WorldWideScience

Sample records for models generally assume

  1. Assumed PDF modeling in rocket combustor simulations

    Science.gov (United States)

    Lempke, M.; Gerlinger, P.; Aigner, M.

    2013-03-01

    In order to account for the interaction between turbulence and chemistry, a multivariate assumed PDF (Probability Density Function) approach is used to simulate a model rocket combustor with finite-rate chemistry. The reported test case is the PennState preburner combustor with a single shear coaxial injector. Experimental data for the wall heat flux is available for this configuration. Unsteady RANS (Reynolds-averaged Navier-Stokes) simulation results with and without the assumed PDF approach are analyzed and compared with the experimental data. Both calculations show a good agreement with the experimental wall heat flux data. Significant changes due to the utilization of the assumed PDF approach can be observed in the radicals, e. g., the OH mass fraction distribution, while the effect on the wall heat flux is insignificant.

  2. Bayesian modeling growth curves for quail assuming skewness in errors

    Directory of Open Access Journals (Sweden)

    Robson Marcelo Rossi

    2014-06-01

    Full Text Available Bayesian modeling growth curves for quail assuming skewness in errors - To assume normal distributions in the data analysis is common in different areas of the knowledge. However we can make use of the other distributions that are capable to model the skewness parameter in the situations that is needed to model data with tails heavier than the normal. This article intend to present alternatives to the assumption of the normality in the errors, adding asymmetric distributions. A Bayesian approach is proposed to fit nonlinear models when the errors are not normal, thus, the distributions t, skew-normal and skew-t are adopted. The methodology is intended to apply to different growth curves to the quail body weights. It was found that the Gompertz model assuming skew-normal errors and skew-t errors, respectively for male and female, were the best fitted to the data.

  3. Chemically reacting supersonic flow calculation using an assumed PDF model

    Science.gov (United States)

    Farshchi, M.

    1990-01-01

    This work is motivated by the need to develop accurate models for chemically reacting compressible turbulent flow fields that are present in a typical supersonic combustion ramjet (SCRAMJET) engine. In this paper the development of a new assumed probability density function (PDF) reaction model for supersonic turbulent diffusion flames and its implementation into an efficient Navier-Stokes solver are discussed. The application of this model to a supersonic hydrogen-air flame will be considered.

  4. Modeling turbulent/chemistry interactions using assumed pdf methods

    Science.gov (United States)

    Gaffney, R. L, Jr.; White, J. A.; Girimaji, S. S.; Drummond, J. P.

    1992-01-01

    Two assumed probability density functions (pdfs) are employed for computing the effect of temperature fluctuations on chemical reaction. The pdfs assumed for this purpose are the Gaussian and the beta densities of the first kind. The pdfs are first used in a parametric study to determine the influence of temperature fluctuations on the mean reaction-rate coefficients. Results indicate that temperature fluctuations significantly affect the magnitude of the mean reaction-rate coefficients of some reactions depending on the mean temperature and the intensity of the fluctuations. The pdfs are then tested on a high-speed turbulent reacting mixing layer. Results clearly show a decrease in the ignition delay time due to increases in the magnitude of most of the mean reaction rate coefficients.

  5. A Model for Teacher Effects from Longitudinal Data without Assuming Vertical Scaling

    Science.gov (United States)

    Mariano, Louis T.; McCaffrey, Daniel F.; Lockwood, J. R.

    2010-01-01

    There is an increasing interest in using longitudinal measures of student achievement to estimate individual teacher effects. Current multivariate models assume each teacher has a single effect on student outcomes that persists undiminished to all future test administrations (complete persistence [CP]) or can diminish with time but remains…

  6. Radial diffusion in Saturn's radiation belts - A modeling analysis assuming satellite and ring E absorption

    Science.gov (United States)

    Hood, L. L.

    1983-01-01

    A modeling analysis is carried out of six experimental phase space density profiles for nearly equatorially mirroring protons using methods based on the approach of Thomsen et al. (1977). The form of the time-averaged radial diffusion coefficient D(L) that gives an optimal fit to the experimental profiles is determined under the assumption that simple satellite plus Ring E absorption of inwardly diffusing particles and steady-state radial diffusion are the dominant physical processes affecting the proton data in the L range that is modeled. An extension of the single-satellite model employed by Thomsen et al. to a model that includes multisatellite and ring absorption is described, and the procedures adopted for estimating characteristic satellite and ring absorption times are defined. The results obtained in applying three representative solid-body absorption models to evaluate D(L) in the range where L is between 4 and 16 are reported, and a study is made of the sensitivity of the preferred amplitude and L dependence for D(L) to the assumed model parameters. The inferred form of D(L) is then compared with that which would be predicted if various proposed physical mechanisms for driving magnetospheric radial diffusion are operative at Saturn.

  7. Phase field modeling of brittle fracture for enhanced assumed strain shells at large deformations: formulation and finite element implementation

    Science.gov (United States)

    Reinoso, J.; Paggi, M.; Linder, C.

    2017-02-01

    Fracture of technological thin-walled components can notably limit the performance of their corresponding engineering systems. With the aim of achieving reliable fracture predictions of thin structures, this work presents a new phase field model of brittle fracture for large deformation analysis of shells relying on a mixed enhanced assumed strain (EAS) formulation. The kinematic description of the shell body is constructed according to the solid shell concept. This enables the use of fully three-dimensional constitutive models for the material. The proposed phase field formulation integrates the use of the (EAS) method to alleviate locking pathologies, especially Poisson thickness and volumetric locking. This technique is further combined with the assumed natural strain method to efficiently derive a locking-free solid shell element. On the computational side, a fully coupled monolithic framework is consistently formulated. Specific details regarding the corresponding finite element formulation and the main aspects associated with its implementation in the general purpose packages FEAP and ABAQUS are addressed. Finally, the applicability of the current strategy is demonstrated through several numerical examples involving different loading conditions, and including linear and nonlinear hyperelastic constitutive models.

  8. Phase field modeling of brittle fracture for enhanced assumed strain shells at large deformations: formulation and finite element implementation

    Science.gov (United States)

    Reinoso, J.; Paggi, M.; Linder, C.

    2017-06-01

    Fracture of technological thin-walled components can notably limit the performance of their corresponding engineering systems. With the aim of achieving reliable fracture predictions of thin structures, this work presents a new phase field model of brittle fracture for large deformation analysis of shells relying on a mixed enhanced assumed strain (EAS) formulation. The kinematic description of the shell body is constructed according to the solid shell concept. This enables the use of fully three-dimensional constitutive models for the material. The proposed phase field formulation integrates the use of the (EAS) method to alleviate locking pathologies, especially Poisson thickness and volumetric locking. This technique is further combined with the assumed natural strain method to efficiently derive a locking-free solid shell element. On the computational side, a fully coupled monolithic framework is consistently formulated. Specific details regarding the corresponding finite element formulation and the main aspects associated with its implementation in the general purpose packages FEAP and ABAQUS are addressed. Finally, the applicability of the current strategy is demonstrated through several numerical examples involving different loading conditions, and including linear and nonlinear hyperelastic constitutive models.

  9. Comparison of ELCAP data with lighting and equipment load levels and profiles assumed in regional models

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Z.T.; Pratt, R.G.

    1990-09-01

    The analysis in this report was driven by two primary objectives: to determine whether and to what extent the lighting and miscellaneous equipment electricity consumption measured by metering in real buildings differs from the levels assumed in the various prototypes used in power forecasting; and to determine the reasons for those differences if, in fact, differences were found. 13 refs., 47 figs., 4 tabs.

  10. Tsunami Waveform Inversion without Assuming Fault Models- Application to Recent Three Earthquakes around Japan

    Science.gov (United States)

    Namegaya, Y.; Ueno, T.; Satake, K.; Tanioka, Y.

    2010-12-01

    Tsunami waveform inversion is often used to study the source of tsunamigenic earthquakes. In this method, subsurface fault planes are divided into small subfaults, and the slip distribution, then seafloor deformation are estimated. However, it is sometimes difficult to judge the actual fault plane for offshore earthquake such as those along the eastern margin of Japan Sea. We developed an inversion method to estimate vertical seafloor deformation directly from observed tsunami waveforms. The tsunami source area is divided into many nodes, and the vertical seafloor deformation is calculated around each node by using the B-spline functions. The tsunami waveforms are calculated from each node, and used as the Green’s functions for inversion. To stabilize inversion or avoid overestimation of data errors, we introduce smoothing equations like Laplace’s equations. The optimum smoothing strength is estimated from the Akaike’s Bayesian information criterion (ABIC) Method. Advantage of this method is to estimate the vertical seafloor deformation can be estimated without assuming a fault plane. We applied the method to three recent earthquakes around Japan: the 2007 Chuetsu-oki, 2007 Noto Hanto, and 2003 Tokachi-oki earthquakes. The Chuetsu-oki earthquake (M6.8) occurred off the Japan Sea coast of central Japan on 16 July 2007. For this earthquake, complicated aftershock distribution makes it difficult to judge which of the southeast dipping fault or the northwest dipping fault was the actual fault plane. The tsunami inversion result indicates that the uplifted area extends about 10 km from the coastline, and there are two peaks of uplift: about 40 cm in the south and about 20 cm in the north. TheNoto Hanto earthquake (M6.9) occurred off Noto peninsula, also along the Japan Sea coast of central Japan, on 25 March 2007. The inversion result indicates that the uplifted area extends about 10 km off the coast, and the largest uplift amount is more than 40 cm. Location of

  11. THM Coupled Modeling in Near Field of an Assumed HLW Deep Geological Disposal Repository

    Institute of Scientific and Technical Information of China (English)

    Shen Zhenyao; Li Guoding; Li Shushen

    2004-01-01

    One of the most suitable ways under study for the disposal of high-level radioactive waste (HLW) is isolation in deep geological repositories. It is very important to research the thermo-hydro-mechanical (THM) coupled processes associated with an HLW disposal repository. Non-linear coupled equations, which are used to describe the THM coupled process and are suited to saturated-unsaturated porous media, are presented in this paper. A numerical method to solve these equations is put forward, and a finite element code is developed. This code is suited to the plane strain or axis-symmetry problem. Then this code is used to simulate the THM coupled process in the near field of an ideal disposal repository. The temperature vs. time, hydraulic head vs. time and stress vs. time results show that, in this assumed condition, the impact of temperature is very long (over 10 000 a) and the impact of the water head is short (about 90 d). Since the stress is induced by temperature and hydraulic head in this condition, the impact time of stress is the same as that of temperature. The results show that THM coupled processes are very important in the safety analysis of an HLW deep geological disposal repository.

  12. General Composite Higgs Models

    CERN Document Server

    Marzocca, David; Shu, Jing

    2012-01-01

    We construct a general class of pseudo-Goldstone composite Higgs models, within the minimal $SO(5)/SO(4)$ coset structure, that are not necessarily of moose-type. We characterize the main properties these models should have in order to give rise to a Higgs mass at around 125 GeV. We assume the existence of relatively light and weakly coupled spin 1 and 1/2 resonances. In absence of a symmetry principle, we introduce the Minimal Higgs Potential (MHP) hypothesis: the Higgs potential is assumed to be one-loop dominated by the SM fields and the above resonances, with a contribution that is made calculable by imposing suitable generalizations of the first and second Weinberg sum rules. We show that a 125 GeV Higgs requires light, often sub-TeV, fermion resonances. Their presence can also be important for the model to successfully pass the electroweak precision tests. Interestingly enough, the latter can be passed also by models with a heavy Higgs around 320 GeV. The composite Higgs models of the moose-type conside...

  13. Importance of the habitat choice behavior assumed when modeling the effects of food and temperature on fish populations

    Science.gov (United States)

    Wildhaber, Mark L.; Lamberson, Peter J.

    2004-01-01

    Various mechanisms of habitat choice in fishes based on food and/or temperature have been proposed: optimal foraging for food alone; behavioral thermoregulation for temperature alone; and behavioral energetics and discounted matching for food and temperature combined. Along with development of habitat choice mechanisms, there has been a major push to develop and apply to fish populations individual-based models that incorporate various forms of these mechanisms. However, it is not known how the wide variation in observed and hypothesized mechanisms of fish habitat choice could alter fish population predictions (e.g. growth, size distributions, etc.). We used spatially explicit, individual-based modeling to compare predicted fish populations using different submodels of patch choice behavior under various food and temperature distributions. We compared predicted growth, temperature experience, food consumption, and final spatial distribution using the different models. Our results demonstrated that the habitat choice mechanism assumed in fish population modeling simulations was critical to predictions of fish distribution and growth rates. Hence, resource managers who use modeling results to predict fish population trends should be very aware of and understand the underlying patch choice mechanisms used in their models to assure that those mechanisms correctly represent the fish populations being modeled.

  14. Generalized Poisson sigma models

    CERN Document Server

    Batalin, I; Batalin, Igor; Marnelius, Robert

    2001-01-01

    A general master action in terms of superfields is given which generates generalized Poisson sigma models by means of a natural ghost number prescription. The simplest representation is the sigma model considered by Cattaneo and Felder. For Dirac brackets considerably more general models are generated.

  15. Distance determination for RAVE stars using stellar models II: Most likely values assuming a standard stellar evolution scenario

    CERN Document Server

    Zwitter, T; Breddels, M A; Smith, M C; Helmi, A; Munari, U; Bienaym\\'{e), O; Bland-Hawthorn, J; Boeche, C; Brown, A G A; Campbell, R; Freeman, K C; Fulbright, J; Gibson, B; Gilmore, G; Grebel, E K; Navarro, J F; Parker, Q A; Seabroke, G M; Siebert, A; Siviero, A; Steinmetz, M; Watson, F G; Williams, M; Wyse, R F G

    2010-01-01

    The RAdial Velocity Experiment (RAVE) is a spectroscopic survey of the Milky Way. We use the subsample of spectra with spectroscopically determined values of stellar parameters to determine the distances to these stars. The list currently contains 235,064 high quality spectra which show no peculiarities and belong to 210,872 different stars. The numbers will grow as the RAVE survey progresses. The public version of the catalog will be made available through the CDS services along with the ongoing RAVE public data releases. The distances are determined with a method based on the work by Breddels et al.~(2010). Here we assume that the star undergoes a standard stellar evolution and that its spectrum shows no peculiarities. The refinements include: the use of either of the three isochrone sets, a better account of the stellar ages and masses, use of more realistic errors of stellar parameter values, and application to a larger dataset. The derived distances of both dwarfs and giants match within ~21% to the astr...

  16. Dependence of radiation belt simulations to assumed radial diffusion rates tested for two empirical models of radial transport

    Science.gov (United States)

    Drozdov, Alexander; Shprits, Yuri; Aseev, Nikita; Kellerman, Adam; Reeves, Geoffrey

    2017-04-01

    Radial diffusion is one of the dominant physical mechanisms that drives acceleration and loss of the radiation belt electrons, which makes it very important for nowcasting and forecasting space weather models. We investigate the sensitivity of the two parameterizations of the radial diffusion of Brautigam and Albert [2000] and Ozeke et al. [2014] on long-term radiation belt modeling using the Versatile Electron Radiation Belt (VERB). Following Brautigam and Albert [2000] and Ozeke et al. [2014], we first perform 1-D radial diffusion simulations. Comparison of the simulation results with observations shows that the difference between simulations with either radial diffusion parameterization is small. To take into account effects of local acceleration and loss, we perform 3-D simulations, including pitch-angle, energy and mixed diffusion. We found that the results of 3-D simulations are even less sensitive to the choice of parameterization of radial diffusion rates than the results of 1-D simulations at various energies (from 0.59 to 1.80 MeV). This result demonstrates that the inclusion of local acceleration and pitch-angle diffusion can provide a negative feedback effect, such that the result is largely indistinguishable simulations conducted with different radial diffusion parameterizations. We also perform a number of sensitivity tests by multiplying radial diffusion rates by constant factors and show that such an approach leads to unrealistic predictions of radiation belt dynamics. References Brautigam, D. H., and J. M. Albert (2000), Radial diffusion analysis of outer radiation belt electrons during the October 9, 1990, magnetic storm, J. Geophys. Res., 105(A1), 291-309, doi:10.1029/1999ja900344. Ozeke, L. G., I. R. Mann, K. R. Murphy, I. Jonathan Rae, and D. K. Milling (2014), Analytic expressions for ULF wave radiation belt radial diffusion coefficients, J. Geophys. Res. [Space Phys.], 119(3), 1587-1605, doi:10.1002/2013JA019204.

  17. Inversion assuming weak scattering

    DEFF Research Database (Denmark)

    Xenaki, Angeliki; Gerstoft, Peter; Mosegaard, Klaus

    2013-01-01

    The study of weak scattering from inhomogeneous media or interface roughness has long been of interest in sonar applications. In an acoustic backscattering model of a stationary field of volume inhomogeneities, a stochastic description of the field is more useful than a deterministic description...... due to the complex nature of the field. A method based on linear inversion is employed to infer information about the statistical properties of the scattering field from the obtained cross-spectral matrix. A synthetic example based on an active high-frequency sonar demonstrates that the proposed...

  18. Generalized simplicial chiral models

    CERN Document Server

    Alimohammadi, M

    2000-01-01

    Using the auxiliary field representation of the simplicial chiral models on a (d-1)-dimensional simplex, we generalize the simplicial chiral models by replacing the term Tr$(AA^{\\d})$ in the Lagrangian of these models, by an arbitrary class function of $AA^{\\d}; V(AA^{\\d})$. This is the same method that has been used in defining the generalized two-dimensional Yang-Mills theories (gYM_2) from ordinary YM_2. We call these models, the " generalized simplicial chiral models ". With the help of the results of one-link integral over a U(N) matrix, we compute the large-N saddle-point equations for eigenvalue density function $\\ro (z)$ in the weak ($\\b >\\b_c$) and strong ($\\b <\\b_c$) regions. In d=2, where the model somehow relates to gYM_2 theory, we solve the saddle-point equations and find $\\ro (z)$ in two region, and calculate the explicit value of critical point $\\b_c$ for $V(B)=TrB^n (B=AA^{\\d})$. For $V(B)=Tr B^2,Tr B^3$ and Tr$B^4$, we study the critical behaviour of the model at d=2, and by calculating t...

  19. Generalized Nonlinear Yule Models

    Science.gov (United States)

    Lansky, Petr; Polito, Federico; Sacerdote, Laura

    2016-10-01

    With the aim of considering models related to random graphs growth exhibiting persistent memory, we propose a fractional nonlinear modification of the classical Yule model often studied in the context of macroevolution. Here the model is analyzed and interpreted in the framework of the development of networks such as the World Wide Web. Nonlinearity is introduced by replacing the linear birth process governing the growth of the in-links of each specific webpage with a fractional nonlinear birth process with completely general birth rates. Among the main results we derive the explicit distribution of the number of in-links of a webpage chosen uniformly at random recognizing the contribution to the asymptotics and the finite time correction. The mean value of the latter distribution is also calculated explicitly in the most general case. Furthermore, in order to show the usefulness of our results, we particularize them in the case of specific birth rates giving rise to a saturating behaviour, a property that is often observed in nature. The further specialization to the non-fractional case allows us to extend the Yule model accounting for a nonlinear growth.

  20. Generalized Nonlinear Yule Models

    Science.gov (United States)

    Lansky, Petr; Polito, Federico; Sacerdote, Laura

    2016-11-01

    With the aim of considering models related to random graphs growth exhibiting persistent memory, we propose a fractional nonlinear modification of the classical Yule model often studied in the context of macroevolution. Here the model is analyzed and interpreted in the framework of the development of networks such as the World Wide Web. Nonlinearity is introduced by replacing the linear birth process governing the growth of the in-links of each specific webpage with a fractional nonlinear birth process with completely general birth rates. Among the main results we derive the explicit distribution of the number of in-links of a webpage chosen uniformly at random recognizing the contribution to the asymptotics and the finite time correction. The mean value of the latter distribution is also calculated explicitly in the most general case. Furthermore, in order to show the usefulness of our results, we particularize them in the case of specific birth rates giving rise to a saturating behaviour, a property that is often observed in nature. The further specialization to the non-fractional case allows us to extend the Yule model accounting for a nonlinear growth.

  1. Introduction to general and generalized linear models

    CERN Document Server

    Madsen, Henrik

    2010-01-01

    IntroductionExamples of types of data Motivating examples A first view on the modelsThe Likelihood PrincipleIntroduction Point estimation theory The likelihood function The score function The information matrix Alternative parameterizations of the likelihood The maximum likelihood estimate (MLE) Distribution of the ML estimator Generalized loss-function and deviance Quadratic approximation of the log-likelihood Likelihood ratio tests Successive testing in hypothesis chains Dealing with nuisance parameters General Linear ModelsIntroduction The multivariate normal distribution General linear mod

  2. Natural beauty of the standard model -A derivation of electro-weak unified and quantum-gravity theory without assuming a Higgs particle-

    CERN Document Server

    Nishikawa, M

    2004-01-01

    We study the asymptotic behavior of a singular potential that arises under several frequently occurring analytic behaviors of the eigenfunctions without introducing cut-offs. Instead, in our analyses we focus on power behaviors of eigenfunctions. Then, we discuss the self-consistency condition for the spherical symmetric Klein-Gordon equation, and discuss a natural possibility that gravity and weak coupling constants $g_G$ and $g_W$ may be defined after $g_{EM}$. In this point of view, gravity and the weak force are subsidiary derived from electricity. Particularly, $SU(2)_L\\times U(1)$ unification is derived without assuming a phase transition. A possible origin of the Higgs mechanism is proposed. Each particle pair of the standard model is associated with the corresponding asymptotic expansion of an eigenfunction. Next we consider the meaning of internal and external degreesof freedom for a two body problem, and find two degrees of freedom which can not reduce to the local motion of one frame. These two deg...

  3. Web life: If We Assume

    Science.gov (United States)

    2012-10-01

    The title If We Assume refers to physicists' habit of making back-of-the-envelope calculations, but do not let the allusion to assumptions fool you: there are precious few spherical cows rolling around frictionless surfaces in this corner of the Internet.

  4. Cosmological models in general relativity

    Indian Academy of Sciences (India)

    B B Paul

    2003-12-01

    LRS Bianchi type-I space-time filled with perfect fluid is considered here with deceleration parameter as variable. The metric potentials and are functions of as well as . Assuming '/=(), where prime denotes differentiation with respect to , it was found that =('/) and =(), where =() and is the scale factor which is a function of only. The value of Hubble’s constant 0 was found to be less than half for non-flat model and is equal to 1.3 for a flat model.

  5. Generalized, Linear, and Mixed Models

    CERN Document Server

    McCulloch, Charles E; Neuhaus, John M

    2011-01-01

    An accessible and self-contained introduction to statistical models-now in a modernized new editionGeneralized, Linear, and Mixed Models, Second Edition provides an up-to-date treatment of the essential techniques for developing and applying a wide variety of statistical models. The book presents thorough and unified coverage of the theory behind generalized, linear, and mixed models and highlights their similarities and differences in various construction, application, and computational aspects.A clear introduction to the basic ideas of fixed effects models, random effects models, and mixed m

  6. Theoretical Models of Generalized Quasispecies.

    Science.gov (United States)

    Wagner, Nathaniel; Atsmon-Raz, Yoav; Ashkenasy, Gonen

    2016-01-01

    Theoretical modeling of quasispecies has progressed in several directions. In this chapter, we review the works of Emmanuel Tannenbaum, who, together with Eugene Shakhnovich at Harvard University and later with colleagues and students at Ben-Gurion University in Beersheva, implemented one of the more useful approaches, by progressively setting up various formulations for the quasispecies model and solving them analytically. Our review will focus on these papers that have explored new models, assumed the relevant mathematical approximations, and proceeded to analytically solve for the steady-state solutions and run stochastic simulations . When applicable, these models were related to real-life problems and situations, including changing environments, presence of chemical mutagens, evolution of cancer and tumor cells , mutations in Escherichia coli, stem cells , chromosomal instability (CIN), propagation of antibiotic drug resistance , dynamics of bacteria with plasmids , DNA proofreading mechanisms, and more.

  7. Bianchi type IX string cosmological model in general relativity

    Indian Academy of Sciences (India)

    Raj Bali; Shuchi Dave

    2001-04-01

    We have investigated Bianchi type IX string cosmological models in general relativity. To get a determinate solution, we have assumed a condition ρ= i.e. rest energy density for a cloud of strings is equal to the string tension density. The various physical and geometrical aspects of the models are also discussed.

  8. General regression and representation model for classification.

    Directory of Open Access Journals (Sweden)

    Jianjun Qian

    Full Text Available Recently, the regularized coding-based classification methods (e.g. SRC and CRC show a great potential for pattern classification. However, most existing coding methods assume that the representation residuals are uncorrelated. In real-world applications, this assumption does not hold. In this paper, we take account of the correlations of the representation residuals and develop a general regression and representation model (GRR for classification. GRR not only has advantages of CRC, but also takes full use of the prior information (e.g. the correlations between representation residuals and representation coefficients and the specific information (weight matrix of image pixels to enhance the classification performance. GRR uses the generalized Tikhonov regularization and K Nearest Neighbors to learn the prior information from the training data. Meanwhile, the specific information is obtained by using an iterative algorithm to update the feature (or image pixel weights of the test sample. With the proposed model as a platform, we design two classifiers: basic general regression and representation classifier (B-GRR and robust general regression and representation classifier (R-GRR. The experimental results demonstrate the performance advantages of proposed methods over state-of-the-art algorithms.

  9. Fermions as generalized Ising models

    Science.gov (United States)

    Wetterich, C.

    2017-04-01

    We establish a general map between Grassmann functionals for fermions and probability or weight distributions for Ising spins. The equivalence between the two formulations is based on identical transfer matrices and expectation values of products of observables. The map preserves locality properties and can be realized for arbitrary dimensions. We present a simple example where a quantum field theory for free massless Dirac fermions in two-dimensional Minkowski space is represented by an asymmetric Ising model on a euclidean square lattice.

  10. CPN Models in General Coordinates

    CERN Document Server

    Barnes, K J

    2002-01-01

    An analysis of CPN models is given in terms of general coordinates or arbitrary interpolating fields.Only closed expressions made from simple functions are involved.Special attention is given to CP2 and CP4. In the first of these the retrieval of stereographic coordinates reveals the hermitian form of the metric. A similar analysis for the latter case allows comparison with the Fubini-Study metric.

  11. Effects of composite casein and beta-lactoglobulin genotypes on renneting properties and composition of bovine milk by assuming an animal model

    Directory of Open Access Journals (Sweden)

    T. IKONEN

    2008-12-01

    Full Text Available The effects of kappa-beta-casein genotypes and b-lactoglobulin genotypes on the renneting properties and composition of milk were estimated for 174 and 155 milk samples of 59 Finnish Ayrshire and 55 Finnish Friesian cows, respectively. As well as the random additive genetic and permanent environmental effects of a cow, the model included the fixed effects for parity, lactation stage, season, kappa-beta-casein genotypes and b-lactoglobulin genotypes. Favourable renneting properties were associated with kappa-beta-casein genotypes ABA 1 A 2 , ABA 1 A 1 and AAA 1 A 2 in the Finnish Ayrshire, and with ABA 2 B, AAA 1 A 3 , AAA 2 A 3 , ABA 1 A 2 and ABA 2 A 2 in the Finnish Friesian. The favourable effect of these genotypes on curd firming time and on firmness of the curd was partly due to their association with a high kappa-casein concentration in the milk. The effect of the kappa-casein E allele on renneting properties was unfavourable compared with that of the kappa-casein B allele, and possibly with that of the A allele. The beta-lactoglobulin genotypes had no effect on renneting properties but they had a clear effect on the protein composition of milk. The beta-lactoglobulin AA genotype was associated with a high whey protein % and beta-lactoglobulin concentration and the BB genotype with a high casein % and casein number.;

  12. Multivariate covariance generalized linear models

    DEFF Research Database (Denmark)

    Bonat, W. H.; Jørgensen, Bent

    2016-01-01

    We propose a general framework for non-normal multivariate data analysis called multivariate covariance generalized linear models, designed to handle multivariate response variables, along with a wide range of temporal and spatial correlation structures defined in terms of a covariance link...... function combined with a matrix linear predictor involving known matrices. The method is motivated by three data examples that are not easily handled by existing methods. The first example concerns multivariate count data, the second involves response variables of mixed types, combined with repeated...... are fitted by using an efficient Newton scoring algorithm based on quasi-likelihood and Pearson estimating functions, using only second-moment assumptions. This provides a unified approach to a wide variety of types of response variables and covariance structures, including multivariate extensions...

  13. Fermions as generalized Ising models

    Directory of Open Access Journals (Sweden)

    C. Wetterich

    2017-04-01

    Full Text Available We establish a general map between Grassmann functionals for fermions and probability or weight distributions for Ising spins. The equivalence between the two formulations is based on identical transfer matrices and expectation values of products of observables. The map preserves locality properties and can be realized for arbitrary dimensions. We present a simple example where a quantum field theory for free massless Dirac fermions in two-dimensional Minkowski space is represented by an asymmetric Ising model on a euclidean square lattice.

  14. General autocatalytic theory and simple model of financial markets

    Science.gov (United States)

    Thuy Anh, Chu; Lan, Nguyen Tri; Viet, Nguyen Ai

    2015-06-01

    The concept of autocatalytic theory has become a powerful tool in understanding evolutionary processes in complex systems. A generalization of autocatalytic theory was assumed by considering that the initial element now is being some distribution instead of a constant value as in traditional theory. This initial condition leads to that the final element might have some distribution too. A simple physics model for financial markets is proposed, using this general autocatalytic theory. Some general behaviours of evolution process and risk moment of a financial market also are investigated in framework of this simple model.

  15. Modelling debris flows down general channels

    Directory of Open Access Journals (Sweden)

    S. P. Pudasaini

    2005-01-01

    Full Text Available This paper is an extension of the single-phase cohesionless dry granular avalanche model over curved and twisted channels proposed by Pudasaini and Hutter (2003. It is a generalisation of the Savage and Hutter (1989, 1991 equations based on simple channel topography to a two-phase fluid-solid mixture of debris material. Important terms emerging from the correct treatment of the kinematic and dynamic boundary condition, and the variable basal topography are systematically taken into account. For vanishing fluid contribution and torsion-free channel topography our new model equations exactly degenerate to the previous Savage-Hutter model equations while such a degeneration was not possible by the Iverson and Denlinger (2001 model, which, in fact, also aimed to extend the Savage and Hutter model. The model equations of this paper have been rigorously derived; they include the effects of the curvature and torsion of the topography, generally for arbitrarily curved and twisted channels of variable channel width. The equations are put into a standard conservative form of partial differential equations. From these one can easily infer the importance and influence of the pore-fluid-pressure distribution in debris flow dynamics. The solid-phase is modelled by applying a Coulomb dry friction law whereas the fluid phase is assumed to be an incompressible Newtonian fluid. Input parameters of the equations are the internal and bed friction angles of the solid particles, the viscosity and volume fraction of the fluid, the total mixture density and the pore pressure distribution of the fluid at the bed. Given the bed topography and initial geometry and the initial velocity profile of the debris mixture, the model equations are able to describe the dynamics of the depth profile and bed parallel depth-averaged velocity distribution from the initial position to the final deposit. A shock capturing, total variation diminishing numerical scheme is implemented to

  16. Generalized model of island biodiversity

    Science.gov (United States)

    Kessler, David A.; Shnerb, Nadav M.

    2015-04-01

    The dynamics of a local community of competing species with weak immigration from a static regional pool is studied. Implementing the generalized competitive Lotka-Volterra model with demographic noise, a rich dynamics with four qualitatively distinct phases is unfolded. When the overall interspecies competition is weak, the island species recapitulate the mainland species. For higher values of the competition parameter, the system still admits an equilibrium community, but now some of the mainland species are absent on the island. Further increase in competition leads to an intermittent "disordered" phase, where the dynamics is controlled by invadable combinations of species and the turnover rate is governed by the migration. Finally, the strong competition phase is glasslike, dominated by uninvadable states and noise-induced transitions. Our model contains, as a special case, the celebrated neutral island theories of Wilson-MacArthur and Hubbell. Moreover, we show that slight deviations from perfect neutrality may lead to each of the phases, as the Hubbell point appears to be quadracritical.

  17. Generalization performance of regularized neural network models

    DEFF Research Database (Denmark)

    Larsen, Jan; Hansen, Lars Kai

    1994-01-01

    Architecture optimization is a fundamental problem of neural network modeling. The optimal architecture is defined as the one which minimizes the generalization error. This paper addresses estimation of the generalization performance of regularized, complete neural network models. Regularization...

  18. Generalized complex geometry, generalized branes and the Hitchin sigma model

    Energy Technology Data Exchange (ETDEWEB)

    Zucchini, Roberto E-mail: zucchinir@bo.infn.it

    2005-03-01

    Hitchin's generalized complex geometry has been shown to be relevant in compactifications of superstring theory with fluxes and is expected to lead to a deeper understanding of mirror symmetry. Gualtieri's notion of generalized complex submanifold seems to be a natural candidate for the description of branes in this context. Recently, we introduced a Batalin-Vilkovisky field theoretic realization of generalized complex geometry, the Hitchin sigma model, extending the well known Poisson sigma model. In this paper, exploiting Gualtieri's formalism, we incorporate branes into the model. A detailed study of the boundary conditions obeyed by the world sheet fields is provided. Finally, it is found that, when branes are present, the classical Batalin-Vilkovisky cohomology contains an extra sector that is related non trivially to a novel cohomology associated with the branes as generalized complex submanifolds. (author)

  19. Generalized complex geometry, generalized branes and the Hitchin sigma model

    CERN Document Server

    Zucchini, R

    2005-01-01

    Hitchin's generalized complex geometry has been shown to be relevant in compactifications of superstring theory with fluxes and is expected to lead to a deeper understanding of mirror symmetry. Gualtieri's notion of generalized complex submanifold seems to be a natural candidate for the description of branes in this context. Recently, we introduced a field theoretic realization of generalized complex geometry, the Hitchin sigma model, extending the well known Poisson sigma model. In this paper, exploiting Gualtieri's formalism, we incorporate branes into the model. A detailed study of the boundary conditions obeyed by the world sheet fields is provided. Finally, it is found that, when branes are present, the classical Batalin--Vilkovisky cohomology contains an extra sector that is related non trivially to a novel cohomology associated with the branes as generalized complex submanifolds.

  20. More on generalized Heisenberg ferromagnet models

    CERN Document Server

    Oh, P; Oh, Phillial; Park, Q Han

    1996-01-01

    We generalize the integrable Heisenberg ferromagnet model according to each Hermitian symmetric spaces and address various new aspects of the generalized model. Using the first order formalism of generalized spins which are defined on the coadjoint orbits of arbitrary groups, we construct a Lagrangian of the generalized model from which we obtain the Hamiltonian structure explicitly in the case of CP(N-1) orbit. The gauge equivalence between the generalized Heisenberg ferromagnet and the nonlinear Schr\\"{o}dinger models is given. Using the equivalence, we find infinitely many conserved integrals of both models.

  1. Product model structure for generalized optimal design

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The framework of the generalized optimization product model with the core of network- and tree-hierarchical structure is advanced to improve the characteristics of the generalized optimal design. Based on the proposed node-repetition technique, a network-hierarchical structure is united with the tree-hierarchical structure to facilitate the modeling of serialization and combination products. The criteria for product decomposition are investigated. Seven tree nodes are defined for the construction of a general product model, and their modeling properties are studied in detail. The developed product modeling system is applied and examined successfully in the modeling practice of the generalized optimal design for a hydraulic excavator.

  2. Multivariate generalized linear mixed models using R

    CERN Document Server

    Berridge, Damon Mark

    2011-01-01

    Multivariate Generalized Linear Mixed Models Using R presents robust and methodologically sound models for analyzing large and complex data sets, enabling readers to answer increasingly complex research questions. The book applies the principles of modeling to longitudinal data from panel and related studies via the Sabre software package in R. A Unified Framework for a Broad Class of Models The authors first discuss members of the family of generalized linear models, gradually adding complexity to the modeling framework by incorporating random effects. After reviewing the generalized linear model notation, they illustrate a range of random effects models, including three-level, multivariate, endpoint, event history, and state dependence models. They estimate the multivariate generalized linear mixed models (MGLMMs) using either standard or adaptive Gaussian quadrature. The authors also compare two-level fixed and random effects linear models. The appendices contain additional information on quadrature, model...

  3. Generalized fish life-cycle poplulation model and computer program

    Energy Technology Data Exchange (ETDEWEB)

    DeAngelis, D. L.; Van Winkle, W.; Christensen, S. W.; Blum, S. R.; Kirk, B. L.; Rust, B. W.; Ross, C.

    1978-03-01

    A generalized fish life-cycle population model and computer program have been prepared to evaluate the long-term effect of changes in mortality in age class 0. The general question concerns what happens to a fishery when density-independent sources of mortality are introduced that act on age class 0, particularly entrainment and impingement at power plants. This paper discusses the model formulation and computer program, including sample results. The population model consists of a system of difference equations involving age-dependent fecundity and survival. The fecundity for each age class is assumed to be a function of both the fraction of females sexually mature and the weight of females as they enter each age class. Natural mortality for age classes 1 and older is assumed to be independent of population size. Fishing mortality is assumed to vary with the number and weight of fish available to the fishery. Age class 0 is divided into six life stages. The probability of survival for age class 0 is estimated considering both density-independent mortality (natural and power plant) and density-dependent mortality for each life stage. Two types of density-dependent mortality are included. These are cannibalism of each life stage by older age classes and intra-life-stage competition.

  4. Aspects of generalized Calogero model

    CERN Document Server

    Meljanac, S; Milekovic, M

    2004-01-01

    A multispecies model of Calogero type in $D\\geq 1$ dimensions is constructed. The model includes harmonic, two-body and three-body interactions. Using the underlying conformal SU(1,1) algebra, we find the exact eigenenergies corresponding to a class of the exact global collective states. Analysing corresponding Fock space, we detect the universal critical point at which the model exhibits singular behaviour.

  5. Generalized exponential function and discrete growth models

    Science.gov (United States)

    Souto Martinez, Alexandre; Silva González, Rodrigo; Lauri Espíndola, Aquino

    2009-07-01

    Here we show that a particular one-parameter generalization of the exponential function is suitable to unify most of the popular one-species discrete population dynamic models into a simple formula. A physical interpretation is given to this new introduced parameter in the context of the continuous Richards model, which remains valid for the discrete case. From the discretization of the continuous Richards’ model (generalization of the Gompertz and Verhulst models), one obtains a generalized logistic map and we briefly study its properties. Notice, however that the physical interpretation for the introduced parameter persists valid for the discrete case. Next, we generalize the (scramble competition) θ-Ricker discrete model and analytically calculate the fixed points as well as their stabilities. In contrast to previous generalizations, from the generalized θ-Ricker model one is able to retrieve either scramble or contest models.

  6. General introduction to simulation models

    DEFF Research Database (Denmark)

    Hisham Beshara Halasa, Tariq; Boklund, Anette

    2012-01-01

    Monte Carlo simulation can be defined as a representation of real life systems to gain insight into their functions and to investigate the effects of alternative conditions or actions on the modeled system. Models are a simplification of a system. Most often, it is best to use experiments and field...

  7. Inhomogeneous generalization of some Bianchi models

    Science.gov (United States)

    Carmeli, M.; Charach, Ch.

    1980-02-01

    Vacuum Bianchi models which can be transformed to the Einstein-Rosen metric are considered. The models are used in order to construct new inhomogeneous universes, which are generalizations of Bianchi cosmologies of types III, V and VIh. Recent generalizations of these Bianchi models, considered by Wainwright et al., are also discussed.

  8. General Pressurization Model in Simscape

    Science.gov (United States)

    Servin, Mario; Garcia, Vicky

    2010-01-01

    System integration is an essential part of the engineering design process. The Ares I Upper Stage (US) is a complex system which is made up of thousands of components assembled into subsystems including a J2-X engine, liquid hydrogen (LH2) and liquid oxygen (LO2) tanks, avionics, thrust vector control, motors, etc. System integration is the task of connecting together all of the subsystems into one large system. To ensure that all the components will "fit together" as well as safety and, quality, integration analysis is required. Integration analysis verifies that, as an integrated system, the system will behave as designed. Models that represent the actual subsystems are built for more comprehensive analysis. Matlab has been an instrument widely use by engineers to construct mathematical models of systems. Simulink, one of the tools offered by Matlab, provides multi-domain graphical environment to simulate and design time-varying systems. Simulink is a powerful tool to analyze the dynamic behavior of systems over time. Furthermore, Simscape, a tool provided by Simulink, allows users to model physical (such as mechanical, thermal and hydraulic) systems using physical networks. Using Simscape, a model representing an inflow of gas to a pressurized tank was created where the temperature and pressure of the tank are measured over time to show the behavior of the gas. By further incorporation of Simscape into model building, the full potential of this software can be discovered and it hopefully can become a more utilized tool.

  9. Undamped critical speeds of rotor systems using assumed modes

    Science.gov (United States)

    Nelson, H. D.; Chen, W. J.

    1993-07-01

    A procedure is presented to reduce the DOF of a discrete rotordynamics model by utilizing an assumed-modes Rayleigh-Ritz approximation. Many possibilities exist for the assumed modes and any reasonable choice will yield a reduced-order model with adequate accuracy for most applications. The procedure provides an option which can be implemented with relative ease and may prove beneficial for many applications where computational efficiency is particularly important.

  10. Generalized Kripke models for epistemic logic

    NARCIS (Netherlands)

    Voorbraak, F.

    In this paper a generalization of Kripke models is proposed for systemizing the study of the many different epistemic notions that appear in the literature. The generalized Kripke models explicitly represent an agent's epistemic states to which the epistemic notions refer. Two central

  11. Generalized Kripke models for epistemic logic

    NARCIS (Netherlands)

    Voorbraak, F.

    2008-01-01

    In this paper a generalization of Kripke models is proposed for systemizing the study of the many different epistemic notions that appear in the literature. The generalized Kripke models explicitly represent an agent's epistemic states to which the epistemic notions refer. Two central epistemic noti

  12. General Geographical Economics Model with Congestion

    NARCIS (Netherlands)

    J.G.M. van Marrewijk (Charles)

    2005-01-01

    textabstractWe derive and discuss a general, but simple geographical economics model with congestion, allowing us to explain the economic viability of small and large locations. The model generalizes some previous work and lends itself to analyzing the impact of public policy in terms of

  13. Tilted Bianchi type I dust fluid cosmological model in general relativity

    Indian Academy of Sciences (India)

    Raj Bali; Keshav Sharma

    2002-03-01

    In this paper, we have investigated a tilted Bianchi type I cosmological model filled with dust of perfect fluid in general relativity. To get a determinate solution, we have assumed a condition = between metric potentials. The physical and geometrical aspects of the model together with singularity in the model are also discussed.

  14. Pinning control of a generalized complex dynamical network model

    Institute of Scientific and Technical Information of China (English)

    Huizhong YANG; Li SHENG

    2009-01-01

    This paper investigates the local and global synchronization of a generalized complex dynamical network model with constant and delayed coupling.Without assuming symmetry of the couplings,we proved that a single controller can pin the generalized complex network to a homogenous solution.Some previous synchronization results are generalized.In this paper,we first discuss how to pin an array of delayed neural networks to the synchronous solution by adding only one controller.Next,by using the Lyapunov functional method,some sufficient conditions are derived for the local and global synchronization of the coupled systems.The obtained results are expressed in terms of LMIs,which can be efficiently checked by the Matlab LMI toolbox.Finally,an example is given to illustrate the theoretical results.

  15. A general consumer-resource population model

    Science.gov (United States)

    Lafferty, Kevin D.; DeLeo, Giulio; Briggs, Cheryl J.; Dobson, Andrew P.; Gross, Thilo; Kuris, Armand M.

    2015-01-01

    Food-web dynamics arise from predator-prey, parasite-host, and herbivore-plant interactions. Models for such interactions include up to three consumer activity states (questing, attacking, consuming) and up to four resource response states (susceptible, exposed, ingested, resistant). Articulating these states into a general model allows for dissecting, comparing, and deriving consumer-resource models. We specify this general model for 11 generic consumer strategies that group mathematically into predators, parasites, and micropredators and then derive conditions for consumer success, including a universal saturating functional response. We further show how to use this framework to create simple models with a common mathematical lineage and transparent assumptions. Underlying assumptions, missing elements, and composite parameters are revealed when classic consumer-resource models are derived from the general model.

  16. Anisotropic Generalized Ghost Pilgrim Dark Energy Model in General Relativity

    Science.gov (United States)

    Santhi, M. Vijaya; Rao, V. U. M.; Aditya, Y.

    2017-02-01

    A spatially homogeneous and anisotropic locally rotationally symmetric (LRS) Bianchi type- I Universe filled with matter and generalized ghost pilgrim dark energy (GGPDE) has been studied in general theory of relativity. To obtain determinate solution of the field equations we have used scalar expansion proportional to the shear scalar which leads to a relation between the metric potentials. Some well-known cosmological parameters (equation of state (EoS) parameter ( ω Λ), deceleration parameter ( q) and squared speed of sound {vs2}) and planes (ω _{Λ }-dot {ω }_{Λ } and statefinder) are constructed for obtained model. The discussion and significance of these parameters is totally done through pilgrim dark energy parameter ( β) and cosmic time ( t).

  17. Generalization error bounds for stationary autoregressive models

    CERN Document Server

    McDonald, Daniel J; Schervish, Mark

    2011-01-01

    We derive generalization error bounds for stationary univariate autoregressive (AR) models. We show that the stationarity assumption alone lets us treat the estimation of AR models as a regularized kernel regression without the need to further regularize the model arbitrarily. We thereby bound the Rademacher complexity of AR models and apply existing Rademacher complexity results to characterize the predictive risk of AR models. We demonstrate our methods by predicting interest rate movements.

  18. The Disquietude of Duty Assuming Kant

    Directory of Open Access Journals (Sweden)

    Max Maureira Pacheco

    2014-11-01

    Full Text Available For Kant, the moral duty is determined universally, that is, on account of its form, in the moral norm. However the moral norm is opposed to particularity, determined by what is not the norm itself, hence being the origin of singularity. The singularized norm is opposed, from experience, by its negation in individual cases. To assume Kant demands the reconciliation of the singular, manifested incases, with the universal. This article deals with this question, demonstrating, above all, the practical difficulties linked to the moral experience in its totality.

  19. A Non-Gaussian Spatial Generalized Linear Latent Variable Model

    KAUST Repository

    Irincheeva, Irina

    2012-08-03

    We consider a spatial generalized linear latent variable model with and without normality distributional assumption on the latent variables. When the latent variables are assumed to be multivariate normal, we apply a Laplace approximation. To relax the assumption of marginal normality in favor of a mixture of normals, we construct a multivariate density with Gaussian spatial dependence and given multivariate margins. We use the pairwise likelihood to estimate the corresponding spatial generalized linear latent variable model. The properties of the resulting estimators are explored by simulations. In the analysis of an air pollution data set the proposed methodology uncovers weather conditions to be a more important source of variability than air pollution in explaining all the causes of non-accidental mortality excluding accidents. © 2012 International Biometric Society.

  20. A generalized sinusoidal model and its applications

    Institute of Scientific and Technical Information of China (English)

    KU Shao-ping; LI Ning

    2009-01-01

    A physical model of sinusoidal function was established. It is generalized that the force is directly proportional to a power function of the distance in a classical spring-oscillator system. The differential equation of the generalized model was given. Simulations were conducted with different power values. The results show that the solution of the generalized equation is a periodic function. The expressions of the amplitude and the period (frequency) of the generalized equation were derived by the physical method. All the simulation results coincide with the calculation results of the derived expressions. A special function also was deduced and proven to be convergent in the theoretical analysis. The limit value of the special function also was derived. The generalized model can be used in solving a type of differential equation and to generate periodic waveforms.

  1. EOP MIT General Circulation Model (MITgcm)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data contains a regional implementation of the Massachusetts Institute of Technology general circulation model (MITgcm) at a 1-km spatial resolution for the...

  2. Generalized Reduced Order Model Generation Project

    Data.gov (United States)

    National Aeronautics and Space Administration — M4 Engineering proposes to develop a generalized reduced order model generation method. This method will allow for creation of reduced order aeroservoelastic state...

  3. Generalized Kahler Geometry from supersymmetric sigma models

    CERN Document Server

    Bredthauer, A; Persson, J; Zabzine, M; Bredthauer, Andreas; Lindstrom, Ulf; Persson, Jonas; Zabzine, Maxim

    2006-01-01

    We give a physical derivation of generalized Kahler geometry. Starting from a supersymmetric nonlinear sigma model, we rederive and explain the results of Gualtieri regarding the equivalence between generalized Kahler geometry and the bi-hermitean geometry of Gates-Hull-Rocek. When cast in the language of supersymmetric sigma models, this relation maps precisely to that between the Lagrangian and the Hamiltonian formalisms. We also discuss topological twist in this context.

  4. Generalized latent variable modeling multilevel, longitudinal, and structural equation models

    CERN Document Server

    Skrondal, Anders

    2004-01-01

    METHODOLOGY THE OMNI-PRESENCE OF LATENT VARIABLES Introduction 'True' variable measured with error Hypothetical constructs Unobserved heterogeneity Missing values and counterfactuals Latent responses Generating flexible distributions Combining information Summary MODELING DIFFERENT RESPONSE PROCESSES Introduction Generalized linear models Extensions of generalized linear models Latent response formulation Modeling durations or survival Summary and further reading CLASSICAL LATENT VARIABLE MODELS Introduction Multilevel regression models Factor models and item respons

  5. Empirical generalization assessment of neural network models

    DEFF Research Database (Denmark)

    Larsen, Jan; Hansen, Lars Kai

    1995-01-01

    competing models. Since all models are trained on the same data, a key issue is to take this dependency into account. The optimal split of the data set of size N into a cross-validation set of size Nγ and a training set of size N(1-γ) is discussed. Asymptotically (large data sees), γopt→1......This paper addresses the assessment of generalization performance of neural network models by use of empirical techniques. We suggest to use the cross-validation scheme combined with a resampling technique to obtain an estimate of the generalization performance distribution of a specific model...

  6. Foundations of linear and generalized linear models

    CERN Document Server

    Agresti, Alan

    2015-01-01

    A valuable overview of the most important ideas and results in statistical analysis Written by a highly-experienced author, Foundations of Linear and Generalized Linear Models is a clear and comprehensive guide to the key concepts and results of linear statistical models. The book presents a broad, in-depth overview of the most commonly used statistical models by discussing the theory underlying the models, R software applications, and examples with crafted models to elucidate key ideas and promote practical model building. The book begins by illustrating the fundamentals of linear models,

  7. All the generalized Georgi-Machacek models

    CERN Document Server

    Logan, Heather E

    2015-01-01

    The Georgi-Machacek model adds two SU(2)_L-triplet scalars to the Standard Model in such a way as to preserve custodial SU(2) symmetry. We study the generalizations of the Georgi-Machacek model to SU(2)_L representations larger than triplets. Perturbative unitarity considerations limit the possibilities to models containing only SU(2)_L quartets, quintets, or sextets. These models are phenomenologically interesting because they allow the couplings of the 125 GeV Higgs boson to WW and ZZ to be larger than their values in the Standard Model. We write down the most general custodial SU(2)-preserving scalar potentials for these models and outline their phenomenology. We find that experimental and theoretical constraints on the fermiophobic custodial-fiveplet states present in each of the models lead to absolute upper bounds on the 125 GeV Higgs boson coupling strength to WW and ZZ.

  8. Simple implementation of general dark energy models

    Energy Technology Data Exchange (ETDEWEB)

    Bloomfield, Jolyon K. [MIT Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, 77 Massachusetts Ave #37241, Cambridge, MA, 02139 (United States); Pearson, Jonathan A., E-mail: jolyon@mit.edu, E-mail: jonathan.pearson@durham.ac.uk [Centre for Particle Theory, Department of Mathematical Sciences, Durham University, South Road, Durham, DH1 3LE (United Kingdom)

    2014-03-01

    We present a formalism for the numerical implementation of general theories of dark energy, combining the computational simplicity of the equation of state for perturbations approach with the generality of the effective field theory approach. An effective fluid description is employed, based on a general action describing single-scalar field models. The formalism is developed from first principles, and constructed keeping the goal of a simple implementation into CAMB in mind. Benefits of this approach include its straightforward implementation, the generality of the underlying theory, the fact that the evolved variables are physical quantities, and that model-independent phenomenological descriptions may be straightforwardly investigated. We hope this formulation will provide a powerful tool for the comparison of theoretical models of dark energy with observational data.

  9. Estimation of Phylogeny Using a General Markov Model

    Directory of Open Access Journals (Sweden)

    John Robinson

    2005-01-01

    Full Text Available The non-homogeneous model of nucleotide substitution proposed by Barry and Hartigan (Stat Sci, 2: 191-210 is the most general model of DNA evolution assuming an independent and identical process at each site. We present a computational solution for this model, and use it to analyse two data sets, each violating one or more of the assumptions of stationarity, homogeneity, and reversibility. The log likelihood values returned by programs based on the F84 model (J Mol Evol, 29: 170-179, the general time reversible model (J Mol Evol, 20: 86-93, and Barry and Hartigan’s model are compared to determine the validity of the assumptions made by the first two models. In addition, we present a method for assessing whether sequences have evolved under reversible conditions and discover that this is not so for the two data sets. Finally, we determine the most likely tree under the three models of DNA evolution and compare these with the one favoured by the tests for symmetry.

  10. Micro Data and General Equilibrium Models

    DEFF Research Database (Denmark)

    Browning, Martin; Hansen, Lars Peter; Heckman, James J.

    1999-01-01

    Dynamic general equilibrium models are required to evaluate policies applied at the national level. To use these models to make quantitative forecasts requires knowledge of an extensive array of parameter values for the economy at large. This essay describes the parameters required for different ...

  11. Resonance asymptotics in the generalized Winter model

    CERN Document Server

    Exner, P; Exner, Pavel; Fraas, Martin

    2006-01-01

    We consider a modification of the Winter model describing a quantum particle in presence of a spherical barrier given by a fixed generalized point interaction. It is shown that the three classes of such interactions correspond to three different types of asymptotic behaviour of resonances of the model at high energies.

  12. Analysis of Robust Quasi-deviances for Generalized Linear Models

    Directory of Open Access Journals (Sweden)

    Eva Cantoni

    2004-04-01

    Full Text Available Generalized linear models (McCullagh and Nelder 1989 are a popular technique for modeling a large variety of continuous and discrete data. They assume that the response variables Yi , for i = 1, . . . , n, come from a distribution belonging to the exponential family, such that E[Yi ] = ?i and V[Yi ] = V (?i , and that ?i = g(?i = xiT?, where ? ? IR p is the vector of parameters, xi ? IR p, and g(. is the link function. The non-robustness of the maximum likelihood and the maximum quasi-likelihood estimators has been studied extensively in the literature. For model selection, the classical analysis-of-deviance approach shares the same bad robustness properties. To cope with this, Cantoni and Ronchetti (2001 propose a robust approach based on robust quasi-deviance functions for estimation and variable selection. We refer to that paper for a deeper discussion and the review of the literature.

