, since the time of the Romans. Today, the main use of geothermal energy is as a heat source for heat pumps utilizing vertical borehole heat exchangers of 50 to 350 meters length. 35,000 installations of this type with heating powers ranging from a few kW to 1000 kW already exist, representing the highest density of such installations worldwide. Other developments are geostructures and energy piles, the use of groundwater for heating and cooling, geothermal district heating, the utilization of draining water from tunnels and the project 'Deep Heat Mining' allowing the combined production of heat and electric power
EEG entropy measures in anesthesia
Liang, Zhenhu; Wang, Yinghua; Sun, Xue; Li, Duan; Voss, Logan J.; Sleigh, Jamie W.; Hagihira, Satoshi; Li, Xiaoli
2015-01-01
Highlights: ► Twelve entropy indices were systematically compared in monitoring depth of anesthesia and detecting burst suppression.► Renyi permutation entropy performed best in tracking EEG changes associated with different anesthesia states.► Approximate Entropy and Sample Entropy performed best in detecting burst suppression. Objective: Entropy algorithms have been widely used in analyzing EEG signals during anesthesia. However, a systematic comparison of these entropy algorithms in assessing anesthesia drugs' effect is lacking. In this study, we compare the capability of 12 entropy indices for monitoring depth of anesthesia (DoA) and detecting the burst suppression pattern (BSP), in anesthesia induced by GABAergic agents. Methods: Twelve indices were investigated, namely Response Entropy (RE) and State entropy (SE), three wavelet entropy (WE) measures [Shannon WE (SWE), Tsallis WE (TWE), and Renyi WE (RWE)], Hilbert-Huang spectral entropy (HHSE), approximate entropy (ApEn), sample entropy (SampEn), Fuzzy entropy, and three permutation entropy (PE) measures [Shannon PE (SPE), Tsallis PE (TPE) and Renyi PE (RPE)]. Two EEG data sets from sevoflurane-induced and isoflurane-induced anesthesia respectively were selected to assess the capability of each entropy index in DoA monitoring and BSP detection. To validate the effectiveness of these entropy algorithms, pharmacokinetic/pharmacodynamic (PK/PD) modeling and prediction probability (Pk) analysis were applied. The multifractal detrended fluctuation analysis (MDFA) as a non-entropy measure was compared. Results: All the entropy and MDFA indices could track the changes in EEG pattern during different anesthesia states. Three PE measures outperformed the other entropy indices, with less baseline variability, higher coefficient of determination (R2) and prediction probability, and RPE performed best; ApEn and SampEn discriminated BSP best. Additionally, these entropy measures showed an advantage in computation
Energy Technology Data Exchange (ETDEWEB)
Bao, Ning [Institute for Quantum Information and Matter, California Institute of Technology,Pasadena, CA 91125 (United States); Walter Burke Institute for Theoretical Physics, California Institute of Technology,452-48, Pasadena, CA 91125 (United States); Nezami, Sepehr [Stanford Institute for Theoretical Physics, Stanford University,Stanford, CA 94305 (United States); Ooguri, Hirosi [Walter Burke Institute for Theoretical Physics, California Institute of Technology,452-48, Pasadena, CA 91125 (United States); Kavli Institute for the Physics and Mathematics of the Universe, University of Tokyo,Kashiwa 277-8583 (Japan); Stoica, Bogdan [Walter Burke Institute for Theoretical Physics, California Institute of Technology,452-48, Pasadena, CA 91125 (United States); Sully, James [Theory Group, SLAC National Accelerator Laboratory, Stanford University,Menlo Park, CA 94025 (United States); Walter, Michael [Stanford Institute for Theoretical Physics, Stanford University,Stanford, CA 94305 (United States)
2015-09-21
We initiate a systematic enumeration and classification of entropy inequalities satisfied by the Ryu-Takayanagi formula for conformal field theory states with smooth holographic dual geometries. For 2, 3, and 4 regions, we prove that the strong subadditivity and the monogamy of mutual information give the complete set of inequalities. This is in contrast to the situation for generic quantum systems, where a complete set of entropy inequalities is not known for 4 or more regions. We also find an infinite new family of inequalities applicable to 5 or more regions. The set of all holographic entropy inequalities bounds the phase space of Ryu-Takayanagi entropies, defining the holographic entropy cone. We characterize this entropy cone by reducing geometries to minimal graph models that encode the possible cutting and gluing relations of minimal surfaces. We find that, for a fixed number of regions, there are only finitely many independent entropy inequalities. To establish new holographic entropy inequalities, we introduce a combinatorial proof technique that may also be of independent interest in Riemannian geometry and graph theory.
International Nuclear Information System (INIS)
Bao, Ning; Nezami, Sepehr; Ooguri, Hirosi; Stoica, Bogdan; Sully, James; Walter, Michael
2015-01-01
We initiate a systematic enumeration and classification of entropy inequalities satisfied by the Ryu-Takayanagi formula for conformal field theory states with smooth holographic dual geometries. For 2, 3, and 4 regions, we prove that the strong subadditivity and the monogamy of mutual information give the complete set of inequalities. This is in contrast to the situation for generic quantum systems, where a complete set of entropy inequalities is not known for 4 or more regions. We also find an infinite new family of inequalities applicable to 5 or more regions. The set of all holographic entropy inequalities bounds the phase space of Ryu-Takayanagi entropies, defining the holographic entropy cone. We characterize this entropy cone by reducing geometries to minimal graph models that encode the possible cutting and gluing relations of minimal surfaces. We find that, for a fixed number of regions, there are only finitely many independent entropy inequalities. To establish new holographic entropy inequalities, we introduce a combinatorial proof technique that may also be of independent interest in Riemannian geometry and graph theory.
A positive and entropy-satisfying finite volume scheme for the Baer–Nunziato model
Energy Technology Data Exchange (ETDEWEB)
Coquel, Frédéric, E-mail: frederic.coquel@cmap.polytechnique.fr [CMAP, École Polytechnique CNRS, UMR 7641, Route de Saclay, F-91128 Palaiseau cedex (France); Hérard, Jean-Marc, E-mail: jean-marc.herard@edf.fr [EDF-R& D, Département MFEE, 6 Quai Watier, F-78401 Chatou Cedex (France); Saleh, Khaled, E-mail: saleh@math.univ-lyon1.fr [Université de Lyon, CNRS UMR 5208, Université Lyon 1, Institut Camille Jordan, 43 bd 11 novembre 1918, F-69622 Villeurbanne cedex (France)
2017-02-01
We present a relaxation scheme for approximating the entropy dissipating weak solutions of the Baer–Nunziato two-phase flow model. This relaxation scheme is straightforwardly obtained as an extension of the relaxation scheme designed in for the isentropic Baer–Nunziato model and consequently inherits its main properties. To our knowledge, this is the only existing scheme for which the approximated phase fractions, phase densities and phase internal energies are proven to remain positive without any restrictive condition other than a classical fully computable CFL condition. For ideal gas and stiffened gas equations of state, real values of the phasic speeds of sound are also proven to be maintained by the numerical scheme. It is also the only scheme for which a discrete entropy inequality is proven, under a CFL condition derived from the natural sub-characteristic condition associated with the relaxation approximation. This last property, which ensures the non-linear stability of the numerical method, is satisfied for any admissible equation of state. We provide a numerical study for the convergence of the approximate solutions towards some exact Riemann solutions. The numerical simulations show that the relaxation scheme compares well with two of the most popular existing schemes available for the Baer–Nunziato model, namely Schwendeman–Wahle–Kapila's Godunov-type scheme and Tokareva–Toro's HLLC scheme . The relaxation scheme also shows a higher precision and a lower computational cost (for comparable accuracy) than a standard numerical scheme used in the nuclear industry, namely Rusanov's scheme. Finally, we assess the good behavior of the scheme when approximating vanishing phase solutions.
A positive and entropy-satisfying finite volume scheme for the Baer-Nunziato model
Coquel, Frédéric; Hérard, Jean-Marc; Saleh, Khaled
2017-02-01
We present a relaxation scheme for approximating the entropy dissipating weak solutions of the Baer-Nunziato two-phase flow model. This relaxation scheme is straightforwardly obtained as an extension of the relaxation scheme designed in [16] for the isentropic Baer-Nunziato model and consequently inherits its main properties. To our knowledge, this is the only existing scheme for which the approximated phase fractions, phase densities and phase internal energies are proven to remain positive without any restrictive condition other than a classical fully computable CFL condition. For ideal gas and stiffened gas equations of state, real values of the phasic speeds of sound are also proven to be maintained by the numerical scheme. It is also the only scheme for which a discrete entropy inequality is proven, under a CFL condition derived from the natural sub-characteristic condition associated with the relaxation approximation. This last property, which ensures the non-linear stability of the numerical method, is satisfied for any admissible equation of state. We provide a numerical study for the convergence of the approximate solutions towards some exact Riemann solutions. The numerical simulations show that the relaxation scheme compares well with two of the most popular existing schemes available for the Baer-Nunziato model, namely Schwendeman-Wahle-Kapila's Godunov-type scheme [39] and Tokareva-Toro's HLLC scheme [44]. The relaxation scheme also shows a higher precision and a lower computational cost (for comparable accuracy) than a standard numerical scheme used in the nuclear industry, namely Rusanov's scheme. Finally, we assess the good behavior of the scheme when approximating vanishing phase solutions.
Czech Academy of Sciences Publication Activity Database
MacFarlane, J.; Thiel, S.; Pek, Josef; Peacock, J.; Heinson, G.
2014-01-01
Roč. 288, November (2014), s. 1-7 ISSN 0377-0273 Institutional support: RVO:67985530 Keywords : geothermal systems * magnetotellurics * fluid injection Subject RIV: DE - Earth Magnetism, Geodesy, Geography Impact factor: 2.543, year: 2014
International Nuclear Information System (INIS)
Lemale, J.
2009-01-01
The geothermal energy, listed among the new and renewable energy sources, is characterized by a huge variety of techniques and applications. This book deals with the access to underground geothermal resources and with their energy valorization as well. After a presentation of the main geological, hydrogeological and thermal exploitation aspects of this resource, the book presents the different geothermal-related industries in detail, in particular the district heating systems, the aquifer-based heat pumps, the utilizations in the agriculture, fishery and balneology sectors, and the power generation. (J.S.)
Cost modelling of electricity producing hot dry rock (HDR) geothermal systems in the UK
International Nuclear Information System (INIS)
Doherty, P.S.
1992-03-01
A detailed and comprehensive cost model for Hot Dry Rock (HDR) electricity producing systems has been developed in this study. The model takes account of the major aspects of the HDR system, parameterized in terms of the main physical and cost parameters of the resource and the utilization system. A doublet configuration is assumed, and the conceptual HDR system which is defined in the study is based upon the UK Department of Energy (DEn) HDR geothermal R and D programme. The model has been used to calculate the costs of HDR electricity for a UK defined base case which represents a consensus view of what might be achieved in Cornwall in the long term. At 14.2 p/kWh (1988 costs) this cost appears to be unacceptably high. A wide-ranging sensitivity study has also been carried out on the main resource, geometrical, and operational parameters of the HDR system centred around the UK base case. The sensitivity study shows the most important parameters to be thermal gradient and depth. (Author)
IMPACT OF GEOTHERMAL GRADIENT ON GROUND SOURCE HEAT PUMP SYSTEM MODELING
Tomislav Kurevija; Domagoj Vulin; Marija Macenić
2014-01-01
ndisturbed ground temperature is one of the most crucial thermogeological parameters needed for shallow geothermal resources assessment. Energy considered to be geothermal is energy stored in the ground at depths where solar radiation has no effect. At depth where undisturbed ground temperature occurs there is no influence of seasonal variations in air temperature from surface. Exact temperature value, and depth where it occurs, is functionally dependent on surface climate parameters and ther...
A Case Study on a Combination NDVI Forecasting Model Based on the Entropy Weight Method
Energy Technology Data Exchange (ETDEWEB)
Huang, Shengzhi; Ming, Bo; Huang, Qiang; Leng, Guoyong; Hou, Beibei
2017-05-05
It is critically meaningful to accurately predict NDVI (Normalized Difference Vegetation Index), which helps guide regional ecological remediation and environmental managements. In this study, a combination forecasting model (CFM) was proposed to improve the performance of NDVI predictions in the Yellow River Basin (YRB) based on three individual forecasting models, i.e., the Multiple Linear Regression (MLR), Artificial Neural Network (ANN), and Support Vector Machine (SVM) models. The entropy weight method was employed to determine the weight coefficient for each individual model depending on its predictive performance. Results showed that: (1) ANN exhibits the highest fitting capability among the four orecasting models in the calibration period, whilst its generalization ability becomes weak in the validation period; MLR has a poor performance in both calibration and validation periods; the predicted results of CFM in the calibration period have the highest stability; (2) CFM generally outperforms all individual models in the validation period, and can improve the reliability and stability of predicted results through combining the strengths while reducing the weaknesses of individual models; (3) the performances of all forecasting models are better in dense vegetation areas than in sparse vegetation areas.
International Nuclear Information System (INIS)
De Nicola, Sergio; Fedele, Renato; Man'ko, Margarita A; Man'ko, Vladimir I
2007-01-01
The tomographic-probability description of quantum states is reviewed. The symplectic tomography of quantum states with continuous variables is studied. The symplectic entropy of the states with continuous variables is discussed and its relation to Shannon entropy and information is elucidated. The known entropic uncertainty relations of the probability distribution in position and momentum of a particle are extended and new uncertainty relations for symplectic entropy are obtained. The partial case of symplectic entropy, which is optical entropy of quantum states, is considered. The entropy associated to optical tomogram is shown to satisfy the new entropic uncertainty relation. The example of Gaussian states of harmonic oscillator is studied and the entropic uncertainty relations for optical tomograms of the Gaussian state are shown to minimize the uncertainty relation
Cheung, Shao-Yong; Lee, Chieh-Han; Yu, Hwa-Lung
2017-04-01
Due to the limited hydrogeological observation data and high levels of uncertainty within, parameter estimation of the groundwater model has been an important issue. There are many methods of parameter estimation, for example, Kalman filter provides a real-time calibration of parameters through measurement of groundwater monitoring wells, related methods such as Extended Kalman Filter and Ensemble Kalman Filter are widely applied in groundwater research. However, Kalman Filter method is limited to linearity. This study propose a novel method, Bayesian Maximum Entropy Filtering, which provides a method that can considers the uncertainty of data in parameter estimation. With this two methods, we can estimate parameter by given hard data (certain) and soft data (uncertain) in the same time. In this study, we use Python and QGIS in groundwater model (MODFLOW) and development of Extended Kalman Filter and Bayesian Maximum Entropy Filtering in Python in parameter estimation. This method may provide a conventional filtering method and also consider the uncertainty of data. This study was conducted through numerical model experiment to explore, combine Bayesian maximum entropy filter and a hypothesis for the architecture of MODFLOW groundwater model numerical estimation. Through the virtual observation wells to simulate and observe the groundwater model periodically. The result showed that considering the uncertainty of data, the Bayesian maximum entropy filter will provide an ideal result of real-time parameters estimation.
Jacobsen, J L; Saleur, H
2008-02-29
We determine exactly the probability distribution of the number N_(c) of valence bonds connecting a subsystem of length L>1 to the rest of the system in the ground state of the XXX antiferromagnetic spin chain. This provides, in particular, the asymptotic behavior of the valence-bond entanglement entropy S_(VB)=N_(c)ln2=4ln2/pi(2)lnL disproving a recent conjecture that this should be related with the von Neumann entropy, and thus equal to 1/3lnL. Our results generalize to the Q-state Potts model.
A Review of Solid-Solution Models of High-Entropy Alloys Based on Ab Initio Calculations
Directory of Open Access Journals (Sweden)
Fuyang Tian
2017-11-01
Full Text Available Similar to the importance of XRD in experiments, ab initio calculations, as a powerful tool, have been applied to predict the new potential materials and investigate the intrinsic properties of materials in theory. As a typical solid-solution material, the large degree of uncertainty of high-entropy alloys (HEAs results in the difficulty of ab initio calculations application to HEAs. The present review focuses on the available ab initio based solid-solution models (virtual lattice approximation, coherent potential approximation, special quasirandom structure, similar local atomic environment, maximum-entropy method, and hybrid Monte Carlo/molecular dynamics and their applications and limits in single phase HEAs.
International Nuclear Information System (INIS)
Tekuchev, V.V.; Barashkov, B.I.; Rygalov, L.N.; Dolzhikov, Yu.S.
2001-01-01
For the first time one obtained the polytherms of ultrasound velocity for liquid high-melting metals within wide temperature range. In terms of the rigid sphere model on the basis of the acoustic data one calculated the entropy values for 34 liquid metals at the melting point. The average discrepancy of the calculated values of entropy with the published one constitutes 8.2%. With increase of metal valency the error increases from 2.8 up to 13%. In case of francium, radium, promethium, actinium, hafnium, polonium, rhenium one obtained data for the first time [ru
NbTaV-(Ti,W) refractory high-entropy alloys: Experiments and modeling
Energy Technology Data Exchange (ETDEWEB)
Yao, H.W. [Laboratory of Applied Physics and Mechanics of Advanced Materials, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024 (China); Qiao, J.W., E-mail: qiaojunwei@gmail.com [Laboratory of Applied Physics and Mechanics of Advanced Materials, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024 (China); Gao, M.C., E-mail: michael.gao@netl.doe.gov [National Energy Technology Laboratory, 1450 Queen Ave SW, Albany, OR 97321 (United States); AECOM, P.O. Box 1959, Albany, OR 97321 (United States); Hawk, J.A. [National Energy Technology Laboratory, 1450 Queen Ave SW, Albany, OR 97321 (United States); Ma, S.G. [Institute of Applied Mechanics and Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024 (China); Zhou, H.F. [Laboratory of Applied Physics and Mechanics of Advanced Materials, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024 (China); Zhang, Y. [State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083 (China)
2016-09-30
This study reports the design and development of ductile and strong refractory single-phase high-entropy alloys (HEAs) for high temperature applications, based on NbTaV with addition of Ti and W. Assisted by CALPHAD modeling, a single body-centered cubic solid solution phase was experimentally confirmed in the as-cast ingots using X-ray diffraction and scanning electron microscopy. The observed elemental segregation in each alloy qualitatively agrees with CALPHAD prediction. The Vickers microhardnesses (and yield strengths) of the alloys are about 3 (and 3.5–4.4) times that those estimated from the rule of mixture. While NbTaTiVW shows an impressive yield strength of 1420 MPa with fracture strain of 20%, NbTaTiV exhibits exceptional compressive ductility at room temperature.
International Nuclear Information System (INIS)
Urniezius, Renaldas
2011-01-01
The principle of Maximum relative Entropy optimization was analyzed for dead reckoning localization of a rigid body when observation data of two attached accelerometers was collected. Model constraints were derived from the relationships between the sensors. The experiment's results confirmed that accelerometers each axis' noise can be successfully filtered utilizing dependency between channels and the dependency between time series data. Dependency between channels was used for a priori calculation, and a posteriori distribution was derived utilizing dependency between time series data. There was revisited data of autocalibration experiment by removing the initial assumption that instantaneous rotation axis of a rigid body was known. Performance results confirmed that such an approach could be used for online dead reckoning localization.
International Nuclear Information System (INIS)
Maes, Christian
2012-01-01
In contrast to the quite unique entropy concept useful for systems in (local) thermodynamic equilibrium, there is a variety of quite distinct nonequilibrium entropies, reflecting different physical points. We disentangle these entropies as they relate to heat, fluctuations, response, time asymmetry, variational principles, monotonicity, volume contraction or statistical forces. However, not all of those extensions yield state quantities as understood thermodynamically. At the end we sketch how aspects of dynamical activity can take over for obtaining an extended Clausius relation.
Integrating Entropy and Closed Frequent Pattern Mining for Social Network Modelling and Analysis
Adnan, Muhaimenul; Alhajj, Reda; Rokne, Jon
The recent increase in the explicitly available social networks has attracted the attention of the research community to investigate how it would be possible to benefit from such a powerful model in producing effective solutions for problems in other domains where the social network is implicit; we argue that social networks do exist around us but the key issue is how to realize and analyze them. This chapter presents a novel approach for constructing a social network model by an integrated framework that first preparing the data to be analyzed and then applies entropy and frequent closed patterns mining for network construction. For a given problem, we first prepare the data by identifying items and transactions, which arc the basic ingredients for frequent closed patterns mining. Items arc main objects in the problem and a transaction is a set of items that could exist together at one time (e.g., items purchased in one visit to the supermarket). Transactions could be analyzed to discover frequent closed patterns using any of the well-known techniques. Frequent closed patterns have the advantage that they successfully grab the inherent information content of the dataset and is applicable to a broader set of domains. Entropies of the frequent closed patterns arc used to keep the dimensionality of the feature vectors to a reasonable size; it is a kind of feature reduction process. Finally, we analyze the dynamic behavior of the constructed social network. Experiments were conducted on a synthetic dataset and on the Enron corpus email dataset. The results presented in the chapter show that social networks extracted from a feature set as frequent closed patterns successfully carry the community structure information. Moreover, for the Enron email dataset, we present an analysis to dynamically indicate the deviations from each user's individual and community profile. These indications of deviations can be very useful to identify unusual events.
Selecting ground-motion models developed for induced seismicity in geothermal areas
Edwards, Benjamin; Douglas, John
2013-11-01
We present a case study of the ranking and weighting of ground-motion prediction equations (GMPEs) for seismic hazard assessment of enhanced geothermal systems (EGSs). The study region is Cooper Basin (Australia), where a hot-fractured-rock project was established in 2002. We test the applicability of 36 GMPEs based on stochastic simulations previously proposed for use at EGSs. Each GMPE has a set of corresponding model parameters describing stress drop, regional and local (near-surface) attenuation. To select suitable GMPEs for Cooper Basin from the full set, we applied two methods. In the first, seismograms recorded on the local monitoring network were spectrally analysed to determine characteristic stress and attenuation parameters. In a second approach, residual analysis using the log-likelihood (LLH) method was used to directly compare recorded and predicted short-period response spectral accelerations. The resulting ranking was consistent with the models selected based on spectral analysis, with the advantage that a transparent weighting approach was available using the LLH method. Region-specific estimates of variability were computed, with significantly lower values observed compared to previous studies of small earthquakes. This was consistent with the limited range of stress drops and attenuation observed from the spectral analysis.
Energy Technology Data Exchange (ETDEWEB)
Stimac, J.; Goff, F.; Wohletz, K.
1997-06-01
The combination of recent volcanism, high heat flow ({ge} HFU or 167 mW/m{sup 2}), and high conductive geothermal gradient (up to 120{degree} C/km) makes the Clear Lake region of northern California one of the best prospects for hot dry rock (HDR) geothermal development in the US. The lack of permeability in exploration wells and lack of evidence for widespread geothermal reservoirs north of the Collayomi fault zone are not reassuring indications for conventional geothermal development. This report summarizes results of thermal modeling of the Clear Lake magmatic system, and discusses implications for HDR site selection in the region. The thermal models incorporate a wide range of constraints including the distribution and nature of volcanism in time and space, water and gas geochemistry, well data, and geophysical surveys. The nature of upper crustal magma bodies at Clear Lake is inferred from studying sequences of related silicic lavas, which tell a story of multistage mixing of silicic and mafic magma in clusters of small upper crustal chambers. Thermobarometry on metamorphic xenoliths yield temperature and pressure estimates of {approximately}780--900 C and 4--6 kb respectively, indicating that at least a portion of the deep magma system resided at depths from 14 to 21 km (9 to 12 mi). The results of thermal modeling support previous assessments of the high HDR potential of the area, and suggest the possibility that granitic bodies similar to The Geysers felsite may underlie much of the Clear Lake region at depths as little as 3--6 km. This is significant because future HDR reservoirs could potentially be sited in relatively shallow granitoid plutons rather than in structurally complex Franciscan basement rocks.
DEFF Research Database (Denmark)
Demetrescu, Crisan; Wilhelm, H.; Tumanian, M.
2007-01-01
in establishing the temperature field in the depth range of geothermal measurements. The lateral variation of the palaeoclimatically corrected surface heat flux from the centre of the Focsani Depression (40 mW m-2) to its margin and the foreland platform (70 mW m-2) is mainly the result of the lateral variation...... words: Carpathians foreland, geothermics, heat flow, lithosphere rheology, sedimentation, thermal modelling. ...
Directory of Open Access Journals (Sweden)
Manzella A.
2017-01-01
Full Text Available Geothermal technologies use renewable energy resources to generate electricity and direct use of heat while producing very low levels of greenhouse-gas (GHG emissions. Geothermal energy is the thermal energy stored in the underground, including any contained fluid, which is available for extraction and conversion into energy products. Electricity generation, which nowadays produces 73.7 TWh (12.7 GW of capacity worldwide, usually requires geothermal resources temperatures of over 100 °C. For heating, geothermal resources spanning a wider range of temperatures can be used in applications such as space and district heating (and cooling, with proper technology, spa and swimming pool heating, greenhouse and soil heating, aquaculture pond heating, industrial process heating and snow melting. Produced geothermal heat in the world accounts to 164.6 TWh, with a capacity of 70.9 GW. Geothermal technology, which has focused for decades on extracting naturally heated steam or hot water from natural hydrothermal reservoirs, is developing to more advanced techniques to exploit the heat also where underground fluids are scarce and to use the Earth as a potential energy battery, by storing heat. The success of the research will enable energy recovery and utilization from a much larger fraction of the accessible thermal energy in the Earth’s crust.
Manzella, A.
2017-07-01
Geothermal technologies use renewable energy resources to generate electricity and direct use of heat while producing very low levels of greenhouse-gas (GHG) emissions. Geothermal energy is the thermal energy stored in the underground, including any contained fluid, which is available for extraction and conversion into energy products. Electricity generation, which nowadays produces 73.7 TWh (12.7 GW of capacity) worldwide, usually requires geothermal resources temperatures of over 100 °C. For heating, geothermal resources spanning a wider range of temperatures can be used in applications such as space and district heating (and cooling, with proper technology), spa and swimming pool heating, greenhouse and soil heating, aquaculture pond heating, industrial process heating and snow melting. Produced geothermal heat in the world accounts to 164.6 TWh, with a capacity of 70.9 GW. Geothermal technology, which has focused for decades on extracting naturally heated steam or hot water from natural hydrothermal reservoirs, is developing to more advanced techniques to exploit the heat also where underground fluids are scarce and to use the Earth as a potential energy battery, by storing heat. The success of the research will enable energy recovery and utilization from a much larger fraction of the accessible thermal energy in the Earth's crust.
An Entropy-Assisted Shielding Function in DDES Formulation for the SST Turbulence Model
Directory of Open Access Journals (Sweden)
Ling Zhou
2017-02-01
Full Text Available The intent of shielding functions in delayed detached-eddy simulation methods (DDES is to preserve the wall boundary layers as Reynolds-averaged Navier–Strokes (RANS mode, avoiding possible modeled stress depletion (MSD or even unphysical separation due to grid refinement. An entropy function fs is introduced to construct a DDES formulation for the k-ω shear stress transport (SST model, whose performance is extensively examined on a range of attached and separated flows (flat-plate flow, circular cylinder flow, and supersonic cavity-ramp flow. Two more forms of shielding functions are also included for comparison: one that uses the blending function F2 of SST, the other which adopts the recalibrated shielding function fd_cor of the DDES version based on the Spalart-Allmaras (SA model. In general, all of the shielding functions do not impair the vortex in fully separated flows. However, for flows including attached boundary layer, both F2 and the recalibrated fd_cor are found to be too conservative to resolve the unsteady flow content. On the other side, fs is proposed on the theory of energy dissipation and independent on from any particular turbulence model, showing the generic priority by properly balancing the need of reserving the RANS modeled regions for wall boundary layers and generating the unsteady turbulent structures in detached areas.
Armandine Les Landes, Antoine; Guillon, Théophile; Peter-Borie, Mariane; Rachez, Xavier
2017-04-01
Any deep unconventional geothermal project remains risky because of the uncertainty regarding the presence of the geothermal resource at depth and the drilling costs increasing accordingly. That's why this resource must be located as precisely as possible to increase the chances of successful projects and their economic viability. To minimize the risk, as much information as possible should be gathered prior to any drilling. Usually, the position of the exploration wells of geothermal energy systems is chosen based on structural geology observations, geophysics measurements and geochemical analyses. Confronting these observations to results from additional disciplines should bring more objectivity in locating the region to explore and where to implant the geothermal system. The Upper Rhine Graben (URG) is a tectonically active rift system that corresponds to one branch of the European Cenozoic Rift System where the basin hosts a significant potential for geothermal energy. The large fault network inherited from a complex tectonic history and settled under the sedimentary deposits hosts fluid circulation patterns. Geothermal anomalies are strongly influenced by fluid circulations within permeable structures such as fault zones. In order to better predict the location of the geothermal resource, it is necessary to understand how it is influenced by heat transport mechanisms such as groundwater flow. The understanding of fluid circulation in hot fractured media at large scale can help in the identification of preferential zones at a finer scale where additional exploration can be carried out. Numerical simulations is a useful tool to deal with the issue of fluid circulations through large fault networks that enable the uplift of deep and hot fluids. Therefore, we build a numerical model to study groundwater flow at the URG scale (150 x 130km), which aims to delineate preferential zones. The numerical model is based on a hybrid method using a Discrete Fracture Network
A study of the Boltzmann and Gibbs entropies in the context of a stochastic toy model
Malgieri, Massimiliano; Onorato, Pasquale; De Ambrosis, Anna
2018-05-01
In this article we reconsider a stochastic toy model of thermal contact, first introduced in Onorato et al (2017 Eur. J. Phys. 38 045102), showing its educational potential for clarifying some current issues in the foundations of thermodynamics. The toy model can be realized in practice using dice and coins, and can be seen as representing thermal coupling of two subsystems with energy bounded from above. The system is used as a playground for studying the different behaviours of the Boltzmann and Gibbs temperatures and entropies in the approach to steady state. The process that models thermal contact between the two subsystems can be proved to be an ergodic, reversible Markov chain; thus the dynamics produces an equilibrium distribution in which the weight of each state is proportional to its multiplicity in terms of microstates. Each one of the two subsystems, taken separately, is formally equivalent to an Ising spin system in the non-interacting limit. The model is intended for educational purposes, and the level of readership of the article is aimed at advanced undergraduates.
