WorldWideScience

Sample records for models dynamical cores

  1. Nonlinear Dynamic Model of PMBLDC Motor Considering Core Losses

    DEFF Research Database (Denmark)

    Fasil, Muhammed; Mijatovic, Nenad; Jensen, Bogi Bech

    2017-01-01

    The phase variable model is used commonly when simulating a motor drive system with a three-phase permanent magnet brushless DC (PMBLDC) motor. The phase variable model neglects core losses and this affects its accuracy when modelling fractional-slot machines. The inaccuracy of phase variable model...... of fractional-slot machines can be attributed to considerable armature flux harmonics, which causes an increased core loss. This study proposes a nonlinear phase variable model of PMBLDC motor that considers the core losses induced in the stator and the rotor. The core loss model is developed based...... on the detailed analysis of the flux path and the variation of flux in different components of the machine. A prototype of fractional slot axial flux PMBLDC in-wheel motor is used to assess the proposed nonlinear dynamic model....

  2. A dynamic model for helium core heat exchangers

    International Nuclear Information System (INIS)

    Schiesser, W.E.; Shih, H.J.; Hartozog, D.G.; Herron, D.M.; Nahmias, D.; Stuber, W.G.; Hindmarsh, A.C.

    1990-04-01

    To meet the helium (He) requirements of the superconducting supercollider (SSC), the cryogenic plants must be able to respond to time-varying loads. Thus the design and simulation of the cryogenic plants requires dynamic models of their principal components, and in particular, the core heat exchangers. In this paper, we detail the derivation and computer implementation of a model for core heat exchangers consisting of three partial differential equations (PDES) for each fluid stream (the continuity, energy and momentum balances for the He), and one PDE for each parting sheet (the energy balance for the parting sheet metal); the PDEs have time and axial position along the exchanger as independent variables. The computer code can accommodate any number of fluid streams and parting sheets in an adiabatic group. Features of the code include: rigorous or approximate thermodynamic properties for He, upwind and downwind approximation of the PDE spatial derivatives, and sparse matrix time integration. The outputs from the code include the time-dependent axial profiles of the fluid He mass flux, density, pressure, temperature, internal energy and enthalpy. The code is written in transportable Fortran 77, and can therefore be executed on essentially any computer

  3. DCMIP2016: a review of non-hydrostatic dynamical core design and intercomparison of participating models

    Directory of Open Access Journals (Sweden)

    P. A. Ullrich

    2017-12-01

    Full Text Available Atmospheric dynamical cores are a fundamental component of global atmospheric modeling systems and are responsible for capturing the dynamical behavior of the Earth's atmosphere via numerical integration of the Navier–Stokes equations. These systems have existed in one form or another for over half of a century, with the earliest discretizations having now evolved into a complex ecosystem of algorithms and computational strategies. In essence, no two dynamical cores are alike, and their individual successes suggest that no perfect model exists. To better understand modern dynamical cores, this paper aims to provide a comprehensive review of 11 non-hydrostatic dynamical cores, drawn from modeling centers and groups that participated in the 2016 Dynamical Core Model Intercomparison Project (DCMIP workshop and summer school. This review includes a choice of model grid, variable placement, vertical coordinate, prognostic equations, temporal discretization, and the diffusion, stabilization, filters, and fixers employed by each system.

  4. DCMIP2016: a review of non-hydrostatic dynamical core design and intercomparison of participating models

    Science.gov (United States)

    Ullrich, Paul A.; Jablonowski, Christiane; Kent, James; Lauritzen, Peter H.; Nair, Ramachandran; Reed, Kevin A.; Zarzycki, Colin M.; Hall, David M.; Dazlich, Don; Heikes, Ross; Konor, Celal; Randall, David; Dubos, Thomas; Meurdesoif, Yann; Chen, Xi; Harris, Lucas; Kühnlein, Christian; Lee, Vivian; Qaddouri, Abdessamad; Girard, Claude; Giorgetta, Marco; Reinert, Daniel; Klemp, Joseph; Park, Sang-Hun; Skamarock, William; Miura, Hiroaki; Ohno, Tomoki; Yoshida, Ryuji; Walko, Robert; Reinecke, Alex; Viner, Kevin

    2017-12-01

    Atmospheric dynamical cores are a fundamental component of global atmospheric modeling systems and are responsible for capturing the dynamical behavior of the Earth's atmosphere via numerical integration of the Navier-Stokes equations. These systems have existed in one form or another for over half of a century, with the earliest discretizations having now evolved into a complex ecosystem of algorithms and computational strategies. In essence, no two dynamical cores are alike, and their individual successes suggest that no perfect model exists. To better understand modern dynamical cores, this paper aims to provide a comprehensive review of 11 non-hydrostatic dynamical cores, drawn from modeling centers and groups that participated in the 2016 Dynamical Core Model Intercomparison Project (DCMIP) workshop and summer school. This review includes a choice of model grid, variable placement, vertical coordinate, prognostic equations, temporal discretization, and the diffusion, stabilization, filters, and fixers employed by each system.

  5. Simulation of dynamic mathematical modeling for PWR nuclear power plant core based on PSASP

    International Nuclear Information System (INIS)

    Shi Xi; Liu Dichen; Wu Ping; Zhao Jie; Xiong Li; Zhang Yuanyuan; Zhao Zunlian

    2009-01-01

    Neutron dynamic model and fuel/coolant thermal output dynamic model were implemented in PSASP through a user-defined program. Based on the mathematical models of different orders, the dynamic behaviors of the NPP core under the input of step disturbance of reactivity and cool-line temperature were simulated in PSASP respectively. The simulation results demonstrate the self-stability of NPP core with temperature effect and poisoning effect, which is consistent with the real-world data. Moreover, the simulation validated the proposed core model, and it can be further used in dynamic calculation of the power system. (authors)

  6. Particle-core model for transverse dynamics of beam halo

    Directory of Open Access Journals (Sweden)

    T. P. Wangler

    1998-12-01

    Full Text Available The transverse motion of beam halo particles is described by a particle-core model which uses the space-charge field of a continuous cylindrical oscillating beam core in a uniform linear focusing channel to provide the force that drives particles to large amplitudes. The model predicts a maximum amplitude for the resonantly-driven particles as a function of the initial mismatch. We have calculated these amplitude limits and have estimated the growth times for extended-halo formation as a function of both the space-charge tune-depression ratio and a mismatch parameter. We also present formulas for the scaling of the maximum amplitudes as a function of the beam parameters. The model results are compared with multiparticle simulations and we find very good agreement for a variety of initial particle distributions.

  7. Physically-Derived Dynamical Cores in Atmospheric General Circulation Models

    Science.gov (United States)

    Rood, Richard B.; Lin, Shian-Kiann

    1999-01-01

    The algorithm chosen to represent the advection in atmospheric models is often used as the primary attribute to classify the model. Meteorological models are generally classified as spectral or grid point, with the term grid point implying discretization using finite differences. These traditional approaches have a number of shortcomings that render them non-physical. That is, they provide approximate solutions to the conservation equations that do not obey the fundamental laws of physics. The most commonly discussed shortcomings are overshoots and undershoots which manifest themselves most overtly in the constituent continuity equation. For this reason many climate models have special algorithms to model water vapor advection. This talk focuses on the development of an atmospheric general circulation model which uses a consistent physically-based advection algorithm in all aspects of the model formulation. The shallow-water model of Lin and Rood (QJRMS, 1997) is generalized to three dimensions and combined with the physics parameterizations of NCAR's Community Climate Model. The scientific motivation for the development is to increase the integrity of the underlying fluid dynamics so that the physics terms can be more effectively isolated, examined, and improved. The expected benefits of the new model are discussed and results from the initial integrations will be presented.

  8. The Nonhydrostatic Unified Model of the Atmosphere (NUMA): CG Dynamical Core

    Science.gov (United States)

    2011-03-01

    The Nonhydrostatic Unified Model of the Atmosphere ( NUMA ): CG Dynamical Core Frank Giraldo Department of Applied Mathematics Naval Postgraduate...School Monterey CA 93943 http://faculty.nps.edu/projects/ NUMA Report Documentation Page Form ApprovedOMB No. 0704-0188 Public reporting burden...AND SUBTITLE The Nonhydrostatic Unified Model of the Atmosphere ( NUMA ): CG Dynamical Core 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT

  9. Evolution dynamics modeling and simulation of logistics enterprise's core competence based on service innovation

    Science.gov (United States)

    Yang, Bo; Tong, Yuting

    2017-04-01

    With the rapid development of economy, the development of logistics enterprises in China is also facing a huge challenge, especially the logistics enterprises generally lack of core competitiveness, and service innovation awareness is not strong. Scholars in the process of studying the core competitiveness of logistics enterprises are mainly from the perspective of static stability, not from the perspective of dynamic evolution to explore. So the author analyzes the influencing factors and the evolution process of the core competence of logistics enterprises, using the method of system dynamics to study the cause and effect of the evolution of the core competence of logistics enterprises, construct a system dynamics model of evolution of core competence logistics enterprises, which can be simulated by vensim PLE. The analysis for the effectiveness and sensitivity of simulation model indicates the model can be used as the fitting of the evolution process of the core competence of logistics enterprises and reveal the process and mechanism of the evolution of the core competence of logistics enterprises, and provide management strategies for improving the core competence of logistics enterprises. The construction and operation of computer simulation model offers a kind of effective method for studying the evolution of logistics enterprise core competence.

  10. The dynamical core of the Aeolus 1.0 statistical-dynamical atmosphere model: validation and parameter optimization

    Science.gov (United States)

    Totz, Sonja; Eliseev, Alexey V.; Petri, Stefan; Flechsig, Michael; Caesar, Levke; Petoukhov, Vladimir; Coumou, Dim

    2018-02-01

    We present and validate a set of equations for representing the atmosphere's large-scale general circulation in an Earth system model of intermediate complexity (EMIC). These dynamical equations have been implemented in Aeolus 1.0, which is a statistical-dynamical atmosphere model (SDAM) and includes radiative transfer and cloud modules (Coumou et al., 2011; Eliseev et al., 2013). The statistical dynamical approach is computationally efficient and thus enables us to perform climate simulations at multimillennia timescales, which is a prime aim of our model development. Further, this computational efficiency enables us to scan large and high-dimensional parameter space to tune the model parameters, e.g., for sensitivity studies.Here, we present novel equations for the large-scale zonal-mean wind as well as those for planetary waves. Together with synoptic parameterization (as presented by Coumou et al., 2011), these form the mathematical description of the dynamical core of Aeolus 1.0.We optimize the dynamical core parameter values by tuning all relevant dynamical fields to ERA-Interim reanalysis data (1983-2009) forcing the dynamical core with prescribed surface temperature, surface humidity and cumulus cloud fraction. We test the model's performance in reproducing the seasonal cycle and the influence of the El Niño-Southern Oscillation (ENSO). We use a simulated annealing optimization algorithm, which approximates the global minimum of a high-dimensional function.With non-tuned parameter values, the model performs reasonably in terms of its representation of zonal-mean circulation, planetary waves and storm tracks. The simulated annealing optimization improves in particular the model's representation of the Northern Hemisphere jet stream and storm tracks as well as the Hadley circulation.The regions of high azonal wind velocities (planetary waves) are accurately captured for all validation experiments. The zonal-mean zonal wind and the integrated lower

  11. A spectral transform dynamical core option within the Community Atmosphere Model (CAM4)

    Energy Technology Data Exchange (ETDEWEB)

    Evans, Katherine J [ORNL; Mahajan, Salil [ORNL; Branstetter, Marcia L [ORNL; McClean, Julie L. [Scripps Institute of Oceanography; Caron, Julie M. [National Center for Atmospheric Research (NCAR); Maltrud, Matthew E. [Los Alamos National Laboratory (LANL); Hack, James J [ORNL; Bader, David C [ORNL; Neale, Rich [National Center for Atmospheric Research (NCAR)

    2014-01-01

    A spectral transform dynamical core with an 85 spectral truncation resolution (T85) within the Community Atmosphere Model (CAM), version 4, is evaluated within the recently released Community Earth System Model, version 1.0 (CESM) global climate model. The spectral dynamical core option provides a well-known base within the climate model community from which to assess climate behavior and statistics, and its relative computational efficiency for smaller computing platforms allows it to be extended to perform climate length simulations using high-resolution configurations in the near term. To establish the characteristics of the CAM4 T85, an ensemble of simulations covering the present day observational period using forced sea surface temperatures and prescribed sea-ice extent are evaluated. Overall, the T85 ensemble attributes and biases are similar to a companion ensemble of simulations using the one degree finite volume (FV1) dynamical core, relative to observed and model derived datasets. Notable improvements with T85 compared to FV1 include the representation of wintertime Arctic sea level pressure and summer precipitation over the Western Indian subcontinent. The mean and spatial patterns of the land surface temperature trends over the AMIP period are generally well simulated with the T85 ensemble relative to observations, however the model is not able to capture the extent nor magnitude of changes in temperature extremes over the boreal summer, where the changes are most dramatic. Biases in the wintertime Arctic surface temperature and annual mean surface stress fields persist with T85 as with the CAM3 version of T85.

  12. Modeling the reactor core of MNSR to simulate its dynamic behavior using the code PARET

    International Nuclear Information System (INIS)

    Hainoun, A.; Alhabet, F.

    2004-02-01

    Using the computer code PARET the core of the MNSR reactor was modelled and the neutronics and thermal hydraulic behaviour of the reactor core for the steady state and selected transients, that deal with step change of reactivity including control rod withdraw starting from steady state at various low power level, were simulated. For this purpose a PARET input model for the core of MNSR reactor has been developed enabling the simulation of neutron kinetic and thermal hydraulic of reactor core including reactivity feedback effects. The neutron kinetic model depends on the point kinetic with 15 groups delayed neutrons including photo neutrons of beryllium reflector. In this regard the effect of photo neutron on the dynamic behaviour has been analysed through two additional calculation. In the first the yield of photo neutrons was neglected completely and in the second its share was added to the sixth group of delayed neutrons. In the thermal hydraulic model the fuel elements with their cooling channels were distributed to 4 different groups with various radial power factors. The pressure lose factors for friction, flow direction change, expansion and contraction were estimated using suitable approaches. The post calculations of the relative neutron flux change and core average temperature were found to be consistent with the experimental measurements. Furthermore, the simulation has indicated the influence of photo neutrons of the Beryllium reflector on the neutron flux behaviour. For the reliability of the results sensitivity analysis was carried out to consider the uncertainty in some important parameters like temperature feedback coefficient and flow velocity. On the other hand the application of PARET in simulation of void formation in the subcooled boiling regime were tested. The calculation indicates the capability of PARET in modelling this phenomenon. However, big discrepancy between calculation results and measurement of axial void distribution were observed

  13. An analytical model for the study of a small LFR core dynamics: development and benchmark

    International Nuclear Information System (INIS)

    Bortot, S.; Cammi, A.; Lorenzi, S.; Moisseytsev, A.

    2011-01-01

    An analytical model for the study of a small Lead-cooled Fast Reactor (LFR) control-oriented dynamics has been developed aimed at providing a useful, very flexible and straightforward, though accurate, tool allowing relatively quick transient design-basis and stability analyses. A simplified lumped-parameter approach has been adopted to couple neutronics and thermal-hydraulics: the point-kinetics approximation has been employed and an average-temperature heat-exchange model has been implemented. The reactor transient responses following postulated accident initiators such as Unprotected Control Rod Withdrawal (UTOP), Loss of Heat Sink (ULOHS) and Loss of Flow (ULOF) have been studied for a MOX and a metal-fuelled core at the Beginning of Cycle (BoC) and End of Cycle (EoC) configurations. A benchmark analysis has been then performed by means of the SAS4A/SASSYS-1 Liquid Metal Reactor Code System, in which a core model based on three representative channels has been built with the purpose of providing verification for the analytical outcomes and indicating how the latter relate to more realistic one-dimensional calculations. As a general result, responses concerning the main core characteristics (namely, power, reactivity, etc.) have turned out to be mutually consistent in terms of both steady-state absolute figures and transient developments, showing discrepancies of the order of only some percents, thus confirming a very satisfactory agreement. (author)

  14. Inverse stochastic-dynamic models for high-resolution Greenland ice core records

    Science.gov (United States)

    Boers, Niklas; Chekroun, Mickael D.; Liu, Honghu; Kondrashov, Dmitri; Rousseau, Denis-Didier; Svensson, Anders; Bigler, Matthias; Ghil, Michael

    2017-12-01

    Proxy records from Greenland ice cores have been studied for several decades, yet many open questions remain regarding the climate variability encoded therein. Here, we use a Bayesian framework for inferring inverse, stochastic-dynamic models from δ18O and dust records of unprecedented, subdecadal temporal resolution. The records stem from the North Greenland Ice Core Project (NGRIP), and we focus on the time interval 59-22 ka b2k. Our model reproduces the dynamical characteristics of both the δ18O and dust proxy records, including the millennial-scale Dansgaard-Oeschger variability, as well as statistical properties such as probability density functions, waiting times and power spectra, with no need for any external forcing. The crucial ingredients for capturing these properties are (i) high-resolution training data, (ii) cubic drift terms, (iii) nonlinear coupling terms between the δ18O and dust time series, and (iv) non-Markovian contributions that represent short-term memory effects.

  15. Lane-Emden equation with inertial force and general polytropic dynamic model for molecular cloud cores

    Science.gov (United States)

    Li, DaLei; Lou, Yu-Qing; Esimbek, Jarken

    2018-01-01

    We study self-similar hydrodynamics of spherical symmetry using a general polytropic (GP) equation of state and derive the GP dynamic Lane-Emden equation (LEE) with a radial inertial force. In reference to Lou & Cao, we solve the GP dynamic LEE for both polytropic index γ = 1 + 1/n and the isothermal case n → +∞; our formalism is more general than the conventional polytropic model with n = 3 or γ = 4/3 of Goldreich & Weber. For proper boundary conditions, we obtain an exact constant solution for arbitrary n and analytic variable solutions for n = 0 and n = 1, respectively. Series expansion solutions are derived near the origin with the explicit recursion formulae for the series coefficients for both the GP and isothermal cases. By extensive numerical explorations, we find that there is no zero density at a finite radius for n ≥ 5. For 0 ≤ n 0 for monotonically decreasing density from the origin and vanishing at a finite radius for c being less than a critical value Ccr. As astrophysical applications, we invoke our solutions of the GP dynamic LEE with central finite boundary conditions to fit the molecular cloud core Barnard 68 in contrast to the static isothermal Bonnor-Ebert sphere by Alves et al. Our GP dynamic model fits appear to be sensibly consistent with several more observations and diagnostics for density, temperature and gas pressure profiles.

  16. An Intercomparison of the Dynamical Cores of Global Atmospheric Circulation Models for Mars

    Science.gov (United States)

    Hollingsworth, Jeffery L.; Bridger, Alison F. C.; Haberle, Robert M.

    1998-01-01

    This is a Final Report for a Joint Research Interchange (JRI) between NASA Ames Research Center and San Jose State University, Department of Meteorology. The focus of this JRI has been to evaluate the dynamical 'cores' of two global atmospheric circulation models for Mars that are in operation at the NASA Ames Research Center. The two global circulation models in use are fundamentally different: one uses spherical harmonics in its horizontal representation of field variables; the other uses finite differences on a uniform longitude-latitude grid. Several simulations have been conducted to assess how the dynamical processors of each of these circulation models perform using identical 'simple physics' parameterizations. A variety of climate statistics (e.g., time-mean flows and eddy fields) have been compared for realistic solstitial mean basic states. Results of this research have demonstrated that the two Mars circulation models with completely different spatial representations and discretizations produce rather similar circulation statistics for first-order meteorological fields, suggestive of a tendency for convergence of numerical solutions. Second and higher-order fields can, however, vary significantly between the two models.

  17. Flow Dynamic Analysis of Core Shooting Process through Experiment and Multiphase Modeling

    Directory of Open Access Journals (Sweden)

    Changjiang Ni

    2016-01-01

    Full Text Available Core shooting process is the most widely used technique to make sand cores and it plays an important role in the quality of sand cores as well as the manufacture of complicated castings in metal casting industry. In this paper, the flow behavior of sand particles in the core box was investigated synchronously with transparent core box, high-speed camera, and pressure measuring system. The flow pattern of sand particles in the shooting head of the core shooting machine was reproduced with various colored core sand layers. Taking both kinetic and frictional stress into account, a kinetic-frictional constitutive correlation was established to describe the internal momentum transfer in the solid phase. Two-fluid model (TFM simulations with turbulence model were then performed and good agreement was achieved between the experimental and simulation results on the flow behavior of sand particles in both the shooting head and the core box. Based on the experimental and simulation results, the flow behavior of sand particles in the core box, the formation of “dead zone” in the shooting head, and the effect of drag force were analyzed in terms of sand volume fraction (αs, sand velocity (Vs, and pressure variation (P.

  18. Modeled and Measured Dynamics of a Composite Beam with Periodically Varying Foam Core

    Science.gov (United States)

    Cabell, Randolph H.; Cano, Roberto J.; Schiller, Noah H.; Roberts Gary D.

    2012-01-01

    The dynamics of a sandwich beam with carbon fiber composite facesheets and foam core with periodic variations in material properties are studied. The purpose of the study is to compare finite element predictions with experimental measurements on fabricated beam specimens. For the study, three beams were fabricated: one with a compliant foam core, a second with a stiffer core, and a third with the two cores alternating down the length of the beam to create a periodic variation in properties. This periodic variation produces a bandgap in the frequency domain where vibrational energy does not readily propagate down the length of the beam. Mode shapes and natural frequencies are compared, as well as frequency responses from point force input to velocity response at the opposite end of the beam.

  19. Constraints on geomagnetic secular variation modeling from electromagnetism and fluid dynamics of the Earth's core

    Science.gov (United States)

    Benton, E. R.

    1986-01-01

    A spherical harmonic representation of the geomagnetic field and its secular variation for epoch 1980, designated GSFC(9/84), is derived and evaluated. At three epochs (1977.5, 1980.0, 1982.5) this model incorporates conservation of magnetic flux through five selected patches of area on the core/mantle boundary bounded by the zero contours of vertical magnetic field. These fifteen nonlinear constraints are included like data in an iterative least squares parameter estimation procedure that starts with the recently derived unconstrained field model GSFC (12/83). Convergence is approached within three iterations. The constrained model is evaluated by comparing its predictive capability outside the time span of its data, in terms of residuals at magnetic observatories, with that for the unconstrained model.

  20. Coupling of the computational fluid dynamics code ANSYS CFX with the 3D neutron kinetic core model DYN3D

    International Nuclear Information System (INIS)

    Kliem, S.; Grahn, A.; Rohde, U.; Schuetze, J.; Frank, Th.

    2010-01-01

    The computational fluid dynamics code ANSYS CFX has been coupled with the neutron-kinetic core model DYN3D. ANSYS CFX calculates the fluid dynamics and related transport phenomena in the reactors coolant and provides the corresponding data to DYN3D. In the fluid flow simulation of the coolant, the core itself is modeled within the porous body approach. DYN3D calculates the neutron kinetics and the fuel behavior including the heat transfer to the coolant. The physical data interface between the codes is the volumetric heat release rate into the coolant. In the prototype that is currently available, the coupling is restricted to single-phase flow problems. In the time domain an explicit coupling of the codes has been implemented so far. Steady-state and transient verification calculations for two small-size test problems confirm the correctness of the implementation of the prototype coupling. The first test problem was a mini-core consisting of nine real-size fuel assemblies with quadratic cross section. Comparison was performed with the DYN3D stand-alone code. In the steady state, the effective multiplication factor obtained by the DYN3D/ANSYS CFX codes hows a deviation of 9.8 pcm from the DYN3D stand-alone solution. This difference can be attributed to the use of different water property packages in the two codes. The transient test case simulated the withdrawal of the control rod from the central fuel assembly at hot zero power in the same mini-core. Power increase during the introduction of positive reactivity and power reduction due to fuel temperature increase are calculated in the same manner by the coupled and the stand-alone codes. The maximum values reached during the power rise differ by about 1 MW at a power level of 50 MW. Beside the different water property packages, these differences are caused by the use of different flow solvers. The same calculations were carried for a mini-core with seven real-size fuel assemblies with hexagonal cross section in

  1. Early Dynamics of the Moon's Core

    Science.gov (United States)

    Cuk, Matija; Hamilton, Douglas; Stewart, Sarah T.

    2018-04-01

    The Moon has a small molten iron core (Williams et al. 2006). Remanent magnetization in lunar rocks likely derives from a past lunar dynamo (Wieczorek 2018 and references therein), which may have been powered by differential precession between the mantle and the core. The rotations of the lunar mantle and core were largely decoupled for much of lunar history, with a large mutual offset during the Cassini State Transition (Meyer and Wisdom, 2011). It is likely that the past work underestimated lunar obliquities, and therefore core offsets, during early lunar history (Cuk et al. 2016). Here we investigate the dynamics of the lunar core and mantle using a Lie-Poisson numerical integrator (Touma and Wisdom 2001) which includes interactions between triaxial core and mantle, as well as all gravitational and tidal effects included in the model of Cuk et al. (2016). Since we assume a rigid triaxial mantle, this model is applicable to the Moon only once it has acquired its current shape, which probably happened before the Moon reached 25 Earth radii. While some details of the core dynamics depend on our assumptions about the shape of the lunar core-mantle boundary, we can report some robust preliminary findings. The presence of the core does not change significantly the evolutionary scenario of Cuk et al. (2016). The core and mantle are indeed decoupled, with the core having a much smaller obliquity to the ecliptic than the mantle for almost all of the lunar history. The core was largely in an equivalent of Cassini State 2, with the vernal equinoxes (wrt the ecliptic) of the core and the mantle being anti-aligned. The core-mantle spin axis offset has been very large during the Moon's first billion years (this is true both in canonical and high-inclination tidal evolution), causing the lunar core to be sub-synchronous. If the ancient lunar magnetic dipole was rotating around the core axis that was inclined to the Moon's spin axis, then the magnetic poles would move across

  2. Edge and core dynamics in harness

    International Nuclear Information System (INIS)

    Ball, R.

    2007-01-01

    Resistive kink oscillations in tokamak plasmas are usually treated as core localized events, yet there there are several mechanisms by which they may interact with the edge dynamics. This suggests that we may regulate edge oscillatory behaviour, or ELMs, by harnessing the natural or contrived sawtooth period and amplitude. In this work I investigate core-edge oscillatory entrainment through direct propagation of heat pulses, inductive coupling, and global higher order resonance effects. In the core of auxiliary heated tokamak plasmas the ineluctable rhythm of slow buildup and rapid conversion of potential energy governs electron and heat radial transport. The growth phase of the sawtooth is accompanied by significant reconnection, then during the collapse the temperature and density in the core fall dramatically. There is evidence from experiments in reversed field pinch devices that ensuing energy fluxes can affect flow shear and confinement at the edge. The basis for this study is the dynamical (BDS) model for edge plasma behavior that was derived from electrostatic resistive MHD equations. The BDS model reflects the major qualitative features of edge dynamics that have been observed, such as L-H transitions and associated ELMs, hysteresis, and spontaneous reversal of poloidal shear flow. Under poorly dissipative conditions the transient behavior of the model can exhibit period-doubling, blue-sky, homoclinic, and other exotic bifurcations. Thus we might ask questions such as: Is it possible to mode-lock the edge dynamics to the core sawteeth? Can we induce, or prevent, a change in direction of shear flow? What about MHD effects? Is core-edge communication one way or is there some feedback? In the simplest prototype for coupled core-edge dynamics I model the sawtooth crash as a periodic power input to the edge potential energy reservoir. This is effected by coupling the BDS model to the dynamical system u = u(1 - u 2 - x 2 ) - ω s x, x = x(1-u 2 -x 2 ) + ω s u

  3. Dynamic Comparison of Three- and Four-Equation Reactor Core Models in a Full-Scope Power Plant Training Simulator

    International Nuclear Information System (INIS)

    Espinosa-Paredes, Gilberto; Alvarez-Ramirez, Jose; Nunez-Carrera, Alejandro; Garcia-Gutierrez, Alfonso; Martinez-Mendez, Elizabeth Jeannette

    2004-01-01

    A comparative analysis of the dynamic behavior of a boiling water reactor in a full-scope power plant simulator for operator training is presented. Three- and four-equation reactor core models were used to examine three transients following tests described in acceptance test procedures: scram, loss of feedwater flow, and closure of main isolation valves. The three-equation model consists of water and steam mixture momentum, including mass and energy balances. The four-equation model is based on liquid and gas phase mass balances, together with a drift-flux approach for the analysis of phase separation. Analysis of the models showed that the scram transient was slightly different for three- and four-equation models. The drift-flux effects can explain such differences. Regarding the loss-of-feedwater transient, the predicted steam flow after scram is larger for the three-equation model. Finally, for the transient related to the closure of main steam isolation valves, the three-equation model provides slightly different results for the pressure change, which affects reactor level behavior

  4. Developing Fully Coupled Dynamical Reactor Core Isolation System Models in RELAP-7 for Extended Station Black-Out Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Haihua Zhao; Ling Zou; Hongbin Zhang; David Andrs; Richard Martineau

    2014-04-01

    The reactor core isolation cooling (RCIC) system in a boiling water reactor (BWR) provides makeup water to the reactor vessel for core cooling when the main steam lines are isolated and the normal supply of water to the reactor vessel is lost. It was one of the very few safety systems still available during the Fukushima Daiichi accidents after the tsunamis hit the plants and the system successfully delayed the core meltdown for a few days for unit 2 & 3. Therefore, detailed models for RCIC system components are indispensable to understand extended station black-out accidents (SBO) for BWRs. As part of the effort to develop the new generation reactor system safety analysis code RELAP-7, major components to simulate the RCIC system have been developed. This paper describes the models for those components such as turbine, pump, and wet well. Selected individual component test simulations and a simplified SBO simulation up to but before core damage is presented. The successful implementation of the simplified RCIC and wet well models paves the way to further improve the models for safety analysis by including more detailed physical processes in the near future.

  5. Exploring the core factors and its dynamic effects on oil price: An application on path analysis and BVAR-TVP model

    International Nuclear Information System (INIS)

    Chai Jian; Guo, Ju-E.; Meng Lei; Wang Shouyang

    2011-01-01

    As the uncertainty of oil price increases, impacts of the influential factors on oil price vary over time. It is of great importance to explore the core factors and its time-varying influence on oil price. In view of this, based on the PATH-ANALYSIS model, this paper obtains the core factors, builds an oil price system VAR model, which uses demand, supply, price, and inventory as endogenous variables, and China's net imports as well as dollar index as exogenous variables. Then we set up a BVAR-TVP (Time varying parameter) model to analyze dynamic impacts of core factors on oil price. The results show that: (1) oil prices became more sensitive to oil supply changes, and the influence delays became shorter; (2) the impact of oil inventories on oil prices with a time lag of two quarters but has a downward trend; (3) the impact of oil consumption on oil prices with a time lag of two quarters, and this effect is increasingly greater; (4) the US dollar index is always the important factor of oil price and its control power increases gradually, and the financial crisis (occurred in 2008) further strengthens the influence of US dollar. - Highlights: ► We build an oil price VAR model based on the PATH-ANALYSIS results. ► The dynamic effects of core factors on oil price was studied by BVAR-TVP model. ► Oil prices became more sensitive to oil supply changes. ► The effect of oil consumption on oil prices is increasingly greater. ► Financial crisis further strengthens the influence of US dollar on oil price.

  6. Dynamics of dissipative multifluid neutron star cores

    NARCIS (Netherlands)

    Haskell, B.; Andersson, N.; Comer, G.L.

    2012-01-01

    We present a Newtonian multifluid formalism for superfluid neutron star cores, focusing on the additional dissipative terms which arise when one takes into account the individual dynamical degrees of freedom associated with the coupled "fluids." The problem is of direct astrophysical interest as the

  7. Kinematic validation of a quasi-geostrophic model for the fast dynamics in the Earth's outer core

    Science.gov (United States)

    Maffei, S.; Jackson, A.

    2017-09-01

    We derive a quasi-geostrophic (QG) system of equations suitable for the description of the Earth's core dynamics on interannual to decadal timescales. Over these timescales, rotation is assumed to be the dominant force and fluid motions are strongly invariant along the direction parallel to the rotation axis. The diffusion-free, QG system derived here is similar to the one derived in Canet et al. but the projection of the governing equations on the equatorial disc is handled via vertical integration and mass conservation is applied to the velocity field. Here we carefully analyse the properties of the resulting equations and we validate them neglecting the action of the Lorentz force in the momentum equation. We derive a novel analytical solution describing the evolution of the magnetic field under these assumptions in the presence of a purely azimuthal flow and an alternative formulation that allows us to numerically solve the evolution equations with a finite element method. The excellent agreement we found with the analytical solution proves that numerical integration of the QG system is possible and that it preserves important physical properties of the magnetic field. Implementation of magnetic diffusion is also briefly considered.