  13. A general model for bidirectional associative memories.

    Science.gov (United States)

    Shi, H; Zhao, Y; Zhuang, X

    1998-01-01

    This paper proposes a general model for bidirectional associative memories that associate patterns between the X-space and the Y-space. The general model does not require the usual assumption that the interconnection weight from a neuron in the X-space to a neuron in the Y-space is the same as the one from the Y-space to the X-space. We start by defining a supporting function to measure how well a state supports another state in a general bidirectional associative memory (GBAM). We then use the supporting function to formulate the associative recalling process as a dynamic system, explore its stability and asymptotic stability conditions, and develop an algorithm for learning the asymptotic stability conditions using the Rosenblatt perceptron rule. The effectiveness of the proposed model for recognition of noisy patterns and the performance of the model in terms of storage capacity, attraction, and spurious memories are demonstrated by some outstanding experimental results.

  14. The Cosmology of Generalized Modified Gravity Models

    CERN Document Server

    Carroll, S M; Duvvuri, V; Easson, D A; Trodden, M; Turner, M S; Carroll, Sean M.; Felice, Antonio De; Duvvuri, Vikram; Easson, Damien A.; Trodden, Mark; Turner, Michael S.

    2005-01-01

    We consider general curvature-invariant modifications of the Einstein-Hilbert action that become important only in regions of extremely low space-time curvature. We investigate the far future evolution of the universe in such models, examining the possibilities for cosmic acceleration and other ultimate destinies. The models generically possess de Sitter space as an unstable solution and exhibit an interesting set of attractor solutions which, in some cases, provide alternatives to dark energy models.

  15. Cosmology of generalized modified gravity models

    Science.gov (United States)

    Carroll, Sean M.; de Felice, Antonio; Duvvuri, Vikram; Easson, Damien A.; Trodden, Mark; Turner, Michael S.

    2005-03-01

    We consider general curvature-invariant modifications of the Einstein-Hilbert action that become important only in regions of extremely low space-time curvature. We investigate the far future evolution of the Universe in such models, examining the possibilities for cosmic acceleration and other ultimate destinies. The models generically possess de Sitter space as an unstable solution and exhibit an interesting set of attractor solutions which, in some cases, provide alternatives to dark energy models.

  16. The generic model of General Relativity

    Energy Technology Data Exchange (ETDEWEB)

    Tsamparlis, Michael, E-mail: mtsampa@phys.uoa.g [Department of Physics, Section Astrophysics Astronomy Mechanics, University of Athens, University of Athens, Zografos 15783, Athens (Greece)

    2009-10-01

    We develop a generic spacetime model in General Relativity from which all existing model results are produced under specific assumptions, depending on the case. We classify each type of possible assumption, especially the role of observers and that of symmetries, and discuss their role in the development of a model. We apply the results in a step by step approach to the case of a Bianchi I spacetime and a string fluid.

  17. Interacting holographic generalized cosmic Chaplygin gas model

    Science.gov (United States)

    Naji, Jalil

    2014-03-01

    In this paper we consider a correspondence between the holographic dark energy density and interacting generalized cosmic Chaplygin gas energy density in flat FRW universe. Then, we reconstruct the potential of the scalar field which describe the generalized cosmic Chaplygin cosmology. In the special case we obtain time-dependent energy density and study cosmological parameters. We find stability condition of this model which is depend on cosmic parameter.

  18. Assumed Probability Density Functions for Shallow and Deep Convection

    Directory of Open Access Journals (Sweden)

    Steven K Krueger

    2010-10-01

    Full Text Available The assumed joint probability density function (PDF between vertical velocity and conserved temperature and total water scalars has been suggested to be a relatively computationally inexpensive and unified subgrid-scale (SGS parameterization for boundary layer clouds and turbulent moments. This paper analyzes the performance of five families of PDFs using large-eddy simulations of deep convection, shallow convection, and a transition from stratocumulus to trade wind cumulus. Three of the PDF families are based on the double Gaussian form and the remaining two are the single Gaussian and a Double Delta Function (analogous to a mass flux model. The assumed PDF method is tested for grid sizes as small as 0.4 km to as large as 204.8 km. In addition, studies are performed for PDF sensitivity to errors in the input moments and for how well the PDFs diagnose some higher-order moments. In general, the double Gaussian PDFs more accurately represent SGS cloud structure and turbulence moments in the boundary layer compared to the single Gaussian and Double Delta Function PDFs for the range of grid sizes tested. This is especially true for small SGS cloud fractions. While the most complex PDF, Lewellen-Yoh, better represents shallow convective cloud properties (cloud fraction and liquid water mixing ratio compared to the less complex Analytic Double Gaussian 1 PDF, there appears to be no advantage in implementing Lewellen-Yoh for deep convection. However, the Analytic Double Gaussian 1 PDF better represents the liquid water flux, is less sensitive to errors in the input moments, and diagnoses higher order moments more accurately. Between the Lewellen-Yoh and Analytic Double Gaussian 1 PDFs, it appears that neither family is distinctly better at representing cloudy layers. However, due to the reduced computational cost and fairly robust results, it appears that the Analytic Double Gaussian 1 PDF could be an ideal family for SGS cloud and turbulence

  19. Multivariate Generalized Linear Mixed Models Using R

    CERN Document Server

    Berridge, Damon M

    2011-01-01

    To provide researchers with the ability to analyze large and complex data sets using robust models, this book presents a unified framework for a broad class of models that can be applied using a dedicated R package (Sabre). The first five chapters cover the analysis of multilevel models using univariate generalized linear mixed models (GLMMs). The next few chapters extend to multivariate GLMMs and the last chapters address more specialized topics, such as parallel computing for large-scale analyses. Each chapter includes many real-world examples implemented using Sabre as well as exercises and

  20. Modelling anisotropic fluid spheres in general relativity

    CERN Document Server

    Boonserm, Petarpa; Visser, Matt

    2015-01-01

    We argue that an arbitrary general relativistic anisotropic fluid sphere, (spherically symmetric but with transverse pressure not equal to radial pressure), can nevertheless be successfully modelled by suitable linear combinations of quite ordinary classical matter: an isotropic perfect fluid, a classical electromagnetic field, and a classical (minimally coupled) scalar field. While the most general decomposition is not unique, a preferred minimal decomposition can be constructed that is unique. We show how the classical energy conditions for the anisotropic fluid sphere can be related to energy conditions for the isotropic perfect fluid, electromagnetic field, and scalar field components of the model. Furthermore we show how this decomposition relates to the distribution of electric charge density and scalar charge density throughout the model that is used to mimic the anisotropic fluid sphere. Consequently, we can build physically reasonable matter models for almost any spherically symmetric spacetime.

  1. Generalized multicritical one-matrix models

    CERN Document Server

    Ambjorn, J; Makeenko, Y

    2016-01-01

    We show that there exists a simple generalization of Kazakov's multicritical one-matrix model, which interpolates between the various multicritical points of the model. The associated multicritical potential takes the form of a power series with a heavy tail, leading to a cut of the potential and its derivative at the real axis, and reduces to a polynomial at Kazakov's multicritical points. From the combinatorial point of view the generalized model allows polygons of arbitrary large degrees (or vertices of arbitrary large degree, when considering the dual graphs), and it is the weight assigned to these large order polygons which brings about the interpolation between the multicritical points in the one-matrix model.

  2. Generalized multicritical one-matrix models

    Science.gov (United States)

    Ambjørn, J.; Budd, T.; Makeenko, Y.

    2016-12-01

    We show that there exists a simple generalization of Kazakov's multicritical one-matrix model, which interpolates between the various multicritical points of the model. The associated multicritical potential takes the form of a power series with a heavy tail, leading to a cut of the potential and its derivative at the real axis, and reduces to a polynomial at Kazakov's multicritical points. From the combinatorial point of view the generalized model allows polygons of arbitrary large degrees (or vertices of arbitrary large degree, when considering the dual graphs), and it is the weight assigned to these large order polygons which brings about the interpolation between the multicritical points in the one-matrix model.

  3. On generalized P\\'olya urn models

    CERN Document Server

    Chen, May-Ru

    2011-01-01

    We study an urn model introduced in the paper of Chen and Wei, where at each discrete time step $m$ balls are drawn at random from the urn containing colors white and black. Balls are added to the urn according to the inspected colors, generalizing the well known P\\'olya-Eggenberger urn model, case m=1. We provide exact expressions for the expectation and the variance of the number of white balls after n draws, and determine the structure of higher moments. Moreover, we discuss extensions to more than two colors. Furthermore, we introduce and discuss a new urn model where the sampling of the m balls is carried out in a step-by-step fashion, and also introduce a generalized Friedman's urn model.

  4. General Equilibrium Models: Improving the Microeconomics Classroom

    Science.gov (United States)

    Nicholson, Walter; Westhoff, Frank

    2009-01-01

    General equilibrium models now play important roles in many fields of economics including tax policy, environmental regulation, international trade, and economic development. The intermediate microeconomics classroom has not kept pace with these trends, however. Microeconomics textbooks primarily focus on the insights that can be drawn from the…

  5. Using R In Generalized Linear Models

    Directory of Open Access Journals (Sweden)

    Mihaela Covrig

    2015-09-01

    Full Text Available This paper aims to approach the estimation of generalized linear models (GLM on the basis of the glm routine package in R. Particularly, regression models will be analyzed for those cases in which the explained variable follows a Poisson or a Negative Binomial distribution. The paper will briefly present the GLM methodology for count data, while the practical part will revolve around estimating and comparing models in which the response variable shows the number of claims in a portfolio of automobile insurance policies.

  6. String Field Equations from Generalized Sigma Model

    Energy Technology Data Exchange (ETDEWEB)

    Bardakci, K.; Bernardo, L.M.

    1997-01-29

    We propose a new approach for deriving the string field equations from a general sigma model on the world-sheet. This approach leads to an equation which combines some of the attractive features of both the renormalization group method and the covariant beta function treatment of the massless excitations. It has the advantage of being covariant under a very general set of both local and non-local transformations in the field space. We apply it to the tachyon, massless and first massive level, and show that the resulting field equations reproduce the correct spectrum of a left-right symmetric closed bosonic string.

  7. SCIPUFF - a generalized hazard dispersion model

    Energy Technology Data Exchange (ETDEWEB)

    Sykes, R.I.; Henn, D.S.; Parker, S.F.; Gabruk, R.S. [Titan Research and Technology, Princeton, NJ (United States)

    1996-12-31

    One of the more popular techniques for efficiently representing the dispersion process is the Gaussian puff model, which uses a collection of Lagrangian puffs with Gaussian concentration profiles. SCIPUFF (Second-order Closure Integrated Puff) is an advanced Gaussian puff model. SCIPUFF which uses second-order turbulence closure techniques to relate the dispersion rates to measurable turbulent velocity statistics, providing a wide range of applicability. In addition, the closure model provides a prediction of the statistical variance in the concentration field which can be used to estimate the uncertainty in the dispersion prediction resulting from the inherent uncertainty in the wind field. SCIPUFF has been greatly extended from a power plant plume model to describe more general source characteristics, material properties, and longer range dispersion. In addition, a Graphical User Interface has been developed to provide interactive problem definition and output display. This presentation describes the major features of the model, and presents several example calculations.

  8. Generalized Models for Rock Joint Surface Shapes

    Directory of Open Access Journals (Sweden)

    Shigui Du

    2014-01-01

    Full Text Available Generalized models of joint surface shapes are the foundation for mechanism studies on the mechanical effects of rock joint surface shapes. Based on extensive field investigations of rock joint surface shapes, generalized models for three level shapes named macroscopic outline, surface undulating shape, and microcosmic roughness were established through statistical analyses of 20,078 rock joint surface profiles. The relative amplitude of profile curves was used as a borderline for the division of different level shapes. The study results show that the macroscopic outline has three basic features such as planar, arc-shaped, and stepped; the surface undulating shape has three basic features such as planar, undulating, and stepped; and the microcosmic roughness has two basic features such as smooth and rough.

  9. Higher Dimensional Generalizations of the SYK Model

    CERN Document Server

    Berkooz, Micha; Rozali, Moshe; Simón, Joan

    2016-01-01

    We discuss a 1+1 dimensional generalization of the Sachdev-Ye-Kitaev model. The model contains $N$ Majorana fermions at each lattice site with a nearest-neighbour hopping term. The SYK random interaction is restricted to low momentum fermions of definite chirality within each lattice site. This gives rise to an ordinary 1+1 field theory above some energy scale and a low energy SYK-like behavior. We exhibit a class of low-pass filters which give rise to a rich variety of hyperscaling behaviour in the IR. We also discuss another set of generalizations which describes probing an SYK system with an external fermion, together with the new scaling behavior they exhibit in the IR.

  10. Generalized Penner models to all genera

    CERN Document Server

    Ambjørn, Jan; Kristjansen, C F

    1994-01-01

    We give a complete description of the genus expansion of the one-cut solution to the generalized Penner model. The solution is presented in a form which allows us in a very straightforward manner to localize critical points and to investigate the scaling behaviour of the model in the vicinity of these points. We carry out an analysis of the critical behaviour to all genera addressing all types of multi-critical points. In certain regions of the coupling constant space the model must be defined via analytical continuation. We show in detail how this works for the Penner model. Using analytical continuation it is possible to reach the fermionic 1-matrix model. We show that the critical points of the fermionic 1-matrix model can be indexed by an integer, $m$, as it was the case for the ordinary hermitian 1-matrix model. Furthermore the $m$'th multi-critical fermionic model has to all genera the same value of $\\gamma_{str}$ as the $m$'th multi-critical hermitian model. However, the coefficients of the topological...

  11. Automated Assume-Guarantee Reasoning by Abstraction Refinement

    Science.gov (United States)

    Pasareanu, Corina S.; Giannakopoulous, Dimitra; Glannakopoulou, Dimitra

    2008-01-01

    Current automated approaches for compositional model checking in the assume-guarantee style are based on learning of assumptions as deterministic automata. We propose an alternative approach based on abstraction refinement. Our new method computes the assumptions for the assume-guarantee rules as conservative and not necessarily deterministic abstractions of some of the components, and refines those abstractions using counter-examples obtained from model checking them together with the other components. Our approach also exploits the alphabets of the interfaces between components and performs iterative refinement of those alphabets as well as of the abstractions. We show experimentally that our preliminary implementation of the proposed alternative achieves similar or better performance than a previous learning-based implementation.

  12. Parallel Computing of Ocean General Circulation Model

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    This paper discusses the parallel computing of the thirdgeneration Ocea n General Circulation Model (OGCM) from the State Key Laboratory of Numerical Mo deling for Atmospheric Science and Geophysical Fluid Dynamics(LASG),Institute of Atmosphere Physics(IAP). Meanwhile, several optimization strategies for paralle l computing of OGCM (POGCM) on Scalable Shared Memory Multiprocessor (S2MP) are presented. Using Message Passing Interface (MPI), we obtain super linear speedup on SGI Origin 2000 for parallel OGCM(POGCM) after optimization.

  13. Modeling the pion Generalized Parton Distribution

    CERN Document Server

    Mezrag, C

    2015-01-01

    We compute the pion Generalized Parton Distribution (GPD) in a valence dressed quarks approach. We model the Mellin moments of the GPD using Ans\\"atze for Green functions inspired by the numerical solutions of the Dyson-Schwinger Equations (DSE) and the Bethe-Salpeter Equation (BSE). Then, the GPD is reconstructed from its Mellin moment using the Double Distribution (DD) formalism. The agreement with available experimental data is very good.

  14. A General Business Model for Marine Reserves

    Science.gov (United States)

    Sala, Enric; Costello, Christopher; Dougherty, Dawn; Heal, Geoffrey; Kelleher, Kieran; Murray, Jason H.; Rosenberg, Andrew A.; Sumaila, Rashid

    2013-01-01

    Marine reserves are an effective tool for protecting biodiversity locally, with potential economic benefits including enhancement of local fisheries, increased tourism, and maintenance of ecosystem services. However, fishing communities often fear short-term income losses associated with closures, and thus may oppose marine reserves. Here we review empirical data and develop bioeconomic models to show that the value of marine reserves (enhanced adjacent fishing + tourism) may often exceed the pre-reserve value, and that economic benefits can offset the costs in as little as five years. These results suggest the need for a new business model for creating and managing reserves, which could pay for themselves and turn a profit for stakeholder groups. Our model could be expanded to include ecosystem services and other benefits, and it provides a general framework to estimate costs and benefits of reserves and to develop such business models. PMID:23573192

  15. A general business model for marine reserves.

    Directory of Open Access Journals (Sweden)

    Enric Sala

    Full Text Available Marine reserves are an effective tool for protecting biodiversity locally, with potential economic benefits including enhancement of local fisheries, increased tourism, and maintenance of ecosystem services. However, fishing communities often fear short-term income losses associated with closures, and thus may oppose marine reserves. Here we review empirical data and develop bioeconomic models to show that the value of marine reserves (enhanced adjacent fishing + tourism may often exceed the pre-reserve value, and that economic benefits can offset the costs in as little as five years. These results suggest the need for a new business model for creating and managing reserves, which could pay for themselves and turn a profit for stakeholder groups. Our model could be expanded to include ecosystem services and other benefits, and it provides a general framework to estimate costs and benefits of reserves and to develop such business models.

  16. A general business model for marine reserves.

    Science.gov (United States)

    Sala, Enric; Costello, Christopher; Dougherty, Dawn; Heal, Geoffrey; Kelleher, Kieran; Murray, Jason H; Rosenberg, Andrew A; Sumaila, Rashid

    2013-01-01

    Marine reserves are an effective tool for protecting biodiversity locally, with potential economic benefits including enhancement of local fisheries, increased tourism, and maintenance of ecosystem services. However, fishing communities often fear short-term income losses associated with closures, and thus may oppose marine reserves. Here we review empirical data and develop bioeconomic models to show that the value of marine reserves (enhanced adjacent fishing + tourism) may often exceed the pre-reserve value, and that economic benefits can offset the costs in as little as five years. These results suggest the need for a new business model for creating and managing reserves, which could pay for themselves and turn a profit for stakeholder groups. Our model could be expanded to include ecosystem services and other benefits, and it provides a general framework to estimate costs and benefits of reserves and to develop such business models.

  17. A message passing approach for general epidemic models

    CERN Document Server

    Karrer, Brian

    2010-01-01

    In most models of the spread of disease over contact networks it is assumed that the probabilities of disease transmission and recovery from disease are constant in time. In real life, however, this is far from true. In many diseases, for instance, recovery occurs at about the same time after infection for all individuals, rather than at a constant rate. In this paper, we study a generalized version of the SIR (susceptible-infected-recovered) model of epidemic disease that allows for arbitrary nonuniform distributions of transmission and recovery times. Standard differential equation approaches cannot be used for this generalized model, but we show that the problem can be reformulated as a time-dependent message passing calculation on the appropriate contact network. The calculation is exact on trees (i.e., loopless networks) or locally tree-like networks (such as random graphs) in the large system size limit. On non-tree-like networks we show that the calculation gives a rigorous bound on the size of disease...

  18. Comparing Multiple-Group Multinomial Log-Linear Models for Multidimensional Skill Distributions in the General Diagnostic Model. Research Report. ETS RR-08-35

    Science.gov (United States)

    Xu, Xueli; von Davier, Matthias

    2008-01-01

    The general diagnostic model (GDM) utilizes located latent classes for modeling a multidimensional proficiency variable. In this paper, the GDM is extended by employing a log-linear model for multiple populations that assumes constraints on parameters across multiple groups. This constrained model is compared to log-linear models that assume…

  19. A proposed general model of information behaviour.

    Directory of Open Access Journals (Sweden)

    2003-01-01

    Full Text Available Presents a critical description of Wilson's (1996 global model of information behaviour and proposes major modification on the basis of research into information behaviour of managers, conducted in Poland. The theoretical analysis and research results suggest that Wilson's model has certain imperfections, both in its conceptual content, and in graphical presentation. The model, for example, cannot be used to describe managers' information behaviour, since managers basically are not the end users of external from organization or computerized information services, and they acquire information mainly through various intermediaries. Therefore, the model cannot be considered as a general model, applicable to every category of information users. The proposed new model encompasses the main concepts of Wilson's model, such as: person-in-context, three categories of intervening variables (individual, social and environmental, activating mechanisms, cyclic character of information behaviours, and the adoption of a multidisciplinary approach to explain them. However, the new model introduces several changes. They include: 1. identification of 'context' with the intervening variables; 2. immersion of the chain of information behaviour in the 'context', to indicate that the context variables influence behaviour at all stages of the process (identification of needs, looking for information, processing and using it; 3. stress is put on the fact that the activating mechanisms also can occur at all stages of the information acquisition process; 4. introduction of two basic strategies of looking for information: personally and/or using various intermediaries.

  20. Computable general equilibrium model fiscal year 2013 capability development report

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, Brian Keith [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Rivera, Michael Kelly [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Boero, Riccardo [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-05-17

    This report documents progress made on continued developments of the National Infrastructure Simulation and Analysis Center (NISAC) Computable General Equilibrium Model (NCGEM), developed in fiscal year 2012. In fiscal year 2013, NISAC the treatment of the labor market and tests performed with the model to examine the properties of the solutions computed by the model. To examine these, developers conducted a series of 20 simulations for 20 U.S. States. Each of these simulations compared an economic baseline simulation with an alternative simulation that assumed a 20-percent reduction in overall factor productivity in the manufacturing industries of each State. Differences in the simulation results between the baseline and alternative simulations capture the economic impact of the reduction in factor productivity. While not every State is affected in precisely the same way, the reduction in manufacturing industry productivity negatively affects the manufacturing industries in each State to an extent proportional to the reduction in overall factor productivity. Moreover, overall economic activity decreases when manufacturing sector productivity is reduced. Developers ran two additional simulations: (1) a version of the model for the State of Michigan, with manufacturing divided into two sub-industries (automobile and other vehicle manufacturing as one sub-industry and the rest of manufacturing as the other subindustry); and (2) a version of the model for the United States, divided into 30 industries. NISAC conducted these simulations to illustrate the flexibility of industry definitions in NCGEM and to examine the simulation properties of in more detail.

  1. Generalized model of brushless dc generator

    Science.gov (United States)

    Vadher, V. V.; Kettleborough, J. Gordon; Smith, I. R.; Gerges, Wahid R.

    1989-07-01

    A generalized model is described for a brushless dc machine consisting of a multiphase synchronous machine with a full-wave bridge rectifier connected to its output terminals. The state-variable equations for the machine are suitable for numerical integration on a digital computer, and are assembled in a form which permits investigations to be made on the effects of different numbers of armature phase windings and different winding connections. The model has been used in both steady-state and transient studies on a number of generating units, with the detailed information which is provided being beneficial to design engineers. Comparisons presented between predicted and measured results illustrate the validity of the model and the mathematical techniques adopted, and confirm that accurate information on the performance of a brushless generator may be obtained prior to manufacture.

  2. Gravitational Interactions in a General Multibrane Model

    CERN Document Server

    Bloomfield, Jolyon K

    2010-01-01

    The gravitational interactions of the four-dimensional effective theory describing a general N-brane model in five dimensions without radion stabilization are analyzed. The parameter space is constrained by requiring that there be no ghost modes in the theory, and that the Eddington parameterized post-Newtonian parameter gamma be consistent with observations. We show that we must reside on the brane on which the warp factor is maximized. The resultant theory contains N-1 radion modes in a nonlinear sigma model, with the target space being a subset of hyperbolic space. Imposing observational constraints on the relative strengths of gravitational interactions of dark and visible matter shows that at least 99.8% of the dark matter must live on our brane in this model.

  3. A generalized additive regression model for survival times

    DEFF Research Database (Denmark)

    Scheike, Thomas H.

    2001-01-01

    Additive Aalen model; counting process; disability model; illness-death model; generalized additive models; multiple time-scales; non-parametric estimation; survival data; varying-coefficient models......Additive Aalen model; counting process; disability model; illness-death model; generalized additive models; multiple time-scales; non-parametric estimation; survival data; varying-coefficient models...

  4. A generalized additive regression model for survival times

    DEFF Research Database (Denmark)

    Scheike, Thomas H.

    2001-01-01

    Additive Aalen model; counting process; disability model; illness-death model; generalized additive models; multiple time-scales; non-parametric estimation; survival data; varying-coefficient models......Additive Aalen model; counting process; disability model; illness-death model; generalized additive models; multiple time-scales; non-parametric estimation; survival data; varying-coefficient models...

  5. A generalized model for compact stars

    Energy Technology Data Exchange (ETDEWEB)

    Aziz, Abdul [Bodai High School (H.S.), Department of Physics, Kolkata, West Bengal (India); Ray, Saibal [Government College of Engineering and Ceramic Technology, Department of Physics, Kolkata, West Bengal (India); Rahaman, Farook [Jadavpur University, Department of Mathematics, Kolkata, West Bengal (India)

    2016-05-15

    By virtue of the maximum entropy principle, we get an Euler-Lagrange equation which is a highly nonlinear differential equation containing the mass function and its derivatives. Solving the equation by a homotopy perturbation method we derive a generalized expression for the mass which is a polynomial function of the radial distance. Using the mass function we find a partially stable configuration and its characteristics. We show that different physical features of the known compact stars, viz. Her X-1, RX J 1856-37, SAX J (SS1), SAX J (SS2), and PSR J 1614-2230, can be explained by the present model. (orig.)

  6. Testing Parametric versus Semiparametric Modelling in Generalized Linear Models

    NARCIS (Netherlands)

    Härdle, W.K.; Mammen, E.; Müller, M.D.

    1996-01-01

    We consider a generalized partially linear model E(Y|X,T) = G{X'b + m(T)} where G is a known function, b is an unknown parameter vector, and m is an unknown function.The paper introduces a test statistic which allows to decide between a parametric and a semiparametric model: (i) m is linear, i.e. m(

  7. The General Linear Model as Structural Equation Modeling

    Science.gov (United States)

    Graham, James M.

    2008-01-01

    Statistical procedures based on the general linear model (GLM) share much in common with one another, both conceptually and practically. The use of structural equation modeling path diagrams as tools for teaching the GLM as a body of connected statistical procedures is presented. A heuristic data set is used to demonstrate a variety of univariate…

  8. Snow hydrology in a general circulation model

    Science.gov (United States)

    Marshall, Susan; Roads, John O.; Glatzmaier, Gary

    1994-01-01

    A snow hydrology has been implemented in an atmospheric general circulation model (GCM). The snow hydrology consists of parameterizations of snowfall and snow cover fraction, a prognostic calculation of snow temperature, and a model of the snow mass and hydrologic budgets. Previously, only snow albedo had been included by a specified snow line. A 3-year GCM simulation with this now more complete surface hydrology is compared to a previous GCM control run with the specified snow line, as well as with observations. In particular, the authors discuss comparisons of the atmospheric and surface hydrologic budgets and the surface energy budget for U.S. and Canadian areas. The new snow hydrology changes the annual cycle of the surface moisture and energy budgets in the model. There is a noticeable shift in the runoff maximum from winter in the control run to spring in the snow hydrology run. A substantial amount of GCM winter precipitation is now stored in the seasonal snowpack. Snow cover also acts as an important insulating layer between the atmosphere and the ground. Wintertime soil temperatures are much higher in the snow hydrology experiment than in the control experiment. Seasonal snow cover is important for dampening large fluctuations in GCM continental skin temperature during the Northern Hemisphere winter. Snow depths and snow extent show good agreement with observations over North America. The geographic distribution of maximum depths is not as well simulated by the model due, in part, to the coarse resolution of the model. The patterns of runoff are qualitatively and quantitatively similar to observed patterns of streamflow averaged over the continental United States. The seasonal cycles of precipitation and evaporation are also reasonably well simulated by the model, although their magnitudes are larger than is observed. This is due, in part, to a cold bias in this model, which results in a dry model atmosphere and enhances the hydrologic cycle everywhere.

  9. The epistemological status of general circulation models

    Science.gov (United States)

    Loehle, Craig

    2017-05-01

    Forecasts of both likely anthropogenic effects on climate and consequent effects on nature and society are based on large, complex software tools called general circulation models (GCMs). Forecasts generated by GCMs have been used extensively in policy decisions related to climate change. However, the relation between underlying physical theories and results produced by GCMs is unclear. In the case of GCMs, many discretizations and approximations are made, and simulating Earth system processes is far from simple and currently leads to some results with unknown energy balance implications. Statistical testing of GCM forecasts for degree of agreement with data would facilitate assessment of fitness for use. If model results need to be put on an anomaly basis due to model bias, then both visual and quantitative measures of model fit depend strongly on the reference period used for normalization, making testing problematic. Epistemology is here applied to problems of statistical inference during testing, the relationship between the underlying physics and the models, the epistemic meaning of ensemble statistics, problems of spatial and temporal scale, the existence or not of an unforced null for climate fluctuations, the meaning of existing uncertainty estimates, and other issues. Rigorous reasoning entails carefully quantifying levels of uncertainty.

  10. General linear matrix model, Minkowski spacetime and the Standard Model

    CERN Document Server

    Belyea, Chris

    2010-01-01

    The Hermitian matrix model with general linear symmetry is argued to decouple into a finite unitary matrix model that contains metastable multidimensional lattice configurations and a fermion determinant. The simplest metastable state is a Hermitian Weyl kinetic operator of either handedness on a 3+1 D lattice with general nonlocal interactions. The Hermiticity produces 16 effective Weyl fermions by species doubling, 8 left- and 8 right-handed. These are identified with a Standard Model generation. Only local non-anomalous gauge fields within the soup of general fluctuations can survive at long distances, and the degrees of freedom for gauge fields of an $SU(8)_L X SU(8)_R$ GUT are present. Standard Model gauge symmetries associate with particular species symmetries, for example change of QCD color associates with permutation of doubling status amongst space directions. Vierbein gravity is probably also generated. While fundamental Higgs fields are not possible, low fermion current masses can arise from chira...

  11. A seasonal model of the Mediterranean Sea general circulation

    Science.gov (United States)

    Roussenov, Vassil; Stanev, Emil; Artale, Vincenzo; Pinardi, Nadia

    1995-07-01

    This paper describes the seasonal characteristics of the Mediterranean Sea general circulation as simulated by a primitive equation general circulation model. The forcing is composed of climatological monthly mean atmospheric parameters, which are used to compute the heat and momentum budgets at the air-sea interface of the model. This allows heat fluxes to be determined by a realistic air-sea interaction physics. The Strait of Gibraltar is open, and the model resolution is ? in the horizontal and 19 levels in the vertical. The results show the large seasonal cycle of the circulation and its transient characteristics. The heat budget at the surface is characterized by lateral boundary intensifications occurring in downwelling and up welling areas of the basin. The general circulation is composed of subbasin gyres, and cyclonic motion dominates the northern and anticyclonic motion the southern part of the basin. The Atlantic stream which enters from Gibraltar and assumes the form of different boundary current subsystems is a coherent structure at the surface. At depth it appears as current segments and jets around a vigorous gyre system. The seasonal variability is manifested not only by a change in amplitude and location of the gyres but also by the appearance of seasonally recurrent gyres in different parts of the basin. Distinct westward propagation of these gyres occurs, together with amplitude changes. For the first time a Mersa-Matruh Gyre is successfully simulated due to the introduction of our heat fluxes at the air-sea interface. The seasonal thermocline is formed each summer, and a deep winter mixed layer is produced in the region of Levantine intermediate water formation. Deep water renewal does not occur, probably due to the climatological forcing used.

  12. A general route diversity model for convergent terrestrial microwave links

    Science.gov (United States)

    Paulson, Kevin S.; Usman, Isa S.; Watson, Robert J.

    2006-06-01

    This research examines route diversity as a fade mitigation technique in the presence of rain for convergent, terrestrial, microwave links. A general model is derived which predicts the joint distribution of rain attenuation on arbitrary pairs of convergent microwave links, directly from the link parameters. It is assumed that pairs of links have joint rain attenuation distributions that are bilognormally distributed. Four of the five distribution parameters can be estimated from International Telecommunication Union recommendation models. A maximum likelihood estimation method was used in a previous paper to estimate the fifth parameter, that is, the covariance or correlation. In this paper an empirical model is reported, linking the correlation of log rain fade with the geometry and radio parameters of the pair of links. From these distributions, the advantage due to route diversity may be calculated for arbitrary fade margins. Furthermore, the predicted diversity statistics vary smoothly and yield plausible extrapolations into low-probability scenarios. Diversity improvement is calculated for a set of example link scenarios.

  13. A biological plausible Generalized Leaky Integrate-and-Fire neuron model.

    Science.gov (United States)

    Wang, Zhenzhong; Guo, Lilin; Adjouadi, Malek

    2014-01-01

    This study introduces a new Generalized Leaky Integrate-and-Fire (GLIF) neuron model. Unlike Normal Leaky Integrate-and-Fire (NLIF) models, the leaking resistor in the GLIF model equation is assumed to be variable, and an additional term would have the bias current added to the model equation in order to improve the accuracy. Adjusting the parameters defined for the leaking resistor and bias current, a GLIF model could be accurately matched to any Hodgkin-Huxley (HH) model and be able to reproduce plausible biological neuron behaviors.

  14. Multipath diffusion: A general numerical model

    Science.gov (United States)

    Lee, J. K. W.; Aldama, A. A.

    1992-06-01

    The effect of high-diffusivity pathways on bulk diffusion of a solute in a material has been modeled previously for simple geometries such as those in tracer diffusion experiments, but not for the geometries and boundary conditions appropriate for experiments involving bulk exchange. Using a coupled system of equations for simultaneous diffusion of a solute through two families of diffusion pathways with differing diffusivities, a general 1-D finite difference model written in FORTRAN has been developed which can be used to examine the effect of high-diffusivity paths on partial and total concentration profiles within a homogeneous isotropic sphere, infinite cylinder, and infinite slab. The partial differential equations are discretized using the θ-method/central-difference scheme, and an iterative procedure analogous to the Gauss-Seidel method is employed to solve the two systems of coupled equations. Using Fourier convergence analysis, the procedure is shown to be unconditionally convergent. Computer simulations demonstrate that a multipath diffusion mechanism can enhance significantly the bulk diffusivity of a diffusing solute species through a material. The amount of solute escaping from a material is dependent strongly on the exchange coefficients, which govern the transfer of solute from the crystal lattice to the high-diffusivity paths and vice versa. In addition, the exchange coefficients ( ϰ1, and ϰ2) seem to control not only the amount of solute that is lost, but also the shape of the concentration profile. If | K1| < | K2|, concentration profiles generally are non-Fickian in shape, typically having shallow concentration gradients near the center (radius r = 0) and steep gradients towards the outer boundary of the material ( r = R). When | K1| ⩾ | K2| a concentration profile is generated which resembles a Fickian (volume) diffusion profile with an apparent bulk diffusivity between that of the crystal lattice and that of the high-diffusivity pathways

  15. Mass transport in fracture media: impact of the random function model assumed for fractures conductivity; Transporte de masa en medio fracturado: impacto del modelo estocastico de conductividad en las fracturas

    Energy Technology Data Exchange (ETDEWEB)

    Capilla, J. E.; Rodrigo, J.; Gomez Hernandez, J. J.

    2003-07-01

    Characterizing the uncertainty of flow and mass transport models requires the definition of stochastic models to describe hydrodynamic parameters. Porosity and hydraulic conductivity (K) are two of these parameters that exhibit a high degree of spatial variability. K is usually the parameter whose variability influence to a more extended degree solutes movement. In fracture media, it is critical to properly characterize K in the most altered zones where flow and solutes migration tends to be concentrated. However, K measurements use to be scarce and sparse. This fact calls to consider stochastic models that allow quantifying the uncertainty of flow and mass transport predictions. This paper presents a convective transport problem solved in a 3D block of fractured crystalline rock. the case study is defined based on data from a real geological formation. As the scarcity of K data in fractures does not allow supporting classical multi Gaussian assumptions for K in fractures, the non multi Gaussian hypothesis has been explored, comparing mass transport results for alternative Gaussian and non-Gaussian assumptions. The latter hypothesis allows reproducing high spatial connectivity for extreme values of K. This feature is present in nature, might lead to reproduce faster solute pathways, and therefore should be modeled in order to obtain reasonably safe prediction of contaminants migration in a geological formation. The results obtained for the two alternative hypotheses show a remarkable impact of the K random function model in solutes movement. (Author) 9 refs.

  16. A Simple General Model of Evolutionary Dynamics

    Science.gov (United States)

    Thurner, Stefan

    Evolution is a process in which some variations that emerge within a population (of, e.g., biological species or industrial goods) get selected, survive, and proliferate, whereas others vanish. Survival probability, proliferation, or production rates are associated with the "fitness" of a particular variation. We argue that the notion of fitness is an a posteriori concept in the sense that one can assign higher fitness to species or goods that survive but one can generally not derive or predict fitness per se. Whereas proliferation rates can be measured, fitness landscapes, that is, the inter-dependence of proliferation rates, cannot. For this reason we think that in a physical theory of evolution such notions should be avoided. Here we review a recent quantitative formulation of evolutionary dynamics that provides a framework for the co-evolution of species and their fitness landscapes (Thurner et al., 2010, Physica A 389, 747; Thurner et al., 2010, New J. Phys. 12, 075029; Klimek et al., 2009, Phys. Rev. E 82, 011901 (2010). The corresponding model leads to a generic evolutionary dynamics characterized by phases of relative stability in terms of diversity, followed by phases of massive restructuring. These dynamical modes can be interpreted as punctuated equilibria in biology, or Schumpeterian business cycles (Schumpeter, 1939, Business Cycles, McGraw-Hill, London) in economics. We show that phase transitions that separate phases of high and low diversity can be approximated surprisingly well by mean-field methods. We demonstrate that the mathematical framework is suited to understand systemic properties of evolutionary systems, such as their proneness to collapse, or their potential for diversification. The framework suggests that evolutionary processes are naturally linked to self-organized criticality and to properties of production matrices, such as their eigenvalue spectra. Even though the model is phrased in general terms it is also practical in the sense

  17. Functional methods in the generalized Dicke model

    Energy Technology Data Exchange (ETDEWEB)

    Alcalde, M. Aparicio; Lemos, A.L.L. de; Svaiter, N.F. [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil)]. E-mails: aparicio@cbpf.br; aluis@cbpf.br; nfuxsvai@cbpf.br

    2007-07-01

    The Dicke model describes an ensemble of N identical two-level atoms (qubits) coupled to a single quantized mode of a bosonic field. The fermion Dicke model should be obtained by changing the atomic pseudo-spin operators by a linear combination of Fermi operators. The generalized fermion Dicke model is defined introducing different coupling constants between the single mode of the bosonic field and the reservoir, g{sub 1} and g{sub 2} for rotating and counter-rotating terms respectively. In the limit N -> {infinity}, the thermodynamic of the fermion Dicke model can be analyzed using the path integral approach with functional method. The system exhibits a second order phase transition from normal to superradiance at some critical temperature with the presence of a condensate. We evaluate the critical transition temperature and present the spectrum of the collective bosonic excitations for the general case (g{sub 1} {ne} 0 and g{sub 2} {ne} 0). There is quantum critical behavior when the coupling constants g{sub 1} and g{sub 2} satisfy g{sub 1} + g{sub 2}=({omega}{sub 0} {omega}){sup 1/2}, where {omega}{sub 0} is the frequency of the mode of the field and {omega} is the energy gap between energy eigenstates of the qubits. Two particular situations are analyzed. First, we present the spectrum of the collective bosonic excitations, in the case g{sub 1} {ne} 0 and g{sub 2} {ne} 0, recovering the well known results. Second, the case g{sub 1} {ne} 0 and g{sub 2} {ne} 0 is studied. In this last case, it is possible to have a super radiant phase when only virtual processes are introduced in the interaction Hamiltonian. Here also appears a quantum phase transition at the critical coupling g{sub 2} ({omega}{sub 0} {omega}){sup 1/2}, and for larger values for the critical coupling, the system enter in this super radiant phase with a Goldstone mode. (author)

  18. Comparison of Observed, MM5 and WRF-NMM Model-Simulated, and HPAC-Assumed Boundary-Layer Meteorological Variables for 3 Days During the IHOP Field Experiment

    Science.gov (United States)

    Hanna, Steven R.; Reen, Brian; Hendrick, Elizabeth; Santos, Lynne; Stauffer, David; Deng, Aijun; McQueen, Jeffrey; Tsidulko, Marina; Janjic, Zavisa; Jovic, Dusan; Sykes, R. Ian

    2010-02-01

    The objective of the study is to evaluate operational mesoscale meteorological model atmospheric boundary-layer (ABL) outputs for use in the Hazard Prediction Assessment Capability (HPAC)/Second-Order Closure Integrated Puff (SCIPUFF) transport and dispersion model. HPAC uses the meteorological models’ routine simulations of surface buoyancy flux, winds, and mixing depth to derive the profiles of ABL turbulence. The Fifth-Generation Pennsylvania State University/National Center for Atmospheric Research Mesoscale Model (MM5) and the Weather Research and Forecast-Nonhydrostatic Mesoscale Model (WRF-NMM) ABL outputs and the HPAC ABL parameterisations are compared with observations during the International H2O Project (IHOP). The meteorological models’ configurations are not specially designed research versions for this study but rather are intended to be representative of what may be used operationally and thus have relatively coarse lowest vertical layer thicknesses of 59 and 36 m, respectively. The meteorological models’ simulations of mixing depth are in good agreement (±20%) with observations on most afternoons. Wind speed errors of 1 or 2 ms-1 are found, typical of those found in other studies, with larger errors occurring when the simulated centre of a low-pressure system is misplaced in time or space. The hourly variation of turbulent kinetic energy (TKE) is well-simulated during the daytime, although there is a meteorological model underprediction bias of about 20-40%. At night, WRF-NMM shows fair agreement with observations, and MM5 sometimes produces a very small default TKE value because of the stable boundary-layer parameterisation that is used. The HPAC TKE parameterisation is usually a factor of 5-10 high at night, primarily due to the fact that the meteorological model wind-speed output is at a height of 30 m for MM5 and 18 m for WRF-NMM, which is often well above the stable mixing depth. It is concluded that, before meteorological model TKE

  19. ELEMENTS OF CONTROL OVER HIERARCHIE SYSTEMS WITH ASSUMED HIERARCHY

    Directory of Open Access Journals (Sweden)

    Kushnir N. V.

    2015-05-01

    Full Text Available The article presents a mathematical model of control over dynamic hierarchy system. The model was proposed for dealing with systems with assumed order in the technical problem of predicting destructions depending onto the amount of defects on different scale levels. The problem of the closest to a certain point of shelf life of hierarchy system is solved. The example of approach control during the given time is given. The problem concerns mathematic programming. Formulation of multi-parameter vector optimization criteria (improvement with its own hierarchy and the formal exercise of multi-criteria optimization of the model parameters. The research can achieve clarity about the conditions under which the structure is preserved. Managing sustainable development system with a given level of the hierarchy for the technical systems can only be achieved in keeping

  20. Generalized Functional Linear Models With Semiparametric Single-Index Interactions

    KAUST Repository

    Li, Yehua

    2010-06-01

    We introduce a new class of functional generalized linear models, where the response is a scalar and some of the covariates are functional. We assume that the response depends on multiple covariates, a finite number of latent features in the functional predictor, and interaction between the two. To achieve parsimony, the interaction between the multiple covariates and the functional predictor is modeled semiparametrically with a single-index structure. We propose a two step estimation procedure based on local estimating equations, and investigate two situations: (a) when the basis functions are pre-determined, e.g., Fourier or wavelet basis functions and the functional features of interest are known; and (b) when the basis functions are data driven, such as with functional principal components. Asymptotic properties are developed. Notably, we show that when the functional features are data driven, the parameter estimates have an increased asymptotic variance, due to the estimation error of the basis functions. Our methods are illustrated with a simulation study and applied to an empirical data set, where a previously unknown interaction is detected. Technical proofs of our theoretical results are provided in the online supplemental materials.

  1. Thurstonian models for sensory discrimination tests as generalized linear models

    DEFF Research Database (Denmark)

    Brockhoff, Per B.; Christensen, Rune Haubo Bojesen

    2010-01-01

    Sensory discrimination tests such as the triangle, duo-trio, 2-AFC and 3-AFC tests produce binary data and the Thurstonian decision rule links the underlying sensory difference 6 to the observed number of correct responses. In this paper it is shown how each of these four situations can be viewed...... as a so-called generalized linear model. The underlying sensory difference 6 becomes directly a parameter of the statistical model and the estimate d' and it's standard error becomes the "usual" output of the statistical analysis. The d' for the monadic A-NOT A method is shown to appear as a standard...... linear contrast in a generalized linear model using the probit link function. All methods developed in the paper are implemented in our free R-package sensR (http://www.cran.r-project.org/package=sensR/). This includes the basic power and sample size calculations for these four discrimination tests...

  2. Some studies on mathematical models for general elastic multi-structures

    Institute of Scientific and Technical Information of China (English)

    HUANG Jianguo; SHI Zhongci; XU Yifeng

    2005-01-01

    The aim of this paper is to study the static problem about a general elastic multi-structure composed of an arbitrary number of elastic bodies, plates and rods. The mathematical model is derived by the variational principle and the principle of virtual work in a vector way. The unique solvability of the resulting problem is proved by the Lax-Milgram lemma after the presentation of a generalized Korn's inequality on general elastic multi-structures. The equilibrium equations are obtained rigorously by only assuming some reasonable regularity of the solution. An important identity is also given which is essential in the finite element analysis for the problem.

  3. Plasma expansion into vacuum assuming a steplike electron energy distribution.

    Science.gov (United States)

    Kiefer, Thomas; Schlegel, Theodor; Kaluza, Malte C

    2013-04-01

    The expansion of a semi-infinite plasma slab into vacuum is analyzed with a hydrodynamic model implying a steplike electron energy distribution function. Analytic expressions for the maximum ion energy and the related ion distribution function are derived and compared with one-dimensional numerical simulations. The choice of the specific non-Maxwellian initial electron energy distribution automatically ensures the conservation of the total energy of the system. The estimated ion energies may differ by an order of magnitude from the values obtained with an adiabatic expansion model supposing a Maxwellian electron distribution. Furthermore, good agreement with data from experiments using laser pulses of ultrashort durations τ(L)Maxwellian electron distribution is assumed.

  4. Transferability of regional permafrost disturbance susceptibility modelling using generalized linear and generalized additive models

    Science.gov (United States)

    Rudy, Ashley C. A.; Lamoureux, Scott F.; Treitz, Paul; van Ewijk, Karin Y.

    2016-07-01

    To effectively assess and mitigate risk of permafrost disturbance, disturbance-prone areas can be predicted through the application of susceptibility models. In this study we developed regional susceptibility models for permafrost disturbances using a field disturbance inventory to test the transferability of the model to a broader region in the Canadian High Arctic. Resulting maps of susceptibility were then used to explore the effect of terrain variables on the occurrence of disturbances within this region. To account for a large range of landscape characteristics, the model was calibrated using two locations: Sabine Peninsula, Melville Island, NU, and Fosheim Peninsula, Ellesmere Island, NU. Spatial patterns of disturbance were predicted with a generalized linear model (GLM) and generalized additive model (GAM), each calibrated using disturbed and randomized undisturbed locations from both locations and GIS-derived terrain predictor variables including slope, potential incoming solar radiation, wetness index, topographic position index, elevation, and distance to water. Each model was validated for the Sabine and Fosheim Peninsulas using independent data sets while the transferability of the model to an independent site was assessed at Cape Bounty, Melville Island, NU. The regional GLM and GAM validated well for both calibration sites (Sabine and Fosheim) with the area under the receiver operating curves (AUROC) > 0.79. Both models were applied directly to Cape Bounty without calibration and validated equally with AUROC's of 0.76; however, each model predicted disturbed and undisturbed samples differently. Additionally, the sensitivity of the transferred model was assessed using data sets with different sample sizes. Results indicated that models based on larger sample sizes transferred more consistently and captured the variability within the terrain attributes in the respective study areas. Terrain attributes associated with the initiation of disturbances were

  5. Bayesian Subset Modeling for High-Dimensional Generalized Linear Models

    KAUST Repository

    Liang, Faming

    2013-06-01

    This article presents a new prior setting for high-dimensional generalized linear models, which leads to a Bayesian subset regression (BSR) with the maximum a posteriori model approximately equivalent to the minimum extended Bayesian information criterion model. The consistency of the resulting posterior is established under mild conditions. Further, a variable screening procedure is proposed based on the marginal inclusion probability, which shares the same properties of sure screening and consistency with the existing sure independence screening (SIS) and iterative sure independence screening (ISIS) procedures. However, since the proposed procedure makes use of joint information from all predictors, it generally outperforms SIS and ISIS in real applications. This article also makes extensive comparisons of BSR with the popular penalized likelihood methods, including Lasso, elastic net, SIS, and ISIS. The numerical results indicate that BSR can generally outperform the penalized likelihood methods. The models selected by BSR tend to be sparser and, more importantly, of higher prediction ability. In addition, the performance of the penalized likelihood methods tends to deteriorate as the number of predictors increases, while this is not significant for BSR. Supplementary materials for this article are available online. © 2013 American Statistical Association.

  6. Climatology of the HOPE-G global ocean general circulation model - Sea ice general circulation model

    Energy Technology Data Exchange (ETDEWEB)

    Legutke, S. [Deutsches Klimarechenzentrum (DKRZ), Hamburg (Germany); Maier-Reimer, E. [Max-Planck-Institut fuer Meteorologie, Hamburg (Germany)

    1999-12-01

    The HOPE-G global ocean general circulation model (OGCM) climatology, obtained in a long-term forced integration is described. HOPE-G is a primitive-equation z-level ocean model which contains a dynamic-thermodynamic sea-ice model. It is formulated on a 2.8 grid with increased resolution in low latitudes in order to better resolve equatorial dynamics. The vertical resolution is 20 layers. The purpose of the integration was both to investigate the models ability to reproduce the observed general circulation of the world ocean and to obtain an initial state for coupled atmosphere - ocean - sea-ice climate simulations. The model was driven with daily mean data of a 15-year integration of the atmosphere general circulation model ECHAM4, the atmospheric component in later coupled runs. Thereby, a maximum of the flux variability that is expected to appear in coupled simulations is included already in the ocean spin-up experiment described here. The model was run for more than 2000 years until a quasi-steady state was achieved. It reproduces the major current systems and the main features of the so-called conveyor belt circulation. The observed distribution of water masses is reproduced reasonably well, although with a saline bias in the intermediate water masses and a warm bias in the deep and bottom water of the Atlantic and Indian Oceans. The model underestimates the meridional transport of heat in the Atlantic Ocean. The simulated heat transport in the other basins, though, is in good agreement with observations. (orig.)

  7. Climatology of the HOPE-G global ocean general circulation model - Sea ice general circulation model

    Energy Technology Data Exchange (ETDEWEB)

    Legutke, S. [Deutsches Klimarechenzentrum (DKRZ), Hamburg (Germany); Maier-Reimer, E. [Max-Planck-Institut fuer Meteorologie, Hamburg (Germany)

    1999-12-01

    The HOPE-G global ocean general circulation model (OGCM) climatology, obtained in a long-term forced integration is described. HOPE-G is a primitive-equation z-level ocean model which contains a dynamic-thermodynamic sea-ice model. It is formulated on a 2.8 grid with increased resolution in low latitudes in order to better resolve equatorial dynamics. The vertical resolution is 20 layers. The purpose of the integration was both to investigate the models ability to reproduce the observed general circulation of the world ocean and to obtain an initial state for coupled atmosphere - ocean - sea-ice climate simulations. The model was driven with daily mean data of a 15-year integration of the atmosphere general circulation model ECHAM4, the atmospheric component in later coupled runs. Thereby, a maximum of the flux variability that is expected to appear in coupled simulations is included already in the ocean spin-up experiment described here. The model was run for more than 2000 years until a quasi-steady state was achieved. It reproduces the major current systems and the main features of the so-called conveyor belt circulation. The observed distribution of water masses is reproduced reasonably well, although with a saline bias in the intermediate water masses and a warm bias in the deep and bottom water of the Atlantic and Indian Oceans. The model underestimates the meridional transport of heat in the Atlantic Ocean. The simulated heat transport in the other basins, though, is in good agreement with observations. (orig.)

  8. Appropriate model selection methods for nonstationary generalized extreme value models

    Science.gov (United States)

    Kim, Hanbeen; Kim, Sooyoung; Shin, Hongjoon; Heo, Jun-Haeng

    2017-04-01

    Several evidences of hydrologic data series being nonstationary in nature have been found to date. This has resulted in the conduct of many studies in the area of nonstationary frequency analysis. Nonstationary probability distribution models involve parameters that vary over time. Therefore, it is not a straightforward process to apply conventional goodness-of-fit tests to the selection of an appropriate nonstationary probability distribution model. Tests that are generally recommended for such a selection include the Akaike's information criterion (AIC), corrected Akaike's information criterion (AICc), Bayesian information criterion (BIC), and likelihood ratio test (LRT). In this study, the Monte Carlo simulation was performed to compare the performances of these four tests, with regard to nonstationary as well as stationary generalized extreme value (GEV) distributions. Proper model selection ratios and sample sizes were taken into account to evaluate the performances of all the four tests. The BIC demonstrated the best performance with regard to stationary GEV models. In case of nonstationary GEV models, the AIC proved to be better than the other three methods, when relatively small sample sizes were considered. With larger sample sizes, the AIC, BIC, and LRT presented the best performances for GEV models which have nonstationary location and/or scale parameters, respectively. Simulation results were then evaluated by applying all four tests to annual maximum rainfall data of selected sites, as observed by the Korea Meteorological Administration.

  9. Solitons and kinks in a general car-following model

    Science.gov (United States)

    Kurtze, Douglas A.