Zhang, Lin; Hou, Xuexia; Liu, Huixin; Liu, Wei; Wan, Kanglin; Hao, Qin
2016-01-01
To predict the potential geographic distribution of Lyme disease in Qinghai by using Maximum Entropy model (MaxEnt). The sero-diagnosis data of Lyme disease in 6 counties (Huzhu, Zeku, Tongde, Datong, Qilian and Xunhua) and the environmental and anthropogenic data including altitude, human footprint, normalized difference vegetation index (NDVI) and temperature in Qinghai province since 1990 were collected. By using the data of Huzhu Zeku and Tongde, the prediction of potential distribution of Lyme disease in Qinghai was conducted with MaxEnt. The prediction results were compared with the human sero-prevalence of Lyme disease in Datong, Qilian and Xunhua counties in Qinghai. Three hot spots of Lyme disease were predicted in Qinghai, which were all in the east forest areas. Furthermore, the NDVI showed the most important role in the model prediction, followed by human footprint. Datong, Qilian and Xunhua counties were all in eastern Qinghai. Xunhua was in hot spot areaⅡ, Datong was close to the north of hot spot area Ⅲ, while Qilian with lowest sero-prevalence of Lyme disease was not in the hot spot areas. The data were well modeled in MaxEnt (Area Under Curve=0.980). The actual distribution of Lyme disease in Qinghai was in consistent with the results of the model prediction. MaxEnt could be used in predicting the potential distribution patterns of Lyme disease. The distribution of vegetation and the range and intensity of human activity might be related with Lyme disease distribution.
IMPACT OF GEOTHERMAL GRADIENT ON GROUND SOURCE HEAT PUMP SYSTEM MODELING
Directory of Open Access Journals (Sweden)
Tomislav Kurevija
2014-07-01
Full Text Available ndisturbed ground temperature is one of the most crucial thermogeological parameters needed for shallow geothermal resources assessment. Energy considered to be geothermal is energy stored in the ground at depths where solar radiation has no effect. At depth where undisturbed ground temperature occurs there is no influence of seasonal variations in air temperature from surface. Exact temperature value, and depth where it occurs, is functionally dependent on surface climate parameters and thermogeologic properties of ground. After abovementioned depth, increase of ground temperature is solely dependent on geothermal gradient. Accurately determined value of undisturbed ground temperature is beneficial for proper sizing of borehole heat exchangers. On practical example of building which is being heated and cooled with shallow geothermal resource, influences of undisturbed ground temperature and geothermal gradient, on size of borehole heat exchanger are going to be presented. Sizing of borehole heat exchanger was calculated with commercial software Ground Loop Designer (GLD, which uses modified line source and cylinder source solutions of heat conduction in solids.
Analysis of the anomalous mean-field like properties of Gaussian core model in terms of entropy
Nandi, Manoj Kumar; Maitra Bhattacharyya, Sarika
2018-01-01
Studies of the Gaussian core model (GCM) have shown that it behaves like a mean-field model and the properties are quite different from standard glass former. In this work, we investigate the entropies, namely, the excess entropy (Sex) and the configurational entropy (Sc) and their different components to address these anomalies. Our study corroborates most of the earlier observations and also sheds new light on the high and low temperature dynamics. We find that unlike in standard glass former where high temperature dynamics is dominated by two-body correlation and low temperature by many-body correlations, in the GCM both high and low temperature dynamics are dominated by many-body correlations. We also find that the many-body entropy which is usually positive at low temperatures and is associated with activated dynamics is negative in the GCM suggesting suppression of activation. Interestingly despite the suppression of activation, the Adam-Gibbs (AG) relation that describes activated dynamics holds in the GCM, thus suggesting a non-activated contribution in AG relation. We also find an overlap between the AG relation and mode coupling power law regime leading to a power law behavior of Sc. From our analysis of this power law behavior, we predict that in the GCM the high temperature dynamics will disappear at dynamical transition temperature and below that there will be a transition to the activated regime. Our study further reveals that the activated regime in the GCM is quite narrow.
International Nuclear Information System (INIS)
Li, Guanchen; Al-Abbasi, Omar; Von Spakovsky, Michael R
2014-01-01
This paper outlines an atomistic-level framework for modeling the non-equilibrium behavior of chemically reactive systems. The framework called steepest- entropy-ascent quantum thermodynamics (SEA-QT) is based on the paradigm of intrinsic quantum thermodynamic (IQT), which is a theory that unifies quantum mechanics and thermodynamics into a single discipline with wide applications to the study of non-equilibrium phenomena at the atomistic level. SEA-QT is a novel approach for describing the state of chemically reactive systems as well as the kinetic and dynamic features of the reaction process without any assumptions of near-equilibrium states or weak-interactions with a reservoir or bath. Entropy generation is the basis of the dissipation which takes place internal to the system and is, thus, the driving force of the chemical reaction(s). The SEA-QT non-equilibrium model is able to provide detailed information during the reaction process, providing a picture of the changes occurring in key thermodynamic properties (e.g., the instantaneous species concentrations, entropy and entropy generation, reaction coordinate, chemical affinities, reaction rate, etc). As an illustration, the SEA-QT framework is applied to an atomistic-level chemically reactive system governed by the reaction mechanism F + H 2 ↔ FH + H
Cost modelling of electricity-producing hot dry rock (HDR) geothermal systems in the United Kingdom
International Nuclear Information System (INIS)
Doherty, P.; Harrison, R.
1995-01-01
A detailed and comprehensive cost model for Hot Dry Rock (HDR) electricity producing systems has been developed in this study. The model takes account of the major aspects of the HDR system, parameterized in terms of the main physical and cost parameters of the resource and the utilization system. A doublet configuration is assumed, and the conceptual HDR system which is defined in the study is based upon the UK Department of Energy (DEn) HDR geothermal R and D programme. The model has been used to calculate the costs of HDR electricity for a UK defined base case which represents a consensus view of what might be achieved in Cornwall in the long term. At 14.2 p/kWh (1988 costs) this cost appears to be unacceptably high. A wide-ranging sensitivity study has also been carried out on the main resource, geometrical, and operational parameters of the HDR system centred around the UK base case. The sensitivity study shows the most important parameters to be thermal gradient and depth. The geometrical arrangement and the shape of the reservoir constitute major uncertainties in HDR systems. Their effect on temperature has a major influence on system performance, and therefore a range of theoretically possible geometries have been studied and the importance of geometrical effects on HDR electricity costs assessed. The most cost effective HDR arrangement in terms of optimized volumes and flow rates has been investigated for a world-wide range of thermal settings. The main conclusions from this study suggests that for HDR electricity to be economic, thermal gradients of 55 o C/km and above, well depths of 5 km or less, and production fluid temperatures of 210 o C and above are required. (UK)
Clements, Gopalasamy Reuben; Rayan, D Mark; Aziz, Sheema Abdul; Kawanishi, Kae; Traeholt, Carl; Magintan, David; Yazi, Muhammad Fadlli Abdul; Tingley, Reid
2012-12-01
In 2008, the IUCN threat status of the Asian tapir (Tapirus indicus) was reclassified from 'vulnerable' to 'endangered'. The latest distribution map from the IUCN Red List suggests that the tapirs' native range is becoming increasingly fragmented in Peninsular Malaysia, but distribution data collected by local researchers suggest a more extensive geographical range. Here, we compile a database of 1261 tapir occurrence records within Peninsular Malaysia, and demonstrate that this species, indeed, has a much broader geographical range than the IUCN range map suggests. However, extreme spatial and temporal bias in these records limits their utility for conservation planning. Therefore, we used maximum entropy (MaxEnt) modeling to elucidate the potential extent of the Asian tapir's occurrence in Peninsular Malaysia while accounting for bias in existing distribution data. Our MaxEnt model predicted that the Asian tapir has a wider geographic range than our fine-scale data and the IUCN range map both suggest. Approximately 37% of Peninsular Malaysia contains potentially suitable tapir habitats. Our results justify a revision to the Asian tapir's extent of occurrence in the IUCN Red List. Furthermore, our modeling demonstrated that selectively logged forests encompass 45% of potentially suitable tapir habitats, underscoring the importance of these habitats for the conservation of this species in Peninsular Malaysia. © 2012 Wiley Publishing Asia Pty Ltd, ISZS and IOZ/CAS.
Nazeri, Mona; Jusoff, Kamaruzaman; Madani, Nima; Mahmud, Ahmad Rodzi; Bahman, Abdul Rani; Kumar, Lalit
2012-01-01
One of the available tools for mapping the geographical distribution and potential suitable habitats is species distribution models. These techniques are very helpful for finding poorly known distributions of species in poorly sampled areas, such as the tropics. Maximum Entropy (MaxEnt) is a recently developed modeling method that can be successfully calibrated using a relatively small number of records. In this research, the MaxEnt model was applied to describe the distribution and identify the key factors shaping the potential distribution of the vulnerable Malayan Sun Bear (Helarctos malayanus) in one of the main remaining habitats in Peninsular Malaysia. MaxEnt results showed that even though Malaysian sun bear habitat is tied with tropical evergreen forests, it lives in a marginal threshold of bio-climatic variables. On the other hand, current protected area networks within Peninsular Malaysia do not cover most of the sun bears potential suitable habitats. Assuming that the predicted suitability map covers sun bears actual distribution, future climate change, forest degradation and illegal hunting could potentially severely affect the sun bear's population.
Directory of Open Access Journals (Sweden)
Mona Nazeri
Full Text Available One of the available tools for mapping the geographical distribution and potential suitable habitats is species distribution models. These techniques are very helpful for finding poorly known distributions of species in poorly sampled areas, such as the tropics. Maximum Entropy (MaxEnt is a recently developed modeling method that can be successfully calibrated using a relatively small number of records. In this research, the MaxEnt model was applied to describe the distribution and identify the key factors shaping the potential distribution of the vulnerable Malayan Sun Bear (Helarctos malayanus in one of the main remaining habitats in Peninsular Malaysia. MaxEnt results showed that even though Malaysian sun bear habitat is tied with tropical evergreen forests, it lives in a marginal threshold of bio-climatic variables. On the other hand, current protected area networks within Peninsular Malaysia do not cover most of the sun bears potential suitable habitats. Assuming that the predicted suitability map covers sun bears actual distribution, future climate change, forest degradation and illegal hunting could potentially severely affect the sun bear's population.
Maximum-Entropy Models of Sequenced Immune Repertoires Predict Antigen-Antibody Affinity.
Directory of Open Access Journals (Sweden)
Lorenzo Asti
2016-04-01
Full Text Available The immune system has developed a number of distinct complex mechanisms to shape and control the antibody repertoire. One of these mechanisms, the affinity maturation process, works in an evolutionary-like fashion: after binding to a foreign molecule, the antibody-producing B-cells exhibit a high-frequency mutation rate in the genome region that codes for the antibody active site. Eventually, cells that produce antibodies with higher affinity for their cognate antigen are selected and clonally expanded. Here, we propose a new statistical approach based on maximum entropy modeling in which a scoring function related to the binding affinity of antibodies against a specific antigen is inferred from a sample of sequences of the immune repertoire of an individual. We use our inference strategy to infer a statistical model on a data set obtained by sequencing a fairly large portion of the immune repertoire of an HIV-1 infected patient. The Pearson correlation coefficient between our scoring function and the IC50 neutralization titer measured on 30 different antibodies of known sequence is as high as 0.77 (p-value 10-6, outperforming other sequence- and structure-based models.
Environmental efficiency analysis of power industry in China based on an entropy SBM model
International Nuclear Information System (INIS)
Zhou, Yan; Xing, Xinpeng; Fang, Kuangnan; Liang, Dapeng; Xu, Chunlin
2013-01-01
In order to assess the environmental efficiency of power industry in China, this paper first proposes a new non-radial DEA approach by integrating the entropy weight and the SBM model. This will improve the assessment reliability and reasonableness. Using the model, this study then evaluates the environmental efficiency of the Chinese power industry at the provincial level during 2005–2010. The results show a marked difference in environmental efficiency of the power industry among Chinese provinces. Although the annual, average, environmental efficiency level fluctuates, there is an increasing trend. The Tobit regression analysis reveals the innovation ability of enterprises, the proportion of electricity generated by coal-fired plants and the generation capacity have a significantly positive effect on environmental efficiency. However the waste fees levied on waste discharge and investment in industrial pollutant treatment are negatively associated with environmental efficiency. - Highlights: ► We assess the environmental efficiency of power industry in China by E-SBM model. ► Environmental efficiency of power industry is different among provinces. ► Efficiency stays at a higher level in the eastern and the western area. ► Proportion of coal-fired plants has a positive effect on the efficiency. ► Waste fees and the investment have a negative effect on the efficiency
A Distance Model of Intuitionistic Fuzzy Cross Entropy to Solve Preference Problem on Alternatives
Directory of Open Access Journals (Sweden)
Mei Li
2016-01-01
Full Text Available In the field of decision-making, for the multiple attribute decision-making problem with the partially unknown attribute weights, the evaluation information in the form of the intuitionistic fuzzy numbers, and the preference on alternatives, this paper proposes a comprehensive decision model based on the intuitionistic fuzzy cross entropy distance and the grey correlation analysis. The creative model can make up the deficiency that the traditional intuitionistic fuzzy distance measure is easy to cause the confusion of information and can improve the accuracy of distance measure; meanwhile, the grey correlation analysis method, suitable for the small sample and the poor information decision-making, is applied in the evaluation. This paper constructs a mathematical optimization model of maximizing the synthesis grey correlation coefficient between decision-making evaluation values and decision-makers’ subjective preference values, calculates the attribute weights with the known partial weight information, and then sorts the alternatives by the grey correlation coefficient values. Taking venture capital firm as an example, through the calculation and the variable disturbance, we can see that the methodology used in this paper has good stability and rationality. This research makes the decision-making process more scientific and further improves the theory of intuitionistic fuzzy multiple attribute decision-making.
A Novel Maximum Entropy Markov Model for Human Facial Expression Recognition.
Directory of Open Access Journals (Sweden)
Muhammad Hameed Siddiqi
Full Text Available Research in video based FER systems has exploded in the past decade. However, most of the previous methods work well when they are trained and tested on the same dataset. Illumination settings, image resolution, camera angle, and physical characteristics of the people differ from one dataset to another. Considering a single dataset keeps the variance, which results from differences, to a minimum. Having a robust FER system, which can work across several datasets, is thus highly desirable. The aim of this work is to design, implement, and validate such a system using different datasets. In this regard, the major contribution is made at the recognition module which uses the maximum entropy Markov model (MEMM for expression recognition. In this model, the states of the human expressions are modeled as the states of an MEMM, by considering the video-sensor observations as the observations of MEMM. A modified Viterbi is utilized to generate the most probable expression state sequence based on such observations. Lastly, an algorithm is designed which predicts the expression state from the generated state sequence. Performance is compared against several existing state-of-the-art FER systems on six publicly available datasets. A weighted average accuracy of 97% is achieved across all datasets.
1976-01-01
The Bureau of Land Management offered over 400,000 hectares (one million acres) for geothermal exploration and development in 1975, and figure is expected to double this year. The Energy Research and Development Administration hopes for 10-15,000 megawatts of geothermal energy by 1985, which would require, leasing over 16.3 million hectares (37 million acres) of land, at least half of which is federal land. Since there is an 8 to 8-1/2 year time laf between initial exploration and full field development, there would have to be a ten-fold increase in the amount of federal land leased within the next three years. Seventy percent of geothermal potential, 22.3 million hectares (55 million acres), is on federal lands in the west. The implication for the Service are enormous and the problems immediate. Geothermal resource are so widespread they are found to some extent in most biomes and ecosystems in the western United States. In most cases exploitation and production of geothermal resources can be made compatible with fish and wildlife management without damage, if probable impacts are clearly understood and provided for before damage has unwittingly been allowed to occur. Planning for site suitability and concern with specific operating techniques are crucial factors. There will be opportunities for enhancement: during exploration and testing many shallow groundwater bodies may be penetrated which might be developed for wildlife use. Construction equipment and materials needed for enhancement projects will be available in areas heretofore considered remote projects will be available in areas heretofore considered remote by land managers. A comprehensive knowledge of geothermal development is necessary to avoid dangers and seize opportunities. This handbook is intended to serve as a working tool in the field. It anticipated where geothermal resource development will occur in the western United States in the near future. A set of environmental assessment procedures are
Directory of Open Access Journals (Sweden)
Manzella A.
2015-01-01
Full Text Available Geothermal technologies use renewable energy resources to generate electricity and direct use of heat while producing very low levels of greenhouse-gas (GHG emissions. Geothermal energy is stored in rocks and in fluids circulating in the underground. Electricity generation usually requires geothermal resources temperatures of over 100°C. For heating, geothermal resources spanning a wider range of temperatures can be used in applications such as space and district heating (and cooling, with proper technology, spa and swimming pool heating, greenhouse and soil heating, aquaculture pond heating, industrial process heating and snow melting. Geothermal technology, which has focused so far on extracting naturally heated steam or hot water from natural hydrothermal reservoirs, is developing to more advanced techniques to exploit the heat also where underground fluids are scarce and to use the Earth as a potential energy battery, by storing heat. The success of the research will enable energy recovery and utilization from a much larger fraction of the accessible thermal energy in the Earth’s crust.
Tang, Jinjun; Zhang, Shen; Chen, Xinqiang; Liu, Fang; Zou, Yajie
2018-03-01
Understanding Origin-Destination distribution of taxi trips is very important for improving effects of transportation planning and enhancing quality of taxi services. This study proposes a new method based on Entropy-Maximizing theory to model OD distribution in Harbin city using large-scale taxi GPS trajectories. Firstly, a K-means clustering method is utilized to partition raw pick-up and drop-off location into different zones, and trips are assumed to start from and end at zone centers. A generalized cost function is further defined by considering travel distance, time and fee between each OD pair. GPS data collected from more than 1000 taxis at an interval of 30 s during one month are divided into two parts: data from first twenty days is treated as training dataset and last ten days is taken as testing dataset. The training dataset is used to calibrate model while testing dataset is used to validate model. Furthermore, three indicators, mean absolute error (MAE), root mean square error (RMSE) and mean percentage absolute error (MPAE), are applied to evaluate training and testing performance of Entropy-Maximizing model versus Gravity model. The results demonstrate Entropy-Maximizing model is superior to Gravity model. Findings of the study are used to validate the feasibility of OD distribution from taxi GPS data in urban system.
Sehgal, V.; Lakhanpal, A.; Maheswaran, R.; Khosa, R.; Sridhar, Venkataramana
2018-01-01
This study proposes a wavelet-based multi-resolution modeling approach for statistical downscaling of GCM variables to mean monthly precipitation for five locations at Krishna Basin, India. Climatic dataset from NCEP is used for training the proposed models (Jan.'69 to Dec.'94) and are applied to corresponding CanCM4 GCM variables to simulate precipitation for the validation (Jan.'95-Dec.'05) and forecast (Jan.'06-Dec.'35) periods. The observed precipitation data is obtained from the India Meteorological Department (IMD) gridded precipitation product at 0.25 degree spatial resolution. This paper proposes a novel Multi-Scale Wavelet Entropy (MWE) based approach for clustering climatic variables into suitable clusters using k-means methodology. Principal Component Analysis (PCA) is used to obtain the representative Principal Components (PC) explaining 90-95% variance for each cluster. A multi-resolution non-linear approach combining Discrete Wavelet Transform (DWT) and Second Order Volterra (SoV) is used to model the representative PCs to obtain the downscaled precipitation for each downscaling location (W-P-SoV model). The results establish that wavelet-based multi-resolution SoV models perform significantly better compared to the traditional Multiple Linear Regression (MLR) and Artificial Neural Networks (ANN) based frameworks. It is observed that the proposed MWE-based clustering and subsequent PCA, helps reduce the dimensionality of the input climatic variables, while capturing more variability compared to stand-alone k-means (no MWE). The proposed models perform better in estimating the number of precipitation events during the non-monsoon periods whereas the models with clustering without MWE over-estimate the rainfall during the dry season.
Future directions and cycles for electricity production from geothermal resources
International Nuclear Information System (INIS)
Michaelides, Efstathios E.
2016-01-01
Graphical abstract: 25% more power may be produced using binary-flashing geothermal cycles. - Highlights: • Power from geothermal power plants is continuously available and “dispatchable.” • The next generation of geothermal will include more binary plants. • Lower temperature geothermal resources will be utilized in the future. • Dry rock resources may produce a high fraction of electricity in several countries. - Abstract: Geothermal power production is economically competitive and capable to produce a high percentage of the electric power demand in several countries. The currently operating geothermal power plants utilize water from an aquifer at relatively higher temperatures and produce power using dry steam, flashing or binary cycles. A glance at the map of the global geothermal resources proves that there is a multitude of sites, where the aquifer temperature is lower. There are also many geothermal resources where a high geothermal gradient exists in the absence of an aquifer. It becomes apparent that the next generation of geothermal power plants will utilize more of the lower-temperature aquifer resources or the dry resources. For such power plants to be economically competitive, modified or new cycles with higher efficiencies must be used. This paper presents two methods to increase the efficiency of the currently used geothermal cycles. The first uses a binary-flashing system to reduce the overall entropy production, thus, producing more electric power from the resource. The second describes a heat extraction system to be used with dry hot-rock resources.
Szalaiová, Eva; Rabbel, Wolfgang; Marquart, Gabriele; Vogt, Christian
2015-11-01
The area of the 9.1-km-deep Continental Deep Drillhole (KTB) in Germany is used as a case study for a geothermal reservoir situated in folded and faulted metamorphic crystalline crust. The presented approach is based on the analysis of 3-D seismic reflection data combined with borehole data and hydrothermal numerical modelling. The KTB location exemplarily contains all elements that make seismic prospecting in crystalline environment often more difficult than in sedimentary units, basically complicated tectonics and fracturing and low-coherent strata. In a first step major rock units including two known nearly parallel fault zones are identified down to a depth of 12 km. These units form the basis of a gridded 3-D numerical model for investigating temperature and fluid flow. Conductive and advective heat transport takes place mainly in a metamorphic block composed of gneisses and metabasites that show considerable differences in thermal conductivity and heat production. Therefore, in a second step, the structure of this unit is investigated by seismic waveform modelling. The third step of interpretation consists of applying wavenumber filtering and log-Gabor-filtering for locating fractures. Since fracture networks are the major fluid pathways in the crystalline, we associate the fracture density distribution with distributions of relative porosity and permeability that can be calibrated by logging data and forward modelling of the temperature field. The resulting permeability distribution shows values between 10-16 and 10-19 m2 and does not correlate with particular rock units. Once thermohydraulic rock properties are attributed to the numerical model, the differential equations for heat and fluid transport in porous media are solved numerically based on a finite difference approach. The hydraulic potential caused by topography and a heat flux of 54 mW m-2 were applied as boundary conditions at the top and bottom of the model. Fluid flow is generally slow and
Entropy production analysis of hysteresis characteristic of a pump-turbine model
International Nuclear Information System (INIS)
Li, Deyou; Wang, Hongjie; Qin, Yonglin; Han, Lei; Wei, Xianzhu; Qin, Daqing
2017-01-01
Highlights: • An interesting hysteresis phenomenon was analyzed using entropy production theory. • A function was used to calculate the entropy production in the wall region. • Generation mechanism of the hump and hysteresis characteristics was obtained. - Abstract: The hydraulic loss due to friction and unstable flow patterns in hydro-turbines causes a drop in their efficiency. The traditional method for analyzing the hydraulic loss is by evaluating the pressure drop, which has certain limitations and cannot determine the exact locations at which the high hydraulic loss occurs. In this study, entropy production theory was adopted to obtain a detailed distribution of the hydraulic loss in a pump-turbine in the pump mode. In the past, the wall effects of entropy production were not considered, which caused larger errors as compared with the method of pressure difference. First, a wall equation was proposed to calculate the hydraulic loss in the wall region. The comparison of hydraulic loss calculated by entropy production and pressure difference revealed a better result. Then, through the use of the entropy production theory, the performance characteristics were determined for a pump-turbine with 19 mm guide vane opening, and the variation in the entropy production was obtained. Recently, an interesting phenomenon, i.e., a hysteresis characteristic, was observed in the hump region in pump-turbines. Research shows that the hysteresis characteristic is a result of the Euler momentum and hydraulic loss; the hydraulic loss accounts for a major portion of the hysteresis characteristic. Finally, the hysteresis characteristic in the hump region was analyzed in detail through the entropy production. The results showed that the hump characteristic and the accompanying hysteresis phenomenon are caused by backflow at the runner inlet and the presence of separation vortices close to the hub and the shroud in the stay/guide vanes, which is dependent on the direction of
Using maximum entropy modeling for optimal selection of sampling sites for monitoring networks
Stohlgren, Thomas J.; Kumar, Sunil; Barnett, David T.; Evangelista, Paul H.
2011-01-01
Environmental monitoring programs must efficiently describe state shifts. We propose using maximum entropy modeling to select dissimilar sampling sites to capture environmental variability at low cost, and demonstrate a specific application: sample site selection for the Central Plains domain (453,490 km2) of the National Ecological Observatory Network (NEON). We relied on four environmental factors: mean annual temperature and precipitation, elevation, and vegetation type. A “sample site” was defined as a 20 km × 20 km area (equal to NEON’s airborne observation platform [AOP] footprint), within which each 1 km2 cell was evaluated for each environmental factor. After each model run, the most environmentally dissimilar site was selected from all potential sample sites. The iterative selection of eight sites captured approximately 80% of the environmental envelope of the domain, an improvement over stratified random sampling and simple random designs for sample site selection. This approach can be widely used for cost-efficient selection of survey and monitoring sites.
Wu, Jingjing; Wu, Xinming; Li, Pengfei; Li, Nan; Mao, Xiaomei; Chai, Lihe
2017-04-01
Meridian system is not only the basis of traditional Chinese medicine (TCM) method (e.g. acupuncture, massage), but also the core of TCM's basic theory. This paper has introduced a new informational perspective to understand the reality and the holographic field of meridian. Based on maximum information entropy principle (MIEP), a dynamic equation for the holographic field has been deduced, which reflects the evolutionary characteristics of meridian. By using self-organizing artificial neural network as algorithm, the evolutionary dynamic equation of the holographic field can be resolved to assess properties of meridians and clinically diagnose the health characteristics of patients. Finally, through some cases from clinical patients (e.g. a 30-year-old male patient, an apoplectic patient, an epilepsy patient), we use this model to assess the evolutionary properties of meridians. It is proved that this model not only has significant implications in revealing the essence of meridian in TCM, but also may play a guiding role in clinical assessment of patients based on the holographic field of meridians.
Geothermal energy in Denmark. The Committee for Geothermal Energy of the Danish Energy Agency
International Nuclear Information System (INIS)
1998-06-01
The Danish Energy Agency has prepared a report on the Danish geothermal resources and their contribution to the national energy potential.Environmental and socio-economic consequences of geothermal power systems implementation are reviewed. Organizational models and financing of geothermal-seismic research are discussed, and the Committee of the Energy Agency for Geothermal Energy recommends financing of a pilot plant as well as a prompt elucidation of concession/licensing problems. (EG)
An Environmental Management Maturity Model of Construction Programs Using the AHP-Entropy Approach
Directory of Open Access Journals (Sweden)
Libiao Bai
2018-06-01
Full Text Available The accelerating process of urbanization in China has led to considerable opportunities for the development of construction projects, however, environmental issues have become an important constraint on the implementation of these projects. To quantitatively describe the environmental management capabilities of such projects, this paper proposes a 2-dimensional Environmental Management Maturity Model of Construction Program (EMMMCP based on an analysis of existing projects, group management theory and a management maturity model. In this model, a synergetic process was included to compensate for the lack of consideration of synergies in previous studies, and it was involved in the construction of the first dimension, i.e., the environmental management index system. The second dimension, i.e., the maturity level of environment management, was then constructed by redefining the hierarchical characteristics of construction program (CP environmental management maturity. Additionally, a mathematical solution to this proposed model was derived via the Analytic Hierarchy Process (AHP-entropy approach. To verify the effectiveness and feasibility of this proposed model, a computational experiment was conducted, and the results show that this approach could not only measure the individual levels of different processes, but also achieve the most important objective of providing a reference for stakeholders when making decisions on the environmental management of construction program, which reflects this model is reasonable for evaluating the level of environmental management maturity in CP. To our knowledge, this paper is the first study to evaluate the environmental management maturity levels of CP, which would fill the gap between project program management and environmental management and provide a reference for relevant management personnel to enhance their environmental management capabilities.
Directory of Open Access Journals (Sweden)
Jianwei Gao
2017-02-01
Full Text Available This paper aims to develop a risk-free protection index model for portfolio selection based on the uncertain theory. First, the returns of risk assets are assumed as uncertain variables and subject to reputable experts’ evaluations. Second, under this assumption, combining with the risk-free interest rate we define a risk-free protection index (RFPI, which can measure the protection degree when the loss of risk assets happens. Third, note that the proportion entropy serves as a complementary means to reduce the risk by the preset diversification requirement. We put forward a risk-free protection index model with an entropy constraint under an uncertainty framework by applying the RFPI, Huang’s risk index model (RIM, and mean-variance-entropy model (MVEM. Furthermore, to solve our portfolio model, an algorithm is given to estimate the uncertain expected return and standard deviation of different risk assets by applying the Delphi method. Finally, an example is provided to show that the risk-free protection index model performs better than the traditional MVEM and RIM.
Dinske, C.; Langenbruch, C.; Shapiro, S. A.
2017-12-01
We investigate seismicity related to hydrothermal systems in Germany and Italy, focussing on temporal changes of seismicity rates. Our analysis was motivated by numerical simulations The modeling of stress changes caused by the injection and production of fluid revealed that seismicity rates decrease on a long-term perspective which is not observed in the considered case studies. We analyze the waiting time distributions of the seismic events in both time domain (inter event times) and fluid volume domain (inter event volume). We find clear indications that the observed seismicity comprises two components: (1) seismicity that is directly triggered by production and re-injection of fluid, i.e. induced events, and (2) seismicity that is triggered by earthquake interactions, i.e. aftershock triggering. In order to better constrain our numerical simulations using the observed induced seismicity we apply catalog declustering to seperate the two components. We use the magnitude-dependent space-time windowing approach introduced by Gardner and Knopoff (1974) and test several published algorithms to calculate the space-time windows. After declustering, we conclude that the different hydrothermal reservoirs show a comparable seismic response to the circulation of fluid and additional triggering by earthquake interactions. The declustered catalogs contain approximately 50 per cent of the number of events in the original catalogs. We then perform ETAS (Epidemic Type Aftershock; Ogata, 1986, 1988) modeling for two reasons. First, we want to know whether the different reservoirs are also comparable regarding earthquake interaction patterns. Second, if we identify systematic patterns, ETAS modeling can contribute to forecast seismicity during production of geothermal energy. We find that stationary ETAS models cannot accurately capture real seismicity rate changes. One reason for this finding is given by the rate of observed induced events which is not constant over time. Hence
Khosravi Tanak, A.; Mohtashami Borzadaran, G. R.; Ahmadi, J.
2015-11-01
In economics and social sciences, the inequality measures such as Gini index, Pietra index etc., are commonly used to measure the statistical dispersion. There is a generalization of Gini index which includes it as special case. In this paper, we use principle of maximum entropy to approximate the model of income distribution with a given mean and generalized Gini index. Many distributions have been used as descriptive models for the distribution of income. The most widely known of these models are the generalized beta of second kind and its subclass distributions. The obtained maximum entropy distributions are fitted to the US family total money income in 2009, 2011 and 2013 and their relative performances with respect to generalized beta of second kind family are compared.