  8. Automating the generation of finite element dynamical cores with Firedrake

    Science.gov (United States)

    Ham, David; Mitchell, Lawrence; Homolya, Miklós; Luporini, Fabio; Gibson, Thomas; Kelly, Paul; Cotter, Colin; Lange, Michael; Kramer, Stephan; Shipton, Jemma; Yamazaki, Hiroe; Paganini, Alberto; Kärnä, Tuomas

    2017-04-01

    The development of a dynamical core is an increasingly complex software engineering undertaking. As the equations become more complete, the discretisations more sophisticated and the hardware acquires ever more fine-grained parallelism and deeper memory hierarchies, the problem of building, testing and modifying dynamical cores becomes increasingly complex. Here we present Firedrake, a code generation system for the finite element method with specialist features designed to support the creation of geoscientific models. Using Firedrake, the dynamical core developer writes the partial differential equations in weak form in a high level mathematical notation. Appropriate function spaces are chosen and time stepping loops written at the same high level. When the programme is run, Firedrake generates high performance C code for the resulting numerics which are executed in parallel. Models in Firedrake typically take a tiny fraction of the lines of code required by traditional hand-coding techniques. They support more sophisticated numerics than are easily achieved by hand, and the resulting code is frequently higher performance. Critically, debugging, modifying and extending a model written in Firedrake is vastly easier than by traditional methods due to the small, highly mathematical code base. Firedrake supports a wide range of key features for dynamical core creation: A vast range of discretisations, including both continuous and discontinuous spaces and mimetic (C-grid-like) elements which optimally represent force balances in geophysical flows. High aspect ratio layered meshes suitable for ocean and atmosphere domains. Curved elements for high accuracy representations of the sphere. Support for non-finite element operators, such as parametrisations. Access to PETSc, a world-leading library of programmable linear and nonlinear solvers. High performance adjoint models generated automatically by symbolically reasoning about the forward model. This poster will present

  9. Inferring internal properties of Earth's core dynamics and their evolution from surface observations and a numerical geodynamo model

    Directory of Open Access Journals (Sweden)

    J. Aubert

    2011-10-01

    Full Text Available Over the past decades, direct three-dimensional numerical modelling has been successfully used to reproduce the main features of the geodynamo. Here we report on efforts to solve the associated inverse problem, aiming at inferring the underlying properties of the system from the sole knowledge of surface observations and the first principle dynamical equations describing the convective dynamo. To this end we rely on twin experiments. A reference model time sequence is first produced and used to generate synthetic data, restricted here to the large-scale component of the magnetic field and its rate of change at the outer boundary. Starting from a different initial condition, a second sequence is next run and attempts are made to recover the internal magnetic, velocity and buoyancy anomaly fields from the sparse surficial data. In order to reduce the vast underdetermination of this problem, we use stochastic inversion, a linear estimation method determining the most likely internal state compatible with the observations and some prior knowledge, and we also implement a sequential evolution algorithm in order to invert time-dependent surface observations. The prior is the multivariate statistics of the numerical model, which are directly computed from a large number of snapshots stored during a preliminary direct run. The statistics display strong correlation between different harmonic degrees of the surface observations and internal fields, provided they share the same harmonic order, a natural consequence of the linear coupling of the governing dynamical equations and of the leading influence of the Coriolis force. Synthetic experiments performed with a weakly nonlinear model yield an excellent quantitative retrieval of the internal structure. In contrast, the use of a strongly nonlinear (and more realistic model results in less accurate static estimations, which in turn fail to constrain the unobserved small scales in the time integration of the

  10. Influence of core sand properties on flow dynamics of core shooting process based on experiment and multiphase simulation

    Directory of Open Access Journals (Sweden)

    Chang-jiang Ni

    2017-03-01

    Full Text Available The influence of core sand properties on flow dynamics was investigated synchronously with various core sands, transparent core-box and high-speed camera. To confirm whether the core shooting process has significant turbulence, the flow pattern of sand particles in the shooting head and core box was reproduced with colored core sands. By incorporating the kinetic theory of granular flow (KTGF, kinetic-frictional constitutive correlation and turbulence model, a two-fluid model (TFM was established to study the flow dynamics of the core shooting process. Two-fluid model (TFM simulations were then performed and a areasonable agreement was achieved between the simulation and experimental results. Based on the experimental and simulation results, the effects of turbulence, sand density, sand diameter and binder ratio were analyzed in terms of filling process, sand volume fraction (αs and sand velocity (Vs.

  11. The dynamical core, physical parameterizations, and basic simulation characteristics of the atmospheric component AM3 of the GFDL global coupled model CM3

    Science.gov (United States)

    Donner, L.J.; Wyman, B.L.; Hemler, R.S.; Horowitz, L.W.; Ming, Y.; Zhao, M.; Golaz, J.-C.; Ginoux, P.; Lin, S.-J.; Schwarzkopf, M.D.; Austin, J.; Alaka, G.; Cooke, W.F.; Delworth, T.L.; Freidenreich, S.M.; Gordon, C.T.; Griffies, S.M.; Held, I.M.; Hurlin, W.J.; Klein, S.A.; Knutson, T.R.; Langenhorst, A.R.; Lee, H.-C.; Lin, Y.; Magi, B.I.; Malyshev, S.L.; Milly, P.C.D.; Naik, V.; Nath, M.J.; Pincus, R.; Ploshay, J.J.; Ramaswamy, V.; Seman, C.J.; Shevliakova, E.; Sirutis, J.J.; Stern, W.F.; Stouffer, R.J.; Wilson, R.J.; Winton, M.; Wittenberg, A.T.; Zeng, F.

    2011-01-01

    The Geophysical Fluid Dynamics Laboratory (GFDL) has developed a coupled general circulation model (CM3) for the atmosphere, oceans, land, and sea ice. The goal of CM3 is to address emerging issues in climate change, including aerosol-cloud interactions, chemistry-climate interactions, and coupling between the troposphere and stratosphere. The model is also designed to serve as the physical system component of earth system models and models for decadal prediction in the near-term future-for example, through improved simulations in tropical land precipitation relative to earlier-generation GFDL models. This paper describes the dynamical core, physical parameterizations, and basic simulation characteristics of the atmospheric component (AM3) of this model. Relative to GFDL AM2, AM3 includes new treatments of deep and shallow cumulus convection, cloud droplet activation by aerosols, subgrid variability of stratiform vertical velocities for droplet activation, and atmospheric chemistry driven by emissions with advective, convective, and turbulent transport. AM3 employs a cubed-sphere implementation of a finite-volume dynamical core and is coupled to LM3, a new land model with ecosystem dynamics and hydrology. Its horizontal resolution is approximately 200 km, and its vertical resolution ranges approximately from 70 m near the earth's surface to 1 to 1.5 km near the tropopause and 3 to 4 km in much of the stratosphere. Most basic circulation features in AM3 are simulated as realistically, or more so, as in AM2. In particular, dry biases have been reduced over South America. In coupled mode, the simulation of Arctic sea ice concentration has improved. AM3 aerosol optical depths, scattering properties, and surface clear-sky downward shortwave radiation are more realistic than in AM2. The simulation of marine stratocumulus decks remains problematic, as in AM2. The most intense 0.2% of precipitation rates occur less frequently in AM3 than observed. The last two decades of

  12. Moon model - An offset core.

    Science.gov (United States)

    Ransford, G.; Sjogren, W.

    1972-01-01

    The lunar model proposed helps to account for the offset of the center of gravity from the center of the optical figure, the moments of inertia of the Moon, the 'mascons,' the localization of the maria basins on the near side of the Moon, the igneous nature of rocks, and the remanent magnetism. In the proposed model the Moon has a core whose center is offset from the center of the outside spheroid towards the earth. Such a core will be formed if the Moon were entirely molten at some time in its past, and on solidification was synchronous with the earth.

  13. PMMA/PMMA core-shell particles with ellipsoidal, fluorescent cores: accessing rotational dynamics.

    Science.gov (United States)

    Klein, Matthias K; Klinkenberg, Nele; Schuetter, Stefan; Saenger, Nicolai; Pfleiderer, Patrick; Zumbusch, Andreas

    2015-03-10

    For several decades, nonaqueous dispersions of PMMA particles have played an important role in colloid research. They have found application as colloidal model systems, which are used to probe glassy dynamics or to explore crystal nucleation. To date, most research has focused on spherical particles, in which only translational motion can be investigated. Recently, however, there has been a surge of interest in analyzing also rotational dynamics. In this contribution, we introduce a new class of core-shell particles, which can be used as rotational probes. The colloids described herein are composed of shape anisotropic, fluorescent cores covered with nonfluorescent PMMA shells. The core-shell particles are built up in four steps. In a first step, we produce fluorescent and photo-cross-linkable PMMA colloids. In the second step, these particles are thermomechanically elongated and fixed in defined ellipsoidal shapes by photo-cross-linking. Subsequently, we cover the cross-linked, fluorescent core with a nonfluorescent PMMA shell. The shape of the resulting core-shell colloids is tunable between the initial anisotropic and perfect spherical shape. For shaping, we apply a simple solvent swelling procedure. As one option, this method yields perfect PMMA spheres with ellipsoidal, fluorescent centers. We also report morphological particle characterization using various fluorescence microscopy techniques. Finally, we demonstrate that the rotational dynamics of individual colloids can be tracked and analyzed.

  14. Design features affecting dynamic behaviour of fast reactor cores

    International Nuclear Information System (INIS)

    Kayser, G.; Gouriou, A.

    1981-06-01

    The study of dynamic response of an LMFBR to normal and accidental transients needs first of all a simulation code taking into account all the important effects. The DYN-1 code aims at this target. It represents with a sufficiently accurate meshing the core in a 20 geometry for the thermal and reactivity effects, while the kinetics of this core are calculated with a point model. The primary pool, secondary loops, steam generator are also represented, as well as the control and protective systems. We give a short description of this code. Simpler codes are sometimes good enough for parametric studies

  15. Nonlinear Light Dynamics in Multi-Core Structures

    Science.gov (United States)

    2017-02-27

    14. ABSTRACT The project has led to a number of results, including introduction of the key mathematical models governing optical field propagation in...be generated in continuous-discrete optical media such as multi-core optical fiber or waveguide arrays; localisation dynamics in a continuous...coherent combining and compression of pulses injected into the considered MCFs. 15. SUBJECT TERMS fibre lasers, coherent beam combining, discrete

  16. Test model of WWER core

    International Nuclear Information System (INIS)

    Tikhomirov, A. V.; Gorokhov, A. K.

    2007-01-01

    The objective of this paper is creation of precision test model for WWER RP neutron-physics calculations. The model is considered as a tool for verification of deterministic computer codes that enables to reduce conservatism of design calculations and enhance WWER RP competitiveness. Precision calculations were performed using code MCNP5/1/ (Monte Carlo method). Engineering computer package Sapfir 9 5andRC V VER/2/ is used in comparative analysis of the results, it was certified for design calculations of WWER RU neutron-physics characteristic. The object of simulation is the first fuel loading of Volgodon NPP RP. Peculiarities of transition in calculation using MCNP5 from 2D geometry to 3D geometry are shown on the full-scale model. All core components as well as radial and face reflectors, automatic regulation in control and protection system control rod are represented in detail description according to the design. The first stage of application of the model is assessment of accuracy of calculation of the core power. At the second stage control and protection system control rod worth was assessed. Full scale RP representation in calculation using code MCNP5 is time consuming that calls for parallelization of computational problem on multiprocessing computer (Authors)

  17. On the Dynamics of Edge-core Coupling

    International Nuclear Information System (INIS)

    Hahm, T.S.; Diamond, P.H.; Lin, Z.; Rewoldt, G.; Gurcan, O.; Ethier, S.

    2005-01-01

    One of the nagging, unresolved questions in fusion theory is concerned with the extent of the edge. Gyrokinetic particle simulations of toroidal ion temperature gradient (ITG) turbulence spreading using the Gyrokinetic Toroidal Code (GTC) [Z. Lin et al., Science 281, 1835 (1998)] and its related dynamical model have been extended to a system with radially varying ion temperature gradient, in order to study the inward spreading of edge turbulence toward the core plasma. Due to such spreading, the turbulence intensity in the core region is significantly enhanced over the value obtained from simulations of the core region only, and the precise boundary of the edge region is blurred. Even when the core gradient is within the Dimits shift regime (i.e., dominated by self-generated zonal flows which reduce the transport to a negligible value), a significant level of turbulence can penetrate to the core due to spreading from the edge. The scaling of the turbulent front propagation speed is closer to the prediction from a nonlinear diffusion model than from one based on linear toroidal coupling

  18. Topology and dynamics of the zebrafish segmentation clock core circuit.

    Directory of Open Access Journals (Sweden)

    Christian Schröter

    Full Text Available During vertebrate embryogenesis, the rhythmic and sequential segmentation of the body axis is regulated by an oscillating genetic network termed the segmentation clock. We describe a new dynamic model for the core pace-making circuit of the zebrafish segmentation clock based on a systematic biochemical investigation of the network's topology and precise measurements of somitogenesis dynamics in novel genetic mutants. We show that the core pace-making circuit consists of two distinct negative feedback loops, one with Her1 homodimers and the other with Her7:Hes6 heterodimers, operating in parallel. To explain the observed single and double mutant phenotypes of her1, her7, and hes6 mutant embryos in our dynamic model, we postulate that the availability and effective stability of the dimers with DNA binding activity is controlled in a "dimer cloud" that contains all possible dimeric combinations between the three factors. This feature of our model predicts that Hes6 protein levels should oscillate despite constant hes6 mRNA production, which we confirm experimentally using novel Hes6 antibodies. The control of the circuit's dynamics by a population of dimers with and without DNA binding activity is a new principle for the segmentation clock and may be relevant to other biological clocks and transcriptional regulatory networks.

  19. Nuclear reactor core modelling in multifunctional simulators

    Energy Technology Data Exchange (ETDEWEB)

    Puska, E.K. [VTT Energy, Nuclear Energy, Espoo (Finland)

    1999-06-01

    The thesis concentrates on the development of nuclear reactor core models for the APROS multifunctional simulation environment and the use of the core models in various kinds of applications. The work was started in 1986 as a part of the development of the entire APROS simulation system. The aim was to create core models that would serve in a reliable manner in an interactive, modular and multifunctional simulator/plant analyser environment. One-dimensional and three-dimensional core neutronics models have been developed. Both models have two energy groups and six delayed neutron groups. The three-dimensional finite difference type core model is able to describe both BWR- and PWR-type cores with quadratic fuel assemblies and VVER-type cores with hexagonal fuel assemblies. The one- and three-dimensional core neutronics models can be connected with the homogeneous, the five-equation or the six-equation thermal hydraulic models of APROS. The key feature of APROS is that the same physical models can be used in various applications. The nuclear reactor core models of APROS have been built in such a manner that the same models can be used in simulator and plant analyser applications, as well as in safety analysis. In the APROS environment the user can select the number of flow channels in the three-dimensional reactor core and either the homogeneous, the five- or the six-equation thermal hydraulic model for these channels. The thermal hydraulic model and the number of flow channels have a decisive effect on the calculation time of the three-dimensional core model and thus, at present, these particular selections make the major difference between a safety analysis core model and a training simulator core model. The emphasis on this thesis is on the three-dimensional core model and its capability to analyse symmetric and asymmetric events in the core. The factors affecting the calculation times of various three-dimensional BWR, PWR and WWER-type APROS core models have been

  20. Influence of core box vents distribution on flow dynamics of core shooting process based on experiment and numerical simulation

    Directory of Open Access Journals (Sweden)

    Chang-jiang Ni

    2016-01-01

    Full Text Available Core shooting process plays a decisive role in the quality of sand cores, and core box vents distribution is one of the most important factor determining the effectiveness of core shooting process. In this paper, the influence of core box vents distribution on the flow dynamics of core shooting process was investigated based on in situ experimental observations with transparent core box, high-speed camera and pressure measuring system. Attention was focused on the variation of both the flow behavior of sand and pressure curves due to different vents distribution. Taking both kinetic and frictional stress into account, a kinetic-frictional constitutive model was established to describe the internal momentum transfer in the solid phase. Two-fluid model (TFM simulation was then performed and good agreement was achieved between the experimental and simulated results on both the flow behavior of sand and the pressure curves. It was found that vents distribution has direct effect on the pressure difference of different locations in the core box, which determines the buoyancy force exerting on the sand particles and significantly influences the filling process of core sand.

  1. A seismologically consistent compositional model of Earth's core.

    Science.gov (United States)

    Badro, James; Côté, Alexander S; Brodholt, John P

    2014-05-27

    Earth's core is less dense than iron, and therefore it must contain "light elements," such as S, Si, O, or C. We use ab initio molecular dynamics to calculate the density and bulk sound velocity in liquid metal alloys at the pressure and temperature conditions of Earth's outer core. We compare the velocity and density for any composition in the (Fe-Ni, C, O, Si, S) system to radial seismological models and find a range of compositional models that fit the seismological data. We find no oxygen-free composition that fits the seismological data, and therefore our results indicate that oxygen is always required in the outer core. An oxygen-rich core is a strong indication of high-pressure and high-temperature conditions of core differentiation in a deep magma ocean with an FeO concentration (oxygen fugacity) higher than that of the present-day mantle.

  2. Core reactivity estimation in space reactors using recurrent dynamic networks

    International Nuclear Information System (INIS)

    Parlos, A.G.; Tsai, W.K.

    1991-01-01

    A recurrent Multi Layer Perceptron (MLP) network topology is used in the identification of nonlinear dynamic systems from only the input/output measurements. This effort is part of a research program devoted in developing real-time diagnostics and predictive control techniques for large-scale complex nonlinear dynamic systems. The identification is performed in the discrete time domain, with the learning algorithm being a modified form of the Back Propagation (BP) rule. The Recurrent Dynamic Network (RDN) developed is applied for the total core reactivity prediction of a spacecraft reactor from only neutronic power level measurements. Results indicate that the RDN can reproduce the nonlinear response of the reactor while keeping the number of nodes roughly equal to the relative order of the system. As accuracy requirements are increased, the number of required nodes also increases, however, the order of the RDN necessary to obtain such results is still in the same order of magnitude as the order of the matematical model of the system. There are a number of issues identified regarding the behavior of the RDN, which at this point are unresolved and require further research. Nevertheless, it is believed that use of the recurrent MLP structure with a variety of different learning algorithms may prove useful in utilizing artifical neural networks (ANNs) for recognition, classification and prediction of dynamic systems

  3. Modeling of the reactor core

    International Nuclear Information System (INIS)

    1999-01-01

    In order to improve technical - economical parameters fuel with 2.4% enrichment and burnable absorber is started to be used at Ignalina NPP. Using code QUABOX/CUBBOX the main neutronic - physical characteristics were calculated for selected reactor core conditions

  4. Statistical analysis of dynamic parameters of the core

    International Nuclear Information System (INIS)

    Ionov, V.S.

    2007-01-01

    The transients of various types were investigated for the cores of zero power critical facilities in RRC KI and NPP. Dynamic parameters of neutron transients were explored by tool statistical analysis. Its have sufficient duration, few channels for currents of chambers and reactivity and also some channels for technological parameters. On these values the inverse period. reactivity, lifetime of neutrons, reactivity coefficients and some effects of a reactivity are determinate, and on the values were restored values of measured dynamic parameters as result of the analysis. The mathematical means of statistical analysis were used: approximation(A), filtration (F), rejection (R), estimation of parameters of descriptive statistic (DSP), correlation performances (kk), regression analysis(KP), the prognosis (P), statistician criteria (SC). The calculation procedures were realized by computer language MATLAB. The reasons of methodical and statistical errors are submitted: inadequacy of model operation, precision neutron-physical parameters, features of registered processes, used mathematical model in reactivity meters, technique of processing for registered data etc. Examples of results of statistical analysis. Problems of validity of the methods used for definition and certification of values of statistical parameters and dynamic characteristics are considered (Authors)

  5. Core reactivity estimation in space reactors using recurrent dynamic networks

    Science.gov (United States)

    Parlos, Alexander G.; Tsai, Wei K.

    1991-01-01

    A recurrent multilayer perceptron network topology is used in the identification of nonlinear dynamic systems from only the input/output measurements. The identification is performed in the discrete time domain, with the learning algorithm being a modified form of the back propagation (BP) rule. The recurrent dynamic network (RDN) developed is applied for the total core reactivity prediction of a spacecraft reactor from only neutronic power level measurements. Results indicate that the RDN can reproduce the nonlinear response of the reactor while keeping the number of nodes roughly equal to the relative order of the system. As accuracy requirements are increased, the number of required nodes also increases, however, the order of the RDN necessary to obtain such results is still in the same order of magnitude as the order of the mathematical model of the system. It is believed that use of the recurrent MLP structure with a variety of different learning algorithms may prove useful in utilizing artificial neural networks for recognition, classification, and prediction of dynamic systems.

  6. Core-shell colloidal particles with dynamically tunable scattering properties.

    Science.gov (United States)

    Meng, Guangnan; Manoharan, Vinothan N; Perro, Adeline

    2017-09-27

    We design polystyrene-poly(N'-isopropylacrylamide-co-acrylic acid) core-shell particles that exhibit dynamically tunable scattering. We show that under normal solvent conditions the shell is nearly index-matched to pure water, and the particle scattering is dominated by Rayleigh scattering from the core. As the temperature or salt concentration increases, both the scattering cross-section and the forward scattering increase, characteristic of Mie scatterers. The magnitude of the change in the scattering cross-section and scattering anisotropy can be controlled through the solvent conditions and the size of the core. Such particles may find use as optical switches or optical filters with tunable opacity.

  7. Toward a mineral physics reference model for the Moon's core.

    Science.gov (United States)

    Antonangeli, Daniele; Morard, Guillaume; Schmerr, Nicholas C; Komabayashi, Tetsuya; Krisch, Michael; Fiquet, Guillaume; Fei, Yingwei

    2015-03-31

    The physical properties of iron (Fe) at high pressure and high temperature are crucial for understanding the chemical composition, evolution, and dynamics of planetary interiors. Indeed, the inner structures of the telluric planets all share a similar layered nature: a central metallic core composed mostly of iron, surrounded by a silicate mantle, and a thin, chemically differentiated crust. To date, most studies of iron have focused on the hexagonal closed packed (hcp, or ε) phase, as ε-Fe is likely stable across the pressure and temperature conditions of Earth's core. However, at the more moderate pressures characteristic of the cores of smaller planetary bodies, such as the Moon, Mercury, or Mars, iron takes on a face-centered cubic (fcc, or γ) structure. Here we present compressional and shear wave sound velocity and density measurements of γ-Fe at high pressures and high temperatures, which are needed to develop accurate seismic models of planetary interiors. Our results indicate that the seismic velocities proposed for the Moon's inner core by a recent reanalysis of Apollo seismic data are well below those of γ-Fe. Our dataset thus provides strong constraints to seismic models of the lunar core and cores of small telluric planets. This allows us to propose a direct compositional and velocity model for the Moon's core.

  8. Modeling in the Common Core State Standards

    Science.gov (United States)

    Tam, Kai Chung

    2011-01-01

    The inclusion of modeling and applications into the mathematics curriculum has proven to be a challenging task over the last fifty years. The Common Core State Standards (CCSS) has made mathematical modeling both one of its Standards for Mathematical Practice and one of its Conceptual Categories. This article discusses the need for mathematical…

  9. Integrated core-edge-divertor modeling studies

    International Nuclear Information System (INIS)

    Stacey, W.M.

    2001-01-01

    An integrated calculation model for simulating the interaction of physics phenomena taking place in the plasma core, in the plasma edge and in the SOL and divertor of tokamaks has been developed and applied to study such interactions. The model synthesises a combination of numerical calculations (1) the power and particle balances for the core plasma, using empirical confinement scaling laws and taking into account radiation losses (2), the particle, momentum and power balances in the SOL and divertor, taking into account the effects of radiation and recycling neutrals, (3) the transport of feeling and recycling neutrals, explicitly representing divertor and pumping geometry, and (4) edge pedestal gradient scale lengths and widths, evaluation of theoretical predictions (5) confinement degradation due to thermal instabilities in the edge pedestals, (6) detachment and divertor MARFE onset, (7) core MARFE onsets leading to a H-L transition, and (8) radiative collapse leading to a disruption and evaluation of empirical fits (9) power thresholds for the L-H and H-L transitions and (10) the width of the edge pedestals. The various components of the calculation model are coupled and must be iterated to a self-consistent convergence. The model was developed over several years for the purpose of interpreting various edge phenomena observed in DIII-D experiments and thereby, to some extent, has been benchmarked against experiment. Because the model treats the interactions of various phenomena in the core, edge and divertor, yet is computationally efficient, it lends itself to the investigation of the effects of different choices of various edge plasma operating conditions on overall divertor and core plasma performance. Studies of the effect of feeling location and rate, divertor geometry, plasma shape, pumping and over 'edge parameters' on core plasma properties (line average density, confinement, density limit, etc.) have been performed for DIII-D model problems. A

  10. Core muscle activation during dynamic upper limb exercises in women.

    Science.gov (United States)

    Tarnanen, Sami P; Siekkinen, Kirsti M; Häkkinen, Arja H; Mälkiä, Esko A; Kautiainen, Hannu J; Ylinen, Jari J

    2012-12-01

    Although several everyday functions and sporting activities demand controlled use of the abdominal and back muscles while working with the upper limbs, the activity of core muscles during dynamic upper limb exercises in the standing position has not been studied extensively. The purpose of this cross-sectional study was to examine abdominal and back muscle activity during dynamic upper limb exercises while standing and to evaluate whether dynamic exercises are appropriate for strengthening muscles. The activation of the rectus abdominis, obliquus externus abdominis, longissimus, and multifidus muscles during dynamic bilateral or unilateral shoulder exercises with or without fixation of the pelvis was measured in 20 healthy women using surface electromyography. Trunk muscle activation during isometric maximum contraction was used as a comparative reference. With bilateral shoulder extension and unilateral shoulder horizontal adduction, abdominal muscle activity was >60% of activity during reference exercises. With unilateral shoulder horizontal abduction and shoulder extension exercises, back muscle activity was >60% of the activity level reference exercise. Muscle activation levels were 35-64% lower during shoulder horizontal adduction and abduction without fixation compared with exercises with fixation. The results indicate that upper limb exercises performed in the standing position are effective for activating core muscles. Bilateral and unilateral shoulder extension and unilateral shoulder horizontal abduction and adduction with the pelvis fixed elicited the greatest activity of the core muscles.

  11. A calculation model for a HTR core seismic response

    International Nuclear Information System (INIS)

    Buland, P.; Berriaud, C.; Cebe, E.; Livolant, M.

    1975-01-01

    The paper presents the experimental results obtained at Saclay on a HTGR core model and comparisons with analytical results. Two series of horizontal tests have been performed on the shaking table VESUVE: sinusoidal test and time history response. Acceleration of graphite blocks, forces on the boundaries, relative displacement of the core and PCRB model, impact velocity of the blocks on the boundaries were recorded. These tests have shown the strongly non-linear dynamic behaviour of the core. The resonant frequency of the core is dependent on the level of the excitation. These phenomena have been explained by a computer code, which is a lumped mass non-linear model. Good correlation between experimental and analytical results was obtained for impact velocities and forces on the boundaries. This comparison has shown that the damping of the core is a critical parameter for the estimation of forces and velocities. Time history displacement at the level of PCRV was reproduced on the shaking table. The analytical model was applied to this excitation and good agreement was obtained for forces and velocities. (orig./HP) [de

  12. Specialists' meeting on design features affecting a dynamic behaviour of fast reactor cores. Summary report

    International Nuclear Information System (INIS)

    1982-01-01

    The purpose of the meeting was to review and discuss the effects induced by changes in some design characteristics on overall performances and transient behaviour of fast reactor cores. The main topics discussed in the four technical sessions were: National Review Presentations. Identification of the key issues to be considered in the following sessions; Effects of design changes on performance characteristics. Kinetics models and codes; Evaluation and interpretation of reactivity coefficients. Kinetics calculations for restrained and free-standing cores; Comparison of the dynamic behaviour of homogeneous and heterogeneous cores

  13. Studying the effects of dynamical parameters on reactor core temperature

    Directory of Open Access Journals (Sweden)

    R Khodabakhsh

    2015-01-01

    Full Text Available In order to increase productivity, reduce depreciation, and avoid possible accidents in a system such as fuel rods' melting and overpressure, control of temperature changes in the reactor core is an important factor. There are several methods for solving and analysing the stability of point kinetics equations. In most previous analyses, the effects of various factors on the temperature of the reactor core have been ignored. In this work, the effects of various dynamical parameters on the temperature of the reactor core and stability of the system in the presence of temperature feedback reactivity with external reactivity step, ramp and sinusoidal for six groups of delayed neutrons were studied using the method of Lyapunov exponent. The results proved to be in good agreement with other works

  14. Edge-soliton-mediated vortex-core reversal dynamics.

    Science.gov (United States)

    Lee, Ki-Suk; Yoo, Myoung-Woo; Choi, Youn-Seok; Kim, Sang-Koog

    2011-04-08

    We report an additional reversal mechanism of magnetic vortex cores in nanodot elements driven by currents flowing perpendicular to the sample plane, occurring via dynamic transformations between two coupled edge solitons and bulk vortex solitons. This mechanism differs completely from the well-known switching process mediated by the creation and annihilation of vortex-antivortex pairs in terms of the associated topological solitons, energies, and spin-wave emissions. Strongly localized out-of-plane gyrotropic fields induced by the fast motion of the coupled edge solitons enable a magnetization dip that plays a crucial role in the formation of the reversed core magnetization. This work provides a deeper physical insight into the dynamic transformations of magnetic topological solitons in nanoelements.

  15. Validated dynamic flow model

    DEFF Research Database (Denmark)

    Knudsen, Torben

    2011-01-01

    model structure suggested by University of Lund the WP4 leader. This particular model structure has the advantages that it fits better into the control design frame work used by WP3-4 compared to the model structures previously developed in WP2. The different model structures are first summarised....... Then issues dealing with optimal experimental design is considered. Finally the parameters are estimated in the chosen static and dynamic models and a validation is performed. Two of the static models, one of them the additive model, explains the data well. In case of dynamic models the suggested additive...

  16. Preliminary model for core/concrete interactions

    International Nuclear Information System (INIS)

    Murfin, W.B.

    1977-08-01

    A preliminary model is described for computing the rate of penetration of concrete by a molten LWR core. Among the phenomena included are convective stirring of the melt by evolved gases, admixture of concrete decomposition products to the melt, chemical reactions, radiative heat loss, and variation of heat transfer coefficients with local pressure. The model is most applicable to a two-phase melt (metallic plus oxidic) having a fairly high metallic content

  17. Energy Efficient Routing Algorithms in Dynamic Optical Core Networks with Dual Energy Sources

    DEFF Research Database (Denmark)

    Wang, Jiayuan; Fagertun, Anna Manolova; Ruepp, Sarah Renée

    2013-01-01

    This paper proposes new energy efficient routing algorithms in optical core networks, with the application of solar energy sources and bundled links. A comprehensive solar energy model is described in the proposed network scenarios. Network performance in energy savings, connection blocking...... probability, resource utilization and bundled link usage are evaluated with dynamic network simulations. Results show that algorithms proposed aiming for reducing the dynamic part of the energy consumption of the network may raise the fixed part of the energy consumption meanwhile....

  18. A three-dimensional computer code for the nonlinear dynamic response of an HTGR core

    International Nuclear Information System (INIS)

    Subudhi, M.; Lasker, L.; Koplik, B.; Curreri, J.; Goradia, H.

    1979-01-01

    A three-dimensional dynamic code has been developed to determine the nonlinear response of an HTGR core. The HTGR core consists of several thousands of hexagonal core blocks. These are arranged in layers stacked together. Each layer contains many core blocks surrounded on their outer periphery by reflector blocks. The entire assembly is contained within a prestressed concrete reactor vessel. Gaps exist between adjacent blocks in any horizontal plane. Each core block in a given layer is connected to the blocks directly above and below it via three dowell pins. The present analytical study is directed towards an investigation of the nonlinear response of the reactor core blocks in the event of a seismic occurrence. The computer code is developed for a specific mathematical model which represents a vertical arrangement of layers of blocks. This comprises a 'block module' of core elements which would be obtained by cutting a cylindrical portion consisting of seven fuel blocks per layer. It is anticipated that a number of such modules properly arranged could represent the entire core. Hence, the predicted response of this module would exhibit the response characteristics of the core. (orig.)

  19. Dynamic Latent Classification Model

    DEFF Research Database (Denmark)

    Zhong, Shengtong; Martínez, Ana M.; Nielsen, Thomas Dyhre

    Monitoring a complex process often involves keeping an eye on hundreds or thousands of sensors to determine whether or not the process is under control. We have been working with dynamic data from an oil production facility in the North sea, where unstable situations should be identified as soon...... as possible. Motivated by this problem setting, we propose a generative model for dynamic classification in continuous domains. At each time point the model can be seen as combining a naive Bayes model with a mixture of factor analyzers (FA). The latent variables of the FA are used to capture the dynamics...... in the process as well as modeling dependences between attributes....

  20. A Dynamic Model of Sustainment Investment

    Science.gov (United States)

    2015-02-01

    Sustainment System Dynamics Model 11 Figure 7: Core Structure of Sustainment Work 12 Figure 8: Bandwagon Effect Loop 13 Figure 9: Limits to Growth Loop 14...Dynamics Model sustainment capacity sustainment performance gap Bandwagon Effect R1 Limits to Growth B1 S Work Smarter B3 Work Bigger B2 desired...which is of concern primarily when using the model as a vehicle for research. Figure 8 depicts a reinforcing loop called the “ Bandwagon Effect

  1. Double Fourier series dynamical core with hybrid sigma-pressure vertical coordinate

    Directory of Open Access Journals (Sweden)

    Song-You Hong

    2013-05-01

    Full Text Available The hybrid sigma-pressure vertical coordinate is implemented into the double Fourier series (DFS dynamical core of the Global/Regional Integrated Model system (GRIMs. Using traditional verification metrics, the model is quantitatively compared to a model that uses the terrain-following sigma coordinate. The distribution and skill scores for precipitation simulated with the hybrid coordinate are not significantly different from those found using the sigma coordinate. The hybrid coordinate has a positive effect on medium-range forecast skill in terms of geopotential height and temperature, especially in the tropics and upper layers of the atmosphere. Furthermore, the root-mean-squared error for relative humidity is significantly reduced near 100 hPa in the Northern (Southern Hemisphere for a boreal summer (winter. The effect of the hybrid coordinate is found to be almost the same in the GRIMs-spherical harmonics (SPH dynamical core. For the GRIMs-DFS dynamical core, the hybrid coordinate is insensitive to the abrupt transition of diffusivity at approximately 100 hPa, where numerical diffusion errors occur with the sigma coordinate. This suggests that the hybrid coordinate is necessary for the unique horizontal diffusion method of the GRIMs-DFS dynamical core.

