WorldWideScience

Sample records for models enable onboard

  1. Compact Ocean Models Enable Onboard AUV Autonomy and Decentralized Adaptive Sampling

    Science.gov (United States)

    2014-09-30

    1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Compact Ocean Models Enable Onboard AUV Autonomy and...Models Enable Onboard AUV Autonomy and Decentralized Adaptive Sampling 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S...onboard autonomy of underwater vehicles”, in Proc. AGU Ocean Science Meeting, Salt Lake City, UT. [published] ● Frolov, S., R., Kudela, J., Bellingham

  2. Onboard Atmospheric Modeling and Prediction for Autonomous Aerobraking Missions

    Science.gov (United States)

    Tolson, Robert H.; Prince, Jill L. H.

    2011-01-01

    Aerobraking has proven to be an effective means of increasing the science payload for planetary orbiting missions and/or for enabling the use of less expensive launch vehicles. Though aerobraking has numerous benefits, large operations cost have been required to maintain the aerobraking time line without violating aerodynamic heating or other constraints. Two operations functions have been performed on an orbit by orbit basis to estimate atmospheric properties relevant to aerobraking. The Navigation team typically solves for an atmospheric density scale factor using DSN tracking data and the atmospheric modeling team uses telemetric accelerometer data to recover atmospheric density profiles. After some effort, decisions are made about the need for orbit trim maneuvers to adjust periapsis altitude to stay within the aerobraking corridor. Autonomous aerobraking would reduce the need for many ground based tasks. To be successful, atmospheric modeling must be performed on the vehicle in near real time. This paper discusses the issues associated with estimating the planetary atmosphere onboard and evaluates a number of the options for Mars, Venus and Titan aerobraking missions.

  3. Modeling and Simulation Reliable Spacecraft On-Board Computing

    Science.gov (United States)

    Park, Nohpill

    1999-01-01

    The proposed project will investigate modeling and simulation-driven testing and fault tolerance schemes for Spacecraft On-Board Computing, thereby achieving reliable spacecraft telecommunication. A spacecraft communication system has inherent capabilities of providing multipoint and broadcast transmission, connectivity between any two distant nodes within a wide-area coverage, quick network configuration /reconfiguration, rapid allocation of space segment capacity, and distance-insensitive cost. To realize the capabilities above mentioned, both the size and cost of the ground-station terminals have to be reduced by using reliable, high-throughput, fast and cost-effective on-board computing system which has been known to be a critical contributor to the overall performance of space mission deployment. Controlled vulnerability of mission data (measured in sensitivity), improved performance (measured in throughput and delay) and fault tolerance (measured in reliability) are some of the most important features of these systems. The system should be thoroughly tested and diagnosed before employing a fault tolerance into the system. Testing and fault tolerance strategies should be driven by accurate performance models (i.e. throughput, delay, reliability and sensitivity) to find an optimal solution in terms of reliability and cost. The modeling and simulation tools will be integrated with a system architecture module, a testing module and a module for fault tolerance all of which interacting through a centered graphical user interface.

  4. A new model for understanding teamwork onboard: the shipmate model.

    Science.gov (United States)

    Espevik, Roar; Olsen, Olav Kjellevold

    2013-01-01

    The increasing complexity onboard a ship underline the importance of crews that are able to coordinate and cooperate with each other to facilitate task objectives through a shared understanding of resources (e.g. team members' knowledge, skills and experience), the crew's goals, and the constrains under which they work. Rotation of personnel through 24/7 shift-work schedules and replacements often put crews ina position of having little or no previous history as a team. Findings from 3 studies indicated that unfamiliar teams used less efficient coordination strategies which reduced efficiency and increased levels of stress in situations where team members where experts on task, distributed or unknown to task and environment.Implications for staffing, safety and training are discussed.

  5. Onboard Robust Visual Tracking for UAVs Using a Reliable Global-Local Object Model

    National Research Council Canada - National Science Library

    Fu, Changhong; Duan, Ran; Kircali, Dogan; Kayacan, Erdal

    2016-01-01

    In this paper, we present a novel onboard robust visual algorithm for long-term arbitrary 2D and 3D object tracking using a reliable global-local object model for unmanned aerial vehicle (UAV) applications, e.g...

  6. Trend modelling of wave parameters and application in onboard prediction of ship responses

    DEFF Research Database (Denmark)

    Montazeri, Najmeh; Nielsen, Ulrik Dam; Jensen, J. Juncher

    2015-01-01

    This paper presents a trend analysis for prediction of sea state parameters onboard shipsduring voyages. Given those parameters, a JONSWAP model and also the transfer functions, prediction of wave induced ship responses are thus made. The procedure is tested with full-scale data of an in-service ......This paper presents a trend analysis for prediction of sea state parameters onboard shipsduring voyages. Given those parameters, a JONSWAP model and also the transfer functions, prediction of wave induced ship responses are thus made. The procedure is tested with full-scale data of an in...

  7. Real-Time Onboard Global Nonlinear Aerodynamic Modeling from Flight Data

    Science.gov (United States)

    Brandon, Jay M.; Morelli, Eugene A.

    2014-01-01

    Flight test and modeling techniques were developed to accurately identify global nonlinear aerodynamic models onboard an aircraft. The techniques were developed and demonstrated during piloted flight testing of an Aermacchi MB-326M Impala jet aircraft. Advanced piloting techniques and nonlinear modeling techniques based on fuzzy logic and multivariate orthogonal function methods were implemented with efficient onboard calculations and flight operations to achieve real-time maneuver monitoring and analysis, and near-real-time global nonlinear aerodynamic modeling and prediction validation testing in flight. Results demonstrated that global nonlinear aerodynamic models for a large portion of the flight envelope were identified rapidly and accurately using piloted flight test maneuvers during a single flight, with the final identified and validated models available before the aircraft landed.

  8. Autonomous operations through onboard artificial intelligence

    Science.gov (United States)

    Sherwood, R. L.; Chien, S.; Castano, R.; Rabideau, G.

    2002-01-01

    The Autonomous Sciencecraft Experiment (ASE) will fly onboard the Air Force TechSat 21 constellation of three spacecraft scheduled for launch in 2006. ASE uses onboard continuous planning, robust task and goal-based execution, model-based mode identification and reconfiguration, and onboard machine learning and pattern recognition to radically increase science return by enabling intelligent downlink selection and autonomous retargeting. Demonstration of these capabilities in a flight environment will open up tremendous new opportunities in planetary science, space physics, and earth science that would be unreachable without this technology.

  9. Development of fast scattering model of complex shape target for seminatural tests of onboard proximity radars in real time mode

    Directory of Open Access Journals (Sweden)

    Likhoedenko Andrei K.

    2016-01-01

    Full Text Available Problems of creation of models of real time of complex shape targets on the basis of use of their polygonal models are considered. Formulas for radar cross section of multipoint model of target and power of input signal of onboard radar are described. Technique of semi-natural tests of onboard radar detector on the base of multipoint model of target is proposed. Results of digital simulation of input signals of the onboard radar detector of the target from the aerodynamic target on the basis of their multipoint models are given.

  10. Modeling the reaction kinetics of a hydrogen generator onboard a fuel cell -- Electric hybrid motorcycle

    Science.gov (United States)

    Ganesh, Karthik

    Owing to the perceived decline of the fossil fuel reserves in the world and environmental issues like pollution, conventional fuels may be replaced by cleaner alternative fuels. The potential of hydrogen as a fuel in vehicular applications is being explored. Hydrogen as an energy carrier potentially finds applications in internal combustion engines and fuel cells because it is considered a clean fuel and has high specific energy. However, at 6 to 8 per kilogram, not only is hydrogen produced from conventional methods like steam reforming expensive, but also there are storage and handling issues, safety concerns and lack of hydrogen refilling stations across the country. The purpose of this research is to suggest a cheap and viable system that generates hydrogen on demand through a chemical reaction between an aluminum-water slurry and an aqueous sodium hydroxide solution to power a 2 kW fuel cell on a fuel cell hybrid motorcycle. This reaction is essentially an aluminum-water reaction where sodium hydroxide acts as a reaction promoter or catalyst. The Horizon 2000 fuel cell used for this purpose has a maximum hydrogen intake rate of 28 lpm. The study focuses on studying the exothermic reaction between the reactants and proposes a rate law that best describes the rate of generation of hydrogen in connection to the surface area of aluminum available for the certain reaction and the concentration of the sodium hydroxide solution. Further, the proposed rate law is used in the simulation model of the chemical reactor onboard the hybrid motorcycle to determine the hydrogen flow rate to the fuel cell with time. Based on the simulated rate of production of hydrogen from the chemical system, its feasibility of use on different drive cycles is analyzed. The rate of production of hydrogen with a higher concentration of sodium hydroxide and smaller aluminum powder size was found to enable the installation of the chemical reactor on urban cycles with frequent stops and starts

  11. Design and analysis of the reliability of on-board computer system based on Markov-model

    Institute of Scientific and Technical Information of China (English)

    MA Xiu-juan; CAO Xi-bin; ZHAO Guo-liang

    2005-01-01

    An on-board computer system should have such advantages as light weight, small volume and low power to meet the demand of micro-satellites. This paper, based on specific characteristics of Stereo Mapping Micro-Satellite ( SMMS), describes the on-board computer system with its advantage of having centralized and distributed control in the same system and analyzes its reliability based on a Markov model in order to provide a theoretical foundation for a reliable design. The on-board computer system has been put into use in principle prototype model of Stereo Mapping Micro-Satellite and has already been debugged. All indexes meet the requirements of the design.

  12. Realising the Uncertainty Enabled Model Web

    Science.gov (United States)

    Cornford, D.; Bastin, L.; Pebesma, E. J.; Williams, M.; Stasch, C.; Jones, R.; Gerharz, L.

    2012-12-01

    The FP7 funded UncertWeb project aims to create the "uncertainty enabled model web". The central concept here is that geospatial models and data resources are exposed via standard web service interfaces, such as the Open Geospatial Consortium (OGC) suite of encodings and interface standards, allowing the creation of complex workflows combining both data and models. The focus of UncertWeb is on the issue of managing uncertainty in such workflows, and providing the standards, architecture, tools and software support necessary to realise the "uncertainty enabled model web". In this paper we summarise the developments in the first two years of UncertWeb, illustrating several key points with examples taken from the use case requirements that motivate the project. Firstly we address the issue of encoding specifications. We explain the usage of UncertML 2.0, a flexible encoding for representing uncertainty based on a probabilistic approach. This is designed to be used within existing standards such as Observations and Measurements (O&M) and data quality elements of ISO19115 / 19139 (geographic information metadata and encoding specifications) as well as more broadly outside the OGC domain. We show profiles of O&M that have been developed within UncertWeb and how UncertML 2.0 is used within these. We also show encodings based on NetCDF and discuss possible future directions for encodings in JSON. We then discuss the issues of workflow construction, considering discovery of resources (both data and models). We discuss why a brokering approach to service composition is necessary in a world where the web service interfaces remain relatively heterogeneous, including many non-OGC approaches, in particular the more mainstream SOAP and WSDL approaches. We discuss the trade-offs between delegating uncertainty management functions to the service interfaces themselves and integrating the functions in the workflow management system. We describe two utility services to address

  13. Fault diagnostics for turbo-shaft engine sensors based on a simplified on-board model.

    Science.gov (United States)

    Lu, Feng; Huang, Jinquan; Xing, Yaodong

    2012-01-01

    Combining a simplified on-board turbo-shaft model with sensor fault diagnostic logic, a model-based sensor fault diagnosis method is proposed. The existing fault diagnosis method for turbo-shaft engine key sensors is mainly based on a double redundancies technique, and this can't be satisfied in some occasions as lack of judgment. The simplified on-board model provides the analytical third channel against which the dual channel measurements are compared, while the hardware redundancy will increase the structure complexity and weight. The simplified turbo-shaft model contains the gas generator model and the power turbine model with loads, this is built up via dynamic parameters method. Sensor fault detection, diagnosis (FDD) logic is designed, and two types of sensor failures, such as the step faults and the drift faults, are simulated. When the discrepancy among the triplex channels exceeds a tolerance level, the fault diagnosis logic determines the cause of the difference. Through this approach, the sensor fault diagnosis system achieves the objectives of anomaly detection, sensor fault diagnosis and redundancy recovery. Finally, experiments on this method are carried out on a turbo-shaft engine, and two types of faults under different channel combinations are presented. The experimental results show that the proposed method for sensor fault diagnostics is efficient.

  14. Fault Diagnostics for Turbo-Shaft Engine Sensors Based on a Simplified On-Board Model

    Science.gov (United States)

    Lu, Feng; Huang, Jinquan; Xing, Yaodong

    2012-01-01

    Combining a simplified on-board turbo-shaft model with sensor fault diagnostic logic, a model-based sensor fault diagnosis method is proposed. The existing fault diagnosis method for turbo-shaft engine key sensors is mainly based on a double redundancies technique, and this can't be satisfied in some occasions as lack of judgment. The simplified on-board model provides the analytical third channel against which the dual channel measurements are compared, while the hardware redundancy will increase the structure complexity and weight. The simplified turbo-shaft model contains the gas generator model and the power turbine model with loads, this is built up via dynamic parameters method. Sensor fault detection, diagnosis (FDD) logic is designed, and two types of sensor failures, such as the step faults and the drift faults, are simulated. When the discrepancy among the triplex channels exceeds a tolerance level, the fault diagnosis logic determines the cause of the difference. Through this approach, the sensor fault diagnosis system achieves the objectives of anomaly detection, sensor fault diagnosis and redundancy recovery. Finally, experiments on this method are carried out on a turbo-shaft engine, and two types of faults under different channel combinations are presented. The experimental results show that the proposed method for sensor fault diagnostics is efficient. PMID:23112645

  15. Modeling and Simulation of Truck Engine Cooling System for Onboard Diagnosis

    Institute of Scientific and Technical Information of China (English)

    朱正礼; 张建武; 包继华

    2004-01-01

    A cooling system model of a selected internal combustion engine has been built for onboard diagnosis. The model uses driving cycle data available within the production Engine Control Module (ECM): vehicle speed, engine speed, and fuel flow rate for the given ambient temperature and pressure, etc. Based on the conservation laws for heat transfer and mass flow process, the mathematical descriptions for the components involved in the cooling circuit are obtained and all the components are integrated into a model on Matlab/Simulink platform. The model can simulate the characteristics of thermostat (e.g. time-lag, hysteresis effect).The changes of coolant temperature, heat transfer flow rate, and pressure at individual component site are also shown.

  16. Modeling Payload Stowage Impacts on Fire Risks On-Board the International Space Station

    Science.gov (United States)

    Anton, Kellie e.; Brown, Patrick F.

    2010-01-01

    The purpose of this presentation is to determine the risks of fire on-board the ISS due to non-standard stowage. ISS stowage is constantly being reexamined for optimality. Non-standard stowage involves stowing items outside of rack drawers, and fire risk is a key concern and is heavily mitigated. A Methodology is needed to account for fire risk due to non-standard stowage to capture the risk. The contents include: 1) Fire Risk Background; 2) General Assumptions; 3) Modeling Techniques; 4) Event Sequence Diagram (ESD); 5) Qualitative Fire Analysis; 6) Sample Qualitative Results for Fire Risk; 7) Qualitative Stowage Analysis; 8) Sample Qualitative Results for Non-Standard Stowage; and 9) Quantitative Analysis Basic Event Data.

  17. Aggregate driver model to enable predictable behaviour

    Science.gov (United States)

    Chowdhury, A.; Chakravarty, T.; Banerjee, T.; Balamuralidhar, P.

    2015-09-01

    The categorization of driving styles, particularly in terms of aggressiveness and skill is an emerging area of interest under the broader theme of intelligent transportation. There are two possible discriminatory techniques that can be applied for such categorization; a microscale (event based) model and a macro-scale (aggregate) model. It is believed that an aggregate model will reveal many interesting aspects of human-machine interaction; for example, we may be able to understand the propensities of individuals to carry out a given task over longer periods of time. A useful driver model may include the adaptive capability of the human driver, aggregated as the individual propensity to control speed/acceleration. Towards that objective, we carried out experiments by deploying smartphone based application to be used for data collection by a group of drivers. Data is primarily being collected from GPS measurements including position & speed on a second-by-second basis, for a number of trips over a two months period. Analysing the data set, aggregate models for individual drivers were created and their natural aggressiveness were deduced. In this paper, we present the initial results for 12 drivers. It is shown that the higher order moments of the acceleration profile is an important parameter and identifier of journey quality. It is also observed that the Kurtosis of the acceleration profiles stores major information about the driving styles. Such an observation leads to two different ranking systems based on acceleration data. Such driving behaviour models can be integrated with vehicle and road model and used to generate behavioural model for real traffic scenario.

  18. Green communication: The enabler to multiple business models

    DEFF Research Database (Denmark)

    Lindgren, Peter; Clemmensen, Suberia; Taran, Yariv

    2010-01-01

    Companies stand at the forefront of a new business model reality with new potentials - that will change their basic understanding and practice of running their business models radically. One of the drivers to this change is green communication, its strong relation to green business models and its...... possibility to enable lower energy consumption. This paper shows how green communication enables innovation of green business models and multiple business models running simultaneously in different markets to different customers....

  19. Radiometric model for the stereo camera STC onboard the BepiColombo ESA mission

    Science.gov (United States)

    Da Deppo, Vania; Martellato, Elena; Simioni, Emanuele; Naletto, Giampiero; Cremonese, Gabriele

    2016-08-01

    The STereoscopic imaging Channel (STC) is one of the instruments on-board the BepiColombo mission, which is an ESA/JAXA Cornerstone mission dedicated to the investigation of the Mercury planet. STC is part of the Spectrometers and Imagers for MPO BepiColombo Integrated Observatory SYStem (SIMBIO-SYS) suite. STC main scientific objective is the 3D global mapping of the entire surface of Mercury with a mean scale factor of 55 m per pixel at periherm. To determine the design requirements and to model the on-ground and in-flight performance of STC, a radiometric model has been developed. In particular, STC optical characteristics have been used to define the instrument response function. As input for the model, different sources can be taken into account depending on the applications, i.e. to simulate the in-flight or on-ground performances. Mercury expected radiance, the measured Optical Ground Support Equipment (OGSE) integrating sphere radiance, or calibrated stellar fluxes can be considered. Primary outputs of the model are the expected signal per pixel expressed in function of the integration time and its signal-to-noise ratio (SNR). These outputs allow then to calculate the most appropriate integration times to be used during the different phases of the mission; in particular for the images taken during the calibration campaign on-ground and for the in-flight ones, i.e. surface imaging along the orbit around Mercury and stellar calibration acquisitions. This paper describes the radiometric model structure philosophy, the input and output parameters and presents the radiometric model derived for STC. The predictions of the model will be compared with some measurements obtained during the Flight Model (FM) ground calibration campaign. The results show that the model is valid, in fact the foreseen simulated values are in good agreement with the real measured ones.

  20. Modeling-Enabled Systems Nutritional Immunology

    Directory of Open Access Journals (Sweden)

    Meghna eVerma

    2016-02-01

    Full Text Available This review highlights the fundamental role of nutrition in the maintenance of health, the immune response and disease prevention. Emerging global mechanistic insights in the field of nutritional immunology cannot be gained through reductionist methods alone or by analyzing a single nutrient at a time. We propose to investigate nutritional immunology as a massively interacting system of interconnected multistage and multiscale networks that encompass hidden mechanisms by which nutrition, microbiome, metabolism, genetic predisposition and the immune system interact to delineate health and disease. The review sets an unconventional path to applying complex science methodologies to nutritional immunology research, discovery and development through ‘use cases’ centered around the impact of nutrition on the gut microbiome and immune responses. Our systems nutritional immunology analyses, that include modeling and informatics methodologies in combination with pre-clinical and clinical studies, have the potential to discover emerging systems-wide properties at the interface of the immune system, nutrition, microbiome, and metabolism.

  1. The GIS data model of the Visible and Infrared mapping spectrometer (VIR) onboard NASA/Dawn

    Science.gov (United States)

    Frigeri, Alessandro; De Sanctis, Maria Cristina; Ammannito, Eleonora; Capaccioni, Fabrizio; VIR Team

    2016-10-01

    The spectrometer onboard Dawn mission to Vesta and Ceres (Russell et al., Earth Moon Planet (2007) 101:65-91) is a hyperspectral spectrometer with imaging capability which returns data useful for the determination of the mineral composition of surface materials in their geologic context. The VIR Spectrometer—covering the range from the near UV (0.25 μm) to the near IR (5.0 μm) and having moderate to high spectral resolution and imaging capabilities—is the appropriate instrument for the determination of Vesta's and Ceres' global and local properties (De Sanctis et al., SSR 2011). VIR combines two data channels in one compact instrument. The visible channel covers 0.25-1.05 μm and the infrared channel covers 1-5.0 μm. VIR is inherited from the VIRTIS mapping spectrometer (Coradini et al. in Planet. Space Sci. 46:1291-1304, 1998; Reininger et al. in Proc. SPIE 2819:66-77, 1996) on board the ESA Rosetta mission.Since the beginning of the scientific campaign, VIR calibrated data have been converted into a Geographic Information System (GIS) compatible format. Here we present the GIS data model we developed for VIR, which presents some unique peculiarities due to the specific NASA/Dawn mission design. The model has been developed starting from an object oriented modeling. This object oriented design gives the flexibility which is necessary to face, time to time, the unexpected aspects of remote sensing over planetary surfaces unobserved before with this kind of instruments.

  2. Using ergonomics digital human modeling in evaluation of workplaces design and prevention of occupational hazards onboard fishing vessel

    OpenAIRE

    Zhang, Bing; Álvarez Casado, Enrique; Tello Sandoval, Sonia; Rodríguez Mondelo, Pedro Manuel

    2010-01-01

    This paper seeks to present methods for improving the occupational health and safety of Spanish fishermen, and for redesigning the workplace onboard small fishing vessels. To achieve its objective, the research project was designed in four steps: First, the equipment and procedures for catching, handling, and storing fish was studied. Second, the work postures of all the fishermen were simulated and assessed by using an ergonomic digital human modeling system (ManneQuin Pro). Third, the wo...

  3. Onboard Robust Visual Tracking for UAVs Using a Reliable Global-Local Object Model.

    Science.gov (United States)

    Fu, Changhong; Duan, Ran; Kircali, Dogan; Kayacan, Erdal

    2016-08-31

    In this paper, we present a novel onboard robust visual algorithm for long-term arbitrary 2D and 3D object tracking using a reliable global-local object model for unmanned aerial vehicle (UAV) applications, e.g., autonomous tracking and chasing a moving target. The first main approach in this novel algorithm is the use of a global matching and local tracking approach. In other words, the algorithm initially finds feature correspondences in a way that an improved binary descriptor is developed for global feature matching and an iterative Lucas-Kanade optical flow algorithm is employed for local feature tracking. The second main module is the use of an efficient local geometric filter (LGF), which handles outlier feature correspondences based on a new forward-backward pairwise dissimilarity measure, thereby maintaining pairwise geometric consistency. In the proposed LGF module, a hierarchical agglomerative clustering, i.e., bottom-up aggregation, is applied using an effective single-link method. The third proposed module is a heuristic local outlier factor (to the best of our knowledge, it is utilized for the first time to deal with outlier features in a visual tracking application), which further maximizes the representation of the target object in which we formulate outlier feature detection as a binary classification problem with the output features of the LGF module. Extensive UAV flight experiments show that the proposed visual tracker achieves real-time frame rates of more than thirty-five frames per second on an i7 processor with 640 × 512 image resolution and outperforms the most popular state-of-the-art trackers favorably in terms of robustness, efficiency and accuracy.

  4. Onboard Robust Visual Tracking for UAVs Using a Reliable Global-Local Object Model

    Science.gov (United States)

    Fu, Changhong; Duan, Ran; Kircali, Dogan; Kayacan, Erdal

    2016-01-01

    In this paper, we present a novel onboard robust visual algorithm for long-term arbitrary 2D and 3D object tracking using a reliable global-local object model for unmanned aerial vehicle (UAV) applications, e.g., autonomous tracking and chasing a moving target. The first main approach in this novel algorithm is the use of a global matching and local tracking approach. In other words, the algorithm initially finds feature correspondences in a way that an improved binary descriptor is developed for global feature matching and an iterative Lucas–Kanade optical flow algorithm is employed for local feature tracking. The second main module is the use of an efficient local geometric filter (LGF), which handles outlier feature correspondences based on a new forward-backward pairwise dissimilarity measure, thereby maintaining pairwise geometric consistency. In the proposed LGF module, a hierarchical agglomerative clustering, i.e., bottom-up aggregation, is applied using an effective single-link method. The third proposed module is a heuristic local outlier factor (to the best of our knowledge, it is utilized for the first time to deal with outlier features in a visual tracking application), which further maximizes the representation of the target object in which we formulate outlier feature detection as a binary classification problem with the output features of the LGF module. Extensive UAV flight experiments show that the proposed visual tracker achieves real-time frame rates of more than thirty-five frames per second on an i7 processor with 640 × 512 image resolution and outperforms the most popular state-of-the-art trackers favorably in terms of robustness, efficiency and accuracy. PMID:27589769

  5. Onboard Robust Visual Tracking for UAVs Using a Reliable Global-Local Object Model

    Directory of Open Access Journals (Sweden)

    Changhong Fu

    2016-08-01

    Full Text Available In this paper, we present a novel onboard robust visual algorithm for long-term arbitrary 2D and 3D object tracking using a reliable global-local object model for unmanned aerial vehicle (UAV applications, e.g., autonomous tracking and chasing a moving target. The first main approach in this novel algorithm is the use of a global matching and local tracking approach. In other words, the algorithm initially finds feature correspondences in a way that an improved binary descriptor is developed for global feature matching and an iterative Lucas–Kanade optical flow algorithm is employed for local feature tracking. The second main module is the use of an efficient local geometric filter (LGF, which handles outlier feature correspondences based on a new forward-backward pairwise dissimilarity measure, thereby maintaining pairwise geometric consistency. In the proposed LGF module, a hierarchical agglomerative clustering, i.e., bottom-up aggregation, is applied using an effective single-link method. The third proposed module is a heuristic local outlier factor (to the best of our knowledge, it is utilized for the first time to deal with outlier features in a visual tracking application, which further maximizes the representation of the target object in which we formulate outlier feature detection as a binary classification problem with the output features of the LGF module. Extensive UAV flight experiments show that the proposed visual tracker achieves real-time frame rates of more than thirty-five frames per second on an i7 processor with 640 × 512 image resolution and outperforms the most popular state-of-the-art trackers favorably in terms of robustness, efficiency and accuracy.

  6. SDO Onboard Ephemeris Generation

    Science.gov (United States)

    Berry, Kevin E.; Liu, Kuo-Chia

    2008-01-01

    The Solar Dynamics Observatory (SDO) spacecraft is a sun-pointing, semi-autonomous satellite that will allow nearly continuous observations of the Sun with a continuous science data downlink. The science requirements for this mission necessitate very strict sun-pointing requirements, as well as continuous ground station connectivity through high gain antennas (HGAs). For SDO s onboard attitude control system to successfully point the satellite at the Sun and the HGAs at the ground stations with the desired accuracy, in addition to the need for accurate sensors it must have good onboard knowledge of the ephemerides of the Sun, the spacecraft, and the ground station. This paper describes the minimum force models necessary for onboard ephemeris generation in support of an attitude control system. The forces that were considered include the Sun s point mass, Moon s point mass, solar radiation pressure (SRP), and the Earth s gravity with varying degree and order of terms of the geopotential.

  7. Detailed Modeling and Response of Demand Response Enabled Appliances

    Energy Technology Data Exchange (ETDEWEB)

    Vyakaranam, Bharat; Fuller, Jason C.

    2014-04-14

    Proper modeling of end use loads is very important in order to predict their behavior, and how they interact with the power system, including voltage and temperature dependencies, power system and load control functions, and the complex interactions that occur between devices in such an interconnected system. This paper develops multi-state time variant residential appliance models with demand response enabled capabilities in the GridLAB-DTM simulation environment. These models represent not only the baseline instantaneous power demand and energy consumption, but the control systems developed by GE Appliances to enable response to demand response signals and the change in behavior of the appliance in response to the signal. These DR enabled appliances are simulated to estimate their capability to reduce peak demand and energy consumption.

  8. Flight assessment of the onboard propulsion system model for the Performance Seeking Control algorithm on an F-15 aircraft

    Science.gov (United States)

    Orme, John S.; Schkolnik, Gerard S.

    1995-01-01

    Performance Seeking Control (PSC), an onboard, adaptive, real-time optimization algorithm, relies upon an onboard propulsion system model. Flight results illustrated propulsion system performance improvements as calculated by the model. These improvements were subject to uncertainty arising from modeling error. Thus to quantify uncertainty in the PSC performance improvements, modeling accuracy must be assessed. A flight test approach to verify PSC-predicted increases in thrust (FNP) and absolute levels of fan stall margin is developed and applied to flight test data. Application of the excess thrust technique shows that increases of FNP agree to within 3 percent of full-scale measurements for most conditions. Accuracy to these levels is significant because uncertainty bands may now be applied to the performance improvements provided by PSC. Assessment of PSC fan stall margin modeling accuracy was completed with analysis of in-flight stall tests. Results indicate that the model overestimates the stall margin by between 5 to 10 percent. Because PSC achieves performance gains by using available stall margin, this overestimation may represent performance improvements to be recovered with increased modeling accuracy. Assessment of thrust and stall margin modeling accuracy provides a critical piece for a comprehensive understanding of PSC's capabilities and limitations.

  9. Statistical analysis of road-vehicle-driver interaction as an enabler to designing behavioural models

    Science.gov (United States)

    Chakravarty, T.; Chowdhury, A.; Ghose, A.; Bhaumik, C.; Balamuralidhar, P.

    2014-03-01

    Telematics form an important technology enabler for intelligent transportation systems. By deploying on-board diagnostic devices, the signatures of vehicle vibration along with its location and time are recorded. Detailed analyses of the collected signatures offer deep insights into the state of the objects under study. Towards that objective, we carried out experiments by deploying telematics device in one of the office bus that ferries employees to office and back. Data is being collected from 3-axis accelerometer, GPS, speed and the time for all the journeys. In this paper, we present initial results of the above exercise by applying statistical methods to derive information through systematic analysis of the data collected over four months. It is demonstrated that the higher order derivative of the measured Z axis acceleration samples display the properties Weibull distribution when the time axis is replaced by the amplitude of such processed acceleration data. Such an observation offers us a method to predict future behaviour where deviations from prediction are classified as context-based aberrations or progressive degradation of the system. In addition we capture the relationship between speed of the vehicle and median of the jerk energy samples using regression analysis. Such results offer an opportunity to develop a robust method to model road-vehicle interaction thereby enabling us to predict such like driving behaviour and condition based maintenance etc.

  10. Plasma Modeling Enabled Technology Development Empowered by Fundamental Scattering Data

    Science.gov (United States)

    Kushner, Mark J.

    2016-05-01

    Technology development increasingly relies on modeling to speed the innovation cycle. This is particularly true for systems using low temperature plasmas (LTPs) and their role in enabling energy efficient processes with minimal environmental impact. In the innovation cycle, LTP modeling supports investigation of fundamental processes that seed the cycle, optimization of newly developed technologies, and prediction of performance of unbuilt systems for new applications. Although proof-of-principle modeling may be performed for idealized systems in simple gases, technology development must address physically complex systems that use complex gas mixtures that now may be multi-phase (e.g., in contact with liquids). The variety of fundamental electron and ion scattering, and radiation transport data (FSRD) required for this modeling increases as the innovation cycle progresses, while the accuracy required of that data depends on the intended outcome. In all cases, the fidelity, depth and impact of the modeling depends on the availability of FSRD. Modeling and technology development are, in fact, empowered by the availability and robustness of FSRD. In this talk, examples of the impact of and requirements for FSRD in the innovation cycle enabled by plasma modeling will be discussed using results from multidimensional and global models. Examples of fundamental studies and technology optimization will focus on microelectronics fabrication and on optically pumped lasers. Modeling of systems as yet unbuilt will address the interaction of atmospheric pressure plasmas with liquids. Work supported by DOE Office of Fusion Energy Science and the National Science Foundation.

  11. Introducing the Leadership in Enabling Occupation (LEO) model.

    Science.gov (United States)

    Townsend, Elizabeth A; Polatajko, Helene J; Craik, Janet M; von Zweck, Claudia M

    2011-10-01

    Occupational therapy is a broad profession yet access to services remains restricted and uneven across Canada. Access to the potential breadth of occupational therapy is severely restrained by complex supply, retention, and funding challenges. To improve access to occupational therapy, widespread leadership is needed by all practitioners. This brief report introduces the Leadership in Enabling Occupation (LEO) Model, which displays the inter-relationship of four elements of everyday leadership as described in "Positioning Occupational Therapy for Leadership," Section IV, of Enabling Occupation II: Advancing a Vision of Health, Well-being and Justice through Occupation (Townsend & Polatajko, 2007). All occupational therapists have the power to develop leadership capacity within and beyond designated leadership positions. LEO is a leadership tool to extend all occupational therapists' strategic use of scholarship, new accountability approaches, existing and new funding, and workforce planning to improve access to occupational therapy.

  12. Sample-Data Modeling of a Zero Voltage Transition DC-DC Converter for On-Board Battery Charger in EV

    Directory of Open Access Journals (Sweden)

    Teresa R. Granados-Luna

    2014-01-01

    Full Text Available Battery charger is a key device in electric and hybrid electric vehicles. On-board and off-board topologies are available in the market. Lightweight, small, high performance, and simple control are desired characteristics for on-board chargers. Moreover, isolated single-phase topologies are the most common system in Level 1 battery charger topologies. Following this trend, this paper proposes a sampled-data modelling strategy of a zero voltage transition (ZVT DC-DC converter for an on-board battery charger. A piece-wise linear analysis of the converter is the basis of the technique presented such that a large-signal model and, therefore, a small-signal model of the converter are derived. Numerical and simulation results of a 250 W test rig validate the model.

  13. BIM-enabled Conceptual Modelling and Representation of Building Circulation

    Directory of Open Access Journals (Sweden)

    Jin Kook Lee

    2014-08-01

    Full Text Available This paper describes how a building information modelling (BIM-based approach for building circulation enables us to change the process of building design in terms of its computational representation and processes, focusing on the conceptual modelling and representation of circulation within buildings. BIM has been designed for use by several BIM authoring tools, in particular with the widely known interoperable industry foundation classes (IFCs, which follow an object-oriented data modelling methodology. Advances in BIM authoring tools, using space objects and their relations defined in an IFC’s schema, have made it possible to model, visualize and analyse circulation within buildings prior to their construction. Agent-based circulation has long been an interdisciplinary topic of research across several areas, including design computing, computer science, architectural morphology, human behaviour and environmental psychology. Such conventional approaches to building circulation are centred on navigational knowledge about built environments, and represent specific circulation paths and regulations. This paper, however, places emphasis on the use of ‘space objects’ in BIM-enabled design processes rather than on circulation agents, the latter of which are not defined in the IFCs’ schemas. By introducing and reviewing some associated research and projects, this paper also surveys how such a circulation representation is applicable to the analysis of building circulation-related rules.

  14. Aircraft Flight Envelope Identification through On-Board Model Based Estimation Project

    Data.gov (United States)

    National Aeronautics and Space Administration — To improve aviation safety with anticipated growth in capacity, it is necessary to develop flight control technologies that enable safe operations as anomalous...

  15. Cooperative cognitive radio networking system model, enabling techniques, and performance

    CERN Document Server

    Cao, Bin; Mark, Jon W

    2016-01-01

    This SpringerBrief examines the active cooperation between users of Cooperative Cognitive Radio Networking (CCRN), exploring the system model, enabling techniques, and performance. The brief provides a systematic study on active cooperation between primary users and secondary users, i.e., (CCRN), followed by the discussions on research issues and challenges in designing spectrum-energy efficient CCRN. As an effort to shed light on the design of spectrum-energy efficient CCRN, they model the CCRN based on orthogonal modulation and orthogonally dual-polarized antenna (ODPA). The resource allocation issues are detailed with respect to both models, in terms of problem formulation, solution approach, and numerical results. Finally, the optimal communication strategies for both primary and secondary users to achieve spectrum-energy efficient CCRN are analyzed.

  16. Space Partitioning for Privacy Enabled 3D City Models

    Science.gov (United States)

    Filippovska, Y.; Wichmann, A.; Kada, M.

    2016-10-01

    Due to recent technological progress, data capturing and processing of highly detailed (3D) data has become extensive. And despite all prospects of potential uses, data that includes personal living spaces and public buildings can also be considered as a serious intrusion into people's privacy and a threat to security. It becomes especially critical if data is visible by the general public. Thus, a compromise is needed between open access to data and privacy requirements which can be very different for each application. As privacy is a complex and versatile topic, the focus of this work particularly lies on the visualization of 3D urban data sets. For the purpose of privacy enabled visualizations of 3D city models, we propose to partition the (living) spaces into privacy regions, each featuring its own level of anonymity. Within each region, the depicted 2D and 3D geometry and imagery is anonymized with cartographic generalization techniques. The underlying spatial partitioning is realized as a 2D map generated as a straight skeleton of the open space between buildings. The resulting privacy cells are then merged according to the privacy requirements associated with each building to form larger regions, their borderlines smoothed, and transition zones established between privacy regions to have a harmonious visual appearance. It is exemplarily demonstrated how the proposed method generates privacy enabled 3D city models.

  17. Perspectives on Modelling BIM-enabled Estimating Practices

    Directory of Open Access Journals (Sweden)

    Willy Sher

    2014-12-01

    Full Text Available BIM-enabled estimating processes do not replace or provide a substitute for the traditional approaches used in the architecture, engineering and construction industries. This paper explores the impact of BIM on these traditional processes.  It identifies differences between the approaches used with BIM and other conventional methods, and between the various construction professionals that prepare estimates. We interviewed 17 construction professionals from client organizations, contracting organizations, consulting practices and specialist-project firms. Our analyses highlight several logical relationships between estimating processes and BIM attributes. Estimators need to respond to the challenges BIM poses to traditional estimating practices. BIM-enabled estimating circumvents long-established conventions and traditional approaches, and focuses on data management.  Consideration needs to be given to the model data required for estimating, to the means by which these data may be harnessed when exported, to the means by which the integrity of model data are protected, to the creation and management of tools that work effectively and efficiently in multi-disciplinary settings, and to approaches that narrow the gap between virtual reality and actual reality.  Areas for future research are also identified in the paper.

  18. Enabling Advanced Modeling and Simulations for Fuel-Flexible Combustors

    Energy Technology Data Exchange (ETDEWEB)

    Heinz Pitsch

    2010-05-31

    The overall goal of the present project is to enable advanced modeling and simulations for the design and optimization of fuel-flexible turbine combustors. For this purpose we use a high-fidelity, extensively-tested large-eddy simulation (LES) code and state-of-the-art models for premixed/partially-premixed turbulent combustion developed in the PI's group. In the frame of the present project, these techniques are applied, assessed, and improved for hydrogen enriched premixed and partially premixed gas-turbine combustion. Our innovative approaches include a completely consistent description of flame propagation, a coupled progress variable/level set method to resolve the detailed flame structure, and incorporation of thermal-diffusion (non-unity Lewis number) effects. In addition, we have developed a general flamelet-type transformation holding in the limits of both non-premixed and premixed burning. As a result, a model for partially premixed combustion has been derived. The coupled progress variable/level method and the general flamelet tranformation were validated by LES of a lean-premixed low-swirl burner that has been studied experimentally at Lawrence Berkeley National Laboratory. The model is extended to include the non-unity Lewis number effects, which play a critical role in fuel-flexible combustor with high hydrogen content fuel. More specifically, a two-scalar model for lean hydrogen and hydrogen-enriched combustion is developed and validated against experimental and direct numerical simulation (DNS) data. Results are presented to emphasize the importance of non-unity Lewis number effects in the lean-premixed low-swirl burner of interest in this project. The proposed model gives improved results, which shows that the inclusion of the non-unity Lewis number effects is essential for accurate prediction of the lean-premixed low-swirl flame.

  19. Enabling Advanced Modeling and Simulations for Fuel-Flexible Combustors

    Energy Technology Data Exchange (ETDEWEB)

    Pitsch, Heinz

    2010-05-31

    The overall goal of the present project is to enable advanced modeling and simulations for the design and optimization of fuel-flexible turbine combustors. For this purpose we use a high fidelity, extensively-tested large-eddy simulation (LES) code and state-of-the-art models for premixed/partially-premixed turbulent combustion developed in the PI's group. In the frame of the present project, these techniques are applied, assessed, and improved for hydrogen enriched premixed and partially premixed gas-turbine combustion. Our innovative approaches include a completely consistent description of flame propagation; a coupled progress variable/level set method to resolve the detailed flame structure, and incorporation of thermal-diffusion (non-unity Lewis number) effects. In addition, we have developed a general flamelet-type transformation holding in the limits of both non-premixed and premixed burning. As a result, a model for partially premixed combustion has been derived. The coupled progress variable/level method and the general flamelet transformation were validated by LES of a lean-premixed low-swirl burner that has been studied experimentally at Lawrence Berkeley National Laboratory. The model is extended to include the non-unity Lewis number effects, which play a critical role in fuel-flexible combustor with high hydrogen content fuel. More specifically, a two-scalar model for lean hydrogen and hydrogen-enriched combustion is developed and validated against experimental and direct numerical simulation (DNS) data. Results are presented to emphasize the importance of non-unity Lewis number effects in the lean-premixed low-swirl burner of interest in this project. The proposed model gives improved results, which shows that the inclusion of the non-unity Lewis number effects is essential for accurate prediction of the lean-premixed low-swirl flame.

  20. MATHEMATICAL MODELS OF PROCESSES AND SYSTEMS OF TECHNICAL OPERATION FOR ONBOARD COMPLEXES AND FUNCTIONAL SYSTEMS OF AVIONICS

    Directory of Open Access Journals (Sweden)

    Sergey Viktorovich Kuznetsov

    2017-01-01

    Full Text Available Modern aircraft are equipped with complicated systems and complexes of avionics. Aircraft and its avionics tech- nical operation process is observed as a process with changing of operation states. Mathematical models of avionics pro- cesses and systems of technical operation are represented as Markov chains, Markov and semi-Markov processes. The pur- pose is to develop the graph-models of avionics technical operation processes, describing their work in flight, as well as during maintenance on the ground in the various systems of technical operation. The graph-models of processes and sys- tems of on-board complexes and functional avionics systems in flight are proposed. They are based on the state tables. The models are specified for the various technical operation systems: the system with control of the reliability level, the system with parameters control and the system with resource control. The events, which cause the avionics complexes and func- tional systems change their technical state, are failures and faults of built-in test equipment. Avionics system of technical operation with reliability level control is applicable for objects with constant or slowly varying in time failure rate. Avion- ics system of technical operation with resource control is mainly used for objects with increasing over time failure rate. Avionics system of technical operation with parameters control is used for objects with increasing over time failure rate and with generalized parameters, which can provide forecasting and assign the borders of before-fail technical states. The pro- posed formal graphical approach avionics complexes and systems models designing is the basis for models and complex systems and facilities construction, both for a single aircraft and for an airline aircraft fleet, or even for the entire aircraft fleet of some specific type. The ultimate graph-models for avionics in various systems of technical operation permit the beginning of

  1. Toward Holistic Scene Understanding: Feedback Enabled Cascaded Classification Models.

    Science.gov (United States)

    Li, Congcong; Kowdle, Adarsh; Saxena, Ashutosh; Chen, Tsuhan

    2012-07-01

    Scene understanding includes many related subtasks, such as scene categorization, depth estimation, object detection, etc. Each of these subtasks is often notoriously hard, and state-of-the-art classifiers already exist for many of them. These classifiers operate on the same raw image and provide correlated outputs. It is desirable to have an algorithm that can capture such correlation without requiring any changes to the inner workings of any classifier. We propose Feedback Enabled Cascaded Classification Models (FE-CCM), that jointly optimizes all the subtasks while requiring only a "black box" interface to the original classifier for each subtask. We use a two-layer cascade of classifiers, which are repeated instantiations of the original ones, with the output of the first layer fed into the second layer as input. Our training method involves a feedback step that allows later classifiers to provide earlier classifiers information about which error modes to focus on. We show that our method significantly improves performance in all the subtasks in the domain of scene understanding, where we consider depth estimation, scene categorization, event categorization, object detection, geometric labeling, and saliency detection. Our method also improves performance in two robotic applications: an object-grasping robot and an object-finding robot.

  2. Authentication Model Based Bluetooth-enabled Mobile Phone

    Directory of Open Access Journals (Sweden)

    Rania Abdelhameed

    2005-01-01

    Full Text Available Authentication is a mechanism to establish proof of identities, the authentication process ensure that who a particular user is. Current PC, laptop user authentication systems are always done once and hold until it explicitly revoked by the user, or asking the user to frequently reestablish his identity which encouraging him to disable authentication. Zero-Interaction Authentication (ZIA provides solution to this problem. In ZIA, a user wears a small authentication token that communicates with a laptop over a short-range, wireless link. ZIA combine authentication with a file encryption. Here we proposed a Laptop-user Authentication Based Mobile phone (LABM, in our model of authentication, a user uses his Bluetooth-enabled mobile phone, which work as an authentication token that provides the authentication for laptop over a Bluetooth wireless link, in the concept of transient authentication with out combining it with encryption file system. The user authenticate to the mobile phone infrequently. In turn, the mobile phone continuously authenticates to the laptop by means of the short-range, wireless link.

  3. Hubble space telescope onboard battery performance

    Science.gov (United States)

    Rao, Gopalakrishna M.; Wajsgras, Harry; Vaidyanathan, Hari; Armontrout, Jon D.

    1996-01-01

    The performance of six 88 Ah Nickel-Hydrogen (Ni-H2) batteries that are used onboard in the Hubble Space Telescope (Flight Spare Module (FSM) and Flight Module 2 (FM2)) is discussed. These batteries have 22 series cells per battery and a common bus that would enable them to operate at a common voltage. It is launched on April 24, 1990. This paper reviews: the cell design, battery specification, system constraints, operating parameters, onboard battery management, and battery performance.

  4. A model-based approach to the spatial and spectral calibration of NIRSpec onboard JWST

    Science.gov (United States)

    Dorner, B.; Giardino, G.; Ferruit, P.; Alves de Oliveira, C.; Birkmann, S. M.; Böker, T.; De Marchi, G.; Gnata, X.; Köhler, J.; Sirianni, M.; Jakobsen, P.

    2016-08-01

    Context. The NIRSpec instrument for the James Webb Space Telescope (JWST) can be operated in multiobject spectroscopy (MOS), long-slit, and integral field unit (IFU) mode with spectral resolutions from 100 to 2700. Its MOS mode uses about a quarter of a million individually addressable minislits for object selection, covering a field of view of ~9 arcmin2. Aims: The pipeline used to extract wavelength-calibrated spectra from NIRSpec detector images relies heavily on a model of NIRSpec optical geometry. We demonstrate how dedicated calibration data from a small subset of NIRSpec modes and apertures can be used to optimize this parametric model to the necessary levels of fidelity. Methods: Following an iterative procedure, the initial fiducial values of the model parameters are manually adjusted and then automatically optimized, so that the model predicted location of the images and spectral lines from the fixed slits, the IFU, and a small subset of the MOS apertures matches their measured location in the main optical planes of the instrument. Results: The NIRSpec parametric model is able to reproduce the spatial and spectral position of the input spectra with high fidelity. The intrinsic accuracy (1-sigma, rms) of the model, as measured from the extracted calibration spectra, is better than 1/10 of a pixel along the spatial direction and better than 1/20 of a resolution element in the spectral direction for all of the grating-based spectral modes. This is fully consistent with the corresponding allocation in the spatial and spectral calibration budgets of NIRSpec.

  5. A model-based approach to the spatial and spectral calibration of NIRSpec onboard JWST

    CERN Document Server

    Dorner, Bernhard; Ferruit, Pierre; de Oliveira, Catarina Alves; Birkmann, Stephan M; Böker, Torsten; De Marchi, Guido; Gnata, Xavier; Köhler, Jess; Sirianni, Marco; Jakobsen, Peter

    2016-01-01

    Context: The NIRSpec instrument for the James Webb Space Telescope (JWST) can be operated in multiobject (MOS), long-slit, and integral field (IFU) mode with spectral resolutions from 100 to 2700. Its MOS mode uses about a quarter of a million individually addressable minislits for object selection, covering a field of view of $\\sim$9 $\\mathrm{arcmin}^2$. Aims: The pipeline used to extract wavelength-calibrated spectra from NIRSpec detector images relies heavily on a model of NIRSpec optical geometry. We demonstrate how dedicated calibration data from a small subset of NIRSpec modes and apertures can be used to optimize this parametric model to the necessary levels of fidelity. Methods: Following an iterative procedure, the initial fiducial values of the model parameters are manually adjusted and then automatically optimized, so that the model predicted location of the images and spectral lines from the fixed slits, the IFU, and a small subset of the MOS apertures matches their measured location in the main o...

  6. On-board Model Predictive Control of a Quadrotor Helicopter: Design, Implementation, and Experiments

    Science.gov (United States)

    2012-12-13

    when the controller recovered from large disturbances; typically the path back to the origin would not be along a straight line but rather one or the... back to x1 = −1 m after a delay of 3.5 s. We performed this test with both linear MPC (using only the nominal model) and with LBMPC. Fig. Fig.4.3 shows...The proposed primal-dual infeasible start interior point method (PD IIPM) based on Mehrotra’s predictor- corrector scheme (Mehrotra, 1992) was

  7. Flight model performances of HISUI hyperspectral sensor onboard ISS (International Space Station)

    Science.gov (United States)

    Tanii, Jun; Kashimura, Osamu; Ito, Yoshiyuki; Iwasaki, Akira

    2016-10-01

    Hyperspectral Imager Suite (HISUI) is a next-generation Japanese sensor that will be mounted on Japanese Experiment Module (JEM) of ISS (International Space Station) in 2019 as timeframe. HISUI hyperspectral sensor obtains spectral images of 185 bands with the ground sampling distance of 20x31 meter from the visible to shortwave-infrared region. The sensor system is the follow-on mission of the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) in the visible to shortwave infrared region. The critical design review of the instrument was accomplished in 2014. Integration and tests of an flight model of HISUI hyperspectral sensor is being carried out. Simultaneously, the development of JEM-External Facility (EF) Payload system for the instrument started. The system includes the structure, the thermal control system, the electrical system and the pointing mechanism. The development status and the performances including some of the tests results of Instrument flight model, such as optical performance, optical distortion and radiometric performance are reported.

  8. Earth's gravity field modelling based on satellite accelerations derived from onboard GPS phase measurements

    Science.gov (United States)

    Guo, X.; Ditmar, P.; Zhao, Q.; Klees, R.; Farahani, H. H.

    2017-09-01

    GPS data collected by satellite gravity missions can be used for extracting the long-wavelength part of the Earth's gravity field. We propose a new data processing method which makes use of the `average acceleration' approach to gravity field modelling. In this method, satellite accelerations are directly derived from GPS carrier phase measurements with an epoch-differenced scheme. As a result, no ambiguity solutions are needed and the systematic errors that do not change much from epoch to epoch are largely eliminated. The GPS data collected by the Gravity Field and Steady-State Ocean Circulation Explorer (GOCE) satellite mission are used to demonstrate the added value of the proposed method. An analysis of the residual accelerations shows that accelerations derived in this way are more precise, with noise being reduced by about 20 and 5% at the cross-track component and the other two components, respectively, as compared to those based on kinematic orbits. The accelerations obtained in this way allow the recovery of the gravity field to a slightly higher maximum degree compared to the solution based on kinematic orbits. Furthermore, the gravity field solution has an overall better performance. Errors in spherical harmonic coefficients are smaller, especially at low degrees. The cumulative geoid height error is reduced by about 15 and 5% up to degree 50 and 150, respectively. An analysis in the spatial domain shows that large errors along the geomagnetic equator, which are caused by a high electron density coupled with large short-term variations, are substantially reduced. Finally, the new method allows for a better observation of mass transport signals. In particular, sufficiently realistic signatures of regional mass anomalies in North America and south-west Africa are obtained.

  9. Detection of Ionospheric Alfven Resonator Signatures Onboard C/NOFS: Implications for IRI Modeling

    Science.gov (United States)

    Simoes, F.; Klenzing, J.; Ivanov, S.; Pfaff, R.; Rowland, D.; Bilitza, D.

    2011-01-01

    The 2008-2009 long-lasting solar minimum activity has been the one of its kind since the dawn of space age, offering exceptional conditions for investigating space weather in the near-Earth environment. First ever detection of Ionospheric Alfven Resonator (IAR) signatures in orbit offers new means for investigating ionospheric electrodynamics, namely MHD (MagnetoHydroDynamics) wave propagation, aeronomy processes, ionospheric dynamics, and Sun-Earth connection mechanisms at a local scale. Local and global plasma density heterogeneities in the ionosphere and magnetosphere allow for formation of waveguides and resonators where magnetosonic and shear Alfven waves propagate. The ionospheric magnetosonic waveguide results from complete magnetosonic wave reflection about the ionospheric F-region peak, where the Alfven index of refraction presents a maximum. MHD waves can also be partially trapped in the vertical direction between the lower boundary of the ionosphere and the magnetosphere, a resonance mechanism known as IAR. In this work we present C/NOFS (Communications/Navigation Outage Forecasting System) Extremely Low Frequency (ELF) electric field measurements related to IAR signatures, discuss the resonance and wave propagation mechanisms in the ionosphere, and address the electromagnetic inverse problem from which electron/ion distributions can be derived. These peculiar IAR electric field measurements provide new, complementary methodologies for inferring ionospheric electron and ion density profiles, and also contribute for the investigation of ionosphere dynamics and space weather monitoring. Specifically, IAR spectral signatures measured by C/NOFS contribute for improving the International Reference Ionosphere (IRI) model, namely electron density and ion composition.

  10. Earth's gravity field modelling based on satellite accelerations derived from onboard GPS phase measurements

    Science.gov (United States)

    Guo, X.; Ditmar, P.; Zhao, Q.; Klees, R.; Farahani, H. H.

    2017-02-01

    GPS data collected by satellite gravity missions can be used for extracting the long-wavelength part of the Earth's gravity field. We propose a new data processing method which makes use of the `average acceleration' approach to gravity field modelling. In this method, satellite accelerations are directly derived from GPS carrier phase measurements with an epoch-differenced scheme. As a result, no ambiguity solutions are needed and the systematic errors that do not change much from epoch to epoch are largely eliminated. The GPS data collected by the Gravity Field and Steady-State Ocean Circulation Explorer (GOCE) satellite mission are used to demonstrate the added value of the proposed method. An analysis of the residual accelerations shows that accelerations derived in this way are more precise, with noise being reduced by about 20 and 5% at the cross-track component and the other two components, respectively, as compared to those based on kinematic orbits. The accelerations obtained in this way allow the recovery of the gravity field to a slightly higher maximum degree compared to the solution based on kinematic orbits. Furthermore, the gravity field solution has an overall better performance. Errors in spherical harmonic coefficients are smaller, especially at low degrees. The cumulative geoid height error is reduced by about 15 and 5% up to degree 50 and 150, respectively. An analysis in the spatial domain shows that large errors along the geomagnetic equator, which are caused by a high electron density coupled with large short-term variations, are substantially reduced. Finally, the new method allows for a better observation of mass transport signals. In particular, sufficiently realistic signatures of regional mass anomalies in North America and south-west Africa are obtained.

  11. Semantic techniques for enabling knowledge reuse in conceptual modelling

    NARCIS (Netherlands)

    Gracia, J.; Liem, J.; Lozano, E.; Corcho, O.; Trna, M.; Gómez-Pérez, A.; Bredeweg, B.

    2010-01-01

    Conceptual modelling tools allow users to construct formal representations of their conceptualisations. These models are typically developed in isolation, unrelated to other user models, thus losing the opportunity of incorporating knowledge from other existing models or ontologies that might enrich

  12. A Smart Modeling Framework for Integrating BMI-enabled Models as Web Services

    Science.gov (United States)

    Jiang, P.; Elag, M.; Kumar, P.; Peckham, S. D.; Liu, R.; Marini, L.; Hsu, L.

    2015-12-01

    Serviced-oriented computing provides an opportunity to couple web service models using semantic web technology. Through this approach, models that are exposed as web services can be conserved in their own local environment, thus making it easy for modelers to maintain and update the models. In integrated modeling, the serviced-oriented loose-coupling approach requires (1) a set of models as web services, (2) the model metadata describing the external features of a model (e.g., variable name, unit, computational grid, etc.) and (3) a model integration framework. We present the architecture of coupling web service models that are self-describing by utilizing a smart modeling framework. We expose models that are encapsulated with CSDMS (Community Surface Dynamics Modeling System) Basic Model Interfaces (BMI) as web services. The BMI-enabled models are self-describing by uncovering models' metadata through BMI functions. After a BMI-enabled model is serviced, a client can initialize, execute and retrieve the meta-information of the model by calling its BMI functions over the web. Furthermore, a revised version of EMELI (Peckham, 2015), an Experimental Modeling Environment for Linking and Interoperability, is chosen as the framework for coupling BMI-enabled web service models. EMELI allows users to combine a set of component models into a complex model by standardizing model interface using BMI as well as providing a set of utilities smoothing the integration process (e.g., temporal interpolation). We modify the original EMELI so that the revised modeling framework is able to initialize, execute and find the dependencies of the BMI-enabled web service models. By using the revised EMELI, an example will be presented on integrating a set of topoflow model components that are BMI-enabled and exposed as web services. Reference: Peckham, S.D. (2014) EMELI 1.0: An experimental smart modeling framework for automatic coupling of self-describing models, Proceedings of HIC 2014

  13. 车载ATO运行等级模式曲线的计算模型研究%Computational Model of Operation Level Type Profile of Onboard ATO

    Institute of Scientific and Technical Information of China (English)

    林颖; 王长林

    2013-01-01

    车载ATO的运行等级模式曲线计算是车载ATO的重要功能之一.本文通过分析车载ATO自动调速功能,确定了ATO运行等级模式曲线的设计需求.针对设计需求,结合列车运行状态转移模型,以准点、舒适、节能等为速度控制目标,对不同的城轨列车运行计划(包括运行时间和运行路径)建立了车载ATO运行等级模式曲线的计算模型.通过仿真验证,本文建立的运行等级模式曲线计算模型基本满足车载ATO自动调速功能的设计需求,为自动调速模块提供控制目标曲线.%The calculation function of the operation level type profile is one of the most important functions of the onboard ATO system.In this paper the automatic speed control function of the onboard ATO system was analyzed,the design requirements of the operation level type profile were determined.According to the design requirements and the transition model of train operation states,the computational model of the operation level type profile of the onboard ATO system for different train operation plans (including running time and running path) was established with punctuality,comfort and energy saving as the speed control goals.Through simulation,it is verified that the computational model of the operation level type profile can meet the design requirements of the onboard ATO automatic speed control function and provide the control target profile for automatic speed control modules.

  14. The Marine Virtual Laboratory: enabling efficient ocean model configuration

    Directory of Open Access Journals (Sweden)

    P. R. Oke

    2015-11-01

    Full Text Available The technical steps involved in configuring a regional ocean model are analogous for all community models. All require the generation of a model grid, preparation and interpolation of topography, initial conditions, and forcing fields. Each task in configuring a regional ocean model is straight-forward – but the process of downloading and reformatting data can be time-consuming. For an experienced modeller, the configuration of a new model domain can take as little as a few hours – but for an inexperienced modeller, it can take much longer. In pursuit of technical efficiency, the Australian ocean modelling community has developed the Web-based MARine Virtual Laboratory (WebMARVL. WebMARVL allows a user to quickly and easily configure an ocean general circulation or wave model through a simple interface, reducing the time to configure a regional model to a few minutes. Through WebMARVL, a user is prompted to define the basic options needed for a model configuration, including the: model, run duration, spatial extent, and input data. Once all aspects of the configuration are selected, a series of data extraction, reprocessing, and repackaging services are run, and a "take-away bundle" is prepared for download. Building on the capabilities developed under Australia's Integrated Marine Observing System, WebMARVL also extracts all of the available observations for the chosen time-space domain. The user is able to download the take-away bundle, and use it to run the model of their choice. Models supported by WebMARVL include three community ocean general circulation models, and two community wave models. The model configuration from the take-away bundle is intended to be a starting point for scientific research. The user may subsequently refine the details of the model set-up to improve the model performance for the given application. In this study, WebMARVL is described along with a series of results from test cases comparing Web

  15. A human brainstem glioma xenograft model enabled for bioluminescence imaging

    OpenAIRE

    Hashizume, Rintaro; Ozawa, Tomoko; Dinca, Eduard B.; Banerjee, Anuradha; Prados, Michael D.; James, Charles D.; Gupta, Nalin

    2009-01-01

    Despite the use of radiation and chemotherapy, the prognosis for children with diffuse brainstem gliomas is extremely poor. There is a need for relevant brainstem tumor models that can be used to test new therapeutic agents and delivery systems in pre-clinical studies. We report the development of a brainstem-tumor model in rats and the application of bioluminescence imaging (BLI) for monitoring tumor growth and response to therapy as part of this model. Luciferase-modified human glioblastoma...

  16. An Agent Memory Model Enabling Rational and Biased Reasoning

    NARCIS (Netherlands)

    Heuvelink, A.; Klein, M.C.A.; Treur, J.

    2008-01-01

    This paper presents an architecture for a memory model that facilitates versatile reasoning mechanisms over the beliefs stored in an agent's belief base. Based on an approach for belief aggregation, a model is introduced for controlling both the formation of abstract and complex beliefs and the

  17. Medicare Care Choices Model Enables Concurrent Palliative and Curative Care.

    Science.gov (United States)

    2015-01-01

    On July 20, 2015, the federal Centers for Medicare & Medicaid Services (CMS) announced hospices that have been selected to participate in the Medicare Care Choices Model. Fewer than half of the Medicare beneficiaries use hospice care for which they are eligible. Current Medicare regulations preclude concurrent palliative and curative care. Under the Medicare Choices Model, dually eligible Medicare beneficiaries may elect to receive supportive care services typically provided by hospice while continuing to receive curative services. This report describes how CMS has expanded the model from an originally anticipated 30 Medicare-certified hospices to over 140 Medicare-certified hospices and extended the duration of the model from 3 to 5 years. Medicare-certified hospice programs that will participate in the model are listed.

  18. A Conversation Model Enabling Intelligent Agents to Give Emotional Support

    OpenAIRE

    Van der Zwaan, J.M.; Dignum, V; Jonker, C.M.

    2012-01-01

    In everyday life, people frequently talk to others to help them deal with negative emotions. To some extent, everybody is capable of comforting other people, but so far conversational agents are unable to deal with this type of situation. To provide intelligent agents with the capability to give emotional support, we propose a domain-independent conversational model that is based on topics suggested by cognitive appraisal theories of emotion and the 5-phase model that is used to structure onl...

  19. Enabling linear model for the IMGC-02 absolute gravimeter

    CERN Document Server

    Nagornyi, V D; Svitlov, S

    2013-01-01

    Measurement procedures of most rise-and-fall absolute gravimeters has to resolve singularity at the apex of the trajectory caused by the discrete fringe counting in the Michelson-type interferometers. Traditionally the singularity is addressed by implementing non-linear models of the trajectory, but they introduce problems of their own, such as biasness, non-uniqueness, and instability of the gravity estimates. Using IMGC-02 gravimeter as example, we show that the measurement procedure of the rise-and-fall gravimeters can be based on the linear models which successfully resolve the singularity and provide rigorous estimates of the gravity value. The linear models also facilitate further enhancements of the instrument, such as accounting for new types of disturbances and active compensation for the vibrations.

  20. Computer Modeling of Carbon Metabolism Enables Biofuel Engineering (Fact Sheet)

    Energy Technology Data Exchange (ETDEWEB)

    2011-09-01

    In an effort to reduce the cost of biofuels, the National Renewable Energy Laboratory (NREL) has merged biochemistry with modern computing and mathematics. The result is a model of carbon metabolism that will help researchers understand and engineer the process of photosynthesis for optimal biofuel production.

  1. Enabling Cross-Discipline Collaboration Via a Functional Data Model

    Science.gov (United States)

    Lindholm, D. M.; Wilson, A.; Baltzer, T.

    2016-12-01

    Many research disciplines have very specialized data models that are used to express the detailed semantics that are meaningful to that community and easily utilized by their data analysis tools. While invaluable to members of that community, such expressive data structures and metadata are of little value to potential collaborators from other scientific disciplines. Many data interoperability efforts focus on the difficult task of computationally mapping concepts from one domain to another to facilitate discovery and use of data. Although these efforts are important and promising, we have found that a great deal of discovery and dataset understanding still happens at the level of less formal, personal communication. However, a significant barrier to inter-disciplinary data sharing that remains is one of data access.Scientists and data analysts continue to spend inordinate amounts of time simply trying to get data into their analysis tools. Providing data in a standard file format is often not sufficient since data can be structured in many ways. Adhering to more explicit community standards for data structure and metadata does little to help those in other communities.The Functional Data Model specializes the Relational Data Model (used by many database systems)by defining relations as functions between independent (domain) and dependent (codomain) variables. Given that arrays of data in many scientific data formats generally represent functionally related parameters (e.g. temperature as a function of space and time), the Functional Data Model is quite relevant for these datasets as well. The LaTiS software framework implements the Functional Data Model and provides a mechanism to expose an existing data source as a LaTiS dataset. LaTiS datasets can be manipulated using a Functional Algebra and output in any number of formats.LASP has successfully used the Functional Data Model and its implementation in the LaTiS software framework to bridge the gap between

  2. Domain-specific modeling enabling full code generation

    CERN Document Server

    Kelly, Steven

    2007-01-01

    Domain-Specific Modeling (DSM) is the latest approach tosoftware development, promising to greatly increase the speed andease of software creation. Early adopters of DSM have been enjoyingproductivity increases of 500–1000% in production for over adecade. This book introduces DSM and offers examples from variousfields to illustrate to experienced developers how DSM can improvesoftware development in their teams. Two authorities in the field explain what DSM is, why it works,and how to successfully create and use a DSM solution to improveproductivity and quality. Divided into four parts, the book covers:background and motivation; fundamentals; in-depth examples; andcreating DSM solutions. There is an emphasis throughout the book onpractical guidelines for implementing DSM, including how toidentify the nece sary language constructs, how to generate fullcode from models, and how to provide tool support for a new DSMlanguage. The example cases described in the book are available thebook's Website, www.dsmbook....

  3. ARCHITECTURES AND ALGORITHMS FOR COGNITIVE NETWORKS ENABLED BY QUALITATIVE MODELS

    DEFF Research Database (Denmark)

    Balamuralidhar, P.

    2013-01-01

    the qualitative models in a cognitive engine. Further I use the methodology in multiple functional scenarios of cognitive networks including self- optimization and self- monitoring. In the case of self-optimization, I integrate principles from monotonicity analysis to evaluate and enhance qualitative models......Complexity of communication networks is ever increasing and getting complicated by their heterogeneity and dynamism. Traditional techniques are facing challenges in network performance management. Cognitive networking is an emerging paradigm to make networks more intelligent, thereby overcoming...... traditional limitations and potentially achieving better performance. The vision is that, networks should be able to monitor themselves, reason upon changes in self and environment, act towards the achievement of specific goals and learn from experience. The concept of a Cognitive Engine (CE) supporting...

  4. Rapid Diagnostics of Onboard Sequences

    Science.gov (United States)

    Starbird, Thomas W.; Morris, John R.; Shams, Khawaja S.; Maimone, Mark W.