Credal Networks under Maximum Entropy
Lukasiewicz, Thomas
2013-01-01
We apply the principle of maximum entropy to select a unique joint probability distribution from the set of all joint probability distributions specified by a credal network. In detail, we start by showing that the unique joint distribution of a Bayesian tree coincides with the maximum entropy model of its conditional distributions. This result, however, does not hold anymore for general Bayesian networks. We thus present a new kind of maximum entropy models, which are computed sequentially. ...
Directory of Open Access Journals (Sweden)
А. В. Кирюхин
2017-04-01
Full Text Available Numerical 3D model of Mutnovsky geothermal field (Dachny springs, which consist of 517 elements and partially takes into account double porosity, was developed in 1992-1993 using computer program TOUGH2. Calibration of the model was based on data from test yield of the wells and initial distribution of temperature and pressure in the reservoir. This model was used for techno-economic justification of power plant construction (Mutnovskaya GeoES, 2002. The model was recreated in the program PetraSim v.5.2, the calibration was carried out using additional data on production history before year 2006 and inversion iTOUGH2-EOS1 modeling. Comparison of reservoir parameters, estimated using inversion modeling, with previous parameter estimations (given in brackets showed the following: upflow rate of heat-transfer agent in natural conditions 80.5 (54.1 kg/s, heat flux enthalpy 1430 (1390 kJ/kg, reservoir permeability 27∙10–15-616∙10–15 (3∙10–15-90∙10–15 m2. Inversion modeling was also used to estimate reinjection rates, inflow of meteoric water in the central part of geothermal field and compressibility of reservoir rocks.
International Nuclear Information System (INIS)
Laplaige, P.
1995-01-01
At the end of the seventies, the NEDO (New Energy and Industrial Technology Development Organisation) and the Central Research Institute of Electric Power Industry have started two independent projects of deep geothermics research in Honshu island (Japan). The two sites are 50 km apart of each other and the boreholes have been drilled up to 2300 and 1100 m of depth, respectively, in hot-dry moderately fractured volcanic rocks. These sites are characterized by high geothermal gradients with a rock temperature reaching 250 C at the bottom of the wells. Hydraulic circulation tests are still in progress to evaluate the profitability of these sites. (J.S.). 1 fig., 1 photo
Gutierrez-Jurado, H. A.; Guan, H.; Wang, J.; Wang, H.; Bras, R. L.; Simmons, C. T.
2015-12-01
Quantification of evapotranspiration (ET) and its partition over regions of heterogeneous topography and canopy poses a challenge using traditional approaches. In this study, we report the results of a novel field experiment design guided by the Maximum Entropy Production model of ET (MEP-ET), formulated for estimating evaporation and transpiration from homogeneous soil and canopy. A catchment with complex terrain and patchy vegetation in South Australia was instrumented to measure temperature, humidity and net radiation at soil and canopy surfaces. Performance of the MEP-ET model to quantify transpiration and soil evaporation was evaluated during wet and dry conditions with independently and directly measured transpiration from sapflow and soil evaporation using the Bowen Ratio Energy Balance (BREB). MEP-ET transpiration shows remarkable agreement with that obtained through sapflow measurements during wet conditions, but consistently overestimates the flux during dry periods. However, an additional term introduced to the original MEP-ET model accounting for higher stomatal regulation during dry spells, based on differences between leaf and air vapor pressure deficits and temperatures, significantly improves the model performance. On the other hand, MEP-ET soil evaporation is in good agreement with that from BREB regardless of moisture conditions. The experimental design allows a plot and tree scale quantification of evaporation and transpiration respectively. This study confirms for the first time that the MEP-ET originally developed for homogeneous open bare soil and closed canopy can be used for modeling ET over heterogeneous land surfaces. Furthermore, we show that with the addition of an empirical function simulating the plants ability to regulate transpiration, and based on the same measurements of temperature and humidity, the method can produce reliable estimates of ET during both wet and dry conditions without compromising its parsimony.
Wu, Jun; Li, Chengbing; Huo, Yueying
2014-01-01
Safety of dangerous goods transport is directly related to the operation safety of dangerous goods transport enterprise. Aiming at the problem of the high accident rate and large harm in dangerous goods logistics transportation, this paper took the group decision making problem based on integration and coordination thought into a multiagent multiobjective group decision making problem; a secondary decision model was established and applied to the safety assessment of dangerous goods transport enterprise. First of all, we used dynamic multivalue background and entropy theory building the first level multiobjective decision model. Secondly, experts were to empower according to the principle of clustering analysis, and combining with the relative entropy theory to establish a secondary rally optimization model based on relative entropy in group decision making, and discuss the solution of the model. Then, after investigation and analysis, we establish the dangerous goods transport enterprise safety evaluation index system. Finally, case analysis to five dangerous goods transport enterprises in the Inner Mongolia Autonomous Region validates the feasibility and effectiveness of this model for dangerous goods transport enterprise recognition, which provides vital decision making basis for recognizing the dangerous goods transport enterprises.
Energy Technology Data Exchange (ETDEWEB)
Anderson, Arlene [United States Department of Energy; Blackwell, David [Southern Methodist University; Chickering, Cathy [Southern Methodist University; Boyd, Toni [Oregon Institute of Technology; Horne, Roland [Stanford University; MacKenzie, Matthew [Uberity Technology Corporation; Moore, Joseph [University of Utah; Nickull, Duane [Uberity Technology Corporation; Richard, Stephen [Arizona Geological survey; Shevenell, Lisa A. [University of Nevada, Reno
2013-10-01
To satisfy the critical need for geothermal data to advance geothermal energy as a viable renewable energy contender, the U.S. Department of Energy is investing in the development of the National Geothermal Data System (NGDS). This paper outlines efforts among geothermal data providers nationwide to supply cutting edge geo-informatics. NGDS geothermal data acquisition, delivery, and methodology are discussed. In particular, this paper addresses the various types of data required to effectively assess geothermal energy potential and why simple links to existing data are insufficient. To create a platform for ready access by all geothermal stakeholders, the NGDS includes a work plan that addresses data assets and resources of interest to users, a survey of data providers, data content models, and how data will be exchanged and promoted, as well as lessons learned within the geothermal community.
Modelling of hydrogen sulfide dispersion from the geothermal power plants of Tuscany (Italy)
Renato, Somma; Domenico, Granieri; Claudia, Troise; Carlo, Terranova; Natale Giuseppe, De; Maria, Pedone
2017-04-01
The hydrogen sulfide (H2S) is one of the main gaseous substances contained in deep fluids exploited by geo-thermoelectric plant. Therefore, it is a "waste" pollutant product by plants for energy production. Hydrogen sulfide is perceived by humans at very low concentrations in the air ( 0,008 ppm, World Health Organization, hereafter WHO, 2003) but it becomes odorless in higher concentrations (> 100 ppm, WHO, 2003) and, for values close to the ones lethal (> 500 ppm), produces an almost pleasant smell. The typical concentration in urban areas is <0.001ppm (<1ppb); in volcanic plumes it reaches values between 0.1 and 0.5 ppm. WHO defines the concentration and relative effects on human health. We applied the Eulerian code DISGAS (DISpersion of GAS) to investigate the dispersion of the hydrogen sulfide (H2S) from 32 geothermal power plants (out of 35 active) belonging to the geothermal districts of Larderello, Travale-Radicondoli and Monte Amiata, in Tuscany (Italy). DISGAS code has simulated scenarios consistent with the prevailing wind conditions, estimating reasonable H2S concentrations for each area, and for each active power plant. The results suggest that H2S plumes emitted from geothermal power plants are mainly concentrated around the stacks of emission (H2S concentration up to 1100 ug/m3) and rapidly dilute along the dominant local wind direction. Although estimated values of air H2S concentrations are orders of magnitude higher than in unpolluted areas, they do not indicate an immediate health risk for nearby communities, under the more frequent local atmospheric conditions. Starting from the estimated values, validated by measurements in the field, we make some considerations about the environmental impact of the H2S emission in all the geothermal areas of the Tuscany region. Furthermore, this study indicates the potential of DISGAS as a tool for an improved understanding of the atmospheric and environmental impacts of the H2S continuous degassing from
Indian Academy of Sciences (India)
Abstract. It is shown that (i) every probability density is the unique maximizer of relative entropy in an appropriate class and (ii) in the class of all pdf f that satisfy. ∫ fhi dμ = λi for i = 1, 2,...,...k the maximizer of entropy is an f0 that is pro- portional to exp(. ∑ ci hi ) for some choice of ci . An extension of this to a continuum of.
Indian Academy of Sciences (India)
It is shown that (i) every probability density is the unique maximizer of relative entropy in an appropriate class and (ii) in the class of all pdf that satisfy ∫ f h i d = i for i = 1 , 2 , … , … k the maximizer of entropy is an f 0 that is proportional to exp ( ∑ c i h i ) for some choice of c i . An extension of this to a continuum of ...
Directory of Open Access Journals (Sweden)
Tommaso Toffoli
2016-06-01
Full Text Available Here we deconstruct, and then in a reasoned way reconstruct, the concept of “entropy of a system”, paying particular attention to where the randomness may be coming from. We start with the core concept of entropy as a count associated with a description; this count (traditionally expressed in logarithmic form for a number of good reasons is in essence the number of possibilities—specific instances or “scenarios”—that match that description. Very natural (and virtually inescapable generalizations of the idea of description are the probability distribution and its quantum mechanical counterpart, the density operator. We track the process of dynamically updating entropy as a system evolves. Three factors may cause entropy to change: (1 the system’s internal dynamics; (2 unsolicited external influences on it; and (3 the approximations one has to make when one tries to predict the system’s future state. The latter task is usually hampered by hard-to-quantify aspects of the original description, limited data storage and processing resource, and possibly algorithmic inadequacy. Factors 2 and 3 introduce randomness—often huge amounts of it—into one’s predictions and accordingly degrade them. When forecasting, as long as the entropy bookkeping is conducted in an honest fashion, this degradation will always lead to an entropy increase. To clarify the above point we introduce the notion of honest entropy, which coalesces much of what is of course already done, often tacitly, in responsible entropy-bookkeping practice. This notion—we believe—will help to fill an expressivity gap in scientific discourse. With its help, we shall prove that any dynamical system—not just our physical universe—strictly obeys Clausius’s original formulation of the second law of thermodynamics if and only if it is invertible. Thus this law is a tautological property of invertible systems!
Directory of Open Access Journals (Sweden)
Qian Yang
2016-08-01
Full Text Available Urban ecosystem health evaluation can assist in sustainable ecological management at a regional level. This study examined urban agglomeration ecosystem health in the middle reaches of the Yangtze River with entropy weight and extension theories. The model overcomes information omissions and subjectivity problems in the evaluation process of urban ecosystem health. Results showed that human capital and education, economic development level as well as urban infrastructure have a significant effect on the health states of urban agglomerations. The health status of the urban agglomeration’s ecosystem was not optimistic in 2013. The majority of the cities were unhealthy or verging on unhealthy, accounting for 64.52% of the total number of cities in the urban agglomeration. The regional differences of the 31 cities’ ecosystem health are significant. The cause originated from an imbalance in economic development and the policy guidance of city development. It is necessary to speed up the integration process to promote coordinated regional development. The present study will aid us in understanding and advancing the health situation of the urban ecosystem in the middle reaches of the Yangtze River and will provide an efficient urban ecosystem health evaluation method that can be used in other areas.
Superstrings, entropy and the elementary particles content of the standard model
International Nuclear Information System (INIS)
El Naschie, M.S.
2006-01-01
A number of interconnected issues involving superstring theory, entropy and the particle content of the standard model of high energy physics are discussed in the present work. It is found that within a non-transfinite approximation, the number of elementary particles is given by DimSU(8) in full agreement with the prediction gained from dividing the total number of the massless level of Heterotic string theory (256)(16)=8064 by the spin representation 2 7 =128 which gives DimSU(8)=(8) 2 -1=(8064)/(128)=63 particles. For the exact transfinite case however, one finds our previously established E-infinity result:N=(336+16k)(3/2+k)(16+k)/(128+8k)=α-bar o /2,where k=φ 3 (1-φ 3 ), φ=(5-1)/2 and α-bar o /2=68.54101965. Setting k=0 one finds that n=63 exactly as in the non-transfinite case
International Nuclear Information System (INIS)
Argentiero, Amedeo; Bovi, Maurizio; Cerqueti, Roy
2016-01-01
This paper examines psycho-induced overconsumption in a dynamic stochastic context. As emphasized by well-established psychological results, these psycho-distortions derive from a decision making based on simple rules-of-thumb, not on analytically sounded optimizations. To our end, we therefore compare two New Keynesian models. The first is populated by optimizing Muth-rational agents and acts as the normative benchmark. The other is a “psycho-perturbed” version of the benchmark that allows for the potential presence of overoptimism and, hence, of overconsumption. The parameters of these models are estimated through a Bayesian-type procedure, and performances are evaluated by employing an entropy measure. Such methodologies are particularly appropriate here since they take in full consideration the complexity generated by the randomness of the considered systems. In particular, they let to derive a not negligible information on the size and on the cyclical properties of the biases. In line with cognitive psychology suggestions our evidence shows that the overoptimism/overconsumption is: widespread—it is detected in nation-wide data; persistent—it emerges in full-sample estimations; it moves according to the expected cyclical behavior—larger in booms, and it disappears in crises. Moreover, by taking into account the effect of these psycho-biases, the model fits actual data better than the benchmark. All considered, then, enhancing the existing literature our findings: i) sustain the importance of inserting psychological distortions in macroeconomic models and ii) underline that system dynamics and psycho biases have statistically significant and economically important connections.
Straka, Mika J.; Caldarelli, Guido; Squartini, Tiziano; Saracco, Fabio
2018-04-01
Bipartite networks provide an insightful representation of many systems, ranging from mutualistic networks of species interactions to investment networks in finance. The analyses of their topological structures have revealed the ubiquitous presence of properties which seem to characterize many—apparently different—systems. Nestedness, for example, has been observed in biological plant-pollinator as well as in country-product exportation networks. Due to the interdisciplinary character of complex networks, tools developed in one field, for example ecology, can greatly enrich other areas of research, such as economy and finance, and vice versa. With this in mind, we briefly review several entropy-based bipartite null models that have been recently proposed and discuss their application to real-world systems. The focus on these models is motivated by the fact that they show three very desirable features: analytical character, general applicability, and versatility. In this respect, entropy-based methods have been proven to perform satisfactorily both in providing benchmarks for testing evidence-based null hypotheses and in reconstructing unknown network configurations from partial information. Furthermore, entropy-based models have been successfully employed to analyze ecological as well as economic systems. As an example, the application of entropy-based null models has detected early-warning signals, both in economic and financial systems, of the 2007-2008 world crisis. Moreover, they have revealed a statistically-significant export specialization phenomenon of country export baskets in international trade, a result that seems to reconcile Ricardo's hypothesis in classical economics with recent findings on the (empirical) diversification industrial production at the national level. Finally, these null models have shown that the information contained in the nestedness is already accounted for by the degree sequence of the corresponding graphs.
Cluster-size entropy in the Axelrod model of social influence: Small-world networks and mass media
Gandica, Y.; Charmell, A.; Villegas-Febres, J.; Bonalde, I.
2011-10-01
We study the Axelrod's cultural adaptation model using the concept of cluster-size entropy Sc, which gives information on the variability of the cultural cluster size present in the system. Using networks of different topologies, from regular to random, we find that the critical point of the well-known nonequilibrium monocultural-multicultural (order-disorder) transition of the Axelrod model is given by the maximum of the Sc(q) distributions. The width of the cluster entropy distributions can be used to qualitatively determine whether the transition is first or second order. By scaling the cluster entropy distributions we were able to obtain a relationship between the critical cultural trait qc and the number F of cultural features in two-dimensional regular networks. We also analyze the effect of the mass media (external field) on social systems within the Axelrod model in a square network. We find a partially ordered phase whose largest cultural cluster is not aligned with the external field, in contrast with a recent suggestion that this type of phase cannot be formed in regular networks. We draw a q-B phase diagram for the Axelrod model in regular networks.
Directory of Open Access Journals (Sweden)
Jinlu Sheng
2016-07-01
Full Text Available To effectively extract the typical features of the bearing, a new method that related the local mean decomposition Shannon entropy and improved kernel principal component analysis model was proposed. First, the features are extracted by time–frequency domain method, local mean decomposition, and using the Shannon entropy to process the original separated product functions, so as to get the original features. However, the features been extracted still contain superfluous information; the nonlinear multi-features process technique, kernel principal component analysis, is introduced to fuse the characters. The kernel principal component analysis is improved by the weight factor. The extracted characteristic features were inputted in the Morlet wavelet kernel support vector machine to get the bearing running state classification model, bearing running state was thereby identified. Cases of test and actual were analyzed.
Geothermal modelling and geoneutrino flux prediction at JUNO with local heat production data
Xi, Y.; Wipperfurth, S. A.; McDonough, W. F.; Sramek, O.; Roskovec, B.; He, J.
2017-12-01
Geoneutrinos are mostly electron antineutrinos created from natural radioactive decays in the Earth's interior. Measurement of a geoneutrino flux at near surface detector can lead to a better understanding of the composition of the Earth, inform about chemical layering in the mantle, define the power driving mantle convection and plate tectonics, and reveal the energy supplying the geodynamo. JUNO (Jiangmen Underground Neutrino Observatory) is a 20 kton liquid scintillator detector currently under construction with an expected start date in 2020. Due to its enormous mass, JUNO will detect about 400 geoneutrinos per year, making it an ideal tool to study the Earth. JUNO is located on the passive continental margin of South China, where there is an extensive continental shelf. The continental crust surrounding the JUNO detector is between 26 and 32 km thick and represents the transition between the southern Eurasian continental plate and oceanic plate of the South China Sea.We seek to predict the geoneutrino flux at JUNO prior to data taking and announcement of the particle physics measurement. To do so requires a detail survey of the local lithosphere, as it contributes about 50% of the signal. Previous estimates of the geoneutrino signal at JUNO utilized global crustal models, with no local constraints. Regionally, the area is characterized by extensive lateral and vertical variations in lithology and dominated by Mesozoic granite intrusions, with an average heat production of 6.29 μW/m3. Consequently, at 3 times greater heat production than the globally average upper crust, these granites will generate a higher than average geoneutrino flux at JUNO. To better define the U and Th concentrations in the upper crust, we collected some 300 samples within 50 km of JUNO. By combining chemical data obtained from these samples with data for crustal structures defined by local geophysical studies, we will construct a detailed 3D geothermal model of the region. Our
International Nuclear Information System (INIS)
Anon.
1995-01-01
The hot-dry-rocks located at 3-4 km of depth correspond to low permeable rocks carrying a large amount of heat. The extraction of this heat usually requires artificial hydraulic fracturing of the rock to increase its permeability before water injection. Hot-dry-rocks geothermics or deep geothermics is not today a commercial channel but only a scientific and technological research field. The Soultz-sous-Forets site (Northern Alsace, France) is characterized by a 6 degrees per meter geothermal gradient and is used as a natural laboratory for deep geothermal and geological studies in the framework of a European research program. Two boreholes have been drilled up to 3600 m of depth in the highly-fractured granite massif beneath the site. The aim is to create a deep heat exchanger using only the natural fracturing for water transfer. A consortium of german, french and italian industrial companies (Pfalzwerke, Badenwerk, EdF and Enel) has been created for a more active participation to the pilot phase. (J.S.). 1 fig., 2 photos
Entropy, matter, and cosmology.
Prigogine, I; Géhéniau, J
1986-09-01
The role of irreversible processes corresponding to creation of matter in general relativity is investigated. The use of Landau-Lifshitz pseudotensors together with conformal (Minkowski) coordinates suggests that this creation took place in the early universe at the stage of the variation of the conformal factor. The entropy production in this creation process is calculated. It is shown that these dissipative processes lead to the possibility of cosmological models that start from empty conditions and gradually build up matter and entropy. Gravitational entropy takes a simple meaning as associated to the entropy that is necessary to produce matter. This leads to an extension of the third law of thermodynamics, as now the zero point of entropy becomes the space-time structure out of which matter is generated. The theory can be put into a convenient form using a supplementary "C" field in Einstein's field equations. The role of the C field is to express the coupling between gravitation and matter leading to irreversible entropy production.
Yu, Hwa-Lung; Wang, Chih-Hsin
2013-02-05
Understanding the daily changes in ambient air quality concentrations is important to the assessing human exposure and environmental health. However, the fine temporal scales (e.g., hourly) involved in this assessment often lead to high variability in air quality concentrations. This is because of the complex short-term physical and chemical mechanisms among the pollutants. Consequently, high heterogeneity is usually present in not only the averaged pollution levels, but also the intraday variance levels of the daily observations of ambient concentration across space and time. This characteristic decreases the estimation performance of common techniques. This study proposes a novel quantile-based Bayesian maximum entropy (QBME) method to account for the nonstationary and nonhomogeneous characteristics of ambient air pollution dynamics. The QBME method characterizes the spatiotemporal dependence among the ambient air quality levels based on their location-specific quantiles and accounts for spatiotemporal variations using a local weighted smoothing technique. The epistemic framework of the QBME method can allow researchers to further consider the uncertainty of space-time observations. This study presents the spatiotemporal modeling of daily CO and PM10 concentrations across Taiwan from 1998 to 2009 using the QBME method. Results show that the QBME method can effectively improve estimation accuracy in terms of lower mean absolute errors and standard deviations over space and time, especially for pollutants with strong nonhomogeneous variances across space. In addition, the epistemic framework can allow researchers to assimilate the site-specific secondary information where the observations are absent because of the common preferential sampling issues of environmental data. The proposed QBME method provides a practical and powerful framework for the spatiotemporal modeling of ambient pollutants.
Entropy for Mechanically Vibrating Systems
Tufano, Dante
The research contained within this thesis deals with the subject of entropy as defined for and applied to mechanically vibrating systems. This work begins with an overview of entropy as it is understood in the fields of classical thermodynamics, information theory, statistical mechanics, and statistical vibroacoustics. Khinchin's definition of entropy, which is the primary definition used for the work contained in this thesis, is introduced in the context of vibroacoustic systems. The main goal of this research is to to establish a mathematical framework for the application of Khinchin's entropy in the field of statistical vibroacoustics by examining the entropy context of mechanically vibrating systems. The introduction of this thesis provides an overview of statistical energy analysis (SEA), a modeling approach to vibroacoustics that motivates this work on entropy. The objective of this thesis is given, and followed by a discussion of the intellectual merit of this work as well as a literature review of relevant material. Following the introduction, an entropy analysis of systems of coupled oscillators is performed utilizing Khinchin's definition of entropy. This analysis develops upon the mathematical theory relating to mixing entropy, which is generated by the coupling of vibroacoustic systems. The mixing entropy is shown to provide insight into the qualitative behavior of such systems. Additionally, it is shown that the entropy inequality property of Khinchin's entropy can be reduced to an equality using the mixing entropy concept. This equality can be interpreted as a facet of the second law of thermodynamics for vibroacoustic systems. Following this analysis, an investigation of continuous systems is performed using Khinchin's entropy. It is shown that entropy analyses using Khinchin's entropy are valid for continuous systems that can be decomposed into a finite number of modes. The results are shown to be analogous to those obtained for simple oscillators
Energy Technology Data Exchange (ETDEWEB)
None, None
2009-01-18
Contributors from the Geothermal Technologies Program and the geothermal community highlight the current status and activities of the Program and the development of the global resource of geothermal energy.
Directory of Open Access Journals (Sweden)
N. Akmal
2018-05-01
Full Text Available The present study gives an account of the heat transfer characteristics of the squeezing flow of a nanofluid between two flat plates with upper plate moving vertically and the lower in the horizontal direction. Tiwari and Das nanofluid model has been utilized to give a comparative analysis of the heat transfer in the Cu-water and Al2O3–water nanofluids with entropy generation. The modeling is carried out with the consideration of Lorentz forces to observe the effect of magnetic field on the flow. The Joule heating effect is included to discuss the heat dissipation in the fluid and its effect on the entropy of the system. The nondimensional ordinary differential equations are solved using the Keller box method to assess the numerical results which are presented by the graphs and tables. An interesting observation is that the entropy is generated more near the lower plate as compared with that at the upper plate. Also, the heat transfer rate is found to be higher for the Cu nanoparticles in comparison with the Al2O3 nanoparticles.
Uncertainty analysis of geothermal energy economics
Sener, Adil Caner
This dissertation research endeavors to explore geothermal energy economics by assessing and quantifying the uncertainties associated with the nature of geothermal energy and energy investments overall. The study introduces a stochastic geothermal cost model and a valuation approach for different geothermal power plant development scenarios. The Monte Carlo simulation technique is employed to obtain probability distributions of geothermal energy development costs and project net present values. In the study a stochastic cost model with incorporated dependence structure is defined and compared with the model where random variables are modeled as independent inputs. One of the goals of the study is to attempt to shed light on the long-standing modeling problem of dependence modeling between random input variables. The dependence between random input variables will be modeled by employing the method of copulas. The study focuses on four main types of geothermal power generation technologies and introduces a stochastic levelized cost model for each technology. Moreover, we also compare the levelized costs of natural gas combined cycle and coal-fired power plants with geothermal power plants. The input data used in the model relies on the cost data recently reported by government agencies and non-profit organizations, such as the Department of Energy, National Laboratories, California Energy Commission and Geothermal Energy Association. The second part of the study introduces the stochastic discounted cash flow valuation model for the geothermal technologies analyzed in the first phase. In this phase of the study, the Integrated Planning Model (IPM) software was used to forecast the revenue streams of geothermal assets under different price and regulation scenarios. These results are then combined to create a stochastic revenue forecast of the power plants. The uncertainties in gas prices and environmental regulations will be modeled and their potential impacts will be
Energy Technology Data Exchange (ETDEWEB)
Rafiee, M.M.; Schmitz, S.; Barsch, M. [DBI - Gastechnologisches Institut gGmbH, Freiberg (Germany)
2013-08-01
In Germany numerous projects were successfully conducted in developments of geothermal energy which applied so far mostly for the hydrothermal deposit type. In Thuringia and Saxony there are currently project developments of geothermal resource taking into account for deep, tight formations in petrothermy and Enhanced geothermal system, (EGS). One of the potential tasks in generating these petrothermal producers and in the design of the underground power plant appears to be hydraulic fracturing with multi frac method. This is to create the heat exchanger surfaces in the rock and ensure maximum volumetric flow through it. Therefore it is very important for a sustainable heat production. However the promise of its adequate conductivity in the deep formation is one of the dominant contests in geothermal energy industry. In a multi frac method, two wells (normally horizontal wellbores at different depths) are drilled in direction of minimum horizontal stress of the formation rock. By multiple frac operation in separate sections, flow paths are generated between the wells through which it is possible to extract the heat from the rock. The numerical simulation of hydraulic fracture propagation processes in the rock is mainly from the research in the area of oil and gas industry. These techniques are mainly used for very low permeable formations in petroleum engineering (e.g. Shale gas). The development is at the beginning for EGS (e.g. granites). In this work single and multi fracking propagation processes in a synthetic example of deep hard formation are investigated. The numerical simulation is carried out to design and characterize frac processes and frac dimensions. Sensitivities to various rock parameters and different process designs are examined and optimum criteria are concluded. This shows that the minimum stress profile has the most effective role and should be modelled properly. The analysis indicates the optimum fracture length and height for adequate thermal
Kühn, Michael; Schöne, Tim
2017-04-01
Water management tools are essential to ensure the conservation of natural resources. The geothermal hot water reservoir below the village of Waiwera, on the Northern Island of New Zealand is used commercially since 1863. The continuous production of 50 °C hot geothermal water, to supply hotels and spas, has a negative impact on the reservoir. Until the year 1969 from all wells drilled the warm water flow was artesian. Due to overproduction the water needs to be pumped up nowadays. Further, within the years 1975 to 1976 the warm water seeps on the beach of Waiwera ran dry. In order to protect the reservoir and the historical and tourist site in the early 1980s a water management plan was deployed. The "Auckland Council" established guidelines to enable a sustainable management of the resource [1]. The management plan demands that the water level in the official and appropriate observation well of the council is 0.5 m above sea level throughout the year in average. Almost four decades of data (since 1978 until today) are now available [2]. For a sustainable water management, it is necessary to be able to forecast the water level as a function of the production rates in the production wells. The best predictions are provided by a multivariate regression model of the water level and production rate time series, which takes into account the production rates of individual wells. It is based on the inversely proportional relationship between the independent variable (production rate) and the dependent variable (measured water level). In production scenarios, a maximum total production rate of approx. 1,100 m3 / day is determined in order to comply with the guidelines of the "Auckland Council". [1] Kühn M., Stöfen H. (2005) A reactive flow model of the geothermal reservoir Waiwera, New Zealand. Hydrogeology Journal 13, 606-626, doi: 10.1007/s10040-004-0377-6 [2] Kühn M., Altmannsberger C. (2016) Assessment of data driven and process based water management tools for
A subjective supply–demand model: the maximum Boltzmann/Shannon entropy solution
International Nuclear Information System (INIS)
Piotrowski, Edward W; Sładkowski, Jan
2009-01-01
The present authors have put forward a projective geometry model of rational trading. The expected (mean) value of the time that is necessary to strike a deal and the profit strongly depend on the strategies adopted. A frequent trader often prefers maximal profit intensity to the maximization of profit resulting from a separate transaction because the gross profit/income is the adopted/recommended benchmark. To investigate activities that have different periods of duration we define, following the queuing theory, the profit intensity as a measure of this economic category. The profit intensity in repeated trading has a unique property of attaining its maximum at a fixed point regardless of the shape of demand curves for a wide class of probability distributions of random reverse transactions (i.e. closing of the position). These conclusions remain valid for an analogous model based on supply analysis. This type of market game is often considered in research aiming at finding an algorithm that maximizes profit of a trader who negotiates prices with the Rest of the World (a collective opponent), possessing a definite and objective supply profile. Such idealization neglects the sometimes important influence of an individual trader on the demand/supply profile of the Rest of the World and in extreme cases questions the very idea of demand/supply profile. Therefore we put forward a trading model in which the demand/supply profile of the Rest of the World induces the (rational) trader to (subjectively) presume that he/she lacks (almost) all knowledge concerning the market but his/her average frequency of trade. This point of view introduces maximum entropy principles into the model and broadens the range of economic phenomena that can be perceived as a sort of thermodynamical system. As a consequence, the profit intensity has a fixed point with an astonishing connection with Fibonacci classical works and looking for the quickest algorithm for obtaining the extremum of a
A subjective supply-demand model: the maximum Boltzmann/Shannon entropy solution
Piotrowski, Edward W.; Sładkowski, Jan
2009-03-01
The present authors have put forward a projective geometry model of rational trading. The expected (mean) value of the time that is necessary to strike a deal and the profit strongly depend on the strategies adopted. A frequent trader often prefers maximal profit intensity to the maximization of profit resulting from a separate transaction because the gross profit/income is the adopted/recommended benchmark. To investigate activities that have different periods of duration we define, following the queuing theory, the profit intensity as a measure of this economic category. The profit intensity in repeated trading has a unique property of attaining its maximum at a fixed point regardless of the shape of demand curves for a wide class of probability distributions of random reverse transactions (i.e. closing of the position). These conclusions remain valid for an analogous model based on supply analysis. This type of market game is often considered in research aiming at finding an algorithm that maximizes profit of a trader who negotiates prices with the Rest of the World (a collective opponent), possessing a definite and objective supply profile. Such idealization neglects the sometimes important influence of an individual trader on the demand/supply profile of the Rest of the World and in extreme cases questions the very idea of demand/supply profile. Therefore we put forward a trading model in which the demand/supply profile of the Rest of the World induces the (rational) trader to (subjectively) presume that he/she lacks (almost) all knowledge concerning the market but his/her average frequency of trade. This point of view introduces maximum entropy principles into the model and broadens the range of economic phenomena that can be perceived as a sort of thermodynamical system. As a consequence, the profit intensity has a fixed point with an astonishing connection with Fibonacci classical works and looking for the quickest algorithm for obtaining the extremum of a
Lorenz, Ralph D
2010-05-12
The 'two-box model' of planetary climate is discussed. This model has been used to demonstrate consistency of the equator-pole temperature gradient on Earth, Mars and Titan with what would be predicted from a principle of maximum entropy production (MEP). While useful for exposition and for generating first-order estimates of planetary heat transports, it has too low a resolution to investigate climate systems with strong feedbacks. A two-box MEP model agrees well with the observed day : night temperature contrast observed on the extrasolar planet HD 189733b.