  2. Conceptual Models Core to Good Design

    CERN Document Server

    Johnson, Jeff

    2011-01-01

    People make use of software applications in their activities, applying them as tools in carrying out tasks. That this use should be good for people--easy, effective, efficient, and enjoyable--is a principal goal of design. In this book, we present the notion of Conceptual Models, and argue that Conceptual Models are core to achieving good design. From years of helping companies create software applications, we have come to believe that building applications without Conceptual Models is just asking for designs that will be confusing and difficult to learn, remember, and use. We show how Concept

  3. A Core Language for Separate Variability Modeling

    DEFF Research Database (Denmark)

    Iosif-Lazăr, Alexandru Florin; Wasowski, Andrzej; Schaefer, Ina

    2014-01-01

    Separate variability modeling adds variability to a modeling language without requiring modifications of the language or the supporting tools. We define a core language for separate variability modeling using a single kind of variation point to define transformations of software artifacts in object...... models. Our language, Featherweight VML, has several distinctive features. Its architecture and operations are inspired by the recently proposed Common Variability Language (CVL). Its semantics is considerably simpler than that of CVL, while remaining confluent (unlike CVL). We simplify complex......, which makes it suitable to serve as a specification for implementations of trustworthy variant derivation. Featherweight VML offers insights in the execution of other variability modeling languages such as the Orthogonal Variability Model and Delta Modeling. To the best of our knowledge...

  4. Prerouted FPGA Cores for Rapid System Construction in a Dynamic Reconfigurable System

    Directory of Open Access Journals (Sweden)

    Douglas L. Maskell

    2007-01-01

    Full Text Available A method of constructing prerouted FPGA cores, which lays the foundations for a rapid system construction framework for dynamically reconfigurable computing systems, is presented. Two major challenges are considered: how to manage the wires crossing a core's borders; and how to maintain an acceptable level of flexibility for system construction with only a minimum of overhead. In order to maintain FPGA computing performance, it is crucial to thoroughly analyze the issues at the lowest level of device detail in order to ensure that computing circuit encapsulation is as efficient as possible. We present the first methodology that allows a core to scale its interface bandwidth to the maximum available in a routing channel. Cores can be constructed independently from the rest of the system using a framework that is independent of the method used to place and route primitive components within the core. We use an abstract FPGA model and CAD tools that mirror those used in industry. An academic design flow has been modified to include a wire policy and an interface constraints framework that tightly constrains the use of the wires that cross a core's boundaries. Using this tool set we investigate the effect of prerouting on overall system optimality. Abutting cores are instantly connected by colocation of interface wires. Eliminating run-time routing drastically reduces the time taken to construct a system using a set of cores.

  5. Geomagnetic Core Field Secular Variation Models

    DEFF Research Database (Denmark)

    Gillet, N.; Lesur, V.; Olsen, Nils

    2010-01-01

    We analyse models describing time changes of the Earth’s core magnetic field (secular variation) covering the historical period (several centuries) and the more recent satellite era (previous decade), and we illustrate how both the information contained in the data and the a priori information...... (regularisation) affect the result of the ill-posed geomagnetic inverse problem. We show how data quality, frequency and selection procedures govern part of the temporal changes in the secular variation norms and spectra, which are sometimes difficult to dissociate from true changes of the core state. We...... highlight the difficulty of resolving the time variability of the high degree secular variation coefficients (i.e. the secular acceleration), arising for instance from the challenge to properly separate sources of internal and of external origin. In addition, the regularisation process may also result...

  6. Dynamic usage of transcription start sites within core promoters

    DEFF Research Database (Denmark)

    Kawaji, Hideya; Frith, Martin C; Katayama, Shintaro

    2006-01-01

    BACKGROUND: Mammalian promoters do not initiate transcription at single, well defined base pairs, but rather at multiple, alternative start sites spread across a region. We previously characterized the static structures of transcription start site usage within promoters at the base pair level......, based on large-scale sequencing of transcript 5' ends. RESULTS: In the present study we begin to explore the internal dynamics of mammalian promoters, and demonstrate that start site selection within many mouse core promoters varies among tissues. We also show that this dynamic usage of start sites...... is associated with CpG islands, broad and multimodal promoter structures, and imprinting. CONCLUSION: Our results reveal a new level of biologic complexity within promoters--fine-scale regulation of transcription starting events at the base pair level. These events are likely to be related to epigenetic...

  7. Dynamic accelerator modeling

    International Nuclear Information System (INIS)

    Nishimura, Hiroshi.

    1993-05-01

    Object-Oriented Programming has been used extensively to model the LBL Advanced Light Source 1.5 GeV electron storage ring. This paper is on the present status of the class library construction with emphasis on a dynamic modeling

  8. Models for Dynamic Applications

    DEFF Research Database (Denmark)

    Sales-Cruz, Mauricio; Morales Rodriguez, Ricardo; Heitzig, Martina

    2011-01-01

    This chapter covers aspects of the dynamic modelling and simulation of several complex operations that include a controlled blending tank, a direct methanol fuel cell that incorporates a multiscale model, a fluidised bed reactor, a standard chemical reactor and finally a polymerisation reactor...

  9. Dynamic panel data models

    NARCIS (Netherlands)

    Bun, M.J.G.; Sarafidis, V.

    2013-01-01

    This Chapter reviews the recent literature on dynamic panel data models with a short time span and a large cross-section. Throughout the discussion we considerlinear models with additional endogenous covariates. First we give a broad overview of available inference methods placing emphasis on GMM.

  10. Discrete dynamical models

    CERN Document Server

    Salinelli, Ernesto

    2014-01-01

    This book provides an introduction to the analysis of discrete dynamical systems. The content is presented by an unitary approach that blends the perspective of mathematical modeling together with the ones of several discipline as Mathematical Analysis, Linear Algebra, Numerical Analysis, Systems Theory and Probability. After a preliminary discussion of several models, the main tools for the study of linear and non-linear scalar dynamical systems are presented, paying particular attention to the stability analysis. Linear difference equations are studied in detail and an elementary introduction of Z and Discrete Fourier Transform is presented. A whole chapter is devoted to the study of bifurcations and chaotic dynamics. One-step vector-valued dynamical systems are the subject of three chapters, where the reader can find the applications to positive systems, Markov chains, networks and search engines. The book is addressed mainly to students in Mathematics, Engineering, Physics, Chemistry, Biology and Economic...

  11. Multiscale modeling of pedestrian dynamics

    CERN Document Server

    Cristiani, Emiliano; Tosin, Andrea

    2014-01-01

    This book presents mathematical models and numerical simulations of crowd dynamics. The core topic is the development of a new multiscale paradigm, which bridges the microscopic and macroscopic scales taking the most from each of them for capturing the relevant clues of complexity of crowds. The background idea is indeed that most of the complex trends exhibited by crowds are due to an intrinsic interplay between individual and collective behaviors. The modeling approach promoted in this book pursues actively this intuition and profits from it for designing general mathematical structures susceptible of application also in fields different from the inspiring original one. The book considers also the two most traditional points of view: the microscopic one, in which pedestrians are tracked individually, and the macroscopic one, in which pedestrians are assimilated to a continuum. Selected existing models are critically analyzed. The work is addressed to researchers and graduate students.

  12. Modeling dynamic swarms

    KAUST Repository

    Ghanem, Bernard

    2013-01-01

    This paper proposes the problem of modeling video sequences of dynamic swarms (DSs). We define a DS as a large layout of stochastically repetitive spatial configurations of dynamic objects (swarm elements) whose motions exhibit local spatiotemporal interdependency and stationarity, i.e., the motions are similar in any small spatiotemporal neighborhood. Examples of DS abound in nature, e.g., herds of animals and flocks of birds. To capture the local spatiotemporal properties of the DS, we present a probabilistic model that learns both the spatial layout of swarm elements (based on low-level image segmentation) and their joint dynamics that are modeled as linear transformations. To this end, a spatiotemporal neighborhood is associated with each swarm element, in which local stationarity is enforced both spatially and temporally. We assume that the prior on the swarm dynamics is distributed according to an MRF in both space and time. Embedding this model in a MAP framework, we iterate between learning the spatial layout of the swarm and its dynamics. We learn the swarm transformations using ICM, which iterates between estimating these transformations and updating their distribution in the spatiotemporal neighborhoods. We demonstrate the validity of our method by conducting experiments on real and synthetic video sequences. Real sequences of birds, geese, robot swarms, and pedestrians evaluate the applicability of our model to real world data. © 2012 Elsevier Inc. All rights reserved.

  13. Vortex-Core Reversal Dynamics: Towards Vortex Random Access Memory

    Science.gov (United States)

    Kim, Sang-Koog

    2011-03-01

    An energy-efficient, ultrahigh-density, ultrafast, and nonvolatile solid-state universal memory is a long-held dream in the field of information-storage technology. The magnetic random access memory (MRAM) along with a spin-transfer-torque switching mechanism is a strong candidate-means of realizing that dream, given its nonvolatility, infinite endurance, and fast random access. Magnetic vortices in patterned soft magnetic dots promise ground-breaking applications in information-storage devices, owing to the very stable twofold ground states of either their upward or downward core magnetization orientation and plausible core switching by in-plane alternating magnetic fields or spin-polarized currents. However, two technologically most important but very challenging issues --- low-power recording and reliable selection of each memory cell with already existing cross-point architectures --- have not yet been resolved for the basic operations in information storage, that is, writing (recording) and readout. Here, we experimentally demonstrate a magnetic vortex random access memory (VRAM) in the basic cross-point architecture. This unique VRAM offers reliable cell selection and low-power-consumption control of switching of out-of-plane core magnetizations using specially designed rotating magnetic fields generated by two orthogonal and unipolar Gaussian-pulse currents along with optimized pulse width and time delay. Our achievement of a new device based on a new material, that is, a medium composed of patterned vortex-state disks, together with the new physics on ultrafast vortex-core switching dynamics, can stimulate further fruitful research on MRAMs that are based on vortex-state dot arrays.

  14. Neutron dynamics of fast-spectrum dedicated cores for waste transmutation

    International Nuclear Information System (INIS)

    Massara, S.

    2002-04-01

    Among different scenarios achieving minor actinide transmutation, the possibility of double strata scenarios with critical, fast spectrum, dedicated cores must be checked and quantified. In these cores, the waste fraction has to be at the highest level compatible with safety requirements during normal operation and transient conditions. As reactivity coefficients are poor in such critical cores (low delayed neutron fraction and Doppler feed-back, high coolant void coefficient), their dynamic behaviour during transient conditions must be carefully analysed. Three nitride-fuel configurations have been analysed: two liquid metal-cooled (sodium and lead) and a particle-fuel helium-cooled one. A dynamic code, MAT4 DYN, has been developed during the PhD thesis, allowing the study of loss of flow, reactivity insertion and loss of coolant accidents, and taking into account two fuel geometries (cylindrical and spherical) and two thermal-hydraulics models for the coolant (incompressible for liquid metals and compressible for helium). Dynamics calculations have shown that if the fuel nature is appropriately chosen (letting a sufficient margin during transients), this can counterbalance the bad state of reactivity coefficients for liquid metal-cooled cores, thus proving the interest of this kind of concept. On the other side, the gas-cooled core dynamics is very badly affected by the high value of the helium void coefficient (which is a consequence of the choice of a hard spectrum), this effect being amplified by the very low thermal inertia of particle-fuel design. So, a new kind of concept should be considered for a helium-cooled fast-spectrum dedicated core. (authors)

  15. Testing the HTA core model: experiences from two pilot projects

    DEFF Research Database (Denmark)

    Pasternack, Iris; Anttila, Heidi; Mäkelä, Marjukka

    2009-01-01

    OBJECTIVES: The aim of this study was to analyze and describe process and outcomes of two pilot assessments based on the HTA Core Model, discuss the applicability of the model, and explore areas of development. METHODS: Data were gathered from HTA Core Model and pilot Core HTA documents...

  16. The Candy Wrapper Velocity Model for the Earth's Inner Core

    Science.gov (United States)

    Mattesini, M.

    2014-12-01

    Recent global expansion of seismic data motivated a number of seismological studies of the Earth's inner core that proposed the existence of increasingly complex structure and anisotropy. In the meantime, new hypotheses of dynamic mechanisms have been put forward to interpret seismological results. Here, the nature of hemispherical dichotomy and anisotropy is re-investigated by bridging the observations of PKP(bc-df) differential travel-times with the iron bcc/hcp elastic properties computed from first-principles methods.The Candy Wrapper velocity model introduced here accounts for a dynamic picture of the inner core (i.e., the eastward drift of material), where different iron crystal shapes can be stabilized at the two hemispheres. We show that seismological data are best explained by a rather complicated, mosaic-like, structure of the inner core, where well-separated patches of different iron crystals compose the anisotropic western hemispherical region, and a conglomerate of almost indistinguishable iron phases builds-up the weakly anisotropic eastern side.

  17. The general dynamic model

    DEFF Research Database (Denmark)

    Borregaard, Michael K.; Matthews, Thomas J.; Whittaker, Robert James

    2016-01-01

    Aim: Island biogeography focuses on understanding the processes that underlie a set of well-described patterns on islands, but it lacks a unified theoretical framework for integrating these processes. The recently proposed general dynamic model (GDM) of oceanic island biogeography offers a step...... towards this goal. Here, we present an analysis of causality within the GDM and investigate its potential for the further development of island biogeographical theory. Further, we extend the GDM to include subduction-based island arcs and continental fragment islands. Location: A conceptual analysis...... dynamics of distinct island types are predicted to lead to markedly different evolutionary dynamics. This sets the stage for a more predictive theory incorporating the processes governing temporal dynamics of species diversity on islands....

  18. Modelling of thermohydraulic emergency core cooling phenomena

    International Nuclear Information System (INIS)

    Yadigaroglu, G.; Andreani, M.; Lewis, M.J.

    1990-10-01

    The codes used in the early seventies for safety analysis and licensing were based either on the homogeneous model of two-phase flow or on the so-called separate-flow models, which are mixture models accounting, however, for the difference in average velocity between the two phases. In both cases the behavior of the mixture is prescribed a priori as a function of local parameters such as the mass flux and the quality. The modern best-estimate codes used for analyzing LWR LOCA's and transients are often based on a two-fluid or 6-equation formulation of the conservation equations. In this case the conservation equations are written separately for each phase; the mixture is allowed to evolve on its own, governed by the interfacial exchanges of mass, momentum and energy between the phases. It is generally agreed that such relatively sophisticated 6-equation formulations of two-phase flow are necessary for the correct modelling of a number of phenomena and situations arising in LWR accidental situations. They are in particular indispensible for the analysis of stratified or countercurrent flows and of situations in which large departures from thermal and velocity equilibrium exist. This report will be devoted to a discussion of the need for, the capacity and the limitations of the two-phase flow models (with emphasis on the 6-equation formulations) in modelling these two-phase flow and heat transfer phenomena and/or different core cooling situations. 18 figs., 1 tab., 72 refs

  19. NON-EQUILIBRIUM CHEMISTRY OF DYNAMICALLY EVOLVING PRESTELLAR CORES. II. IONIZATION AND MAGNETIC FIELD

    International Nuclear Information System (INIS)

    Tassis, Konstantinos; Willacy, Karen; Yorke, Harold W.; Turner, Neal J.

    2012-01-01

    We study the effect that non-equilibrium chemistry in dynamical models of collapsing molecular cloud cores has on measurements of the magnetic field in these cores, the degree of ionization, and the mean molecular weight of ions. We find that OH and CN, usually used in Zeeman observations of the line-of-sight magnetic field, have an abundance that decreases toward the center of the core much faster than the density increases. As a result, Zeeman observations tend to sample the outer layers of the core and consistently underestimate the core magnetic field. The degree of ionization follows a complicated dependence on the number density at central densities up to 10 5 cm –3 for magnetic models and 10 6 cm –3 in non-magnetic models. At higher central densities, the scaling approaches a power law with a slope of –0.6 and a normalization which depends on the cosmic-ray ionization rate ζ and the temperature T as (ζT) 1/2 . The mean molecular weight of ions is systematically lower than the usually assumed value of 20-30, and, at high densities, approaches a value of 3 due to the asymptotic dominance of the H + 3 ion. This significantly lower value implies that ambipolar diffusion operates faster.

  20. Corruption dynamics model

    Science.gov (United States)

    Malafeyev, O. A.; Nemnyugin, S. A.; Rylow, D.; Kolpak, E. P.; Awasthi, Achal

    2017-07-01

    The corruption dynamics is analyzed by means of the lattice model which is similar to the three-dimensional Ising model. Agents placed at nodes of the corrupt network periodically choose to perfom or not to perform the act of corruption at gain or loss while making decisions based on the process history. The gain value and its dynamics are defined by means of the Markov stochastic process modelling with parameters established in accordance with the influence of external and individual factors on the agent's gain. The model is formulated algorithmically and is studied by means of the computer simulation. Numerical results are obtained which demonstrate asymptotic behaviour of the corruption network under various conditions.

  1. Mouse models for core binding factor leukemia.

    Science.gov (United States)

    Chin, D W L; Watanabe-Okochi, N; Wang, C Q; Tergaonkar, V; Osato, M

    2015-10-01

    RUNX1 and CBFB are among the most frequently mutated genes in human leukemias. Genetic alterations such as chromosomal translocations, copy number variations and point mutations have been widely reported to result in the malfunction of RUNX transcription factors. Leukemias arising from such alterations in RUNX family genes are collectively termed core binding factor (CBF) leukemias. Although adult CBF leukemias generally are considered a favorable risk group as compared with other forms of acute myeloid leukemia, the 5-year survival rate remains low. An improved understanding of the molecular mechanism for CBF leukemia is imperative to uncover novel treatment options. Over the years, retroviral transduction-transplantation assays and transgenic, knockin and knockout mouse models alone or in combination with mutagenesis have been used to study the roles of RUNX alterations in leukemogenesis. Although successful in inducing leukemia, the existing assays and models possess many inherent limitations. A CBF leukemia model which induces leukemia with complete penetrance and short latency would be ideal as a platform for drug discovery. Here, we summarize the currently available mouse models which have been utilized to study CBF leukemias, discuss the advantages and limitations of individual experimental systems, and propose suggestions for improvements of mouse models.

  2. Improvement of core degradation model in ISAAC

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dong Ha; Kim, See Darl; Park, Soo Yong

    2004-02-01

    If water inventory in the fuel channels depletes and fuel rods are exposed to steam after uncover in the pressure tube, the decay heat generated from fuel rods is transferred to the pressure tube and to the calandria tube by radiation, and finally to the moderator in the calandria tank by conduction. During this process, the cladding will be heated first and ballooned when the fuel gap internal pressure exceeds the primary system pressure. The pressure tube will be also ballooned and will touch the calandria tube, increasing heat transfer rate to the moderator. Although these situation is not desirable, the fuel channel is expected to maintain its integrity as long as the calandria tube is submerged in the moderator, because the decay heat could be removed to the moderator through radiation and conduction. Therefore, loss of coolant and moderator inside and outside the channel may cause severe core damage including horizontal fuel channel sagging and finally loss of channel integrity. The sagged channels contact with the channels located below and lose their heat transfer area to the moderator. As the accident goes further, the disintegrated fuel channels will be heated up and relocated onto the bottom of the calandria tank. If the temperature of these relocated materials is high enough to attack the calandria tank, the calandria tank would fail and molten material would contact with the calandria vault water. Steam explosion and/or rapid steam generation from this interaction may threaten containment integrity. Though a detailed model is required to simulate the severe accident at CANDU plants, complexity of phenomena itself and inner structures as well as lack of experimental data forces to choose a simple but reasonable model as the first step. ISAAC 1.0 was developed to model the basic physicochemical phenomena during the severe accident progression. At present, ISAAC 2.0 is being developed for accident management guide development and strategy evaluation. In

  3. Improvement of core degradation model in ISAAC

    International Nuclear Information System (INIS)

    Kim, Dong Ha; Kim, See Darl; Park, Soo Yong

    2004-02-01

    If water inventory in the fuel channels depletes and fuel rods are exposed to steam after uncover in the pressure tube, the decay heat generated from fuel rods is transferred to the pressure tube and to the calandria tube by radiation, and finally to the moderator in the calandria tank by conduction. During this process, the cladding will be heated first and ballooned when the fuel gap internal pressure exceeds the primary system pressure. The pressure tube will be also ballooned and will touch the calandria tube, increasing heat transfer rate to the moderator. Although these situation is not desirable, the fuel channel is expected to maintain its integrity as long as the calandria tube is submerged in the moderator, because the decay heat could be removed to the moderator through radiation and conduction. Therefore, loss of coolant and moderator inside and outside the channel may cause severe core damage including horizontal fuel channel sagging and finally loss of channel integrity. The sagged channels contact with the channels located below and lose their heat transfer area to the moderator. As the accident goes further, the disintegrated fuel channels will be heated up and relocated onto the bottom of the calandria tank. If the temperature of these relocated materials is high enough to attack the calandria tank, the calandria tank would fail and molten material would contact with the calandria vault water. Steam explosion and/or rapid steam generation from this interaction may threaten containment integrity. Though a detailed model is required to simulate the severe accident at CANDU plants, complexity of phenomena itself and inner structures as well as lack of experimental data forces to choose a simple but reasonable model as the first step. ISAAC 1.0 was developed to model the basic physicochemical phenomena during the severe accident progression. At present, ISAAC 2.0 is being developed for accident management guide development and strategy evaluation. In

  4. On the coupling of fluid dynamics and electromagnetism at the top of the earth's core

    Science.gov (United States)

    Benton, E. R.

    1985-01-01

    A kinematic approach to short-term geomagnetism has recently been based upon pre-Maxwell frozen-flux electromagnetism. A complete dynamic theory requires coupling fluid dynamics to electromagnetism. A geophysically plausible simplifying assumption for the vertical vorticity balance, namely that the vertical Lorentz torque is negligible, is introduced and its consequences are developed. The simplified coupled magnetohydrodynamic system is shown to conserve a variety of magnetic and vorticity flux integrals. These provide constraints on eligible models for the geomagnetic main field, its secular variation, and the horizontal fluid motions at the top of the core, and so permit a number of tests of the underlying assumptions.

  5. Data use investigation for the magnetic field satellite (MAGSAT) mission: Geomagnetic field forecasting and fluid dynamics of the core

    Science.gov (United States)

    Benton, E. R. (Principal Investigator)

    1982-01-01

    MAGSAT data were used to construct a variety of spherical harmonic models of the main geomagnetic field emanating from Earth's liquid core at poch 1980. These models were used to: (1) accurately determine the radius of Earth's core by a magnetic method, (2) calculate estimates, of the long-term ange of variation of geomagnetic Gauss coefficients; (3) establish a preferred truncation level for current spherical harmonic models of the main geomagnetic field from the core; (4) evaluate a method for taking account of electrical conduction in the mantle when the magnetic field is downward continued to the core-mantle boundary; and (5) establish that upwelling and downwelling of fluid motion at the top of the core is probably detectable, observationally. A fluid dynamics forecast model was not produced because of insufficient data.

  6. Normal Mode Derived Models of the Physical Properties of Earth's Outer Core

    Science.gov (United States)

    Irving, J. C. E.; Cottaar, S.; Lekic, V.; Wu, W.

    2017-12-01

    Earth's outer core, the largest reservoir of metal in our planet, is comprised of an iron alloy of an uncertain composition. Its dynamical behaviour is responsible for the generation of Earth's magnetic field, with convection driven both by thermal and chemical buoyancy fluxes. Existing models of the seismic velocity and density of the outer core exhibit some variation, and there are only a small number of models which aim to represent the outer core's density.It is therefore important that we develop a better understanding of the physical properties of the outer core. Though most of the outer core is likely to be well mixed, it is possible that the uppermost outer core is stably stratified: it may be enriched in light elements released during the growth of the solid, iron enriched, inner core; by elements dissolved from the mantle into the outer core; or by exsolution of compounds previously dissolved in the liquid metal which will eventually be swept into the mantle. The stratified layer may host MAC or Rossby waves and it could impede communication between the chemically differentiated mantle and outer core, including screening out some of the geodynamo's signal. We use normal mode center frequencies to estimate the physical properties of the outer core in a Bayesian framework. We estimate the mineral physical parameters needed to best produce velocity and density models of the outer core which are consistent with the normal mode observations. We require that our models satisfy realistic physical constraints. We create models of the outer core with and without a distinct uppermost layer and assess the importance of this region.Our normal mode-derived models are compared with observations of body waves which travel through the outer core. In particular, we consider SmKS waves which are especially sensitive to the uppermost outer core and are therefore an important way to understand the robustness of our models.

  7. On a low Mach nuclear core model

    Directory of Open Access Journals (Sweden)

    Dellacherie Stéphane

    2012-04-01

    Full Text Available We propose to formally derive a low Mach number model adapted to the modeling of a water nuclear core (e.g. of PWR- or BWR-type in the forced convection regime or in the natural convection regime by filtering out the acoustic waves in the compressible Navier-Stokes system. Then, we propose a monodimensional stationary analytical solution with regular and singular charge loss when the equation of state is a stiffened gas equation. Moreover, we show that this solution may not be admissible from a physical or a mathematical point of view for a particular choice of the mass flux and we study the consistency between this solution and the solution obtained from a Boussinesq approximation. Let us underline that the modeling of the nuclear core is simplified in this paper. For example, the flow is a single-phase flow and we do not model neither the porosity nor the turbulence. Nevertheless, it will be possible to enrich the modeling in the future. On se propose de formellement dériver un modèle bas Mach adapté à la modélisation d’un cœur de réacteur nucléaire à eau (par exemple de type REP ou REB en régime de convection forcée ou en régime de convection naturelle en filtrant les ondes acoustiques dans un modèle de type Navier-Stokes compressible. On construit ensuite une solution analytique stationnaire monodimensionnelle avec perte de charge régulière et singulière dans le cas où l’équation d’état est de type gaz raidi. Puis, on montre que cette solution peut ne pas être physiquement ou mathématiquement admissible pour un choix particulier du flux de masse et on étudie la cohérence entre cette solution et la solution obtenue à partir d’une approximation de Boussinesq. Soulignons que la modélisation proposée du cœur nucléaire est ici simplifiée. Par exemple, l’écoulement est monophasique et on ne modélise ni la porosité, ni la turbulence. Il sera par contre tout à fait possible d’enrichir la modélisation par

  8. Core-hole-induced dynamical effects in the x-ray emission spectrum of liquid methanol.

    Science.gov (United States)

    Ljungberg, M P; Zhovtobriukh, I; Takahashi, O; Pettersson, L G M

    2017-04-07

    We compute the x-ray emission spectrum of liquid methanol, with the dynamical effects that result from the creation of the core hole included in a semiclassical way. Our method closely reproduces a fully quantum mechanical description of the dynamical effects for relevant one-dimensional models of the hydrogen-bonded methanol molecules. For the liquid, we find excellent agreement with the experimental spectrum, including the large isotope effect in the first split peak. The dynamical effects depend sensitively on the initial structure in terms of the local hydrogen-bonding (H-bonding) character: non-donor molecules contribute mainly to the high-energy peak while molecules with a strong donating H-bond contribute to the peak at lower energy. The spectrum thus reflects the initial structure mediated by the dynamical effects that are, however, seen to be crucial in order to reproduce the intensity distribution of the recently measured spectrum.

  9. Design of Gas-phase Synthesis of Core-Shell Particles by Computational Fluid - Aerosol Dynamics.

    Science.gov (United States)

    Buesser, B; Pratsinis, S E

    2011-11-01

    Core-shell particles preserve the bulk properties (e.g. magnetic, optical) of the core while its surface is modified by a shell material. Continuous aerosol coating of core TiO 2 nanoparticles with nanothin silicon dioxide shells by jet injection of hexamethyldisiloxane precursor vapor downstream of titania particle formation is elucidated by combining computational fluid and aerosol dynamics. The effect of inlet coating vapor concentration and mixing intensity on product shell thickness distribution is presented. Rapid mixing of the core aerosol with the shell precursor vapor facilitates efficient synthesis of hermetically coated core-shell nanoparticles. The predicted extent of hermetic coating shells is compared to the measured photocatalytic oxidation of isopropanol by such particles as hermetic SiO 2 shells prevent the photocatalytic activity of titania. Finally the performance of a simpler, plug-flow coating model is assessed by comparisons to the present detailed CFD model in terms of coating efficiency and silica average shell thickness and texture.

  10. Shell model in-water frequencies of the core barrel

    International Nuclear Information System (INIS)

    Takeuchi, K.; De Santo, D.F.

    1980-01-01

    Natural frequencies of a 1/24th-scale core barrel/vessel model in air and in water are measured by determining frequency responses to applied forces. The measured data are analyzed by the use of the one-dimensional fluid-structure computer code, MULTIFLEX, developed to calculate the hydraulic force. The fluid-structure interaction in the downcomer annulus is computed with a one-dimensional network model formed to be equivalent to two-dimensional fluid-structure interaction. The structural model incorporated in MULTIFLEX is substantially simpler than that necessary for structural analyses. Proposed for computation of structural dynamics is the projector method than can deal with the beam mode by modal analysis and the other shell modes by a direct integration method. Computed in-air and in-water frequencies agree fairly well with the experimental data, verifying the above MULTIFLEX technique

  11. MCNP full-core modeling of the advanced test reactor

    International Nuclear Information System (INIS)

    Kim, S.S.; Jahshan, S.N.; Nielson, R.B.

    1993-01-01

    A full-core Monte Carlo neutron and photon (MCNP) transport model has been completed for the advanced test reactor (ATR) at Idaho National Engineering Laboratory. This new model is a complete three-dimensional model that represents fuel elements, core structures, and target regions in adequate detail. The model can be used in evaluating heating and reaction rates in various target regions of the core. This model is especially useful in physics analysis of an asymmetric experiment loading in the core. The ATR is a light-water-cooled thermal reactor with aluminum/uranium-aluminide fuel plates grouped in arcuate fuel elements that form a serpentine arrangement, as shown in Fig. 1. The core is surrounded by a beryllium reflector. Nine test loops are nestled in the lobes of the serpentine core, and numerous other irradiation holes with varying dimensions and radiation environments are located in the reflector and in the core interior

  12. Multiscale modelling of nucleosome core particle aggregation

    Science.gov (United States)

    Lyubartsev, Alexander P.; Korolev, Nikolay; Fan, Yanping; Nordenskiöld, Lars

    2015-02-01

    The nucleosome core particle (NCP) is the basic building block of chromatin. Under the influence of multivalent cations, isolated mononucleosomes exhibit a rich phase behaviour forming various columnar phases with characteristic NCP-NCP stacking. NCP stacking is also a regular element of chromatin structure in vivo. Understanding the mechanism of nucleosome stacking and the conditions leading to self-assembly of NCPs is still incomplete. Due to the complexity of the system and the need to describe electrostatics properly by including the explicit mobile ions, novel modelling approaches based on coarse-grained (CG) methods at the multiscale level becomes a necessity. In this work we present a multiscale CG computer simulation approach to modelling interactions and self-assembly of solutions of NCPs induced by the presence of multivalent cations. Starting from continuum simulations including explicit three-valent cobalt(III)hexammine (CoHex3+) counterions and 20 NCPs, based on a previously developed advanced CG NCP model with one bead per amino acid and five beads per two DNA base pair unit (Fan et al 2013 PLoS One 8 e54228), we use the inverse Monte Carlo method to calculate effective interaction potentials for a ‘super-CG’ NCP model consisting of seven beads for each NCP. These interaction potentials are used in large-scale simulations of up to 5000 NCPs, modelling self-assembly induced by CoHex3+. The systems of ‘super-CG’ NCPs form a single large cluster of stacked NCPs without long-range order in agreement with experimental data for NCPs precipitated by the three-valent polyamine, spermidine3+.

  13. Four-fluid model of PWR degraded cores

    International Nuclear Information System (INIS)

    Dearing, J.F.

    1985-01-01

    This paper describes the new two-dimensional, four-fluid fluid dynamics and heat transfer (FLUIDS) module of the MELPROG code. MELPROG is designed to give an integrated, mechanistic treatment of pressurized water reactor (PWR) core meltdown accidents from accident initiation to vessel melt-through. The code has a modular data storage and transfer structure, with each module providing the others with boundary conditions at each computational time step. Thus the FLUIDS module receives mass and energy source terms from the fuel pin module, the structures module, and the debris bed module, and radiation energy source terms from the radiation module. MELPROG, which models the reactor vessel, is also designed to model the vessel as a component in the TRAC/PF1 networking solution of a PWR reactor coolant system (RCS). The coupling between TRAC and MELPROG is implicit in the fluid dynamics of the reactor coolant (liquid water and steam) allowing an accurate simulation of the coupling between the vessel and the rest of the RCS during an accident. This paper deals specifically with the numerical model of fluid dynamics and heat transfer within the reactor vessel, which allows a much more realistic simulation (with less restrictive assumptions on physical behavior) of the accident than has been possible before

  14. Comparative study between single core model and detail core model of CFD modelling on reactor core cooling behaviour

    Science.gov (United States)

    Darmawan, R.