    2012-01-01

    Keeping track of sequences onboard a spacecraft is challenging. When reviewing Event Verification Records (EVRs) of sequence executions on the Mars Exploration Rover (MER), operators often found themselves wondering which version of a named sequence the EVR corresponded to. The lack of this information drastically impacts the operators diagnostic capabilities as well as their situational awareness with respect to the commands the spacecraft has executed, since the EVRs do not provide argument values or explanatory comments. Having this information immediately available can be instrumental in diagnosing critical events and can significantly enhance the overall safety of the spacecraft. This software provides auditing capability that can eliminate that uncertainty while diagnosing critical conditions. Furthermore, the Restful interface provides a simple way for sequencing tools to automatically retrieve binary compiled sequence SCMFs (Space Command Message Files) on demand. It also enables developers to change the underlying database, while maintaining the same interface to the existing applications. The logging capabilities are also beneficial to operators when they are trying to recall how they solved a similar problem many days ago: this software enables automatic recovery of SCMF and RML (Robot Markup Language) sequence files directly from the command EVRs, eliminating the need for people to find and validate the corresponding sequences. To address the lack of auditing capability for sequences onboard a spacecraft during earlier missions, extensive logging support was added on the Mars Science Laboratory (MSL) sequencing server. This server is responsible for generating all MSL binary SCMFs from RML input sequences. The sequencing server logs every SCMF it generates into a MySQL database, as well as the high-level RML file and dictionary name inputs used to create the SCMF. The SCMF is then indexed by a hash value that is automatically included in all command

  5. Enabling analytical and Modeling Tools for Enhanced Disease Surveillance

    Energy Technology Data Exchange (ETDEWEB)

    Dawn K. Manley

    2003-04-01

    Early detection, identification, and warning are essential to minimize casualties from a biological attack. For covert attacks, sick people are likely to provide the first indication of an attack. An enhanced medical surveillance system that synthesizes distributed health indicator information and rapidly analyzes the information can dramatically increase the number of lives saved. Current surveillance methods to detect both biological attacks and natural outbreaks are hindered by factors such as distributed ownership of information, incompatible data storage and analysis programs, and patient privacy concerns. Moreover, because data are not widely shared, few data mining algorithms have been tested on and applied to diverse health indicator data. This project addressed both integration of multiple data sources and development and integration of analytical tools for rapid detection of disease outbreaks. As a first prototype, we developed an application to query and display distributed patient records. This application incorporated need-to-know access control and incorporated data from standard commercial databases. We developed and tested two different algorithms for outbreak recognition. The first is a pattern recognition technique that searches for space-time data clusters that may signal a disease outbreak. The second is a genetic algorithm to design and train neural networks (GANN) that we applied toward disease forecasting. We tested these algorithms against influenza, respiratory illness, and Dengue Fever data. Through this LDRD in combination with other internal funding, we delivered a distributed simulation capability to synthesize disparate information and models for earlier recognition and improved decision-making in the event of a biological attack. The architecture incorporates user feedback and control so that a user's decision inputs can impact the scenario outcome as well as integrated security and role-based access-control for communicating

  6. Onboard hierarchical network

    Science.gov (United States)

    Tunesi, Luca; Armbruster, Philippe

    2004-02-01

    developing a part of the system. Only when all the units are delivered to the system integrator, it is possible to test the complete system. Consequently, this normally happens at the final development stage and it is then often costly to face serious compatibility problems. Pre-integration would be a possible way of anticipating problems during the integration phase. In this case, a scheme allowing the interconnection of unit models (simulators, breadboards and flight-representative hardware) must be defined. For this purpose intranets and Internet can be of significant help. As a consequence of these well-identified needs a new concept has been formulated by the Agency and will extensively be described in this paper. On-board hierarchical networks have to be seen as an integrated infrastructure able to support not only software level functions but also hardware oriented diagnostic tools. As a complement to presently developed SpaceWire networks, a lower level bus must be selected. It must be reliable, flexible, easy-to-implement and it should have a strong error control and management scheme in order to ensure an appropriate availability figure. Of course, the adoption of an industrial standard bus is advisable because of the existence of development tools, devices and experience. Therefore, the use of a standard bus provides the possibility of evaluating and potentially using commercial systems, with a significant reduction of non-recurrent costs. As a consequence, ESA has recently set-up a working group with the objective of evaluating and, if needed, customising the Controller Area Network (CAN) bus (http://groups.yahoo.com/group/CAN_Space/). On this basis, it has been decided to consider the use of the CAN bus for payload systems and steps are being issued for its on-board implementation in space. As far as the lowest hierarchical level is concerned, a JTAG-like interface appears to be adequate but this selection is still subject to investigations. In the scenario

  7. Software Infrastructure to Enable Modeling & Simulation as a Service (M&SaaS) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR Phase 2 project will produce a software service infrastructure that enables most modeling and simulation (M&S) activities from code development and...

  8. On-board adaptive model for state of charge estimation of lithium-ion batteries based on Kalman filter with proportional integral-based error adjustment

    Science.gov (United States)

    Wei, Jingwen; Dong, Guangzhong; Chen, Zonghai

    2017-10-01

    With the rapid development of battery-powered electric vehicles, the lithium-ion battery plays a critical role in the reliability of vehicle system. In order to provide timely management and protection for battery systems, it is necessary to develop a reliable battery model and accurate battery parameters estimation to describe battery dynamic behaviors. Therefore, this paper focuses on an on-board adaptive model for state-of-charge (SOC) estimation of lithium-ion batteries. Firstly, a first-order equivalent circuit battery model is employed to describe battery dynamic characteristics. Then, the recursive least square algorithm and the off-line identification method are used to provide good initial values of model parameters to ensure filter stability and reduce the convergence time. Thirdly, an extended-Kalman-filter (EKF) is applied to on-line estimate battery SOC and model parameters. Considering that the EKF is essentially a first-order Taylor approximation of battery model, which contains inevitable model errors, thus, a proportional integral-based error adjustment technique is employed to improve the performance of EKF method and correct model parameters. Finally, the experimental results on lithium-ion batteries indicate that the proposed EKF with proportional integral-based error adjustment method can provide robust and accurate battery model and on-line parameter estimation.

  9. Autonomous onboard optical processor for driving aid

    Science.gov (United States)

    Attia, Mondher; Servel, Alain; Guibert, Laurent

    1995-01-01

    We take advantage of recent technological advances in the field of ferroelectric liquid crystal silicon back plane optoelectronic devices. These are well suited to perform massively parallel processing tasks. That choice enables the design of low cost vision systems and allows the implementation of an on-board system. We focus on transport applications such as road sign recognition. Preliminary in-car experimental results are presented.

  10. IVIDIL experiment onboard the ISS

    Science.gov (United States)

    Shevtsova, Valentina

    2010-09-01

    The experiment IVIDIL (Influence of Vibrations on Diffusion in Liquids) is scheduled to be performed in forthcoming fall 2009 onboard the ISS, inside the SODI instrument mounted in the Glovebox on the ESA Columbus module. It is planned to carry out 39 experimental runs with each of them lasting 18 h. The objective of the experiment is threefold. After each space experiment there is a discussion about the role of onboard g-jitters. One objective is to identify the limit level of vibrations below which g-jitter does not play a role for onboard experiments. This objective will be fulfilled by observing diffusive process under different imposed controlled vibrations. Second, to perform precise measurements of diffusion and thermodiffusion coefficients for two binary mixtures in the absence of buoyant convection. The measured values can be used as standards for ground experiments. Two aqueous solutions will be used as test fluids: two different concentrations of water-isopropanol (IPA) with positive and negative Soret effect. This objective also includes studying the influence of vibrations on the measured values of diffusion and thermodiffusion coefficients. Finally, to investigate vibration-induced convection and, particularly, heat and mass transfer under vibrations. Three International Teams are involved in the preparation of the experiment ( Shevtsova et al., 2007). ULB (MRC) is responsible for all aspects related to IVIDIL experimental definition, theoretical and numerical modeling and coordination of the entire project. Team from Ryerson University (led by Z. Saghir), Ontario, Canada and Russian team from Perm, ICMM UB RAS (led by T. Lyubimova) provide theoretical and numerical support. As being the coordinator, the author will present a general description of the experiment and outline some results obtained by MRC, ULB researchers only, i.e. by A. Mialdun, D. Melnikov, I. Ryzhkov, Yu. Gaponenko.

  11. Internet enabled modelling of extended manufacturing enterprises using the process based techniques

    OpenAIRE

    Cheng, K; Popov, Y

    2004-01-01

    The paper presents the preliminary results of an ongoing research project on Internet enabled process-based modelling of extended manufacturing enterprises. It is proposed to apply the Open System Architecture for CIM (CIMOSA) modelling framework alongside with object-oriented Petri Net models of enterprise processes and object-oriented techniques for extended enterprises modelling. The main features of the proposed approach are described and some components discussed. Elementary examples of ...

  12. Implementation of a capsular bag model to enable sufficient lens stabilization within a mechanical eye model

    Science.gov (United States)

    Bayer, Natascha; Rank, Elisabet; Traxler, Lukas; Beckert, Erik; Drauschke, Andreas

    2015-03-01

    Cataract still remains the leading cause of blindness affecting 20 million people worldwide. To restore the patients vision the natural lens is removed and replaced by an intraocular lens (IOL). In modern cataract surgery the posterior capsular bag is maintained to prevent inflammation and to enable stabilization of the implant. Refractive changes following cataract surgery are attributable to lens misalignments occurring due to postoperative shifts and tilts of the artificial lens. Mechanical eye models allow a preoperative investigation of the impact of such misalignments and are crucial to improve the quality of the patients' sense of sight. Furthermore, the success of sophisticated IOLs that correct high order aberrations is depending on a critical evaluation of the lens position. A new type of an IOL holder is designed and implemented into a preexisting mechanical eye model. A physiological representation of the capsular bag is realized with an integrated film element to guarantee lens stabilization and centering. The positioning sensitivity of the IOL is evaluated by performing shifts and tilts in reference to the optical axis. The modulation transfer function is used to measure the optical quality at each position. Lens stability tests within the holder itself are performed by determining the modulation transfer function before and after measurement sequence. Mechanical stability and reproducible measurement results are guaranteed with the novel capsular bag model that allows a precise interpretation of postoperative lens misalignments. The integrated film element offers additional stabilization during measurement routine without damaging the haptics or deteriorating the optical performance.

  13. The New Fault Tolerant Onboard Computer for Microsatellite Missions

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    This paper describes an onboard computer with dual processing modules. Each processing module is composed of 32 bit ARM reduced instruction set computer processor and other commercial-off-the-shelf devices. A set of fault handling mechanisms is implemented in the computer system, which enables the system to tolerate a single fault. The onboard software is organized around a set of processes that communicate among each other through a routing process. Meeting an extremely tight set of constraints that include mass, volume, power consumption and space environmental conditions, the fault-tolerant onboard computer has excellent data processing capability that can meet the erquirements of micro-satellite missions.

  14. Using Onboard Telemetry for MAVEN Orbit Determination

    Science.gov (United States)

    Lam, Try; Trawny, Nikolas; Lee, Clifford

    2013-01-01

    Determination of the spacecraft state has been traditional done using radiometric tracking data before and after the atmosphere drag pass. This paper describes our approach and results to include onboard telemetry measurements in addition to radiometric observables to refine the reconstructed trajectory estimate for the Mars Atmosphere and Volatile Evolution Mission (MAVEN). Uncertainties in the Mars atmosphere models, combined with non-continuous tracking degrade navigation accuracy, making MAVEN a key candidate for using onboard telemetry data to help complement its orbit determination process.

  15. Futures Business Models for an IoT Enabled Healthcare Sector: A Causal Layered Analysis Perspective

    Directory of Open Access Journals (Sweden)

    Julius Francis Gomes

    2016-12-01

    Full Text Available Purpose: To facilitate futures business research by proposing a novel way to combine business models as a conceptual tool with futures research techniques. Design: A futures perspective is adopted to foresight business models of the Internet of Things (IoT enabled healthcare sector by using business models as a futures business research tool. In doing so, business models is coupled with one of the most prominent foresight methodologies, Causal Layered Analysis (CLA. Qualitative analysis provides deeper understanding of the phenomenon through the layers of CLA; litany, social causes, worldview and myth. Findings: It is di cult to predict the far future for a technology oriented sector like healthcare. This paper presents three scenarios for short-, medium- and long-term future. Based on these scenarios we also present a set of business model elements for different future time frames. This paper shows a way to combine business models with CLA, a foresight methodology; in order to apply business models in futures business research. Besides offering early results for futures business research, this study proposes a conceptual space to work with individual business models for managerial stakeholders. Originality / Value: Much research on business models has offered conceptualization of the phenomenon, innovation through business model and transformation of business models. However, existing literature does not o er much on using business model as a futures research tool. Enabled by futures thinking, we collected key business model elements and building blocks for the futures market and ana- lyzed them through the CLA framework.

  16. Two Years Onboard the MER Opportunity Rover

    Science.gov (United States)

    Estlin, Tara; Anderson, Robert C.; Bornstein, Benjamin; Burl, Michael; Castano, Rebecca; Gaines, Daniel; Judd, Michele; Thompson, David R.

    2012-01-01

    The Autonomous Exploration for Gathering Increased Science (AEGIS) system provides automated data collection for planetary rovers. AEGIS is currently being used onboard the Mars Exploration Rover (MER) mission's Opportunity to provide autonomous targeting of the MER Panoramic camera. Prior to AEGIS, targeted data was collected in a manual fashion where targets were manually identified in images transmitted to Earth and the rover had to remain in the same location for one to several communication cycles. AEGIS enables targeted data to be rapidly acquired with no delays for ground communication. Targets are selected by AEGIS through the use of onboard data analysis techniques that are guided by scientist-specified objectives. This paper provides an overview of the how AEGIS has been used on the Opportunity rover, focusing on usage that occurred during a 21 kilometer historic trek to the Mars Endeavour crater.

  17. IT-enabled dynamic capability on performance: An empirical study of BSC model

    Directory of Open Access Journals (Sweden)

    Adilson Carlos Yoshikuni

    2017-05-01

    Full Text Available ew studies have investigated the influence of “information capital,” through IT-enabled dynamic capability, on corporate performance, particularly in economic turbulence. Our study investigates the causal relationship between performance perspectives of the balanced scorecard using partial least squares path modeling. Using data on 845 Brazilian companies, we conduct a quantitative empirical study of firms during an economic crisis and observe the following interesting results. Operational and analytical IT-enabled dynamic capability had positive effects on business process improvement and corporate performance. Results pertaining to mediation (endogenous variables and moderation (control variables clarify IT’s role in and benefits for corporate performance.

  18. Onboard Short Term Plan Viewer

    Science.gov (United States)

    Hall, Tim; LeBlanc, Troy; Ulman, Brian; McDonald, Aaron; Gramm, Paul; Chang, Li-Min; Keerthi, Suman; Kivlovitz, Dov; Hadlock, Jason

    2011-01-01

    Onboard Short Term Plan Viewer (OSTPV) is a computer program for electronic display of mission plans and timelines, both aboard the International Space Station (ISS) and in ISS ground control stations located in several countries. OSTPV was specifically designed both (1) for use within the limited ISS computing environment and (2) to be compatible with computers used in ground control stations. OSTPV supplants a prior system in which, aboard the ISS, timelines were printed on paper and incorporated into files that also contained other paper documents. Hence, the introduction of OSTPV has both reduced the consumption of resources and saved time in updating plans and timelines. OSTPV accepts, as input, the mission timeline output of a legacy, print-oriented, UNIX-based program called "Consolidated Planning System" and converts the timeline information for display in an interactive, dynamic, Windows Web-based graphical user interface that is used by both the ISS crew and ground control teams in real time. OSTPV enables the ISS crew to electronically indicate execution of timeline steps, launch electronic procedures, and efficiently report to ground control teams on the statuses of ISS activities, all by use of laptop computers aboard the ISS.

  19. The constraint of CO2 measurements made onboard passenger aircraft on surface-atmosphere fluxes: the impact of transport model errors in vertical mixing

    Science.gov (United States)

    Verma, Shreeya; Marshall, Julia; Gerbig, Christoph; Rödenbeck, Christian; Totsche, Kai Uwe

    2017-05-01

    Inaccurate representation of atmospheric processes by transport models is a dominant source of uncertainty in inverse analyses and can lead to large discrepancies in the retrieved flux estimates. We investigate the impact of uncertainties in vertical transport as simulated by atmospheric transport models on fluxes retrieved using vertical profiles from aircraft as an observational constraint. Our numerical experiments are based on synthetic data with realistic spatial and temporal sampling of aircraft measurements. The impact of such uncertainties on the flux retrieved using the ground-based network and those retrieved using the aircraft profiles are compared. We find that the posterior flux retrieved using aircraft profiles is less susceptible to errors in boundary layer height, compared to the ground-based network. This finding highlights a benefit of utilizing atmospheric observations made onboard aircraft over surface measurements for flux estimation using inverse methods. We further use synthetic vertical profiles of CO2 in an inversion to estimate the potential of these measurements, which will be made available through the IAGOS (In-service Aircraft for a Global Observing System) project in the future, in constraining the regional carbon budget. Our results show that the regions of tropical Africa and temperate Eurasia, that are under-constrained by the existing surface-based network, will benefit the most from these measurements, with a reduction of posterior flux uncertainty of about 7 to 10 %.

  20. Cultivating Innovative and Entrepreneurial Talent in the Higher Vocational Automotive Major with the "On-Board Educational Factory" Model

    Science.gov (United States)

    Wu, Zhuang-Wen; Zhu, Liang-Rong

    2017-01-01

    In this paper, we investigate the steps necessary to initiate reform in professional education. First, we analyze the advantages and disadvantages of the unified theory and practice model of education currently adopted in mainland China. Next, we suggest a talent cultivation strategy that prioritizes students and views industrial (factory)…

  1. Modelling Angular Dependencies in Land Surface Temperatures From the SEVIRI Instrument onboard the Geostationary Meteosat Second Generation Satellites

    DEFF Research Database (Denmark)

    Rasmussen, Mads Olander; Pinheiro, AC; Proud, Simon Richard

    2010-01-01

    Satellite-based estimates of land surface temperature (LST) are widely applied as an input to models. A model output is often very sensitive to error in the input data, and high-quality inputs are therefore essential. One of the main sources of errors in LST estimates is the dependence on vegetat......Satellite-based estimates of land surface temperature (LST) are widely applied as an input to models. A model output is often very sensitive to error in the input data, and high-quality inputs are therefore essential. One of the main sources of errors in LST estimates is the dependence...... on vegetation structure and viewing and illumination geometry. Despite this, these effects are not considered in current operational LST products from neither polar-orbiting nor geostationary satellites. In this paper, we simulate the angular dependence that can be expected when estimating LST with the viewing...... by different land covers. The results show that the sun-target-sensor geometry plays a significant role in the estimated temperature, with variations strictly due to the angular configuration of more than ±3°C in some cases. On the continental scale, the average error is small except in hot-spot conditions...

  2. A model-based approach for detection of runways and other objects in image sequences acquired using an on-board camera

    Science.gov (United States)

    Kasturi, Rangachar; Devadiga, Sadashiva; Tang, Yuan-Liang

    1994-08-01

    This research was initiated as a part of the Advanced Sensor and Imaging System Technology (ASSIST) program at NASA Langley Research Center. The primary goal of this research is the development of image analysis algorithms for the detection of runways and other objects using an on-board camera. Initial effort was concentrated on images acquired using a passive millimeter wave (PMMW) sensor. The images obtained using PMMW sensors under poor visibility conditions due to atmospheric fog are characterized by very low spatial resolution but good image contrast compared to those images obtained using sensors operating in the visible spectrum. Algorithms developed for analyzing these images using a model of the runway and other objects are described in Part 1 of this report. Experimental verification of these algorithms was limited to a sequence of images simulated from a single frame of PMMW image. Subsequent development and evaluation of algorithms was done using video image sequences. These images have better spatial and temporal resolution compared to PMMW images. Algorithms for reliable recognition of runways and accurate estimation of spatial position of stationary objects on the ground have been developed and evaluated using several image sequences. These algorithms are described in Part 2 of this report. A list of all publications resulting from this work is also included.

  3. Collaborative Cloud Manufacturing: Design of Business Model Innovations Enabled by Cyberphysical Systems in Distributed Manufacturing Systems

    Directory of Open Access Journals (Sweden)

    Erwin Rauch

    2016-01-01

    Full Text Available Collaborative cloud manufacturing, as a concept of distributed manufacturing, allows different opportunities for changing the logic of generating and capturing value. Cyberphysical systems and the technologies behind them are the enablers for new business models which have the potential to be disruptive. This paper introduces the topics of distributed manufacturing as well as cyberphysical systems. Furthermore, the main business model clusters of distributed manufacturing systems are described, including collaborative cloud manufacturing. The paper aims to provide support for developing business model innovations based on collaborative cloud manufacturing. Therefore, three business model architecture types of a differentiated business logic are discussed, taking into consideration the parameters which have an influence and the design of the business model and its architecture. As a result, new business models can be developed systematically and new ideas can be generated to boost the concept of collaborative cloud manufacturing within all sustainable business models.

  4. Onboard Radar Processing Development for Rapid Response Applications

    Science.gov (United States)

    Lou, Yunling; Chien, Steve; Clark, Duane; Doubleday, Josh; Muellerschoen, Ron; Wang, Charles C.

    2011-01-01

    We are developing onboard processor (OBP) technology to streamline data acquisition on-demand and explore the potential of the L-band SAR instrument onboard the proposed DESDynI mission and UAVSAR for rapid response applications. The technology would enable the observation and use of surface change data over rapidly evolving natural hazards, both as an aid to scientific understanding and to provide timely data to agencies responsible for the management and mitigation of natural disasters. We are adapting complex science algorithms for surface water extent to detect flooding, snow/water/ice classification to assist in transportation/ shipping forecasts, and repeat-pass change detection to detect disturbances. We are near completion of the development of a custom FPGA board to meet the specific memory and processing needs of L-band SAR processor algorithms and high speed interfaces to reformat and route raw radar data to/from the FPGA processor board. We have also developed a high fidelity Matlab model of the SAR processor that is modularized and parameterized for ease to prototype various SAR processor algorithms targeted for the FPGA. We will be testing the OBP and rapid response algorithms with UAVSAR data to determine the fidelity of the products.

  5. Onboard Radar Processing Development for Rapid Response Applications

    Science.gov (United States)

    Lou, Yunling; Chien, Steve; Clark, Duane; Doubleday, Josh; Muellerschoen, Ron; Wang, Charles C.

    2011-01-01

    We are developing onboard processor (OBP) technology to streamline data acquisition on-demand and explore the potential of the L-band SAR instrument onboard the proposed DESDynI mission and UAVSAR for rapid response applications. The technology would enable the observation and use of surface change data over rapidly evolving natural hazards, both as an aid to scientific understanding and to provide timely data to agencies responsible for the management and mitigation of natural disasters. We are adapting complex science algorithms for surface water extent to detect flooding, snow/water/ice classification to assist in transportation/ shipping forecasts, and repeat-pass change detection to detect disturbances. We are near completion of the development of a custom FPGA board to meet the specific memory and processing needs of L-band SAR processor algorithms and high speed interfaces to reformat and route raw radar data to/from the FPGA processor board. We have also developed a high fidelity Matlab model of the SAR processor that is modularized and parameterized for ease to prototype various SAR processor algorithms targeted for the FPGA. We will be testing the OBP and rapid response algorithms with UAVSAR data to determine the fidelity of the products.

  6. Adoption of information technology enabled innovations by primary care physicians: model and questionnaire development.

    OpenAIRE

    Dixon, D. R.; Dixon, B. J.

    1994-01-01

    A survey instrument was developed based on a model of the substantive factors influencing the adoption of Information Technology (IT) enabled innovations by physicians. The survey was given to all faculty and residents in a Primary Care teaching institution. Computerized literature searching was the IT innovation studied. The results support the role of the perceived ease of use and the perceived usefulness of an innovation as well as the intent to use an innovation as factors important for i...

  7. Information Management Workflow and Tools Enabling Multiscale Modeling Within ICME Paradigm

    Science.gov (United States)

    Arnold, Steven M.; Bednarcyk, Brett A.; Austin, Nic; Terentjev, Igor; Cebon, Dave; Marsden, Will

    2016-01-01

    With the increased emphasis on reducing the cost and time to market of new materials, the need for analytical tools that enable the virtual design and optimization of materials throughout their processing - internal structure - property - performance envelope, along with the capturing and storing of the associated material and model information across its lifecycle, has become critical. This need is also fueled by the demands for higher efficiency in material testing; consistency, quality and traceability of data; product design; engineering analysis; as well as control of access to proprietary or sensitive information. Fortunately, material information management systems and physics-based multiscale modeling methods have kept pace with the growing user demands. Herein, recent efforts to establish workflow for and demonstrate a unique set of web application tools for linking NASA GRC's Integrated Computational Materials Engineering (ICME) Granta MI database schema and NASA GRC's Integrated multiscale Micromechanics Analysis Code (ImMAC) software toolset are presented. The goal is to enable seamless coupling between both test data and simulation data, which is captured and tracked automatically within Granta MI®, with full model pedigree information. These tools, and this type of linkage, are foundational to realizing the full potential of ICME, in which materials processing, microstructure, properties, and performance are coupled to enable application-driven design and optimization of materials and structures.

  8. Flight model performance test results of a helium dewar for the soft X-ray spectrometer onboard ASTRO-H

    Science.gov (United States)

    Yoshida, Seiji; Miyaoka, Mikio; Kanao, Ken'ichi; Tsunematsu, Shoji; Otsuka, Kiyomi; Hoshika, Shunji; Mitsuda, Kazuhisa; Yamasaki, Noriko; Takei, Yoh; Fujimoto, Ryuichi; Sato, Yoichi; DiPirro, Mike; Shirron, Peter

    2016-03-01

    ASTRO-H is a Japanese X-ray astronomy satellite, scheduled to be launched in fiscal year 2015. The mission includes a soft X-ray spectrometer instrument (SXS), which contains an X-ray micro calorimeter operating at 50 mK by using an adiabatic demagnetization refrigerator (ADR). The heat sink of the ADR is superfluid liquid helium below 1.3 K. The required lifetime of the superfluid helium is 3 years or more. In order to realize this lifetime, we have improved the thermal performance from the engineering model (EM) while maintaining the mechanical performance. Then, we have performed a thermal test of the flight model (FM). The results were that the heat load to the helium tank was reduced to below 0.8 mW in the FM from 1.2 mW in the EM. Therefore, the lifetime of the superfluid helium is more than 3 years with 30 L of liquid helium. In this paper, the thermal design and thermal test results are described.

  9. Modeling the spectral response for the soft X-ray imager onboard the ASTRO-H satellite

    Science.gov (United States)

    Inoue, Shota; Hayashida, Kiyoshi; Katada, Shuhei; Nakajima, Hiroshi; Nagino, Ryo; Anabuki, Naohisa; Tsunemi, Hiroshi; Tsuru, Takeshi Go; Tanaka, Takaaki; Uchida, Hiroyuki; Nobukawa, Masayoshi; Nobukawa, Kumiko Kawabata; Washino, Ryosaku; Mori, Koji; Isoda, Eri; Sakata, Miho; Kohmura, Takayoshi; Tamasawa, Koki; Tanno, Shoma; Yoshino, Yuma; Konno, Takahiro; Ueda, Shutaro

    2016-09-01

    The ASTRO-H satellite is the 6th Japanese X-ray astronomical observatory to be launched in early 2016. The satellite carries four kinds of detectors, and one of them is an X-ray CCD camera, the soft X-ray imager (SXI), installed on the focal plane of an X-ray telescope. The SXI contains four CCD chips, each with an imaging area of 31 mm × 31 mm , arrayed in mosaic, covering the field-of-view of 38‧ ×38‧ , the widest ever flown in orbit. The CCDs are a P-channel back-illuminated (BI) type with a depletion layer thickness of 200 μ m . We operate the CCDs in a photon counting mode in which the position and energy of each photon are measured in the energy band of 0.4-12 keV. To evaluate the X-ray spectra obtained with the SXI, an accurate calibration of its response function is essential. For this purpose, we performed calibration experiments at Kyoto and Photon Factory of KEK, each with different X-ray sources with various X-ray energies. We fit the obtained spectra with 5 components; primary peak, secondary peak, constant tail, Si escape and Si fluorescence, and then model their energy dependence using physics-based or empirical formulae. Since this is the first adoption of P-channel BI-type CCDs on an X-ray astronomical satellite, we need to take special care on the constant tail component which is originated in partial charge collection. It is found that we need to assume a trapping layer at the incident surface of the CCD and implement it in the response model. In addition, the Si fluorescence component of the SXI response is significantly weak, compared with those of front-illuminated type CCDs.

  10. The Cognitive Onboard Operator Assistant Architecture Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose a cognitively inspired architecture for deploying an automated intelligent onboard operator assistant. This assistant facilitates the onboard control...

  11. MODIS On-board Blackbody Performance

    Science.gov (United States)

    Xiong, Xiaoxiong; Chen, N.; Wu, A.; Wenny, B.; Dodd, J.

    2008-01-01

    Currently, there are two MODIS instruments operated on-orbit: one on-board the Terra spacecraft launched in December 1999 and the other on-board the Aqua spacecraft launched in May 2002. MODIS is a scanning radiometer that has 16 thermal emissive bands (TEBs) in the MWIR and LWIR regions. The remaining spectral bands are in the VISINIR and SWIR regions. The TEBs have a total of 160 detectors (10 detectors per band), which are calibrated on-orbit using an on-board blackbody (BB). MODIS TEB calibration is performed via a quadratic algorithm with its linear calibration coefficients updated on a scan-by-scan basis using each detector's response to the BB. The offset and nonlinear terms of the quadratic calibration equation are stored in a look-up table (LUT). The LUT parameters are derived from pre-launch calibration and updated on-orbit from BB observations, as needed. Typically, the BB is set at a fixed temperature. Periodically, a warm-up and cool-down activity is performed, which enables the BB temperature to be varied from instrument ambient up to 315K. The temperature of the BB is measured each scan using 12 thermistors, which were fully characterized pre-launch with reference to the NIST temperature scale. This paper describes MODIS on-board BB operational activities and performance. The TEB detector response (short-term stability and long-term changes) and noise characterization results derived from BB observations and their impact on the TEB calibration uncertainty are also presented.

  12. COINSTAC: A Privacy Enabled Model and Prototype for Leveraging and Processing Decentralized Brain Imaging Data

    Science.gov (United States)

    Plis, Sergey M.; Sarwate, Anand D.; Wood, Dylan; Dieringer, Christopher; Landis, Drew; Reed, Cory; Panta, Sandeep R.; Turner, Jessica A.; Shoemaker, Jody M.; Carter, Kim W.; Thompson, Paul; Hutchison, Kent; Calhoun, Vince D.

    2016-01-01

    The field of neuroimaging has embraced the need for sharing and collaboration. Data sharing mandates from public funding agencies and major journal publishers have spurred the development of data repositories and neuroinformatics consortia. However, efficient and effective data sharing still faces several hurdles. For example, open data sharing is on the rise but is not suitable for sensitive data that are not easily shared, such as genetics. Current approaches can be cumbersome (such as negotiating multiple data sharing agreements). There are also significant data transfer, organization and computational challenges. Centralized repositories only partially address the issues. We propose a dynamic, decentralized platform for large scale analyses called the Collaborative Informatics and Neuroimaging Suite Toolkit for Anonymous Computation (COINSTAC). The COINSTAC solution can include data missing from central repositories, allows pooling of both open and “closed” repositories by developing privacy-preserving versions of widely-used algorithms, and incorporates the tools within an easy-to-use platform enabling distributed computation. We present an initial prototype system which we demonstrate on two multi-site data sets, without aggregating the data. In addition, by iterating across sites, the COINSTAC model enables meta-analytic solutions to converge to “pooled-data” solutions (i.e., as if the entire data were in hand). More advanced approaches such as feature generation, matrix factorization models, and preprocessing can be incorporated into such a model. In sum, COINSTAC enables access to the many currently unavailable data sets, a user friendly privacy enabled interface for decentralized analysis, and a powerful solution that complements existing data sharing solutions. PMID:27594820

  13. Developments of engineering model of the X-ray CCD camera of the MAXI experiment onboard the International Space Station

    CERN Document Server

    Miyata, E; Kamazuka, T; Akutsu, D; Kouno, H; Tsunemi, H; Matsuoka, M; Tomida, H; Ueno, S; Hamaguchi, K; Tanaka, I

    2002-01-01

    MAXI, Monitor of All-sky X-ray Image, is an X-ray observatory on the Japanese Experimental Module (JEM) Exposed Facility (EF) on the International Space Station (ISS). MAXI is a slit scanning camera which consists of two kinds of X-ray detectors: one is a one-dimensional position-sensitive proportional counter with a total area of approx 5000 cm sup 2 , the Gas Slit Camera (GSC), and the other is an X-ray CCD array with a total area approx 200 cm sup 2 , the Solid-state Slit Camera (SSC). The GSC subtends a field of view with an angular dimension of 1 deg. x180 deg. while the SSC subtends a field of view with an angular dimension of 1 deg. times a little less than 180 deg. . In the course of one station orbit, MAXI can scan almost the entire sky with a precision of 1 deg. and with an X-ray energy range 0.5-30 keV. We have developed an engineering model (EM) for all components of the SSC. Their performance test is underway. We have also developed several kinds of CCDs fabricated from different wafers. Since th...

  14. Re-orienting a remote acute care model towards a primary health care approach: key enablers.

    Science.gov (United States)

    Carroll, Vicki; Reeve, Carole A; Humphreys, John S; Wakerman, John; Carter, Maureen

    2015-01-01

    The objective of this study was to identify the key enablers of change in re-orienting a remote acute care model to comprehensive primary healthcare delivery. The setting of the study was a 12-bed hospital in Fitzroy Crossing, Western Australia. Individual key informant, in-depth interviews were completed with five of six identified senior leaders involved in the development of the Fitzroy Valley Health Partnership. Interviews were recorded and transcripts were thematically analysed by two investigators for shared views about the enabling factors strengthening primary healthcare delivery in a remote region of Australia. Participants described theestablishment of a culturally relevant primary healthcare service, using a community-driven, 'bottom up' approach characterised by extensive community participation. The formal partnership across the government and community controlled health services was essential, both to enable change to occur and to provide sustainability in the longer term. A hierarchy of major themes emerged. These included community participation, community readiness and desire for self-determination; linkages in the form of a government community controlled health service partnership; leadership; adequate infrastructure; enhanced workforce supply; supportive policy; and primary healthcare funding. The strong united leadership shown by the community and the health service enabled barriers to be overcome and it maximised the opportunities provided by government policy changes. The concurrent alignment around a common vision enabled implementation of change. The key principle learnt from this study is the importance of community and health service relationships and local leadership around a shared vision for the re-orientation of community health services.

  15. Generic Raman-based calibration models enabling real-time monitoring of cell culture bioreactors.

    Science.gov (United States)

    Mehdizadeh, Hamidreza; Lauri, David; Karry, Krizia M; Moshgbar, Mojgan; Procopio-Melino, Renee; Drapeau, Denis

    2015-01-01

    Raman-based multivariate calibration models have been developed for real-time in situ monitoring of multiple process parameters within cell culture bioreactors. Developed models are generic, in the sense that they are applicable to various products, media, and cell lines based on Chinese Hamster Ovarian (CHO) host cells, and are scalable to large pilot and manufacturing scales. Several batches using different CHO-based cell lines and corresponding proprietary media and process conditions have been used to generate calibration datasets, and models have been validated using independent datasets from separate batch runs. All models have been validated to be generic and capable of predicting process parameters with acceptable accuracy. The developed models allow monitoring multiple key bioprocess metabolic variables, and hence can be utilized as an important enabling tool for Quality by Design approaches which are strongly supported by the U.S. Food and Drug Administration.

  16. Interpretive Structural Modeling Of Implementation Enablers For Just In Time In ICPI

    Directory of Open Access Journals (Sweden)

    Nitin Upadhye

    2014-12-01

    Full Text Available Indian Corrugated Packaging Industries (ICPI have built up tough competition among the industries in terms of product cost, quality, product delivery, flexibility, and finally customer’s demand. As their customers, mostly OEMs are asking Just in Time deliveries, ICPI must implement JIT in their system. The term "JIT” as, it denotes a system that utilizes less, in terms of all inputs, to create the same outputs as those created by a traditional mass production system, while contributing increased varieties for the end customer. (Womack et al. 1990 "JIT" focuses on abolishing or reducing Muda (“Muda", the Japanese word for waste and on maximizing or fully utilizing activities that add value from the customer's perspective. There is lack of awareness in identifying the right enablers of JIT implementation. Therefore, this study has tried to find out the enablers from the literature review and expert’s opinions from corrugated packaging industries and developed the relationship matrix to see the driving power and dependence between them. In this study, modeling has been done in order to know the interrelationships between the enablers with the help of Interpretive Structural Modeling and Cross Impact Matrix Multiplication Applied to Classification (MICMAC analysis for the performance of Indian corrugated packaging industries.

  17. About the Big Graphs Arising when Forming the Diagnostic Models in a Reconfigurable Computing Field of Functional Monitoring and Diagnostics System of the Spacecraft Onboard Control Complex

    Directory of Open Access Journals (Sweden)

    L. V. Savkin

    2015-01-01

    Full Text Available One of the problems in implementation of the multipurpose complete systems based on the reconfigurable computing fields (RCF is the problem of optimum redistribution of logicalarithmetic resources in growing scope of functional tasks. Irrespective of complexity, all of them are transformed into an orgraph, which functional and topological structure is appropriately imposed on the RCF based, as a rule, on the field programmable gate array (FPGA.Due to limitation of the hardware configurations and functions realized by means of the switched logical blocks (SLB, the abovementioned problem becomes even more critical when there is a need, within the strictly allocated RCF fragment, to realize even more complex challenge in comparison with the problem which was solved during the previous computing step. In such cases it is possible to speak about graphs of big dimensions with respect to allocated RCF fragment.The article considers this problem through development of diagnostic algorithms to implement diagnostics and control of an onboard control complex of the spacecraft using RCF. It gives examples of big graphs arising with respect to allocated RCF fragment when forming the hardware levels of a diagnostic model, which, in this case, is any hardware-based algorithm of diagnostics in RCF.The article reviews examples of arising big graphs when forming the complicated diagnostic models due to drastic difference in formation of hardware levels on closely located RCF fragments. It also pays attention to big graphs emerging when the multichannel diagnostic models are formed.Three main ways to solve the problem of big graphs with respect to allocated RCF fragment are given. These are: splitting the graph into fragments, use of pop-up windows with relocating and memorizing intermediate values of functions of high hardware levels of diagnostic models, and deep adaptive update of diagnostic model.It is shown that the last of three ways is the most efficient

  18. Service and business model for technology enabled and home-based cardiac rehabilitation programs.

    Science.gov (United States)

    Sarela, Antti; Whittaker, Frank; Korhonen, Ilkka

    2009-01-01

    Cardiac rehabilitation programs are comprehensive life-style programs aimed at preventing recurrence of a cardiac event. However, the current programs have globally significantly low levels of uptake. Home-based model can be a viable alternative to hospital-based programs. We developed and analysed a service and business model for home based cardiac rehabilitation based on personal mentoring using mobile phones and web services. We analysed the different organizational and economical aspects of setting up and running the home based program and propose a potential business model for a sustainable and viable service. The model can be extended to management of other chronic conditions to enable transition from hospital and care centre based treatments to sustainable home-based care.

  19. A MULTI-OBJECTIVE ROBUST OPERATION MODEL FORELECTRONIC MARKET ENABLED SUPPLY CHAIN WITH UNCERTAIN DEMANDS

    Institute of Scientific and Technical Information of China (English)

    Jiawang XU; Xiaoyuan HUANG; Nina YAN

    2007-01-01

    A multi-objective robust operation model is proposed in this paper for an electronic market enabled supply chain consisting of multi-supplier and multi-customer with uncertain demands.Suppliers in this supply chain provide many kinds of products to different customers directly or through electronic market.Uncertain demands are described as a scenario set with certain probability; the supply chain operation model is constructed by using the robust optimization method based on scenario analyses.The operation model we proposed is a multi-objective programming problem satisfying several conflict objectives,such as meeting the demands of all customers,minimizing the system cost,the availabilities of suppliers' capacities not below a certain level,and robustness of decision to uncertain demands.The results of numerical examples proved that the solution of the model is most conservative; however,it can ensure the robustness of the operation of the supply chain effectively.

  20. Adoption of mobile learning among 3g-enabled handheld users using extended technology acceptance model

    Directory of Open Access Journals (Sweden)

    Fadare Oluwaseun Gbenga

    2013-12-01

    Full Text Available This paper examines various constructs of an extended TAM, Technology Acceptance Model, that are theoretically influencing the adoption and acceptability of mobile learning among 3G enabled mobile users. Mobile learning activity- based, used for this study were drawn from behaviourist and “learning and teaching support” educational paradigms. An online and manual survey instruments were used to gather data. The structural equation modelling techniques were then employed to explain the adoption processes of hypothesized research model. A theoretical model ETAM is developed based on TAM. Our result proved that psychometric constructs of TAM can be extended and that ETAM is well suited, and of good pedagogical tool in understanding mobile learning among 3G enabled handheld devices in southwest part of Nigeria. Cognitive constructs, attitude toward m-learning, self-efficacy play significant roles in influencing behavioural intention for mobile learning, of which self-efficacy is the most importance construct. Implications of results and directions for future research are discussed.

  1. Enabling Real-time Water Decision Support Services Using Model as a Service

    Science.gov (United States)

    Zhao, T.; Minsker, B. S.; Lee, J. S.; Salas, F. R.; Maidment, D. R.; David, C. H.

    2014-12-01

    Through application of computational methods and an integrated information system, data and river modeling services can help researchers and decision makers more rapidly understand river conditions under alternative scenarios. To enable this capability, workflows (i.e., analysis and model steps) are created and published as Web services delivered through an internet browser, including model inputs, a published workflow service, and visualized outputs. The RAPID model, which is a river routing model developed at University of Texas Austin for parallel computation of river discharge, has been implemented as a workflow and published as a Web application. This allows non-technical users to remotely execute the model and visualize results as a service through a simple Web interface. The model service and Web application has been prototyped in the San Antonio and Guadalupe River Basin in Texas, with input from university and agency partners. In the future, optimization model workflows will be developed to link with the RAPID model workflow to provide real-time water allocation decision support services.

  2. Model Transformation for Model Driven Development of Semantic Web Enabled Multi-Agent Systems

    NARCIS (Netherlands)

    Kardas, G.; Göknil, Arda; Dikenelli, O.; Topaloglu, N.Y.; Weyns, D.; Holvoet, T.

    2007-01-01

    Model Driven Development (MDD) provides an infrastructure that simplifies Multi-agent System (MAS) development by increasing the abstraction level. In addition to defining models, transformation process for those models is also crucial in MDD. On the other hand, MAS modeling should also take care of

  3. Model Transformation for Model Driven Development of Semantic Web Enabled Multi-Agent Systems

    NARCIS (Netherlands)

    Kardas, G.; Göknil, A.; Dikenelli, O.; Topaloglu, N.Y.

    2007-01-01

    Model Driven Development (MDD) provides an infrastructure that simplifies Multi-agent System (MAS) development by increasing the abstraction level. In addition to defining models, transformation process for those models is also crucial in MDD. On the other hand, MAS modeling should also take care of

  4. A new model for enabling innovation in appropriate technology for sustainable development

    Directory of Open Access Journals (Sweden)

    Joshua Pearce

    2012-08-01

    Full Text Available The task of providing for basic human necessities such as food, water, shelter, and employment is growing as the world’s population continues to expand amid climate destabilization. One of the greatest challenges to development and innovation is access to relevant knowledge for quick technological dissemination. However, with the rise and application of advanced information technologies there is a great opportunity for knowledge building, community interaction, innovation, and collaboration using various online platforms. This article examines the potential of a novel model to enable innovation for collaborative enterprise, learning, and appropriate technology development on a global scale.

  5. A framework for structural modelling of an RFID-enabled intelligent distributed manufacturing control system

    Directory of Open Access Journals (Sweden)

    Barenji, Ali Vatankhah

    2014-08-01

    Full Text Available A modern manufacturing facility typically contains several distributed control systems, such as machining stations, assembly stations, and material handling and storage systems. Integrating Radio Frequency Identification (RFID technology into these control systems provides a basis for monitoring and configuring their components in real-time. With the right structural modelling, it is then possible to evaluate designs and translate them into new operational applications almost immediately. This paper proposes an architecture for the structural modelling of an intelligent distributed control system for a manufacturing facility, by utilising RFID technology. Emphasis is placed on a requirements analysis of the manufacturing system, the design of RFID-enabled intelligent distributed control systems using Unified Modelling Language (UML diagrams, and the use of efficient algorithms and tools for the implementation of these systems.

  6. Ames Culture Chamber System: Enabling Model Organism Research Aboard the international Space Station

    Science.gov (United States)

    Steele, Marianne

    2014-01-01

    Understanding the genetic, physiological, and behavioral effects of spaceflight on living organisms and elucidating the molecular mechanisms that underlie these effects are high priorities for NASA. Certain organisms, known as model organisms, are widely studied to help researchers better understand how all biological systems function. Small model organisms such as nem-atodes, slime mold, bacteria, green algae, yeast, and moss can be used to study the effects of micro- and reduced gravity at both the cellular and systems level over multiple generations. Many model organisms have sequenced genomes and published data sets on their transcriptomes and proteomes that enable scientific investigations of the molecular mechanisms underlying the adaptations of these organisms to space flight.

  7. Genomic-Enabled Prediction in Maize Using Kernel Models with Genotype × Environment Interaction

    Science.gov (United States)

    Bandeira e Sousa, Massaine; Cuevas, Jaime; de Oliveira Couto, Evellyn Giselly; Pérez-Rodríguez, Paulino; Jarquín, Diego; Fritsche-Neto, Roberto; Burgueño, Juan; Crossa, Jose

    2017-01-01

    Multi-environment trials are routinely conducted in plant breeding to select candidates for the next selection cycle. In this study, we compare the prediction accuracy of four developed genomic-enabled prediction models: (1) single-environment, main genotypic effect model (SM); (2) multi-environment, main genotypic effects model (MM); (3) multi-environment, single variance G×E deviation model (MDs); and (4) multi-environment, environment-specific variance G×E deviation model (MDe). Each of these four models were fitted using two kernel methods: a linear kernel Genomic Best Linear Unbiased Predictor, GBLUP (GB), and a nonlinear kernel Gaussian kernel (GK). The eight model-method combinations were applied to two extensive Brazilian maize data sets (HEL and USP data sets), having different numbers of maize hybrids evaluated in different environments for grain yield (GY), plant height (PH), and ear height (EH). Results show that the MDe and the MDs models fitted with the Gaussian kernel (MDe-GK, and MDs-GK) had the highest prediction accuracy. For GY in the HEL data set, the increase in prediction accuracy of SM-GK over SM-GB ranged from 9 to 32%. For the MM, MDs, and MDe models, the increase in prediction accuracy of GK over GB ranged from 9 to 49%. For GY in the USP data set, the increase in prediction accuracy of SM-GK over SM-GB ranged from 0 to 7%. For the MM, MDs, and MDe models, the increase in prediction accuracy of GK over GB ranged from 34 to 70%. For traits PH and EH, gains in prediction accuracy of models with GK compared to models with GB were smaller than those achieved in GY. Also, these gains in prediction accuracy decreased when a more difficult prediction problem was studied. PMID:28455415

  8. Comparison between linear and non-parametric regression models for genome-enabled prediction in wheat.

    Science.gov (United States)

    Pérez-Rodríguez, Paulino; Gianola, Daniel; González-Camacho, Juan Manuel; Crossa, José; Manès, Yann; Dreisigacker, Susanne

    2012-12-01

    In genome-enabled prediction, parametric, semi-parametric, and non-parametric regression models have been used. This study assessed the predictive ability of linear and non-linear models using dense molecular markers. The linear models were linear on marker effects and included the Bayesian LASSO, Bayesian ridge regression, Bayes A, and Bayes B. The non-linear models (this refers to non-linearity on markers) were reproducing kernel Hilbert space (RKHS) regression, Bayesian regularized neural networks (BRNN), and radial basis function neural networks (RBFNN). These statistical models were compared using 306 elite wheat lines from CIMMYT genotyped with 1717 diversity array technology (DArT) markers and two traits, days to heading (DTH) and grain yield (GY), measured in each of 12 environments. It was found that the three non-linear models had better overall prediction accuracy than the linear regression specification. Results showed a consistent superiority of RKHS and RBFNN over the Bayesian LASSO, Bayesian ridge regression, Bayes A, and Bayes B models.

  9. Enabling model checking for collaborative process analysis: from BPMN to `Network of Timed Automata'

    Science.gov (United States)

    Mallek, Sihem; Daclin, Nicolas; Chapurlat, Vincent; Vallespir, Bruno

    2015-04-01

    Interoperability is a prerequisite for partners involved in performing collaboration. As a consequence, the lack of interoperability is now considered a major obstacle. The research work presented in this paper aims to develop an approach that allows specifying and verifying a set of interoperability requirements to be satisfied by each partner in the collaborative process prior to process implementation. To enable the verification of these interoperability requirements, it is necessary first and foremost to generate a model of the targeted collaborative process; for this research effort, the standardised language BPMN 2.0 is used. Afterwards, a verification technique must be introduced, and model checking is the preferred option herein. This paper focuses on application of the model checker UPPAAL in order to verify interoperability requirements for the given collaborative process model. At first, this step entails translating the collaborative process model from BPMN into a UPPAAL modelling language called 'Network of Timed Automata'. Second, it becomes necessary to formalise interoperability requirements into properties with the dedicated UPPAAL language, i.e. the temporal logic TCTL.

  10. Enabling HCCI modeling: The RIOT/CMCS Web Service for Automatic Reaction Mechanism Reduction

    Energy Technology Data Exchange (ETDEWEB)

    Oluwole, O; Pitz, W J; Schuchardt, K; Rahn, L A; Green, Jr., W H; Leahy, D; Pancerella, C; Sj?berg, M; Dec, J

    2005-12-12

    New approaches are being developed to facilitate multidisciplinary collaborative research of Homogeneous Charge Compression Ignition (HCCI) combustion processes. In this paper, collaborative sharing of the Range Identification and Optimization Toolkit (RIOT) and related data and models is discussed. RIOT is a developmental approach to reduce the computational complexity of detailed chemical kinetic mechanisms, enabling their use in modeling kinetically-controlled combustion applications such as HCCI. These approaches are being developed and piloted as a part of the Collaboratory for Multiscale Chemical Sciences (CMCS) project. The capabilities of the RIOT code are shared through a portlet in the CMCS portal that allows easy specification and processing of RIOT inputs, remote execution of RIOT, tracking of data pedigree and translation of RIOT outputs (such as the reduced model) to a table view and to the commonly-used CHEMKIN mechanism format. The reduced model is thus immediately ready to be used for more efficient simulation of the chemically reacting system of interest. This effort is motivated by the need to improve computational efficiency in modeling HCCI systems. Preliminary use of the web service to obtain reduced models for this application has yielded computational speedup factors of up to 20 as presented in this paper.

  11. Spin models inferred from patient data faithfully describe HIV fitness landscapes and enable rational vaccine design

    CERN Document Server

    Shekhar, Karthik; Ferguson, Andrew L; Barton, John P; Kardar, Mehran; Chakraborty, Arup K

    2013-01-01

    Mutational escape from vaccine induced immune responses has thwarted the development of a successful vaccine against AIDS, whose causative agent is HIV, a highly mutable virus. Knowing the virus' fitness as a function of its proteomic sequence can enable rational design of potent vaccines, as this information can focus vaccine induced immune responses to target mutational vulnerabilities of the virus. Spin models have been proposed as a means to infer intrinsic fitness landscapes of HIV proteins from patient-derived viral protein sequences. These sequences are the product of non-equilibrium viral evolution driven by patient-specific immune responses, and are subject to phylogenetic constraints. How can such sequence data allow inference of intrinsic fitness landscapes? We combined computer simulations and variational theory \\'{a} la Feynman to show that, in most circumstances, spin models inferred from patient-derived viral sequences reflect the correct rank order of the fitness of mutant viral strains. Our f...

  12. The shared circuits model (SCM): how control, mirroring, and simulation can enable imitation, deliberation, and mindreading.

    Science.gov (United States)

    Hurley, Susan

    2008-02-01

    Imitation, deliberation, and mindreading are characteristically human sociocognitive skills. Research on imitation and its role in social cognition is flourishing across various disciplines. Imitation is surveyed in this target article under headings of behavior, subpersonal mechanisms, and functions of imitation. A model is then advanced within which many of the developments surveyed can be located and explained. The shared circuits model (SCM) explains how imitation, deliberation, and mindreading can be enabled by subpersonal mechanisms of control, mirroring, and simulation. It is cast at a middle, functional level of description, that is, between the level of neural implementation and the level of conscious perceptions and intentional actions. The SCM connects shared informational dynamics for perception and action with shared informational dynamics for self and other, while also showing how the action/perception, self/other, and actual/possible distinctions can be overlaid on these shared informational dynamics. It avoids the common conception of perception and action as separate and peripheral to central cognition. Rather, it contributes to the situated cognition movement by showing how mechanisms for perceiving action can be built on those for active perception.;>;>The SCM is developed heuristically, in five layers that can be combined in various ways to frame specific ontogenetic or phylogenetic hypotheses. The starting point is dynamic online motor control, whereby an organism is closely attuned to its embedding environment through sensorimotor feedback. Onto this are layered functions of prediction and simulation of feedback, mirroring, simulation of mirroring, monitored inhibition of motor output, and monitored simulation of input. Finally, monitored simulation of input specifying possible actions plus inhibited mirroring of such possible actions can generate information about the possible as opposed to actual instrumental actions of others, and the

  13. Social networks enabled coordination model for cost management of patient hospital admissions.

    Science.gov (United States)

    Uddin, Mohammed Shahadat; Hossain, Liaquat

    2011-09-01

    In this study, we introduce a social networks enabled coordination model for exploring the effect of network position of "patient," "physician," and "hospital" actors in a patient-centered care network that evolves during patient hospitalization period on the total cost of coordination. An actor is a node, which represents an entity such as individual and organization in a social network. In our analysis of actor networks and coordination in the healthcare literature, we identified that there is significant gap where a number of promising hospital coordination model have been developed (e.g., Guided Care Model, Chronic Care Model) for the current healthcare system focusing on quality of service and patient satisfaction. The health insurance dataset for total hip replacement (THR) from hospital contribution fund, a prominent Australian Health Insurance Company, are analyzed to examine our proposed coordination model. We consider network attributes of degree, connectedness, in-degree, out-degree, and tie strength to measure network position of actors. To measure the cost of coordination for a particular hospital, average of total hospitalization expenses for all THR hospital admissions is used. Results show that network positions of "patient," "physician," and "hospital" actors considering all hospital admissions that a particular hospital has have effect on the average of total hospitalization expenses of that hospital. These results can be used as guidelines to set up a cost-effective healthcare practice structure for patient hospitalization expenses.

  14. An Integrated Architecture for On-Board Aircraft Engine Performance Trend Monitoring and Gas Path Fault Diagnostics

    Science.gov (United States)

    Simon, Donald L.

    2010-01-01

    Aircraft engine performance trend monitoring and gas path fault diagnostics are closely related technologies that assist operators in managing the health of their gas turbine engine assets. Trend monitoring is the process of monitoring the gradual performance change that an aircraft engine will naturally incur over time due to turbomachinery deterioration, while gas path diagnostics is the process of detecting and isolating the occurrence of any faults impacting engine flow-path performance. Today, performance trend monitoring and gas path fault diagnostic functions are performed by a combination of on-board and off-board strategies. On-board engine control computers contain logic that monitors for anomalous engine operation in real-time. Off-board ground stations are used to conduct fleet-wide engine trend monitoring and fault diagnostics based on data collected from each engine each flight. Continuing advances in avionics are enabling the migration of portions of the ground-based functionality on-board, giving rise to more sophisticated on-board engine health management capabilities. This paper reviews the conventional engine performance trend monitoring and gas path fault diagnostic architecture commonly applied today, and presents a proposed enhanced on-board architecture for future applications. The enhanced architecture gains real-time access to an expanded quantity of engine parameters, and provides advanced on-board model-based estimation capabilities. The benefits of the enhanced architecture include the real-time continuous monitoring of engine health, the early diagnosis of fault conditions, and the estimation of unmeasured engine performance parameters. A future vision to advance the enhanced architecture is also presented and discussed

  15. Optimization of the computational load of a hypercube supercomputer onboard a mobile robot

    Energy Technology Data Exchange (ETDEWEB)

    Barhen, J.; Toomarian, N.; Protopopescu, V.

    1987-12-01

    A combinatorial optimization methodology is developed, which enables the efficient use of hypercube multiprocessors onboard mobile intelligent robots dedicated to time-critical missions. The methodology is implemented in terms of large-scale concurrent algorithms based either on fast simulated annealing, or on nonlinear asynchronous neural networks. In particular, analytic expressions are given for the effect of single-neuron perturbations on the systems' configuration energy. Compact neuromorphic data structures are used to model effects such as precedence constraints, processor idling times, and task-schedule overlaps. Results for a typical robot-dynamics benchmark are presented.

  16. Reduced ENSO variability at the LGM revealed by an isotope-enabled Earth system model

    Science.gov (United States)

    Zhu, Jiang; Liu, Zhengyu; Brady, Esther; Otto-Bliesner, Bette; Zhang, Jiaxu; Noone, David; Tomas, Robert; Nusbaumer, Jesse; Wong, Tony; Jahn, Alexandra; Tabor, Clay

    2017-07-01

    Studying the El Niño-Southern Oscillation (ENSO) in the past can help us better understand its dynamics and improve its future projections. However, both paleoclimate reconstructions and model simulations of ENSO strength at the Last Glacial Maximum (LGM; 21 ka B.P.) have led to contradicting results. Here we perform model simulations using the recently developed water isotope-enabled Community Earth System Model (iCESM). For the first time, model-simulated oxygen isotopes are directly compared with those from ENSO reconstructions using the individual foraminifera analysis (IFA). We find that the LGM ENSO is most likely weaker comparing with the preindustrial. The iCESM suggests that total variance of the IFA records may only reflect changes in the annual cycle instead of ENSO variability as previously assumed. Furthermore, the interpretation of subsurface IFA records can be substantially complicated by the habitat depth of thermocline-dwelling foraminifera and their vertical migration with a temporally varying thermocline.

  17. The Nuclear Energy Advanced Modeling and Simulation Enabling Computational Technologies FY09 Report

    Energy Technology Data Exchange (ETDEWEB)

    Diachin, L F; Garaizar, F X; Henson, V E; Pope, G

    2009-10-12

    In this document we report on the status of the Nuclear Energy Advanced Modeling and Simulation (NEAMS) Enabling Computational Technologies (ECT) effort. In particular, we provide the context for ECT In the broader NEAMS program and describe the three pillars of the ECT effort, namely, (1) tools and libraries, (2) software quality assurance, and (3) computational facility (computers, storage, etc) needs. We report on our FY09 deliverables to determine the needs of the integrated performance and safety codes (IPSCs) in these three areas and lay out the general plan for software quality assurance to meet the requirements of DOE and the DOE Advanced Fuel Cycle Initiative (AFCI). We conclude with a brief description of our interactions with the Idaho National Laboratory computer center to determine what is needed to expand their role as a NEAMS user facility.

  18. Modeling of RFID-Enabled Real-Time Manufacturing Execution System in Mixed-Model Assembly Lines

    Directory of Open Access Journals (Sweden)

    Zhixin Yang

    2015-01-01

    Full Text Available To quickly respond to the diverse product demands, mixed-model assembly lines are well adopted in discrete manufacturing industries. Besides the complexity in material distribution, mixed-model assembly involves a variety of components, different process plans and fast production changes, which greatly increase the difficulty for agile production management. Aiming at breaking through the bottlenecks in existing production management, a novel RFID-enabled manufacturing execution system (MES, which is featured with real-time and wireless information interaction capability, is proposed to identify various manufacturing objects including WIPs, tools, and operators, etc., and to trace their movements throughout the production processes. However, being subject to the constraints in terms of safety stock, machine assignment, setup, and scheduling requirements, the optimization of RFID-enabled MES model for production planning and scheduling issues is a NP-hard problem. A new heuristical generalized Lagrangian decomposition approach has been proposed for model optimization, which decomposes the model into three subproblems: computation of optimal configuration of RFID senor networks, optimization of production planning subjected to machine setup cost and safety stock constraints, and optimization of scheduling for minimized overtime. RFID signal processing methods that could solve unreliable, redundant, and missing tag events are also described in detail. The model validity is discussed through algorithm analysis and verified through numerical simulation. The proposed design scheme has important reference value for the applications of RFID in multiple manufacturing fields, and also lays a vital research foundation to leverage digital and networked manufacturing system towards intelligence.

  19. On-board demux/demod

    Science.gov (United States)

    Sayegh, S.; Kappes, M.; Thomas, J.; Snyder, J.; Eng, M.; Poklemba, John J.; Steber, M.; House, G.

    1991-01-01

    To make satellite channels cost competitive with optical cables, the use of small, inexpensive earth stations with reduced antenna size and high powered amplifier (HPA) power will be needed. This will necessitate the use of high e.i.r.p. and gain-to-noise temperature ratio (G/T) multibeam satellites. For a multibeam satellite, onboard switching is required in order to maintain the needed connectivity between beams. This switching function can be realized by either an receive frequency (RF) or a baseband unit. The baseband switching approach has the additional advantage of decoupling the up-link and down-link, thus enabling rate and format conversion as well as improving the link performance. A baseband switching satellite requires the demultiplexing and demodulation of the up-link carriers before they can be switched to their assigned down-link beams. Principles of operation, design and implementation issues of such an onboard demultiplexer/demodulator (bulk demodulator) that was recently built at COMSAT Labs. are discussed.

  20. Onboard Science and Applications Algorithm for Hyperspectral Data Reduction

    Science.gov (United States)

    Chien, Steve A.; Davies, Ashley G.; Silverman, Dorothy; Mandl, Daniel

    2012-01-01

    An onboard processing mission concept is under development for a possible Direct Broadcast capability for the HyspIRI mission, a Hyperspectral remote sensing mission under consideration for launch in the next decade. The concept would intelligently spectrally and spatially subsample the data as well as generate science products onboard to enable return of key rapid response science and applications information despite limited downlink bandwidth. This rapid data delivery concept focuses on wildfires and volcanoes as primary applications, but also has applications to vegetation, coastal flooding, dust, and snow/ice applications. Operationally, the HyspIRI team would define a set of spatial regions of interest where specific algorithms would be executed. For example, known coastal areas would have certain products or bands downlinked, ocean areas might have other bands downlinked, and during fire seasons other areas would be processed for active fire detections. Ground operations would automatically generate the mission plans specifying the highest priority tasks executable within onboard computation, setup, and data downlink constraints. The spectral bands of the TIR (thermal infrared) instrument can accurately detect the thermal signature of fires and send down alerts, as well as the thermal and VSWIR (visible to short-wave infrared) data corresponding to the active fires. Active volcanism also produces a distinctive thermal signature that can be detected onboard to enable spatial subsampling. Onboard algorithms and ground-based algorithms suitable for onboard deployment are mature. On HyspIRI, the algorithm would perform a table-driven temperature inversion from several spectral TIR bands, and then trigger downlink of the entire spectrum for each of the hot pixels identified. Ocean and coastal applications include sea surface temperature (using a small spectral subset of TIR data, but requiring considerable ancillary data), and ocean color applications to track

  1. Use of Transition Modeling to Enable the Computation of Losses for Variable-Speed Power Turbine

    Science.gov (United States)

    Ameri, Ali A.

    2012-01-01

    To investigate the penalties associated with using a variable speed power turbine (VSPT) in a rotorcraft capable of vertical takeoff and landing, various analysis tools are required. Such analysis tools must be able to model the flow accurately within the operating envelope of VSPT. For power turbines low Reynolds numbers and a wide range of the incidence angles, positive and negative, due to the variation in the shaft speed at relatively fixed corrected flows, characterize this envelope. The flow in the turbine passage is expected to be transitional and separated at high incidence. The turbulence model of Walters and Leylek was implemented in the NASA Glenn-HT code to enable a more accurate analysis of such flows. Two-dimensional heat transfer predictions of flat plate flow and two-dimensional and three-dimensional heat transfer predictions on a turbine blade were performed and reported herein. Heat transfer computations were performed because it is a good marker for transition. The final goal is to be able to compute the aerodynamic losses. Armed with the new transition model, total pressure losses for three-dimensional flow of an Energy Efficient Engine (E3) tip section cascade for a range of incidence angles were computed in anticipation of the experimental data. The results obtained form a loss bucket for the chosen blade.

  2. Cyber Enabled Collaborative Environment for Data and Modeling Driven Curriculum Modules for Hydrology and Geoscience Education

    Science.gov (United States)

    Merwade, V.; Ruddell, B. L.; Manduca, C. A.; Fox, S.; Kirk, K. B.

    2012-12-01

    With the access to emerging datasets and computational tools, there is a need to bring these capabilities into hydrology and geoscience classrooms. However, developing curriculum modules using data and models to augment classroom teaching is hindered by steep technology learning curve, rapid technology turnover, and lack of an organized community cyberinfrastructure (CI) for the dissemination, publication, and sharing of the latest tools and curriculum material for hydrology and geoscience education. The objective of this project is to overcome some of these limitations by developing a cyber enabled collaborative environment for publishing, sharing and adoption of data and modeling driven curriculum modules in hydrology and geoscience classroom. The CI is based on Carleton College's Science Education Resource Center (SERC) Content Management System. Building on its existing community authoring capabilities the system is being extended to allow assembly of new teaching activities by drawing on a collection of interchangeable building blocks; each of which represents a step in the modeling process. This poster presentation will describe the structure of the CI, the type and description of the modules that are under development, and the approach that will be used in assessing students' learning from using modules.

  3. Testing, Modeling, and Monitoring to Enable Simpler, Cheaper, Longer-Lived Surface Caps

    Energy Technology Data Exchange (ETDEWEB)

    Piet, Steven James; Breckenridge, Robert Paul; Burns, Douglas Edward

    2003-02-01

    Society has and will continue to generate hazardous wastes whose risks must be managed. For exceptionally toxic, long-lived, and feared waste, the solution is deep burial, e.g., deep geological disposal at Yucca Mtn. For some waste, recycle or destruction/treatment is possible. The alternative for other wastes is storage at or near the ground level (in someone’s back yard); most of these storage sites include a surface barrier (cap) to prevent downward water migration. Some of the hazards will persist indefinitely. As society and regulators have demanded additional proof that caps are robust against more threats and for longer time periods, the caps have become increasingly complex and expensive. As in other industries, increased complexity will eventually increase the difficulty in estimating performance, in monitoring system/component performance, and in repairing or upgrading barriers as risks are managed. An approach leading to simpler, less expensive, longer-lived, more manageable caps is needed. Our project, which started in April 2002, aims to catalyze a Barrier Improvement Cycle (iterative learning and application) and thus enable Remediation System Performance Management (doing the right maintenance neither too early nor too late). The knowledge gained and the capabilities built will help verify the adequacy of past remedial decisions, improve barrier management, and enable improved solutions for future decisions. We believe it will be possible to develop simpler, longer-lived, less expensive caps that are easier to monitor, manage, and repair. The project is planned to: a) improve the knowledge of degradation mechanisms in times shorter than service life; b) improve modeling of barrier degradation dynamics; c) develop sensor systems to identify early degradation; and d) provide a better basis for developing and testing of new barrier systems. This project combines selected exploratory studies (benchtop and field scale), coupled effects accelerated aging

  4. Testing, Modeling, and Monitoring to Enable Simpler, Cheaper, Longer-lived Surface Caps

    Energy Technology Data Exchange (ETDEWEB)

    Piet, S. J.; Breckenridge, R. P.; Burns, D. E.