Samuel A. Cushman
2015-01-01
Entropy and the second law of thermodynamics are the central organizing principles of nature. Or perhaps more accurately, the second law is the central disorganizing principle. Hot things cool down. Cold things warm up. You cannot get something for nothing. You always pay more than you get. Things fall apart. You cannot repeat the past. We grow old and die. It is all...
Cosmological model from the holographic equipartition law with a modified Renyi entropy
Energy Technology Data Exchange (ETDEWEB)
Komatsu, Nobuyoshi [Kanazawa University, Department of Mechanical Systems Engineering, Kanazawa, Ishikawa (Japan)
2017-04-15
Cosmological equations were recently derived by Padmanabhan from the expansion of cosmic space due to the difference between the degrees of freedom on the surface and in the bulk in a region of space. In this study, a modified Renyi entropy is applied to Padmanabhan's 'holographic equipartition law', by regarding the Bekenstein-Hawking entropy as a nonextensive Tsallis entropy and using a logarithmic formula of the original Renyi entropy. Consequently, the acceleration equation including an extra driving term (such as a time-varying cosmological term) can be derived in a homogeneous, isotropic, and spatially flat universe. When a specific condition is mathematically satisfied, the extra driving term is found to be constant-like as if it is a cosmological constant. Interestingly, the order of the constant-like term is naturally consistent with the order of the cosmological constant measured by observations, because the specific condition constrains the value of the constant-like term. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Gasparovic, N
1962-07-01
Live steam, transformed steam, and steam produced by expansion flashing are outlined with respect to their use in the production of electricity. The capacity, pressure, and temperature of a steam must be determined empirically by exploratory drilling. These factors are dependent on time and on the extent of nearby drilling-activity. Particulars of geothermal-steam power-plants such as steam dryness, hot-water flashing, condensation, gas extraction, and corrosion are discussed in detail. All available data (as per 1962) concerning the costs of operation and construction of geothermal power plants are tabulated. For space-heating purposes, two basic systems are utilized. When little corrosion or precipitation is expected, an open system is used, otherwise, closed systems are necessary. The space-heating system of Reykjavik, Iceland is cited as an example. A brief description of industrial applications of geothermal energy, such as the extraction of NaCl, D/sub 2/O, or boric acid, is provided. Thirty-two references are given.
2012 geothermal energy congress. Proceedings
International Nuclear Information System (INIS)
2012-01-01
Within the Geothermal Energy Congress 2012 from 13th to 16th November 2012, in Karlsruhe (Federal Republic of Germany), the following lectures were held: (1) Comparison of different methods for the design of geothermal probes on the example of the thermal utilization of smouldering fires at heaps (Sylvia Kuerten); (2) Determination of the thermo-physical features of loose rocks (Johannes Stegner); (3) Tools for the planning and operation of district heating grids (Werner Seichter); (4) geo:build - System optimisation of the cooling mode of the ground-source heat and cooling supply (Franziska Bockelmann); (5) Successful and economic conception, planning and optimization of district heating grids (Werner Seichter); (6) Treacer / Heat transfer decoupling in a heterogeneous hydrothermal reservoir characterized by geological faults in the Upper Rhine Graben (I. Ghergut); (7) Determination of the porosity, thermal conductivity and particle size distribution in selected sections of the Meisenheim-1 drilling core (Saar-Nahe basin, Rheinland-Palatinate) under consideration of geothermally relevant formulation of questions (Gillian Inderwies); (8) Innovative technologies of exploration in the Jemez Geothermal project, New Mexico, USA (Michael Albrecht); (9) Geothermal energy, heat pump and TABS - optimization of planning, operational control and control (Franziska Bockelmann); (10) The impact of large-scale geothermal probes (storage probes) on the heat transfer and heat loss (Christopher Steins); (11) Numeric modelling of the permocarbon in the northern Upper Rhine Graben (L. Dohrer); (12) Engineering measurement solutions on quality assurance in the exploitation of geothermal fields (C. Lehr); (13) Evaluation and optimization of official buildings with the near-surface geothermal energy for heating and cooling (Franziska Bockelmann); (14) On-site filtration for a rapid and cost-effective quantification of the particle loading in the thermal water stream (Johannes Birner
Entropy Production in Stochastics
Directory of Open Access Journals (Sweden)
Demetris Koutsoyiannis
2017-10-01
Full Text Available While the modern definition of entropy is genuinely probabilistic, in entropy production the classical thermodynamic definition, as in heat transfer, is typically used. Here we explore the concept of entropy production within stochastics and, particularly, two forms of entropy production in logarithmic time, unconditionally (EPLT or conditionally on the past and present having been observed (CEPLT. We study the theoretical properties of both forms, in general and in application to a broad set of stochastic processes. A main question investigated, related to model identification and fitting from data, is how to estimate the entropy production from a time series. It turns out that there is a link of the EPLT with the climacogram, and of the CEPLT with two additional tools introduced here, namely the differenced climacogram and the climacospectrum. In particular, EPLT and CEPLT are related to slopes of log-log plots of these tools, with the asymptotic slopes at the tails being most important as they justify the emergence of scaling laws of second-order characteristics of stochastic processes. As a real-world application, we use an extraordinary long time series of turbulent velocity and show how a parsimonious stochastic model can be identified and fitted using the tools developed.
Testing the Beta-Lognormal Model in Amazonian Rainfall Fields Using the Generalized Space q-Entropy
Directory of Open Access Journals (Sweden)
Hernán D. Salas
2017-12-01
Full Text Available We study spatial scaling and complexity properties of Amazonian radar rainfall fields using the Beta-Lognormal Model (BL-Model with the aim to characterize and model the process at a broad range of spatial scales. The Generalized Space q-Entropy Function (GSEF, an entropic measure defined as a continuous set of power laws covering a broad range of spatial scales, S q ( λ ∼ λ Ω ( q , is used as a tool to check the ability of the BL-Model to represent observed 2-D radar rainfall fields. In addition, we evaluate the effect of the amount of zeros, the variability of rainfall intensity, the number of bins used to estimate the probability mass function, and the record length on the GSFE estimation. Our results show that: (i the BL-Model adequately represents the scaling properties of the q-entropy, S q, for Amazonian rainfall fields across a range of spatial scales λ from 2 km to 64 km; (ii the q-entropy in rainfall fields can be characterized by a non-additivity value, q s a t, at which rainfall reaches a maximum scaling exponent, Ω s a t; (iii the maximum scaling exponent Ω s a t is directly related to the amount of zeros in rainfall fields and is not sensitive to either the number of bins to estimate the probability mass function or the variability of rainfall intensity; and (iv for small-samples, the GSEF of rainfall fields may incur in considerable bias. Finally, for synthetic 2-D rainfall fields from the BL-Model, we look for a connection between intermittency using a metric based on generalized Hurst exponents, M ( q 1 , q 2 , and the non-extensive order (q-order of a system, Θ q, which relates to the GSEF. Our results do not exhibit evidence of such relationship.
Geothermics of the Apenninic subduction
Directory of Open Access Journals (Sweden)
G. Zito
1997-06-01
Full Text Available The subduction of the Adriatic microplate is analysed from a geothermal point of view. In particular four main geodynamic units are distinguished: foreland, foredeep and slab, accretionary prism, and back-arc basin. Each of them is examined from a geothermal point of view and the related open question are discussed. The most relevant results are the determination of the undisturbed geothermal gradient in the aquifer of the foreland; the discovery of a « hot » accretionary prism; and a new model of instantaneous extension of the back-arc basins. The main conclusion is that geothermal data are consistent with a westward dipping subduction that migrated eastward producing a sequence of several episodes at the surface.
Directory of Open Access Journals (Sweden)
Dody Prayogo
2012-01-01
Full Text Available This study discusses model of measurement to assess the effectiveness of programs of corporate social responsibility (CSR held by corporation of mines, oil and gas, and geothermal in relation with poverty alleviation within the surrounding communities. The case study is conducted in a geothermal company in West Java. Results of study indicate that measurements of CSR should be developed in accordance with the scale of program, and should as well make use micro indicators which are relevant with elements of poverty. Also, the assessment should mainly be focused to the target group of beneficiaries. The role of corporation can be differentiated with the role of government in alleviating the poverty, and hence the effectiveness should be measured with micro indicators. In general, the significances of CSR program in poverty alleviation are high in the variables of effectivity and relevance, but low in variables of sustainability and empowerment. Programs of economic and infrastructure development are predominant than that other programs such as education and health.
Energy Technology Data Exchange (ETDEWEB)
Munoz, Gerard; Bauer, Klaus; Moeck, Inga; Schulze, Albrecht; Ritter, Oliver [Deutsches GeoForschungsZentrum (GFZ), Telegrafenberg, 14473 Potsdam (Germany)
2010-03-15
Exploration for geothermal resources is often challenging because there are no geophysical techniques that provide direct images of the parameters of interest, such as porosity, permeability and fluid content. Magnetotelluric (MT) and seismic tomography methods yield information about subsurface distribution of resistivity and seismic velocity on similar scales and resolution. The lack of a fundamental law linking the two parameters, however, has limited joint interpretation to a qualitative analysis. By using a statistical approach in which the resistivity and velocity models are investigated in the joint parameter space, we are able to identify regions of high correlation and map these classes (or structures) back onto the spatial domain. This technique, applied to a seismic tomography-MT profile in the area of the Gross Schoenebeck geothermal site, allows us to identify a number of classes in accordance with the local geology. In particular, a high-velocity, low-resistivity class is interpreted as related to areas with thinner layers of evaporites; regions where these sedimentary layers are highly fractured may be of higher permeability. (author)
Configurational entropy of glueball states
Energy Technology Data Exchange (ETDEWEB)
Bernardini, Alex E., E-mail: alexeb@ufscar.br [Departamento de Física, Universidade Federal de São Carlos, PO Box 676, 13565-905, São Carlos, SP (Brazil); Braga, Nelson R.F., E-mail: braga@if.ufrj.br [Instituto de Física, Universidade Federal do Rio de Janeiro, Caixa Postal 68528, RJ 21941-972 (Brazil); Rocha, Roldão da, E-mail: roldao.rocha@ufabc.edu.br [CMCC, Universidade Federal do ABC, UFABC, 09210-580, Santo André (Brazil)
2017-02-10
The configurational entropy of glueball states is calculated using a holographic description. Glueball states are represented by a supergravity dual picture, consisting of a 5-dimensional graviton–dilaton action of a dynamical holographic AdS/QCD model. The configurational entropy is studied as a function of the glueball spin and of the mass, providing information about the stability of the glueball states.
Upper entropy axioms and lower entropy axioms
International Nuclear Information System (INIS)
Guo, Jin-Li; Suo, Qi
2015-01-01
The paper suggests the concepts of an upper entropy and a lower entropy. We propose a new axiomatic definition, namely, upper entropy axioms, inspired by axioms of metric spaces, and also formulate lower entropy axioms. We also develop weak upper entropy axioms and weak lower entropy axioms. Their conditions are weaker than those of Shannon–Khinchin axioms and Tsallis axioms, while these conditions are stronger than those of the axiomatics based on the first three Shannon–Khinchin axioms. The subadditivity and strong subadditivity of entropy are obtained in the new axiomatics. Tsallis statistics is a special case of satisfying our axioms. Moreover, different forms of information measures, such as Shannon entropy, Daroczy entropy, Tsallis entropy and other entropies, can be unified under the same axiomatics
Dempsey, David; Kelkar, Sharad; Davatzes, Nick; Hickman, Stephen H.; Moos, Daniel
2015-01-01
Creation of an Enhanced Geothermal System relies on stimulation of fracture permeability through self-propping shear failure that creates a complex fracture network with high surface area for efficient heat transfer. In 2010, shear stimulation was carried out in well 27-15 at Desert Peak geothermal field, Nevada, by injecting cold water at pressure less than the minimum principal stress. An order-of-magnitude improvement in well injectivity was recorded. Here, we describe a numerical model that accounts for injection-induced stress changes and permeability enhancement during this stimulation. In a two-part study, we use the coupled thermo-hydrological-mechanical simulator FEHM to: (i) construct a wellbore model for non-steady bottom-hole temperature and pressure conditions during the injection, and (ii) apply these pressures and temperatures as a source term in a numerical model of the stimulation. In this model, a Mohr-Coulomb failure criterion and empirical fracture permeability is developed to describe permeability evolution of the fractured rock. The numerical model is calibrated using laboratory measurements of material properties on representative core samples and wellhead records of injection pressure and mass flow during the shear stimulation. The model captures both the absence of stimulation at low wellhead pressure (WHP ≤1.7 and ≤2.4 MPa) as well as the timing and magnitude of injectivity rise at medium WHP (3.1 MPa). Results indicate that thermoelastic effects near the wellbore and the associated non-local stresses further from the well combine to propagate a failure front away from the injection well. Elevated WHP promotes failure, increases the injection rate, and cools the wellbore; however, as the overpressure drops off with distance, thermal and non-local stresses play an ongoing role in promoting shear failure at increasing distance from the well.
Using entropy measures to characterize human locomotion.
Leverick, Graham; Szturm, Tony; Wu, Christine Q
2014-12-01
Entropy measures have been widely used to quantify the complexity of theoretical and experimental dynamical systems. In this paper, the value of using entropy measures to characterize human locomotion is demonstrated based on their construct validity, predictive validity in a simple model of human walking and convergent validity in an experimental study. Results show that four of the five considered entropy measures increase meaningfully with the increased probability of falling in a simple passive bipedal walker model. The same four entropy measures also experienced statistically significant increases in response to increasing age and gait impairment caused by cognitive interference in an experimental study. Of the considered entropy measures, the proposed quantized dynamical entropy (QDE) and quantization-based approximation of sample entropy (QASE) offered the best combination of sensitivity to changes in gait dynamics and computational efficiency. Based on these results, entropy appears to be a viable candidate for assessing the stability of human locomotion.
Microscopic entropy and nonlocality
International Nuclear Information System (INIS)
Karpov, E.; Ordonets, G.; Petroskij, T.; Prigozhin, I.
2003-01-01
We have obtained a microscopic expression for entropy in terms of H function based on nonunitary Λ transformation which leads from the time evolution as a unitary group to a Markovian dynamics and unifies the reversible and irreversible aspects of quantum mechanics. This requires a new representation outside the Hilbert space. In terms of H, we show the entropy production and the entropy flow during the emission and absorption of radiation by an atom. Analyzing the time inversion experiment, we emphasize the importance of pre- and postcollisional correlations, which break the symmetry between incoming and outgoing waves. We consider the angle dependence of the H function in a three-dimensional situation. A model including virtual transitions is discussed in a subsequent paper
International Nuclear Information System (INIS)
Anderson, J.L.
1991-01-01
This article examines the current market for geothermal projects in the US and overseas. The topics of the article include future capacity needs, upgrading the Coso Geothermal project, the productivity of the Geysers area of Northern California, the future of geothermal, and new projects at Soda Lake, Carson Basin, Unalaska Island, and the Puna Geothermal Venture in Hilo, Hawaii
High-temperature entropy of anionic model for the phase transition in SnCl2.2H2O
International Nuclear Information System (INIS)
Freitas, L.C. de; Salinas, S.R.
1975-01-01
The basic model of the phase transition in the hydrogen-bonded layered crystal SnCl 2 .2H 2 O to account for the presence of ionic defects is modified. It is easy to obtain a series expansion for the high-temperature entropy of the ionic model in terms of closed subgraphs, with vertices of degree two, of the original three-coordinated 4-8 lattice. High-temperature entropy of the ionic model is shown to be identical to the residual entropy of a simple antiferromagnetic Ising model in a 3-4-8 lattice. This latter model can be solved exact by a set of transformations which lead to a well studied Ising model in a Union Jack lattice [pt
Geothermal well log interpretation midterm report
Energy Technology Data Exchange (ETDEWEB)
Sanyal, S.K.; Wells, L.E.; Bickham, R.E.
1979-02-01
Reservoir types are defined according to fluid phase and temperature, lithology, geologic province, pore geometry, and salinity and fluid chemistry. Improvements are needed in lithology and porosity definition, fracture detection, and thermal evaluation for more accurate interpretation. Further efforts are directed toward improving diagnostic techniques for relating rock characteristics and log response, developing petrophysical models for geothermal systems, and developing thermal evaluation techniques. The Geothermal Well Log Interpretation study and report has concentrated only on hydrothermal geothermal reservoirs. Other geothermal reservoirs (hot dry rock, geopressured, etc.) are not considered.
Energy Technology Data Exchange (ETDEWEB)
Fu, P; Johnson, S M; Hao, Y; Carrigan, C R
2011-01-18
The primary objective of our current research is to develop a computational test bed for evaluating borehole techniques to enhance fluid flow and heat transfer in enhanced geothermal systems (EGS). Simulating processes resulting in hydraulic fracturing and/or the remobilization of existing fractures, especially the interaction between propagating fractures and existing fractures, represents a critical goal of our project. To this end, we are continuing to develop a hydraulic fracturing simulation capability within the Livermore Distinct Element Code (LDEC), a combined FEM/DEM analysis code with explicit solid-fluid mechanics coupling. LDEC simulations start from an initial fracture distribution which can be stochastically generated or upscaled from the statistics of an actual fracture distribution. During the hydraulic stimulation process, LDEC tracks the propagation of fractures and other modifications to the fracture system. The output is transferred to the Non-isothermal Unsaturated Flow and Transport (NUFT) code to capture heat transfer and flow at the reservoir scale. This approach is intended to offer flexibility in the types of analyses we can perform, including evaluating the effects of different system heterogeneities on the heat extraction rate as well as seismicity associated with geothermal operations. This paper details the basic methodology of our approach. Two numerical examples showing the capability and effectiveness of our simulator are also presented.
Anisimov, D. N.; Dang, Thai Son; Banerjee, Santo; Mai, The Anh
2017-07-01
In this paper, an intelligent system use fuzzy-PD controller based on relation models is developed for a two-wheeled self-balancing robot. Scaling factors of the fuzzy-PD controller are optimized by a Cross-Entropy optimization method. A linear Quadratic Regulator is designed to bring a comparison with the fuzzy-PD controller by control quality parameters. The controllers are ported and run on STM32F4 Discovery Kit based on the real-time operating system. The experimental results indicate that the proposed fuzzy-PD controller runs exactly on embedded system and has desired performance in term of fast response, good balance and stabilize.
International Nuclear Information System (INIS)
Anon.
2004-01-01
This publication of the Areva Group, a world nuclear industry leader, provides information on the energy in many domains. This issue deals with the uses for radioactivity, the future of the green electricity, the energy policy of Rhone-alps region, the end of the nuclear in Belgium, the nuclear propulsion to explore the solar system, the involvement of the Unites States in the hydrogen development, the gas exportation of China. A special part is devoted to the possibility of the geothermal energy. (A.L.B.)
Directory of Open Access Journals (Sweden)
Lei Chen
2017-06-01
Full Text Available Event-based runoff–pollutant relationships have been the key for water quality management, but the scarcity of measured data results in poor model performance, especially for multiple rainfall events. In this study, a new framework was proposed for event-based non-point source (NPS prediction and evaluation. The artificial neural network (ANN was used to extend the runoff–pollutant relationship from complete data events to other data-scarce events. The interpolation method was then used to solve the problem of tail deviation in the simulated pollutographs. In addition, the entropy method was utilized to train the ANN for comprehensive evaluations. A case study was performed in the Three Gorges Reservoir Region, China. Results showed that the ANN performed well in the NPS simulation, especially for light rainfall events, and the phosphorus predictions were always more accurate than the nitrogen predictions under scarce data conditions. In addition, peak pollutant data scarcity had a significant impact on the model performance. Furthermore, these traditional indicators would lead to certain information loss during the model evaluation, but the entropy weighting method could provide a more accurate model evaluation. These results would be valuable for monitoring schemes and the quantitation of event-based NPS pollution, especially in data-poor catchments.
Expected Utility and Entropy-Based Decision-Making Model for Large Consumers in the Smart Grid
Directory of Open Access Journals (Sweden)
Bingtuan Gao
2015-09-01
Full Text Available In the smart grid, large consumers can procure electricity energy from various power sources to meet their load demands. To maximize its profit, each large consumer needs to decide their energy procurement strategy under risks such as price fluctuations from the spot market and power quality issues. In this paper, an electric energy procurement decision-making model is studied for large consumers who can obtain their electric energy from the spot market, generation companies under bilateral contracts, the options market and self-production facilities in the smart grid. Considering the effect of unqualified electric energy, the profit model of large consumers is formulated. In order to measure the risks from the price fluctuations and power quality, the expected utility and entropy is employed. Consequently, the expected utility and entropy decision-making model is presented, which helps large consumers to minimize their expected profit of electricity procurement while properly limiting the volatility of this cost. Finally, a case study verifies the feasibility and effectiveness of the proposed model.
Directory of Open Access Journals (Sweden)
F. TopsÃƒÂ¸e
2001-09-01
Full Text Available Abstract: In its modern formulation, the Maximum Entropy Principle was promoted by E.T. Jaynes, starting in the mid-fifties. The principle dictates that one should look for a distribution, consistent with available information, which maximizes the entropy. However, this principle focuses only on distributions and it appears advantageous to bring information theoretical thinking more prominently into play by also focusing on the "observer" and on coding. This view was brought forward by the second named author in the late seventies and is the view we will follow-up on here. It leads to the consideration of a certain game, the Code Length Game and, via standard game theoretical thinking, to a principle of Game Theoretical Equilibrium. This principle is more basic than the Maximum Entropy Principle in the sense that the search for one type of optimal strategies in the Code Length Game translates directly into the search for distributions with maximum entropy. In the present paper we offer a self-contained and comprehensive treatment of fundamentals of both principles mentioned, based on a study of the Code Length Game. Though new concepts and results are presented, the reading should be instructional and accessible to a rather wide audience, at least if certain mathematical details are left aside at a rst reading. The most frequently studied instance of entropy maximization pertains to the Mean Energy Model which involves a moment constraint related to a given function, here taken to represent "energy". This type of application is very well known from the literature with hundreds of applications pertaining to several different elds and will also here serve as important illustration of the theory. But our approach reaches further, especially regarding the study of continuity properties of the entropy function, and this leads to new results which allow a discussion of models with so-called entropy loss. These results have tempted us to speculate over
Energy Technology Data Exchange (ETDEWEB)
Vaca Serrano, Jaime M.E [Comision Federal de Electricidad, Gerencia de Proyectos Geotermoelectricos, Morelia, Michoacan (Mexico)]. E-mail: jaime.vaca@cfe.gob.mx
2008-01-15
A project for drilling geothermal wells to produce electrical energy can be defined as a sequence of plans to get steam or geothermal fluids to satisfy a previously known demand, and, under the best possible conditions, to obtain payment. This paper presents a cost model for nine wells drilled at the Cerro Prieto geothermal field in 2005 and 2006 to supply steam to the power plants operating in the field. The cost model is based on the well cost, the initial steam production, the annual decline of steam, the drilling schedule and the break-even point for each well. The model shows the cost of steam by the ton and the sale price needed to determine the discount rate and the investment return time. [Spanish] Un proyecto de perforacion de pozos geotermicos puede definirse como una secuencia o sucesion de planes para obtener vapor o fluidos geotermicos destinados a satisfacer una demanda previamente determinada, que se emplearan principalmente para generar energia electrica, bajo las mejores condiciones para obtener un pago. Este trabajo presenta un modelo de costeo para nueve pozos en el campo geotermico de Cerro Prieto, que fueron perforados entre 2005 y 2006 como parte del suministro de vapor para las plantas generadoras que operan en este campo. El modelo de costeo se basa en el costo por pozo, la produccion inicial de vapor, la declinacion anual de vapor, los intereses de las obras de perforacion y el punto de equilibrio para cada pozo. Los resultados permiten conocer el costo de la tonelada de vapor y el precio de venta para determinar la tasa de descuento y el tiempo de retorno de la inversion.
International Nuclear Information System (INIS)
Adabi, Farzin; Karami, Kayoomars; Felegary, Fereshte; Azarmi, Zohre
2012-01-01
We study the entropy-corrected version of the holographic dark energy (HDE) model in the framework of modified Friedmann-Robertson-Walker cosmology. We consider a non-flat universe filled with an interacting viscous entropy-corrected HDE (ECHDE) with dark matter. Also included in our model is the case of the variable gravitational constant G. We obtain the equation of state and the deceleration parameters of the interacting viscous ECHDE. Moreover, we reconstruct the potential and the dynamics of the quintessence, tachyon, K-essence and dilaton scalar field models according to the evolutionary behavior of the interacting viscous ECHDE model with time-varying G. (research papers)
Energy Technology Data Exchange (ETDEWEB)
Moog, Helge C. [Gesellschaft fuer Anlagen- und Reaktorsicherheit mbH (GRS), Koeln (Germany); Regenspurg, Simona [GeoForschungsZentrum Potsdam (Germany); Voigt, Wolfgang [Technische Univ. Bergakademie Freiberg (Germany). Inst. fuer Anorganische Chemie
2015-02-15
The concept for geothermal energy application for electricity generation can be differentiated into three compartments: In the geologic compartment cooled fluid is pressed into a porous or fractured rock formation, in the borehole compartment a hot fluid is pumped to the surface and back into the geothermal reservoir, in the aboveground facility the energy is extracted from the geothermal fluid by heat exchangers. Pressure and temperature changes influence the thermodynamic equilibrium of a system. The modeling of a geothermal system has therefore to consider besides the mass transport the heat transport and consequently changing solution compositions and the pressure/temperature effected chemical equilibrium. The GEODAT project is aimed to simulate the reactive mass transport in a geothermal reservoir in the North German basin (Gross Schoenebeck). The project was performed by the cooperation of three partners: Geoforschungsinstitut Potsdam, Bergakademie Freiberg and GRS.
Energy Technology Data Exchange (ETDEWEB)
Megel, T [Inst. fuer Geophysik, Gruppe fuer Geothermik und Radiometrie, ETH Hoenggerberg, Zuerich (Switzerland); Wyss, R [Ingenieurgelogie, ETH Hoenggerberg, Zuerich (Switzerland); Greber, E; Leu, W [Geoform, Geologische Beratungen und Studien AG, Winterthur (Switzerland)
1997-12-01
Aussuming an aquifer of minimum 30 km extension, modelling and interpretation of the hydraulic situation at the geothermal wells Konstanz and Kreuzlingen have shown, that there is neither a significant hydraulic nor a thermal interrelation between the two wells (assumed production rate: Konstanz 6.6 l/s, Kreuzlingen 3 l/s). Every hydraulic behaviour of supposed fracture zones between the two wells reduces the interrelated influence. (orig.) [Deutsch] Modellierungen und Interpretationen haben gezeigt, dass unter der Annahme eines mindestens 30 km ausgedehnten Aquifers die Geothermiebohrungen Konstanz und Kreuzlingen auch laengerfristig (30 Jahre) sich gegenseitig weder hydraulisch noch thermisch nennenswert beeinflussen (Konstanz 6.6 l/s, Kreuzlingen 3 l/s). Die Existenz von hydraulisch signifikanten Bruchzonen zwischen den beiden Bohrungen wuerde die gegenseitige Beeinflussung vermindern. (orig.)
Wees, J.D. van; Cloetingh, S.; Ziegler, P.A.; Lenkey, L.; Beekman, F.; Tesauro, M.; Förster, A.; Norden, B.; Kaban, M.; Hardebol, N.; Voorde, M.T.; Willingshofer, E.; Cornu, T.; Bonté, D.
2009-01-01
For geothermal exploration and the development of enhanced geothermal systems (EGS) knowlegde of temperature at drillable depth is a prerequisite for site selection. Equally important is the thermo-mechanical signature of the lithosphere and crust which allow to obtain critical constraints for the
Ashford, Oliver S.; Davies, Andrew J.; Jones, Daniel O. B.
2014-12-01
Xenophyophores are a group of exclusively deep-sea agglutinating rhizarian protozoans, at least some of which are foraminifera. They are an important constituent of the deep-sea megafauna that are sometimes found in sufficient abundance to act as a significant source of habitat structure for meiofaunal and macrofaunal organisms. This study utilised maximum entropy modelling (Maxent) and a high-resolution environmental database to explore the environmental factors controlling the presence of Xenophyophorea and two frequently sampled xenophyophore species that are taxonomically stable: Syringammina fragilissima and Stannophyllum zonarium. These factors were also used to predict the global distribution of each taxon. Areas of high habitat suitability for xenophyophores were highlighted throughout the world's oceans, including in a large number of areas yet to be suitably sampled, but the Northeast and Southeast Atlantic Ocean, Gulf of Mexico and Caribbean Sea, the Red Sea and deep-water regions of the Malay Archipelago represented particular hotspots. The two species investigated showed more specific habitat requirements when compared to the model encompassing all xenophyophore records, perhaps in part due to the smaller number and relatively more clustered nature of the presence records available for modelling at present. The environmental variables depth, oxygen parameters, nitrate concentration, carbon-chemistry parameters and temperature were of greatest importance in determining xenophyophore distributions, but, somewhat surprisingly, hydrodynamic parameters were consistently shown to have low importance, possibly due to the paucity of well-resolved global hydrodynamic datasets. The results of this study (and others of a similar type) have the potential to guide further sample collection, environmental policy, and spatial planning of marine protected areas and industrial activities that impact the seafloor, particularly those that overlap with aggregations of
Directory of Open Access Journals (Sweden)
Jorge Pereira
2015-12-01
Full Text Available Biological invasion by exotic organisms became a key issue, a concern associated to the deep impacts on several domains described as resultant from such processes. A better understanding of the processes, the identification of more susceptible areas, and the definition of preventive or mitigation measures are identified as critical for the purpose of reducing associated impacts. The use of species distribution modeling might help on the purpose of identifying areas that are more susceptible to invasion. This paper aims to present preliminary results on assessing the susceptibility to invasion by the exotic species Acacia dealbata Mill. in the Ceira river basin. The results are based on the maximum entropy modeling approach, considered one of the correlative modelling techniques with better predictive performance. Models which validation is based on independent data sets present better performance, an evaluation based on the AUC of ROC accuracy measure.