    2018-01-01

    Nuclear power industry is facing uncertainties since the occurrence of the unfortunate accident at Fukushima Daiichi Nuclear Power Plant. The issue of nuclear power plant safety becomes the major hindrance in the planning of nuclear power program for new build countries. Thus, the understanding of the behaviour of reactor system is very important to ensure the continuous development and improvement on reactor safety. Throughout the development of nuclear reactor technology, investigation and analysis on reactor safety have gone through several phases. In the early days, analytical and experimental methods were employed. For the last four decades 1D system level codes were widely used. The continuous development of nuclear reactor technology has brought about more complex system and processes of nuclear reactor operation. More detailed dimensional simulation codes are needed to assess these new reactors. Recently, 2D and 3D system level codes such as CFD are being explored. This paper discusses a comparative study on two different approaches of CFD modelling on reactor core cooling behaviour.

  15. Dynamic wake meandering modeling

    DEFF Research Database (Denmark)

    Larsen, Gunner Chr.; Madsen Aagaard, Helge; Bingöl, Ferhat

    We present a consistent, physically based theory for the wake meandering phenomenon, which we consider of crucial importance for the overall description of wind turbine loadings in wind farms. In its present version the model is confined to single wake situations. The model philosophy does, however......, are an integrated part the model complex. For design applications, the computational efficiency of wake deficit prediction is a key issue. Two computationally low cost models are developed for this purpose. The character of the added wake turbulence, generated by the up-stream turbine in the form of shed......, concerning both flow characteristics and turbine load characteristics. Contrary to previous attempts to model wake loading, the dynamic wake meandering approach opens for a unifying description in the sense that turbine power– and load aspects can be treated simultaneously. This capability is a direct...

  16. Dynamical chiral bag model

    International Nuclear Information System (INIS)

    Colanero, K.; Chu, M.-C.

    2002-01-01

    We study a dynamical chiral bag model, in which massless fermions are confined within an impenetrable but movable bag coupled to meson fields. The self-consistent motion of the bag is obtained by solving the equations of motion exactly assuming spherical symmetry. When the bag interacts with an external meson wave we find three different kinds of resonances: fermionic, geometric, and σ resonances. We discuss the phenomenological implications of our results

  17. 2D dynamics of the radiative core of low mass stars

    Science.gov (United States)

    Hypolite, Delphine; Mathis, Stéphane; Rieutord, Michel

    2017-10-01

    Understanding the internal rotation of low mass stars all along their evolution is of primary interest when studying their rotational dynamics, internal mixing and magnetic field generation. In this context, helio- and asteroseismology probe angular velocity gradients deep within solar type stars at different evolutionary stages. Still the rotation close to the center of such stars on the main sequence is hardly detectable and the dynamical interaction of the radiative core with the surface convective envelope is not well understood. For instance, the influence of the differential rotation profile sustained by convection and applied as a boundary condition to the radiation zone is very important in the formation of tachoclines. In this work, we study a 2D hydrodynamical model of a radiative core when an imposed, solar or anti-solar, differential rotation is applied at the upper boundary. This model uses the Boussinesq approximation and we find that the shear induces a cylindrical differential rotation associated with a unique cell of meridional circulation in each hemisphere (counterclockwise when the shear is solar-like and clockwise when it is anti-solar). The results are discussed in the framework of seismic observables (internal rotation rate, core-to-surface rotation ratio) while perspectives to improve our modeling by including magnetic field or transport by internal gravity waves will be discussed.

  18. 2D dynamics of the radiative core of low mass stars

    Directory of Open Access Journals (Sweden)

    Hypolite Delphine

    2017-01-01

    Full Text Available Understanding the internal rotation of low mass stars all along their evolution is of primary interest when studying their rotational dynamics, internal mixing and magnetic field generation. In this context, helio- and asteroseismology probe angular velocity gradients deep within solar type stars at different evolutionary stages. Still the rotation close to the center of such stars on the main sequence is hardly detectable and the dynamical interaction of the radiative core with the surface convective envelope is not well understood. For instance, the influence of the differential rotation profile sustained by convection and applied as a boundary condition to the radiation zone is very important in the formation of tachoclines. In this work, we study a 2D hydrodynamical model of a radiative core when an imposed, solar or anti-solar, differential rotation is applied at the upper boundary. This model uses the Boussinesq approximation and we find that the shear induces a cylindrical differential rotation associated with a unique cell of meridional circulation in each hemisphere (counterclockwise when the shear is solar-like and clockwise when it is anti-solar. The results are discussed in the framework of seismic observables (internal rotation rate, core-to-surface rotation ratio while perspectives to improve our modeling by including magnetic field or transport by internal gravity waves will be discussed.

  19. Contact dynamics math model

    Science.gov (United States)

    Glaese, John R.; Tobbe, Patrick A.

    1986-01-01

    The Space Station Mechanism Test Bed consists of a hydraulically driven, computer controlled six degree of freedom (DOF) motion system with which docking, berthing, and other mechanisms can be evaluated. Measured contact forces and moments are provided to the simulation host computer to enable representation of orbital contact dynamics. This report describes the development of a generalized math model which represents the relative motion between two rigid orbiting vehicles. The model allows motion in six DOF for each body, with no vehicle size limitation. The rotational and translational equations of motion are derived. The method used to transform the forces and moments from the sensor location to the vehicles' centers of mass is also explained. Two math models of docking mechanisms, a simple translational spring and the Remote Manipulator System end effector, are presented along with simulation results. The translational spring model is used in an attempt to verify the simulation with compensated hardware in the loop results.

  20. The dynamic interplay between appraisal and core affect in daily life

    Directory of Open Access Journals (Sweden)

    Peter eKuppens

    2012-10-01

    Full Text Available Appraisals and core affect are both considered central to the experience of emotion. In this study we examine the bidirectional relationships between these two components of emotional experience by examining how core affect changes following how people appraise events and how appraisals in turn change following how they feel in daily life. In an experience sampling study, participants recorded their core affect and appraisals of ongoing events; data were analyzed using cross-lagged multilevel modeling. Valence-appraisal relationships were found to be characterized by congruency: The same appraisals that were associated with a change in pleasure-displeasure (motivational congruency, other-agency, coping potential, and future expectancy, changed themselves as a function of pleasure-displeasure. In turn, mainly secondary appraisals of who is responsible and how one is able to cope with events were associated with changes in arousal, which itself is followed by changes in the future appraised relevance of events. These results integrate core affect and appraisal approaches to emotion by demonstrating the dynamic interplay of how appraisals are followed by changes in core affect which in turn change our basis for judging future events.

  1. Validation of the IMS CORE Diabetes Model.

    Science.gov (United States)

    McEwan, Phil; Foos, Volker; Palmer, James L; Lamotte, Mark; Lloyd, Adam; Grant, David

    2014-09-01

    The IMS CORE Diabetes Model (CDM) is a widely published and validated simulation model applied in both type 1 diabetes mellitus (T1DM) and type 2 diabetes mellitus (T2DM) analyses. Validation to external studies is an important part of demonstrating model credibility. Because the CDM is widely used to estimate long-term clinical outcomes in diabetes patients, the objective of this analysis was to validate the CDM to contemporary outcomes studies, including those with long-term follow-up periods. A total of 112 validation simulations were performed, stratified by study follow-up duration. For long-term results (≥15-year follow-up), simulation cohorts representing baseline Diabetes Control and Complications Trial (DCCT) and United Kingdom Prospective Diabetes Study (UKPDS) cohorts were generated and intensive and conventional treatment arms were defined in the CDM. Predicted versus observed macrovascular and microvascular complications and all-cause mortality were assessed using the coefficient of determination (R(2)) goodness-of-fit measure. Across all validation studies, the CDM simulations produced an R(2) statistic of 0.90. For validation studies with a follow-up duration of less than 15 years, R(2) values of 0.90 and 0.88 were achieved for T1DM and T2DM respectively. In T1DM, validating against 30-year outcomes data (DCCT) resulted in an R(2) of 0.72. In T2DM, validating against 20-year outcomes data (UKPDS) resulted in an R(2) of 0.92. This analysis supports the CDM as a credible tool for predicting the absolute number of clinical events in DCCT- and UKPDS-like populations. With increasing incidence of diabetes worldwide, the CDM is particularly important for health care decision makers, for whom the robust evaluation of health care policies is essential. Copyright © 2014 International Society for Pharmacoeconomics and Outcomes Research (ISPOR). Published by Elsevier Inc. All rights reserved.

  2. Thermal hydraulic model validation for HOR mixed core fuel management

    International Nuclear Information System (INIS)

    Gibcus, H.P.M.; Vries, J.W. de; Leege, P.F.A. de

    1997-01-01

    A thermal-hydraulic core management model has been developed for the Hoger Onderwijsreactor (HOR), a 2 MW pool-type university research reactor. The model was adopted for safety analysis purposes in the framework of HEU/LEU core conversion studies. It is applied in the thermal-hydraulic computer code SHORT (Steady-state HOR Thermal-hydraulics) which is presently in use in designing core configurations and for in-core fuel management. An elaborate measurement program was performed for establishing the core hydraulic characteristics for a variety of conditions. The hydraulic data were obtained with a dummy fuel element with special equipment allowing a.o. direct measurement of the true core flow rate. Using these data the thermal-hydraulic model was validated experimentally. The model, experimental tests, and model validation are discussed. (author)

  3. Unlocking the Physiochemical Controls on Organic Carbon Dynamics from the Soil Pore- to Core-Scale

    Science.gov (United States)

    Smith, A. P.; Tfaily, M. M.; Bond-Lamberty, B. P.; Todd-Brown, K. E.; Bailey, V. L.

    2015-12-01

    The physical organization of soil includes pore networks of varying size and connectivity. These networks control microbial access to soil organic carbon (C) by spatially separating microorganisms and C by both distance and size exclusion. The extent to which this spatially isolated C is vulnerable to microbial transformation under hydrologically dynamic conditions is unknown, and limits our ability to predict the source and sink capacity of soils. We investigated the effects of shifting hydrologic connectivity and soil structure on greenhouse gas C emissions from surface soils collected from the Disney Wilderness Preserve (Florida, USA). We subjected intact soil cores and re-packed homogenized soil cores to simulated groundwater rise or precipitation, monitoring their CO2 and CH4 emissions over 24 hours. Soil pore water was then extracted from each core using different suctions to sample water retained by pore throats of different sizes and then characterized by Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry. Greater respiration rates were observed from homogenized cores compared to intact cores, and from soils wet from below, in which the wetting front is driven by capillary forces, filling fine pores first. This suggests that C located in fine pores may turn over via diffusion processes that lead to the colocation of this C with other resources and microorganisms. Both the complexity and concentration of soluble-C increased with decreasing pore size domains. Pore water extracted from homogenized cores had greater C concentrations than from intact cores, with the greatest concentrations in pore waters sampled from very fine pores, highlighting the importance of soil structure in physically protecting C. These results suggest that the spatial separation of decomposers from C is a key mechanism stabilizing C in these soils. Further research is ongoing to accurately represent this protection mechanism, and the conditions under which it breaks

  4. Intrinsically dynamic population models

    Directory of Open Access Journals (Sweden)

    Robert Schoen

    2005-03-01

    Full Text Available Intrinsically dynamic models (IDMs depict populations whose cumulative growth rate over a number of intervals equals the product of the long term growth rates (that is the dominant roots or dominant eigenvalues associated with each of those intervals. Here the focus is on the birth trajectory produced by a sequence of population projection (Leslie matrices. The elements of a Leslie matrix are represented as straightforward functions of the roots of the matrix, and new relationships are presented linking the roots of a matrix to its Net Reproduction Rate and stable mean age of childbearing. Incorporating mortality changes in the rates of reproduction yields an IDM when the subordinate roots are held constant over time. In IDMs, the birth trajectory generated by any specified sequence of Leslie matrices can be found analytically. In the Leslie model with 15 year age groups, the constant subordinate root assumption leads to reasonable changes in the age pattern of fertility, and equations (27 and (30 provide the population size and structure that result from changing levels of net reproduction. IDMs generalize the fixed rate stable population model. They can characterize any observed population, and can provide new insights into dynamic demographic behavior, including the momentum associated with gradual or irregular paths to zero growth.

  5. Bioinactivation: Software for modelling dynamic microbial inactivation.

    Science.gov (United States)

    Garre, Alberto; Fernández, Pablo S; Lindqvist, Roland; Egea, Jose A

    2017-03-01

    This contribution presents the bioinactivation software, which implements functions for the modelling of isothermal and non-isothermal microbial inactivation. This software offers features such as user-friendliness, modelling of dynamic conditions, possibility to choose the fitting algorithm and generation of prediction intervals. The software is offered in two different formats: Bioinactivation core and Bioinactivation SE. Bioinactivation core is a package for the R programming language, which includes features for the generation of predictions and for the fitting of models to inactivation experiments using non-linear regression or a Markov Chain Monte Carlo algorithm (MCMC). The calculations are based on inactivation models common in academia and industry (Bigelow, Peleg, Mafart and Geeraerd). Bioinactivation SE supplies a user-friendly interface to selected functions of Bioinactivation core, namely the model fitting of non-isothermal experiments and the generation of prediction intervals. The capabilities of bioinactivation are presented in this paper through a case study, modelling the non-isothermal inactivation of Bacillus sporothermodurans. This study has provided a full characterization of the response of the bacteria to dynamic temperature conditions, including confidence intervals for the model parameters and a prediction interval of the survivor curve. We conclude that the MCMC algorithm produces a better characterization of the biological uncertainty and variability than non-linear regression. The bioinactivation software can be relevant to the food and pharmaceutical industry, as well as to regulatory agencies, as part of a (quantitative) microbial risk assessment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Symplectic ab initio no-core shell model

    Energy Technology Data Exchange (ETDEWEB)

    Draayer, J. P.; Dytrych, T.; Sviratcheva, K. D.; Bahri, C. [Department of Physics and Astronomy, Lousiana State University, Baton Rouge, 70803 Lousiana (United States); Vary, J. P. [Department of Physics and Astronomy, Iowa State University, Ames, 50011 Iowa (United States)

    2008-12-15

    The present study confirms the significance of the symplectic Sp(3,R) symmetry in nuclear dynamics as unveiled, for the first time, by examinations of realistic nucleon-nucleon interactions as well as of eigenstates calculated in the framework of the ab initio No-Core Shell Model (NCSM). The results reveal that the NCSM wave functions for light nuclei highly overlap (at the {approx} 90% level) with only a few of the most deformed Sp(3,R)-symmetric basis states. This points to the possibility of achieving convergence of higher-lying collective modes and reaching heavier nuclei by expanding the NCSM basis space beyond its current limits through Sp(3,R) basis states. Furthermore the symplectic symmetry is found to be favored by the JISP 16 and CD-Bonn realistic nucleon-nucleon interactions, which points to a more fundamental origin of the symplectic symmetry. (Author)

  7. Comparing models of Red Knot population dynamics

    Science.gov (United States)

    McGowan, Conor P.

    2015-01-01

    Predictive population modeling contributes to our basic scientific understanding of population dynamics, but can also inform management decisions by evaluating alternative actions in virtual environments. Quantitative models mathematically reflect scientific hypotheses about how a system functions. In Delaware Bay, mid-Atlantic Coast, USA, to more effectively manage horseshoe crab (Limulus polyphemus) harvests and protect Red Knot (Calidris canutus rufa) populations, models are used to compare harvest actions and predict the impacts on crab and knot populations. Management has been chiefly driven by the core hypothesis that horseshoe crab egg abundance governs the survival and reproduction of migrating Red Knots that stopover in the Bay during spring migration. However, recently, hypotheses proposing that knot dynamics are governed by cyclical lemming dynamics garnered some support in data analyses. In this paper, I present alternative models of Red Knot population dynamics to reflect alternative hypotheses. Using 2 models with different lemming population cycle lengths and 2 models with different horseshoe crab effects, I project the knot population into the future under environmental stochasticity and parametric uncertainty with each model. I then compare each model's predictions to 10 yr of population monitoring from Delaware Bay. Using Bayes' theorem and model weight updating, models can accrue weight or support for one or another hypothesis of population dynamics. With 4 models of Red Knot population dynamics and only 10 yr of data, no hypothesis clearly predicted population count data better than another. The collapsed lemming cycle model performed best, accruing ~35% of the model weight, followed closely by the horseshoe crab egg abundance model, which accrued ~30% of the weight. The models that predicted no decline or stable populations (i.e. the 4-yr lemming cycle model and the weak horseshoe crab effect model) were the most weakly supported.

  8. Ab initio no core shell model

    Energy Technology Data Exchange (ETDEWEB)

    Barrett, Bruce R. [Univ. of Arizona, Tucson, AZ (United States); Navrátil, Petr [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Vary, James P. [Ames Lab. and Iowa State Univ., Ames, IA (United States)

    2012-11-17

    resulting NN and NNN interactions, characterized by the order of the expansion retained (e.g. 'next-to-next-to leading order' is NNLO), provide a high-quality fit to the NN data and the A = 3 ground-state (g.s.) properties. The derivations of NN, NNN, etc. interactions within meson-exchange and {chi}EFT are well-established but are not subjects of this review. Our focus is solution of the non-relativistic quantum many-body Hamiltonian that includes these interactions using our no core shell model (NCSM) formalism. In the next section we will briefly outline the NCSM formalism and then present applications, results and extensions in later sections.

  9. A Petascale Non-Hydrostatic Atmospheric Dynamical Core in the HOMME Framework

    Energy Technology Data Exchange (ETDEWEB)

    Tufo, Henry [Univ. of Colorado, Boulder, CO (United States)

    2015-09-15

    The High-Order Method Modeling Environment (HOMME) is a framework for building scalable, conserva- tive atmospheric models for climate simulation and general atmospheric-modeling applications. Its spatial discretizations are based on Spectral-Element (SE) and Discontinuous Galerkin (DG) methods. These are local methods employing high-order accurate spectral basis-functions that have been shown to perform well on massively parallel supercomputers at any resolution and scale particularly well at high resolutions. HOMME provides the framework upon which the CAM-SE community atmosphere model dynamical-core is constructed. In its current incarnation, CAM-SE employs the hydrostatic primitive-equations (PE) of motion, which limits its resolution to simulations coarser than 0.1 per grid cell. The primary objective of this project is to remove this resolution limitation by providing HOMME with the capabilities needed to build nonhydrostatic models that solve the compressible Euler/Navier-Stokes equations.

  10. 2D fluid flow in the downcomer and dynamic response of the core barrel during PWR blowdown

    International Nuclear Information System (INIS)

    Katz, F.; Krieg, R.; Ludwig, A.; Schlechtendahl, E.G.; Stoelting, K.

    1977-01-01

    As a part of the HDR program, methods for coupled fluid-structural dynamics are being developed. On the fluid side the 2D finite difference code YAQUI has been modified (it became YAQUIR) and adapted to describe the fluid dynamics in the downcomer of PWR's. On the structural side for determination of the dynamic core barrel response the code CYLDY2 has been developed. In this code the core barrel is treated as a thin cylindrical shell fixed at the upper end and ring stiffened at the lower end. The mass of the lower end ring also simulated a part of the core mass. Both models have been successfully tested. Coupling has been achieved for a simplified structural model proving the correctness of the coupling procedure. The structural model CYLDY2 is based on Fluegge's shell equations and uses variational principles. The solution is a superposition of steady-state and transient eigenfunctions. Results indicate that for the relatively thin-walled core barrel of the HDR-experiments in most cases the local deformations are somewhat higher than the global deformation (beam model). The coupling of YAQUIR and CYLDY2 is performed by imbedding the structural model in the fluid model. Fluid velocities are parallel to the fluid/structure interface. The structure desplacements define the time and space dependent thickness of the two-dimensional fluid layer (2 1/2-dimensional model)

  11. Contributions to the geomagnetic secular variation from a reanalysis of core surface dynamics

    Science.gov (United States)

    Barrois, O.; Gillet, N.; Aubert, J.

    2017-10-01

    We invert for motions at the surface of Earth's core under spatial and temporal constraints that depart from the mathematical smoothings usually employed to ensure spectral convergence of the flow solutions. Our spatial constraints are derived from geodynamo simulations. The model is advected in time using stochastic differential equations coherent with the occurrence of geomagnetic jerks. Together with a Kalman filter, these spatial and temporal constraints enable the estimation of core flows as a function of length and time-scales. From synthetic experiments, we find it crucial to account for subgrid errors to obtain an unbiased reconstruction. This is achieved through an augmented state approach. We show that a significant contribution from diffusion to the geomagnetic secular variation should be considered even on short periods, because diffusion is dynamically related to the rapidly changing flow below the core surface. Our method, applied to geophysical observations over the period 1950-2015, gives access to reasonable solutions in terms of misfit to the data. We highlight an important signature of diffusion in the Eastern equatorial area, where the eccentric westward gyre reaches low latitudes, in relation with important up/downwellings. Our results also confirm that the dipole decay, observed over the past decades, is primarily driven by advection processes. Our method allows us to provide probability densities for forecasts of the core flow and the secular variation.

  12. GIS and dynamic phenomena modeling

    Czech Academy of Sciences Publication Activity Database

    Klimešová, Dana

    2006-01-01

    Roč. 4, č. 4 (2006), s. 11-15 ISSN 0139-570X Institutional research plan: CEZ:AV0Z10750506 Keywords : dynamic modelling * temporal analysis * dynamics evaluation * temporal space Subject RIV: BC - Control Systems Theory

  13. Analysis of the dynamic behaviour of the low pressure emergency core cooling system tank at Paks NPP

    International Nuclear Information System (INIS)

    Tamas, K.

    2001-01-01

    The low pressure emergency core cooling system tanks (LP ECCS) at WWER-440/V213 units have unique worm-shaped geometry. Analytical and experimental investigations were performed to make an adequate basis for seismic assessment of the worm-shaped tank. The full scale dynamic tests results are presented in comparison with shaking table model experiments and analytical studies. (author)

  14. Toward a Standard Model of Core Collapse Supernovae

    OpenAIRE

    Mezzacappa, A.

    2000-01-01

    In this paper, we discuss the current status of core collapse supernova models and the future developments needed to achieve significant advances in understanding the supernova mechanism and supernova phenomenology, i.e., in developing a supernova standard model.

  15. The Manufacture of Honeycomb Cores using Fused Deposition Modelling

    OpenAIRE

    Pollard, Dave; Ward, Carwyn; Herrmann, Guido; Etches, Julie

    2016-01-01

    Sandwich panels are used in many industries, for the advantageous properties of high stiffness, good strength to weight ratio, and impact resistance. Modern manufacturing methods are dominated by manual layup; secondary structure panels often contain multiple core components, complex geometries, and tight placement tolerances. This paper compares cores manufactured using Fused Deposition Modelling (FDM) with conventional Nomex core. FDM is a process of creating complex components from extrude...

  16. Performance of the HOMME dynamical core in the aqua-planet configuration of NCAR CAM4: equatorial waves

    Directory of Open Access Journals (Sweden)

    S. K. Mishra

    2011-02-01

    Full Text Available A new atmospheric dynamical core, named the High Order Method Modeling Environment (HOMME, has been recently included in the NCAR-Community Climate System Model version 4 (CCSM4. It is a petascale capable high-order element-based conservative dynamical core developed on a cubed-sphere grid. We have examined the model simulations with HOMME using the aqua-planet mode of CAM4 (atmospheric component of CCSM4 and evaluated its performance in simulating the equatorial waves, considered a crucial element of climate variability. For this we compared the results with two other established models in CAM4 framework, which are the finite-volume (FV and Eulerian spectral (EUL dynamical cores. Although the gross features seem to be comparable, important differences have been found among the three dynamical cores. The phase speed of Kelvin waves in HOMME is faster and more satisfactory than those in FV and EUL. The higher phase speed is attributed to an increased large-scale precipitation in the upper troposphere and a more top-heavy heating structure. The variance of the n=1 equatorial Rossby waves is underestimated by all three of them, but comparatively HOMME simulations are more reasonable. For the n=0 eastward inertio-gravity waves, the variances are weak and phase speeds are too slow, scaled to shallow equivalent depths. However, the variance in HOMME is relatively more compared to the two other dynamical cores. The mixed Rossby-gravity waves are feeble in all the three cases. In summary, model simulations using HOMME are reasonably good, with some improvement relative to FV and EUL in capturing some of the important characteristics associated with equatorial waves.

  17. Grammar resources for modelling dialogue dynamically.

    Science.gov (United States)

    Gargett, Andrew; Gregoromichelaki, Eleni; Kempson, Ruth; Purver, Matthew; Sato, Yo

    2009-12-01

    This paper argues that by analysing language as a mechanism for growth of information (Cann et al. in The Dynamics of Language, Elsevier, Oxford, 2005; Kempson et al. in Dynamic Syntax, Blackwell, Oxford, 2001), not only does a unitary basis for ellipsis become possible, otherwise thought to be irredeemably heterogeneous, but also a whole range of sub-types of ellipsis, otherwise thought to be unique to dialogue, emerge as natural consequences of use of language in context. Dialogue fragment types modelled include reformulations, clarification requests, extensions, and acknowledgements. Buttressing this analysis, we show how incremental use of fragments serves to progressively narrow down the otherwise mushrooming interpretational alternatives in language use, and hence is central to fluent conversational interaction. We conclude that, by its ability to reflect dialogue dynamics as a core phenomenon of language use, a grammar with inbuilt parsing dynamics opens up the potential for analysing language as a mechanism for communicative interaction.

  18. The Geological information and modelling Thematic Core Service of EPOS

    Science.gov (United States)

    Robida, François; Wächter, Joachim; Tulstrup, Jørgen; Lorenz, Henning; Carter, Mary; Cipolloni, Carlo; Morel, Olivier

    2016-04-01

    Geological data and models are important assets for the EPOS community. The Geological information and modelling Thematic Core Service of EPOS is being designed and will be implemented in an efficient and sustainable access system for geological multi-scale data assets for EPOS through the integration of distributed infrastructure components (nodes) of geological surveys, research institutes and the international drilling community (ICDP/IODP). The TCS will develop and take benefit of the synergy between the existing data infrastructures of the Geological Surveys of Europe (EuroGeoSurveys / OneGeology-Europe / EGDI) and of the large amount of information produced by the research organisations. These nodes will offer a broad range of resources including: geological maps, borehole data, geophysical data (seismic data, borehole log data), archived information on physical material (samples, cores), geochemical and other analyses of rocks, soils and minerals, and Geological models (3D, 4D). The services will be implemented on international standards (such as INSPIRE, IUGS/CGI, OGC, W3C, ISO) in order to guarantee their interoperability with other EPOS TCS as well as their compliance with INSPIRE European Directive or international initiatives (such as OneGeology). This will provide future virtual research environments with means to facilitate the use of existing information for future applications. In addition, workflows will be established that allow the integration of other existing and new data and applications. Processing and the use of simulation and visualization tools will subsequently support the integrated analysis and characterization of complex subsurface structures and their inherent dynamic processes. This will in turn aid in the overall understanding of complex multi-scale geo-scientific questions. This TCS will work alongside other EPOS TCSs to create an efficient and comprehensive multidisciplinary research platform for the Earth Sciences in Europe.

  19. Modelling dynamic roughness during floods

    NARCIS (Netherlands)

    Paarlberg, Andries; Dohmen-Janssen, Catarine M.; Hulscher, Suzanne J.M.H.; Termes, A.P.P.

    2007-01-01

    In this paper, we present a dynamic roughness model to predict water levels during floods. Hysteresis effects of dune development are explicitly included. It is shown that differences between the new dynamic roughness model, and models where the roughness coefficient is calibrated, are most

  20. Business models and dynamic capabilities

    OpenAIRE

    Teece, DJ

    2017-01-01

    © 2017 The Author. Business models, dynamic capabilities, and strategy are interdependent. The strength of a firm's dynamic capabilities help shape its proficiency at business model design. Through its effect on organization design, a business model influences the firm's dynamic capabilities and places bounds on the feasibility of particular strategies. While these relationships are understood at a theoretical level, there is a need for future empirical work to flesh out the details. In parti...

  1. Scaling of Core Material in Rubble Mound Breakwater Model Tests

    DEFF Research Database (Denmark)

    Burcharth, H. F.; Liu, Z.; Troch, P.

    1999-01-01

    The permeability of the core material influences armour stability, wave run-up and wave overtopping. The main problem related to the scaling of core materials in models is that the hydraulic gradient and the pore velocity are varying in space and time. This makes it impossible to arrive at a fully...

  2. Investigation of dynamic response of HTR core and comparison with shaking table-tests

    International Nuclear Information System (INIS)

    Anderheggen, E.; Prater, E.G.; Kreis, A.

    1990-01-01

    The analytical studies and the shaking table tests have been performed with the aim of gaining a fundamental understanding of the dynamic behaviour of such core material and validating the numerical model. The dynamic analysis of a graphite pebble-bed core could be a fairly complex undertaking if all nonlinear effects were considered. However, to achieve a practicable solution the ensemble of spheres must be replaced by a statistically equivalent continuum. Based on the Hertz theories for regular configurations, the mechanical characteristics, at small shear strains, correspond to those of an isotropic nonlinear hypoelastic medium, in which the Lame constants are a function of volumetric strain. Thus, the initial modulus values depend on confining pressure, so that the medium is inhomogeneous with respect to depth. During seismic excitation the volumetric strain, and thus the moduli, will change with time. To simplify the analysis, however, a linearized form of the model has been adopted, as well as considerations concerning damping effects. The numerical simulations carried out thus far concern mainly the 1:6 rigid wall model (i.e. with a cylinder diameter of 1.5 m) investigated experimentally and take the form of a back-analysis. Subsequently, the walls were tested separately and finally the combined behaviour was investigated. To date only preliminary results for the modelling of the reflector walls have been obtained. The objectives of this paper are thus twofold. Firstly, to discuss the constitutive law and its implementation in a general purpose finite element program. Secondly, to present some preliminary results of the dynamic analysis and to compare these with data obtained from the shaking table tests. 5 refs, 2 figs, 1 tab

  3. Dynamic modeling for pandemic influenza

    NARCIS (Netherlands)

    Postma, M.J.

    It is now widely agreed upon that most infectious diseases require a dynamic approach to validly analyze infectious disease control. Given the size of the spread and the potential impact, pandemic influenza certainly presents an area where dynamic modeling is much needed. In this article, a dynamic

  4. Assessment of assembly homogenized two-steps core dynamic calculations using direct whole core transport solutions

    International Nuclear Information System (INIS)

    Hursin, Mathieu; Downar, Thomas J.; Yoon, Joo Il; Joo, Han Gyu

    2016-01-01

    Highlights: • Reactivity initiated accident analysis with direct whole core transient transport code. • Comparison with usual “two steps” procedure. • Effect of effective delayed neutron fraction definition on energy deposition in the fuel. • Effect of homogenized few-group cross sections generation at the assembly level on energy deposition in the fuel. • Effect of effective fuel temperature definition on energy deposition in the fuel. - Abstract: The impact of the approximations in the “two-steps” procedure used in the current generation of nodal simulators for core transient calculations is assessed by using a higher order solution obtained from a direct, whole core, transient transport calculation. A control rod ejection accident in an idealized minicore is analyzed with PARCS, which uses the two-steps procedure and DeCART which provides the higher order solution. DeCART is used as lattice code to provide the homogenized cross sections and kinetics parameters to PARCS. The approximations made by using (1) the homogenized few-group cross sections and kinetic parameters generated at the assembly level, (2) an effective delayed neutrons fraction, (3) an effective fuel temperature and (4) the few-group formulation are investigated in terms of global and local core power behavior. The results presented in the paper show that the current two-steps procedure produces sufficiently accurate transient results with respect to the direct whole core calculation solution, provided that its parameters are carefully generated using the prescriptions described in the present article.

  5. Ground states and formal duality relations in the Gaussian core model

    NARCIS (Netherlands)

    Cohn, H.; Kumar, A.; Schürmann, A.

    2009-01-01

    We study dimensional trends in ground states for soft-matter systems. Specifically, using a high-dimensional version of Parrinello-Rahman dynamics, we investigate the behavior of the Gaussian core model in up to eight dimensions. The results include unexpected geometric structures, with surprising

  6. Dynamic allocation of core on the CRNL NOS/BE l.3 system

    International Nuclear Information System (INIS)

    Carver, M.B.; Tanner, C.J.; Klawitter, G.L.; Stewart, D.G.

    1980-02-01

    Many large programs benefit from varying their work storage area during execution. This report describes the philosophy of dynamic allocation of central and extended core, and documents library routines available for this purpose. (auth)

  7. Solid charged-core model of ball lightning

    Directory of Open Access Journals (Sweden)

    D. B. Muldrew

    2010-01-01

    Full Text Available In this study, ball lightning (BL is assumed to have a solid, positively-charged core. According to this underlying assumption, the core is surrounded by a thin electron layer with a charge nearly equal in magnitude to that of the core. A vacuum exists between the core and the electron layer containing an intense electromagnetic (EM field which is reflected and guided by the electron layer. The microwave EM field applies a ponderomotive force (radiation pressure to the electrons preventing them from falling into the core. The energetic electrons ionize the air next to the electron layer forming a neutral plasma layer. The electric-field distributions and their associated frequencies in the ball are determined by applying boundary conditions to a differential equation given by Stratton (1941. It is then shown that the electron and plasma layers are sufficiently thick and dense to completely trap and guide the EM field. This model of BL is exceptional in that it can explain all or nearly all of the peculiar characteristics of BL. The ES energy associated with the core charge can be extremely large which can explain the observations that occasionally BL contains enormous energy. The mass of the core prevents the BL from rising like a helium-filled balloon – a problem with most plasma and burning-gas models. The positively charged core keeps the negatively charged electron layer from diffusing away, i.e. it holds the ball together; other models do not have a mechanism to do this. The high electrical charges on the core and in the electron layer explains why some people have been electrocuted by BL. Experiments indicate that BL radiates microwaves upon exploding and this is consistent with the model. The fact that this novel model of BL can explain these and other observations is strong evidence that the model should be taken seriously.