    2013-09-01

    We study a general car-following model of traffic flow on an infinitely long single-lane road, which assumes that a car's acceleration depends on time-delayed values of its own speed, the headway between it and the car ahead, and the rate of change of headway, but makes minimal assumptions about the functional form of that dependence. We present a detailed characterization of the onset of linear instability; in particular we find a specific limit on the delay time below which the marginal wave number at the onset of instability is zero, and another specific limit on the delay time above which steady flow is always unstable. Crucially, the threshold of absolute stability generally does not coincide with an inflection point of the steady-state velocity function. When the marginal perturbation at onset has wave number 0, we show that Burgers and Korteweg-de Vries (KdV) equations can be derived under the usual assumptions, and that corrections to the KdV equation “select” a single member of the one-parameter set of its one-soliton solutions by driving a slow evolution of the soliton parameter. While in previous models this selected soliton has always marked the threshold of a finite-amplitude instability of linearly stable steady flow, we find that it can alternatively be a stable, small-amplitude jam that occurs when steady flow is linearly unstable. The model reduces to the usual modified Korteweg-de Vries (mKdV) equation only in the special situation that the threshold of absolute stability coincides with an inflection point of the steady-state velocity function; in general, near the threshold of absolute stability the model reduces instead to a KdV equation in the regime of small solitons, while near an inflection point it reduces to a Hayakawa-Nakanishi equation. Like the mKdV equation, the Hayakawa-Nakanishi equation admits a continuous family of kink solutions, and the selection criterion arising from the corrections to this equation can be written down

  10. Hospitable archean climates simulated by a general circulation model.

    Science.gov (United States)

    Wolf, E T; Toon, O B

    2013-07-01

    Evidence from ancient sediments indicates that liquid water and primitive life were present during the Archean despite the faint young Sun. To date, studies of Archean climate typically utilize simplified one-dimensional models that ignore clouds and ice. Here, we use an atmospheric general circulation model coupled to a mixed-layer ocean model to simulate the climate circa 2.8 billion years ago when the Sun was 20% dimmer than it is today. Surface properties are assumed to be equal to those of the present day, while ocean heat transport varies as a function of sea ice extent. Present climate is duplicated with 0.06 bar of CO2 or alternatively with 0.02 bar of CO2 and 0.001 bar of CH4. Hot Archean climates, as implied by some isotopic reconstructions of ancient marine cherts, are unattainable even in our warmest simulation having 0.2 bar of CO2 and 0.001 bar of CH4. However, cooler climates with significant polar ice, but still dominated by open ocean, can be maintained with modest greenhouse gas amounts, posing no contradiction with CO2 constraints deduced from paleosols or with practical limitations on CH4 due to the formation of optically thick organic hazes. Our results indicate that a weak version of the faint young Sun paradox, requiring only that some portion of the planet's surface maintain liquid water, may be resolved with moderate greenhouse gas inventories. Thus, hospitable late Archean climates are easily obtained in our climate model.

  11. Application of Improved Radiation Modeling to General Circulation Models

    Energy Technology Data Exchange (ETDEWEB)

    Michael J Iacono

    2011-04-07

    This research has accomplished its primary objectives of developing accurate and efficient radiation codes, validating them with measurements and higher resolution models, and providing these advancements to the global modeling community to enhance the treatment of cloud and radiative processes in weather and climate prediction models. A critical component of this research has been the development of the longwave and shortwave broadband radiative transfer code for general circulation model (GCM) applications, RRTMG, which is based on the single-column reference code, RRTM, also developed at AER. RRTMG is a rigorously tested radiation model that retains a considerable level of accuracy relative to higher resolution models and measurements despite the performance enhancements that have made it possible to apply this radiation code successfully to global dynamical models. This model includes the radiative effects of all significant atmospheric gases, and it treats the absorption and scattering from liquid and ice clouds and aerosols. RRTMG also includes a statistical technique for representing small-scale cloud variability, such as cloud fraction and the vertical overlap of clouds, which has been shown to improve cloud radiative forcing in global models. This development approach has provided a direct link from observations to the enhanced radiative transfer provided by RRTMG for application to GCMs. Recent comparison of existing climate model radiation codes with high resolution models has documented the improved radiative forcing capability provided by RRTMG, especially at the surface, relative to other GCM radiation models. Due to its high accuracy, its connection to observations, and its computational efficiency, RRTMG has been implemented operationally in many national and international dynamical models to provide validated radiative transfer for improving weather forecasts and enhancing the prediction of global climate change.

  12. A Note on the Identifiability of Generalized Linear Mixed Models

    DEFF Research Database (Denmark)

    Labouriau, Rodrigo

    2014-01-01

    I present here a simple proof that, under general regularity conditions, the standard parametrization of generalized linear mixed model is identifiable. The proof is based on the assumptions of generalized linear mixed models on the first and second order moments and some general mild regularity ...... conditions, and, therefore, is extensible to quasi-likelihood based generalized linear models. In particular, binomial and Poisson mixed models with dispersion parameter are identifiable when equipped with the standard parametrization......I present here a simple proof that, under general regularity conditions, the standard parametrization of generalized linear mixed model is identifiable. The proof is based on the assumptions of generalized linear mixed models on the first and second order moments and some general mild regularity...

  13. A generalized concordance correlation coefficient based on the variance components generalized linear mixed models for overdispersed count data.

    Science.gov (United States)

    Carrasco, Josep L

    2010-09-01

    The classical concordance correlation coefficient (CCC) to measure agreement among a set of observers assumes data to be distributed as normal and a linear relationship between the mean and the subject and observer effects. Here, the CCC is generalized to afford any distribution from the exponential family by means of the generalized linear mixed models (GLMMs) theory and applied to the case of overdispersed count data. An example of CD34+ cell count data is provided to show the applicability of the procedure. In the latter case, different CCCs are defined and applied to the data by changing the GLMM that fits the data. A simulation study is carried out to explore the behavior of the procedure with a small and moderate sample size.

  14. Examining roles pharmacists assume in disasters: a content analytic approach.

    Science.gov (United States)

    Ford, Heath; Dallas, Cham E; Harris, Curt

    2013-12-01

    Numerous practice reports recommend roles pharmacists may adopt during disasters. This study examines the peer-reviewed literature for factors that explain the roles pharmacists assume in disasters and the differences in roles and disasters when stratified by time. Quantitative content analysis was used to gather data consisting of words and phrases from peer-reviewed pharmacy literature regarding pharmacists' roles in disasters. Negative binomial regression and Kruskal-Wallis nonparametric models were applied to the data. Pharmacists' roles in disasters have not changed significantly since the 1960s. Pharmaceutical supply remains their preferred role, while patient management and response integration roles decrease in context of common, geographically widespread disasters. Policy coordination roles, however, significantly increase in nuclear terrorism planning. Pharmacists' adoption of nonpharmaceutical supply roles may represent a problem of accepting a paradigm shift in nontraditional roles. Possible shortages of personnel in future disasters may change the pharmacists' approach to disaster management.

  15. PEMAHAMAN DASAR ANALISIS MODEL COMPUTABLE GENERAL EQUILIBRIUM (CGE

    Directory of Open Access Journals (Sweden)

    Mardiyah Hayati

    2013-11-01

    Full Text Available Simple paper about basic understanding of computable general equilibrium aimed to give basic understanding about CGE. It consist of history of CGE, assumption of CGE model, excess and lack of CGE model, and creation of simple CGE model for closed economy. CGE model is suitable to be used for seeing impact of new policy implementation. It is because CGE model use general equilibrium in which this theory of general equilibrium explaining about inter-relation among markets in the economy system. CGE model was introduced in 1960s known as Johansen model. Next, it is expanded into various models such as: ORANI Model, General Trade Analysis Project (GTAP Model, and Applied General Equilibrium (AGE Model. In Indonesia, there are CGE ORANI Model, Wayang, Indonesia-E3 and IRCGE. CGE Model is created by assumption of perfect competition. Consumer maximizes utility, producer maximizes profit, and company maximizes zero profit condition.

  16. A multi-ion generalized transport model of the polar wind

    Science.gov (United States)

    Demars, H. G.; Schunk, R. W.

    1994-01-01

    The higher-order generalizations of the equations of standard hydrodynamics, known collectively as generalized transport theories, have been used since the early 1980s to describe the terrestrial polar wind. Inherent in the structure of generalized transport theories is the ability to describe not only interparticle collisions but also certain non-Maxwellian processes, such as heat flow and viscous stress, that are characteristic of any plasma flow that is not collision dominated. Because the polar wind exhibits a transition from collision-dominated to collisionless flow, generalized transport theories possess advantages for polar wind modeling not shared by either collision-dominated models (such as standard hydrodynamics) or collisionless models (such as those based on solving the collisionless Boltzmann equation). In general, previous polar wind models have used generalized transport equations to describe electrons and only one species of ion (H(+)). If other ion species were included in the models at all, it was in a simplified or semiempirical manner. The model described in this paper is the first polar wind model that uses a generalized transport theory (bi-Maxwellian-based 16-moment theory) to describe all of the species, both major and minor, in the polar wind plasma. In the model, electrons and three ion species (H(+), He(+), O(+)) are assumed to be major and several ion species are assumed to be minor (NO(+), Fe(+), O(++)). For all species, a complete 16-moment transport formulation is used, so that profiles of density, drift velocity, parallel and perpendicular temperatures, and the field-aligned parallel and perpendicular energy flows are obtained. In the results presented here, emphasis is placed on describing those constituents of the polar wind that have received little attention in past studies. In particular, characteristic solutions are presented for supersonic H(+) outflow and for both supersonic and subsonic outflows of the major ion He

  17. Multivariate statistical modelling based on generalized linear models

    CERN Document Server

    Fahrmeir, Ludwig

    1994-01-01

    This book is concerned with the use of generalized linear models for univariate and multivariate regression analysis. Its emphasis is to provide a detailed introductory survey of the subject based on the analysis of real data drawn from a variety of subjects including the biological sciences, economics, and the social sciences. Where possible, technical details and proofs are deferred to an appendix in order to provide an accessible account for non-experts. Topics covered include: models for multi-categorical responses, model checking, time series and longitudinal data, random effects models, and state-space models. Throughout, the authors have taken great pains to discuss the underlying theoretical ideas in ways that relate well to the data at hand. As a result, numerous researchers whose work relies on the use of these models will find this an invaluable account to have on their desks. "The basic aim of the authors is to bring together and review a large part of recent advances in statistical modelling of m...

  18. Modeling local item dependence with the hierarchical generalized linear model.

    Science.gov (United States)

    Jiao, Hong; Wang, Shudong; Kamata, Akihito

    2005-01-01

    Local item dependence (LID) can emerge when the test items are nested within common stimuli or item groups. This study proposes a three-level hierarchical generalized linear model (HGLM) to model LID when LID is due to such contextual effects. The proposed three-level HGLM was examined by analyzing simulated data sets and was compared with the Rasch-equivalent two-level HGLM that ignores such a nested structure of test items. The results demonstrated that the proposed model could capture LID and estimate its magnitude. Also, the two-level HGLM resulted in larger mean absolute differences between the true and the estimated item difficulties than those from the proposed three-level HGLM. Furthermore, it was demonstrated that the proposed three-level HGLM estimated the ability distribution variance unaffected by the LID magnitude, while the two-level HGLM with no LID consideration increasingly underestimated the ability variance as the LID magnitude increased.

  19. Generalized second law of thermodynamics for non-canonical scalar field model with corrected-entropy

    Science.gov (United States)

    Das, Sudipta; Debnath, Ujjal; Mamon, Abdulla Al

    2015-10-01

    In this work, we have considered a non-canonical scalar field dark energy model in the framework of flat FRW background. It has also been assumed that the dark matter sector interacts with the non-canonical dark energy sector through some interaction term. Using the solutions for this interacting non-canonical scalar field dark energy model, we have investigated the validity of generalized second law (GSL) of thermodynamics in various scenarios using first law and area law of thermodynamics. For this purpose, we have assumed two types of horizons viz apparent horizon and event horizon for the universe and using first law of thermodynamics, we have examined the validity of GSL on both apparent and event horizons. Next, we have considered two types of entropy-corrections on apparent and event horizons. Using the modified area law, we have examined the validity of GSL of thermodynamics on apparent and event horizons under some restrictions of model parameters.

  20. Generalized Second Law of Thermodynamics for Non-canonical Scalar Field Model with Corrected-Entropy

    CERN Document Server

    Das, Sudipta; Mamon, Abdulla Al

    2015-01-01

    In this work, we have considered a non-canonical scalar field dark energy model in the framework of flat FRW background. It has also been assumed that the dark matter sector interacts with the non-canonical dark energy sector through some interaction term. Using the solutions for this interacting non-canonical scalar field dark energy model, we have investigated the validity of generalized second law (GSL) of thermodynamics in various scenarios using first law and area law of thermodynamics. For this purpose, we have assumed two types of horizons viz apparent horizon and event horizon for the universe and using first law of thermodynamics, we have examined the validity of GSL on both apparent and event horizons. Next, we have considered two types of entropy-corrections on apparent and event horizons. Using the modified area law, we have examined the validity of GSL of thermodynamics on apparent and event horizons under some restrictions of model parameters.

  1. Generalized second law of thermodynamics for non-canonical scalar field model with corrected-entropy

    Energy Technology Data Exchange (ETDEWEB)

    Das, Sudipta; Mamon, Abdulla Al [Visva-Bharati, Department of Physics, Santiniketan (India); Debnath, Ujjal [Indian Institute of Engineering Science and Technology, Department of Mathematics, Shibpur, Howrah (India)

    2015-10-15

    In this work, we have considered a non-canonical scalar field dark energy model in the framework of flat FRW background. It has also been assumed that the dark matter sector interacts with the non-canonical dark energy sector through some interaction term. Using the solutions for this interacting non-canonical scalar field dark energy model, we have investigated the validity of generalized second law (GSL) of thermodynamics in various scenarios using first law and area law of thermodynamics. For this purpose, we have assumed two types of horizons viz apparent horizon and event horizon for the universe and using first law of thermodynamics, we have examined the validity of GSL on both apparent and event horizons. Next, we have considered two types of entropy-corrections on apparent and event horizons. Using the modified area law, we have examined the validity of GSL of thermodynamics on apparent and event horizons under some restrictions of model parameters. (orig.)

  2. A Bayesian modeling approach for generalized semiparametric structural equation models.

    Science.gov (United States)

    Song, Xin-Yuan; Lu, Zhao-Hua; Cai, Jing-Heng; Ip, Edward Hak-Sing

    2013-10-01

    In behavioral, biomedical, and psychological studies, structural equation models (SEMs) have been widely used for assessing relationships between latent variables. Regression-type structural models based on parametric functions are often used for such purposes. In many applications, however, parametric SEMs are not adequate to capture subtle patterns in the functions over the entire range of the predictor variable. A different but equally important limitation of traditional parametric SEMs is that they are not designed to handle mixed data types-continuous, count, ordered, and unordered categorical. This paper develops a generalized semiparametric SEM that is able to handle mixed data types and to simultaneously model different functional relationships among latent variables. A structural equation of the proposed SEM is formulated using a series of unspecified smooth functions. The Bayesian P-splines approach and Markov chain Monte Carlo methods are developed to estimate the smooth functions and the unknown parameters. Moreover, we examine the relative benefits of semiparametric modeling over parametric modeling using a Bayesian model-comparison statistic, called the complete deviance information criterion (DIC). The performance of the developed methodology is evaluated using a simulation study. To illustrate the method, we used a data set derived from the National Longitudinal Survey of Youth.

  3. Generalization of Random Intercept Multilevel Models

    Directory of Open Access Journals (Sweden)

    Rehan Ahmad Khan

    2013-10-01

    Full Text Available The concept of random intercept models in a multilevel model developed by Goldstein (1986 has been extended for k-levels. The random variation in intercepts at individual level is marginally split into components by incorporating higher levels of hierarchy in the single level model. So, one can control the random variation in intercepts by incorporating the higher levels in the model.

  4. An SIR Epidemic Model with Time Delay and General Nonlinear Incidence Rate

    Directory of Open Access Journals (Sweden)

    Mingming Li

    2014-01-01

    Full Text Available An SIR epidemic model with nonlinear incidence rate and time delay is investigated. The disease transmission function and the rate that infected individuals recovered from the infected compartment are assumed to be governed by general functions F(S,I and G(I, respectively. By constructing Lyapunov functionals and using the Lyapunov-LaSalle invariance principle, the global asymptotic stability of the disease-free equilibrium and the endemic equilibrium is obtained. It is shown that the global properties of the system depend on both the properties of these general functions and the basic reproductive number R0.

  5. Well behaved anisotropic compact star models in general relativity

    Science.gov (United States)

    Jasim, M. K.; Maurya, S. K.; Gupta, Y. K.; Dayanandan, B.

    2016-11-01

    Anisotropic compact star models have been constructed by assuming a particular form of a metric function e^{λ}. We solved the Einstein field equations for determining the metric function e^{ν}. For this purpose we have assumed a physically valid expression of radial pressure (pr). The obtained anisotropic compact star model is representing the realistic compact objects such as PSR 1937 +21. We have done an extensive study about physical parameters for anisotropic models and found that these parameters are well behaved throughout inside the star. Along with these we have also determined the equation of state for compact star which gives the radial pressure is purely the function of density i.e. pr=f(ρ).

  6. Assortativity in generalized preferential attachment models

    CERN Document Server

    Krot, Alexander

    2016-01-01

    In this paper, we analyze assortativity of preferential attachment models. We deal with a wide class of preferential attachment models (PA-class). It was previously shown that the degree distribution in all models of the PA-class follows a power law. Also, the global and the average local clustering coefficients were analyzed. We expand these results by analyzing the assortativity property of the PA-class of models. Namely, we analyze the behavior of $d_{nn}(d)$ which is the average degree of a neighbor of a vertex of degree $d$.

  7. Particle model with generalized Poincaré symmetry

    Science.gov (United States)

    Smith, A.

    2017-08-01

    Using the techniques of nonlinear coset realization with a generalized Poincaré group, we construct a relativistic particle model, invariant under the generalized symmetries, providing a dynamical realization of the B5 algebra.

  8. An assumed pdf approach for the calculation of supersonic mixing layers

    Science.gov (United States)

    Baurle, R. A.; Drummond, J. P.; Hassan, H. A.

    1992-01-01

    In an effort to predict the effect that turbulent mixing has on the extent of combustion, a one-equation turbulence model is added to an existing Navier-Stokes solver with finite-rate chemistry. To average the chemical-source terms appearing in the species-continuity equations, an assumed pdf approach is also used. This code was used to analyze the mixing and combustion caused by the mixing layer formed by supersonic coaxial H2-air streams. The chemistry model employed allows for the formation of H2O2 and HO2. Comparisons are made with recent measurements using laser Raman diagnostics. Comparisons include temperature and its rms, and concentrations of H2, O2, N2, H2O, and OH. In general, good agreement with experiment was noted.

  9. Stratospheric General Circulation with Chemistry Model (SGCCM)

    Science.gov (United States)

    Rood, Richard B.; Douglass, Anne R.; Geller, Marvin A.; Kaye, Jack A.; Nielsen, J. Eric; Rosenfield, Joan E.; Stolarski, Richard S.

    1990-01-01

    In the past two years constituent transport and chemistry experiments have been performed using both simple single constituent models and more complex reservoir species models. Winds for these experiments have been taken from the data assimilation effort, Stratospheric Data Analysis System (STRATAN).

  10. Generalized coupling in the Kuramoto model

    DEFF Research Database (Denmark)

    Filatrella, G.; Pedersen, Niels Falsig; Wiesenfeld, K.

    2007-01-01

    We propose a modification of the Kuramoto model to account for the effective change in the coupling constant among the oscillators, as suggested by some experiments on Josephson junction, laser arrays, and mechanical systems, where the active elements are turned on one by one. The resulting model...... with the behavior of Josephson junctions coupled via a cavity....

  11. Universality in generalized models of inflation

    CERN Document Server

    Binétruy, Pierre; Pieroni, Mauro

    2016-01-01

    We show that the cosmological evolution of a scalar field with non standard kinetic term can be described in terms of a Renormalization Group Equation. In this framework inflation corresponds to the slow evolution in a neighborhood of a fixed point and universality classes for inflationary models can be naturally introduced. Using some examples we show the application of the formalism. The predicted values for the speed of sound $c_s$ and for the amount of non-Gaussianities produced in these models are discussed. In particular, we show that it is possible to introduce models with $c_s^2 \

  12. The Survival Probability in Generalized Poisson Risk Model

    Institute of Scientific and Technical Information of China (English)

    GONGRi-zhao

    2003-01-01

    In this paper we generalize the aggregated premium income process from a constant rate process to a poisson process for the classical compound Poinsson risk model,then for the generalized model and the classical compound poisson risk model ,we respectively get its survival probability in finite time period in case of exponential claim amounts.

  13. Description of the General Equilibrium Model of Ecosystem Services (GEMES)

    Science.gov (United States)

    Travis Warziniack; David Finnoff; Jenny Apriesnig

    2017-01-01

    This paper serves as documentation for the General Equilibrium Model of Ecosystem Services (GEMES). GEMES is a regional computable general equilibrium model that is composed of values derived from natural capital and ecosystem services. It models households, producing sectors, and governments, linked to one another through commodity and factor markets. GEMES was...

  14. Evidence for a General Factor Model of ADHD in Adults

    Science.gov (United States)

    Gibbins, Christopher; Toplak, Maggie E.; Flora, David B.; Weiss, Margaret D.; Tannock, Rosemary

    2012-01-01

    Objective: To examine factor structures of "Diagnostic and Statistical Manual of Mental Disorders" (4th ed.) symptoms of ADHD in adults. Method: Two sets of models were tested: (a) models with inattention and hyperactivity/impulsivity as separate but correlated latent constructs and (b) hierarchical general factor models with a general factor for…

  15. BEYOND SEM: GENERAL LATENT VARIABLE MODELING

    National Research Council Canada - National Science Library

    Muthén, Bengt O

    2002-01-01

    This article gives an overview of statistical analysis with latent variables. Using traditional structural equation modeling as a starting point, it shows how the idea of latent variables captures a wide variety of statistical concepts...

  16. Generalized circuit model for coupled plasmonic systems

    CERN Document Server

    Benz, Felix; Tserkezis, Christos; Chikkaraddy, Rohit; Sigle, Daniel O; Pukenas, Laurynas; Evans, Stephen D; Aizpurua, Javier; Baumberg, Jeremy J

    2015-01-01

    We develop an analytic circuit model for coupled plasmonic dimers separated by small gaps that provides a complete account of the optical resonance wavelength. Using a suitable equivalent circuit, it shows how partially conducting links can be treated and provides quantitative agreement with both experiment and full electromagnetic simulations. The model highlights how in the conducting regime, the kinetic inductance of the linkers set the spectral blue-shifts of the coupled plasmon.

  17. A Simplified Scheme of the Generalized Layered Radiative Transfer Model

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    In this paper, firstly, a simplified version (SGRTM) of the generalized layered radiative transfer model (GRTM) within the canopy, developed by us, is presented. It reduces the information requirement of inputted sky diffuse radiation, as well as of canopy morphology, and in turn saves computer resources. Results from the SGRTM agree perfectly with those of the GRTM. Secondly, by applying the linear superposition principle of the optics and by using the basic solutions of the GRTM for radiative transfer within the canopy under the condition of assumed zero soil reflectance, two sets of explicit analytical solutions of radiative transfer within the canopy with any soil reflectance magnitude are derived: one for incident diffuse, and the other for direct beam radiation. The explicit analytical solutions need two sets of basic solutions of canopy reflectance and transmittance under zero soil reflectance, run by the model for both diffuse and direct beam radiation. One set of basic solutions is the canopy reflectance αf (written as α1 for direct beam radiation) and transmittance βf (written as β1 for direction beam radiation) with zero soil reflectance for the downward radiation from above the canopy (i.e. sky), and the other set is the canopy reflectance (αb) and transmittanceβb for the upward radiation from below the canopy (i.e., ground). Under the condition of the same plant architecture in the vertical layers, and the same leaf adaxial and abaxial optical properties in the canopies for the uniform diffuse radiation, the explicit solutions need only one set of basic solutions, because under this condition the two basic solutions are equal, i.e., αf = αb and βf = βb. Using the explicit analytical solutions, the fractions of any kind of incident solar radiation reflected from (defined as surface albedo, or canopy reflectance),transmitted through (defined as canopy transmittance), and absorbed by (defined as canopy absorptance)the canopy and other properties

  18. Invariance Properties for General Diagnostic Classification Models

    Science.gov (United States)

    Bradshaw, Laine P.; Madison, Matthew J.

    2016-01-01

    In item response theory (IRT), the invariance property states that item parameter estimates are independent of the examinee sample, and examinee ability estimates are independent of the test items. While this property has long been established and understood by the measurement community for IRT models, the same cannot be said for diagnostic…

  19. A General Thermal Equilibrium Discharge Flow Model

    Institute of Scientific and Technical Information of China (English)

    ZHAO; Min-fu; ZHANG; Dong-xu; LV; Yu-feng

    2015-01-01

    In isentropic and thermal equilibrium assumptions,a discharge flow model was derived,which unified the rules of normal temperature water discharge,high temperature and high pressure water discharge,two-phase critical flow,saturated steam and superheated steam critical

  20. A generalized network model for polymeric liquids

    NARCIS (Netherlands)

    Jongschaap, R.J.J.; Kamphuis, H.; Doeksen, D.K.

    1983-01-01

    A kinetic model was developed for relating the molecular structure and the rheological behaviour of polymer-like materials in which bonds are being created and broken. In particular, the stress contribution of molecules that are not a part of the network was taken account of. In two limiting cases

  1. On A General Frame For Macroeconomic Modelling

    Directory of Open Access Journals (Sweden)

    Emil DINGA

    2012-03-01

    Full Text Available The purpose of the research project was to identify the methodological bases for the aggregate description of the Romanian national economy, both logically and in terms of the sources of empirical data for modelling. The specific objectives of the project were: a description of the economic markets in correlation with the logic description of the economic behaviours; b determination of the sectoral blocks of the Romanian economy, on the basis of the homogeneity of the economic; activity and behaviour; c association of the sectoral blocks to the national accounts, so as to ensure the sources of empirical data for the calibration and utilisation of the model; d association of the sectoral blocks to the economic markets; e association of the national accounts with the economic markets; f identification of the classes of interactions between the determined sectoral blocks.

  2. Generalized Quadratic Linearization of Machine Models

    OpenAIRE

    Parvathy Ayalur Krishnamoorthy; Kamaraj Vijayarajan; Devanathan Rajagopalan

    2011-01-01

    In the exact linearization of involutive nonlinear system models, the issue of singularity needs to be addressed in practical applications. The approximate linearization technique due to Krener, based on Taylor series expansion, apart from being applicable to noninvolutive systems, allows the singularity issue to be circumvented. But approximate linearization, while removing terms up to certain order, also introduces terms of higher order than those removed into the system. To overcome th...

  3. Generalized Mathematical Model for Hot Rolling Process of Plate

    Institute of Scientific and Technical Information of China (English)

    Zhenshan CUI; Bingye XU

    2003-01-01

    A generalized mathematical model is developed to predict the changes of temperature, rolling pressure, strain,strain rate, and austenite grain size for plate hot rolling and cooling processes. The model is established mainly by incorporating analytical an

  4. A Unified Model of All Generalizations from the Jones Polynomial

    Institute of Scientific and Technical Information of China (English)

    QIAN Shang-Wu; GU Zhi-Yu

    2001-01-01

    From the basic properties of skein systems, we build a generalized tangle algebra (GTA). The elements of GTA are four basic tangles. There are three operations, which are connection, splicing and scalar multiplication. From GTA we derive two generalized recursion formulae (GRF) and prove the existence of a generalized skein relation which satisfies GRF. The obtained generalized skein relation epitomizes all generalizations from the Jones polynomial and thus forms a unified model. Two important topological parameters, twisting measure and loop values, appear explicitly in the expressions of the unified model, and this fact greatly simplifies the operations.

  5. The General Optimal Market Area Model

    Science.gov (United States)

    1988-06-01

    Spatial Competition, American Economic Review 68 (1978) 896. [19] G.M. Carter, J.M. Chaiken, and E. Ignall, Response Areas for Two Emergency Units...25] B.C. Eaton and R.G. Lipsey, The Non-Uniqueness of Equilibrium in the L6schian Location Model, American Economic Review 66 (1976) 77. [26, B.C...4 (1972) 154. [86] S. Valavanis, L6sch on Location, American Economic Review 45 (1955) 637. [87] B. Von Hohenbalken and D.S. West, Manhattan versus

  6. Modeling electrokinetics in ionic liquids: General

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Chao [Physical and Computational Science Directorate, Pacific Northwest National Laboratory, Richland WA USA; Bao, Jie [Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland WA USA; Pan, Wenxiao [Department of Mechanical Engineering, University of Wisconsin-Madison, Madison WI USA; Sun, Xin [Physical and Computational Science Directorate, Pacific Northwest National Laboratory, Richland WA USA

    2017-04-07

    Using direct numerical simulations we provide a thorough study on the electrokinetics of ionic liquids. In particular, the modfied Poisson-Nernst-Planck (MPNP) equations are solved to capture the crowding and overscreening effects that are the characteristics of an ionic liquid. For modeling electrokinetic flows in an ionic liquid, the MPNP equations are coupled with the Navier-Stokes equations to study the coupling of ion transport, hydrodynamics, and electrostatic forces. Specifically, we consider the ion transport between two parallel plates, charging dynamics in a 2D straight-walled pore, electro-osmotic ow in a nano-channel, electroconvective instability on a plane ion-selective surface, and electroconvective ow on a curved ion-selective surface. We discuss how the crowding and overscreening effects and their interplay affect the electrokinetic behaviors of ionic liquids in these application problems.

  7. Building a generalized distributed system model

    Science.gov (United States)

    Mukkamala, R.

    1992-01-01

    The key elements in the second year (1991-92) of our project are: (1) implementation of the distributed system prototype; (2) successful passing of the candidacy examination and a PhD proposal acceptance by the funded student; (3) design of storage efficient schemes for replicated distributed systems; and (4) modeling of gracefully degrading reliable computing systems. In the third year of the project (1992-93), we propose to: (1) complete the testing of the prototype; (2) enhance the functionality of the modules by enabling the experimentation with more complex protocols; (3) use the prototype to verify the theoretically predicted performance of locking protocols, etc.; and (4) work on issues related to real-time distributed systems. This should result in efficient protocols for these systems.

  8. A generalized model via random walks for information filtering

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Zhuo-Ming, E-mail: zhuomingren@gmail.com [Department of Physics, University of Fribourg, Chemin du Musée 3, CH-1700, Fribourg (Switzerland); Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, ChongQing, 400714 (China); Kong, Yixiu [Department of Physics, University of Fribourg, Chemin du Musée 3, CH-1700, Fribourg (Switzerland); Shang, Ming-Sheng, E-mail: msshang@cigit.ac.cn [Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, ChongQing, 400714 (China); Zhang, Yi-Cheng [Department of Physics, University of Fribourg, Chemin du Musée 3, CH-1700, Fribourg (Switzerland)

    2016-08-06

    There could exist a simple general mechanism lurking beneath collaborative filtering and interdisciplinary physics approaches which have been successfully applied to online E-commerce platforms. Motivated by this idea, we propose a generalized model employing the dynamics of the random walk in the bipartite networks. Taking into account the degree information, the proposed generalized model could deduce the collaborative filtering, interdisciplinary physics approaches and even the enormous expansion of them. Furthermore, we analyze the generalized model with single and hybrid of degree information on the process of random walk in bipartite networks, and propose a possible strategy by using the hybrid degree information for different popular objects to toward promising precision of the recommendation. - Highlights: • We propose a generalized recommendation model employing the random walk dynamics. • The proposed model with single and hybrid of degree information is analyzed. • A strategy with the hybrid degree information improves precision of recommendation.

  9. A general and simple method for obtaining R2 from generalized linear mixed‐effects models

    National Research Council Canada - National Science Library

    Nakagawa, Shinichi; Schielzeth, Holger; O'Hara, Robert B

    2013-01-01

    The use of both linear and generalized linear mixed‐effects models ( LMM s and GLMM s) has become popular not only in social and medical sciences, but also in biological sciences, especially in the field of ecology and evolution...

  10. Pion generalized parton distributions within a fully covariant constituent quark model

    Energy Technology Data Exchange (ETDEWEB)

    Fanelli, Cristiano [Massachusetts Institute of Technology, Cambridge, MA (United States). Lab. for Nuclear Science; Pace, Emanuele [' ' Tor Vergata' ' Univ., Rome (Italy). Physics Dept.; INFN Sezione di TorVergata, Rome (Italy); Romanelli, Giovanni [Rutherford-Appleton Laboratory, Didcot (United Kingdom). STFC; Salme, Giovanni [Istituto Nazionale di Fisica Nucleare, Rome (Italy); Salmistraro, Marco [Rome La Sapienza Univ. (Italy). Physics Dept.; I.I.S. G. De Sanctis, Rome (Italy)

    2016-05-15

    We extend the investigation of the generalized parton distribution for a charged pion within a fully covariant constituent quark model, in two respects: (1) calculating the tensor distribution and (2) adding the treatment of the evolution, needed for achieving a meaningful comparison with both the experimental parton distribution and the lattice evaluation of the so-called generalized form factors. Distinct features of our phenomenological covariant quark model are: (1) a 4D Ansatz for the pion Bethe-Salpeter amplitude, to be used in the Mandelstam formula for matrix elements of the relevant current operators, and (2) only two parameters, namely a quark mass assumed to be m{sub q} = 220 MeV and a free parameter fixed through the value of the pion decay constant. The possibility of increasing the dynamical content of our covariant constituent quark model is briefly discussed in the context of the Nakanishi integral representation of the Bethe-Salpeter amplitude. (orig.)

  11. Intermediate-generalized Chaplygin gas inflationary universe model

    Energy Technology Data Exchange (ETDEWEB)

    Herrera, Ramon; Olivares, Marco; Videla, Nelson [Pontificia Universidad Catolica de Valparaiso, Instituto de Fisica, Casilla, Valparaiso (Chile)

    2013-01-15

    An intermediate inflationary universe model in the context of a generalized Chaplygin gas is considered. For the matter we consider two different energy densities; a standard scalar field and a tachyon field, respectively. In general, we discuss the conditions of an inflationary epoch for these models. We also, use recent astronomical observations from Wilkinson Microwave Anisotropy Probe seven year data for constraining the parameters appearing in our models. (orig.)

  12. On a holographic dark energy model with a Nojiri-Odintsov cut-off in general relativity

    CERN Document Server

    Khurshudyan, M

    2016-01-01

    In this paper we consider the models of the accelerated expanding large scale universe~(according to general relativity) containing a generalized holographic dark energy with a Nojiri - Odintsov cut - off. The second component of the darkness is assumed to be the pressureless cold dark matter according to observed symmetries of the large scale universe. Moreover, we assume specific forms of the interaction between these two components and besides the cosmographic analysis, we discuss appropriate results from $Om$ and $Om3$ analysis and organize a closer look to the models via the statefinder hierarchy analysis, too. In this way we study mainly impact of the interaction on the dynamics of the background of our universe~(within specific forms of interaction). To complete the cosmographic analysis, the present day values of the statefinder parameters $(r,s)$ and $(\\omega^{\\prime}_{de}, \\omega_{de})$ has been estimated for all cases and the validity of the generalized second law of thermodynamics is demonstrated....

  13. Effects of viscous pressure on warm inflationary generalized cosmic Chaplygin gas model

    Energy Technology Data Exchange (ETDEWEB)

    Sharif, M.; Saleem, Rabia, E-mail: msharif.math@pu.edu.pk, E-mail: rabiasaleem1988@yahoo.com [Department of Mathematics, University of the Punjab, Quaid-e-Azam Campus, Lahore-54590 (Pakistan)

    2014-12-01

    This paper is devoted to study the effects of bulk viscous pressure on an inflationary generalized cosmic Chaplygin gas model using FRW background. The matter contents of the universe are assumed to be inflaton and imperfect fluid. We evaluate inflaton fields, potentials and entropy density for variable as well as constant dissipation and bulk viscous coefficients in weak as well as high dissipative regimes during intermediate era. In order to discuss inflationary perturbations, we evaluate entropy density, scalar (tensor) power spectra, their corresponding spectral indices, tensor-scalar ratio and running of spectral index in terms of inflaton which are constrained using recent Planck, WMAP7 and Bicep2 probes.

  14. DEFORMATION RIGIDITY OF ASSUMED STRESS MODES IN HYBRID ELEMENTS

    Institute of Scientific and Technical Information of China (English)

    ZHANG Can-hui; HUANG Qian; FENG Wei

    2006-01-01

    The new methods to determine the zero-energy deformation modes in the hybrid elements and the zero-energy stress modes in their assumed stress fields are presented by the natural deformation modes of the elements. And the formula of the additional element deformation rigidity due to additional mode into the assumed stress field is derived.Based on, it is concluded in theory that the zero-energy stress mode cannot suppress the zero-energy deformation modes but increase the extra rigidity to the nonzero-energy deformation modes of the element instead. So they should not be employed to assume the stress field. In addition, the parasitic stress modes will produce the spurious parasitic energy and result the element behaving over rigidity. Thus, they should not be used into the assumed stress field even though they can suppress the zero-energy deformation modes of the element. The numerical examples show the performance of the elements including the zero-energy stress modes or the parasitic stress modes.

  15. Statistical motor number estimation assuming a binomial distribution.

    NARCIS (Netherlands)

    Blok, J.H.; Visser, G.H.A.; Graaf, S.S.N. de; Zwarts, M.J.; Stegeman, D.F.

    2005-01-01

    The statistical method of motor unit number estimation (MUNE) uses the natural stochastic variation in a muscle's compound response to electrical stimulation to obtain an estimate of the number of recruitable motor units. The current method assumes that this variation follows a Poisson distribution.

  16. Generalized Linear Models with Applications in Engineering and the Sciences

    CERN Document Server

    Myers, Raymond H; Vining, G Geoffrey; Robinson, Timothy J

    2012-01-01

    Praise for the First Edition "The obvious enthusiasm of Myers, Montgomery, and Vining and their reliance on their many examples as a major focus of their pedagogy make Generalized Linear Models a joy to read. Every statistician working in any area of applied science should buy it and experience the excitement of these new approaches to familiar activities."-Technometrics Generalized Linear Models: With Applications in Engineering and the Sciences, Second Edition continues to provide a clear introduction to the theoretical foundations and key applications of generalized linear models (GLMs). Ma

  17. Kalman Filter for Generalized 2-D Roesser Models

    Institute of Scientific and Technical Information of China (English)

    SHENG Mei; ZOU Yun

    2007-01-01

    The design problem of the state filter for the generalized stochastic 2-D Roesser models, which appears when both the state and measurement are simultaneously subjected to the interference from white noise, is discussed. The wellknown Kalman filter design is extended to the generalized 2-D Roesser models. Based on the method of "scanning line by line", the filtering problem of generalized 2-D Roesser models with mode-energy reconstruction is solved. The formula of the optimal filtering, which minimizes the variance of the estimation error of the state vectors, is derived. The validity of the designed filter is verified by the calculation steps and the examples are introduced.

  18. A General Polygon-based Deformable Model for Object Recognition

    DEFF Research Database (Denmark)

    Jensen, Rune Fisker; Carstensen, Jens Michael

    1999-01-01

    We propose a general scheme for object localization and recognition based on a deformable model. The model combines shape and image properties by warping a arbitrary prototype intensity template according to the deformation in shape. The shape deformations are constrained by a probabilistic...... distribution, which combined with a match of the warped intensity template and the image form the final criteria used for localization and recognition of a given object. The chosen representation gives the model an ability to model an almost arbitrary object. Beside the actual model a full general scheme...

  19. Calibrating the ECCO ocean general circulation model using Green's functions

    Science.gov (United States)

    Menemenlis, D.; Fu, L. L.; Lee, T.; Fukumori, I.

    2002-01-01

    Green's functions provide a simple, yet effective, method to test and calibrate General-Circulation-Model(GCM) parameterizations, to study and quantify model and data errors, to correct model biases and trends, and to blend estimates from different solutions and data products.

  20. A Duality Result for the Generalized Erlang Risk Model

    Directory of Open Access Journals (Sweden)

    Lanpeng Ji

    2014-11-01

    Full Text Available In this article, we consider the generalized Erlang risk model and its dual model. By using a conditional measure-preserving correspondence between the two models, we derive an identity for two interesting conditional probabilities. Applications to the discounted joint density of the surplus prior to ruin and the deficit at ruin are also discussed.

  1. General Linear Models: An Integrated Approach to Statistics

    OpenAIRE

    Andrew Faulkner; Sylvain Chartier

    2008-01-01

    Generally, in psychology, the various statistical analyses are taught independently from each other. As a consequence, students struggle to learn new statistical analyses, in contexts that differ from their textbooks. This paper gives a short introduction to the general linear model (GLM), in which it is showed that ANOVA (one-way, factorial, repeated measure and analysis of covariance) is simply a multiple correlation/regression analysis (MCRA). Generalizations to other cases, such as multiv...

  2. Parameter Estimation for a Computable General Equilibrium Model

    DEFF Research Database (Denmark)

    Arndt, Channing; Robinson, Sherman; Tarp, Finn

    2002-01-01

    We introduce a maximum entropy approach to parameter estimation for computable general equilibrium (CGE) models. The approach applies information theory to estimating a system of non-linear simultaneous equations. It has a number of advantages. First, it imposes all general equilibrium constraints...

  3. Duals for classical inventory models via generalized geometric programming

    OpenAIRE

    Carlton H. Scott; Thomas R. Jefferson; Soheila Jorjani

    2004-01-01

    Inventory problems generally have a structure that can be exploited for computational purposes. Here, we look at the duals of two seemingly unrelated inventory models that suggest an interesting duality between discrete time optimal control and optimization over an ordered sequence of variables. Concepts from conjugate duality and generalized geometric programming are used to establish the duality.

  4. Ising model on the generalized Bruhat-Tits tree

    Science.gov (United States)

    Zinoviev, Yu. M.

    1991-08-01

    The partition function and the correlation functions of the Ising model on the generalized Bruhat-Tits tree are calculated. We computed also the averages of these correlation functions when the corresponding vertices are attached to the boundary of the generalized Bruhat-Tits tree.

  5. Parameter Estimation for a Computable General Equilibrium Model

    DEFF Research Database (Denmark)

    Arndt, Channing; Robinson, Sherman; Tarp, Finn

    We introduce a maximum entropy approach to parameter estimation for computable general equilibrium (CGE) models. The approach applies information theory to estimating a system of nonlinear simultaneous equations. It has a number of advantages. First, it imposes all general equilibrium constraints...

  6. Study on Solitary Waves of a General Boussinesq Model

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    In this paper, we employ the bifurcation method of dynamical systems to study the solitary waves and periodic waves of a generalized Boussinesq equations. All possible phase portraits in the parameter plane for the travelling wave systems are obtained. The possible solitary wave solutions, periodic wave solutions and cusp waves for the general Boussinesq type fluid model are also investigated.

  7. A Generalized Bass Model for Product Growth in Networks

    CERN Document Server

    Manshadi, Vahideh H

    2016-01-01

    Many products and innovations become well-known and widely adopted through the social interactions of individuals in a population. The Bass diffusion model has been widely used to model the temporal evolution of adoption in such social systems. In the model, the likelihood of a new adoption is proportional to the number of previous adopters, implicitly assuming a global (or homogeneous) interaction among all individuals in the network. Such global interactions do not exist in many large social networks, however. Instead, individuals typically interact with a small part of the larger population. To quantify the growth rate (or equivalently the adoption timing) in networks with limited interactions, we study a stochastic adoption process where the likelihood that each individual adopts is proportional to the number of adopters among the small group of persons he/she interacts with (and not the entire population of adopters). When the underlying network of interactions is a random $k$-regular graph, we compute t...

  8. Finite Element Modeling of Metasurfaces with Generalized Sheet Transition Conditions

    CERN Document Server

    Sandeep, Srikumar; Caloz, Christophe

    2016-01-01

    A modeling of metasurfaces in the finite element method (FEM) based on generalized sheet transition conditions (GSTCs) is presented. The discontinuities in electromagnetic fields across a metasurface as represented by the GSTC are modeled by assigning nodes to both sides of the metasurface. The FEM-GSTC formulation in both 1D and 2D domains is derived and implemented. The method is extended to handle more general bianistroptic metasurfaces. The formulations are validated by several illustrative examples.

  9. A QCD Model Using Generalized Yang-Mills Theory

    Institute of Scientific and Technical Information of China (English)

    WANG Dian-Fu; SONG He-Shan; KOU Li-Na

    2007-01-01

    Generalized Yang-Mills theory has a covariant derivative,which contains both vector and scalar gauge bosons.Based on this theory,we construct a strong interaction model by using the group U(4).By using this U(4)generalized Yang-Mills model,we also obtain a gauge potential solution,which can be used to explain the asymptotic behavior and color confinement.

  10. Dynamical CP violation of the generalized Yang-Mills model

    Institute of Scientific and Technical Information of China (English)

    WANG Dian-Fu; SUN Xiao-Yu; CHANG Xiao-Jing

    2011-01-01

    Starting from the generalized Yang-Mills model which contains, besides the vector part Vμ, also a scalar part S and a pseudoscalar part P. It is shown, in terms of the Nambu-Jona-Lasinio (NJL) mechanism,that CP violation can be realized dynamically. The combination of the generalized Yang-MiUs model and the NJL mechanism provides a new way to explain CP violation.

  11. Parameterizing deep convection using the assumed probability density function method

    Directory of Open Access Journals (Sweden)

    R. L. Storer

    2014-06-01

    Full Text Available Due to their coarse horizontal resolution, present-day climate models must parameterize deep convection. This paper presents single-column simulations of deep convection using a probability density function (PDF parameterization. The PDF parameterization predicts the PDF of subgrid variability of turbulence, clouds, and hydrometeors. That variability is interfaced to a prognostic microphysics scheme using a Monte Carlo sampling method. The PDF parameterization is used to simulate tropical deep convection, the transition from shallow to deep convection over land, and mid-latitude deep convection. These parameterized single-column simulations are compared with 3-D reference simulations. The agreement is satisfactory except when the convective forcing is weak. The same PDF parameterization is also used to simulate shallow cumulus and stratocumulus layers. The PDF method is sufficiently general to adequately simulate these five deep, shallow, and stratiform cloud cases with a single equation set. This raises hopes that it may be possible in the future, with further refinements at coarse time step and grid spacing, to parameterize all cloud types in a large-scale model in a unified way.

  12. GENERALIZED p-VALUES AND GENERALIZED CONFIDENCE INTERVALS FOR VARIANCE COMPONENTS IN GENERAL RANDOM EFFECT MODEL WITH BALANCED DATA

    Institute of Scientific and Technical Information of China (English)

    Rendao YE; Songgui WANG

    2007-01-01

    Various random models with balanced data that are relevant for analyzing practical test data are described, along with several hypothesis testing and interval estimation problems concerning variance components. In this paper, we mainly consider these problems in general random effect model with balanced data. Exact tests and confidence intervals for a single variance component corresponding to random effect are developed by using generalized p-values and generalized confidence intervals.The resulting procedures are easy to compute and are applicable to small samples. Exact tests and confidence intervals are also established for comparing the random-effects variance components and the sum of random-effects variance components in two independent general random effect models with balanced data. Furthermore, we investigate the statistical properties of the resulting tests. Finally,some simulation results on the type Ⅰ error probability and power of the proposed test are reported.The simulation results indicate that exact test is extremely satisfactory for controlling type Ⅰ error probability.

  13. Assume-Guarantee Synthesis for Digital Contract Signing

    CERN Document Server

    Chatterjee, Krishnendu

    2010-01-01

    We study the automatic synthesis of fair non-repudiation protocols, a class of fair exchange protocols, used for digital contract signing. First, we show how to specify the objectives of the participating agents and the trusted third party (TTP) as path formulas in LTL and prove that the satisfaction of these objectives imply fairness and abuse-freeness; properties required of fair exchange protocols. We then show that weak (co-operative) co-synthesis and classical (strictly competitive) co-synthesis fail, whereas assume-guarantee synthesis (AGS) succeeds. We demonstrate the success of assume-guarantee synthesis as follows: (a) any solution of assume-guarantee synthesis is attack-free; no subset of participants can violate the objectives of the other participants; (b) the Asokan-Shoup-Waidner (ASW) certified mail protocol that has known vulnerabilities is not a solution of AGS; (c) The Garay-Jakobsson-MacKenzie (GJM) protocol, while fair and abuse-free, is not attack-free by our definition and is hence not a ...

  14. Inflationary Weak Anisotropic Model with General Dissipation Coefficient

    CERN Document Server

    Sharif, M

    2015-01-01

    This paper explores the dynamics of warm intermediate and logamediate inflationary models during weak dissipative regime with a general form of dissipative coefficient. We analyze these models within the framework of locally rotationally symmetric Bianchi type I universe. In both cases, we evaluate solution of inflaton, effective scalar potential, dissipative coefficient, slow-roll parameters, scalar and tensor power spectra, scalar spectral index and tensor to scalar ratio under slow-roll approximation. We constrain the model parameters using recent data and conclude that anisotropic inflationary universe model with generalized dissipation coefficient remains compatible with WMAP9, Planck and BICEP2 data.

  15. Extending the generalized Chaplygin gas model by using geometrothermodynamics

    CERN Document Server

    Aviles, Alejandro; Campuzano, Lorena; Quevedo, Hernando

    2012-01-01

    We use the formalism of geometrothermodynamics (GTD) to derive fundamental thermodynamic equations that are used to construct general relativistic cosmological models. In particular, we show that the simplest possible fundamental equation, which corresponds in GTD to a system with no internal thermodynamic interaction, describes the different fluids of the standard model of cosmology. In addition, a particular fundamental equation with internal thermodynamic interaction is shown to generate a new cosmological model that correctly describes the dark sector of the Universe and contains as a special case the generalized Chaplygin gas model.

  16. African wave disturbances in a general circulation model

    Science.gov (United States)

    Estoque, M. A.; Jiing, J. G.; Shukla, J.

    1983-01-01

    Evidence is presented to show that African wave disturbances are reproduced in a general circulation simulation. The model used is the general circulation model developed by the Goddard Laboratory for Atmospheric Sciences of the National Aeronautics and Space Agency. The model was integrated in order to simulate the summer of 1974. A synoptic analysis of the simulated data over Africa for the month of July was done. The results of the analysis show that wave disturbances are generated by the model; the behavior and the structure of the simulated disturbances are similar to those observed over tropical Africa during the northern summer.

  17. Generalized continua as models for classical and advanced materials

    CERN Document Server

    Forest, Samuel

    2016-01-01

    This volume is devoted to an actual topic which is the focus world-wide of various research groups. It contains contributions describing the material behavior on different scales, new existence and uniqueness theorems, the formulation of constitutive equations for advanced materials. The main emphasis of the contributions is directed on the following items - Modelling and simulation of natural and artificial materials with significant microstructure, - Generalized continua as a result of multi-scale models, - Multi-field actions on materials resulting in generalized material models, - Theories including higher gradients, and - Comparison with discrete modelling approaches.

  18. General Friction Model Extended by the Effect of Strain Hardening

    DEFF Research Database (Denmark)

    Nielsen, Chris V.; Martins, Paulo A.F.; Bay, Niels

    2016-01-01

    An extension to the general friction model proposed by Wanheim and Bay [1] to include the effect of strain hardening is proposed. The friction model relates the friction stress to the fraction of real contact area by a friction factor under steady state sliding. The original model for the real co...... of friction in metal forming, where the material generally strain hardens. The extension of the model to cover strain hardening materials is validated by comparison to previously published experimental data.......An extension to the general friction model proposed by Wanheim and Bay [1] to include the effect of strain hardening is proposed. The friction model relates the friction stress to the fraction of real contact area by a friction factor under steady state sliding. The original model for the real......-ideally plastic material, and secondly, to extend the solution by the influence of material strain hardening. This corresponds to adding a new variable and, therefore, a new axis to the general friction model. The resulting model is presented in a combined function suitable for e.g. finite element modeling...

  19. Pricing Participating Products under a Generalized Jump-Diffusion Model

    Directory of Open Access Journals (Sweden)

    Tak Kuen Siu

    2008-01-01

    Full Text Available We propose a model for valuing participating life insurance products under a generalized jump-diffusion model with a Markov-switching compensator. It also nests a number of important and popular models in finance, including the classes of jump-diffusion models and Markovian regime-switching models. The Esscher transform is employed to determine an equivalent martingale measure. Simulation experiments are conducted to illustrate the practical implementation of the model and to highlight some features that can be obtained from our model.

  20. A Generalized Rough Set Modeling Method for Welding Process

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Modeling is essential, significant and difficult for the quality and shaping control of arc welding process. A generalized rough set based modeling method was brought forward and a dynamic predictive model for pulsed gas tungsten arc welding (GTAW) was obtained by this modeling method. The results show that this modeling method can well acquire knowledge in welding and satisfy the real life application. In addition, the results of comparison between classic rough set model and back-propagation neural network model respectively are also satisfying.

  1. Global environmental effects of impact-generated aerosols: Results from a general circulation model, revision 1

    Science.gov (United States)

    Covey, Curt; Ghan, Steven J.; Walton, John J.; Weissman, Paul R.

    1989-01-01

    Interception of sunlight by the high altitude worldwide dust cloud generated by impact of a large asteroid or comet would lead to substantial land surface cooling, according to our three-dimensional atmospheric general circulation model (GCM). This result is qualitatively similar to conclusions drawn from an earlier study that employed a one-dimensional atmospheric model, but in the GCM simulation the heat capacity of the oceans substantially mitigates land surface cooling, an effect that one-dimensional models cannot quantify. On the other hand, the low heat capacity of the GCM's land surface allows temperatures to drop more rapidly in the initial stage of cooling than in the one-dimensional model study. These two differences between three-dimensional and one-dimensional model simulations were noted previously in studies of nuclear winter; GCM-simulated climatic changes in the Alvarez-inspired scenario of asteroid/comet winter, however, are more severe than in nuclear winter because the assumed aerosol amount is large enough to intercept all sunlight falling on earth. Impacts of smaller objects could also lead to dramatic, though less severe, climatic changes, according to our GCM. Our conclusion is that it is difficult to imagine an asteroid or comet impact leading to anything approaching complete global freezing, but quite reasonable to assume that impacts at the Alvarez level, or even smaller, dramatically alter the climate in at least a patchy sense.

  2. Adaptation of a general circulation model to ocean dynamics

    Science.gov (United States)

    Turner, R. E.; Rees, T. H.; Woodbury, G. E.

    1976-01-01

    A primitive-variable general circulation model of the ocean was formulated in which fast external gravity waves are suppressed with rigid-lid surface constraint pressires which also provide a means for simulating the effects of large-scale free-surface topography. The surface pressure method is simpler to apply than the conventional stream function models, and the resulting model can be applied to both global ocean and limited region situations. Strengths and weaknesses of the model are also presented.

  3. Model Reduction of Switched Systems Based on Switching Generalized Gramians

    DEFF Research Database (Denmark)

    Shaker, Hamid Reza; Wisniewski, Rafal

    2012-01-01

    In this paper, a general method for model order reduction of discrete-time switched linear systems is presented. The proposed technique uses switching generalized gramians. It is shown that several classical reduction methods can be developed into the generalized gramian framework for the model r......-Galerkin projection is constructed instead of the similarity transform approach for reduction. It is proven that the proposed reduction framework preserves the stability of the original switched system. The performance of the method is illustrated by numerical examples....

  4. Generalized multidirectional fuzzy map model of the logistics system networks

    Science.gov (United States)

    Ji, Chun-Rong; Liu, Ming-Yuan; Li, Yan; He, Yue M.

    1997-07-01

    By conducting [0, 1] treatment to time consuming of logistics system network key links, and regarding the time consumed by manufacture, inspection, storage, assembling, packing and market as a kind of existent extent of the joint and the time consumed by materials handling, transportation and logistics information as the connection strength between joints in a generalized multi-directional fuzzy map, a generalized multi-directional fuzzy map model of logistics system networks is built. The mutual flow among network joints and the special form of generalized fuzzy matrix is analyzed. Finally, an example of model building is given.

  5. A generalized statistical model for the size distribution of wealth

    Science.gov (United States)

    Clementi, F.; Gallegati, M.; Kaniadakis, G.