Modeling the response of the geothermal system at Lihir Island, Papua New Guinea to mine dewatering
Energy Technology Data Exchange (ETDEWEB)
Menzies, A.J. [GeothermEx, Inc., Richmond, CA (United States); Forth, J.L. [Lihir Management Company, Brisbane (Australia)
1995-03-01
Lihir Gold, Ltd., with RTZ Corporation, Niugini Mining Ltd. and the Government of Papua New Guinea as major shareholders, plans to mine two contiguous gold orebodies located in the Luise Caldera, Lihir Island, Papua New Guinea. Niugini Mining Ltd. first discovered the deposit, which is believed to be the largest undeveloped gold deposit in the world, in 1982 and detailed exploration was later conducted by Kennecott Corporation (an RTZ subsidiary) who also prepared the plan for mining the deposit. The gold was deposited in the caldera breccias by rising hot fluids from a still active geothermal system to form the orebody which is to be mined in a 2 km x 1.5 km open pit that will ultimately reach a depth of about 220 m below sea level.
Montefusco, Alberto; Consonni, Francesco; Beretta, Gian Paolo
2015-04-01
By reformulating the steepest-entropy-ascent (SEA) dynamical model for nonequilibrium thermodynamics in the mathematical language of differential geometry, we compare it with the primitive formulation of the general equation for the nonequilibrium reversible-irreversible coupling (GENERIC) model and discuss the main technical differences of the two approaches. In both dynamical models the description of dissipation is of the "entropy-gradient" type. SEA focuses only on the dissipative, i.e., entropy generating, component of the time evolution, chooses a sub-Riemannian metric tensor as dissipative structure, and uses the local entropy density field as potential. GENERIC emphasizes the coupling between the dissipative and nondissipative components of the time evolution, chooses two compatible degenerate structures (Poisson and degenerate co-Riemannian), and uses the global energy and entropy functionals as potentials. As an illustration, we rewrite the known GENERIC formulation of the Boltzmann equation in terms of the square root of the distribution function adopted by the SEA formulation. We then provide a formal proof that in more general frameworks, whenever all degeneracies in the GENERIC framework are related to conservation laws, the SEA and GENERIC models of the dissipative component of the dynamics are essentially interchangeable, provided of course they assume the same kinematics. As part of the discussion, we note that equipping the dissipative structure of GENERIC with the Leibniz identity makes it automatically SEA on metric leaves.
Van Ngo, Viet; Lucas, Yann; Clément, Alain; Fritz, Bertrand
2015-04-01
Operation of the enhanced geothermal system (EGS) requires to re-inject fluid, after heat exchange at the surface to the energy production, into the geothermal reservoir. This cold re-injected fluid can cause a strong disequilibrium with the fluid and granitic rock within the geothermal reservoir and then implies the possible dissolution/precipitation of minerals. The hydrothermal alterations include the transformation of plagioclase, biotite and K-feldspar and the precipitation of various secondary minerals. The major sealing phases observed in the main fracture zones are quartz, calcite, and clay minerals. These mineralogical transformations may modify the porosity, permeability and fluid pathways of the geothermal reservoir. In the Soultz-sous-Forêts EGS (Alsace, France), the hydraulic connection between the injection well and the production well is quite poor. Therefore, understanding the impact of changes in temperature, which are caused by the re-injected fluid, on the behavior of minerals (especially for the main newly-formed minerals such as quartz, calcite and clay minerals) is a critical preliminary step for the long-term prediction of their evolution. The approach used in the present work is typically based on a geochemical code, called THERMA, which enables to calculate the changes in equilibrium constants of all primary and secondary minerals and aqueous species as a function of temperature. Our model accounted for a wide range of different mineral groups in order to make sure a large freedom for the numerical calculations. The modeling results showed that when the temperature of geothermal reservoir is cooled down, quartz, calcite, illites, galena and pyrite have tendency towards equilibrium state, which indicates that they are precipitated under the geothermal conditions. In contrast, other minerals including plagioclase, K-feldspar and biotite remained unsaturated. These behaviors of minerals were further illustrated by the Khorzinsky stability
International Nuclear Information System (INIS)
Choi, K.Y.; Yoon, Y.K.; Chang, S.H.
1991-01-01
This paper reports on a new statistical fuel failure model developed to take into account the effects of damaging environmental conditions and the overall operating history of the fuel elements. The degradation of material properties and damage resistance of the fuel cladding is mainly caused by the combined effects of accumulated dynamic stresses, neutron irradiation, and chemical and stress corrosion at operating temperature. Since the degradation of material properties due to these effects can be considered as a stochastic process, a dynamic reliability function is derived based on the Markov process. Four damage parameters, namely, dynamic stresses, magnitude of power increase from the preceding power level and with ramp rate, and fatigue cycles, are used to build this model. The dynamic reliability function and damage parameters are used to obtain effective damage parameters. The entropy maximization principle is used to generate a probability density function of the effective damage parameters. The entropy minimization principle is applied to determine weighting factors for amalgamation of the failure probabilities due to the respective failure modes. In this way, the effects of operating history, damaging environmental conditions, and damage sequence are taken into account
Directory of Open Access Journals (Sweden)
Alicja P. Sobańtka
2014-01-01
Full Text Available Extended statistical entropy analysis (eSEA is used to assess the nitrogen (N removal performance of the wastewater treatment (WWT simulation software, the Benchmarking Simulation Model No. 2 (BSM No. 2 . Six simulations with three different types of wastewater are carried out, which vary in the dissolved oxygen concentration (O2,diss. during the aerobic treatment. N2O emissions generated during denitrification are included in the model. The N-removal performance is expressed as reduction in statistical entropy, ΔH, compared to the hypothetical reference situation of direct discharge of the wastewater into the river. The parameters chemical and biological oxygen demand (COD, BOD and suspended solids (SS are analogously expressed in terms of reduction of COD, BOD, and SS, compared to a direct discharge of the wastewater to the river (ΔEQrest. The cleaning performance is expressed as ΔEQnew, the weighted average of ΔH and ΔEQrest. The results show that ΔEQnew is a more comprehensive indicator of the cleaning performance because, in contrast to the traditional effluent quality index (EQ, it considers the characteristics of the wastewater, includes all N-compounds and their distribution in the effluent, the off-gas, and the sludge. Furthermore, it is demonstrated that realistically expectable N2O emissions have only a moderate impact on ΔEQnew.
Directory of Open Access Journals (Sweden)
José Pinto Casquilho
2017-02-01
Full Text Available The search for hypothetical optimal solutions of landscape composition is a major issue in landscape planning and it can be outlined in a two-dimensional decision space involving economic value and landscape diversity, the latter being considered as a potential safeguard to the provision of services and externalities not accounted in the economic value. In this paper, we use decision models with different utility valuations combined with weighted entropies respectively incorporating rarity factors associated to Gini-Simpson and Shannon measures. A small example of this framework is provided and discussed for landscape compositional scenarios in the region of Nisa, Portugal. The optimal solutions relative to the different cases considered are assessed in the two-dimensional decision space using a benchmark indicator. The results indicate that the likely best combination is achieved by the solution using Shannon weighted entropy and a square root utility function, corresponding to a risk-averse behavior associated to the precautionary principle linked to safeguarding landscape diversity, anchoring for ecosystem services provision and other externalities. Further developments are suggested, mainly those relative to the hypothesis that the decision models here outlined could be used to revisit the stability-complexity debate in the field of ecological studies.
Fifteenth workshop on geothermal reservoir engineering: Proceedings
Energy Technology Data Exchange (ETDEWEB)
1990-01-01
The Fifteenth Workshop on Geothermal Reservoir Engineering was held at Stanford University on January 23--25, 1990. Major topics included: DOE's geothermal research and development program, well testing, field studies, geosciences, geysers, reinjection, tracers, geochemistry, and modeling.
Zucker, M. H.
temperature and thus, by itself; reverse entropy. The vast encompassing gravitational forces that the universe has at its disposal, forces that dominate the phase of contraction, provide the compacting, compressive mechanism that regenerates heat in an expanded, cooled universe and decreases entropy. And this phenomenon takes place without diminishing or depleting the finite amount of mass/energy with which the universe began. The fact that the universe can reverse the entropic process leads to possibilities previously ignored when assessing which of the three models (open, closed, of flat) most probably represents the future of the universe. After analyzing the models, the conclusion reached here is that the open model is only an expanded version of the closed model and therefore is not open, and the closed model will never collapse to a big crunch and, therefore, is not closed. Which leaves a modified model, oscillating forever between limited phases of expansion and contraction (a universe in "dynamic equilibrium") as the only feasible choice.
Gutierrez-Cirlos, A.; Torres-Rodriguez, V.
2009-12-01
The Acoculco Caldera, of Pliocenic age, is located within the limits of the Transmexican Volcanic Belt (CVT) and the Sierra Madre Oriental (SMOr). The Acoculco geothermal zone consists of a 790m thick igneous sequence, related to a volcanic complex formed by andesites and rhyolitic domes emplaced in an 18 Km diameter annular fracture. It unconformably overlies a 5000 m thick section of folded and faulted Jurassic-Cretaceous carbonate rocks. The Chignahuapan Spring, located in the extreme eastern part of the Geothermal Zone of the Acoculco Caldera, yields temperatures of 49°C and discharges an estimated of 98 lps from the karstified Lower Cretaceous limestone. Both major and trace element geochemical analysis were carried out, and results were interpreted using Piper and Stiff diagrams, as well as geothermometry. The results indicate that water belongs to the calcium-bicarbonate type and yield temperatures in a range of 70-80°C at depth, which suggest an extensive lateral flow from the main reservoir and mixing with shallow groundwaters. The spring suffers significant variations in its temperature throughout the year, especially during the rainy season, when water temperature decreases up to 10°C. Analyzing the hot spring water temperature data from of the last 10 years and comparing it with the precipitation and air temperature curves of the region, we expect to develop a dynamic mixing model which depicts the relation between these factors and the importance of each one in the water temperature variation. We also look forward to be able to forecast water temperature trends for the next several years and correlate it with climate change in the area.
Aziz, Asim; Jamshed, Wasim; Aziz, Taha
2018-04-01
In the present research a simplified mathematical model for the solar thermal collectors is considered in the form of non-uniform unsteady stretching surface. The non-Newtonian Maxwell nanofluid model is utilized for the working fluid along with slip and convective boundary conditions and comprehensive analysis of entropy generation in the system is also observed. The effect of thermal radiation and variable thermal conductivity are also included in the present model. The mathematical formulation is carried out through a boundary layer approach and the numerical computations are carried out for Cu-water and TiO2-water nanofluids. Results are presented for the velocity, temperature and entropy generation profiles, skin friction coefficient and Nusselt number. The discussion is concluded on the effect of various governing parameters on the motion, temperature variation, entropy generation, velocity gradient and the rate of heat transfer at the boundary.
Aji Hapsoro, Cahyo; Purqon, Acep; Srigutomo, Wahyu
2017-07-01
2-D Time Domain Electromagnetic (TDEM) has been successfully conducted to illustrate the value of Electric field distribution under the Earth surface. Electric field compared by magnetic field is used to analyze resistivity and resistivity is one of physical properties which very important to determine the reservoir potential area of geothermal systems as one of renewable energy. In this modeling we used Time Domain Electromagnetic method because it can solve EM field interaction problem with complex geometry and to analyze transient problems. TDEM methods used to model the value of electric and magnetic fields as a function of the time combined with the function of distance and depth. The result of this modeling is Electric field intensity value which is capable to describe the structure of the Earth’s subsurface. The result of this modeling can be applied to describe the Earths subsurface resistivity values to determine the reservoir potential of geothermal systems.
Guidebook to Geothermal Finance
Energy Technology Data Exchange (ETDEWEB)
Salmon, J. P.; Meurice, J.; Wobus, N.; Stern, F.; Duaime, M.
2011-03-01
This guidebook is intended to facilitate further investment in conventional geothermal projects in the United States. It includes a brief primer on geothermal technology and the most relevant policies related to geothermal project development. The trends in geothermal project finance are the focus of this tool, relying heavily on interviews with leaders in the field of geothermal project finance. Using the information provided, developers and investors may innovate in new ways, developing partnerships that match investors' risk tolerance with the capital requirements of geothermal projects in this dynamic and evolving marketplace.
Entropy-based financial asset pricing.
Directory of Open Access Journals (Sweden)
Mihály Ormos
Full Text Available We investigate entropy as a financial risk measure. Entropy explains the equity premium of securities and portfolios in a simpler way and, at the same time, with higher explanatory power than the beta parameter of the capital asset pricing model. For asset pricing we define the continuous entropy as an alternative measure of risk. Our results show that entropy decreases in the function of the number of securities involved in a portfolio in a similar way to the standard deviation, and that efficient portfolios are situated on a hyperbola in the expected return-entropy system. For empirical investigation we use daily returns of 150 randomly selected securities for a period of 27 years. Our regression results show that entropy has a higher explanatory power for the expected return than the capital asset pricing model beta. Furthermore we show the time varying behavior of the beta along with entropy.
Entropy Generation Across Earth's Bow Shock
Parks, George K.; McCarthy, Michael; Fu, Suiyan; Lee E. s; Cao, Jinbin; Goldstein, Melvyn L.; Canu, Patrick; Dandouras, Iannis S.; Reme, Henri; Fazakerley, Andrew;
2011-01-01
Earth's bow shock is a transition layer that causes an irreversible change in the state of plasma that is stationary in time. Theories predict entropy increases across the bow shock but entropy has never been directly measured. Cluster and Double Star plasma experiments measure 3D plasma distributions upstream and downstream of the bow shock that allow calculation of Boltzmann's entropy function H and his famous H-theorem, dH/dt O. We present the first direct measurements of entropy density changes across Earth's bow shock. We will show that this entropy generation may be part of the processes that produce the non-thermal plasma distributions is consistent with a kinetic entropy flux model derived from the collisionless Boltzmann equation, giving strong support that solar wind's total entropy across the bow shock remains unchanged. As far as we know, our results are not explained by any existing shock models and should be of interests to theorists.
Entropy-based financial asset pricing.
Ormos, Mihály; Zibriczky, Dávid
2014-01-01
We investigate entropy as a financial risk measure. Entropy explains the equity premium of securities and portfolios in a simpler way and, at the same time, with higher explanatory power than the beta parameter of the capital asset pricing model. For asset pricing we define the continuous entropy as an alternative measure of risk. Our results show that entropy decreases in the function of the number of securities involved in a portfolio in a similar way to the standard deviation, and that efficient portfolios are situated on a hyperbola in the expected return-entropy system. For empirical investigation we use daily returns of 150 randomly selected securities for a period of 27 years. Our regression results show that entropy has a higher explanatory power for the expected return than the capital asset pricing model beta. Furthermore we show the time varying behavior of the beta along with entropy.
Energy Technology Data Exchange (ETDEWEB)
Nancy Moller Weare
2006-07-25
This final report describes the results of a research program we carried out over a five-year (3/1999-9/2004) period with funding from a Department of Energy geothermal FDP grant (DE-FG07-99ID13745) and from other agencies. The goal of research projects in this program were to develop modeling technologies that can increase the understanding of geothermal reservoir chemistry and chemistry-related energy production processes. The ability of computer models to handle many chemical variables and complex interactions makes them an essential tool for building a fundamental understanding of a wide variety of complex geothermal resource and production chemistry. With careful choice of methodology and parameterization, research objectives were to show that chemical models can correctly simulate behavior for the ranges of fluid compositions, formation minerals, temperature and pressure associated with present and near future geothermal systems as well as for the very high PT chemistry of deep resources that is intractable with traditional experimental methods. Our research results successfully met these objectives. We demonstrated that advances in physical chemistry theory can be used to accurately describe the thermodynamics of solid-liquid-gas systems via their free energies for wide ranges of composition (X), temperature and pressure. Eight articles on this work were published in peer-reviewed journals and in conference proceedings. Four are in preparation. Our work has been presented at many workshops and conferences. We also considerably improved our interactive web site (geotherm.ucsd.edu), which was in preliminary form prior to the grant. This site, which includes several model codes treating different XPT conditions, is an effective means to transfer our technologies and is used by the geothermal community and other researchers worldwide. Our models have wide application to many energy related and other important problems (e.g., scaling prediction in petroleum
Excess Entropy and Diffusivity
Indian Academy of Sciences (India)
First page Back Continue Last page Graphics. Excess Entropy and Diffusivity. Excess entropy scaling of diffusivity (Rosenfeld,1977). Analogous relationships also exist for viscosity and thermal conductivity.
Directory of Open Access Journals (Sweden)
Francesco Oliveri
2016-01-01
Full Text Available The exploitation of second law of thermodynamics for a mixture of two fluids with a scalar internal variable and a first order nonlocal state space is achieved by using the extended Liu approach. This method requires to insert as constraints in the entropy inequality either the field equations or their gradient extensions. Consequently, the thermodynamic restrictions imposed by the entropy principle are derived without introducing extra terms neither in the energy balance equation nor in the entropy inequality.
Explaining the entropy concept and entropy components
Directory of Open Access Journals (Sweden)
Marko Popovic
2018-04-01
Full Text Available Total entropy of a thermodynamic system consists of two components: thermal entropy due to energy, and residual entropy due to molecular orientation. In this article, a three-step method for explaining entropy is suggested. Step one is to use a classical method to introduce thermal entropy STM as a function of temperature T and heat capacity at constant pressure Cp: STM = ∫(Cp/T dT. Thermal entropy is the entropy due to uncertainty in motion of molecules and vanishes at absolute zero (zero-point energy state. It is also the measure of useless thermal energy that cannot be converted into useful work. The next step is to introduce residual entropy S0 as a function of the number of molecules N and the number of distinct orientations available to them in a crystal m: S0 = N kB ln m, where kB is the Boltzmann constant. Residual entropy quantifies the uncertainty in molecular orientation. Residual entropy, unlike thermal entropy, is independent of temperature and remains present at absolute zero. The third step is to show that thermal entropy and residual entropy add up to the total entropy of a thermodynamic system S: S = S0 + STM. This method of explanation should result in a better comprehension of residual entropy and thermal entropy, as well as of their similarities and differences. The new method was tested in teaching at Faculty of Chemistry University of Belgrade, Serbia. The results of the test show that the new method has a potential to improve the quality of teaching.
Geothermal Technologies Program: Alaska
Energy Technology Data Exchange (ETDEWEB)
2005-02-01
This fact sheets provides a summary of geothermal potential, issues, and current development in Alaska. This fact sheet was developed as part of DOE's GeoPowering the West initiative, part of the Geothermal Technologies Program.
South Dakota geothermal handbook
Energy Technology Data Exchange (ETDEWEB)
1980-06-01
The sources of geothermal fluids in South Dakota are described and some of the problems that exist in utilization and materials selection are described. Methods of heat extraction and the environmental concerns that accompany geothermal fluid development are briefly described. Governmental rules, regulations and legislation are explained. The time and steps necessary to bring about the development of the geothermal resource are explained in detail. Some of the federal incentives that encourage the use of geothermal energy are summarized. (MHR)
International Nuclear Information System (INIS)
Pei, Zongrui; Eisenbach, Markus
2017-01-01
Dislocations are among the most important defects in determining the mechanical properties of both conventional alloys and high-entropy alloys. The Peierls-Nabarro model supplies an efficient pathway to their geometries and mobility. The difficulty in solving the integro-differential Peierls-Nabarro equation is how to effectively avoid the local minima in the energy landscape of a dislocation core. Among the other methods to optimize the dislocation core structures, we choose the algorithm of Particle Swarm Optimization, an algorithm that simulates the social behaviors of organisms. By employing more particles (bigger swarm) and more iterative steps (allowing them to explore for longer time), the local minima can be effectively avoided. But this would require more computational cost. The advantage of this algorithm is that it is readily parallelized in modern high computing architecture. We demonstrate the performance of our parallelized algorithm scales linearly with the number of employed cores.
Geothermal country report of Hungary
International Nuclear Information System (INIS)
Ottlik, P.
1990-01-01
There is a slow but steady increase in the number of geothermal wells in Hungary. The rate of increase is 3-5 new wells/year. In the last years technical development and the raising of efficiency came to the front in utilization of geothermal energy. Technical development is supported by the state. This paper reports that the main directions were: developing a pump suitable for Hungarian conditions, working out the model of sandy and karstic aquifers for simulation and prediction, and developing new chemicals and methods for treating thermal water
Geothermal pilot study final report: creating an international geothermal energy community
Energy Technology Data Exchange (ETDEWEB)
Bresee, J.C.; Yen, W.W.S.; Metzler, J.E. (eds.)
1978-06-01
The Geothermal Pilot Study under the auspices of the Committee on the Challenges of Modern Society (CCMS) was established in 1973 to apply an action-oriented approach to international geothermal research and development, taking advantage of the established channels of governmental communication provided by the North Atlantic Treaty Organization (NATO). The Pilot Study was composed of five substudies. They included: computer-based information systems; direct application of geothermal energy; reservoir assessment; small geothermal power plants; and hot dry rock concepts. The most significant overall result of the CCMS Geothermal Pilot Study, which is now complete, is the establishment of an identifiable community of geothermal experts in a dozen or more countries active in development programs. Specific accomplishments include the creation of an international computer file of technical information on geothermal wells and fields, the development of studies and reports on direct applications, geothermal fluid injection and small power plants, and the operation of the visiting scientist program. In the United States, the computer file has aready proven useful in the development of reservoir models and of chemical geothermometers. The state-of-the-art report on direct uses of geothermal energy is proving to be a valuable resource document for laypersons and experts in an area of increasing interest to many countries. Geothermal fluid injection studies in El Salvador, New Zealand, and the United States have been assisted by the Reservoir Assessment Substudy and have led to long-range reservoir engineering studies in Mexico. At least seven small geothermal power plants are in use or have been planned for construction around the world since the Small Power Plant Substudy was instituted--at least partial credit for this increased application can be assigned to the CCMS Geothermal Pilot Study. (JGB)
Quantum Entropy of Black Hole with Internal Global Monopole
Institute of Scientific and Technical Information of China (English)
HAN Yi-Wen; YANG Shu-Zheng; LIU Wen-Biao
2005-01-01
Using the generalized uncertainty relation, the new equation of state density is obtained, and then the entropy of black hole with an internal global monopole is discussed. The divergence that appears in black hole entropy calculation through original brick-wall model is overcome. The result of the direct proportion between black hole entropy and its event horizon area is drawn and given. The result shows that the black hole entropy must be the entropy of quantum state near the event horizon.
The concept of entropy. Relation between action and entropy
Directory of Open Access Journals (Sweden)
J.-P.Badiali
2005-01-01
Full Text Available The Boltzmann expression for entropy represents the traditional link between thermodynamics and statistical mechanics. New theoretical developments like the Unruh effect or the black hole theory suggest a new definition of entropy. In this paper we consider the thermodynamics of black holes as seriously founded and we try to see what we can learn from it in the case of ordinary systems for which a pre-relativistic description is sufficient. We introduce a space-time model and a new definition of entropy considering the thermal equilibrium from a dynamic point of view. Then we show that for black hole and ordinary systems we have the same relation relating a change of entropy to a change of action.
International Nuclear Information System (INIS)
Li, Rui; Wang, Jun
2016-01-01
A financial price model is developed based on the voter interacting system in this work. The Lempel–Ziv complexity is introduced to analyze the complex behaviors of the stock market. Some stock market stylized facts including fat tails, absence of autocorrelation and volatility clustering are investigated for the proposed price model firstly. Then the complexity of fluctuation behaviors of the real stock markets and the proposed price model are mainly explored by Lempel–Ziv complexity (LZC) analysis and multi-scale weighted-permutation entropy (MWPE) analysis. A series of LZC analyses of the returns and the absolute returns of daily closing prices and moving average prices are performed. Moreover, the complexity of the returns, the absolute returns and their corresponding intrinsic mode functions (IMFs) derived from the empirical mode decomposition (EMD) with MWPE is also investigated. The numerical empirical study shows similar statistical and complex behaviors between the proposed price model and the real stock markets, which exhibits that the proposed model is feasible to some extent. - Highlights: • A financial price dynamical model is developed based on the voter interacting system. • Lempel–Ziv complexity is the firstly applied to investigate the stock market dynamics system. • MWPE is employed to explore the complexity fluctuation behaviors of the stock market. • Empirical results show the feasibility of the proposed financial model.
Energy Technology Data Exchange (ETDEWEB)
Li, Rui, E-mail: lirui1401@bjtu.edu.cn; Wang, Jun
2016-01-08
A financial price model is developed based on the voter interacting system in this work. The Lempel–Ziv complexity is introduced to analyze the complex behaviors of the stock market. Some stock market stylized facts including fat tails, absence of autocorrelation and volatility clustering are investigated for the proposed price model firstly. Then the complexity of fluctuation behaviors of the real stock markets and the proposed price model are mainly explored by Lempel–Ziv complexity (LZC) analysis and multi-scale weighted-permutation entropy (MWPE) analysis. A series of LZC analyses of the returns and the absolute returns of daily closing prices and moving average prices are performed. Moreover, the complexity of the returns, the absolute returns and their corresponding intrinsic mode functions (IMFs) derived from the empirical mode decomposition (EMD) with MWPE is also investigated. The numerical empirical study shows similar statistical and complex behaviors between the proposed price model and the real stock markets, which exhibits that the proposed model is feasible to some extent. - Highlights: • A financial price dynamical model is developed based on the voter interacting system. • Lempel–Ziv complexity is the firstly applied to investigate the stock market dynamics system. • MWPE is employed to explore the complexity fluctuation behaviors of the stock market. • Empirical results show the feasibility of the proposed financial model.
Dziadek, R.; Gohl, K.; Diehl, A.; Kaul, N.
2017-07-01
Focused research on the Pine Island and Thwaites glaciers, which drain the West Antarctic Ice Shelf (WAIS) into the Amundsen Sea Embayment (ASE), revealed strong signs of instability in recent decades that result from variety of reasons, such as inflow of warmer ocean currents and reverse bedrock topography, and has been established as the Marine Ice Sheet Instability hypothesis. Geothermal heat flux (GHF) is a poorly constrained parameter in Antarctica and suspected to affect basal conditions of ice sheets, i.e., basal melting and subglacial hydrology. Thermomechanical models demonstrate the influential boundary condition of geothermal heat flux for (paleo) ice sheet stability. Due to a complex tectonic and magmatic history of West Antarctica, the region is suspected to exhibit strong heterogeneous geothermal heat flux variations. We present an approach to investigate ranges of realistic heat fluxes in the ASE by different methods, discuss direct observations, and 3-D numerical models that incorporate boundary conditions derived from various geophysical studies, including our new Depth to the Bottom of the Magnetic Source (DBMS) estimates. Our in situ temperature measurements at 26 sites in the ASE more than triples the number of direct GHF observations in West Antarctica. We demonstrate by our numerical 3-D models that GHF spatially varies from 68 up to 110 mW m-2.
Vélez, Maria Isabel; Blessent, Daniela; Córdoba, Sebastián; López-Sánchez, Jacqueline; Raymond, Jasmin; Parra-Palacio, Eduardo
2018-01-01
This work presents an estimation of the geothermal potential of the Nevado del Ruiz (NDR) volcano, bridging the knowledge gap to develop geothermal energy in Colombia and improve resource estimates in South America. Field work, laboratory measurements, geological interpretations, 2D numerical modeling, and uncertainty analysis were conducted to the northwest of the NDR to assess temperature at depth and define thermal energy content. About 60 rock samples were collected at outcrops to measure thermal conductivity with a needle probe. A 2D numerical model, built from an inferred geological cross-section, was developed with the software OpenGeoSys to simulate the underground temperature distribution and then estimate the geothermal potential of a 1 km2 area with sufficient temperature, assuming a recovery factor equal to 2.4% and a 30 years exploitation time. Coupled groundwater flow and heat transfer were simulated in steady-state considering two different thermal conductivity scenarios. Results show that the average estimated potential is 1.5 × 10-2 MWt m-1 of the reservoir thickness, considering temperatures greater than 150 °C located at a depth of approximately 2 km, in a selected area situated outside of the Los Nevados National Natural Park (NNP), to avoid any direct intervention on this protected area. According to a Monte Carlo analysis considering pessimist and optimist scenarios of thermal conductivity, the estimated geothermal power was 1.54 × 10-2 MW m-1 (σ = 2.91 × 10-3 MW m-1) and 1.88 × 10-2 MW/m (σ = 2.91 × 10-3 MW m-1) for the two modeling scenario considered.
Implication of Tsallis entropy in the Thomas–Fermi model for self-gravitating fermions
International Nuclear Information System (INIS)
Ourabah, Kamel; Tribeche, Mouloud
2014-01-01
The Thomas–Fermi approach for self-gravitating fermions is revisited within the theoretical framework of the q-statistics. Starting from the q-deformation of the Fermi–Dirac distribution function, a generalized Thomas–Fermi equation is derived. It is shown that the Tsallis entropy preserves a scaling property of this equation. The q-statistical approach to Jeans’ instability in a system of self-gravitating fermions is also addressed. The dependence of the Jeans’ wavenumber (or the Jeans length) on the parameter q is traced. It is found that the q-statistics makes the Fermionic system unstable at scales shorter than the standard Jeans length. -- Highlights: •Thomas–Fermi approach for self-gravitating fermions. •A generalized Thomas–Fermi equation is derived. •Nonextensivity preserves a scaling property of this equation. •Nonextensive approach to Jeans’ instability of self-gravitating fermions. •It is found that nonextensivity makes the Fermionic system unstable at shorter scales
Kearey, P.; HongBing, Wei
1993-08-01
There are over 2500 known occurrences of geothermal phenomena in China. These lie mainly in four major geothermal zones: Xizang (Tibet)-Yunnan, Taiwan, East Coast and North-South. Hot water has also been found in boreholes in major Mesozoic-Cenozoic sedimentary basins. This paper presents a summary of present knowledge of these geothermal zones. The geological settings of geothermal occurrences are associated mainly with magmatic activity, fault uplift and depressional basins and these are described by examples of each type. Increased multipurpose utilisation of geothermal resources is planned and examples are given of current usages.
International Nuclear Information System (INIS)
Povarov, O.A.; Tomarov, G.V.
2001-01-01
The World geothermal congress took place in the period from 28 May up to 10 June 2000 in Japan. About 2000 men from 43 countries, including specialists in the area of developing geothermal fields, creating and operating geothermal electrical and thermal plants and various systems for the earth heat application, participated in the work of the Congress. It was noted at the Congress, that development of the geothermal power engineering in the world is characterized by the large-scale application of geothermal resources for the electrical energy generation [ru
Kamins, R. M.