    2003-02-25

    Society has and will continue to generate hazardous wastes whose risks must be managed. For exceptionally toxic, long-lived, and feared waste, the solution is deep burial, e.g., deep geological disposal at Yucca Mtn. For some waste, recycle or destruction/treatment is possible. The alternative for other wastes is storage at or near the ground level (in someone's back yard); most of these storage sites include a surface barrier (cap) to prevent downward water migration. Some of the hazards will persist indefinitely. As society and regulators have demanded additional proof that caps are robust against more threats and for longer time periods, the caps have become increasingly complex and expensive. As in other industries, increased complexity will eventually increase the difficulty in estimating performance, in monitoring system/component performance, and in repairing or upgrading barriers as risks are managed. An approach leading to simpler, less expensive, longer-lived, more manageable caps is needed. Our project, which started in April 2002, aims to catalyze a Barrier Improvement Cycle (iterative learning and application) and thus enable Remediation System Performance Management (doing the right maintenance neither too early nor too late). The knowledge gained and the capabilities built will help verify the adequacy of past remedial decisions, improve barrier management, and enable improved solutions for future decisions. We believe it will be possible to develop simpler, longer-lived, less expensive caps that are easier to monitor, manage, and repair. The project is planned to: (a) improve the knowledge of degradation mechanisms in times shorter than service life; (b) improve modeling of barrier degradation dynamics; (c) develop sensor systems to identify early degradation; and (d) provide a better basis for developing and testing of new barrier systems. This project combines selected exploratory studies (benchtop and field scale), coupled effects

  5. Stochastic Hybrid Systems Modeling and Middleware-enabled DDDAS for Next-generation US Air Force Systems

    Science.gov (United States)

    2017-03-30

    AFRL-AFOSR-VA-TR-2017-0075 Stochastic Hybrid Systems Modeling and Middleware-enabled DDDAS for Next-generation US Air Force Systems Aniruddha...release. Air Force Research Laboratory AF Office Of Scientific Research (AFOSR)/RTA2 4/6/2017https://livelink.ebs.afrl.af.mil/livelink/llisapi.dll a...Sep 2013 to 31 Dec 2016 4. TITLE AND SUBTITLE Stochastic Hybrid Systems Modeling and Middleware-enabled DDDAS for Next- generation US Air Force

  6. Assessing pharmacokinetics of different doses of fosfomycin in laboratory rats enables adequate exposure for pharmacodynamic models.

    Science.gov (United States)

    Poeppl, Wolfgang; Lingscheid, Tilman; Bernitzky, Dominik; Donath, Oliver; Reznicek, Gottfried; Zeitlinger, Markus; Burgmann, Heinz

    2014-01-01

    Fosfomycin has been the subject of numerous pharmacodynamic in vivo models in recent years. The present study set out to determine fosfomycin pharmacokinetics in laboratory rats to enable adequate dosing regimens in future rodent models. Fosfomycin was given intraperitoneally as single doses of 75, 200 and 500 mg/kg bodyweight to 4 Sprague-Dawley rats per dose group. Blood samples were collected over 8 h and fosfomycin concentrations were determined by HPLC-mass spectrometry. Fosfomycin showed a dose-proportional pharmacokinetic profile indicated by a correlation of 0.99 for maximum concentration and area under the concentration-time curve (AUC). The mean AUC0-8 after intraperitoneal administration of 75, 200 or 500 mg/kg bodyweight fosfomycin were 109.4, 387.0 and 829.1 µg·h/ml, respectively. In conclusion, a dosing regimen of 200-500 mg/kg 3 times daily is appropriate to obtain serum concentrations in laboratory rats, closely mimicking human serum concentrations over time.

  7. Enabling Grid Computing resources within the KM3NeT computing model

    Directory of Open Access Journals (Sweden)

    Filippidis Christos

    2016-01-01

    Full Text Available KM3NeT is a future European deep-sea research infrastructure hosting a new generation neutrino detectors that – located at the bottom of the Mediterranean Sea – will open a new window on the universe and answer fundamental questions both in particle physics and astrophysics. International collaborative scientific experiments, like KM3NeT, are generating datasets which are increasing exponentially in both complexity and volume, making their analysis, archival, and sharing one of the grand challenges of the 21st century. These experiments, in their majority, adopt computing models consisting of different Tiers with several computing centres and providing a specific set of services for the different steps of data processing such as detector calibration, simulation and data filtering, reconstruction and analysis. The computing requirements are extremely demanding and, usually, span from serial to multi-parallel or GPU-optimized jobs. The collaborative nature of these experiments demands very frequent WAN data transfers and data sharing among individuals and groups. In order to support the aforementioned demanding computing requirements we enabled Grid Computing resources, operated by EGI, within the KM3NeT computing model. In this study we describe our first advances in this field and the method for the KM3NeT users to utilize the EGI computing resources in a simulation-driven use-case.

  8. Enabling Grid Computing resources within the KM3NeT computing model

    Science.gov (United States)

    Filippidis, Christos

    2016-04-01

    KM3NeT is a future European deep-sea research infrastructure hosting a new generation neutrino detectors that - located at the bottom of the Mediterranean Sea - will open a new window on the universe and answer fundamental questions both in particle physics and astrophysics. International collaborative scientific experiments, like KM3NeT, are generating datasets which are increasing exponentially in both complexity and volume, making their analysis, archival, and sharing one of the grand challenges of the 21st century. These experiments, in their majority, adopt computing models consisting of different Tiers with several computing centres and providing a specific set of services for the different steps of data processing such as detector calibration, simulation and data filtering, reconstruction and analysis. The computing requirements are extremely demanding and, usually, span from serial to multi-parallel or GPU-optimized jobs. The collaborative nature of these experiments demands very frequent WAN data transfers and data sharing among individuals and groups. In order to support the aforementioned demanding computing requirements we enabled Grid Computing resources, operated by EGI, within the KM3NeT computing model. In this study we describe our first advances in this field and the method for the KM3NeT users to utilize the EGI computing resources in a simulation-driven use-case.

  9. A rotamer library to enable modeling and design of peptoid foldamers.

    Science.gov (United States)

    Renfrew, P Douglas; Craven, Timothy W; Butterfoss, Glenn L; Kirshenbaum, Kent; Bonneau, Richard

    2014-06-18

    Peptoids are a family of synthetic oligomers composed of N-substituted glycine units. Along with other "foldamer" systems, peptoid oligomer sequences can be predictably designed to form a variety of stable secondary structures. It is not yet evident if foldamer design can be extended to reliably create tertiary structure features that mimic more complex biomolecular folds and functions. Computational modeling and prediction of peptoid conformations will likely play a critical role in enabling complex biomimetic designs. We introduce a computational approach to provide accurate conformational and energetic parameters for peptoid side chains needed for successful modeling and design. We find that peptoids can be described by a "rotamer" treatment, similar to that established for proteins, in which the peptoid side chains display rotational isomerism to populate discrete regions of the conformational landscape. Because of the insufficient number of solved peptoid structures, we have calculated the relative energies of side-chain conformational states to provide a backbone-dependent (BBD) rotamer library for a set of 54 different peptoid side chains. We evaluated two rotamer library development methods that employ quantum mechanics (QM) and/or molecular mechanics (MM) energy calculations to identify side-chain rotamers. We show by comparison to experimental peptoid structures that both methods provide an accurate prediction of peptoid side chain placements in folded peptoid oligomers and at protein interfaces. We have incorporated our peptoid rotamer libraries into ROSETTA, a molecular design package previously validated in the context of protein design and structure prediction.

  10. The use of cloud enabled building information models – an expert analysis

    Directory of Open Access Journals (Sweden)

    Alan Redmond

    2012-12-01

    Full Text Available The dependency of today’s construction professionals to use singular commercial applications for design possibilities creates the risk of being dictated by the language-tools they use. This unknowingly approach to converting to the constraints of a particular computer application’s style, reduces one’s association with cutting-edge design as no single computer application can support all of the tasks associated with building-design and production. Interoperability depicts the need to pass data between applications, allowing multiple types of experts and applications to contribute to the work at hand. Cloud computing is a centralized heterogeneous platform that enables different applications to be connected to each other through using remote data servers. However, the possibility of providing an interoperable process based on binding several construction applications through a single repository platform ‘cloud computing’ required further analysis. The following Delphi questionnaires analysed the exchanging information opportunities of Building Information Modelling (BIM as the possible solution for the integration of applications on a cloud platform. The survey structure is modelled to; (i identify the most appropriate applications for advancing interoperability at the early design stage, (ii detect the most severe barriers of BIM implementation from a business and legal viewpoint, (iii examine the need for standards to address information exchange between design team, and (iv explore the use of the most common interfaces for exchanging information. The anticipated findings will assist in identifying a model that will enhance the standardized passing of information between systems at the feasibility design stage of a construction project.

  11. The use of cloud enabled building information models – an expert analysis

    Directory of Open Access Journals (Sweden)

    Alan Redmond

    2015-10-01

    Full Text Available The dependency of today’s construction professionals to use singular commercial applications for design possibilities creates the risk of being dictated by the language-tools they use. This unknowingly approach to converting to the constraints of a particular computer application’s style, reduces one’s association with cutting-edge design as no single computer application can support all of the tasks associated with building-design and production. Interoperability depicts the need to pass data between applications, allowing multiple types of experts and applications to contribute to the work at hand. Cloud computing is a centralized heterogeneous platform that enables different applications to be connected to each other through using remote data servers. However, the possibility of providing an interoperable process based on binding several construction applications through a single repository platform ‘cloud computing’ required further analysis. The following Delphi questionnaires analysed the exchanging information opportunities of Building Information Modelling (BIM as the possible solution for the integration of applications on a cloud platform. The survey structure is modelled to; (i identify the most appropriate applications for advancing interoperability at the early design stage, (ii detect the most severe barriers of BIM implementation from a business and legal viewpoint, (iii examine the need for standards to address information exchange between design team, and (iv explore the use of the most common interfaces for exchanging information. The anticipated findings will assist in identifying a model that will enhance the standardized passing of information between systems at the feasibility design stage of a construction project.

  12. Fullrmc, a rigid body Reverse Monte Carlo modeling package enabled with machine learning and artificial intelligence.

    Science.gov (United States)

    Aoun, Bachir

    2016-05-01

    A new Reverse Monte Carlo (RMC) package "fullrmc" for atomic or rigid body and molecular, amorphous, or crystalline materials is presented. fullrmc main purpose is to provide a fully modular, fast and flexible software, thoroughly documented, complex molecules enabled, written in a modern programming language (python, cython, C and C++ when performance is needed) and complying to modern programming practices. fullrmc approach in solving an atomic or molecular structure is different from existing RMC algorithms and software. In a nutshell, traditional RMC methods and software randomly adjust atom positions until the whole system has the greatest consistency with a set of experimental data. In contrast, fullrmc applies smart moves endorsed with reinforcement machine learning to groups of atoms. While fullrmc allows running traditional RMC modeling, the uniqueness of this approach resides in its ability to customize grouping atoms in any convenient way with no additional programming efforts and to apply smart and more physically meaningful moves to the defined groups of atoms. In addition, fullrmc provides a unique way with almost no additional computational cost to recur a group's selection, allowing the system to go out of local minimas by refining a group's position or exploring through and beyond not allowed positions and energy barriers the unrestricted three dimensional space around a group.

  13. The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity.

    Science.gov (United States)

    Barretina, Jordi; Caponigro, Giordano; Stransky, Nicolas; Venkatesan, Kavitha; Margolin, Adam A; Kim, Sungjoon; Wilson, Christopher J; Lehár, Joseph; Kryukov, Gregory V; Sonkin, Dmitriy; Reddy, Anupama; Liu, Manway; Murray, Lauren; Berger, Michael F; Monahan, John E; Morais, Paula; Meltzer, Jodi; Korejwa, Adam; Jané-Valbuena, Judit; Mapa, Felipa A; Thibault, Joseph; Bric-Furlong, Eva; Raman, Pichai; Shipway, Aaron; Engels, Ingo H; Cheng, Jill; Yu, Guoying K; Yu, Jianjun; Aspesi, Peter; de Silva, Melanie; Jagtap, Kalpana; Jones, Michael D; Wang, Li; Hatton, Charles; Palescandolo, Emanuele; Gupta, Supriya; Mahan, Scott; Sougnez, Carrie; Onofrio, Robert C; Liefeld, Ted; MacConaill, Laura; Winckler, Wendy; Reich, Michael; Li, Nanxin; Mesirov, Jill P; Gabriel, Stacey B; Getz, Gad; Ardlie, Kristin; Chan, Vivien; Myer, Vic E; Weber, Barbara L; Porter, Jeff; Warmuth, Markus; Finan, Peter; Harris, Jennifer L; Meyerson, Matthew; Golub, Todd R; Morrissey, Michael P; Sellers, William R; Schlegel, Robert; Garraway, Levi A

    2012-03-28

    The systematic translation of cancer genomic data into knowledge of tumour biology and therapeutic possibilities remains challenging. Such efforts should be greatly aided by robust preclinical model systems that reflect the genomic diversity of human cancers and for which detailed genetic and pharmacological annotation is available. Here we describe the Cancer Cell Line Encyclopedia (CCLE): a compilation of gene expression, chromosomal copy number and massively parallel sequencing data from 947 human cancer cell lines. When coupled with pharmacological profiles for 24 anticancer drugs across 479 of the cell lines, this collection allowed identification of genetic, lineage, and gene-expression-based predictors of drug sensitivity. In addition to known predictors, we found that plasma cell lineage correlated with sensitivity to IGF1 receptor inhibitors; AHR expression was associated with MEK inhibitor efficacy in NRAS-mutant lines; and SLFN11 expression predicted sensitivity to topoisomerase inhibitors. Together, our results indicate that large, annotated cell-line collections may help to enable preclinical stratification schemata for anticancer agents. The generation of genetic predictions of drug response in the preclinical setting and their incorporation into cancer clinical trial design could speed the emergence of 'personalized' therapeutic regimens.

  14. Applying Reflective Middleware Techniques to Optimize a QoS-enabled CORBA Component Model Implementation

    Science.gov (United States)

    Wang, Nanbor; Parameswaran, Kirthika; Kircher, Michael; Schmidt, Douglas

    2003-01-01

    Although existing CORBA specifications, such as Real-time CORBA and CORBA Messaging, address many end-to-end quality-of service (QoS) properties, they do not define strategies for configuring these properties into applications flexibly, transparently, and adaptively. Therefore, application developers must make these configuration decisions manually and explicitly, which is tedious, error-prone, and open sub-optimal. Although the recently adopted CORBA Component Model (CCM) does define a standard configuration framework for packaging and deploying software components, conventional CCM implementations focus on functionality rather than adaptive quality-of-service, which makes them unsuitable for next-generation applications with demanding QoS requirements. This paper presents three contributions to the study of middleware for QoS-enabled component-based applications. It outlines rejective middleware techniques designed to adaptively (1) select optimal communication mechanisms, (2) manage QoS properties of CORBA components in their contain- ers, and (3) (re)con$gure selected component executors dynamically. Based on our ongoing research on CORBA and the CCM, we believe the application of rejective techniques to component middleware will provide a dynamically adaptive and (re)configurable framework for COTS software that is well-suited for the QoS demands of next-generation applications.

  15. Enabling Parametric Optimal Ascent Trajectory Modeling During Early Phases of Design

    Science.gov (United States)

    Holt, James B.; Dees, Patrick D.; Diaz, Manuel J.

    2015-01-01

    -modal due to the interaction of various constraints. Additionally, when these obstacles are coupled with The Program to Optimize Simulated Trajectories [1] (POST), an industry standard program to optimize ascent trajectories that is difficult to use, it requires expert trajectory analysts to effectively optimize a vehicle's ascent trajectory. As it has been pointed out, the paradigm of trajectory optimization is still a very manual one because using modern computational resources on POST is still a challenging problem. The nuances and difficulties involved in correctly utilizing, and therefore automating, the program presents a large problem. In order to address these issues, the authors will discuss a methodology that has been developed. The methodology is two-fold: first, a set of heuristics will be introduced and discussed that were captured while working with expert analysts to replicate the current state-of-the-art; secondly, leveraging the power of modern computing to evaluate multiple trajectories simultaneously, and therefore, enable the exploration of the trajectory's design space early during the pre-conceptual and conceptual phases of design. When this methodology is coupled with design of experiments in order to train surrogate models, the authors were able to visualize the trajectory design space, enabling parametric optimal ascent trajectory information to be introduced with other pre-conceptual and conceptual design tools. The potential impact of this methodology's success would be a fully automated POST evaluation suite for the purpose of conceptual and preliminary design trade studies. This will enable engineers to characterize the ascent trajectory's sensitivity to design changes in an arbitrary number of dimensions and for finding settings for trajectory specific variables, which result in optimal performance for a "dialed-in" launch vehicle design. The effort described in this paper was developed for the Advanced Concepts Office [2] at NASA Marshall

  16. Enabling School Structure, Collective Responsibility, and a Culture of Academic Optimism: Toward a Robust Model of School Performance in Taiwan

    Science.gov (United States)

    Wu, Jason H.; Hoy, Wayne K.; Tarter, C. John

    2013-01-01

    Purpose: The purpose of this research is twofold: to test a theory of academic optimism in Taiwan elementary schools and to expand the theory by adding new variables, collective responsibility and enabling school structure, to the model. Design/methodology/approach: Structural equation modeling was used to test, refine, and expand an…

  17. Energy Consumption Model and Measurement Results for Network Coding-enabled IEEE 802.11 Meshed Wireless Networks

    DEFF Research Database (Denmark)

    Paramanathan, Achuthan; Rasmussen, Ulrik Wilken; Hundebøll, Martin

    2012-01-01

    This paper presents an energy model and energy measurements for network coding enabled wireless meshed networks based on IEEE 802.11 technology. The energy model and the energy measurement testbed is limited to a simple Alice and Bob scenario. For this toy scenario we compare the energy usages...

  18. Science Benefits of Onboard Spacecraft Navigation

    Science.gov (United States)

    Cangahuala, Al; Bhaskaran, Shyam; Owen, Bill

    2012-01-01

    navigation can be accomplished through a self- contained system that by eliminating light time restrictions dramatically improves the relative trajectory knowledge and control and subsequently increases the amount of quality data collected. Flybys are one-time events, so the system's underlying algorithms and software must be extremely robust. The autonomous software must also be able to cope with the unknown size, shape, and orientation of the previously unseen comet nucleus. Furthermore, algorithms must be reliable in the presence of imperfections and/or damage to onboard cameras accrued after many years of deep-space operations. The AutoNav operational flight software packages, developed by scientists at the Jet Propulsion Laboratory (JPL) under contract with NASA, meet all these requirements. They have been directly responsible for the successful encounters on all of NASA's close-up comet-imaging missions (see Figure !1). AutoNav is the only system to date that has autonomously tracked comet nuclei during encounters and performed autonomous interplanetary navigation. AutoNav has enabled five cometary flyby missions (Table!1) residing on four NASA spacecraft provided by three different spacecraft builders. Using this software, missions were able to process a combined total of nearly 1000 images previously unseen by humans. By eliminating the need to navigate spacecraft from Earth, the accuracy gained by AutoNav during flybys compared to ground-based navigation is about 1!order of magnitude in targeting and 2!orders of magnitude in time of flight. These benefits ensure that pointing errors do not compromise data gathered during flybys. In addition, these benefits can be applied to flybys of other solar system objects, flybys at much slower relative velocities, mosaic imaging campaigns, and other proximity activities (e.g., orbiting, hovering, and descent/ascent).

  19. Verification of ICESat-2/ATLAS Science Receiver Algorithm Onboard Databases

    Science.gov (United States)

    Carabajal, C. C.; Saba, J. L.; Leigh, H. W.; Magruder, L. A.; Urban, T. J.; Mcgarry, J.; Schutz, B. E.

    2013-12-01

    NASA's ICESat-2 mission will fly the Advanced Topographic Laser Altimetry System (ATLAS) instrument on a 3-year mission scheduled to launch in 2016. ATLAS is a single-photon detection system transmitting at 532nm with a laser repetition rate of 10 kHz, and a 6 spot pattern on the Earth's surface. A set of onboard Receiver Algorithms will perform signal processing to reduce the data rate and data volume to acceptable levels. These Algorithms distinguish surface echoes from the background noise, limit the daily data volume, and allow the instrument to telemeter only a small vertical region about the signal. For this purpose, three onboard databases are used: a Surface Reference Map (SRM), a Digital Elevation Model (DEM), and a Digital Relief Maps (DRMs). The DEM provides minimum and maximum heights that limit the signal search region of the onboard algorithms, including a margin for errors in the source databases, and onboard geolocation. Since the surface echoes will be correlated while noise will be randomly distributed, the signal location is found by histogramming the received event times and identifying the histogram bins with statistically significant counts. Once the signal location has been established, the onboard Digital Relief Maps (DRMs) will be used to determine the vertical width of the telemetry band about the signal. University of Texas-Center for Space Research (UT-CSR) is developing the ICESat-2 onboard databases, which are currently being tested using preliminary versions and equivalent representations of elevation ranges and relief more recently developed at Goddard Space Flight Center (GSFC). Global and regional elevation models have been assessed in terms of their accuracy using ICESat geodetic control, and have been used to develop equivalent representations of the onboard databases for testing against the UT-CSR databases, with special emphasis on the ice sheet regions. A series of verification checks have been implemented, including

  20. Onboard Classification of Hyperspectral Data on the Earth Observing One Mission

    Science.gov (United States)

    Chien, Steve; Tran, Daniel; Schaffer, Steve; Rabideau, Gregg; Davies, Ashley Gerard; Doggett, Thomas; Greeley, Ronald; Ip, Felipe; Baker, Victor; Doubleday, Joshua; Castano, Rebecca; Mandl, Daniel; Frye, Stuart; Ong, Lawrence; Rogez, Francois; Oaida, Bogdan

    2009-01-01

    Remote-sensed hyperspectral data represents significant challenges in downlink due to its large data volumes. This paper describes a research program designed to process hyperspectral data products onboard spacecraft to (a) reduce data downlink volumes and (b) decrease latency to provide key data products (often by enabling use of lower data rate communications systems). We describe efforts to develop onboard processing to study volcanoes, floods, and cryosphere, using the Hyperion hyperspectral imager and onboard processing for the Earth Observing One (EO-1) mission as well as preliminary work targeting the Hyperspectral Infrared Imager (HyspIRI) mission.

  1. Testing the Youth Physical Activity Promotion Model: Fatness and Fitness as Enabling Factors

    Science.gov (United States)

    Chen, Senlin; Welk, Gregory J.; Joens-Matre, Roxane R.

    2014-01-01

    As the prevalence of childhood obesity increases, it is important to examine possible differences in psychosocial correlates of physical activity between normal weight and overweight children. The study examined fatness (weight status) and (aerobic) fitness as Enabling factors related to youth physical activity within the Youth Physical Activity…

  2. Testing the Youth Physical Activity Promotion Model: Fatness and Fitness as Enabling Factors

    Science.gov (United States)

    Chen, Senlin; Welk, Gregory J.; Joens-Matre, Roxane R.

    2014-01-01

    As the prevalence of childhood obesity increases, it is important to examine possible differences in psychosocial correlates of physical activity between normal weight and overweight children. The study examined fatness (weight status) and (aerobic) fitness as Enabling factors related to youth physical activity within the Youth Physical Activity…

  3. New On-board Microprocessors

    Science.gov (United States)

    Weigand, R.

    (for SW development on PC etc.), or to consider using it as a PCI master controller in an on-board system. Advanced SEU fault tolerance is in- troduced by design, using triple modular redundancy (TMR) flip-flops for all registers and EDAC protection for all memories. The device will be manufactured in a radia- tion hard Atmel 0.25 um technology, targeting 100 MHz processor clock frequency. The non fault-tolerant LEON processor VHDL model is available as free source code, and the SPARC architecture is a well-known industry standard. Therefore, know-how, software tools and operating systems are widely available.

  4. Fusion of Onboard Sensors for Better Navigation

    Directory of Open Access Journals (Sweden)

    Ravi Shankar

    2013-03-01

    Full Text Available This paper presents simulation results of navigation sensors such as integrated navigation system (INS, global navigation satellite system (GNSS and TACAN sensors onboard an aircraft to find the navigation solutions. Mathematical models for INS, GNSS (GPS satellite trajectories, GPS receiver and TACAN characteristics are simulated in Matlab. The INS simulation generates the output for position, velocity and attitude based on aerosond dynamic model. The GPS constellation is generated based on the YUMA almanac data. The GPS dilution of precession (DOP parameters are calculated and the best combination of four satellites (minimum PDOP is used for calculating the user position and velocity. The INS, GNSS, and TACAN solutions are integrated through loosely coupled extended Kalman filter for calculating the optimum navigation solution. The work is starting stone for providing aircraft based augmentation system for required navigation performance in terms of availability, accuracy, continuity and integrity.

  5. Contagion effect of enabling or coercive use of costing model within the managerial couple in lean organizations

    DEFF Research Database (Denmark)

    Kristensen, Thomas; Israelsen, Poul

    In the lean strategy is enabling formalization behaviour expected at the lower levels of management to be successful. We study the contagion effect between the superior, middle manager, of the lower level manager. This effect is proposed to be a dominant contingency variable for the use of costin...... models at the lower levels of management. Thus the use of costing models at the middle manager level is an important key to be successful with the lean package....

  6. Enabling Integrated Decision Making for Electronic-Commerce by Modelling an Enterprise's Sharable Knowledge.

    Science.gov (United States)

    Kim, Henry M.

    2000-01-01

    An enterprise model, a computational model of knowledge about an enterprise, is a useful tool for integrated decision-making by e-commerce suppliers and customers. Sharable knowledge, once represented in an enterprise model, can be integrated by the modeled enterprise's e-commerce partners. Presents background on enterprise modeling, followed by…

  7. Enabling Integrated Decision Making for Electronic-Commerce by Modelling an Enterprise's Sharable Knowledge.

    Science.gov (United States)

    Kim, Henry M.

    2000-01-01

    An enterprise model, a computational model of knowledge about an enterprise, is a useful tool for integrated decision-making by e-commerce suppliers and customers. Sharable knowledge, once represented in an enterprise model, can be integrated by the modeled enterprise's e-commerce partners. Presents background on enterprise modeling, followed by…

  8. Onboard Systems Record Unique Videos of Space Missions

    Science.gov (United States)

    2010-01-01

    Ecliptic Enterprises Corporation, headquartered in Pasadena, California, provided onboard video systems for rocket and space shuttle launches before it was tasked by Ames Research Center to craft the Data Handling Unit that would control sensor instruments onboard the Lunar Crater Observation and Sensing Satellite (LCROSS) spacecraft. The technological capabilities the company acquired on this project, as well as those gained developing a high-speed video system for monitoring the parachute deployments for the Orion Pad Abort Test Program at Dryden Flight Research Center, have enabled the company to offer high-speed and high-definition video for geosynchronous satellites and commercial space missions, providing remarkable footage that both informs engineers and inspires the imagination of the general public.

  9. The Marine Virtual Laboratory (version 2.1): enabling efficient ocean model configuration

    Science.gov (United States)

    Oke, Peter R.; Proctor, Roger; Rosebrock, Uwe; Brinkman, Richard; Cahill, Madeleine L.; Coghlan, Ian; Divakaran, Prasanth; Freeman, Justin; Pattiaratchi, Charitha; Roughan, Moninya; Sandery, Paul A.; Schaeffer, Amandine; Wijeratne, Sarath

    2016-09-01

    The technical steps involved in configuring a regional ocean model are analogous for all community models. All require the generation of a model grid, preparation and interpolation of topography, initial conditions, and forcing fields. Each task in configuring a regional ocean model is straightforward - but the process of downloading and reformatting data can be time-consuming. For an experienced modeller, the configuration of a new model domain can take as little as a few hours - but for an inexperienced modeller, it can take much longer. In pursuit of technical efficiency, the Australian ocean modelling community has developed the Web-based MARine Virtual Laboratory (WebMARVL). WebMARVL allows a user to quickly and easily configure an ocean general circulation or wave model through a simple interface, reducing the time to configure a regional model to a few minutes. Through WebMARVL, a user is prompted to define the basic options needed for a model configuration, including the model, run duration, spatial extent, and input data. Once all aspects of the configuration are selected, a series of data extraction, reprocessing, and repackaging services are run, and a "take-away bundle" is prepared for download. Building on the capabilities developed under Australia's Integrated Marine Observing System, WebMARVL also extracts all of the available observations for the chosen time-space domain. The user is able to download the take-away bundle and use it to run the model of his or her choice. Models supported by WebMARVL include three community ocean general circulation models and two community wave models. The model configuration from the take-away bundle is intended to be a starting point for scientific research. The user may subsequently refine the details of the model set-up to improve the model performance for the given application. In this study, WebMARVL is described along with a series of results from test cases comparing WebMARVL-configured models to observations

  10. NUMERICAL MODELS AS ENABLING TOOLS FOR TIDAL-STREAM ENERGY EXTRACTION AND ENVIRONMENTAL IMPACT ASSESSMENT

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Zhaoqing; Wang, Taiping

    2016-06-24

    This paper presents a modeling study conducted to evaluate tidal-stream energy extraction and its associated potential environmental impacts using a three-dimensional unstructured-grid coastal ocean model, which was coupled with a water-quality model and a tidal-turbine module.

  11. Improved Path Planning Onboard the Mars Exploration Rovers

    Science.gov (United States)

    Stentz, Anthony; Ferguson, David; Carsten, Joseph; Rankin, Arturo

    2007-01-01

    A revised version of the AutoNav (autonomous navigation with hazard avoidance) software running onboard each Mars Exploration Rover (MER) affords better obstacle avoidance than does the previous version. Both versions include GESTALT (Grid-based Estimation of Surface Traversability Applied to Local Terrain), a navigation program that generates local-terrain models from stereoscopic image pairs captured by onboard rover cameras; uses this information to evaluate candidate arcs that extend across the terrain from the current rover location; ranks the arcs with respect to hazard avoidance, minimization of steering time, and the direction towards the goal; and combines the rankings in a weighted vote to select an arc, along which the rover is then driven. GESTALT works well in navigating around small isolated obstacles, but tends to fail when the goal is on the other side of a large obstacle or multiple closely spaced small obstacles. When that occurs, the goal seeking votes and hazard avoidance votes conflict severely. The hazard avoidance votes will not allow the rover to drive through the unsafe area, and the waypoint votes will not allow enough deviation from the straight-line path for the rover to get around the hazard. The rover becomes stuck and is unable to reach the goal. The revised version of AutoNav utilizes a global path-planning program, Field D*, to evaluate the cost of traveling from the end of each GESTALT arc to the goal. In the voting process, Field D* arc votes supplant GESTALT goal-seeking arc votes. Hazard avoidance, steering bias, and Field D* votes are merged and the rover is driven a preset distance along the arc with the highest vote. Then new images are acquired and the process as described is repeated until the goal is reached. This new technology allows the rovers to autonomously navigate around much more complex obstacle arrangements than was previously possible. In addition, this improved autonomy enables longer traverses per Sol (a day

  12. Help seeking in older Asian people with dementia in Melbourne: using the Cultural Exchange Model to explore barriers and enablers.

    Science.gov (United States)

    Haralambous, Betty; Dow, Briony; Tinney, Jean; Lin, Xiaoping; Blackberry, Irene; Rayner, Victoria; Lee, Sook-Meng; Vrantsidis, Freda; Lautenschlager, Nicola; Logiudice, Dina

    2014-03-01

    The prevalence of dementia is increasing in Australia. Limited research is available on access to Cognitive Dementia and Memory Services (CDAMS) for people with dementia from Culturally and Linguistically Diverse (CALD) communities. This study aimed to determine the barriers and enablers to accessing CDAMS for people with dementia and their families of Chinese and Vietnamese backgrounds. Consultations with community members, community workers and health professionals were conducted using the "Cultural Exchange Model" framework. For carers, barriers to accessing services included the complexity of the health system, lack of time, travel required to get to services, language barriers, interpreters and lack of knowledge of services. Similarly, community workers and health professionals identified language, interpreters, and community perceptions as key barriers to service access. Strategies to increase knowledge included providing information via radio, printed material and education in community group settings. The "Cultural Exchange Model" enabled engagement with and modification of the approaches to meet the needs of the targeted CALD communities.

  13. Environmental Model Interoperability Enabled by Open Geospatial Standards - Results of a Feasibility Study (Invited)

    Science.gov (United States)

    Benedict, K. K.; Yang, C.; Huang, Q.

    2010-12-01

    The availability of high-speed research networks such as the US National Lambda Rail and the GÉANT network, scalable on-demand commodity computing resources provided by public and private "cloud" computing systems, and increasing demand for rapid access to the products of environmental models for both research and public policy development contribute to a growing need for the evaluation and development of environmental modeling systems that distribute processing, storage, and data delivery capabilities between network connected systems. In an effort to address the feasibility of developing a standards-based distributed modeling system in which model execution systems are physically separate from data storage and delivery systems, the research project presented in this paper developed a distributed dust forecasting system in which two nested atmospheric dust models are executed at George Mason University (GMU, in Fairfax, VA) while data and model output processing services are hosted at the University of New Mexico (UNM, in Albuquerque, NM). Exchange of model initialization and boundary condition parameters between the servers at UNM and the model execution systems at GMU is accomplished through Open Geospatial Consortium (OGC) Web Coverage Services (WCS) and Web Feature Services (WFS) while model outputs are pushed from GMU systems back to UNM using a REST web service interface. In addition to OGC and non-OGC web services for exchange between UNM and GMU, the servers at UNM also provide access to the input meteorological model products, intermediate and final dust model outputs, and other products derived from model outputs through OGC WCS, WFS, and OGC Web Map Services (WMS). The performance of the nested versus non-nested models is assessed in this research, with the results of the performance analysis providing the core content of the produced feasibility study. System integration diagram illustrating the storage and service platforms hosted at the Earth Data

  14. Onboard Plasmatron Hydrogen Production for Improved Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Daniel R. Cohn; Leslie Bromberg; Kamal Hadidi

    2005-12-31

    technology for onboard applications in internal combustion engine vehicles using diesel, gasoline and biofuels. This included the reduction of NOx and particulate matter emissions from diesel engines using plasmatron reformer generated hydrogen-rich gas, conversion of ethanol and bio-oils into hydrogen rich gas, and the development of new concepts for the use of plasmatron fuel reformers for enablement of HCCI engines.

  15. DARA vestibular equipment onboard MIR.

    Science.gov (United States)

    Hofmann, P; Kellig, A; Hoffmann, H U; Ruyters, G

    1998-01-01

    In space, the weightless environment provides a different stimulus to the otolith organs of the vestibular system, and the resulting signals no longer correspond with the visual and other sensory signals sent to the brain. This signal conflict causes disorientation. To study this and also to understand the vestibular adaptation to weightlessness, DARA has developed scientific equipment for vestibular and visuo-oculomotoric investigations. Especially, two video-oculography systems (monocular--VOG--and binocular--BIVOG, respectively) as well as stimuli such as an optokinetic stimulation device have successfully been employed onboard MIR in the frame of national and European missions since 1992. The monocular VOG was used by Klaus Flade during the MIR '92 mission, by Victor Polyakov during his record 15 months stay onboard MIR in 1993/94 as well as by Ulf Merbold during EUROMIR '94. The binocular version was used by Thomas Reiter and Sergej Avdeyev during the 6 months EUROMIR '95 mission. PIs of the various experiments include H. Scherer and A. Clarke (FU Berlin), M. Dieterichs and S. Krafczyk (LMU Munchen) from Germany as well as C.H. Markham and S.G. Diamond from the United States. Video-Oculography (VOG) is a technique for examining the function of the human balance system located in the inner ear (vestibular system) and the visio-oculomotor interactions of the vestibular organ. The human eye movements are measured, recorded and evaluated by state-of-the-art video techniques. The method was first conceived and designed at the Vestibular Research Laboratory of the ENT Clinic in Steglitz, FU Berlin (A. Clarke, H. Scherer). Kayser-Threde developed, manufactured and tested the facilities for space application under contract to DARA. Evaluation software was first provided by the ENT Clinic, Berlin, later by our subcontractor Sensomotoric Instruments (SMI), Teltow. Optokinetic hardware to support visuo-oculomotoric investigations, has been shipped to MIR for EUROMIR '95

  16. Open Knee: Open Source Modeling & Simulation to Enable Scientific Discovery and Clinical Care in Knee Biomechanics

    Science.gov (United States)

    Erdemir, Ahmet

    2016-01-01

    Virtual representations of the knee joint can provide clinicians, scientists, and engineers the tools to explore mechanical function of the knee and its tissue structures in health and disease. Modeling and simulation approaches such as finite element analysis also provide the possibility to understand the influence of surgical procedures and implants on joint stresses and tissue deformations. A large number of knee joint models are described in the biomechanics literature. However, freely accessible, customizable, and easy-to-use models are scarce. Availability of such models can accelerate clinical translation of simulations, where labor intensive reproduction of model development steps can be avoided. The interested parties can immediately utilize readily available models for scientific discovery and for clinical care. Motivated by this gap, this study aims to describe an open source and freely available finite element representation of the tibiofemoral joint, namely Open Knee, which includes detailed anatomical representation of the joint's major tissue structures, their nonlinear mechanical properties and interactions. Three use cases illustrate customization potential of the model, its predictive capacity, and its scientific and clinical utility: prediction of joint movements during passive flexion, examining the role of meniscectomy on contact mechanics and joint movements, and understanding anterior cruciate ligament mechanics. A summary of scientific and clinically directed studies conducted by other investigators are also provided. The utilization of this open source model by groups other than its developers emphasizes the premise of model sharing as an accelerator of simulation-based medicine. Finally, the imminent need to develop next generation knee models are noted. These are anticipated to incorporate individualized anatomy and tissue properties supported by specimen-specific joint mechanics data for evaluation, all acquired in vitro from varying age

  17. Parallelization and High-Performance Computing Enables Automated Statistical Inference of Multi-scale Models.

    Science.gov (United States)

    Jagiella, Nick; Rickert, Dennis; Theis, Fabian J; Hasenauer, Jan

    2017-02-22

    Mechanistic understanding of multi-scale biological processes, such as cell proliferation in a changing biological tissue, is readily facilitated by computational models. While tools exist to construct and simulate multi-scale models, the statistical inference of the unknown model parameters remains an open problem. Here, we present and benchmark a parallel approximate Bayesian computation sequential Monte Carlo (pABC SMC) algorithm, tailored for high-performance computing clusters. pABC SMC is fully automated and returns reliable parameter estimates and confidence intervals. By running the pABC SMC algorithm for ∼10(6) hr, we parameterize multi-scale models that accurately describe quantitative growth curves and histological data obtained in vivo from individual tumor spheroid growth in media droplets. The models capture the hybrid deterministic-stochastic behaviors of 10(5)-10(6) of cells growing in a 3D dynamically changing nutrient environment. The pABC SMC algorithm reliably converges to a consistent set of parameters. Our study demonstrates a proof of principle for robust, data-driven modeling of multi-scale biological systems and the feasibility of multi-scale model parameterization through statistical inference.

  18. A Variational Bayes Genomic-Enabled Prediction Model with Genotype × Environment Interaction

    Directory of Open Access Journals (Sweden)

    Osval A. Montesinos-López

    2017-06-01

    Full Text Available There are Bayesian and non-Bayesian genomic models that take into account G×E interactions. However, the computational cost of implementing Bayesian models is high, and becomes almost impossible when the number of genotypes, environments, and traits is very large, while, in non-Bayesian models, there are often important and unsolved convergence problems. The variational Bayes method is popular in machine learning, and, by approximating the probability distributions through optimization, it tends to be faster than Markov Chain Monte Carlo methods. For this reason, in this paper, we propose a new genomic variational Bayes version of the Bayesian genomic model with G×E using half-t priors on each standard deviation (SD term to guarantee highly noninformative and posterior inferences that are not sensitive to the choice of hyper-parameters. We show the complete theoretical derivation of the full conditional and the variational posterior distributions, and their implementations. We used eight experimental genomic maize and wheat data sets to illustrate the new proposed variational Bayes approximation, and compared its predictions and implementation time with a standard Bayesian genomic model with G×E. Results indicated that prediction accuracies are slightly higher in the standard Bayesian model with G×E than in its variational counterpart, but, in terms of computation time, the variational Bayes genomic model with G×E is, in general, 10 times faster than the conventional Bayesian genomic model with G×E. For this reason, the proposed model may be a useful tool for researchers who need to predict and select genotypes in several environments.

  19. Environmental Models as a Service: Enabling Interoperability through RESTful Endpoints and API Documentation.

    Science.gov (United States)

    Achieving interoperability in environmental modeling has evolved as software technology has progressed. The recent rise of cloud computing and proliferation of web services initiated a new stage for creating interoperable systems. Scientific programmers increasingly take advantag...

  20. Environmental Models as a Service: Enabling Interoperability through RESTful Endpoints and API Documentation (presentation)

    Science.gov (United States)

    Achieving interoperability in environmental modeling has evolved as software technology has progressed. The recent rise of cloud computing and proliferation of web services initiated a new stage for creating interoperable systems. Scientific programmers increasingly take advantag...

  1. Environmental Models as a Service: Enabling Interoperability through RESTful Endpoints and API Documentation

    Science.gov (United States)

    Achieving interoperability in environmental modeling has evolved as software technology has progressed. The recent rise of cloud computing and proliferation of web services initiated a new stage for creating interoperable systems. Scientific programmers increasingly take advantag...

  2. A GIS-Enabled, Michigan-Specific, Hierarchical Groundwater Modeling and Visualization System

    Science.gov (United States)

    Liu, Q.; Li, S.; Mandle, R.; Simard, A.; Fisher, B.; Brown, E.; Ross, S.

    2005-12-01

    Efficient management of groundwater resources relies on a comprehensive database that represents the characteristics of the natural groundwater system as well as analysis and modeling tools to describe the impacts of decision alternatives. Many agencies in Michigan have spent several years compiling expensive and comprehensive surface water and groundwater inventories and other related spatial data that describe their respective areas of responsibility. However, most often this wealth of descriptive data has only been utilized for basic mapping purposes. The benefits from analyzing these data, using GIS analysis functions or externally developed analysis models or programs, has yet to be systematically realized. In this talk, we present a comprehensive software environment that allows Michigan groundwater resources managers and frontline professionals to make more effective use of the available data and improve their ability to manage and protect groundwater resources, address potential conflicts, design cleanup schemes, and prioritize investigation activities. In particular, we take advantage of the Interactive Ground Water (IGW) modeling system and convert it to a customized software environment specifically for analyzing, modeling, and visualizing the Michigan statewide groundwater database. The resulting Michigan IGW modeling system (IGW-M) is completely window-based, fully interactive, and seamlessly integrated with a GIS mapping engine. The system operates in real-time (on the fly) providing dynamic, hierarchical mapping, modeling, spatial analysis, and visualization. Specifically, IGW-M allows water resources and environmental professionals in Michigan to: * Access and utilize the extensive data from the statewide groundwater database, interactively manipulate GIS objects, and display and query the associated data and attributes; * Analyze and model the statewide groundwater database, interactively convert GIS objects into numerical model features

  3. Parametric Generation of Polygonal Tree Models for Rendering on Tessellation-Enabled Hardware

    OpenAIRE

    Nystad, Jørgen

    2010-01-01

    The main contribution of this thesis is a parametric method for generation of single-mesh polygonal tree models that follow natural rules as indicated by da Vinci in his notebooks. Following these rules allow for a relatively simple scheme of connecting branches to parent branches. Proper branch connection is a requirement for gaining the benefits of subdivision. Techniques for proper texture coordinate generation and subdivision are also explored.The result is a tree model generation scheme ...

  4. Enabling Energy-Awareness in the Semantic 3d City Model of Vienna

    Science.gov (United States)

    Agugiaro, G.

    2016-09-01

    This paper presents and discusses the first results regarding selection, analysis, preparation and eventual integration of a number of energy-related datasets, chosen in order to enrich a CityGML-based semantic 3D city model of Vienna. CityGML is an international standard conceived specifically as information and data model for semantic city models at urban and territorial scale. The still-in-development Energy Application Domain Extension (ADE) is a CityGML extension conceived to specifically model, manage and store energy-related features and attributes for buildings. The work presented in this paper is embedded within the European Marie-Curie ITN project "CINERGY, Smart cities with sustainable energy systems", which aims, among the rest, at developing urban decision making and operational optimisation software tools to minimise non-renewable energy use in cities. Given the scope and scale of the project, it is therefore vital to set up a common, unique and spatio-semantically coherent urban data model to be used as information hub for all applications being developed. This paper reports about the experiences done so far, it describes the test area in Vienna, Austria, and the available data sources, it shows and exemplifies the main data integration issues, the strategies developed to solve them in order to obtain the enriched 3D city model. The first results as well as some comments about their quality and limitations are presented, together with the discussion regarding the next steps and some planned improvements.

  5. The DSET Tool Library: A software approach to enable data exchange between climate system models

    Energy Technology Data Exchange (ETDEWEB)

    McCormick, J. [Lawrence Livermore National Lab., CA (United States)

    1994-12-01

    Climate modeling is a computationally intensive process. Until recently computers were not powerful enough to perform the complex calculations required to simulate the earth`s climate. As a result standalone programs were created that represent components of the earth`s climate (e.g., Atmospheric Circulation Model). However, recent advances in computing, including massively parallel computing, make it possible to couple the components forming a complete earth climate simulation. The ability to couple different climate model components will significantly improve our ability to predict climate accurately and reliably. Historically each major component of the coupled earth simulation is a standalone program designed independently with different coordinate systems and data representations. In order for two component models to be coupled, the data of one model must be mapped to the coordinate system of the second model. The focus of this project is to provide a general tool to facilitate the mapping of data between simulation components, with an emphasis on using object-oriented programming techniques to provide polynomial interpolation, line and area weighting, and aggregation services.

  6. Enabling high-quality observations of surface imperviousness for water runoff modelling from unmanned aerial vehicles

    Science.gov (United States)

    Tokarczyk, Piotr; Leitao, Joao Paulo; Rieckermann, Jörg; Schindler, Konrad; Blumensaat, Frank

    2015-04-01

    Modelling rainfall-runoff in urban areas is increasingly applied to support flood risk assessment particularly against the background of a changing climate and an increasing urbanization. These models typically rely on high-quality data for rainfall and surface characteristics of the area. While recent research in urban drainage has been focusing on providing spatially detailed rainfall data, the technological advances in remote sensing that ease the acquisition of detailed land-use information are less prominently discussed within the community. The relevance of such methods increase as in many parts of the globe, accurate land-use information is generally lacking, because detailed image data is unavailable. Modern unmanned air vehicles (UAVs) allow acquiring high-resolution images on a local level at comparably lower cost, performing on-demand repetitive measurements, and obtaining a degree of detail tailored for the purpose of the study. In this study, we investigate for the first time the possibility to derive high-resolution imperviousness maps for urban areas from UAV imagery and to use this information as input for urban drainage models. To do so, an automatic processing pipeline with a modern classification method is tested and applied in a state-of-the-art urban drainage modelling exercise. In a real-life case study in the area of Lucerne, Switzerland, we compare imperviousness maps generated from a consumer micro-UAV and standard large-format aerial images acquired by the Swiss national mapping agency (swisstopo). After assessing their correctness, we perform an end-to-end comparison, in which they are used as an input for an urban drainage model. Then, we evaluate the influence which different image data sources and their processing methods have on hydrological and hydraulic model performance. We analyze the surface runoff of the 307 individual sub-catchments regarding relevant attributes, such as peak runoff and volume. Finally, we evaluate the model

  7. Scheduling Onboard Processing for the Proposed HyspIRI Mission

    Science.gov (United States)

    Chien, Steve; Mclaren, David; Rabideau, Gregg; Mandl, Daniel; Hengemihle, Jerry

    2011-01-01

    The proposed Hyspiri mission is evaluating a X-band Direct Broadcast (DB) capability that would enable data to be delivered to ground stations virtually as it is acquired. However the HyspIRI VSWIR and TIR instruments will produce 1 Gbps data while the DB capability is 15 M bps for a 60x oversubscription. In order to address this data volume mismatch a DB concept has been developed thatdetermines which data to downlink based on both: 1. The type of surface the spacecraft is overflying and 2. Onboard processing of the data to detect events. For example when the spacecraft is overflying polar regions it might downlink a snow/ice product. Additionally the onboard software will search for thermal signatures indicative of a volcanic event or wild fire and downlink summary information (extent, spectra) when detected. The process of determining which products to generate when, based on request prioritization and onboard processing and downlink constraints is inherently a prioritized scheduling problem - we describe work to develop an automated solution to this problem.

  8. A learning-enabled neuron array IC based upon transistor channel models of biological phenomena.

    Science.gov (United States)

    Brink, S; Nease, S; Hasler, P; Ramakrishnan, S; Wunderlich, R; Basu, A; Degnan, B

    2013-02-01

    We present a single-chip array of 100 biologically-based electronic neuron models interconnected to each other and the outside environment through 30,000 synapses. The chip was fabricated in a standard 350 nm CMOS IC process. Our approach used dense circuit models of synaptic behavior, including biological computation and learning, as well as transistor channel models. We use Address-Event Representation (AER) spike communication for inputs and outputs to this IC. We present the IC architecture and infrastructure, including IC chip, configuration tools, and testing platform. We present measurement of small network of neurons, measurement of STDP neuron dynamics, and measurement from a compiled spiking neuron WTA topology, all compiled into this IC.

  9. ENABLING “ENERGY-AWARENESS” IN THE SEMANTIC 3D CITY MODEL OF VIENNA

    Directory of Open Access Journals (Sweden)

    G. Agugiaro

    2016-09-01

    Full Text Available This paper presents and discusses the first results regarding selection, analysis, preparation and eventual integration of a number of energy-related datasets, chosen in order to enrich a CityGML-based semantic 3D city model of Vienna. CityGML is an international standard conceived specifically as information and data model for semantic city models at urban and territorial scale. The still-in-development Energy Application Domain Extension (ADE is a CityGML extension conceived to specifically model, manage and store energy-related features and attributes for buildings. The work presented in this paper is embedded within the European Marie-Curie ITN project “CINERGY, Smart cities with sustainable energy systems”, which aims, among the rest, at developing urban decision making and operational optimisation software tools to minimise non-renewable energy use in cities. Given the scope and scale of the project, it is therefore vital to set up a common, unique and spatio-semantically coherent urban data model to be used as information hub for all applications being developed. This paper reports about the experiences done so far, it describes the test area in Vienna, Austria, and the available data sources, it shows and exemplifies the main data integration issues, the strategies developed to solve them in order to obtain the enriched 3D city model. The first results as well as some comments about their quality and limitations are presented, together with the discussion regarding the next steps and some planned improvements.

  10. Onboard Run-Time Goal Selection for Autonomous Operations

    Science.gov (United States)

    Rabideau, Gregg; Chien, Steve; McLaren, David

    2010-01-01

    We describe an efficient, online goal selection algorithm for use onboard spacecraft and its use for selecting goals at runtime. Our focus is on the re-planning that must be performed in a timely manner on the embedded system where computational resources are limited. In particular, our algorithm generates near optimal solutions to problems with fully specified goal requests that oversubscribe available resources but have no temporal flexibility. By using a fast, incremental algorithm, goal selection can be postponed in a "just-in-time" fashion allowing requests to be changed or added at the last minute. This enables shorter response cycles and greater autonomy for the system under control.

  11. Neonatal tolerance induction enables accurate evaluation of gene therapy for MPS I in a canine model.

    Science.gov (United States)

    Hinderer, Christian; Bell, Peter; Louboutin, Jean-Pierre; Katz, Nathan; Zhu, Yanqing; Lin, Gloria; Choa, Ruth; Bagel, Jessica; O'Donnell, Patricia; Fitzgerald, Caitlin A; Langan, Therese; Wang, Ping; Casal, Margret L; Haskins, Mark E; Wilson, James M

    2016-09-01

    High fidelity animal models of human disease are essential for preclinical evaluation of novel gene and protein therapeutics. However, these studies can be complicated by exaggerated immune responses against the human transgene. Here we demonstrate that dogs with a genetic deficiency of the enzyme α-l-iduronidase (IDUA), a model of the lysosomal storage disease mucopolysaccharidosis type I (MPS I), can be rendered immunologically tolerant to human IDUA through neonatal exposure to the enzyme. Using MPS I dogs tolerized to human IDUA as neonates, we evaluated intrathecal delivery of an adeno-associated virus serotype 9 vector expressing human IDUA as a therapy for the central nervous system manifestations of MPS I. These studies established the efficacy of the human vector in the canine model, and allowed for estimation of the minimum effective dose, providing key information for the design of first-in-human trials. This approach can facilitate evaluation of human therapeutics in relevant animal models, and may also have clinical applications for the prevention of immune responses to gene and protein replacement therapies. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Quality Concerns in Technical Education in India: A Quantifiable Quality Enabled Model

    Science.gov (United States)

    Gambhir, Victor; Wadhwa, N. C.; Grover, Sandeep

    2016-01-01

    Purpose: The paper aims to discuss current Technical Education scenarios in India. It proposes modelling the factors affecting quality in a technical institute and then applying a suitable technique for assessment, comparison and ranking. Design/methodology/approach: The paper chose graph theoretic approach for quantification of quality-enabled…

  13. Thermal modelling approaches to enable mitigation measures implementation for salmonid gravel stages in hydropeaking rivers

    Science.gov (United States)

    Casas-Mulet, R.; Alfredsen, K. T.

    2016-12-01

    The dewatering of salmon spawning redds can lead to early life stages mortality due to hydropeaking operations, with higher impact on the alevins stages as they have lower tolerance to dewatering than the eggs. Targeted flow-related mitigations measures can reduce such mortality, but it is essential to understand how hydropeaking change thermal regimes in rivers and may impact embryo development; only then optimal measures can be implemented at the right development stage. We present a set of experimental approaches and modelling tools for the estimation of hatch and swim-up dates based on water temperature data in the river Lundesokna (Norway). We identified critical periods for gravel-stages survival and through comparing hydropeaking vs unregulated thermal and hydrological regimes, we established potential flow-release measures to minimise mortality. Modelling outcomes were then used assess the cost-efficiency of each measure. The combinations of modelling tools used in this study were overall satisfactory and their application can be useful especially in systems where little field data is available. Targeted measures built on well-informed modelling approaches can be pre-tested based on their efficiency to mitigate dewatering effects vs. the hydropower system capacity to release or conserve water for power production. Overall, environmental flow releases targeting specific ecological objectives can provide better cost-effective options than conventional operational rules complying with general legislation.

  14. Developmental Impact Analysis of an ICT-Enabled Scalable Healthcare Model in BRICS Economies

    Directory of Open Access Journals (Sweden)

    Dhrubes Biswas

    2012-06-01

    Full Text Available This article highlights the need for initiating a healthcare business model in a grassroots, emerging-nation context. This article’s backdrop is a history of chronic anomalies afflicting the healthcare sector in India and similarly placed BRICS nations. In these countries, a significant percentage of populations remain deprived of basic healthcare facilities and emergency services. Community (primary care services are being offered by public and private stakeholders as a panacea to the problem. Yet, there is an urgent need for specialized (tertiary care services at all levels. As a response to this challenge, an all-inclusive health-exchange system (HES model, which utilizes information communication technology (ICT to provide solutions in rural India, has been developed. The uniqueness of the model lies in its innovative hub-and-spoke architecture and its emphasis on affordability, accessibility, and availability to the masses. This article describes a developmental impact analysis (DIA that was used to assess the impact of this model. The article contributes to the knowledge base of readers by making them aware of the healthcare challenges emerging nations are facing and ways to mitigate those challenges using entrepreneurial solutions.

  15. Plant parameters for plant functional groups of western rangelands to enable process-based simulation modeling

    Science.gov (United States)

    Regional environmental assessments with process-based models require realistic estimates of plant parameters for the primary plant functional groups in the region. “Functional group” in this context is an operational term, based on similarities in plant type and in plant parameter values. Likewise...

  16. 基于改进混合卡尔曼滤波器的航空发动机机载自适应模型%Aeroengine on-board adaptive model based on improved hybrid Kalman filter

    Institute of Scientific and Technical Information of China (English)

    陆军; 郭迎清; 张书刚

    2011-01-01

    提出了基于改进混合卡尔曼滤波器的航空发动机机载自适应模型方法,即以机载非线性模型的输出作为分段线性卡尔曼滤波器的稳态基准值,将性能蜕化因子作为该滤波器的增广状态量进行在线估计,并反馈给机载非线性模型使其完成在线更新.同时,根据工作模式切换机制使该模型获得有效输出.通过将该方法应用于某型涡扇发动机进行一系列仿真表明,在全飞行包线内、不同工作状态以及性能蜕化严重的情况下,该模型能够始终与实际发动机相匹配,满足实际应用需求.%A method of establishing aeroengine on-board adaptive model was proposed based on improved hybrid Kalman filter(IHKF).The output of nonlinear on-board engine model(NOBEM) was regarded as the steady-state basic model of piecewise linear Kalman filter(PWKF),while its performance deterioration factor was regarded as the augmented state vector of PWKF for on-line estimation,and fed back to NOBEM for on-line updating.In addition,the switching logic of work mode was established,which could make the IHKF work better.By applying this method to a turbofan engine,a series of simulation results show that the model can always match the actual engine in the whole flight envelope,under different engine states and severe performance deterioration,thus meeting the needs of practical applications.

  17. A User-Centric Knowledge Creation Model in a Web of Object-Enabled Internet of Things Environment.

    Science.gov (United States)

    Kibria, Muhammad Golam; Fattah, Sheik Mohammad Mostakim; Jeong, Kwanghyeon; Chong, Ilyoung; Jeong, Youn-Kwae

    2015-09-18

    User-centric service features in a Web of Object-enabled Internet of Things environment can be provided by using a semantic ontology that classifies and integrates objects on the World Wide Web as well as shares and merges context-aware information and accumulated knowledge. The semantic ontology is applied on a Web of Object platform to virtualize the real world physical devices and information to form virtual objects that represent the features and capabilities of devices in the virtual world. Detailed information and functionalities of multiple virtual objects are combined with service rules to form composite virtual objects that offer context-aware knowledge-based services, where context awareness plays an important role in enabling automatic modification of the system to reconfigure the services based on the context. Converting the raw data into meaningful information and connecting the information to form the knowledge and storing and reusing the objects in the knowledge base can both be expressed by semantic ontology. In this paper, a knowledge creation model that synchronizes a service logistic model and a virtual world knowledge model on a Web of Object platform has been proposed. To realize the context-aware knowledge-based service creation and execution, a conceptual semantic ontology model has been developed and a prototype has been implemented for a use case scenario of emergency service.

  18. A User-Centric Knowledge Creation Model in a Web of Object-Enabled Internet of Things Environment

    Directory of Open Access Journals (Sweden)

    Muhammad Golam Kibria

    2015-09-01

    Full Text Available User-centric service features in a Web of Object-enabled Internet of Things environment can be provided by using a semantic ontology that classifies and integrates objects on the World Wide Web as well as shares and merges context-aware information and accumulated knowledge. The semantic ontology is applied on a Web of Object platform to virtualize the real world physical devices and information to form virtual objects that represent the features and capabilities of devices in the virtual world. Detailed information and functionalities of multiple virtual objects are combined with service rules to form composite virtual objects that offer context-aware knowledge-based services, where context awareness plays an important role in enabling automatic modification of the system to reconfigure the services based on the context. Converting the raw data into meaningful information and connecting the information to form the knowledge and storing and reusing the objects in the knowledge base can both be expressed by semantic ontology. In this paper, a knowledge creation model that synchronizes a service logistic model and a virtual world knowledge model on a Web of Object platform has been proposed. To realize the context-aware knowledge-based service creation and execution, a conceptual semantic ontology model has been developed and a prototype has been implemented for a use case scenario of emergency service.

  19. A probabilistic generative model for quantification of DNA modifications enables analysis of demethylation pathways.

    Science.gov (United States)

    Äijö, Tarmo; Huang, Yun; Mannerström, Henrik; Chavez, Lukas; Tsagaratou, Ageliki; Rao, Anjana; Lähdesmäki, Harri

    2016-03-14

    We present a generative model, Lux, to quantify DNA methylation modifications from any combination of bisulfite sequencing approaches, including reduced, oxidative, TET-assisted, chemical-modification assisted, and methylase-assisted bisulfite sequencing data. Lux models all cytosine modifications (C, 5mC, 5hmC, 5fC, and 5caC) simultaneously together with experimental parameters, including bisulfite conversion and oxidation efficiencies, as well as various chemical labeling and protection steps. We show that Lux improves the quantification and comparison of cytosine modification levels and that Lux can process any oxidized methylcytosine sequencing data sets to quantify all cytosine modifications. Analysis of targeted data from Tet2-knockdown embryonic stem cells and T cells during development demonstrates DNA modification quantification at unprecedented detail, quantifies active demethylation pathways and reveals 5hmC localization in putative regulatory regions.

  20. Cultural Resources as Sustainability Enablers: Towards a Community-Based Cultural Heritage Resources Management (COBACHREM Model

    Directory of Open Access Journals (Sweden)

    Susan O. Keitumetse

    2013-12-01

    Full Text Available People inhabit and change environments using socio-cultural and psycho-social behaviors and processes. People use their socio-cultural understanding of phenomena to interact with the environment. People are carriers of cultural heritage. These characteristics make cultural values ubiquitous in all people-accessed and people-inhabited geographic spaces of the world, making people readily available assets through which environmental sustainability can be implemented. Yet, people’s conservation development is rarely planned using cultural resources. It is against this background that a Community-Based Cultural Heritage Resources Management (COBACHREM model is initiated as a new approach that outlines the symbiosis between cultural heritage, environment and various stakeholders, with a view to create awareness about neglected conservation indicators inherent in cultural resources and better placed to complement already existing natural resources conservation indicators. The model constitutes a two-phased process with four (04 levels of operation, namely: level I (production; level II (reproduction; level III (consumption that distinguish specific components of cultural heritage resources to be monitored at level IV for sustainability using identified cultural conservation indicators. Monitored indicators, which are limitless, constitute work in progress of the model and will be constantly reviewed, renewed and updated through time. Examples of monitoring provided in this article are the development of cultural competency-based training curriculum that will assist communities to transform cultural information into certifiable intellectual (educational and culture-economic (tourism assets. Another monitoring example is the mainstreaming of community cultural qualities into already existing environmental conservation frameworks such as eco-certification to infuse new layers of conservation indicators that enrich resource sustainability. The technical

  1. Robust Workflow Systems + Flexible Geoprocessing Services = Geo-enabled Model Web?

    OpenAIRE

    GRANELL CANUT CARLOS

    2013-01-01

    The chapter begins briefly exploring the concept of modeling in geosciences which notably benefits from advances on the integration of geoprocessing services and workflow systems. In section 3, we provide a comprehensive background on the technology trends we treat in the chapter. On one hand we deal with workflow systems, categorized normally in the literature as scientific and business workflow systems (Barga and Gannon 2007). In particular, we introduce some prominent examples of scient...

  2. Spatiotemporal Stochastic Modeling of IoT Enabled Cellular Networks: Scalability and Stability Analysis

    KAUST Repository

    Gharbieh, Mohammad

    2017-05-02

    The Internet of Things (IoT) is large-scale by nature, which is manifested by the massive number of connected devices as well as their vast spatial existence. Cellular networks, which provide ubiquitous, reliable, and efficient wireless access, will play fundamental rule in delivering the first-mile access for the data tsunami to be generated by the IoT. However, cellular networks may have scalability problems to provide uplink connectivity to massive numbers of connected things. To characterize the scalability of cellular uplink in the context of IoT networks, this paper develops a traffic-aware spatiotemporal mathematical model for IoT devices supported by cellular uplink connectivity. The developed model is based on stochastic geometry and queueing theory to account for the traffic requirement per IoT device, the different transmission strategies, and the mutual interference between the IoT devices. To this end, the developed model is utilized to characterize the extent to which cellular networks can accommodate IoT traffic as well as to assess and compare three different transmission strategies that incorporate a combination of transmission persistency, backoff, and power-ramping. The analysis and the results clearly illustrate the scalability problem imposed by IoT on cellular network and offer insights into effective scenarios for each transmission strategy.

  3. On-board Data Mining

    Science.gov (United States)

    Tanner, Steve; Stein, Cara; Graves, Sara J.

    Networks of remote sensors are becoming more common as technology improves and costs decline. In the past, a remote sensor was usually a device that collected data to be retrieved at a later time by some other mechanism. This collected data were usually processed well after the fact at a computer greatly removed from the in situ sensing location. This has begun to change as sensor technology, on-board processing, and network communication capabilities have increased and their prices have dropped. There has been an explosion in the number of sensors and sensing devices, not just around the world, but literally throughout the solar system. These sensors are not only becoming vastly more sophisticated, accurate, and detailed in the data they gather but they are also becoming cheaper, lighter, and smaller. At the same time, engineers have developed improved methods to embed computing systems, memory, storage, and communication capabilities into the platforms that host these sensors. Now, it is not unusual to see large networks of sensors working in cooperation with one another. Nor does it seem strange to see the autonomous operation of sensorbased systems, from space-based satellites to smart vacuum cleaners that keep our homes clean and robotic toys that help to entertain and educate our children. But access to sensor data and computing power is only part of the story. For all the power of these systems, there are still substantial limits to what they can accomplish. These include the well-known limits to current Artificial Intelligence capabilities and our limited ability to program the abstract concepts, goals, and improvisation needed for fully autonomous systems. But it also includes much more basic engineering problems such as lack of adequate power, communications bandwidth, and memory, as well as problems with the geolocation and real-time georeferencing required to integrate data from multiple sensors to be used together.

  4. SciDAC-Data, A Project to Enabling Data Driven Modeling of Exascale Computing

    Energy Technology Data Exchange (ETDEWEB)

    Mubarak, M.; Ding, P.; Aliaga, L.; Tsaris, A.; Norman, A.; Lyon, A.; Ross, R.

    2016-10-10

    The SciDAC-Data project is a DOE funded initiative to analyze and exploit two decades of information and analytics that have been collected by the Fermilab Data Center on the organization, movement, and consumption of High Energy Physics data. The project will analyze the analysis patterns and data organization that have been used by the NOvA, MicroBooNE, MINERvA and other experiments, to develop realistic models of HEP analysis workflows and data processing. The SciDAC-Data project aims to provide both realistic input vectors and corresponding output data that can be used to optimize and validate simulations of HEP analysis. These simulations are designed to address questions of data handling, cache optimization and workflow structures that are the prerequisites for modern HEP analysis chains to be mapped and optimized to run on the next generation of leadership class exascale computing facilities. We will address the use of the SciDAC-Data distributions acquired from Fermilab Data Center’s analysis workflows and corresponding to around 71,000 HEP jobs, as the input to detailed queuing simulations that model the expected data consumption and caching behaviors of the work running in HPC environments. In particular we describe in detail how the Sequential Access via Metadata (SAM) data handling system in combination with the dCache/Enstore based data archive facilities have been analyzed to develop the radically different models of the analysis of HEP data. We present how the simulation may be used to analyze the impact of design choices in archive facilities.

  5. Remote patient management: technology-enabled innovation and evolving business models for chronic disease care.

    Science.gov (United States)

    Coye, Molly Joel; Haselkorn, Ateret; DeMello, Steven

    2009-01-01

    Remote patient management (RPM) is a transformative technology that improves chronic care management while reducing net spending for chronic disease. Broadly deployed within the Veterans Health Administration and in many small trials elsewhere, RPM has been shown to support patient self-management, shift responsibilities to non-clinical providers, and reduce the use of emergency department and hospital services. Because transformative technologies offer major opportunities to advance national goals of improved quality and efficiency in health care, it is important to understand their evolution, the experiences of early adopters, and the business models that may support their deployment.

  6. Understanding Systematics in ZZ Ceti Model Fitting to Enable Differential Seismology

    Science.gov (United States)

    Fuchs, J. T.; Dunlap, B. H.; Clemens, J. C.; Meza, J. A.; Dennihy, E.; Koester, D.

    2017-03-01

    We are conducting a large spectroscopic survey of over 130 Southern ZZ Cetis with the Goodman Spectrograph on the SOAR Telescope. Because it employs a single instrument with high UV throughput, this survey will both improve the signal-to-noise of the sample of SDSS ZZ Cetis and provide a uniform dataset for model comparison. We are paying special attention to systematics in the spectral fitting and quantify three of those systematics here. We show that relative positions in the log g -Teff plane are consistent for these three systematics.

  7. Understanding Systematics in ZZ Ceti Model Fitting to Enable Differential Seismology

    CERN Document Server

    Fuchs, J T; Clemens, J C; Meza, J A; Dennihy, E; Koester, D

    2016-01-01

    We are conducting a large spectroscopic survey of over 130 Southern ZZ Cetis with the Goodman Spectrograph on the SOAR Telescope. Because it employs a single instrument with high UV throughput, this survey will both improve the signal-to-noise of the sample of SDSS ZZ Cetis and provide a uniform dataset for model comparison. We are paying special attention to systematics in the spectral fitting and quantify three of those systematics here. We show that relative positions in the $\\log{g}$-$T_{\\rm eff}$ plane are consistent for these three systematics.