  8. Solid charged-core model of ball lightning

    Science.gov (United States)

    Muldrew, D. B.

    2010-01-01

    In this study, ball lightning (BL) is assumed to have a solid, positively-charged core. According to this underlying assumption, the core is surrounded by a thin electron layer with a charge nearly equal in magnitude to that of the core. A vacuum exists between the core and the electron layer containing an intense electromagnetic (EM) field which is reflected and guided by the electron layer. The microwave EM field applies a ponderomotive force (radiation pressure) to the electrons preventing them from falling into the core. The energetic electrons ionize the air next to the electron layer forming a neutral plasma layer. The electric-field distributions and their associated frequencies in the ball are determined by applying boundary conditions to a differential equation given by Stratton (1941). It is then shown that the electron and plasma layers are sufficiently thick and dense to completely trap and guide the EM field. This model of BL is exceptional in that it can explain all or nearly all of the peculiar characteristics of BL. The ES energy associated with the core charge can be extremely large which can explain the observations that occasionally BL contains enormous energy. The mass of the core prevents the BL from rising like a helium-filled balloon - a problem with most plasma and burning-gas models. The positively charged core keeps the negatively charged electron layer from diffusing away, i.e. it holds the ball together; other models do not have a mechanism to do this. The high electrical charges on the core and in the electron layer explains why some people have been electrocuted by BL. Experiments indicate that BL radiates microwaves upon exploding and this is consistent with the model. The fact that this novel model of BL can explain these and other observations is strong evidence that the model should be taken seriously.

  9. Dynamic Characteristics and Models

    DEFF Research Database (Denmark)

    Pedersen, Lars

    2007-01-01

    , sitting or standing posture, and that these persons influence the dynamic characteristics of the floor (floor frequency and floor damping) is demonstrated in the paper. The mechanism of the dynamic interaction between the floor mass and the mass of stationary persons is generally not well understood...

  10. Structural dynamic modifications via models

    Indian Academy of Sciences (India)

    of structural dynamic optimization techniques. A review of structural optimization in vibratory environments is given by Rao (1989). 2. SDM techniques. SDM methods may be broadly divided into two groups. Those which employ a model of the structure and those that use dynamic test data directly. The model used by the ...

  11. On the track of gravity modes: study of the dynamics of the solar core

    International Nuclear Information System (INIS)

    Mathur, Savita

    2007-01-01

    This thesis is dedicated to the study of the dynamics of the solar radiative zone through gravity modes. Though the core represents more than 50% of the solar mass, we still do not have an accurate vision of the rotation profile in the very inner part of the Sun. To understand the evolution of stars, we try to put constraints on dynamic processes. Several paths have been followed in this thesis to tackle this issue: solar modeling, the study of a new instrument, observations and inversions of the rotation. The necessity of the detection of gravity modes is driven by the will for a better comprehension of the solar dynamics. With a technological prototype built at the CEA (GOLF-NG), we want to validate a few technical points and prepare the scientific mission which aim will be to detect these gravity modes. We studied first the photodetector and then the whole instrument response. We show the feasibility of the instrument. The observation of the resonance in all the channels proves that it works the way we expected. However, before this mission takes place, the analysis of GOLF data enabled us to detect one gravity-mode candidate as well as the signature of dipole gravity modes. This work benefited from a more theoretical approach on the prediction of gravity-mode frequencies. We show the influence of several physical processes and quantities. Finally, as the dynamical processes in the Sun are not well constrained, we tried to understand the impact of the introduction of one and several gravity modes on the inferred rotation profiles. We also tried to give constraints on the observations so that we could obtain some information on the rotation profile in the core. (author) [fr

  12. Towards an efficient multiphysics model for nuclear reactor dynamics

    Directory of Open Access Journals (Sweden)

    Obaidurrahman K.

    2015-01-01

    Full Text Available Availability of fast computer resources nowadays has facilitated more in-depth modeling of complex engineering systems which involve strong multiphysics interactions. This multiphysics modeling is an important necessity in nuclear reactor safety studies where efforts are being made worldwide to combine the knowledge from all associated disciplines at one place to accomplish the most realistic simulation of involved phenomenon. On these lines coupled modeling of nuclear reactor neutron kinetics, fuel heat transfer and coolant transport is a regular practice nowadays for transient analysis of reactor core. However optimization between modeling accuracy and computational economy has always been a challenging task to ensure the adequate degree of reliability in such extensive numerical exercises. Complex reactor core modeling involves estimation of evolving 3-D core thermal state, which in turn demands an expensive multichannel based detailed core thermal hydraulics model. A novel approach of power weighted coupling between core neutronics and thermal hydraulics presented in this work aims to reduce the bulk of core thermal calculations in core dynamics modeling to a significant extent without compromising accuracy of computation. Coupled core model has been validated against a series of international benchmarks. Accuracy and computational efficiency of the proposed multiphysics model has been demonstrated by analyzing a reactivity initiated transient.

  13. Design features affecting dynamic behaviour of fast reactor cores. Overview paper

    International Nuclear Information System (INIS)

    Kayser, G.; Gouriou, A.

    1982-01-01

    The study of dynamic response of a LMFBR to normal and accidental transients needs first of all a simulation code taking into account all the important effects. The DYN-1 code aims at this target. It represents with a sufficiently accurate meshing the core in a 2D geometry for the thermal and reactivity effects, while the kinetics of this core are calculated with a point model. The primary pool, secondary loops, steam generator are also represented, as well as the control and protective systems. A schematic representation of this code applied to Super Phenix 1 is shown. Simpler codes are sometimes good enough for parametric studies. The dynamic studies of this plant are related to different situations which can be classified in the following groups: normal operation, the stability of the reactor in a steady state situation, or with power or frequency regulation; the normal transients from one power level to another (startup procedures); the incidental situations, with the protective shut-down systems operative (for instance loss of electric supply power); the hypothetical accidental situations without scram. The first three groups of problems arise necessarily in the study of each plant ; the last group is related to very hypothetical situations, the probability of which can be made very low by a high reliability of the shut-down system. Also the need to study them depends on this reliability and subsequently on the philosophy which the licensing authorities adopt

  14. Non-linear Dynamic Analysis of Steel Hollow I-core Sandwich Panel under Air Blast Loading

    Directory of Open Access Journals (Sweden)

    Asghar Vatani Oskouei

    2015-12-01

    Full Text Available In this paper, the non-linear dynamic response of novel steel sandwich panel with hollow I-core subjected to blast loading was studied. Special emphasis is placed on the evaluation of midpoint displacements and energy dissipation of the models. Several parameters such as boundary conditions, strain rate, mesh dependency and asymmetrical loading are considered in this study. The material and geometric non-linearities are also considered in the numerical simulation. The results obtained are compared with available experimental data to verify the developed FE model. Modeling techniques are described in detail. According to the results, sandwich panels with hollow I-core allowed more plastic deformation and energy dissipation and less midpoint displacement than conventional I-core sandwich panels and also equivalent solid plate with the same weight and material.

  15. Improvement of Cycle Dependent Core Model for NPP Simulator

    International Nuclear Information System (INIS)

    Song, J. S.; Koo, B. S.; Kim, H. Y. and others

    2003-11-01

    The purpose of this study is to establish automatic core model generation system and to develop 4 cycle real time core analysis methodology with 5% power distribution and 500 pcm reactivity difference criteria for nuclear power plant simulator. The standardized procedure to generate database from ROCS and ANC, which are used for domestic PWR core design, was established for the cycle specific simulator core model generation. An automatic data interface system to generate core model also established. The system includes ARCADIS which edits group constant and DHCGEN which generates interface coupling coefficient correction database. The interface coupling coefficient correction method developed in this study has 4 cycle real time capability and accuracies of which the maximum differences between core design results are within 103 pcm reactivity, 1% relative power distribution and 6% control rod worth. A nuclear power plant core simulation program R-MASTER was developed using the methodology and applied by the concept of distributed client system in simulator. The performance was verified by site acceptance test in Simulator no. 2 in Kori Training Center for 30 initial condition generation and 27 steady state, transient and postulated accident situations

  16. Improvement of Cycle Dependent Core Model for NPP Simulator

    Energy Technology Data Exchange (ETDEWEB)

    Song, J. S.; Koo, B. S.; Kim, H. Y. and others

    2003-11-15

    The purpose of this study is to establish automatic core model generation system and to develop 4 cycle real time core analysis methodology with 5% power distribution and 500 pcm reactivity difference criteria for nuclear power plant simulator. The standardized procedure to generate database from ROCS and ANC, which are used for domestic PWR core design, was established for the cycle specific simulator core model generation. An automatic data interface system to generate core model also established. The system includes ARCADIS which edits group constant and DHCGEN which generates interface coupling coefficient correction database. The interface coupling coefficient correction method developed in this study has 4 cycle real time capability and accuracies of which the maximum differences between core design results are within 103 pcm reactivity, 1% relative power distribution and 6% control rod worth. A nuclear power plant core simulation program R-MASTER was developed using the methodology and applied by the concept of distributed client system in simulator. The performance was verified by site acceptance test in Simulator no. 2 in Kori Training Center for 30 initial condition generation and 27 steady state, transient and postulated accident situations.

  17. Modelling of magnetostriction of transformer magnetic core for vibration analysis

    Directory of Open Access Journals (Sweden)

    Marks Janis

    2017-12-01

    Full Text Available Magnetostriction is a phenomenon occurring in transformer core in normal operation mode. Yet in time, it can cause the delamination of magnetic core resulting in higher level of vibrations that are measured on the surface of transformer tank during diagnostic tests. The aim of this paper is to create a model for evaluating elastic deformations in magnetic core that can be used for power transformers with intensive vibrations in order to eliminate magnetostriction as a their cause. Description of the developed model in Matlab and COMSOL software is provided including restrictions concerning geometry and properties of materials, and the results of performed research on magnetic core anisotropy are provided. As a case study modelling of magnetostriction for 5-legged 200 MVA power transformer with the rated voltage of 13.8/137kV is conducted, based on which comparative analysis of vibration levels and elastic deformations is performed.

  18. Real-time advanced nuclear reactor core model

    International Nuclear Information System (INIS)

    Koclas, J.; Friedman, F.; Paquette, C.; Vivier, P.

    1990-01-01

    The paper describes a multi-nodal advanced nuclear reactor core model. The model is based on application of modern equivalence theory to the solution of neutron diffusion equation in real time employing the finite differences method. The use of equivalence theory allows the application of the finite differences method to cores divided into hundreds of nodes, as opposed to the much finer divisions (in the order of ten thousands of nodes) where the unmodified method is currently applied. As a result the model can be used for modelling of the core kinetics for real time full scope training simulators. Results of benchmarks, validate the basic assumptions of the model and its applicability to real-time simulation. (orig./HP)

  19. Modeling of the core of Atucha II nuclear power plant

    International Nuclear Information System (INIS)

    Blanco, Anibal

    2007-01-01

    This work is part of a Nuclear Engineer degree thesis of the Instituto Balseiro and it is carried out under the development of an Argentinean Nuclear Power Plant Simulator. To obtain the best representation of the reactor physical behavior using the state of the art tools this Simulator should couple a 3D neutronics core calculation code with a thermal-hydraulics system code. Focused in the neutronic nature of this job, using PARCS, we modeled and performed calculations of the nuclear power plant Atucha 2 core. Whenever it is possible, we compare our results against results obtained with PUMA (the official core code for Atucha 2). (author) [es

  20. Summary of multi-core hardware and programming model investigations

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, Suzanne Marie; Pedretti, Kevin Thomas Tauke; Levenhagen, Michael J.

    2008-05-01

    This report summarizes our investigations into multi-core processors and programming models for parallel scientific applications. The motivation for this study was to better understand the landscape of multi-core hardware, future trends, and the implications on system software for capability supercomputers. The results of this study are being used as input into the design of a new open-source light-weight kernel operating system being targeted at future capability supercomputers made up of multi-core processors. A goal of this effort is to create an agile system that is able to adapt to and efficiently support whatever multi-core hardware and programming models gain acceptance by the community.

  1. Ultrafast Core-Hole-Induced Dynamics in Water Probed by X-Ray Emission Spectroscopy

    International Nuclear Information System (INIS)

    Odelius, Michael; Nordlund, Dennis; Pettersson, Lars G.M.; Ogasawara, Hirohito; Fuchs, Oliver; Weinhardt, Lothar; Maier, Florian; Umbach, Eberhard; Heske, Clemens; Zubavichus, Yan; Grunze, Michael; Denlinger, Jonathan D.; Nilsson, Anders

    2005-01-01

    The isotope effect and excitation-energy dependence have been measured in the oxygen K-edge x-ray emission spectrum (XES). The use of XES to monitor core decay processes provides information about molecular dynamics (MD) on an ultrafast time scale through the O1s lifetime of a few femtoseconds. Different nuclear masses give rise to differences in the dynamics and the observed isotope effect in XES is direct evidence of the importance of such processes. MD simulations show that even the excitation-energy dependence in the XES is mainly related to differences in core-excited-state dynamics

  2. Modeling Magnetic Core Loss for Sinusoidal Waveforms

    National Research Council Canada - National Science Library

    Dunlop, Colin J

    2008-01-01

    Among the challenging unsolved technical problems that have plagued the minds of scientist and engineers throughout the 20th and 21st century is the development of a quantifiable model to accurately...

  3. Computer Modeling Reveals that Modifications of the Histone Tail Charges Define Salt-Dependent Interaction of the Nucleosome Core Particles

    OpenAIRE

    Yang, Ye; Lyubartsev, Alexander P.; Korolev, Nikolay; Nordenskiöld, Lars

    2009-01-01

    Coarse-grained Langevin molecular dynamics computer simulations were conducted for systems that mimic solutions of nucleosome core particles (NCPs). The NCP was modeled as a negatively charged spherical particle representing the complex of DNA and the globular part of the histones combined with attached strings of connected charged beads modeling the histone tails. The size, charge, and distribution of the tails relative to the core were built to match real NCPs. Three models of NCPs were con...

  4. Development of the Monju core safety analysis numerical models by super-COPD code

    International Nuclear Information System (INIS)

    Yamada, Fumiaki; Minami, Masaki

    2010-12-01

    Japan Atomic Energy Agency constructed a computational model for safety analysis of Monju reactor core to be built into a modularized plant dynamics analysis code Super-COPD code, for the purpose of heat removal capability evaluation at the in total 21 defined transients in the annex to the construction permit application. The applicability of this model to core heat removal capability evaluation has been estimated by back to back result comparisons of the constituent models with conventionally applied codes and by application of the unified model. The numerical model for core safety analysis has been built based on the best estimate model validated by the actually measured plant behavior up to 40% rated power conditions, taking over safety analysis models of conventionally applied COPD and HARHO-IN codes, to be capable of overall calculations of the entire plant with the safety protection and control systems. Among the constituents of the analytical model, neutronic-thermal model, heat transfer and hydraulic models of PHTS, SHTS, and water/steam system are individually verified by comparisons with the conventional calculations. Comparisons are also made with the actually measured plant behavior up to 40% rated power conditions to confirm the calculation adequacy and conservativeness of the input data. The unified analytical model was applied to analyses of in total 8 anomaly events; reactivity insertion, abnormal power distribution, decrease and increase of coolant flow rate in PHTS, SHTS and water/steam systems. The resulting maximum values and temporal variations of the key parameters in safety evaluation; temperatures of fuel, cladding, in core sodium coolant and RV inlet and outlet coolant have negligible discrepancies against the existing analysis result in the annex to the construction permit application, verifying the unified analytical model. These works have enabled analytical evaluation of Monju core heat removal capability by Super-COPD utilizing the

  5. Core seismic behaviour: linear and non-linear models

    International Nuclear Information System (INIS)

    Bernard, M.; Van Dorsselaere, M.; Gauvain, M.; Jenapierre-Gantenbein, M.

    1981-08-01

    The usual methodology for the core seismic behaviour analysis leads to a double complementary approach: to define a core model to be included in the reactor-block seismic response analysis, simple enough but representative of basic movements (diagrid or slab), to define a finer core model, with basic data issued from the first model. This paper presents the history of the different models of both kinds. The inert mass model (IMM) yielded a first rough diagrid movement. The direct linear model (DLM), without shocks and with sodium as an added mass, let to two different ones: DLM 1 with independent movements of the fuel and radial blanket subassemblies, and DLM 2 with a core combined movement. The non-linear (NLM) ''CORALIE'' uses the same basic modelization (Finite Element Beams) but accounts for shocks. It studies the response of a diameter on flats and takes into account the fluid coupling and the wrapper tube flexibility at the pad level. Damping consists of one modal part of 2% and one part due to shocks. Finally, ''CORALIE'' yields the time-history of the displacements and efforts on the supports, but damping (probably greater than 2%) and fluid-structures interaction are still to be precised. The validation experiments were performed on a RAPSODIE core mock-up on scale 1, in similitude of 1/3 as to SPX 1. The equivalent linear model (ELM) was developed for the SPX 1 reactor-block response analysis and a specified seismic level (SB or SM). It is composed of several oscillators fixed to the diagrid and yields the same maximum displacements and efforts than the NLM. The SPX 1 core seismic analysis with a diagrid input spectrum which corresponds to a 0,1 g group acceleration, has been carried out with these models: some aspects of these calculations are presented here

  6. EFFECT OF CORE STABILITY TRAINING ON DYNAMIC BALANCE IN HEALTHY YOUNG ADULTS - A RANDOMIZED CONTROLLED TRIAL

    Directory of Open Access Journals (Sweden)

    Dhvani N Shah

    2014-10-01

    Full Text Available Background: Balance is a key component of normal daily activities. Therefore, it is necessary to find various programs to improve balance. The core functions to maintain postural alignment and balance during functional activities. The purpose was to study the effects of the core stability training on dynamic balance in healthy, young adults. Methods: It was an interventional study, in which 60 healthy young adults were selected. They were randomly divided into two groups of 30 each, one being experimental group and other control group. Measurement of their height, weight, BMI and leg length was taken. Subjects in both the groups were assessed for core stability with pressure biofeedback unit (PBU and dynamic balance using Star Excursion Balance Test (SEBT pre and post intervention. Subjects in the experimental group underwent progressive core stability training program for six weeks (3days/week and control group was refrained from any type of structured training program. Results: There was statistically significant improvement in core stability and dynamic balance of the experimental group after six weeks of intervention. Conclusion: It is concluded that core stability training of six weeks duration is effective in improving dynamic balance in healthy, young adults.

  7. VHTR core modeling: coupling between neutronic and thermal-hydraulics

    International Nuclear Information System (INIS)

    Limaiem, I.; Damian, F.; Raepsaet, X.; Studer, E.

    2005-01-01

    Following the present interest in the next generation nuclear power plan (NGNP), Cea is deploying special effort to develop new models and qualify its research tools for this next generation reactors core. In this framework, the Very High Temperature Reactor concept (VHTR) has an increasing place in the actual research program. In such type of core, a strong interaction exists between neutronic and thermal-hydraulics. Consequently, the global core modelling requires accounting for the temperature feedback in the neutronic models. The purpose of this paper is to present the new neutronic and thermal-hydraulics coupling model dedicated to the High Temperature Reactors (HTR). The coupling model integrates a new version of the neutronic scheme calculation developed in collaboration between Cea and Framatome-ANP. The neutronic calculations are performed using a specific calculation processes based on the APOLLO2 transport code and CRONOS2 diffusion code which are part of the French reactor physics code system SAPHYR. The thermal-hydraulics model is characterised by an equivalent porous media and 1-D fluid/3-D thermal model implemented in the CAST3M/ARCTURUS code. The porous media approach involves the definition of both homogenous and heterogeneous models to ensure a correct temperature feedback. This study highlights the sensitivity of the coupling system's parameters (radial/axial meshing and data exchange strategy between neutronic and thermal-hydraulics code). The parameters sensitivity study leads to the definition of an optimal coupling system specification for the VHTR. Besides, this work presents the first physical analysis of the VHTR core in steady-state condition. The analysis gives information about the 3-D power peaking and the temperature coefficient. Indeed, it covers different core configurations with different helium distribution in the core bypass. (authors)

  8. Dynamic programming models and applications

    CERN Document Server

    Denardo, Eric V

    2003-01-01

    Introduction to sequential decision processes covers use of dynamic programming in studying models of resource allocation, methods for approximating solutions of control problems in continuous time, production control, more. 1982 edition.

  9. Dynamical models of the Galaxy

    Directory of Open Access Journals (Sweden)

    McMillan P.J.

    2012-02-01

    Full Text Available I discuss the importance of dynamical models for exploiting survey data, focusing on the advantages of “torus” models. I summarize a number of applications of these models to the study of the Milky Way, including the determination of the peculiar Solar velocity and investigation of the Hyades moving group.

  10. Dynamic term structure models

    DEFF Research Database (Denmark)

    Andreasen, Martin Møller; Meldrum, Andrew

    pricing factors using the sequential regression approach. Our findings suggest that the two models largely provide the same in-sample fit, but loadings from ordinary and risk-adjusted Campbell-Shiller regressions are generally best matched by the shadow rate models. We also find that the shadow rate...... models perform better than the QTSMs when forecasting bond yields out of sample....

  11. Dynamic Modeling of ALS Systems

    Science.gov (United States)

    Jones, Harry

    2002-01-01

    The purpose of dynamic modeling and simulation of Advanced Life Support (ALS) systems is to help design them. Static steady state systems analysis provides basic information and is necessary to guide dynamic modeling, but static analysis is not sufficient to design and compare systems. ALS systems must respond to external input variations and internal off-nominal behavior. Buffer sizing, resupply scheduling, failure response, and control system design are aspects of dynamic system design. We develop two dynamic mass flow models and use them in simulations to evaluate systems issues, optimize designs, and make system design trades. One model is of nitrogen leakage in the space station, the other is of a waste processor failure in a regenerative life support system. Most systems analyses are concerned with optimizing the cost/benefit of a system at its nominal steady-state operating point. ALS analysis must go beyond the static steady state to include dynamic system design. All life support systems exhibit behavior that varies over time. ALS systems must respond to equipment operating cycles, repair schedules, and occasional off-nominal behavior or malfunctions. Biological components, such as bioreactors, composters, and food plant growth chambers, usually have operating cycles or other complex time behavior. Buffer sizes, material stocks, and resupply rates determine dynamic system behavior and directly affect system mass and cost. Dynamic simulation is needed to avoid the extremes of costly over-design of buffers and material reserves or system failure due to insufficient buffers and lack of stored material.

  12. AGR core models and their application to HTRs and RBMKs

    International Nuclear Information System (INIS)

    Baylis, Samuel

    2014-01-01

    EDF Energy operates 14 AGRs, commissioned between 1976 and 1989. The graphite moderators of these gas cooled reactors are subjected to a number of ageing processes under fast neutron irradiation in a high temperature CO2 environment. As the graphite ages, continued safe operation requires an advanced whole-core modeling capability to enable accurate assessments of the core’s ability to fulfil fundamental nuclear safety requirements. This is also essential in evaluating the reactor's remaining economic lifetime, and similar assessments are useful for HTRs in the design stage. A number of computational and physical models of AGR graphite cores have been developed or are in development, allowing simulation of the reactors in normal, fault and seismic conditions. Many of the techniques developed are applicable to other graphite moderated reactors. Modeling of the RBMK allows validation against a core in a more advanced state of ageing than the AGRs, while there is also an opportunity to adapt the models for high temperature reactors. As an example, a finite element model of the HTR-PM side reflector based on rigid bodies and nonlinear springs is developed, allowing rapid assessments of distortion in the structure to be made. A model of the RBMK moderator has also been produced using an established AGR code based on similar methods. In addition, this paper discusses the limitations of these techniques and the development of more complex core models that address these limitations, along with the lessons that can be applied to HTRs. (author)

  13. 2D fluid flow in the downcomer and dynamic response of the core barrel during PWR blowdown

    International Nuclear Information System (INIS)

    Katz, F.; Krieg, R.; Ludwig, A.; Schlechtendahl, E.G.; Stoelting, K.

    1977-01-01

    As a part of the HDR program, methods for coupled fluid/structure dynamics are being developed. On the fluid side the 2D finite difference code YAQUI has been modified and adapted to describe the fluid dynamics in the downcomer of PWR's. On the structural side for determination of the dynamic core barrel response the code CYLDY2 has been developed. In this code the core barrel is treated as a thin cylindrical shell fixed at the upper end and ring stiffened at the lower end. The mass of the lower end ring also simulates a part of the core mass. Both models have been successfully tested. Coupling has been achieved for a simplified structural model proving the correctness of the coupling procedure. YAQUIR is a significantly modified version of the code YAQUI. The coupling of YAQUIR and CYLDY2 is performed by imbedding the structural model in the fluid model. Fluid velocities are parellel to the fluid/structure interface. The structure displacements define the time and space dependent thickness of the two-dimensional fluid layer. While coupling of the complete CYLDY2 model with YAQUIR is still underway, results have been obtained with a simple axisymmetric structural model. For an axisymmetric test case three forms of pressure fluctuations have been observed: 1) radial oscillations dominated by the local compressibility of the water, 2) axial compression/expansion waves in the water considerably different from those obtained for a rigid barrel, 3) bulk axial water oscillations dominated by the global compressibility of the core barrel. (Auth.)

  14. Model describes subsea control dynamics

    Energy Technology Data Exchange (ETDEWEB)

    1988-02-01

    A mathematical model of the hydraulic control systems for subsea completions and their umbilicals has been developed and applied successfully to Jabiru and Challis field production projects in the Timor Sea. The model overcomes the limitations of conventional linear steady state models and yields for the hydraulic system an accurate description of its dynamic response, including the valve shut-in times and the pressure transients. Results of numerical simulations based on the model are in good agreement with measurements of the dynamic response of the tree valves and umbilicals made during land testing.

  15. Identifying protein complex by integrating characteristic of core-attachment into dynamic PPI network.

    Directory of Open Access Journals (Sweden)

    Xianjun Shen

    Full Text Available How to identify protein complex is an important and challenging task in proteomics. It would make great contribution to our knowledge of molecular mechanism in cell life activities. However, the inherent organization and dynamic characteristic of cell system have rarely been incorporated into the existing algorithms for detecting protein complexes because of the limitation of protein-protein interaction (PPI data produced by high throughput techniques. The availability of time course gene expression profile enables us to uncover the dynamics of molecular networks and improve the detection of protein complexes. In order to achieve this goal, this paper proposes a novel algorithm DCA (Dynamic Core-Attachment. It detects protein-complex core comprising of continually expressed and highly connected proteins in dynamic PPI network, and then the protein complex is formed by including the attachments with high adhesion into the core. The integration of core-attachment feature into the dynamic PPI network is responsible for the superiority of our algorithm. DCA has been applied on two different yeast dynamic PPI networks and the experimental results show that it performs significantly better than the state-of-the-art techniques in terms of prediction accuracy, hF-measure and statistical significance in biology. In addition, the identified complexes with strong biological significance provide potential candidate complexes for biologists to validate.

  16. Modeling Asset Price Dynamics

    Directory of Open Access Journals (Sweden)

    Ranasinghe P. K. C. Malmini

    2008-09-01

    Full Text Available We model the price prediction in Sri Lankan stock market using Ising model and some recent developments in statistical physics techniques. In contrast to usual agent-models, the influence does not flow inward from the surrounding neighbors to the centre, but spreads outward from the center to the neighbors. Monte Carlo simulations were used to study this problem. The analysis was based on All share price index, Milanka price index in Colombo Stock Exchange and Simulated Price Process. The monthly and daily influences of the above indices to the Sri Lankan economy were also investigated. The model thus describes the spread of opinions traders.

  17. Modifications to WRF's dynamical core to improve the treatment of moisture for large-eddy simulations: WRF DY-CORE MOISTURE TREATMENT

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Heng [Atmospheric Science and Global Change Division, Pacific Northwest National Laboratory, Richland Wash.; Endo, Satoshi [Brookhaven National Laboratory, Upton N. Y.; Wong, May [Atmospheric Science and Global Change Division, Pacific Northwest National Laboratory, Richland Wash.; Skamarock, William C. [National Center for Atmospheric Research, Boulder Colo.; Klemp, Joseph B. [National Center for Atmospheric Research, Boulder Colo.; Fast, Jerome D. [Atmospheric Science and Global Change Division, Pacific Northwest National Laboratory, Richland Wash.; Gustafson, William I. [Atmospheric Science and Global Change Division, Pacific Northwest National Laboratory, Richland Wash.; Vogelmann, Andrew M. [Brookhaven National Laboratory, Upton N. Y.; Wang, Hailong [Atmospheric Science and Global Change Division, Pacific Northwest National Laboratory, Richland Wash.; Liu, Yangang [Brookhaven National Laboratory, Upton N. Y.; Lin, Wuyin [Brookhaven National Laboratory, Upton N. Y.

    2015-10-29

    Yamaguchi and Feingold (2012) note that the cloud fields in their Weather Research and Forecasting (WRF) large-eddy simulations (LESs) of marine stratocumulus exhibit a strong sensitivity to time stepping choices. In this study, we reproduce and analyze this sensitivity issue using two stratocumulus cases, one marine and one continental. Results show that (1) the sensitivity is associated with spurious motions near the moisture jump between the boundary layer and the free atmosphere, and (2) these spurious motions appear to arise from neglecting small variations in water vapor mixing ratio (qv) in the pressure gradient calculation in the acoustic sub­stepping portion of the integration procedure. We show that this issue is remedied in the WRF dynamical core by replacing the prognostic equation for the potential temperature θ with one for the moist potential temperature θm=θ(1+1.61qv), which allows consistent treatment of moisture in the calculation of pressure during the acoustic sub­steps. With this modification, the spurious motions and the sensitivity to the time stepping settings (i.e., the dynamic time step length and number of acoustic sub­steps) are eliminated in both of the example stratocumulus cases. This modification improves the applicability of WRF for LES applications, and possibly other models using similar dynamical core formulations, and also permits the use of longer time steps than in the original code.

  18. Geomagnetic core field models in the satellite era

    DEFF Research Database (Denmark)

    Lesur, Vincent; Olsen, Nils; Thomson, Alan W. P.

    2011-01-01

    After a brief review of the theoretical basis and difficulties that modelers are facing, we present three recent models of the geomagnetic field originating in the Earth’s core. All three modeling approaches are using recent observatory and near-Earth orbiting survey satellite data. In each case...... between models are generally small. They do not exceed 16 nT which gives an idea of the accuracy of the models. Secular variation models are robustly resolved up to spherical harmonic degree 13, but only on time scale as large as 10 years. On time scale of a year, secular variation models are resolved...

  19. The influence of magnetic impurities in the vortex core dynamics in magnetic nano-disks

    International Nuclear Information System (INIS)

    Silva, J.H.; Toscano, D.; Sato, F.; Coura, P.Z.; Costa, B.V.; Leonel, S.A.

    2012-01-01

    In this work we have used spin dynamics simulations to study the gyrotropic frequency behavior in nano-disks of Permalloy with magnetic impurities. We consider the effect of attractive impurity and repulsive impurity placed near the vortex core gyrotropic trajectory. We observed that the gyrotropic frequency is affected by the presence of impurity. The gyrotropic frequency shift depends on the relative position between the impurity and the vortex core gyrotropic trajectory and if impurity is attractive or repulsive. Our results agree with the analytical model and with experimental behavior for the gyrotropic frequency shown in the literature. - Highlights: ► Study of the gyrotropic frequency behavior in nano-disks with magnetic impurities. ► The gyrotropic frequency is affected by the presence of magnetic impurity. ► The frequency shift ΔF depends on if magnetic impurity is attractive or repulsive. ► The ΔF depends on the relative position of the impurity and gyrotropic trajectory.

  20. DYNAMICO-1.0, an icosahedral hydrostatic dynamical core designed for consistency and versatility

    Science.gov (United States)

    Dubos, T.; Dubey, S.; Tort, M.; Mittal, R.; Meurdesoif, Y.; Hourdin, F.

    2015-10-01

    The design of the icosahedral dynamical core DYNAMICO is presented. DYNAMICO solves the multi-layer rotating shallow-water equations, a compressible variant of the same equivalent to a discretization of the hydrostatic primitive equations in a Lagrangian vertical coordinate, and the primitive equations in a hybrid mass-based vertical coordinate. The common Hamiltonian structure of these sets of equations is exploited to formulate energy-conserving spatial discretizations in a unified way. The horizontal mesh is a quasi-uniform icosahedral C-grid obtained by subdivision of a regular icosahedron. Control volumes for mass, tracers and entropy/potential temperature are the hexagonal cells of the Voronoi mesh to avoid the fast numerical modes of the triangular C-grid. The horizontal discretization is that of Ringler et al. (2010), whose discrete quasi-Hamiltonian structure is identified. The prognostic variables are arranged vertically on a Lorenz grid with all thermodynamical variables collocated with mass. The vertical discretization is obtained from the three-dimensional Hamiltonian formulation. Tracers are transported using a second-order finite-volume scheme with slope limiting for positivity. Explicit Runge-Kutta time integration is used for dynamics, and forward-in-time integration with horizontal/vertical splitting is used for tracers. Most of the model code is common to the three sets of equations solved, making it easier to develop and validate each piece of the model separately. Representative three-dimensional test cases are run and analyzed, showing correctness of the model. The design permits to consider several extensions in the near future, from higher-order transport to more general dynamics, especially deep-atmosphere and non-hydrostatic equations.