1974-01-01
Hawaii's Geothermal Project is investigating the occurrence of geothermal resources in the archipelago, initially on the Island of Hawaii. The state's interest in geothermal development is keen, since it is almost totally dependent on imported oil for energy. Geothermal development in Hawaii may require greater participation by the public sector than has been true in California. The initial exploration has been financed by the national, state, and county governments. Maximization of net benefits may call for multiple use of geothermal resources; the extraction of by-products and the application of treated effluents to agricultural and aquacultural uses.
de Nazelle, Audrey; Arunachalam, Saravanan; Serre, Marc L
2010-08-01
States in the USA are required to demonstrate future compliance of criteria air pollutant standards by using both air quality monitors and model outputs. In the case of ozone, the demonstration tests aim at relying heavily on measured values, due to their perceived objectivity and enforceable quality. Weight given to numerical models is diminished by integrating them in the calculations only in a relative sense. For unmonitored locations, the EPA has suggested the use of a spatial interpolation technique to assign current values. We demonstrate that this approach may lead to erroneous assignments of nonattainment and may make it difficult for States to establish future compliance. We propose a method that combines different sources of information to map air pollution, using the Bayesian Maximum Entropy (BME) Framework. The approach gives precedence to measured values and integrates modeled data as a function of model performance. We demonstrate this approach in North Carolina, using the State's ozone monitoring network in combination with outputs from the Multiscale Air Quality Simulation Platform (MAQSIP) modeling system. We show that the BME data integration approach, compared to a spatial interpolation of measured data, improves the accuracy and the precision of ozone estimations across the state.
International Nuclear Information System (INIS)
Nemzer, M.; Condy, M.
1990-01-01
This paper reports that educating children about geothermal energy is crucial to the future growth of the geothermal industry. The Geothermal Education Office (GEO) was founded in 1989 to provide materials and support to teachers and the geothermal community in educating grades K-12 about geothermal energy. GEO's goals are to: provide easy access to or referral to appropriate sources of geothermal information; foster teacher interest; create posters, booklets, lesson plans and other educational materials; monitor and review textbooks, encyclopedias and other educational materials distributed by educational groups to ensure inclusion of appropriate, accurate information and to encourage fair treatment of alternative energy resources; contribute articles to industry, science and educational publications; and foster communication and cooperation among GEO, the geothermal industry, government agencies, and educational and environmental groups
International Nuclear Information System (INIS)
Al-Dabbas, Moh'd A. F.
1993-11-01
The potential of geothermal energy utilization in Jordan was discussed. The report gave a summary of the location of geothermal anomalies in Jordan, and of ongoing projects that utilize geothermal energy for greenhouse heating, fish farming, refrigeration by absorption, and water desalination of deep aquifers. The problems facing the utilization of geothermal energy in Jordan were identified to be financial (i.e. insufficient allocation of local funding, and difficulty in getting foreign financing), and inadequate expertise in the field of geothermal energy applications. The report gave a historical account of geothermal energy utilization activities in Jordan, including cooperation activities with international organizations and foreign countries. A total of 19 reports already prepared in the areas of geochemical and hydrological studies were identified. The report concluded that the utilization of geothermal energy offers some interesting economic possibilities. (A.M.H.). 4 refs. 1 map
Hot Dry Rock; Geothermal Energy
Energy Technology Data Exchange (ETDEWEB)
None
1990-01-01
The commercial utilization of geothermal energy forms the basis of the largest renewable energy industry in the world. More than 5000 Mw of electrical power are currently in production from approximately 210 plants and 10 000 Mw thermal are used in direct use processes. The majority of these systems are located in the well defined geothermal generally associated with crustal plate boundaries or hot spots. The essential requirements of high subsurface temperature with huge volumes of exploitable fluids, coupled to environmental and market factors, limit the choice of suitable sites significantly. The Hot Dry Rock (HDR) concept at any depth originally offered a dream of unlimited expansion for the geothermal industry by relaxing the location constraints by drilling deep enough to reach adequate temperatures. Now, after 20 years intensive work by international teams and expenditures of more than $250 million, it is vital to review the position of HDR in relation to the established geothermal industry. The HDR resource is merely a body of rock at elevated temperatures with insufficient fluids in place to enable the heat to be extracted without the need for injection wells. All of the major field experiments in HDR have shown that the natural fracture systems form the heat transfer surfaces and that it is these fractures that must be for geothermal systems producing from naturally fractured formations provide a basis for directing the forthcoming but, equally, they require accepting significant location constraints on HDR for the time being. This paper presents a model HDR system designed for commercial operations in the UK and uses production data from hydrothermal systems in Japan and the USA to demonstrate the reservoir performance requirements for viable operations. It is shown that these characteristics are not likely to be achieved in host rocks without stimulation processes. However, the long term goal of artificial geothermal systems developed by systematic
Cronin, S. P.; Trainor Guitton, W.; Team, P.; Pare, A.; Jreij, S.; Powers, H.
2017-12-01
In March 2016, a 4-week field data acquisition took place at Brady's Natural Lab (BNL), an enhanced geothermal system (EGS) in Fallan, NV. During these 4 weeks, a vibe truck executed 6,633 sweeps, recorded by nodal seismometers, horizontal distributed acoustic sensing (DAS) cable, and 400 meters of vertical DAS cable. DAS provides lower signal to noise ratio than traditional geophones but better spatial resolution. The analysis of DAS VSP included Fourier transform, and filtering to remove all up-going energy. Thus, allowing for accurate first arrival picking. We present an example of the Gradual Deformation Method (GDM) using DAS VSP and lithological data to produce a distribution of valid velocity models of BNL. GDM generates continuous perturbations of prior model realizations seeking the best match to the data (i.e. minimize the misfit). Prior model realizations honoring the lithological data were created using sequential Gaussian simulation, a commonly used noniterative geostatistical method. Unlike least-squares-based methods of inversion, GDM readily incorporates a priori information, such as a variogram calculated from well-based lithology information. Additionally, by producing a distribution of models, as opposed to one optimal model, GDM allows for uncertainty quantification. This project aims at assessing the integrated technologies ability to monitor changes in the water table (possibly to one meter resolution) by exploiting the dependence of seismic wave velocities on water saturation of the subsurface. This project, which was funded in part by the National Science Foundation, is a part of the PoroTomo project, funded by a grant from the U.S. Department of Energy.
SpatEntropy: Spatial Entropy Measures in R
Altieri, Linda; Cocchi, Daniela; Roli, Giulia
2018-01-01
This article illustrates how to measure the heterogeneity of spatial data presenting a finite number of categories via computation of spatial entropy. The R package SpatEntropy contains functions for the computation of entropy and spatial entropy measures. The extension to spatial entropy measures is a unique feature of SpatEntropy. In addition to the traditional version of Shannon's entropy, the package includes Batty's spatial entropy, O'Neill's entropy, Li and Reynolds' contagion index, Ka...
International Nuclear Information System (INIS)
Heidinger, Ph.
2010-01-01
The science about deep Enhanced Geothermal Systems (EGS) is still an emerging process and for further spreading economics is the key of the technology. To understand the financial situation, a program for economic evaluation was developed. This software (Euronaut) is completely modularized and considers all cash flows. Projects like an EGS are wrapped into tree-like structures. Based on the results which were gained at Soultz-sous-Forets, two configurations were designed. The first EGS configuration consists of a simplified two well (doublet) system where the dependencies of all components (mainly the reservoir, wells, pumps and the heat-to-power conversion unit) are physically and economically linked together. The realization of these dependencies and their complex interactions enable a sensitivity analysis of the borehole depth and reservoir depth, respectively. As a result, depth dependent effective costs and revenues of an EGS plant with the geohydrological characteristics of Soultz-sous-Forets are determined. As a future development, the second configuration will adapt the actual situation at Soultz-sous-Forets with the individual features of all four wells (GPK1 - GPK4). Then, this model can be used for all kinds of sensitivity analyses to clarify the impact of certain components or to optimize the operation scheme; e.g. the flow rates. (author)
ENERGY STAR Certified Geothermal Heat Pumps
U.S. Environmental Protection Agency — Certified models meet all ENERGY STAR requirements as listed in the Version 3.1 ENERGY STAR Program Requirements for Geothermal Heat Pumps that are effective as of...
Insight into the Geothermal Structure in Chingshui, Ilan, Taiwan
Directory of Open Access Journals (Sweden)
Lun-Tao Tong
2008-01-01
Full Text Available The Chingshui geothermal field is the largest known productive geothermal area in Taiwan. The purpose of this paper is to delineate this geothermal structure by integrating geophysical data and borehole information. The existence of a magma chamber in the shallow crust and shallow intrusive igneous rock results in a high heat flow and geothermal gradient; furthermore, the NE deep fault system within the meta-sandstones provides meteoric recharge from a higher elevation to artesianally drive the geothermal system. There is evidence that geothermal fluid deeply circulated within the fracture zone and was heated by a deeply located body of hot rock. The geothermal reservoir of the Chingshui geothermal field might be related to the fracture zone of the Chingshuihsi fault. It is bounded by the C-fault in the north and Xiaonanao fault in the south. Based on information obtained from geophysical interpretations and well logs, a 3-D geothermal conceptual model is constructed in this study. Further, the geothermal reservoir is confined to an area that is 260 m in width, N21°W, 1.5 km in length, and has an 80° dip toward the NE. Ahigh-temperature zone is found in the SE region of the reservoir, which is about 500 m in length; this zone is located near the intersection of the Chingshuihsi and Xiaonanao faults. An area on the NE side of the high-temperature zone has been recommended for the drilling of production wells for future geothermal development.
Hoffman, Steven J; Justicz, Victoria
2016-07-01
To develop and validate a method for automatically quantifying the scientific quality and sensationalism of individual news records. After retrieving 163,433 news records mentioning the Severe Acute Respiratory Syndrome (SARS) and H1N1 pandemics, a maximum entropy model for inductive machine learning was used to identify relationships among 500 randomly sampled news records that correlated with systematic human assessments of their scientific quality and sensationalism. These relationships were then computationally applied to automatically classify 10,000 additional randomly sampled news records. The model was validated by randomly sampling 200 records and comparing human assessments of them to the computer assessments. The computer model correctly assessed the relevance of 86% of news records, the quality of 65% of records, and the sensationalism of 73% of records, as compared to human assessments. Overall, the scientific quality of SARS and H1N1 news media coverage had potentially important shortcomings, but coverage was not too sensationalizing. Coverage slightly improved between the two pandemics. Automated methods can evaluate news records faster, cheaper, and possibly better than humans. The specific procedure implemented in this study can at the very least identify subsets of news records that are far more likely to have particular scientific and discursive qualities. Copyright © 2016 Elsevier Inc. All rights reserved.
International Nuclear Information System (INIS)
Sanyal, Tanmoy; Shell, M. Scott
2016-01-01
Bottom-up multiscale techniques are frequently used to develop coarse-grained (CG) models for simulations at extended length and time scales but are often limited by a compromise between computational efficiency and accuracy. The conventional approach to CG nonbonded interactions uses pair potentials which, while computationally efficient, can neglect the inherently multibody contributions of the local environment of a site to its energy, due to degrees of freedom that were coarse-grained out. This effect often causes the CG potential to depend strongly on the overall system density, composition, or other properties, which limits its transferability to states other than the one at which it was parameterized. Here, we propose to incorporate multibody effects into CG potentials through additional nonbonded terms, beyond pair interactions, that depend in a mean-field manner on local densities of different atomic species. This approach is analogous to embedded atom and bond-order models that seek to capture multibody electronic effects in metallic systems. We show that the relative entropy coarse-graining framework offers a systematic route to parameterizing such local density potentials. We then characterize this approach in the development of implicit solvation strategies for interactions between model hydrophobes in an aqueous environment.
Energy Technology Data Exchange (ETDEWEB)
Saha, Pameli; Debnath, Ujjal [Indian Institute of Engineering Science and Technology, Department of Mathematics, Howrah (India)
2016-09-15
Here, we peruse cosmological usage of the most promising candidates of dark energy in the framework of f(T) gravity theory where T represents the torsion scalar teleparallel gravity. We reconstruct the different f(T) modified gravity models in the spatially flat Friedmann-Robertson-Walker universe according to entropy-corrected versions of the holographic and new agegraphic dark energy models in power-law and logarithmic corrections, which describe an accelerated expansion history of the universe. We conclude that the equation of state parameter of the entropy-corrected models can transit from the quintessence state to the phantom regime as indicated by recent observations or can lie entirely in the phantom region. Also, using these models, we investigate the different areas of the stability with the help of the squared speed of sound. (orig.)
Properties of Risk Measures of Generalized Entropy in Portfolio Selection
Directory of Open Access Journals (Sweden)
Rongxi Zhou
2017-12-01
Full Text Available This paper systematically investigates the properties of six kinds of entropy-based risk measures: Information Entropy and Cumulative Residual Entropy in the probability space, Fuzzy Entropy, Credibility Entropy and Sine Entropy in the fuzzy space, and Hybrid Entropy in the hybridized uncertainty of both fuzziness and randomness. We discover that none of the risk measures satisfy all six of the following properties, which various scholars have associated with effective risk measures: Monotonicity, Translation Invariance, Sub-additivity, Positive Homogeneity, Consistency and Convexity. Measures based on Fuzzy Entropy, Credibility Entropy, and Sine Entropy all exhibit the same properties: Sub-additivity, Positive Homogeneity, Consistency, and Convexity. These measures based on Information Entropy and Hybrid Entropy, meanwhile, only exhibit Sub-additivity and Consistency. Cumulative Residual Entropy satisfies just Sub-additivity, Positive Homogeneity, and Convexity. After identifying these properties, we develop seven portfolio models based on different risk measures and made empirical comparisons using samples from both the Shenzhen Stock Exchange of China and the New York Stock Exchange of America. The comparisons show that the Mean Fuzzy Entropy Model performs the best among the seven models with respect to both daily returns and relative cumulative returns. Overall, these results could provide an important reference for both constructing effective risk measures and rationally selecting the appropriate risk measure under different portfolio selection conditions.
Entropy of the system formed in heavy ion collision
International Nuclear Information System (INIS)
Gudima, K.K.; Schulz, H.; Toneev, V.D.
1985-01-01
In frames of a cascade model the entropy evolution in a system producted in heavy ion collisions is investigated. Entropy calculation is based on smoothing of the distribution function over the momentum space by the temperature field introduction. The resulting entropy per one nucleon is shown to be rather sensitive to phase space subdivision into cells at the stage of free scattering of reaction products. Compared to recent experimental results for specific entropy values inferred from the composite particle yield of 4π measurements, it is found that cascade calculations do not favour some particular entropy model treatments and suggest smaller entropy values than following from consideration within equilibrium statistics
Energy Technology Data Exchange (ETDEWEB)
Andre, Laurent; Spycher, Nicolas; Xu, Tianfu; Vuataz,Francois-D.; Pruess, Karsten.
2006-12-31
The modeling of coupled thermal, hydrological, and chemical (THC) processes in geothermal systems is complicated by reservoir conditions such as high temperatures, elevated pressures and sometimes the high salinity of the formation fluid. Coupled THC models have been developed and applied to the study of enhanced geothermal systems (EGS) to forecast the long-term evolution of reservoir properties and to determine how fluid circulation within a fractured reservoir can modify its rock properties. In this study, two simulators, FRACHEM and TOUGHREACT, specifically developed to investigate EGS, were applied to model the same geothermal reservoir and to forecast reservoir evolution using their respective thermodynamic and kinetic input data. First, we report the specifics of each of these two codes regarding the calculation of activity coefficients, equilibrium constants and mineral reaction rates. Comparisons of simulation results are then made for a Soultz-type geothermal fluid (ionic strength {approx}1.8 molal), with a recent (unreleased) version of TOUGHREACT using either an extended Debye-Hueckel or Pitzer model for calculating activity coefficients, and FRACHEM using the Pitzer model as well. Despite somewhat different calculation approaches and methodologies, we observe a reasonably good agreement for most of the investigated factors. Differences in the calculation schemes typically produce less difference in model outputs than differences in input thermodynamic and kinetic data, with model results being particularly sensitive to differences in ion-interaction parameters for activity coefficient models. Differences in input thermodynamic equilibrium constants, activity coefficients, and kinetics data yield differences in calculated pH and in predicted mineral precipitation behavior and reservoir-porosity evolution. When numerically cooling a Soultz-type geothermal fluid from 200 C (initially equilibrated with calcite at pH 4.9) to 20 C and suppressing mineral
DEFF Research Database (Denmark)
Hansen, Niels Christian; Loui, Psyche; Vuust, Peter
Statistical learning underlies the generation of expectations with different degrees of uncertainty. In music, uncertainty applies to expectations for pitches in a melody. This uncertainty can be quantified by Shannon entropy from distributions of expectedness ratings for multiple continuations o...
Passalacqua, Olivier; Ritz, Catherine; Parrenin, Frédéric; Urbini, Stefano; Frezzotti, Massimo
2017-09-01
Basal melt rate is the most important physical quantity to be evaluated when looking for an old-ice drilling site, and it depends to a great extent on the geothermal flux (GF), which is poorly known under the East Antarctic ice sheet. Given that wet bedrock has higher reflectivity than dry bedrock, the wetness of the ice-bed interface can be assessed using radar echoes from the bedrock. But, since basal conditions depend on heat transfer forced by climate but lagged by the thick ice, the basal ice may currently be frozen whereas in the past it was generally melting. For that reason, the risk of bias between present and past conditions has to be evaluated. The objective of this study is to assess which locations in the Dome C area could have been protected from basal melting at any time in the past, which requires evaluating GF. We used an inverse approach to retrieve GF from radar-inferred distribution of wet and dry beds. A 1-D heat model is run over the last 800 ka to constrain the value of GF by assessing a critical ice thickness, i.e. the minimum ice thickness that would allow the present local distribution of basal melting. A regional map of the GF was then inferred over a 80 km × 130 km area, with a N-S gradient and with values ranging from 48 to 60 mW m-2. The forward model was then emulated by a polynomial function to compute a time-averaged value of the spatially variable basal melt rate over the region. Three main subregions appear to be free of basal melting, two because of a thin overlying ice and one, north of Dome C, because of a low GF.
Directory of Open Access Journals (Sweden)
O. Passalacqua
2017-09-01
Full Text Available Basal melt rate is the most important physical quantity to be evaluated when looking for an old-ice drilling site, and it depends to a great extent on the geothermal flux (GF, which is poorly known under the East Antarctic ice sheet. Given that wet bedrock has higher reflectivity than dry bedrock, the wetness of the ice–bed interface can be assessed using radar echoes from the bedrock. But, since basal conditions depend on heat transfer forced by climate but lagged by the thick ice, the basal ice may currently be frozen whereas in the past it was generally melting. For that reason, the risk of bias between present and past conditions has to be evaluated. The objective of this study is to assess which locations in the Dome C area could have been protected from basal melting at any time in the past, which requires evaluating GF. We used an inverse approach to retrieve GF from radar-inferred distribution of wet and dry beds. A 1-D heat model is run over the last 800 ka to constrain the value of GF by assessing a critical ice thickness, i.e. the minimum ice thickness that would allow the present local distribution of basal melting. A regional map of the GF was then inferred over a 80 km × 130 km area, with a N–S gradient and with values ranging from 48 to 60 mW m−2. The forward model was then emulated by a polynomial function to compute a time-averaged value of the spatially variable basal melt rate over the region. Three main subregions appear to be free of basal melting, two because of a thin overlying ice and one, north of Dome C, because of a low GF.
Bertrand, Lionel; Géraud, Yves; Diraison, Marc; Damy, Pierre-Clément
2017-04-01
The Scientific Interest Group (GIS) GEODENERGIES with the REFLET project aims to develop a geological and reservoir model for fault zones that are the main targets for deep geothermal prospects in the West European Rift system. In this project, several areas are studied with an integrated methodology combining field studies, boreholes and geophysical data acquisition and 3D modelling. In this study, we present the results of reservoir rock analogues characterization of one of these prospects in the Valence Graben (Eastern France). The approach used is a structural and petrophysical characterization of the rocks outcropping at the shoulders of the rift in order to model the buried targeted fault zone. The reservoir rocks are composed of fractured granites, gneiss and schists of the Hercynian basement of the graben. The matrix porosity, permeability, P-waves velocities and thermal conductivities have been characterized on hand samples coming from fault zones at the outcrop. Furthermore, fault organization has been mapped with the aim to identify the characteristic fault orientation, spacing and width. The fractures statistics like the orientation, density, and length have been identified in the damaged zones and unfaulted blocks regarding the regional fault pattern. All theses data have been included in a reservoir model with a double porosity model. The field study shows that the fault pattern in the outcrop area can be classified in different fault orders, with first order scale, larger faults distribution controls the first order structural and lithological organization. Between theses faults, the first order blocks are divided in second and third order faults, smaller structures, with characteristic spacing and width. Third order fault zones in granitic rocks show a significant porosity development in the fault cores until 25 % in the most locally altered material, as the damaged zones develop mostly fractures permeabilities. In the gneiss and schists units, the
Nonadditive entropy maximization is inconsistent with Bayesian updating
Pressé, Steve
2014-11-01
The maximum entropy method—used to infer probabilistic models from data—is a special case of Bayes's model inference prescription which, in turn, is grounded in basic propositional logic. By contrast to the maximum entropy method, the compatibility of nonadditive entropy maximization with Bayes's model inference prescription has never been established. Here we demonstrate that nonadditive entropy maximization is incompatible with Bayesian updating and discuss the immediate implications of this finding. We focus our attention on special cases as illustrations.
Directory of Open Access Journals (Sweden)
R. Vlijm, I. S. Eliëns, J. -S. Caux
2016-10-01
Full Text Available Pumping a finite energy density into a quantum system typically leads to `melted' states characterized by exponentially-decaying correlations, as is the case for finite-temperature equilibrium situations. An important exception to this rule are states which, while being at high energy, maintain a low entropy. Such states can interestingly still display features of quantum criticality, especially in one dimension. Here, we consider high-energy states in anisotropic Heisenberg quantum spin chains obtained by splitting the ground state's magnon Fermi sea into separate pieces. Using methods based on integrability, we provide a detailed study of static and dynamical spin-spin correlations. These carry distinctive signatures of the Fermi sea splittings, which would be observable in eventual experimental realizations. Going further, we employ a multi-component Tomonaga-Luttinger model in order to predict the asymptotics of static correlations. For this effective field theory, we fix all universal exponents from energetics, and all non-universal correlation prefactors using finite-size scaling of matrix elements. The correlations obtained directly from integrability and those emerging from the Luttinger field theory description are shown to be in extremely good correspondence, as expected, for the large distance asymptotics, but surprisingly also for the short distance behavior. Finally, we discuss the description of dynamical correlations from a mobile impurity model, and clarify the relation of the effective field theory parameters to the Bethe Ansatz solution.
Fu, Hui; Zhong, Jiayou; Yuan, Guixiang; Guo, Chunjing; Lou, Qian; Zhang, Wei; Xu, Jun; Ni, Leyi; Xie, Ping; Cao, Te
2015-01-01
Trait-based approaches have been widely applied to investigate how community dynamics respond to environmental gradients. In this study, we applied a series of maximum entropy (maxent) models incorporating functional traits to unravel the processes governing macrophyte community structure along water depth gradient in a freshwater lake. We sampled 42 plots and 1513 individual plants, and measured 16 functional traits and abundance of 17 macrophyte species. Study results showed that maxent model can be highly robust (99.8%) in predicting the species relative abundance of macrophytes with observed community-weighted mean (CWM) traits as the constraints, while relative low (about 30%) with CWM traits fitted from water depth gradient as the constraints. The measured traits showed notably distinct importance in predicting species abundances, with lowest for perennial growth form and highest for leaf dry mass content. For tuber and leaf nitrogen content, there were significant shifts in their effects on species relative abundance from positive in shallow water to negative in deep water. This result suggests that macrophyte species with tuber organ and greater leaf nitrogen content would become more abundant in shallow water, but would become less abundant in deep water. Our study highlights how functional traits distributed across gradients provide a robust path towards predictive community ecology. PMID:26167856
Black hole versus cosmological horizon entropy
International Nuclear Information System (INIS)
Davis, Tamara M; Davies, P C W; Lineweaver, Charles H
2003-01-01
The generalized second law of thermodynamics states that entropy always increases when all event horizons are attributed with an entropy proportional to their area. We test the generalized second law by investigating the change in entropy when dust, radiation and black holes cross a cosmological event horizon. We generalize for flat, open and closed Friedmann-Robertson-Walker universes by using numerical calculations to determine the cosmological horizon evolution. In most cases, the loss of entropy from within the cosmological horizon is more than balanced by an increase in cosmological event horizon entropy, maintaining the validity of the generalized second law of thermodynamics. However, an intriguing set of open universe models shows an apparent entropy decrease when black holes disappear over the cosmological event horizon. We anticipate that this apparent violation of the generalized second law will disappear when solutions are available for black holes embedded in arbitrary backgrounds
Entropy squeezing for a two-level atom in two-mode Raman coupled model with intrinsic decoherence
Institute of Scientific and Technical Information of China (English)
Zhang Jian; Shao Bin; Zou Jian
2009-01-01
In this paper,we investigate the entropy squeezing for a two-level atom interacting with two quantized fields through Raman coupling.We obtain the dynamical evolution of the total system under the influence of intrinsic decoherence when the two quantized fields are prepared in a two-mode squeezing vacuum state initially.The effects of the field squeezing factor,the two-level atomic transition frequency,the second field frequency and the intrinsic decoherence on the entropy squeezing are discussed.Without intrinsic decoherence,the increase of field squeezing factor can break the entropy squeezing.The two-level atomic transition frequency changes only the period of oscillation but not the strength of entropy squeezing.The influence of the second field frequency is complicated.With the intrinsic decoherence taken into consideration,the results show that the stronger the intrinsic decoherence is,the more quickly the entropy squeezing will disappear.The increase of the atomic transition frequency can hasten the disappearance of entropy squeezing.
Entropy squeezing for a two-level atom in two-mode Raman coupled model with intrinsic decoherence
International Nuclear Information System (INIS)
Jian, Zhang; Bin, Shao; Jian, Zou
2009-01-01
In this paper, we investigate the entropy squeezing for a two-level atom interacting with two quantized fields through Raman coupling. We obtain the dynamical evolution of the total system under the influence of intrinsic decoherence when the two quantized fields are prepared in a two-mode squeezing vacuum state initially. The effects of the field squeezing factor, the two-level atomic transition frequency, the second field frequency and the intrinsic decoherence on the entropy squeezing are discussed. Without intrinsic decoherence, the increase of field squeezing factor can break the entropy squeezing. The two-level atomic transition frequency changes only the period of oscillation but not the strength of entropy squeezing. The influence of the second field frequency is complicated. With the intrinsic decoherence taken into consideration, the results show that the stronger the intrinsic decoherence is, the more quickly the entropy squeezing will disappear. The increase of the atomic transition frequency can hasten the disappearance of entropy squeezing. (classical areas of phenomenology)
International Nuclear Information System (INIS)
Barbier, Enriko
1997-01-01
Geothermal energy, as a natural steam and hot water, has been exploited for decades in order to generate electricity as well as district heating and industrial processes. The present geothermal electrical installed capacity in the world is about 10.000 MWe and the thermal capacity in non-electrical uses is about 8.200 MWt. Electricity is produced with an efficiency of 10-17%, and the cost of the kWh is competitive with conventional energy sources. In the developing countries, where a total installed electrical power is still low, geothermal energy can play a significant role: in El Salvador, for example, 25% of electricity comes from geothermal spring, 20% in the Philippines and 8% in Kenya. Present technology makes it possible to control the environmental impact of geothermal exploitation. Geothermal energy could also be extracted from deep geopressured reservoirs in large sedimentary basins, hot dry rock systems and magma bodies. (author)
GEOTHERMAL GREENHOUSING IN TURKEY
Directory of Open Access Journals (Sweden)
Sedat Karaman
2016-07-01
Full Text Available Use of renewable energy resources should be brought forward to reduce heating costs of greenhouses and to minimize the use of ever-depleting fossil fuels. Geothermal energy not only provides the heat required throughout plant growth, but also allow a year-long production. Geothermal resources with several other benefits therefore play significant role in agricultural activities. With regard to geothermal potential and implementation, Turkey has the 7th place in the world and the 1st place in Europe. Majority of country geothermal resources is used in greenhouse heating. The size of geothermal greenhouses increased 5 folds during the last decade and reached to 2500 decare. In this study, current status of geothermal greenhousing of Turkey was presented; problems and possible solutions were discussed.
Coordination of geothermal research
Energy Technology Data Exchange (ETDEWEB)
Jessop, A.M.; Drury, M.J.
1983-01-01
Visits were made in 1983 to various investigators and institutions in Canada to examine developments in geothermal research. Proposals for drilling geothermal wells to provide hot water for heating at a college in Prince Edward Island were made. In Alberta, the first phase of a program examining the feasibility of mapping sedimentary geothermal reservoirs was discussed. Some sites for possible geothermal demonstration projects were identified. In British Columbia, discussions were held between BC Hydro and Energy, Mines and Resources Canada on the drilling of a research hole into the peak of a temperature anomaly in the Meager Creek Valley. The British Columbia government has offered blocks of land in the Mount Cayley volcanic complex for lease to develop geothermal resources. A list of papers of interest to the Canadian geothermal energy program is appended.
The geothermal power organization
Energy Technology Data Exchange (ETDEWEB)
Scholl, K.L. [National Renewable Energy Lab., Golden, CO (United States)
1997-12-31
The Geothermal Power Organization is an industry-led advisory group organized to advance the state-of-the-art in geothermal energy conversion technologies. Its goal is to generate electricity from geothermal fluids in the most cost-effective, safe, and environmentally benign manner possible. The group achieves this goal by determining the Member`s interest in potential solutions to technological problems, advising the research and development community of the needs of the geothermal energy conversion industry, and communicating research and development results among its Members. With the creation and adoption of a new charter, the Geothermal Power Organization will now assist the industry in pursuing cost-shared research and development projects with the DOE`s Office of Geothermal Technologies.
Operation strategy analysis of a geothermal step utilization heating system
International Nuclear Information System (INIS)
Zheng, Guozhong; Li, Feng; Tian, Zhe; Zhu, Neng; Li, Qianru; Zhu, Han
2012-01-01
Geothermal energy has been successfully applied in many district heating systems. In order to promote better use of geothermal energy, it is important to analyze the operation strategy of geothermal heating system. This study proposes a comprehensive and systematic operation strategy for a geothermal step utilization heating system (GSUHS). Calculation models of radiator heating system (RHS), radiant floor heating system (RFHS), heat pump (HP), gas boiler (GB), plate heat exchanger (PHE) and pump are first established. Then the operation strategy of the GSUHS is analyzed with the aim to substantially reduce the conventional energy consumption of the whole system. Finally, the energy efficiency and geothermal tail water temperature are analyzed. With the operation strategy in this study, the geothermal energy provides the main heating amount for the system. The heating seasonal performance factor is 15.93. Compared with coal-fired heating, 75.1% of the standard coal equivalent can be saved. The results provide scientific guidance for the application of an operation strategy for a geothermal step utilization heating system. -- Highlights: ► We establish calculation models for the geothermal step utilization heating system. ► We adopt minimal conventional energy consumption to determine the operation strategy. ► The geothermal energy dominates the heating quantity of the whole system. ► The utilization efficiency of the geothermal energy is high. ► The results provide guidance to conduct operation strategy for scientific operation.