  8. On-board monitoring of 2-D spatially-resolved temperatures in cylindrical lithium-ion batteries: Part I. Low-order thermal modelling

    Science.gov (United States)

    Richardson, Robert R.; Zhao, Shi; Howey, David A.

    2016-09-01

    Estimating the temperature distribution within Li-ion batteries during operation is critical for safety and control purposes. Although existing control-oriented thermal models - such as thermal equivalent circuits (TEC) - are computationally efficient, they only predict average temperatures, and are unable to predict the spatially resolved temperature distribution throughout the cell. We present a low-order 2D thermal model of a cylindrical battery based on a Chebyshev spectral-Galerkin (SG) method, capable of predicting the full temperature distribution with a similar efficiency to a TEC. The model accounts for transient heat generation, anisotropic heat conduction, and non-homogeneous convection boundary conditions. The accuracy of the model is validated through comparison with finite element simulations, which show that the 2-D temperature field (r, z) of a large format (64 mm diameter) cell can be accurately modelled with as few as 4 states. Furthermore, the performance of the model for a range of Biot numbers is investigated via frequency analysis. For larger cells or highly transient thermal dynamics, the model order can be increased for improved accuracy. The incorporation of this model in a state estimation scheme with experimental validation against thermocouple measurements is presented in the companion contribution (http://www.sciencedirect.com/science/article/pii/S0378775316308163).

  9. Machine learning methods enable predictive modeling of antibody feature:function relationships in RV144 vaccinees.

    Directory of Open Access Journals (Sweden)

    Ickwon Choi

    2015-04-01

    Full Text Available The adaptive immune response to vaccination or infection can lead to the production of specific antibodies to neutralize the pathogen or recruit innate immune effector cells for help. The non-neutralizing role of antibodies in stimulating effector cell responses may have been a key mechanism of the protection observed in the RV144 HIV vaccine trial. In an extensive investigation of a rich set of data collected from RV144 vaccine recipients, we here employ machine learning methods to identify and model associations between antibody features (IgG subclass and antigen specificity and effector function activities (antibody dependent cellular phagocytosis, cellular cytotoxicity, and cytokine release. We demonstrate via cross-validation that classification and regression approaches can effectively use the antibody features to robustly predict qualitative and quantitative functional outcomes. This integration of antibody feature and function data within a machine learning framework provides a new, objective approach to discovering and assessing multivariate immune correlates.

  10. Modular degradable dendrimers enable small RNAs to extend survival in an aggressive liver cancer model

    Science.gov (United States)

    Zhou, Kejin; Nguyen, Liem H.; Miller, Jason B.; Yan, Yunfeng; Kos, Petra; Xiong, Hu; Li, Lin; Hao, Jing; Minnig, Jonathan T.; Siegwart, Daniel J.

    2016-01-01

    RNA-based cancer therapies are hindered by the lack of delivery vehicles that avoid cancer-induced organ dysfunction, which exacerbates carrier toxicity. We address this issue by reporting modular degradable dendrimers that achieve the required combination of high potency to tumors and low hepatotoxicity to provide a pronounced survival benefit in an aggressive genetic cancer model. More than 1,500 dendrimers were synthesized using sequential, orthogonal reactions where ester degradability was systematically integrated with chemically diversified cores, peripheries, and generations. A lead dendrimer, 5A2-SC8, provided a broad therapeutic window: identified as potent [EC50 75 mg/kg dendrimer repeated dosing). Delivery of let-7g microRNA (miRNA) mimic inhibited tumor growth and dramatically extended survival. Efficacy stemmed from a combination of a small RNA with the dendrimer’s own negligible toxicity, therefore illuminating an underappreciated complication in treating cancer with RNA-based drugs. PMID:26729861

  11. Enabling Dark Energy Science with Deep Generative Models of Galaxy Images

    CERN Document Server

    Ravanbakhsh, Siamak; Mandelbaum, Rachel; Schneider, Jeff; Poczos, Barnabas

    2016-01-01

    Understanding the nature of dark energy, the mysterious force driving the accelerated expansion of the Universe, is a major challenge of modern cosmology. The next generation of cosmological surveys, specifically designed to address this issue, rely on accurate measurements of the apparent shapes of distant galaxies. However, shape measurement methods suffer from various unavoidable biases and therefore will rely on a precise calibration to meet the accuracy requirements of the science analysis. This calibration process remains an open challenge as it requires large sets of high quality galaxy images. To this end, we study the application of deep conditional generative models in generating realistic galaxy images. In particular we consider variations on conditional variational autoencoder and introduce a new adversarial objective for training of conditional generative networks. Our results suggest a reliable alternative to the acquisition of expensive high quality observations for generating the calibration d...

  12. A transgenic quail model that enables dynamic imaging of amniote embryogenesis.

    Science.gov (United States)

    Huss, David; Benazeraf, Bertrand; Wallingford, Allison; Filla, Michael; Yang, Jennifer; Fraser, Scott E; Lansford, Rusty

    2015-08-15

    Embryogenesis is the coordinated assembly of tissues during morphogenesis through changes in individual cell behaviors and collective cell movements. Dynamic imaging, combined with quantitative analysis, is ideal for investigating fundamental questions in developmental biology involving cellular differentiation, growth control and morphogenesis. However, a reliable amniote model system that is amenable to the rigors of extended, high-resolution imaging and cell tracking has been lacking. To address this shortcoming, we produced a novel transgenic quail that ubiquitously expresses nuclear localized monomer cherry fluorescent protein (chFP). We characterize the expression pattern of chFP and provide concrete examples of how Tg(PGK1:H2B-chFP) quail can be used to dynamically image and analyze key morphogenetic events during embryonic stages X to 11.

  13. A Gamma-Knife-Enabled Mouse Model of Cerebral Single-Hemisphere Delayed Radiation Necrosis.

    Directory of Open Access Journals (Sweden)

    Xiaoyu Jiang

    Full Text Available To develop a Gamma Knife-based mouse model of late time-to-onset, cerebral radiation necrosis (RN with serial evaluation by magnetic resonance imaging (MRI and histology.Mice were irradiated with the Leksell Gamma Knife® (GK PerfexionTM (Elekta AB; Stockholm, Sweden with total single-hemispheric radiation doses (TRD of 45- to 60-Gy, delivered in one to three fractions. RN was measured using T2-weighted MR images, while confirmation of tissue damage was assessed histologically by hematoxylin & eosin, trichrome, and PTAH staining.MRI measurements demonstrate that TRD is a more important determinant of both time-to-onset and progression of RN than fractionation. The development of RN is significantly slower in mice irradiated with 45-Gy than 50- or 60-Gy, where RN development is similar. Irradiated mouse brains demonstrate all of the pathologic features observed clinically in patients with confirmed RN. A semi-quantitative (0 to 3 histologic grading system, capturing both the extent and severity of injury, is described and illustrated. Tissue damage, as assessed by a histologic score, correlates well with total necrotic volume measured by MRI (correlation coefficient = 0.948, with p<0.0001, and with post-irradiation time (correlation coefficient = 0.508, with p<0.0001.Following GK irradiation, mice develop late time-to-onset cerebral RN histology mirroring clinical observations. MR imaging provides reliable quantification of the necrotic volume that correlates well with histologic score. This mouse model of RN will provide a platform for mechanism of action studies, the identification of imaging biomarkers of RN, and the development of clinical studies for improved mitigation and neuroprotection.

  14. Lazy Updating of hubs can enable more realistic models by speeding up stochastic simulations

    Energy Technology Data Exchange (ETDEWEB)

    Ehlert, Kurt; Loewe, Laurence, E-mail: loewe@wisc.edu [Laboratory of Genetics, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States); Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin 53715 (United States)

    2014-11-28

    To respect the nature of discrete parts in a system, stochastic simulation algorithms (SSAs) must update for each action (i) all part counts and (ii) each action's probability of occurring next and its timing. This makes it expensive to simulate biological networks with well-connected “hubs” such as ATP that affect many actions. Temperature and volume also affect many actions and may be changed significantly in small steps by the network itself during fever and cell growth, respectively. Such trends matter for evolutionary questions, as cell volume determines doubling times and fever may affect survival, both key traits for biological evolution. Yet simulations often ignore such trends and assume constant environments to avoid many costly probability updates. Such computational convenience precludes analyses of important aspects of evolution. Here we present “Lazy Updating,” an add-on for SSAs designed to reduce the cost of simulating hubs. When a hub changes, Lazy Updating postpones all probability updates for reactions depending on this hub, until a threshold is crossed. Speedup is substantial if most computing time is spent on such updates. We implemented Lazy Updating for the Sorting Direct Method and it is easily integrated into other SSAs such as Gillespie's Direct Method or the Next Reaction Method. Testing on several toy models and a cellular metabolism model showed >10× faster simulations for its use-cases—with a small loss of accuracy. Thus we see Lazy Updating as a valuable tool for some special but important simulation problems that are difficult to address efficiently otherwise.

  15. Concepts, Instruments, and Model Systems that Enabled the Rapid Evolution of Surface Science

    Energy Technology Data Exchange (ETDEWEB)

    Somorjai, Gabor A.; Park, Jeong Y.

    2009-01-10

    Over the past forty years, surface science has evolved to become both an atomic scale and a molecular scale science. Gerhard Ertl's group has made major contributions in the field of molecular scale surface science, focusing on vacuum studies of adsorption chemistry on single crystal surfaces. In this review, we outline three important aspects which have led to recent advances in surface chemistry: the development of new concepts, in situ instruments for molecular scale surface studies at buried interfaces (solid-gas and solid-liquid), and new model nanoparticle surface systems, in addition to single crystals. Combined molecular beam surface scattering and low energy electron diffraction (LEED)- surface structure studies on metal single crystal surfaces revealed concepts, including adsorbate-induced surface restructuring and the unique activity of defects, atomic steps, and kinks on metal surfaces. We have combined high pressure catalytic reaction studies with ultra high vacuum (UHV) surface characterization techniques using a UHV chamber equipped with a high pressure reaction cell. New instruments, such as high pressure sum frequency generation (SFG) vibrational spectroscopy and scanning tunneling microscopy (STM) which permit molecular-level surface studies have been developed. Tools that access broad ranges of pressures can be used for both the in situ characterization of solid-gas and solid-liquid buried interfaces and the study of catalytic reaction intermediates. The model systems for the study of molecular surface chemistry have evolved from single crystals to nanoparticles in the 1-10 nm size range, which are currently the preferred media in catalytic reaction studies.

  16. Enabling Persistent Autonomy for Underwater Gliders with Ocean Model Predictions and Terrain Based Navigation

    Directory of Open Access Journals (Sweden)

    Andrew eStuntz

    2016-04-01

    Full Text Available Effective study of ocean processes requires sampling over the duration of long (weeks to months oscillation patterns. Such sampling requires persistent, autonomous underwater vehicles, that have a similarly long deployment duration. The spatiotemporal dynamics of the ocean environment, coupled with limited communication capabilities, make navigation and localization difficult, especially in coastal regions where the majority of interesting phenomena occur. In this paper, we consider the combination of two methods for reducing navigation and localization error; a predictive approach based on ocean model predictions and a prior information approach derived from terrain-based navigation. The motivation for this work is not only for real-time state estimation, but also for accurately reconstructing the actual path that the vehicle traversed to contextualize the gathered data, with respect to the science question at hand. We present an application for the practical use of priors and predictions for large-scale ocean sampling. This combined approach builds upon previous works by the authors, and accurately localizes the traversed path of an underwater glider over long-duration, ocean deployments. The proposed method takes advantage of the reliable, short-term predictions of an ocean model, and the utility of priors used in terrain-based navigation over areas of significant bathymetric relief to bound uncertainty error in dead-reckoning navigation. This method improves upon our previously published works by 1 demonstrating the utility of our terrain-based navigation method with multiple field trials, and 2 presenting a hybrid algorithm that combines both approaches to bound navigational error and uncertainty for long-term deployments of underwater vehicles. We demonstrate the approach by examining data from actual field trials with autonomous underwater gliders, and demonstrate an ability to estimate geographical location of an underwater glider to 2

  17. The onboard control system of "Navigator" platform

    Science.gov (United States)

    Syrov, A. S.; Smirnov, V. V.; Sokolov, V. N.; Iodko, G. S.; Mischikhin, V. V.; Kosobokov, V. N.; Shatskii, M. A.; Dobrynin, D. A.

    2016-12-01

    A brief description of the design concept, structure and performance of the onboard control system (AOCS) of the "Navigator" satellite platform, on the basis of which the spacecraft "Electro-L' and "Spektr-R" are designed, is presented. The test-flight results of the AOCS attitude accuracy are given. Approaches to the further development of the onboard control equipment for advanced spacecraft are determined and presented.

  18. To the efficiency assessment of the maintenace of aircraft onboard systems

    Directory of Open Access Journals (Sweden)

    N. V. Сhekrizhev

    2015-01-01

    Full Text Available This article considers efficiency assessment of the maintenance of onboard systems of aircraft based on suggested «ideal» model with a set of parameters, criteria and evaluation function.

  19. Uav Onboard GPS in Positioning Determination

    Science.gov (United States)

    Tahar, K. N.; Kamarudin, S. S.

    2016-06-01

    The establishment of ground control points is a critical issue in mapping field, especially for large scale mapping. The fast and rapid technique for ground control point's establishment is very important for small budget projects. UAV onboard GPS has the ability to determine the point positioning. The objective of this research is to assess the accuracy of unmanned aerial vehicle onboard global positioning system in positioning determination. Therefore, this research used UAV onboard GPS as an alternative to determine the point positioning at the selected area. UAV is one of the powerful tools for data acquisition and it is used in many applications all over the world. This research concentrates on the error contributed from the UAV onboard GPS during observation. There are several points that have been used to study the pattern of positioning error. All errors were analyzed in world geodetic system 84- coordinate system, which is the basic coordinate system used by the global positioning system. Based on this research, the result of UAV onboard GPS positioning could be used in ground control point establishment with the specific error. In conclusion, accurate GCP establishment could be achieved using UAV onboard GPS by applying a specific correction based on this research.

  20. Modeling ductal carcinoma in situ: a HER2-Notch3 collaboration enables luminal filling.

    LENUS (Irish Health Repository)

    Pradeep, C-R

    2012-02-16

    A large fraction of ductal carcinoma in situ (DCIS), a non-invasive precursor lesion of invasive breast cancer, overexpresses the HER2\\/neu oncogene. The ducts of DCIS are abnormally filled with cells that evade apoptosis, but the underlying mechanisms remain incompletely understood. We overexpressed HER2 in mammary epithelial cells and observed growth factor-independent proliferation. When grown in extracellular matrix as three-dimensional spheroids, control cells developed a hollow lumen, but HER2-overexpressing cells populated the lumen by evading apoptosis. We demonstrate that HER2 overexpression in this cellular model of DCIS drives transcriptional upregulation of multiple components of the Notch survival pathway. Importantly, luminal filling required upregulation of a signaling pathway comprising Notch3, its cleaved intracellular domain and the transcriptional regulator HES1, resulting in elevated levels of c-MYC and cyclin D1. In line with HER2-Notch3 collaboration, drugs intercepting either arm reverted the DCIS-like phenotype. In addition, we report upregulation of Notch3 in hyperplastic lesions of HER2 transgenic animals, as well as an association between HER2 levels and expression levels of components of the Notch pathway in tumor specimens of breast cancer patients. Therefore, it is conceivable that the integration of the Notch and HER2 signaling pathways contributes to the pathophysiology of DCIS.

  1. Enabling Health Reform through Regional Health Information Exchange: A Model Study from China

    Directory of Open Access Journals (Sweden)

    Jianbo Lei

    2017-01-01

    Full Text Available Objective. To investigate and share the major challenges and experiences of building a regional health information exchange system in China in the context of health reform. Methods. This study used interviews, focus groups, a field study, and a literature review to collect insights and analyze data. The study examined Xinjin’s approach to developing and implementing a health information exchange project, using exchange usage data for analysis. Results. Within three years and after spending approximately $2.4 million (15 million RMB, Xinjin County was able to build a complete, unified, and shared information system and many electronic health record components to integrate and manage health resources for 198 health institutions in its jurisdiction, thus becoming a model of regional health information exchange for facilitating health reform. Discussion. Costs, benefits, experiences, and lessons were discussed, and the unique characteristics of the Xinjin case and a comparison with US cases were analyzed. Conclusion. The Xinjin regional health information exchange system is different from most of the others due to its government-led, government-financed approach. Centralized and coordinated efforts played an important role in its operation. Regional health information exchange systems have been proven critical for meeting the global challenges of health reform.

  2. Connectivity Homology Enables Inter-Species Network Models of Synthetic Lethality

    Science.gov (United States)

    Jacunski, Alexandra; Dixon, Scott J.; Tatonetti, Nicholas P.

    2015-01-01

    Synthetic lethality is a genetic interaction wherein two otherwise nonessential genes cause cellular inviability when knocked out simultaneously. Drugs can mimic genetic knock-out effects; therefore, our understanding of promiscuous drugs, polypharmacology-related adverse drug reactions, and multi-drug therapies, especially cancer combination therapy, may be informed by a deeper understanding of synthetic lethality. However, the colossal experimental burden in humans necessitates in silico methods to guide the identification of synthetic lethal pairs. Here, we present SINaTRA (Species-INdependent TRAnslation), a network-based methodology that discovers genome-wide synthetic lethality in translation between species. SINaTRA uses connectivity homology, defined as biological connectivity patterns that persist across species, to identify synthetic lethal pairs. Importantly, our approach does not rely on genetic homology or structural and functional similarity, and it significantly outperforms models utilizing these data. We validate SINaTRA by predicting synthetic lethality in S. pombe using S. cerevisiae data, then identify over one million putative human synthetic lethal pairs to guide experimental approaches. We highlight the translational applications of our algorithm for drug discovery by identifying clusters of genes significantly enriched for single- and multi-drug cancer therapies. PMID:26451775

  3. Fusion of Onboard Sensors for Better Navigation

    Directory of Open Access Journals (Sweden)

    Ravi Shankar

    2013-03-01

    Full Text Available This paper presents simulation results of navigation sensors such as integrated navigation system (INS, global navigation satellite system (GNSS and TACAN sensors onboard an aircraft to find the navigation solutions. Mathematical models for INS, GNSS (GPS satellite trajectories, GPS receiver and TACAN characteristics are simulated in Matlab. The INS simulation generates the output for position, velocity and attitude based on aerosond dynamic model. The GPS constellation is generated based on the YUMA almanac data. The GPS dilution of precession (DOP parameters are calculated and the best combination of four satellites (minimum PDOP is used for calculating the user position and velocity. The INS, GNSS, and TACAN solutions are integrated through loosely coupled extended Kalman filter for calculating the optimum navigation solution. The work is starting stone for providing aircraft based augmentation system for required navigation performance in terms of availability, accuracy, continuity and integrity.Defence Science Journal, 2013, 63(2, pp.145-152, DOI:http://dx.doi.org/10.14429/dsj.63.4256

  4. Evaluating the skills of isotope-enabled general circulation models against in situ atmospheric water vapor isotope observations

    Science.gov (United States)

    Steen-Larsen, H. C.; Risi, C.; Werner, M.; Yoshimura, K.; Masson-Delmotte, V.

    2017-01-01

    The skills of isotope-enabled general circulation models are evaluated against atmospheric water vapor isotopes. We have combined in situ observations of surface water vapor isotopes spanning multiple field seasons (2010, 2011, and 2012) from the top of the Greenland Ice Sheet (NEEM site: 77.45°N, 51.05°W, 2484 m above sea level) with observations from the marine boundary layer of the North Atlantic and Arctic Ocean (Bermuda Islands 32.26°N, 64.88°W, year: 2012; south coast of Iceland 63.83°N, 21.47°W, year: 2012; South Greenland 61.21°N, 47.17°W, year: 2012; Svalbard 78.92°N, 11.92°E, year: 2014). This allows us to benchmark the ability to simulate the daily water vapor isotope variations from five different simulations using isotope-enabled general circulation models. Our model-data comparison documents clear isotope biases both on top of the Greenland Ice Sheet (1-11‰ for δ18O and 4-19‰ for d-excess depending on model and season) and in the marine boundary layer (maximum differences for the following: Bermuda δ18O = 1‰, d-excess = 3‰; South coast of Iceland δ18O = 2‰, d-excess = 5‰; South Greenland δ18O = 4‰, d-excess = 7‰; Svalbard δ18O = 2‰, d-excess = 7‰). We find that the simulated isotope biases are not just explained by simulated biases in temperature and humidity. Instead, we argue that these isotope biases are related to a poor simulation of the spatial structure of the marine boundary layer water vapor isotopic composition. Furthermore, we specifically show that the marine boundary layer water vapor isotopes of the Baffin Bay region show strong influence on the water vapor isotopes at the NEEM deep ice core-drilling site in northwest Greenland. Our evaluation of the simulations using isotope-enabled general circulation models also documents wide intermodel spatial variability in the Arctic. This stresses the importance of a coordinated water vapor isotope-monitoring network in order to discriminate amongst these model

  5. A suite of R packages for web-enabled modeling and analysis of surface waters

    Science.gov (United States)

    Read, J. S.; Winslow, L. A.; Nüst, D.; De Cicco, L.; Walker, J. I.

    2014-12-01

    Researchers often create redundant methods for downloading, manipulating, and analyzing data from online resources. Moreover, the reproducibility of science can be hampered by complicated and voluminous data, lack of time for documentation and long-term maintenance of software, and fear of exposing programming skills. The combination of these factors can encourage unshared one-off programmatic solutions instead of openly provided reusable methods. Federal and academic researchers in the water resources and informatics domains have collaborated to address these issues. The result of this collaboration is a suite of modular R packages that can be used independently or as elements in reproducible analytical workflows. These documented and freely available R packages were designed to fill basic needs for the effective use of water data: the retrieval of time-series and spatial data from web resources (dataRetrieval, geoknife), performing quality assurance and quality control checks of these data with robust statistical methods (sensorQC), the creation of useful data derivatives (including physically- and biologically-relevant indices; GDopp, LakeMetabolizer), and the execution and evaluation of models (glmtools, rLakeAnalyzer). Here, we share details and recommendations for the collaborative coding process, and highlight the benefits of an open-source tool development pattern with a popular programming language in the water resources discipline (such as R). We provide examples of reproducible science driven by large volumes of web-available data using these tools, explore benefits of accessing packages as standardized web processing services (WPS) and present a working platform that allows domain experts to publish scientific algorithms in a service-oriented architecture (WPS4R). We assert that in the era of open data, tools that leverage these data should also be freely shared, transparent, and developed in an open innovation environment.

  6. Conceptual model and economic experiments to explain nonpersistence and enable mechanism designs fostering behavioral change.

    Science.gov (United States)

    Djawadi, Behnud Mir; Fahr, René; Turk, Florian

    2014-12-01

    Medical nonpersistence is a worldwide problem of striking magnitude. Although many fields of studies including epidemiology, sociology, and psychology try to identify determinants for medical nonpersistence, comprehensive research to explain medical nonpersistence from an economics perspective is rather scarce. The aim of the study was to develop a conceptual framework that augments standard economic choice theory with psychological concepts of behavioral economics to understand how patients' preferences for discontinuing with therapy arise over the course of the medical treatment. The availability of such a framework allows the targeted design of mechanisms for intervention strategies. Our conceptual framework models the patient as an active economic agent who evaluates the benefits and costs for continuing with therapy. We argue that a combination of loss aversion and mental accounting operations explains why patients discontinue with therapy at a specific point in time. We designed a randomized laboratory economic experiment with a student subject pool to investigate the behavioral predictions. Subjects continue with therapy as long as experienced utility losses have to be compensated. As soon as previous losses are evened out, subjects perceive the marginal benefit of persistence lower than in the beginning of the treatment. Consequently, subjects start to discontinue with therapy. Our results highlight that concepts of behavioral economics capture the dynamic structure of medical nonpersistence better than does standard economic choice theory. We recommend that behavioral economics should be a mandatory part of the development of possible intervention strategies aimed at improving patients' compliance and persistence behavior. Copyright © 2014 International Society for Pharmacoeconomics and Outcomes Research (ISPOR). Published by Elsevier Inc. All rights reserved.

  7. Application of small-signal modeling and measurement techniques to the stability analysis of an integrated switching-mode power system. [onboard Dynamics Explorer Satellite

    Science.gov (United States)

    Wong, R. C.; Owen, H. A., Jr.; Wilson, T. G.; Rodriguez, G. E.

    1980-01-01

    Small-signal modeling techniques are used in a system stability analysis of a breadboard version of a complete functional electrical power system. The system consists of a regulated switching dc-to-dc converter, a solar-cell-array simulator, a solar-array EMI filter, battery chargers and linear shunt regulators. Loss mechanisms in the converter power stage, including switching-time effects in the semiconductor elements, are incorporated into the modeling procedure to provide an accurate representation of the system without requiring frequency-domain measurements to determine the damping factor. The small-signal system model is validated by the use of special measurement techniques which are adapted to the poor signal-to-noise ratio encountered in switching-mode systems. The complete electrical power system with the solar-array EMI filter is shown to be stable over the intended range of operation.

  8. Application of small-signal modeling and measurement techniques to the stability analysis of an integrated switching-mode power system. [onboard Dynamics Explorer Satellite

    Science.gov (United States)

    Wong, R. C.; Owen, H. A., Jr.; Wilson, T. G.; Rodriguez, G. E.

    1980-01-01

    Small-signal modeling techniques are used in a system stability analysis of a breadboard version of a complete functional electrical power system. The system consists of a regulated switching dc-to-dc converter, a solar-cell-array simulator, a solar-array EMI filter, battery chargers and linear shunt regulators. Loss mechanisms in the converter power stage, including switching-time effects in the semiconductor elements, are incorporated into the modeling procedure to provide an accurate representation of the system without requiring frequency-domain measurements to determine the damping factor. The small-signal system model is validated by the use of special measurement techniques which are adapted to the poor signal-to-noise ratio encountered in switching-mode systems. The complete electrical power system with the solar-array EMI filter is shown to be stable over the intended range of operation.

  9. Modeling of Information Sharing Enablers for building Trust in Indian Manufacturing Industry: An Integrated ISM and Fuzzy MICMAC Approach

    Directory of Open Access Journals (Sweden)

    M K KHURANA

    2010-06-01

    Full Text Available Trust is regarded as one of the most critical and essential ingredient in most of business activities for collaborative relationship among the supply chain members. Maintaining and building trust among supply chain members depends mainly upon continued commitment to communication together with sharing information. Trust becomes critical when uncertainty and asymmetric information are present in the transaction of a supply chain. Information sharing system has very critical importance for the creation and maintenance of Trust. Trust is concerned with both the receipt and the dissemination of information. The present research aims to provide a comprehensive framework for the various important factors of information sharing system affecting the level of trust in supply chain management. ISM and Fuzzy MICMAC have been deployed to identify and classify the key criterion of information sharing enablers that influence trust based on their direct and indirect relationship. In this paper role of different factors of information sharing those responsible for infusing trust has been analyzed. In this research, an integrated model of information sharing enablers has been developed which may be helpful to supply chain managers to employ this model in order to identify and classify the important criteria for their needs and to reveal the direct and indirect effects of each criterion on the trust building process in supply chain management.

  10. The SpaceCube Family of Hybrid On-Board Science Data Processors: An Update

    Science.gov (United States)

    Flatley, T.

    2012-12-01

    SpaceCube is an FPGA based on-board hybrid science data processing system developed at the NASA Goddard Space Flight Center (GSFC). The goal of the SpaceCube program is to provide 10x to 100x improvements in on-board computing power while lowering relative power consumption and cost. The SpaceCube design strategy incorporates commercial rad-tolerant FPGA technology and couples it with an upset mitigation software architecture to provide "order of magnitude" improvements in computing power over traditional rad-hard flight systems. Many of the missions proposed in the Earth Science Decadal Survey (ESDS) will require "next generation" on-board processing capabilities to meet their specified mission goals. Advanced laser altimeter, radar, lidar and hyper-spectral instruments are proposed for at least ten of the ESDS missions, and all of these instrument systems will require advanced on-board processing capabilities to facilitate the timely conversion of Earth Science data into Earth Science information. Both an "order of magnitude" increase in processing power and the ability to "reconfigure on the fly" are required to implement algorithms that detect and react to events, to produce data products on-board for applications such as direct downlink, quick look, and "first responder" real-time awareness, to enable "sensor web" multi-platform collaboration, and to perform on-board "lossless" data reduction by migrating typical ground-based processing functions on-board, thus reducing on-board storage and downlink requirements. This presentation will highlight a number of SpaceCube technology developments to date and describe current and future efforts, including the collaboration with the U.S. Department of Defense - Space Test Program (DoD/STP) on the STP-H4 ISS experiment pallet (launch June 2013) that will demonstrate SpaceCube 2.0 technology on-orbit.; ;

  11. First Multitarget Chemo-Bioinformatic Model To Enable the Discovery of Antibacterial Peptides against Multiple Gram-Positive Pathogens.

    Science.gov (United States)

    Speck-Planche, Alejandro; Kleandrova, Valeria V; Ruso, Juan M; Cordeiro, M N D S

    2016-03-28

    Antimicrobial peptides (AMPs) have emerged as promising therapeutic alternatives to fight against the diverse infections caused by different pathogenic microorganisms. In this context, theoretical approaches in bioinformatics have paved the way toward the creation of several in silico models capable of predicting antimicrobial activities of peptides. All current models have several significant handicaps, which prevent the efficient search for highly active AMPs. Here, we introduce the first multitarget (mt) chemo-bioinformatic model devoted to performing alignment-free prediction of antibacterial activity of peptides against multiple Gram-positive bacterial strains. The model was constructed from a data set containing 2488 cases of AMPs sequences assayed against at least 1 out of 50 Gram-positive bacterial strains. This mt-chemo-bioinformatic model displayed percentages of correct classification higher than 90.00% in both training and prediction (test) sets. For the first time, two computational approaches derived from basic concepts in genetics and molecular biology were applied, allowing the calculations of the relative contributions of any amino acid (in a defined position) to the antibacterial activity of an AMP and depending on the bacterial strain used in the biological assay. The present mt-chemo-bioinformatic model constitutes a powerful tool to enable the discovery of potent and versatile AMPs.

  12. Study on Software Fault Injection Based on Onboard System

    Institute of Scientific and Technical Information of China (English)

    PENGJunjie; HONGBingrong; YUANChengjun; LIAiguo; WEIZhenhua; QIAOYongqiang

    2005-01-01

    Fault injection techniques are the effective methods to evaluate the dependability and validate the fault tolerance mechanisms of computer systems. Among the different fault injection techniques, software implemented fault injection technique is regarded as one of the most promising technique for evaluation of the dependability of computer systems. In this paper, combined the advantages of software fault injection and the particularity of onboard system, a new software fault injection model, which can be used to evaluate the dependability and validate the fault tolerance mechanisms of the onboard system, is put forward. To evaluate the dependability of on boardsystem effectively, the application algorithm on how to use the model is presented. The experimental results show that using the fault injection model and algorithm put forward in this paper, not only most of low-level faults such as processor register faults, memory faults and so on can be injected, but also some high-level faults such as code faults, branch faults etc. can be injected, which can be used to evaluate the dependability of the onboard systems.

  13. 47 CFR 80.1179 - On-board repeater limitations.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false On-board repeater limitations. 80.1179 Section... On-board repeater limitations. When an on-board repeater is used, the following limitations must be met: (a) The on-board repeater antenna must be located no higher than 3 meters (10 feet) above...

  14. Efficient Spectral Endmember Detection Onboard the EO-1 Spacecraft

    Science.gov (United States)

    Bornstein, Ben; Thompson, David R.; Tran, Daniel; Bue, Brian; Chien, Steve; Castano, Rebecca

    2011-01-01

    Spaceflight and planetary exploration place severe constraints on the available bandwidth for downlinking large hyperspectral images. In addition, communications with spacecraft often occur intermittently, so mission-relevant hyperspectral data must wait for analysis on the ground before it can inform spacecraft activity planning. Onboard endmember detection can help alleviate these problems. It enables novelty detection and target identification for scheduling follow-up activities such as additional observation by narrow field of view instruments. Additionally, endmember analysis can facilitate data summary for downlink. This work describes a planned experiment of selective downlink by the EO-1 autonomous spacecraft. Here an efficient superpixel endmember detection algorithm keeps to the limited computational constraints of the flight processor. Tests suggest the procedure could enable significant improvements in downlink efficiency.

  15. Enabling the dynamic coupling between sensor web and Earth system models - The Self-Adaptive Earth Predictive Systems (SEPS) framework

    Science.gov (United States)

    di, L.; Yu, G.; Chen, N.

    2007-12-01

    The self-adaptation concept is the central piece of the control theory widely and successfully used in engineering and military systems. Such a system contains a predictor and a measurer. The predictor takes initial condition and makes an initial prediction and the measurer then measures the state of a real world phenomenon. A feedback mechanism is built in that automatically feeds the measurement back to the predictor. The predictor takes the measurement against the prediction to calculate the prediction error and adjust its internal state based on the error. Thus, the predictor learns from the error and makes a more accurate prediction in the next step. By adopting the self-adaptation concept, we proposed the Self-adaptive Earth Predictive System (SEPS) concept for enabling the dynamic coupling between the sensor web and the Earth system models. The concept treats Earth System Models (ESM) and Earth Observations (EO) as integral components of the SEPS coupled by the SEPS framework. EO measures the Earth system state while ESM predicts the evolution of the state. A feedback mechanism processes EO measurements and feeds them into ESM during model runs or as initial conditions. A feed-forward mechanism analyzes the ESM predictions against science goals for scheduling optimized/targeted observations. The SEPS framework automates the Feedback and Feed-forward mechanisms (the FF-loop). Based on open consensus-based standards, a general SEPS framework can be developed for supporting the dynamic, interoperable coupling between ESMs and EO. Such a framework can support the plug-in-and-play capability of both ESMs and diverse sensors and data systems as long as they support the standard interfaces. This presentation discusses the SEPS concept, the service-oriented architecture (SOA) of SEPS framework, standards of choices for the framework, and the implementation. The presentation also presents examples of SEPS to demonstrate dynamic, interoperable, and live coupling of

  16. Fault-Tolerant Onboard Monitoring and Decision Support Systems

    DEFF Research Database (Denmark)

    Lajic, Zoran

    a crude and simple estimation of the actual sea state (Hs and Tz), information about the longitudinal hull girder loading, seakeeping performance of the ship, and decision support on how to operate the ship within acceptable limits. The system is able to identify critical forthcoming events and to give...... advice regarding speed and course changes to decrease the wave-induced loads. The SeaSense system is based on the combined use of a mathematical model and measurements from a set of sensors. The overall dependability of a shipboard monitoring and decision support system such as the SeaSense system can......The purpose of this research project is to improve current onboard decision support systems. Special focus is on the onboard prediction of the instantaneous sea state. In this project a new approach to increasing the overall reliability of a monitoring and decision support system has been...

  17. Simulation of at-sensor radiance over land for proposed thermal channels of Imager payload onboard INSAT-3D satellite using MODTRAN model

    Indian Academy of Sciences (India)

    M R Pandya; D B Shah; H J Trivedi; S Panigrahy

    2011-02-01

    INSAT-3D is the new generation Indian satellite designed for improved Earth observations through two payloads – Imager and Sounder. Study was conducted with an aim of simulating satellite level signal over land in the infrared channels of the Imager payload using a radiative transfer model MODTRAN. Satellite level at-sensor radiance corresponding to all four infrared channels of INSAT-3D Imager payload is obtained using MODTRAN and sensitivity of at-sensor radiance was inferred as a function of input parameters namely, surface temperature, emissivity, view angle and atmospheric water vapour, which is helpful in understanding the signal simulation scheme needed for retrieving a very critical parameter namely, land surface temperature.

  18. An Autonomous Onboard Targeting Algorithm Using Finite Thrust Maneuvers

    Science.gov (United States)

    Scarritt, Sara K.; Marchand, Belinda G.; Brown, Aaron J.; Tracy, William H.; Weeks, Michael W.

    2010-01-01

    In earlier investigations, the adaptation and implementation of a modified two-level corrections (or targeting) process as the onboard targeting algorithm for the Trans-Earth Injection phase of Orion is presented. The objective of that targeting algorithm is to generate the times of ignition and magnitudes of the required maneuvers such that the desired state at entry interface is achieved. In an actual onboard flight software implementation, these times of ignition and maneuvers are relayed onto Flight Control for command and execution. Although this process works well when the burn durations or burn arcs are small, this might not be the case during a contingency situation when lower thrust engines are employed to perform the maneuvers. Therefore, a new model for the two-level corrections process is formulated here to accommodate finite burn arcs. This paper presents the development and formulation of the finite burn two-level corrector, used as an onboard targeting algorithm for the Trans-Earth Injection phase of Orion. A performance comparison between the impulsive and finite burn models is also presented. The present formulation ensures all entry constraints are met, without violating the available fuel budget, while allowing for low-thrust scenarios with long burn durations.

  19. A battery model that enables consideration of realistic anisotropic environment surrounding an active material particle and its application

    Science.gov (United States)

    Lin, Xianke; Lu, Wei

    2017-07-01

    This paper proposes a model that enables consideration of the realistic anisotropic environment surrounding an active material particle by incorporating both diffusion and migration of lithium ions and electrons in the particle. This model makes it possible to quantitatively evaluate effects such as fracture on capacity degradation. In contrast, the conventional model assumes isotropic environment and only considers diffusion in the active particle, which cannot capture the effect of fracture since it would predict results contradictory to experimental observations. With the developed model we have investigated the effects of active material electronic conductivity, particle size, and State of Charge (SOC) swing window when fracture exists. The study shows that the low electronic conductivity of active material has a significant impact on the lithium ion pattern. Fracture increases the resistance for electron transport and therefore reduces lithium intercalation/deintercalation. Particle size plays an important role in lithium ion transport. Smaller particle size is preferable for mitigating capacity loss when fracture happens. The study also shows that operating at high SOC reduces the impact of fracture.

  20. GATE V6: a major enhancement of the GATE simulation platform enabling modelling of CT and radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Jan, S; Becheva, E [DSV/I2BM/SHFJ, Commissariat a l' Energie Atomique, Orsay (France); Benoit, D; Rehfeld, N; Stute, S; Buvat, I [IMNC-UMR 8165 CNRS-Paris 7 and Paris 11 Universities, 15 rue Georges Clemenceau, 91406 Orsay Cedex (France); Carlier, T [INSERM U892-Cancer Research Center, University of Nantes, Nantes (France); Cassol, F; Morel, C [Centre de physique des particules de Marseille, CNRS-IN2P3 and Universite de la Mediterranee, Aix-Marseille II, 163, avenue de Luminy, 13288 Marseille Cedex 09 (France); Descourt, P; Visvikis, D [INSERM, U650, Laboratoire du Traitement de l' Information Medicale (LaTIM), CHU Morvan, Brest (France); Frisson, T; Grevillot, L; Guigues, L; Sarrut, D; Zahra, N [Universite de Lyon, CREATIS, CNRS UMR5220, Inserm U630, INSA-Lyon, Universite Lyon 1, Centre Leon Berard (France); Maigne, L; Perrot, Y [Laboratoire de Physique Corpusculaire, 24 Avenue des Landais, 63177 Aubiere Cedex (France); Schaart, D R [Delft University of Technology, Radiation Detection and Medical Imaging, Mekelweg 15, 2629 JB Delft (Netherlands); Pietrzyk, U, E-mail: buvat@imnc.in2p3.fr [Reseach Center Juelich, Institute of Neurosciences and Medicine and Department of Physics, University of Wuppertal (Germany)

    2011-02-21

    GATE (Geant4 Application for Emission Tomography) is a Monte Carlo simulation platform developed by the OpenGATE collaboration since 2001 and first publicly released in 2004. Dedicated to the modelling of planar scintigraphy, single photon emission computed tomography (SPECT) and positron emission tomography (PET) acquisitions, this platform is widely used to assist PET and SPECT research. A recent extension of this platform, released by the OpenGATE collaboration as GATE V6, now also enables modelling of x-ray computed tomography and radiation therapy experiments. This paper presents an overview of the main additions and improvements implemented in GATE since the publication of the initial GATE paper (Jan et al 2004 Phys. Med. Biol. 49 4543-61). This includes new models available in GATE to simulate optical and hadronic processes, novelties in modelling tracer, organ or detector motion, new options for speeding up GATE simulations, examples illustrating the use of GATE V6 in radiotherapy applications and CT simulations, and preliminary results regarding the validation of GATE V6 for radiation therapy applications. Upon completion of extensive validation studies, GATE is expected to become a valuable tool for simulations involving both radiotherapy and imaging.

  1. Lightning arrester models enabling highly accurate lightning surge analysis; Koseidona kaminari surge kaiseki wo kano ni suru hiraiki model

    Energy Technology Data Exchange (ETDEWEB)

    Ueda, T. [Chubu Electric Power Co. Inc., Nagoya (Japan); Funabashi, T.; Hagiwara, T.; Watanabe, H. [Meidensha Corp., Tokyo (Japan)

    1998-12-28

    Introduced herein are a dynamic behavior model for lightning arresters designed for power stations and substations and a flashover model for a lightning arresting device designed for transmission, both developed by the author et al. The author et al base their zinc oxide type lightning arrester model on the conventional static V-I characteristics, and supplement them with difference in voltage between static and dynamic characteristics. The model is easily simulated using EMTP (Electromagnetic Transients Program) etc. There is good agreement between the results of calculation performed using this model and actually measured values. Lightning arresting devices for transmission have come into practical use, and their effectiveness is introduced on various occasions. For the proper application of such devices, an analysis model capable of faithfully describing the flashover characteristics of arcing horns installed in great numbers along transmission lines, and of lightning arresting devices for transmission, are required. The author et al have newly developed a flashover model for the devices and uses the model for the analysis of lightning surges. It is found that the actually measured values of discharge characteristics of lightning arresting devices for transmission agree well with the values calculated by use of the model. (NEDO)

  2. Extended temperature-accelerated dynamics: enabling long-time full-scale modeling of large rare-event systems.

    Science.gov (United States)

    Bochenkov, Vladimir; Suetin, Nikolay; Shankar, Sadasivan

    2014-09-07

    A new method, the Extended Temperature-Accelerated Dynamics (XTAD), is introduced for modeling long-timescale evolution of large rare-event systems. The method is based on the Temperature-Accelerated Dynamics approach [M. Sørensen and A. Voter, J. Chem. Phys. 112, 9599 (2000)], but uses full-scale parallel molecular dynamics simulations to probe a potential energy surface of an entire system, combined with the adaptive on-the-fly system decomposition for analyzing the energetics of rare events. The method removes limitations on a feasible system size and enables to handle simultaneous diffusion events, including both large-scale concerted and local transitions. Due to the intrinsically parallel algorithm, XTAD not only allows studies of various diffusion mechanisms in solid state physics, but also opens the avenue for atomistic simulations of a range of technologically relevant processes in material science, such as thin film growth on nano- and microstructured surfaces.

  3. Using Enabling Technologies to Facilitate the Comparison of Satellite Observations with the Model Forecasts for Hurricane Study

    Science.gov (United States)

    Li, P.; Knosp, B.; Hristova-Veleva, S. M.; Niamsuwan, N.; Johnson, M. P.; Shen, T. P. J.; Tanelli, S.; Turk, J.; Vu, Q. A.

    2014-12-01

    Due to their complexity and volume, the satellite data are underutilized in today's hurricane research and operations. To better utilize these data, we developed the JPL Tropical Cyclone Information System (TCIS) - an Interactive Data Portal providing fusion between Near-Real-Time satellite observations and model forecasts to facilitate model evaluation and improvement. We have collected satellite observations and model forecasts in the Atlantic Basin and the East Pacific for the hurricane seasons since 2010 and supported the NASA Airborne Campaigns for Hurricane Study such as the Genesis and Rapid Intensification Processes (GRIP) in 2010 and the Hurricane and Severe Storm Sentinel (HS3) from 2012 to 2014. To enable the direct inter-comparisons of the satellite observations and the model forecasts, the TCIS was integrated with the NASA Earth Observing System Simulator Suite (NEOS3) to produce synthetic observations (e.g. simulated passive microwave brightness temperatures) from a number of operational hurricane forecast models (HWRF and GFS). An automated process was developed to trigger NEOS3 simulations via web services given the location and time of satellite observations, monitor the progress of the NEOS3 simulations, display the synthetic observation and ingest them into the TCIS database when they are done. In addition, three analysis tools, the joint PDF analysis of the brightness temperatures, ARCHER for finding the storm-center and the storm organization and the Wave Number Analysis tool for storm asymmetry and morphology analysis were integrated into TCIS to provide statistical and structural analysis on both observed and synthetic data. Interactive tools were built in the TCIS visualization system to allow the spatial and temporal selections of the datasets, the invocation of the tools with user specified parameters, and the display and the delivery of the results. In this presentation, we will describe the key enabling technologies behind the design of

  4. Onboard tagging for smart medical devices.

    Science.gov (United States)

    Li, Kejia; Warren, Steve

    2011-01-01

    Most medical devices are 'dumb:' their role is to acquire, display, and forward data. They make few if any operational decisions based on those data. Onboard tagging is a means whereby a device can embed information about itself, its data, and the sensibility of those data into its data stream. This diagnostic add-on offers a move toward 'smart' devices that will have the ability to affect changes in operational modes based on onboard contextual decision making, such as decisions to avoid needless wireless transmission of corrupt data. This paper presents a description of three types of onboard tags that relate to device hardware (type I tag), signal statistics (type II tag), and signal viability for the intended application (type III tag). A custom wireless pulse oximeter is presented as a use case to show how type II and III tags that convey photoplethysmogram (PPG) statistics and usability specifiers can be calculated and embedded into the data stream without degrading performance.

  5. Enabling Interoperation of High Performance, Scientific Computing Applications: Modeling Scientific Data with the Sets & Fields (SAF) Modeling System

    Energy Technology Data Exchange (ETDEWEB)

    Miller, M C; Reus, J F; Matzke, R P; Arrighi, W J; Schoof, L A; Hitt, R T; Espen, P K; Butler, D M

    2001-02-07

    This paper describes the Sets and Fields (SAF) scientific data modeling system. It is a revolutionary approach to interoperation of high performance, scientific computing applications based upon rigorous, math-oriented data modeling principles. Previous technologies have required all applications to use the same data structures and/or meshes to represent scientific data or lead to an ever expanding set of incrementally different data structures and/or meshes. SAF addresses this problem by providing a small set of mathematical building blocks--sets, relations and fields--out of which a wide variety of scientific data can be characterized. Applications literally model their data by assembling these building blocks. A short historical perspective, a conceptual model and an overview of SAF along with preliminary results from its use in a few ASCI codes are discussed.

  6. A Cyber Enabled Collaborative Environment for Creating, Sharing and Using Data and Modeling Driven Curriculum Modules for Hydrology Education

    Science.gov (United States)

    Merwade, V.; Ruddell, B. L.; Fox, S.; Iverson, E. A. R.

    2014-12-01

    With the access to emerging datasets and computational tools, there is a need to bring these capabilities into hydrology classrooms. However, developing curriculum modules using data and models to augment classroom teaching is hindered by a steep technology learning curve, rapid technology turnover, and lack of an organized community cyberinfrastructure (CI) for the dissemination, publication, and sharing of the latest tools and curriculum material for hydrology and geoscience education. The objective of this project is to overcome some of these limitations by developing a cyber enabled collaborative environment for publishing, sharing and adoption of data and modeling driven curriculum modules in hydrology and geosciences classroom. The CI is based on Carleton College's Science Education Resource Center (SERC) Content Management System. Building on its existing community authoring capabilities the system is being extended to allow assembly of new teaching activities by drawing on a collection of interchangeable building blocks; each of which represents a step in the modeling process. Currently the system hosts more than 30 modules or steps, which can be combined to create multiple learning units. Two specific units: Unit Hydrograph and Rational Method, have been used in undergraduate hydrology class-rooms at Purdue University and Arizona State University. The structure of the CI and the lessons learned from its implementation, including preliminary results from student assessments of learning will be presented.

  7. Inkjet-based deposition of polymer thin films enabled by a lubrication model incorporating nano-scale parasitics

    Science.gov (United States)

    Singhal, Shrawan; Meissl, Mario J.; Bonnecaze, Roger T.; Sreenivasan, S. V.

    2013-09-01

    Thin film lubrication theory has been widely used to model multi-scale fluid phenomena. Variations of the same have also found application in fluid-based manufacturing process steps for micro- and nano-scale devices over large areas where a natural disparity in length scales exists. Here, a novel inkjet material deposition approach has been enabled by an enhanced thin film lubrication theory that accounts for nano-scale substrate parasitics. This approach includes fluid interactions with a thin flexible superstrate towards a new process called Jet and Coat of Thin-films (JCT). Numerical solutions of the model have been verified, and also validated against controlled experiments of polymer film deposition with good agreement. Understanding gleaned from the experimentally validated model has then been used to facilitate JCT process synthesis resulting in substantial reduction in the influence of parasitics and a concomitant improvement in the film thickness uniformity. Polymer films ranging from 20 to 500 nm mean thickness have been demonstrated with standard deviation of less than 2% of the mean film thickness. The JCT process offers advantages over spin coating which is not compatible with roll-to-roll processing and large area processing for displays. It also improves over techniques such as knife edge coating, slot die coating, as they are limited in the range of thicknesses of films that can be deposited without compromising uniformity.

  8. Lunar Landing Trajectory Design for Onboard Hazard Detection and Avoidance

    Science.gov (United States)

    Paschall, Steve; Brady, Tye; Sostaric, Ron

    2009-01-01

    The Autonomous Landing and Hazard Avoidance Technology (ALHAT) Project is developing the software and hardware technology needed to support a safe and precise landing for the next generation of lunar missions. ALHAT provides this capability through terrain-relative navigation measurements to enhance global-scale precision, an onboard hazard detection system to select safe landing locations, and an Autonomous Guidance, Navigation, and Control (AGNC) capability to process these measurements and safely direct the vehicle to a landing location. This paper focuses on the key trajectory design issues relevant to providing an onboard Hazard Detection and Avoidance (HDA) capability for the lander. Hazard detection can be accomplished by the crew visually scanning the terrain through a window, a sensor system imaging the terrain, or some combination of both. For ALHAT, this hazard detection activity is provided by a sensor system, which either augments the crew s perception or entirely replaces the crew in the case of a robotic landing. Detecting hazards influences the trajectory design by requiring the proper perspective, range to the landing site, and sufficient time to view the terrain. Following this, the trajectory design must provide additional time to process this information and make a decision about where to safely land. During the final part of the HDA process, the trajectory design must provide sufficient margin to enable a hazard avoidance maneuver. In order to demonstrate the effects of these constraints on the landing trajectory, a tradespace of trajectory designs was created for the initial ALHAT Design Analysis Cycle (ALDAC-1) and each case evaluated with these HDA constraints active. The ALHAT analysis process, described in this paper, narrows down this tradespace and subsequently better defines the trajectory design needed to support onboard HDA. Future ALDACs will enhance this trajectory design by balancing these issues and others in an overall system

  9. Maritime surveillance with synthetic aperture radar (SAR) and automatic identification system (AIS) onboard a microsatellite constellation

    Science.gov (United States)

    Peterson, E. H.; Zee, R. E.; Fotopoulos, G.

    2012-11-01

    New developments in small spacecraft capabilities will soon enable formation-flying constellations of small satellites, performing cooperative distributed remote sensing at a fraction of the cost of traditional large spacecraft missions. As part of ongoing research into applications of formation-flight technology, recent work has developed a mission concept based on combining synthetic aperture radar (SAR) with automatic identification system (AIS) data. Two or more microsatellites would trail a large SAR transmitter in orbit, each carrying a SAR receiver antenna and one carrying an AIS antenna. Spaceborne AIS can receive and decode AIS data from a large area, but accurate decoding is limited in high traffic areas, and the technology relies on voluntary vessel compliance. Furthermore, vessel detection amidst speckle in SAR imagery can be challenging. In this constellation, AIS broadcasts of position and velocity are received and decoded, and used in combination with SAR observations to form a more complete picture of maritime traffic and identify potentially non-cooperative vessels. Due to the limited transmit power and ground station downlink time of the microsatellite platform, data will be processed onboard the spacecraft. Herein we present the onboard data processing portion of the mission concept, including methods for automated SAR image registration, vessel detection, and fusion with AIS data. Georeferencing in combination with a spatial frequency domain method is used for image registration. Wavelet-based speckle reduction facilitates vessel detection using a standard CFAR algorithm, while leaving sufficient detail for registration of the filtered and compressed imagery. Moving targets appear displaced from their actual position in SAR imagery, depending on their velocity and the image acquisition geometry; multiple SAR images acquired from different locations are used to determine the actual positions of these targets. Finally, a probabilistic inference

  10. Demand response-enabled model predictive HVAC load control in buildings using real-time electricity pricing

    Science.gov (United States)

    Avci, Mesut

    A practical cost and energy efficient model predictive control (MPC) strategy is proposed for HVAC load control under dynamic real-time electricity pricing. The MPC strategy is built based on a proposed model that jointly minimizes the total energy consumption and hence, cost of electricity for the user, and the deviation of the inside temperature from the consumer's preference. An algorithm that assigns temperature set-points (reference temperatures) to price ranges based on the consumer's discomfort tolerance index is developed. A practical parameter prediction model is also designed for mapping between the HVAC load and the inside temperature. The prediction model and the produced temperature set-points are integrated as inputs into the MPC controller, which is then used to generate signal actions for the AC unit. To investigate and demonstrate the effectiveness of the proposed approach, a simulation based experimental analysis is presented using real-life pricing data. An actual prototype for the proposed HVAC load control strategy is then built and a series of prototype experiments are conducted similar to the simulation studies. The experiments reveal that the MPC strategy can lead to significant reductions in overall energy consumption and cost savings for the consumer. Results suggest that by providing an efficient response strategy for the consumers, the proposed MPC strategy can enable the utility providers to adopt efficient demand management policies using real-time pricing. Finally, a cost-benefit analysis is performed to display the economic feasibility of implementing such a controller as part of a building energy management system, and the payback period is identified considering cost of prototype build and cost savings to help the adoption of this controller in the building HVAC control industry.

  11. Formation Flight of Multiple UAVs via Onboard Sensor Information Sharing

    Directory of Open Access Journals (Sweden)

    Chulwoo Park

    2015-07-01

    Full Text Available To monitor large areas or simultaneously measure multiple points, multiple unmanned aerial vehicles (UAVs must be flown in formation. To perform such flights, sensor information generated by each UAV should be shared via communications. Although a variety of studies have focused on the algorithms for formation flight, these studies have mainly demonstrated the performance of formation flight using numerical simulations or ground robots, which do not reflect the dynamic characteristics of UAVs. In this study, an onboard sensor information sharing system and formation flight algorithms for multiple UAVs are proposed. The communication delays of radiofrequency (RF telemetry are analyzed to enable the implementation of the onboard sensor information sharing system. Using the sensor information sharing, the formation guidance law for multiple UAVs, which includes both a circular and close formation, is designed. The hardware system, which includes avionics and an airframe, is constructed for the proposed multi-UAV platform. A numerical simulation is performed to demonstrate the performance of the formation flight guidance and control system for multiple UAVs. Finally, a flight test is conducted to verify the proposed algorithm for the multi-UAV system.

  12. Formation Flight of Multiple UAVs via Onboard Sensor Information Sharing.

    Science.gov (United States)

    Park, Chulwoo; Cho, Namhoon; Lee, Kyunghyun; Kim, Youdan

    2015-07-17

    To monitor large areas or simultaneously measure multiple points, multiple unmanned aerial vehicles (UAVs) must be flown in formation. To perform such flights, sensor information generated by each UAV should be shared via communications. Although a variety of studies have focused on the algorithms for formation flight, these studies have mainly demonstrated the performance of formation flight using numerical simulations or ground robots, which do not reflect the dynamic characteristics of UAVs. In this study, an onboard sensor information sharing system and formation flight algorithms for multiple UAVs are proposed. The communication delays of radiofrequency (RF) telemetry are analyzed to enable the implementation of the onboard sensor information sharing system. Using the sensor information sharing, the formation guidance law for multiple UAVs, which includes both a circular and close formation, is designed. The hardware system, which includes avionics and an airframe, is constructed for the proposed multi-UAV platform. A numerical simulation is performed to demonstrate the performance of the formation flight guidance and control system for multiple UAVs. Finally, a flight test is conducted to verify the proposed algorithm for the multi-UAV system.

  13. An Onboarding Program for the CT Department.

    Science.gov (United States)

    Baldwin, Brandi

    2016-01-01

    Healthcare organizations compete for employees in the same way television networks compete for new talent. Organizations also compete over experience, knowledge, and skills new employees bring with them. Organizations that can acclimate a new employee into the social and performance aspects of a new job the quickest create a substantial competitive advantage. Onboarding is the term used for orientation or organizational socialization where new employees acquire the necessary knowledge, skills, and behaviors to fit in with a new company. Computed tomography (CT) department specific onboarding programs increase the comfort level of new employees by informing them of the supervisor's and the department's expectations. Although this article discusses CT, specifically, an onboarding program could apply to all of imaging. With the high costs that employee turnover incurs, all departments should have an orientation program that helps retain employees as well as prepare new employees for employment. Current personnel are valuable resources for offering appropriate information for successful employment in specific departments. A structured, department specific onboarding program with the full participation and support of current staff will enhance staff retention.

  14. Towards a Good Practice Model for an Entrepreneurial HEI: Perspectives of Academics, Enterprise Enablers and Graduate Entrepreneurs

    Science.gov (United States)

    Williams, Perri; Fenton, Mary

    2013-01-01

    This paper reports on an examination of the perspectives of academics, enterprise enablers and graduate entrepreneurs of an entrepreneurial higher education institution (HEI). The research was conducted in Ireland among 30 graduate entrepreneurs and 15 academics and enterprise enablers (enterprise development agency personnel) to provide a…

  15. Optogenetics enables functional analysis of human embryonic stem cell–derived grafts in a Parkinson’s disease model

    Science.gov (United States)

    Steinbeck, Julius A; Choi, Se Joon; Mrejeru, Ana; Ganat, Yosif; Deisseroth, Karl; Sulzer, David; Mosharov, Eugene V; Studer, Lorenz

    2016-01-01

    Recent studies have shown evidence of behavioral recovery after transplantation of human pluripotent stem cell (PSC)-derived neural cells in animal models of neurological disease1–4. However, little is known about the mechanisms underlying graft function. Here we use optogenetics to modulate in real time electrophysiological and neurochemical properties of mesencephalic dopaminergic (mesDA) neurons derived from human embryonic stem cells (hESCs). In mice that had recovered from lesion-induced Parkinsonian motor deficits, light-induced selective silencing of graft activity rapidly and reversibly re-introduced the motor deficits. The re-introduction of motor deficits was prevented by the dopamine agonist apomorphine. These results suggest that functionality depends on graft neuronal activity and dopamine release. Combining optogenetics, slice electrophysiology and pharmacological approaches, we further show that mesDA-rich grafts modulate host glutamatergic synaptic transmission onto striatal medium spiny neurons in a manner reminiscent of endogenous mesDA neurons. Thus, application of optogenetics in cell therapy can link transplantation, animal behavior and postmortem analysis to enable the identification of mechanisms that drive recovery. PMID:25580598

  16. Proposal for a Conceptual Model for Evaluating Lean Product Development Performance: A Study of LPD Enablers in Manufacturing Companies

    Science.gov (United States)

    Osezua Aikhuele, Daniel; Mohd Turan, Faiz

    2016-02-01

    The instability in today's market and the emerging demands for mass customized products by customers, are driving companies to seek for cost effective and time efficient improvements in their production system and this have led to real pressure for the adaptation of new developmental architecture and operational parameters to remain competitive in the market. Among such developmental architecture adopted, is the integration of lean thinking in the product development process. However, due to lack of clear understanding of the lean performance and its measurements, many companies are unable to implement and fully integrate the lean principle into their product development process and without a proper performance measurement, the performance level of the organizational value stream will be unknown and the specific area of improvement as it relates to the LPD program cannot be tracked. Hence, it will result in poor decision making in the LPD implementation. This paper therefore seeks to present a conceptual model for evaluation of LPD performances by identifying and analysing the core existing LPD enabler (Chief Engineer, Cross-functional teams, Set-based engineering, Poka-yoke (mistakeproofing), Knowledge-based environment, Value-focused planning and development, Top management support, Technology, Supplier integration, Workforce commitment and Continuous improvement culture) for assessing the LPD performance.

  17. Optogenetics enables functional analysis of human embryonic stem cell-derived grafts in a Parkinson's disease model.

    Science.gov (United States)

    Steinbeck, Julius A; Choi, Se Joon; Mrejeru, Ana; Ganat, Yosif; Deisseroth, Karl; Sulzer, David; Mosharov, Eugene V; Studer, Lorenz

    2015-02-01

    Recent studies have shown evidence of behavioral recovery after transplantation of human pluripotent stem cell (PSC)-derived neural cells in animal models of neurological disease. However, little is known about the mechanisms underlying graft function. Here we use optogenetics to modulate in real time electrophysiological and neurochemical properties of mesencephalic dopaminergic (mesDA) neurons derived from human embryonic stem cells (hESCs). In mice that had recovered from lesion-induced Parkinsonian motor deficits, light-induced selective silencing of graft activity rapidly and reversibly re-introduced the motor deficits. The re-introduction of motor deficits was prevented by the dopamine agonist apomorphine. These results suggest that functionality depends on graft neuronal activity and dopamine release. Combining optogenetics, slice electrophysiology and pharmacological approaches, we further show that mesDA-rich grafts modulate host glutamatergic synaptic transmission onto striatal medium spiny neurons in a manner reminiscent of endogenous mesDA neurons. Thus, application of optogenetics in cell therapy can link transplantation, animal behavior and postmortem analysis to enable the identification of mechanisms that drive recovery.

  18. Onboard Algorithms for Data Prioritization and Summarization of Aerial Imagery

    Science.gov (United States)

    Chien, Steve A.; Hayden, David; Thompson, David R.; Castano, Rebecca

    2013-01-01

    Many current and future NASA missions are capable of collecting enormous amounts of data, of which only a small portion can be transmitted to Earth. Communications are limited due to distance, visibility constraints, and competing mission downlinks. Long missions and high-resolution, multispectral imaging devices easily produce data exceeding the available bandwidth. To address this situation computationally efficient algorithms were developed for analyzing science imagery onboard the spacecraft. These algorithms autonomously cluster the data into classes of similar imagery, enabling selective downlink of representatives of each class, and a map classifying the terrain imaged rather than the full dataset, reducing the volume of the downlinked data. A range of approaches was examined, including k-means clustering using image features based on color, texture, temporal, and spatial arrangement

  19. Tailoring of onboard system software

    Institute of Scientific and Technical Information of China (English)

    彭俊杰; 洪炳镕; 魏振华; 乔永强

    2003-01-01

    Tailoring of an operating system and an in embedded real-time operating system in particular is es-sential for both, kernel and operation. But many of current embedded real-time operating systems provide somebasic tailoring at the cost of depleting the flexibility of hardware, which causes the lack of flexibility, and de-grades their tailors. A layered modular tailoring model has been proposed together with some tailoring operationsto improve the flexibility of the systems, and algorithms have been proposed for verification of tailoring opera-tions with the current operating system.

  20. Iterative maximum a posteriori (IMAP-DOAS for retrieval of strongly absorbing trace gases: Model studies for CH4 and CO2 retrieval from near infrared spectra of SCIAMACHY onboard ENVISAT

    Directory of Open Access Journals (Sweden)

    C. Frankenberg

    2005-01-01

    Full Text Available In the past, differential optical absorption spectroscopy (DOAS has mostly been employed for atmospheric trace gas retrieval in the UV/Vis spectral region. New spectrometers such as SCIAMACHY onboard ENVISAT also provide near infrared channels and thus allow for the detection of greenhouse gases like CH4, CO2, or N2O. However, modifications of the classical DOAS algorithm are necessary to account for the idiosyncrasies of this spectral region, i.e. the temperature and pressure dependence of the high resolution absorption lines. Furthermore, understanding the sensitivity of the measurement of these high resolution, strong absorption lines by means of a non-ideal device, i.e. having finite spectral resolution, is of special importance. This applies not only in the NIR, but can also prove to be an issue for the UV/Vis spectral region. This paper presents a modified iterative maximum a posteriori-DOAS (IMAP-DOAS algorithm based on optimal estimation theory introduced to the remote sensing community by rodgers76. This method directly iterates the vertical column densities of the absorbers of interest until the modeled total optical density fits the measurement. Although the discussion in this paper lays emphasis on satellite retrieval, the basic principles of the algorithm also hold for arbitrary measurement geometries. This new approach is applied to modeled spectra based on a comprehensive set of atmospheric temperature and pressure profiles. This analysis reveals that the sensitivity of measurement strongly depends on the prevailing pressure-height. The IMAP-DOAS algorithm properly accounts for the sensitivity of measurement on pressure due to pressure broadening of the absorption lines. Thus, biases in the retrieved vertical columns that would arise in classical algorithms, are obviated. Here, we analyse and quantify these systematic biases as well as errors due to variations in the temperature and pressure profiles, which is indispensable for

  1. Genome-Enabled Modeling of Biogeochemical Processes Predicts Metabolic Dependencies that Connect the Relative Fitness of Microbial Functional Guilds

    Science.gov (United States)

    Brodie, E.; King, E.; Molins, S.; Karaoz, U.; Steefel, C. I.; Banfield, J. F.; Beller, H. R.; Anantharaman, K.; Ligocki, T. J.; Trebotich, D.

    2015-12-01

    Pore-scale processes mediated by microorganisms underlie a range of critical ecosystem services, regulating carbon stability, nutrient flux, and the purification of water. Advances in cultivation-independent approaches now provide us with the ability to reconstruct thousands of genomes from microbial populations from which functional roles may be assigned. With this capability to reveal microbial metabolic potential, the next step is to put these microbes back where they belong to interact with their natural environment, i.e. the pore scale. At this scale, microorganisms communicate, cooperate and compete across their fitness landscapes with communities emerging that feedback on the physical and chemical properties of their environment, ultimately altering the fitness landscape and selecting for new microbial communities with new properties and so on. We have developed a trait-based model of microbial activity that simulates coupled functional guilds that are parameterized with unique combinations of traits that govern fitness under dynamic conditions. Using a reactive transport framework, we simulate the thermodynamics of coupled electron donor-acceptor reactions to predict energy available for cellular maintenance, respiration, biomass development, and enzyme production. From metagenomics, we directly estimate some trait values related to growth and identify the linkage of key traits associated with respiration and fermentation, macromolecule depolymerizing enzymes, and other key functions such as nitrogen fixation. Our simulations were carried out to explore abiotic controls on community emergence such as seasonally fluctuating water table regimes across floodplain organic matter hotspots. Simulations and metagenomic/metatranscriptomic observations highlighted the many dependencies connecting the relative fitness of functional guilds and the importance of chemolithoautotrophic lifestyles. Using an X-Ray microCT-derived soil microaggregate physical model combined

  2. Onboard autonomy on the Three Corner Sat Mission

    Science.gov (United States)

    Chien, S.; Engelhardt, B.; Knight, R.; Rabideau, G.; Sherwood, R.

    2001-01-01

    Three Corner Sat (3CS) is a mission of three university nanosatellites scheduled for launch on September 2002. The 3CS misison will utilize significan onboard autonomy to perform onboard science data validation and replanning.

  3. The Connecting South West Ontario (cSWO) Benefits Model: An Approach for the Collaborative Capture of Value of Electronic Health Records and Enabling Technology.

    Science.gov (United States)

    Alexander, Ted; Huebner, Lori-Anne; Alarakhia, Mohamed; Hollohan, Kirk

    2017-01-01

    This paper explains the benefits model developed and deployed by the connecting South West Ontario (cSWO) program. The cSWO approach is founded on the principles of enabling clinical and organizational value and the recognition that enabling requires a collaborative approach that can include several perspectives. We describe our approach which is aimed at creating a four-part harmony between change management and adoption, best practice research and quality indicators, data analytics and clinical value production.

  4. Open-source Peer-to-Peer Environment to Enable Sensor Web Architecture: Application to Geomagnetic Observations and Modeling

    Science.gov (United States)

    Holland, M.; Pulkkinen, A.