  1. Dynamic behavior of homogeneous and heterogeneous LMFBR core-design concepts

    International Nuclear Information System (INIS)

    Chang, Y.I.; Henryson, H. II; Orechwa, Y.; Su, S.F.; Greenman, G.; Blomquist, R.

    1981-01-01

    The emphasis is placed on obtaining an understanding of the inherent difference between homogeneous and heterogeneous core configurations regarding neutronic characteristics related to the dynamic behavior. The space-time neutronic and thermal-hydraulic behavior was analyzed in detail for various core configurations by using the FX2-TH, a two-dimensional kinetics code with thermal-hydraulic feedback. In addition, the relationship between the flux tilt and the fundamental-to-first harmonic eigenvalue separation, and the sodium void reactivity in heterogeneous cores were also sutdied

  2. Dynamics of lipid droplets induced by the hepatitis C virus core protein

    Energy Technology Data Exchange (ETDEWEB)

    Lyn, Rodney K. [Steacie Institute for Molecular Sciences, National Research Council of Canada, Ottawa, Canada K1A 0R6 (Canada); Department of Chemistry, University of Ottawa, Ottawa (Canada); Kennedy, David C.; Stolow, Albert; Ridsdale, Andrew [Steacie Institute for Molecular Sciences, National Research Council of Canada, Ottawa, Canada K1A 0R6 (Canada); Pezacki, John Paul, E-mail: john.pezacki@nrc.ca [Steacie Institute for Molecular Sciences, National Research Council of Canada, Ottawa, Canada K1A 0R6 (Canada); Department of Chemistry, University of Ottawa, Ottawa (Canada)

    2010-09-03

    Research highlights: {yields} Hepatitis C virus uses lipid droplets (LD) onto which HCV core proteins bind. {yields} HCV core proteins on LDs facilitate viral particle assembly. {yields} We used a novel combination of CARS, two-photon fluorescence, and DIC microscopies. {yields} Particle tracking experiments show that core slowly affects LD localization. {yields} Particle tracking measured the change in speed and directionality of LD movement. -- Abstract: The hepatitis C virus (HCV) is a global health problem, with limited treatment options and no vaccine available. HCV uses components of the host cell to proliferate, including lipid droplets (LD) onto which HCV core proteins bind and facilitate viral particle assembly. We have measured the dynamics of HCV core protein-mediated changes in LDs and rates of LD movement on microtubules using a combination of coherent anti-Stokes Raman scattering (CARS), two-photon fluorescence (TPF), and differential interference contrast (DIC) microscopies. Results show that the HCV core protein induces rapid increases in LD size. Particle tracking experiments show that HCV core protein slowly affects LD localization by controlling the directionality of LD movement on microtubules. These dynamic processes ultimately aid HCV in propagating and the molecules and interactions involved represent novel targets for potential therapeutic intervention.

  3. Effect of conducting core on the dynamics of a compound drop in an AC electric field

    Science.gov (United States)

    Soni, Purushottam; Dixit, Divya; Juvekar, Vinay A.

    2017-11-01

    Dynamics of 0.1M NaCl/castor oil/silicone oil compound drop in an alternating electric field of frequency 1 Hz was investigated experimentally in a parallel plate electrode cell. A novel yet simple method was used for producing the compound drop with different ratios of the core radius to shell radius. Deformation dynamics under both transient and cyclical steady states were recorded using high-speed imaging. We observed that with an increase in the radius ratio, deformation of the shell increases and that of the core decreases. The temporal deformation of the core always leads that of the shell. The phase lead between the core and the shell is independent of electric field strength and salt concentration in the core but strongly depends on the viscosity of the medium and radius ratio. At a small radius ratio, the breakup of the core is similar to the disintegration of the isolated drop in an infinite fluid; whereas the core attends a diamond-like shape at a high radius ratio before ejecting the small droplets from the tips.

  4. The Effects of Core Stability Exercise on the Dynamic Balance of Volleyball Players

    Directory of Open Access Journals (Sweden)

    Hassan Sadeghi

    2013-12-01

    Full Text Available Dynamic balance is a key component of injury prevention and rehabilitation in sports. Training the core muscles has been hypothesized as an intervention for improving balance. However, there is a lack of current scientific evidence to support this claim. The purpose of this study was to evaluate the effects of a core stability program on dynamic balance of volleyball players as measured with the Star Excursion Balance Test (SEBT. Thirty healthy participants were divided into 2 groups: control and exercise groups. All participants performed the SEBT before and after 8-week exercise time. During the 8-week time, the exercise group performed a core stability program, whereas the control group abstained from any new exercise. These results also illustrated there was significant differences in the scores for pre-test and post-test of all direction according SEBT in the experimental group. An independent sample t-test was conducted to compare experimental and control group (F=43.573, Sig=0.000. These results were a significant difference in the scores for control and experimental groups. Maximum excursion distances improved for the exercise group, compared with the control group. This result justifies the hypothesis that core strengthening can improve dynamic postural control during landing of volleyball players significantly. Keywords: Core stabilization; volleyball player; dynamic balance; SEBT

  5. Modeling Propellant Tank Dynamics

    Data.gov (United States)

    National Aeronautics and Space Administration — The main objective of my work will be to develop accurate models of self-pressurizing propellant tanks for use in designing hybrid rockets. The first key goal is to...

  6. Accurate Modeling of Buck Converters with Magnetic-Core Inductors

    DEFF Research Database (Denmark)

    Astorino, Antonio; Antonini, Giulio; Swaminathan, Madhavan

    2015-01-01

    In this paper, a modeling approach for buck converters with magnetic-core inductors is presented. Due to the high nonlinearity of magnetic materials, the frequency domain analysis of such circuits is not suitable for an accurate description of their behaviour. Hence, in this work, a timedomain...... model of buck converters with magnetic-core inductors in a SimulinkR environment is proposed. As an example, the presented approach is used to simulate an eight-phase buck converter. The simulation results show that an unexpected system behaviour in terms of current ripple amplitude needs the inductor core...

  7. Fission product core release model evaluation in MELCOR code

    International Nuclear Information System (INIS)

    Song, Y. M.; Kim, D. H.; Kim, H. D.

    2003-01-01

    The fission product core release in the MELCOR code is based on the CORSOR models developed by Battelle Memorial Institute. Release of radionuclides can occur from the fuel-cladding gap when a failure temperature criterion exceeds or intact geometry is lost, and various CORSOR empirical release correlations based on fuel temperatures are used for the release. Released masses into the core may exist as aerosols and/or vapors, depending on the vapor pressure of the radionuclide class and the surrounding temperature. This paper shows a release analysis for selected representative volatile and non-volatile radionuclides during conservative high and low pressure sequences in the APR1400 plant. Three core release models (CORSOR, CORSOR-M, CORSOR-Booth) in the latest MELCOR 1.8.5 version are used. In the analysis, the option of the fuel component surface-to-volume ratio in the CORSOR and CORSOR-M models and the option of the high and low burn-up in the CORSOR-Booth model are considered together. As the results, the CORSOR-M release rate is high for volatile radionuclides, and the CORSOR release rate is high for non-volatile radionuclides with insufficient consistency. As the uncertainty range for the release rate expands from several times (volatile radionuclides) to more than maximum 10,000 times (non-volatile radionuclides), user's careful choice for core release models is needed

  8. Liquid-particle model for nuclear dynamics

    International Nuclear Information System (INIS)

    Strutinsky, V.; Magner, A.

    1983-01-01

    The liquid-particle model for nuclear dynamics is discussed. Combined liquid-quantum dynamics is described. In solving the dynamic problem the nuclear surface as a dynamic variable is introduced. The giant zeroth-sound resonances are studied

  9. CORE

    DEFF Research Database (Denmark)

    Krigslund, Jeppe; Hansen, Jonas; Hundebøll, Martin

    2013-01-01

    State-of-the-art in network coding for wireless, meshed networks typically considers two problems separately. First, the problem of providing reliability for a single session. Second, the problem of opportunistic combination of flows by using minimalistic coding, i.e., by XORing packets from...... different flows. Instead of maintaining these approaches separate, we propose a protocol (CORE) that brings together these coding mechanisms. Our protocol uses random linear network coding (RLNC) for intra- session coding but allows nodes in the network to setup inter- session coding regions where flows...

  10. Dynamic modeling of the advanced neutron source reactor

    International Nuclear Information System (INIS)

    March-Leuba, J.; Ibn-Khayat, M.

    1990-01-01

    The purpose of this paper is to provide a summary description and some applications of a computer model that has been developed to simulate the dynamic behavior of the advanced neutron source (ANS) reactor. The ANS dynamic model is coded in the advanced continuous simulation language (ACSL), and it represents the reactor core, vessel, primary cooling system, and secondary cooling systems. The use of a simple dynamic model in the early stages of the reactor design has proven very valuable not only in the development of the control and plant protection system but also of components such as pumps and heat exchangers that are usually sized based on steady-state calculations

  11. Modeling Internet Topology Dynamics

    NARCIS (Netherlands)

    Haddadi, H.; Uhlig, S.; Moore, A.; Mortier, R.; Rio, M.

    Despite the large number of papers on network topology modeling and inference, there still exists ambiguity about the real nature of the Internet AS and router level topology. While recent findings have illustrated the inaccuracies in maps inferred from BGP peering and traceroute measurements,

  12. Site-specific hydration dynamics in the nonpolar core of a molten globule by dynamic nuclear polarization of water.

    Science.gov (United States)

    Armstrong, Brandon D; Choi, Jennifer; López, Carlos; Wesener, Darryl A; Hubbell, Wayne; Cavagnero, Silvia; Han, Songi

    2011-04-20

    Water-protein interactions play a direct role in protein folding. The chain collapse that accompanies protein folding involves extrusion of water from the nonpolar core. For many proteins, including apomyoglobin (apoMb), hydrophobic interactions drive an initial collapse to an intermediate state before folding to the final structure. However, the debate continues as to whether the core of the collapsed intermediate state is hydrated and, if so, what the dynamic nature of this water is. A key challenge is that protein hydration dynamics is significantly heterogeneous, yet suitable experimental techniques for measuring hydration dynamics with site-specificity are lacking. Here, we introduce Overhauser dynamic nuclear polarization at 0.35 T via site-specific nitroxide spin labels as a unique tool to probe internal and surface protein hydration dynamics with site-specific resolution in the molten globular, native, and unfolded protein states. The (1)H NMR signal enhancement of water carries information about the local dynamics of the solvent within ∼10 Å of a spin label. EPR is used synergistically to gain insights on local polarity and mobility of the spin-labeled protein. Several buried and solvent-exposed sites of apoMb are examined, each bearing a covalently bound nitroxide spin label. We find that the nonpoloar core of the apoMb molten globule is hydrated with water bearing significant translational dynamics, only 4-6-fold slower than that of bulk water. The hydration dynamics of the native state is heterogeneous, while the acid-unfolded state bears fast-diffusing hydration water. This study provides a high-resolution glimpse at the folding-dependent nature of protein hydration dynamics.

  13. The validity and reliability of a dynamic neuromuscular stabilization-heel sliding test for core stability.

    Science.gov (United States)

    Cha, Young Joo; Lee, Jae Jin; Kim, Do Hyun; You, Joshua Sung H

    2017-10-23

    Core stabilization plays an important role in the regulation of postural stability. To overcome shortcomings associated with pain and severe core instability during conventional core stabilization tests, we recently developed the dynamic neuromuscular stabilization-based heel sliding (DNS-HS) test. The purpose of this study was to establish the criterion validity and test-retest reliability of the novel DNS-HS test. Twenty young adults with core instability completed both the bilateral straight leg lowering test (BSLLT) and DNS-HS test for the criterion validity study and repeated the DNS-HS test for the test-retest reliability study. Criterion validity was determined by comparing hip joint angle data that were obtained from BSLLT and DNS-HS measures. The test-retest reliability was determined by comparing hip joint angle data. Criterion validity was (ICC2,3) = 0.700 (pTest-retest reliability was (ICC3,3) = 0.953 (pvalidity data demonstrated a good relationship between the gold standard BSLLT and DNS-HS core stability measures. Test-retest reliability data suggests that DNS-HS core stability was a reliable test for core stability. Clinically, the DNS-HS test is useful to objectively quantify core instability and allow early detection and evaluation.

  14. Modelling birefringence in isolated elliptical core photonic crystal fibers

    DEFF Research Database (Denmark)

    Nielsen, Martin Dybendal; Vienne, Guillaume; Jensen, Jacob Riis

    2001-01-01

    A simple model for calculation of the birefringence in asymmetric isolated core PCFs employing approximation with an ellipsoid suspended in air is presented. Birefringence values in the order of 10-2 are obtained and comparison with both calculations based on a SEM picture of a real fiber...

  15. Mathematical Modeling, Sense Making, and the Common Core State Standards

    Science.gov (United States)

    Schoenfeld, Alan H.

    2013-01-01

    On October 14, 2013 the Mathematics Education Department at Teachers College hosted a full-day conference focused on the Common Core Standards Mathematical Modeling requirements to be implemented in September 2014 and in honor of Professor Henry Pollak's 25 years of service to the school. This article is adapted from my talk at this conference…

  16. Mineral vein dynamics modelling (FRACS II)

    International Nuclear Information System (INIS)

    Urai, J.; Virgo, S.; Arndt, M.

    2016-08-01

    The Mineral Vein Dynamics Modeling group ''FRACS'' started out as a team of 7 research groups in its first phase and continued with a team of 5 research groups at the Universities of Aachen, Tuebingen, Karlsruhe, Mainz and Glasgow during its second phase ''FRACS 11''. The aim of the group was to develop an advanced understanding of the interplay between fracturing, fluid flow and fracture healing with a special emphasis on the comparison of field data and numerical models. Field areas comprised the Oman mountains in Oman (which where already studied in detail in the first phase), a siliciclastic sequence in the Internal Ligurian Units in Italy (closed to Sestri Levante) and cores of Zechstein carbonates from a Lean Gas reservoir in Northern Germany. Numerical models of fracturing, sealing and interaction with fluid that were developed in phase I where expanded in phase 11. They were used to model small scale fracture healing by crystal growth and the resulting influence on flow, medium scale fracture healing and its influence on successive fracturing and healing, as well as large scale dynamic fluid flow through opening and closing fractures and channels as a function of fluid overpressure. The numerical models were compared with structures in the field and we were able to identify first proxies for mechanical vein-hostrock properties and fluid overpressures versus tectonic stresses. Finally we propose a new classification of stylolites based on numerical models and observations in the Zechstein cores and continued to develop a new stress inversion tool to use stylolites to estimate depth of their formation.

  17. Modelling group dynamic animal movement

    DEFF Research Database (Denmark)

    Langrock, Roland; Hopcraft, J. Grant C.; Blackwell, Paul G.

    2014-01-01

    in non-ideal scenarios, we show that generally the estimation of models of this type is both feasible and ecologically informative. We illustrate the approach using real movement data from 11 reindeer (Rangifer tarandus). Results indicate a directional bias towards a group centroid for reindeer......Group dynamic movement is a fundamental aspect of many species' movements. The need to adequately model individuals' interactions with other group members has been recognised, particularly in order to differentiate the role of social forces in individual movement from environmental factors. However......, to date, practical statistical methods which can include group dynamics in animal movement models have been lacking. We consider a flexible modelling framework that distinguishes a group-level model, describing the movement of the group's centre, and an individual-level model, such that each individual...

  18. Vehicle dynamics modeling and simulation

    CERN Document Server

    Schramm, Dieter; Bardini, Roberto

    2014-01-01

    The authors examine in detail the fundamentals and mathematical descriptions of the dynamics of automobiles. In this context different levels of complexity will be presented, starting with basic single-track models up to complex three-dimensional multi-body models. A particular focus is on the process of establishing mathematical models on the basis of real cars and the validation of simulation results. The methods presented are explained in detail by means of selected application scenarios.

  19. Modeling of impurity transport in the core plasma

    International Nuclear Information System (INIS)

    Hulse, R.A.

    1992-01-01

    This paper presents a brief overview of computer modeling of impurity transport in the core region of controlled thermonuclear fusion plasmas. The atomic processes of importance in these high temperature plasmas and the numerical formulation of the model are described. Selected modeling examples are then used to highlight some features of the physics of impurity behavior in large tokamak fusion devices, with an emphasis on demonstrating the sensitivity of such modeling to uncertainties in the rate coefficients used for the atomic processes. This leads to a discussion of current requirements and opportunities for generating the improved sets of comprehensive atomic data needed to support present and future fusion impurity modeling studies

  20. Vibration tests on some models of PEC reactor core elements

    International Nuclear Information System (INIS)

    Bonacina, G.; Castoldi, A.; Zola, M.; Cecchini, F.; Martelli, A.; Vincenzi, D.

    1982-01-01

    This paper describes the aims of the experimental tests carried out at ISMES, within an agreement with the Department of Fast Reactors of ENEA, on some models of the elements of PEC Fast Nuclear Reactor Core in the frame of the activities for the seismic verification of the PEC core. The seismic verification is briefly described with particular attention to the problems arising from the shocks among the various elements during an earthquake, as well as the computer code used, the purpose and the techniques used to perform tests, some results and the first comparison between the theory and the experimental data

  1. Multiregional coupled conduction--convection model for heat transfer in an HTGR core

    International Nuclear Information System (INIS)

    Giles, G.E. Jr.; Childs, K.W.; Sanders, J.P.

    1978-01-01

    HEXEREI is a three-dimensional, coupled conduction-convection heat transfer and multichannel fluid dynamic analysis computer code with both steady-state and transient capabilities. The program was developed to provide thermal-fluid dynamic analysis of a core following the general design for high-temperature gas-cooled reactors (HTGRs); its purpose was to provide licensing evaluations for the U.S. Nuclear Regulatory Commission. In order to efficiently model the HTGR core, the nodal geometry of HEXEREI was chosen as a regular hexagonal array perpendicular to the axis of and bounded by a right circular cylinder. The cylindrical nodal geometry surrounds the hexagonal center portion of the mesh; these two different types of nodal geometries must be connected by interface nodes to complete the accurate modeling of the HTGR core. HEXEREI will automatically generate a nodal geometry that will accurately model a complex assembly of hexagonal and irregular prisms. The accuracy of the model was proven by a comparison of computed values with analytical results for steady-state and transient heat transfer problems. HEXEREI incorporates convective heat transfer to the coolant in many parallel axial flow channels. Forced and natural convection (which permits different flow directions in parallel channels) is included in the heat transfer and fluid dynamic models. HEXEREI incorporates a variety of steady-state and transient solution techniques that can be matched with a particular problem to minimize the computational time. HEXEREI was compared with a code of similar capabilities that was based on a Cartesian mesh. This code modeled only one specific core design, and the mesh spacing was closer than that generated by HEXEREI. Good agreement was obtained with the detail provided by the representations

  2. Development of a core-stability model: a delphi approach.

    Science.gov (United States)

    Majewski-Schrage, Tricia; Evans, Todd A; Ragan, Brian

    2014-05-01

    Despite widespread acceptance, there is currently no consensus on the definition, components, and the specific techniques most appropriate to measure and quantify core stability. To develop a comprehensive core-stability model addressing its definition, components, and assessment techniques. Delphi technique. University laboratory. 15 content experts from United States and Canada, representing a variety of disciplines. The authors distributed an open-ended questionnaire pertaining to a core-stability definition, components, and assessment techniques specific to each expert. They collected data over 2 rounds of telephone interviews. They concluded data collection once a consensus was achieved that equated with 51% agreement among respondents. The authors developed a working definition of core stability as the ability to achieve and sustain control of the trunk region at rest and during precise movement. Eighty-three percent of the experts considered the definition satisfactory. Therefore, the definition was accepted. Furthermore, the experts agreed that muscles (14/15 = 93.3%) and neuromuscular control (8/12 = 66.7%) were components of core stability. Assessment techniques were identified and inconsistencies were highlighted; however, no consensus was established. A consensus core-stability definition was created and 2 components were identified. However, of the initial definitions provided by the experts, no 2 were identical, which revealed the inconsistencies among experts and the importance of this study. Nonetheless, the goal of obtaining a consensus definition was obtained. Although a consensus for the assessment techniques of core stability could not be reached, it was a beneficial starting point to identify the inconsistencies that were discovered among the content experts.

  3. State-Space Model Predictive Control Method for Core Power Control in Pressurized Water Reactor Nuclear Power Stations

    Directory of Open Access Journals (Sweden)

    Guoxu Wang

    2017-02-01

    Full Text Available A well-performed core power control to track load changes is crucial in pressurized water reactor (PWR nuclear power stations. It is challenging to keep the core power stable at the desired value within acceptable error bands for the safety demands of the PWR due to the sensitivity of nuclear reactors. In this paper, a state-space model predictive control (MPC method was applied to the control of the core power. The model for core power control was based on mathematical models of the reactor core, the MPC model, and quadratic programming (QP. The mathematical models of the reactor core were based on neutron dynamic models, thermal hydraulic models, and reactivity models. The MPC model was presented in state-space model form, and QP was introduced for optimization solution under system constraints. Simulations of the proposed state-space MPC control system in PWR were designed for control performance analysis, and the simulation results manifest the effectiveness and the good performance of the proposed control method for core power control.

  4. State-space model predictive control method for core power control in pressurized water reactor nuclear power stations

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Guo Xu; Wu, Jie; Zeng, Bifan; Wu, Wangqiang; Ma, Xiao Qian [School of Electric Power, South China University of Technology, Guangzhou (China); Xu, Zhibin [Electric Power Research Institute of Guangdong Power Grid Corporation, Guangzhou (China)

    2017-02-15

    A well-performed core power control to track load changes is crucial in pressurized water reactor (PWR) nuclear power stations. It is challenging to keep the core power stable at the desired value within acceptable error bands for the safety demands of the PWR due to the sensitivity of nuclear reactors. In this paper, a state-space model predictive control (MPC) method was applied to the control of the core power. The model for core power control was based on mathematical models of the reactor core, the MPC model, and quadratic programming (QP). The mathematical models of the reactor core were based on neutron dynamic models, thermal hydraulic models, and reactivity models. The MPC model was presented in state-space model form, and QP was introduced for optimization solution under system constraints. Simulations of the proposed state-space MPC control system in PWR were designed for control performance analysis, and the simulation results manifest the effectiveness and the good performance of the proposed control method for core power control.

  5. Calibration of transfer functions between phytolith, vegetation and climate for integration of grassland dynamics in vegetation models. Application to a 50,000 yr crater lake core in Tanzania.

    Science.gov (United States)

    Bremond, L.; Alexandre, A.; Hely, C.; Vincens, A.; Williamson, D.; Guiot, J.

    2004-12-01

    Global vegetation models provide a way to translate the outputs from climate models into maps of potential vegetation distribution for present, past and future. Validation of these models goes through the comparison between model outputs and vegetation proxies for well constrained past climatic periods. Grass-dominated biomes are widespread and numerous. This diversity is hardly mirrored by common proxies such as pollen, charcoal or carbon isotopes. Phytoliths are amorphous silica that precipitate in and/or between living plant cells. They are commonly used to trace grasslands dynamics. However, calibration between phytolith assemblages, vegetation, and climate parameters are scarce. This work introduces transfer functions between phytolith indices, inter-tropical grassland physiognomy, and bio-climatic data that will be available for model/data comparisons. The Iph phytolith index discriminates tall from short grass savannas in West Africa. A transfer function allows to estimate evapo-transpiration AET/PET. The Ic phytolith index accurately estimates the proportion of Pooideae and Panicoideae grass sub-families, and potentially the C4/C3 grass dominance on East African mountains. The D/P index appears as a good proxy of Leaf Area Index (LAI) in tropical areas. These environmental parameters are commonly used as vegetation model outputs, but have been, up to now, hardly estimated by vegetation proxies. These transfer functions are applied to a 50,000 yr phytolith sequence from a crater lake (9°S; 33°E Tanzania). The record is compared to the pollen vegetation reconstruction and confronted to simulations of the LPJ-GUESS vegetation model (Stitch et. al, 2003).

  6. Preliminary model for core/concrete interactions. [PWR and BWR

    Energy Technology Data Exchange (ETDEWEB)

    Murfin, W.B.

    1977-08-01

    A preliminary model is described for computing the rate of penetration of concrete by a molten LWR core. Among the phenomena included are convective stirring of the melt by evolved gases, admixture of concrete decomposition products to the melt, chemical reactions, radiative heat loss, and variation of heat transfer coefficients with local pressure. The model is most applicable to a two-phase melt (metallic plus oxidic) having a fairly high metallic content.

  7. Reduced order methods: applications to nuclear reactor core spatial dynamics - 15566

    International Nuclear Information System (INIS)

    Sartori, A.; Cammi, A.; Luzzi, L.; Ricotti, M.E.; Rozza, G.

    2015-01-01

    In this paper, the capabilities of reduced order methods, with application to nuclear reactor core spatial dynamics, are presented. The potential of reduced order methods with respect to the classical Modal Method approach is firstly addressed. In particular, two modelling approaches based on a Modal Method and on the Proper Orthogonal Decomposition technique, for developing a control-oriented model of nuclear reactor spatial kinetics, are compared. Subsequently, the Reduced Basis method for simulating, in a rapid and reliable way, the movement of control rods is addressed, solving parametrized multi-group neutron diffusion equations both in the time-dependent and stationary formulations. For the latter case, a different sampling technique, within the Reduced Basis framework, has been employed, namely, the centroidal Voronoi tessellation, which allows for a hierarchical parameters space exploration, without relying on an a posteriori error estimation. In this way, the Offline computational time might be sensibly reduced. Finally, a preliminary multi-physics reduced order model of a Lead Fast Reactor single-channel is proposed as proof of concept in order to highlight the potential of reduced order methods in a many-query context. (authors)

  8. Asymptotic and transient analysis of stochastic core ecosystem models

    Directory of Open Access Journals (Sweden)

    Thomas C. Gard

    2000-07-01

    Full Text Available General results on ultimate boundedness and exit probability estimates for stochastic differential equations are applied to investigate asymptotic and transient properties of models of plankton-fish dynamics in uncertain environments

  9. Modal dynamics in hollow-core photonic-crystal fibers with elliptical veins.

    Science.gov (United States)

    Hochman, Amit; Leviatan, Yehuda

    2005-08-08

    Modal characteristics of hollow-core photonic-crystal fibers with elliptical veins are studied by use of a recently proposed numerical method. The dynamic behavior of bandgap guided modes, as the wavelength and aspect ratio are varied, is shown to include zero-crossings of the birefringence, polarization dependent radiation losses, and deformation of the fundamental mode.

  10. Formation and Collapse of Quiescent Cloud Cores Induced by Dynamic Compressions

    Science.gov (United States)

    Gómez, Gilberto C.; Vázquez-Semadeni, Enrique; Shadmehri, Mohsen; Ballesteros-Paredes, Javier

    2007-11-01

    We present numerical hydrodynamic simulations of the formation, evolution, and gravitational collapse of isothermal molecular cloud cores in spherical geometry. A compressive wave is set up in a constant sub-Jeans density distribution of radius r=1 pc. As the wave travels through the simulation grid, a shock-bounded spherical shell is formed. The inner shock of this shell reaches and bounces off the center, leaving behind a central core with an initially almost uniform density distribution, surrounded by an envelope consisting of the material in the shock-bounded shell, which at late times develops a logarithmic slope close to -2, even in noncollapsing cases. The central core and the envelope are separated by a mild shock. The central core grows to sizes of ~0.1 pc and resembles a Bonnor-Ebert (BE) sphere, although it has significant dynamical differences: its self-gravity is initially negligible, and it is confined by the ram pressure of the infalling material, thus growing continuously in mass and size. With the appropriate parameters, the core mass eventually reaches an effective Jeans mass, at which time the core begins to collapse. Thus, the core evolves from a stable regime to an unstable one, implying the existence of a time delay between the appearance of the core and the onset of its collapse, but due to its growth in mass, rather than to the dissipation of its internal turbulence, as is often believed. These results suggest that prestellar cores may approximate BE structures, which are, however, of variable mass and may or may not experience gravitational collapse, in qualitative agreement with the large observed frequency of cores with BE-like profiles.

  11. A dynamical model of terrorism

    Directory of Open Access Journals (Sweden)

    Firdaus Udwadia

    2006-01-01

    Full Text Available This paper develops a dynamical model of terrorism. We consider the population in a given region as being made up of three primary components: terrorists, those susceptible to both terrorist and pacifist propaganda, and nonsusceptibles, or pacifists. The dynamical behavior of these three populations is studied using a model that incorporates the effects of both direct military/police intervention to reduce the terrorist population, and nonviolent, persuasive intervention to influence the susceptibles to become pacifists. The paper proposes a new paradigm for studying terrorism, and looks at the long-term dynamical evolution in time of these three population components when such interventions are carried out. Many important features—some intuitive, others not nearly so—of the nature of terrorism emerge from the dynamical model proposed, and they lead to several important policy implications for the management of terrorism. The different circumstances in which nonviolent intervention and/or military/police intervention may be beneficial, and the specific conditions under which each mode of intervention, or a combination of both, may be useful, are obtained. The novelty of the model presented herein is that it deals with the time evolution of terrorist activity. It appears to be one of the few models that can be tested, evaluated, and improved upon, through the use of actual field data.

  12. VIPRE modeling of VVER-1000 reactor core for DNB analyses

    Energy Technology Data Exchange (ETDEWEB)

    Sung, Y.; Nguyen, Q. [Westinghouse Electric Corporation, Pittsburgh, PA (United States); Cizek, J. [Nuclear Research Institute, Prague, (Czech Republic)

    1995-09-01

    Based on the one-pass modeling approach, the hot channels and the VVER-1000 reactor core can be modeled in 30 channels for DNB analyses using the VIPRE-01/MOD02 (VIPRE) code (VIPRE is owned by Electric Power Research Institute, Palo Alto, California). The VIPRE one-pass model does not compromise any accuracy in the hot channel local fluid conditions. Extensive qualifications include sensitivity studies of radial noding and crossflow parameters and comparisons with the results from THINC and CALOPEA subchannel codes. The qualifications confirm that the VIPRE code with the Westinghouse modeling method provides good computational performance and accuracy for VVER-1000 DNB analyses.

  13. Badlands: A parallel basin and landscape dynamics model

    Directory of Open Access Journals (Sweden)

    T. Salles

    2016-01-01

    Full Text Available Over more than three decades, a number of numerical landscape evolution models (LEMs have been developed to study the combined effects of climate, sea-level, tectonics and sediments on Earth surface dynamics. Most of them are written in efficient programming languages, but often cannot be used on parallel architectures. Here, I present a LEM which ports a common core of accepted physical principles governing landscape evolution into a distributed memory parallel environment. Badlands (acronym for BAsin anD LANdscape DynamicS is an open-source, flexible, TIN-based landscape evolution model, built to simulate topography development at various space and time scales.

  14. VERA-CS Modeling and Simulation of PWR Main Steam Line Break Core Response to DNB

    Energy Technology Data Exchange (ETDEWEB)

    Salko, Robert K [ORNL; Sung, Yixing [Westinghouse Electric Company, Cranberry Township; Kucukboyaci, Vefa [Westinghouse Electric Company, Cranberry Township; Xu, Yiban [Westinghouse Electric Company, Cranberry Township; Cao, Liping [Westinghouse Electric Company, Cranberry Township

    2016-01-01

    The Virtual Environment for Reactor Applications core simulator (VERA-CS) being developed by the Consortium for the Advanced Simulation of Light Water Reactors (CASL) includes coupled neutronics, thermal-hydraulics, and fuel temperature components with an isotopic depletion capability. The neutronics capability employed is based on MPACT, a three-dimensional (3-D) whole core transport code. The thermal-hydraulics and fuel temperature models are provided by the COBRA-TF (CTF) subchannel code. As part of the CASL development program, the VERA-CS (MPACT/CTF) code system was applied to model and simulate reactor core response with respect to departure from nucleate boiling ratio (DNBR) at the limiting time step of a postulated pressurized water reactor (PWR) main steamline break (MSLB) event initiated at the hot zero power (HZP), either with offsite power available and the reactor coolant pumps in operation (high-flow case) or without offsite power where the reactor core is cooled through natural circulation (low-flow case). The VERA-CS simulation was based on core boundary conditions from the RETRAN-02 system transient calculations and STAR-CCM+ computational fluid dynamics (CFD) core inlet distribution calculations. The evaluation indicated that the VERA-CS code system is capable of modeling and simulating quasi-steady state reactor core response under the steamline break (SLB) accident condition, the results are insensitive to uncertainties in the inlet flow distributions from the CFD simulations, and the high-flow case is more DNB limiting than the low-flow case.

  15. The dynamics of coastal models

    Science.gov (United States)

    Hearn, Clifford J.