Computing infrared scanning residuals in geothermal research
Energy Technology Data Exchange (ETDEWEB)
Tonelli, A M
1976-01-01
The thermal phenomena related to the presence of geothermal source and the data processing to be employed for bringing them into evidence are discussed. The intake of deep-lying heat, which has to be considered as constant with respect to solar energy, generates an apparent increase of thermal inertia due to local smoothing of both temperature gradient in time and space. A method is analyzed to obtain useful information from a couple of thermograms, having relative distortion based on the minimum variation of entropy during the period of the transitory considered. The minimum variation of entropy, defined as proportional to the log of ratio of the numbers ''thermal gradient events,'' would be an indicator of an anomalous local endogenous heat input.
Quantum dynamical entropy revisited
International Nuclear Information System (INIS)
Hudetz, T.
1996-10-01
We define a new quantum dynamical entropy, which is a 'hybrid' of the closely related, physically oriented entropy introduced by Alicki and Fannes in 1994, and of the mathematically well-developed, single-argument entropy introduced by Connes, Narnhofer and Thirring in 1987. We show that this new quantum dynamical entropy has many properties similar to the ones of the Alicki-Fannes entropy, and also inherits some additional properties from the CNT entropy. In particular, the 'hybrid' entropy interpolates between the two different ways in which both the AF and the CNT entropy of the shift automorphism on the quantum spin chain agree with the usual quantum entropy density, resulting in even better agreement. Also, the new quantum dynamical entropy generalizes the classical dynamical entropy of Kolmogorov and Sinai in the same way as does the AF entropy. Finally, we estimate the 'hybrid' entropy both for the Powers-Price shift systems and for the noncommutative Arnold map on the irrational rotation C * -algebra, leaving some interesting open problems. (author)
Guo, Xuyang; Song, Hongqing; Killough, John; Du, Li; Sun, Pengguang
2018-02-01
The utilization of geothermal energy is clean and has great potential worldwide, and it is important to utilize geothermal energy in a sustainable manner. Mathematical modeling studies of geothermal reservoirs are important as they evaluate and quantify the complex multi-physical effects in geothermal reservoirs. However, previous modeling efforts lack the study focusing on the emission reduction efficiency and the deformation at geothermal wellbores caused by geothermal water extraction/circulation. Emission efficiency is rather relevant in geothermal projects introduced in areas characterized by elevated air pollution where the utilization of geothermal energy is as an alternative to burning fossil fuels. Deformation at geothermal wellbores is also relevant as significant deformation caused by water extraction can lead to geothermal wellbore instability and can consequently decrease the effectiveness of the heat extraction process in geothermal wells. In this study, the efficiency of emission reduction and heat extraction in a sedimentary geothermal reservoir in Daming County, China, are numerically investigated based on a coupled multi-physical model. Relationships between the efficiency of emission reduction and heat extraction, deformation at geothermal well locations, and geothermal field parameters including well spacing, heat production rate, re-injection temperature, rock stiffness, and geothermal well placement patterns are analyzed. Results show that, although large heat production rates and low re-injection temperatures can lead to decreased heat production in the last 8 years of heat extraction, they still improve the overall heat production capacity and emission reduction capacity. Also, the emission reduction capacity is positively correlated with the heat production capacity. Deformation at geothermal wellbore locations is alleviated by smaller well spacing, lower heat production rates, and smaller numbers of injectors in the well pattern, and by
Energy Technology Data Exchange (ETDEWEB)
None
2000-05-01
U.S. Department of Energy 1999 Geothermal Energy Program Highlights The Hot Facts Getting into Hot Water Turning Waste water into Clean Energy Producing Even Cleaner Power Drilling Faster and Cheaper Program in Review 1999: The Year in Review JanuaryCal Energy announced sale of Coso geothermal power plants at China Lake, California, to Caithness Energy, for $277 million. U.S. Export-Import Bank completed a $50 million refinancing of the Leyte Geothermal Optimization Project in the Philippines. F
Success in geothermal development
International Nuclear Information System (INIS)
Stefansson, V.
1992-01-01
Success in geothermal development can be defined as the ability to produce geothermal energy at compatible energy prices to other energy sources. Drilling comprises usually the largest cost in geothermal development, and the results of drilling is largely influencing the final price of geothermal energy. For 20 geothermal fields with operating power plants, the ratio between installed capacity and the total number of well in the field is 1.9 MWe/well. The drilling history in 30 geothermal fields are analyzed by plotting the average cumulative well outputs as function of the number of wells drilled in the field. The range of the average well output is 1-10 MWe/well with the mean value 4.2 MWe/well for the 30 geothermal fields studied. A leaning curve is defined as the number of wells drilled in each field before the average output per well reaches a fairly constant value, which is characteristic for the geothermal reservoir. The range for this learning time is 4-36 wells and the average is 13 wells. In general, the average well output in a given field is fairly constant after some 10-20 wells has been drilled in the field. The asymptotic average well output is considered to be a reservoir parameter when it is normalized to the average drilling depth. In average, this reservoir parameter can be expressed as 3.3 MWe per drilled km for the 30 geothermal fields studied. The lifetime of the resource or the depletion time of the geothermal reservoir should also be considered as a parameter influencing the success of geothermal development. Stepwise development, where the reservoir response to the utilization for the first step is used to determine the timing of the installment of the next step, is considered to be an appropriate method to minimize the risk for over investment in a geothermal field
Maximum entropy perception-action space: a Bayesian model of eye movement selection
Colas , Francis; Bessière , Pierre; Girard , Benoît
2010-01-01
International audience; In this article, we investigate the issue of the selection of eye movements in a free-eye Multiple Object Tracking task. We propose a Bayesian model of retinotopic maps with a complex logarithmic mapping. This model is structured in two parts: a representation of the visual scene, and a decision model based on the representation. We compare different decision models based on different features of the representation and we show that taking into account uncertainty helps...
Directory of Open Access Journals (Sweden)
Hannah Slater
Full Text Available Modelling the spatial distributions of human parasite species is crucial to understanding the environmental determinants of infection as well as for guiding the planning of control programmes. Here, we use ecological niche modelling to map the current potential distribution of the macroparasitic disease, lymphatic filariasis (LF, in Africa, and to estimate how future changes in climate and population could affect its spread and burden across the continent. We used 508 community-specific infection presence data collated from the published literature in conjunction with five predictive environmental/climatic and demographic variables, and a maximum entropy niche modelling method to construct the first ecological niche maps describing potential distribution and burden of LF in Africa. We also ran the best-fit model against climate projections made by the HADCM3 and CCCMA models for 2050 under A2a and B2a scenarios to simulate the likely distribution of LF under future climate and population changes. We predict a broad geographic distribution of LF in Africa extending from the west to the east across the middle region of the continent, with high probabilities of occurrence in the Western Africa compared to large areas of medium probability interspersed with smaller areas of high probability in Central and Eastern Africa and in Madagascar. We uncovered complex relationships between predictor ecological niche variables and the probability of LF occurrence. We show for the first time that predicted climate change and population growth will expand both the range and risk of LF infection (and ultimately disease in an endemic region. We estimate that populations at risk to LF may range from 543 and 804 million currently, and that this could rise to between 1.65 to 1.86 billion in the future depending on the climate scenario used and thresholds applied to signify infection presence.
Quantum statistical entropy for Kerr-de Sitter black hole
Institute of Scientific and Technical Information of China (English)
Zhang Li-Chun; Wu Yue-Qin; Zhao Ren
2004-01-01
Improving the membrane model by which the entropy of the black hole is studied, we study the entropy of the black hole in the non-thermal equilibrium state. To give the problem stated here widespread meaning, we discuss the (n+2)-dimensional de Sitter spacetime. Through discussion, we obtain that the black hole's entropy which contains two horizons (a black hole's horizon and a cosmological horizon) in the non-thermal equilibrium state comprises the entropy corresponding to the black hole's horizon and the entropy corresponding to the cosmological horizon. Furthermore, the entropy of the black hole is a natural property of the black hole. The entropy is irrelevant to the radiation field out of the horizon. This deepens the understanding of the relationship between black hole's entropy and horizon's area. A way to study the bosonic and fermionic entropy of the black hole in high non-thermal equilibrium spacetime is given.
DEFF Research Database (Denmark)
Montagud, Maria E. Mondejar; Chamorro, C.R.
2017-01-01
Although geothermal energy has been widely deployed for direct use in locations with especial geologic manifestations, its potential for power generation has been traditionally underestimated. Recent technology developments in drilling techniques and power conversion technologies from low......-temperature heat resources are bringing geothermal energy to the spotlight as a renewable baseload energy option for a sustainable energy mix. Although the environmental impact and economic viability of geothermal exploitation must be carefully evaluated for each case, the use of deep low-temperature geothermal...... reservoirs could soon become an important contributor to the energy generation around the world....
Geothermal reservoir engineering
Grant, Malcolm Alister
2011-01-01
As nations alike struggle to diversify and secure their power portfolios, geothermal energy, the essentially limitless heat emanating from the earth itself, is being harnessed at an unprecedented rate. For the last 25 years, engineers around the world tasked with taming this raw power have used Geothermal Reservoir Engineering as both a training manual and a professional reference. This long-awaited second edition of Geothermal Reservoir Engineering is a practical guide to the issues and tasks geothermal engineers encounter in the course of their daily jobs. The bo
Geothermal Energy Program overview
International Nuclear Information System (INIS)
1991-12-01
The mission of the Geothermal Energy Program is to develop the science and technology necessary for tapping our nation's tremendous heat energy sources contained with the Earth. Geothermal energy is a domestic energy source that can produce clean, reliable, cost- effective heat and electricity for our nation's energy needs. Geothermal energy -- the heat of the Earth -- is one of our nation's most abundant energy resources. In fact, geothermal energy represents nearly 40% of the total US energy resource base and already provides an important contribution to our nation's energy needs. Geothermal energy systems can provide clean, reliable, cost-effective energy for our nation's industries, businesses, and homes in the form of heat and electricity. The US Department of Energy's (DOE) Geothermal Energy Program sponsors research aimed at developing the science and technology necessary for utilizing this resource more fully. Geothermal energy originates from the Earth's interior. The hottest fluids and rocks at accessible depths are associated with recent volcanic activity in the western states. In some places, heat comes to the surface as natural hot water or steam, which have been used since prehistoric times for cooking and bathing. Today, wells convey the heat from deep in the Earth to electric generators, factories, farms, and homes. The competitiveness of power generation with lower quality hydrothermal fluids, geopressured brines, hot dry rock, and magma ( the four types of geothermal energy) still depends on the technical advancements sought by DOE's Geothermal Energy Program
Driba, D. L.; De Lucia, M.; Peiffer, S.
2014-12-01
Fluid-rock interactions in geothermal reservoirs are driven by the state of disequilibrium that persists among solid and solutes due to changing temperature and pressure. During operation of enhanced geothermal systems, injection of cooled water back into the reservoir disturbs the initial thermodynamic equilibrium between the reservoir and its geothermal fluid, which may induce modifications in permeability through changes in porosity and pore space geometry, consequently bringing about several impairments to the overall system.Modeling of fluid-rock interactions induced by injection of cold brine into Groß Schönebeck geothermal reservoir system situated in the Rotliegend sandstone at 4200m depth have been done by coupling geochemical modeling Code Phreeqc with OpenGeoSys. Through batch modeling the re-evaluation of the measured hydrochemical composition of the brine has been done using Quintessa databases, the results from the calculation indicate that a mineral phases comprising of K-feldspar, hematite, Barite, Calcite and Dolomite was found to match the hypothesis of equilibrium with the formation fluid, Reducing conditions are presumed in the model (pe = -3.5) in order to match the amount of observed dissolved Fe and thus considered as initial state for the reactive transport modeling. based on a measured composition of formation fluids and the predominant mineralogical assemblage of the host rock, a preliminary 1D Reactive transport modeling (RTM) was run with total time set to 30 years; results obtained for the initial simulation revealed that during this period, no significant change is evident for K-feldspar. Furthermore, the precipitation of calcite along the flow path in the brine results in a drop of pH from 6.2 to a value of 5.2 noticed over the simulated period. The circulation of cooled fluid in the reservoir is predicted to affect the temperature of the reservoir within the first 100 -150m from the injection well. Examination of porosity change in
Directory of Open Access Journals (Sweden)
George J. A. Jiang
2015-01-01
Full Text Available Electroencephalogram (EEG signals, as it can express the human brain’s activities and reflect awareness, have been widely used in many research and medical equipment to build a noninvasive monitoring index to the depth of anesthesia (DOA. Bispectral (BIS index monitor is one of the famous and important indicators for anesthesiologists primarily using EEG signals when assessing the DOA. In this study, an attempt is made to build a new indicator using EEG signals to provide a more valuable reference to the DOA for clinical researchers. The EEG signals are collected from patients under anesthetic surgery which are filtered using multivariate empirical mode decomposition (MEMD method and analyzed using sample entropy (SampEn analysis. The calculated signals from SampEn are utilized to train an artificial neural network (ANN model through using expert assessment of consciousness level (EACL which is assessed by experienced anesthesiologists as the target to train, validate, and test the ANN. The results that are achieved using the proposed system are compared to BIS index. The proposed system results show that it is not only having similar characteristic to BIS index but also more close to experienced anesthesiologists which illustrates the consciousness level and reflects the DOA successfully.
Directory of Open Access Journals (Sweden)
Luca Faes
2017-01-01
Full Text Available The most common approach to assess the dynamical complexity of a time series across multiple temporal scales makes use of the multiscale entropy (MSE and refined MSE (RMSE measures. In spite of their popularity, MSE and RMSE lack an analytical framework allowing their calculation for known dynamic processes and cannot be reliably computed over short time series. To overcome these limitations, we propose a method to assess RMSE for autoregressive (AR stochastic processes. The method makes use of linear state-space (SS models to provide the multiscale parametric representation of an AR process observed at different time scales and exploits the SS parameters to quantify analytically the complexity of the process. The resulting linear MSE (LMSE measure is first tested in simulations, both theoretically to relate the multiscale complexity of AR processes to their dynamical properties and over short process realizations to assess its computational reliability in comparison with RMSE. Then, it is applied to the time series of heart period, arterial pressure, and respiration measured for healthy subjects monitored in resting conditions and during physiological stress. This application to short-term cardiovascular variability documents that LMSE can describe better than RMSE the activity of physiological mechanisms producing biological oscillations at different temporal scales.
Energy Technology Data Exchange (ETDEWEB)
Praveen, E., E-mail: svmstaya@gmail.com; Satyanarayana, S. V. M., E-mail: svmstaya@gmail.com [Department of Physics, Pondicherry University, Puducherry-605014 (India)
2014-04-24
Traditional definition of phase transition involves an infinitely large system in thermodynamic limit. Finite systems such as biological proteins exhibit cooperative behavior similar to phase transitions. We employ recently discovered analysis of inflection points of microcanonical entropy to estimate the transition temperature of the phase transition in q state Potts model on a finite two dimensional square lattice for q=3 (second order) and q=8 (first order). The difference of energy density of states (DOS) Δ ln g(E) = ln g(E+ ΔE) −ln g(E) exhibits a point of inflexion at a value corresponding to inverse transition temperature. This feature is common to systems exhibiting both first as well as second order transitions. While the difference of DOS registers a monotonic variation around the point of inflexion for systems exhibiting second order transition, it has an S-shape with a minimum and maximum around the point of inflexion for the case of first order transition.
International Nuclear Information System (INIS)
Praveen, E.; Satyanarayana, S. V. M.
2014-01-01
Traditional definition of phase transition involves an infinitely large system in thermodynamic limit. Finite systems such as biological proteins exhibit cooperative behavior similar to phase transitions. We employ recently discovered analysis of inflection points of microcanonical entropy to estimate the transition temperature of the phase transition in q state Potts model on a finite two dimensional square lattice for q=3 (second order) and q=8 (first order). The difference of energy density of states (DOS) Δ ln g(E) = ln g(E+ ΔE) −ln g(E) exhibits a point of inflexion at a value corresponding to inverse transition temperature. This feature is common to systems exhibiting both first as well as second order transitions. While the difference of DOS registers a monotonic variation around the point of inflexion for systems exhibiting second order transition, it has an S-shape with a minimum and maximum around the point of inflexion for the case of first order transition
Entropy, free energy and phase transitions in the lattice Lotka-Volterra model
International Nuclear Information System (INIS)
Chichigina, O. A.; Tsekouras, G. A.; Provata, A.
2006-01-01
A thermodynamic approach is developed for reactive dynamic models restricted to substrates of arbitrary dimensions, including fractal substrates. The thermodynamic formalism is successfully applied to the lattice Lotka-Volterra (LLV) model of autocatalytic reactions on various lattice substrates. Different regimes of reactions described as phases, and phase transitions, are obtained using this approach. The predictions of thermodynamic theory confirm extensive numerical kinetic Monte Carlo simulations on square and fractal lattices. Extensions of the formalism to multispecies LLV models are also presented
Directory of Open Access Journals (Sweden)
Urban Kordes
2005-10-01
Full Text Available The paper tries to tackle the question of connection between entropy and the living. Definitions of life as the phenomenon that defies entropy are overviewed and the conclusion is reached that life is in a way dependant on entropy - it couldn't exist without it. Entropy is a sort of medium, a fertile soil, that gives life possibility to blossom. Paper ends with presenting some consequences for the field of artificial intelligence.
Entropy of Baker's Transformation
Institute of Scientific and Technical Information of China (English)
栾长福
2003-01-01
Four theorems about four different kinds of entropies for Baker's transformation are presented. The Kolmogorov entropy of Baker's transformation is sensitive to the initial flips by the time. The topological entropy of Baker's transformation is found to be log k. The conditions for the state of Baker's transformation to be forbidden are also derived. The relations among the Shanonn, Kolmogorov, topological and Boltzmann entropies are discussed in details.
Physical entropy, information entropy and their evolution equations
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
Inspired by the evolution equation of nonequilibrium statistical physics entropy and the concise statistical formula of the entropy production rate, we develop a theory of the dynamic information entropy and build a nonlinear evolution equation of the information entropy density changing in time and state variable space. Its mathematical form and physical meaning are similar to the evolution equation of the physical entropy: The time rate of change of information entropy density originates together from drift, diffusion and production. The concise statistical formula of information entropy production rate is similar to that of physical entropy also. Furthermore, we study the similarity and difference between physical entropy and information entropy and the possible unification of the two statistical entropies, and discuss the relationship among the principle of entropy increase, the principle of equilibrium maximum entropy and the principle of maximum information entropy as well as the connection between them and the entropy evolution equation.
Hsia, Wei-Shen
1986-01-01
In the Control Systems Division of the Systems Dynamics Laboratory of the NASA/MSFC, a Ground Facility (GF), in which the dynamics and control system concepts being considered for Large Space Structures (LSS) applications can be verified, was designed and built. One of the important aspects of the GF is to design an analytical model which will be as close to experimental data as possible so that a feasible control law can be generated. Using Hyland's Maximum Entropy/Optimal Projection Approach, a procedure was developed in which the maximum entropy principle is used for stochastic modeling and the optimal projection technique is used for a reduced-order dynamic compensator design for a high-order plant.
Ben-Naim, Arieh
2011-01-01
Changes in entropy can "sometimes" be interpreted in terms of changes in disorder. On the other hand, changes in entropy can "always" be interpreted in terms of changes in Shannon's measure of information. Mixing and demixing processes are used to highlight the pitfalls in the association of entropy with disorder. (Contains 3 figures.)
Swiss geothermal energy update 1985 - 1990
International Nuclear Information System (INIS)
Rybach, L.; Hauber, L.
1990-01-01
Since 1985, geothermal R and D has evolved steadily in Switzerland. REgional low-enthalphy exploration and resource assessment are largely complete; emphasis is now on drilling and development. Vertical earth-heat exchangers (small-scale, decentralized, heat pump-coupled heating facilities) increase rapidly in number; the governmental system of risk coverage for geothermal drilling, established in 1987, gives rise to several drilling projects. Of these, a single well and a doublet have been successfully completed so far. Numerical modeling of coupled thermohydraulic processes in fracture-dominate Hot Dry Rock systems including rock-mechanics aspects, is in progress. In this paper some further efforts such as contributions to general geothermics, exploration and resource assessment activities in Switzerland, and financing of geothermal development abroad by Swiss banks are described
Geothermal Today: 2003 Geothermal Technologies Program Highlights (Revised)
Energy Technology Data Exchange (ETDEWEB)
2004-05-01
This outreach publication highlights milestones and accomplishments of the DOE Geothermal Technologies Program for 2003. Included in this publication are discussions of geothermal fundamentals, enhanced geothermal systems, direct-use applications, geothermal potential in Idaho, coating technology, energy conversion R&D, and the GeoPowering the West initiative.
A new contribution to the finite line-source model for geothermal boreholes
Energy Technology Data Exchange (ETDEWEB)
Lamarche, L.; Beauchamp, B. [Ecole de Technologie Superieure, Montreal (Canada)
2007-07-01
Heat transfer around vertical ground heat exchangers is a common problem for the design and simulation of ground-coupled heat pump (GCHP) systems. Most models are based on step response of the heat transfer rate, and the superposition principle allows the final solution to be in the form of the convolution of these contributions. The step response is thus a very important tool. Some authors propose numerical tabulated values while others propose analytical solutions for purely radial problem as well as axisymmetric problems. In this paper we propose a new analytical model that yields results very similar to the tabulated numerical ones proposed in the literature. Analytical modeling offers better flexibility for a parameterized design. (author)
A maximum entropy model for predicting wild boar distribution in Spain
Directory of Open Access Journals (Sweden)
Jaime Bosch
2014-09-01
Full Text Available Wild boar (Sus scrofa populations in many areas of the Palearctic including the Iberian Peninsula have grown continuously over the last century. This increase has led to numerous different types of conflicts due to the damage these mammals can cause to agriculture, the problems they create in the conservation of natural areas, and the threat they pose to animal health. In the context of both wildlife management and the design of health programs for disease control, it is essential to know how wild boar are distributed on a large spatial scale. Given that the quantifying of the distribution of wild species using census techniques is virtually impossible in the case of large-scale studies, modeling techniques have thus to be used instead to estimate animals’ distributions, densities, and abundances. In this study, the potential distribution of wild boar in Spain was predicted by integrating data of presence and environmental variables into a MaxEnt approach. We built and tested models using 100 bootstrapped replicates. For each replicate or simulation, presence data was divided into two subsets that were used for model fitting (60% of the data and cross-validation (40% of the data. The final model was found to be accurate with an area under the receiver operating characteristic curve (AUC value of 0.79. Six explanatory variables for predicting wild boar distribution were identified on the basis of the percentage of their contribution to the model. The model exhibited a high degree of predictive accuracy, which has been confirmed by its agreement with satellite images and field surveys.
The dynamics of the nuclear disassembly in a field-theoretical model at finite entropies
International Nuclear Information System (INIS)
Knoll, J.; Strack, B.
1984-10-01
The expansion phase of a hot nuclear system as created in an energetic heavy-ion collision is calculated and discussed by a selfconsistent field-theoretical model. Dynamical instabilities arising during the expansion from strong fluctuations of the one-body density are included explicitely. First multiplicity distributions and mass spectra resulting from a series of numerical runs in a 2+1 dimensional model world are presented. The dependence of break-up dynamics both on the properties of the binding force and possible correlations in the initially compressed hot state are discussed. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Battocletti, E.C.
1998-02-01
This report was prepared to help small firm search for financing for geothermal energy projects. There are various financial and economics formulas. Costs of some small overseas geothermal power projects are shown. There is much discussion of possible sources of financing, especially for overseas projects. (DJE-2005)
Geothermal energy for greenhouses
Jacky Friedman
2009-01-01
Geothermal energy is heat (thermal) derived from the earth (geo). The heat flows along a geothermal gradient from the center of the earth to the surface. Most of the heat arrives at the surface of the earth at temperatures too low for much use. However, plate tectonics ensure that some of the heat is concentrated at temperatures and depths favorable for its commercial...
Prospects of geothermal energy
International Nuclear Information System (INIS)
Manzella, A.; Bianchi, A.
2008-01-01
Geothermal energy has great potential as a renewable energy with low environmental impact, the use of heat pumps is becoming established in Italy but the national contributions are still modest when compared to other nations. Mature technologies could double the installed geothermal power in Italy at 2020. [it
Directory of Open Access Journals (Sweden)
Guoqing Li
2014-11-01
Full Text Available Black locust (Robinia pseudoacacia L. is a tree species of high economic and ecological value, but is also considered to be highly invasive. Understanding the global potential distribution and ecological characteristics of this species is a prerequisite for its practical exploitation as a resource. Here, a maximum entropy modeling (MaxEnt was used to simulate the potential distribution of this species around the world, and the dominant climatic factors affecting its distribution were selected by using a jackknife test and the regularized gain change during each iteration of the training algorithm. The results show that the MaxEnt model performs better than random, with an average test AUC value of 0.9165 (±0.0088. The coldness index, annual mean temperature and warmth index were the most important climatic factors affecting the species distribution, explaining 65.79% of the variability in the geographical distribution. Species response curves showed unimodal relationships with the annual mean temperature and warmth index, whereas there was a linear relationship with the coldness index. The dominant climatic conditions in the core of the black locust distribution are a coldness index of −9.8 °C–0 °C, an annual mean temperature of 5.8 °C–14.5 °C, a warmth index of 66 °C–168 °C and an annual precipitation of 508–1867 mm. The potential distribution of black locust is located mainly in the United States, the United Kingdom, Germany, France, the Netherlands, Belgium, Italy, Switzerland, Australia, New Zealand, China, Japan, South Korea, South Africa, Chile and Argentina. The predictive map of black locust, climatic thresholds and species response curves can provide globally applicable guidelines and valuable information for policymakers and planners involved in the introduction, planting and invasion control of this species around the world.
Almog, Assaf; Garlaschelli, Diego
2014-09-01
The dynamics of complex systems, from financial markets to the brain, can be monitored in terms of multiple time series of activity of the constituent units, such as stocks or neurons, respectively. While the main focus of time series analysis is on the magnitude of temporal increments, a significant piece of information is encoded into the binary projection (i.e. the sign) of such increments. In this paper we provide further evidence of this by showing strong nonlinear relations between binary and non-binary properties of financial time series. These relations are a novel quantification of the fact that extreme price increments occur more often when most stocks move in the same direction. We then introduce an information-theoretic approach to the analysis of the binary signature of single and multiple time series. Through the definition of maximum-entropy ensembles of binary matrices and their mapping to spin models in statistical physics, we quantify the information encoded into the simplest binary properties of real time series and identify the most informative property given a set of measurements. Our formalism is able to accurately replicate, and mathematically characterize, the observed binary/non-binary relations. We also obtain a phase diagram allowing us to identify, based only on the instantaneous aggregate return of a set of multiple time series, a regime where the so-called ‘market mode’ has an optimal interpretation in terms of collective (endogenous) effects, a regime where it is parsimoniously explained by pure noise, and a regime where it can be regarded as a combination of endogenous and exogenous factors. Our approach allows us to connect spin models, simple stochastic processes, and ensembles of time series inferred from partial information.
International Nuclear Information System (INIS)
Almog, Assaf; Garlaschelli, Diego
2014-01-01
The dynamics of complex systems, from financial markets to the brain, can be monitored in terms of multiple time series of activity of the constituent units, such as stocks or neurons, respectively. While the main focus of time series analysis is on the magnitude of temporal increments, a significant piece of information is encoded into the binary projection (i.e. the sign) of such increments. In this paper we provide further evidence of this by showing strong nonlinear relations between binary and non-binary properties of financial time series. These relations are a novel quantification of the fact that extreme price increments occur more often when most stocks move in the same direction. We then introduce an information-theoretic approach to the analysis of the binary signature of single and multiple time series. Through the definition of maximum-entropy ensembles of binary matrices and their mapping to spin models in statistical physics, we quantify the information encoded into the simplest binary properties of real time series and identify the most informative property given a set of measurements. Our formalism is able to accurately replicate, and mathematically characterize, the observed binary/non-binary relations. We also obtain a phase diagram allowing us to identify, based only on the instantaneous aggregate return of a set of multiple time series, a regime where the so-called ‘market mode’ has an optimal interpretation in terms of collective (endogenous) effects, a regime where it is parsimoniously explained by pure noise, and a regime where it can be regarded as a combination of endogenous and exogenous factors. Our approach allows us to connect spin models, simple stochastic processes, and ensembles of time series inferred from partial information. (paper)
Yusop, Syazwani Mohd; Mustapha, Muzzneena Ahmad
2018-04-01
The coupling of fishing locations for R. kanagurta obtained from SEAFDEC and multi-sensor satellite imageries of oceanographic variables; sea surface temperature (SST), sea surface height (SSH) and chl-a concentration (chl-a) were utilized to evaluate the performance of maximum entropy (MaxEnt) models for R. kanagurta fishing ground for prediction. Besides, this study was conducted to identify the relative percentage contribution of each environmental variable considered in order to describe the effects of the oceanographic factors on the species distribution in the study area. The potential fishing grounds during intermonsoon periods; April and October 2008-2009 were simulated separately and covered the near-coast of Kelantan, Terengganu, Pahang and Johor. The oceanographic conditions differed between regions by the inherent seasonal variability. The seasonal and spatial extents of potential fishing grounds were largely explained by chl-a concentration (0.21-0.99 mg/m3 in April and 0.28-1.00 mg/m3 in October), SSH (77.37-85.90 cm in April and 107.60-108.97 cm in October) and SST (30.43-33.70 °C in April and 30.48-30.97 °C in October). The constructed models were applicable and therefore they were suitable for predicting the potential fishing zones of R. kanagurta in EEZ. The results from this study revealed MaxEnt's potential for predicting the spatial distribution of R. kanagurta and highlighted the use of multispectral satellite images for describing the seasonal potential fishing grounds.