    2012-12-01

    In a recent paper in this journal (Clementi et al 2009 J. Stat. Mech. P02037), we proposed a new, physically motivated, distribution function for modeling individual incomes, having its roots in the framework of the κ-generalized statistical mechanics. The performance of the κ-generalized distribution was checked against real data on personal income for the United States in 2003. In this paper we extend our previous model so as to be able to account for the distribution of wealth. Probabilistic functions and inequality measures of this generalized model for wealth distribution are obtained in closed form. In order to check the validity of the proposed model, we analyze the US household wealth distributions from 1984 to 2009 and conclude an excellent agreement with the data that is superior to any other model already known in the literature.

  6. Classical tests of general relativity in brane world models

    Energy Technology Data Exchange (ETDEWEB)

    Boehmer, Christian G [Department of Mathematics and Institute of Origins, University College London, Gower Street, London WC1E 6BT (United Kingdom); De Risi, Giuseppe [Dipartimento di Fisica, Universita degli studi di Bari and Istituto Nazionale di Fisica Nucleare, sez. di Bari, Via G. Amendola 173, 70126 Bari (Italy); Harko, Tiberiu [Department of Physics and Center for Theoretical and Computational Physics, University of Hong Kong, Pok Fu Lam Road (Hong Kong); Lobo, Francisco S N, E-mail: c.boehmer@ucl.ac.u, E-mail: giuseppe.derisi@ba.infn.i, E-mail: harko@hkucc.hku.h, E-mail: flobo@cii.fc.ul.p [Centro de Astronomia e Astrofisica da Universidade de Lisboa, Campo Grande, Ed. C8 1749-016 Lisboa (Portugal)

    2010-09-21

    The classical tests of general relativity (perihelion precession, deflection of light and the radar echo delay) are considered for several spherically symmetric static vacuum solutions in brane world models. Generally, the spherically symmetric vacuum solutions of the brane gravitational field equations have properties quite distinct as compared to the standard black hole solutions of general relativity. As a first step a general formalism that facilitates the analysis of general relativistic Solar System tests for any given spherically symmetric metric is developed. It is shown that the existing observational Solar System data on the perihelion shift of Mercury, on the light bending around the Sun (obtained using long-baseline radio interferometry), and ranging to Mars using the Viking lander constrain the numerical values of the parameters of the specific models.

  7. Classical tests of general relativity in brane world models

    CERN Document Server

    Boehmer, Christian G; Harko, Tiberiu; Lobo, Francisco S N

    2009-01-01

    The classical tests of general relativity (perihelion precession, deflection of light, and the radar echo delay) are considered for several spherically symmetric static vacuum solutions in brane world models. Generally, the spherically symmetric vacuum solutions of the brane gravitational field equations have properties quite distinct as compared to the standard black hole solutions of general relativity. As a first step a general formalism that facilitates the analysis of general relativistic Solar System tests for any given spherically symmetric metric is developed. It is shown that the existing observational Solar System data on the perihelion shift of Mercury, on the light bending around the Sun (obtained using long-baseline radio interferometry), and ranging to Mars using the Viking lander, constrain the numerical values of the parameters of the specific models. Hence Solar System tests represent very convenient and efficient tools to test the viability of the different black hole solutions in brane worl...

  8. A generalized model via random walks for information filtering

    Science.gov (United States)

    Ren, Zhuo-Ming; Kong, Yixiu; Shang, Ming-Sheng; Zhang, Yi-Cheng

    2016-08-01

    There could exist a simple general mechanism lurking beneath collaborative filtering and interdisciplinary physics approaches which have been successfully applied to online E-commerce platforms. Motivated by this idea, we propose a generalized model employing the dynamics of the random walk in the bipartite networks. Taking into account the degree information, the proposed generalized model could deduce the collaborative filtering, interdisciplinary physics approaches and even the enormous expansion of them. Furthermore, we analyze the generalized model with single and hybrid of degree information on the process of random walk in bipartite networks, and propose a possible strategy by using the hybrid degree information for different popular objects to toward promising precision of the recommendation.

  9. Nonlocal Generalized Models of Predator-Prey Systems

    CERN Document Server

    Kuehn, Christian

    2011-01-01

    The method of generalized modeling has been applied successfully in many different contexts, particularly in ecology and systems biology. It can be used to analyze the stability and bifurcations of steady-state solutions. Although many dynamical systems in mathematical biology exhibit steady-state behaviour one also wants to understand nonlocal dynamics beyond equilibrium points. In this paper we analyze predator-prey dynamical systems and extend the method of generalized models to periodic solutions. First, we adapt the equilibrium generalized modeling approach and compute the unique Floquet multiplier of the periodic solution which depends upon so-called generalized elasticity and scale functions. We prove that these functions also have to satisfy a flow on parameter (or moduli) space. Then we use Fourier analysis to provide computable conditions for stability and the moduli space flow. The final stability analysis reduces to two discrete convolutions which can be interpreted to understand when the predator...

  10. Partial sums of the M\\"obius function in arithmetic progressions assuming GRH

    CERN Document Server

    Halupczok, Karin

    2011-01-01

    We consider Mertens' function M(x,q,a) in arithmetic progression, Assuming the generalized Riemann hypothesis (GRH), we show an upper bound that is uniform for all moduli which are not too large. For the proof, a former method of K. Soundararajan is extended to L-series.

  11. General expression for linear and nonlinear time series models

    Institute of Scientific and Technical Information of China (English)

    Ren HUANG; Feiyun XU; Ruwen CHEN

    2009-01-01

    The typical time series models such as ARMA, AR, and MA are founded on the normality and stationarity of a system and expressed by a linear difference equation; therefore, they are strictly limited to the linear system. However, some nonlinear factors are within the practical system; thus, it is difficult to fit the model for real systems with the above models. This paper proposes a general expression for linear and nonlinear auto-regressive time series models (GNAR). With the gradient optimization method and modified AIC information criteria integrated with the prediction error, the parameter estimation and order determination are achieved. The model simulation and experiments show that the GNAR model can accurately approximate to the dynamic characteristics of the most nonlinear models applied in academics and engineering. The modeling and prediction accuracy of the GNAR model is superior to the classical time series models. The proposed GNAR model is flexible and effective.

  12. A Total Generalized Optimal Velocity Model and Its Numerical Tests

    Institute of Scientific and Technical Information of China (English)

    ZHU Wen-xing; LIU Yun-cai

    2008-01-01

    A car-following model named total generalized optimal velocity model (TGOVM) was developed with a consideration of an arbitrary number of preceding vehicles before current one based on analyzing the previous models such as optimal velocity model (OVM), generalized OVM (GOVM) and improved GOVM (IGOVM). This model describes the physical phenomena of traffic flow more exactly and realistically than previous models. Also the performance of this model was checked out by simulating the acceleration and de- celeration process for a small delay time. On a single circular lane, the evolution of the traffic congestion was studied for a different number of headways and relative velocities of the preceding vehicles being taken into account. The simulation results show that TGOVM is reasonable and correct.

  13. A generalized trigonometric series function model for determining ionospheric delay

    Institute of Scientific and Technical Information of China (English)

    YUAN Yunbin; OU Jikun

    2004-01-01

    A generalized trigonometric series function (GTSF) model, with an adjustable number of parameters, is proposed and analyzed to study ionosphere by using GPS, especially to provide ionospheric delay correction for single frequency GPS users. The preliminary results show that, in comparison with the trigonometric series function (TSF) model and the polynomial (POLY) model, the GTSF model can more precisely describe the ionospheric variation and more efficiently provide the ionospheric correction when GPS data are used to investigate or extract the earth's ionospheric total electron content. It is also shown that the GTSF model can further improve the precision and accuracy of modeling local ionospheric delays.

  14. A generalized hard-sphere model for Monte Carlo simulation

    Science.gov (United States)

    Hassan, H. A.; Hash, David B.

    1993-01-01

    A new molecular model, called the generalized hard-sphere, or GHS model, is introduced. This model contains, as a special case, the variable hard-sphere model of Bird (1981) and is capable of reproducing all of the analytic viscosity coefficients available in the literature that are derived for a variety of interaction potentials incorporating attraction and repulsion. In addition, a new procedure for determining interaction potentials in a gas mixture is outlined. Expressions needed for implementing the new model in the direct simulation Monte Carlo methods are derived. This development makes it possible to employ interaction models that have the same level of complexity as used in Navier-Stokes calculations.

  15. A generalized item response tree model for psychological assessments.

    Science.gov (United States)

    Jeon, Minjeong; De Boeck, Paul

    2016-09-01

    A new item response theory (IRT) model with a tree structure has been introduced for modeling item response processes with a tree structure. In this paper, we present a generalized item response tree model with a flexible parametric form, dimensionality, and choice of covariates. The utilities of the model are demonstrated with two applications in psychological assessments for investigating Likert scale item responses and for modeling omitted item responses. The proposed model is estimated with the freely available R package flirt (Jeon et al., 2014b).

  16. A random effects generalized linear model for reliability compositive evaluation

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    This paper first proposes a random effects generalized linear model to evaluate the storage life of one kind of high reliable and small sample-sized products by combining multi-sources information of products coming from the same population but stored at different environments. The relevant algorithms are also provided. Simulation results manifest the soundness and effectiveness of the proposed model.

  17. A general model for matroids and the greedy algorithm

    NARCIS (Netherlands)

    Faigle, U.; Fujishige, Saturo

    2009-01-01

    We present a general model for set systems to be independence families with respect to set families which determine classes of proper weight functions on a ground set. Within this model, matroids arise from a natural subclass and can be characterized by the optimality of the greedy algorithm. This

  18. General Separations Area (GSA) Groundwater Flow Model Update: Hydrostratigraphic Data

    Energy Technology Data Exchange (ETDEWEB)

    Bagwell, L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Bennett, P. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Flach, G. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-02-21

    This document describes the assembly, selection, and interpretation of hydrostratigraphic data for input to an updated groundwater flow model for the General Separations Area (GSA; Figure 1) at the Department of Energy’s (DOE) Savannah River Site (SRS). This report is one of several discrete but interrelated tasks that support development of an updated groundwater model (Bagwell and Flach, 2016).

  19. Applying the General Linear Model to Repeated Measures Problems.

    Science.gov (United States)

    Pohlmann, John T.; McShane, Michael G.

    The purpose of this paper is to demonstrate the use of the general linear model (GLM) in problems with repeated measures on a dependent variable. Such problems include pretest-posttest designs, multitrial designs, and groups by trials designs. For each of these designs, a GLM analysis is demonstrated wherein full models are formed and restrictions…

  20. A random effects generalized linear model for reliability compositive evaluation

    Institute of Scientific and Technical Information of China (English)

    ZHAO Hui; YU Dan

    2009-01-01

    This paper first proposes a random effects generalized linear model to evaluate the storage life of one kind of high reliable and small sample-sized products by combining multi-sources information of products coming from the same population but stored at different environments.The relevant algorithms are also provided.Simulation results manifest the soundness and effectiveness of the proposed model.

  1. A generalized dynamic conditional correlation model for many asset returns

    NARCIS (Netherlands)

    C.M. Hafner (Christian); Ph.H.B.F. Franses (Philip Hans)

    2003-01-01

    textabstractIn this paper we put forward a generalization of the Dynamic Conditional Correlation (DCC) Model of Engle (2002). Our model allows for asset-specific correlation sensitivities, which is useful in particular if one aims to summarize a large number of asset returns. The resultant GDCC

  2. A generalized dynamic conditional correlation model for many asset returns

    NARCIS (Netherlands)

    C.M. Hafner (Christian); Ph.H.B.F. Franses (Philip Hans)

    2003-01-01

    textabstractIn this paper we put forward a generalization of the Dynamic Conditional Correlation (DCC) Model of Engle (2002). Our model allows for asset-specific correlation sensitivities, which is useful in particular if one aims to summarize a large number of asset returns. The resultant GDCC mode

  3. A general model for membrane-based separation processes

    DEFF Research Database (Denmark)

    Soni, Vipasha; Abildskov, Jens; Jonsson, Gunnar Eigil;

    2009-01-01

    behaviour will play an important role. In this paper, modelling of membrane-based processes for separation of gas and liquid mixtures are considered. Two general models, one for membrane-based liquid separation processes (with phase change) and another for membrane-based gas separation are presented...

  4. Bayesian Analysis for Binomial Models with Generalized Beta Prior Distributions.

    Science.gov (United States)

    Chen, James J.; Novick, Melvin, R.

    1984-01-01

    The Libby-Novick class of three-parameter generalized beta distributions is shown to provide a rich class of prior distributions for the binomial model that removes some restrictions of the standard beta class. A numerical example indicates the desirability of using these wider classes of densities for binomial models. (Author/BW)

  5. An applied general equilibrium model for Dutch agribusiness policy analysis.

    NARCIS (Netherlands)

    Peerlings, J.H.M.

    1993-01-01

    The purpose of this thesis was to develop a basic static applied general equilibrium (AGE) model to analyse the effects of agricultural policy changes on Dutch agribusiness. In particular the effects on inter-industry transactions, factor demand, income, and trade are of interest.The model is fairly

  6. A New Assumed Interaction. Experiments and Manifestations in Astrophysics

    CERN Document Server

    Baurov, Yu A

    2008-01-01

    Results of experimental investigations of a new assumed interaction in nature with the aid of high-current magnets, torsion and piezoresonance balances, high-precision gravimeter, fluctuations in intensity of betta-decay of radioactive elements, plasma devices and manifestations in astrophysics are presented. A possible explanation of the results obtained based on a hypothesis of global anisotropy of physical space caused by the existence of a cosmological vectorial potential A_g, is given. It is shown that the vector A_g has the following coordinates in the second equatorial coordinate system: right ascension alpha = 293 +- 10, declination delta = 36 +- 10.

  7. Global environmental effects of impact-generated aerosols: Results from a general circulation model

    Science.gov (United States)

    Covey, Curt; Ghan, Steven J.; Walton, John J.; Weissman, Paul R.

    1989-01-01

    Interception of sunlight by the high altitude worldwide dust cloud generated by impact of a large asteroid or comet would lead to substantial land surface cooling, according to the three-dimensional atmospheric general circulation model (GCM). This result is qualitatively similar to conclusions drawn from an earlier study that employed a one-dimensional atmospheric model, but in the GCM simulation the heat capacity of the oceans, not included in the one-dimensional model, substantially mitigates land surface cooling. On the other hand, the low heat capacity of the GCM's land surface allows temperatures to drop more rapidly in the initial stages of cooling than in the one-dimensional model study. GCM-simulated climatic changes in the scenario of asteroid/comet winter are more severe than in nuclear winter because the assumed aerosol amount is large enough to intercept all sunlight falling on earth. Impacts of smaller objects could also lead to dramatic, though of course less severe, climatic changes, according to the GCM. An asteroid or comet impact would not lead to anything approaching complete global freezing, but quite reasonable to assume that impacts would dramatically alter the climate in at least a patchy sense.

  8. Residuals analysis of the generalized linear models for longitudinal data.

    Science.gov (United States)

    Chang, Y C

    2000-05-30

    The generalized estimation equation (GEE) method, one of the generalized linear models for longitudinal data, has been used widely in medical research. However, the related sensitivity analysis problem has not been explored intensively. One of the possible reasons for this was due to the correlated structure within the same subject. We showed that the conventional residuals plots for model diagnosis in longitudinal data could mislead a researcher into trusting the fitted model. A non-parametric method, named the Wald-Wolfowitz run test, was proposed to check the residuals plots both quantitatively and graphically. The rationale proposedin this paper is well illustrated with two real clinical studies in Taiwan.

  9. Interaction Strength and a Generalized Bak-Sneppen Evolution Model

    Institute of Scientific and Technical Information of China (English)

    李炜; 蔡勖

    2002-01-01

    The Bak-Sneppen evolution model is generalized in terms of a new concept and quantity: interaction strength.Based on a quantitative definition, the interaction strength describes the strength of the interaction between thenearest-neighbour individuals in the model Self-organized criticality is observed for the generalized model withten different values of interaction strength. The gap equation governing the self-organization is derived. It is alsofound that the self-organized threshold depends on the value of the interaction strength.

  10. A general technique to train language models on language models

    NARCIS (Netherlands)

    Nederhof, MJ

    2005-01-01

    We show that under certain conditions, a language model can be trained oil the basis of a second language model. The main instance of the technique trains a finite automaton on the basis of a probabilistic context-free grammar, such that the Kullback-Leibler distance between grammar and trained auto

  11. Global Stability of an HIV-1 Infection Model with General Incidence Rate and Distributed Delays.

    Science.gov (United States)

    Ndongo, Abdoul Samba; Talibi Alaoui, Hamad

    2014-01-01

    In this work an HIV-1 infection model with nonlinear incidence rate and distributed intracellular delays and with humoral immunity is investigated. The disease transmission function is assumed to be governed by general incidence rate f(T, V)V. The intracellular delays describe the time between viral entry into a target cell and the production of new virus particles and the time between infection of a cell and the emission of viral particle. Lyapunov functionals are constructed and LaSalle invariant principle for delay differential equation is used to establish the global asymptotic stability of the infection-free equilibrium, infected equilibrium without B cells response, and infected equilibrium with B cells response. The results obtained show that the global dynamics of the system depend on both the properties of the general incidence function and the value of certain threshold parameters R 0 and R 1 which depends on the delays.

  12. Global Stability of an HIV-1 Infection Model with General Incidence Rate and Distributed Delays

    Science.gov (United States)

    2014-01-01

    In this work an HIV-1 infection model with nonlinear incidence rate and distributed intracellular delays and with humoral immunity is investigated. The disease transmission function is assumed to be governed by general incidence rate f(T, V)V. The intracellular delays describe the time between viral entry into a target cell and the production of new virus particles and the time between infection of a cell and the emission of viral particle. Lyapunov functionals are constructed and LaSalle invariant principle for delay differential equation is used to establish the global asymptotic stability of the infection-free equilibrium, infected equilibrium without B cells response, and infected equilibrium with B cells response. The results obtained show that the global dynamics of the system depend on both the properties of the general incidence function and the value of certain threshold parameters R 0 and R 1 which depends on the delays. PMID:27355007

  13. Statistical motor number estimation assuming a binomial distribution.

    Science.gov (United States)

    Blok, Joleen H; Visser, Gerhard H; de Graaf, Sándor; Zwarts, Machiel J; Stegeman, Dick F

    2005-02-01

    The statistical method of motor unit number estimation (MUNE) uses the natural stochastic variation in a muscle's compound response to electrical stimulation to obtain an estimate of the number of recruitable motor units. The current method assumes that this variation follows a Poisson distribution. We present an alternative that instead assumes a binomial distribution. Results of computer simulations and of a pilot study on 19 healthy subjects showed that the binomial MUNE values are considerably higher than those of the Poisson method, and in better agreement with the results of other MUNE techniques. In addition, simulation results predict that the performance in patients with severe motor unit loss will be better for the binomial than Poisson method. The adapted method remains closer to physiology, because it can accommodate the increase in activation probability that results from rising stimulus intensity. It does not need recording windows as used with the Poisson method, and is therefore less user-dependent and more objective and quicker in its operation. For these reasons, we believe that the proposed modifications may lead to significant improvements in the statistical MUNE technique.

  14. Black carbon ageing in the Canadian Centre for Climate modelling and analysis atmospheric general circulation model

    Directory of Open Access Journals (Sweden)

    B. Croft

    2005-01-01

    Full Text Available Black carbon (BC particles in the atmosphere have important impacts on climate. The amount of BC in the atmosphere must be carefully quantified to allow evaluation of the climate effects of this type of aerosol. In this study, we present the treatment of BC aerosol in the developmental version of the 4th generation Canadian Centre for Climate modelling and analysis (CCCma atmospheric general circulation model (AGCM. The focus of this work is on the conversion of insoluble BC to soluble/mixed BC by physical and chemical ageing. Physical processes include the condensation of sulphuric and nitric acid onto the BC aerosol, and coagulation with more soluble aerosols such as sulphates and nitrates. Chemical processes that may age the BC aerosol include the oxidation of organic coatings by ozone. Four separate parameterizations of the ageing process are compared to a control simulation that assumes no ageing occurs. These simulations use 1 an exponential decay with a fixed 24h half-life, 2 a condensation and coagulation scheme, 3 an oxidative scheme, and 4 a linear combination of the latter two ageing treatments. Global BC burdens are 2.15, 0.15, 0.11, 0.21, and 0.11TgC for the control run, and four ageing schemes, respectively. The BC lifetimes are 98.1, 6.6, 5.0, 9.5, and 4.9 days, respectively. The sensitivity of modelled BC burdens, and concentrations to the factor of two uncertainty in the emissions inventory is shown to be greater than the sensitivity to the parameterization used to represent the BC ageing, except for the oxidation based parameterization. A computationally efficient parameterization that represents the processes of condensation, coagulation, and oxidation is shown to simulate BC ageing well in the CCCma AGCM. As opposed to the globally fixed ageing time scale, this treatment of BC ageing is responsive to varying atmospheric composition.

  15. QCD Sum Rules and Models for Generalized Parton Distributions

    Energy Technology Data Exchange (ETDEWEB)

    Anatoly Radyushkin

    2004-10-01

    I use QCD sum rule ideas to construct models for generalized parton distributions. To this end, the perturbative parts of QCD sum rules for the pion and nucleon electromagnetic form factors are interpreted in terms of GPDs and two models are discussed. One of them takes the double Borel transform at adjusted value of the Borel parameter as a model for nonforward parton densities, and another is based on the local duality relation. Possible ways of improving these Ansaetze are briefly discussed.

  16. Improvement and extension of the generalized hard-sphere reaction probability model.

    Science.gov (United States)

    Schübler, M A; Petkow, D; Herdrich, G

    2012-04-01

    The GHS (Generalized Hard Sphere)-based standard reaction probability model commonly used in probabilistic particle methods is evaluated. We show that the original model has no general validity with respect to the molecular reaction. Mathematical consistency exists only for reactions with vanishing activation energy. For small energies close to the activation threshold the individual reaction probability for the special case of associative ionization of atomic nitrogen diverges. This makes the model extremely expensive, and nonphysical. An improved model is derived, and its implementation is verified on basis of the aforementioned reaction. Both models converge to the same value at large energies. The relative error of the original model with respect to the new model is independent of the particle pairing and, hence, of the reaction type. The error is smaller than 1% for collision energies in excess of 200 times the activation energy. For typical simulation problems like atmospheric high-enthalpy entry flows (assuming heavy-particle temperatures on the order of 10000 K) the relative error is in the order of 10(5)%.

  17. General Linear Models: An Integrated Approach to Statistics

    Directory of Open Access Journals (Sweden)

    Andrew Faulkner

    2008-09-01

    Full Text Available Generally, in psychology, the various statistical analyses are taught independently from each other. As a consequence, students struggle to learn new statistical analyses, in contexts that differ from their textbooks. This paper gives a short introduction to the general linear model (GLM, in which it is showed that ANOVA (one-way, factorial, repeated measure and analysis of covariance is simply a multiple correlation/regression analysis (MCRA. Generalizations to other cases, such as multivariate and nonlinear analysis, are also discussed. It can easily be shown that every popular linear analysis can be derived from understanding MCRA.

  18. Asymtotics of Dantzig Selector for a General Single-Index Model

    Institute of Scientific and Technical Information of China (English)

    FAN Yan; GAI Yujie; ZHU Lixing

    2016-01-01

    As two popularly used variable selection methods,the Dantzig selector and the LASSO have been proved asymptotically equivalent in some scenarios.However,it is not the case in general for linear models,as disclosed in Gai,Zhu and Lin's paper in 2013.In this paper,it is further shown that generally the asymptotic equivalence is not true either for a general single-index model with random design of predictors.To achieve this goal,the authors systematically investigate necessary and sufficient conditions for the consistent model selection of the Dantzig selector.An adaptive Dantzig selector is also recommended for the cases where those conditions are not satisfied.Also,different from existing methods for linear models,no distributional assumption on error term is needed with a trade-off that more stringent condition on the predictor vector is assumed.A small scale simulation is conducted to examine the performances of the Dantzig selector and the adaptive Dantzig selector.

  19. Parametrically Guided Generalized Additive Models with Application to Mergers and Acquisitions Data.

    Science.gov (United States)

    Fan, Jianqing; Maity, Arnab; Wang, Yihui; Wu, Yichao

    2013-01-01

    Generalized nonparametric additive models present a flexible way to evaluate the effects of several covariates on a general outcome of interest via a link function. In this modeling framework, one assumes that the effect of each of the covariates is nonparametric and additive. However, in practice, often there is prior information available about the shape of the regression functions, possibly from pilot studies or exploratory analysis. In this paper, we consider such situations and propose an estimation procedure where the prior information is used as a parametric guide to fit the additive model. Specifically, we first posit a parametric family for each of the regression functions using the prior information (parametric guides). After removing these parametric trends, we then estimate the remainder of the nonparametric functions using a nonparametric generalized additive model, and form the final estimates by adding back the parametric trend. We investigate the asymptotic properties of the estimates and show that when a good guide is chosen, the asymptotic variance of the estimates can be reduced significantly while keeping the asymptotic variance same as the unguided estimator. We observe the performance of our method via a simulation study and demonstrate our method by applying to a real data set on mergers and acquisitions.

  20. Blind source separation based on generalized gaussian model

    Institute of Scientific and Technical Information of China (English)

    YANG Bin; KONG Wei; ZHOU Yue

    2007-01-01

    Since in most blind source separation (BSS) algorithms the estimations of probability density function (pdf) of sources are fixed or can only switch between one sup-Gaussian and other sub-Gaussian model,they may not be efficient to separate sources with different distributions. So to solve the problem of pdf mismatch and the separation of hybrid mixture in BSS, the generalized Gaussian model (GGM) is introduced to model the pdf of the sources since it can provide a general structure of univariate distributions. Its great advantage is that only one parameter needs to be determined in modeling the pdf of different sources, so it is less complex than Gaussian mixture model. By using maximum likelihood (ML) approach, the convergence of the proposed algorithm is improved. The computer simulations show that it is more efficient and valid than conventional methods with fixed pdf estimation.

  1. Modeling the brain morphology distribution in the general aging population

    Science.gov (United States)

    Huizinga, W.; Poot, D. H. J.; Roshchupkin, G.; Bron, E. E.; Ikram, M. A.; Vernooij, M. W.; Rueckert, D.; Niessen, W. J.; Klein, S.

    2016-03-01

    Both normal aging and neurodegenerative diseases such as Alzheimer's disease cause morphological changes of the brain. To better distinguish between normal and abnormal cases, it is necessary to model changes in brain morphology owing to normal aging. To this end, we developed a method for analyzing and visualizing these changes for the entire brain morphology distribution in the general aging population. The method is applied to 1000 subjects from a large population imaging study in the elderly, from which 900 were used to train the model and 100 were used for testing. The results of the 100 test subjects show that the model generalizes to subjects outside the model population. Smooth percentile curves showing the brain morphology changes as a function of age and spatiotemporal atlases derived from the model population are publicly available via an interactive web application at agingbrain.bigr.nl.

  2. Beyond an assumed mother–child symbiosis in nutritional guidelines

    DEFF Research Database (Denmark)

    Nielsen, Annemette; Michaelsen, Kim F.; Holm, Lotte

    2014-01-01

    of the child and the interest and focus of the mother. The aim of this qualitative study was to explore mothers’ concerns and feeding practices in the context of everyday life. A total of 45 mothers with children either seven months old or 13 months old participated. The results showed that the need to find......Researchers question the implications of the way in which “motherhood” is constructed in public health discourse. Current nutritional guidelines for Danish parents of young children are part of this discourse. They are shaped by an assumed symbiotic relationship between the nutritional needs...... practical solutions for the whole family in a busy everyday life, to socialise the child into the family and society at large, and to create personal relief from the strain small children put on time and energy all served as socially acceptable reasons for knowingly departing from nutritional...

  3. Tracing of the 1st IEC Secretariat Assumed by China

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    @@ Introduction The IEC central office informed in 7/543/AC that the secretariat of TC 7 would be taken over by the Chinese National Committee on January 10, 2003 and affirmed subsequently in 7/544/AC that the secretariat of TC 7 has been taken over by the Chinese National Committee which appointing secretary in Shanghai Electric Cable Research Institute as no objection has been raised by the Standardization Management Board members. It's the first IEC secretariat that assumed by China, with great significance, just as commented by the media that the commitment indicate undoubtedly China is to play a much more active and important role in the world especially after its entry into world trade organization as well as the trend of global economic integration.

  4. A general diagnostic model applied to language testing data.

    Science.gov (United States)

    von Davier, Matthias

    2008-11-01

    Probabilistic models with one or more latent variables are designed to report on a corresponding number of skills or cognitive attributes. Multidimensional skill profiles offer additional information beyond what a single test score can provide, if the reported skills can be identified and distinguished reliably. Many recent approaches to skill profile models are limited to dichotomous data and have made use of computationally intensive estimation methods such as Markov chain Monte Carlo, since standard maximum likelihood (ML) estimation techniques were deemed infeasible. This paper presents a general diagnostic model (GDM) that can be estimated with standard ML techniques and applies to polytomous response variables as well as to skills with two or more proficiency levels. The paper uses one member of a larger class of diagnostic models, a compensatory diagnostic model for dichotomous and partial credit data. Many well-known models, such as univariate and multivariate versions of the Rasch model and the two-parameter logistic item response theory model, the generalized partial credit model, as well as a variety of skill profile models, are special cases of this GDM. In addition to an introduction to this model, the paper presents a parameter recovery study using simulated data and an application to real data from the field test for TOEFL Internet-based testing.

  5. Modelling dynamic programming problems by generalized d-graphs

    CERN Document Server

    Kátai, Zoltán

    2010-01-01

    In this paper we introduce the concept of generalized d-graph (admitting cycles) as special dependency-graphs for modelling dynamic programming (DP) problems. We describe the d-graph versions of three famous single-source shortest algorithms (The algorithm based on the topological order of the vertices, Dijkstra algorithm and Bellman-Ford algorithm), which can be viewed as general DP strategies in the case of three different class of optimization problems. The new modelling method also makes possible to classify DP problems and the corresponding DP strategies in term of graph theory.

  6. GEMFsim: A Stochastic Simulator for the Generalized Epidemic Modeling Framework

    CERN Document Server

    Sahneh, Faryad Darabi; Shakeri, Heman; Fan, Futing; Scoglio, Caterina

    2016-01-01

    The recently proposed generalized epidemic modeling framework (GEMF) \\cite{sahneh2013generalized} lays the groundwork for systematically constructing a broad spectrum of stochastic spreading processes over complex networks. This article builds an algorithm for exact, continuous-time numerical simulation of GEMF-based processes. Moreover the implementation of this algorithm, GEMFsim, is available in popular scientific programming platforms such as MATLAB, R, Python, and C; GEMFsim facilitates simulating stochastic spreading models that fit in GEMF framework. Using these simulations one can examine the accuracy of mean-field-type approximations that are commonly used for analytical study of spreading processes on complex networks.

  7. Dynamic generalized linear models for monitoring endemic diseases

    DEFF Research Database (Denmark)

    Lopes Antunes, Ana Carolina; Jensen, Dan Børge; Halasa, T.

    The objective was to use a Dynamic Generalized Linear Model (DGLM) based on abinomial distribution with a linear trend, for monitoring the PRRS (Porcine Reproductive and Respiratory Syndrome sero-prevalence in Danish swine herds. The DGLM was described and its performance for monitoring control...... in sero-prevalence. Based on this, it was possible to detect variations in the growth model component. This study is a proof-of-concept, demonstrating the use of DGLMs for monitoring endemic diseases. In addition, the principles stated might be useful in general research on monitoring and surveillance...

  8. Predicting infectivity of Arbuscular Mycorrhizal fungi from soil variables using Generalized Additive Models and Generalized Linear Models

    Directory of Open Access Journals (Sweden)

    IRNANDA AIKO FIFI DJUUNA

    2010-07-01

    Full Text Available Djuuna IAF, Abbott LK, Van Niel K (2010 Predicting infectivity of Arbuscular Mycorrhizal fungi from soil variables using Generalized Additive Models and Generalized Linear Models. Biodiversitas 11: 145-150. The objective of this study was to predict the infectivity of arbuscular mycorrhizal fungi (AM fungi, from field soil based on soil properties and land use history using generalized additive models (GAMs and generalized linear models (GLMs. A total of 291 soil samples from a farm in Western Australia near Wickepin were collected and used in this study. Nine soil properties, including elevation, pH, EC, total C, total N, P, K, microbial biomass carbon, and soil texture, and land use history of the farm were used as independent variables, while the percentage of root length colonized (%RLC was used as the dependent variable. GAMs parameterized for the percent of root length colonized suggested skewed quadratic responses to soil pH and microbial biomass carbon; cubic responses to elevation and soil K; and linear responses to soil P, EC and total C. The strength of the relationship between percent root length colonized by AM fungi and environmental variables showed that only elevation, total C and microbial biomass carbon had strong relationships. In general, GAMs and GLMs models confirmed the strong relationship between infectivity of AM fungi (assessed in a glasshouse bioassay for soil collected in summer prior to the first rain of the season and soil properties.

  9. Coexistence of Interacting Opinions in a Generalized Sznajd Model

    CERN Document Server

    Timpanaro, André M

    2011-01-01

    The Sznajd model is a sociophysics model that mimics the propagation of opinions in a closed society, where the interactions favour groups of agreeing people. It is based in the Ising and Potts ferromagnetic models and although the original model used only linear chains, it has since been adapted to general networks. This model has a very rich transient, that has been used to model several aspects of elections, but its stationary states are always consensus states. In order to model more complex behaviours we have, in a recent work, introduced the idea of biases and prejudices to the Sznajd model, by generalizing the bounded confidence rule that is common to many continuous opinion models. In that work we have found that the mean-field version of this model (corresponding to a complete network) allows for stationary states where non-interacting opinions survive, but never for the coexistence of interacting opinions. In the present work, we provide networks that allow for the coexistence of interacting opinion...

  10. Global stability and optimisation of a general impulsive biological control model

    CERN Document Server

    Mailleret, Ludovic

    2008-01-01

    An impulsive model of augmentative biological control consisting of a general continuous predator-prey model in ordinary differential equations augmented by a discrete part describing periodic introductions of predators is considered. It is shown that there exists an invariant periodic solution that corresponds to prey eradication and a condition ensuring its global asymptotic stability is given. An optimisation problem related to the preemptive use of augmentative biological control is then considered. It is assumed that the per time unit budget of biological control (i.e. the number of predators to be released) is fixed and the best deployment of this budget is sought after in terms of release frequency. The cost function to be minimised is the time taken to reduce an unforeseen prey (pest) invasion under some harmless level. The analysis shows that the optimisation problem admits a countable infinite number of solutions. An argumentation considering the required robustness of the optimisation result is the...

  11. Generalized memory associativity in a network model for the neuroses

    Science.gov (United States)

    Wedemann, Roseli S.; Donangelo, Raul; de Carvalho, Luís A. V.

    2009-03-01

    We review concepts introduced in earlier work, where a neural network mechanism describes some mental processes in neurotic pathology and psychoanalytic working-through, as associative memory functioning, according to the findings of Freud. We developed a complex network model, where modules corresponding to sensorial and symbolic memories interact, representing unconscious and conscious mental processes. The model illustrates Freud's idea that consciousness is related to symbolic and linguistic memory activity in the brain. We have introduced a generalization of the Boltzmann machine to model memory associativity. Model behavior is illustrated with simulations and some of its properties are analyzed with methods from statistical mechanics.

  12. Vortices in generalized Abelian Chern-Simons-Higgs model

    CERN Document Server

    Casana, Rodolfo

    2015-01-01

    We study a generalization of abelian Chern-Simons-Higgs model by introducing nonstandard kinetic terms. We will obtain a generic form of Bogomolnyi equations by minimizing the energy functional of the model. This generic form of Bogomolnyi equations produce an infinity number of soliton solutions. As a particular limit of these generic Bogomolnyi equations, we obtain the Bogomolnyi equations of the abelian Maxwell-Higgs model and the abelian Chern-Simons Higgs model. Finally, novel soliton solutions emerge from these generic Bogomolnyi equations. We analyze these solutions from theoretical and numerical point of view.

  13. Observational constraints on the generalized $\\alpha$ attractor model

    CERN Document Server

    Shahalam, M; Myrzakul, Shynaray; Wang, Anzhong

    2016-01-01

    We study the generalized $\\alpha$ attractor model in context of late time cosmic acceleration; the model interpolates between freezing and thawing dark energy models. In the slow roll regime, the originally potential is modified whereas the modification ceases in the asymptotic regime and the effective potential behaves as quadratic. In our setting, field rolls slowly around the present epoch and mimics dark matter in future. We put observational constraints on the model parameters for which we use an integrated data base (SN+Hubble+BAO+CMB) for carrying out the data analysis.

  14. Generalized memory associativity in a network model for the neuroses.

    Science.gov (United States)

    Wedemann, Roseli S; Donangelo, Raul; de Carvalho, Luís A V

    2009-03-01

    We review concepts introduced in earlier work, where a neural network mechanism describes some mental processes in neurotic pathology and psychoanalytic working-through, as associative memory functioning, according to the findings of Freud. We developed a complex network model, where modules corresponding to sensorial and symbolic memories interact, representing unconscious and conscious mental processes. The model illustrates Freud's idea that consciousness is related to symbolic and linguistic memory activity in the brain. We have introduced a generalization of the Boltzmann machine to model memory associativity. Model behavior is illustrated with simulations and some of its properties are analyzed with methods from statistical mechanics.

  15. Generalized F test and generalized deviance test in two-way ANOVA models for randomized trials.

    Science.gov (United States)

    Shen, Juan; He, Xuming

    2014-01-01

    We consider the problem of detecting treatment effects in a randomized trial in the presence of an additional covariate. By reexpressing a two-way analysis of variance (ANOVA) model in a logistic regression framework, we derive generalized F tests and generalized deviance tests, which provide better power in detecting common location-scale changes of treatment outcomes than the classical F test. The null distributions of the test statistics are independent of the nuisance parameters in the models, so the critical values can be easily determined by Monte Carlo methods. We use simulation studies to demonstrate how the proposed tests perform compared with the classical F test. We also use data from a clinical study to illustrate possible savings in sample sizes.

  16. A generalized longitudinal mixture IRT model for measuring differential growth in learning environments.

    Science.gov (United States)

    Kadengye, Damazo T; Ceulemans, Eva; Van den Noortgate, Wim

    2014-09-01

    This article describes a generalized longitudinal mixture item response theory (IRT) model that allows for detecting latent group differences in item response data obtained from electronic learning (e-learning) environments or other learning environments that result in large numbers of items. The described model can be viewed as a combination of a longitudinal Rasch model, a mixture Rasch model, and a random-item IRT model, and it includes some features of the explanatory IRT modeling framework. The model assumes the possible presence of latent classes in item response patterns, due to initial person-level differences before learning takes place, to latent class-specific learning trajectories, or to a combination of both. Moreover, it allows for differential item functioning over the classes. A Bayesian model estimation procedure is described, and the results of a simulation study are presented that indicate that the parameters are recovered well, particularly for conditions with large item sample sizes. The model is also illustrated with an empirical sample data set from a Web-based e-learning environment.

  17. Practical likelihood analysis for spatial generalized linear mixed models

    DEFF Research Database (Denmark)

    Bonat, W. H.; Ribeiro, Paulo Justiniano

    2016-01-01

    We investigate an algorithm for maximum likelihood estimation of spatial generalized linear mixed models based on the Laplace approximation. We compare our algorithm with a set of alternative approaches for two datasets from the literature. The Rhizoctonia root rot and the Rongelap are, respectiv......We investigate an algorithm for maximum likelihood estimation of spatial generalized linear mixed models based on the Laplace approximation. We compare our algorithm with a set of alternative approaches for two datasets from the literature. The Rhizoctonia root rot and the Rongelap are...... of Laplace approximation include the computation of the maximized log-likelihood value, which can be used for model selection and tests, and the possibility to obtain realistic confidence intervals for model parameters based on profile likelihoods. The Laplace approximation also avoids the tuning...

  18. Automation of electroweak NLO corrections in general models

    Energy Technology Data Exchange (ETDEWEB)

    Lang, Jean-Nicolas [Universitaet Wuerzburg (Germany)

    2016-07-01

    I discuss the automation of generation of scattering amplitudes in general quantum field theories at next-to-leading order in perturbation theory. The work is based on Recola, a highly efficient one-loop amplitude generator for the Standard Model, which I have extended so that it can deal with general quantum field theories. Internally, Recola computes off-shell currents and for new models new rules for off-shell currents emerge which are derived from the Feynman rules. My work relies on the UFO format which can be obtained by a suited model builder, e.g. FeynRules. I have developed tools to derive the necessary counterterm structures and to perform the renormalization within Recola in an automated way. I describe the procedure using the example of the two-Higgs-doublet model.

  19. Improved Generalized Force Model considering the Comfortable Driving Behavior

    Directory of Open Access Journals (Sweden)

    De-Jie Xu

    2015-01-01

    Full Text Available This paper presents an improved generalized force model (IGFM that considers the driver’s comfortable driving behavior. Through theoretical analysis, we propose the calculation methods of comfortable driving distance and velocity. Then the stability condition of the model is obtained by the linear stability analysis. The problems of the unrealistic acceleration of the leading car existing in the previous models were solved. Furthermore, the simulation results show that IGFM can predict correct delay time of car motion and kinematic wave speed at jam density, and it can exactly describe the driver’s behavior under an urgent case, where no collision occurs. The dynamic properties of IGFM also indicate that stability has improved compared to the generalized force model.

  20. SELECTION MOMENTS AND GENERALIZED METHOD OF MOMENTS FOR HETEROSKEDASTIC MODELS

    Directory of Open Access Journals (Sweden)

    Constantin ANGHELACHE

    2016-06-01

    Full Text Available In this paper, the authors describe the selection methods for moments and the application of the generalized moments method for the heteroskedastic models. The utility of GMM estimators is found in the study of the financial market models. The selection criteria for moments are applied for the efficient estimation of GMM for univariate time series with martingale difference errors, similar to those studied so far by Kuersteiner.

  1. General Model for Infrastructure Multi-channel Wireless LANs

    OpenAIRE

    Fayez Gebali; Abdelsalam Amer

    2010-01-01

    In this paper we develop an integrated model for request mechanism and data transmission in multi-channel wireless local area networks. We calculated the performance parameters for single and multi-channel wireless networks when the channel is noisy. The proposed model is general it can be applied to different wireless networks such as IEEE802.11x, IEEE802.16, CDMA operated networks and Hiperlan\\2.

  2. Development of the Model of the Generalized Quintom Dark Energy

    Institute of Scientific and Technical Information of China (English)

    WANG Wei; GUI Yuan-Xing; SHAO Ying

    2006-01-01

    @@ We consider a generalized quintom (GQ) dark energy modelfor changing the equal weight of the negative-kinetic scalar field (phantom) and the normal scalar field (quintessence) in quintom dark energy. Though the phantomdominated scaling solution is a stable late-time attractor, the early evolution of GQ is different from that of the quintom model and the adjustability of the dark energy state equation in the model is improved.

  3. The direction of migration: a dynamic general equilibrium model.

    Science.gov (United States)

    Lee, K S

    1984-11-01

    A two-sector dynamic general equilibrium model is developed "to investigate the direction of migration in response to differing demographic and consumption demand behavior, as well as variations in production conditions." The model, which involves a rural sector and an urban sector, incorporates "returns to scale and the natural rate of sectoral population growth as important determinants of the direction of migration, in addition to price and income elasticities, and the sectoral technical change rate with which...previous studies dealt."

  4. Bianchi type-V string cosmological models in general relativity

    Indian Academy of Sciences (India)

    Anil Kumar Yadav; Vineet Kumar Yadav; Lallan Yadav

    2011-04-01

    Bianchi type-V string cosmological models in general relativity are investigated. To get the exact solution of Einstein’s field equations, we have taken some scale transformations used by Camci et al [Astrophys. Space Sci. 275, 391 (2001)]. It is shown that Einstein’s field equations are solvable for any arbitrary cosmic scale function. Solutions for particular forms of cosmic scale functions are also obtained. Some physical and geometrical aspects of the models are discussed.

  5. Estimation linear model using block generalized inverse of a matrix

    OpenAIRE

    Jasińska, Elżbieta; Preweda, Edward

    2013-01-01

    The work shows the principle of generalized linear model, point estimation, which can be used as a basis for determining the status of movements and deformations of engineering objects. The structural model can be put on any boundary conditions, for example, to ensure the continuity of the deformations. Estimation by the method of least squares was carried out taking into account the terms and conditions of the Gauss- Markov for quadratic forms stored using Lagrange function. The original sol...

  6. On the Use of Generalized Volume Scattering Models for the Improvement of General Polarimetric Model-Based Decomposition

    Directory of Open Access Journals (Sweden)

    Qinghua Xie

    2017-01-01

    Full Text Available Recently, a general polarimetric model-based decomposition framework was proposed by Chen et al., which addresses several well-known limitations in previous decomposition methods and implements a simultaneous full-parameter inversion by using complete polarimetric information. However, it only employs four typical models to characterize the volume scattering component, which limits the parameter inversion performance. To overcome this issue, this paper presents two general polarimetric model-based decomposition methods by incorporating the generalized volume scattering model (GVSM or simplified adaptive volume scattering model, (SAVSM proposed by Antropov et al. and Huang et al., respectively, into the general decomposition framework proposed by Chen et al. By doing so, the final volume coherency matrix structure is selected from a wide range of volume scattering models within a continuous interval according to the data itself without adding unknowns. Moreover, the new approaches rely on one nonlinear optimization stage instead of four as in the previous method proposed by Chen et al. In addition, the parameter inversion procedure adopts the modified algorithm proposed by Xie et al. which leads to higher accuracy and more physically reliable output parameters. A number of Monte Carlo simulations of polarimetric synthetic aperture radar (PolSAR data are carried out and show that the proposed method with GVSM yields an overall improvement in the final accuracy of estimated parameters and outperforms both the version using SAVSM and the original approach. In addition, C-band Radarsat-2 and L-band AIRSAR fully polarimetric images over the San Francisco region are also used for testing purposes. A detailed comparison and analysis of decomposition results over different land-cover types are conducted. According to this study, the use of general decomposition models leads to a more accurate quantitative retrieval of target parameters. However, there

  7. Introducing COZIGAM: An R Package for Unconstrained and Constrained Zero-Inflated Generalized Additive Model Analysis

    Directory of Open Access Journals (Sweden)

    Hai Liu

    2010-10-01

    Full Text Available Zero-inflation problem is very common in ecological studies as well as other areas. Nonparametric regression with zero-inflated data may be studied via the zero-inflated generalized additive model (ZIGAM, which assumes that the zero-inflated responses come from a probabilistic mixture of zero and a regular component whose distribution belongs to the 1-parameter exponential family. With the further assumption that the probability of non-zero-inflation is some monotonic function of the mean of the regular component, we propose the constrained zero-inflated generalized additive model (COZIGAM for analyzingzero-inflated data. When the hypothesized constraint obtains, the new approach provides a unified framework for modeling zero-inflated data, which is more parsimonious and efficient than the unconstrained ZIGAM. We have developed an R package COZIGAM which contains functions that implement an iterative algorithm for fitting ZIGAMs and COZIGAMs to zero-inflated data basedon the penalized likelihood approach. Other functions included in the package are useful for model prediction and model selection. We demonstrate the use of the COZIGAM package via some simulation studies and a real application.

  8. Computerized Classification Testing under the Generalized Graded Unfolding Model

    Science.gov (United States)

    Wang, Wen-Chung; Liu, Chen-Wei

    2011-01-01

    The generalized graded unfolding model (GGUM) has been recently developed to describe item responses to Likert items (agree-disagree) in attitude measurement. In this study, the authors (a) developed two item selection methods in computerized classification testing under the GGUM, the current estimate/ability confidence interval method and the cut…

  9. Suggesting a General ESP Model for Adult Learners

    Science.gov (United States)

    Al-Jumaily, Samir

    2011-01-01

    The study suggests a general model that could guarantee the cooperation between teachers and their students to overcome the difficulties encountered in ESP learning. It tries to join together different perspectives in the research of adult education, specifically in the teaching of English for Specific Purposes. It also provides some sort of trust…

  10. Anisotropic cosmological models and generalized scalar tensor theory

    Indian Academy of Sciences (India)

    Subenoy Chakraborty; Batul Chandra Santra; Nabajit Chakravarty

    2003-10-01

    In this paper generalized scalar tensor theory has been considered in the background of anisotropic cosmological models, namely, axially symmetric Bianchi-I, Bianchi-III and Kortowski–Sachs space-time. For bulk viscous fluid, both exponential and power-law solutions have been studied and some assumptions among the physical parameters and solutions have been discussed.

  11. A general circulation model (GCM) parameterization of Pinatubo aerosols

    Energy Technology Data Exchange (ETDEWEB)

    Lacis, A.A.; Carlson, B.E.; Mishchenko, M.I. [NASA Goddard Institute for Space Studies, New York, NY (United States)

    1996-04-01

    The June 1991 volcanic eruption of Mt. Pinatubo is the largest and best documented global climate forcing experiment in recorded history. The time development and geographical dispersion of the aerosol has been closely monitored and sampled. Based on preliminary estimates of the Pinatubo aerosol loading, general circulation model predictions of the impact on global climate have been made.

  12. RF Circuit linearity optimization using a general weak nonlinearity model

    NARCIS (Netherlands)

    Cheng, W.; Oude Alink, M.S.; Annema, Anne J.; Croon, Jeroen A.; Nauta, Bram

    2012-01-01

    This paper focuses on optimizing the linearity in known RF circuits, by exploring the circuit design space that is usually available in today’s deep submicron CMOS technologies. Instead of using brute force numerical optimizers we apply a generalized weak nonlinearity model that only involves AC

  13. An applied general equilibrium model for Dutch agribusiness policy analysis

    NARCIS (Netherlands)

    Peerlings, J.

    1993-01-01

    The purpose of this thesis was to develop a basic static applied general equilibrium (AGE) model to analyse the effects of agricultural policy changes on Dutch agribusiness. In particular the effects on inter-industry transactions, factor demand, income, and trade are of interest.

  14. [General systems theory, analog models and essential arterial hypertension].

    Science.gov (United States)

    Indovina, I; Bonelli, M

    1991-02-15

    The application of the General System Theory to the fields of biology and particularly of medicine is fraught with many difficulties deriving from the mathematical complexities of application. The authors suggest that these difficulties can be overcome by applying analogical models, thus opening new prospects for the resolution of the manifold problems involved in connection with the study of arterial hypertension.

  15. An applied general equilibrium model for Dutch agribusiness policy analysis

    NARCIS (Netherlands)

    Peerlings, J.

    1993-01-01

    The purpose of this thesis was to develop a basic static applied general equilibrium (AGE) model to analyse the effects of agricultural policy changes on Dutch agribusiness. In particular the effects on inter-industry transactions, factor demand, income, and trade are of

  16. Sharing Rule Identification for General Collective Consumption Models

    NARCIS (Netherlands)

    Cherchye, L.J.H.; de Rock, B.; Lewbel, A.; Vermeulen, F.M.P.

    2012-01-01

    Abstract: We propose a method to identify bounds (i.e. set identification) on the sharing rule for a general collective household consumption model. Unlike the effects of distribution factors, it is well known that the level of the sharing rule cannot be uniquely identified without strong assumption

  17. Suggesting a General ESP Model for Adult Learners

    Science.gov (United States)

    Al-Jumaily, Samir

    2011-01-01

    The study suggests a general model that could guarantee the cooperation between teachers and their students to overcome the difficulties encountered in ESP learning. It tries to join together different perspectives in the research of adult education, specifically in the teaching of English for Specific Purposes. It also provides some sort of trust…

  18. General relativistic modelling of the negative reverberation X-ray time delays in AGN

    CERN Document Server

    Emmanoulopoulos, D; Dovciak, M; McHardy, I M

    2014-01-01

    We present the first systematic physical modelling of the time-lag spectra between the soft (0.3-1 keV) and the hard (1.5-4 keV) X-ray energy bands, as a function of Fourier frequency, in a sample of 12 active galactic nuclei which have been observed by XMM-Newton. We concentrate particularly on the negative X-ray time-lags (typically seen above $10^{-4}$ Hz) i.e. soft band variations lag the hard band variations, and we assume that they are produced by reprocessing and reflection by the accretion disc within a lamp-post X-ray source geometry. We also assume that the response of the accretion disc, in the soft X-ray bands, is adequately described by the response in the neutral iron line (Fe k$\\alpha$) at 6.4 keV for which we use fully general relativistic ray-tracing simulations to determine its time evolution. These response functions, and thus the corresponding time-lag spectra, yield much more realistic results than the commonly-used, but erroneous, top-hat models. Additionally we parametrize the positive ...

  19. Modeling the distribution of Nd isotopes in the oceans using an offline Ocean General Circulation Model

    Science.gov (United States)

    Jones, K. M.; Khatiwala, S. P.; Goldstein, S. L.; Hemming, S. R.; van de Flierdt, T.

    2007-12-01

    The authigenic (seawater-derived) Nd isotopic composition of marine archives is increasingly used to study changes in ocean circulation on tectonic to millennial time-scales. Such applications for Nd isotopes assume that water masses are "tagged" with distinct Nd isotopic compositions in source regions and mix quasi- conservatively thereafter. However, there are a number of possible sources and sinks of Nd within the ocean that may complicate quasi-conservative behavior, including input from rivers, dissolution of dust, exchange at continental margin boundaries, and fluxes from the ocean-sediment interface. We use an offline ocean general circulation model (OGCM) to model the distribution of Nd isotope variability in seawater. A major obstacle to a thorough understanding of the marine Nd cycle is the lack of a truly global dataset of Nd isotopes in the modern oceans--most data are focused in only a few regions of the ocean. However, even within the constraints of sparse data, a better understanding of sources, sinks, and internal cycling of Nd and its isotopes can be reached through ocean modeling. We take a simple approach, treating the Nd isotopic composition of seawater as a conservative tracer, neglecting the effect of variable Nd concentrations on mixing. Nd isotope data from modern surface waters are used to generate a map of Nd isotope compositions for the entire surface ocean. This map is treated as a fixed boundary condition, and Nd isotope compositions of the surface are transported and mixed according to the flow characteristics of the OGCM until the interior ocean reaches a steady state. This simple approach produces Nd isotope estimates for North Atlantic Deep Water that are consistent with the observations, but produces values lower than observed in the deep Pacific and Southern Oceans. However, by introducing an additional source of Nd in the deep Pacific with higher Nd isotope ratios, the model output agrees well with the data. With the addition of

  20. A Graphical User Interface to Generalized Linear Models in MATLAB

    Directory of Open Access Journals (Sweden)

    Peter Dunn

    1999-07-01

    Full Text Available Generalized linear models unite a wide variety of statistical models in a common theoretical framework. This paper discusses GLMLAB-software that enables such models to be fitted in the popular mathematical package MATLAB. It provides a graphical user interface to the powerful MATLAB computational engine to produce a program that is easy to use but with many features, including offsets, prior weights and user-defined distributions and link functions. MATLAB's graphical capacities are also utilized in providing a number of simple residual diagnostic plots.