    2007-12-01

    A flexible, dynamic, and reliable secure peer-to-peer (P2P) communication environment is under development at NASA's Goddard Space Flight Center (GSFC). Popular open-source P2P software technology provides a self- organizing, self-healing ad hoc "virtual network overlay" protocol-suite. The current effort builds a proof-of-concept geomagnetic Sensor Web upon this foundation. Our long-term objective is to enable an evolution of many types of distributed Earth system sensors and related processing/storage components into elements of an operational Sensor Web via integration into this P2P Environment. In general, the Environment distributes data communication tasks among the sensors (viewed as peers, each assigned a peer-role) and controls the flow of data. This work encompasses dynamic discovery, monitoring, control, and configuration as well as autonomous operations, real-time modeling and data processing, and secure ubiquitous communications. We currently restrict our communications to be within the secure GSFC network environment, and have integrated "simulated" (via historical data) geomagnetic sensors. Each remote sensor has operating modes to manage (from remote interfaces) and is designed to have features nearly indistinguishable from a live magnetometer. We have implemented basic identity management features (organized around GSFC identity-management practices); providing mechanisms which restrict data-serving privileges to authorized users, and which allow improved trust and accountability among users of the Environment. Data-serving peers digitally "sign" their services, and their data-browsing counterparts will only accept the products of services whose signature (and hence identity) can be verified. The current usage scenario involves modeling-peers, which operate within the same Environment as the sensors and also have operating modes to remotely manage, portraying a near-real- time global representation of geomagnetic activity from dynamic sensor

  5. A novel humanized GLP-1 receptor model enables both affinity purification and Cre-LoxP deletion of the receptor.

    Directory of Open Access Journals (Sweden)

    Lucy S Jun

    Full Text Available Class B G protein-coupled receptors (GPCRs are important regulators of endocrine physiology, and peptide-based therapeutics targeting some of these receptors have proven effective at treating disorders such as hypercalcemia, osteoporosis, and type 2 diabetes mellitus (T2DM. As next generation efforts attempt to develop novel non-peptide, orally available molecules for these GPCRs, new animal models expressing human receptor orthologs may be required because small molecule ligands make fewer receptor contacts, and thus, the impact of amino acid differences across species may be substantially greater. The objective of this report was to generate and characterize a new mouse model of the human glucagon-like peptide-1 receptor (hGLP-1R, a class B GPCR for which established peptide therapeutics exist for the treatment of T2DM. hGLP-1R knock-in mice express the receptor from the murine Glp-1r locus. Glucose tolerance tests and gastric emptying studies show hGLP-1R mice and their wild-type littermates display similar physiological responses for glucose metabolism, insulin secretion, and gastric transit, and treatment with the GLP-1R agonist, exendin-4, elicits similar responses in both groups. Further, ex vivo assays show insulin secretion from humanized islets is glucose-dependent and enhanced by GLP-1R agonists. To enable additional utility, the targeting construct of the knock-in line was engineered to contain both flanking LoxP sites and a C-terminal FLAG epitope. Anti-FLAG affinity purification shows strong expression of hGLP-1R in islets, lung, and stomach. We crossed the hGLP-1R line with Rosa26Cre mice and generated global Glp-1r-/- animals. Immunohistochemistry of pancreas from humanized and knock-out mice identified a human GLP-1R-specific antibody that detects the GLP-1R in human pancreas as well as in the pancreas of hGLP-1r knock-in mice. This new hGLP-1R model will allow tissue-specific deletion of the GLP-1R, purification of potential

  6. CMOS Camera Array With Onboard Memory

    Science.gov (United States)

    Gat, Nahum

    2009-01-01

    A compact CMOS (complementary metal oxide semiconductor) camera system has been developed with high resolution (1.3 Megapixels), a USB (universal serial bus) 2.0 interface, and an onboard memory. Exposure times, and other operating parameters, are sent from a control PC via the USB port. Data from the camera can be received via the USB port and the interface allows for simple control and data capture through a laptop computer.

  7. Onboard Image Processing System for Hyperspectral Sensor

    Directory of Open Access Journals (Sweden)

    Hiroki Hihara

    2015-09-01

    Full Text Available Onboard image processing systems for a hyperspectral sensor have been developed in order to maximize image data transmission efficiency for large volume and high speed data downlink capacity. Since more than 100 channels are required for hyperspectral sensors on Earth observation satellites, fast and small-footprint lossless image compression capability is essential for reducing the size and weight of a sensor system. A fast lossless image compression algorithm has been developed, and is implemented in the onboard correction circuitry of sensitivity and linearity of Complementary Metal Oxide Semiconductor (CMOS sensors in order to maximize the compression ratio. The employed image compression method is based on Fast, Efficient, Lossless Image compression System (FELICS, which is a hierarchical predictive coding method with resolution scaling. To improve FELICS’s performance of image decorrelation and entropy coding, we apply a two-dimensional interpolation prediction and adaptive Golomb-Rice coding. It supports progressive decompression using resolution scaling while still maintaining superior performance measured as speed and complexity. Coding efficiency and compression speed enlarge the effective capacity of signal transmission channels, which lead to reducing onboard hardware by multiplexing sensor signals into a reduced number of compression circuits. The circuitry is embedded into the data formatter of the sensor system without adding size, weight, power consumption, and fabrication cost.

  8. Gas monitoring onboard ISS using FTIR spectroscopy

    Science.gov (United States)

    Gisi, Michael; Stettner, Armin; Seurig, Roland; Honne, Atle; Witt, Johannes; Rebeyre, Pierre

    2017-06-01

    In the confined, enclosed environment of a spacecraft, the air quality must be monitored continuously in order to safeguard the crew's health. For this reason, OHB builds the ANITA2 (Analysing Interferometer for Ambient Air) technology demonstrator for trace gas monitoring onboard the International Space Station (ISS). The measurement principle of ANITA2 is based on the Fourier Transform Infrared (FTIR) technology with dedicated gas analysis software from the Norwegian partner SINTEF. This combination proved to provide high sensitivity, accuracy and precision for parallel measurements of 33 trace gases simultaneously onboard ISS by the precursor instrument ANITA1. The paper gives a technical overview about the opto-mechanical components of ANITA2, such as the interferometer, the reference Laser, the infrared source and the gas cell design and a quick overview about the gas analysis. ANITA2 is very well suited for measuring gas concentrations specifically but not limited to usage onboard spacecraft, as no consumables are required and measurements are performed autonomously. ANITA2 is a programme under the contract of the European Space Agency, and the air quality monitoring system is a stepping stone into the future, as a precursor system for manned exploration missions.

  9. Onboard Image Processing System for Hyperspectral Sensor.

    Science.gov (United States)

    Hihara, Hiroki; Moritani, Kotaro; Inoue, Masao; Hoshi, Yoshihiro; Iwasaki, Akira; Takada, Jun; Inada, Hitomi; Suzuki, Makoto; Seki, Taeko; Ichikawa, Satoshi; Tanii, Jun

    2015-09-25

    Onboard image processing systems for a hyperspectral sensor have been developed in order to maximize image data transmission efficiency for large volume and high speed data downlink capacity. Since more than 100 channels are required for hyperspectral sensors on Earth observation satellites, fast and small-footprint lossless image compression capability is essential for reducing the size and weight of a sensor system. A fast lossless image compression algorithm has been developed, and is implemented in the onboard correction circuitry of sensitivity and linearity of Complementary Metal Oxide Semiconductor (CMOS) sensors in order to maximize the compression ratio. The employed image compression method is based on Fast, Efficient, Lossless Image compression System (FELICS), which is a hierarchical predictive coding method with resolution scaling. To improve FELICS's performance of image decorrelation and entropy coding, we apply a two-dimensional interpolation prediction and adaptive Golomb-Rice coding. It supports progressive decompression using resolution scaling while still maintaining superior performance measured as speed and complexity. Coding efficiency and compression speed enlarge the effective capacity of signal transmission channels, which lead to reducing onboard hardware by multiplexing sensor signals into a reduced number of compression circuits. The circuitry is embedded into the data formatter of the sensor system without adding size, weight, power consumption, and fabrication cost.

  10. An application of modern control theory to jet propulsion systems. [considering onboard computer

    Science.gov (United States)

    Merrill, W. C.

    1975-01-01

    The control of an airbreathing turbojet engine by an onboard digital computer is studied. The approach taken is to model the turbojet engine as a linear, multivariable system whose parameters vary with engine operating environment. From this model adaptive closed-loop or feedback control laws are designed and applied to the acceleration of the turbojet engine.

  11. Spacecube: A Family of Reconfigurable Hybrid On-Board Science Data Processors

    Science.gov (United States)

    Flatley, Thomas P.

    2015-01-01

    SpaceCube is a family of Field Programmable Gate Array (FPGA) based on-board science data processing systems developed at the NASA Goddard Space Flight Center (GSFC). The goal of the SpaceCube program is to provide 10x to 100x improvements in on-board computing power while lowering relative power consumption and cost. SpaceCube is based on the Xilinx Virtex family of FPGAs, which include processor, FPGA logic and digital signal processing (DSP) resources. These processing elements are leveraged to produce a hybrid science data processing platform that accelerates the execution of algorithms by distributing computational functions to the most suitable elements. This approach enables the implementation of complex on-board functions that were previously limited to ground based systems, such as on-board product generation, data reduction, calibration, classification, eventfeature detection, data mining and real-time autonomous operations. The system is fully reconfigurable in flight, including data parameters, software and FPGA logic, through either ground commanding or autonomously in response to detected eventsfeatures in the instrument data stream.

  12. Onboard Interferometric SAR Processor for the Ka-Band Radar Interferometer (KaRIn)

    Science.gov (United States)

    Esteban-Fernandez, Daniel; Rodriquez, Ernesto; Peral, Eva; Clark, Duane I.; Wu, Xiaoqing

    2011-01-01

    An interferometric synthetic aperture radar (SAR) onboard processor concept and algorithm has been developed for the Ka-band radar interferometer (KaRIn) instrument on the Surface and Ocean Topography (SWOT) mission. This is a mission- critical subsystem that will perform interferometric SAR processing and multi-look averaging over the oceans to decrease the data rate by three orders of magnitude, and therefore enable the downlink of the radar data to the ground. The onboard processor performs demodulation, range compression, coregistration, and re-sampling, and forms nine azimuth squinted beams. For each of them, an interferogram is generated, including common-band spectral filtering to improve correlation, followed by averaging to the final 1 1-km ground resolution pixel. The onboard processor has been prototyped on a custom FPGA-based cPCI board, which will be part of the radar s digital subsystem. The level of complexity of this technology, dictated by the implementation of interferometric SAR processing at high resolution, the extremely tight level of accuracy required, and its implementation on FPGAs are unprecedented at the time of this reporting for an onboard processor for flight applications.

  13. A real-time fault-tolerant scheduling algorithm with low dependability cost in on-board computer system

    Institute of Scientific and Technical Information of China (English)

    WANG Pei-dong; WEI Zhen-hua

    2008-01-01

    To make the on-board computer system more dependable and real-time in a satellite, an algorithm of the fault-tolerant scheduling in the on-board computer system with high priority recovery is proposed in this paper. This algorithm can schedule the on-board fault-tolerant tasks in real time. Due to the use of dependability cost, the overhead of scheduling the fault-tolerant tasks can be reduced. The mechanism of the high priority recovery will improve the response to recovery tasks. The fault-tolerant scheduling model is presented simulation results validate the correctness and feasibility of the proposed algorithm.

  14. Onboard pattern recognition for autonomous UAV landing

    Science.gov (United States)

    Sung, Chen-Ko; Segor, Florian

    2012-10-01

    The civil security and supervision system AMFIS was developed at the Fraunhofer IOSB as a mobile support system using multiple UAVs for rescue forces in accidents or disasters. To gain a higher level of autonomy for these UAVs, different onboard process chains of image exploitation for tracking landmarks and of control technologies for UAV navigation were implemented and examined to achieve a redundant and reliable UAV precision landing. First experiments have allowed to validate the process chains and to develop a demonstration system for the tracking of landmarks in order to prevent and to minimize any confusion on landing.

  15. Digital signal processing techniques for on-board processing satellites

    Science.gov (United States)

    Kwan, Ching Chung

    1990-08-01

    In on-board processing satellite systems in which frequency division multiple access (FDMA)/signal channel per carrier (SCPC) access schemes are employed, transmultiplexers are required for the frequency demultiplexing of the SCPC signals. Digital techniques for the implementation of the transmultiplexer for such application were examined. The signal processing in the transmultiplexer operations involved many parameters which could be optimized in order to reduce the hardware complexity while satisfying the level of performance required of the system. An approach for the assessment of the relationship between the various parameters and the system performance was devised, which allowed hardware requirement of practical system specifications to be estimated. For systems involving signals of different bandwidths, a more flexible implementation of the transmultiplexer is required and two computationally efficient methods, the DFT convolution and analysis/synthesis filter bank, were investigated. These methods gave greater flexibility to the input frequency plan of the transmultiplexer, at the expense of increased computational requirements. Filters were then designed to exploit specific properties of the flexible transmultiplexer methods, resulting in considerable improvement in their efficiencies. Hardware implementation of the flexible transmultiplexer was considered and an efficient multiprocesser architecture in combination with parallel processing software algorithms for the signal processing operations were designed. Finally, an experimental model of the payload for a land-mobile satellite system proposal, T-SAT, was constructed using general-purpose digital signal processors and the merits of the on-board processing architecture were demonstrated.

  16. BASIC REQUIREMENTS AND PRINCIPLES OF CREATION ONBOARD DIAGNOSTIC SYSTEMS OF LOCOMOTIVES

    Directory of Open Access Journals (Sweden)

    YE. B. Bodnar

    2014-01-01

    Full Text Available Purpose. Justification of the basic principles of construction on-board diagnostic systems locomotive and choose from high-performance and reliable interface for the exchange of information on-board diagnostic systems. Methodology. Problem of getting correct and adequate information about the technical state of the technical object is solved with the use and compliance of the fundamental principles of modern computers. Findings. High-performance and reliable interface to exchange messages between different units of management systems and on-board diagnostic systems was selected. Properties which are required high data rate, high reliability and low error rate of information transfer. Originality. The main principles of building on-board diagnostic systems which ensure compliance locomotives accumulation of accurate and adequate information about the technical condition which is necessary to organize its maintenance and repair were formulated. Practical value. Diagnostic equipment designed with use of requirements set forth above and principles will affect the technical condition of the engine, increasing the likelihood of uptime, productivity and locomotive repair teams. The introduction of on-board diagnostic systems and stationary locomotives will significantly improve the system and optimize their maintenance costs of maintenance and repairs. Besides, information about diagnostic parameters changing accumulated with the aim of airborne systems will be used in order to create mathematical models that, in turn, will organize a system of maintenance and predict the technical condition of locomotives

  17. The cloud services innovation platform- enabling service-based environmental modelling using infrastructure-as-a-service cloud computing

    Science.gov (United States)

    Service oriented architectures allow modelling engines to be hosted over the Internet abstracting physical hardware configuration and software deployments from model users. Many existing environmental models are deployed as desktop applications running on user's personal computers (PCs). Migration ...

  18. Standardization activity for the spacecraft onboard interfaces

    Science.gov (United States)

    Smith, J. F.; Plummer, C.; Plancke, P.

    2003-01-01

    The Consultative Committee for Space Data Systems (CCSDS) is an international organization of national space agencies that is organized to promote theinterchange of space related information. CCSDS is branching out to provide new standards to enhanced reuse of spacecraft equipment and software onboard of a spacecraft. This effort is know as Spacecraft Onboard Interface (SOIF). SOIF expects that these standards will be well used within the space community, and that they will be based on the well-known Internet protocols. This paper will provide a description of the SOIF work by reviewing this work with three orthogonal views. The Services View describes the data communications services that are provided to the users. The Interoperability view provides a description to users on how to use SOIF to interchange between different spacecraft data busses. And finally, the Protocol view, describes the protocols and services that are to be implemented in order to provide the users with the advantages of the SOIF architecture. This paper will give the reader an excellent introduction to the work of the international SOIF team.

  19. Automated Planning of Science Products Based on Nadir Overflights and Alerts for Onboard and Ground Processing

    Science.gov (United States)

    Chien, Steve A.; McLaren, David A.; Rabideau, Gregg R.; Mandl, Daniel; Hengemihle, Jerry

    2013-01-01

    A set of automated planning algorithms is the current operations baseline approach for the Intelligent Payload Module (IPM) of the proposed Hyper spectral Infrared Imager (HyspIRI) mission. For this operations concept, there are only local (e.g. non-depletable) operations constraints, such as real-time downlink and onboard memory, and the forward sweeping algorithm is optimal for determining which science products should be generated onboard and on ground based on geographical overflights, science priorities, alerts, requests, and onboard and ground processing constraints. This automated planning approach was developed for the HyspIRI IPM concept. The HyspIRI IPM is proposed to use an X-band Direct Broadcast (DB) capability that would enable data to be delivered to ground stations virtually as it is acquired. However, the HyspIRI VSWIR and TIR instruments will produce approximately 1 Gbps data, while the DB capability is 15 Mbps for a approx. =60X oversubscription. In order to address this mismatch, this innovation determines which data to downlink based on both the type of surface the spacecraft is overflying, and the onboard processing of data to detect events. For example, when the spacecraft is overflying Polar Regions, it might downlink a snow/ice product. Additionally, the onboard software will search for thermal signatures indicative of a volcanic event or wild fire and downlink summary information (extent, spectra) when detected, thereby reducing data volume. The planning system described above automatically generated the IPM mission plan based on requested products, the overflight regions, and available resources.

  20. Revision of IVE model using on-board emission measurements for diesel vehicles and application of revised IVE model%利用柴油车车载排放测试对IVE模型的修正及模型应用

    Institute of Scientific and Technical Information of China (English)

    薛佳平; 张清宇; 田伟利

    2011-01-01

    IVE模型是国内外应用较为广泛的机动车排放模型之一,为了使该模型在计算机动车排放时更为符合当地实际情况,本文首先将13辆我国道路上典型柴油车的车载排放测试数据与IVE模型基本排放因子进行了对比研究,获得了模型基本排放因子的修正系数,然后将修正后的IVE模型应用于宁波市机动车污染物排放因子的计算,获得宁波市各类型车辆的排放因子.结果表明,模型基本排放因子与排放测试结果相接近的污染物顺序依次为CO、NOX、HC;宁波市机动车CO的启动排放因子远远高于其他污染物,相当于HC和NOX启动排放因子的20倍左右;宁波市机动车运行排放因子中,公交车污染物排放因子最大,其次是重型货车和乘用车,最后是轻型货车.%IVE model is one of the widely used international vehicle emission models. In order to make it more adaptive to vehicles in local area such as China, basic emission factors in IVE model are revised in this study. Firstly,basic emission factors of diesel vehicles in IVE model are compared with on-board emission measurements of 13 typical diesel vehicles, and revised coefficients are acquired. Then, revised IVE model is used to calculate vehicle emission factors in Ningbo. Results show that basic emission factors of CO in IVE model are mostly close to on-board emission measurements, following NOx and HC. Start-up emission factors of CO from vehicles in Ningbo are much higher than other pollutants, which are about 20 times HC and NOx. Running emission factors of bus are the highest, following heavy-duty truck, passenger car, and light-duty truck.

  1. WE-AB-303-09: Rapid Projection Computations for On-Board Digital Tomosynthesis in Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Iliopoulos, AS; Sun, X [Duke University, Durham, NC (United States); Pitsianis, N [Aristotle University of Thessaloniki (Greece); Duke University, Durham, NC (United States); Yin, FF; Ren, L [Duke University Medical Center, Durham, NC (United States)

    2015-06-15

    Purpose: To facilitate fast and accurate iterative volumetric image reconstruction from limited-angle on-board projections. Methods: Intrafraction motion hinders the clinical applicability of modern radiotherapy techniques, such as lung stereotactic body radiation therapy (SBRT). The LIVE system may impact clinical practice by recovering volumetric information via Digital Tomosynthesis (DTS), thus entailing low time and radiation dose for image acquisition during treatment. The DTS is estimated as a deformation of prior CT via iterative registration with on-board images; this shifts the challenge to the computational domain, owing largely to repeated projection computations across iterations. We address this issue by composing efficient digital projection operators from their constituent parts. This allows us to separate the static (projection geometry) and dynamic (volume/image data) parts of projection operations by means of pre-computations, enabling fast on-board processing, while also relaxing constraints on underlying numerical models (e.g. regridding interpolation kernels). Further decoupling the projectors into simpler ones ensures the incurred memory overhead remains low, within the capacity of a single GPU. These operators depend only on the treatment plan and may be reused across iterations and patients. The dynamic processing load is kept to a minimum and maps well to the GPU computational model. Results: We have integrated efficient, pre-computable modules for volumetric ray-casting and FDK-based back-projection with the LIVE processing pipeline. Our results show a 60x acceleration of the DTS computations, compared to the previous version, using a single GPU; presently, reconstruction is attained within a couple of minutes. The present implementation allows for significant flexibility in terms of the numerical and operational projection model; we are investigating the benefit of further optimizations and accurate digital projection sub

  2. Forbush decrease effects on radiation dose received on-board aeroplanes.

    Science.gov (United States)

    Lantos, P

    2005-01-01

    Doses received on-board aeroplanes during deep Forbush decreases (FDs) have been recently measured and published. Using an operational model of dose calculation, the effects on aviation dose of the FDs observed from 1981 to 2003 using neutron monitors are studied and a simplified method to estimate dose variations from galactic cosmic ray variations during FDs is derived.

  3. Enabling innovative healthcare delivery through the use of focussed factory model: case of spine clinic of the future

    NARCIS (Netherlands)

    Wickramasinghe, N.; Bloemendal, J.W.; de Bruin, A.K.; Krabbendam, Johannes Jacobus

    2005-01-01

    Abstract: This paper discusses the concept of the focused factory model. We highlight that the focused factory model combines one of the key generic strategies identified by Michael Porter (1985) and the ideas and concepts from manufacturing. The genesis of this model has its roots in trying to

  4. Enabling innovative healthcare delivery through the use of focussed factory model: case of spine clinic of the future

    NARCIS (Netherlands)

    Wickramasinghe, N.; Bloemendal, J.W.; de Bruin, A.K.; Krabbendam, Johannes Jacobus

    2005-01-01

    Abstract: This paper discusses the concept of the focused factory model. We highlight that the focused factory model combines one of the key generic strategies identified by Michael Porter (1985) and the ideas and concepts from manufacturing. The genesis of this model has its roots in trying to rest

  5. Results from Automated Cloud and Dust Devil Detection Onboard the MER

    Science.gov (United States)

    Chien, Steve; Castano, Rebecca; Bornstein, Benjamin; Fukunaga, Alex; Castano, Andres; Biesiadecki, Jeffrey; Greeley, Ron; Whelley, Patrick; Lemmon, Mark

    2008-01-01

    We describe a new capability to automatically detect dust devils and clouds in imagery onboard rovers, enabling downlink of just the images with the targets or only portions of the images containing the targets. Previously, the MER rovers conducted campaigns to image dust devils and clouds by commanding a set of images be collected at fixed times and downloading the entire image set. By increasing the efficiency of the campaigns, more campaigns can be executed. Software for these new capabilities was developed, tested, integrated, uploaded, and operationally checked out on both rovers as part of the R9.2 software upgrade. In April 2007 on Sol 1147 a dust devil was automatically detected onboard the Spirit rover for the first time. We discuss the operational usage of the capability and present initial dust devil results showing how this preliminary application has demonstrated the feasibility and potential benefits of the approach.

  6. NMR sensor for onboard ship detection of catalytic fines in marine fuel oils.

    Science.gov (United States)

    Sørensen, Morten K; Vinding, Mads S; Bakharev, Oleg N; Nesgaard, Tomas; Jensen, Ole; Nielsen, Niels Chr

    2014-08-01

    A mobile, low-field nuclear magnetic resonance (NMR) sensor for onboard, inline detection of catalytic fines in fuel oil in the shipping industry is presented as an alternative to onshore laboratory measurements. Catalytic fines (called cat fines) are aluminosilicate zeolite catalysts utilized in the oil cracking process at refineries. When present in fuel oil, cat fines cause abrasive wear of engine parts and may ultimately lead to engine breakdown with large economical consequences, thereby motivating methods for inline measurements. Here, we report on a robust, mobile, and low-cost (27)Al NMR sensor for continuous online measurement of the level of catalytic fines in fuel oil onboard ships. The sensor enables accurate measurements of aluminum (catalytic fines) in ppm concentrations in good agreement with commercial laboratory reference measurements.

  7. Improved spacecraft radio science using an on-board atomic clock: application to gravitational wave searches

    CERN Document Server

    Tinto, Massimo; Prestage, John D; Armstrong, J W

    2008-01-01

    Recent advances in space-qualified atomic clocks (low-mass, low power-consumption, frequency stability comparable to that of ground-based clocks) can enable interplanetary spacecraft radio science experiments at unprecedented Doppler sensitivities. The addition of an on-board digital receiver would allow the up- and down-link Doppler frequencies to be measured separately. Such separate, high-quality measurements allow optimal data combinations that suppress the currently-leading noise sources: phase scintillation noise from the Earth's atmosphere and Doppler noise caused by mechanical vibrations of the ground antenna. Here we provide a general expression for the optimal combination of ground and on-board Doppler data and compute the sensitivity such a system would have to low-frequency gravitational waves (GWs). Assuming a plasma scintillation noise calibration comparable to that already demonstrated with the multi-link CASSINI radio system, the space-clock/digital-receiver instrumentation enhancements would ...

  8. Onboard Image Registration from Invariant Features

    Science.gov (United States)

    Wang, Yi; Ng, Justin; Garay, Michael J.; Burl, Michael C

    2008-01-01

    This paper describes a feature-based image registration technique that is potentially well-suited for onboard deployment. The overall goal is to provide a fast, robust method for dynamically combining observations from multiple platforms into sensors webs that respond quickly to short-lived events and provide rich observations of objects that evolve in space and time. The approach, which has enjoyed considerable success in mainstream computer vision applications, uses invariant SIFT descriptors extracted at image interest points together with the RANSAC algorithm to robustly estimate transformation parameters that relate one image to another. Experimental results for two satellite image registration tasks are presented: (1) automatic registration of images from the MODIS instrument on Terra to the MODIS instrument on Aqua and (2) automatic stabilization of a multi-day sequence of GOES-West images collected during the October 2007 Southern California wildfires.

  9. Worry and its correlates onboard cruise ships.

    Science.gov (United States)

    Wolff, Katharina; Larsen, Svein; Marnburg, Einar; Øgaard, Torvald

    2013-01-01

    The present study examined job-specific worry, as well as possible predictors of such worry, namely job-specific self-efficacy and supervisor dispositionism. 133 non-supervising crew members at different departments onboard upmarket cruise ships filled in a questionnaire during one of their journeys. Findings show that employees report moderate amounts of job-specific worry and the galley crew reports significantly greater amounts of worry than the other departments. Results also indicate that cruise ship crews worry somewhat more than workers in the land based service sector. Furthermore it was found that supervisor dispositionism, i.e. supervisors with fixed mindsets, was related to greater amounts of worry among the crew. Surprisingly, job-specific self-efficacy was unrelated to job-specific worry.

  10. A new metric enabling an exact hypergraph model for the communication volume in distributed-memory parallel applications

    NARCIS (Netherlands)

    Fortmeier, O.; Bücker, H.M.; Fagginger Auer, B.O.; Bisseling, R.H.

    2013-01-01

    A hypergraph model for mapping applications with an all-neighbor communication pattern to distributed-memory computers is proposed, which originated in finite element triangulations. Rather than approximating the communication volume for linear algebra operations, this new model represents the commu

  11. New Mouse Model for Chronic Infections by Gram-Negative Bacteria Enabling the Study of Anti-Infective Efficacy and Host-Microbe Interactions

    Science.gov (United States)

    Pletzer, Daniel; Mansour, Sarah C.; Wuerth, Kelli; Rahanjam, Negin

    2017-01-01

    ABSTRACT Only a few, relatively cumbersome animal models enable long-term Gram-negative bacterial infections that mimic human situations, where untreated infections can last for weeks. Here, we describe a simple murine cutaneous abscess model that enables chronic or progressive infections, depending on the subcutaneously injected bacterial strain. In this model, Pseudomonas aeruginosa cystic fibrosis epidemic isolate LESB58 caused localized high-density skin and soft tissue infections and necrotic skin lesions for up to 10 days but did not disseminate in either CD-1 or C57BL/6 mice. The model was adapted for use with four major Gram-negative nosocomial pathogens, Acinetobacter baumannii, Klebsiella pneumoniae, Enterobacter cloacae, and Escherichia coli. This model enabled noninvasive imaging and tracking of lux-tagged bacteria, the influx of activated neutrophils, and production of reactive oxygen-nitrogen species at the infection site. Screening antimicrobials against high-density infections showed that local but not intravenous administration of gentamicin, ciprofloxacin, and meropenem significantly but incompletely reduced bacterial counts and superficial tissue dermonecrosis. Bacterial RNA isolated from the abscess tissue revealed that Pseudomonas genes involved in iron uptake, toxin production, surface lipopolysaccharide regulation, adherence, and lipase production were highly upregulated whereas phenazine production and expression of global activator gacA were downregulated. The model was validated for studying virulence using mutants of more-virulent P. aeruginosa strain PA14. Thus, mutants defective in flagella or motility, type III secretion, or siderophore biosynthesis were noninvasive and suppressed dermal necrosis in mice, while a strain with a mutation in the bfiS gene encoding a sensor kinase showed enhanced invasiveness and mortality in mice compared to controls infected with wild-type P. aeruginosa PA14. PMID:28246361

  12. A Lightning Detector Onboard Austrian Nanosatellite (LiNSAT)

    Science.gov (United States)

    Jaffer, G.; Koudelka, O.; Schwingenschuh, K.; Eichelberger, H.

    2010-12-01

    This paper presents architecture of a lightning detector onboard future Austrian Lightning Nanosatellite (LiNSAT) in low-earth-orbit (LEO) and results of two terrestrial measurement campaigns to geo-locate and discriminate lightning types in presence of noise sources. The LiNSAT is proposed to be launched with three satellites constellation for the purpose of Time-of-Arrival technique. Our main scientific objective is to investigate lightning events by the observation of VHF electromagnetic signals (Sferics) and to derive the signatures of lightning. One of the important parameters is lightning flash rate, which can be used as a proxy for locating severe weather activity. Another objective is to discriminate the discharges of lightning events evaluated by the inherent features and to differentiate cloud discharges (IC; intercloud and Intracloud) from ground discharges (CG; cloud-to-ground), return strokes, leaders and transionospheric pulse pairs. The discrimination is important because the ratio of the two (IC/CG) is a good indicator of convective storm development. We conducted two measurement campaigns; one for artificial lightning produced in high voltage chamber and second natural lightning recorded at urban environment. We focus mainly on envelopes of the received time series including noisy features and narrowband carriers to extract characteristic parameters. We determined the chamber inter-walls distance by considering reflections in the first measurements. Initially the algorithm for the instruments onboard electronics has been developed and verified in Matlab and will be transformed to machine language. Next consideration is to use existing lightning data from previous French mission “DEMETER” to validate the accomplished results. The lightning detector onboard has to perform tasks like determination of pulse-width, pulse-count, pulse rise/fall time etc; we get noise possibly from narrowband carriers and artifacts from satellite itself (EMC) in

  13. 40 CFR 86.005-17 - On-board diagnostics.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false On-board diagnostics. 86.005-17... Petroleum Gas-Fueled and Methanol-Fueled Heavy-Duty Vehicles § 86.005-17 On-board diagnostics. (a) General... “Road Vehicles-Diagnostics on Controller Area Network (CAN)—Part 4: Requirements for...

  14. Onboard Prediction of Propagation Loss in Shallow Water

    Science.gov (United States)

    1981-09-16

    substrate roughn*p, (4) modal coupling, and (6) biologia scAtterers;,6. Grain asiz distribution Is not an adequate predctor of acoustical properties; heuce...INTRODUCTION ......................................... 1 GENERAL COMMENTS ................................... 2 SEDIMENT SOUND SPEED AND DENSITY...for an onboard perfor- mance prediction capability in shallow water. There is a general requirement for an onboard performance prediction capability

  15. Fault-Tolerant Onboard Monitoring and Decision Support Systems

    DEFF Research Database (Denmark)

    Lajic, Zoran

    The purpose of this research project is to improve current onboard decision support systems. Special focus is on the onboard prediction of the instantaneous sea state. In this project a new approach to increasing the overall reliability of a monitoring and decision support system has been...

  16. On-board measurements of exhaust (OBM); On-Board Messungen von Abgas (OBM)

    Energy Technology Data Exchange (ETDEWEB)

    Heinze, H.E.

    1997-06-18

    The European Union intends to introduce on-board diagnosis of car exhaust emissions (OBD) from 2000, i.e. emission control by monitoring the various exhaust-relevant components of a motor car by an on-board computer. OBD is already in use in the USA (OBD I) and will be replaced by OBD step by step from 1995. In the present project, two systems by Messrs. WWU GmbH, Hamburg, will be investigated for the components CO and HC. For this purpose, comparative measurements with a FTIR spectrometer (SESAM = System for Emission Sampling and Measurement) are made using an exhaust dynamometer. (orig.) [Deutsch] Zur weiteren Verminderung der Emissionen schaedlicher Abgase aus Kraftfahrzeugen ist es in der Europaeischen Union vorgesehen, ab dem Jahre 2000 die On-Board Diagnose (OBD) einzufuehren. Darunter versteht man ein System zur Emissionskontrolle durch die Ueberwachung der Funktionsfaehigkeit der einzelnen abgasrelevanten Bauteile eines Kraftfahrzeugs durch den Fahrzeugcomputer. In den USA gibt es schon laenger eine erste Form der OBD fuer Pkw (OBD I), die ab dem Modelljahr 1995 schrittweise durch die weitergehende OBD II abgeloest wird. In diesem Vorhaben sollen zwei NDIR-Geraete der Firma WWU GmbH, Hamburg, auf ihre Eignung fuer den OBM-Einsatz ueberprueft werden, zunaechst nur fuer die Komponenten CO und HC. Dazu werden Vergleichsmessungen mit einem FTIR-Spektrometer (SESAM=System for Emission Sampling and Measurement) an einem Pkw auf dem Abgasrollenpruefstand durchgefuehrt. (orig.)

  17. Modelling, Simulation & Analysis (MS&A): Potent Enabling Tools for Planning and Executing Complex Major National Events

    Science.gov (United States)

    2011-10-01

    called flexible cartography , this approach models relevant results for the processing of interdependencies, while 16 DRDC CSS TM 2011-20...Geographic Information Systems ( GIS ) to Enhance Academic Capability of Philippine Higher Education Institutions Asian Journal of Business and Governance

  18. Genome-scale modeling using flux ratio constraints to enable metabolic engineering of clostridial metabolism in silico

    Directory of Open Access Journals (Sweden)

    McAnulty Michael J

    2012-05-01

    Full Text Available Abstract Background Genome-scale metabolic networks and flux models are an effective platform for linking an organism genotype to its phenotype. However, few modeling approaches offer predictive capabilities to evaluate potential metabolic engineering strategies in silico. Results A new method called “flux balance analysis with flux ratios (FBrAtio” was developed in this research and applied to a new genome-scale model of Clostridium acetobutylicum ATCC 824 (iCAC490 that contains 707 metabolites and 794 reactions. FBrAtio was used to model wild-type metabolism and metabolically engineered strains of C. acetobutylicum where only flux ratio constraints and thermodynamic reversibility of reactions were required. The FBrAtio approach allowed solutions to be found through standard linear programming. Five flux ratio constraints were required to achieve a qualitative picture of wild-type metabolism for C. acetobutylicum for the production of: (i acetate, (ii lactate, (iii butyrate, (iv acetone, (v butanol, (vi ethanol, (vii CO2 and (viii H2. Results of this simulation study coincide with published experimental results and show the knockdown of the acetoacetyl-CoA transferase increases butanol to acetone selectivity, while the simultaneous over-expression of the aldehyde/alcohol dehydrogenase greatly increases ethanol production. Conclusions FBrAtio is a promising new method for constraining genome-scale models using internal flux ratios. The method was effective for modeling wild-type and engineered strains of C. acetobutylicum.

  19. A New Approach and Analysis of Modeling the Human Body in RFID-Enabled Body-Centric Wireless Systems

    Directory of Open Access Journals (Sweden)

    Karoliina Koski

    2014-01-01

    Full Text Available Body-centric wireless systems demand wearable sensor and tag antennas that have robust impedance matching and provide enough gain for a reliable wireless communication link. In this paper, we discuss a novel and practical technique for the modeling of the human body in UHF RFID body-centric wireless systems. What makes this technique different is that we base the human model on measured far-field response from a reference tag attached to the human body. Hereby, the human body model accounts for the encountered human body effects on the tag performance. The on-body measurements are fast, which allows establishing a catalog of human body models for different tag locations and human subjects. Such catalog would provide a ready simulation model for a wide range of wireless body-centric applications in order to initiate a functional design. Our results demonstrate that the suggested modeling technique can be used in the design and optimization of wearable antennas for different real-case body-centric scenarios.

  20. The Causal Meaning of Genomic Predictors and How It Affects Construction and Comparison of Genome-Enabled Selection Models

    Science.gov (United States)

    Valente, Bruno D.; Morota, Gota; Peñagaricano, Francisco; Gianola, Daniel; Weigel, Kent; Rosa, Guilherme J. M.

    2015-01-01

    The term “effect” in additive genetic effect suggests a causal meaning. However, inferences of such quantities for selection purposes are typically viewed and conducted as a prediction task. Predictive ability as tested by cross-validation is currently the most acceptable criterion for comparing models and evaluating new methodologies. Nevertheless, it does not directly indicate if predictors reflect causal effects. Such evaluations would require causal inference methods that are not typical in genomic prediction for selection. This suggests that the usual approach to infer genetic effects contradicts the label of the quantity inferred. Here we investigate if genomic predictors for selection should be treated as standard predictors or if they must reflect a causal effect to be useful, requiring causal inference methods. Conducting the analysis as a prediction or as a causal inference task affects, for example, how covariates of the regression model are chosen, which may heavily affect the magnitude of genomic predictors and therefore selection decisions. We demonstrate that selection requires learning causal genetic effects. However, genomic predictors from some models might capture noncausal signal, providing good predictive ability but poorly representing true genetic effects. Simulated examples are used to show that aiming for predictive ability may lead to poor modeling decisions, while causal inference approaches may guide the construction of regression models that better infer the target genetic effect even when they underperform in cross-validation tests. In conclusion, genomic selection models should be constructed to aim primarily for identifiability of causal genetic effects, not for predictive ability. PMID:25908318

  1. On-board processing of video image sequences

    DEFF Research Database (Denmark)

    Andersen, Jakob Dahl; Chanrion, Olivier Arnaud; Forchhammer, Søren

    2008-01-01

    of the mission is to study transient luminous events (TLE) above severe thunderstorms: the sprites, jets and elves. Other atmospheric phenomena are also studied including aurora, gravity waves and meteors. As part of the ASIM Phase B study, on-board processing of data from the cameras is being developed...... and evaluated. On-board there are six video cameras each capturing images of 1024times1024 pixels of 12 bpp at a frame rate of 15 fps, thus totalling 1080 Mbits/s. In comparison the average downlink data rate for these images is projected to be 50 kbit/s. This calls for efficient on-board processing to select...... and compress the data. Algorithms for on-board processing of the image data are presented as well as evaluation of the performance. The main processing steps are event detection, image cropping and image compression. The on-board processing requirements are also evaluated....

  2. Long-Term Impact of an Electronic Health Record-Enabled, Team-Based, and Scalable Population Health Strategy Based on the Chronic Care Model

    Science.gov (United States)

    Kawamoto, Kensaku; Anstrom, Kevin J; Anderson, John B; Bosworth, Hayden B; Lobach, David F; McAdam-Marx, Carrie; Ferranti, Jeffrey M; Shang, Howard; Yarnall, Kimberly S H

    2016-01-01

    The Chronic Care Model (CCM) is a promising framework for improving population health, but little is known regarding the long-term impact of scalable, informatics-enabled interventions based on this model. To address this challenge, this study evaluated the long-term impact of implementing a scalable, electronic health record (EHR)- enabled, and CCM-based population health program to replace a labor-intensive legacy program in 18 primary care practices. Interventions included point-of-care decision support, quality reporting, team-based care, patient engagement, and provider education. Among 6,768 patients with diabetes receiving care over 4 years, hemoglobin A1c levels remained stable during the 2-year pre-intervention and post-intervention periods (0.03% and 0% increases, respectively), compared to a 0.42% increase expected based on A1c progression observed in the United Kingdom Prospective Diabetes Study long-term outcomes cohort. The results indicate that an EHR-enabled, team- based, and scalable population health strategy based on the CCM may be effective and efficient for managing population health.

  3. Adaptive learning in a compartmental model of visual cortex - how feedback enables stable category learning and refinement

    Directory of Open Access Journals (Sweden)

    Georg eLayher

    2014-12-01

    Full Text Available The categorization of real world objects is often reflected in the similarity of their visual appearances. Such categories of objects do not necessarily form disjunct sets of objects, neither semantically nor visually. The relationship between categories can often be described in terms of a hierarchical structure. For instance, tigers and leopards build two separate mammalian categories, but both belong to the category of felines. In other words, tigers and leopards are subcategories of the category Felidae. In the last decades, the unsupervised learning of categories of visual input stimuli has been addressed by numerous approaches in machine learning as well as in the computational neurosciences. However, the question of what kind of mechanisms might be involved in the process of subcategory learning, or category refinement, remains a topic of active investigation. We propose a recurrent computational network architecture for the unsupervised learning of categorial and subcategorial visual input representations. During learning, the connection strengths of bottom-up weights from input to higher-level category representations are adapted according to the input activity distribution. In a similar manner, top-down weights learn to encode the characteristics of a specific stimulus category. Feedforward and feedback learning in combination realize an associative memory mechanism, enabling the selective top-down propagation of a category's feedback weight distribution. We suggest that the difference between the expected input encoded in the projective field of a category node and the current input pattern controls the amplification of feedforward-driven representations. Large enough differences trigger the recruitment of new representational resources and the establishment of (sub- category representations. We demonstrate the temporal evolution of such learning and show how the approach successully establishes category and subcategory

  4. Introducing Enabling Computational Tools to the Climate Sciences: Multi-Resolution Climate Modeling with Adaptive Cubed-Sphere Grids

    Energy Technology Data Exchange (ETDEWEB)

    Jablonowski, Christiane [Univ. of Michigan, Ann Arbor, MI (United States)

    2015-07-14

    The research investigates and advances strategies how to bridge the scale discrepancies between local, regional and global phenomena in climate models without the prohibitive computational costs of global cloud-resolving simulations. In particular, the research explores new frontiers in computational geoscience by introducing high-order Adaptive Mesh Refinement (AMR) techniques into climate research. AMR and statically-adapted variable-resolution approaches represent an emerging trend for atmospheric models and are likely to become the new norm in future-generation weather and climate models. The research advances the understanding of multi-scale interactions in the climate system and showcases a pathway how to model these interactions effectively with advanced computational tools, like the Chombo AMR library developed at the Lawrence Berkeley National Laboratory. The research is interdisciplinary and combines applied mathematics, scientific computing and the atmospheric sciences. In this research project, a hierarchy of high-order atmospheric models on cubed-sphere computational grids have been developed that serve as an algorithmic prototype for the finite-volume solution-adaptive Chombo-AMR approach. The foci of the investigations have lied on the characteristics of both static mesh adaptations and dynamically-adaptive grids that can capture flow fields of interest like tropical cyclones. Six research themes have been chosen. These are (1) the introduction of adaptive mesh refinement techniques into the climate sciences, (2) advanced algorithms for nonhydrostatic atmospheric dynamical cores, (3) an assessment of the interplay between resolved-scale dynamical motions and subgrid-scale physical parameterizations, (4) evaluation techniques for atmospheric model hierarchies, (5) the comparison of AMR refinement strategies and (6) tropical cyclone studies with a focus on multi-scale interactions and variable-resolution modeling. The results of this research project

  5. Autonomous Onboard Science Image Analysis for Future Mars Rover Missions

    Science.gov (United States)

    Gulick, V. C.; Morris, R. L.; Ruzon, M. A.; Roush, T. L.

    1999-01-01

    To explore high priority landing sites and to prepare for eventual human exploration, future Mars missions will involve rovers capable of traversing tens of kilometers. However, the current process by which scientists interact with a rover does not scale to such distances. Specifically, numerous command cycles are required to complete even simple tasks, such as, pointing the spectrometer at a variety of nearby rocks. In addition, the time required by scientists to interpret image data before new commands can be given and the limited amount of data that can be downlinked during a given command cycle constrain rover mobility and achievement of science goals. Experience with rover tests on Earth supports these concerns. As a result, traverses to science sites as identified in orbital images would require numerous science command cycles over a period of many weeks, months or even years, perhaps exceeding rover design life and other constraints. Autonomous onboard science analysis can address these problems in two ways. First, it will allow the rover to transmit only "interesting" images, defined as those likely to have higher science content. Second, the rover will be able to anticipate future commands. For example, a rover might autonomously acquire and return spectra of "interesting" rocks along with a high resolution image of those rocks in addition to returning the context images in which they were detected. Such approaches, coupled with appropriate navigational software, help to address both the data volume and command cycle bottlenecks that limit both rover mobility and science yield. We are developing fast, autonomous algorithms to enable such intelligent on-board decision making by spacecraft. Autonomous algorithms developed to date have the ability to identify rocks and layers in a scene, locate the horizon, and compress multi-spectral image data. Output from these algorithms could be used to autonomously obtain rock spectra, determine which images should be

  6. RNA-seq in the tetraploid Xenopus laevis enables genome-wide insight in a classic developmental biology model organism.

    Science.gov (United States)

    Amin, Nirav M; Tandon, Panna; Osborne Nishimura, Erin; Conlon, Frank L

    2014-04-01

    Advances in sequencing technology have significantly advanced the landscape of developmental biology research. The dissection of genetic networks in model and non-model organisms has been greatly enhanced with high-throughput sequencing technologies. RNA-seq has revolutionized the ability to perform developmental biology research in organisms without a published genome sequence. Here, we describe a protocol for developmental biologists to perform RNA-seq on dissected tissue or whole embryos. We start with the isolation of RNA and generation of sequencing libraries. We further show how to interpret and analyze the large amount of sequencing data that is generated in RNA-seq. We explore the abilities to examine differential expression, gene duplication, transcript assembly, alternative splicing and SNP discovery. For the purposes of this article, we use Xenopus laevis as the model organism to discuss uses of RNA-seq in an organism without a fully annotated genome sequence. Copyright © 2013. Published by Elsevier Inc.

  7. Chemoinformatics for medicinal chemistry: in silico model to enable the discovery of potent and safer anti-cocci agents.

    Science.gov (United States)

    Speck-Planche, Alejandro; Cordeiro, Maria Natália Dias Soeiro

    2014-01-01

    Gram-positive cocci are increasingly antibiotic-resistant bacteria responsible for causing serious diseases. Chemoinformatics can help to rationalize the discovery of more potent and safer antibacterial drugs. We have developed a chemoinformatic model for simultaneous prediction of anti-cocci activities, and profiles involving absorption, distribution, metabolism, elimination and toxicity (ADMET). A dataset containing 48,874 cases from many different chemicals assayed under dissimilar experimental conditions was created. The best model displayed accuracies around 93% in both training and prediction (test) sets. Quantitative contributions of several fragments to the biological effects were calculated and analyzed. Multiple biological effects of the investigational drug JNJ-Q2 were correctly predicted. Our chemoinformatic model can be used as powerful tool for virtual screening of promising anti-cocci agents.

  8. A Dugdale model based geometrical amplifier enables the measurement of separation-to-failure for a cohesive interface

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    Regardless of all kinds of different formulae used for the traction-separation relationship in cohesive zone modeling,the peak tractionσ_m and the separation-to-failureδ_0(or equivalently the work-to-separationΓ) are the primary parameters which control the interfacial fracture behaviors. Experimentally,it is hard to determine those quantities,especially forδ_0,which occurs in a very localized region with possibly complicated geometries by material failure.Based on the Dugdale model,we show that the sepa...

  9. Investigating a model for lecturer training that enables lecturers to plan and carry out meaningful e-learning activities

    DEFF Research Database (Denmark)

    Kjær, Christopher; Hansen, Pernille Stenkil; Christensen, Inger-Marie F.

    2014-01-01

    This paper reports on the effect of a lecturer training model in the shape of an e-learning project based on research on adult and work-based learning. A survey was conducted to explore participants’ learning experiences. Findings show high overall satisfaction, motivation and engagement. Suggest...

  10. Toward a Conceptual Model for Social Mechanisms Enabling Knowledge Sharing: Dynamic Relationships among Three Dimensions of Social Capital

    Science.gov (United States)

    Jo, Sung Jun

    2008-01-01

    Knowledge sharing is important because individual knowledge is not transformed into organizational knowledge until it is shared. The conceptual model presents how social factors create the conditions for effective knowledge sharing. It illustrates how three dimensions of social capital impact with each other and with knowledge sharing. Social…

  11. The chain of care enabling tPA treatment in acute ischemic stroke : a comprehensive review of organisational models

    NARCIS (Netherlands)

    Lahr, Maarten M. H.; Luijckx, Gert-Jan; Vroomen, Patrick; van der Zee, D.J.; Buskens, Erik

    Protracted and partial implementation of treatment with intravenous tissue plasminogen activator (tPA) within 4.5 h after acute stroke onset results in potentially eligible patients not receiving optimal treatment. The goal of this study was to review the performance of various organisational models

  12. Memory-Efficient Onboard Rock Segmentation

    Science.gov (United States)

    Burl, Michael C.; Thompson, David R.; Bornstein, Benjamin J.; deGranville, Charles K.

    2013-01-01

    Rockster-MER is an autonomous perception capability that was uploaded to the Mars Exploration Rover Opportunity in December 2009. This software provides the vision front end for a larger software system known as AEGIS (Autonomous Exploration for Gathering Increased Science), which was recently named 2011 NASA Software of the Year. As the first step in AEGIS, Rockster-MER analyzes an image captured by the rover, and detects and automatically identifies the boundary contours of rocks and regions of outcrop present in the scene. This initial segmentation step reduces the data volume from millions of pixels into hundreds (or fewer) of rock contours. Subsequent stages of AEGIS then prioritize the best rocks according to scientist- defined preferences and take high-resolution, follow-up observations. Rockster-MER has performed robustly from the outset on the Mars surface under challenging conditions. Rockster-MER is a specially adapted, embedded version of the original Rockster algorithm ("Rock Segmentation Through Edge Regrouping," (NPO- 44417) Software Tech Briefs, September 2008, p. 25). Although the new version performs the same basic task as the original code, the software has been (1) significantly upgraded to overcome the severe onboard re source limitations (CPU, memory, power, time) and (2) "bulletproofed" through code reviews and extensive testing and profiling to avoid the occurrence of faults. Because of the limited computational power of the RAD6000 flight processor on Opportunity (roughly two orders of magnitude slower than a modern workstation), the algorithm was heavily tuned to improve its speed. Several functional elements of the original algorithm were removed as a result of an extensive cost/benefit analysis conducted on a large set of archived rover images. The algorithm was also required to operate below a stringent 4MB high-water memory ceiling; hence, numerous tricks and strategies were introduced to reduce the memory footprint. Local filtering

  13. High throughput ADME screening: practical considerations, impact on the portfolio and enabler of in silico ADME models.

    Science.gov (United States)

    Hop, Cornelis E C A; Cole, Mark J; Davidson, Ralph E; Duignan, David B; Federico, James; Janiszewski, John S; Jenkins, Kelly; Krueger, Suzanne; Lebowitz, Rebecca; Liston, Theodore E; Mitchell, Walter; Snyder, Mark; Steyn, Stefan J; Soglia, John R; Taylor, Christine; Troutman, Matt D; Umland, John; West, Michael; Whalen, Kevin M; Zelesky, Veronica; Zhao, Sabrina X

    2008-11-01

    Evaluation and optimization of drug metabolism and pharmacokinetic data plays an important role in drug discovery and development and several reliable in vitro ADME models are available. Recently higher throughput in vitro ADME screening facilities have been established in order to be able to evaluate an appreciable fraction of synthesized compounds. The ADME screening process can be dissected in five distinct steps: (1) plate management of compounds in need of in vitro ADME data, (2) optimization of the MS/MS method for the compounds, (3) in vitro ADME experiments and sample clean up, (4) collection and reduction of the raw LC-MS/MS data and (5) archival of the processed ADME data. All steps will be described in detail and the value of the data on drug discovery projects will be discussed as well. Finally, in vitro ADME screening can generate large quantities of data obtained under identical conditions to allow building of reliable in silico models.

  14. Investigating a model for lecturer training that enables lecturers to plan and carry out meaningful e-learning activities

    DEFF Research Database (Denmark)

    Kjær, Christopher; Hansen, Pernille Stenkil; Christensen, Inger-Marie F.

    2014-01-01

    This paper reports on the effect of a lecturer training model in the shape of an e-learning project based on research on adult and work-based learning. A survey was conducted to explore participants’ learning experiences. Findings show high overall satisfaction, motivation and engagement. Suggest......This paper reports on the effect of a lecturer training model in the shape of an e-learning project based on research on adult and work-based learning. A survey was conducted to explore participants’ learning experiences. Findings show high overall satisfaction, motivation and engagement....... Suggestions for improvement include better integration of the e-learning project with other lecturer training components, supporting participants in formulating the e-learning project and providing additional opportunities for reflection and feedback....

  15. Application of concave microwells to pancreatic tumor spheroids enabling anticancer drug evaluation in a clinically relevant drug resistance model.

    Directory of Open Access Journals (Sweden)

    Sang-Eun Yeon

    Full Text Available Intrinsic drug resistance of pancreatic ductal adenocarcinoma (PDAC warrants studies using models that are more clinically relevant for identifying novel resistance mechanisms as well as for drug development. Tumor spheroids (TS mimic in vivo tumor conditions associated with multicellular resistance and represent a promising model for efficient drug screening, however, pancreatic cancer cells often fail to form spheroids using conventional methods such as liquid overlay. This study describes the induction of TS of human pancreatic cancer cells (Panc-1, Aspc-1, Capan-2 in concave polydimethylsiloxane (PDMS microwell plates and evaluation of their usefulness as an anticancer efficacy test model. All three cell lines showed TS formation with varying degree of necrosis inside TS. Among these, Panc-1 spheroid with spherical morphology, a rather rough surface, and unique adhesion structures were successfully produced with no notable necrosis in concave microwell plates. Panc-1 TS contained growth factors or enzymes such as TGF-β1, CTGF, and MT1-MMP, and extracellular matrix proteins such as collagen type I, fibronectin, and laminin. Panc-1 cells grown as TS showed changes in stem cell populations and in expression levels of miRNAs that may play roles in chemoresistance. Visualization of drug penetration and detection of viability indicators, such as Ki-67 and MitoSOX, were optimized for TS for quantitative analysis. Water-soluble tetrazolium (MTS and acid phosphatase (APH assays were also successfully optimized. Overall, we demonstrated that concave PDMS microwell plates are a novel platform for preparation of TS of weakly aggregating cells and that Panc-1 spheroids may represent a novel three-dimensional model for anti-pancreatic cancer drug screening.

  16. Application of concave microwells to pancreatic tumor spheroids enabling anticancer drug evaluation in a clinically relevant drug resistance model.

    Science.gov (United States)

    Yeon, Sang-Eun; No, Da Yoon; Lee, Sang-Hoon; Nam, Suk Woo; Oh, Il-Hoan; Lee, Jaehwi; Kuh, Hyo-Jeong

    2013-01-01

    Intrinsic drug resistance of pancreatic ductal adenocarcinoma (PDAC) warrants studies using models that are more clinically relevant for identifying novel resistance mechanisms as well as for drug development. Tumor spheroids (TS) mimic in vivo tumor conditions associated with multicellular resistance and represent a promising model for efficient drug screening, however, pancreatic cancer cells often fail to form spheroids using conventional methods such as liquid overlay. This study describes the induction of TS of human pancreatic cancer cells (Panc-1, Aspc-1, Capan-2) in concave polydimethylsiloxane (PDMS) microwell plates and evaluation of their usefulness as an anticancer efficacy test model. All three cell lines showed TS formation with varying degree of necrosis inside TS. Among these, Panc-1 spheroid with spherical morphology, a rather rough surface, and unique adhesion structures were successfully produced with no notable necrosis in concave microwell plates. Panc-1 TS contained growth factors or enzymes such as TGF-β1, CTGF, and MT1-MMP, and extracellular matrix proteins such as collagen type I, fibronectin, and laminin. Panc-1 cells grown as TS showed changes in stem cell populations and in expression levels of miRNAs that may play roles in chemoresistance. Visualization of drug penetration and detection of viability indicators, such as Ki-67 and MitoSOX, were optimized for TS for quantitative analysis. Water-soluble tetrazolium (MTS) and acid phosphatase (APH) assays were also successfully optimized. Overall, we demonstrated that concave PDMS microwell plates are a novel platform for preparation of TS of weakly aggregating cells and that Panc-1 spheroids may represent a novel three-dimensional model for anti-pancreatic cancer drug screening.

  17. Digibaro pressure instrument onboard the Phoenix Lander

    Science.gov (United States)

    Harri, A.-M.; Polkko, J.; Kahanpää, H. H.; Schmidt, W.; Genzer, M. M.; Haukka, H.; Savijarv1, H.; Kauhanen, J.

    2009-04-01

    The Phoenix Lander landed successfully on the Martian northern polar region. The mission is part of the National Aeronautics and Space Administration's (NASA's) Scout program. Pressure observations onboard the Phoenix lander were performed by an FMI (Finnish Meteorological Institute) instrument, based on a silicon diaphragm sensor head manufactured by Vaisala Inc., combined with MDA data processing electronics. The pressure instrument performed successfully throughout the Phoenix mission. The pressure instrument had 3 pressure sensor heads. One of these was the primary sensor head and the other two were used for monitoring the condition of the primary sensor head during the mission. During the mission the primary sensor was read with a sampling interval of 2 s and the other two were read less frequently as a check of instrument health. The pressure sensor system had a real-time data-processing and calibration algorithm that allowed the removal of temperature dependent calibration effects. In the same manner as the temperature sensor, a total of 256 data records (8.53 min) were buffered and they could either be stored at full resolution, or processed to provide mean, standard deviation, maximum and minimum values for storage on the Phoenix Lander's Meteorological (MET) unit.The time constant was approximately 3s due to locational constraints and dust filtering requirements. Using algorithms compensating for the time constant effect the temporal resolution was good enough to detect pressure drops associated with the passage of nearby dust devils.

  18. The Perseus-Exobiology experiment onboard MIR

    Science.gov (United States)

    Barbier, B.; Boillot, F.; Chabin, A.; Buré, C.; Venet, M.; Belsky, A.; Jacquet, R.; Bertrand-Urbaniak, M.; Delmas, A.; Brack, A.

    2002-11-01

    Two amino acids, L-leucine and "α-methyl-L-leucine; a cyclic dipeptide, L-leucine-diketopiperazine, and an activated tripeptide L-trileucine thioethylester, were exposed for three months to space conditions onboard the MIR station during the Perseus-Exobiology mission in 1999. These samples were exposed in order to study the exogeneous hypothesis for the origin of some of the important biological building blocks of life. The four compounds were exposed both free and associated with basalt, clay and meteorite powder to simulate the effects of potential meteorite protection. Post-flight analyses did not reveal any racemization or polymerisation of the exposed compounds. Approximately half of the amino acids were photolyzed with decarboxylation apparently the primary cause. Peptides were less sensitive to photolysis which mainly occurred by decarbonylation, but were partly lost by natural degradation or sublimation. The best mineral protection for the samples was ensured by the meteorite powder, which exhibits the highest absorption in VUV, whereas clay, almost transparent in VUV was the least efficient. By varying the thickness of the meteorite layer, it was determined that a 5 μm film was necessary to ensure efficient protection against UV radiation.

  19. A New Approach to Predict Microbial Community Assembly and Function Using a Stochastic, Genome-Enabled Modeling Framework

    Science.gov (United States)

    King, E.; Brodie, E.; Anantharaman, K.; Karaoz, U.; Bouskill, N.; Banfield, J. F.; Steefel, C. I.; Molins, S.

    2016-12-01

    Characterizing and predicting the microbial and chemical compositions of subsurface aquatic systems necessitates an understanding of the metabolism and physiology of organisms that are often uncultured or studied under conditions not relevant for one's environment of interest. Cultivation-independent approaches are therefore important and have greatly enhanced our ability to characterize functional microbial diversity. The capability to reconstruct genomes representing thousands of populations from microbial communities using metagenomic techniques provides a foundation for development of predictive models for community structure and function. Here, we discuss a genome-informed stochastic trait-based model incorporated into a reactive transport framework to represent the activities of coupled guilds of hypothetical microorganisms. Metabolic pathways for each microbe within a functional guild are parameterized from metagenomic data with a unique combination of traits governing organism fitness under dynamic environmental conditions. We simulate the thermodynamics of coupled electron donor and acceptor reactions to predict the energy available for cellular maintenance, respiration, biomass development, and enzyme production. While `omics analyses can now characterize the metabolic potential of microbial communities, it is functionally redundant as well as computationally prohibitive to explicitly include the thousands of recovered organisms into biogeochemical models. However, one can derive potential metabolic pathways from genomes along with trait-linkages to build probability distributions of traits. These distributions are used to assemble groups of microbes that couple one or more of these pathways. From the initial ensemble of microbes, only a subset will persist based on the interaction of their physiological and metabolic traits with environmental conditions, competing organisms, etc. Here, we analyze the predicted niches of these hypothetical microbes and

  20. Incorporate design of on-board network and inter-satellite network

    Science.gov (United States)

    Li, Bin; You, Zheng; Zhang, Chenguang

    2005-11-01

    In satellite, Data transferring is very important and must be reliable. This paper first introduced an on-board network based on Control Area Network (CAN). As a kind of field bus, CAN is simple and reliable, and has been tested by previous flights. In this paper, the CAN frame is redefined, including the identifier and message data, the addresses for source and destination as well as the frame types. On-board network provides datagram transmission and buffer transmission. Data gram transmission is used to carry out TTC functions, and buffer transmission is used to transfer mass data such as images. Inter-satellite network for satellite formation flying is not designed individually. It takes the advantage of TCP/IP model and inherits and extends on-board network protocols. The inter-satellite network includes a linkage layer, a network layer and a transport layer. There are 8 virtual channels for various space missions or requirements and 4 kinds of services to be selected. The network layer is designed to manage the whole net, calculate and select the route table and gather the network information, while the transport layer mainly routes data, which correspondingly makes it possible for communication between each two nodes. Structures of the linkage frame and transport layer data segment are similar, thus there is no complex packing and unpacking. At last, this paper gives the methods for data conversion between the on-board network and the inter-satellite network.

  1. A non-parametric mixture model for genome-enabled prediction of genetic value for a quantitative trait.

    Science.gov (United States)

    Gianola, Daniel; Wu, Xiao-Lin; Manfredi, Eduardo; Simianer, Henner

    2010-10-01

    A Bayesian nonparametric form of regression based on Dirichlet process priors is adapted to the analysis of quantitative traits possibly affected by cryptic forms of gene action, and to the context of SNP-assisted genomic selection, where the main objective is to predict a genomic signal on phenotype. The procedure clusters unknown genotypes into groups with distinct genetic values, but in a setting in which the number of clusters is unknown a priori, so that standard methods for finite mixture analysis do not work. The central assumption is that genetic effects follow an unknown distribution with some "baseline" family, which is a normal process in the cases considered here. A Bayesian analysis based on the Gibbs sampler produces estimates of the number of clusters, posterior means of genetic effects, a measure of credibility in the baseline distribution, as well as estimates of parameters of the latter. The procedure is illustrated with a simulation representing two populations. In the first one, there are 3 unknown QTL, with additive, dominance and epistatic effects; in the second, there are 10 QTL with additive, dominance and additive × additive epistatic effects. In the two populations, baseline parameters are inferred correctly. The Dirichlet process model infers the number of unique genetic values correctly in the first population, but it produces an understatement in the second one; here, the true number of clusters is over 900, and the model gives a posterior mean estimate of about 140, probably because more replication of genotypes is needed for correct inference. The impact on inferences of the prior distribution of a key parameter (M), and of the extent of replication, was examined via an analysis of mean body weight in 192 paternal half-sib families of broiler chickens, where each sire was genotyped for nearly 7,000 SNPs. In this small sample, it was found that inference about the number of clusters was affected by the prior distribution of M. For a

  2. Modeling peripheral visual acuity enables discovery of gaze strategies at multiple time scales during natural scene search

    Science.gov (United States)

    Ramkumar, Pavan; Fernandes, Hugo; Kording, Konrad; Segraves, Mark

    2015-01-01

    Like humans, monkeys make saccades nearly three times a second. To understand the factors guiding this frequent decision, computational models of vision attempt to predict fixation locations using bottom-up visual features and top-down goals. How do the relative influences of these factors evolve over multiple time scales? Here we analyzed visual features at fixations using a retinal transform that provides realistic visual acuity by suitably degrading visual information in the periphery. In a task in which monkeys searched for a Gabor target in natural scenes, we characterized the relative importance of bottom-up and task-relevant influences by decoding fixated from nonfixated image patches based on visual features. At fast time scales, we found that search strategies can vary over the course of a single trial, with locations of higher saliency, target-similarity, edge–energy, and orientedness looked at later on in the trial. At slow time scales, we found that search strategies can be refined over several weeks of practice, and the influence of target orientation was significant only in the latter of two search tasks. Critically, these results were not observed without applying the retinal transform. Our results suggest that saccade-guidance strategies become apparent only when models take into account degraded visual representation in the periphery. PMID:25814545

  3. Development of Four Dimensional Human Model that Enables Deformation of Skin, Organs and Blood Vessel System During Body Movement - Visualizing Movements of the Musculoskeletal System.

    Science.gov (United States)

    Suzuki, Naoki; Hattori, Asaki; Hashizume, Makoto

    2016-01-01

    We constructed a four dimensional human model that is able to visualize the structure of a whole human body, including the inner structures, in real-time to allow us to analyze human dynamic changes in the temporal, spatial and quantitative domains. To verify whether our model was generating changes according to real human body dynamics, we measured a participant's skin expansion and compared it to that of the model conducted under the same body movement. We also made a contribution to the field of orthopedics, as we were able to devise a display method that enables the observer to more easily observe the changes made in the complex skeletal muscle system during body movements, which in the past were difficult to visualize.

  4. Genome-enabled Modeling of Microbial Biogeochemistry using a Trait-based Approach. Does Increasing Metabolic Complexity Increase Predictive Capabilities?

    Science.gov (United States)

    King, E.; Karaoz, U.; Molins, S.; Bouskill, N.; Anantharaman, K.; Beller, H. R.; Banfield, J. F.; Steefel, C. I.; Brodie, E.