    2008-01-01

    Coastal basins are defined as estuaries, lagoons, and embayments. This book deals with the science of coastal basins using simple models, many of which are presented in either analytical form or Microsoft Excel or MATLAB. The book introduces simple hydrodynamics and its applications, from the use of simple box and one-dimensional models to flow over coral reefs. The book also emphasizes models as a scientific tool in our understanding of coasts, and introduces the value of the most modern flexible mesh combined wave-current models. Examples from shallow basins around the world illustrate the wonders of the scientific method and the power of simple dynamics. This book is ideal for use as an advanced textbook for graduate students and as an introduction to the topic for researchers, especially those from other fields of science needing a basic understanding of the basic ideas of the dynamics of coastal basins.

  16. The effect of trunk coordination exercise on dynamic postural control using a Core Noodle.

    Science.gov (United States)

    Miyake, Yuki; Nakamura, Shinichiro; Nakajima, Masaaki

    2014-10-01

    To investigate the influence of trunk coordination exercise on dynamic postural control relative to postural sway. The effects of trunk coordination exercises were examined using a Core Noodle for the postural sway in healthy students who were assigned to an exercise or control group. The independent variable was the extent of exposure to Core Noodle exercise, and the dependent variable was dynamic postural control. A stabilometer, which measures dynamic postural control, was used to evaluate the effectiveness of the exercises. In addition, center of gravity movements were assessed using a Gravicorder G-620 stabilometer in which the subject was asked to shift their center of gravity between 2 circles on a computer monitor. Pre- and post-intervention dynamic postural control was statistically evaluated between the exercise group and control group using the Mann-Whitney test. Finally, we investigated the application of these exercises for a stroke patient. For post-intervention, the envelop area, mean length of the pathways between 2 circles, and the number of circles were significantly higher in the exercise group. Trunk coordination exercise performed Core Noodle may be used to enhance the dynamic postural balance of healthy young adults, and it can also be adapted for stroke patients. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Dynamic collapses of relativistic degenerate stellar cores and radiation pressure dominated stellar interiors

    Science.gov (United States)

    Shi, Chun-Hui; Lou, Yu-Qing

    2018-04-01

    We investigate and explore self-similar dynamic radial collapses of relativistic degenerate stellar cores (RDSCs) and radiation pressure dominated stellar interiors (RPDSIs) of spherical symmetry by invoking a conventional polytropic (CP) equation of state (EoS) with a constant polytropic index γ = 4 / 3 and by allowing free-fall non-zero RDSC or RPDSI surface mass density and pressure due to their sustained physical contact with the outer surrounding stellar envelopes also in contraction. Irrespective of the physical triggering mechanisms (including, e.g., photodissociation, electron-positron pair instability, general relativistic instability etc.) for initiating such a self-similar dynamically collapsing RDSC or RPDSI embedded within a massive star, a very massive star (VMS) or a supermassive star (SMS) in contraction and by comparing with the Schwarzschild radii associated with their corresponding RDSC/RPDSI masses, the emergence of central black holes in a wide mass range appears inevitable during such RDSC/RPDSI dynamic collapses inside massive stars, VMSs, and SMSs, respectively. Radial pulsations of progenitor cores or during a stellar core collapse may well leave imprints onto collapsing RDSCs/RPDSIs towards their self-similar dynamic evolution. Massive neutron stars may form during dynamic collapses of RDSC inside massive stars in contraction under proper conditions.

  18. EFEKTIVITAS STRATEGI PENGELOMPOKAN BERPASANGAN DALAM PEMBELAJARAN MATEMATIKA MODEL CORE

    Directory of Open Access Journals (Sweden)

    Endah Retnowati

    2017-02-01

    Full Text Available Abstrak: Penelitian ini bertujuan untuk menguji keefektifan pembelajaran CORE (Connect, Organize, Reflect, Extend pada pembelajaran geometri transformasi dengan strategi pengelompokan yang berbeda ditinjau dari kemampuan penalaran, prestasi, dan self efficacy. Penelitian ini merupakan penelitian eksperimen semu dengan populasi siswa kelas XI IPA SMA yang baru pertama kali mempelajari materi geometri transformasi. Sampel penelitian sebanyak dua kelas masing-masing terdiri atas 40 siswa. Siswa belajar dengan dikelompokkan secara berpasangan atau kelompok kecil. Data dikumpulkan dengan teknik tes dan nontes serta dianalisis dengan teknik statistik deskriptif dan inferensial (Manova. Hasil penelitian menunjukkan bahwa pembelajaran CORE strategi berpasangan maupun kelompok kecil efektif ditinjau dari Kriteria Ketuntasan Minimum kemampuan penalaran, prestasi dan self efficacy yang ditetapkan, tetapi tidak terdapat perbedaan yang signifikan di antara kedua strategi pengelompokan tersebut. Repeated measures analysis of variance menunjukkan bahwa kompleksitas materi pembelajaran memengaruhi prestasi belajar secara signifikan. Semakin kompleks materi pembelajaran, penggunaan strategi kelompok kecil lebih baik daripada berpasangan. Kata kunci: CORE, kemampuan penalaran, prestasi belajar, self efficacy THE EFFECTIVENESS OF DYAD STRATEGY DURING MATHEMATICS LEARNING BASED ON CORE MODEL Abstract: The purpose of this study is to test the effectiveness of an instruction, namely CORE (Connect, Organize, Reflect, Extend model, for learning geometry transformation in different grouping strategies (by dyads and small-group work, in terms of reasoning ability, achievement, and self-efficacy. This study was a quasi-experimental research with the entire population of science 11th graders who were novices in geometry transformation. The research samples were two classes which respectively consist of 40 students. Students learned all material either in dyads or small

  19. Effect of core energy on mobility in a continuum dislocation model

    Science.gov (United States)

    Lee, Dong Wook; Kim, Hojin; Strachan, Alejandro; Koslowski, Marisol

    2011-03-01

    We present a first-principles-based, multiscale single-crystal plasticity model for fcc metals and apply it to nickel. The model consists of a phase field approach to dislocation dynamics (PFDD) with all its input parameters obtained from equilibrium and nonequilibrium molecular-dynamics (MD) simulations. The atomistic information used to inform the phase field model includes elastic constants, dislocation core energy, crystal disregistry energy (gamma surface), and dislocation mobility. We show that the PFDD model can be simplified to the Frenkel-Kontorowa equations for straight dislocations, and under these conditions an analytical time-dependent solution enables a direct connection to nonequilibrium MD simulations. This time-dependent analytical solution provides a relationship between dislocation mobility (ratio between dislocation velocity and applied stress) and fundamental atomic-scale materials properties that arise from the atomistics: unstable stacking fault energy and dislocation core energy and width. We find that the dislocation mobility increases linearly with the ratio between the core energy and unstable stacking fault energy in the PFDD theory.

  20. Geophysical Age Dating of Seamounts using Dense Core Flexure Model

    Science.gov (United States)

    Hwang, Gyuha; Kim, Seung-Sep

    2016-04-01

    Lithospheric flexure of oceanic plate is thermo-mechanical response of an elastic plate to the given volcanic construct (e.g., seamounts and ocean islands). If the shape and mass of such volcanic loads are known, the flexural response is governed by the thickness of elastic plate, Te. As the age of oceanic plate increases, the elastic thickness of oceanic lithosphere becomes thicker. Thus, we can relate Te with the age of plate at the time of loading. To estimate the amount of the driving force due to seamounts on elastic plate, one needs to approximate their density structure. The most common choice is uniform density model, which utilizes constant density value for a seamount. This approach simplifies computational processes for gravity prediction and error estimates. However, the uniform density model tends to overestimate the total mass of the seamount and hence produces more positive gravitational contributions from the load. Minimization of gravity misfits using uniform density, therefore, favors thinner Te in order to increase negative contributions from the lithospheric flexure, which can compensate for the excessive positives from the seamount. An alternative approach is dense core model, which approximate the heterogeneity nature of seamount density as three bodies of infill sediment, edifice, and dense core. In this study, we apply the dense core model to the Louisville Seamount Chain for constraining flexural deformation. We compare Te estimates with the loading time of the examined seamounts to redefine empirical geophysical age dating of seamounts.

  1. Development of Dynamic Ellipsometry for Measurements or Iron Conductivity at Earth's Core Conditions.

    Energy Technology Data Exchange (ETDEWEB)

    Grant, Sean Campbell [Univ. of Texas, Austin, TX (United States); Ao, Tommy [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Davis, Jean-Paul [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Dolan, Daniel H. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Seagle, Christopher T. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Lin, Jung-Fu [Univ. of Texas, Austin, TX (United States); Bernstein, Aaron [Univ. of Texas, Austin, TX (United States)

    2017-03-01

    The CHEDS researchers are engaged in a collaborative research project to study the properties of iron and iron alloys under Earth’s core conditions. The Earth’s core, inner and outer, is composed primarily of iron, thus studying iron and iron alloys at high pressure and temperature conditions will give the best estimate of its properties. Also, comparing studies of iron alloys with known properties of the core can constrain the potential light element compositions found within the core, such as fitting sound speeds and densities of iron alloys to established inner- Earth models. One of the lesser established properties of the core is the thermal conductivity, where current estimates vary by a factor of three. Therefore, one of the primary goals of this collaboration is to make relevant measurements to elucidate this conductivity.

  2. Transient computational fluid dynamics analysis of emergency core cooling injection at natural circulation conditions

    International Nuclear Information System (INIS)

    Scheuerer, Martina; Weis, Johannes

    2012-01-01

    Highlights: ► Pressurized thermal shocks are important phenomena for plant life extension and aging. ► The thermal-hydraulics of PTS have been studied experimentally and numerically. ► In the Large Scale Test Facility a loss of coolant accident was investigated. ► CFD software is validated to simulate the buoyancy driven flow after ECC injection. - Abstract: Within the framework of the European Nuclear Reactor Integrated Simulation Project (NURISP), computational fluid dynamics (CFD) software is validated for the simulation of the thermo-hydraulics of pressurized thermal shocks. A proposed validation experiment is the test series performed within the OECD ROSA V project in the Large Scale Test Facility (LSTF). The LSTF is a 1:48 volume-scaled model of a four-loop Westinghouse pressurized water reactor (PWR). ROSA V Test 1-1 investigates temperature stratification under natural circulation conditions. This paper describes calculations which were performed with the ANSYS CFD software for emergency core cooling injection into one loop at single-phase flow conditions. Following the OECD/NEA CFD Best Practice Guidelines (Mahaffy, 2007) the influence of grid resolution, discretisation schemes, and turbulence models (shear stress transport and Reynolds stress model) on the mixing in the cold leg were investigated. A half-model was used for these simulations. The transient calculations were started from a steady-state solution at natural circulation conditions. The final calculations were obtained in a complete model of the downcomer. The results are in good agreement with data.

  3. Generalized Thermohydraulics Module GENFLO for Combining With the PWR Core Melting Model, BWR Recriticality Neutronics Model and Fuel Performance Model

    International Nuclear Information System (INIS)

    Miettinen, Jaakko; Hamalainen, Anitta; Pekkarinen, Esko

    2002-01-01

    Thermal hydraulic simulation capability for accident conditions is needed at present in VTT in several programs. Traditional thermal hydraulic models are too heavy for simulation in the analysis tasks, where the main emphasis is the rapid neutron dynamics or the core melting. The GENFLO thermal hydraulic model has been developed at VTT for special applications in the combined codes. The basic field equations in GENFLO are for the phase mass, the mixture momentum and phase energy conservation equations. The phase separation is solved with the drift flux model. The basic variables to be solved are the pressure, void fraction, mixture velocity, gas enthalpy, liquid enthalpy, and concentration of non-condensable gas fractions. The validation of the thermohydraulic solution alone includes large break LOCA reflooding experiments and in specific for the severe accident conditions QUENCH tests. In the recriticality analysis the core neutronics is simulated with a two-dimensional transient neutronics code TWODIM. The recriticality with one rapid prompt peak is expected during a severe accident scenario, where the control rods have been melted and ECCS reflooding is started after the depressurization. The GENFLO module simulates the BWR thermohydraulics in this application. The core melting module has been developed for the real time operator training by using the APROS engineering simulators. The core heatup, oxidation, metal and fuel pellet relocation and corium pool formation into the lower plenum are calculated. In this application the GENFLO model simulates the PWR vessel thermohydraulics. In the fuel performance analysis the fuel rod transient behavior is simulated with the FRAPTRAN code. GENFLO simulates the subchannel around a single fuel rod and delivers the heat transfer on the cladding surface for the FRAPTRAN. The transient boundary conditions for the subchannel are transmitted from the system code for operational transient, loss of coolant accidents and

  4. Dynamical phase transitions and temporal orthogonality in one-dimensional hard-core bosons: from the continuum to the lattice

    Science.gov (United States)

    Fogarty, Thomás; Usui, Ayaka; Busch, Thomas; Silva, Alessandro; Goold, John

    2017-11-01

    We investigate the dynamics of the rate function and of local observables after a quench in models which exhibit phase transitions between a superfluid and an insulator in their ground states. Zeros of the return probability, corresponding to singularities of the rate functions, have been suggested to indicate the emergence of dynamical criticality and we address the question of whether such zeros can be tied to the dynamics of physically relevant observables and hence order parameters in the systems. For this we first numerically analyze the dynamics of a hard-core boson gas in a one-dimensional waveguide when a quenched lattice potential is commensurate with the particle density. Such a system can undergo a pinning transition to an insulating state and we find non-analytic behavior in the evolution of the rate function which is indicative of dynamical phase transitions. In addition, we perform simulations of the time dependence of the momentum distribution and compare the periodicity of this collapse and revival cycle to that of the non-analyticities in the rate function: the two are found to be closely related only for deep quenches. We then confirm this observation by analytic calculations on a closely related discrete model of hard-core bosons in the presence of a staggered potential and find expressions for the rate function for the quenches. By extraction of the zeros of the survival amplitude we uncover a non-equilibrium timescale for the emergence of non-analyticities and discuss its relationship with the dynamics of the experimentally relevant parity operator.

  5. Relating structure and dynamics in organisation models

    NARCIS (Netherlands)

    Jonkers, C.M.; Treur, J.

    2002-01-01

    To understand how an organisational structure relates to dynamics is an interesting fundamental challenge in the area of social modelling. Specifications of organisational structure usually have a diagrammatic form that abstracts from more detailed dynamics. Dynamic properties of agent systems,

  6. Molecular dynamics study of dislocation cores in copper: structure and diffusion at high temperatures

    International Nuclear Information System (INIS)

    Huang, Jin

    1989-01-01

    The variation of the core structure of an easy glide dislocation with temperature and its influence on the stacking fault energy (γ) have been investigated for the first time by molecular-dynamics simulation in copper. The calculations have been performed at various temperatures, using an ab-initio pseudo-potential. Our results show that the core of the Shockley partials, into which the perfect edge dislocation dissociates, becomes increasingly extended as temperature increases. However their separation remains constant. The calculated energy values of the infinite extension stacking fault and the ribbon fault between the partials are quite different, but the evolution of the core structure does not affect the temperature dependence of the latter. We have found that a high disorder appears in the core region when temperature increases due to important anharmonicity effects of the atomic vibrations. The core structure remains solid-like for T m (T m : melting point of bulk) in spite of the high disorder. Above T m , the liquid nucleus germinates in the core region, and then propagates into the bulk. In addition we studied the mobility of vacancies and interstitials trapped on the partials. Although fast diffusion is thought to occur exclusively in a pipe surrounding the dislocation core, in the present study a quasi two-dimensional diffusion is observed for both defects not only in the cores but also in the stacking fault ribbon. On the opposite of current assumptions, the activation energy for diffusion is found to be identical for both defects, which may therefore comparably contribute to mass transport along the dislocations. (author) [fr

  7. Trophic dynamics of a simple model ecosystem.

    Science.gov (United States)

    Bell, Graham; Fortier-Dubois, Étienne

    2017-09-13

    We have constructed a model of community dynamics that is simple enough to enumerate all possible food webs, yet complex enough to represent a wide range of ecological processes. We use the transition matrix to predict the outcome of succession and then investigate how the transition probabilities are governed by resource supply and immigration. Low-input regimes lead to simple communities whereas trophically complex communities develop when there is an adequate supply of both resources and immigrants. Our interpretation of trophic dynamics in complex communities hinges on a new principle of mutual replenishment, defined as the reciprocal alternation of state in a pair of communities linked by the invasion and extinction of a shared species. Such neutral couples are the outcome of succession under local dispersal and imply that food webs will often be made up of suites of trophically equivalent species. When immigrants arrive from an external pool of fixed composition a similar principle predicts a dynamic core of webs constituting a neutral interchange network, although communities may express an extensive range of other webs whose membership is only in part predictable. The food web is not in general predictable from whole-community properties such as productivity or stability, although it may profoundly influence these properties. © 2017 The Author(s).

  8. Dynamic modeling, simulation and control of energy generation

    CERN Document Server

    Vepa, Ranjan

    2013-01-01

    This book addresses the core issues involved in the dynamic modeling, simulation and control of a selection of energy systems such as gas turbines, wind turbines, fuel cells and batteries. The principles of modeling and control could be applied to other non-convention methods of energy generation such as solar energy and wave energy.A central feature of Dynamic Modeling, Simulation and Control of Energy Generation is that it brings together diverse topics in thermodynamics, fluid mechanics, heat transfer, electro-chemistry, electrical networks and electrical machines and focuses on their appli

  9. The fuzziness of Jupiter's core: linking formation and evolution models

    Science.gov (United States)

    Helled, Ravit; Lozovsky, Michael; Vazan, Allona; Stevenson, David; Guillot, Tristan; Hubbard, William

    2017-04-01

    Juno data can be used to better constrain Jupiter's internal structure and origin. First, we present Jupiter's primordial internal structure based on formation models and show that Jupiter's core might not be distinct from the envelope, and that the deep interior can have a gradual heavy-element structure. Second, we explore how such a primordial (non-adiabatic) interior affects Jupiter's long-term evolution. Finally, we will discuss the link between these formation and evolution models and Jupiter's current-state internal structure.

  10. Business model dynamics and innovation

    DEFF Research Database (Denmark)

    Cavalcante, Sergio Andre; Kesting, Peter; Ulhøi, John Parm

    2011-01-01

    Purpose – This paper aims to discuss the need to dynamize the existing conceptualization of business model, and proposes a new typology to distinguish different types of business model change. Design/methodology/approach – The paper integrates basic insights of innovation, business process...... the impact of specific changes to a firm's business model. Such a tool would be particularly useful in identifying path dependencies and resistance at the process level, and would therefore allow a firm's management to take focused action on this in advance. Originality/value – The paper makes two main...... contributions: first, it offers a new, process-based conceptualization of business models; second, it is the first paper to establish a direct link between business model change and the degree of innovation (such as “incremental” vs “radical”), and which distinguishes and specifies different types of business...

  11. The Model of Temperature Dynamics of Pulsed Fuel Assembly

    CERN Document Server

    Bondarchenko, E A; Popov, A K

    2002-01-01

    Heat exchange process differential equations are considered for a subcritical fuel assembly with an injector. The equations are obtained by means of the use of the Hermit polynomial. The model is created for modelling of temperature transitional processes. The parameters and dynamics are estimated for hypothetical fuel assembly consisting of real mountings: the powerful proton accelerator and the reactor IBR-2 core at its subcritica l state.

  12. Experimental Modeling of Dynamic Systems

    DEFF Research Database (Denmark)

    Knudsen, Morten Haack

    2006-01-01

    An engineering course, Simulation and Experimental Modeling, has been developed that is based on a method for direct estimation of physical parameters in dynamic systems. Compared with classical system identification, the method appears to be easier to understand, apply, and combine with physical...... insight. It is based on a sensitivity approach that is useful for choice of model structure, for experiment design, and for accuracy verification. The method is implemented in the Matlab toolkit Senstools. The method and the presentation have been developed with generally preferred learning styles in mind...

  13. Modeling quantum fluid dynamics at nonzero temperatures

    Science.gov (United States)

    Berloff, Natalia G.; Brachet, Marc; Proukakis, Nick P.

    2014-01-01

    The detailed understanding of the intricate dynamics of quantum fluids, in particular in the rapidly growing subfield of quantum turbulence which elucidates the evolution of a vortex tangle in a superfluid, requires an in-depth understanding of the role of finite temperature in such systems. The Landau two-fluid model is the most successful hydrodynamical theory of superfluid helium, but by the nature of the scale separations it cannot give an adequate description of the processes involving vortex dynamics and interactions. In our contribution we introduce a framework based on a nonlinear classical-field equation that is mathematically identical to the Landau model and provides a mechanism for severing and coalescence of vortex lines, so that the questions related to the behavior of quantized vortices can be addressed self-consistently. The correct equation of state as well as nonlocality of interactions that leads to the existence of the roton minimum can also be introduced in such description. We review and apply the ideas developed for finite-temperature description of weakly interacting Bose gases as possible extensions and numerical refinements of the proposed method. We apply this method to elucidate the behavior of the vortices during expansion and contraction following the change in applied pressure. We show that at low temperatures, during the contraction of the vortex core as the negative pressure grows back to positive values, the vortex line density grows through a mechanism of vortex multiplication. This mechanism is suppressed at high temperatures. PMID:24704874

  14. Modelling the carbonation of cementitious matrixes by means of the unreacted-core model, UR-CORE

    International Nuclear Information System (INIS)

    Castellote, M.; Andrade, C.

    2008-01-01

    This paper presents a model for the carbonation of cementitious matrixes (UR-CORE). The model is based on the principles of the 'unreacted-core' systems, typical of chemical engineering processes, in which the reacted product remains in the solid as a layer of inert ash, adapted for the specific case of carbonation. Development of the model has been undertaken in three steps: 1) Establishment of the controlling step in the global carbonation rate, by using data of fractional conversion of different phases of the cementitious matrixes, obtained by the authors through neutron diffraction data experiments, and reported in [M. Castellote, C. Andrade, X. Turrillas, J. Campo, G. Cuello, Accelerated carbonation of cement pastes in situ monitored by neutron diffraction, Cem. Concr. Res. (2008), doi:10.1016/j.cemconres.2008.07.002]. 2) Then, the model has been adapted and applied to the cementitious materials using different concentrations of CO 2 , with the introduction of the needed assumptions and factors. 3) Finally, the model has been validated with laboratory data at different concentrations (taken from literature) and for long term natural exposure of concretes. As a result, the model seems to be reliable enough to be applied to cementitious materials, being able to extrapolate the results from accelerated tests in any conditions to predict the rate of carbonation in natural exposure, being restricted, at present stage, to conditions with a constant relative humidity

  15. A Global Model for Circumgalactic and Cluster-core Precipitation

    Science.gov (United States)

    Voit, G. Mark; Meece, Greg; Li, Yuan; O'Shea, Brian W.; Bryan, Greg L.; Donahue, Megan

    2017-08-01

    We provide an analytic framework for interpreting observations of multiphase circumgalactic gas that is heavily informed by recent numerical simulations of thermal instability and precipitation in cool-core galaxy clusters. We start by considering the local conditions required for the formation of multiphase gas via two different modes: (1) uplift of ambient gas by galactic outflows, and (2) condensation in a stratified stationary medium in which thermal balance is explicitly maintained. Analytic exploration of these two modes provides insights into the relationships between the local ratio of the cooling and freefall timescales (I.e., {t}{cool}/{t}{ff}), the large-scale gradient of specific entropy, and the development of precipitation and multiphase media in circumgalactic gas. We then use these analytic findings to interpret recent simulations of circumgalactic gas in which global thermal balance is maintained. We show that long-lasting configurations of gas with 5≲ \\min ({t}{cool}/{t}{ff})≲ 20 and radial entropy profiles similar to observations of cool cores in galaxy clusters are a natural outcome of precipitation-regulated feedback. We conclude with some observational predictions that follow from these models. This work focuses primarily on precipitation and AGN feedback in galaxy-cluster cores, because that is where the observations of multiphase gas around galaxies are most complete. However, many of the physical principles that govern condensation in those environments apply to circumgalactic gas around galaxies of all masses.

  16. Mercury's Internal Magnetic Field: Modeling Core Fields with Smooth Inversions

    Science.gov (United States)

    Uno, H.; Johnson, C. L.; Anderson, B. J.; Korth, H.; Purucker, M. E.; Solomon, S. C.

    2008-12-01

    MESSENGER's second flyby (M2) of Mercury on 6 October 2008 will provide significantly improved geographical sampling of the planet's internal magnetic field over previous measurements. Latitudinal coverage and spacecraft altitudes will be similar to those during MESSENGER's first encounter (M1), but the spacecraft trajectory will be displaced by about 180° in longitude, yielding the first magnetic measurements in the western hemisphere. We investigate spatial structure in Mercury's internal magnetic field by applying methods from inverse theory to construct low-degree-and-order spherical harmonic models. External fields predicted by a parameterized magnetospheric model are subtracted from the vector field observations. The approach takes into account noise contributions from long-wavelength uncertainties in the external field models, unexplained short-wavelength features, and spacecraft attitude errors. We investigate the effect of different regularization (smoothness) constraints on our inversions. Analyses of data from M1 and the two Mariner 10 flybys that penetrated the magnetosphere yield a preferred spherical harmonic solution to degree and order eight with the centered, axial dipole term g10 dominating. The model shows structure at low and mid-latitude regions near the flybys. Terms predicted by an analytical model for long- wavelength crustal fields - namely g10, g30 and g32 - are present, but their relative amplitudes are not consistent with such a field. We conclude that structure in our models is dominated by core, rather than by crustal, fields. We also investigate, through simulations, field morphologies that are recoverable while the spacecraft is in orbit about Mercury, under the assumption that the long-wavelength contributions from external sources can be accurately modeled and removed. Although the elliptical orbit of MESSENGER will impede the recovery of southern hemisphere structure, we obtain excellent recovery of the dipole field and of

  17. Ultrafast vortex core dynamics investigated by finite-element micromagnetic simulations

    Energy Technology Data Exchange (ETDEWEB)

    Gliga, Sebastian

    2010-07-01

    The investigations carried out in this thesis concern the ultrafast dynamics of a fundamental micromagnetic configuration: the vortex. Over the past decade, a detailed understanding of the dynamic and static properties of such magnetic nanostructures has been achieved as a result of close interplay between experiments, theory and numeric simulations. Here, micromagnetic simulations were performed based on the finite-element method. The vortex structure arises in laterally-confined ferromagnets, in particular in thin-film elements, and is characterized by an in-plane curling of the magnetic moments around a very stable and narrow core. In the present study, a novel process in micromagnetism was found: the ultrafast reversal of the vortex core. The possibility of easily switching the core orientation by means of short in-plane field pulses is surprising in view of the very high stability of the core. Moreover, the simulations presented here showed that this reversal process unfolds on a time scale of only a few tens of picoseconds, which leads to the prediction of the fastest and most complex micromagnetic reversal process known to date. Indeed, the vortex core is not merely switched: it is destroyed and recreated in the immediate vicinity with an opposite direction. This is mediated by a rapid sequence of vortex-antivortex pair creation and annihilation subprocesses and results in a sudden burst-like emission of spin waves. Equally fascinating is the ultrafast dynamics of an isolated magnetic antivortex, the topological counterpart of the vortex. The simulations performed here showed that the static complementarity between vortices and antivortices is equally reflected in their ultrafast dynamics, which leads to the reversal of the antivortex core. A promising means for the control of the magnetization on the nanoscale consists in exploiting the spin-transfer torque effect. The study of the current-induced dynamics of vortices showed that the core reversal can be

  18. Feasibility analysis of real-time physical modeling using WaveCore processor technology on FPGA

    NARCIS (Netherlands)

    Verstraelen, Martinus Johannes Wilhelmina; Pfeifle, Florian; Bader, Rolf

    2015-01-01

    WaveCore is a scalable many-core processor technology. This technology is specifically developed and optimized for real-time acoustical modeling applications. The programmable WaveCore soft-core processor is silicon-technology independent and hence can be targeted to ASIC or FPGA technologies. The

  19. Computational modeling for hexcan failure under core distruptive accidental conditions

    Energy Technology Data Exchange (ETDEWEB)

    Sawada, T.; Ninokata, H.; Shimizu, A. [Tokyo Institute of Technology (Japan)

    1995-09-01

    This paper describes the development of computational modeling for hexcan wall failures under core disruptive accident conditions of fast breeder reactors. A series of out-of-pile experiments named SIMBATH has been analyzed by using the SIMMER-II code. The SIMBATH experiments were performed at KfK in Germany. The experiments used a thermite mixture to simulate fuel. The test geometry of SIMBATH ranged from single pin to 37-pin bundles. In this study, phenomena of hexcan wall failure found in a SIMBATH test were analyzed by SIMMER-II. Although the original model of SIMMER-II did not calculate any hexcan failure, several simple modifications made it possible to reproduce the hexcan wall melt-through observed in the experiment. In this paper the modifications and their significance are discussed for further modeling improvements.

  20. Reliability and Practicality of the Core Score: Four Dynamic Core Stability Tests Performed in a Physician Office Setting.

    Science.gov (United States)

    Friedrich, Jason; Brakke, Rachel; Akuthota, Venu; Sullivan, William

    2017-07-01

    Pilot study to determine the practicality and inter-rater reliability of the "Core Score," a composite measure of 4 clinical core stability tests. Repeated measures. Academic hospital physician clinic. 23 healthy volunteers with mean age of 32 years (12 females, 11 males). All subjects performed 4 core stability maneuvers under direct observation from 3 independent physicians in sequence. Inter-rater reliability and time necessary to perform examination. The Core Score scale is 0 to 12, with 12 reflecting the best core stability. The mean composite score of all 4 tests for all subjects was 9.54 (SD, 1.897; range, 4-12). The intraclass correlation coefficients (ICC 1,1) for inter-rater reliability for the composite Core Score and 4 individual tests were 0.68 (Core Score), 0.14 (single-leg squat), 0.40 (supine bridge), 0.69 (side bridge), and 0.46 (prone bridge). The time required for a single examiner to assess a given subject's core stability in all 4 maneuvers averaged 4 minutes (range, 2-6 minutes). Even without specialized equipment, a clinically practical and moderately reliable measure of core stability may be possible. Further research is necessary to optimize this measure for clinical application. Despite the known value of core stability to athletes and patients with low back pain, there is currently no reliable and practical means for rating core stability in a typical office-based practice. This pilot study provides a starting point for future reliability research on clinical core stability assessments.

  1. Recent Developments in No-Core Shell-Model Calculations

    Energy Technology Data Exchange (ETDEWEB)

    Navratil, P; Quaglioni, S; Stetcu, I; Barrett, B R

    2009-03-20

    We present an overview of recent results and developments of the no-core shell model (NCSM), an ab initio approach to the nuclear many-body problem for light nuclei. In this aproach, we start from realistic two-nucleon or two- plus three-nucleon interactions. Many-body calculations are performed using a finite harmonic-oscillator (HO) basis. To facilitate convergence for realistic inter-nucleon interactions that generate strong short-range correlations, we derive effective interactions by unitary transformations that are tailored to the HO basis truncation. For soft realistic interactions this might not be necessary. If that is the case, the NCSM calculations are variational. In either case, the ab initio NCSM preserves translational invariance of the nuclear many-body problem. In this review, we, in particular, highlight results obtained with the chiral two- plus three-nucleon interactions. We discuss efforts to extend the applicability of the NCSM to heavier nuclei and larger model spaces using importance-truncation schemes and/or use of effective interactions with a core. We outline an extension of the ab initio NCSM to the description of nuclear reactions by the resonating group method technique. A future direction of the approach, the ab initio NCSM with continuum, which will provide a complete description of nuclei as open systems with coupling of bound and continuum states is given in the concluding part of the review.

  2. CoDCon Dynamic Modeling.

    Energy Technology Data Exchange (ETDEWEB)

    Cipiti, Benjamin B. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-03-01

    The Co-Decontamination (CoDCon) Demonstration project is designed to test the separation of a mixed U and Pu product from dissolved spent nuclear fuel. The primary purpose of the project is to quantify the accuracy and precision to which a U/Pu mass ratio can be achieved without removing a pure Pu product. The system includes an on-line monitoring system using spectroscopy to monitor the ratios throughout the process. A dynamic model of the CoDCon flowsheet and on-line monitoring system was developed in order to expand the range of scenarios that can be examined for process control and determine overall measurement uncertainty. The model development and initial results are presented here.

  3. MATHEMATICAL MODEL FOR RIVERBOAT DYNAMICS

    Directory of Open Access Journals (Sweden)

    Aleksander Grm

    2017-01-01

    Full Text Available Present work describes a simple dynamical model for riverboat motion based on the square drag law. Air and water interactions with the boat are determined from aerodynamic coefficients. CFX simulations were performed with fully developed turbulent flow to determine boat aerodynamic coefficients for an arbitrary angle of attack for the air and water portions separately. The effect of wave resistance is negligible compared to other forces. Boat movement analysis considers only two-dimensional motion, therefore only six aerodynamics coefficients are required. The proposed model is solved and used to determine the critical environmental parameters (wind and current under which river navigation can be conducted safely. Boat simulator was tested in a single area on the Ljubljanica river and estimated critical wind velocity.

  4. Characterizing and Modeling Citation Dynamics

    Science.gov (United States)

    Eom, Young-Ho; Fortunato, Santo

    2011-01-01

    Citation distributions are crucial for the analysis and modeling of the activity of scientists. We investigated bibliometric data of papers published in journals of the American Physical Society, searching for the type of function which best describes the observed citation distributions. We used the goodness of fit with Kolmogorov-Smirnov statistics for three classes of functions: log-normal, simple power law and shifted power law. The shifted power law turns out to be the most reliable hypothesis for all citation networks we derived, which correspond to different time spans. We find that citation dynamics is characterized by bursts, usually occurring within a few years since publication of a paper, and the burst size spans several orders of magnitude. We also investigated the microscopic mechanisms for the evolution of citation networks, by proposing a linear preferential attachment with time dependent initial attractiveness. The model successfully reproduces the empirical citation distributions and accounts for the presence of citation bursts as well. PMID:21966387

  5. Edge-core interaction revealed with dynamic transport experiment in LHD

    International Nuclear Information System (INIS)

    Tamura, N.; Ida, K.; Inagaki, S.