  1. A Generalized Preferential Attachment Model for Complex Systems

    CERN Document Server

    Yamasaki, K; Fu, D; Buldyrev, S V; Pammolli, F; Riccaboni, M; Stanley, H E; Yamasaki, Kazuko; Matia, Kaushik; Fu, Dongfeng; Buldyrev, Sergey V.; Pammolli, Fabio; Riccaboni, Massimo

    2005-01-01

    Complex systems can be characterized by classes of equivalency of their elements defined according to system specific rules. We propose a generalized preferential attachment model to describe the class size distribution. The model postulates preferential growth of the existing classes and the steady influx of new classes. We investigate how the distribution depends on the initial conditions and changes from a pure exponential form for zero influx of new classes to a power law with an exponential cutoff form when the influx of new classes is substantial. We apply the model to study the growth dynamics of pharmaceutical industry.

  2. Concurrent approaches to Generalized Parton Distribution modeling: the pion's case

    Science.gov (United States)

    Chouika, N.; Mezrag, C.; Moutarde, H.; Rodríguez-Quintero, J.

    2017-03-01

    The concept of Generalized Parton Distributions promises an understanding of the generation of the charge, spin, and energy-momentum structure of hadrons by quarks and gluons. Forthcoming measurements with unprecedented accuracy at Jefferson Lab and at CERN will challenge our quantitative description of the three-dimensional structure of hadrons. To fully exploit these future measurements, new tools and models are currently being developed. We explain the difficulties of Generalized Parton Distribution modeling, and present some recent progresses. In particular we describe the symmetry-preserving Dyson-Schwinger and Bethe-Salpeter framework. We also discuss various equivalent parameterizations and sketch how to combine them to obtain models satisfying a priori all required theoretical constraints. At last we explain why these developments naturally fit in a versatile software framework, named PARTONS, dedicated to the theory and phenomenology of GPDs.

  3. Holographic entanglement entropy in general holographic superconductor models

    CERN Document Server

    Peng, Yan

    2014-01-01

    We study the entanglement entropy of general holographic dual models both in AdS soliton and AdS black hole backgrounds with full backreaction. We find that the entanglement entropy is a good probe to explore the properties of the holographic superconductors and provides richer physics in the phase transition. We obtain the effects of the scalar mass, model parameter and backreaction on the entropy, and argue that the jump of the entanglement entropy may be a quite general feature for the first order phase transition. In strong contrast to the insulator/superconductor system, we note that the backreaction coupled with the scalar mass can not be used to trigger the first order phase transition if the model parameter is below its bottom bound in the metal/superconductor system.

  4. THE ROC CURVE MODEL FROM GENERALIZED-EXPONENTIAL DISTRIBUTION

    Directory of Open Access Journals (Sweden)

    Ehtesham Hussain

    2011-04-01

    Full Text Available Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 In biomedical studies often yield continuously positively skewed (non- normal distributed data. In this regard Generalized-Exponential Distribution is suggested for analyzing such data. In this paper the parametric equation of  the Receiving Operating Characteristic (ROC curve model is established under the assumptions of bi-distributional population based on pair of Generalized-Exponential Distributions. Also its maximum likelihood estimator MLE, sampling distribution , equivalence test statistic and exact confidence interval are derived.  

  5. Generalized linear mixed models for multi-reader multi-case studies of diagnostic tests.

    Science.gov (United States)

    Liu, Wei; Pantoja-Galicia, Norberto; Zhang, Bo; Kotz, Richard M; Pennello, Gene; Zhang, Hui; Jacob, Jessie; Zhang, Zhiwei

    2017-06-01

    Diagnostic tests are often compared in multi-reader multi-case (MRMC) studies in which a number of cases (subjects with or without the disease in question) are examined by several readers using all tests to be compared. One of the commonly used methods for analyzing MRMC data is the Obuchowski-Rockette (OR) method, which assumes that the true area under the receiver operating characteristic curve (AUC) for each combination of reader and test follows a linear mixed model with fixed effects for test and random effects for reader and the reader-test interaction. This article proposes generalized linear mixed models which generalize the OR model by incorporating a range-appropriate link function that constrains the true AUCs to the unit interval. The proposed models can be estimated by maximizing a pseudo-likelihood based on the approximate normality of AUC estimates. A Monte Carlo expectation-maximization algorithm can be used to maximize the pseudo-likelihood, and a non-parametric bootstrap procedure can be used for inference. The proposed method is evaluated in a simulation study and applied to an MRMC study of breast cancer detection.

  6. Extended Generalized-K (EGK): A New Simple and General Model for Composite Fading Channels

    CERN Document Server

    Yilmaz, Ferkan

    2010-01-01

    In this paper, we introduce a generalized composite fading distribution (termed extended generalized-K (EGK)) to model the envelope and the power of the received signal in millimeter wave (60 GHz or above) and free-space optical channels. We obtain the first and the second-order statistics of the received signal envelope characterized by the EGK composite fading distribution. In particular, expressions for probability density function, cumulative distribution function, level crossing rate and average fade duration, and fractional moments are derived. In addition performance measures such as amount of fading, average bit error probability, outage probability, average capacity, and outage capacity are offered in closed-form. Selected numerical and computer simulation examples validate the accuracy of the presented mathematical analysis.

  7. Optimal Control for TB disease with vaccination assuming endogeneous reactivation and exogeneous reinfection

    Science.gov (United States)

    Anggriani, N.; Wicaksono, B. C.; Supriatna, A. K.

    2016-06-01

    Tuberculosis (TB) is one of the deadliest infectious disease in the world which caused by Mycobacterium tuberculosis. The disease is spread through the air via the droplets from the infectious persons when they are coughing. The World Health Organization (WHO) has paid a special attention to the TB by providing some solution, for example by providing BCG vaccine that prevent an infected person from becoming an active infectious TB. In this paper we develop a mathematical model of the spread of the TB which assumes endogeneous reactivation and exogeneous reinfection factors. We also assume that some of the susceptible population are vaccinated. Furthermore we investigate the optimal vaccination level for the disease.

  8. A generalized exponential time series regression model for electricity prices

    DEFF Research Database (Denmark)

    Haldrup, Niels; Knapik, Oskar; Proietti, Tomasso

    We consider the issue of modeling and forecasting daily electricity spot prices on the Nord Pool Elspot power market. We propose a method that can handle seasonal and non-seasonal persistence by modelling the price series as a generalized exponential process. As the presence of spikes can distort...... the estimation of the dynamic structure of the series we consider an iterative estimation strategy which, conditional on a set of parameter estimates, clears the spikes using a data cleaning algorithm, and reestimates the parameters using the cleaned data so as to robustify the estimates. Conditional...... on the estimated model, the best linear predictor is constructed. Our modeling approach provides good fit within sample and outperforms competing benchmark predictors in terms of forecasting accuracy. We also find that building separate models for each hour of the day and averaging the forecasts is a better...

  9. Hairy black holes in the general Skyrme model

    CERN Document Server

    Adam, C; Shnir, Ya; Wereszczynski, A

    2016-01-01

    We study the existence of hairy black holes in the generalized Einstein-Skyrme model. It is proven that in the BPS model limit there are no hairy black hole solutions, although the model admits gravitating (and flat space) solitons. Furthermore, we find strong evidence that a necessary condition for the existence of black holes with Skyrmionic hair is the inclusion of the Skyrme term $\\mathcal{L}_4$. As an example, we show that there are no hairy black holes in the $\\mathcal{L}_2+\\mathcal{L}_6+\\mathcal{L}_0$ model and present a new kind of black hole solutions with compact Skyrmion hair in the $\\mathcal{L}_4+\\mathcal{L}_6+\\mathcal{L}_0$ model.

  10. A Generalized Gamma Mixture Model for Ultrasonic Tissue Characterization

    Directory of Open Access Journals (Sweden)

    Gonzalo Vegas-Sanchez-Ferrero

    2012-01-01

    Full Text Available Several statistical models have been proposed in the literature to describe the behavior of speckles. Among them, the Nakagami distribution has proven to very accurately characterize the speckle behavior in tissues. However, it fails when describing the heavier tails caused by the impulsive response of a speckle. The Generalized Gamma (GG distribution (which also generalizes the Nakagami distribution was proposed to overcome these limitations. Despite the advantages of the distribution in terms of goodness of fitting, its main drawback is the lack of a closed-form maximum likelihood (ML estimates. Thus, the calculation of its parameters becomes difficult and not attractive. In this work, we propose (1 a simple but robust methodology to estimate the ML parameters of GG distributions and (2 a Generalized Gama Mixture Model (GGMM. These mixture models are of great value in ultrasound imaging when the received signal is characterized by a different nature of tissues. We show that a better speckle characterization is achieved when using GG and GGMM rather than other state-of-the-art distributions and mixture models. Results showed the better performance of the GG distribution in characterizing the speckle of blood and myocardial tissue in ultrasonic images.

  11. The Chaotic General Economic Equilibrium Model and Monopoly

    Directory of Open Access Journals (Sweden)

    Vesna D. Jablanovic

    2012-09-01

    Full Text Available The basic aim of this study is to construct a relatively simple chaotic general economic equilibrium growth model that is capable of generating stable equilibrium, cycles, or chaos. An important example of general economic equilibrium is provided by monopolies. A key hypothesis of this study is based on the idea that the coefficient π = b mRS/m (α-1 (1+1/e mRT plays a crucial role in explaining local stability of the general equilibrium output, where, b: The coefficient of the quadratic marginal-cost function, m: The coefficient of the inverse demand function, mRS: The marginal rate of substitution, mRT: Marginal rate of transformation, α: The coefficient of the monopoly price growth, e: The coefficient of the price elasticity of demand.

  12. Invariants and flavour in the general Two Higgs Doublet Model

    Energy Technology Data Exchange (ETDEWEB)

    Botella, F.J., E-mail: fbotella@uv.es [Departament de Física Teòrica and IFIC, Universitat de València-CSIC, E-46100, Burjassot (Spain); Branco, G.C., E-mail: gustavo.branco@cern.ch [Departamento de Física and Centro de Física Teórica de Partículas (CFTP), Instituto Superior Técnico, Av. Rovisco Pais, P-1049-001 Lisboa (Portugal); Rebelo, M.N., E-mail: margarida.rebelo@cern.ch [Universidade Técnica de Lisboa, Centro de Física Teórica de Partículas (CFTP), Instituto Superior Técnico, Av. Rovisco Pais, P-1049-001 Lisboa (Portugal)

    2013-05-13

    The flavour structure of the general Two Higgs Doublet Model (2HDM) is analysed and a detailed study of the parameter space is presented, showing that flavour mixing in the 2HDM can be parametrized by various unitary matrices which arise from the misalignment in flavour space between pairs of various Hermitian flavour matrices which can be constructed within the model. This is entirely analogous to the generation of the CKM matrix in the Standard Model (SM). We construct weak basis invariants which can give insight into the physical implications of any flavour model, written in an arbitrary weak basis (WB) in the context of 2HDM. We apply this technique to two special cases, models with MFV and models with NNI structures. In both cases non-trivial CP-odd WB invariants arise in a mass power order much smaller than what one encounters in the SM, which can have important implications for baryogenesis in the framework of the general 2HDM.

  13. Attractive Hubbard model with disorder and the generalized Anderson theorem

    Energy Technology Data Exchange (ETDEWEB)

    Kuchinskii, E. Z., E-mail: kuchinsk@iep.uran.ru; Kuleeva, N. A., E-mail: strigina@iep.uran.ru; Sadovskii, M. V., E-mail: sadovski@iep.uran.ru [Russian Academy of Sciences, Institute for Electrophysics, Ural Branch (Russian Federation)

    2015-06-15

    Using the generalized DMFT+Σ approach, we study the influence of disorder on single-particle properties of the normal phase and the superconducting transition temperature in the attractive Hubbard model. A wide range of attractive potentials U is studied, from the weak coupling region, where both the instability of the normal phase and superconductivity are well described by the BCS model, to the strong-coupling region, where the superconducting transition is due to Bose-Einstein condensation (BEC) of compact Cooper pairs, formed at temperatures much higher than the superconducting transition temperature. We study two typical models of the conduction band with semi-elliptic and flat densities of states, respectively appropriate for three-dimensional and two-dimensional systems. For the semi-elliptic density of states, the disorder influence on all single-particle properties (e.g., density of states) is universal for an arbitrary strength of electronic correlations and disorder and is due to only the general disorder widening of the conduction band. In the case of a flat density of states, universality is absent in the general case, but still the disorder influence is mainly due to band widening, and the universal behavior is restored for large enough disorder. Using the combination of DMFT+Σ and Nozieres-Schmitt-Rink approximations, we study the disorder influence on the superconducting transition temperature T{sub c} for a range of characteristic values of U and disorder, including the BCS-BEC crossover region and the limit of strong-coupling. Disorder can either suppress T{sub c} (in the weak-coupling region) or significantly increase T{sub c} (in the strong-coupling region). However, in all cases, the generalized Anderson theorem is valid and all changes of the superconducting critical temperature are essentially due to only the general disorder widening of the conduction band.

  14. Optimal reinsurance/investment problems for general insurance models

    CERN Document Server

    Liu, Yuping; 10.1214/08-AAP582

    2009-01-01

    In this paper the utility optimization problem for a general insurance model is studied. The reserve process of the insurance company is described by a stochastic differential equation driven by a Brownian motion and a Poisson random measure, representing the randomness from the financial market and the insurance claims, respectively. The random safety loading and stochastic interest rates are allowed in the model so that the reserve process is non-Markovian in general. The insurance company can manage the reserves through both portfolios of the investment and a reinsurance policy to optimize a certain utility function, defined in a generic way. The main feature of the problem lies in the intrinsic constraint on the part of reinsurance policy, which is only proportional to the claim-size instead of the current level of reserve, and hence it is quite different from the optimal investment/consumption problem with constraints in finance. Necessary and sufficient conditions for both well posedness and solvability...

  15. On virtual states and generalized completeness relation in Friedrichs Model

    CERN Document Server

    Xiao, Zhiguang

    2016-01-01

    We study the well-known Friedrichs model, in which a discrete state is coupled to a continuum state. By examining the pole behaviors of the Friedrichs model in a specific form factor thoroughly, we find that, in general, when the bare discrete state is below the threshold of the continuum state, there should also be a virtual-state pole accompanying the bound-state pole originating from the bare discrete state as the coupling is turned on. There are also other second-sheet poles originating from the singularities of the form factor. We give a general argument for the existence of these two kinds of states. As the coupling is increased to a certain value, the second-sheet poles may merge and become higher-order poles. We then discuss the completeness relations incorporating bound states, virtual states, and resonant states corresponding to higher-order poles.

  16. Aeolian Sediment Transport Integration in General Stratigraphic Forward Modeling

    Directory of Open Access Journals (Sweden)

    T. Salles

    2011-01-01

    Full Text Available A large number of numerical models have been developed to simulate the physical processes involved in saltation, and, recently to investigate the interaction between soil vegetation cover and aeolian transport. These models are generally constrained to saltation of monodisperse particles while natural saltation occurs over mixed soils. We present a three-dimensional numerical model of steady-state saltation that can simulate aeolian erosion, transport and deposition for unvegetated mixed soils. Our model simulates the motion of saltating particles using a cellular automata algorithm. A simple set of rules is used and takes into account an erosion formula, a transport model, a wind exposition function, and an avalanching process. The model is coupled to the stratigraphic forward model Sedsim that accounts for a larger number of geological processes. The numerical model predicts a wide range of typical dune shapes, which have qualitative correspondence to real systems. The model reproduces the internal structure and composition of the resulting aeolian deposits. It shows the complex formation of dune systems with cross-bedding strata development, bounding surfaces overlaid by fine sediment and inverse grading deposits. We aim to use it to simulate the complex interactions between different sediment transport processes and their resulting geological morphologies.

  17. Treatment of cloud radiative effects in general circulation models

    Energy Technology Data Exchange (ETDEWEB)

    Wang, W.C.; Dudek, M.P.; Liang, X.Z.; Ding, M. [State Univ. of New York, Albany, NY (United States)] [and others

    1996-04-01

    We participate in the Atmospheric Radiation Measurement (ARM) program with two objectives: (1) to improve the general circulation model (GCM) cloud/radiation treatment with a focus on cloud verticle overlapping and layer cloud optical properties, and (2) to study the effects of cloud/radiation-climate interaction on GCM climate simulations. This report summarizes the project progress since the Fourth ARM Science Team meeting February 28-March 4, 1994, in Charleston, South Carolina.

  18. Unitary transformation method for solving generalized Jaynes-Cummings models

    Indian Academy of Sciences (India)

    Sudha Singh

    2006-03-01

    Two fully quantized generalized Jaynes-Cummings models for the interaction of a two-level atom with radiation field are treated, one involving intensity dependent coupling and the other involving multiphoton interaction between the field and the atom. The unitary transformation method presented here not only solves the time dependent problem but also allows a determination of the eigensolutions of the interacting Hamiltonian at the same time.

  19. Conditional likelihood inference in generalized linear mixed models.

    OpenAIRE

    Sartori, Nicola; Severini , T.A

    2002-01-01

    Consider a generalized linear model with a canonical link function, containing both fixed and random effects. In this paper, we consider inference about the fixed effects based on a conditional likelihood function. It is shown that this conditional likelihood function is valid for any distribution of the random effects and, hence, the resulting inferences about the fixed effects are insensitive to misspecification of the random effects distribution. Inferences based on the conditional likelih...

  20. Credibility analysis of risk classes by generalized linear model

    Science.gov (United States)

    Erdemir, Ovgucan Karadag; Sucu, Meral

    2016-06-01

    In this paper generalized linear model (GLM) and credibility theory which are frequently used in nonlife insurance pricing are combined for reliability analysis. Using full credibility standard, GLM is associated with limited fluctuation credibility approach. Comparison criteria such as asymptotic variance and credibility probability are used to analyze the credibility of risk classes. An application is performed by using one-year claim frequency data of a Turkish insurance company and results of credible risk classes are interpreted.

  1. Generalized Bogoliubov Polariton Model: An Application to Stock Exchange Market

    Science.gov (United States)

    Thuy Anh, Chu; Anh, Truong Thi Ngoc; Lan, Nguyen Tri; Viet, Nguyen Ai

    2016-06-01

    A generalized Bogoliubov method for investigation non-simple and complex systems was developed. We take two branch polariton Hamiltonian model in second quantization representation and replace the energies of quasi-particles by two distribution functions of research objects. Application to stock exchange market was taken as an example, where the changing the form of return distribution functions from Boltzmann-like to Gaussian-like was studied.

  2. Scalar products in generalized models with SU(3)-symmetry

    OpenAIRE

    Wheeler, M.

    2012-01-01

    We consider a generalized model with SU(3)-invariant R-matrix, and review the nested Bethe Ansatz for constructing eigenvectors of the transfer matrix. A sum formula for the scalar product between generic Bethe vectors, originally obtained by Reshetikhin [11], is discussed. This formula depends on a certain partition function Z(\\{\\lambda\\},\\{\\mu\\}|\\{w\\},\\{v\\}), which we evaluate explicitly. In the limit when the variables \\{\\mu\\} or \\{v\\} approach infinity, this object reduces to the domain w...

  3. A General Theoretical Model of Enthalpy-EntropyCompensation

    Institute of Scientific and Technical Information of China (English)

    LIU,Lei; GUO, Qing-Xiang

    2001-01-01

    Enthalpy-entropy compensation remains a mystery in chemistry and biophysics.recent study suggested that the solventreorganization might constitute the physical orihin of the compensation, which was unforumstely not wisely applicable because compensation was also observeserved in solid phade reactions.In this study,a general theoretical model based upon strictmathematical deduction was presented,which indicated thatthe redistribution of the distinguishable subspecies might bethe physical origin of the enthalpy-intropy compensations in solvation and surface adsorption weue discussed.

  4. Electromagnetic axial anomaly in a generalized linear sigma model

    Science.gov (United States)

    Fariborz, Amir H.; Jora, Renata

    2017-06-01

    We construct the electromagnetic anomaly effective term for a generalized linear sigma model with two chiral nonets, one with a quark-antiquark structure, the other one with a four-quark content. We compute in the leading order of this framework the decays into two photons of six pseudoscalars: π0(137 ), π0(1300 ), η (547 ), η (958 ), η (1295 ) and η (1760 ). Our results agree well with the available experimental data.

  5. A general stochastic model for studying time evolution of transition networks

    Science.gov (United States)

    Zhan, Choujun; Tse, Chi K.; Small, Michael

    2016-12-01

    We consider a class of complex networks whose nodes assume one of several possible states at any time and may change their states from time to time. Such networks represent practical networks of rumor spreading, disease spreading, language evolution, and so on. Here, we derive a model describing the dynamics of this kind of network and a simulation algorithm for studying the network evolutionary behavior. This model, derived at a microscopic level, can reveal the transition dynamics of every node. A numerical simulation is taken as an "experiment" or "realization" of the model. We use this model to study the disease propagation dynamics in four different prototypical networks, namely, the regular nearest-neighbor (RN) network, the classical Erdös-Renyí (ER) random graph, the Watts-Strogátz small-world (SW) network, and the Barabási-Albert (BA) scalefree network. We find that the disease propagation dynamics in these four networks generally have different properties but they do share some common features. Furthermore, we utilize the transition network model to predict user growth in the Facebook network. Simulation shows that our model agrees with the historical data. The study can provide a useful tool for a more thorough understanding of the dynamics networks.

  6. Structural dynamic analysis with generalized damping models analysis

    CERN Document Server

    Adhikari , Sondipon

    2013-01-01

    Since Lord Rayleigh introduced the idea of viscous damping in his classic work ""The Theory of Sound"" in 1877, it has become standard practice to use this approach in dynamics, covering a wide range of applications from aerospace to civil engineering. However, in the majority of practical cases this approach is adopted more for mathematical convenience than for modeling the physics of vibration damping. Over the past decade, extensive research has been undertaken on more general ""non-viscous"" damping models and vibration of non-viscously damped systems. This book, along with a related book

  7. Generalized model for Memristor-based Wien family oscillators

    KAUST Repository

    Talukdar, Abdul Hafiz Ibne

    2012-07-23

    In this paper, we report the unconventional characteristics of Memristor in Wien oscillators. Generalized mathematical models are developed to analyze four members of the Wien family using Memristors. Sustained oscillation is reported for all types though oscillating resistance and time dependent poles are present. We have also proposed an analytical model to estimate the desired amplitude of oscillation before the oscillation starts. These Memristor-based oscillation results, presented for the first time, are in good agreement with simulation results. © 2011 Elsevier Ltd.

  8. Regularization Paths for Generalized Linear Models via Coordinate Descent

    Directory of Open Access Journals (Sweden)

    Jerome Friedman

    2010-02-01

    Full Text Available We develop fast algorithms for estimation of generalized linear models with convex penalties. The models include linear regression, two-class logistic regression, and multi- nomial regression problems while the penalties include ℓ1 (the lasso, ℓ2 (ridge regression and mixtures of the two (the elastic net. The algorithms use cyclical coordinate descent, computed along a regularization path. The methods can handle large problems and can also deal efficiently with sparse features. In comparative timings we find that the new algorithms are considerably faster than competing methods.

  9. Principle Generalized Net Model of a Human Stress Reaction

    Directory of Open Access Journals (Sweden)

    Anthony Shannon

    2008-04-01

    Full Text Available The present study was aimed at investigating the mechanism of a human stress reaction by means of Generalized Nets (GNs. A principle GN-model of the main structures, organs and systems of the human body taking part in the acute and chronic reaction of the organism to a stress stimulus is generated. A possible application of the GN-model of the human stress reaction for testing the effect of known or newly synthesized pharmacological products as well as of food supplements is discussed.

  10. Automorphisms and Generalized Involution Models of Finite Complex Reflection Groups

    CERN Document Server

    Marberg, Eric

    2010-01-01

    We prove that a finite complex reflection group has a generalized involution model, as defined by Bump and Ginzburg, if and only if each of its irreducible factors is either $G(r,p,n)$ with $\\gcd(p,n)=1$; $G(r,p,2)$ with $r/p$ odd; or $G_{23}$, the Coxeter group of type $H_3$. We additionally provide explicit formulas for all automorphisms of $G(r,p,n)$, and construct new Gelfand models for the groups $G(r,p,n)$ with $\\gcd(p,n)=1$.

  11. Tropical disturbances in relation to general circulation modeling

    Science.gov (United States)

    Estoque, M. A.

    1982-01-01

    The initial results of an evaluation of the performance of the Goddard Laboratory of Atmospheric Simulation general circulation model depicting the tropical atmosphere during the summer are presented. Because the results show the existence of tropical wave disturbances throughout the tropics, the characteristics of synoptic disturbances over Africa were studied and a synoptic case study of a selected disturbance in this area was conducted. It is shown that the model is able to reproduce wave type synoptic disturbances in the tropics. The findings show that, in one of the summers simulated, the disturbances are predominantly closed vortices; in another summer, the predominant disturbances are open waves.

  12. Anisotropic Mesoscale Eddy Transport in Ocean General Circulation Models

    Science.gov (United States)

    Reckinger, S. J.; Fox-Kemper, B.; Bachman, S.; Bryan, F.; Dennis, J.; Danabasoglu, G.

    2014-12-01

    Modern climate models are limited to coarse-resolution representations of large-scale ocean circulation that rely on parameterizations for mesoscale eddies. The effects of eddies are typically introduced by relating subgrid eddy fluxes to the resolved gradients of buoyancy or other tracers, where the proportionality is, in general, governed by an eddy transport tensor. The symmetric part of the tensor, which represents the diffusive effects of mesoscale eddies, is universally treated isotropically in general circulation models. Thus, only a single parameter, namely the eddy diffusivity, is used at each spatial and temporal location to impart the influence of mesoscale eddies on the resolved flow. However, the diffusive processes that the parameterization approximates, such as shear dispersion, potential vorticity barriers, oceanic turbulence, and instabilities, typically have strongly anisotropic characteristics. Generalizing the eddy diffusivity tensor for anisotropy extends the number of parameters to three: a major diffusivity, a minor diffusivity, and the principal axis of alignment. The Community Earth System Model (CESM) with the anisotropic eddy parameterization is used to test various choices for the newly introduced parameters, which are motivated by observations and the eddy transport tensor diagnosed from high resolution simulations. Simply setting the ratio of major to minor diffusivities to a value of five globally, while aligning the major axis along the flow direction, improves biogeochemical tracer ventilation and reduces global temperature and salinity biases. These effects can be improved even further by parameterizing the anisotropic transport mechanisms in the ocean.

  13. Border Collision Bifurcations in a Generalized Model of Population Dynamics

    Directory of Open Access Journals (Sweden)

    Lilia M. Ladino

    2016-01-01

    Full Text Available We analyze the dynamics of a generalized discrete time population model of a two-stage species with recruitment and capture. This generalization, which is inspired by other approaches and real data that one can find in literature, consists in considering no restriction for the value of the two key parameters appearing in the model, that is, the natural death rate and the mortality rate due to fishing activity. In the more general case the feasibility of the system has been preserved by posing opportune formulas for the piecewise map defining the model. The resulting two-dimensional nonlinear map is not smooth, though continuous, as its definition changes as any border is crossed in the phase plane. Hence, techniques from the mathematical theory of piecewise smooth dynamical systems must be applied to show that, due to the existence of borders, abrupt changes in the dynamic behavior of population sizes and multistability emerge. The main novelty of the present contribution with respect to the previous ones is that, while using real data, richer dynamics are produced, such as fluctuations and multistability. Such new evidences are of great interest in biology since new strategies to preserve the survival of the species can be suggested.

  14. Generalized linear models with coarsened covariates: a practical Bayesian approach.

    Science.gov (United States)

    Johnson, Timothy R; Wiest, Michelle M

    2014-06-01

    Coarsened covariates are a common and sometimes unavoidable phenomenon encountered in statistical modeling. Covariates are coarsened when their values or categories have been grouped. This may be done to protect privacy or to simplify data collection or analysis when researchers are not aware of their drawbacks. Analyses with coarsened covariates based on ad hoc methods can compromise the validity of inferences. One valid method for accounting for a coarsened covariate is to use a marginal likelihood derived by summing or integrating over the unknown realizations of the covariate. However, algorithms for estimation based on this approach can be tedious to program and can be computationally expensive. These are significant obstacles to their use in practice. To overcome these limitations, we show that when expressed as a Bayesian probability model, a generalized linear model with a coarsened covariate can be posed as a tractable missing data problem where the missing data are due to censoring. We also show that this model is amenable to widely available general-purpose software for simulation-based inference for Bayesian probability models, providing researchers a very practical approach for dealing with coarsened covariates.

  15. Item Response Theory Using Hierarchical Generalized Linear Models

    Directory of Open Access Journals (Sweden)

    Hamdollah Ravand

    2015-03-01

    Full Text Available Multilevel models (MLMs are flexible in that they can be employed to obtain item and person parameters, test for differential item functioning (DIF and capture both local item and person dependence. Papers on the MLM analysis of item response data have focused mostly on theoretical issues where applications have been add-ons to simulation studies with a methodological focus. Although the methodological direction was necessary as a first step to show how MLMs can be utilized and extended to model item response data, the emphasis needs to be shifted towards providing evidence on how applications of MLMs in educational testing can provide the benefits that have been promised. The present study uses foreign language reading comprehension data to illustrate application of hierarchical generalized models to estimate person and item parameters, differential item functioning (DIF, and local person dependence in a three-level model.

  16. The linear model and hypothesis a general unifying theory

    CERN Document Server

    Seber, George

    2015-01-01

    This book provides a concise and integrated overview of hypothesis testing in four important subject areas, namely linear and nonlinear models, multivariate analysis, and large sample theory. The approach used is a geometrical one based on the concept of projections and their associated idempotent matrices, thus largely avoiding the need to involve matrix ranks. It is shown that all the hypotheses encountered are either linear or asymptotically linear, and that all the underlying models used are either exactly or asymptotically linear normal models. This equivalence can be used, for example, to extend the concept of orthogonality in the analysis of variance to other models, and to show that the asymptotic equivalence of the likelihood ratio, Wald, and Score (Lagrange Multiplier) hypothesis tests generally applies.

  17. Trajectory Simulation of Meteors Assuming Mass Loss and Fragmentation

    Science.gov (United States)

    Allen, Gary A., Jr.; Prabhu, Dinesh K.; Saunders, David A

    2015-01-01

    Program used to simulate atmospheric flight trajectories of entry capsules [1] Includes models of atmospheres of different planetary destinations - Earth, Mars, Venus, Jupiter, Saturn, Uranus, Titan, ... Solves 3-­-degrees of freedom (3DoF) equations for a single body treated as a point mass. Also supports 6-DoF trajectory simula4on and Monte Carlo analyses. Uses Fehlberg-­-Runge-­-Kuna (4th-5th order) time integraion with automaic step size control. Includes rotating spheroidal planet with gravitational field having a J2 harmonic. Includes a variety of engineering aerodynamic and heat flux models. Capable of specifying events - heatshield jettison, parachute deployment, etc. - at predefined altitudes or Mach number. Has material thermal response models of typical aerospace materials integrated.

  18. Predicting the Probability of Lightning Occurrence with Generalized Additive Models

    Science.gov (United States)

    Fabsic, Peter; Mayr, Georg; Simon, Thorsten; Zeileis, Achim

    2017-04-01

    This study investigates the predictability of lightning in complex terrain. The main objective is to estimate the probability of lightning occurrence in the Alpine region during summertime afternoons (12-18 UTC) at a spatial resolution of 64 × 64 km2. Lightning observations are obtained from the ALDIS lightning detection network. The probability of lightning occurrence is estimated using generalized additive models (GAM). GAMs provide a flexible modelling framework to estimate the relationship between covariates and the observations. The covariates, besides spatial and temporal effects, include numerous meteorological fields from the ECMWF ensemble system. The optimal model is chosen based on a forward selection procedure with out-of-sample mean squared error as a performance criterion. Our investigation shows that convective precipitation and mid-layer stability are the most influential meteorological predictors. Both exhibit intuitive, non-linear trends: higher values of convective precipitation indicate higher probability of lightning, and large values of the mid-layer stability measure imply low lightning potential. The performance of the model was evaluated against a climatology model containing both spatial and temporal effects. Taking the climatology model as a reference forecast, our model attains a Brier Skill Score of approximately 46%. The model's performance can be further enhanced by incorporating the information about lightning activity from the previous time step, which yields a Brier Skill Score of 48%. These scores show that the method is able to extract valuable information from the ensemble to produce reliable spatial forecasts of the lightning potential in the Alps.

  19. A general mixture model for sediment laden flows

    Science.gov (United States)

    Liang, Lixin; Yu, Xiping; Bombardelli, Fabián

    2017-09-01

    A mixture model for general description of sediment-laden flows is developed based on an Eulerian-Eulerian two-phase flow theory, with the aim at gaining computational speed in the prediction, but preserving the accuracy of the complete two-fluid model. The basic equations of the model include the mass and momentum conservation equations for the sediment-water mixture, and the mass conservation equation for sediment. However, a newly-obtained expression for the slip velocity between phases allows for the computation of the sediment motion, without the need of solving the momentum equation for sediment. The turbulent motion is represented for both the fluid and the particulate phases. A modified k-ε model is used to describe the fluid turbulence while an algebraic model is adopted for turbulent motion of particles. A two-dimensional finite difference method based on the SMAC scheme was used to numerically solve the mathematical model. The model is validated through simulations of fluid and suspended sediment motion in steady open-channel flows, both in equilibrium and non-equilibrium states, as well as in oscillatory flows. The computed sediment concentrations, horizontal velocity and turbulent kinetic energy of the mixture are all shown to be in good agreement with available experimental data, and importantly, this is done at a fraction of the computational efforts required by the complete two-fluid model.

  20. Hierarchical multivariate mixture generalized linear models for the analysis of spatial data: An application to disease mapping.

    Science.gov (United States)

    Torabi, Mahmoud

    2016-09-01

    Disease mapping of a single disease has been widely studied in the public health setup. Simultaneous modeling of related diseases can also be a valuable tool both from the epidemiological and from the statistical point of view. In particular, when we have several measurements recorded at each spatial location, we need to consider multivariate models in order to handle the dependence among the multivariate components as well as the spatial dependence between locations. It is then customary to use multivariate spatial models assuming the same distribution through the entire population density. However, in many circumstances, it is a very strong assumption to have the same distribution for all the areas of population density. To overcome this issue, we propose a hierarchical multivariate mixture generalized linear model to simultaneously analyze spatial Normal and non-Normal outcomes. As an application of our proposed approach, esophageal and lung cancer deaths in Minnesota are used to show the outperformance of assuming different distributions for different counties of Minnesota rather than assuming a single distribution for the population density. Performance of the proposed approach is also evaluated through a simulation study. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Generalized effective medium resistivity model for low resistivity reservoir

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    With the advancement in oil exploration,producible oil and gas are being found in low resistivity reservoirs,which may otherwise be erroneously thought as water zones from their resistivity.However,the evaluation of low resistivity reservoirs remains difficult from log interpretation.Since low resistivity in hydrocarbon bearing sands can be caused by dispersed clay,laminated shale,conductive matrix grains,microscopic capillary pores and high saline water,a new resistivity model is required for more accurate hydrocarbon saturation prediction for low resistivity formations.Herein,a generalized effective medium resistivity model has been proposed for low resistivity reservoirs,based on experimental measurements on artificial low resistivity shaly sand samples,symmetrical anisotropic effective medium theory for resistivity interpretations,and geneses and conductance mechanisms of low resistivity reservoirs.By analyzing effects of some factors on the proposed model,we show theoretically the model can describe conductance mechanisms of low resistivity reservoirs with five geneses.Also,shale distribution largely affects water saturation predicted by the model.Resistivity index decreases as fraction and conductivity of laminated shale,or fraction of dispersed clay,or conductivity of rock matrix grains increases.Resistivity index decreases as matrix percolation exponent,or percolation rate of capillary bound water increases,and as percolation exponent of capillary bound water,or matrix percolation rate,or free water percolation rate decreases.Rock sample data from low resistivity reservoirs with different geneses and interpretation results for log data show that the proposed model can be applied in low resistivity reservoirs containing high salinity water,dispersed clay,microscopic capillary pores,laminated shale and conductive matrix grains,and thus is considered as a generalized resistivity model for low resistivity reservoir evaluation.

  2. Generalized effective medium resistivity model for low resistivity reservoir

    Institute of Scientific and Technical Information of China (English)

    SONG YanJie; TANG XiaoMin

    2008-01-01

    With the advancement in oil exploration, producible oil and gas are being found in low resistivity reservoirs, which may otherwise be erroneously thought as water zones from their resistivity. However,the evaluation of low resistivity reservoirs remains difficult from log interpretation. Since low resistivity in hydrocarbon bearing sands can be caused by dispersed clay, laminated shale, conductive matrix grains, microscopic capillary pores and high saline water, a new resistivity model is required for more accurate hydrocarbon saturation prediction for low resistivity formations. Herein, a generalized effective medium resistivity model has been proposed for low resistivity reservoirs, based on experimental measurements on artificial low resistivity shaly sand samples, symmetrical anisotropic effective medium theory for resistivity interpretations, and geneses and conductance mechanisms of low resistivity reservoirs. By analyzing effects of some factors on the proposed model, we show theoretically the model can describe conductance mechanisms of low resistivity reservoirs with five geneses. Also,shale distribution largely affects water saturation predicted by the model. Resistivity index decreases as fraction and conductivity of laminated shale, or fraction of dispersed clay, or conductivity of rock matrix grains increases. Resistivity index decreases as matrix percolation exponent, or percolation rate of capillary bound water increases, and as percolation exponent of capillary bound water, or matrix percolation rate, or free water percolation rate decreases. Rock sample data from low resistivity reservoirs with different geneses and interpretation results for log data show that the proposed model can be applied in low resistivity reservoirs containing high salinity water, dispersed clay, microscopic capillary pores, laminated shale and conductive matrix grains, and thus is considered as a generalized resistivity model for low resistivity reservoir evaluation.

  3. Bayesian generalized linear mixed modeling of Tuberculosis using informative priors.

    Science.gov (United States)

    Ojo, Oluwatobi Blessing; Lougue, Siaka; Woldegerima, Woldegebriel Assefa

    2017-01-01

    TB is rated as one of the world's deadliest diseases and South Africa ranks 9th out of the 22 countries with hardest hit of TB. Although many pieces of research have been carried out on this subject, this paper steps further by inculcating past knowledge into the model, using Bayesian approach with informative prior. Bayesian statistics approach is getting popular in data analyses. But, most applications of Bayesian inference technique are limited to situations of non-informative prior, where there is no solid external information about the distribution of the parameter of interest. The main aim of this study is to profile people living with TB in South Africa. In this paper, identical regression models are fitted for classical and Bayesian approach both with non-informative and informative prior, using South Africa General Household Survey (GHS) data for the year 2014. For the Bayesian model with informative prior, South Africa General Household Survey dataset for the year 2011 to 2013 are used to set up priors for the model 2014.

  4. Fermion Masses and Mixing in General Warped Extra Dimensional Models

    CERN Document Server

    Frank, Mariana; Pourtolami, Nima; Toharia, Manuel

    2015-01-01

    We analyze fermion masses and mixing in a general warped extra dimensional model, where all the Standard Model (SM) fields, including the Higgs, are allowed to propagate in the bulk. In this context, a slightly broken flavor symmetry imposed universally on all fermion fields, without distinction, can generate the full flavor structure of the SM, including quarks, charged leptons and neutrinos. For quarks and charged leptons, the exponential sensitivity of their wave-functions to small flavor breaking effects yield naturally hierarchical masses and mixing as it is usual in warped models with fermions in the bulk. In the neutrino sector, the exponential wave-function factors can be flavor-blind and thus insensitive to the small flavor symmetry breaking effects, directly linking their masses and mixing angles to the flavor symmetric structure of the 5D neutrino Yukawa couplings. The Higgs must be localized in the bulk and the model is naturally more successful in generalized warped scenarios where the metric bac...

  5. Fermion masses and mixing in general warped extra dimensional models

    Science.gov (United States)

    Frank, Mariana; Hamzaoui, Cherif; Pourtolami, Nima; Toharia, Manuel

    2015-06-01

    We analyze fermion masses and mixing in a general warped extra dimensional model, where all the Standard Model (SM) fields, including the Higgs, are allowed to propagate in the bulk. In this context, a slightly broken flavor symmetry imposed universally on all fermion fields, without distinction, can generate the full flavor structure of the SM, including quarks, charged leptons and neutrinos. For quarks and charged leptons, the exponential sensitivity of their wave functions to small flavor breaking effects yield hierarchical masses and mixing as it is usual in warped models with fermions in the bulk. In the neutrino sector, the exponential wave-function factors can be flavor blind and thus insensitive to the small flavor symmetry breaking effects, directly linking their masses and mixing angles to the flavor symmetric structure of the five-dimensional neutrino Yukawa couplings. The Higgs must be localized in the bulk and the model is more successful in generalized warped scenarios where the metric background solution is different than five-dimensional anti-de Sitter (AdS5 ). We study these features in two simple frameworks, flavor complimentarity and flavor democracy, which provide specific predictions and correlations between quarks and leptons, testable as more precise data in the neutrino sector becomes available.

  6. Generalized Manning Condensation Model Captures the RNA Ion Atmosphere

    Science.gov (United States)

    Hayes, Ryan L.; Noel, Jeffrey K.; Mandic, Ana; Whitford, Paul C.; Sanbonmatsu, Karissa Y.; Mohanty, Udayan; Onuchic, José N.

    2016-01-01

    RNA is highly sensitive to the ionic environment, and typically requires Mg2+ to form compact structures. There is a need for models capable of describing the ion atmosphere surrounding RNA with quantitative accuracy. We present a model of RNA electrostatics and apply it within coarse-grained molecular dynamics simulation. The model treats Mg2+ ions explicitly to account for ion-ion correlations neglected by mean field theories. Since mean-field theories capture KCl well, it is treated implicitly by a generalized Manning counterion condensation model. The model extends Manning condensation to deal with arbitrary RNA conformations, non-limiting KCl concentrations, and the ion inaccessible volume of RNA. The model is tested against experimental measurements of the excess Mg2+ associated with the RNA, Γ2+, because Γ2+ is directly related to the Mg2+-RNA interaction free energy. The excellent agreement with experiment demonstrates the model captures the ionic dependence of the RNA free energy landscape. PMID:26197147

  7. Generalized Semi-Analytical Models of Supernova Light Curves

    CERN Document Server

    Chatzopoulos, Emmanouil; Vinko, Jozsef

    2011-01-01

    We present generalized supernova (SN) light curve (LC) models for a variety of power inputs. We provide an expression for the power input that is produced by self-similar forward and reverse shocks in SN ejecta - circumstellar matter (CSM) interaction. We find that this ejecta-CSM interaction luminosity is in agreement with results from multi-dimensional radiation hydrodynamics simulations in the optically-thin case. We develop a model for the case of an optically-thick CSM by invoking an approximation for the effects of radiative diffusion. In the context of this model, we provide predictions for the time of forward shock break-out from the optically-thick part of the CSM envelope. We also introduce a hybrid LC model that incorporates ejecta-CSM interaction plus Ni-56 and Co-56 radioactive decay input. We fit this hybrid model to the LC of the Super-Luminous Supernova (SLSN) 2006gy. We find that this model provides a better fit to the LC of this event than previously presented models. We also address the rel...

  8. Computable General Equilibrium Model Fiscal Year 2013 Capability Development Report - April 2014

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, Brian Keith [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). National Infrastructure Simulation and Analysis Center (NISAC); Rivera, Michael K. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). National Infrastructure Simulation and Analysis Center (NISAC); Boero, Riccardo [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). National Infrastructure Simulation and Analysis Center (NISAC)

    2014-04-01

    This report documents progress made on continued developments of the National Infrastructure Simulation and Analysis Center (NISAC) Computable General Equilibrium Model (NCGEM), developed in fiscal year 2012. In fiscal year 2013, NISAC the treatment of the labor market and tests performed with the model to examine the properties of the solutions computed by the model. To examine these, developers conducted a series of 20 simulations for 20 U.S. States. Each of these simulations compared an economic baseline simulation with an alternative simulation that assumed a 20-percent reduction in overall factor productivity in the manufacturing industries of each State. Differences in the simulation results between the baseline and alternative simulations capture the economic impact of the reduction in factor productivity. While not every State is affected in precisely the same way, the reduction in manufacturing industry productivity negatively affects the manufacturing industries in each State to an extent proportional to the reduction in overall factor productivity. Moreover, overall economic activity decreases when manufacturing sector productivity is reduced. Developers ran two additional simulations: (1) a version of the model for the State of Michigan, with manufacturing divided into two sub-industries (automobile and other vehicle manufacturing as one sub-industry and the rest of manufacturing as the other subindustry); and (2) a version of the model for the United States, divided into 30 industries. NISAC conducted these simulations to illustrate the flexibility of industry definitions in NCGEM and to examine the simulation properties of in more detail.

  9. A Generalized Minimum Cost Flow Model for Multiple Emergency Flow Routing

    Directory of Open Access Journals (Sweden)

    Jianxun Cui

    2014-01-01

    Full Text Available During real-life disasters, that is, earthquakes, floods, terrorist attacks, and other unexpected events, emergency evacuation and rescue are two primary operations that can save the lives and property of the affected population. It is unavoidable that evacuation flow and rescue flow will conflict with each other on the same spatial road network and within the same time window. Therefore, we propose a novel generalized minimum cost flow model to optimize the distribution pattern of these two types of flow on the same network by introducing the conflict cost. The travel time on each link is assumed to be subject to a bureau of public road (BPR function rather than a fixed cost. Additionally, we integrate contraflow operations into this model to redesign the network shared by those two types of flow. A nonconvex mixed-integer nonlinear programming model with bilinear, fractional, and power components is constructed, and GAMS/BARON is used to solve this programming model. A case study is conducted in the downtown area of Harbin city in China to verify the efficiency of proposed model, and several helpful findings and managerial insights are also presented.

  10. A new approach for modeling generalization gradients: A case for Hierarchical Models

    Directory of Open Access Journals (Sweden)

    Koen eVanbrabant

    2015-05-01

    Full Text Available A case is made for the use of hierarchical models in the analysis of generalization gradients. Hierarchical models overcome several restrictions that are imposed by repeated measures analysis-of-variance (rANOVA, the default statistical method in current generalization research. More specifically, hierarchical models allow to include continuous independent variables and overcomes problematic assumptions such as sphericity. We focus on how generalization research can benefit from this added flexibility. In a simulation study we demonstrate the dominance of hierarchical models over rANOVA. In addition, we show the lack of efficiency of the Mauchly's sphericity test in sample sizes typical for generalization research, and confirm how violations of sphericity increase the probability of type I errors. A worked example of a hierarchical model is provided, with a specific emphasis on the interpretation of parameters relevant for generalization research.

  11. A new approach for modeling generalization gradients: a case for hierarchical models.

    Science.gov (United States)

    Vanbrabant, Koen; Boddez, Yannick; Verduyn, Philippe; Mestdagh, Merijn; Hermans, Dirk; Raes, Filip

    2015-01-01

    A case is made for the use of hierarchical models in the analysis of generalization gradients. Hierarchical models overcome several restrictions that are imposed by repeated measures analysis-of-variance (rANOVA), the default statistical method in current generalization research. More specifically, hierarchical models allow to include continuous independent variables and overcomes problematic assumptions such as sphericity. We focus on how generalization research can benefit from this added flexibility. In a simulation study we demonstrate the dominance of hierarchical models over rANOVA. In addition, we show the lack of efficiency of the Mauchly's sphericity test in sample sizes typical for generalization research, and confirm how violations of sphericity increase the probability of type I errors. A worked example of a hierarchical model is provided, with a specific emphasis on the interpretation of parameters relevant for generalization research.

  12. Bianchi Type-IX viscous fluid cosmological model in general relativity

    Indian Academy of Sciences (India)

    Raj Bali; Mahesh Kumar Yadav

    2005-02-01

    Bianchi Type-IX viscous fluid cosmological model is investigated. To get a deterministic model, we have assumed the condition = ( is a constant) between metric potentials and where is the coefficient of shear viscosity and the scalar of expansion in the model. The coefficient of bulk viscosity () is taken as constant. The physical and geometrical aspects of the model are also discussed.

  13. Toward a general evaluation model for soil respiration (GEMSR)

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Soil respiration is an important component of terrestrial carbon budget. Its accurate evaluation is es- sential to the study of terrestrial carbon source/sink. Studies on soil respiration at present mostly focus on the temporal variations and the controlling factors of soil respiration, but its spatial variations and controlling factors draw less attention. Moreover, the evaluation models for soil respiration at present include only the effects of water and heat factors, while the biological and soil factors controlling soil respiration and their interactions with water and heat factors have not been considered yet. These models are not able to accurately evaluate soil respiration in different vegetation/terrestrial ecosystems at different temporal and spatial scales. Thus, a general evaluation model for soil respiration (GEMSR) including the interacting meteorological (water and heat factors), soil nutrient and biological factors is suggested in this paper, and the basic procedure developing GEMSR and the research tasks of soil respiration in the future are also discussed.

  14. Synchronization criteria based on a general complex dynamical network model

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jian-lin; WANG Chang-jian; XU Cong-fu

    2008-01-01

    Many complex dynamical networks display synchronization phenomena. We introduce a general complex dynamical network model. The model is equivalent to a simple vector model of adopting the Kronecker product. Some synchronization criteria, including time-variant networks and time-varying networks, are deduced based on Lyapunov's stability theory, and they are proven on the condition of obtaining a certain synchronous solution of an isolated cell. In particular, the inner-coupling matrix directly determines the synchronization of the time-invariant network; while for a time-varying periodic dynamical network, the asymptotic stability of a synchronous solution is determined by a constant matrix which is related to the fundamental solution matrices of the linearization system. Finally, illustrative examples are given to validate the results.

  15. A generalized and parameterized interference model for cognitive radio networks

    KAUST Repository

    Mahmood, Nurul Huda

    2011-06-01

    For meaningful co-existence of cognitive radios with primary system, it is imperative that the cognitive radio system is aware of how much interference it generates at the primary receivers. This can be done through statistical modeling of the interference as perceived at the primary receivers. In this work, we propose a generalized model for the interference generated by a cognitive radio network, in the presence of small and large scale fading, at a primary receiver located at the origin. We then demonstrate how this model can be used to estimate the impact of cognitive radio transmission on the primary receiver in terms of different outage probabilities. Finally, our analytical findings are validated through some selected computer-based simulations. © 2011 IEEE.

  16. Generalized self-dual Maxwell-Chern-Simons-Higgs model

    CERN Document Server

    Bazeia, D; da Hora, E; Menezes, R

    2012-01-01

    We present a consistent BPS framework for a generalized Maxwell-Chern-Simons-Higgs model. The overall model, including its self-dual potential, depends on three different functions, h(|{\\phi}|,N), w(|{\\phi}|) and G(|{\\phi}|), which are functions of the scalar fields only. The BPS energy is proportional to the magnetic flux when w(|{\\phi}|) and G(|{\\phi}|) are related to each other by a differential constraint. We present an explicit non-standard model and its topologically non-trivial static configurations, which are described by the usual radially symmetric profile. Finally, we note that the non-standard results behave in a similar way as their standard counterparts, as expected, reinforcing the consistence of the overall construction.

  17. Generalized self-dual Maxwell-Chern-Simons-Higgs model

    Science.gov (United States)

    Bazeia, D.; Casana, R.; da Hora, E.; Menezes, R.

    2012-06-01

    We present a consistent Bogomol’nyi-Prasad-Sommerfield (BPS) framework for a generalized Maxwell-Chern-Simons-Higgs model. The overall model, including its self-dual potential, depends on three different functions, h(|ϕ|,N), w(|ϕ|), and G(|ϕ|), which are functions of the scalar fields only. The BPS energy is proportional to the magnetic flux when w(|ϕ|) and G(|ϕ|) are related to each other by a differential constraint. We present an explicit nonstandard model and its topologically nontrivial static configurations, which are described by the usual radially symmetric profile. Finally, we note that the nonstandard results behave in a similar way as their standard counterparts, as expected, reinforcing the consistence of the overall construction.

  18. A General Approach to the Modelling of Trophic Chains

    CERN Document Server

    Dilão, R; Dilao, Rui; Domingos, Tiago

    1999-01-01

    Based on the law of mass action (and its microscopic foundation) and mass conservation, we present here a method to derive consistent dynamic models for the time evolution of systems with an arbitrary number of species. Equations are derived through a mechanistic description, ensuring that all parameters have ecological meaning. After discussing the biological mechanisms associated to the logistic and Lotka-Volterra equations, we show how to derive general models for trophic chains, including the effects of internal states at fast time scales. We show that conformity with the mass action law leads to different functional forms for the Lotka-Volterra and trophic chain models. We use mass conservation to recover the concept of carrying capacity for an arbitrary food chain.

  19. Asymptotics of the QMLE for General ARCH(q) Models

    DEFF Research Database (Denmark)

    Kristensen, Dennis; Rahbek, Anders Christian

    2009-01-01

    Asymptotics of the QMLE for Non-Linear ARCH Models Dennis Kristensen, Columbia University Anders Rahbek, University of Copenhagen Abstract Asymptotic properties of the quasi-maximum likelihood estimator (QMLE) for non-linear ARCH(q) models -- including for example Asymmetric Power ARCH and log......-ARCH -- are derived. Strong consistency is established under the assumptions that the ARCH process is geometrically ergodic, the conditional variance function has a finite log-moment, and finite second moment of the rescaled error. Asymptotic normality of the estimator is established under the additional assumption...... that certain ratios involving the conditional variance function are suitably bounded, and that the rescaled errors have little more than fourth moment. We verify our general conditions, including identification, for a wide range of leading specific ARCH models....

  20. Thermal power system analysis using a generalized network flow model

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, John Arun [Former Senior Design Engineer, Power System Analysis and Control Group, Bharat Heavy Electricals Limited, New Delhi (India); Chebiyam, Radhakrishna [Former Director, Academic Staff College, JNT University, Hyderabad-72 (India)

    2012-07-01

    This paper analyzes an Integrated Thermal Power System using a Multiperiod Generalized Network Flow Model. The thermal system analysis is carried out by taking into account the complex dynamics involved in utilizing multiple energy carriers (coal, diesel and natural gas). The model comprises energy source nodes, energy transformation nodes, energy storage nodes, energy demand nodes and their interconnections. The solution to the integrated energy system problem involves the evaluation of energy flows that meet the electricity demand at minimum total cost, while satisfying system constraints. This is illustrated through the India case study using a minimum time-step of one hour. MATLAB based software was developed for carrying out this study. TOMLAB/CPLEX software was utilized for obtaining the optimal solution. The model and the methodology utilized for conducting the study would be of interest to those involved in integrated energy system planning for a country or a region.