    2015-12-01

    The biogeochemical functioning of ecosystems is shaped in part by genomic information stored in the subsurface microbiome. Cultivation-independent approaches allow us to extract this information through reconstruction of thousands of genomes from a microbial community. Analysis of these genomes, in turn, gives an indication of the organisms present and their functional roles. However, metagenomic analyses can currently deliver thousands of different genomes that range in abundance/importance, requiring the identification and assimilation of key physiologies and metabolisms to be represented as traits for successful simulation of subsurface processes. Here we focus on incorporating -omics information into BioCrunch, a genome-informed trait-based model that represents the diversity of microbial functional processes within a reactive transport framework. This approach models the rate of nutrient uptake and the thermodynamics of coupled electron donors and acceptors for a range of microbial metabolisms including heterotrophs and chemolithotrophs. Metabolism of exogenous substrates fuels catabolic and anabolic processes, with the proportion of energy used for cellular maintenance, respiration, biomass development, and enzyme production based upon dynamic intracellular and environmental conditions. This internal resource partitioning represents a trade-off against biomass formation and results in microbial community emergence across a fitness landscape. Biocrunch was used here in simulations that included organisms and metabolic pathways derived from a dataset of ~1200 non-redundant genomes reflecting a microbial community in a floodplain aquifer. Metagenomic data was directly used to parameterize trait values related to growth and to identify trait linkages associated with respiration, fermentation, and key enzymatic functions such as plant polymer degradation. Simulations spanned a range of metabolic complexities and highlight benefits originating from simulations

  5. High-Speed On-Board Data Processing for Science Instruments

    Science.gov (United States)

    Beyon, Jeffrey Y.; Ng, Tak-Kwong; Lin, Bing; Hu, Yongxiang; Harrison, Wallace

    2014-01-01

    A new development of on-board data processing platform has been in progress at NASA Langley Research Center since April, 2012, and the overall review of such work is presented in this paper. The project is called High-Speed On-Board Data Processing for Science Instruments (HOPS) and focuses on a high-speed scalable data processing platform for three particular National Research Council's Decadal Survey missions such as Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS), Aerosol-Cloud-Ecosystems (ACE), and Doppler Aerosol Wind Lidar (DAWN) 3-D Winds. HOPS utilizes advanced general purpose computing with Field Programmable Gate Array (FPGA) based algorithm implementation techniques. The significance of HOPS is to enable high speed on-board data processing for current and future science missions with its reconfigurable and scalable data processing platform. A single HOPS processing board is expected to provide approximately 66 times faster data processing speed for ASCENDS, more than 70% reduction in both power and weight, and about two orders of cost reduction compared to the state-of-the-art (SOA) on-board data processing system. Such benchmark predictions are based on the data when HOPS was originally proposed in August, 2011. The details of these improvement measures are also presented. The two facets of HOPS development are identifying the most computationally intensive algorithm segments of each mission and implementing them in a FPGA-based data processing board. A general introduction of such facets is also the purpose of this paper.

  6. Mapping socio-economic scenarios of land cover change: a GIS method to enable ecosystem service modelling.

    Science.gov (United States)

    Swetnam, R D; Fisher, B; Mbilinyi, B P; Munishi, P K T; Willcock, S; Ricketts, T; Mwakalila, S; Balmford, A; Burgess, N D; Marshall, A R; Lewis, S L

    2011-03-01

    We present a GIS method to interpret qualitatively expressed socio-economic scenarios in quantitative map-based terms. (i) We built scenarios using local stakeholders and experts to define how major land cover classes may change under different sets of drivers; (ii) we formalized these as spatially explicit rules, for example agriculture can only occur on certain soil types; (iii) we created a future land cover map which can then be used to model ecosystem services. We illustrate this for carbon storage in the Eastern Arc Mountains of Tanzania using two scenarios: the first based on sustainable development, the second based on 'business as usual' with continued forest-woodland degradation and poor protection of existing forest reserves. Between 2000 and 2025 4% of carbon stocks were lost under the first scenario compared to a loss of 41% of carbon stocks under the second scenario. Quantifying the impacts of differing future scenarios using the method we document here will be important if payments for ecosystem services are to be used to change policy in order to maintain critical ecosystem services.

  7. Assessing the ability of isotope-enabled General Circulation Models to simulate the variability of Iceland water vapor isotopic composition

    Science.gov (United States)

    Erla Sveinbjornsdottir, Arny; Steen-Larsen, Hans Christian; Jonsson, Thorsteinn; Ritter, Francois; Riser, Camilla; Messon-Delmotte, Valerie; Bonne, Jean Louis; Dahl-Jensen, Dorthe

    2014-05-01

    During the fall of 2010 we installed an autonomous water vapor spectroscopy laser (Los Gatos Research analyzer) in a lighthouse on the Southwest coast of Iceland (63.83°N, 21.47°W). Despite initial significant problems with volcanic ash, high wind, and attack of sea gulls, the system has been continuously operational since the end of 2011 with limited down time. The system automatically performs calibration every 2 hours, which results in high accuracy and precision allowing for analysis of the second order parameter, d-excess, in the water vapor. We find a strong linear relationship between d-excess and local relative humidity (RH) when normalized to SST. The observed slope of approximately -45 o/oo/% is similar to theoretical predictions by Merlivat and Jouzel [1979] for smooth surface, but the calculated intercept is significant lower than predicted. Despite this good linear agreement with theoretical calculations, mismatches arise between the simulated seasonal cycle of water vapour isotopic composition using LMDZiso GCM nudged to large-scale winds from atmospheric analyses, and our data. The GCM is not able to capture seasonal variations in local RH, nor seasonal variations in d-excess. Based on daily data, the performance of LMDZiso to resolve day-to-day variability is measured based on the strength of the correlation coefficient between observations and model outputs. This correlation coefficient reaches ~0.8 for surface absolute humidity, but decreases to ~0.6 for δD and ~0.45 d-excess. Moreover, the magnitude of day-to-day humidity variations is also underestimated by LMDZiso, which can explain the underestimated magnitude of isotopic depletion. Finally, the simulated and observed d-excess vs. RH has similar slopes. We conclude that the under-estimation of d-excess variability may partly arise from the poor performance of the humidity simulations.

  8. An Airborne Onboard Parallel Processing Testbed

    Science.gov (United States)

    Mandl, Daniel J.

    2014-01-01

    This presentation provides information on the progress the Intelligent Payload Module (IPM) development effort. In addition, a vision is presented on integration of the IPM architecture with the GeoSocial Application Program Interface (API) architecture to enable efficient distribution of satellite data products.

  9. XMM instrument on-board software maintenance concept

    Science.gov (United States)

    Peccia, N.; Giannini, F.

    1994-01-01

    While the pre-launch responsibility for the production, validation and maintenance of instrument on-board software traditionally lies with the experimenter, the post-launch maintenance has been the subject of ad hoc arrangements with the responsibility shared to different extent between the experimenter, ESTEC and ESOC. This paper summarizes the overall design and development of the instruments on-board software for the XMM satellite, and describes the concept adopted for the maintenance of such software post-launch. The paper will also outline the on-board software maintenance and validation facilities and the expected advantages to be gained by the proposed strategy. Conclusions with respect to adequacy of this approach will be presented as well as recommendations for future instrument on-board software developments.

  10. Design of Onboard Instrument Based on Virtual Instrument Technology

    Institute of Scientific and Technical Information of China (English)

    TANG Baoping; ZHONG Yuanchang; QIU Jianwei

    2006-01-01

    After analyzing and comparing the traditional automobile instrument, the onboard instrument based on virtual instrument technology is designed in this paper. The PC/104 computer was employed as the core processing unit of the onboard instrument, and the several intelligent data acquisition nodes are set and connected by the CAN bus, through which the nodes can communicate with the core processing unit. The information of the vehicle's working condition can be displayed synthetically by adopting virtual instrument technology. When the working condition goes beyond its limit, the system can emit an alarm, record and storage the abnormal condition automatically, and suggest how to deal with the abnormity urgently. The development background and design idea of onboard information system were elaborated in the paper. The software, the hardware architecture and the principle of onboard information system were introduced in detail.

  11. Future investigations onboard Soviet biosatellites of the Cosmos series.

    Science.gov (United States)

    Ilyin, E A

    1981-01-01

    Many rat experiments onboard Cosmos biosatellites have furnished information concerning the effects of weightlessness, artificial gravity, and ionizing radiation combined with weightlessness on structural and biochemical parameters of the animal body. The necessity to expand the scope of physiological investigations has led to the project of flight primate studies. It is planned to carry out the first primate experiments onboard the Cosmos biosatellite in 1982. At present investigations of weightlessness effects on the cardiovascular and vestibular systems, higher nervous activity, skeletal muscles and biorhythms of two rhesus monkeys are being developed and tested. It is also planned to conduct a study of weightlessness effects on embryogenesis of rats and bioenergetics of living systems onboard the same biosatellite. Further experiments onboard Cosmos biosatellites are planned.

  12. Position and orientation inference via on-board triangulation.

    Science.gov (United States)

    Advani, Madhu; Weile, Daniel S

    2017-01-01

    This work proposes a new approach to determine the spatial location and orientation of an object using measurements performed on the object itself. The on-board triangulation algorithm we outline could be implemented in lieu of, or in addition to, well-known alternatives such as Global Positioning System (GPS) or standard triangulation, since both of these correspond to significantly different geometric pictures and necessitate different hardware and algorithms. We motivate the theory by describing situations in which on-board triangulation would be useful and even preferable to standard methods. The on-board triangulation algorithm we outline involves utilizing dumb beacons which broadcast omnidirectional single frequency radio waves, and smart antenna arrays on the object itself to infer the direction of the beacon signals, which may be used for onboard calculation of the position and orientation of the object. Numerical examples demonstrate the utility of the method and its noise tolerance.

  13. Onboard Optical Navigation Measurement Processing in GEONS Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of this IRAD is to establish in-house onboard OpNav measurement data processing capabilities through software development and testing.  Software...

  14. 40 CFR 86.1806-04 - On-board diagnostics.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 19 2010-07-01 2010-07-01 false On-board diagnostics. 86.1806-04..., and Complete Otto-Cycle Heavy-Duty Vehicles § 86.1806-04 On-board diagnostics. This § 86.1806-04... alternative to SAE J1850. (iii) ISO 15765-4.3:2001 “Road Vehicles-Diagnostics on Controller Area Network...

  15. Detection of Novel Features and Collection of Opportunistic Science Data with an Onboard Autonomous Rover Science System

    Science.gov (United States)

    Castano, R.; Estlin, T.; Gaines, D.; Bornstein, B.; Anderson, R. C.; Bue, B.; Judd, M.

    2007-12-01

    The Onboard Autonomous Science Investigation System (OASIS) evaluates science data gathered by a planetary rover. This analysis is used to prioritize the data for transmission, so that the data with the highest science value is transmitted to Earth. In addition, the onboard analysis results are used to identify science opportunities. A planning and scheduling component of the system enables the rover to take advantage of identified science opportunities. We present new system capabilities with an emphasis on the identification of novel geologic features during a traverse. The ability to detect novel features enables the rover to identify rocks that exhibit distinct properties from those in the vicinity, e.g. unusual albedo or orientation. This capability has been integrated into the full system and validated in field testing. In addition, the system has been integrated with the Visual Target Tracking (VTT) capability recently uploaded to the Mars Exploration Rovers. VTT enables the system to robustly track a specified target, typically a rock. By integrating this with the autonomous science system, the rover can approach targets identified onboard, and then acquire targeted measurements both from additional viewing angles as well as from positions in close proximity to the target.

  16. Dust occultation at Titan measured by CDA onboard Cassini

    Science.gov (United States)

    Srama, Ralf; CDA science Team

    2016-10-01

    The Cosmic Dust Analyzer (CDA) onboard Cassini characterized successfully the dust environment at Saturn since 2004. The instrument measures the primary charge, speed, mass and composition of individual submicron and micron sized dust grains. The detection threshold scales with speed^3.5 such that the detection of fast nanograins (~100 km/s) is possible. Saturn's nanodust environment (streams) is studied many years. However, a special geometric condition of Saturn, Cassini and Titan during a Titan flyby in 2014 (DOY 65) provided a special dust occultation opportunity. Titan and its atmosphere blocked the stream of fast nanoparticles such that CDA registered a clear drop in impact rate around closest approach. An analysis of the data allows to constrain the source region of the nanograins, which is compatible with a source region in the ring plane at distances from Saturn between 4 and 8 Saturn radii. Backward and forward modeling was performed leading to dust grain sizes between 3 and 9 nm and speeds between 80 and 150 km/s. The new modeling results also show that Enceladus acts a direct source for nanodust streams leading to the observation of periodic impact rates in the outer Saturn system. Such periodicities were observed recently by CDA and showed a clear signature of the Enceladus orbital period. A second dust occultation opportunity using Titan is planned august 2016.

  17. Onboard Calibration Circuit for the Front-end Electronics of DAMPE BGO Calorimeter

    CERN Document Server

    Zhang, De-Liang; Zhang, Jun-Bin; Wang, Qi; Ma, Si-Yuan; Gao, Shan-Shan; Shen, Zhong-Tao; Jiang, Di; Guo, Jian-Hua; Liu, Shu-Bin; An, Qi

    2016-01-01

    An onboard calibration circuit has been designed for the front-end electronics (FEE) of DAMPE BGO Calorimeter. It is mainly composed of a 12 bit DAC, an operation amplifier and an analog switch. Test results showed that a dynamic range of 0 ~ 30 pC with a precision of 5 fC was achieved, which meets the requirements of the front-end electronics. Furthermore, it is used to test the trigger function of the FEEs. The calibration circuit has been implemented and verified by all the environmental tests for both Qualification Model and Flight Model of DAMPE. The DAMPE satellite will be launched at the end of 2015 and the calibration circuit will perform onboard calibration in space.

  18. An Onboard ISS Virtual Reality Trainer

    Science.gov (United States)

    Miralles, Evelyn

    2013-01-01

    Prior to the retirement of the Space Shuttle, many exterior repairs on the International Space Station (ISS) were carried out by shuttle astronauts, trained on the ground and flown to the Station to perform these specific repairs. With the retirement of the shuttle, this is no longer an available option. As such, the need for ISS crew members to review scenarios while on flight, either for tasks they already trained for on the ground or for contingency operations has become a very critical issue. NASA astronauts prepare for Extra-Vehicular Activities (EVA) or Spacewalks through numerous training media, such as: self-study, part task training, underwater training in the Neutral Buoyancy Laboratory (NBL), hands-on hardware reviews and training at the Virtual Reality Laboratory (VRLab). In many situations, the time between the last session of a training and an EVA task might be 6 to 8 months. EVA tasks are critical for a mission and as time passes the crew members may lose proficiency on previously trained tasks and their options to refresh or learn a new skill while on flight are limited to reading training materials and watching videos. In addition, there is an increased need for unplanned contingency repairs to fix problems arising as the Station ages. In order to help the ISS crew members maintain EVA proficiency or train for contingency repairs during their mission, the Johnson Space Center's VRLab designed an immersive ISS Virtual Reality Trainer (VRT). The VRT incorporates a unique optical system that makes use of the already successful Dynamic On-board Ubiquitous Graphics (DOUG) software to assist crew members with procedure reviews and contingency EVAs while on board the Station. The need to train and re-train crew members for EVAs and contingency scenarios is crucial and extremely demanding. ISS crew members are now asked to perform EVA tasks for which they have not been trained and potentially have never seen before. The Virtual Reality Trainer (VRT

  19. On covariances for fusing laser rangers and vision with sensors onboard a moving robot

    OpenAIRE

    Wernersson, Åke; Nygårds, Jonas

    1998-01-01

    Consider a robot to measure or operate on man made objects randomly located in the workspace. The optronic sensing onboard the robot are a scanning range measuring time-of-flight laser and a CCD camera. The goal of the paper is to give explicit covariance matrices for the extracted geometric primitives in the surrounding workspace. Emphasis is on correlation properties of the stochastic error models during motion. Topics studied include: (i) covariance of Radon/Hough peaks for plane surfaces;...

  20. An Integrated Onboard Charger and Accessary Power Converter for Plug-in Electric Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Su, Gui-Jia [ORNL; Tang, Lixin [ORNL

    2013-01-01

    Abstract: In this paper, an integrated onboard battery charger and accessary dc-dc converter for plug-in electric vehicles (PEVs) is presented. The idea is to utilize the already available traction drive inverters and motors of a PEV as the frond converter of the charger circuit and the transformer of the 14 V accessary dc-dc converter to provide galvanic isolation. The topology was verified by modeling and experimental results on a 5 kW charger prototype

  1. On-board diagnostics of fully variable valve actuator systems in spark-ignited combustion engines

    Energy Technology Data Exchange (ETDEWEB)

    Sarac, Ipek

    2010-07-01

    Variable valve actuation (VVA) is being employed in contemporary engines to improve fuel consumption, torque characteristics and emissions of combustion engines by enabling the realization of different combustion strategies. Fully variable valve actuation (FVVA) makes it possible to apply a wider range of strategies (e.g., homogenous charge compression ignition (HCCI), dethrottling, internal residual gas mechanism, 2/4 Stroke Switching). With FVVA, the gas exchange valves can be actuated at arbitrary points in time, with separate variable lifting for the intake and exhaust valves of each cylinder. Making FVVA systems ready for the market requires to provide the system with appropriate fault-diagnostic functionality. Additional degrees of freedom of FVVA systems introduce different fault cases which have to be considered in terms of their emission relevance within the scope of diagnostics standards such as On-Board Diagnosis II (OBD II). The faults and their effects on emissions have not been analyzed by any other study, yet. To fill this gab, here the possible faults are generated using a four-cylinder gasoline camless test bench engine. Measurements are carried out using different strategies at low loads, namely dethrottling with early intake valve closing and combining high internal residual gas with dethrottling. Each fault case is thoroughly analyzed, and the emission-relevant faults are pointed out for initial consideration. A trivial approach to diagnose fully variable valve actuators is to introduce position sensors for each actuator to track the valve lift curve. However, this approach increases the cost of the system undesirably. Thus, here alternative methods are explored such as indirect use of common powertrain sensors. Considering that active diagnosis may lead to suboptimal engine control schemes, the possibilities of fault detection and isolation are investigated without relying on active diagnosis. Air path sensors are affected foremost by any

  2. Guidance Scheme for Modulation of Drag Devices to Enable Return from Low Earth Orbit

    Science.gov (United States)

    Dutta, Soumyo; Bowes, Angela L.; Cianciolo, Alicia D.; Glass, Christopher E.; Powell, Richard W.

    2017-01-01

    Passive drag devices provide opportunities to return payloads from low Earth orbits quickly without using onboard propulsive systems to de-orbit the spacecraft. However, one potential disadvantage of such systems has been the lack of landing accuracy. Drag modulation or changing the shape of the drag device during flight offer a way to control the de-orbit trajectory and target a specific landing location. This paper discusses a candidate passive drag based system, called Exo-brake, as well as efforts to model the dynamics of the vehicle as it de-orbits and guidance schemes used to control the trajectory. Such systems can enable quick return of payloads from low Earth orbit assets like the International Space Station without the use of large re-entry cargo capsules or propulsive systems.

  3. Can SAPHIR Instrument Onboard MEGHATROPIQUES Retrieve Hydrometeors and Rainfall Characteristics ?

    Science.gov (United States)

    Goyal, J. M.; Srinivasan, J.; Satheesh, S. K.

    2014-12-01

    MEGHATROPIQUES (MT) is an Indo-French satellite launched in 2011 with the main intention of understanding the water cycle in the tropical region and is a part of GPM constellation. MADRAS was the primary instrument on-board MT to estimate rainfall characteristics, but unfortunately it's scanning mechanism failed obscuring the primary goal of the mission.So an attempt has been made to retrieve rainfall and different hydrometeors using other instrument SAPHIR onboard MT. The most important advantage of using MT is its orbitography which is specifically designed for tropical regions and can reach up to 6 passes per day more than any other satellite currently in orbit. Although SAPHIR is an humidity sounder with six channels centred around 183 GHz channel, it still operates in the microwave region which directly interacts with rainfall, especially wing channels and thus can pick up rainfall signatures. Initial analysis using radiative transfer models also establish this fact .To get more conclusive results using observations, SAPHIR level 1 brightness temperature (BT) data was compared with different rainfall products utilizing the benefits of each product. SAPHIR BT comparison with TRMM 3B42 for one pass clearly showed that channel 5 and 6 have a considerable sensitivity towards rainfall. Following this a huge database of more than 300000 raining pixels of spatially and temporally collocated 3B42 rainfall and corresponding SAPHIR BT for an entire month was created to include all kinds of rainfall events, to attain higher temporal resolution collocated database was also created for SAPHIR BT and rainfall from infrared sensor on geostationary satellite Kalpana 1.These databases were used to understand response of various channels of SAPHIR to different rainfall regimes . TRMM 2A12 rainfall product was also used to identify capabilities of SAPHIR to retrieve cloud and ice water path which also gave significant correlation. Conclusively,we have shown that SAPHIR has

  4. Enabling immersive simulation.

    Energy Technology Data Exchange (ETDEWEB)

    McCoy, Josh (University of California Santa Cruz, Santa Cruz, CA); Mateas, Michael (University of California Santa Cruz, Santa Cruz, CA); Hart, Derek H.; Whetzel, Jonathan; Basilico, Justin Derrick; Glickman, Matthew R.; Abbott, Robert G.

    2009-02-01

    The object of the 'Enabling Immersive Simulation for Complex Systems Analysis and Training' LDRD has been to research, design, and engineer a capability to develop simulations which (1) provide a rich, immersive interface for participation by real humans (exploiting existing high-performance game-engine technology wherever possible), and (2) can leverage Sandia's substantial investment in high-fidelity physical and cognitive models implemented in the Umbra simulation framework. We report here on these efforts. First, we describe the integration of Sandia's Umbra modular simulation framework with the open-source Delta3D game engine. Next, we report on Umbra's integration with Sandia's Cognitive Foundry, specifically to provide for learning behaviors for 'virtual teammates' directly from observed human behavior. Finally, we describe the integration of Delta3D with the ABL behavior engine, and report on research into establishing the theoretical framework that will be required to make use of tools like ABL to scale up to increasingly rich and realistic virtual characters.

  5. On-Board Visual Tracking with Unmanned Aircraft System (UAS)

    CERN Document Server

    Qadir, Ashraf; Semke, William

    2012-01-01

    This paper presents the development of a real time tracking algorithm that runs on a 1.2 GHz PC/104 computer on-board a small UAV. The algorithm uses zero mean normalized cross correlation to detect and locate an object in the image. A kalman filter is used to make the tracking algorithm computationally efficient. Object position in an image frame is predicted using the motion model and a search window, centered at the predicted position is generated. Object position is updated with the measurement from object detection. The detected position is sent to the motion controller to move the gimbal so that the object stays at the center of the image frame. Detection and tracking is autonomously carried out on the payload computer and the system is able to work in two different methods. The first method starts detecting and tracking using a stored image patch. The second method allows the operator on the ground to select the interest object for the UAV to track. The system is capable of re-detecting an object, in t...

  6. Design Space Toolbox V2: Automated Software Enabling a Novel Phenotype-Centric Modeling Strategy for Natural and Synthetic Biological Systems

    Directory of Open Access Journals (Sweden)

    Jason Gunther Lomnitz

    2016-07-01

    Full Text Available Mathematical models of biochemical systems provide a means to elucidate the link between the genotype, environment and phenotype. A subclass of mathematical models, known as mechanistic models, quantitatively describe the complex non-linear mechanisms that capture the intricate interactions between biochemical components. However, the study of mechanistic models is challenging because most are analytically intractable and involve large numbers of system parameters. Conventional methods to analyze them rely on local analyses about a nominal parameter set and they do not reveal the vast majority of potential phenotypes possible for a given system design. We have recently developed a new modeling approach that does not require estimated values for the parameters initially and inverts the typical steps of the conventional modeling strategy. Instead, this approach relies on architectural features of the model to identify the phenotypic repertoire and then predict values for the parameters that yield specific instances of the system that realize desired phenotypic characteristics. Here, we present a collection of software tools, the Design Space Toolbox V2 based on the System Design Space method, that automates (1 enumeration of the repertoire of model phenotypes, (2 prediction of values for the parameters for any model phenotype and (3 analysis of model phenotypes through analytical and numerical methods. The result is an enabling technology that facilitates this radically new, phenotype-centric, modeling approach. We illustrate the power of these new tools by applying them to a synthetic gene circuit that can exhibit multi-stability. We then predict values for the system parameters such that the design exhibits 2, 3 and 4 stable steady states. In one example, inspection of the basins of attraction reveals that the circuit can count between 3 stable states by transient stimulation through one of two input channels: a positive channel that increases

  7. Design Space Toolbox V2: Automated Software Enabling a Novel Phenotype-Centric Modeling Strategy for Natural and Synthetic Biological Systems.

    Science.gov (United States)

    Lomnitz, Jason G; Savageau, Michael A

    2016-01-01

    Mathematical models of biochemical systems provide a means to elucidate the link between the genotype, environment, and phenotype. A subclass of mathematical models, known as mechanistic models, quantitatively describe the complex non-linear mechanisms that capture the intricate interactions between biochemical components. However, the study of mechanistic models is challenging because most are analytically intractable and involve large numbers of system parameters. Conventional methods to analyze them rely on local analyses about a nominal parameter set and they do not reveal the vast majority of potential phenotypes possible for a given system design. We have recently developed a new modeling approach that does not require estimated values for the parameters initially and inverts the typical steps of the conventional modeling strategy. Instead, this approach relies on architectural features of the model to identify the phenotypic repertoire and then predict values for the parameters that yield specific instances of the system that realize desired phenotypic characteristics. Here, we present a collection of software tools, the Design Space Toolbox V2 based on the System Design Space method, that automates (1) enumeration of the repertoire of model phenotypes, (2) prediction of values for the parameters for any model phenotype, and (3) analysis of model phenotypes through analytical and numerical methods. The result is an enabling technology that facilitates this radically new, phenotype-centric, modeling approach. We illustrate the power of these new tools by applying them to a synthetic gene circuit that can exhibit multi-stability. We then predict values for the system parameters such that the design exhibits 2, 3, and 4 stable steady states. In one example, inspection of the basins of attraction reveals that the circuit can count between three stable states by transient stimulation through one of two input channels: a positive channel that increases the count

  8. New tools for weight-loss therapy enable a more robust medical model for obesity treatment: rationale for a complications-centric approach.

    Science.gov (United States)

    Garvey, W Timothy

    2013-01-01

    Recent advances in lifestyle intervention programs, pharmacotherapy, and bariatric surgery have enabled the development of medical models for the treatment of obesity. Regarding pharmacotherapy, in 2012 the U.S. Food and Drug Administration approved two new effective and safe weight-loss medications, phentermine/topiramate extended release and lorcaserin, which has greatly augmented options for medically assisted weight loss. The rationale for advantages of a complications-centric medical model over current body mass index (BMI)-centric indications for therapy is examined. Currently, the baseline BMI level is the principle determinant of indications for obesity treatment using medication and surgery. However, the BMI-centric approach fails to target therapy to those obese patients who will benefit most from weight loss. In contrast, a complications-centric medical model is proposed that will earmark the modality and intensity of the therapeutic intervention based on the presence and severity of complications that can be ameliorated by weight loss. The complications-centric approach to "medicalizing" obesity care employs weight loss primarily as a tool to treat obesity-related complications and promotes the optimization of health outcomes, the benefit/risk ratio, and the cost-effectiveness of therapy.

  9. Reconstruction of a high-quality metabolic model enables the identification of gene overexpression targets for enhanced antibiotic production in Streptomyces coelicolor A3(2).

    Science.gov (United States)

    Kim, Minsuk; Sang Yi, Jeong; Kim, Joonwon; Kim, Ji-Nu; Kim, Min Woo; Kim, Byung-Gee

    2014-09-01

    Streptomycetes are industrially and pharmaceutically important bacteria that produce a variety of secondary metabolites including antibiotics. Streptomycetes have a complex metabolic network responsible for the production of secondary metabolites and the utilization of organic residues present in soil. In this study, we reconstructed a high-quality metabolic model for Streptomyces coelicolor A3(2), designated iMK1208, in order to understand and engineer the metabolism of this model species. In comparison to iIB711, the previous metabolic model for S. coelicolor, the predictive power of iMK1208 was enhanced by the recent insights that enabled the incorporation of an updated biomass equation, stoichiometric matrix, and energetic parameters. iMK1208 was validated by comparing predictions with the experimental data for growth capability in various growth media. Furthermore, we applied a strain-design algorithm, flux scanning based on enforced objective flux (FSEOF), to iMK1208 for actinorhodin overproduction. FSEOF results identified not only previously known gene overexpression targets such as actII-ORF4 and acetyl-CoA carboxylase, but also novel targets such as branched-chain α-keto acid dehydrogenase (BCDH). We constructed and evaluated the BCDH overexpression mutant, which showed a 52-fold increase in actinorhodin production, validating the prediction power of iMK1208. Hence iMK1208 was shown to be a useful and valuable framework for studying the biotechnologically important Streptomyces species using the principles of systems biology and metabolic engineering.

  10. Testing of the on-board attitude determination and control algorithms for SAMPEX

    Science.gov (United States)

    McCullough, Jon D.; Flatley, Thomas W.; Henretty, Debra A.; Markley, F. Landis; San, Josephine K.

    1993-02-01

    Algorithms for on-board attitude determination and control of the Solar, Anomalous, and Magnetospheric Particle Explorer (SAMPEX) have been expanded to include a constant gain Kalman filter for the spacecraft angular momentum, pulse width modulation for the reaction wheel command, an algorithm to avoid pointing the Heavy Ion Large Telescope (HILT) instrument boresight along the spacecraft velocity vector, and the addition of digital sun sensor (DSS) failure detection logic. These improved algorithms were tested in a closed-loop environment for three orbit geometries, one with the sun perpendicular to the orbit plane, and two with the sun near the orbit plane - at Autumnal Equinox and at Winter Solstice. The closed-loop simulator was enhanced and used as a truth model for the control systems' performance evaluation and sensor/actuator contingency analysis. The simulations were performed on a VAX 8830 using a prototype version of the on-board software.

  11. On-board fuel conversion: Dimethyl ether from methanol for compression ignition engines

    Energy Technology Data Exchange (ETDEWEB)

    Armbruster, H.; Stucki, S.

    2002-03-01

    One example of an on-board fuel conversion system is the fumigation of dimethyl ether. In this concept, a fraction of the methanol used as fuel is catalytically converted on-board to DME and water. The rate-determining step of the catalytic reaction with {gamma}-Al{sub 2}O{sub 3} as a catalyst is found to be the reaction of adsorbed intermediates; mass transfer is limited by Knudsen diffusivity. Providing DME for fumigation in a 180 kW engine will require approx. 0,7 kg of catalyst. The transient behavior of a pilot fixed-bed reactor has been estimated using simplified models, which show that the cold start should be manageable in less than one minute. This is an acceptable time for cold-starting an engine in heavy-duty vehicles. (author)

  12. A computer-controlled, on-board data acquisition system for wind-tunnel testing

    Science.gov (United States)

    Finger, H. J.; Cambra, J. M.

    1974-01-01

    A computer-controlled data acquisition system has been developed for the 40x80-foot wind tunnel at Ames Research Center. The system, consisting of several small onboard units installed in the model and a data-managing, data-displaying ground station, is capable of sampling up to 256 channels of raw data at a total sample rate of 128,000 samples/sec. Complete signal conditioning is contained within the on-board units. The sampling sequence and channel gain selection is completely random and under total control of the ground station. Outputs include a bar-graph display, digital-to-analog converters, and digital interface to the tunnel's central computer, an SEL 840MP. The system can be run stand-alone or under the control of the SEL 840MP.

  13. An on-board near-optimal climb-dash energy management

    Science.gov (United States)

    Weston, A. R.; Cliff, E. M.; Kelley, H. J.

    1982-01-01

    On-board real time flight control is studied in order to develop algorithms which are simple enough to be used in practice, for a variety of missions involving three dimensional flight. The intercept mission in symmetric flight is emphasized. Extensive computation is required on the ground prior to the mission but the ensuing on-board exploitation is extremely simple. The scheme takes advantage of the boundary layer structure common in singular perturbations, arising with the multiple time scales appropriate to aircraft dynamics. Energy modelling of aircraft is used as the starting point for the analysis. In the symmetric case, a nominal path is generated which fairs into the dash or cruise state. Feedback coefficients are found as functions of the remaining energy to go (dash energy less current energy) along the nominal path.

  14. On-board near-optimal climb-dash energy management

    Science.gov (United States)

    Weston, A. R.; Cliff, E. M.; Kelley, H. J.

    1983-01-01

    On-board real time flight control is studied in order to develop algorithms which are simple enough to be used in practice, for a variety of missions involving three dimensional flight. The intercept mission in symmetric flight is emphasized. Extensive computation is required on the ground prior to the mission but the ensuing on-board exploitation is extremely simple. The scheme takes advantage of the boundary layer structure common in singular perturbations, arising with the multiple time scales appropriate to aircraft dynamics. Energy modelling of aircraft is used as the starting point for the analysis. In the symmetric case, a nominal path is generated which fairs into the dash or cruise state.

  15. A New Integrated Onboard Charger and Accessory Power Converter for Plug-in Electric Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Su, Gui-Jia [ORNL; Tang, Lixin [ORNL

    2014-01-01

    In this paper, a new approach is presented for integrating the function of onboard battery charging into the traction drive system and accessory dc-dc converter of a plug-in electric vehicle (PEV). The idea is to utilize the segmented traction drive system of a PEV as the frond converter of the charging circuit and the transformer and high voltage converter of the 14 V accessory dc-dc converter to form a galvanically isolated onboard charger. Moreover, a control method is presented for suppressing the battery current ripple component of twice the grid frequency with the reduced dc bus capacitor in the segmented inverter. The resultant integrated charger has lower cost, weight, and volume than a standalone charger due to a substantially reduced component count. The proposed integrated charger topology was verified by modeling and experimental results on a 5.8 kW charger prototype.

  16. Organising to Enable Innovation

    DEFF Research Database (Denmark)

    Brink, Tove

    2016-01-01

    The purpose of this conceptual paper is to reveal how organising can enable innovation across organisational layers and organisational units. This approach calls for a cross-disciplinary literature review. The aim is to provide an integrated understanding of innovation in an organisational approa...... of explorative and exploitative learning in uncertain environments. Shedding light on the cross-disciplinary theories to organise innovation provides a contribution at the firm level to enable innovation.......The purpose of this conceptual paper is to reveal how organising can enable innovation across organisational layers and organisational units. This approach calls for a cross-disciplinary literature review. The aim is to provide an integrated understanding of innovation in an organisational approach....... The findings reveal a continous organising process between individual/ team creativity and organisational structures/control to enable innovation at firm level. Organising provides a dynamic approach and contains the integrated reconstruction of creativity, structures and boundaries for enhanced balance...

  17. Onboard Detection of Active Canadian Sulfur Springs: A Europa Analogue

    Science.gov (United States)

    Castano, Rebecca; Wagstaff, Kiri; Gleeson, Damhnait; Pappalardo, Robert; Chien, Steve; Tran, Daniel; Scharenbroich, Lucas; Moghaddam, Baback; Tang, Benyang; Bue, Brian; Doggett, Thomas; Mandl, Dan; Frye, Stuart

    2008-01-01

    We discuss a current, ongoing demonstration of insitu onboard detection in which the Earth Observing-1 spacecraft detects surface sulfur deposits that originate from underlying springs by distinguishing the sulfur from the ice-rich glacial background, a good analogue for the Europan surface. In this paper, we describe the process of developing the onboard classifier for detecting the presence of sulfur in a hyperspectral scene, including the use of a training/testing set that is not exhaustively labeled, i.e.not all true positives are marked, and the selection of 12, out of 242, Hyperion instrument wavelength bands to use in the onboard detector. This study aims to demonstrate the potential for future missions to capture short-lived science events, make decisions onboard, identify high priority data for downlink and perform onboard change detection. In the future, such capability could help maximize the science return of downlink bandwidth-limited missions, addressing a significant constraint in all deep-space missions.

  18. An Innovative On-Board Computer for Space Robot

    Institute of Scientific and Technical Information of China (English)

    WEI Ran; JIN Ming-he; XIA Jin-jun; LIU Hong

    2007-01-01

    In this paper an on-board computer system for the first Chinese Intelligent Space Robotic System was presented. A fault tolerance design on on-board computer (OBC) was proposed that allows commercial-off-theshelf (COTS) devices to be incorporated into dual processing modules of on-board computer. The processing module is composed of 32-bit ARM RISC processor and other COTS devices. This innovative approach deeply relies on light weight/low cost equipment development using commercial miniaturized parts and non-space qualified technologies. As well as, a set of fault handling mechanisms was implemented in the computer system. The on-board software was organized around a set of processes that communicate between each other through a routing process.The qualification experiment shows that the fault tolerant on-board computer has excellent data processing capability and is enough to meet the demanding of the extremely tight constraints on mass, volume, power consumption and space environmental conditions.

  19. Towards Cloud-Resolving European-Scale Climate Simulations using a fully GPU-enabled Prototype of the COSMO Regional Model

    Science.gov (United States)

    Leutwyler, David; Fuhrer, Oliver; Cumming, Benjamin; Lapillonne, Xavier; Gysi, Tobias; Lüthi, Daniel; Osuna, Carlos; Schär, Christoph

    2014-05-01

    . We present our redesign and porting approach as well as our experience and lessons learned. Furthermore, we discuss relevant performance benchmarks obtained on the new hybrid Cray XC30 system "Piz Daint" installed at the Swiss National Supercomputing Centre (CSCS), both in terms of time-to-solution as well as energy consumption. We will demonstrate a first set of short cloud-resolving climate simulations at the European-scale using the GPU-enabled COSMO prototype and elaborate our future plans on how to exploit this new model capability.

  20. Logistic Model to Support Service Modularity for the Promotion of Reusability in a Web Objects-Enabled IoT Environment.

    Science.gov (United States)

    Kibria, Muhammad Golam; Ali, Sajjad; Jarwar, Muhammad Aslam; Kumar, Sunil; Chong, Ilyoung

    2017-09-22

    Due to a very large number of connected virtual objects in the surrounding environment, intelligent service features in the Internet of Things requires the reuse of existing virtual objects and composite virtual objects. If a new virtual object is created for each new service request, then the number of virtual object would increase exponentially. The Web of Objects applies the principle of service modularity in terms of virtual objects and composite virtual objects. Service modularity is a key concept in the Web Objects-Enabled Internet of Things (IoT) environment which allows for the reuse of existing virtual objects and composite virtual objects in heterogeneous ontologies. In the case of similar service requests occurring at the same, or different locations, the already-instantiated virtual objects and their composites that exist in the same, or different ontologies can be reused. In this case, similar types of virtual objects and composite virtual objects are searched and matched. Their reuse avoids duplication under similar circumstances, and reduces the time it takes to search and instantiate them from their repositories, where similar functionalities are provided by similar types of virtual objects and their composites. Controlling and maintaining a virtual object means controlling and maintaining a real-world object in the real world. Even though the functional costs of virtual objects are just a fraction of those for deploying and maintaining real-world objects, this article focuses on reusing virtual objects and composite virtual objects, as well as discusses similarity matching of virtual objects and composite virtual objects. This article proposes a logistic model that supports service modularity for the promotion of reusability in the Web Objects-enabled IoT environment. Necessary functional components and a flowchart of an algorithm for reusing composite virtual objects are discussed. Also, to realize the service modularity, a use case scenario is

  1. Updates on the background estimates for the X-IFU instrument onboard of the ATHENA mission

    Science.gov (United States)

    Lotti, S.; Macculi, C.; D'Andrea, M.; Piro, L.; Molendi, S.; Gastaldello, F.; Mineo, T.; D'ai, A.; Bulgarelli, A.; Fioretti, V.; Jacquey, C.; Laurenza, M.; Laurent, P.

    2016-07-01

    ATHENA is the second large mission in ESA Cosmic Vision 2015-2025, with a launch foreseen in 2028 towards the L2 orbit. The mission addresses the science theme "The Hot and Energetic Universe", by coupling a high-performance X-ray Telescope with two complementary focal-plane instruments. One of these, the X-ray Integral Field Unit (X-IFU) is a TES based kilo-pixel array, providing spatially resolved high-resolution spectroscopy (2.5 eV at 6 keV) over a 5 arcmin FoV. The background for this kind of detectors accounts for several components: the diffuse Cosmic Xray Background, the low energy particles ( 100 MeV) crossing the spacecraft and reaching the focal plane from every direction. In particular, these high energy particles lose energy in the materials they cross, creating secondaries along their path that can induce an additional background component. Each one of these components is under study of a team dedicated to the background issues regarding the X-IFU, with the aim to reduce their impact on the instrumental performances. This task is particularly challenging, given the lack of data on the background of X-ray detectors in L2, the uncertainties on the particle environment to be expected in such orbit, and the reliability of the models used in the Monte Carlo background computations. As a consequence, the activities addressed by the group range from the reanalysis of the data of previous missions like XMMNewton, to the characterization of the L2 environment by data analysis of the particle monitors onboard of satellites present in the Earth magnetotail, to the characterization of solar events and their occurrence, and to the validation of the physical models involved in the Monte Carlo simulations. All these activities will allow to develop a set of reliable simulations to predict, analyze and find effective solutions to reduce the particle background experienced by the X-IFU, ultimately satisfying the scientific requirement that enables the science of

  2. Fiber-Optic Network Architectures for Onboard Avionics Applications Investigated

    Science.gov (United States)

    Nguyen, Hung D.; Ngo, Duc H.

    2003-01-01

    This project is part of a study within the Advanced Air Transportation Technologies program undertaken at the NASA Glenn Research Center. The main focus of the program is the improvement of air transportation, with particular emphasis on air transportation safety. Current and future advances in digital data communications between an aircraft and the outside world will require high-bandwidth onboard communication networks. Radiofrequency (RF) systems, with their interconnection network based on coaxial cables and waveguides, increase the complexity of communication systems onboard modern civil and military aircraft with respect to weight, power consumption, and safety. In addition, safety and reliability concerns from electromagnetic interference between the RF components embedded in these communication systems exist. A simple, reliable, and lightweight network that is free from the effects of electromagnetic interference and capable of supporting the broadband communications needs of future onboard digital avionics systems cannot be easily implemented using existing coaxial cable-based systems. Fiber-optical communication systems can meet all these challenges of modern avionics applications in an efficient, cost-effective manner. The objective of this project is to present a number of optical network architectures for onboard RF signal distribution. Because of the emergence of a number of digital avionics devices requiring high-bandwidth connectivity, fiber-optic RF networks onboard modern aircraft will play a vital role in ensuring a low-noise, highly reliable RF communication system. Two approaches are being used for network architectures for aircraft onboard fiber-optic distribution systems: a hybrid RF-optical network and an all-optical wavelength division multiplexing (WDM) network.

  3. Onboard Decision Making For a New Class of AUV Science

    Science.gov (United States)

    Rajan, K.; McGann, C.; Py, F.; Thomas, H.; Henthorn, R.; McEwen, R.

    2007-12-01

    Autonomous Underwater Vehicles (AUVs) are an increasingly important tool for oceanographic research. They routinely and cost effectively sample the water column at depths far beyond what humans are capable of visiting. However, control of these platforms has relied on fixed sequences for execution of pre-planned actions limiting their effectiveness for measuring dynamic and episodic ocean phenomenon. At the Monterey Bay Aquarium Research Institute (MBARI), we are developing an advanced Artificial Intelligence (AI) based control system to enable our AUV's to dynamically adapt to the environment by deliberating in-situ about mission plans while tracking onboard resource consumption, dealing with plan failures by allowing dynamic re-planning and being cognizant of vehicle health and safety in the course of executing science plans. Existing behavior-based approaches require an operator to script plans a priori while anticipating where and how the vehicle will transect the water column. While adequate for current needs to do routine pre-defined transects, it has limited flexibility in dealing with opportunistic science needs, is unable to deal with uncertainty in the oceanic environment and puts undue burden on the mission operators to manage complex interactions between behaviors. Our approach, informed by a decades worth of experience in intelligent control of NASA spacecraft, uses a constraint-based representation to manage mission goals, react to exogenous or endogenous failure conditions, respond to sensory feedback by using AI-based search techniques to sort thru a space of likely responses and picking one which is satisfies the completion of mission goals. The system encapsulates the long-standing notion of a sense-deliberate-act cycle at the heart of a control loop and reflects the goal-oriented nature of control allowing operators to specify abstract mission goals rather than detailed command sequences. To date we have tested T- REX (the Teleo

  4. Detection of weak frequency jumps for GNSS onboard clocks.

    Science.gov (United States)

    Huang, Xinming; Gong, Hang; Ou, Gang

    2014-05-01

    In this paper, a weak frequency jump detection method is developed for onboard clocks in global navigation satellite systems (GNSS). A Kalman filter is employed to facilitate the onboard real-time processing of atomic clock measurements, whose N-step prediction residuals are used to construct the weak frequency jump detector. Numerical simulations show that the method can successfully detect weak frequency jumps. The detection method proposed in this paper is helpful for autonomous integrity monitoring of GNSS satellite clocks, and can also be applied to other frequency anomalies with an appropriately modified detector.

  5. Role of on-board discharge in shock wave drag reduction and plasma cloaking

    Institute of Scientific and Technical Information of China (English)

    Qiu Xiao-Ming; Tang De-Li; Sun Ai-Ping; Liu Wan-Dong; Zeng Xue-Jun

    2007-01-01

    In the present paper, a physical model is proposed for reducing the problem of the drag reduction of an attached bow shock around the nose of a high-speed vehicle with on-board discharge, to the problem of a balance between the magnetic pressure and gas pressure of plane shock of a partially ionized gas consisting of the environmental gas around the nose of the vehicle and the on-board discharge-produced plasma. The relation between the shock strength and the discharge-induced magnetic pressure is studied by means of a set of one-fluid, hydromagnetic equations reformed for the present purpose, where the discharge-induced magnetic field consists of the electron current (produced by the discharge)-induced magnetic field and the partially ionized gas flow-induced one. A formula for the relation between the above parameters is derived. It shows that the discharge-induced magnetic pressure can minimize the shock strength,successfully explaining the two recent experimental observations on attached bow shock mitigation and elimination in a supersonic flow during on-board discharge [Phys. Plasmas 9 (2002) 721 and Phys. Plasmas 7 (2000) 1345]. In addition,the formula implies that the shock elimination leaves room for a layer of higher-density plasma rampart moving around the nose of the vehicle, being favourable to the plasma radar cloaking of the vehicle. The reason for it is expounded.

  6. FPGA Coprocessor Design for an Onboard Multi-Angle Spectro-Polarimetric Imager

    Science.gov (United States)

    Pingree, Paula J.; Werne, Thomas A.

    2010-01-01

    A multi-angle spectro-polarimetric imager (MSPI) is an advanced camera system currently under development at JPL for possible future consideration on a satellite-based Aerosol-Cloud-Environ - ment (ACE) interaction study. The light in the optical system is subjected to a complex modulation designed to make the overall system robust against many instrumental artifacts that have plagued such measurements in the past. This scheme involves two photoelastic modulators that are beating in a carefully selected pattern against each other. In order to properly sample this modulation pattern, each of the proposed nine cameras in the system needs to read out its imager array about 1,000 times per second. The onboard processing required to compress this data involves least-squares fits (LSFs) of Bessel functions to data from every pixel in realtime, thus requiring an onboard computing system with advanced data processing capabilities in excess of those commonly available for space flight. As a potential solution to meet the MSPI onboard processing requirements, an LSF algorithm was developed on the Xilinx Virtex-4FX60 field programmable gate array (FPGA). In addition to configurable hardware capability, this FPGA includes Power -PC405 microprocessors, which together enable a combination hardware/ software processing system. A laboratory demonstration was carried out based on a hardware/ software co-designed processing architecture that includes hardware-based data collection and least-squares fitting (computationally), and softwarebased transcendental function computation (algorithmically complex) on the FPGA. Initial results showed that these calculations can be handled using a combination of the Virtex- 4TM Power-PC core and the hardware fabric.

  7. The Nordic Housing Enabler

    DEFF Research Database (Denmark)

    Helle, Tina; Slaug, Bjørn; Brandt, Åse

    2010-01-01

    This study addresses development of a content valid cross-Nordic version of the Housing Enabler and investigation of its inter-rater reliability when used in occupational therapy rating situations, involving occupational therapists, clients and their home environments. The instrument was translated...... from the original Swedish version of the Housing Enabler, and adapted according to accessibility norms and guidelines for housing design in Sweden, Denmark, Finland and Iceland. This iterative process involved occupational therapists, architects, building engineers and professional translators......, resulting in the Nordic Housing Enabler. For reliability testing, the sampling strategy and data collection procedures used were the same in all countries. Twenty voluntary occupational therapists, pair-wise but independently from each other, collected data from 106 cases by means of the Nordic Housing...

  8. Organising to Enable Innovation

    DEFF Research Database (Denmark)

    Brink, Tove

    2016-01-01

    . The findings reveal a continous organising process between individual/ team creativity and organisational structures/control to enable innovation at firm level. Organising provides a dynamic approach and contains the integrated reconstruction of creativity, structures and boundaries for enhanced balance......The purpose of this conceptual paper is to reveal how organising can enable innovation across organisational layers and organisational units. This approach calls for a cross-disciplinary literature review. The aim is to provide an integrated understanding of innovation in an organisational approach...... of explorative and exploitative learning in uncertain environments. Shedding light on the cross-disciplinary theories to organise innovation provides a contribution at the firm level to enable innovation....

  9. Genomics Analogy Model for Educators (GAME): Fuzzy DNA Model to Enable the Learning of Gene Sequencing by Visually-Impaired and Blind Students

    Science.gov (United States)

    Butler, Charles; Bello, Julia; York, Alan; Orvis, Kathryn; Pittendrigh, Barry R.

    2008-01-01

    Much of the general population is aware of terms such as biotechnology, genetic engineering, and genomics. However, there is a lack of understanding concerning these fields among many secondary school students. Few teaching models exist to explain concepts behind genomics and even less are available for teaching the visually impaired and blind.…

  10. Aerial Logistics Management for Carrier Onboard Delivery

    Science.gov (United States)

    2016-09-01

    the CSG arrive at the FLS over time (via convoys, postal service, UPS, etc.). Cargo packages vary in size and weight, but we will use the size as the...This number was confirmed as reasonable by VRC-30 email communication. In our model, we assume that each passenger brings personal luggage that...2, 1, 2, 1, 2, 0. However, at times tasking comes in waves and requirements can change. In our model, we enforce a rule such that there are at most

  11. Dopamine modulation of GABAergic function enables network stability and input selectivity for sustaining working memory in a computational model of the prefrontal cortex.

    Science.gov (United States)

    Lew, Sergio E; Tseng, Kuei Y

    2014-12-01

    Dopamine modulation of GABAergic transmission in the prefrontal cortex (PFC) is thought to be critical for sustaining cognitive processes such as working memory and decision-making. Here, we developed a neurocomputational model of the PFC that includes physiological features of the facilitatory action of dopamine on fast-spiking interneurons to assess how a GABAergic dysregulation impacts on the prefrontal network stability and working memory. We found that a particular non-linear relationship between dopamine transmission and GABA function is required to enable input selectivity in the PFC for the formation and retention of working memory. Either degradation of the dopamine signal or the GABAergic function is sufficient to elicit hyperexcitability in pyramidal neurons and working memory impairments. The simulations also revealed an inverted U-shape relationship between working memory and dopamine, a function that is maintained even at high levels of GABA degradation. In fact, the working memory deficits resulting from reduced GABAergic transmission can be rescued by increasing dopamine tone and vice versa. We also examined the role of this dopamine-GABA interaction for the termination of working memory and found that the extent of GABAergic excitation needed to reset the PFC network begins to occur when the activity of fast-spiking interneurons surpasses 40 Hz. Together, these results indicate that the capability of the PFC to sustain working memory and network stability depends on a robust interplay of compensatory mechanisms between dopamine tone and the activity of local GABAergic interneurons.

  12. New Method For Modeling and Design Optical SDM Transmission System Using Long Haul FMF with PDM/DWDM Techniques Enabling QPSK Modulation Format

    Directory of Open Access Journals (Sweden)

    Ibrahim Abdullah

    2017-07-01

    Full Text Available This paper presents the modeling and design of ultra high capacity Space Division Multiplexing (SDM transmission system. Polarization Division Multiplexing (PDM and Dense Wavelength Division Multiplexing (DWDM techniques are also proposed in this system to increase total system data rate. For the ultra-high capacity need of SDM, Few Mode Fiber (FMF was proposed as SDM best technology for obtaining ultra-high bit rates with long haul transmission. The description and design of 8-DWDM channels over 7 modes SDM/PDM system was explored as future of ultra-high capacity optical network. A long-haul transmission of 1080 Km recorded for 8-WDM channels-7modes-SDM/PDM system by using QPSK modulation format. The total bit rate achieved by our designed system is 4.48 Tb/s at 40Gb/s. Channel estimation techniques were proposed to enable the transmitter pre-shaping design for the linear effects mitigation by using different DSP algorithms. The presence of linear and nonlinear losses limits the acceptable range of input power that produce the required BER for our proposed system from -4dBm to 4dBm.

  13. Development of the high-order decoupled direct method in three dimensions for particulate matter: enabling advanced sensitivity analysis in air quality models

    Directory of Open Access Journals (Sweden)

    W. Zhang

    2012-03-01

    Full Text Available The high-order decoupled direct method in three dimensions for particulate matter (HDDM-3D/PM has been implemented in the Community Multiscale Air Quality (CMAQ model to enable advanced sensitivity analysis. The major effort of this work is to develop high-order DDM sensitivity analysis of ISORROPIA, the inorganic aerosol module of CMAQ. A case-specific approach has been applied, and the sensitivities of activity coefficients and water content are explicitly computed. Stand-alone tests are performed for ISORROPIA by comparing the sensitivities (first- and second-order computed by HDDM and the brute force (BF approximations. Similar comparison has also been carried out for CMAQ sensitivities simulated using a week-long winter episode for a continental US domain. Second-order sensitivities of aerosol species (e.g., sulfate, nitrate, and ammonium with respect to domain-wide SO2, NOx, and NH3 emissions show agreement with BF results, yet exhibit less noise in locations where BF results are demonstrably inaccurate. Second-order sensitivity analysis elucidates poorly understood nonlinear responses of secondary inorganic aerosols to their precursors and competing species. Adding second-order sensitivity terms to the Taylor series projection of the nitrate concentrations with a 50% reduction in domain-wide NOx or SO2 emissions rates improves the prediction with statistical significance.

  14. Development of the high-order decoupled direct method in three dimensions for particulate matter: enabling advanced sensitivity analysis in air quality models

    Directory of Open Access Journals (Sweden)

    W. Zhang

    2011-10-01

    Full Text Available The high-order decoupled direct method in three dimensions for particular matter (HDDM-3D/PM has been implemented in the Community Multiscale Air Quality (CMAQ model to enable advanced sensitivity analysis. The major effort of this work is to develop high-order DDM sensitivity analysis of ISORROPIA, the inorganic aerosol module of CMAQ. A case-specific approach has been applied, and the sensitivities of activity coefficients and water content are explicitly computed. Stand-alone tests are performed for ISORROPIA by comparing the sensitivities (first- and second-order computed by HDDM and the brute force (BF approximations. Similar comparison has also been carried out for CMAQ results simulated using a week-long winter episode for a continental US domain. Second-order sensitivities of aerosol species (e.g., sulfate, nitrate, and ammonium with respect to domain-wide SO2, NOx, and NH3 emissions show agreement with BF results, yet exhibit less noise in locations where BF results are demonstrably inaccurate. Second-order sensitivity analysis elucidates nonlinear responses of secondary inorganic aerosols to their precursors and competing species that have not yet been well-understood with other approaches. Including second-order sensitivity coefficients in the Taylor series projection of the nitrate concentrations with a 50% reduction in domain-wide NOx emission shows a statistically significant improvement compared to the first-order Taylor series projection.

  15. Enabling Global Collaboration

    DEFF Research Database (Denmark)

    Brix, Anders; de Gier, Nicolai

    2014-01-01

    recognizing the value of incremental refinement of tradition and sustainability obtained through cultivation of the culturally and visually sustainable. As a contribution to this development, we propose: 1) The notion of tectonics as a core concept enabling a mutual, cross-cultural design discourse...

  16. The Nordic Housing Enabler

    DEFF Research Database (Denmark)

    Helle, T.; Nygren, C.; Slaug, B.

    2014-01-01

    This study addresses development of a content-valid cross-Nordic version of the Housing Enabler and investigation of its inter-rater reliability when used in occupational therapy rating situations, involving occupational therapists, clients, and their home environments. The instrument was transla......This study addresses development of a content-valid cross-Nordic version of the Housing Enabler and investigation of its inter-rater reliability when used in occupational therapy rating situations, involving occupational therapists, clients, and their home environments. The instrument...... was translated from the original Swedish version of the Housing Enabler, and adapted according to accessibility norms and guidelines for housing design in Sweden, Denmark, Finland, and Iceland. This iterative process involved occupational therapists, architects, building engineers, and professional translators......, resulting in the Nordic Housing Enabler. For reliability testing, the sampling strategy and data collection procedures used were the same in all countries. Twenty voluntary occupational therapists, pair-wise but independently of each other, collected data from 106 cases by means of the Nordic Housing...

  17. Enabling distributed collaborative science

    DEFF Research Database (Denmark)

    Hudson, T.; Sonnenwald, Diane H.; Maglaughlin, K.

    2000-01-01

    To enable collaboration over distance, a collaborative environment that uses a specialized scientific instrument called a nanoManipulator is evaluated. The nanoManipulator incorporates visualization and force feedback technology to allow scientists to see, feel, and modify biological samples being...... studied with an Atomic Force Microscope....

  18. Pilot project as enabler?

    DEFF Research Database (Denmark)

    Neisig, Margit; Glimø, Helle; Holm, Catrine Granzow;

    This article deals with a systemic perspective on transition. The field of study addressed is a pilot project as enabler of transition in a highly complex polycentric context. From a Luhmannian systemic approach, a framework is created to understand and address barriers of change occurred using p...

  19. Enabling distributed collaborative science

    DEFF Research Database (Denmark)

    Hudson, T.; Sonnenwald, Diane H.; Maglaughlin, K.

    2000-01-01

    To enable collaboration over distance, a collaborative environment that uses a specialized scientific instrument called a nanoManipulator is evaluated. The nanoManipulator incorporates visualization and force feedback technology to allow scientists to see, feel, and modify biological samples bein...

  20. Using remotely piloted aircraft and onboard processing to optimize and expand data collection

    Science.gov (United States)

    Fladeland, M. M.; Sullivan, D. V.; Chirayath, V.; Instrella, R.; Phelps, G. A.

    2016-12-01

    Remotely piloted aircraft (RPA) have the potential to revolutionize local to regional data collection for geophysicists as platform and payload size decrease while aircraft capabilities increase. In particular, data from RPAs combine high-resolution imagery available from low flight elevations with comprehensive areal coverage, unattainable from ground investigations and difficult to acquire from manned aircraft due to budgetary and logistical costs. Low flight elevations are particularly important for detecting signals that decay exponentially with distance, such as electromagnetic fields. Onboard data processing coupled with high-bandwidth telemetry open up opportunities for real-time and near real-time data processing, producing more efficient flight plans through the use of payload-directed flight, machine learning and autonomous systems. Such applications not only strive to enhance data collection, but also enable novel sensing modalities and temporal resolution. NASA's Airborne Science Program has been refining the capabilities and applications of RPA in support of satellite calibration and data product validation for several decades. In this paper, we describe current platforms, payloads, and onboard data systems available to the research community. Case studies include Fluid Lensing for littoral zone 3D mapping, structure from motion for terrestrial 3D multispectral imaging, and airborne magnetometry on medium and small RPAs.

  1. Radiation dosimetry onboard the International Space Station ISS.

    Science.gov (United States)

    Berger, Thomas

    2008-01-01

    Besides the effects of the microgravity environment, and the psychological and psychosocial problems encountered in confined spaces, radiation is the main health detriment for long duration human space missions. The radiation environment encountered in space differs in nature from that on earth, consisting mostly of high energetic ions from protons up to iron, resulting in radiation levels far exceeding the ones encountered on earth for occupational radiation workers. Therefore the determination and the control of the radiation load on astronauts is a moral obligation of the space faring nations. The requirements for radiation detectors in space are very different to that on earth. Limitations in mass, power consumption and the complex nature of the space radiation environment define and limit the overall construction of radiation detectors. Radiation dosimetry onboard the International Space Station (ISS) is onboard the International Space Station (ISS) is accomplished to one part as "operational" dosimetry accomplished to one part as "operational" dosimetry aiming for area monitoring of the radiation environment as well as astronaut surveillance. Another part focuses on "scientific" dosimetry aiming for a better understanding of the radiation environment and its constitutes. Various research activities for a more detailed quantification of the radiation environment as well as its distribution in and outside the space station have been accomplished in the last years onboard the ISS. The paper will focus on the current radiation detectors onboard the ISS, their results, as well as on future planned activities.

  2. 75 FR 68189 - Crewmember Requirements When Passengers are Onboard

    Science.gov (United States)

    2010-11-05

    ... receptacle fire extinguishers, and Halon 1211 extinguishers; Improving cabin interior flammability standards... air carriers to limit the size and amount of carry-on baggage that each passenger may bring onboard... spent by the substituting flightcrew member applies towards daily duty time limits and is...

  3. Estimation of waves and ship responses using onboard measurements

    DEFF Research Database (Denmark)

    Montazeri, Najmeh

    This thesis focuses on estimation of waves and ship responses using ship-board measurements. This is useful for development of operational safety and performance efficiency in connection with the broader concept of onboard decision support systems. Estimation of sea state is studied using a set...

  4. The "SCORPION" experiment onboard the International Space Station. Preliminary results.

    Science.gov (United States)

    Borisov, V; Deshevaya, E; Grachov, E; Grigoryan, O; Tchurilo, I; Tsetlin, V

    2003-01-01

    The "SCORPION" program onboard the Russian Segment (RS) of the International Space Station (ISS) is designed to carry out complex research of the effects of the nar-Earth space parameters on the conditions under which various experiments and operations are being conducted. Special attention in this program was paid to the biological objects onboard the orbital station, e.g. it was found that variation in the number of colony forming units (micromicets and bacteria) correlates with the solar activity and the absorbed dose. The "SCORPION" experiment onboard the RS ISS started in January 2002. It was designed to measure the following parameters inside the space absorbed doses in different places inside the RS ISS, the fluxes of energetic charged particles, neutrons and gamma-quanta; the vectors of the magnetic field and low-frequency electromagnetic waves. At the same time the growth of micromicets on the samples of various materials was studied. The description of the "SCORPION" experiment and the preliminary results obtained onboard the RS ISS in 2002 are presented.

  5. Onboard Processing and Autonomous Operations on the IPEX Cubesat

    Science.gov (United States)

    Chien, Steve; Doubleday, Joshua; Ortega, Kevin; Flatley, Tom; Crum, Gary; Geist, Alessandro; Lin, Michael; Williams, Austin; Bellardo, John; Puig-Suari, Jordi; Stanton, Eric; Yee, Edmond

    2012-01-01

    IPEX is a 1u Cubesat sponsored by NASA Earth Science Technology Office (ESTO), the goals or which are: (1) Flight validate high performance flight computing, (2) Flight validate onboard instrument data processing product generation software, (3) flight validate autonomous operations for instrument processing, (4) enhance NASA outreach and university ties.

  6. Dual Accelerometer Usage Strategy for Onboard Space Navigation

    Science.gov (United States)

    Zanetti, Renato; D'Souza, Chris

    2012-01-01

    This work introduces a dual accelerometer usage strategy for onboard space navigation. In the proposed algorithm the accelerometer is used to propagate the state when its value exceeds a threshold and it is used to estimate its errors otherwise. Numerical examples and comparison to other accelerometer usage schemes are presented to validate the proposed approach.

  7. Onboard photo: Astronaut Mae Jemison working in Spacelab-J

    Science.gov (United States)

    1992-01-01

    Space Shuttle Endeavour (STS-47) onboard photo of Astronaut Mae Jemison working in Spacelab-J module. Spacelab-J is a combined National Space Development Agency of Japan (NASDA) and NASA mission. The objectives included life sciences, microgravity and technology research.

  8. Real-time Java for on-board systems

    Science.gov (United States)

    Cechticky, V.; Pasetti, A.

    2002-07-01

    The Java language has several attractive features but cannot at present be used in on-board systems primarily because it lacks support for hard real-time operation. This shortcoming is in being addressed: some suppliers are already providing implementations of Java that are RT-compliant; Sun Microsystem has approved a formal specification for a real-time extension of the language; and an independent consortium is working on an alternative specification for real-time Java. It is therefore expected that, within a year or so, standardized commercial implementations of real-time Java will be on the market. Availability of real-time implementations now opens the way to its use on-board. Within this context, this paper has two objectives. Firstly, it discusses the suitability of Java for on-board applications. Secondly, it reports the results of an ESA study to port a software framework for on-board control systems to a commercial real-time version of Java.

  9. On-Board Mining in the Sensor Web

    Science.gov (United States)

    Tanner, S.; Conover, H.; Graves, S.; Ramachandran, R.; Rushing, J.

    2004-12-01

    On-board data mining can contribute to many research and engineering applications, including natural hazard detection and prediction, intelligent sensor control, and the generation of customized data products for direct distribution to users. The ability to mine sensor data in real time can also be a critical component of autonomous operations, supporting deep space missions, unmanned aerial and ground-based vehicles (UAVs, UGVs), and a wide range of sensor meshes, webs and grids. On-board processing is expected to play a significant role in the next generation of NASA, Homeland Security, Department of Defense and civilian programs, providing for greater flexibility and versatility in measurements of physical systems. In addition, the use of UAV and UGV systems is increasing in military, emergency response and industrial applications. As research into the autonomy of these vehicles progresses, especially in fleet or web configurations, the applicability of on-board data mining is expected to increase significantly. Data mining in real time on board sensor platforms presents unique challenges. Most notably, the data to be mined is a continuous stream, rather than a fixed store such as a database. This means that the data mining algorithms must be modified to make only a single pass through the data. In addition, the on-board environment requires real time processing with limited computing resources, thus the algorithms must use fixed and relatively small amounts of processing time and memory. The University of Alabama in Huntsville is developing an innovative processing framework for the on-board data and information environment. The Environment for On-Board Processing (EVE) and the Adaptive On-board Data Processing (AODP) projects serve as proofs-of-concept of advanced information systems for remote sensing platforms. The EVE real-time processing infrastructure will upload, schedule and control the execution of processing plans on board remote sensors. These plans

  10. Development and design of experiments optimization of a high temperature proton exchange membrane fuel cell auxiliary power unit with onboard fuel processor

    Science.gov (United States)

    Karstedt, Jörg; Ogrzewalla, Jürgen; Severin, Christopher; Pischinger, Stefan

    In this work, the concept development, system layout, component simulation and the overall DOE system optimization of a HT-PEM fuel cell APU with a net electric power output of 4.5 kW and an onboard methane fuel processor are presented. A highly integrated system layout has been developed that enables fast startup within 7.5 min, a closed system water balance and high fuel processor efficiencies of up to 85% due to the recuperation of the anode offgas burner heat. The integration of the system battery into the load management enhances the transient electric performance and the maximum electric power output of the APU system. Simulation models of the carbon monoxide influence on HT-PEM cell voltage, the concentration and temperature profiles within the autothermal reformer (ATR) and the CO conversion rates within the watergas shift stages (WGSs) have been developed. They enable the optimization of the CO concentration in the anode gas of the fuel cell in order to achieve maximum system efficiencies and an optimized dimensioning of the ATR and WGS reactors. Furthermore a DOE optimization of the global system parameters cathode stoichiometry, anode stoichiometry, air/fuel ratio and steam/carbon ratio of the fuel processing system has been performed in order to achieve maximum system efficiencies for all system operating points under given boundary conditions.

  11. UAV field demonstration of social media enabled tactical data link

    Science.gov (United States)

    Olson, Christopher C.; Xu, Da; Martin, Sean R.; Castelli, Jonathan C.; Newman, Andrew J.

    2015-05-01

    This paper addresses the problem of enabling Command and Control (C2) and data exfiltration functions for missions using small, unmanned, airborne surveillance and reconnaissance platforms. The authors demonstrated the feasibility of using existing commercial wireless networks as the data transmission infrastructure to support Unmanned Aerial Vehicle (UAV) autonomy functions such as transmission of commands, imagery, metadata, and multi-vehicle coordination messages. The authors developed and integrated a C2 Android application for ground users with a common smart phone, a C2 and data exfiltration Android application deployed on-board the UAVs, and a web server with database to disseminate the collected data to distributed users using standard web browsers. The authors performed a mission-relevant field test and demonstration in which operators commanded a UAV from an Android device to search and loiter; and remote users viewed imagery, video, and metadata via web server to identify and track a vehicle on the ground. Social media served as the tactical data link for all command messages, images, videos, and metadata during the field demonstration. Imagery, video, and metadata were transmitted from the UAV to the web server via multiple Twitter, Flickr, Facebook, YouTube, and similar media accounts. The web server reassembled images and video with corresponding metadata for distributed users. The UAV autopilot communicated with the on-board Android device via on-board Bluetooth network.