Energy Technology Data Exchange (ETDEWEB)
Sundberg, Jan; Back, Paer-Erik; Laendell, Maerta; Sundberg, Anders (GEO INNOVA AB, Linkoeping (Sweden))
2009-06-15
This report presents modelling of temperature and temperature gradients in boreholes in Laxemar and Forsmark and fitting to measured temperature data. The modelling is performed with an analytical expression including thermal conductivity, thermal diffusivity, heat flow, internal heat generation and climate events in the past. As a result of the fitting procedure it is also possible to evaluate local heat flow values for the two sites. However, since there is no independent evaluation of the heat flow, uncertainties in for example thermal conductivity, diffusivity and the palaeoclimate temperature curve are transferred into uncertainties in the heat flow. Both for Forsmark and Laxemar, reasonably good fits were achieved between models and data on borehole temperatures. However, none of the general models achieved a fit within the 95% confidence intervals of the measurements. This was achieved in some cases for the additional optimised models. Several of the model parameters are uncertain. A good model fit does not automatically imply that 'correct' values have been used for these parameters. Similar model fits can be expected with different sets of parameter values. The palaeoclimatically corrected surface mean heat flow at Forsmark and Laxemar is suggested to be 61 and 56 mW/m2 respectively. If all uncertainties are combined, including data uncertainties, the total uncertainty in the heat flow determination is judged to be within +12% to -14% for both sites. The corrections for palaeoclimate are quite large and verify the need of site-specific climate descriptions. Estimations of the current ground surface temperature have been made by extrapolations from measured temperature logging. The mean extrapolated ground surface temperature in Forsmark and Laxemar is estimated to 6.5 deg and 7.3 deg C respectively. This is approximately 1.7 deg C higher for Forsmark, and 1.6 deg C higher for Laxemar compared to data in the report SKB-TR-06-23. Comparison with
International Nuclear Information System (INIS)
Sundberg, Jan; Back, Paer-Erik; Laendell, Maerta; Sundberg, Anders
2009-05-01
This report presents modelling of temperature and temperature gradients in boreholes in Laxemar and Forsmark and fitting to measured temperature data. The modelling is performed with an analytical expression including thermal conductivity, thermal diffusivity, heat flow, internal heat generation and climate events in the past. As a result of the fitting procedure it is also possible to evaluate local heat flow values for the two sites. However, since there is no independent evaluation of the heat flow, uncertainties in for example thermal conductivity, diffusivity and the palaeoclimate temperature curve are transferred into uncertainties in the heat flow. Both for Forsmark and Laxemar, reasonably good fits were achieved between models and data on borehole temperatures. However, none of the general models achieved a fit within the 95% confidence intervals of the measurements. This was achieved in some cases for the additional optimised models. Several of the model parameters are uncertain. A good model fit does not automatically imply that 'correct' values have been used for these parameters. Similar model fits can be expected with different sets of parameter values. The palaeoclimatically corrected surface mean heat flow at Forsmark and Laxemar is suggested to be 61 and 56 mW/m 2 respectively. If all uncertainties are combined, including data uncertainties, the total uncertainty in the heat flow determination is judged to be within +12% to -14% for both sites. The corrections for palaeoclimate are quite large and verify the need of site-specific climate descriptions. Estimations of the current ground surface temperature have been made by extrapolations from measured temperature logging. The mean extrapolated ground surface temperature in Forsmark and Laxemar is estimated to 6.5 deg and 7.3 deg C respectively. This is approximately 1.7 deg C higher for Forsmark, and 1.6 deg C higher for Laxemar compared to data in the report SKB-TR-06-23. Comparison with air
Maximum entropy modeling of invasive plants in the forests of Cumberland Plateau and Mountain Region
Dawn Lemke; Philip Hulme; Jennifer Brown; Wubishet. Tadesse
2011-01-01
As anthropogenic influences on the landscape change the composition of 'natural' areas, it is important that we apply spatial technology in active management to mitigate human impact. This research explores the integration of geographic information systems (GIS) and remote sensing with statistical analysis to assist in modeling the distribution of invasive...
Entropy-optimal weight constraint elicitation with additive multi-attribute utility models
Valkenhoef , van Gert; Tervonen, Tommi
2016-01-01
We consider the elicitation of incomplete preference information for the additive utility model in terms of linear constraints on the weights. Eliciting incomplete preferences using holistic pair-wise judgments is convenient for the decision maker, but selecting the best pair-wise comparison is
The USGS national geothermal resource assessment: An update
Williams, C.F.; Reed, M.J.; Galanis, S.P.; DeAngelo, J.
2007-01-01
The U. S. Geological Survey (USGS) is working with the Department of Energy's (DOE) Geothermal Technologies Program and other geothermal organizations on a three-year effort to produce an updated assessment of available geothermal resources. The new assessment will introduce significant changes in the models for geothermal energy recovery factors, estimates of reservoir volumes, and limits to temperatures and depths for electric power production. It will also include the potential impact of evolving Enhanced Geothermal Systems (EGS) technology. An important focus in the assessment project is on the development of geothermal resource models consistent with the production histories and observed characteristics of exploited geothermal fields. New models for the recovery of heat from heterogeneous, fractured reservoirs provide a physically realistic basis for evaluating the production potential of both natural geothermal reservoirs and reservoirs that may be created through the application of EGS technology. Project investigators have also made substantial progress studying geothermal systems and the factors responsible for their formation through studies in the Great Basin-Modoc Plateau region, Coso, Long Valley, the Imperial Valley and central Alaska, Project personnel are also entering the supporting data and resulting analyses into geospatial databases that will be produced as part of the resource assessment.
Quantum chaos: entropy signatures
International Nuclear Information System (INIS)
Miller, P.A.; Sarkar, S.; Zarum, R.
1998-01-01
A definition of quantum chaos is given in terms of entropy production rates for a quantum system coupled weakly to a reservoir. This allows the treatment of classical and quantum chaos on the same footing. In the quantum theory the entropy considered is the von Neumann entropy and in classical systems it is the Gibbs entropy. The rate of change of the coarse-grained Gibbs entropy of the classical system with time is given by the Kolmogorov-Sinai (KS) entropy. The relation between KS entropy and the rate of change of von Neumann entropy is investigated for the kicked rotator. For a system which is classically chaotic there is a linear relationship between these two entropies. Moreover it is possible to construct contour plots for the local KS entropy and compare it with the corresponding plots for the rate of change of von Neumann entropy. The quantitative and qualitative similarities of these plots are discussed for the standard map (kicked rotor) and the generalised cat maps. (author)
Volkenstein, Mikhail V
2009-01-01
The book "Entropy and Information" deals with the thermodynamical concept of entropy and its relationship to information theory. It is successful in explaining the universality of the term "Entropy" not only as a physical phenomenon, but reveals its existence also in other domains. E.g., Volkenstein discusses the "meaning" of entropy in a biological context and shows how entropy is related to artistic activities. Written by the renowned Russian bio-physicist Mikhail V. Volkenstein, this book on "Entropy and Information" surely serves as a timely introduction to understand entropy from a thermodynamic perspective and is definitely an inspiring and thought-provoking book that should be read by every physicist, information-theorist, biologist, and even artist.
Kou, Jisheng; Sun, Shuyu
2018-01-01
In this paper, we consider mathematical modeling and numerical simulation of non-isothermal compressible multi-component diffuse-interface two-phase flows with realistic equations of state. A general model with general reference velocity is derived rigorously through thermodynamical laws and Onsager's reciprocal principle, and it is capable of characterizing compressibility and partial miscibility between multiple fluids. We prove a novel relation among the pressure, temperature and chemical potentials, which results in a new formulation of the momentum conservation equation indicating that the gradients of chemical potentials and temperature become the primary driving force of the fluid motion except for the external forces. A key challenge in numerical simulation is to develop entropy stable numerical schemes preserving the laws of thermodynamics. Based on the convex-concave splitting of Helmholtz free energy density with respect to molar densities and temperature, we propose an entropy stable numerical method, which solves the total energy balance equation directly, and thus, naturally satisfies the first law of thermodynamics. Unconditional entropy stability (the second law of thermodynamics) of the proposed method is proved by estimating the variations of Helmholtz free energy and kinetic energy with time steps. Numerical results validate the proposed method.
Kou, Jisheng
2018-02-25
In this paper, we consider mathematical modeling and numerical simulation of non-isothermal compressible multi-component diffuse-interface two-phase flows with realistic equations of state. A general model with general reference velocity is derived rigorously through thermodynamical laws and Onsager\\'s reciprocal principle, and it is capable of characterizing compressibility and partial miscibility between multiple fluids. We prove a novel relation among the pressure, temperature and chemical potentials, which results in a new formulation of the momentum conservation equation indicating that the gradients of chemical potentials and temperature become the primary driving force of the fluid motion except for the external forces. A key challenge in numerical simulation is to develop entropy stable numerical schemes preserving the laws of thermodynamics. Based on the convex-concave splitting of Helmholtz free energy density with respect to molar densities and temperature, we propose an entropy stable numerical method, which solves the total energy balance equation directly, and thus, naturally satisfies the first law of thermodynamics. Unconditional entropy stability (the second law of thermodynamics) of the proposed method is proved by estimating the variations of Helmholtz free energy and kinetic energy with time steps. Numerical results validate the proposed method.
Entropy-driven phase transition in low-temperature antiferromagnetic Potts models
Czech Academy of Sciences Publication Activity Database
Kotecký, R.; Sokal, A.D.; Swart, Jan M.
2014-01-01
Roč. 330, č. 3 (2014), s. 1339-1394 ISSN 0010-3616 R&D Projects: GA ČR GA201/09/1931; GA ČR GAP201/12/2613 Institutional support: RVO:67985556 Keywords : Antiferromagnetic Potts model * proper coloring * plane quadrangulation * phase transition * diced lattice Subject RIV: BA - General Mathematics Impact factor: 2.086, year: 2014 http://library.utia.cas.cz/separaty/2014/SI/swart-0429507.pdf
Methods for calculating nonconcave entropies
International Nuclear Information System (INIS)
Touchette, Hugo
2010-01-01
Five different methods which can be used to analytically calculate entropies that are nonconcave as functions of the energy in the thermodynamic limit are discussed and compared. The five methods are based on the following ideas and techniques: (i) microcanonical contraction, (ii) metastable branches of the free energy, (iii) generalized canonical ensembles with specific illustrations involving the so-called Gaussian and Betrag ensembles, (iv) the restricted canonical ensemble, and (v) the inverse Laplace transform. A simple long-range spin model having a nonconcave entropy is used to illustrate each method
Geothermal country update of Japan
International Nuclear Information System (INIS)
Higo, M.
1990-01-01
This paper reports on the status of geothermal energy in Japan. Topics covered include: present and planned production of electricity, present utilization of geothermal energy for direct heat, information about geothermal localities, and wells drilled for electrical utilization of geothermal resources to January 1, 1990
Geothermal energy: a brief assessment
Energy Technology Data Exchange (ETDEWEB)
Lunis, B.C.; Blackett, R.; Foley, D. (eds.)
1982-07-01
This document includes discussions about geothermal energy, its applications, and how it is found and developed. It identifies known geothermal resources located in Western's power marketing area, and covers the use of geothermal energy for both electric power generation and direct applications. Economic, institutional, environmental, and other factors are discussed, and the benefits of the geothermal energy resource are described.
Advanced Geothermal Turbodrill
Energy Technology Data Exchange (ETDEWEB)
W. C. Maurer
2000-05-01
Approximately 50% of the cost of a new geothermal power plant is in the wells that must be drilled. Compared to the majority of oil and gas wells, geothermal wells are more difficult and costly to drill for several reasons. First, most U.S. geothermal resources consist of hot, hard crystalline rock formations which drill much slower than the relatively soft sedimentary formations associated with most oil and gas production. Second, high downhole temperatures can greatly shorten equipment life or preclude the use of some technologies altogether. Third, producing viable levels of electricity from geothermal fields requires the use of large diameter bores and a high degree of fluid communication, both of which increase drilling and completion costs. Optimizing fluid communication often requires creation of a directional well to intersect the best and largest number of fracture capable of producing hot geothermal fluids. Moineau motor stators made with elastomers cannot operate at geothermal temperatures, so they are limited to the upper portion of the hole. To overcome these limitations, Maurer Engineering Inc. (MEI) has developed a turbodrill that does not use elastomers and therefore can operate at geothermal temperatures. This new turbodrill uses a special gear assembly to reduce the output speed, thus allowing a larger range of bit types, especially tri-cone roller bits, which are the bits of choice for drilling hard crystalline formations. The Advanced Geothermal Turbodrill (AGT) represents a significant improvement for drilling geothermal wells and has the potential to significantly reduce drilling costs while increasing production, thereby making geothermal energy less expensive and better able to compete with fossil fuels. The final field test of the AGT will prepare the tool for successful commercialization.
Directory of Open Access Journals (Sweden)
Wassim M. Haddad
2014-07-01
Full Text Available Advances in neuroscience have been closely linked to mathematical modeling beginning with the integrate-and-fire model of Lapicque and proceeding through the modeling of the action potential by Hodgkin and Huxley to the current era. The fundamental building block of the central nervous system, the neuron, may be thought of as a dynamic element that is “excitable”, and can generate a pulse or spike whenever the electrochemical potential across the cell membrane of the neuron exceeds a threshold. A key application of nonlinear dynamical systems theory to the neurosciences is to study phenomena of the central nervous system that exhibit nearly discontinuous transitions between macroscopic states. A very challenging and clinically important problem exhibiting this phenomenon is the induction of general anesthesia. In any specific patient, the transition from consciousness to unconsciousness as the concentration of anesthetic drugs increases is very sharp, resembling a thermodynamic phase transition. This paper focuses on multistability theory for continuous and discontinuous dynamical systems having a set of multiple isolated equilibria and/or a continuum of equilibria. Multistability is the property whereby the solutions of a dynamical system can alternate between two or more mutually exclusive Lyapunov stable and convergent equilibrium states under asymptotically slowly changing inputs or system parameters. In this paper, we extend the theory of multistability to continuous, discontinuous, and stochastic nonlinear dynamical systems. In particular, Lyapunov-based tests for multistability and synchronization of dynamical systems with continuously differentiable and absolutely continuous flows are established. The results are then applied to excitatory and inhibitory biological neuronal networks to explain the underlying mechanism of action for anesthesia and consciousness from a multistable dynamical system perspective, thereby providing a
Geothermal energy in Italy - its importance, potential and projects
International Nuclear Information System (INIS)
Berger, W.
2005-01-01
This article discusses the perspectives for the use of geothermal energy in Italy. Starting with an overview of the principles of the use of geothermal energy in general, the article goes on to review Italy's geothermal resources and their relevance to energy supply. Figures are given on the political situation in Italy concerning energy and the rapidly increasing demands made on electricity supply. Political support for renewable energy in Italy is looked at and models for financing projects are examined. Examples of geothermal energy projects are given and the perspectives for further developments in this industry are looked at
Psychological Entropy: A Framework for Understanding Uncertainty-Related Anxiety
Hirsh, Jacob B.; Mar, Raymond A.; Peterson, Jordan B.
2012-01-01
Entropy, a concept derived from thermodynamics and information theory, describes the amount of uncertainty and disorder within a system. Self-organizing systems engage in a continual dialogue with the environment and must adapt themselves to changing circumstances to keep internal entropy at a manageable level. We propose the entropy model of…
Maximum-Entropy Models of Sequenced Immune Repertoires Predict Antigen-Antibody Affinity
DEFF Research Database (Denmark)
Asti, Lorenzo; Uguzzoni, Guido; Marcatili, Paolo
2016-01-01
The immune system has developed a number of distinct complex mechanisms to shape and control the antibody repertoire. One of these mechanisms, the affinity maturation process, works in an evolutionary-like fashion: after binding to a foreign molecule, the antibody-producing B-cells exhibit a high...... of an HIV-1 infected patient. The Pearson correlation coefficient between our scoring function and the IC50 neutralization titer measured on 30 different antibodies of known sequence is as high as 0.77 (p-value 10-6), outperforming other sequence- and structure-based models....
Geothermal studies of seven interior salt domes
International Nuclear Information System (INIS)
1983-06-01
This report defines and compares the geothermal environments of eight selected Gulf Coast salt domes. The thermal regimes in and around Gulf Coast salt domes are not well documented. The data base used for this study is an accumulation of bottom-hole temperature readings from oil and gas exploration wells and temperature logs run for the National Waste Terminal Storage (NWTS) program. The bottom-hole tempreatures were corrected in order to estimate the actual geothermal environments. Prior thermal studies and models indicate temperatures in and around salt domes are elevated above the norm by 1 0 F to 25 0 F. Using existing geothermal data and accepted theory, geothermal gradients for the selected domes and surrounding sediments were estimated. This study concludes that salt domes within a given basin have similar geothermal gradients, but that the basins differ in average geothermal gradients. This relationship is probably controlled by deep basement structural trends. No evidence of residual heat of emplacement was found associated with any of the selected domes
GELCOM: a geothermal levelized busbar cost model. Description and user's guide
Energy Technology Data Exchange (ETDEWEB)
Gupta, J.N.; Leigh, J.G.
1978-01-01
The model described is designed to project the costs of electricity generated from liquid dominated hydrothermal resources. It is presented in the form of an interactive computer program called GELCOM, written in Fortran IV, together with an analytic explanation of the methodology. GELCOM starts from resource data and estimates the capital and operating costs for the production field and electrical generating plant. The methodology implemented in GELCOM to determine the engineering cost, operating parameter estimates, and the levelized busbar cost is described. The output displayed by GELCOM for one prospect is explained. The input data files maintained in the computer system and the input data card formats are included. A sample session with GELCOM and the economic reports which may be generated from the GELCOM are illustrated. A completed listing of the computer program is given in an appendix. (MHR)
Lee, Chieh-Han; Yu, Hwa-Lung; Chien, Lung-Chang
2014-05-01
Dengue fever has been identified as one of the most widespread vector-borne diseases in tropical and sub-tropical. In the last decade, dengue is an emerging infectious disease epidemic in Taiwan especially in the southern area where have annually high incidences. For the purpose of disease prevention and control, an early warning system is urgently needed. Previous studies have showed significant relationships between climate variables, in particular, rainfall and temperature, and the temporal epidemic patterns of dengue cases. However, the transmission of the dengue fever is a complex interactive process that mostly understated the composite space-time effects of dengue fever. This study proposes developing a one-week ahead warning system of dengue fever epidemics in the southern Taiwan that considered nonlinear associations between weekly dengue cases and meteorological factors across space and time. The early warning system based on an integration of distributed lag nonlinear model (DLNM) and stochastic Bayesian Maximum Entropy (BME) analysis. The study identified the most significant meteorological measures including weekly minimum temperature and maximum 24-hour rainfall with continuous 15-week lagged time to dengue cases variation under condition of uncertainty. Subsequently, the combination of nonlinear lagged effects of climate variables and space-time dependence function is implemented via a Bayesian framework to predict dengue fever occurrences in the southern Taiwan during 2012. The result shows the early warning system is useful for providing potential outbreak spatio-temporal prediction of dengue fever distribution. In conclusion, the proposed approach can provide a practical disease control tool for environmental regulators seeking more effective strategies for dengue fever prevention.
Hidden states and hidden entropy
International Nuclear Information System (INIS)
Betak, E.
1993-06-01
We study the properties of master equations of the pre-equilibrium exciton model. For the case when the emission is included, we have proved the entropy to be a nondecreasing function of time. The opposite statement in the recent paper of Pan et al. has been caused mainly by neglecting a part of the exciton states. (author). 17 refs
Enhanced Anomaly Detection Via PLS Regression Models and Information Entropy Theory
Harrou, Fouzi
2015-12-07
Accurate and effective fault detection and diagnosis of modern engineering systems is crucial for ensuring reliability, safety and maintaining the desired product quality. In this work, we propose an innovative method for detecting small faults in the highly correlated multivariate data. The developed method utilizes partial least square (PLS) method as a modelling framework, and the symmetrized Kullback-Leibler divergence (KLD) as a monitoring index, where it is used to quantify the dissimilarity between probability distributions of current PLS-based residual and reference one obtained using fault-free data. The performance of the PLS-based KLD fault detection algorithm is illustrated and compared to the conventional PLS-based fault detection methods. Using synthetic data, we have demonstrated the greater sensitivity and effectiveness of the developed method over the conventional methods, especially when data are highly correlated and small faults are of interest.
Enhanced Anomaly Detection Via PLS Regression Models and Information Entropy Theory
Harrou, Fouzi; Sun, Ying
2015-01-01
Accurate and effective fault detection and diagnosis of modern engineering systems is crucial for ensuring reliability, safety and maintaining the desired product quality. In this work, we propose an innovative method for detecting small faults in the highly correlated multivariate data. The developed method utilizes partial least square (PLS) method as a modelling framework, and the symmetrized Kullback-Leibler divergence (KLD) as a monitoring index, where it is used to quantify the dissimilarity between probability distributions of current PLS-based residual and reference one obtained using fault-free data. The performance of the PLS-based KLD fault detection algorithm is illustrated and compared to the conventional PLS-based fault detection methods. Using synthetic data, we have demonstrated the greater sensitivity and effectiveness of the developed method over the conventional methods, especially when data are highly correlated and small faults are of interest.
Motagh, M.; Lubitz, C.
2014-12-01
Geothermal energy is of increasing importance as alternative, environmentally friendly technology for heat management. Direct interaction with the subsurface requires careful implementation, in particular in geological complex regions. The historical city Staufen im Breisgau, SW Germany, has attracted national attention as a case of implementation failure with severe consequences, causing debates on the applicability and security of this sustainable technique. Located at the eastern transition zone of the Upper Rhine Graben and the Schwarzwald massif, the geothermal potential is high at Staufen due to strong temperature gradients. In September 2007, seven boreholes for geothermal probes were drilled up to a depth of 140 m to provide a new heat management for the city hall. Within five years an uplift phenomenon has been observed in Staufen reaching more than 40 cm in places and 269 buildings were damaged. Hydro-chemical driven anhydrite-gypsum transformation in the subsurface was identified as the cause leading to volume increase that is observable as surface uplift. This process is associated with the geothermal drilling activities that have crossed several groundwater levels. In this work, we summarize and present the findings of spaceborne Synthetic Aperture Radar Interferometry (InSAR) analysis of the uplift in Staufen over the last five years from July 2008 through July 2013. By applying the Small Baseline Subset (SBAS) method, we find a localized elliptical-shaped deformation field in NE-SW orientation. Area of maximum uplift is located 50 m NNE of the drilling zone. At this location, we observe a cumulative uplift of approx. 13.7 cm ± 0.34 cm (mean value within an area of 30 m by 30 m) from July 2008 to July 2009, which reduced to cumulative uplift of 3 cm ± 0.25 cm from July 2012 to July 2013. The deceleration can be related to applied countermeasures as borehole sealing and groundwater pumping. The observed ground surface response was compared to
Remarks on Bousso's covariant entropy bound
Mayo, A E
2002-01-01
Bousso's covariant entropy bound is put to the test in the context of a non-singular cosmological solution of general relativity found by Bekenstein. Although the model complies with every assumption made in Bousso's original conjecture, the entropy bound is violated due to the occurrence of negative energy density associated with the interaction of some the matter components in the model. We demonstrate how this property allows for the test model to 'elude' a proof of Bousso's conjecture which was given recently by Flanagan, Marolf and Wald. This corroborates the view that the covariant entropy bound should be applied only to stable systems for which every matter component carries positive energy density.
Directory of Open Access Journals (Sweden)
Christian Corda
2018-01-01
Full Text Available In this paper we consider the metric entropies of the maps of an iterated function system deduced from a black hole which are known the Bekenstein–Hawking entropies and its subleading corrections. More precisely, we consider the recent model of a Bohr-like black hole that has been recently analysed in some papers in the literature, obtaining the intriguing result that the metric entropies of a black hole are created by the metric entropies of the functions, created by the black hole principal quantum numbers, i.e., by the black hole quantum levels. We present a new type of topological entropy for general iterated function systems based on a new kind of the inverse of covers. Then the notion of metric entropy for an Iterated Function System ( I F S is considered, and we prove that these definitions for topological entropy of IFS’s are equivalent. It is shown that this kind of topological entropy keeps some properties which are hold by the classic definition of topological entropy for a continuous map. We also consider average entropy as another type of topological entropy for an I F S which is based on the topological entropies of its elements and it is also an invariant object under topological conjugacy. The relation between Axiom A and the average entropy is investigated.
Entropy of dynamical social networks
Zhao, Kun; Karsai, Marton; Bianconi, Ginestra
2012-02-01
Dynamical social networks are evolving rapidly and are highly adaptive. Characterizing the information encoded in social networks is essential to gain insight into the structure, evolution, adaptability and dynamics. Recently entropy measures have been used to quantify the information in email correspondence, static networks and mobility patterns. Nevertheless, we still lack methods to quantify the information encoded in time-varying dynamical social networks. In this talk we present a model to quantify the entropy of dynamical social networks and use this model to analyze the data of phone-call communication. We show evidence that the entropy of the phone-call interaction network changes according to circadian rhythms. Moreover we show that social networks are extremely adaptive and are modified by the use of technologies such as mobile phone communication. Indeed the statistics of duration of phone-call is described by a Weibull distribution and is significantly different from the distribution of duration of face-to-face interactions in a conference. Finally we investigate how much the entropy of dynamical social networks changes in realistic models of phone-call or face-to face interactions characterizing in this way different type human social behavior.
On Maximum Entropy and Inference
Directory of Open Access Journals (Sweden)
Luigi Gresele
2017-11-01
Full Text Available Maximum entropy is a powerful concept that entails a sharp separation between relevant and irrelevant variables. It is typically invoked in inference, once an assumption is made on what the relevant variables are, in order to estimate a model from data, that affords predictions on all other (dependent variables. Conversely, maximum entropy can be invoked to retrieve the relevant variables (sufficient statistics directly from the data, once a model is identified by Bayesian model selection. We explore this approach in the case of spin models with interactions of arbitrary order, and we discuss how relevant interactions can be inferred. In this perspective, the dimensionality of the inference problem is not set by the number of parameters in the model, but by the frequency distribution of the data. We illustrate the method showing its ability to recover the correct model in a few prototype cases and discuss its application on a real dataset.
Problems in black-hole entropy interpretation
International Nuclear Information System (INIS)
Liberati, S.
1997-01-01
In this work some proposals for black-hole entropy interpretation are exposed and investigated. In particular, the author will firstly consider the so-called 'entanglement entropy' interpretation, in the framework of the brick wall model and the divergence problem arising in the one-loop calculations of various thermodynamical quantities, like entropy, internal energy and heat capacity. It is shown that the assumption of equality of entanglement entropy and Bekenstein-Hawking one appears to give inconsistent results. These will be a starting point for a different interpretation of black.hole entropy based on peculiar topological structures of manifolds with 'intrinsic' thermodynamical features. It is possible to show an exact relation between black-hole gravitational entropy and topology of these Euclidean space-times. the expression for the Euler characteristic, through the Gauss-Bonnet integral, and the one for entropy for gravitational instantons are proposed in a form which makes the relation between these self-evident. Using this relation he propose a generalization of the Bekenstein-Hawking entropy in which the former and Euler characteristic are related in the equation S = χA / 8. Finally, he try to expose some conclusions and hypotheses about possible further development of this research
Global geothermal energy scenario
International Nuclear Information System (INIS)
Singh, S.K.; Singh, A.; Pandey, G.N.
1993-01-01
To resolve the energy crisis efforts have been made in exploring and utilizing nonconventional energy resources since last few decades. Geothermal energy is one such energy resource. Fossil fuels are the earth's energy capital like money deposited in bank years ago. The energy to build this energy came mainly from the sun. Steam geysers and hot water springs are other manifestations of geothermal energy. Most of the 17 countries that today harness geothermal energy have simply tapped such resources where they occur. (author). 8 refs., 4 tabs., 1 fig
Energy Technology Data Exchange (ETDEWEB)
1974-01-01
The objective of this handbook is to publicize widely the nature of geothermal surveys. It covers geothermal survey planning and measurement as well as measurement of thermal conductivity. Methods for the detection of eruptive areas, the measurement of radiative heat using snowfall, the measurement of surface temperature using infrared radiation and the measurement of thermal flow are described. The book also contains information on physical detection of geothermal reservoirs, the measurement of spring wells, thermographic measurement of surface heat, irregular layer surveying, air thermographics and aerial photography. Isotope measurement techniques are included.
Worldwide installed geothermal power
International Nuclear Information System (INIS)
Laplaige, P.
1995-01-01
Worldwide electric energy production data are easy to compile, according to the informations given by individual countries. On the contrary, thermal applications of geothermics are difficult to quantify due to the variety of applications and the number of countries concerned. Exhaustive informations sometimes cannot be obtained from huge countries (China, Russia..) because of data centralization problems or not exploitable data transmission. Therefore, installed power data for geothermal heat production are given for 26 countries over the 57 that have answered the International Geothermal Association questionnaire. (J.S.). 1 fig., 2 tabs., 1 photo
Geothermal electricity generation
International Nuclear Information System (INIS)
Eliasson, E.T.
1991-01-01
Geothermal conversion, as discussed here, is the conversion of the heat bound within the topmost three kilometres of the upper crust of the earth into useful energy, principally electricity. The characteristics of a geothermal reservoir and its individual technical features are highly site-specific. Applications therefore must be designed to match the specific geothermal reservoir. An estimate of the electric energy potential world-wide made by the Electric Power Research Institute (United States) in 1978 and based on sustaining a continuous 30-year operation is given in the box at the right for comparison purposes only. 8 refs, 5 figs
Energy Technology Data Exchange (ETDEWEB)
1984-12-01
Domestic geothermal resources with the potential for decreasing fossil fuel use and energy cost exist at a significant number of Navy facilities. The Geothermal Plan is part of the Navy Energy R and D Program that will evaluate Navy sites and provide a technical, economic, and environmental base for subsequent resource use. One purpose of the program will be to provide for the transition of R and D funded exploratory efforts into the resource development phase. Individual Navy geothermal site projects are described as well as the organizational structure and Navy decision network. 2 figs.
Maximum Quantum Entropy Method
Sim, Jae-Hoon; Han, Myung Joon
2018-01-01
Maximum entropy method for analytic continuation is extended by introducing quantum relative entropy. This new method is formulated in terms of matrix-valued functions and therefore invariant under arbitrary unitary transformation of input matrix. As a result, the continuation of off-diagonal elements becomes straightforward. Without introducing any further ambiguity, the Bayesian probabilistic interpretation is maintained just as in the conventional maximum entropy method. The applications o...
2015-09-29
antiferroelectrics. Phys. Rev. Lett. 110, 017603 (2013). 22. Cantor , B., Chang, I., Knight, P. & Vincent, A. Microstructural development in equiatomic...Science 345, 1153–1158 (2014). 24. Gali, A. & George , E. Tensile properties of high- and medium-entropy alloys. Intermetallics 39, 74–78 (2013). 25...148–153 (2014). 26. Otto, F., Yang, Y., Bei, H. & George , E. Relative effects of enthalpy and entropy on the phase stability of equiatomic high-entropy
The influence of reservoir heterogeneities on geothermal doublet performance
Doddema, Leon
2012-01-01
SUMMARY The current main problem with deep geothermal energy in the Netherlands is the uncertainty in terms of attainable flow rate and life time. The goal of this research is therefore modeling a geothermal doublet in a heterogeneous reservoir, using a
ENTROPY FUNCTIONAL FOR CONTINUOUS SYSTEMS OF FINITE ENTROPY
Institute of Scientific and Technical Information of China (English)
M. Rahimi A. Riazi
2012-01-01
In this article,we introduce the co