  1. Dimensional Reduction for the General Markov Model on Phylogenetic Trees.

    Science.gov (United States)

    Sumner, Jeremy G

    2017-03-01

    We present a method of dimensional reduction for the general Markov model of sequence evolution on a phylogenetic tree. We show that taking certain linear combinations of the associated random variables (site pattern counts) reduces the dimensionality of the model from exponential in the number of extant taxa, to quadratic in the number of taxa, while retaining the ability to statistically identify phylogenetic divergence events. A key feature is the identification of an invariant subspace which depends only bilinearly on the model parameters, in contrast to the usual multi-linear dependence in the full space. We discuss potential applications including the computation of split (edge) weights on phylogenetic trees from observed sequence data.

  2. General Study of Perturbations in Bouncing and Cyclic Models

    Science.gov (United States)

    Mayes, Riley; Biswas, Tirthabir; Lattyak, Colleen

    2015-04-01

    Perturbations are important in both understanding and evaluating the importance of bounces and turnarounds in models that predict a cyclic evolution of our Universe. Moreover, tracking these perturbations through the entirety of the cycle is important as it provides an outlet for a qualitative comparison with Cosmic Microwave Background (CMB) observations. However, tracking these perturbations through each cycle proves difficult as the physics to describe bounces and turnarounds is not well established. Therefore, we first studied general anaytical and numerical techniques in order to understand the evolution of fluctuations in simple cosmological models where physics is better understood. In our research, we first developed analytical techniques from background solutions to establish a solid foundation for describing super-Hubble fluctuations in our early Universe. These analytical solutions were developed for both bounces and turnarounds allowing us to numerically verify and then further investigate the consequences of these solutions in models such as bounce inflation and cyclic inflation.

  3. Toward a general evaluation model for soil respiration (GEMSR)

    Institute of Scientific and Technical Information of China (English)

    ZHOU GuangSheng; JIA BingRui; HAN GuangXuan; ZHOU Li

    2008-01-01

    Soil respiration is an important component of terrestrial carbon budget. Its accurate evaluation is essential to the study of terrestrial carbon source/sink. Studies on soil respiration at present mostly focus on the temporal variations and the controlling factors of soil respiration, but its spatial variations and controlling factors draw less attention. Moreover, the evaluation models for soil respiration at present include only the effects of water and heat factors, while the biological and soil factors controlling soil respiration and their interactions with water and heat factors have not been considered yet. These models are not able to accurately evaluate soil respiration in different vegetation/terrestrial ecosystems at different temporal and spatial scales. Thus, a general evaluation model for soil respiration (GEMSR)including the interacting meteorological (water and heat factors), soil nutrient and biological factors is suggested in this paper, and the basic procedure developing GEMSR and the research tasks of soil respiration in the future are also discussed.

  4. A General Mechanistic Model of Solid Oxide Fuel Cells

    Institute of Scientific and Technical Information of China (English)

    SHI Yixiang; CAI Ningsheng

    2006-01-01

    A comprehensive model considering all forms of polarization was developed. The model considers the intricate interdependency among the electrode microstructure, the transport phenomena, and the electrochemical processes. The active three-phase boundary surface was expressed as a function of electrode microstructure parameters (porosity, coordination number, contact angle, etc.). The exchange current densities used in the simulation were obtained by fitting a general formulation to the polarization curves proposed as a function of cell temperature and oxygen partial pressure. A validation study shows good agreement with published experimental data. Distributions of overpotentials, gas component partial pressures, and electronic/ionic current densities have been calculated. The effects of a porous electrode structure and of various operation conditions on cell performance were also predicted. The mechanistic model proposed can be used to interpret experimental observations and optimize cell performance by incorporating reliable experimental data.

  5. Inferring word meanings by assuming that speakers are informative.

    Science.gov (United States)

    Frank, Michael C; Goodman, Noah D

    2014-12-01

    Language comprehension is more than a process of decoding the literal meaning of a speaker's utterance. Instead, by making the assumption that speakers choose their words to be informative in context, listeners routinely make pragmatic inferences that go beyond the linguistic data. If language learners make these same assumptions, they should be able to infer word meanings in otherwise ambiguous situations. We use probabilistic tools to formalize these kinds of informativeness inferences-extending a model of pragmatic language comprehension to the acquisition setting-and present four experiments whose data suggest that preschool children can use informativeness to infer word meanings and that adult judgments track quantitatively with informativeness.

  6. Extensive investigation of the generalized dark matter model

    Science.gov (United States)

    Kopp, Michael; Skordis, Constantinos; Thomas, Dan B.

    2016-08-01

    The cold dark matter (CDM) model, wherein the dark matter is treated as a pressureless perfect fluid, provides a good fit to galactic and cosmological data. With the advent of precision cosmology, it should be asked whether this simplest model needs to be extended, and whether doing so could improve our understanding of the properties of dark matter. One established parametrization for generalizing the CDM fluid is the generalized dark matter (GDM) model, in which dark matter is an imperfect fluid with pressure and shear viscosity that fulfill certain postulated closure equations. We investigate these closure equations and the three new parametric functions they contain: the background equation of state w , the speed of sound cs2 and the viscosity cvis2. Taking these functions to be constant parameters, we analyze an exact solution of the perturbed Einstein equations in a flat GDM-dominated universe and discuss the main effects of the three parameters on the cosmic microwave background (CMB). Our analysis suggests that the CMB alone is not able to distinguish between the GDM sound speed and viscosity parameters, but that other observables, such as the matter power spectrum, are required to break this degeneracy. In order to elucidate further the meaning of the GDM closure equations, we also consider other descriptions of imperfect fluids that have a nonperturbative definition and relate these to the GDM model. In particular, we consider scalar fields, an effective field theory (EFT) of fluids, an EFT of large-scale structure, nonequilibrium thermodynamics and tightly coupled fluids. These descriptions could be used to extend the GDM model into the nonlinear regime of structure formation, which is necessary if the wealth of data available on those scales is to be employed in constraining the model. We also derive the initial conditions for adiabatic and isocurvature perturbations in the presence of GDM and standard cosmological fluids and provide the result in a

  7. A Global Ocean Biogeochemistry General Circulation Model and its Simulations

    Institute of Scientific and Technical Information of China (English)

    XU Yongfu; LI Yangchun; CHU Min

    2013-01-01

    An ocean biogeochemistry model was developed and incorporated into a global ocean general circulation model (LICOM) to form an ocean biogeochemistry general circulation model (OBGCM).The model was used to study the natural carbon cycle and the uptake and storage of anthropogenic CO2 in the ocean.A global export production of 12.5 Pg C yr-1 was obtained.The model estimated that in the pre-industrial era the global equatorial region within ±15° of the equator released 0.97 Pg C yr-1 to the atmosphere,which was balanced by the gain of CO2 in other regions.The post-industrial air-sea CO2 flux indicated the oceanic uptake of CO2 emitted by human activities.An increase of 20-50 μmol kg-1 for surface dissolved inorganic carbon (DIC) concentrations in the 1990s relative to pre-industrial times was obtained in the simulation,which was consistent with data-based estimates.The model generated a total anthropogenic carbon inventory of 105 Pg C as of 1994,which was within the range of estimates by other researchers.Various transports of both natural and anthropogenic DIC as well as labile dissolved organic carbon (LDOC)were estimated from the simulation.It was realized that the Southern Ocean and the high-latitude region of the North Pacific are important export regions where accumulative air-sea CO2 fluxes are larger than the DIC inventory,whereas the subtropical regions are acceptance regions.The interhemispheric transport of total natural carbon (DIC+LDOC) was found to be northward (0.11 Pg C yr-1),which was just balanced by the gain of carbon from the atmosphere in the Southern Hemisphere.

  8. Generalized Stefan models accounting for a discontinuous temperature field

    Science.gov (United States)

    Danescu, A.

    We construct a class of generalized Stefan models able to account for a discontinuous temperature field across a nonmaterial interface. The resulting theory introduces a constitutive scalar interfacial field, denoted by /lineθ and called the equivalent temperature of the interface. A classical procedure, based on the interfacial dissipation inequality, relates the interfacial energy release to the interfacial mass flux and restricts the equivalent temperature of the interface. We show that previously proposed theories are obtained as particular cases when /lineθ = ⪉θ > or /lineθ = ⪉(1)/(θ )>-1 or, more generally, when /lineθ = ⪉θ r ⪉ 1/θ1-r-1 for 0<= r<= 1. We study in a particular constitutive framework the solidification of an under-cooled liquid and we are able to give a sufficient condition for the existence of travelling wave solutions.

  9. Mathematical model and general laws of wet compression

    Institute of Scientific and Technical Information of China (English)

    王永青; 刘铭; 廉乐明; 何健勇; 严家騄

    2002-01-01

    Wet compression is an effective way to enhance the performance of gas turbines and it has attracted a good deal of attention in recent years. The one-sidedness and inaccuracy of previous studies,which took concentration gradient as mass transfer potential are discussed. The mass transfer process is analyzed from the viewpoint of non-equilibrium thermodynamics,by taking generalized thermodynamic driving force as mass transfer potential,and the corresponding mass-transfer coefficient is obtained using the heat and mass transfer equilibrium occurring between moist air and water droplets at wet-bulb temperature for the sake of avoiding complex tests and providing more accurate formulas. A mathematical model of wet compression is therefore established,and the general laws of wet compression are investigated. The results show that the performance of atomizer is critical for wet compression and wet compression is more suitable for compressors with higher pressure ratio and longer compression time.

  10. General business model patterns for Local Energy Management concepts

    Directory of Open Access Journals (Sweden)

    Emanuele eFacchinetti

    2016-03-01

    Full Text Available The transition towards a more sustainable global energy system, significantly relying on renewable energies and decentralized energy systems, requires a deep reorganization of the energy sector. The way how energy services are generated, delivered and traded is expected to be very different in the coming years. Business model innovation is recognized as a key driver for the successful implementation of the energy turnaround. This work contributes to this topic by introducing a heuristic methodology easing the identification of general business model patterns best suited for Local Energy Management concepts such as Energy Hubs. A conceptual framework characterizing the Local Energy Management business model solution space is developed. Three reference business model patterns providing orientation across the defined solution space are identified, analyzed and compared. Through a market review a number of successfully implemented innovative business models have been analyzed and allocated within the defined solution space. The outcomes of this work offer to potential stakeholders a starting point and guidelines for the business model innovation process, as well as insights for policy makers on challenges and opportunities related to Local Energy Management concepts.

  11. Generalized Magnetic Field Effects in Burgers' Nanofluid Model

    Science.gov (United States)

    Rashidi, M. M.; Yang, Z.; Awais, Muhammad; Nawaz, Maria; Hayat, Tasawar

    2017-01-01

    Analysis has been conducted to present the generalized magnetic field effects on the flow of a Burgers' nanofluid over an inclined wall. Mathematical modelling for hydro-magnetics reveals that the term “σB02u/ρ” is for the Newtonian model whereas the generalized magnetic field term (as mentioned in Eq 4) is for the Burgers’ model which is incorporated in the current analysis to get the real insight of the problem for hydro-magnetics. Brownian motion and thermophoresis phenomenon are presented to analyze the nanofluidics for the non-Newtonian fluid. Mathematical analysis is completed in the presence of non-uniform heat generation/absorption. The constructed set of partial differential system is converted into coupled nonlinear ordinary differential system by employing the suitable transformations. Homotopy approach is employed to construct the analytical solutions which are shown graphically for sundr5y parameters including Deborah numbers, magnetic field, thermophoresis, Brownian motion and non-uniform heat generation/absorption. A comparative study is also presented showing the comparison of present results with an already published data. PMID:28045965

  12. The Effects on Tsunami Hazard Assessment in Chile of Assuming Earthquake Scenarios with Spatially Uniform Slip

    Science.gov (United States)

    Carvajal, Matías; Gubler, Alejandra

    2016-12-01

    We investigated the effect that along-dip slip distribution has on the near-shore tsunami amplitudes and on coastal land-level changes in the region of central Chile (29°-37°S). Here and all along the Chilean megathrust, the seismogenic zone extends beneath dry land, and thus, tsunami generation and propagation is limited to its seaward portion, where the sensitivity of the initial tsunami waveform to dislocation model inputs, such as slip distribution, is greater. We considered four distributions of earthquake slip in the dip direction, including a spatially uniform slip source and three others with typical bell-shaped slip patterns that differ in the depth range of slip concentration. We found that a uniform slip scenario predicts much lower tsunami amplitudes and generally less coastal subsidence than scenarios that assume bell-shaped distributions of slip. Although the finding that uniform slip scenarios underestimate tsunami amplitudes is not new, it has been largely ignored for tsunami hazard assessment in Chile. Our simulations results also suggest that uniform slip scenarios tend to predict later arrival times of the leading wave than bell-shaped sources. The time occurrence of the largest wave at a specific site is also dependent on how the slip is distributed in the dip direction; however, other factors, such as local bathymetric configurations and standing edge waves, are also expected to play a role. Arrival time differences are especially critical in Chile, where tsunamis arrive earlier than elsewhere. We believe that the results of this study will be useful to both public and private organizations for mapping tsunami hazard in coastal areas along the Chilean coast, and, therefore, help reduce the risk of loss and damage caused by future tsunamis.

  13. A GENERALIZATION OF TRADITIONAL KANO MODEL FOR CUSTOMER REQUIREMENTS ANALYSIS

    Directory of Open Access Journals (Sweden)

    Renáta Turisová

    2015-07-01

    Full Text Available Purpose: The theory of attractiveness determines the relationship between the technically achieved and customer perceived quality of product attributes. The most frequently used approach in the theory of attractiveness is the implementation of Kano‘s model. There exist a lot of generalizations of that model which take into consideration various aspects and approaches focused on understanding the customer preferences and identification of his priorities for a selling  product. The aim of this article is to outline another possible generalization of Kano‘s model.Methodology/Approach: The traditional Kano’s model captures the nonlinear relationship between reached attributes of quality and customer requirements. The individual attributes of quality are divided into three main categories: must-be, one-dimensional, attractive quality and into two side categories: indifferent and reverse quality. The well selling product has to contain the must-be attribute. It should contain as many one-dimensional attributes as possible. If there are also supplementary attractive attributes, it means that attractiveness of the entire product, from the viewpoint of the customer, nonlinearly sharply rises what has a direct positive impact on a decision of potential customer when purchasing the product. In this article, we show that inclusion of individual quality attributes of a product to the mentioned categories depends, among other things, also on costs on life cycle of the product, respectively on a price of the product on the market.Findings: In practice, we are often encountering the inclusion of products into different price categories: lower, middle and upper class. For a certain type of products the category is either directly declared by a producer (especially in automotive industry, or is determined by a customer by means of assessment of available market prices. To each of those groups of a products different customer expectations can be assigned

  14. A General Random Walk Model of Molecular Motor

    Institute of Scientific and Technical Information of China (English)

    WANG Xian-Ju; AI Bao-Quan; LIU Guo-Tao; LIU Liang-Gang

    2003-01-01

    A general random walk model framework is presented which can be used to statistically describe the internaldynamics and external mechanical movement of molecular motors along filament track. The motion of molecular motorin a periodic potential and a constant force is considered. We show that the molecular motor's movement becomesslower with the potential barrier increasing, but if the forceis increased, the molecular motor's movement becomesfaster. The relation between the effective rate constant and the potential barrier's height, and that between the effectiverate constant and the value of the force are discussed. Our results are consistent with the experiments and relevanttheoretical consideration, and can be used to explain some physiological phenomena.

  15. Estimation and variable selection for generalized additive partial linear models

    KAUST Repository

    Wang, Li

    2011-08-01

    We study generalized additive partial linear models, proposing the use of polynomial spline smoothing for estimation of nonparametric functions, and deriving quasi-likelihood based estimators for the linear parameters. We establish asymptotic normality for the estimators of the parametric components. The procedure avoids solving large systems of equations as in kernel-based procedures and thus results in gains in computational simplicity. We further develop a class of variable selection procedures for the linear parameters by employing a nonconcave penalized quasi-likelihood, which is shown to have an asymptotic oracle property. Monte Carlo simulations and an empirical example are presented for illustration. © Institute of Mathematical Statistics, 2011.

  16. Consolidation of data base for Army generalized missile model

    Science.gov (United States)

    Klenke, D. J.; Hemsch, M. J.

    1980-01-01

    Data from plume interaction tests, nose mounted canard configuration tests, and high angle of attack tests on the Army Generalized Missile model are consolidated in a computer program which makes them readily accessible for plotting, listing, and evaluation. The program is written in FORTRAN and will run on an ordinary minicomputer. It has the capability of retrieving any coefficient from the existing DATAMAN tapes and displaying it in tabular or plotted form. Comparisons of data taken in several wind tunnels and of data with the predictions of Program MISSILE2 are also presented.

  17. Adaptive quasi-likelihood estimate in generalized linear models

    Institute of Scientific and Technical Information of China (English)

    CHEN Xia; CHEN Xiru

    2005-01-01

    This paper gives a thorough theoretical treatment on the adaptive quasilikelihood estimate of the parameters in the generalized linear models. The unknown covariance matrix of the response variable is estimated by the sample. It is shown that the adaptive estimator defined in this paper is asymptotically most efficient in the sense that it is asymptotic normal, and the covariance matrix of the limit distribution coincides with the one for the quasi-likelihood estimator for the case that the covariance matrix of the response variable is completely known.

  18. An Optimal Capacity Planning Model for General Cargo Seaport

    Directory of Open Access Journals (Sweden)

    Čedomir Dundović

    2012-10-01

    Full Text Available In this paper the application of the queuing the01y in optimalcapacity planning for general cargo seaport is presented.The seaport as a queuing syslem is defined and tlws, on the basisof the arrival and serviced number of ships in an obsen•edtime unit, the appropriate operating indicators of a port systemare calculated. Using the model of total port costs, the munberof berths and cranes on the berth can be determined wherebythe optimal port system functioning is achieved.

  19. Gauge Potts model with generalized action: A Monte Carlo analysis

    Energy Technology Data Exchange (ETDEWEB)

    Fanchiotti, H.; Canal, C.A.G.; Sciutto, S.J.

    1985-08-15

    Results of a Monte Carlo calculation on the q-state gauge Potts model in d dimensions with a generalized action involving planar 1 x 1, plaquette, and 2 x 1, fenetre, loop interactions are reported. For d = 3 and q = 2, first- and second-order phase transitions are detected. The phase diagram for q = 3 presents only first-order phase transitions. For d = 2, a comparison with analytical results is made. Here also, the behavior of the numerical simulation in the vicinity of a second-order transition is analyzed.

  20. A generalized methodology to characterize composite materials for pyrolysis models

    Science.gov (United States)

    McKinnon, Mark B.

    The predictive capabilities of computational fire models have improved in recent years such that models have become an integral part of many research efforts. Models improve the understanding of the fire risk of materials and may decrease the number of expensive experiments required to assess the fire hazard of a specific material or designed space. A critical component of a predictive fire model is the pyrolysis sub-model that provides a mathematical representation of the rate of gaseous fuel production from condensed phase fuels given a heat flux incident to the material surface. The modern, comprehensive pyrolysis sub-models that are common today require the definition of many model parameters to accurately represent the physical description of materials that are ubiquitous in the built environment. Coupled with the increase in the number of parameters required to accurately represent the pyrolysis of materials is the increasing prevalence in the built environment of engineered composite materials that have never been measured or modeled. The motivation behind this project is to develop a systematic, generalized methodology to determine the requisite parameters to generate pyrolysis models with predictive capabilities for layered composite materials that are common in industrial and commercial applications. This methodology has been applied to four common composites in this work that exhibit a range of material structures and component materials. The methodology utilizes a multi-scale experimental approach in which each test is designed to isolate and determine a specific subset of the parameters required to define a material in the model. Data collected in simultaneous thermogravimetry and differential scanning calorimetry experiments were analyzed to determine the reaction kinetics, thermodynamic properties, and energetics of decomposition for each component of the composite. Data collected in microscale combustion calorimetry experiments were analyzed to

  1. Estimating parameters for generalized mass action models with connectivity information

    Directory of Open Access Journals (Sweden)

    Voit Eberhard O

    2009-05-01

    Full Text Available Abstract Background Determining the parameters of a mathematical model from quantitative measurements is the main bottleneck of modelling biological systems. Parameter values can be estimated from steady-state data or from dynamic data. The nature of suitable data for these two types of estimation is rather different. For instance, estimations of parameter values in pathway models, such as kinetic orders, rate constants, flux control coefficients or elasticities, from steady-state data are generally based on experiments that measure how a biochemical system responds to small perturbations around the steady state. In contrast, parameter estimation from dynamic data requires time series measurements for all dependent variables. Almost no literature has so far discussed the combined use of both steady-state and transient data for estimating parameter values of biochemical systems. Results In this study we introduce a constrained optimization method for estimating parameter values of biochemical pathway models using steady-state information and transient measurements. The constraints are derived from the flux connectivity relationships of the system at the steady state. Two case studies demonstrate the estimation results with and without flux connectivity constraints. The unconstrained optimal estimates from dynamic data may fit the experiments well, but they do not necessarily maintain the connectivity relationships. As a consequence, individual fluxes may be misrepresented, which may cause problems in later extrapolations. By contrast, the constrained estimation accounting for flux connectivity information reduces this misrepresentation and thereby yields improved model parameters. Conclusion The method combines transient metabolic profiles and steady-state information and leads to the formulation of an inverse parameter estimation task as a constrained optimization problem. Parameter estimation and model selection are simultaneously carried out

  2. Assuming too much? Participatory water resource governance in South Africa.

    Science.gov (United States)

    Brown, Julia

    2011-01-01

    This paper argues that participation in natural resource management, which is often coupled with moves for more local ownership of decision making, is based on three sets of assumptions: about the role of the state, the universality of application of such approaches and the transformatory potential of institutional reform. The validity of these assumptions requires investigation in view of the rapid institutionalisation and scaling-up of participatory approaches, particularly in developing country contexts. Post-apartheid South Africa is widely recognised as a pioneer of participatory and devolutionary approaches, particularly in the field of water resources. It is 12 years since the promulgation of the forward-thinking 1998 National Water Act, and thus an opportune moment to reflect on South Africa's experiences of participatory governance. Drawing on empirical research covering the establishment of the first Catchment Management Agency, and the transformation of existing Irrigation Boards into more inclusive Water User Associations in the Inkomati Water Management Area, it emerges that there may be fundamental weaknesses in the participatory model and underlying assumptions, and indeed such approaches may actually reinforce inequitable outcomes: the legacy of long-established institutional frameworks and powerful actors therein continues to exert influence in post-apartheid South Africa, and has the potential to subvert the democratic and redistributive potential of the water reforms. It is argued that a reassessment of the role of the state is necessary: where there is extreme heterogeneity in challenging catchments more, rather than less, state intervention may be required to uphold the interests of marginalised groups and effect redistribution.

  3. Generalization Technique for 2D+SCALE Dhe Data Model

    Science.gov (United States)

    Karim, Hairi; Rahman, Alias Abdul; Boguslawski, Pawel

    2016-10-01

    Different users or applications need different scale model especially in computer application such as game visualization and GIS modelling. Some issues has been raised on fulfilling GIS requirement of retaining the details while minimizing the redundancy of the scale datasets. Previous researchers suggested and attempted to add another dimension such as scale or/and time into a 3D model, but the implementation of scale dimension faces some problems due to the limitations and availability of data structures and data models. Nowadays, various data structures and data models have been proposed to support variety of applications and dimensionality but lack research works has been conducted in terms of supporting scale dimension. Generally, the Dual Half Edge (DHE) data structure was designed to work with any perfect 3D spatial object such as buildings. In this paper, we attempt to expand the capability of the DHE data structure toward integration with scale dimension. The description of the concept and implementation of generating 3D-scale (2D spatial + scale dimension) for the DHE data structure forms the major discussion of this paper. We strongly believed some advantages such as local modification and topological element (navigation, query and semantic information) in scale dimension could be used for the future 3D-scale applications.

  4. General review on in vitro hepatocyte models and their applications.

    Science.gov (United States)

    Guguen-Guillouzo, Christiane; Guillouzo, Andre

    2010-01-01

    In vitro hepatocyte models represent very useful systems in both fundamental research and various application areas. Primary hepatocytes appear as the closest model for the liver in vivo. However, they are phenotypically unstable, have a limited life span and in addition, exhibit large interdonor variability when of human origin. Hepatoma cell lines appear as an alternative but only the HepaRG cell line exhibits various functions, including major cytochrome P450 activities, at levels close to those found in primary hepatocytes. In vitro hepatocyte models have brought a substantial contribution to the understanding of the biochemistry, physiology, and cell biology of the normal and diseased liver and in various application domains such as xenobiotic metabolism and toxicity, virology, parasitology, and more generally cell therapies. In the future, new well-differentiated hepatocyte cell lines derived from tumors or from either embryonic or adult stem cells might be expected and although hepatocytes will continue to be used in various fields, these in vitro liver models should allow marked advances, especially in cell-based therapies and predictive and mechanistic hepatotoxicity of new drugs and other chemicals. All models will benefit from new developments in throughput screening based on cell chips coupled with high-content imaging and in toxicogenomics technologies.

  5. Modeling of Testability Requirement Based on Generalized Stochastic Petri Nets

    Institute of Scientific and Technical Information of China (English)

    SU Yong-ding; QIU Jing; LIU Guan-jun; QIAN Yan-ling

    2009-01-01

    Testability design is an effective way to realize the fault detection and isolation. Its important step is to determine testability figures of merits (TFOM). Firstly, some influence factors for TFOMs are analyzed, such as the processes of system operation, maintenance and support, fault detection and isolation and so on. Secondly, a testability requirement analysis model is built based on generalized stochastic Petri net (GSPN). Then, the system's reachable states are analyzed based on the model, a Markov chain isomorphic with Petri net is constructed, a state transition matrix is created and the system's steady state probability is obtained. The relationship between the steady state availability and testability parameters can be revealed and reasoned. Finally, an example shows that the proposed method can determine TFOM, such as fault detection rate and fault isolation rate, effectively and reasonably.

  6. A Chemical Containment Model for the General Purpose Work Station

    Science.gov (United States)

    Flippen, Alexis A.; Schmidt, Gregory K.

    1994-01-01

    Contamination control is a critical safety requirement imposed on experiments flying on board the Spacelab. The General Purpose Work Station, a Spacelab support facility used for life sciences space flight experiments, is designed to remove volatile compounds from its internal airpath and thereby minimize contamination of the Spacelab. This is accomplished through the use of a large, multi-stage filter known as the Trace Contaminant Control System. Many experiments planned for the Spacelab require the use of toxic, volatile fixatives in order to preserve specimens prior to postflight analysis. The NASA-Ames Research Center SLS-2 payload, in particular, necessitated the use of several toxic, volatile compounds in order to accomplish the many inflight experiment objectives of this mission. A model was developed based on earlier theories and calculations which provides conservative predictions of the resultant concentrations of these compounds given various spill scenarios. This paper describes the development and application of this model.

  7. On the thermodynamic properties of the generalized Gaussian core model

    Directory of Open Access Journals (Sweden)

    B.M.Mladek

    2005-01-01

    Full Text Available We present results of a systematic investigation of the properties of the generalized Gaussian core model of index n. The potential of this system interpolates via the index n between the potential of the Gaussian core model and the penetrable sphere system, thereby varying the steepness of the repulsion. We have used both conventional and self-consistent liquid state theories to calculate the structural and thermodynamic properties of the system; reference data are provided by computer simulations. The results indicate that the concept of self-consistency becomes indispensable to guarantee excellent agreement with simulation data; in particular, structural consistency (in our approach taken into account via the zero separation theorem is obviously a very important requirement. Simulation results for the dimensionless equation of state, β P / ρ, indicate that for an index-value of 4, a clustering transition, possibly into a structurally ordered phase might set in as the system is compressed.

  8. Explicit estimating equations for semiparametric generalized linear latent variable models

    KAUST Repository

    Ma, Yanyuan

    2010-07-05

    We study generalized linear latent variable models without requiring a distributional assumption of the latent variables. Using a geometric approach, we derive consistent semiparametric estimators. We demonstrate that these models have a property which is similar to that of a sufficient complete statistic, which enables us to simplify the estimating procedure and explicitly to formulate the semiparametric estimating equations. We further show that the explicit estimators have the usual root n consistency and asymptotic normality. We explain the computational implementation of our method and illustrate the numerical performance of the estimators in finite sample situations via extensive simulation studies. The advantage of our estimators over the existing likelihood approach is also shown via numerical comparison. We employ the method to analyse a real data example from economics. © 2010 Royal Statistical Society.

  9. Confidence Intervals of Variance Functions in Generalized Linear Model

    Institute of Scientific and Technical Information of China (English)

    Yong Zhou; Dao-ji Li

    2006-01-01

    In this paper we introduce an appealing nonparametric method for estimating variance and conditional variance functions in generalized linear models (GLMs), when designs are fixed points and random variables respectively. Bias-corrected confidence bands are proposed for the (conditional) variance by local linear smoothers. Nonparametric techniques are developed in deriving the bias-corrected confidence intervals of the (conditional) variance. The asymptotic distribution of the proposed estimator is established and show that the bias-corrected confidence bands asymptotically have the correct coverage properties. A small simulation is performed when unknown regression parameter is estimated by nonparametric quasi-likelihood. The results are also applicable to nonparametric autoregressive times series model with heteroscedastic conditional variance.

  10. Entanglement in a generalized Jaynes-Cummings model

    Institute of Scientific and Technical Information of China (English)

    Zhang Guo-Feng; Liu Jia

    2007-01-01

    We investigate the pairwise entanglement and global entanglement in a generalized Jaynes-Cummings model,which can be used to realize Greenberger-Horne-Zeilinger (GHZ) entangled state (Zheng S B 2001 Phys. Rev. Lett. 87230404). Our results show that the W-type entangled states cannot be generated based on the model. The dependences of entanglement on Rabi frequency λ and dipole-dipole coupling strength Ω are given. It is found that there exists the quantum phase transition when λ = Ω. For typical experimental data, the critical temperature for pairwise entanglement is on the order of 10-6 K. Based on these results, two strategies that overcome decoherence are proposed.

  11. Relaxation of polymers modeled by generalized Husimi cacti

    Science.gov (United States)

    Galiceanu, M.

    2010-07-01

    We focus on the generalized Husimi cacti, which are dual structures to the dendrimers but, distinct from the latter, contain loops. We determine their complete spectra by making use of the normal mode analysis. These spectra have been used in computing some physical quantities, such as the averaged monomer displacement and the mechanical relaxation moduli with its two components: the storage and the loss modulus. We also study the dynamics of Husimi cacti in solutions, introducing the hydrodynamic interactions in a preaveraged Oseen fashion, the so-called Zimm model. We observe that the relaxation quantities mentioned above do not scale, in the presence or in the absence of the hydrodynamic interactions. Our results show that all the relaxation forms depend on the number of monomers in the networks in the absence of the hydrodynamic interactions (Rouse model), while by taking into account the hydrodynamic interactions the results do not vary too much.

  12. Relaxation of polymers modeled by generalized Husimi cacti

    Energy Technology Data Exchange (ETDEWEB)

    Galiceanu, M, E-mail: mircea@fisica.ufpr.b [Departamento de Fisica, Universidade Federal do Parana, 81531-990 Curitiba (Brazil)

    2010-07-30

    We focus on the generalized Husimi cacti, which are dual structures to the dendrimers but, distinct from the latter, contain loops. We determine their complete spectra by making use of the normal mode analysis. These spectra have been used in computing some physical quantities, such as the averaged monomer displacement and the mechanical relaxation moduli with its two components: the storage and the loss modulus. We also study the dynamics of Husimi cacti in solutions, introducing the hydrodynamic interactions in a preaveraged Oseen fashion, the so-called Zimm model. We observe that the relaxation quantities mentioned above do not scale, in the presence or in the absence of the hydrodynamic interactions. Our results show that all the relaxation forms depend on the number of monomers in the networks in the absence of the hydrodynamic interactions (Rouse model), while by taking into account the hydrodynamic interactions the results do not vary too much.

  13. Convex Relaxations for a Generalized Chan-Vese Model

    KAUST Repository

    Bae, Egil

    2013-01-01

    We revisit the Chan-Vese model of image segmentation with a focus on the encoding with several integer-valued labeling functions. We relate several representations with varying amount of complexity and demonstrate the connection to recent relaxations for product sets and to dual maxflow-based formulations. For some special cases, it can be shown that it is possible to guarantee binary minimizers. While this is not true in general, we show how to derive a convex approximation of the combinatorial problem for more than 4 phases. We also provide a method to avoid overcounting of boundaries in the original Chan-Vese model without departing from the efficient product-set representation. Finally, we derive an algorithm to solve the associated discretized problem, and demonstrate that it allows to obtain good approximations for the segmentation problem with various number of regions. © 2013 Springer-Verlag.

  14. String networks in generalized May-Leonard models

    CERN Document Server

    Avelino, P P; Menezes, J; de Oliveira, B F

    2013-01-01

    Generalized May-Leonard models have proven to be a powerful tool in the study of the dynamics complex biological and ecological systems. In this letter we give specific examples of models leading to the formation of string networks. We show that, in order to promote coexistence, the species may arrange themselves around regions with a high number density of empty sites generated by predator-prey interactions between competing species. These configurations extend into the third dimension giving rise to string networks. We investigate the corresponding dynamics using both stochastic and mean field theory simulations, showing that the coarsening of these string networks follows a scaling law which is analogous to that found in other physical systems in condensed matter and cosmology.

  15. Generalized Skyrme model with the loosely bound potential

    CERN Document Server

    Gudnason, Sven Bjarke; Ma, Nana

    2016-01-01

    We study a generalization of the loosely bound Skyrme model which consists of the Skyrme model with a sixth-order derivative term and the second-order loosely bound potential. We use the rational map approximation for the 4-Skyrmion and calculate the binding energy and estimate the systematic error in using the latter approximation. In the parameter space that we can explore within the rational map approximation, we find classical binding energies as low as 1.8% and once taking into account the contribution from spin-isospin quantization we obtain binding energies as low as 5.3%. We also calculate the contribution from the sixth-order derivative term to the electric charge density and axial coupling.

  16. A stellar model with diffusion in general relativity

    CERN Document Server

    Alho, Artur

    2016-01-01

    We consider a spherically symmetric stellar model in general relativity whose interior consists of a pressureless fluid undergoing microscopic velocity diffusion in a cosmological scalar field. We show that the diffusion dynamics compel the interior to be spatially homogeneous, by which one can infer immediately that within our model, and in contrast to the diffusion-free case, no naked singularities can form in the gravitational collapse. We then study the problem of matching an exterior Bondi type metric to the surface of the star and find that the exterior can be chosen to be a modified Vaidya metric with variable cosmological constant. Finally, we study in detail the causal structure of an explicit, self-similar solution.

  17. Optimisation of a parallel ocean general circulation model

    Directory of Open Access Journals (Sweden)

    M. I. Beare

    Full Text Available This paper presents the development of a general-purpose parallel ocean circulation model, for use on a wide range of computer platforms, from traditional scalar machines to workstation clusters and massively parallel processors. Parallelism is provided, as a modular option, via high-level message-passing routines, thus hiding the technical intricacies from the user. An initial implementation highlights that the parallel efficiency of the model is adversely affected by a number of factors, for which optimisations are discussed and implemented. The resulting ocean code is portable and, in particular, allows science to be achieved on local workstations that could otherwise only be undertaken on state-of-the-art supercomputers.

  18. Neutrino mixing matrix and masses from a generalized Friedberg-Lee model

    Science.gov (United States)

    Razzaghi, N.; Gousheh, S. S.

    2014-02-01

    The overall characteristics of the solar and atmospheric neutrino oscillation are approximately consistent with a tribimaximal form of the mixing matrix U of the lepton sector. Exact tribimaximal mixing leads to θ13=0. However, recent results from the Daya Bay and RENO experiments have established a nonzero value for θ13. Keeping the leading behavior of U as tribimaximal, we use a generalized Friedberg-Lee neutrino mass model along with a complementary ansatz to incorporate a nonzero θ13 along with CP violation. We generalize this model in two stages: In the first stage, we assume μ -τ symmetry and add imaginary components which leads to nonzero phases. In the second stage, we add a perturbation with real components which breaks the μ-τ symmetry, and this leads to a nonzero value for θ13. The combination of these two generalizations leads to CP violation. Using only two sets of the experimental data, we can fix all of the parameters of our model and predict not only values for the other experimental data, which agree well with the available data, but also the masses of neutrinos and the CP-violating phases and parameters. These predictions include the following: ⟨mνe⟩≈(0.033-0.037) eV, ⟨mνμ⟩≈(0.043-0.048) eV, ⟨mντ⟩≈(0.046-0.051) eV, and 59.21°≲δ ≲59.34°.

  19. A Generalized Statistical Uncertainty Model for Satellite Precipitation Products

    Science.gov (United States)

    Sarachi, S.

    2013-12-01

    A mixture model of Generalized Normal Distribution and Gamma distribution (GND-G) is used to model the joint probability distribution of satellite-based and stage IV radar rainfall under a given spatial and temporal resolution (e.g. 1°x1° and daily rainfall). The distribution parameters of GND-G are extended across various rainfall rates and spatial and temporal resolutions. In the study, GND-G is used to describe the uncertainty of the estimates from Precipitation Estimation from Remote Sensing Information using Artificial Neural Network algorithm (PERSIANN). The stage IV-based multi-sensor precipitation estimates (MPE) are used as reference measurements .The study area for constructing the uncertainty model covers a 15°×15°box of 0.25°×0.25° cells over the eastern United States for summer 2004 to 2009. Cells are aggregated in space and time to obtain data with different resolutions for the construction of the model's parameter space. Result shows that comparing to the other statistical uncertainty models, GND-G fits better than the other models, such as Gaussian and Gamma distributions, to the reference precipitation data. The impact of precipitation uncertainty to the stream flow is further demonstrated by Monte Carlo simulation of precipitation forcing in the hydrologic model. The NWS DMIP2 basins over Illinois River basin south of Siloam is selected in this case study. The data covers the time period of 2006 to 2008.The uncertainty range of stream flow from precipitation of GND-G distributions calculated and will be discussed.

  20. Scalable Generalization of Hydraulic Conductivity in Quaternary Strata for Use in a Regional Groundwater Model

    Science.gov (United States)

    Jatnieks, J.; Popovs, K.; Klints, I.; Timuhins, A.; Kalvans, A.; Delina, A.; Saks, T.

    2012-04-01

    The cover of Quaternary sediments especially in formerly glaciated territories usually is the most complex part of the sedimentary sequences. In regional hydro-geological models it is often assumed as a single layer with uniform or calibrated properties (Valner 2003). However, the properties and structure of Quaternary sediments control the groundwater recharge: it can either direct the groundwater flow horizontally towards discharge in topographic lows or vertically, recharging groundwater in the bedrock. This work aims to present calibration results and detail our experience while integrating a scalable generalization of hydraulic conductivity for Quaternary strata in the regional groundwater modelling system for the Baltic artesian basin - MOSYS V1. We also present a method for solving boundary transitions between spatial clusters of lithologically similar structure. In this study the main unit of generalization is the spatial cluster. Clusters are obtained from distance calculations combining the Normalized Compression Distance (NCD) metric, calculated by the CompLearn parameter-free machine learning toolkit, with normalized Euclidean distance measures for coordinates of the borehole log data. A hierarchical clustering solution is used for obtaining cluster membership identifier for each borehole. Using boreholes as generator points for Voronoi tessellation and dissolving resulting polygons according to their cluster membership attribute, allows us to obtain spatial regions representing a certain degree of similarity in lithological structure. This degree of similarity and the spatial heterogeneity of the cluster polygons can be varied by different flattening of the hierarchical cluster model into variable number of clusters. This provides a scalable generalization solution which can be adapted according to model calibration performance. Using the dissimilarity matrix of the NCD metric, a borehole most similar to all the others from the lithological structure

  1. Testing an astronomically-based decadal-scale empirical harmonic climate model versus the IPCC (2007) general circulation climate models

    CERN Document Server

    Scafetta, Nicola

    2012-01-01

    We compare the performance of a recently proposed empirical climate model based on astronomical harmonics against all available general circulation climate models (GCM) used by the IPCC (2007) to interpret the 20th century global surface temperature. The proposed model assumes that the climate is resonating with, or synchronized to a set of natural harmonics that have been associated to the solar system planetary motion, mostly determined by Jupiter and Saturn. We show that the GCMs fail to reproduce the major decadal and multidecadal oscillations found in the global surface temperature record from 1850 to 2011. On the contrary, the proposed harmonic model is found to well reconstruct the observed climate oscillations from 1850 to 2011, and it is able to forecast the climate oscillations from 1950 to 2011 using the data covering the period 1850-1950, and vice versa. The 9.1-year cycle is shown to be likely related to a decadal Soli/Lunar tidal oscillation, while the 10-10.5, 20-21 and 60-62 year cycles are sy...

  2. On the General Class of Models of Adiabatic Evolution

    Science.gov (United States)

    Sun, Jie; Lu, Songfeng; Liu, Fang

    2016-10-01

    The general class of models of adiabatic evolution was proposed to speed up the usual adiabatic computation in the case of quantum search problem. It was shown [8] that, by temporarily increasing the ground state energy of a time-dependent Hamiltonian to a suitable quantity, the quantum computation can perform the calculation in time complexity O(1). But it is also known that if the overlap between the initial and final states of the system is zero, then the computation based on the generalized models of adiabatic evolution can break down completely. In this paper, we find another severe limitation for this class of adiabatic evolution-based algorithms, which should be taken into account in applications. That is, it is still possible that this kind of evolution designed to deal with the quantum search problem fails completely if the interpolating paths in the system Hamiltonian are chosen inappropriately, while the usual adiabatic evolutions can do the same job relatively effectively. This implies that it is not always recommendable to use nonlinear paths in adiabatic computation. On the contrary, the usual simple adiabatic evolution may be sufficient for effective use.

  3. A modified EM algorithm for estimation in generalized mixed models.

    Science.gov (United States)

    Steele, B M

    1996-12-01

    Application of the EM algorithm for estimation in the generalized mixed model has been largely unsuccessful because the E-step cannot be determined in most instances. The E-step computes the conditional expectation of the complete data log-likelihood and when the random effect distribution is normal, this expectation remains an intractable integral. The problem can be approached by numerical or analytic approximations; however, the computational burden imposed by numerical integration methods and the absence of an accurate analytic approximation have limited the use of the EM algorithm. In this paper, Laplace's method is adapted for analytic approximation within the E-step. The proposed algorithm is computationally straightforward and retains much of the conceptual simplicity of the conventional EM algorithm, although the usual convergence properties are not guaranteed. The proposed algorithm accommodates multiple random factors and random effect distributions besides the normal, e.g., the log-gamma distribution. Parameter estimates obtained for several data sets and through simulation show that this modified EM algorithm compares favorably with other generalized mixed model methods.

  4. General analysis of dark radiation in sequestered string models

    Energy Technology Data Exchange (ETDEWEB)

    Cicoli, Michele [ICTP,Strada Costiera 11, Trieste 34014 (Italy); Dipartimento di Fisica e Astronomia, Università di Bologna,via Irnerio 46, 40126 Bologna (Italy); INFN, Sezione di Bologna,via Irnerio 46, 40126 Bologna (Italy); Muia, Francesco [Dipartimento di Fisica e Astronomia, Università di Bologna,via Irnerio 46, 40126 Bologna (Italy); INFN, Sezione di Bologna,via Irnerio 46, 40126 Bologna (Italy)

    2015-12-22

    We perform a general analysis of axionic dark radiation produced from the decay of the lightest modulus in the sequestered LARGE Volume Scenario. We discuss several cases depending on the form of the Kähler metric for visible sector matter fields and the mechanism responsible for achieving a de Sitter vacuum. The leading decay channels which determine dark radiation predictions are to hidden sector axions, visible sector Higgses and SUSY scalars depending on their mass. We show that in most of the parameter space of split SUSY-like models squarks and sleptons are heavier than the lightest modulus. Hence dark radiation predictions previously obtained for MSSM-like cases hold more generally also for split SUSY-like cases since the decay channel to SUSY scalars is kinematically forbidden. However the inclusion of string loop corrections to the Kähler potential gives rise to a parameter space region where the decay channel to SUSY scalars opens up, leading to a significant reduction of dark radiation production. In this case, the simplest model with a shift-symmetric Higgs sector can suppress the excess of dark radiation ΔN{sub eff} to values as small as 0.14, in perfect agreement with current experimental bounds. Depending on the exact mass of the SUSY scalars all values in the range 0.14≲ΔN{sub eff}≲1.6 are allowed. Interestingly dark radiation overproduction can be avoided also in the absence of a Giudice-Masiero coupling.

  5. General relativistic modelling of the negative reverberation X-ray time delays in AGN

    Science.gov (United States)

    Emmanoulopoulos, D.; Papadakis, I. E.; Dovčiak, M.; McHardy, I. M.

    2014-04-01

    We present the first systematic physical modelling of the time-lag spectra between the soft (0.3-1 keV) and the hard (1.5-4 keV) X-ray energy bands, as a function of Fourier frequency, in a sample of 12 active galactic nuclei which have been observed by XMM-Newton. We concentrate particularly on the negative X-ray time-lags (typically seen above 10-4 Hz), i.e. soft-band variations lag the hard-band variations, and we assume that they are produced by reprocessing and reflection by the accretion disc within a lamp-post X-ray source geometry. We also assume that the response of the accretion disc, in the soft X-ray bands, is adequately described by the response in the neutral Fe Kα line at 6.4 keV for which we use fully general relativistic ray-tracing simulations to determine its time evolution. These response functions, and thus the corresponding time-lag spectra, yield much more realistic results than the commonly used, but erroneous, top-hat models. Additionally, we parametrize the positive part of the time-lag spectra (typically seen below 10-4 Hz) by a power law. We find that the best-fitting black hole (BH) masses, M, agree quite well with those derived by other methods, thus providing us with a new tool for BH mass determination. We find no evidence for any correlation between M and the BH spin parameter, α, the viewing angle, θ, or the height of the X-ray source above the disc, h. Also on average, the X-ray source lies only around 3.7 gravitational radii above the accretion disc and θ is distributed uniformly between 20° and 60°. Finally, there is a tentative indication that the distribution of α may be bimodal above and below 0.62.

  6. Observational constraints on new generalized Chaplygin gas model

    CERN Document Server

    Liao, Kai; Zhu, Zong-Hong

    2012-01-01

    We use the latest data to investigate observational constraints on the new generalized Chaplygin gas (NGCG) model. Using the Markov Chain Monte Carlo (MCMC) method, we constrain the NGCG model with the type Ia supernovae (SNe Ia) from Union2 set (557 data), the usual baryonic acoustic oscillation (BAO) observation from the spectroscopic Sloan Digital Sky Survey (SDSS) data release 7 (DR7) galaxy sample, the cosmic microwave background (CMB) observation from the 7-year Wilkinson Microwave Anisotropy Probe (WMAP7) results, the newly revised $H(z)$ data, as well as a value of $\\theta_{BAO} (z=0.55) = (3.90 \\pm 0.38)^{\\circ}$ for the angular BAO scale. The constraint results for NGCG model are $\\omega_X = -1.0510_{-0.1685}^{+0.1563}(1\\sigma)_{-0.2398}^{+0.2226}(2\\sigma)$, $\\eta = 1.0117_{-0.0502}^{+0.0469}(1\\sigma)_{-0.0716}^{+0.0693}(2\\sigma)$, and $\\Omega_X = 0.7297_{-0.0276}^{+0.0229}(1\\sigma)_{-0.0402}^{+0.0329}(2\\sigma)$, which give a rather stringent constraint. From the results, we can see a phantom model ...

  7. Observational constraints on the new generalized Chaplygin gas model

    Institute of Scientific and Technical Information of China (English)

    Kai Liao; Yu Pan; Zong-Hong Zhu

    2013-01-01

    We use the latest data to investigate observational constraints on the new generalized Chaplygin gas (NGCG) model.Using the Markov Chain Monte Carlo method,we constrain the NGCG model with type Ⅰa supernovae from the Union2 set (557 data),the usual baryonic acoustic oscillation (BAO) observation from the spectroscopic Sloan Digital Sky Survey data release 7 galaxy sample,the cosmic microwave background observation from the 7-year Wilkinson Microwave Anisotropy Probe results,newly revised data on H(z),as well as a value of θBAO (z =0.55) =(3.90° ± 0.38°) for the angular BAO scale.The constraint results for the NGCG model are ωx=-1.0510(-0.1685)(+0.1563)(1σ)(-0.2398)(+0.2226)(2σ),η=1.0117(-0.0502)(+0.0469)(1σ)(-0.0716)(+0.0693)(2σ) and Ωx=0.7297(-0.0276)(+0.0229)(1σ)(-0.0402)(+0.0329)(2σ),which give a rather stringent constraint.From the results,we can see that a phantom model is slightly favored and the proba-bility that energy transfers from dark matter to dark energy is a little larger than the inverse.

  8. Generalized Poisson-Lindely Distribution in Promotion Time Cure Model

    Directory of Open Access Journals (Sweden)

    Ahmad Reza Baghestani

    2014-12-01

    Full Text Available 1024x768 Long-term survival analysis has been improved in the last decade and most of the models concentrate on the promotion time cure model that proposed by Chen (1999. These models are based on the distribution of latent variable N, number of initiated node cells. In this paper we proposed a Generalized Poisson-Lindely distribution that is another option instead of Negative Binomial distribution when there is overdispersion. The results indicated a better fitness compared to others, because of its more flexibility. Parameter estimation has been done by Bayesian approach, in a real data set and a simulation study has shown the advantages of proposed model. Normal 0 false false false /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:10.0pt; font-family:"Times New Roman"; mso-ansi-language:#0400; mso-fareast-language:#0400; mso-bidi-language:#0400;}

  9. Modeling Answer Change Behavior: An Application of a Generalized Item Response Tree Model

    Science.gov (United States)

    Jeon, Minjeong; De Boeck, Paul; van der Linden, Wim

    2017-01-01

    We present a novel application of a generalized item response tree model to investigate test takers' answer change behavior. The model allows us to simultaneously model the observed patterns of the initial and final responses after an answer change as a function of a set of latent traits and item parameters. The proposed application is illustrated…

  10. Adaptive Error Estimation in Linearized Ocean General Circulation Models

    Science.gov (United States)

    Chechelnitsky, Michael Y.

    1999-01-01

    Data assimilation methods are routinely used in oceanography. The statistics of the model and measurement errors need to be specified a priori. This study addresses the problem of estimating model and measurement error statistics from observations. We start by testing innovation based methods of adaptive error estimation with low-dimensional models in the North Pacific (5-60 deg N, 132-252 deg E) to TOPEX/POSEIDON (TIP) sea level anomaly data, acoustic tomography data from the ATOC project, and the MIT General Circulation Model (GCM). A reduced state linear model that describes large scale internal (baroclinic) error dynamics is used. The methods are shown to be sensitive to the initial guess for the error statistics and the type of observations. A new off-line approach is developed, the covariance matching approach (CMA), where covariance matrices of model-data residuals are "matched" to their theoretical expectations using familiar least squares methods. This method uses observations directly instead of the innovations sequence and is shown to be related to the MT method and the method of Fu et al. (1993). Twin experiments using the same linearized MIT GCM suggest that altimetric data are ill-suited to the estimation of internal GCM errors, but that such estimates can in theory be obtained using acoustic data. The CMA is then applied to T/P sea level anomaly data and a linearization of a global GFDL GCM which uses two vertical modes. We show that the CMA method can be used with a global model and a global data set, and that the estimates of the error statistics are robust. We show that the fraction of the GCM-T/P residual variance explained by the model error is larger than that derived in Fukumori et al.(1999) with the method of Fu et al.(1993). Most of the model error is explained by the barotropic mode. However, we find that impact of the change in the error statistics on the data assimilation estimates is very small. This is explained by the large

  11. Generalized PSF modeling for optimized quantitation in PET imaging

    Science.gov (United States)

    Ashrafinia, Saeed; Mohy-ud-Din, Hassan; Karakatsanis, Nicolas A.; Jha, Abhinav K.; Casey, Michael E.; Kadrmas, Dan J.; Rahmim, Arman

    2017-06-01

    modeling does not offer optimized PET quantitation, and that PSF overestimation may provide enhanced SUV quantitation. Furthermore, generalized PSF modeling may provide a valuable approach for quantitative tasks such as treatment-response assessment and prognostication.

  12. General Description of Fission Observables: GEF Model Code

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, K.-H. [CENBG, CNRS/IN2 P3, Chemin du Solarium, B.P. 120, F-33175 Gradignan (France); Jurado, B., E-mail: jurado@cenbg.in2p3.fr [CENBG, CNRS/IN2 P3, Chemin du Solarium, B.P. 120, F-33175 Gradignan (France); Amouroux, C. [CEA, DSM-Saclay (France); Schmitt, C., E-mail: schmitt@ganil.fr [GANIL, Bd. Henri Becquerel, B.P. 55027, F-14076 Caen Cedex 05 (France)

    2016-01-15

    The GEF (“GEneral description of Fission observables”) model code is documented. It describes the observables for spontaneous fission, neutron-induced fission and, more generally, for fission of a compound nucleus from any other entrance channel, with given excitation energy and angular momentum. The GEF model is applicable for a wide range of isotopes from Z = 80 to Z = 112 and beyond, up to excitation energies of about 100 MeV. The results of the GEF model are compared with fission barriers, fission probabilities, fission-fragment mass- and nuclide distributions, isomeric ratios, total kinetic energies, and prompt-neutron and prompt-gamma yields and energy spectra from neutron-induced and spontaneous fission. Derived properties of delayed neutrons and decay heat are also considered. The GEF model is based on a general approach to nuclear fission that explains a great part of the complex appearance of fission observables on the basis of fundamental laws of physics and general properties of microscopic systems and mathematical objects. The topographic theorem is used to estimate the fission-barrier heights from theoretical macroscopic saddle-point and ground-state masses and experimental ground-state masses. Motivated by the theoretically predicted early localisation of nucleonic wave functions in a necked-in shape, the properties of the relevant fragment shells are extracted. These are used to determine the depths and the widths of the fission valleys corresponding to the different fission channels and to describe the fission-fragment distributions and deformations at scission by a statistical approach. A modified composite nuclear-level-density formula is proposed. It respects some features in the superfluid regime that are in accordance with new experimental findings and with theoretical expectations. These are a constant-temperature behaviour that is consistent with a considerably increased heat capacity and an increased pairing condensation energy that is

  13. Modeling of space environment impact on nanostructured materials. General principles

    Science.gov (United States)

    Voronina, Ekaterina; Novikov, Lev

    2016-07-01

    In accordance with the resolution of ISO TC20/SC14 WG4/WG6 joint meeting, Technical Specification (TS) 'Modeling of space environment impact on nanostructured materials. General principles' which describes computer simulation methods of space environment impact on nanostructured materials is being prepared. Nanomaterials surpass traditional materials for space applications in many aspects due to their unique properties associated with nanoscale size of their constituents. This superiority in mechanical, thermal, electrical and optical properties will evidently inspire a wide range of applications in the next generation spacecraft intended for the long-term (~15-20 years) operation in near-Earth orbits and the automatic and manned interplanetary missions. Currently, ISO activity on developing standards concerning different issues of nanomaterials manufacturing and applications is high enough. Most such standards are related to production and characterization of nanostructures, however there is no ISO documents concerning nanomaterials behavior in different environmental conditions, including the space environment. The given TS deals with the peculiarities of the space environment impact on nanostructured materials (i.e. materials with structured objects which size in at least one dimension lies within 1-100 nm). The basic purpose of the document is the general description of the methodology of applying computer simulation methods which relate to different space and time scale to modeling processes occurring in nanostructured materials under the space environment impact. This document will emphasize the necessity of applying multiscale simulation approach and present the recommendations for the choice of the most appropriate methods (or a group of methods) for computer modeling of various processes that can occur in nanostructured materials under the influence of different space environment components. In addition, TS includes the description of possible

  14. Evaluation of dynamically downscaled extreme temperature using a spatially-aggregated generalized extreme value (GEV) model

    Science.gov (United States)

    Wang, Jiali; Han, Yuefeng; Stein, Michael L.; Kotamarthi, Veerabhadra R.; Huang, Whitney K.