  12. Nordic Housing Enabler

    DEFF Research Database (Denmark)

    Helle, Tina; Brandt, Åse

    2009-01-01

    Development and reliability testing of the Nordic Housing Enabler – an instrument for accessibility assessment of the physical housing. Tina Helle & Åse Brandt University of Lund, Health Sciences, Faculty of Medicine (SE) and University College Northern Jutland, Occupational Therapy department (DK......). Danish Centre for Assistive Technology. Abstract. For decades, accessibility to the physical housing environment for people with functional limitations has been of interest politically, professionally and for the users. Guidelines and norms on accessible housing design have gradually been developed......, however, the built environment shows serious deficits when it comes to accessibility. This study addresses development of a content valid cross-Nordic version of the Housing Enabler and investigation of inter-rater reliability, when used in occupational therapy practice. The instrument was translated from...

  13. Spatially enabled land administration

    DEFF Research Database (Denmark)

    Enemark, Stig

    2006-01-01

    . In other words: Good governance and sustainable development is not attainable without sound land administration or - more broadly – sound land management. The paper presents a land management vision that incorporates the benefits of ICT enabled land administration functions. The idea is that spatial...... enabling of land administration systems managing tenure, valuation, planning, and development will allow the information generated by these activities to be much more useful. Also, the services available to private and public sectors and to community organisations should commensurably improve. Knowledge...... the communication between administrative systems and also establish more reliable data due to the use the original data instead of copies. In Denmark, such governmental guidelines for a service-oriented ITarchitecture in support of e-government are recently adopted. Finally, the paper presents the role of FIG...

  14. Enabling Wind Power Nationwide

    Energy Technology Data Exchange (ETDEWEB)

    Jose Zayas, Michael Derby, Patrick Gilman and Shreyas Ananthan,

    2015-05-01

    Leveraging this experience, the U.S. Department of Energy’s (DOE’s) Wind and Water Power Technologies Office has evaluated the potential for wind power to generate electricity in all 50 states. This report analyzes and quantifies the geographic expansion that could be enabled by accessing higher above ground heights for wind turbines and considers the means by which this new potential could be responsibly developed.

  15. Enabling Global Collaboration

    DEFF Research Database (Denmark)

    Brix, Anders; de Gier, Nicolai

    2014-01-01

    recognizing the value of incremental refinement of tradition and sustainability obtained through cultivation of the culturally and visually sustainable. As a contribution to this development, we propose: 1) The notion of tectonics as a core concept enabling a mutual, cross-cultural design discourse...... of the studio informed by the theory of tectonics together provides cross-cultural students with a mutual language to discuss intrinsic matters of form....

  16. Precise orbit determination of the Fengyun-3C satellite using onboard GPS and BDS observations

    Science.gov (United States)

    Li, Min; Li, Wenwen; Shi, Chuang; Jiang, Kecai; Guo, Xiang; Dai, Xiaolei; Meng, Xiangguang; Yang, Zhongdong; Yang, Guanglin; Liao, Mi

    2017-04-01

    The GNSS Occultation Sounder instrument onboard the Chinese meteorological satellite Fengyun-3C (FY-3C) tracks both GPS and BDS signals for orbit determination. One month's worth of the onboard dual-frequency GPS and BDS data during March 2015 from the FY-3C satellite is analyzed in this study. The onboard BDS and GPS measurement quality is evaluated in terms of data quantity as well as code multipath error. Severe multipath errors for BDS code ranges are observed especially for high elevations for BDS medium earth orbit satellites (MEOs). The code multipath errors are estimated as piecewise linear model in 2° × 2° grid and applied in precise orbit determination (POD) calculations. POD of FY-3C is firstly performed with GPS data, which shows orbit consistency of approximate 2.7 cm in 3D RMS (root mean square) by overlap comparisons; the estimated orbits are then used as reference orbits for evaluating the orbit precision of GPS and BDS combined POD as well as BDS-based POD. It is indicated that inclusion of BDS geosynchronous orbit satellites (GEOs) could degrade POD precision seriously. The precisions of orbit estimates by combined POD and BDS-based POD are 3.4 and 30.1 cm in 3D RMS when GEOs are involved, respectively. However, if BDS GEOs are excluded, the combined POD can reach similar precision with respect to GPS POD, showing orbit differences about 0.8 cm, while the orbit precision of BDS-based POD can be improved to 8.4 cm. These results indicate that the POD performance with onboard BDS data alone can reach precision better than 10 cm with only five BDS inclined geosynchronous satellite orbit satellites and three MEOs. As the GNOS receiver can only track six BDS satellites for orbit positioning at its maximum channel, it can be expected that the performance of POD with onboard BDS data can be further improved if more observations are generated without such restrictions.

  17. Proton exchange membrane fuel cells for electrical power generation on-board commercial airplanes.

    Energy Technology Data Exchange (ETDEWEB)

    Curgus, Dita Brigitte; Munoz-Ramos, Karina (Sandia National Laboratories, Albuquerque, NM); Pratt, Joseph William; Akhil, Abbas Ali (Sandia National Laboratories, Albuquerque, NM); Klebanoff, Leonard E.; Schenkman, Benjamin L. (Sandia National Laboratories, Albuquerque, NM)

    2011-05-01

    Deployed on a commercial airplane, proton exchange membrane fuel cells may offer emissions reductions, thermal efficiency gains, and enable locating the power near the point of use. This work seeks to understand whether on-board fuel cell systems are technically feasible, and, if so, if they offer a performance advantage for the airplane as a whole. Through hardware analysis and thermodynamic and electrical simulation, we found that while adding a fuel cell system using today's technology for the PEM fuel cell and hydrogen storage is technically feasible, it will not likely give the airplane a performance benefit. However, when we re-did the analysis using DOE-target technology for the PEM fuel cell and hydrogen storage, we found that the fuel cell system would provide a performance benefit to the airplane (i.e., it can save the airplane some fuel), depending on the way it is configured.

  18. Proton Exchange Membrane Fuel Cells for Electrical Power Generation On-Board Commercial Airplanes

    Energy Technology Data Exchange (ETDEWEB)

    Pratt, Joesph W. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Klebanoff, Leonard E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Munoz-Ramos, Karina [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Akhil, Abbas A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Curgus, Dita B. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Schenkman, Benjamin L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2011-05-01

    Deployed on a commercial airplane, proton exchange membrane fuel cells may offer emissions reductions, thermal efficiency gains, and enable locating the power near the point of use. This work seeks to understand whether on-board fuel cell systems are technically feasible, and, if so, if they offer a performance advantage for the airplane as a whole. Through hardware analysis and thermodynamic and electrical simulation, we found that while adding a fuel cell system using today’s technology for the PEM fuel cell and hydrogen storage is technically feasible, it will not likely give the airplane a performance benefit. However, when we re-did the analysis using DOE-target technology for the PEM fuel cell and hydrogen storage, we found that the fuel cell system would provide a performance benefit to the airplane (i.e., it can save the airplane some fuel), depending on the way it is configured.

  19. Enabling Digital Literacy

    DEFF Research Database (Denmark)

    Ryberg, Thomas; Georgsen, Marianne

    2010-01-01

    There are some tensions between high-level policy definitions of “digital literacy” and actual teaching practice. We need to find workable definitions of digital literacy; obtain a better understanding of what digital literacy might look like in practice; and identify pedagogical approaches, which......, these operate on a meso-level mediating between high-level concepts of digital literacy and classroom practice....... support teachers in designing digital literacy learning. We suggest that frameworks such as Problem Based Learning (PBL) are approaches that enable digital literacy learning because they provide good settings for engaging with digital literacy. We illustrate this through analysis of a case. Furthermore...

  20. 40 CFR 85.2207 - On-board diagnostics test standards.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false On-board diagnostics test standards... Warranty Short Tests § 85.2207 On-board diagnostics test standards. (a) (b) A vehicle shall fail the on-board diagnostics test if it is a 1996 or newer vehicle and the vehicle connector is missing, has...

  1. 49 CFR 395.15 - Automatic on-board recording devices.

    Science.gov (United States)

    2010-10-01

    ... certifying that the design of the automatic on-board recorder has been sufficiently tested to meet the... 49 Transportation 5 2010-10-01 2010-10-01 false Automatic on-board recording devices. 395.15... OF SERVICE OF DRIVERS § 395.15 Automatic on-board recording devices. (a) Applicability and...

  2. Smart Grid Enabled EVSE

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2015-01-12

    The combined team of GE Global Research, Federal Express, National Renewable Energy Laboratory, and Consolidated Edison has successfully achieved the established goals contained within the Department of Energy’s Smart Grid Capable Electric Vehicle Supply Equipment funding opportunity. The final program product, shown charging two vehicles in Figure 1, reduces by nearly 50% the total installed system cost of the electric vehicle supply equipment (EVSE) as well as enabling a host of new Smart Grid enabled features. These include bi-directional communications, load control, utility message exchange and transaction management information. Using the new charging system, Utilities or energy service providers will now be able to monitor transportation related electrical loads on their distribution networks, send load control commands or preferences to individual systems, and then see measured responses. Installation owners will be able to authorize usage of the stations, monitor operations, and optimally control their electricity consumption. These features and cost reductions have been developed through a total system design solution.

  3. Smart Grid Enabled EVSE

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2014-10-15

    The combined team of GE Global Research, Federal Express, National Renewable Energy Laboratory, and Consolidated Edison has successfully achieved the established goals contained within the Department of Energy’s Smart Grid Capable Electric Vehicle Supply Equipment funding opportunity. The final program product, shown charging two vehicles in Figure 1, reduces by nearly 50% the total installed system cost of the electric vehicle supply equipment (EVSE) as well as enabling a host of new Smart Grid enabled features. These include bi-directional communications, load control, utility message exchange and transaction management information. Using the new charging system, Utilities or energy service providers will now be able to monitor transportation related electrical loads on their distribution networks, send load control commands or preferences to individual systems, and then see measured responses. Installation owners will be able to authorize usage of the stations, monitor operations, and optimally control their electricity consumption. These features and cost reductions have been developed through a total system design solution.

  4. Dosimetry and microdosimetry using LET spectrometer based on the track-etch detector: radiotherapy Bremsstrahlung beam, onboard aircraft radiation field

    Energy Technology Data Exchange (ETDEWEB)

    Jadrnickova, I. [Dept. of Radiation Dosimetry, Nuclear Physics Institute AS CR, Na Truhlarce 39/64, 180 86 Prague 8 (Czech Republic); Dept. of Dosimetry and Application of Ionizing Radiation, Czech Technical University, Brehova 7, 115 19 Prague 1 (Czech Republic); Spurny, F. [Dept. of Radiation Dosimetry, Nuclear Physics Institute AS CR, Na Truhlarce 39/64, 180 86 Prague 8 (Czech Republic)

    2006-07-01

    The spectrometer of linear energy transfer (Let) based on the chemically etched poly-allyl-diglycol-carbonate (P.A.D.C.) track-etch detector was developed several years ago in our institute. This Let spectrometer enables determining Let of particles approximately from 10 to 700 keV/{mu}m. From the Let spectra, dose characteristics can be calculated. The contribution presents the Let spectra and other dosimetric characteristics obtained onboard a commercial aircraft during more than 6 months long exposure and in the 18 MV radiotherapy Bremsstrahlung beam. (authors)

  5. Development of Onboard Computer Complex for Russian Segment of ISS

    Science.gov (United States)

    Branets, V.; Brand, G.; Vlasov, R.; Graf, I.; Clubb, J.; Mikrin, E.; Samitov, R.

    1998-01-01

    Report present a description of the Onboard Computer Complex (CC) that was developed during the period of 1994-1998 for the Russian Segment of ISS. The system was developed in co-operation with NASA and ESA. ESA developed a new computation system under the RSC Energia Technical Assignment, called DMS-R. The CC also includes elements developed by Russian experts and organizations. A general architecture of the computer system and the characteristics of primary elements of this system are described. The system was integrated at RSC Energia with the participation of American and European specialists. The report contains information on software simulators, verification and de-bugging facilities witch were been developed for both stand-alone and integrated tests and verification. This CC serves as the basis for the Russian Segment Onboard Control Complex on ISS.

  6. Experimental study on ceramic membrane technology for onboard oxygen generation

    Institute of Scientific and Technical Information of China (English)

    Jiang Dongsheng; Bu Xueqin; Sun Bing; Lin Guiping; Zhao Hongtao; Cai Yan; Fang Ling

    2016-01-01

    The ceramic membrane oxygen generation technology has advantages of high concentra-tion of produced oxygen and potential nuclear and biochemical protection capability. The present paper studies the ceramic membrane technology for onboard oxygen generation. Comparisons are made to have knowledge of the effects of two kinds of ceramic membrane separation technologies on oxygen generation, namely electricity driven ceramic membrane separation oxygen generation technology (EDCMSOGT) and pressure driven ceramic membrane separation oxygen generation technology (PDCMSOGT). Experiments were conducted under different temperatures, pressures of feed air and produced oxygen flow rates. On the basis of these experiments, the flow rate of feed air, electric power provided, oxygen recovery rate and concentration of produced oxygen are compared under each working condition. It is concluded that the EDCMSOGT is the oxygen generation means more suitable for onboard conditions.

  7. Experimental study on ceramic membrane technology for onboard oxygen generation

    Directory of Open Access Journals (Sweden)

    Jiang Dongsheng

    2016-08-01

    Full Text Available The ceramic membrane oxygen generation technology has advantages of high concentration of produced oxygen and potential nuclear and biochemical protection capability. The present paper studies the ceramic membrane technology for onboard oxygen generation. Comparisons are made to have knowledge of the effects of two kinds of ceramic membrane separation technologies on oxygen generation, namely electricity driven ceramic membrane separation oxygen generation technology (EDCMSOGT and pressure driven ceramic membrane separation oxygen generation technology (PDCMSOGT. Experiments were conducted under different temperatures, pressures of feed air and produced oxygen flow rates. On the basis of these experiments, the flow rate of feed air, electric power provided, oxygen recovery rate and concentration of produced oxygen are compared under each working condition. It is concluded that the EDCMSOGT is the oxygen generation means more suitable for onboard conditions.

  8. Inflight magnetic characterization of the test masses onboard LISA Pathfinder

    CERN Document Server

    Diaz-Aguiló, Marc; Lobo, Alberto

    2012-01-01

    LISA Pathfinder is a science and technology demonstrator of the European Space Agency within the framework of its LISA mission, the latter aiming to be the first space-borne gravitational wave observatory. The payload of LISA Pathfinder is the so-called LISA Technology Package, which is designed to measure relative accelerations between two test masses in nominal free fall. The diagnostics subsystem consists of several modules, one of which is the magnetic diagnostics unit. Its main function is the assessment of the differential acceleration noise between the test masses due to magnetic effects. This subsystem is composed of two onboard coils intended to produce controlled magnetic fields at the location of the test masses. These magnetic fields couple with the remanent magnetic moment and susceptibility and produce forces and torques on the test masses. These, in turn, produce kinematic excursions of the test masses which are sensed by the onboard interferometer. We prove that adequately processing these exc...

  9. Some recent measurements onboard spacecraft with passive detector.

    Science.gov (United States)

    Spurný, F; Jadrníĉková, I

    2005-01-01

    Several passive detectors were used to estimate dosimetry and microdosimetry characteristics of radiation field onboard spacecraft, namely: thermoluminescent detectors (TLDs), mainly to appreciate the contribution of radiation with low-linear energy transfer (LET); Si diode, to try to establish the contribution of fast neutrons; an LET spectrometer based on the chemically etched polyallyldiglycolcarbonate etched track detectors (PADC-TEDs). Detectors have been exposed onboard MIR and International Space Station (ISS) since 1997, they were also used during the MESSAGE 2 biological experiment, October 2003. The results are presented, analysed and discussed. Particular attention is devoted to the possibility of estimating neutron contribution based on data obtained with PADC-TED spectrometer of LET.

  10. Advanced stellar compass - Onboard autonomous orbit determination, preliminary performance

    DEFF Research Database (Denmark)

    Betto, Maurizio; Jørgensen, John Leif; Jørgensen, Peter Siegbjørn

    2004-01-01

    of this instrument, the authors have devised a method to determine the orbit of a spacecraft autonomously, onboard, and without a priori knowledge of any kind. The solution is robust and fast. This paper presents the preliminary performance obtained during the ground testing in August 2002 at the Mauna Kea...... be implemented into an ASC without degrading the attitude measurements; and (4) to identify the areas of development and consolidation. The results obtained are very encouraging....

  11. Virtualizing Super-Computation On-Board Uas

    Science.gov (United States)

    Salami, E.; Soler, J. A.; Cuadrado, R.; Barrado, C.; Pastor, E.

    2015-04-01

    Unmanned aerial systems (UAS, also known as UAV, RPAS or drones) have a great potential to support a wide variety of aerial remote sensing applications. Most UAS work by acquiring data using on-board sensors for later post-processing. Some require the data gathered to be downlinked to the ground in real-time. However, depending on the volume of data and the cost of the communications, this later option is not sustainable in the long term. This paper develops the concept of virtualizing super-computation on-board UAS, as a method to ease the operation by facilitating the downlink of high-level information products instead of raw data. Exploiting recent developments in miniaturized multi-core devices is the way to speed-up on-board computation. This hardware shall satisfy size, power and weight constraints. Several technologies are appearing with promising results for high performance computing on unmanned platforms, such as the 36 cores of the TILE-Gx36 by Tilera (now EZchip) or the 64 cores of the Epiphany-IV by Adapteva. The strategy for virtualizing super-computation on-board includes the benchmarking for hardware selection, the software architecture and the communications aware design. A parallelization strategy is given for the 36-core TILE-Gx36 for a UAS in a fire mission or in similar target-detection applications. The results are obtained for payload image processing algorithms and determine in real-time the data snapshot to gather and transfer to ground according to the needs of the mission, the processing time, and consumed watts.

  12. Onboarding for Pathology Residency Programs—The Montefiore Experience

    Directory of Open Access Journals (Sweden)

    Tiffany Michele Hébert MD

    2016-03-01

    Full Text Available Onboarding is a system frequently used in the corporate world as a means of orienting incoming employees to their duties and inculcating the workplace values. The program aims to facilitate transition into new work roles and improve employee retention rates. At Montefiore, we have instituted an onboarding curriculum that is given to new anatomic and clinical pathology residents about a month prior to the start of residency. The program includes an introductory video series of basic histology and a series of anatomic and clinical case studies illustrating basic laboratory principles. This didactic content is tagged to learning objectives and short self-assessment modules. In addition, content related to the work ethos at Montefiore and the role of the core competencies and milestones in residency education are included. Finally, a broader component of the onboarding gives the incoming residents a social welcome to our area, including key information about living in the area surrounding Montefiore. The program has been well received by our residents for whom the content has helped to boost confidence when starting. We feel that the program is helpful in ensuring that all incoming residents start having received the same baseline didactic content. Transmitting this didactic content via onboarding allows our residents to begin the work of learning pathology immediately, rather than spending the first weeks of residency covering remedial content such as basic histology. Such a program may be useful to other pathology residencies, most of whom have residents from a range of backgrounds and whose prior exposure to pathology may be limited.

  13. Improving multispectral satellite image compression using onboard subpixel registration

    Science.gov (United States)

    Albinet, Mathieu; Camarero, Roberto; Isnard, Maxime; Poulet, Christophe; Perret, Jokin

    2013-09-01

    Future CNES earth observation missions will have to deal with an ever increasing telemetry data rate due to improvements in resolution and addition of spectral bands. Current CNES image compressors implement a discrete wavelet transform (DWT) followed by a bit plane encoding (BPE) but only on a mono spectral basis and do not profit from the multispectral redundancy of the observed scenes. Recent CNES studies have proven a substantial gain on the achievable compression ratio, +20% to +40% on selected scenarios, by implementing a multispectral compression scheme based on a Karhunen Loeve transform (KLT) followed by the classical DWT+BPE. But such results can be achieved only on perfectly registered bands; a default of registration as low as 0.5 pixel ruins all the benefits of multispectral compression. In this work, we first study the possibility to implement a multi-bands subpixel onboard registration based on registration grids generated on-the-fly by the satellite attitude control system and simplified resampling and interpolation techniques. Indeed bands registration is usually performed on ground using sophisticated techniques too computationally intensive for onboard use. This fully quantized algorithm is tuned to meet acceptable registration performances within stringent image quality criteria, with the objective of onboard real-time processing. In a second part, we describe a FPGA implementation developed to evaluate the design complexity and, by extrapolation, the data rate achievable on a spacequalified ASIC. Finally, we present the impact of this approach on the processing chain not only onboard but also on ground and the impacts on the design of the instrument.

  14. New Imaging Instrument Onboard the WSO-UV

    Science.gov (United States)

    Sachkov, M.; Shustov, B.; Gómez de Castro, A. I.; Shugarov, A.; Savanov, I.; Kanev, E.; Sichevskij, S.; Zvereva, M.

    2017-06-01

    We present here the new imaging instrument onboard the WSO-UV (World Space Observatory - Ultraviolet) project for observations in the UV (115-310 nm) spectral range. Dedicated to spectroscopic and imaging observations of the ultraviolet sky, the World Space Observatory - Ultraviolet mission is a Russian-Spanish collaboration with potential Mexican minor contribution. This paper provides the key scientific drivers of the instrument.

  15. An Autonomous Onboard Targeting Algorithm Using Finite Thrust Maneuvers

    Science.gov (United States)

    Scarritt, Sara K.; Marchand, Belinda G.; Weeks, Michael W.

    2009-01-01

    In earlier investigations, the adaptation and implementation of a modified two-level corrections process as the onboard targeting algorithm for the Trans-Earth Injection phase of Orion is presented. The objective of that targeting algorithm is to generate the times of ignition and magnitudes of the required maneuvers such that the desired state at entry interface is achieved. In an actual onboard flight software implementation, these times of ignition and maneuvers are relayed onto Flight Control for command and execution. Although this process works well when the burn durations or burn arcs are small, this might not be the case during a contingency situation when lower thrust engines are employed to perform the maneuvers. Therefore, a new version of the modified two-level corrections process is formulated to handle the case of finite burn arcs. This paper presents the development and formulation of that finite burn modified two-level corrections process which can again be used as an onboard targeting algorithm for the Trans-Earth Injection phase of Orion. Additionally, performance results and a comparison between the two methods are presented. The finite burn two-level corrector formulation presented here ensures the entry constraints at entry interface are still met without violating the available fuel budget, while still accounting for much longer burn times in its design.

  16. Examining the Diet of Post-Migrant Hispanic Males Using the Precede-Proceed Model: Predisposing, Reinforcing, and Enabling Dietary Factors

    Science.gov (United States)

    Castellanos, Diana Cuy; Downey, Laura; Graham-Kresge, Susan; Yadrick, Kathleen; Zoellner, Jamie; Connell, Carol L.

    2013-01-01

    Objective: To examine socio-environmental, behavioral, and predisposing, reinforcing, and enabling (PRE) factors contributing to post-migration dietary behavior change among a sample of traditional Hispanic males. Design: In this descriptive study, semistructured interviews, a group interview, and photovoice, followed by group interviews, were…

  17. Enabling graphene nanoelectronics.

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Wei; Ohta, Taisuke; Biedermann, Laura Butler; Gutierrez, Carlos; Nolen, C. M.; Howell, Stephen Wayne; Beechem Iii, Thomas Edwin; McCarty, Kevin F.; Ross, Anthony Joseph, III

    2011-09-01

    Recent work has shown that graphene, a 2D electronic material amenable to the planar semiconductor fabrication processing, possesses tunable electronic material properties potentially far superior to metals and other standard semiconductors. Despite its phenomenal electronic properties, focused research is still required to develop techniques for depositing and synthesizing graphene over large areas, thereby enabling the reproducible mass-fabrication of graphene-based devices. To address these issues, we combined an array of growth approaches and characterization resources to investigate several innovative and synergistic approaches for the synthesis of high quality graphene films on technologically relevant substrate (SiC and metals). Our work focused on developing the fundamental scientific understanding necessary to generate large-area graphene films that exhibit highly uniform electronic properties and record carrier mobility, as well as developing techniques to transfer graphene onto other substrates.

  18. Psycho-Motor and Error Enabled Simulations: Modeling Vulnerable Skills in the Pre-Mastery Phase Medical Practice Initiative Procedural Skill Decay and Maintenance (MPI-PSD)

    Science.gov (United States)

    2014-04-01

    observed placing the subclavian central line (Figure 5). The VR stations were developed with consideration of testing participant psychomotor abilities... develop a simulation-based system to evaluate psychomotor planning while suturing on different tissue types. The variable tissue simulator presents... development of a haptics-enabled, virtual reality system for assessment of innate psychomotor skills. Three 24 The team is in the process of purchasing of a

  19. Liquid metal enabled microfluidics.

    Science.gov (United States)

    Khoshmanesh, Khashayar; Tang, Shi-Yang; Zhu, Jiu Yang; Schaefer, Samira; Mitchell, Arnan; Kalantar-Zadeh, Kourosh; Dickey, Michael D

    2017-03-14

    Several gallium-based liquid metal alloys are liquid at room temperature. As 'liquid', such alloys have a low viscosity and a high surface tension while as 'metal', they have high thermal and electrical conductivities, similar to mercury. However, unlike mercury, these liquid metal alloys have low toxicity and a negligible vapor pressure, rendering them much safer. In comparison to mercury, the distinguishing feature of these alloys is the rapid formation of a self-limiting atomically thin layer of gallium oxide over their surface when exposed to oxygen. This oxide layer changes many physical and chemical properties of gallium alloys, including their interfacial and rheological properties, which can be employed and modulated for various applications in microfluidics. Injecting liquid metal into microfluidic structures has been extensively used to pattern and encapsulate highly deformable and reconfigurable electronic devices including electrodes, sensors, antennas, and interconnects. Likewise, the unique features of liquid metals have been employed for fabricating miniaturized microfluidic components including pumps, valves, heaters, and electrodes. In this review, we discuss liquid metal enabled microfluidic components, and highlight their desirable attributes including simple fabrication, facile integration, stretchability, reconfigurability, and low power consumption, with promising applications for highly integrated microfluidic systems.

  20. Enabling Forbidden Dark Matter

    OpenAIRE

    Cline, James; Liu, Hongwan; Slatyer, Tracy; Xue, Wei

    2017-01-01

    The thermal relic density of dark matter is conventionally set by two-body annihilations. We point out that in many simple models, $3 \\to 2$ annihilations can play an important role in determining the relic density over a broad range of model parameters. This occurs when the two-body annihilation is kinematically forbidden, but the $3\\to 2$ process is allowed; we call this scenario "Not-Forbidden Dark Matter". We illustrate this mechanism for a vector portal dark matter model, showing that fo...

  1. A One-Step Cone-Beam CT-Enabled Planning-to-Treatment Model for Palliative Radiotherapy-From Development to Implementation

    Energy Technology Data Exchange (ETDEWEB)

    Wong, Rebecca K.S., E-mail: rebecca.wong@rmp.uhn.on.ca [Radiation Medicine Program, Princess Margaret Hospital, Toronto, Ontario (Canada); Department of Radiation Oncology, University of Toronto, Toronto, Ontario (Canada); Letourneau, Daniel; Varma, Anita [Radiation Medicine Program, Princess Margaret Hospital, Toronto, Ontario (Canada); Department of Radiation Oncology, University of Toronto, Toronto, Ontario (Canada); Bissonnette, Jean Pierre; Fitzpatrick, David; Grabarz, Daniel; Elder, Christine [Radiation Medicine Program, Princess Margaret Hospital, Toronto, Ontario (Canada); Martin, Melanie; Bezjak, Andrea [Radiation Medicine Program, Princess Margaret Hospital, Toronto, Ontario (Canada); Department of Radiation Oncology, University of Toronto, Toronto, Ontario (Canada); Panzarella, Tony [Department of Biostatistics, Princess Margaret Hospital, Toronto, Ontario (Canada); Gospodarowicz, Mary [Radiation Medicine Program, Princess Margaret Hospital, Toronto, Ontario (Canada); Department of Radiation Oncology, University of Toronto, Toronto, Ontario (Canada); Jaffray, David A. [Radiation Medicine Program, Princess Margaret Hospital, Toronto, Ontario (Canada); Department of Radiation Oncology, University of Toronto, Toronto, Ontario (Canada); Department of Medical Biophysics, University of Toronto, Toronto, Ontario (Canada)

    2012-11-01

    Purpose: To develop a cone-beam computed tomography (CT)-enabled one-step simulation-to-treatment process for the treatment of bone metastases. Methods and Materials: A three-phase prospective study was conducted. Patients requiring palliative radiotherapy to the spine, mediastinum, or abdomen/pelvis suitable for treatment with simple beam geometry ({<=}2 beams) were accrued. Phase A established the accuracy of cone-beam CT images for the purpose of gross tumor target volume (GTV) definition. Phase B evaluated the feasibility of implementing the cone-beam CT-enabled planning process at the treatment unit. Phase C evaluated the online cone-beam CT-enabled process for the planning and treatment of patients requiring radiotherapy for bone metastases. Results: Eighty-four patients participated in this study. Phase A (n = 9) established the adequacy of cone-beam CT images for target definition. Phase B (n = 45) established the quality of treatment plans to be adequate for clinical implementation for bone metastases. When the process was applied clinically in bone metastases (Phase C), the degree of overlap between planning computed tomography (PCT) and cone-beam CT for GTV and between PCT and cone-beam CT for treatment field was 82% {+-} 11% and 97% {+-} 4%, respectively. The oncologist's decision to accept the plan under a time-pressured environment remained of high quality, with the cone-beam CT-generated treatment plan delivering at least 90% of the prescribed dose to 100% {+-} 0% of the cone-beam CT planning target volume (PTV). With the assumption that the PCT PTV is the gold-standard target, the cone-beam CT-generated treatment plan delivered at least 90% and at least 95% of dose to 98% {+-} 2% and 97% {+-} 5% of the PCT PTV, respectively. The mean time for the online planning and treatment process was 32.7 {+-} 4.0 minutes. Patient satisfaction was high, with a trend for superior satisfaction with the cone-beam CT-enabled process. Conclusions: The cone

  2. AMO EXPRESS: A Command and Control Experiment for Crew Autonomy Onboard the International Space Station

    Science.gov (United States)

    Stetson, Howard K.; Haddock, Angie T.; Frank, Jeremy; Cornelius, Randy; Wang, Lui; Garner, Larry

    2015-01-01

    NASA is investigating a range of future human spaceflight missions, including both Mars-distance and Near Earth Object (NEO) targets. Of significant importance for these missions is the balance between crew autonomy and vehicle automation. As distance from Earth results in increasing communication delays, future crews need both the capability and authority to independently make decisions. However, small crews cannot take on all functions performed by ground today, and so vehicles must be more automated to reduce the crew workload for such missions. NASA's Advanced Exploration Systems Program funded Autonomous Mission Operations (AMO) project conducted an autonomous command and control experiment on-board the International Space Station that demonstrated single action intelligent procedures for crew command and control. The target problem was to enable crew initialization of a facility class rack with power and thermal interfaces, and involving core and payload command and telemetry processing, without support from ground controllers. This autonomous operations capability is enabling in scenarios such as initialization of a medical facility to respond to a crew medical emergency, and representative of other spacecraft autonomy challenges. The experiment was conducted using the Expedite the Processing of Experiments for Space Station (EXPRESS) rack 7, which was located in the Port 2 location within the U.S Laboratory onboard the International Space Station (ISS). Activation and deactivation of this facility is time consuming and operationally intensive, requiring coordination of three flight control positions, 47 nominal steps, 57 commands, 276 telemetry checks, and coordination of multiple ISS systems (both core and payload). Utilization of Draper Laboratory's Timeliner software, deployed on-board the ISS within the Command and Control (C&C) computers and the Payload computers, allowed development of the automated procedures specific to ISS without having to certify

  3. Thermal Imaging Performance of TIR Onboard the Hayabusa2 Spacecraft

    Science.gov (United States)

    Arai, Takehiko; Nakamura, Tomoki; Tanaka, Satoshi; Demura, Hirohide; Ogawa, Yoshiko; Sakatani, Naoya; Horikawa, Yamato; Senshu, Hiroki; Fukuhara, Tetsuya; Okada, Tatsuaki

    2017-07-01

    The thermal infrared imager (TIR) is a thermal infrared camera onboard the Hayabusa2 spacecraft. TIR will perform thermography of a C-type asteroid, 162173 Ryugu (1999 JU3), and estimate its surface physical properties, such as surface thermal emissivity ɛ , surface roughness, and thermal inertia Γ, through remote in-situ observations in 2018 and 2019. In prelaunch tests of TIR, detector calibrations and evaluations, along with imaging demonstrations, were performed. The present paper introduces the experimental results of a prelaunch test conducted using a large-aperture collimator in conjunction with TIR under atmospheric conditions. A blackbody source, controlled at constant temperature, was measured using TIR in order to construct a calibration curve for obtaining temperatures from observed digital data. As a known thermal emissivity target, a sandblasted black almite plate warmed from the back using a flexible heater was measured by TIR in order to evaluate the accuracy of the calibration curve. As an analog target of a C-type asteroid, carbonaceous chondrites (50 mm × 2 mm in thickness) were also warmed from the back and measured using TIR in order to clarify the imaging performance of TIR. The calibration curve, which was fitted by a specific model of the Planck function, allowed for conversion to the target temperature within an error of 1°C (3σ standard deviation) for the temperature range of 30 to 100°C. The observed temperature of the black almite plate was consistent with the temperature measured using K-type thermocouples, within the accuracy of temperature conversion using the calibration curve when the temperature variation exhibited a random error of 0.3 °C (1σ ) for each pixel at a target temperature of 50°C. TIR can resolve the fine surface structure of meteorites, including cracks and pits with the specified field of view of 0.051°C (328 × 248 pixels). There were spatial distributions with a temperature variation of 3°C at the setting

  4. Thermal Imaging Performance of TIR Onboard the Hayabusa2 Spacecraft

    Science.gov (United States)

    Arai, Takehiko; Nakamura, Tomoki; Tanaka, Satoshi; Demura, Hirohide; Ogawa, Yoshiko; Sakatani, Naoya; Horikawa, Yamato; Senshu, Hiroki; Fukuhara, Tetsuya; Okada, Tatsuaki

    2017-03-01

    The thermal infrared imager (TIR) is a thermal infrared camera onboard the Hayabusa2 spacecraft. TIR will perform thermography of a C-type asteroid, 162173 Ryugu (1999 JU3), and estimate its surface physical properties, such as surface thermal emissivity ɛ , surface roughness, and thermal inertia Γ, through remote in-situ observations in 2018 and 2019. In prelaunch tests of TIR, detector calibrations and evaluations, along with imaging demonstrations, were performed. The present paper introduces the experimental results of a prelaunch test conducted using a large-aperture collimator in conjunction with TIR under atmospheric conditions. A blackbody source, controlled at constant temperature, was measured using TIR in order to construct a calibration curve for obtaining temperatures from observed digital data. As a known thermal emissivity target, a sandblasted black almite plate warmed from the back using a flexible heater was measured by TIR in order to evaluate the accuracy of the calibration curve. As an analog target of a C-type asteroid, carbonaceous chondrites ( 50 mm × 2 mm in thickness) were also warmed from the back and measured using TIR in order to clarify the imaging performance of TIR. The calibration curve, which was fitted by a specific model of the Planck function, allowed for conversion to the target temperature within an error of 1 ∘C ( 3σ standard deviation) for the temperature range of 30 to 100 ∘C. The observed temperature of the black almite plate was consistent with the temperature measured using K-type thermocouples, within the accuracy of temperature conversion using the calibration curve when the temperature variation exhibited a random error of 0.3 ∘C ( 1σ ) for each pixel at a target temperature of 50 ∘C. TIR can resolve the fine surface structure of meteorites, including cracks and pits with the specified field of view of 0.051∘ ( 328 × 248 pixels). There were spatial distributions with a temperature variation of 3

  5. High-Speed On-Board Data Processing for Science Instruments: HOPS

    Science.gov (United States)

    Beyon, Jeffrey

    2015-01-01

    The project called High-Speed On-Board Data Processing for Science Instruments (HOPS) has been funded by NASA Earth Science Technology Office (ESTO) Advanced Information Systems Technology (AIST) program during April, 2012 â€" April, 2015. HOPS is an enabler for science missions with extremely high data processing rates. In this three-year effort of HOPS, Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) and 3-D Winds were of interest in particular. As for ASCENDS, HOPS replaces time domain data processing with frequency domain processing while making the real-time on-board data processing possible. As for 3-D Winds, HOPS offers real-time high-resolution wind profiling with 4,096-point fast Fourier transform (FFT). HOPS is adaptable with quick turn-around time. Since HOPS offers reusable user-friendly computational elements, its FPGA IP Core can be modified for a shorter development period if the algorithm changes. The FPGA and memory bandwidth of HOPS is 20 GB/sec while the typical maximum processor-to-SDRAM bandwidth of the commercial radiation tolerant high-end processors is about 130-150 MB/sec. The inter-board communication bandwidth of HOPS is 4 GB/sec while the effective processor-to-cPCI bandwidth of commercial radiation tolerant high-end boards is about 50-75 MB/sec. Also, HOPS offers VHDL cores for the easy and efficient implementation of ASCENDS and 3-D Winds, and other similar algorithms. A general overview of the 3-year development of HOPS is the goal of this presentation.

  6. On-board autonomous attitude maneuver planning for planetary spacecraft using genetic algorithms

    Science.gov (United States)

    Kornfeld, Richard P.

    2003-01-01

    A key enabling technology that leads to greater spacecraft autonomy is the capability to autonomously and optimally slew the spacecraft from and to different attitudes while operating under a number of celestial and dynamic constraints. The task of finding an attitude trajectory that meets all the constraints is a formidable one, in particular for orbiting or fly-by spacecraft where the constraints and initial and final conditions are of time-varying nature. This paper presents an approach for attitude path planning that makes full use of a priori constraint knowledge and is computationally tractable enough to be executed on-board a spacecraft. The approach is based on incorporating the constraints into a cost function and using a Genetic Algorithm to iteratively search for and optimize the solution. This results in a directed random search that explores a large part of the solution space while maintaining the knowledge of good solutions from iteration to iteration. A solution obtained this way may be used 'as is' or as an initial solution to initialize additional deterministic optimization algorithms. A number of example simulations are presented including the case examples of a generic Europa Orbiter spacecraft in cruise as well as in orbit around Europa. The search times are typically on the order of minutes, thus demonstrating the viability of the presented approach. The results are applicable to all future deep space missions where greater spacecraft autonomy is required. In addition, onboard autonomous attitude planning greatly facilitates navigation and science observation planning, benefiting thus all missions to planet Earth as well.

  7. Biological quarantine on international waters: an initiative for onboard protocols

    Science.gov (United States)

    Takano, Yoshinori; Yano, Hajime; Funase, Ryu; Sekine, Yasuhito; Takai, Ken

    2012-07-01

    The research vessel Chikyu is expanding new frontiers in science, technology, and international collaboration through deep-sea expedition. The Chikyu (length: 210 m, gross tonnage: 56752 tons) has advanced and comprehensive scientific research facilities. One of the scientific purposes of the vessel is to investigate into unexplored biosphere (i.e., undescribed extremophiles) on the Earth. Therefore, "the onboard laboratory" provides us systematic microbiological protocols with a physical containment situation. In parallel, the onboard equipments provide sufficient space for fifty scientists and technical support staff. The helicopter deck also supports various logistics through transporting by a large scale helicopter (See, http://www.jamstec.go.jp/chikyu/eng/). Since the establishment of Panel on Planetary Protection (PPP) in Committee on Space Research (COSPAR), we have an international consensus about the development and promulgation of planetary protection knowledge, policy, and plans to prevent the harmful effects of biological contamination on the Earth (e.g., Rummel, 2002). However, the matter to select a candidate location of initial quarantine at BSL4 level is often problematic. To answer the key issue, we suggest that international waters can be a meaningful option with several advantages to conduct initial onboard-biological quarantine investigation. Hence, the research vessel Chikyu is promising for further PPP requirements (e.g., Enceladus sample return project: Tsou et al., 2012). Rummel, J., Seeking an international consensus in planetary protection: COSPAR's planetary protection panel. Advances in Space Research, 30, 1573-1575 (2002). Tsou, P. et al. LIFE: Life Investigation For Enceladus - A Sample Return Mission Concept in Search for Evidence of Life. Astrobiology, in press.

  8. 8 CFR 231.2 - Electronic manifest and I-94 requirement for passengers and crew onboard departing vessels and...

    Science.gov (United States)

    2010-01-01

    ... section 231 of the Act are set forth in 19 CFR 4.64 (passengers and crew members onboard vessels) and in 19 CFR 122.75a (passengers onboard aircraft) and 122.75b (crew members onboard aircraft). (b... for passengers and crew onboard departing vessels and aircraft. 231.2 Section 231.2 Aliens...

  9. 8 CFR 231.1 - Electronic manifest and I-94 requirement for passengers and crew onboard arriving vessels and...

    Science.gov (United States)

    2010-01-01

    ... section 231 of the Act are set forth in 19 CFR 4.7b (passengers and crew members onboard vessels) and in 19 CFR 122.49a (passengers onboard aircraft) and 122.49b (crew members onboard aircraft). (b... for passengers and crew onboard arriving vessels and aircraft. 231.1 Section 231.1 Aliens...

  10. Algorithms onboard the Oersted micro satellite stellar compass

    DEFF Research Database (Denmark)

    Liebe, Carl Christian; Jørgensen, John Leif

    1996-01-01

    . The technique will be described and the performance analyzed. Also, the stellar compass is more accurate than conventional star trackers, because conventional star trackers typically tracks 3-10 star in a single frame, whereas the stellar compass tracks up to 200 stars, yielding more accurate attitude estimates...... and a powerful microcomputer. The microcomputer analyses the CCD images using an onboard software star catalogue. The objective of the danish Oersted microsatellite is to measure the magnetic field of the Earth. The field is measured with a very accurate vector magnetometer. In order to utilize the accurate...

  11. Information on weather and sea conditions onboard polar cruise ships

    Directory of Open Access Journals (Sweden)

    BRÂNDUŞA CHIOTOROIU

    2016-11-01

    Full Text Available The arctic and Antarctic regions are difficult to navigate because of their severe maritime conditions. Weather forecast, forecast of the sea ice and icebergs dynamics are extremely important when planning ships routes and tourism activities including embarkation/disembarkation from boats or landing operations. New meteorological services have been created in the arctic region for broadcast purposes. The information provided by these services and received onboard ships is presented in this paper. A risk assessment should be considered for Polar Water operations such as maneuvering in ice covered waters, anchoring, shore landings etc.

  12. Calibration strategies for the LAD instrument on-board LOFT

    CERN Document Server

    Pacciani, Luigi; Argan, Andrea; Barret, Didier; Bozzo, Enrico; Feroci, Marco; Fraser, George W; Herder, Jan-Willem den; Pohl, Martin; Schmid, Christian; Tenzer, Chris; Vacchi, Andrea; Walton, Dave; Zampa, Gianluigi; Zane, Silvia

    2012-01-01

    The Scientific objectives of the LOFT mission, e.g., the study of the Neutron Star equation of state and of the Strong Gravity, require accurate energy, time and flux calibration for the 500k channels of the SDD detectors, as well as the knowledge of the detector dead-time and of the detector response with respect to the incident angle of the photons. We report here the evaluations made to asses the calibration issues for the LAD instrument. The strategies for both ground and on-board calibrations, including astrophysical observations, show that the goals are achievable within the current technologies.

  13. Spectrally and Radiometrically Stable, Wideband, Onboard Calibration Source

    Science.gov (United States)

    Coles, James B.; Richardson, Brandon S.; Eastwood, Michael L.; Sarture, Charles M.; Quetin, Gregory R.; Porter, Michael D.; Green, Robert O.; Nolte, Scott H.; Hernandez, Marco A.; Knoll, Linley A.

    2013-01-01

    The Onboard Calibration (OBC) source incorporates a medical/scientific-grade halogen source with a precisely designed fiber coupling system, and a fiber-based intensity-monitoring feedback loop that results in radiometric and spectral stabilities to within less than 0.3 percent over a 15-hour period. The airborne imaging spectrometer systems developed at the Jet Propulsion Laboratory incorporate OBC sources to provide auxiliary in-use system calibration data. The use of the OBC source will provide a significant increase in the quantitative accuracy, reliability, and resulting utility of the spectral data collected from current and future imaging spectrometer instruments.

  14. On-board image compression for the RAE lunar mission

    Science.gov (United States)

    Miller, W. H.; Lynch, T. J.

    1976-01-01

    The requirements, design, implementation, and flight performance of an on-board image compression system for the lunar orbiting Radio Astronomy Explorer-2 (RAE-2) spacecraft are described. The image to be compressed is a panoramic camera view of the long radio astronomy antenna booms used for gravity-gradient stabilization of the spacecraft. A compression ratio of 32 to 1 is obtained by a combination of scan line skipping and adaptive run-length coding. The compressed imagery data are convolutionally encoded for error protection. This image compression system occupies about 1000 cu cm and consumes 0.4 W.

  15. Onboard near-optimal climb-dash energy management

    Science.gov (United States)

    Weston, A.; Cliff, G.; Kelley, H.

    1985-01-01

    This paper studies optimal and near-optimal trajectories of high-performance aircraft in symmetric flight. Onboard, real-time, near-optimal guidance is considered for the climb-dash mission, using some of the boundary-layer structure and hierarchical ideas from singular perturbations. In the case of symmetric flight, this resembles neighborhood-optimal guidance using energy-to-go as the running variable. However, extension to three-dimensional flight is proposed, using families of nominal paths with heading-to-go as the additional running variable. Some computational results are presented for the symmetric case.

  16. Parallel Stirling Converters Being Developed for Spacecraft Onboard Power

    Science.gov (United States)

    Thieme, Lanny G.

    1999-01-01

    Stirling Technology Co., as part of a NASA Lewis Research Center Phase II Small Business Innovation Research contract, has successfully demonstrated paralleling two thermodynamically independent Stirling converters. A system of four Stirling converters is being developed by NASA and the Department of Energy as an alternative high-efficiency radioisotope power source for spacecraft onboard electric power for NASA deep space missions. The high Stirling efficiency, exceeding 20 percent for this application, will greatly reduce the necessary isotope inventory in comparison to the current radioisotope thermoelectric generators (RTG s), significantly reducing mission cost and risk. Stirling is the most developed converter option of the advanced power technologies under consideration.

  17. Onboard planning of constrained longitudinal trajectory for reusable launch vehicles in terminal area

    Science.gov (United States)

    Liang, Zixuan; Li, Qingdong; Ren, Zhang

    2016-02-01

    A rapid planning algorithm is developed to generate a constrained longitudinal trajectory onboard for reusable launch vehicles (RLVs) in the terminal area energy management (TAEM) phase. The longitudinal trajectory is planned in the flight-path angle vs. altitude space. This flight-path angle profile is designed with required altitude, flight-path angle and range-to-go, and then optimized as a one-parameter search problem to meet the velocity constraint. Considering the dynamic pressure constraint, a dynamic pressure protection (DPP) method is designed. With the DPP, the highly constrained longitudinal trajectory is generated by tracking the planned flight-path angle profile. Finally, the TAEM trajectory planning algorithm is tested on the X-33 vehicle model in different cases. The algorithm is shown to be effective and robust to generate longitudinal flight trajectories with all constraints satisfied in high precision. In each case, the constrained trajectory is planned within 1 s on a PC, which indicates that the algorithm is feasible to be employed onboard.

  18. Mass minimization of a discrete regenerative fuel cell (RFC) system for on-board energy storage

    Science.gov (United States)

    Li, Xiaojin; Xiao, Yu; Shao, Zhigang; Yi, Baolian

    RFC combined with solar photovoltaic (PV) array is the advanced technologic solution for on-board energy storage, e.g. land, sky, stratosphere and aerospace applications, due to its potential of achieving high specific energy. This paper focuses on mass modeling and calculation for a RFC system consisting of discrete electrochemical cell stacks (fuel cell and electrolyzer), together with fuel storage, a PV array, and a radiator. A nonlinear constrained optimization procedure is used to minimize the entire system mass, as well as to study the effect of operating conditions (e.g. current densities of fuel cell and electrolyzer) on the system mass. According to the state-of-the-art specific power of both electrochemical stacks, an energy storage system has been designed for the conditions of stratosphere applications and a rated power output of 12 kW. The calculation results show that the optimization of the current density of both stacks is of importance in designing the light weight on-board energy system.

  19. A Novel Method for Precise Onboard Real-Time Orbit Determination with a Standalone GPS Receiver.

    Science.gov (United States)

    Wang, Fuhong; Gong, Xuewen; Sang, Jizhang; Zhang, Xiaohong

    2015-12-04

    Satellite remote sensing systems require accurate, autonomous and real-time orbit determinations (RTOD) for geo-referencing. Onboard Global Positioning System (GPS) has widely been used to undertake such tasks. In this paper, a novel RTOD method achieving decimeter precision using GPS carrier phases, required by China's HY2A and ZY3 missions, is presented. A key to the algorithm success is the introduction of a new parameter, termed pseudo-ambiguity. This parameter combines the phase ambiguity, the orbit, and clock offset errors of the GPS broadcast ephemeris together to absorb a large part of the combined error. Based on the analysis of the characteristics of the orbit and clock offset errors, the pseudo-ambiguity can be modeled as a random walk, and estimated in an extended Kalman filter. Experiments of processing real data from HY2A and ZY3, simulating onboard operational scenarios of these two missions, are performed using the developed software SATODS. Results have demonstrated that the position and velocity accuracy (3D RMS) of 0.2-0.4 m and 0.2-0.4 mm/s, respectively, are achieved using dual-frequency carrier phases for HY2A, and slightly worse results for ZY3. These results show it is feasible to obtain orbit accuracy at decimeter level of 3-5 dm for position and 0.3-0.5 mm/s for velocity with this RTOD method.

  20. Laser tracker orientation in confined space using on-board targets

    Science.gov (United States)

    Gao, Yang; Kyle, Stephen; Lin, Jiarui; Yang, Linghui; Ren, Yu; Zhu, Jigui

    2016-08-01

    This paper presents a novel orientation method for two laser trackers using on-board targets attached to the tracker head and rotating with it. The technique extends an existing method developed for theodolite intersection systems which are now rarely used. This method requires only a very narrow space along the baseline between the instrument heads, in order to establish the orientation relationship. This has potential application in environments where space is restricted. The orientation parameters can be calculated by means of two-face reciprocal measurements to the on-board targets, and measurements to a common point close to the baseline. An accurate model is then applied which can be solved through nonlinear optimization. Experimental comparison has been made with the conventional orientation method, which is based on measurements to common intersection points located off the baseline. This requires more space and the comparison has demonstrated the feasibility of the more compact technique presented here. Physical setup and testing suggest that the method is practical. Uncertainties estimated by simulation indicate good performance in terms of measurement quality.

  1. Application of GFP technique for cytoskeleton visualization onboard the International Space Station.

    Science.gov (United States)

    Kordyum, E L; Shevchenko, G V; Yemets, A I; Nyporko, A I; Blume, Ya B

    2005-03-01

    Cytoskeleton recently attracted wide attention of cell and molecular biologists due to its crucial role in gravity sensing and trunsduction. Most of cytoskeletal research is conducted by the means of immunohistochemical reactions, different modifications of which are beneficial for the ground-based experiments. But for the performance onboard the space vehicles, they represent quite complicated technique which requires time and special skills for astronauts. In addition, immunocytochemistry provides only static images of the cytoskeleton arrangement in fixed cells while its localization in living cells is needed for the better understanding of cytoskeletal function. In this connection, we propose a new approach for cytoskeletal visualization onboard the ISS, namely, application of green fluorescent protein (GFP) from Aequorea victoria, which has the unique properties as a marker for protein localization in vivo. The creation of chimerical protein-GFP gene constructs, obtaining the transformed plant cells possessed protein-GFP in their cytoskeletal composition will allow receiving a simple and efficient model for screening of the cytoskeleton functional status in microgravity.

  2. Atmospheric correction for sea surface temperature retrieval from single thermal channel radiometer data onboard Kalpana satellite

    Science.gov (United States)

    Shahi, Naveen R.; Agarwal, Neeraj; Mathur, Aloke K.; Sarkar, Abhijit

    2011-06-01

    An atmospheric correction method has been applied on sea surface temperature (SST) retrieval algorithm using Very High Resolution Radiometer (VHRR) single window channel radiance data onboard Kalpana satellite (K-SAT). The technique makes use of concurrent water vapour fields available from Microwave Imager onboard Tropical Rainfall Measuring Mission (TRMM/TMI) satellite. Total water vapour content and satellite zenith angle dependent SST retrieval algorithm has been developed using Radiative Transfer Model [MODTRAN ver3.0] simulations for Kalpana 10.5-12.5 μm thermal window channel. Retrieval of Kalpana SST (K-SST) has been carried out for every half-hourly acquisition of Kalpana data for the year 2008 to cover whole annual cycle of SST over Indian Ocean (IO). Validation of the retrieved corrected SST has been carried out using near-simultaneous observations of ship and buoys datasets covering Arabian Sea, Bay of Bengal and IO regions. A significant improvement in Root Mean Square Deviation (RMSD) of K-SST with respect to buoy (1.50-1.02 K) and to ship datasets (1.41-1.19 K) is seen with the use of near real-time water vapour fields of TMI. Furthermore, comparison of the retrieved SST has also been carried out using near simultaneous observations of TRMM/TMI SST over IO regions. The analysis shows that K-SST has overall cold bias of 1.17 K and an RMSD of 1.09 K after bias correction.

  3. FOILFEST :community enabled security.

    Energy Technology Data Exchange (ETDEWEB)

    Moore, Judy Hennessey; Johnson, Curtis Martin; Whitley, John B.; Drayer, Darryl Donald; Cummings, John C., Jr. (.,; .)

    2005-09-01

    The Advanced Concepts Group of Sandia National Laboratories hosted a workshop, ''FOILFest: Community Enabled Security'', on July 18-21, 2005, in Albuquerque, NM. This was a far-reaching look into the future of physical protection consisting of a series of structured brainstorming sessions focused on preventing and foiling attacks on public places and soft targets such as airports, shopping malls, hotels, and public events. These facilities are difficult to protect using traditional security devices since they could easily be pushed out of business through the addition of arduous and expensive security measures. The idea behind this Fest was to explore how the public, which is vital to the function of these institutions, can be leveraged as part of a physical protection system. The workshop considered procedures, space design, and approaches for building community through technology. The workshop explored ways to make the ''good guys'' in public places feel safe and be vigilant while making potential perpetrators of harm feel exposed and convinced that they will not succeed. Participants in the Fest included operators of public places, social scientists, technology experts, representatives of government agencies including DHS and the intelligence community, writers and media experts. Many innovative ideas were explored during the fest with most of the time spent on airports, including consideration of the local airport, the Albuquerque Sunport. Some provocative ideas included: (1) sniffers installed in passage areas like revolving door, escalators, (2) a ''jumbotron'' showing current camera shots in the public space, (3) transparent portal screeners allowing viewing of the screening, (4) a layered open/funnel/open/funnel design where open spaces are used to encourage a sense of ''communitas'' and take advantage of citizen ''sensing'' and funnels are technological

  4. Genome-enabled plant metabolomics.

    Science.gov (United States)

    Tohge, Takayuki; de Souza, Leonardo Perez; Fernie, Alisdair R

    2014-09-01

    The grand challenge currently facing metabolomics is that of comprehensitivity whilst next generation sequencing and advanced proteomics methods now allow almost complete and at least 50% coverage of their respective target molecules, metabolomics platforms at best offer coverage of just 10% of the small molecule complement of the cell. Here we discuss the use of genome sequence information as an enabling tool for peak identity and for translational metabolomics. Whilst we argue that genome information is not sufficient to compute the size of a species metabolome it is highly useful in predicting the occurrence of a wide range of common metabolites. Furthermore, we describe how via gene functional analysis in model species the identity of unknown metabolite peaks can be resolved. Taken together these examples suggest that genome sequence information is current (and likely will remain), a highly effective tool in peak elucidation in mass spectral metabolomics strategies. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. On-Orbit Performance of MODIS On-Board Calibrators

    Science.gov (United States)

    Xiong, X.; Che, N.; Chiang, K.; Esposito, J.; Barnes, William; Guenther, B.; Zukor, Dorothy J. (Technical Monitor)

    2001-01-01

    The Terra MODIS (Moderate Resolution Imaging Spectroradiometer) was launched on December 18, 1999 and acquired the first scene data on February 24, 2000. It has 36 spectral bands covering spectral range from 0.41 to 14.2 microns and provides spatial resolutions of 250 (2 bands), 500 (5 bands), and 1000 m at Nadir. The instrument on-orbit calibration and characterization are determined and monitored through the use of a number of on-board calibrators (OBC). Radiometric calibration for the reflective solar bands (B1-B19, B26), from VIS (visible) to SWIR (short wavelength infrared) (0.41 to 2.1 microns), uses a Spectralon (tm) solar diffuser (SD) and a solar diffuser stability monitor (SDSM). For the thermal emissive bands (B20-B25, B27-B36), from MWIR (medium wavelength infrared) to LWIR (long wavelength infrared) (3.75 to 14.2 micron), a V-grooved flat panel blackbody is used. The instrument spectral for the VIS to SWIR bands and spatial co-registration characterizations for all bands are monitored on-orbit by the spectral radiometric calibration assembly (SRCA). In this report, we discuss the application and performance of the key MODIS on-board calibrators and their impacts on the instrument system calibration and characterization.

  6. Using the Mil. Std 1553B data bus in future spacecraft onboard applications

    Science.gov (United States)

    Plummer, Chris; Bordes, Yves

    2002-07-01

    This paper discusses the use of the Mil. Std 1553B data bus as the principal onboard data handling bus for future spacecraft applications. The paper takes a pragmatic approach by: Identifying the characteristics of the onboard bus traffic and its characteristics; Looking at future trends in onboard bus traffic; Describing the characteristics of the Mil. Std 1553B data bus; Proposing techniques that can be used on the Mil. Std 1553B data bus in future spacecraft application.

  7. Combining Hydrological Modeling and Remote Sensing Observations to Enable Data-Driven Decision Making for Devils Lake Flood Mitigation in a Changing Climate

    Science.gov (United States)

    Zhang, Xiaodong; Kirilenko, Andrei; Lim, Howe; Teng, Williams

    2010-01-01

    This slide presentation reviews work to combine the hydrological models and remote sensing observations to monitor Devils Lake in North Dakota, to assist in flood damage mitigation. This reports on the use of a distributed rainfall-runoff model, HEC-HMS, to simulate the hydro-dynamics of the lake watershed, and used NASA's remote sensing data, including the TRMM Multi-Satellite Precipitation Analysis (TMPA) and AIRS surface air temperature, to drive the model.

  8. Enabling PBPK model development through the application of freely available techniques for the creation of a chemically-annotatedcollection of literature

    Science.gov (United States)

    The creation of Physiologically Based Pharmacokinetic (PBPK) models for a new chemical requires the selection of an appropriate model structure and the collection of a large amount of data for parameterization. Commonly, a large proportion of the needed information is collected ...

  9. RFID- enabled Supply Chain Business Model Research: A Theoretical Analysis Framework%RFID技术供应链应用商业模式研究:一个理论分析框架

    Institute of Scientific and Technical Information of China (English)

    戴勇

    2012-01-01

    本文以RFID技术供应链应用的商业模式为研究对象,建立了基于价值主张、价值网络、价值创造、价值评估四维的商业模式分析框架,构建了商业模式的识别与评估模型,提出了RFID供应链应用的三种商业模式:标签型、平台型、定制型,并分析了商业模式的实施策略。%This paper takes the RFID - enabled supply chain application business model as the object of study and establishes the four -dimensional business model theoretical analysis frame based on the four value po- sition, the value network, the value creation, the value assessment, then constructs the business model recogni- tion and the evaluation model. Finally, three RFID -enabled supply chain business models are concluded as: La- bel, Platform, Custom -Made and the business model implementation strategies are analyzed.

  10. Space Software Defined Radio Characterization to Enable Reuse

    Science.gov (United States)

    Mortensen, Dale J.; Bishop, Daniel W.; Chelmins, David

    2012-01-01

    NASA's Space Communication and Navigation Testbed is beginning operations on the International Space Station this year. The objective is to promote new software defined radio technologies and associated software application reuse, enabled by this first flight of NASA's Space Telecommunications Radio System architecture standard. The Space Station payload has three software defined radios onboard that allow for a wide variety of communications applications; however, each radio was only launched with one waveform application. By design the testbed allows new waveform applications to be uploaded and tested by experimenters in and outside of NASA. During the system integration phase of the testbed special waveform test modes and stand-alone test waveforms were used to characterize the SDR platforms for the future experiments. Characterization of the Testbed's JPL SDR using test waveforms and specialized ground test modes is discussed in this paper. One of the test waveforms, a record and playback application, can be utilized in a variety of ways, including new satellite on-orbit checkout as well as independent on-board testbed experiments.

  11. Inclusion of mPRISM potential for polymer-induced protein interactions enables modeling of second osmotic virial coefficients in aqueous polymer-salt solutions.

    Science.gov (United States)

    Herhut, Marcel; Brandenbusch, Christoph; Sadowski, Gabriele

    2016-01-01

    The downstream processing of therapeutic proteins is a challenging task. Key information needed to estimate applicable workup strategies (e.g. crystallization) are the interactions of the proteins with other components in solution. This information can be deduced from the second osmotic virial coefficient B22 , measurable by static light scattering. Thermodynamic models are very valuable for predicting B22 data for different process conditions and thus decrease the experimental effort. Available B22 models consider aqueous salt solutions but fail for the prediction of B22 if an additional polymer is present in solution. This is due to the fact that depending on the polymer concentration protein-protein interactions are not rectified as assumed within these models. In this work, we developed an extension of the xDLVO model to predict B22 data of proteins in aqueous polymer-salt solutions. To show the broad applicability of the model, lysozyme, γ-globulin and D-xylose ketol isomerase in aqueous salt solution containing polyethylene glycol were considered. For all proteins considered, the modified xDLVO model was able to predict the experimentally observed non-monotonical course in B22 data with high accuracy. When used in an early stage in process development, the model will contribute to an efficient and cost effective downstream processing development.

  12. Collaborative Project: The problem of bias in defining uncertainty in computationally enabled strategies for data-driven climate model development. Final Technical Report.

    Energy Technology Data Exchange (ETDEWEB)

    Huerta, Gabriel [Univ. of New Mexico, Albuquerque, NM (United States)

    2016-05-10

    The objective of the project is to develop strategies for better representing scientific sensibilities within statistical measures of model skill that then can be used within a Bayesian statistical framework for data-driven climate model development and improved measures of model scientific uncertainty. One of the thorny issues in model evaluation is quantifying the effect of biases on climate projections. While any bias is not desirable, only those biases that affect feedbacks affect scatter in climate projections. The effort at the University of Texas is to analyze previously calculated ensembles of CAM3.1 with perturbed parameters to discover how biases affect projections of global warming. The hypothesis is that compensating errors in the control model can be identified by their effect on a combination of processes and that developing metrics that are sensitive to dependencies among state variables would provide a way to select version of climate models that may reduce scatter in climate projections. Gabriel Huerta at the University of New Mexico is responsible for developing statistical methods for evaluating these field dependencies. The UT effort will incorporate these developments into MECS, which is a set of python scripts being developed at the University of Texas for managing the workflow associated with data-driven climate model development over HPC resources. This report reflects the main activities at the University of New Mexico where the PI (Huerta) and the Postdocs (Nosedal, Hattab and Karki) worked on the project.

  13. Analysis of Advanced Respiratory Support Onboard ISS and CCV

    Science.gov (United States)

    Shah, Ronak V.; Kertsman, Eric L.; Alexander, David J.; Duchesne, Ted; Law, Jennifer; Roden, Sean K.

    2014-01-01

    NASA is collaborating with private entities for the development of commercial space vehicles. The Space and Clinical Operations Division was tasked to review the oxygen and respiratory support system and recommend what capabilities, if any, the vehicle should have to support the return of an ill or injured crewmember. The Integrated Medical Model (IMM) was utilized as a data source for the development of these recommendations. The Integrated Medical Model (IMM) was used to simulate a six month, six crew, International Space Station (ISS) mission. Three medical system scenarios were considered based on the availability of (1) oxygen only, (2) oxygen and a ventilator, or (3) neither oxygen nor ventilator. The IMM analysis provided probability estimates of medical events that would require either oxygen or ventilator support. It also provided estimates of crew health, the probability of evacuation, and the probability of loss of crew life secondary to medical events for each of the three medical system scenarios. These IMM outputs were used as objective data to enable evidence-based decisions regarding oxygen and respiratory support system requirements for commercial crew vehicles. The IMM provides data that may be utilized to support informed decisions regarding the development of medical systems for commercial crew vehicles.

  14. Systems toxicology approaches enable mechanistic comparison of spontaneous and cigarette smoke-related lung tumor development in the A/J mouse model

    OpenAIRE

    2014-01-01

    The A/J mouse is highly susceptible to lung tumor induction and has been widely used as a screening model in carcinogenicity testing and chemoprevention studies. However, the A/J mouse model has several disadvantages. Most notably, it develops lung tumors spontaneously. Moreover, there is a considerable gap in our understanding of the underlying mechanisms of pulmonary chemical carcinogenesis in the A/J mouse. Therefore, we examined the differences between spontaneous and cigarette smoke-rela...

  15. Critical Firm-based Enablers-Mediators-Outcomes (CFEMOs): A New Integrated Model for Product Innovation Performance Drivers in the Context of U.S. Restaurants

    OpenAIRE

    Ali, Mohamed Farouk Shehata

    2016-01-01

    This study develops an original theoretical model of critical managerially controllable factors that have high potential for achieving significant improvements in the (intermediate and ultimate) outcome(s) of product innovation efforts. To this end, the author draws on the relevant empirical literature and integrates four complementary theoretical perspectives, namely; the critical success factors (CSFs) approach, the resource-based view (RBV), the input-process-output (IPO) model, and the sy...

  16. Enabling virtual screening of potent and safer antimicrobial agents against noma: mtk-QSBER model for simultaneous prediction of antibacterial activities and ADMET properties.

    Science.gov (United States)

    Speck-Planche, Alejandro; Cordeiro, M N D S

    2015-01-01

    Neglected diseases are infections that thrive mainly among underdeveloped countries, particularly those belonging to regions found in Asia, Africa, and America. One of the most complex diseases is noma, a dangerous health condition characterized by a polymicrobial and opportunistic nature. The search for potent and safer antibacterial agents against this disease is therefore a goal of particular interest. Chemoinformatics can be used to rationalize the discovery of drug candidates, diminishing time and financial resources. However, in the case of noma, there is no in silico model available for its use in the discovery of efficacious antibacterial agents. This work is devoted to report the first mtk-QSBER model, which integrates dissimilar kinds of chemical and biological data. The model was generated with the aim of simultaneously predicting activity against bacteria present in noma, and ADMET (absorption, distribution, metabolism, elimination, toxicity) parameters. The mtk-QSBER model was constructed by employing a large and heterogeneous dataset of chemicals and displayed accuracies higher than 90% in both training and prediction sets. We confirmed the practical applicability of the model by predicting multiple profiles of the investigational antibacterial drug delafloxacin, and the predictions converged with the experimental reports. To date, this is the first model focused on the virtual search for desirable anti-noma agents.

  17. Double-plating of ovine critical sized defects of the tibia: a low morbidity model enabling continuous in vivo monitoring of bone healing

    Directory of Open Access Journals (Sweden)

    Pearce Alexandra

    2011-09-01

    Full Text Available Abstract Background Recent studies using sheep critical sized defect models to test tissue engineered products report high morbidity and complications rates. This study evaluates a large bone defect model in the sheep tibia, stabilized with two, a novel Carbon fibre Poly-ether-ether-ketone (CF-PEEK and a locking compression plate (LCP which could sustain duration for up to 6 month with an acceptable low complication rate. Methods A large bone defect of 3 cm was performed in the mid diaphysis of the right tibia in 33 sheep. The defect was stabilised with the CF - PEEK plate and an LCP. All sheep were supported with slings for 8 weeks after surgery. The study was carried out for 3 months in 6 and for 6 months in 27 animals. Results The surgical procedure could easily be performed in all sheep and continuous in vivo radiographic evaluation of the defect was possible. This long bone critical sized defect model shows with 6.1% a low rate of complications compared with numbers mentioned in the literature. Conclusions This experimental animal model could serve as a standard model in comparative research. A well defined standard model would reduce the number of experimental animals needed in future studies and would therefore add to ethical considerations.