    2016-11-01

    The weather research and forecast (WRF) model downscaling skill in extreme maximum daily temperature is evaluated by using the generalized extreme value (GEV) distribution. While the GEV distribution has been used extensively in climatology and meteorology for estimating probabilities of extreme events, accurately estimating GEV parameters based on data from a single pixel can be difficult, even with fairly long data records. This work proposes a simple method assuming that the shape parameter, the most difficult of the three parameters to estimate, does not vary over a relatively large region. This approach is applied to evaluate 31-year WRF-downscaled extreme maximum temperature through comparison with North American regional reanalysis (NARR) data. Uncertainty in GEV parameter estimates and the statistical significance in the differences of estimates between WRF and NARR are accounted for by conducting a novel bootstrap procedure that makes no assumption of temporal or spatial independence within a year, which is especially important for climate data. Despite certain biases over parts of the United States, overall, WRF shows good agreement with NARR in the spatial pattern and magnitudes of GEV parameter estimates. Both WRF and NARR show a significant increase in extreme maximum temperature over the southern Great Plains and southeastern United States in January and over the western United States in July. The GEV model shows clear benefits from the regionally constant shape parameter assumption, for example, leading to estimates of the location and scale parameters of the model that show coherent spatial patterns.

  15. The DSM-5 dimensional trait model and five-factor models of general personality.

    Science.gov (United States)

    Gore, Whitney L; Widiger, Thomas A

    2013-08-01

    The current study tests empirically the relationship of the dimensional trait model proposed for the fifth edition of the Diagnostic and Statistical Manual of Mental Disorders (DSM-5) with five-factor models of general personality. The DSM-5 maladaptive trait dimensional model proposal included 25 traits organized within five broad domains (i.e., negative affectivity, detachment, antagonism, disinhibition, and psychoticism). Consistent with the authors of the proposal, it was predicted that negative affectivity would align with five-factor model (FFM) neuroticism, detachment with FFM introversion, antagonism with FFM antagonism, disinhibition with low FFM conscientiousness and, contrary to the proposal; psychoticism would align with FFM openness. Three measures of alternative five-factor models of general personality were administered to 445 undergraduates along with the Personality Inventory for DSM-5. The results provided support for the hypothesis that all five domains of the DSM-5 dimensional trait model are maladaptive variants of general personality structure, including the domain of psychoticism.

  16. Generalized functional linear models for gene-based case-control association studies.

    Science.gov (United States)

    Fan, Ruzong; Wang, Yifan; Mills, James L; Carter, Tonia C; Lobach, Iryna; Wilson, Alexander F; Bailey-Wilson, Joan E; Weeks, Daniel E; Xiong, Momiao

    2014-11-01

    By using functional data analysis techniques, we developed generalized functional linear models for testing association between a dichotomous trait and multiple genetic variants in a genetic region while adjusting for covariates. Both fixed and mixed effect models are developed and compared. Extensive simulations show that Rao's efficient score tests of the fixed effect models are very conservative since they generate lower type I errors than nominal levels, and global tests of the mixed effect models generate accurate type I errors. Furthermore, we found that the Rao's efficient score test statistics of the fixed effect models have higher power than the sequence kernel association test (SKAT) and its optimal unified version (SKAT-O) in most cases when the causal variants are both rare and common. When the causal variants are all rare (i.e., minor allele frequencies less than 0.03), the Rao's efficient score test statistics and the global tests have similar or slightly lower power than SKAT and SKAT-O. In practice, it is not known whether rare variants or common variants in a gene region are disease related. All we can assume is that a combination of rare and common variants influences disease susceptibility. Thus, the improved performance of our models when the causal variants are both rare and common shows that the proposed models can be very useful in dissecting complex traits. We compare the performance of our methods with SKAT and SKAT-O on real neural tube defects and Hirschsprung's disease datasets. The Rao's efficient score test statistics and the global tests are more sensitive than SKAT and SKAT-O in the real data analysis. Our methods can be used in either gene-disease genome-wide/exome-wide association studies or candidate gene analyses.

  17. Higher harmonic nonlocal polymerization driven diffusion model: generalized nonlinearities and nonlocal responses

    Science.gov (United States)

    Kelly, John V.; O'Brien, Jeff; O'Neill, Feidhlim T.; Gleeson, Michael R.; Sheridan, John T.

    2004-10-01

    Non-local and non-linear models of photopolymer materials, which include diffusion effects, have recently received much attention in the literature. The material response is non-local as it is assumed that monomers are polymerised to form polymer chains and that these chains grow away from a point of initiation. The non-locality is defined in terms of a spatial non-local material response function. The numerical method of solution typically involves retaining either two or four harmonics of the Fourier series of monomer concentration in the calculation. In this paper a general set of equations is derived which allows inclusion of higher number of harmonics for any response function. The numerical convergence for varying number of harmonics retained is investigated with special care being taken to note the effect of the; non-local material variance s, the power law degree k, and the rates of diffusion, D, and polymerisation F0. General non-linear material responses are also included.

  18. A general paradigm to model reaction-based biogeochemical processes in batch systems

    Science.gov (United States)

    Fang, Yilin; Yeh, Gour-Tsyh; Burgos, William D.

    2003-04-01

    This paper presents the development and illustration of a numerical model of reaction-based geochemical and biochemical processes with mixed equilibrium and kinetic reactions. The objective is to provide a general paradigm for modeling reactive chemicals in batch systems, with expectations that it is applicable to reactive chemical transport problems. The unique aspects of the paradigm are to simultaneously (1) facilitate the segregation (isolation) of linearly independent kinetic reactions and thus enable the formulation and parameterization of individual rates one reaction by one reaction when linearly dependent kinetic reactions are absent, (2) enable the inclusion of virtually any type of equilibrium expressions and kinetic rates users want to specify, (3) reduce problem stiffness by eliminating all fast reactions from the set of ordinary differential equations governing the evolution of kinetic variables, (4) perform systematic operations to remove redundant fast reactions and irrelevant kinetic reactions, (5) systematically define chemical components and explicitly enforce mass conservation, (6) accomplish automation in decoupling fast reactions from slow reactions, and (7) increase the robustness of numerical integration of the governing equations with species switching schemes. None of the existing models to our knowledge has included these scopes simultaneously. This model (BIOGEOCHEM) is a general computer code to simulate biogeochemical processes in batch systems from a reaction-based mechanistic standpoint, and is designed to be easily coupled with transport models. To make the model applicable to a wide range of problems, programmed reaction types include aqueous complexation, adsorption-desorption, ion-exchange, oxidation-reduction, precipitation-dissolution, acid-base reactions, and microbial mediated reactions. In addition, user-specified reaction types can be programmed into the model. Any reaction can be treated as fast/equilibrium or slow

  19. Generalized multiplicative error models: Asymptotic inference and empirical analysis

    Science.gov (United States)

    Li, Qian

    This dissertation consists of two parts. The first part focuses on extended Multiplicative Error Models (MEM) that include two extreme cases for nonnegative series. These extreme cases are common phenomena in high-frequency financial time series. The Location MEM(p,q) model incorporates a location parameter so that the series are required to have positive lower bounds. The estimator for the location parameter turns out to be the minimum of all the observations and is shown to be consistent. The second case captures the nontrivial fraction of zero outcomes feature in a series and combines a so-called Zero-Augmented general F distribution with linear MEM(p,q). Under certain strict stationary and moment conditions, we establish a consistency and asymptotic normality of the semiparametric estimation for these two new models. The second part of this dissertation examines the differences and similarities between trades in the home market and trades in the foreign market of cross-listed stocks. We exploit the multiplicative framework to model trading duration, volume per trade and price volatility for Canadian shares that are cross-listed in the New York Stock Exchange (NYSE) and the Toronto Stock Exchange (TSX). We explore the clustering effect, interaction between trading variables, and the time needed for price equilibrium after a perturbation for each market. The clustering effect is studied through the use of univariate MEM(1,1) on each variable, while the interactions among duration, volume and price volatility are captured by a multivariate system of MEM(p,q). After estimating these models by a standard QMLE procedure, we exploit the Impulse Response function to compute the calendar time for a perturbation in these variables to be absorbed into price variance, and use common statistical tests to identify the difference between the two markets in each aspect. These differences are of considerable interest to traders, stock exchanges and policy makers.

  20. Toward a general psychological model of tension and suspense

    Directory of Open Access Journals (Sweden)

    Moritz eLehne

    2015-02-01

    Full Text Available Tension and suspense are powerful emotional experiences that occur in a wide variety of contexts (e.g., in music, film, literature, and everyday life. The omnipresence of tension experiences suggests that they build on very basic cognitive and affective mechanisms. However, the psychological underpinnings of tension experiences remain largely unexplained, and tension and suspense are rarely discussed from a general, domain-independent perspective. In this paper, we argue that tension experiences in different contexts (e.g., musical tension or suspense in a movie build on the same underlying psychological processes. We discuss key components of tension experiences and propose a domain-independent model of tension and suspense. According to this model, tension experiences originate from states of conflict, instability, dissonance, or uncertainty that trigger predictive processes directed at future events of emotional significance. We also discuss possible neural mechanisms underlying experiences of tension. The model provides a theoretical framework that can inform future empirical research on tension phenomena.

  1. A generalized model for estimating the energy density of invertebrates

    Science.gov (United States)

    James, Daniel A.; Csargo, Isak J.; Von Eschen, Aaron; Thul, Megan D.; Baker, James M.; Hayer, Cari-Ann; Howell, Jessica; Krause, Jacob; Letvin, Alex; Chipps, Steven R.

    2012-01-01

    Invertebrate energy density (ED) values are traditionally measured using bomb calorimetry. However, many researchers rely on a few published literature sources to obtain ED values because of time and sampling constraints on measuring ED with bomb calorimetry. Literature values often do not account for spatial or temporal variability associated with invertebrate ED. Thus, these values can be unreliable for use in models and other ecological applications. We evaluated the generality of the relationship between invertebrate ED and proportion of dry-to-wet mass (pDM). We then developed and tested a regression model to predict ED from pDM based on a taxonomically, spatially, and temporally diverse sample of invertebrates representing 28 orders in aquatic (freshwater, estuarine, and marine) and terrestrial (temperate and arid) habitats from 4 continents and 2 oceans. Samples included invertebrates collected in all seasons over the last 19 y. Evaluation of these data revealed a significant relationship between ED and pDM (r2  =  0.96, p calorimetry approaches. This model should prove useful for a wide range of ecological studies because it is unaffected by taxonomic, seasonal, or spatial variability.

  2. A Pacific Ocean general circulation model for satellite data assimilation

    Science.gov (United States)

    Chao, Y.; Halpern, D.; Mechoso, C. R.

    1991-01-01

    A tropical Pacific Ocean General Circulation Model (OGCM) to be used in satellite data assimilation studies is described. The transfer of the OGCM from a CYBER-205 at NOAA's Geophysical Fluid Dynamics Laboratory to a CRAY-2 at NASA's Ames Research Center is documented. Two 3-year model integrations from identical initial conditions but performed on those two computers are compared. The model simulations are very similar to each other, as expected, but the simulations performed with the higher-precision CRAY-2 is smoother than that with the lower-precision CYBER-205. The CYBER-205 and CRAY-2 use 32 and 64-bit mantissa arithmetic, respectively. The major features of the oceanic circulation in the tropical Pacific, namely the North Equatorial Current, the North Equatorial Countercurrent, the South Equatorial Current, and the Equatorial Undercurrent, are realistically produced and their seasonal cycles are described. The OGCM provides a powerful tool for study of tropical oceans and for the assimilation of satellite altimetry data.

  3. Generalized Hidden Markov Models To Handwritten Devanagari Word Recognition

    Directory of Open Access Journals (Sweden)

    Mr. Pradeep Singh Thakur

    2012-06-01

    Full Text Available Hidden Markov Models (HMM have long been a popular choice for Western cursive handwriting recognition following their success in speech recognition. Even for the recognition of Oriental scripts such as Chinese, Japanese and Korean, Hidden Markov Models are increasingly being used to model substrokes of characters. However, when it comes to Indic script recognition, the published work employing HMMs is limited, and generally focused on isolated character recognition. In this effort, a data-driven HMM-based handwritten word recognition system for Hindi, an Indic script, is proposed. Though Devanagari is the script for Hindi, which is the official language of India, its character and word recognition pose great challenges due to large variety of symbols and their proximity in appearance. The accuracies obtained ranged from 30�0to 60�0with lexicon. These initial results are promising and warrant further research in this direction. The results are also encouraging to explore possibilities for adopting the approach to other Indic scripts as well.

  4. Bayesian inference for generalized linear models for spiking neurons

    Directory of Open Access Journals (Sweden)

    Sebastian Gerwinn

    2010-05-01

    Full Text Available Generalized Linear Models (GLMs are commonly used statistical methods for modelling the relationship between neural population activity and presented stimuli. When the dimension of the parameter space is large, strong regularization has to be used in order to fit GLMs to datasets of realistic size without overfitting. By imposing properly chosen priors over parameters, Bayesian inference provides an effective and principled approach for achieving regularization. Here we show how the posterior distribution over model parameters of GLMs can be approximated by a Gaussian using the Expectation Propagation algorithm. In this way, we obtain an estimate of the posterior mean and posterior covariance, allowing us to calculate Bayesian confidence intervals that characterize the uncertainty about the optimal solution. From the posterior we also obtain a different point estimate, namely the posterior mean as opposed to the commonly used maximum a posteriori estimate. We systematically compare the different inference techniques on simulated as well as on multi-electrode recordings of retinal ganglion cells, and explore the effects of the chosen prior and the performance measure used. We find that good performance can be achieved by choosing an Laplace prior together with the posterior mean estimate.

  5. Generalized Fiducial Inference for Binary Logistic Item Response Models.

    Science.gov (United States)

    Liu, Yang; Hannig, Jan

    2016-06-01

    Generalized fiducial inference (GFI) has been proposed as an alternative to likelihood-based and Bayesian inference in mainstream statistics. Confidence intervals (CIs) can be constructed from a fiducial distribution on the parameter space in a fashion similar to those used with a Bayesian posterior distribution. However, no prior distribution needs to be specified, which renders GFI more suitable when no a priori information about model parameters is available. In the current paper, we apply GFI to a family of binary logistic item response theory models, which includes the two-parameter logistic (2PL), bifactor and exploratory item factor models as special cases. Asymptotic properties of the resulting fiducial distribution are discussed. Random draws from the fiducial distribution can be obtained by the proposed Markov chain Monte Carlo sampling algorithm. We investigate the finite-sample performance of our fiducial percentile CI and two commonly used Wald-type CIs associated with maximum likelihood (ML) estimation via Monte Carlo simulation. The use of GFI in high-dimensional exploratory item factor analysis was illustrated by the analysis of a set of the Eysenck Personality Questionnaire data.

  6. Extending the linear model with R generalized linear, mixed effects and nonparametric regression models

    CERN Document Server

    Faraway, Julian J

    2005-01-01

    Linear models are central to the practice of statistics and form the foundation of a vast range of statistical methodologies. Julian J. Faraway''s critically acclaimed Linear Models with R examined regression and analysis of variance, demonstrated the different methods available, and showed in which situations each one applies. Following in those footsteps, Extending the Linear Model with R surveys the techniques that grow from the regression model, presenting three extensions to that framework: generalized linear models (GLMs), mixed effect models, and nonparametric regression models. The author''s treatment is thoroughly modern and covers topics that include GLM diagnostics, generalized linear mixed models, trees, and even the use of neural networks in statistics. To demonstrate the interplay of theory and practice, throughout the book the author weaves the use of the R software environment to analyze the data of real examples, providing all of the R commands necessary to reproduce the analyses. All of the ...

  7. Convex foundations for generalized MaxEnt models

    Science.gov (United States)

    Frongillo, Rafael; Reid, Mark D.

    2014-12-01

    We present an approach to maximum entropy models that highlights the convex geometry and duality of generalized exponential families (GEFs) and their connection to Bregman divergences. Using our framework, we are able to resolve a puzzling aspect of the bijection of Banerjee and coauthors between classical exponential families and what they call regular Bregman divergences. Their regularity condition rules out all but Bregman divergences generated from log-convex generators. We recover their bijection and show that a much broader class of divergences correspond to GEFs via two key observations: 1) Like classical exponential families, GEFs have a "cumulant" C whose subdifferential contains the mean: Eo˜pθ[φ(o)]∈∂C(θ) ; 2) Generalized relative entropy is a C-Bregman divergence between parameters: DF(pθ,pθ')= D C(θ,θ') , where DF becomes the KL divergence for F = -H. We also show that every incomplete market with cost function C can be expressed as a complete market, where the prices are constrained to be a GEF with cumulant C. This provides an entirely new interpretation of prediction markets, relating their design back to the principle of maximum entropy.

  8. General Analysis of Dark Radiation in Sequestered String Models

    CERN Document Server

    Cicoli, Michele

    2015-01-01

    We perform a general analysis of axionic dark radiation produced from the decay of the lightest modulus in the sequestered LARGE Volume Scenario. We discuss several cases depending on the form of the Kahler metric for visible sector matter fields and the mechanism responsible for achieving a de Sitter vacuum. The leading decay channels which determine dark radiation predictions are to hidden sector axions, visible sector Higgses and SUSY scalars depending on their mass. We show that in most of the parameter space of split SUSY-like models squarks and sleptons are heavier than the lightest modulus. Hence dark radiation predictions previously obtained for MSSM-like cases hold more generally also for split SUSY-like cases since the decay channel to SUSY scalars is kinematically forbidden. However the inclusion of string loop corrections to the Kahler potential gives rise to a parameter space region where the decay channel to SUSY scalars opens up, leading to a significant reduction of dark radiation production. ...

  9. Simulations of physics and chemistry of polar stratospheric clouds with a general circulation model

    Energy Technology Data Exchange (ETDEWEB)

    Buchholz, J.

    2005-04-20

    A polar stratospheric cloud submodel has been developed and incorporated in a general circulation model including atmospheric chemistry (ECHAM5/MESSy). The formation and sedimentation of polar stratospheric cloud (PSC) particles can thus be simulated as well as heterogeneous chemical reactions that take place on the PSC particles. For solid PSC particle sedimentation, the need for a tailor-made algorithm has been elucidated. A sedimentation scheme based on first order approximations of vertical mixing ratio profiles has been developed. It produces relatively little numerical diffusion and can deal well with divergent or convergent sedimentation velocity fields. For the determination of solid PSC particle sizes, an efficient algorithm has been adapted. It assumes a monodisperse radii distribution and thermodynamic equilibrium between the gas phase and the solid particle phase. This scheme, though relatively simple, is shown to produce particle number densities and radii within the observed range. The combined effects of the representations of sedimentation and solid PSC particles on vertical H{sub 2}O and HNO{sub 3} redistribution are investigated in a series of tests. The formation of solid PSC particles, especially of those consisting of nitric acid trihydrate, has been discussed extensively in recent years. Three particle formation schemes in accordance with the most widely used approaches have been identified and implemented. For the evaluation of PSC occurrence a new data set with unprecedented spatial and temporal coverage was available. A quantitative method for the comparison of simulation results and observations is developed and applied. It reveals that the relative PSC sighting frequency can be reproduced well with the PSC submodel whereas the detailed modelling of PSC events is beyond the scope of coarse global scale models. In addition to the development and evaluation of new PSC submodel components, parts of existing simulation programs have been

  10. Accelerated failure time model under general biased sampling scheme.

    Science.gov (United States)

    Kim, Jane Paik; Sit, Tony; Ying, Zhiliang

    2016-07-01

    Right-censored time-to-event data are sometimes observed from a (sub)cohort of patients whose survival times can be subject to outcome-dependent sampling schemes. In this paper, we propose a unified estimation method for semiparametric accelerated failure time models under general biased estimating schemes. The proposed estimator of the regression covariates is developed upon a bias-offsetting weighting scheme and is proved to be consistent and asymptotically normally distributed. Large sample properties for the estimator are also derived. Using rank-based monotone estimating functions for the regression parameters, we find that the estimating equations can be easily solved via convex optimization. The methods are confirmed through simulations and illustrated by application to real datasets on various sampling schemes including length-bias sampling, the case-cohort design and its variants. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  11. Calibration of parallel kinematics machine using generalized distance error model

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    This paper focus on the accuracy enhancement of parallel kinematics machine through kinematics calibration. In the calibration processing, well-structured identification Jacobian matrix construction and end-effector position and orientation measurement are two main difficulties. In this paper, the identification Jacobian matrix is constructed easily by numerical calculation utilizing the unit virtual velocity method. The generalized distance errors model is presented for avoiding measuring the position and orientation directly which is difficult to be measured. At last, a measurement tool is given for acquiring the data points in the calibration processing.Experimental studies confirmed the effectiveness of method. It is also shown in the paper that the proposed approach can be applied to other typed parallel manipulators.

  12. A General Random Walk Model of Molecular Motor

    Institute of Scientific and Technical Information of China (English)

    WANGXian-Ju; AIBao-Quan; LIUGuo-Tao; LIULiang-Gang

    2003-01-01

    A general random walk model framework is presented which can be used to statistically describe the internal dynamics and external mechanical movement of molecular motors along filament track. The motion of molecular motor in a periodic potential and a constant force is considered. We show that the molecular motor's movement becomes slower with the potential barrier increasing, but if the force is increased, the molecular motor''s movement becomes faster. The relation between the effective rate constant and the potential battler's height, and that between the effective rate constant and the value of the force are discussed. Our results are consistent with the experiments and relevant theoretical consideration, and can be used to explain some physiological phenomena.

  13. Generalized elastic model yields a fractional Langevin equation description.

    Science.gov (United States)

    Taloni, Alessandro; Chechkin, Aleksei; Klafter, Joseph

    2010-04-23

    Starting from a generalized elastic model which accounts for the stochastic motion of several physical systems such as membranes, (semi)flexible polymers, and fluctuating interfaces among others, we derive the fractional Langevin equation (FLE) for a probe particle in such systems, in the case of thermal initial conditions. We show that this FLE is the only one fulfilling the fluctuation-dissipation relation within a new family of fractional Brownian motion equations. The FLE for the time-dependent fluctuations of the donor-acceptor distance in a protein is shown to be recovered. When the system starts from nonthermal conditions, the corresponding FLE, which does not fulfill the fluctuation-dissipation relation, is derived.

  14. Correlations in a generalized elastic model: fractional Langevin equation approach.

    Science.gov (United States)

    Taloni, Alessandro; Chechkin, Aleksei; Klafter, Joseph

    2010-12-01

    The generalized elastic model (GEM) provides the evolution equation which governs the stochastic motion of several many-body systems in nature, such as polymers, membranes, and growing interfaces. On the other hand a probe (tracer) particle in these systems performs a fractional Brownian motion due to the spatial interactions with the other system's components. The tracer's anomalous dynamics can be described by a fractional Langevin equation (FLE) with a space-time correlated noise. We demonstrate that the description given in terms of GEM coincides with that furnished by the relative FLE, by showing that the correlation functions of the stochastic field obtained within the FLE framework agree with the corresponding quantities calculated from the GEM. Furthermore we show that the Fox H -function formalism appears to be very convenient to describe the correlation properties within the FLE approach.

  15. dglars: An R Package to Estimate Sparse Generalized Linear Models

    Directory of Open Access Journals (Sweden)

    Luigi Augugliaro

    2014-09-01

    Full Text Available dglars is a publicly available R package that implements the method proposed in Augugliaro, Mineo, and Wit (2013, developed to study the sparse structure of a generalized linear model. This method, called dgLARS, is based on a differential geometrical extension of the least angle regression method proposed in Efron, Hastie, Johnstone, and Tibshirani (2004. The core of the dglars package consists of two algorithms implemented in Fortran 90 to efficiently compute the solution curve: a predictor-corrector algorithm, proposed in Augugliaro et al. (2013, and a cyclic coordinate descent algorithm, proposed in Augugliaro, Mineo, and Wit (2012. The latter algorithm, as shown here, is significantly faster than the predictor-corrector algorithm. For comparison purposes, we have implemented both algorithms.

  16. Generalized cavity model and nonlocal effects in nanoslit arrays

    CERN Document Server

    Dechaux, Mathieu; Ciracì, Cristian; Benedicto, Jessica; Pollès, Rémi; Centeno, Emmanuel; Smith, David R; Moreau, Antoine

    2016-01-01

    Gap-plasmon resonators are a class of nanogap-based plasmonic structures presenting unprecedented optical properties despite a size that can be smaller than the skin depth of metals. In the case of extremely narrow slit arrays, these ultra-small resonators are better described by a generalized cavity model. Moreover, such structures are sensitive to the nonlocal response of the metals arising from interactions between free electrons inside the jellium. This phenomenon actually influences the necessarily intense plasmonic slowdown (very low phase and group velocities) experienced by the gap-plasmon in such tiny cavities. Accurately describing the optical response of this class of structures requires to take all of these effects into account, and will undoubtedly be necessary to design or characterize future gap-plasmon resonators.

  17. Generalized Swept Mid-structure for Polygonal Models

    KAUST Repository

    Martin, Tobias

    2012-05-01

    We introduce a novel mid-structure called the generalized swept mid-structure (GSM) of a closed polygonal shape, and a framework to compute it. The GSM contains both curve and surface elements and has consistent sheet-by-sheet topology, versus triangle-by-triangle topology produced by other mid-structure methods. To obtain this structure, a harmonic function, defined on the volume that is enclosed by the surface, is used to decompose the volume into a set of slices. A technique for computing the 1D mid-structures of these slices is introduced. The mid-structures of adjacent slices are then iteratively matched through a boundary similarity computation and triangulated to form the GSM. This structure respects the topology of the input surface model is a hybrid mid-structure representation. The construction and topology of the GSM allows for local and global simplification, used in further applications such as parameterization, volumetric mesh generation and medical applications.

  18. Bianchi Type-I bulk viscous fluid string dust magnetized cosmological model in general relativity

    Indian Academy of Sciences (India)

    Raj Bali; Anjali

    2004-09-01

    Bianchi Type-I magnetized bulk viscous fluid string dust cosmological model is investigated. To get a determinate model, we have assumed the conditions and = constant where is the shear, the expansion in the model and the coefficient of bulk viscosity. The behaviour of the model in the presence and absence of magnetic field together with physical and geometrical aspects of the model are also discussed.

  19. Predicting stem borer density in maize using RapidEye data and generalized linear models

    Science.gov (United States)

    Abdel-Rahman, Elfatih M.; Landmann, Tobias; Kyalo, Richard; Ong'amo, George; Mwalusepo, Sizah; Sulieman, Saad; Ru, Bruno Le

    2017-05-01

    Average maize yield in eastern Africa is 2.03 t ha-1 as compared to global average of 6.06 t ha-1 due to biotic and abiotic constraints. Amongst the biotic production constraints in Africa, stem borers are the most injurious. In eastern Africa, maize yield losses due to stem borers are currently estimated between 12% and 21% of the total production. The objective of the present study was to explore the possibility of RapidEye spectral data to assess stem borer larva densities in maize fields in two study sites in Kenya. RapidEye images were acquired for the Bomet (western Kenya) test site on the 9th of December 2014 and on 27th of January 2015, and for Machakos (eastern Kenya) a RapidEye image was acquired on the 3rd of January 2015. Five RapidEye spectral bands as well as 30 spectral vegetation indices (SVIs) were utilized to predict per field maize stem borer larva densities using generalized linear models (GLMs), assuming Poisson ('Po') and negative binomial ('NB') distributions. Root mean square error (RMSE) and ratio prediction to deviation (RPD) statistics were used to assess the models performance using a leave-one-out cross-validation approach. The Zero-inflated NB ('ZINB') models outperformed the 'NB' models and stem borer larva densities could only be predicted during the mid growing season in December and early January in both study sites, respectively (RMSE = 0.69-1.06 and RPD = 8.25-19.57). Overall, all models performed similar when all the 30 SVIs (non-nested) and only the significant (nested) SVIs were used. The models developed could improve decision making regarding controlling maize stem borers within integrated pest management (IPM) interventions.

  20. Digital terrain model generalization incorporating scale, semantic and cognitive constraints

    Science.gov (United States)

    Partsinevelos, Panagiotis; Papadogiorgaki, Maria

    2014-05-01

    Cartographic generalization is a well-known process accommodating spatial data compression, visualization and comprehension under various scales. In the last few years, there are several international attempts to construct tangible GIS systems, forming real 3D surfaces using a vast number of mechanical parts along a matrix formation (i.e., bars, pistons, vacuums). Usually, moving bars upon a structured grid push a stretching membrane resulting in a smooth visualization for a given surface. Most of these attempts suffer either in their cost, accuracy, resolution and/or speed. Under this perspective, the present study proposes a surface generalization process that incorporates intrinsic constrains of tangible GIS systems including robotic-motor movement and surface stretching limitations. The main objective is to provide optimized visualizations of 3D digital terrain models with minimum loss of information. That is, to minimize the number of pixels in a raster dataset used to define a DTM, while reserving the surface information. This neighborhood type of pixel relations adheres to the basics of Self Organizing Map (SOM) artificial neural networks, which are often used for information abstraction since they are indicative of intrinsic statistical features contained in the input patterns and provide concise and characteristic representations. Nevertheless, SOM remains more like a black box procedure not capable to cope with possible particularities and semantics of the application at hand. E.g. for coastal monitoring applications, the near - coast areas, surrounding mountains and lakes are more important than other features and generalization should be "biased"-stratified to fulfill this requirement. Moreover, according to the application objectives, we extend the SOM algorithm to incorporate special types of information generalization by differentiating the underlying strategy based on topologic information of the objects included in the application. The final

  1. Exact solutions of the general equilibrium shape equations in a general power model of free energy for DNA structures

    Science.gov (United States)

    Yavari, Morteza

    2014-02-01

    The aim of this paper is to generalize the results of the Feoli's formalism (A. Feoli et al., Nucl. Phys. B 705, 577 (2005)) for DNA structures. The exact solutions of the general equilibrium shape equations for a general power model of free energy are investigated using the Feoli's formalism. The free energy of B- to Z-DNA transition is also calculated in this formalism.

  2. Intraseasonal Variability in an Aquaplanet General Circulation Model

    Directory of Open Access Journals (Sweden)

    Adam H Sobel

    2010-04-01

    Full Text Available An aquaplanet atmospheric general circulation model simulation with a robust intraseasonal oscillation is analyzed. The SST boundary condition resembles the observed December-April average with continents omitted, although with the meridional SST gradient reduced to be one-quarter of that observed poleward of 10 ̊ latitude. Slow, regular eastward propagation at 5 m s21 in winds and precipitation with amplitude greater than that in the observed MJO is clearly identified in unfiltered fields. Local precipitation rate is a strongly non-linear and increasing function of column precipitable water, as in observations. The model intraseasonal oscillation resembles a moisture mode that is destabilized by wind-evaporation feedback, and that propagates eastward through advection of anomalous humidity by the sum of perturbation winds and mean westerly flow. A series of sensitivity experiments are conducted to test hypothesized mechanisms. A mechanism denial experiment in which intraseasonal latent heat flux variability is removed largely eliminates intraseasonal wind and precipitation variability. Reducing the lower-troposphere westerly flow in the warm pool by reducing the zonal SST gradient slows eastward propagation, supporting the importance of horizontal advection by the low-level wind to eastward propagation. A zonally symmetric SST basic state produces weak and unrealistic intraseasonal variability between 30 and 90 day timescales, indicating the importance of mean low-level westerly winds and hence a realistic phase relationship between precipitation and surface flux anomalies for producing realistic tropical intraseasonal variability.

  3. Cognitive performance modeling based on general systems performance theory.

    Science.gov (United States)

    Kondraske, George V

    2010-01-01

    General Systems Performance Theory (GSPT) was initially motivated by problems associated with quantifying different aspects of human performance. It has proved to be invaluable for measurement development and understanding quantitative relationships between human subsystem capacities and performance in complex tasks. It is now desired to bring focus to the application of GSPT to modeling of cognitive system performance. Previous studies involving two complex tasks (i.e., driving and performing laparoscopic surgery) and incorporating measures that are clearly related to cognitive performance (information processing speed and short-term memory capacity) were revisited. A GSPT-derived method of task analysis and performance prediction termed Nonlinear Causal Resource Analysis (NCRA) was employed to determine the demand on basic cognitive performance resources required to support different levels of complex task performance. This approach is presented as a means to determine a cognitive workload profile and the subsequent computation of a single number measure of cognitive workload (CW). Computation of CW may be a viable alternative to measuring it. Various possible "more basic" performance resources that contribute to cognitive system performance are discussed. It is concluded from this preliminary exploration that a GSPT-based approach can contribute to defining cognitive performance models that are useful for both individual subjects and specific groups (e.g., military pilots).

  4. A Comparison of Generalized Hyperbolic Distribution Models for Equity Returns

    Directory of Open Access Journals (Sweden)

    Virginie Konlack Socgnia

    2014-01-01

    Full Text Available We discuss the calibration of the univariate and multivariate generalized hyperbolic distributions, as well as their hyperbolic, variance gamma, normal inverse Gaussian, and skew Student’s t-distribution subclasses for the daily log-returns of seven of the most liquid mining stocks listed on the Johannesburg Stocks Exchange. To estimate the model parameters from historic distributions, we use an expectation maximization based algorithm for the univariate case and a multicycle expectation conditional maximization estimation algorithm for the multivariate case. We assess the goodness of fit statistics using the log-likelihood, the Akaike information criterion, and the Kolmogorov-Smirnov distance. Finally, we inspect the temporal stability of parameters and note implications as criteria for distinguishing between models. To better understand the dependence structure of the stocks, we fit the MGHD and subclasses to both the stock returns and the two leading principal components derived from the price data. While the MGHD could fit both data subsets, we observed that the multivariate normality of the stock return residuals, computed by removing shared components, suggests that the departure from normality can be explained by the structure in the common factors.

  5. A general model of the public goods dilemma.

    Science.gov (United States)

    Frank, Steven A

    2010-06-01

    An individually costly act that benefits all group members is a public good. Natural selection favours individual contribution to public good [corrected] only when some benefit to the individual offsets the cost of contribution. Problems of sex ratio, parasite virulence, microbial metabolism, punishment of noncooperators, and nearly all aspects of sociality have been analysed as public goods shaped by kin and group selection. Here, I develop two general aspects of the public goods problem that have received relatively little attention. First, variation in individual resources favours selfish individuals to vary their allocation to public goods. Those individuals better endowed contribute their excess resources to public benefit, whereas those individuals with fewer resources contribute less to the public good. Thus, purely selfish behaviour causes individuals to stratify into upper classes that contribute greatly to public benefit and social cohesion and to lower classes that contribute little to the public good. Second, if group success absolutely requires production of the public good, then the pressure favouring production is relatively high. By contrast, if group success depends weakly on the public good, then the pressure favouring production is relatively weak. Stated in this way, it is obvious that the role of baseline success is important. However, discussions of public goods problems sometimes fail to emphasize this point sufficiently. The models here suggest simple tests for the roles of resource variation and baseline success. Given the widespread importance of public goods, better models and tests would greatly deepen our understanding of many processes in biology and sociality.

  6. Kubo Fluctuation Relations in the Generalized Elastic Model

    Directory of Open Access Journals (Sweden)

    Alessandro Taloni

    2016-01-01

    Full Text Available The generalized elastic model encompasses several linear stochastic models describing the dynamics of polymers, membranes, rough surfaces, and fluctuating interfaces. In this paper we show that the Fractional Langevin Equation (FLE is a suitable framework for the study of the tracer (probe particle dynamics, when an external force acts only on a single point x→⋆ (tagged probe belonging to the system. With the help of the Fox function formalism we study the scaling behaviour of the noise- and force-propagators for large and short times (distances. We show that the Kubo fluctuation relations are exactly fulfilled when a time periodic force is exerted on the tagged probe. Most importantly, by studying the large and low frequency behaviour of the complex mobility we illustrate surprising nontrivial physical scenarios. Our analysis shows that the system splits into two distinct regions whose size depends on the applied frequency, characterized by very different response to the periodic perturbation exerted, both in the phase shift and in the amplitude.

  7. Chain-Wise Generalization of Road Networks Using Model Selection

    Science.gov (United States)

    Bulatov, D.; Wenzel, S.; Häufel, G.; Meidow, J.

    2017-05-01

    Streets are essential entities of urban terrain and their automatized extraction from airborne sensor data is cumbersome because of a complex interplay of geometric, topological and semantic aspects. Given a binary image, representing the road class, centerlines of road segments are extracted by means of skeletonization. The focus of this paper lies in a well-reasoned representation of these segments by means of geometric primitives, such as straight line segments as well as circle and ellipse arcs. We propose the fusion of raw segments based on similarity criteria; the output of this process are the so-called chains which better match to the intuitive perception of what a street is. Further, we propose a two-step approach for chain-wise generalization. First, the chain is pre-segmented using circlePeucker and finally, model selection is used to decide whether two neighboring segments should be fused to a new geometric entity. Thereby, we consider both variance-covariance analysis of residuals and model complexity. The results on a complex data-set with many traffic roundabouts indicate the benefits of the proposed procedure.

  8. Critical rotation of general-relativistic polytropic models revisited

    Science.gov (United States)

    Geroyannis, V.; Karageorgopoulos, V.

    2013-09-01

    We develop a perturbation method for computing the critical rotational parameter as a function of the equatorial radius of a rigidly rotating polytropic model in the "post-Newtonia approximation" (PNA). We treat our models as "initial value problems" (IVP) of ordinary differential equations in the complex plane. The computations are carried out by the code dcrkf54.f95 (Geroyannis and Valvi 2012 [P1]; modified Runge-Kutta-Fehlberg code of fourth and fifth order for solving initial value problems in the complex plane). Such a complex-plane treatment removes the syndromes appearing in this particular family of IVPs (see e.g. P1, Sec. 3) and allows continuation of the numerical integrations beyond the surface of the star. Thus all the required values of the Lane-Emden function(s) in the post-Newtonian approximation are calculated by interpolation (so avoiding any extrapolation). An interesting point is that, in our computations, we take into account the complete correction due to the gravitational term, and this issue is a remarkable difference compared to the classical PNA. We solve the generalized density as a function of the equatorial radius and find the critical rotational parameter. Our computations are extended to certain other physical characteristics (like mass, angular momentum, rotational kinetic energy, etc). We find that our method yields results comparable with those of other reliable methods. REFERENCE: V.S. Geroyannis and F.N. Valvi 2012, International Journal of Modern Physics C, 23, No 5, 1250038:1-15.

  9. Algorithm for Financial Derivatives Evaluation in Generalized Double-Heston Model

    Directory of Open Access Journals (Sweden)

    Tiberiu Socaciu

    2010-03-01

    Full Text Available This paper shows how can be estimated the value of an option if we assume the double-Heston model on a message-based architecture. For path trace simulation we will discretize continous model with an Euler division of time.

  10. Computable General Equilibrium Techniques for Carbon Tax Modeling

    Directory of Open Access Journals (Sweden)

    Al-Amin

    2009-01-01

    Full Text Available Problem statement: Lacking of proper environmental models environmental pollution is now a solemn problem in many developing countries particularly in Malaysia. Some empirical studies of worldwide reveal that imposition of a carbon tax significantly decreases carbon emissions and does not dramatically reduce economic growth. To our knowledge there has not been any research done to simulate the economic impact of emission control policies in Malaysia. Approach: Therefore this study developed an environmental computable general equilibrium model for Malaysia and investigated carbon tax policy responses in the economy applying exogenously different degrees of carbon tax into the model. Three simulations were carried out using a Malaysian social accounting matrix. Results: The carbon tax policy illustrated that a 1.21% reduction of carbon emission reduced the nominal GDP by 0.82% and exports by 2.08%; 2.34% reduction of carbon emission reduced the nominal GDP by 1.90% and exports by 3.97% and 3.40% reduction of carbon emission reduced the nominal GDP by 3.17% and exports by 5.71%. Conclusion/Recommendations: Imposition of successively higher carbon tax results in increased government revenue from baseline by 26.67, 53.07 and 79.28% respectively. However, fixed capital investment increased in scenario 1a by 0.43% and decreased in scenarios 1b and 1c by 0.26 and 1.79% respectively from the baseline. According to our policy findings policy makers should consider 1st (scenario 1a carbon tax policy. This policy results in achieving reasonably good environmental impacts without losing the investment, fixed capital investment, investment share of nominal GDP and government revenue.

  11. Efficient decoding algorithms for generalized hidden Markov model gene finders

    Directory of Open Access Journals (Sweden)

    Delcher Arthur L

    2005-01-01

    Full Text Available Abstract Background The Generalized Hidden Markov Model (GHMM has proven a useful framework for the task of computational gene prediction in eukaryotic genomes, due to its flexibility and probabilistic underpinnings. As the focus of the gene finding community shifts toward the use of homology information to improve prediction accuracy, extensions to the basic GHMM model are being explored as possible ways to integrate this homology information into the prediction process. Particularly prominent among these extensions are those techniques which call for the simultaneous prediction of genes in two or more genomes at once, thereby increasing significantly the computational cost of prediction and highlighting the importance of speed and memory efficiency in the implementation of the underlying GHMM algorithms. Unfortunately, the task of implementing an efficient GHMM-based gene finder is already a nontrivial one, and it can be expected that this task will only grow more onerous as our models increase in complexity. Results As a first step toward addressing the implementation challenges of these next-generation systems, we describe in detail two software architectures for GHMM-based gene finders, one comprising the common array-based approach, and the other a highly optimized algorithm which requires significantly less memory while achieving virtually identical speed. We then show how both of these architectures can be accelerated by a factor of two by optimizing their content sensors. We finish with a brief illustration of the impact these optimizations have had on the feasibility of our new homology-based gene finder, TWAIN. Conclusions In describing a number of optimizations for GHMM-based gene finders and making available two complete open-source software systems embodying these methods, it is our hope that others will be more enabled to explore promising extensions to the GHMM framework, thereby improving the state-of-the-art in gene prediction

  12. Design and implementation of a generalized laboratory data model

    Directory of Open Access Journals (Sweden)

    Nhan Mike

    2007-09-01

    Full Text Available Abstract Background Investigators in the biological sciences continue to exploit laboratory automation methods and have dramatically increased the rates at which they can generate data. In many environments, the methods themselves also evolve in a rapid and fluid manner. These observations point to the importance of robust information management systems in the modern laboratory. Designing and implementing such systems is non-trivial and it appears that in many cases a database project ultimately proves unserviceable. Results We describe a general modeling framework for laboratory data and its implementation as an information management system. The model utilizes several abstraction techniques, focusing especially on the concepts of inheritance and meta-data. Traditional approaches commingle event-oriented data with regular entity data in ad hoc ways. Instead, we define distinct regular entity and event schemas, but fully integrate these via a standardized interface. The design allows straightforward definition of a "processing pipeline" as a sequence of events, obviating the need for separate workflow management systems. A layer above the event-oriented schema integrates events into a workflow by defining "processing directives", which act as automated project managers of items in the system. Directives can be added or modified in an almost trivial fashion, i.e., without the need for schema modification or re-certification of applications. Association between regular entities and events is managed via simple "many-to-many" relationships. We describe the programming interface, as well as techniques for handling input/output, process control, and state transitions. Conclusion The implementation described here has served as the Washington University Genome Sequencing Center's primary information system for several years. It handles all transactions underlying a throughput rate of about 9 million sequencing reactions of various kinds per month and

  13. Maximum Likelihood in a Generalized Linear Finite Mixture Model by Using the EM Algorithm

    NARCIS (Netherlands)

    Jansen, R.C.

    A generalized linear finite mixture model and an EM algorithm to fit the model to data are described. By this approach the finite mixture model is embedded within the general framework of generalized linear models (GLMs). Implementation of the proposed EM algorithm can be readily done in statistical

  14. Age-period-cohort models using smoothing splines: a generalized additive model approach.

    Science.gov (United States)

    Jiang, Bei; Carriere, Keumhee C

    2014-02-20

    Age-period-cohort (APC) models are used to analyze temporal trends in disease or mortality rates, dealing with linear dependency among associated effects of age, period, and cohort. However, the nature of sparseness in such data has severely limited the use of APC models. To deal with these practical limitations and issues, we advocate cubic smoothing splines. We show that the methods of estimable functions proposed in the framework of generalized linear models can still be considered to solve the non-identifiability problem when the model fitting is within the framework of generalized additive models with cubic smoothing splines. Through simulation studies, we evaluate the performance of the cubic smoothing splines in terms of the mean squared errors of estimable functions. Our results support the use of cubic smoothing splines for APC modeling with sparse but unaggregated data from a Lexis diagram.

  15. Seasonal climate hindcasts with Eta model nested in CPTEC coupled ocean-atmosphere general circulation model

    Science.gov (United States)

    Pilotto, Isabel L.; Chou, Sin Chan; Nobre, Paulo

    2012-12-01

    This work evaluates the added value of the downscaling technique employed with the Eta model nested in the CPTEC atmospheric general circulation model and in the CPTEC coupled ocean-atmosphere general circulation model (CGCM). The focus is on the austral summer season, December-January-February, with three members each year. Precipitation, latent heat flux, and shortwave radiation flux at the surface hindcast by the models are compared with observational data and model analyses. The global models generally overestimate the precipitation over South America and tropical Atlantic. The CGCM and the nested Eta (Eta + C) both produce a split in the ITCZ precipitation band. The Eta + C produces better precipitation pattern for the studied season. The Eta model reduces the excessive latent heat flux generated by these global models, in particular the Eta + C. Comparison against PIRATA buoys data shows that the Eta + C results in the smallest precipitation and shortwave radiation forecast errors. The Eta + C comparatively best results are though as a consequence of both: the regional model resolution/physics and smaller errors on the lateral boundary conditions provided by the CGCM.

  16. Federal and state management of inland wetlands: Are states ready to assume control?

    Science.gov (United States)

    Glubiak, Peter G.; Nowka, Richard H.; Mitsch, William J.

    1986-03-01

    As inland wetlands face increasing pressure for development, both the federal government and individual states have begun reevaluating their respective wetland regulatory schemes. This article focuses first on the effectiveness of the past, present, and proposed federal regulations, most notably the Section 404, Dredge and Fill Permit Program, in dealing with shrinking wetland resources. The article then addresses the status of state involvement in this largely federal area, as well as state preparedness to assume primacy should federal priorities change. Finally, the subject of comprehensive legislation for wetland protection is investigated, and the article concludes with some procedural suggestions for developing a model law.

  17. Phase tuning in Michelson-Morley experiments performed in vacuum, assuming length contraction

    CERN Document Server

    Levy, Joseph

    2010-01-01

    In agreement with Michelson-Morley experiments performed in vacuum, we show that, assuming the existence of a fundamental aether frame and of a length contraction affecting the material bodies in the direction of the Earth absolute velocity, the light signals, travelling along the arms of the interferometer arrive in phase whatever their orientation, a result which responds to an objection opposed to the non-entrained aether theory. This result constitutes a strong argument in support of length contraction and of the existence of a model of aether non-entrained by the motion of celestial bodies.

  18. Multi-year predictability in a coupled general circulation model

    Energy Technology Data Exchange (ETDEWEB)

    Power, Scott; Colman, Rob [Bureau of Meteorology Research Centre, Melbourne, VIC (Australia)

    2006-02-01

    Multi-year to decadal variability in a 100-year integration of a BMRC coupled atmosphere-ocean general circulation model (CGCM) is examined. The fractional contribution made by the decadal component generally increases with depth and latitude away from surface waters in the equatorial Indo-Pacific Ocean. The relative importance of decadal variability is enhanced in off-equatorial ''wings'' in the subtropical eastern Pacific. The model and observations exhibit ''ENSO-like'' decadal patterns. Analytic results are derived, which show that the patterns can, in theory, occur in the absence of any predictability beyond ENSO time-scales. In practice, however, modification to this stochastic view is needed to account for robust differences between ENSO-like decadal patterns and their interannual counterparts. An analysis of variability in the CGCM, a wind-forced shallow water model, and a simple mixed layer model together with existing and new theoretical results are used to improve upon this stochastic paradigm and to provide a new theory for the origin of decadal ENSO-like patterns like the Interdecadal Pacific Oscillation and Pacific Decadal Oscillation. In this theory, ENSO-driven wind-stress variability forces internal equatorially-trapped Kelvin waves that propagate towards the eastern boundary. Kelvin waves can excite reflected internal westward propagating equatorially-trapped Rossby waves (RWs) and coastally-trapped waves (CTWs). CTWs have no impact on the off-equatorial sub-surface ocean outside the coastal wave guide, whereas the RWs do. If the frequency of the incident wave is too high, then only CTWs are excited. At lower frequencies, both CTWs and RWs can be excited. The lower the frequency, the greater the fraction of energy transmitted to RWs. This lowers the characteristic frequency of variability off the equator relative to its equatorial counterpart. Both the eastern boundary interactions and the accumulation of

  19. Venusian Polar Vortex reproduced by a general circulation model

    Science.gov (United States)

    Ando, Hiroki; Sugimoto, Norihiko; Takagi, Masahiro

    2016-10-01

    Unlike the polar vortices observed in the Earth, Mars and Titan atmospheres, the observed Venus polar vortex is warmer than the mid-latitudes at cloud-top levels (~65 km). This warm polar vortex is zonally surrounded by a cold latitude band located at ~60 degree latitude, which is a unique feature called 'cold collar' in the Venus atmosphere [e.g. Taylor et al. 1980; Piccioni et al. 2007]. Although these structures have been observed in numerous previous observations, the formation mechanism is still unknown. In addition, an axi-asymmetric feature is always seen in the warm polar vortex. It changes temporally and sometimes shows a hot polar dipole or S-shaped structure as shown by a lot of infrared measurements [e.g. Garate-Lopez et al. 2013; 2015]. However, its vertical structure has not been investigated. To solve these problems, we performed a numerical simulation of the Venus atmospheric circulation using a general circulation model named AFES for Venus [Sugimoto et al. 2014] and reproduced these puzzling features.And then, the reproduced structures of the atmosphere and the axi-asymmetirc feature are compared with some previous observational results.In addition, the quasi-periodical zonal-mean zonal wind fluctuation is also seen in the Venus polar vortex reproduced in our model. This might be able to explain some observational results [e.g. Luz et al. 2007] and implies that the polar vacillation might also occur in the Venus atmosphere, which is silimar to the Earth's polar atmosphere. We will also show some initial results about this point in this presentation.

  20. A general model for estimation of daily global solar radiation using air temperatures and site geographic parameters in Southwest China

    Science.gov (United States)

    Li, Mao-Fen; Fan, Li; Liu, Hong-Bin; Guo, Peng-Tao; Wu, Wei

    2013-01-01

    Estimation of daily global solar radiation (Rs) from routinely measured temperature data has been widely developed and used in many different areas of the world. However, many of them are site specific. It is assumed that a general model for estimating daily Rs using temperature variables and geographical parameters could be achieved within a climatic region. This paper made an attempt to develop a general model to estimate daily Rs using routinely measured temperature data (maximum (Tmax, °C) and minimum (Tmin, °C) temperatures) and site geographical parameters (latitude (La, °N), longitude (Ld, °E) and altitude (Alt, m)) for Guizhou and Sichuan basin of southwest China, which was classified into the hot summer and cold winter climate zone. Comparison analysis was carried out through statistics indicators such as root mean squared error of percentage (RMSE%), modeling efficiency (ME), coefficient of residual mass (CRM) and mean bias error (MBE). Site-dependent daily Rs estimating models were calibrated and validated using long-term observed weather data. A general formula was then obtained from site geographical parameters and the better fit site-dependent models with mean RMSE% of 38.68%, mean MBE of 0.381 MJ m-2 d-1, mean CRM of 0.04 and mean ME value of 0.713.

  1. Changing dynamics: Time-varying autoregressive models using generalized additive modeling.

    Science.gov (United States)

    Bringmann, Laura F; Hamaker, Ellen L; Vigo, Daniel E; Aubert, André; Borsboom, Denny; Tuerlinckx, Francis

    2017-09-01

    In psychology, the use of intensive longitudinal data has steeply increased during the past decade. As a result, studying temporal dependencies in such data with autoregressive modeling is becoming common practice. However, standard autoregressive models are often suboptimal as they assume that parameters are time-invariant. This is problematic if changing dynamics (e.g., changes in the temporal dependency of a process) govern the time series. Often a change in the process, such as emotional well-being during therapy, is the very reason why it is interesting and important to study psychological dynamics. As a result, there is a need for an easily applicable method for studying such nonstationary processes that result from changing dynamics. In this article we present such a tool: the semiparametric TV-AR model. We show with a simulation study and an empirical application that the TV-AR model can approximate nonstationary processes well if there are at least 100 time points available and no unknown abrupt changes in the data. Notably, no prior knowledge of the processes that drive change in the dynamic structure is necessary. We conclude that the TV-AR model has significant potential for studying changing dynamics in psychology. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  2. Epidemic extinction in a generalized susceptible-infected-susceptible model

    Science.gov (United States)

    Chen, Hanshuang; Huang, Feng; Zhang, Haifeng; Li, Guofeng

    2017-01-01

    We study the extinction of epidemics in a generalized susceptible-infected-susceptible model, where a susceptible individual becomes infected at the rate λ when contacting m infective individual(s) simultaneously, and an infected individual spontaneously recovers at the rate μ. By employing the Wentzel-Kramers-Brillouin approximation for the master equation, the problem is reduced to finding the zero-energy trajectories in an effective Hamiltonian system, and the mean extinction time depends exponentially on the associated action S and the size of the population N, ˜ \\exp ≤ft(NS\\right) . Because of qualitatively different bifurcation features for m  =  1 and m≥slant 2 , we derive independently the expressions of S as a function of the rescaled infection rate λ /μ . For the weak infection, S scales to the distance to the bifurcation with an exponent 2 for m  =  1 and 3/2 for m≥slant 2 . Finally, a rare-event simulation method is used to validate the theory.