  18. TSP-Based Generic Payload On-Board Software

    Science.gov (United States)

    Arberet, P.; Metge, J.-J.; Gras, O.; Crespo, A.

    2009-05-01

    The paper address the contect and rationale for deciding to develop a TSP-based solution for payload on-board software, highly generic and reusable, project named LVCUGEN. Then it describes the key design issues and the associated architectual achievements obtained at the end of development phase of LVCUGEN. It provides some inputs on the way to instantiate the developed framework in the scope of deployment of the solution on a target-project. Last, the paper presents the status of the project and the forthcoming activities, also open issues, still to be performed. Some perspectives are provided in particular the selection of the first space program targeted for deployment of the solution.

  19. Novel satellite transport protocol with on-board spoofing proxy

    Institute of Scientific and Technical Information of China (English)

    Liu Jiong; Cao Zhigang; Wang Jinglin

    2006-01-01

    As a result of the exponential growing rate of worldwide Internet usage, satellite systems are required to support broadband Internet applications. The transmission control protocol (TCP) which is widely used in the Internet, performs very well on wired networks. However, in the case of satellite channels, due to the delay and transmission errors, TCP performance degrades significantly and bandwidth of satellite links can not be fully utilized. To improve the TCP performance, a new idea of placing a TCP spoofing proxy in the satellite is considered. A Novel Satellite Transport Protocol (NSTP) which takes advantage of the special properties of the satellite channel is also proposed. By using simulation, as compared with traditional TCPs, the on-board spoofing proxy integrated with the special transport protocol can significantly enhance throughput performance on the high BER satellite link, the time needed to transfer files and the bandwidth used in reverse path are sharply reduced.

  20. DAMPE silicon tracker on-board data compression algorithm

    CERN Document Server

    Dong, Yifan; Qiao, Rui; Peng, Wenxi; Fan, Ruirui; Gong, Ke; Wu, Di; Wang, Huanyu

    2015-01-01

    The Dark Matter Particle Explorer (DAMPE) is an upcoming scientific satellite mission for high energy gamma-ray, electron and cosmic rays detection. The silicon tracker (STK) is a sub detector of the DAMPE payload with an excellent position resolution (readout pitch of 242um), which measures the incident direction of particles, as well as charge. The STK consists 12 layers of Silicon Micro-strip Detector (SMD), equivalent to a total silicon area of 6.5m$^2$. The total readout channels of the STK are 73728, which leads to a huge amount of raw data to be dealt. In this paper, we focus on the on-board data compression algorithm and procedure in the STK, which was initially verified by cosmic-ray measurements.

  1. Safe Onboard Guidance and Control Under Probabilistic Uncertainty

    Science.gov (United States)

    Blackmore, Lars James

    2011-01-01

    An algorithm was developed that determines the fuel-optimal spacecraft guidance trajectory that takes into account uncertainty, in order to guarantee that mission safety constraints are satisfied with the required probability. The algorithm uses convex optimization to solve for the optimal trajectory. Convex optimization is amenable to onboard solution due to its excellent convergence properties. The algorithm is novel because, unlike prior approaches, it does not require time-consuming evaluation of multivariate probability densities. Instead, it uses a new mathematical bounding approach to ensure that probability constraints are satisfied, and it is shown that the resulting optimization is convex. Empirical results show that the approach is many orders of magnitude less conservative than existing set conversion techniques, for a small penalty in computation time.

  2. Dual-wavelength laser source for onboard atom interferometry.

    Science.gov (United States)

    Ménoret, V; Geiger, R; Stern, G; Zahzam, N; Battelier, B; Bresson, A; Landragin, A; Bouyer, P

    2011-11-01

    We present a compact and stable dual-wavelength laser source for onboard atom interferometry with two different atomic species. It is based on frequency-doubled telecom lasers locked on a femtosecond optical frequency comb. We take advantage of the maturity of fiber telecom technology to reduce the number of free-space optical components, which are intrinsically less stable, and to make the setup immune to vibrations and thermal fluctuations. The source provides the frequency agility and phase stability required for atom interferometry and can easily be adapted to other cold atom experiments. We have shown its robustness by achieving the first dual-species K-Rb magneto-optical trap in microgravity during parabolic flights.

  3. Monitoring automotive oil degradation: analytical tools and onboard sensing technologies.

    Science.gov (United States)

    Mujahid, Adnan; Dickert, Franz L

    2012-09-01

    Engine oil experiences a number of thermal and oxidative phases that yield acidic products in the matrix consequently leading to degradation of the base oil. Generally, oil oxidation is a complex process and difficult to elucidate; however, the degradation pathways can be defined for almost every type of oil because they mainly depend on the mechanical status and operating conditions. The exact time of oil change is nonetheless difficult to predict, but it is of great interest from an economic and ecological point of view. In order to make a quick and accurate decision about oil changes, onboard assessment of oil quality is highly desirable. For this purpose, a variety of physical and chemical sensors have been proposed along with spectroscopic strategies. We present a critical review of all these approaches and of recent developments to analyze the exact lifetime of automotive engine oil. Apart from their potential for degradation monitoring, their limitations and future perspectives have also been investigated.

  4. Dual-wavelength laser source for onboard atom interferometry

    CERN Document Server

    Ménoret, Vincent; Stern, Guillaume; Zahzam, Nassim; Battelier, Baptiste; Bresson, Alexandre; Landragin, Arnaud; Bouyer, Philippe

    2011-01-01

    We present a compact and stable dual-wavelength laser source for onboard atom interferometry with two different atomic species. It is based on frequency-doubled telecom lasers locked on a femtosecond optical frequency comb. We take advantage of the maturity of fiber telecom technology to reduce the number of free-space optical components which are intrinsically less stable, and to make the setup immune to vibrations and thermal fluctuations. The source provides the frequency agility and phase stability required for atom interferometry and can easily be adapted to other cold atom experiments. We have shown its robustness by achieving the first dual-species K-Rb magneto optical trap in microgravity during parabolic flights.

  5. An Efficient Photo Voltaic System for Onboard Ship Applications

    Directory of Open Access Journals (Sweden)

    Shashidhar Kasthala

    2016-02-01

    Full Text Available In this paper a high efficient photovoltaic system is proposed for onboard ship applications which convert the lower voltage obtained from solar modules to higher voltage required by the ship service loads. In a typical photovoltaic system only step-up /boost converter is used due to which the converter has to operate in extreme duty ratio, resulting in increase of switching losses and thus decreasing the overall efficiency. But in this paper the conventional boost converter is used with interleaved inductors and capacitors. The poposed system stores the energy in inductors and thus reduces the stress in the switches (Without allowing the total voltage to appear across the switch. The simulation is designed using MATLAB/Simulink with an Input voltage of 40-V to achieve a output voltage of 300-380 V. The developed simulation results are compared for output powers of 500W and 1kW

  6. Smart Onboard Inspection of High Pressure Gas Fuel Cylinders

    Energy Technology Data Exchange (ETDEWEB)

    Beshears, D.L.; Starbuck, J.M.

    1999-09-27

    The use of natural gas as an alternative fuel in automotive applications is not widespread primarily because of the high cost and durability of the composite storage tanks. Tanks manufactured using carbon fiber are desirable in weight critical passenger vehicles because of the low density of carbon fiber. The high strength of carbon fiber also translates to a weight reduction because thinner wall designs are possible to withstand the internal pressure loads. However, carbon fiber composites are prone to impact damage that over the life of the storage tank may lead to an unsafe condition for the vehicle operator. A technique that potentially may be a reliable indication of developing hazardous conditions in composite fuel tanks is imbedded fiber optics. The applicability of this technique to onboard inspection is discussed and results from preliminary lab testing indicate that fiber optic sensors can reliably detect impact damage.

  7. Onboard Catalysis of Formic Acid for Hydrogen Fueled Vehicles

    Science.gov (United States)

    Karim, Altaf; Mamoor, Muhammad

    2015-03-01

    Metal hydrides are used as a medium of hydrogen storage in hydrogen powered vehicles. Such hydride materials cannot store hydrogen more than 10 wt%. The bottleneck in this issue is the reversible storage of hydrogen at ambient temperature and pressure. Alternatively formic acid is becoming more popular medium for the onboard hydrogen production for these vehicles. Its decomposition on metal surfaces and nanostructures is considered to be a potential method to produce CO-free hydrogen at near ambient temperatures. We applied Density Functional Theory (DFT) based Kinetic Monte Carlo (KMC) simulations as our tool to study the reaction kinetics of hydrogen production from formic acid on different catalytic surfaces and nano structures (Au, Pd, Rh, Pt). Our results show that nanostructures and artificially engineered bimetallic catalysts give higher rate of hydrogen production then their monometallic counter parts under various temperature and pressure conditions.

  8. Advanced on-board electric vehicle charger. Final report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-12-31

    The design and development of an on-board charger power module for use in electric vehicles is described. The module operates at 20KHz in a series resonant, half bridge configuration. Circuit design trade-offs, module performance, and solutions to the problems of acoustic noise, maintaining high power factor, circuit protection and operating reliability are discussed. The power module operates from a single phase, 240 V, 50/60 Hz utility line. Average power factor is 0.90; efficiency at maximum power output is 86%. The module is rated to charge a bank consisting of 20 Exide EV-106 batteries (60 cells) to an end voltage of 2.42 V/cell. Physically, the module weighs less than 17 Kg. Projected manufacturing cost at the thousand unit level is $394.00 (1978 dollars).

  9. WE-G-BRD-06: Volumetric Cine MRI (VC-MRI) Estimated Based On Prior Knowledge for On-Board Target Localization

    Energy Technology Data Exchange (ETDEWEB)

    Harris, W; Yin, F; Cai, J; Zhang, Y; Ren, L [Duke University Medical Center, Durham, NC (United States)

    2015-06-15

    Purpose: To develop a technique to generate on-board VC-MRI using patient prior 4D-MRI, motion modeling and on-board 2D-cine MRI for real-time 3D target verification of liver and lung radiotherapy. Methods: The end-expiration phase images of a 4D-MRI acquired during patient simulation are used as patient prior images. Principal component analysis (PCA) is used to extract 3 major respiratory deformation patterns from the Deformation Field Maps (DFMs) generated between end-expiration phase and all other phases. On-board 2D-cine MRI images are acquired in the axial view. The on-board VC-MRI at any instant is considered as a deformation of the prior MRI at the end-expiration phase. The DFM is represented as a linear combination of the 3 major deformation patterns. The coefficients of the deformation patterns are solved by matching the corresponding 2D slice of the estimated VC-MRI with the acquired single 2D-cine MRI. The method was evaluated using both XCAT (a computerized patient model) simulation of lung cancer patients and MRI data from a real liver cancer patient. The 3D-MRI at every phase except end-expiration phase was used to simulate the ground-truth on-board VC-MRI at different instances, and the center-tumor slice was selected to simulate the on-board 2D-cine images. Results: Image subtraction of ground truth with estimated on-board VC-MRI shows fewer differences than image subtraction of ground truth with prior image. Excellent agreement between profiles was achieved. The normalized cross correlation coefficients between the estimated and ground-truth in the axial, coronal and sagittal views for each time step were >= 0.982, 0.905, 0.961 for XCAT data and >= 0.998, 0.911, 0.9541 for patient data. For XCAT data, the maximum-Volume-Percent-Difference between ground-truth and estimated tumor volumes was 1.6% and the maximum-Center-of-Mass-Shift was 0.9 mm. Conclusion: Preliminary studies demonstrated the feasibility to estimate real-time VC-MRI for on-board

  10. Calibration of the radiation monitor onboard Akebono using Geant4

    Science.gov (United States)

    Asai, Keiko; Takashima, Takeshi; Koi, Tatsumi; Nagai, Tsugunobu

    Natural high-energy electrons and protons (keV-MeV) in the space contaminate the data re-ciprocally. In order to calibrate the energy ranges and to remove data contamination on the radiation monitor (RDM) onboard the Japanese satellite, Akebono (EXOS-D), the detector is investigated using the Geant4 simulation toolkit of computational particle tracing. The semi-polar orbiting Akebono, launched in February 1989, is active now. This satellite has been observed the space environment at altitudes of several thousands km. The RDM instrument onboard Akebono monitors energetic particles in the Earth's radiation belt and gives important data accumulated for about two solar cycles. The data from RDM are for electrons in three energy channels of 0.3 MeV, protons in three energy channels of ¿ 30 MeV, and alpha particles in one energy channels of 15-45 MeV. The energy ranges are however based on information of about 20 years ago so that the data seem to include some errors actuary. In addition, these data include contamination of electrons and protons reciprocally. Actuary it is noticed that the electron data are contaminated by the solar protons but unknown quantitative amount of the contamination. Therefore we need data calibration in order to correct the energy ranges and to remove data contamination. The Geant4 simulation gives information of trajectories of incident and secondary particles whose are interacted with materials. We examine the RDM monitor using the Geant4 simulation. We find from the results that relativistic electrons of MeV behave quite complicatedly because of particle-material interaction in the instrument. The results indicate that efficiencies of detection and contamination are dependent on energy. This study compares the electron data from Akebono RDM with the simultaneous observation of CRRES and tries to lead the values of correction for each of the energy channels.

  11. Summary of observations of the infrared camera (IRC) onboard AKARI

    Science.gov (United States)

    Onaka, T.; Matsuhara, H.; Wada, T.; Ishihara, D.; Ohyama, Y.; Sakon, I.; Shimonishi, T.; Ohsawa, R.; Mori, T. I.; Egusa, F.; Usui, F.; Takita, S.; Murakami, H.; Oyabu, S.; Yamagishi, M.; Mori, T.; Mouri, A.; Kondo, T.; Suzuki, S.; Kaneda, H.; Ita, Y.; Ootsubo, T.

    2012-09-01

    AKARI, the Japanese satellite mission dedicated to infrared astronomy was launched in 2006 February and exhausted its liquid helium in 2007 August. During the cold mission phase, the Infrared Camera (IRC) onboard carried out an all-sky survey at 9 and 18µm with better spatial resolution and higher sensitivity than IRAS. Both bands also have slightly shorter wavelength coverage than IRAS 12 and 25μm bands and thus provide different information on the infrared sky. All-sky image data of the IRC are now in the final processing and will be released to the public within a year. After the exhaustion of the cryogen, the telescope and focal plane instruments of AKARI had still been kept at sufficiently low temperatures owing to the onboard cryocooler. Near-infrared (NIR) imaging and spectroscopic observations with the IRC had continued until 2011 May, when the spacecraft had a serious problem in the power supply system that forced us to terminate the observation. The IRC carried out nearly 20000 pointing observations in total despite of its near-earth orbit. About a half of them were performed after the exhaustion of the cryogen in the spectroscopic modes, which provided high-sensitivity NIR spectra from 2 to 5µm without disturbance of the terrestrial atmosphere. During the warm mission phase, the temperature of the instrument gradually increased and changed the array operation conditions. We present a summary of AKARI/IRC observations, including the all-sky mid-infrared diffuse data as well as the data taken in the warm mission phase.

  12. Advanced stellar compass onboard autonomous orbit determination, preliminary performance.

    Science.gov (United States)

    Betto, Maurizio; Jørgensen, John L; Jørgensen, Peter S; Denver, Troelz

    2004-05-01

    Deep space exploration is in the agenda of the major space agencies worldwide; certainly the European Space Agency (SMART Program) and the American NASA (New Millennium Program) have set up programs to allow the development and the demonstration of technologies that can reduce the risks and the cost of deep space missions. From past experience, it appears that navigation is the Achilles heel of deep space missions. Performed on ground, this imposes considerable constraints on the entire system and limits operations. This makes it is very expensive to execute, especially when the mission lasts several years and, furthermore, it is not failure tolerant. Nevertheless, to date, ground navigation has been the only viable solution. The technology breakthrough of advanced star trackers, like the advanced stellar compass (ASC), might change this situation. Indeed, exploiting the capabilities of this instrument, the authors have devised a method to determine the orbit of a spacecraft autonomously, onboard, and without a priori knowledge of any kind. The solution is robust and fast. This paper presents the preliminary performance obtained during the ground testing in August 2002 at the Mauna Kea Observatories. The main goals were: (1) to assess the robustness of the method in solving autonomously, onboard, the position lost-in-space problem; (2) to assess the preliminary accuracy achievable with a single planet and a single observation; (3) to verify the autonomous navigation (AutoNav) module could be implemented into an ASC without degrading the attitude measurements; and (4) to identify the areas of development and consolidation. The results obtained are very encouraging.

  13. Calibration and in orbit performance of the reflection grating spectrometer onboard XMM-Newton

    CERN Document Server

    de Vries, C P; Gabriel, C; Gonzalez-Riestra, R; Ibarra, A; Kaastra, J S; Pollock, A M T; Raassen, A J J; Paerels, F B S

    2014-01-01

    Context: XMM-Newton was launched on 10 December 1999 and has been operational since early 2000. One of the instruments onboard XMM-Newton is the reflection grating spectrometer (RGS). Two identical RGS instruments are available, with each RGS combining a reflection grating assembly (RGA) and a camera with CCDs to record the spectra. Aims: We describe the calibration and in-orbit performance of the RGS instrument. By combining the preflight calibration with appropriate inflight calibration data including the changes in detector performance over time, we aim at profound knowledge about the accuracy in the calibration. This will be crucial for any correct scientific interpretation of spectral features for a wide variety of objects. Methods: Ground calibrations alone are not able to fully characterize the instrument. Dedicated inflight measurements and constant monitoring are essential for a full understanding of the instrument and the variations of the instrument response over time. Physical models of the instru...

  14. Pairwise-Svm for On-Board Urban Road LIDAR Classification

    Science.gov (United States)

    Shu, Zhen; Sun, Kai; Qiu, Kaijin; Ding, Kou

    2016-06-01

    The common method of LiDAR classifications is Markov random fields (MRF). Based on construction of MRF energy function, spectral and directional features are extracted for on-board urban point clouds. The MRF energy function is consisted of unary and pairwise potentials. The unary terms are computed by SVM classifictaion. The initial labeling is mainly processed through geometrical shapes. The pairwise potential is estimated by Naïve Bayes. From training data, the probability of adjacent objects is computed by prior knowledge. The final labeling method is reweighted message-passing to minimization the energy function. The MRF model is difficult to process the large-scale misclassification. We propose a super-voxel clustering method for over-segment and grouping segment for large objects. Trees, poles ground, and building are classified in this paper. The experimental results show that this method improves the accuracy of classification and speed of computation.

  15. Simulations of GRB detections with the ECLAIRs telescope onboard the future SVOM mission

    CERN Document Server

    Antier, S; Cordier, B; Gros, A; Götz, D; Lachaud, C

    2015-01-01

    The soft gamma-ray telescope ECLAIRs with its Scientific Trigger Unit is in charge of detecting Gamma-Ray Bursts (GRBs) on-board the future SVOM satellite. Using the "scientific software model" (SSM), we study the efficiency of both implemented trigger algorithms, the Count-Rate Trigger for time-scales below 20s and the Image Trigger for larger ones. The SMM provides a simulation of ECLAIRs with photon projection through the coded-mask onto the detection plane. We developed an input GRB database for the SSM based on GRBs light curves detected by the Fermi GBM instrument. We extrapolated the GRB spectra into the ECLAIRs band (4-120 keV) and projected them onto the detection plane, superimposed with cosmic extragalactic background photons (CXB). Several simulations were performed by varying the GRB properties (fluxes and positions in the field of view). We present first results of this study in this paper.

  16. [Construction and application of an onboard absorption analyzer device for CDOM].

    Science.gov (United States)

    Lin, Jun-Fang; Sun, Zhao-Hua; Cao, Wen-Xi; Hu, Shui-Bo; Xu, Zhan-Tang

    2013-04-01

    Colored dissolved organic matter (CDOM) plays an important role in marine ecosystems. In order to solve the current problems in measurement of CDOM absorption, an automated onboard analyzer based on liquid core waveguides (Teflon AF LWCC/LCW) was constructed. This analyzer has remarkable characteristics including adjusted optical pathlength, wide measurement range, and high sensitivity. The model of filtration and injection can implement the function of automated filtration, sample injection, and LWCC cleaning. The LabVIEW software platform can efficiently control the running state of the analyzer and acquire real time data including light absorption spectra, GPS data, and CTW data. By the comparison experiments and shipboard measurements, it was proved that the analyzer was reliable and robust.

  17. Characterization and selection of CZT detector modules for HEX experiment onboard Chandrayaan-1

    Energy Technology Data Exchange (ETDEWEB)

    Vadawale, S.V. [Physical Research Laboratory, Navarangpura, Ahmedabad 380 009 (India)], E-mail: santoshv@prl.res.in; Purohit, S.; Shanmugam, M.; Acharya, Y.B.; Goswami, J.N. [Physical Research Laboratory, Navarangpura, Ahmedabad 380 009 (India); Sudhakar, M.; Sreekumar, P. [Space Astronomy and Instrumentation Division, ISRO Satellite Center, Bangalore 560 017 (India)

    2009-01-11

    We present the results of characterization of a large sample of Cadmium Zinc Telluride (CZT) detector modules planned to be used for the HEX (High Energy X-ray spectrometer) experiment onboard India's first mission to the Moon, Chandrayaan-1. We procured forty modules from Orbotech Medical Solutions Ltd. and carried out a detailed characterization of each module at various temperatures and selected final nine detector modules for the flight model of HEX. Here we present the results of the characterization of all modules and the selection procedure for the HEX flight detector modules. These modules show 5-6% energy resolution (at 122 keV, for best 90% of pixels) at room temperature which is improved to {approx}4% when these modules are cooled to sub-0 deg. C temperature. The gain and energy resolution were stable during the long duration tests.

  18. Indoor Operations by FMCW Millimeter Wave SAR Onboard Small UAS: A Simulation Approach

    Directory of Open Access Journals (Sweden)

    Antonio Fulvio Scannapieco

    2016-01-01

    Full Text Available A dedicated system simulator is presented in this paper for indoor operations onboard small Unmanned Aerial Systems (UAS by a novel millimeter wave radar sensor. The sensor relies on the principle of Synthetic Aperture Radar (SAR applied to a Frequency Modulated Continuous Wave (FMCW radar system. Input to the simulator are both design parameters for Synthetic Aperture Radar (SAR, which should be able to cope with the stringent requirements set by indoor operations, and information about platform navigation and observed scene. The scene generation task is described in detail. This is based on models for point target response on either a completely absorbing background or fluctuating background and ray tracing (RT techniques. Results obtained from scene processing are finally discussed, giving further insights on expected results from high-resolution observation of an assigned control volume by this novel SAR sensor.

  19. Design of on-board Bluetooth wireless network system based on fault-tolerant technology

    Science.gov (United States)

    You, Zheng; Zhang, Xiangqi; Yu, Shijie; Tian, Hexiang

    2007-11-01

    In this paper, the Bluetooth wireless data transmission technology is applied in on-board computer system, to realize wireless data transmission between peripherals of the micro-satellite integrating electronic system, and in view of the high demand of reliability of a micro-satellite, a design of Bluetooth wireless network based on fault-tolerant technology is introduced. The reliability of two fault-tolerant systems is estimated firstly using Markov model, then the structural design of this fault-tolerant system is introduced; several protocols are established to make the system operate correctly, some related problems are listed and analyzed, with emphasis on Fault Auto-diagnosis System, Active-standby switch design and Data-Integrity process.

  20. Spaceflight of HUVEC: An Integrated eXperiment- SPHINX Onboard the ISS

    Science.gov (United States)

    Versari, S.; Maier, J. A. M.; Norfini, A.; Zolesi, V.; Bradamante, S.

    2013-02-01

    The spaceflight orthostatic challenge can promote in astronauts inadequate cardiovascular responses defined as cardiovascular deconditioning. In particular, disturbance of endothelial functions are known to lead to altered vascular performances, being the endothelial cells crucial in the maintenance of the functional integrity of the vascular wall. In order to evaluate whether weightlessness affects endothelial functions, we designed, developed, and performed the experiment SPHINX - SPaceflight of HUVEC: an INtegrated eXperiment - where HUVEC (Human Umbilical Vein Endothelial Cells) were selected as a macrovascular cell model system. SPHINX arrived at the International Space Station (ISS) onboard Progress 40P, and was processed inside Kubik 6 incubator for 7 days. At the end, all of the samples were suitably fixed and preserved at 6°C until return on Earth on Soyuz 23S.

  1. On-board Unit and its Possibilities of Communications on Safety and Security Principles

    Directory of Open Access Journals (Sweden)

    Martin Vestenicky

    2008-01-01

    Full Text Available The technical solution of on-board unit (OBU for vehicles used for dangerous good transport and design of vehicle sensor network (based on CAN bus for dangerous good monitoring will be discussed. In presentation the conception of GSM/GPRS networking subsystem for real time data transmission into monitoring centre will be described. Next themes of discussion will be focused on the possibilities of solution of safety-related communication channel for safety sensor network in accordance with standard for functional safety of Electrical / Electronic / Programmable Electronic (E/E/PE systems IEC 61508, recommended methods of risk analysis and possibilities of their modelling and proposal of secure communication channel over GSM/GPRS for secure data transmission into control centre on the base of IPsec protocol.

  2. Geo-Enabled, Mobile Services

    DEFF Research Database (Denmark)

    Jensen, Christian Søndergaard

    2006-01-01

    We are witnessing the emergence of a global infrastructure that enables the widespread deployment of geo-enabled, mobile services in practice. At the same time, the research community has also paid increasing attention to data management aspects of mobile services. This paper offers me an opportu...

  3. Geo-Enabled, Mobile Services

    DEFF Research Database (Denmark)

    Jensen, Christian Søndergaard

    2006-01-01

    We are witnessing the emergence of a global infrastructure that enables the widespread deployment of geo-enabled, mobile services in practice. At the same time, the research community has also paid increasing attention to data management aspects of mobile services. This paper offers me...

  4. Collaborative Business Models for Exploration: - The Expansion of Public-Private Partnerships to Enable Exploration and Improve the Quality of Life on Earth

    Science.gov (United States)

    Davis, Jeffrey R.

    2012-01-01

    In May of 2007, The Space Life Sciences Strategy was published, launching a series of efforts aimed at driving human health and performance innovations that both meet space flight needs and benefit life on Earth. These efforts, led by the Space Life Science Directorate (SLSD) at the NASA Johnson Space Center, led to the development and implementation of the NASA Human Health and Performance Center (NHHPC) in October 2010. The NHHPC now has over 100 members including seven NASA centers; other federal agencies; some of the International Space Station partners; industry; academia and non-profits. The NHHPC seeks to share best practices, develop collaborative projects and experiment with open collaboration techniques such as crowdsourcing. Using this approach, the NHHPC collaborative projects are anticipated to be at the earliest possible stage of development utilizing the many possible public-private partnerships in this center. Two workshops have been successfully conducted in 2011 (January and October) with a third workshop planned for the spring of 2012. The challenges of space flight are similar in many respects to providing health care and environmental monitoring in challenging settings on the earth. These challenges to technology development include the need for low power consumption, low weight, in-situ analysis, operator independence (i.e., minimal training), robustness, and limited resupply or maintenance. When similar technology challenges are identified (such as the need to provide and monitor a safe water supply or develop a portable medical diagnostic device for remote use), opportunities arise for public-private partnerships to engage in co-creation of novel approaches for space exploration and health and environmental applications on earth. This approach can enable the use of shared resources to reduce costs, engage other organizations and the public in participatory exploration (solving real-world problems), and provide technologies with multiple uses

  5. Toward genome-enabled mycology.

    Science.gov (United States)

    Hibbett, David S; Stajich, Jason E; Spatafora, Joseph W

    2013-01-01

    Genome-enabled mycology is a rapidly expanding field that is characterized by the pervasive use of genome-scale data and associated computational tools in all aspects of fungal biology. Genome-enabled mycology is integrative and often requires teams of researchers with diverse skills in organismal mycology, bioinformatics and molecular biology. This issue of Mycologia presents the first complete fungal genomes in the history of the journal, reflecting the ongoing transformation of mycology into a genome-enabled science. Here, we consider the prospects for genome-enabled mycology and the technical and social challenges that will need to be overcome to grow the database of complete fungal genomes and enable all fungal biologists to make use of the new data.

  6. The Invasive Species Forecasting System (ISFS): An iRODS-Based, Cloud-Enabled Decision Support System for Invasive Species Habitat Suitability Modeling

    Science.gov (United States)

    Gill, Roger; Schnase, John L.

    2012-01-01

    The Invasive Species Forecasting System (ISFS) is an online decision support system that allows users to load point occurrence field sample data for a plant species of interest and quickly generate habitat suitability maps for geographic regions of interest, such as a national park, monument, forest, or refuge. Target customers for ISFS are natural resource managers and decision makers who have a need for scientifically valid, model- based predictions of the habitat suitability of plant species of management concern. In a joint project involving NASA and the Maryland Department of Natural Resources, ISFS has been used to model the potential distribution of Wavyleaf Basketgrass in Maryland's Chesapeake Bay Watershed. Maximum entropy techniques are used to generate predictive maps using predictor datasets derived from remotely sensed data and climate simulation outputs. The workflow to run a model is implemented in an iRODS microservice using a custom ISFS file driver that clips and re-projects data to geographic regions of interest, then shells out to perform MaxEnt processing on the input data. When the model completes, all output files and maps from the model run are registered in iRODS and made accessible to the user. The ISFS user interface is a web browser that uses the iRODS PHP client to interact with the ISFS/iRODS- server. ISFS is designed to reside in a VMware virtual machine running SLES 11 and iRODS 3.0. The ISFS virtual machine is hosted in a VMware vSphere private cloud infrastructure to deliver the online service.

  7. Lightning Detection by LAC Onboard the Japanese Venus Climate Orbiter, Planet-C

    Science.gov (United States)

    Takahashi, Y.; Yoshida, J.; Yair, Y.; Imamura, T.; Nakamura, M.

    2008-06-01

    Lightning activity in Venus has been a mystery for a long period, although many studies based on observations both by spacecraft and by ground-based telescope have been carried out. This situation may be attributed to the ambiguity of these evidential measurements. In order to conclude this controversial subject, we are developing a new type of lightning detector, LAC (Lightning and Airglow Camera), which will be onboard Planet-C (Venus Climate Orbiter: VCO). Planet-C will be launched in 2010 by JAXA. To distinguish an optical lightning flash from other pulsing noises, high-speed sampling at 50 kHz for each pixel, that enables us to investigate the time variation of each lightning flash phenomenon, is adopted. On the other hand, spatial resolution is not the first priority. For this purpose we developed a new type of APD (avalanche photo diode) array with a format of 8×8. A narrow band interference filter at wavelength of 777.4 nm (OI), which is the expected lightning color based on laboratory discharge experiment, is chosen for lightning measurement. LAC detects lightning flash with an optical intensity of average of Earth’s lightning or less at a distance of 3 Rv. In this paper, firstly we describe the background of the Venus lightning study to locate our spacecraft project, and then introduce the mission details.

  8. On-board conversion of alcohols to ethers for fumigation in compression ignition engines

    Energy Technology Data Exchange (ETDEWEB)

    Armbruster, H.; Stucki, S. [Paul Scherrer Institute, Villigen (Switzerland). Laboratorium of Energy and Material Cycles; Olsson, E.; Gjirja, S. [Chalmers University, Goteborg (Sweden). Combustion Engine Research Centre

    2003-07-01

    Fumigation of dimethyl ether (DME) is an interesting option for using methanol as a fuel in compression ignition engines. In this concept, a fraction of the methanol used as a fuel is catalytically converted on-board to DME and water, and the products of the conversion are introduced into the engine via the combustion air. With an optimized engine the performance as well as emissions are comparable with those obtained when running the engine on alcohol with polyethylene glycol as ignition improver. The methanol conversion has been tested with different catalysts under various conditions. Because of its superior thermal stability and the low costs, {gamma}-Al{sub 2}O{sub 3} has been selected as the most promising catalyst for converting methanol to DME in sufficient rates for an on-board application. The chemical kinetics and the mass transfer limitations of the {gamma}-Al{sub 2}O{sub 3} catalyst used for the methanol dehydration were evaluated. The rate-determining step of the catalytic reaction is found to be the reaction of adsorbed intermediates (the Langmuir-Hinshelwood mechanism); mass transfer is limited by Knudsen diffusivity. The kinetic data were used to design a catalytic converter for fuel processing on-board. Providing DME for fumigation in a 180 kW engine will require approximately 0.7 kg of catalyst. The compact catalyst is necessary for an efficient and fast start-up of the process. The transient behaviour (cold/warm start-up; load changes) of a fixed-bed reactor with {gamma}-Al{sub 2}O{sub 3} has been estimated using simplified models, which show that the cold start problem should be manageable in less than 1 min. With the hot gas of a methanol burner in front of the fixed bed or a bifunctional catalyst, the catalyst bed can be heated to 250{sup o}C and the reaction of methanol to DME started within 25 s. This is an acceptable time for cold-starting an engine in heavy-duty vehicles. (author)

  9. Autonomous Defensive Space Control via On-Board Artificial Neural Networks

    Science.gov (United States)

    2007-04-01

    AUTONOMOUS DEFENSIVE SPACE CONTROL VIA ON-BOARD ARTIFICIAL NEURAL NETWORKS Michael T. Manor, Major, USAF April 2007...TITLE AND SUBTITLE Sutonomous Defensive Space Control via On-Board Artificial Neural Networks 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM...11 HOW ARTIFICIAL NEURAL NETWORKS WORK

  10. Reliability analysis and design of on-board computer system for small stereo mapping satellite

    Institute of Scientific and Technical Information of China (English)

    马秀娟; 曹喜滨; 马兴瑞

    2002-01-01

    The on-board computer system for a small satellite is required to be high in reliability, light in weight, small in volume and low in power consumption. This paper describes the on-board computer system with the advantages of both centralized and distributed systems, analyzes its reliability, and briefs the key techniques used to improve its reliability.

  11. Onboard Supervisor for the Ørsted Satellite Attitude Control System

    DEFF Research Database (Denmark)

    Bøgh, S.A.; Izadi-Zamanabadi, Roozbeh; Blanke, M.

    1995-01-01

    The increasing operational requirements for onboard autonomy in satellite control systems necessitates structural methods that support the design of a complete and reliable supervisory system.......The increasing operational requirements for onboard autonomy in satellite control systems necessitates structural methods that support the design of a complete and reliable supervisory system....

  12. 49 CFR 1546.202 - Persons and property onboard the aircraft.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 9 2010-10-01 2010-10-01 false Persons and property onboard the aircraft. 1546.202 Section 1546.202 Transportation Other Regulations Relating to Transportation (Continued... CARRIER SECURITY Operations § 1546.202 Persons and property onboard the aircraft. Each foreign air...

  13. 49 CFR 1544.202 - Persons and property onboard an all-cargo aircraft.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 9 2010-10-01 2010-10-01 false Persons and property onboard an all-cargo aircraft. 1544.202 Section 1544.202 Transportation Other Regulations Relating to Transportation (Continued... SECURITY: AIR CARRIERS AND COMMERCIAL OPERATORS Operations § 1544.202 Persons and property onboard an...

  14. Onboarding Experiences: An Examination of Early Institutional Advancement Professionals' Decisions

    Science.gov (United States)

    Radosh, Meghan E.

    2013-01-01

    Onboarding is a new employee orientation process that is designed to formalize and socialize new hires to an organization, or in this case higher education institutions. The onboarding experience that many new employees have can shape employee views and first impressions of their new employer, and shape their early career path to stay or leave…

  15. Supplement of: The Influence of Volcanic Eruptions on the Climate of Tropical South America During the Last Millennium in an Isotope-Enabled General Circulation Model

    Science.gov (United States)

    Colose, Christopher; LeGrande, Allegra N.; Vuille, Mathias

    2016-01-01

    Currently, little is known on how volcanic eruptions impact large-scale climate phenomena such as South American paleo-intertropical Convergence Zone (ITCZ) position and summer monsoon behavior. In this paper, an analysis of observations and model simulations is employed to assess the influence of large volcanic eruptions on the climate of tropical South America. This problem is first considered for historically recent volcanic episodes for which more observations are available but where fewer events exist and the confounding effects of El NioSouthern Oscillation (ENSO) lead to inconclusive interpretation of the impact of volcanic eruptions at the continental scale. Therefore, we also examine a greater number of reconstructed volcanic events for the period 850CE to present that are incorporated into the NASA GISS ModelE2-R simulation of the last millennium.An advantage of this model is its ability to explicitly track water isotopologues throughout the hydrologic cycle and simulating the isotopic imprint following a large eruption. This effectively removes a degree of uncertainty associated with error-prone conversion of isotopic signals into climate variables, and allows for a direct comparison between GISS simulations and paleoclimate proxy records.Our analysis reveals that both precipitation and oxygen isotope variability respond with a distinct seasonal and spatial structure across tropical South America following an eruption. During austral winter, the heavy oxygen isotope in precipitation is enriched, likely due to reduced moisture convergence in the ITCZ domain and reduced rainfall over northern South America. During austral summer, however, more negative values of the precipitation isotopic composition are simulated over Amazonia, despite reductions in rainfall, suggesting that the isotopic response is not a simple function of the amount effect. During the South American monsoon season, the amplitude of the temperature response to volcanic forcing is larger

  16. The influence of volcanic eruptions on the climate of tropical South America during the last millennium in an isotope-enabled general circulation model

    Science.gov (United States)

    Colose, Christopher M.; LeGrande, Allegra N.; Vuille, Mathias

    2016-04-01

    Currently, little is known on how volcanic eruptions impact large-scale climate phenomena such as South American paleo-Intertropical Convergence Zone (ITCZ) position and summer monsoon behavior. In this paper, an analysis of observations and model simulations is employed to assess the influence of large volcanic eruptions on the climate of tropical South America. This problem is first considered for historically recent volcanic episodes for which more observations are available but where fewer events exist and the confounding effects of El Niño-Southern Oscillation (ENSO) lead to inconclusive interpretation of the impact of volcanic eruptions at the continental scale. Therefore, we also examine a greater number of reconstructed volcanic events for the period 850 CE to present that are incorporated into the NASA GISS ModelE2-R simulation of the last millennium. An advantage of this model is its ability to explicitly track water isotopologues throughout the hydrologic cycle and simulating the isotopic imprint following a large eruption. This effectively removes a degree of uncertainty associated with error-prone conversion of isotopic signals into climate variables, and allows for a direct comparison between GISS simulations and paleoclimate proxy records. Our analysis reveals that both precipitation and oxygen isotope variability respond with a distinct seasonal and spatial structure across tropical South America following an eruption. During austral winter, the heavy oxygen isotope in precipitation is enriched, likely due to reduced moisture convergence in the ITCZ domain and reduced rainfall over northern South America. During austral summer, however, more negative values of the precipitation isotopic composition are simulated over Amazonia, despite reductions in rainfall, suggesting that the isotopic response is not a simple function of the "amount effect". During the South American monsoon season, the amplitude of the temperature response to volcanic forcing is

  17. Prediction of reversible IgG1 aggregation occurring in a size exclusion chromatography column is enabled through a model based approach.

    Science.gov (United States)

    Ojala, Frida; Sellberg, Anton; Hansen, Thomas Budde; Hansen, Ernst Broberg; Nilsson, Bernt

    2015-09-01

    One important aspect of antibody separation being studied today is aggregation, as this not only leads to a loss in yield, but aggregates can also be hazardous if injected into the body. The aim of this study was to determine whether the methodology applied in the previous study could be used to predict the aggregation of a different batch of IgG1, and to model the aggregation occurring in a SEC column. Aggregation was found to be reversible. The equilibrium parameter was found to be 272 M(-1) and the reaction kinetic parameter 1.33 × 10(-5) s(-1) , both within the 95% confidence interval of the results obtained in the previous work. The effective diffusivities were estimated to be 1.45 × 10(-13) and 1.90 10(-14) m(2) /s for the monomers and dimers, respectively. Good agreement was found between the new model and the chromatograms obtained in the SEC experiments. The model was also able to predict the decrease of dimers due to the dilution and separation in the SEC column during long retention times.

  18. Systems toxicology approaches enable mechanistic comparison of spontaneous and cigarette smoke-related lung tumor development in the A/J mouse model

    Directory of Open Access Journals (Sweden)

    Luettich Karsta

    2014-06-01

    Full Text Available The A/J mouse is highly susceptible to lung tumor induction and has been widely used as a screening model in carcinogenicity testing and chemoprevention studies. However, the A/J mouse model has several disadvantages. Most notably, it develops lung tumors spontaneously. Moreover, there is a considerable gap in our understanding of the underlying mechanisms of pulmonary chemical carcinogenesis in the A/J mouse. Therefore, we examined the differences between spontaneous and cigarette smokerelated lung tumors in the A/J mouse model using mRNA and microRNA (miRNA profiling. Male A/J mice were exposed whole-body to mainstream cigarette smoke (MS for 18 months. Gene expression interaction term analysis of lung tumors and surrounding nontumorous parenchyma samples from animals that were exposed to either 300 mg/m3 MS or sham-exposed to fresh air indicated significant differential expression of 296 genes. Ingenuity Pathway Analysis® (IPA® indicated an overall suppression of the humoral immune response, which was accompanied by a disruption of sphingolipid and glycosaminoglycan metabolism and a deregulation of potentially oncogenic miRNA in tumors of MS-exposed A/J mice. Thus, we propose that MS exposure leads to severe perturbations in pathways essential for tumor recognition by the immune system, thereby potentiating the ability of tumor cells to escape from immune surveillance. Further, exposure to MS appeared to affect expression of miRNA, which have previously been implicated in carcinogenesis and are thought to contribute to tumor progression. Finally, we identified a 50-gene expression signature and show its utility in distinguishing between cigarette smoke-related and spontaneous lung tumors

  19. COVE, MARINA, and the Future of On-Board Processing (OBP) Platforms for CubeSat Science Missions

    Science.gov (United States)

    Pingree, P.; Bekker, D. L.; Bryk, M.; DeLucca, J.; Franklin, B.; Hancock, B.; Klesh, A. T.; Meehan, C.; Meshkaty, N.; Nichols, J.; Peay, C.; Rider, D. M.; Werne, T.; Wu, Y.

    2012-12-01

    The CubeSat On-board processing Validation Experiment (COVE), JPL's first CubeSat payload launched on October 28, 2011, features the Xilinx Virtex-5QV Single event Immune Reconfigurable FPGA (SIRF). The technology demonstration mission was to validate the SIRF device running an on-board processing (OBP) algorithm developed to reduce the data set by 2-orders of magnitude for the Multi-angle SpectroPolarimetric Imager (MSPI), an instrument under development at JPL (PI: D. Diner). COVE has a single data interface to the CubeSat flight computer that is used to transfer a static image taken from the CubeSat camera and store it to local memory where the FPGA then reads it to run the algorithm on it. In the next generation COVE design, called MARINA, developed for the GRIFEX CubeSat project, the OBP board is extended, using rigid-flex PCB technology, to provide an interface to a JPL-developed Read-Out Integrated Circuit (ROIC) hybridized to a detector developed by Raytheon. In this configuration the focal plane array (FPA) data can be streamed directly to the FPGA for data processing or for storage to local memory. The MARINA rigid-flex PCB design is integrated with a commercial camera lens to create a 1U instrument payload for integration with a CubeSat under development by the University of Michigan and planned for launch in 2014. In the GRIFEX technology demonstration, the limited on-board storage capacity is filled by high-rate FPA data in less than a second. The system is also limited by the CubeSat downlink data rate and several ground station passes are required to transmit this limited amount of data. While this system is sufficient to validate the ROIC technology on-orbit, the system cannot be operated in a way to perform continuous science observations due to the on-board storage and data downlink constraints. In order to advance the current platform to support sustained science observations, more on-board storage is needed. Radiation tolerant memory

  20. Atmospheric correction for sea surface temperature retrieval from single thermal channel radiometer data onboard Kalpana satellite

    Indian Academy of Sciences (India)

    Naveen R Shahi; Neeraj Agarwal; Aloke K Mathur; Abhijit Sarkar

    2011-06-01

    An atmospheric correction method has been applied on sea surface temperature (SST) retrieval algorithm using Very High Resolution Radiometer (VHRR) single window channel radiance data onboard Kalpana satellite (K-SAT). The technique makes use of concurrent water vapour fields available from Microwave Imager onboard Tropical Rainfall Measuring Mission (TRMM/TMI) satellite. Total water vapour content and satellite zenith angle dependent SST retrieval algorithm has been developed using Radiative Transfer Model [MODTRAN ver3.0] simulations for Kalpana 10.5–12.5 m thermal window channel. Retrieval of Kalpana SST (K-SST) has been carried out for every half-hourly acquisition of Kalpana data for the year 2008 to cover whole annual cycle of SST over Indian Ocean (IO). Validation of the retrieved corrected SST has been carried out using near-simultaneous observations of ship and buoys datasets covering Arabian Sea, Bay of Bengal and IO regions. A significant improvement in Root Mean Square Deviation (RMSD) of K-SST with respect to buoy (1.50–1.02 K) and to ship datasets (1.41–1.19 K) is seen with the use of near real-time water vapour fields of TMI. Furthermore, comparison of the retrieved SST has also been carried out using near simultaneous observations of TRMM/TMI SST over IO regions. The analysis shows that K-SST has overall cold bias of 1.17 K and an RMSD of 1.09 K after bias correction.

  1. Paleo-tribology: development of wear measurement techniques and a three-dimensional model revealing how grinding dentitions self-wear to enable functionality

    Science.gov (United States)

    Erickson, Gregory M.; Sidebottom, Mark A.; Curry, John F.; Kay, David Ian; Kuhn-Hendricks, Stephen; Norell, Mark A.; Sawyer, W. Gregory; Krick, Brandon A.

    2016-06-01

    In most mammals and a rare few reptilian lineages the evolution of precise dental occlusion led to the capacity to form functional chewing surfaces due to pressures generated while feeding. The complex dental architectures of such teeth and the biomechanics of their self-wearing nature are poorly understood. Our research team composed of paleontologists, evolutionary biologists, and engineers have developed a protocol to: (1) determine the histological make-up of grinding dentitions in extant and fossil taxa; (2) ascertain wear-relevant material properties of the tissues; (3) determine how those properties relate to inter-tissue-biomechanics leading the dental functionality using a three-dimensional Archard’s wear model developed specifically for dental applications; (4) analyze those data in phylogenetic contexts to infer evolutionary patterns as they relate to feeding. Finally we discuss industrial applications that are emerging from our paleontologically-inspired research.

  2. Full 3D modelling of pulse propagation enables efficient nonlinear frequency conversion with low energy laser pulses in a single-element tripler

    Science.gov (United States)

    Kardaś, Tomasz M.; Nejbauer, Michał; Wnuk, Paweł; Resan, Bojan; Radzewicz, Czesław; Wasylczyk, Piotr

    2017-01-01

    Although new optical materials continue to open up access to more and more wavelength bands where femtosecond laser pulses can be generated, light frequency conversion techniques are still indispensable in filling the gaps on the ultrafast spectral scale. With high repetition rate, low pulse energy laser sources (oscillators) tight focusing is necessary for a robust wave mixing and the efficiency of broadband nonlinear conversion is limited by diffraction as well as spatial and temporal walk-off. Here we demonstrate a miniature third harmonic generator (tripler) with conversion efficiency exceeding 30%, producing 246 fs UV pulses via cascaded second order processes within a single laser beam focus. Designing this highly efficient and ultra compact frequency converter was made possible by full 3-dimentional modelling of propagation of tightly focused, broadband light fields in nonlinear and birefringent media. PMID:28225007

  3. Full 3D modelling of pulse propagation enables efficient nonlinear frequency conversion with low energy laser pulses in a single-element tripler.

    Science.gov (United States)

    Kardaś, Tomasz M; Nejbauer, Michał; Wnuk, Paweł; Resan, Bojan; Radzewicz, Czesław; Wasylczyk, Piotr

    2017-02-22

    Although new optical materials continue to open up access to more and more wavelength bands where femtosecond laser pulses can be generated, light frequency conversion techniques are still indispensable in filling the gaps on the ultrafast spectral scale. With high repetition rate, low pulse energy laser sources (oscillators) tight focusing is necessary for a robust wave mixing and the efficiency of broadband nonlinear conversion is limited by diffraction as well as spatial and temporal walk-off. Here we demonstrate a miniature third harmonic generator (tripler) with conversion efficiency exceeding 30%, producing 246 fs UV pulses via cascaded second order processes within a single laser beam focus. Designing this highly efficient and ultra compact frequency converter was made possible by full 3-dimentional modelling of propagation of tightly focused, broadband light fields in nonlinear and birefringent media.

  4. Convection-enhanced delivery of Ls-TPT enables an effective, continuous, low-dose chemotherapy against malignant glioma xenograft model1

    Science.gov (United States)

    Saito, Ryuta; Krauze, Michal T.; Noble, Charles O.; Drummond, Daryl C.; Kirpotin, Dmitri B.; Berger, Mitchel S.; Park, John W.; Bankiewicz, Krystof S.

    2006-01-01

    Treatment of malignant gliomas represents one of the most formidable challenges in oncology. The combination of surgery, radiation, and chemotherapy yields median survivals of less than one year. Here we demonstrate the use of a minimally invasive surgical technique, convection-enhanced delivery (CED), for local administration of a novel nanoparticle liposome containing topotecan. CED of this liposomal topotecan (Ls-TPT) resulted in extended brain tissue retention (t½ = 1.5 days), whereas free topotecan was rapidly cleared (t½ = 0.1 days) after CED. The favorable pharmacokinetic profile of extended topotecan release for about seven days, along with biodistribution featuring perivascular accumulation of the nanoparticles, provided, in addition to the known topoisomerase I inhibition, an effective antiangiogenic therapy. In the rat intracranial U87MG tumor model, vascular targeting of Ls-TPT with CED was associated with reductions in laminin expression and vascular density compared to free topotecan or control treatments. A single CED treatment on day 7 showed that free topotecan conferred no survival benefit versus control. However, Ls-TPT produced a significant (P = 0.0002) survival benefit, with six of seven complete cures. Larger U87MG tumors, where CED of Ls-TPT on day 12 resulted in one of six cures, indicated the necessity to cover the entire tumor with the infused therapeutic agent. CED of Ls-TPT was also efficacious in the intracranial U251MG tumor model (P = 0.0005 versus control). We conclude that the combination of a novel nanoparticle Ls-TPT and CED administration was very effective in treating experimental brain tumors. PMID:16723630

  5. Computer Security Systems Enable Access.

    Science.gov (United States)

    Riggen, Gary

    1989-01-01

    A good security system enables access and protects information from damage or tampering, but the most important aspects of a security system aren't technical. A security procedures manual addresses the human element of computer security. (MLW)

  6. Taxonomy Enabled Discovery (TED) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposal addresses the NASA's need to enable scientific discovery and the topic's requirements for: processing large volumes of data, commonly available on the...

  7. Enabling Philippine Farmers to Adapt to Climate Variability Using Seasonal Climate and Weather Forecast with a Crop Simulation Model in an SMS-based Farmer Decision Support System

    Science.gov (United States)

    Ebardaloza, J. B. R.; Trogo, R.; Sabido, D. J.; Tongson, E.; Bagtasa, G.; Balderama, O. F.

    2015-12-01

    Corn farms in the Philippines are rainfed farms, hence, it is of utmost importance to choose the start of planting date so that the critical growth stages that are in need of water will fall on dates when there is rain. Most farmers in the Philippines use superstitions and traditions as basis for farming decisions such as when to start planting [1]. Before climate change, superstitions like planting after a feast day of a saint has worked for them but with the recent progression of climate change, farmers now recognize that there is a need for technological intervention [1]. The application discussed in this paper presents a solution that makes use of meteorological station sensors, localized seasonal climate forecast, localized weather forecast and a crop simulation model to provide recommendations to farmers based on the crop cultivar, soil type and fertilizer type used by farmers. It is critical that the recommendations given to farmers are not generic as each farmer would have different needs based on their cultivar, soil, fertilizer, planting schedule and even location [2]. This application allows the farmer to inquire about whether it will rain in the next seven days, the best date to start planting based on the potential yield upon harvest, when to apply fertilizer and by how much, when to water and by how much. Short messaging service (SMS) is the medium chosen for this application because while mobile penetration in the Philippines is as high as 101%, the smart phone penetration is only at 15% [3]. SMS has been selected as it has been identified as the most effective way of reaching farmers with timely agricultural information and knowledge [4,5]. The recommendations while derived from making use of Automated Weather Station (AWS) sensor data, Weather Research Forecasting (WRF) models and DSSAT 4.5 [9], are translated into the local language of the farmers and in a format that is easily understood as recommended in [6,7,8]. A pilot study has been started

  8. Hypersonic wind-tunnel free-flying experiments with onboard instrumentation

    KAUST Repository

    Mudford, Neil R.

    2015-01-01

    Hypersonic wind-tunnel testing with "free-flight" models unconnected to a sting ensures that sting/wake flow interactions do not compromise aerodynamic coefficient measurements. The development of miniaturized electronics has allowed the demonstration of a variant of a new method for the acquisition of hypersonic model motion data using onboard accelerometers, gyroscopes, and a microcontroller. This method is demonstrated in a Mach 6 wind-tunnel flow, whose duration and pitot pressure are sufficient for the model to move a body length or more and turn through a significant angle. The results are compared with those obtained from video analysis of the model motion, the existing method favored for obtaining aerodynamic coefficients in similar hypersonic wind-tunnel facilities. The results from the two methods are in good agreement. The new method shows considerable promise for reliable measurement of aerodynamic coefficients, particularly because the data obtained are in more directly applicable forms of accelerations and rates of turn, rather than the model position and attitude obtained from the earlier visualization method. The ideal may be to have both methods operating together.

  9. Onboard and Real-Time Artificial Satellite Orbit Determination Using GPS

    Directory of Open Access Journals (Sweden)

    Ana Paula Marins Chiaradia

    2013-01-01

    Full Text Available An algorithm for real-time and onboard orbit determination applying the Extended Kalman Filter (EKF method is developed. Aiming at a very simple and still fairly accurate orbit determination, an analysis is performed to ascertain an adequacy of modeling complexity versus accuracy. The minimum set of to-be-estimated states to reach the level of accuracy of tens of meters is found to have at least the position, velocity, and user clock offset components. The dynamical model is assessed through several tests, covering force model, numerical integration scheme and step size, and simplified variational equations. The measurement model includes only relevant effects to the order of meters. The EKF method is chosen to be the simplest real-time estimation algorithm with adequate tuning of its parameters. In the developed procedure, the obtained position and velocity errors along a day vary from 15 to 20 m and from 0.014 to 0.018 m/s, respectively, with standard deviation from 6 to 10 m and from 0.006 to 0.008 m/s, respectively, with the SA either on or off. The results, as well as analysis of the final adopted models used, are presented in this work.

  10. Optimization of an on-board imaging system for extremely rapid radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Cherry Kemmerling, Erica M.; Wu, Meng, E-mail: mengwu@stanford.edu; Yang, He; Fahrig, Rebecca [Department of Radiology, Stanford University, Stanford, California 94305 (United States); Maxim, Peter G.; Loo, Billy W. [Department of Radiation Oncology, Stanford University, Stanford, California 94305 and Stanford Cancer Institute, Stanford University School of Medicine, Stanford, California 94305 (United States)

    2015-11-15

    Purpose: Next-generation extremely rapid radiation therapy systems could mitigate the need for motion management, improve patient comfort during the treatment, and increase patient throughput for cost effectiveness. Such systems require an on-board imaging system that is competitively priced, fast, and of sufficiently high quality to allow good registration between the image taken on the day of treatment and the image taken the day of treatment planning. In this study, three different detectors for a custom on-board CT system were investigated to select the best design for integration with an extremely rapid radiation therapy system. Methods: Three different CT detectors are proposed: low-resolution (all 4 × 4 mm pixels), medium-resolution (a combination of 4 × 4 mm pixels and 2 × 2 mm pixels), and high-resolution (all 1 × 1 mm pixels). An in-house program was used to generate projection images of a numerical anthropomorphic phantom and to reconstruct the projections into CT datasets, henceforth called “realistic” images. Scatter was calculated using a separate Monte Carlo simulation, and the model included an antiscatter grid and bowtie filter. Diagnostic-quality images of the phantom were generated to represent the patient scan at the time of treatment planning. Commercial deformable registration software was used to register the diagnostic-quality scan to images produced by the various on-board detector configurations. The deformation fields were compared against a “gold standard” deformation field generated by registering initial and deformed images of the numerical phantoms that were used to make the diagnostic and treatment-day images. Registrations of on-board imaging system data were judged by the amount their deformation fields differed from the corresponding gold standard deformation fields—the smaller the difference, the better the system. To evaluate the registrations, the pointwise distance between gold standard and realistic registration

  11. An in vitro model of the horse gut microbiome enables identification of lactate-utilizing bacteria that differentially respond to starch induction.

    Directory of Open Access Journals (Sweden)

    Amy S Biddle

    Full Text Available Laminitis is a chronic, crippling disease triggered by the sudden influx of dietary starch. Starch reaches the hindgut resulting in enrichment of lactic acid bacteria, lactate accumulation, and acidification of the gut contents. Bacterial products enter the bloodstream and precipitate systemic inflammation. Hindgut lactate levels are normally low because specific bacterial groups convert lactate to short chain fatty acids. Why this mechanism fails when lactate levels rapidly rise, and why some hindgut communities can recover is unknown. Fecal samples from three adult horses eating identical diets provided bacterial communities for this in vitro study. Triplicate microcosms of fecal slurries were enriched with lactate and/or starch. Metabolic products (short chain fatty acids, headspace gases, and hydrogen sulfide were measured and microbial community compositions determined using Illumina 16S rRNA sequencing over 12-hour intervals. We report that patterns of change in short chain fatty acid levels and pH in our in vitro system are similar to those seen in in vivo laminitis induction models. Community differences between microcosms with disparate abilities to clear excess lactate suggest profiles conferring resistance of starch-induction conditions. Where lactate levels recover following starch induction conditions, propionate and acetate levels rise correspondingly and taxa related to Megasphaeraelsdenii reach levels exceeding 70% relative abundance. In lactate and control cultures, taxa related to Veillonellamontpellierensis are enriched as lactate levels fall. Understanding these community differences and factors promoting the growth of specific lactate utilizing taxa may be useful to prevent acidosis under starch-induction conditions.

  12. On-board aircrew dosimetry using a semiconductor spectrometer

    CERN Document Server

    Spurny, F

    2002-01-01

    Radiation fields on board aircraft contain particles with energies up to a few hundred MeV. Many instruments have been tested to characterise these fields. This paper presents the results of studies on the use of an Si diode spectrometer to characterise these fields. The spectrometer has been in use since spring 2000 on more than 130 return flights to monitor and characterise the on-board field. During a Czech Airlines flight from Prague to New York it was possible to register the effects of an intense solar flare, (ground level event, GLE 60), which occurred on 15 April 2001. It was found that the number of deposition events registered was increased by about 70% and the dose in Si by a factor of 2.0 when compared with the presence of galactic cosmic rays alone. Directly measured data are interpreted with respect to on-earth reference field calibration (photons, CERN high-energy particles); it was found that this approach leads to encouraging results and should be followed up. (7 refs).

  13. On-board neural processor design for intelligent multisensor microspacecraft

    Science.gov (United States)

    Fang, Wai-Chi; Sheu, Bing J.; Wall, James

    1996-03-01

    A compact VLSI neural processor based on the Optimization Cellular Neural Network (OCNN) has been under development to provide a wide range of support for an intelligent remote sensing microspacecraft which requires both high bandwidth communication and high- performance computing for on-board data analysis, thematic data reduction, synergy of multiple types of sensors, and other advanced smart-sensor functions. The OCNN is developed with emphasis on its capability to find global optimal solutions by using a hardware annealing method. The hardware annealing function is embedded in the network. It is a parallel version of fast mean-field annealing in analog networks, and is highly efficient in finding globally optimal solutions for cellular neural networks. The OCNN is designed to perform programmable functions for fine-grained processing with annealing control to enhance the output quality. The OCNN architecture is a programmable multi-dimensional array of neurons which are locally connected with their local neurons. Major design features of the OCNN neural processor includes massively parallel neural processing, hardware annealing capability, winner-take-all mechanism, digitally programmable synaptic weights, and multisensor parallel interface. A compact current-mode VLSI design feasibility of the OCNN neural processor is demonstrated by a prototype 5 X 5-neuroprocessor array chip in a 2-micrometers CMOS technology. The OCNN operation theory, architecture, design and implementation, prototype chip, and system applications have been investigated in detail and presented in this paper.

  14. Onboard Data Processor for Change-Detection Radar Imaging

    Science.gov (United States)

    Lou, Yunling; Muellerschoen, Ronald J.; Chien, Steve A.; Saatchi, Sasan S.; Clark, Duane

    2008-01-01

    A computer system denoted a change-detection onboard processor (CDOP) is being developed as a means of processing the digitized output of a synthetic-aperture radar (SAR) apparatus aboard an aircraft or spacecraft to generate images showing changes that have occurred in the terrain below between repeat passes of the aircraft or spacecraft over the terrain. When fully developed, the CDOP is intended to be capable of generating SAR images and/or SAR differential interferograms in nearly real time. The CDOP is expected to be especially useful for understanding some large-scale natural phenomena and/or mitigating natural hazards: For example, it could be used for near-real-time observation of surface changes caused by floods, landslides, forest fires, volcanic eruptions, earthquakes, glaciers, and sea ice movements. It could also be used to observe such longer-term surface changes as those associated with growth of vegetation (relevant to estimation of wildfire fuel loads). The CDOP is, essentially, an interferometric SAR processor designed to operate aboard a radar platform.

  15. Autonomous Onboard Science Data Analysis for Comet Missions

    Science.gov (United States)

    Thompson, David R.; Tran, Daniel Q.; McLaren, David; Chien, Steve A.; Bergman, Larry; Castano, Rebecca; Doyle, Richard; Estlin, Tara; Lenda, Matthew

    2012-01-01

    Coming years will bring several comet rendezvous missions. The Rosetta spacecraft arrives at Comet 67P/Churyumov-Gerasimenko in 2014. Subsequent rendezvous might include a mission such as the proposed Comet Hopper with multiple surface landings, as well as Comet Nucleus Sample Return (CNSR) and Coma Rendezvous and Sample Return (CRSR). These encounters will begin to shed light on a population that, despite several previous flybys, remains mysterious and poorly understood. Scientists still have little direct knowledge of interactions between the nucleus and coma, their variation across different comets or their evolution over time. Activity may change on short timescales so it is challenging to characterize with scripted data acquisition. Here we investigate automatic onboard image analysis that could act faster than round-trip light time to capture unexpected outbursts and plume activity. We describe one edge-based method for detect comet nuclei and plumes, and test the approach on an existing catalog of comet images. Finally, we quantify benefits to specific measurement objectives by simulating a basic plume monitoring campaign.

  16. Advanced Ionospheric Probe scientific mission onboard FORMOSAT-5 satellite

    Directory of Open Access Journals (Sweden)

    Zai-Wun Lin

    2017-01-01

    Full Text Available Advanced Ionospheric Probe (AIP is a piggyback science payload developed by National Central University for FORMOSAT-5 satellite to explore space weather/climate and seismic precursors associated with strong earthquakes. The AIP is an all-in-one plasma sensor that measures ionospheric plasma concentrations, velocities, and temperatures in a time-sharing way and is capable of measuring ionospheric plasma irregularities at a sample rate up to 8192 Hz over a wide range of spatial scales. Electroformed gold grids used in the AIP in theory construct planar electric potential surfaces better than woven grids. Moreover, a plasma injection test performed in the Space Plasma Simulation Chamber has verified that no significant hysteresis is found in current-voltage curves measured by the AIP. It indicates that the AIP can make an accurate measurement of the ionospheric plasma parameters in space. Finally, Ionospheric Plasma and Electrodynamics Instrument (IPEI observations onboard the ROCSAT-1 satellite are applied to show that the scientific objectives of ionospheric space weather/climate and seismo-ionospheric precursors (SIPs of the FORMOSAT-5/AIP can be fulfilled. The observations reveal that ion parameter global distributions are helpful in studying the formation and variation in temperature crests and troughs in the 2200 - 2300 local time sector, as well as SIPs in the density and the velocity over the epicenter area, which are anticipated for the FORMOSAT-5 satellite orbit.

  17. The K9 On-Board Rover Architecture

    Science.gov (United States)

    Bresina, John L.; Bualat, Maria; Fair, Michael; Washington, Richard; Wright, Anne

    2006-01-01

    This paper describes the software architecture of NASA Ames Research Center s K9 rover. The goal of the onboard software architecture team was to develop a modular, flexible framework that would allow both high- and low-level control of the K9 hardware. Examples of low-level control are the simple drive or pan/tilt commands which are handled by the resource managers, and examples of high-level control are the command sequences which are handled by the conditional executive. In between these two control levels are complex behavioral commands which are handled by the pilot, such as drive to goal with obstacle avoidance or visually servo to a target. This paper presents the design of the architecture as of Fall 2000. We describe the state of the architecture implementation as well as its current evolution. An early version of the architecture was used for K9 operations during a dual-rover field experiment conducted by NASA Ames Research Center (ARC) and the Jet Propulsion Laboratory (JPL) from May 14 to May 16, 2000.

  18. Changing Safety Priorities from Payload Development to Onboard Payload Operations

    Science.gov (United States)

    Kreimer, J.; Biemann, W.; Festa, F.

    2012-01-01

    Safety Analyses for Payload development phases are typically based o n well defined fixed configurations. From safety point of view the main focus during the development phase is on t he design features that will ensure inherent safe launch, on-board installation and usage of the payload in the planned configuration. The complete payload verification including the safety verification and the flight certification is based on that expected scenario. Once the payload is launched and installed on-orbit the focus moves to safe operations in constantly changing configurations over the life-time due t o upgrades, preventive, and corrective maintenance activities. A broader assessment and preparation for recovery procedures would help to streamline this aspect. It would also support the new extended ISS utilization scenario and the changes of the logistic fleet available to the ISS. The challenge to move the safety focus from payload development and design safety features to permanently modified configurations, different upload capabilities and extending life-cycles/time during the operations phase of the payloads can be supported by early definition of operational envelops and resulting safety approval of wider operational flexibility.

  19. Experiment in Onboard Synthetic Aperture Radar Data Processing

    Science.gov (United States)

    Holland, Matthew

    2011-01-01

    Single event upsets (SEUs) are a threat to any computing system running on hardware that has not been physically radiation hardened. In addition to mandating the use of performance-limited, hardened heritage equipment, prior techniques for dealing with the SEU problem often involved hardware-based error detection and correction (EDAC). With limited computing resources, software- based EDAC, or any more elaborate recovery methods, were often not feasible. Synthetic aperture radars (SARs), when operated in the space environment, are interesting due to their relevance to NASAs objectives, but problematic in the sense of producing prodigious amounts of raw data. Prior implementations of the SAR data processing algorithm have been too slow, too computationally intensive, and require too much application memory for onboard execution to be a realistic option when using the type of heritage processing technology described above. This standard C-language implementation of SAR data processing is distributed over many cores of a Tilera Multicore Processor, and employs novel Radiation Hardening by Software (RHBS) techniques designed to protect the component processes (one per core) and their shared application memory from the sort of SEUs expected in the space environment. The source code includes calls to Tilera APIs, and a specialized Tilera compiler is required to produce a Tilera executable. The compiled application reads input data describing the position and orientation of a radar platform, as well as its radar-burst data, over time and writes out processed data in a form that is useful for analysis of the radar observations.

  20. Intelligent on-board system for driving assistance

    Science.gov (United States)

    Rombaut, Michele; Le Fort-Piat, N.

    1995-09-01

    We present in this paper, an electronic copilot embedded in a real car. The system objective is to help the driver by sending alarms or warnings in order to avoid dangerous situtations. An onboard perception system based on CCD cameras and proprioceptive sensors is used ot provide information concerning the environment and the internal state of the vehicle. From this set of information, the copilot is able to analyze the situation and to generate adequate warnings to the driver according to the circumstances. The definition and the development of such a system deal with multisensor data fusion and supervision strategies. The framework of this work was the European Prometheus Pro-Art program. The electronic copilot has been integrated in a prototype vehicle called Prolab2. This French demonstrator integrates the works of nine research laboratories and two car companies: PSA and RENAULT. After a brief presentation of the global demonstrator, we present the two principal parts developed in our laboratory corresponding to the high level modules of the system: the dynamic data manager and the situation supervision.