  3. Generalized linear model for estimation of missing daily rainfall data

    Science.gov (United States)

    Rahman, Nurul Aishah; Deni, Sayang Mohd; Ramli, Norazan Mohamed

    2017-04-01

    The analysis of rainfall data with no missingness is vital in various applications including climatological, hydrological and meteorological study. The issue of missing data is a serious concern since it could introduce bias and lead to misleading conclusions. In this study, five imputation methods including simple arithmetic average, normal ratio method, inverse distance weighting method, correlation coefficient weighting method and geographical coordinate were used to estimate the missing data. However, these imputation methods ignored the seasonality in rainfall dataset which could give more reliable estimation. Thus this study is aimed to estimate the missingness in daily rainfall data by using generalized linear model with gamma and Fourier series as the link function and smoothing technique, respectively. Forty years daily rainfall data for the period from 1975 until 2014 which consists of seven stations at Kelantan region were selected for the analysis. The findings indicated that the imputation methods could provide more accurate estimation values based on the least mean absolute error, root mean squared error and coefficient of variation root mean squared error when seasonality in the dataset are considered.

  4. Modeling continuous self-report measures of perceived emotion using generalized additive mixed models.

    Science.gov (United States)

    McKeown, Gary J; Sneddon, Ian

    2014-03-01

    Emotion research has long been dominated by the "standard method" of displaying posed or acted static images of facial expressions of emotion. While this method has been useful, it is unable to investigate the dynamic nature of emotion expression. Although continuous self-report traces have enabled the measurement of dynamic expressions of emotion, a consensus has not been reached on the correct statistical techniques that permit inferences to be made with such measures. We propose generalized additive models and generalized additive mixed models as techniques that can account for the dynamic nature of such continuous measures. These models allow us to hold constant shared components of responses that are due to perceived emotion across time, while enabling inference concerning linear differences between groups. The generalized additive mixed model approach is preferred, as it can account for autocorrelation in time series data and allows emotion decoding participants to be modeled as random effects. To increase confidence in linear differences, we assess the methods that address interactions between categorical variables and dynamic changes over time. In addition, we provide comments on the use of generalized additive models to assess the effect size of shared perceived emotion and discuss sample sizes. Finally, we address additional uses, the inference of feature detection, continuous variable interactions, and measurement of ambiguity.

  5. Generalized Friedberg-Lee Model for Neutrino Masses and Leptonic CP Violation from μ-τ Symmetry Breaking

    Science.gov (United States)

    Xing, Zhi-Zhong; Zhang, He; Zhou, Shun

    Assuming the Majorana nature of massive neutrinos, we generalize the Friedberg-Lee neutrino mass model to include CP violation in the neutrino mass matrix Mν. The most general case with all the free parameters of Mν being complex is discussed. We show that a favorable neutrino mixing pattern (with θ12 ≈ 35.3°, θ23 = 45°, θ13 ≠ 0° and δ = 90°) can naturally be derived from Mν, if it has an approximate or softly-broken μ-τ symmetry. We also point out a different way to obtain the nearly tri-bimaximal neutrino mixing pattern with δ = 0° and non-vanishing Majorana phases.

  6. On hydrologic similarity: A dimensionless flood frequency model using a generalized geomorphologic unit hydrograph and partial area runoff generation

    Science.gov (United States)

    Sivapalan, Murugesu; Wood, Eric F.; Beven, Keith J.

    1993-01-01

    One of the shortcomings of the original theory of the geomorphologic unit hydrograph (GUH) is that it assumes that runoff is generated uniformly from the entire catchment area. It is now recognized that in many catchments much of the runoff during storm events is produced on partial areas which usually form on narrow bands along the stream network. A storm response model that includes runoff generation on partial areas by both Hortonian and Dunne mechanisms was recently developed by the authors. In this paper a methodology for integrating this partial area runoff generation model with the GUH-based runoff routing model is presented; this leads to a generalized GUH. The generalized GUH and the storm response model are then used to estimate physically based flood frequency distributions. In most previous work the initial moisture state of the catchment had been assumed to be constant for all the storms. In this paper we relax this assumption and allow the initial moisture conditions to vary between storms. The resulting flood frequency distributions are cast in a scaled dimensionless framework where issues such as catchment scale and similarity can be conveniently addressed. A number of experiments are performed to study the sensitivity of the flood frequency response to some of the 'similarity' parameters identified in this formulation. The results indicate that one of the most important components of the derived flood frequency model relates to the specification of processes within the runoff generation model; specifically the inclusion of both saturation excess and Horton infiltration excess runoff production mechanisms. The dominance of these mechanisms over different return periods of the flood frequency distribution can significantly affect the distributional shape and confidence limits about the distribution. Comparisons with observed flood distributions seem to indicate that such mixed runoff production mechanisms influence flood distribution shape. The

  7. Perceiving others' personalities: examining the dimensionality, assumed similarity to the self, and stability of perceiver effects.

    Science.gov (United States)

    Srivastava, Sanjay; Guglielmo, Steve; Beer, Jennifer S

    2010-03-01

    In interpersonal perception, "perceiver effects" are tendencies of perceivers to see other people in a particular way. Two studies of naturalistic interactions examined perceiver effects for personality traits: seeing a typical other as sympathetic or quarrelsome, responsible or careless, and so forth. Several basic questions were addressed. First, are perceiver effects organized as a global evaluative halo, or do perceptions of different traits vary in distinct ways? Second, does assumed similarity (as evidenced by self-perceiver correlations) reflect broad evaluative consistency or trait-specific content? Third, are perceiver effects a manifestation of stable beliefs about the generalized other, or do they form in specific contexts as group-specific stereotypes? Findings indicated that perceiver effects were better described by a differentiated, multidimensional structure with both trait-specific content and a higher order global evaluation factor. Assumed similarity was at least partially attributable to trait-specific content, not just to broad evaluative similarity between self and others. Perceiver effects were correlated with gender and attachment style, but in newly formed groups, they became more stable over time, suggesting that they grew dynamically as group stereotypes. Implications for the interpretation of perceiver effects and for research on personality assessment and psychopathology are discussed.

  8. Bayesian model choice and information criteria in sparse generalized linear models

    CERN Document Server

    Foygel, Rina

    2011-01-01

    We consider Bayesian model selection in generalized linear models that are high-dimensional, with the number of covariates p being large relative to the sample size n, but sparse in that the number of active covariates is small compared to p. Treating the covariates as random and adopting an asymptotic scenario in which p increases with n, we show that Bayesian model selection using certain priors on the set of models is asymptotically equivalent to selecting a model using an extended Bayesian information criterion. Moreover, we prove that the smallest true model is selected by either of these methods with probability tending to one. Having addressed random covariates, we are also able to give a consistency result for pseudo-likelihood approaches to high-dimensional sparse graphical modeling. Experiments on real data demonstrate good performance of the extended Bayesian information criterion for regression and for graphical models.

  9. Explained variation and predictive accuracy in general parametric statistical models: the role of model misspecification

    DEFF Research Database (Denmark)

    Rosthøj, Susanne; Keiding, Niels

    2004-01-01

    When studying a regression model measures of explained variation are used to assess the degree to which the covariates determine the outcome of interest. Measures of predictive accuracy are used to assess the accuracy of the predictions based on the covariates and the regression model. We give...... a detailed and general introduction to the two measures and the estimation procedures. The framework we set up allows for a study of the effect of misspecification on the quantities estimated. We also introduce a generalization to survival analysis....

  10. Triton College and General Motors: The Partnership Model.

    Science.gov (United States)

    Fonte, Richard; Magnesen, Vernon

    1983-01-01

    The cooperative training program between Illinois's Triton College and General Motors is described. Illustrates the mutual benefits of this problem and recommends that other colleges follow suit. (NJ)

  11. Generalized linear mixed models modern concepts, methods and applications

    CERN Document Server

    Stroup, Walter W

    2012-01-01

    PART I The Big PictureModeling BasicsWhat Is a Model?Two Model Forms: Model Equation and Probability DistributionTypes of Model EffectsWriting Models in Matrix FormSummary: Essential Elements for a Complete Statement of the ModelDesign MattersIntroductory Ideas for Translating Design and Objectives into ModelsDescribing ""Data Architecture"" to Facilitate Model SpecificationFrom Plot Plan to Linear PredictorDistribution MattersMore Complex Example: Multiple Factors with Different Units of ReplicationSetting the StageGoals for Inference with Models: OverviewBasic Tools of InferenceIssue I: Data

  12. Generalized versus non-generalized neural network model for multi-lead inflow forecasting at Aswan High Dam

    Directory of Open Access Journals (Sweden)

    A. El-Shafie

    2011-03-01

    Full Text Available Artificial neural networks (ANN have been found efficient, particularly in problems where characteristics of the processes are stochastic and difficult to describe using explicit mathematical models. However, time series prediction based on ANN algorithms is fundamentally difficult and faces problems. One of the major shortcomings is the search for the optimal input pattern in order to enhance the forecasting capabilities for the output. The second challenge is the over-fitting problem during the training procedure and this occurs when ANN loses its generalization. In this research, autocorrelation and cross correlation analyses are suggested as a method for searching the optimal input pattern. On the other hand, two generalized methods namely, Regularized Neural Network (RNN and Ensemble Neural Network (ENN models are developed to overcome the drawbacks of classical ANN models. Using Generalized Neural Network (GNN helped avoid over-fitting of training data which was observed as a limitation of classical ANN models. Real inflow data collected over the last 130 years at Lake Nasser was used to train, test and validate the proposed model. Results show that the proposed GNN model outperforms non-generalized neural network and conventional auto-regressive models and it could provide accurate inflow forecasting.

  13. Comparative model accuracy of a data-fitted generalized Aw-Rascle-Zhang model

    CERN Document Server

    Fan, Shimao; Seibold, Benjamin

    2013-01-01

    The Aw-Rascle-Zhang (ARZ) model can be interpreted as a generalization of the Lighthill-Whitham-Richards (LWR) model, possessing a family of fundamental diagram curves, each of which represents a class of drivers with a different empty road velocity. A weakness of this approach is that different drivers possess vastly different densities at which traffic flow stagnates. This drawback can be overcome by modifying the pressure relation in the ARZ model, leading to the generalized Aw-Rascle-Zhang (GARZ) model. We present an approach to determine the parameter functions of the GARZ model from fundamental diagram measurement data. The predictive accuracy of the resulting data-fitted GARZ model is compared to other traffic models by means of a three-detector test setup, employing two types of data: vehicle trajectory data, and sensor data. This work also considers the extension of the ARZ and the GARZ models to models with a relaxation term, and conducts an investigation of the optimal relaxation time.

  14. Robertson-Walker cosmological models with perfect fluid in general relativity

    Institute of Scientific and Technical Information of China (English)

    Rishi Kumar Tiwari

    2011-01-01

    Einstein's field equations with variable gravitational and cosmological constants are considered in the presence of perfect fluid for a Robertson-Walker universe by assuming the cosmological term to be proportional to R-m (R is a scale factor and m is a constant). A variety of solutions is presented. The physical significance of the cosmological models has also been discussed.

  15. Ultrasound transducer modeling--general theory and applications to ultrasound reciprocal systems.

    Science.gov (United States)

    Willatzen, M

    2001-01-01

    A tutorial presentation on the theory of reciprocal ultrasound systems is given, and a complete set of modeling equations for one-dimensional multi-layer ultrasound transducers is derived from first principles. The model includes dielectric losses and mechanical losses in the transducer material layers as well as sound absorption in the transmission medium. First, the so-called constitutive relations of a piezoelectric body are derived based on general thermodynamic considerations, assuming that transducer operation takes place under almost isentropic conditions. Second, full attention is given to transducers oscillating in the thickness mode, discarding all other vibration modes. Dynamic transducer equations are determined using Newton's Second Law, Poisson's equation, and the definition of strain applied to a piezoelectric transducer with one or more non-piezoelectric layers on the front surface (multilayer transducer). Boundary conditions include continuity of normal velocity and stress across material interfaces as well as a subsidiary electrical condition over the piezoceramic electrodes. Sound transmission is assumed to take place in a water bath such that the Rayleigh equation can be used to obtain the incoming pressure at the receiver aperture from the acceleration of the opposing transmitter. This allows, e.g., a detailed treatment of receiver signal variations as the receiver moves from the near-field zone to the far-field zone of the transmitter. In the remaining part of the paper, receiver voltage and current signals are obtained by solving the full set of dynamic equations numerically. Special attention is given to transducers consisting of a) a pure piezoceramic layer only, b) a piezoceramic layer and a quarter-wavelength matching layer of polyphenylensulphide (PPS), c) a piezoceramic layer and a half-wavelength matching layer of stainless steel, and d) a piezoceramic layer and a half-wavelength matching layer of stainless steel tuned to resonance by

  16. The Extended Generalized Cost Concept and its Application in Freight Transport and General Equilibrium Modeling

    NARCIS (Netherlands)

    Tavasszy, L.; Davydenko, I.; Ruijgrok, K.

    2009-01-01

    The integration of Spatial Equilibrium models and Freight transport network models is important to produce consistent scenarios for future freight transport demand. At various spatial scales, we see the changes in production, trade, logistics networking and transportation, being driven by mass-indiv

  17. General multi-group macroscopic modeling for thermo-chemical non-equilibrium gas mixtures

    Science.gov (United States)

    Liu, Yen; Panesi, Marco; Sahai, Amal; Vinokur, Marcel

    2015-04-01

    This paper opens a new door to macroscopic modeling for thermal and chemical non-equilibrium. In a game-changing approach, we discard conventional theories and practices stemming from the separation of internal energy modes and the Landau-Teller relaxation equation. Instead, we solve the fundamental microscopic equations in their moment forms but seek only optimum representations for the microscopic state distribution function that provides converged and time accurate solutions for certain macroscopic quantities at all times. The modeling makes no ad hoc assumptions or simplifications at the microscopic level and includes all possible collisional and radiative processes; it therefore retains all non-equilibrium fluid physics. We formulate the thermal and chemical non-equilibrium macroscopic equations and rate coefficients in a coupled and unified fashion for gases undergoing completely general transitions. All collisional partners can have internal structures and can change their internal energy states after transitions. The model is based on the reconstruction of the state distribution function. The internal energy space is subdivided into multiple groups in order to better describe non-equilibrium state distributions. The logarithm of the distribution function in each group is expressed as a power series in internal energy based on the maximum entropy principle. The method of weighted residuals is applied to the microscopic equations to obtain macroscopic moment equations and rate coefficients succinctly to any order. The model's accuracy depends only on the assumed expression of the state distribution function and the number of groups used and can be self-checked for accuracy and convergence. We show that the macroscopic internal energy transfer, similar to mass and momentum transfers, occurs through nonlinear collisional processes and is not a simple relaxation process described by, e.g., the Landau-Teller equation. Unlike the classical vibrational energy

  18. Generalized model for predicting methane conversion to syngas in ...

    African Journals Online (AJOL)

    University School of Chemical Technology, Guru Gobind Singh Indraprastha University ... Linear regression analysis was performed and a generalized equation ... ceramic membrane reactors since it achieves 90% saturation in 25 hours while ...

  19. 25 CFR 224.65 - How may a tribe assume additional activities under a TERA?

    Science.gov (United States)

    2010-04-01

    ... 25 Indians 1 2010-04-01 2010-04-01 false How may a tribe assume additional activities under a TERA... Procedures for Obtaining Tribal Energy Resource Agreements Tera Requirements § 224.65 How may a tribe assume additional activities under a TERA? A tribe may assume additional activities related to the development...

  20. Hydraulic fracturing model based on the discrete fracture model and the generalized J integral

    Science.gov (United States)

    Liu, Z. Q.; Liu, Z. F.; Wang, X. H.; Zeng, B.

    2016-08-01

    The hydraulic fracturing technique is an effective stimulation for low permeability reservoirs. In fracturing models, one key point is to accurately calculate the flux across the fracture surface and the stress intensity factor. To achieve high precision, the discrete fracture model is recommended to calculate the flux. Using the generalized J integral, the present work obtains an accurate simulation of the stress intensity factor. Based on the above factors, an alternative hydraulic fracturing model is presented. Examples are included to demonstrate the reliability of the proposed model and its ability to model the fracture propagation. Subsequently, the model is used to describe the relationship between the geometry of the fracture and the fracturing equipment parameters. The numerical results indicate that the working pressure and the pump power will significantly influence the fracturing process.

  1. Generalized linear models for categorical and continuous limited dependent variables

    CERN Document Server

    Smithson, Michael

    2013-01-01

    Introduction and OverviewThe Nature of Limited Dependent VariablesOverview of GLMsEstimation Methods and Model EvaluationOrganization of This BookDiscrete VariablesBinary VariablesLogistic RegressionThe Binomial GLMEstimation Methods and IssuesAnalyses in R and StataExercisesNominal Polytomous VariablesMultinomial Logit ModelConditional Logit and Choice ModelsMultinomial Processing Tree ModelsEstimation Methods and Model EvaluationAnalyses in R and StataExercisesOrdinal Categorical VariablesModeling Ordinal Variables: Common Practice versus Best PracticeOrdinal Model AlternativesCumulative Mod

  2. Hyperbolic value addition and general models of animal choice.

    Science.gov (United States)

    Mazur, J E

    2001-01-01

    Three mathematical models of choice--the contextual-choice model (R. Grace, 1994), delay-reduction theory (N. Squires & E. Fantino, 1971), and a new model called the hyperbolic value-added model--were compared in their ability to predict the results from a wide variety of experiments with animal subjects. When supplied with 2 or 3 free parameters, all 3 models made fairly accurate predictions for a large set of experiments that used concurrent-chain procedures. One advantage of the hyperbolic value-added model is that it is derived from a simpler model that makes accurate predictions for many experiments using discrete-trial adjusting-delay procedures. Some results favor the hyperbolic value-added model and delay-reduction theory over the contextual-choice model, but more data are needed from choice situations for which the models make distinctly different predictions.

  3. General multi-group macroscopic modeling for thermo-chemical non-equilibrium gas mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yen, E-mail: yen.liu@nasa.gov; Vinokur, Marcel [NASA Ames Research Center, Moffett Field, California 94035 (United States); Panesi, Marco; Sahai, Amal [University of Illinois, Urbana-Champaign, Illinois 61801 (United States)

    2015-04-07

    This paper opens a new door to macroscopic modeling for thermal and chemical non-equilibrium. In a game-changing approach, we discard conventional theories and practices stemming from the separation of internal energy modes and the Landau-Teller relaxation equation. Instead, we solve the fundamental microscopic equations in their moment forms but seek only optimum representations for the microscopic state distribution function that provides converged and time accurate solutions for certain macroscopic quantities at all times. The modeling makes no ad hoc assumptions or simplifications at the microscopic level and includes all possible collisional and radiative processes; it therefore retains all non-equilibrium fluid physics. We formulate the thermal and chemical non-equilibrium macroscopic equations and rate coefficients in a coupled and unified fashion for gases undergoing completely general transitions. All collisional partners can have internal structures and can change their internal energy states after transitions. The model is based on the reconstruction of the state distribution function. The internal energy space is subdivided into multiple groups in order to better describe non-equilibrium state distributions. The logarithm of the distribution function in each group is expressed as a power series in internal energy based on the maximum entropy principle. The method of weighted residuals is applied to the microscopic equations to obtain macroscopic moment equations and rate coefficients succinctly to any order. The model’s accuracy depends only on the assumed expression of the state distribution function and the number of groups used and can be self-checked for accuracy and convergence. We show that the macroscopic internal energy transfer, similar to mass and momentum transfers, occurs through nonlinear collisional processes and is not a simple relaxation process described by, e.g., the Landau-Teller equation. Unlike the classical vibrational energy

  4. An investigation of a GJ 1214b-like exoplanet with a water vapor atmosphere using a simple general circulation model

    CERN Document Server

    Zalucha, Angela M; Madhusudhan, Nikku

    2012-01-01

    We present results from a simple general circulation model (GCM) of a GJ 1214b-like super-Earth exoplanet. The dynamical core of our model is a scaled-up version of a shallow atmosphere, terrestrial planet GCM that has previously been used for Mars and therefore employs different boundary conditions and physical processes than downsized gas giant models. We assume the planet is tidally locked and has the observed characteristics of GJ-1214b [Charbonneau et al. 2009] for surface mass, surface radius, orbital period, and surface gravitational acceleration. We assume the atmosphere is composed entirely of water vapor. We assume the planet has a surface (i.e., a density discontinuity at depth), which will provide a mechanical drag and affect the radiative balance at the bottom boundary. We assume a gray atmosphere in the IR. We find that a westerly jet is present aloft at the equator and that the longitude of maximum temperature is shifted eastward of the substellar point. A wavenumber-1 feature is present in the...

  5. A Generalized Nonlocal Calculus with Application to the Peridynamics Model for Solid Mechanics

    OpenAIRE

    Alali, Bacim; Liu, Kuo; Gunzburger, Max

    2014-01-01

    A nonlocal vector calculus was introduced in [2] that has proved useful for the analysis of the peridynamics model of nonlocal mechanics and nonlocal diffusion models. A generalization is developed that provides a more general setting for the nonlocal vector calculus that is independent of particular nonlocal models. It is shown that general nonlocal calculus operators are integral operators with specific integral kernels. General nonlocal calculus properties are developed, including nonlocal...

  6. Aseismic Slips Preceding Ruptures Assumed for Anomalous Seismicities and Crustal Deformations

    Science.gov (United States)

    Ogata, Y.

    2007-12-01

    If aseismic slips occurs on a fault or its deeper extension, both seismicity and geodetic records around the source should be affected. Such anomalies are revealed to have occurred during the last several years leading up to the October 2004 Chuetsu Earthquake of M6.8, the March 2007 Noto Peninsula Earthquake of M6.9, and the July 2007 Chuetsu-Oki Earthquake of M6.8, which occurred successively in the near-field, central Japan. Seismic zones of negative and positive increments of the Coulomb failure stress, assuming such slips, show seismic quiescence and activation, respectively, relative to the predicted rate by the ETAS model. These are further supported by transient crustal movement around the source preceding the rupture. Namely, time series of the baseline distance records between a numbers of the permanent GPS stations deviated from the predicted trend, with the trend of different slope that is basically consistent with the horizontal displacements of the stations due to the assumed slips. References Ogata, Y. (2007) Seismicity and geodetic anomalies in a wide area preceding the Niigata-Ken-Chuetsu Earthquake of October 23, 2004, central Japan, J. Geophys. Res. 112, in press.

  7. Inference of Super-exponential Human Population Growth via Efficient Computation of the Site Frequency Spectrum for Generalized Models.

    Science.gov (United States)

    Gao, Feng; Keinan, Alon

    2016-01-01

    The site frequency spectrum (SFS) and other genetic summary statistics are at the heart of many population genetic studies. Previous studies have shown that human populations have undergone a recent epoch of fast growth in effective population size. These studies assumed that growth is exponential, and the ensuing models leave an excess amount of extremely rare variants. This suggests that human populations might have experienced a recent growth with speed faster than exponential. Recent studies have introduced a generalized growth model where the growth speed can be faster or slower than exponential. However, only simulation approaches were available for obtaining summary statistics under such generalized models. In this study, we provide expressions to accurately and efficiently evaluate the SFS and other summary statistics under generalized models, which we further implement in a publicly available software. Investigating the power to infer deviation of growth from being exponential, we observed that adequate sample sizes facilitate accurate inference; e.g., a sample of 3000 individuals with the amount of data expected from exome sequencing allows observing and accurately estimating growth with speed deviating by ≥10% from that of exponential. Applying our inference framework to data from the NHLBI Exome Sequencing Project, we found that a model with a generalized growth epoch fits the observed SFS significantly better than the equivalent model with exponential growth (P-value [Formula: see text]). The estimated growth speed significantly deviates from exponential (P-value [Formula: see text]), with the best-fit estimate being of growth speed 12% faster than exponential.

  8. Hierarchical Shrinkage Priors and Model Fitting for High-dimensional Generalized Linear Models

    Science.gov (United States)

    Yi, Nengjun; Ma, Shuangge

    2013-01-01

    Genetic and other scientific studies routinely generate very many predictor variables, which can be naturally grouped, with predictors in the same groups being highly correlated. It is desirable to incorporate the hierarchical structure of the predictor variables into generalized linear models for simultaneous variable selection and coefficient estimation. We propose two prior distributions: hierarchical Cauchy and double-exponential distributions, on coefficients in generalized linear models. The hierarchical priors include both variable-specific and group-specific tuning parameters, thereby not only adopting different shrinkage for different coefficients and different groups but also providing a way to pool the information within groups. We fit generalized linear models with the proposed hierarchical priors by incorporating flexible expectation-maximization (EM) algorithms into the standard iteratively weighted least squares as implemented in the general statistical package R. The methods are illustrated with data from an experiment to identify genetic polymorphisms for survival of mice following infection with Listeria monocytogenes. The performance of the proposed procedures is further assessed via simulation studies. The methods are implemented in a freely available R package BhGLM (http://www.ssg.uab.edu/bhglm/). PMID:23192052

  9. Interest Rates with Long Memory: A Generalized Affine Term-Structure Model

    DEFF Research Database (Denmark)

    Osterrieder, Daniela

    We propose a model for the term structure of interest rates that is a generalization of the discrete-time, Gaussian, affine yield-curve model. Compared to standard affine models, our model allows for general linear dynamics in the vector of state variables. In an application to real yields of U...

  10. Retrofitting Non-Cognitive-Diagnostic Reading Assessment under the Generalized DINA Model Framework

    Science.gov (United States)

    Chen, Huilin; Chen, Jinsong

    2016-01-01

    Cognitive diagnosis models (CDMs) are psychometric models developed mainly to assess examinees' specific strengths and weaknesses in a set of skills or attributes within a domain. By adopting the Generalized-DINA model framework, the recently developed general modeling framework, we attempted to retrofit the PISA reading assessments, a…

  11. An atmospheric general circulation model for Pluto with predictions for New Horizons temperature profiles

    Science.gov (United States)

    Zalucha, Angela M.

    2016-06-01

    Results are presented from a 3D Pluto general circulation model (GCM) that includes conductive heating and cooling, non-local thermodynamic equilibrium (non-LTE) heating by methane at 2.3 and 3.3 μm, non-LTE cooling by cooling by methane at 7.6 μm, and LTE CO rotational line cooling. The GCM also includes a treatment of the subsurface temperature and surface-atmosphere mass exchange. An initially 1 m thick layer of surface nitrogen frost was assumed such that it was large enough to act as a large heat sink (compared with the solar heating term) but small enough that the water ice subsurface properties were also significant. Structure was found in all three directions of the 3D wind field (with a maximum magnitude of the order of 10 m s-1 in the horizontal directions and 10-5 microbar s-1 in the vertical direction). Prograde jets were found at several altitudes. The direction of flow over the poles was found to very with altitude. Broad regions of up-welling and down-welling were also found. Predictions of vertical temperature profiles are provided for the Alice and Radio science Experiment instruments on New Horizons, while predictions of light curves are provided for ground-based stellar occultation observations. With this model methane concentrations of 0.2 per cent and 1.0 per cent and 8 and 24 microbar surface pressures are distinguishable. For ground-based stellar occultations, a detectable difference exists between light curves with the different methane concentrations, but not for different initial global mean surface pressures.

  12. A generalized electrostatic micro-mirror (GEM) model for a two-axis convex piecewise linear shaped MEMS mirror

    Science.gov (United States)

    Edwards, C. L.; Edwards, M. L.

    2009-05-01

    MEMS micro-mirror technology offers the opportunity to replace larger optical actuators with smaller, faster ones for lidar, network switching, and other beam steering applications. Recent developments in modeling and simulation of MEMS two-axis (tip-tilt) mirrors have resulted in closed-form solutions that are expressed in terms of physical, electrical and environmental parameters related to the MEMS device. The closed-form analytical expressions enable dynamic time-domain simulations without excessive computational overhead and are referred to as the Micro-mirror Pointing Model (MPM). Additionally, these first-principle models have been experimentally validated with in-situ static, dynamic, and stochastic measurements illustrating their reliability. These models have assumed that the mirror has a rectangular shape. Because the corners can limit the dynamic operation of a rectangular mirror, it is desirable to shape the mirror, e.g., mitering the corners. Presented in this paper is the formulation of a generalized electrostatic micromirror (GEM) model with an arbitrary convex piecewise linear shape that is readily implemented in MATLAB and SIMULINK for steady-state and dynamic simulations. Additionally, such a model permits an arbitrary shaped mirror to be approximated as a series of linearly tapered segments. Previously, "effective area" arguments were used to model a non-rectangular shaped mirror with an equivalent rectangular one. The GEM model shows the limitations of this approach and provides a pre-fabrication tool for designing mirror shapes.

  13. Beyond Information Seeking: Towards a General Model of Information Behaviour

    Science.gov (United States)

    Godbold, Natalya

    2006-01-01

    Introduction: The aim of the paper is to propose new models of information behaviour that extend the concept beyond simply information seeking to consider other modes of behaviour. The models chiefly explored are those of Wilson and Dervin. Argument: A shortcoming of some models of information behaviour is that they present a sequence of stages…

  14. Model Checking for a General Linear Model with Nonignorable Missing Covariates

    Institute of Scientific and Technical Information of China (English)

    Zhi-hua SUN; Wai-Cheung IP; Heung WONG

    2012-01-01

    In this paper,we investigate the model checking problem for a general linear model with nonignorable missing covariates.We show that,without any parametric model assumption for the response probability,the least squares method yields consistent estimators for the linear model even if only the complete data are applied.This makes it feasible to propose two testing procedures for the corresponding model checking problem:a score type lack-of-fit test and a test based on the empirical process.The asymptotic properties of the test statistics are investigated.Both tests are shown to have asymptotic power 1 for local alternatives converging to the null at the rate n-(r),0 ≤ (r) < 1/2.Simulation results show that both tests perform satisfactorily.

  15. Looking beyond general metrics for model evaluation - lessons from an international model intercomparison study

    Science.gov (United States)

    Bouaziz, Laurène; de Boer-Euser, Tanja; Brauer, Claudia; Drogue, Gilles; Fenicia, Fabrizio; Grelier, Benjamin; de Niel, Jan; Nossent, Jiri; Pereira, Fernando; Savenije, Hubert; Thirel, Guillaume; Willems, Patrick

    2016-04-01

    International collaboration between institutes and universities is a promising way to reach consensus on hydrological model development. Education, experience and expert knowledge of the hydrological community have resulted in the development of a great variety of model concepts, calibration methods and analysis techniques. Although comparison studies are very valuable for international cooperation, they do often not lead to very clear new insights regarding the relevance of the modelled processes. We hypothesise that this is partly caused by model complexity and the used comparison methods, which focus on a good overall performance instead of focusing on specific events. We propose an approach that focuses on the evaluation of specific events. Eight international research groups calibrated their model for the Ourthe catchment in Belgium (1607 km2) and carried out a validation in time for the Ourthe (i.e. on two different periods, one of them on a blind mode for the modellers) and a validation in space for nested and neighbouring catchments of the Meuse in a completely blind mode. For each model, the same protocol was followed and an ensemble of best performing parameter sets was selected. Signatures were first used to assess model performances in the different catchments during validation. Comparison of the models was then followed by evaluation of selected events, which include: low flows, high flows and the transition from low to high flows. While the models show rather similar performances based on general metrics (i.e. Nash-Sutcliffe Efficiency), clear differences can be observed for specific events. While most models are able to simulate high flows well, large differences are observed during low flows and in the ability to capture the first peaks after drier months. The transferability of model parameters to neighbouring and nested catchments is assessed as an additional measure in the model evaluation. This suggested approach helps to select, among competing

  16. Generalized isothermal models with strange equation of state

    Indian Academy of Sciences (India)

    S D Maharaj; S Thirukkanesh

    2009-03-01

    We consider the linear equation of state for matter distributions that may be applied to strange stars with quark matter. In our general approach the compact relativistic body allows for anisotropic pressures in the presence of the electromagnetic field. New exact solutions are found to the Einstein–Maxwell system. A particular case is shown to be regular at the stellar centre. In the isotropic limit we regain the general relativistic isothermal Universe. We show that the mass corresponds to the values obtained previously for quark stars when anisotropy and charge are present.

  17. A generalized SHGI integrable hierarchy and its expanding integrable model

    Institute of Scientific and Technical Information of China (English)

    Zhang Yu-Feng

    2004-01-01

    An anti-symmetric loop algebra A2 is constructed. It follows that an integrable system is obtained by use of Tu's scheme. The eminent feature of this integrable system is that it is reduced to a generalized Schrodinger equation, the well-known heat-conduction equation and a Gerdjkov-Ivanov (GI) equation. Therefore, we call it a generalized SHGI hierarchy. Next, a new high-dimensional subalgebra G of the loop algebra A2 is constructed. As its application, a new expanding integrable system with six potential functions is engendered.

  18. Generalized Heteroskedasticity ACF for Moving Average Models in Explicit Forms

    OpenAIRE

    Samir Khaled Safi

    2014-01-01

    The autocorrelation function (ACF) measures the correlation between observations at different   distances apart. We derive explicit equations for generalized heteroskedasticity ACF for moving average of order q, MA(q). We consider two cases: Firstly: when the disturbance term follow the general covariance matrix structure Cov(wi, wj)=S with si,j ¹ 0 " i¹j . Secondly: when the diagonal elements of S are not all identical but sij = 0 " i¹j, i.e. S=diag(s11, s22,&hellip...

  19. Modelo de Alfabetizacion: A Poblacion Urbana y Rural. Documento General (Literacy Model: Urban and Rural Populations. General Document).

    Science.gov (United States)

    Instituto Nacional para la Educacion de los Adultos, Mexico City (Mexico).

    This document describes literacy models for urban and rural populations in Mexico. It contains four sections. The first two sections (generalizations about the population and considerations about the teaching of adults) discuss the environment that creates illiterate adults and also describe some of the conditions under which learning takes place…

  20. On folivory, competition, and intelligence: generalisms, overgeneralizations, and models of primate evolution.

    Science.gov (United States)

    Sayers, Ken

    2013-04-01

    Considerations of primate behavioral evolution often proceed by assuming the ecological and competitive milieus of particular taxa via their relative exploitation of gross food types, such as fruits versus leaves. Although this "fruit/leaf dichotomy" has been repeatedly criticized, it continues to be implicitly invoked in discussions of primate socioecology and female social relationships and is explicitly invoked in models of brain evolution. An expanding literature suggests that such views have severely limited our knowledge of the social and ecological complexities of primate folivory. This paper examines the behavior of primate folivore-frugivores, with particular emphasis on gray langurs (traditionally, Semnopithecus entellus) within the broader context of evolutionary ecology. Although possessing morphological characteristics that have been associated with folivory and constrained activity patterns, gray langurs are known for remarkable plasticity in ecology and behavior. Their diets are generally quite broad and can be discussed in relation to Liem's Paradox, the odd coupling of anatomical feeding specializations with a generalist foraging strategy. Gray langurs, not coincidentally, inhabit arguably the widest range of habitats for a nonhuman primate, including high elevations in the Himalayas. They provide an excellent focal point for examining the assumptions and predictions of behavioral, socioecological, and cognitive evolutionary models. Contrary to the classical descriptions of the primate folivore, Himalayan and other gray langurs-and, in actuality, many leaf-eating primates-range widely, engage in resource competition (both of which have previously been noted for primate folivores), and solve ecological problems rivaling those of more frugivorous primates (which has rarely been argued for primate folivores). It is maintained that questions of primate folivore adaptation, temperate primate adaptation, and primate evolution more generally cannot be

  1. Generalized anisotropic strange star models for compact stars

    CERN Document Server

    Mauryaa, S K; Dayanandan, Baiju; Jasim, M K; Al-Jamel, Ahmed

    2015-01-01

    We present new anisotropic generalization of Buchdahl [1] type perfect fluid solution by using the method of earlier work [2]. In similar approach we have constructed the new pressure anisotropy factor {\\Delta} by the help both the metric potential e^{\\lambda} and e^{\

  2. Promising synergies of simulation model management, software engineering, artificial intelligence, and general system theories

    Energy Technology Data Exchange (ETDEWEB)

    Oren, T.I.

    1982-01-01

    Simulation is viewed within the model management paradigm. Major components of simulation systems as well as elements of model management are outlined. Possible synergies of simulation model management, software engineering, artificial intelligence, and general system theories are systematized. 21 references.

  3. A mechanistic model for predicting flow-assisted and general corrosion of carbon steel in reactor primary coolants

    Energy Technology Data Exchange (ETDEWEB)

    Lister, D. [University of New Brunswick, Fredericton, NB (Canada). Dept. of Chemical Engineering; Lang, L.C. [Atomic Energy of Canada Ltd., Chalk River Lab., ON (Canada)

    2002-07-01

    Flow-assisted corrosion (FAC) of carbon steel in high-temperature lithiated water can be described with a model that invokes dissolution of the protective oxide film and erosion of oxide particles that are loosened as a result. General corrosion under coolant conditions where oxide is not dissolved is described as well. In the model, the electrochemistry of magnetite dissolution and precipitation and the effect of particle size on solubility move the dependence on film thickness of the diffusion processes (and therefore the corrosion rate) away from reciprocal. Particle erosion under dissolving conditions is treated stochastically and depends upon the fluid shear stress at the surface. The corrosion rate dependence on coolant flow under FAC conditions then becomes somewhat less than that arising purely from fluid shear (proportional to the velocity squared). Under non-dissolving conditions, particle erosion occurs infrequently and general corrosion is almost unaffected by flow For application to a CANDU primary circuit and its feeders, the model was bench-marked against the outlet feeder S08 removed from the Point Lepreau reactor, which furnished one value of film thickness and one of corrosion rate for a computed average coolant velocity. Several constants and parameters in the model had to be assumed or were optimised, since values for them were not available. These uncertainties are no doubt responsible for the rather high values of potential that evolved as steps in the computation. The model predicts film thickness development and corrosion rate for the whole range of coolant velocities in outlet feeders very well. In particular, the detailed modelling of FAC in the complex geometry of one outlet feeder (F11) is in good agreement with measurements. When the particle erosion computations are inserted in the balance equations for the circuit, realistic values of crud level are obtained. The model also predicts low corrosion rates and thick oxide films for inlet

  4. Estimating option values of solar radiation management assuming that climate sensitivity is uncertain.

    Science.gov (United States)

    Arino, Yosuke; Akimoto, Keigo; Sano, Fuminori; Homma, Takashi; Oda, Junichiro; Tomoda, Toshimasa

    2016-05-24

    Although solar radiation management (SRM) might play a role as an emergency geoengineering measure, its potential risks remain uncertain, and hence there are ethical and governance issues in the face of SRM's actual deployment. By using an integrated assessment model, we first present one possible methodology for evaluating the value arising from retaining an SRM option given the uncertainty of climate sensitivity, and also examine sensitivities of the option value to SRM's side effects (damages). Reflecting the governance challenges on immediate SRM deployment, we assume scenarios in which SRM could only be deployed with a limited degree of cooling (0.5 °C) only after 2050, when climate sensitivity uncertainty is assumed to be resolved and only when the sensitivity is found to be high (T2x = 4 °C). We conduct a cost-effectiveness analysis with constraining temperature rise as the objective. The SRM option value is originated from its rapid cooling capability that would alleviate the mitigation requirement under climate sensitivity uncertainty and thereby reduce mitigation costs. According to our estimates, the option value during 1990-2049 for a +2.4 °C target (the lowest temperature target level for which there were feasible solutions in this model study) relative to preindustrial levels were in the range between $2.5 and $5.9 trillion, taking into account the maximum level of side effects shown in the existing literature. The result indicates that lower limits of the option values for temperature targets below +2.4 °C would be greater than $2.5 trillion.

  5. General model and control of an n rotor helicopter

    Science.gov (United States)

    Sidea, A. G.; Yding Brogaard, R.; Andersen, N. A.; Ravn, O.

    2014-12-01

    The purpose of this study was to create a dynamic, nonlinear mathematical model of a multirotor that would be valid for different numbers of rotors. Furthermore, a set of Single Input Single Output (SISO) controllers were implemented for attitude control. Both model and controllers were tested experimentally on a quadcopter. Using the combined model and controllers, simple system simulation and control is possible, by replacing the physical values for the individual systems.

  6. General model and control of an n rotor helicopter

    OpenAIRE

    2015-01-01

    The purpose of this study was to create a dynamic, nonlinear mathematical model ofa multirotor that would be valid for different numbers of rotors. Furthermore, a set of SingleInput Single Output (SISO) controllers were implemented for attitude control. Both model andcontrollers were tested experimentally on a quadcopter. Using the combined model andcontrollers, simple system simulation and control is possible, by replacing the physical valuesfor the individual systems.

  7. Constraints on the generalized Chaplygin gas model from gamma-ray bursts

    Energy Technology Data Exchange (ETDEWEB)

    Freitas, Rodolfo Camargo; Goncalves, Sergio Vitorino de Borba; Velten, H.E.S. [Universidade Federal do Espirito Santo (UFES), ES (Brazil). Dept. de Fisica. Grupo de Gravitacao e Cosmologia

    2011-07-01

    Full text: One of the most important problems of Modern Cosmology is the determination of the matter content of the Universe. Combining data of the rotation curve of spiral galaxies, the dynamics of galaxy clusters and structure formation indicate that there is about ten times more pressureless matter in the Universe than can be afforded by the baryonic matter. Moreover, the Type Ia supernovae (SNe Ia) data indicates that the Universe is accelerating. Models considering matter content dominated by an exotic fluid whose pressure is negative is one of the proposals to explain this current accelerated phase of the Universe. At the same time, the position of the first acoustic peak in the spectrum of CMB anisotropies, as obtained by WMAP, favours a spatially flat Universe. If we consider the matter content of the Universe dominated by a fluid with negative pressure we have a scenario with a proportion of {Omega}{sub m} {approx} 0.27 and the {Omega}{sub de} {approx} 0.73, with respect to the critical density, for the fractions of the pressureless matter and dark energy, respectively. Much observational data that has been used for comparison with the theoretical cosmological models like the generalized Chaplygin gas model. The spectra of anisotropy of cosmic microwave background radiation, baryonic acoustic oscillations, the integrated Sachs-Wolfe effect, the matter power spectrum, gravitational lenses, X-ray data and ages estimates of high-z objects have been used in this sense. Gamma-ray bursts are jets that release {approx} 10{sup 51} - 10{sup 53} ergs or more for a few seconds and becomes, in this brief period of time, the most bright object in the Universe. The search for a self-consistent method to use the GRBs in cosmological problems is intense and promising. In a recent article Liang et al. employed a method to obtain the distance moduli {approx} of GRBs in the redshift range of SNe Ia and extend this result to very high redshift GRBs (z > 1.4) in a completely

  8. Modelling Nonlinearities and Reference Dependence in General Practitioners' Income Preferences.

    Science.gov (United States)

    Holte, Jon Helgheim; Sivey, Peter; Abelsen, Birgit; Olsen, Jan Abel

    2016-08-01

    This paper tests for the existence of nonlinearity and reference dependence in income preferences for general practitioners. Confirming the theory of reference dependent utility within the context of a discrete choice experiment, we find that losses loom larger than gains in income for Norwegian general practitioners, i.e. they value losses from their current income level around three times higher than the equivalent gains. Our results are validated by comparison with equivalent contingent valuation values for marginal willingness to pay and marginal willingness to accept compensation for changes in job characteristics. Physicians' income preferences determine the effectiveness of 'pay for performance' and other incentive schemes. Our results may explain the relative ineffectiveness of financial incentive schemes that rely on increasing physicians' incomes. Copyright © 2015 John Wiley & Sons, Ltd.

  9. RxGen General Optical Model Prescription Generator

    Science.gov (United States)

    Sigrist, Norbert

    2012-01-01

    RxGen is a prescription generator for JPL's in-house optical modeling software package called MACOS (Modeling and Analysis for Controlled Optical Systems), which is an expert optical analysis software package focusing on modeling optics on dynamic structures, deformable optics, and controlled optics. The objectives of RxGen are to simplify and automate MACOS prescription generations, reducing errors associated with creating such optical prescriptions, and improving user efficiency without requiring MACOS proficiency. RxGen uses MATLAB (a high-level language and interactive environment developed by MathWorks) as the development and deployment platform, but RxGen can easily be ported to another optical modeling/analysis platform. Running RxGen within the modeling environment has the huge benefit that variations in optical models can be made an integral part of the modeling state. For instance, optical prescription parameters determined as external functional dependencies, optical variations by controlling the in-/exclusion of optical components like sub-systems, and/or controlling the state of all components. Combining the mentioned capabilities and flexibilities with RxGen's optical abstraction layer completely eliminates the hindering aspects for requiring proficiency in writing/editing MACOS prescriptions, allowing users to focus on the modeling aspects of optical systems, i.e., increasing productivity and efficiency. RxGen provides significant enhancements to MACOS and delivers a framework for fast prototyping as well as for developing very complex controlled optical systems.

  10. Towards a general turbulent combustion model for spark ignition engines

    Energy Technology Data Exchange (ETDEWEB)

    Naji, H.; Said, R.; Borghi, R.P.

    1989-01-01

    The prediction of combustion within spark ignition engines needs to take into account the interaction of turbulent fluctuations. Previous attempts at this used a model in which the chemical processes were supposed infinitely fast and the combustion was controlled by turbulent mixing only. This paper describes their progress in extending such models in two directions.

  11. General model and control of an n rotor helicopter

    DEFF Research Database (Denmark)

    Sidea, Adriana-Gabriela; Brogaard, Rune Yding; Andersen, Nils Axel

    2015-01-01

    The purpose of this study was to create a dynamic, nonlinear mathematical model ofa multirotor that would be valid for different numbers of rotors. Furthermore, a set of SingleInput Single Output (SISO) controllers were implemented for attitude control. Both model andcontrollers were tested exper...

  12. General Dynamic Equivalent Modeling of Microgrid Based on Physical Background

    Directory of Open Access Journals (Sweden)

    Changchun Cai

    2015-11-01

    Full Text Available Microgrid is a new power system concept consisting of small-scale distributed energy resources; storage devices and loads. It is necessary to employ a simplified model of microgrid in the simulation of a distribution network integrating large-scale microgrids. Based on the detailed model of the components, an equivalent model of microgrid is proposed in this paper. The equivalent model comprises two parts: namely, equivalent machine component and equivalent static component. Equivalent machine component describes the dynamics of synchronous generator, asynchronous wind turbine and induction motor, equivalent static component describes the dynamics of photovoltaic, storage and static load. The trajectory sensitivities of the equivalent model parameters with respect to the output variables are analyzed. The key parameters that play important roles in the dynamics of the output variables of the equivalent model are identified and included in further parameter estimation. Particle Swarm Optimization (PSO is improved for the parameter estimation of the equivalent model. Simulations are performed in different microgrid operation conditions to evaluate the effectiveness of the equivalent model of microgrid.

  13. A general thermal model of machine tool spindle

    Directory of Open Access Journals (Sweden)

    Yanfang Dong

    2017-01-01

    Full Text Available As the core component of machine tool, the thermal characteristics of the spindle have a significant influence on machine tool running status. Lack of an accurate model of the spindle system, particularly the model of load–deformation coefficient between the bearing rolling elements and rings, severely limits the thermal error analytic precision of the spindle. In this article, bearing internal loads, especially the function relationships between the principal curvature difference F(ρ and auxiliary parameter nδ, semi-major axis a, and semi-minor axis b, have been determined; furthermore, high-precision heat generation combining the heat sinks in the spindle system is calculated; finally, an accurate thermal model of the spindle was established. Moreover, a conventional spindle with embedded fiber Bragg grating temperature sensors has been developed. By comparing the experiment results with simulation, it indicates that the model has good accuracy, which verifies the reliability of the modeling process.

  14. General Methodology for developing UML models from UI

    CERN Document Server

    Reddy, Ch Ram Mohan; Srinivasa, K G; Kumar, T V Suresh; Kanth, K Rajani

    2012-01-01

    In recent past every discipline and every industry have their own methods of developing products. It may be software development, mechanics, construction, psychology and so on. These demarcations work fine as long as the requirements are within one discipline. However, if the project extends over several disciplines, interfaces have to be created and coordinated between the methods of these disciplines. Performance is an important quality aspect of Web Services because of their distributed nature. Predicting the performance of web services during early stages of software development is significant. In Industry, Prototype of these applications is developed during analysis phase of Software Development Life Cycle (SDLC). However, Performance models are generated from UML models. Methodologies for predicting the performance from UML models is available. Hence, In this paper, a methodology for developing Use Case model and Activity model from User Interface is presented. The methodology is illustrated with a case...

  15. A generalized model for stability of trees under impact conditions

    Science.gov (United States)

    Dattola, Giuseppe; Crosta, Giovanni; Castellanza, Riccardo; di Prisco, Claudio; Canepa, Davide

    2016-04-01

    Stability of trees to external actions involve the combined effects of stem and tree root systems. A block impacting on the stem or an applied force pulling the stem can cause a tree instability involving stem bending or failure and tree root rotation. So different contributions are involved in the stability of the system. The rockfalls are common natural phenomena that can be unpredictable in terms of frequency and magnitude characteristics, and this makes difficult the estimate of potential hazard and risk for human lives and activities. In mountain areas a natural form of protection from rockfalls is provided by forest growing. The difficulties in the assessment of the real capability of this natural barrier by means of models is an open problem. Nevertheless, a large amount of experimental data are now available which provides support for the development of advanced theoretical framework and corresponding models. The aim of this contribution consists in presenting a model developed to predict the behavior of trees during a block impact. This model describes the tree stem by means of a linear elastic beam system consisting of two beams connected in series and with an equivalent geometry. The tree root system is described via an equivalent foundation, whose behavior is modelled through an elasto-plastic macro-element model. In order to calibrate the model parameters, simulations reproducing a series of winching tests, are performed. These numerical simulations confirm the capability of the model to predict the mechanical behavior of the stem-root system in terms of displacement vs force curves. Finally, numerical simulations of the impact of a boulder with a tree stem are carried out. These simulations, done under dynamic regime and with the model parameters obtained from the previous set of simulations, confirm the capability of the model to reproduce the effects on the stem-roots system generated by impulsive loads.

  16. Does the Interpersonal Model Generalize to Obesity Without Binge Eating?

    Science.gov (United States)

    Lo Coco, Gianluca; Sutton, Rachel; Tasca, Giorgio A; Salerno, Laura; Oieni, Veronica; Compare, Angelo

    2016-09-01

    The interpersonal model has been validated for binge eating disorder (BED), but it is not yet known if the model applies to individuals who are obese but who do not binge eat. The goal of this study was to compare the validity of the interpersonal model in those with BED versus those with obesity, and normal weight samples. Data from a sample of 93 treatment-seeking women diagnosed with BED, 186 women who were obese without BED, and 100 controls who were normal weight were examined for indirect effects of interpersonal problems on binge eating psychopathology mediated through negative affect. Findings demonstrated the mediating role of negative affect for those with BED and those who were obese without BED. Testing a reverse model suggested that the interpersonal model is specific for BED but that this model may not be specific for those without BED. This is the first study to find support for the interpersonal model in a sample of women with obesity but who do not binge. However, negative affect likely plays a more complex role in determining overeating in those with obesity but who do not binge. Copyright © 2016 John Wiley & Sons, Ltd and Eating Disorders Association.

  17. GENERAL REQUIREMENTS FOR SIMULATION MODELS IN WASTE MANAGEMENT

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Ian; Kossik, Rick; Voss, Charlie

    2003-02-27

    Most waste management activities are decided upon and carried out in a public or semi-public arena, typically involving the waste management organization, one or more regulators, and often other stakeholders and members of the public. In these environments, simulation modeling can be a powerful tool in reaching a consensus on the best path forward, but only if the models that are developed are understood and accepted by all of the parties involved. These requirements for understanding and acceptance of the models constrain the appropriate software and model development procedures that are employed. This paper discusses requirements for both simulation software and for the models that are developed using the software. Requirements for the software include transparency, accessibility, flexibility, extensibility, quality assurance, ability to do discrete and/or continuous simulation, and efficiency. Requirements for the models that are developed include traceability, transparency, credibility/validity, and quality control. The paper discusses these requirements with specific reference to the requirements for performance assessment models that are used for predicting the long-term safety of waste disposal facilities, such as the proposed Yucca Mountain repository.

  18. DGP cosmological model with generalized Ricci dark energy

    Energy Technology Data Exchange (ETDEWEB)

    Aguilera, Yeremy [Universidad de Santiago, Departamento de Matematicas y Ciencia de la Computacion, Santiago (Chile); Avelino, Arturo [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA (United States); Cruz, Norman [Universidad de Santiago, Departamento de Fisica, Facultad de Ciencia, Santiago (Chile); Lepe, Samuel [Pontificia Universidad Catolica de Valparaiso, Facultad de Ciencias, Instituto de Fisica, Valparaiso (Chile); Pena, Francisco [Universidad de La Frontera, Departamento de Ciencias Fisicas, Facultad de Ingenieria y Ciencias, Temuco (Chile)

    2014-11-15

    The brane-world model proposed by Dvali, Gabadadze and Porrati (DGP) leads to an accelerated universe without cosmological constant or other form of dark energy for the positive branch (element of = +1). For the negative branch (element of = -1) we have investigated the behavior of a model with an holographic Ricci-like dark energy and dark matter, where the IR cutoff takes the form αH{sup 2} + βH, H being the Hubble parameter and α, β positive constants of the model. We perform an analytical study of the model in the late-time dark energy dominated epoch, where we obtain a solution for r{sub c}H(z), where r{sub c} is the leakage scale of gravity into the bulk, and conditions for the negative branch on the holographic parameters α and β, in order to hold the conditions of weak energy and accelerated universe. On the other hand, we compare the model versus the late-time cosmological data using the latest type Ia supernova sample of the Joint Light-curve Analysis (JLA), in order to constrain the holographic parameters in the negative branch, as well as r{sub c}H{sub 0} in the positive branch, where H{sub 0} is the Hubble constant. We find that the model has a good fit to the data and that the most likely values for (r{sub c}H{sub 0}, α, β) lie in the permitted region found from an analytical solution in a dark energy dominated universe. We give a justification to use a holographic cutoff in 4D for the dark energy in the 5-dimensional DGP model. Finally, using the Bayesian Information Criterion we find that this model is disfavored compared with the flat ΛCDM model. (orig.)

  19. Computable general equilibrium model fiscal year 2014 capability development report

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, Brian Keith [Los Alamos National Laboratory; Boero, Riccardo [Los Alamos National Laboratory

    2016-05-11

    This report provides an overview of the development of the NISAC CGE economic modeling capability since 2012. This capability enhances NISAC's economic modeling and analysis capabilities to answer a broader set of questions than possible with previous economic analysis capability. In particular, CGE modeling captures how the different sectors of the economy, for example, households, businesses, government, etc., interact to allocate resources in an economy and this approach captures these interactions when it is used to estimate the economic impacts of the kinds of events NISAC often analyzes.

  20. Study on the general model of hydrological frequency analysis

    Institute of Scientific and Technical Information of China (English)

    王浩; 秦大庸; 孙济良; 王建华

    2001-01-01

    On the basis of exponential Gamma distribution, this paper presents a model consisting of 11 kinds of distribution curves for the first time. The model contains several frequency curves used commonly in China and other countries, for example, Pearson type-3 distribution, Kritsky and Menkel (USSR) distribution, Logarithmic normal distribution, and so on. Through dealing with parameters, the model may be applicable to the hydrological extreme values of different climate regions, and has very strong flexibility. In this paper, a real case study using flood datum of 240 different hydrological stations in China is submitted and the calculating results are satisfactory.