    2010-11-01

    Large scale coherent structures in electron heat transport of both core and edge plasmas are clearly found in plasma with a nonlocal transport phenomenon (NTP, a core electron temperature rise in response to an edge cooling) on Large Helical Device (LHD). At the onset of the NTP, a first order transition of the electron heat transport, which is characterized by a discontinuity of electron temperature gradient, is found to take place over a wide region (at least 6 cm wide) in the periphery of the plasma. At about the same time, over a wide region (about 10 cm wide) of the plasma core, a second order transition of the electron heat transport, which is characterized by a discontinuity of the time derivative of the electron temperature gradient, appears. The both large scale coherent structures are of a scale larger than a typical micro-turbulent eddy size (a few mm in this case). In order to assess dynamic characteristics of the electron heat transport state in the core region during the NTP, a transit time distribution analysis is applied to the temporal behaviors of the electron temperature gradient. The analysis results more clearly show the existence of the large coherent structures in electron heat transport. Thus the NTP observed in LHD is considered to be invoked by the interaction of those structures. (author)

  6. Dynamical modeling of tidal streams

    International Nuclear Information System (INIS)

    Bovy, Jo

    2014-01-01

    I present a new framework for modeling the dynamics of tidal streams. The framework consists of simple models for the initial action-angle distribution of tidal debris, which can be straightforwardly evolved forward in time. Taking advantage of the essentially one-dimensional nature of tidal streams, the transformation to position-velocity coordinates can be linearized and interpolated near a small number of points along the stream, thus allowing for efficient computations of a stream's properties in observable quantities. I illustrate how to calculate the stream's average location (its 'track') in different coordinate systems, how to quickly estimate the dispersion around its track, and how to draw mock stream data. As a generative model, this framework allows one to compute the full probability distribution function and marginalize over or condition it on certain phase-space dimensions as well as convolve it with observational uncertainties. This will be instrumental in proper data analysis of stream data. In addition to providing a computationally efficient practical tool for modeling the dynamics of tidal streams, the action-angle nature of the framework helps elucidate how the observed width of the stream relates to the velocity dispersion or mass of the progenitor, and how the progenitors of 'orphan' streams could be located. The practical usefulness of the proposed framework crucially depends on the ability to calculate action-angle variables for any orbit in any gravitational potential. A novel method for calculating actions, frequencies, and angles in any static potential using a single orbit integration is described in the Appendix.

  7. Core surface flow modelling from high-resolution secular variation

    DEFF Research Database (Denmark)

    Holme, R.; Olsen, Nils

    2006-01-01

    -flux hypothesis, but the spectrum of the SV implies that a conclusive test of frozen-flux is not possible. We parametrize the effects of diffusion as an expected misfit in the flow prediction due to departure from the frozen-flux hypothesis; at low spherical harmonic degrees, this contribution dominates...... the expected departure of the SV predictions from flow to the observed SV, while at high degrees the SV model uncertainty is dominant. We construct fine-scale core surface flows to model the SV. Flow non-uniqueness is a serious problem because the flows are sufficiently small scale to allow flow around non......-series of magnetic data and better parametrization of the external magnetic field....

  8. A solid reactor core thermal model for nuclear thermal rockets

    International Nuclear Information System (INIS)

    Rider, W.J.; Cappiello, M.W.; Liles, D.R.

    1991-01-01

    A Helium/Hydrogen Cooled Reactor Analysis (HERA) computer code has been developed. HERA has the ability to model arbitrary geometries in three dimensions, which allows the user to easily analyze reactor cores constructed of prismatic graphite elements. The code accounts for heat generation in the fuel, control rods, and other structures; conduction and radiation across gaps; convection to the coolant; and a variety of boundary conditions. The numerical solution scheme has been optimized for vector computers, making long transient analyses economical. Time integration is either explicit or implicit, which allows the use of the model to accurately calculate both short- or long-term transients with an efficient use of computer time. Both the basic spatial and temporal integration schemes have been benchmarked against analytical solutions

  9. BR2 reactor core steady state transient modeling

    International Nuclear Information System (INIS)

    Makarenko, A.; Petrova, T.

    2000-01-01

    A coupled neutronics/hydraulics/heat-conduction model of the BR2 reactor core is under development at SCK-CEN. The neutron transport phenomenon has been implemented as steady state and time dependent nodal diffusion. The non-linear heat conduction equation in-side fuel elements is solved with a time dependent finite element method. To allow coupling between functional modules and to simulate subcooled regimes, a simple single-phase hydraulics has been introduced, while the two-phase hydraulics is under development. Multiple tests, general benchmark cases as well as calculation/experiment comparisons demonstrated a good accuracy of both neutronic and thermal hydraulic models, numerical reliability and full code portability. A refinement methodology has been developed and tested for better neutronic representation in hexagonal geometry. Much effort is still needed to complete the development of an extended cross section library with kinetic data and two-phase flow representation. (author)

  10. Systems Modeling for Crew Core Body Temperature Prediction Postlanding

    Science.gov (United States)

    Cross, Cynthia; Ochoa, Dustin

    2010-01-01

    The Orion Crew Exploration Vehicle, NASA s latest crewed spacecraft project, presents many challenges to its designers including ensuring crew survivability during nominal and off nominal landing conditions. With a nominal water landing planned off the coast of San Clemente, California, off nominal water landings could range from the far North Atlantic Ocean to the middle of the equatorial Pacific Ocean. For all of these conditions, the vehicle must provide sufficient life support resources to ensure that the crew member s core body temperatures are maintained at a safe level prior to crew rescue. This paper will examine the natural environments, environments created inside the cabin and constraints associated with post landing operations that affect the temperature of the crew member. Models of the capsule and the crew members are examined and analysis results are compared to the requirement for safe human exposure. Further, recommendations for updated modeling techniques and operational limits are included.

  11. Development of whole core thermal-hydraulic analysis program ACT. 4. Simplified fuel assembly model and parallelization by MPI

    International Nuclear Information System (INIS)

    Ohshima, Hiroyuki

    2001-10-01

    A whole core thermal-hydraulic analysis program ACT is being developed for the purpose of evaluating detailed in-core thermal hydraulic phenomena of fast reactors including the effect of the flow between wrapper-tube walls (inter-wrapper flow) under various reactor operation conditions. As appropriate boundary conditions in addition to a detailed modeling of the core are essential for accurate simulations of in-core thermal hydraulics, ACT consists of not only fuel assembly and inter-wrapper flow analysis modules but also a heat transport system analysis module that gives response of the plant dynamics to the core model. This report describes incorporation of a simplified model to the fuel assembly analysis module and program parallelization by a message passing method toward large-scale simulations. ACT has a fuel assembly analysis module which can simulate a whole fuel pin bundle in each fuel assembly of the core and, however, it may take much CPU time for a large-scale core simulation. Therefore, a simplified fuel assembly model that is thermal-hydraulically equivalent to the detailed one has been incorporated in order to save the simulation time and resources. This simplified model is applied to several parts of fuel assemblies in a core where the detailed simulation results are not required. With regard to the program parallelization, the calculation load and the data flow of ACT were analyzed and the optimum parallelization has been done including the improvement of the numerical simulation algorithm of ACT. Message Passing Interface (MPI) is applied to data communication between processes and synchronization in parallel calculations. Parallelized ACT was verified through a comparison simulation with the original one. In addition to the above works, input manuals of the core analysis module and the heat transport system analysis module have been prepared. (author)

  12. Shaking table testing of a HTGR reactor core, comparison with the results obtained using a nonlinear mathematical model

    International Nuclear Information System (INIS)

    Berriaud, C.; Cebe, E.; Livolant, M.; Buland, P.

    1975-01-01

    Two series of horizontal tests have been performed at Saclay on the shaking table VESUVE: sinusoidal test and time history response. Sinusoidal tests have shown the strongly nonlinear dynamic behavior of the core. The resonant frequency of the core is dependent on the level of the excitation. These phenomena have been explained by a computer code, which is a lumped mass nonlinear model. El Centro time history displacement at the level of PCRV was reproduced on the shaking table. The analytical model was applied to this excitation and good comparison was obtained for forces and velocities [fr

  13. Coupling-induced cooperative behaviour in dynamic ferromagnetic cores in the presence of a noise floor

    Energy Technology Data Exchange (ETDEWEB)

    Bulsara, Adi R. [Space and Naval Warfare Systems Center San Diego, Code 2363, 53560 Hull Street, San Diego, CA 92152-5001 (United States)]. E-mail: bulsara@spawar.navy.mil; Lindner, John F. [Physics Department, College of Wooster, Wooster, OH 44691 (United States); In, Visarath [Space and Naval Warfare Systems Center San Diego, Code 2363, 53560 Hull Street, San Diego, CA 92152-5001 (United States); Kho, Andy [Space and Naval Warfare Systems Center San Diego, Code 2363, 53560 Hull Street, San Diego, CA 92152-5001 (United States); Baglio, Salvatore [Dipartimento di Ingegneria Elettrica Elettronica e dei Sistemi, Universita degli Studi di Catania, Viale A. Doria 6, 95125 Catania (Italy); Sacco, Vincenzo [Dipartimento di Ingegneria Elettrica Elettronica e dei Sistemi, Universita degli Studi di Catania, Viale A. Doria 6, 95125 Catania (Italy); Ando, Bruno [Dipartimento di Ingegneria Elettrica Elettronica e dei Sistemi, Universita degli Studi di Catania, Viale A. Doria 6, 95125 Catania (Italy); Longhini, Patrick [Nonlinear Dynamics Group, Department of Mathematics, San Diego State University, San Diego, CA 92182 (United States); Palacios, Antonio [Nonlinear Dynamics Group, Department of Mathematics, San Diego State University, San Diego, CA 92182 (United States); Rappel, Wouter-Jan [Physics Department, University of California at San Diego, La Jolla, CA 929093 (United States)

    2006-04-17

    Recently, we have shown the emergence of oscillations in overdamped undriven nonlinear dynamic systems subject to carefully crafted coupling schemes and operating conditions. Here, we summarize experimental results obtained on a system of N=3 coupled ferromagnetic cores, the underpinning of a 'coupled-core fluxgate magnetometer' (CCFM); the oscillatory behaviour is triggered when the coupling constant exceeds a threshold value (bifurcation point), and the oscillation frequency exhibits a characteristic scaling behaviour with the 'separation' of the coupling constant from its threshold value, as well as with an external target DC magnetic flux signal. The oscillations, which can be induced at frequencies ranging from a few Hz to high-kHz, afford a new detection scheme for weak target magnetic signals. We also present the first (numerical) results on the effects of a (Gaussian, exponentially correlated) noise floor on the spectral properties of the system response.

  14. Dynamic studies of multiple configurations of CERN's Antiproton Decelerator Target core under proton beam impact

    CERN Document Server

    AUTHOR|(CDS)2248381

    Antiprotons, like many other exotic particles, are produced by impacting high energy proton beams onto fixed targets. At the European Organization for Nuclear Research (CERN), this is done in the Antiproton Decelerator (AD) Facility. The engineering challenges related to the design of an optimal configuration of the AD-Target system derive from the extremely high energy depositions reached in the very thin target core as a consequence of each proton beam impact. A new target design is foreseen for operation after 2021, triggering multiple R&D activities since 2013 for this purpose. The goal of the present Master Thesis is to complement these activities with analytical and numerical calculations, delving into the phenomena associated to the dynamic response of the target core. In this context, two main studies have been carried out. First, the experimental data observed in targets subjected to low intensity proton pulses was cross-checked with analytical and computational methods for modal analysis, applie...

  15. Effects of interactions on dynamic correlations of hard-core bosons at finite temperatures

    Science.gov (United States)

    Fauseweh, Benedikt; Uhrig, Götz S.

    2017-09-01

    We investigate how dynamic correlations of hard-core bosonic excitation at finite temperature are affected by additional interactions besides the hard-core repulsion which prevents them from occupying the same site. We focus especially on dimerized spin systems, where these additional interactions between the elementary excitations, triplons, lead to the formation of bound states, relevant for the correct description of scattering processes. In order to include these effects quantitatively, we extend the previously developed Brückner approach to include also nearest-neighbor (NN) and next-nearest neighbor (NNN) interactions correctly in a low-temperature expansion. This leads to the extension of the scalar Bethe-Salpeter equation to a matrix-valued equation. As an example, we consider the Heisenberg spin ladder to illustrate the significance of the additional interactions on the spectral functions at finite temperature, which are proportional to inelastic neutron scattering rates.

  16. More Than Filaments and Cores: Statistical Study of Structure Formation and Dynamics in Nearby Molecular Clouds

    Science.gov (United States)

    Chen, How-Huan; Goodman, Alyssa

    2018-01-01

    In the past decade, multiple attempts at understanding the connection between filaments and star forming cores have been made using observations across the entire epectrum. However, the filaments and the cores are usually treated as predefined--and well-defined--entities, instead of structures that often come at different sizes, shapes, with substantially different dynamics, and inter-connected at different scales. In my dissertation, I present an array of studies using different statistical methods, including the dendrogram and the probability distribution function (PDF), of structures at different size scales within nearby molecular clouds. These structures are identified using observations of different density tracers, and where possible, in the multi-dimensional parameter space of key dynamic properties--the LSR velocity, the velocity dispersion, and the column density. The goal is to give an overview of structure formation in nearby star-forming clouds, as well as of the dynamics in these structures. I find that the overall statistical properties of a larger structure is often the summation/superposition of sub-structures within, and that there could be significant variations due to local physical processes. I also find that the star formation process within molecular clouds could in fact take place in a non-monolithic manner, connecting potentially merging and/or transient structures, at different scales.

  17. Dynamical Modeling of Mars' Paleoclimate

    Science.gov (United States)

    Richardson, Mark I.

    2004-01-01

    This report summarizes work undertaken under a one-year grant from the NASA Mars Fundamental Research Program. The goal of the project was to initiate studies of the response of the Martian climate to changes in planetary obliquity and orbital elements. This work was undertaken with a three-dimensional numerical climate model based on the Geophysical Fluid Dynamics Laboratory (GFDL) Skyhi General Circulation Model (GCM). The Mars GCM code was adapted to simulate various obliquity and orbital parameter states. Using a version of the model with a basic water cycle (ice caps, vapor, and clouds), we examined changes in atmospheric water abundances and in the distribution of water ice sheets on the surface. This work resulted in a paper published in the Journal of Geophysical Research - Planets. In addition, the project saw the initial incorporation of a regolith water transport and storage scheme into the model. This scheme allows for interaction between water in the pores of the near subsurface (Mars Fundamental Research Program in late 2003.

  18. Thermal Stability of Co-Pt and Co-Au Core-Shell Structured Nanoparticles: Insights from Molecular Dynamics Simulations.

    Science.gov (United States)

    Wen, Yu-Hua; Huang, Rao; Shao, Gui-Fang; Sun, Shi-Gang

    2017-09-07

    Co-Pt and Co-Au core-shell nanoparticles were heated by molecular dynamics simulations to investigate their thermal stability. Two core structures, that is, hcp Co and fcc Co, have been addressed. The results demonstrate that the hcp-fcc phase transition happens in the hcp-Co-core/fcc-Pt-shell nanoparticle, while it is absent in the hcp-Co-core/fcc-Au-shell one. The stacking faults appear in both Pt and Au shells despite different structures of the Co core. The Co core and Pt shell concurrently melt and present an identical melting point in both Co-Pt core-shell nanoparticles. However, typical two-stage melting occurs in both Co-Au core-shell nanoparticles. Furthermore, the Au shell in the hcp-Co-core/fcc-Au-shell nanoparticle exhibits a lower melting point than that in the fcc-Co-core/fcc-Au-shell one, while the melting points are closely equal for both hcp and fcc Co cores. All of these observations suggest that their thermal stability strongly depends on the structure of the core and the element of the shell.

  19. Edge and coupled core-edge transport modelling in tokamaks

    International Nuclear Information System (INIS)

    Lodestro, L.L.; Casper, T.A.; Cohen, R.H.

    2001-01-01

    Recent advances in the theory and modelling of tokamak edge, scrape-off-layer (SOL) and divertor plasmas are described. The effects of the poloidal ExB drift on inner/outer divertor-plate asymmetries within a 1D analysis are shown to be in good agreement with experimental trends; above a critical v ExB, the model predicts transitions to supersonic SOL flow at the inboard midplane. 2D simulations show the importance of ExB flow in the private-flux region and of ∇ B-drifts. A theory of rough plasma-facing surfaces is given, predicting modifications to the SOL plasma. The parametric dependence of detached-plasma states in slab geometry has been explored; with sufficient pumping, the location of the ionization front can be controlled; otherwise only fronts near the plate or the X-point are stable. Studies with a more accurate Monte-Carlo neutrals model and a detailed non-LTE radiation-transport code indicate various effects are important for quantitative modelling. Detailed simulations of the DIII-D core and edge are presented; impurity and plasma flow are discussed and shown to be well modelled with UEDGE. (author)

  20. Edge and coupled core/edge transport modelling in tokamaks

    International Nuclear Information System (INIS)

    Lodestro, L.L.; Casper, T.A.; Cohen, R.H.

    1999-01-01

    Recent advances in the theory and modelling of tokamak edge, scrape-off-layer (SOL) and divertor plasmas are described. The effects of the poloidal E x B drift on inner/outer divertor-plate asymmetries within a 1D analysis are shown to be in good agreement with experimental trends; above a critical v ExB , the model predicts transitions to supersonic flow at the inboard midplane. 2D simulations show the importance of E x B flow in the private-flux region and of ∇ B-drifts. A theory of rough plasma-facing surfaces is given, predicting modifications to the SOL plasma. The parametric dependence of detached-plasma states in slab geometry has been explored; with sufficient pumping, the location of the ionization front can be controlled; otherwise only fronts near the plate or the X-point are stable. Studies with a more accurate Monte-Carlo neutrals model and a detailed non-LTE radiation-transport code indicate various effects are important for quantitative modelling. Detailed simulations of the DIII-D core and edge are presented; impurity and plasma flow are discussed and shown to be well modelled with UEDGE. (author)

  1. A Collector Geometry Impact on the Coolant Flow Distribution in the Reactor Model Core

    Directory of Open Access Journals (Sweden)

    A. A. Satin

    2015-01-01

    Full Text Available In creating the reactor facility for the transport and energy module of a megawatt class the important task is to optimize a coolant flow path, i.e. to provide a moderate flow resistance and uniform distribution of a coolant. A kind of the chosen collector design to supply coolant significantly contributes to hydraulic losses, in particular, the porosity of the inlet lattice which may lead to uneven coolant rate at the inlet, flow pulsations, and hydraulic losses.For the first time in domestic practice the work examines an impact of the inlet lattices geometry on the averaged and pulsating flow both in a hemispherical collector and at the core inlet to the model paths of a reactor gas-cooled coolant, and gives advices on optimization of collector paths of the coolant flow.The paper presents the results of experiments carried out on the gas dynamic model of the coolant paths containing the inlet lattices of different porosity. It offers a numerical simulation of the flow in the two-parameter model using k-ε turbulence model and ANSYS CFX v14.0 software package and demonstrates a compliance of experimental data with numerical results.The obtained results show that the inlet lattice with a porosity of 0.25 allows relative leveling of the coolant flow directly at the core inlet, which for a uniform cross-sectional energy release reduces temperature of fuel elements. The considered options of design solutions allow you to select the inlet lattice structure, and the core, as well, according to the porosity parameter to solve the problem of reducing hydraulic losses in the coolant paths, reducing pulsating components of the flow in the core and length of the initial portion of flow stabilization. References

  2. A Practical Core Loss Model for Filter Inductors of Power Electronic Converters

    DEFF Research Database (Denmark)

    Matsumori, Hiroaki; Shimizu, Toshihisa; Wang, Xiongfei

    2018-01-01

    This paper proposes a core loss model for filter inductors of power electronic converters. The model allows a computationally efficient analysis on the core loss of the inductor under the square voltage excitation and the premagnetization condition. First, the core loss of the filter inductor und...

  3. Fatigue behaviour of core-spun yarns containing filament by means of cyclic dynamic loading

    Science.gov (United States)

    Esin, S.; Osman, B.

    2017-10-01

    The behaviour of yarns under dynamic loading is important that leads to understand the growth characteristics which is exposed to repetitive loadings during usage of fabric made from these yarns. Fabric growth is undesirable property that originated from low resilience characteristics of fabric. In this study, the effects of the filament fineness and yarn linear density on fatigue behaviour of rigid-core spun yarns were determined. Cotton covered yarns containing different filament fineness of polyester (PET) draw textured yarns (DTY) (100d/36f, 100d/96f, 100d/144f, 100d/192f and 100d/333f) and yarn linear densities (37 tex, 30 tex, 25 tex and 21 tex) were manufactured by using a modified ring spinning system at the same spinning parameters. Repetitive loads were applied for 25 cycles at levels between 0.1 and 3 N. Dynamic modulus and dynamic strain of yarn samples were analyzed statistically. Results showed that filament fineness and yarn linear density have significance effect on dynamic modulus and dynamic strain after cyclic loading.

  4. Fluid and structural dynamics calculations to determine core barrel loads during blowdown (EV 3,000)

    International Nuclear Information System (INIS)

    Krieg, R.; Schlechtendahl, E.G.

    1977-01-01

    To begin with, the main physical phenomena in connection with blowdown loads on the care barrel and the computer models used are briefly described. These models have also been used in the design of the HTR test care barrel. The fluid dynamics part of the calculations was carried out using the WHAMMOD and DAPSY codes; for the structural dynamics part, the STRUDL/Dynal code was employed. (orig./RW) [de

  5. Calculation of fundamental parameters for the dynamical study of TRIGA-3-Salazar reactor (Mixed reactor core)

    International Nuclear Information System (INIS)

    Viais J, J.

    1994-01-01

    Kinetic parameters for dynamic study of two different configurations, 8 and 9, both with standard fuel, 20% enrichment and Flip (Fuel Life Improvement Program with 70% enrichment) fuel, for TRIGA Mark-III reactor from Mexico Nuclear Center, are obtained. A calculation method using both WIMS-D4 and DTF-IV and DAC1 was established, to decide which of those two configurations has the best safety and operational conditions. Validation of this methodology is done by calculate those parameters for a reactor core with new standard fuel. Configuration 9 is recommended to be use. (Author)

  6. Magnetically nonlinear dynamic model of synchronous motor with permanent magnets

    International Nuclear Information System (INIS)

    Hadziselimovic, Miralem; Stumberger, Gorazd; Stumberger, Bojan; Zagradisnik, Ivan

    2007-01-01

    This paper deals with a magnetically nonlinear two-axis dynamic model of a permanent magnet synchronous motor (PMSM). The geometrical and material properties of iron core and permanent magnets, the effects of winding distribution, saturation, cross-saturation and slotting effects are, for the first time, simultaneously accounted for in a single two-axis dynamic model of a three-phase PMSM. They are accounted for by current- and position-dependent characteristics of flux linkages. These characteristics can be determined either experimentally or by the finite element (FE) computations. The results obtained by the proposed dynamic model show a very good agreement with the measured ones and those obtained by the FE computation

  7. CFD approach to modeling of core-concrete interaction

    International Nuclear Information System (INIS)

    Vladimir V Chudanov; Anna E Aksenova; Valerii A Pervichko

    2005-01-01

    Full text of publication follows: A large attention is given to research behavior of concrete structures at high mechanical and thermal loadings, which those suffer at the severe accidents on Nuclear Power Plants with core melting and falling of the molten corium mass into reactor shaft. There are enough programs for analysis of heat and mass transfer processes at interaction of the molten corium with concrete. Most known among them CORCON and WECHSL, which were developed more than twenty years ago, allow considering a quasi-stationary phase decomposition of concrete and the some transition regimes. In opposing to the mentioned codes a new more generalized mathematical model and software are developed for modeling of a wide range of the heat and mass transfer processes under study of the molten core-concrete interaction. The developed mathematical model is based on the Navier-Stokes equations with variable properties with taking into account of a density jump under melting of concrete together with a heat transfer equation. The offered numerical technique is based on modern algorithms with small scheme diffusion, whose discrete approximations are constructed with use of finite-volume methods and the fully staggered grids. The developed software corresponds to modern level of development of computers and takes into account all phenomenology, used by mentioned codes, and allows to simulate the such phenomena and processes as: multidimensional heat transfer in concrete for modeling of transients for an intermediate thermal flux to concrete; direct erosion of concrete at a quasi-stationary regime of interaction with molten fuel masses; heat and mass transfer in corium and convective intermixing in a melt of corium with taking into account of its stratification on two layers of the metal and oxide components and heat transfer by radiation in a cavity of the reactor shaft; change physical properties of corium at concrete decomposition and release in corium of its

  8. The ICON-1.2 Hydrostatic Atmospheric Dynamical Core on Triangular Grids - Part 1: Formulation and Performance of the Baseline Version

    Energy Technology Data Exchange (ETDEWEB)

    Wan, Hui; Giorgetta, Marco; Zangl, Gunther; Restelli, Marco; Majewski, Detlev; Bonaventura, Luca; Frohlich, Kristina; Reinert, Daniel; Ripodas, Pilar; Kornblueh, Luis; Forstner, J.

    2013-06-05

    A hydrostatic atmospheric dynamical core is developed for the purpose of global climate modelling. The model applies a finite difference method to discretize the primitive equations on spherical icosahedral grids, using C-type staggering with triangles as control volume for mass. This paper documents the numerical method employed in the baseline version of this model, discusses its properties, and presents results from idealized test cases. The evaluation shows that the new dynamical core is able to correctly represent the evolution of baroclinic eddies in the atmosphere and their role in meridional heat and momentum transport. The simulations compare well with the reference solutions, and converge as the horizontal resolution increases. First results from two aqua planet experiments are also presented, in which the equatorial wave spectra derived from tropical precipitation agree well with those simulated by a spectral transform model. The new dynamical core thus provides a good basis for further model development. Certain aspects of the model formulation that need further investigation and improvement are also pointed out.

  9. CFD modeling of the IRIS pressurizer dynamic

    Energy Technology Data Exchange (ETDEWEB)

    Sanz, Ronny R.; Montesinos, Maria E.; Garcia, Carlos; Bueno, Elizabeth D.; Mazaira, Leorlen R., E-mail: rsanz@instec.cu, E-mail: mmontesi@instec.cu, E-mail: cgh@instec.cu, E-mail: leored1984@gmail.com [Instituto Superior de Tecnologias y Ciencias Aplicadas (InSTEC), La Habana (Cuba); Bezerra, Jair L.; Lira, Carlos A.B. Oliveira, E-mail: jair.lima@ufpe.br, E-mail: cabol@ufpe.br [Universida Federal de Pernambuco (UFPE), Recife, PE (Brazil). Dept. de Energia Nuclear

    2015-07-01

    Integral layout of nuclear reactor IRIS makes possible the elimination of the spray system, which is usually used to mitigate in-surge transient and also help to Boron homogenization. The study of transients with deficiencies in the Boron homogenization in this technology is very important, because they can cause disturbances in the reactor power and insert a strong reactivity in the core. The detailed knowledge of the behavior of multiphase multicomponent flows is challenging due to the complex phenomena and interactions at the interface. In this context, the CFD modeling is employed in the design of equipment in the nuclear industry as it allows predicting accidents or predicting their performance in dissimilar applications. The aim of the present research is to model the IRIS pressurizer's dynamic using the commercial CFD code CFX. A symmetric tri dimensional model equivalent to 1/8 of the total geometry was adopted to reduce mesh size and minimize processing time. The model considers the coexistence of four phases and also takes into account the heat losses. The relationships for interfacial mass, energy, and momentum transport are programmed and incorporated into CFX. Moreover, two subdomains and several additional variables are defined to monitoring the boron dilution sequences and condensation-evaporation rates in different control volumes. For transient states a non - equilibrium stratification in the pressurizer is considered. This paper discusses the model developed and the behavior of the system for representative transients sequences. The results of analyzed transients of IRIS can be applied to the design of pressurizer internal structures and components. (author)

  10. Microscopic core-quasiparticle coupling model for spectroscopy of odd-mass nuclei

    Science.gov (United States)

    Quan, S.; Liu, W. P.; Li, Z. P.; Smith, M. S.

    2017-11-01

    Background: Predictions of the spectroscopic properties of low-lying states are critical for nuclear structure studies but are problematic for nuclei with an odd nucleon due to the interplay of the unpaired single particle with nuclear collective degrees of freedom. Purpose: To predict the spectroscopic properties of odd-mass medium-heavy and heavy nuclei with a model that treats single-particle and collective degrees of freedom within the same microscopic framework. Method: A microscopic core-quasiparticle coupling (CQC) model based on the covariant density functional theory is developed that contains the collective excitations of even-mass cores and spherical single-particle states of the odd nucleon as calculated from a quadrupole collective Hamiltonian combined with a constrained triaxial relativistic Hartree-Bogoliubov model. Results: Predictions of the new model for excitation energies, kinematic and dynamic moments of inertia, and transition rates are shown to be in good agreement with results of low-lying spectroscopy measurements of the axially deformed odd-proton nucleus 159Tb and the odd-neutron nucleus 157Gd. Conclusions: A microscopic CQC model based on covariant density functional theory is developed for odd-mass nuclei and shown to give predictions that agree with measurements of two medium-heavy nuclei. Future studies with additional nuclei are planned.

  11. Flexible core masking technique for beam halo measurements with high dynamic range

    International Nuclear Information System (INIS)

    Egberts, J; Welsch, C P

    2010-01-01

    A thorough understanding of halo formation and its possible control is highly desirable for essentially all particle accelerators. Particles outside the beam core are not only lost for further experiments, they are also likely to hit the beam pipe, and activate this, as well as accelerator and experimental components in close proximity, which makes work on the accelerator costly and time consuming. Well established techniques for transverse beam profile measurements of electron or high energy hadron beams are the observation of synchrotron radiation, optical transition radiation or the like. A particular challenge, however, is the detection of particles in the tail regions of the beam distribution in close proximity of the very intense beam core. Results from laboratory measurements on two different devices are presented that might form the technical base of a future beam halo monitor: the novel SpectraCam XDR camera system which has an intrinsically high dynamic range due to its unique pixel design, and a flexible masking technique based on a DMD micro mirror array which allows for a fast mask generation to blank out the central core.

  12. Geomagnetic secular variation as a window on the dynamics of Earth's core (Invited)

    Science.gov (United States)

    Jackson, A.

    2010-12-01

    One of the forefront questions of planetary geophysics is to understand how magnetic fields can be spontaneously created by so-called dynamo action. Giant strides have been taken in recent years in understanding the theory of convectively driven dynamos; yet equally important is the marriage between theory and observation. I will argue that we are on the cusp of a new level of understanding brought about by new methods for incorporating observations and theory. In 1950 Sir Edward Bullard wrote an influential paper entitled "The westward drift of the Earth's magnetic field", with coauthors C Freedman, H Gellman and J Nixon. A comprehensive study of observations was tied together with the then nascent dynamo theory to infer properties of the dynamics of the core. Sixty years on, we have a much enriched understanding of the theory of convectively driven dynamos, and an even more comprehensive database of observations stretching back several centuries. Equally important are the new satellite observations that provide global coverage with unprecedented accuracy over the last decade. In this talk I will try to show how the interplay between theory and observation can lead to understanding of force balances in the core, and interactions between the core and the overlying mantle.

  13. Coupling of the 3D neutron kinetic core model DYN3D with the CFD software ANSYS-CFX

    International Nuclear Information System (INIS)

    Grahn, Alexander; Kliem, Sören; Rohde, Ulrich

    2015-01-01

    Highlights: • Improved thermal hydraulic description of nuclear reactor cores. • Possibility of three-dimensional flow phenomena in the core, such as cross flow, flow reversal, flow around obstacles. • Simulation at higher spatial resolution as compared to system codes. - Abstract: This article presents the implementation of a coupling between the 3D neutron kinetic core model DYN3D and the commercial, general purpose computational fluid dynamics (CFD) software ANSYS-CFX. In the coupling approach, parts of the thermal hydraulic calculation are transferred to CFX for its better ability to simulate the three-dimensional coolant redistribution in the reactor core region. The calculation of the heat transfer from the fuel into the coolant remains with DYN3D, which incorporates well tested and validated heat transfer models for rod-type fuel elements. On the CFX side, the core region is modeled based on the porous body approach. The implementation of the code coupling is verified by comparing test case results with reference solutions of the DYN3D standalone version. Test cases cover mini and full core geometries, control rod movement and partial overcooling transients

  14. Characterizing and modeling citation dynamics.

    Directory of Open Access Journals (Sweden)

    Young-Ho Eom

    Full Text Available Citation distributions are crucial for the analysis and modeling of the activity of scientists. We investigated bibliometric data of papers published in journals of the American Physical Society, searching for the type of function which best describes the observed citation distributions. We used the goodness of fit with Kolmogorov-Smirnov statistics for three classes of functions: log-normal, simple power law and shifted power law. The shifted power law turns out to be the most reliable hypothesis for all citation networks we derived, which correspond to different time spans. We find that citation dynamics is characterized by bursts, usually occurring within a few years since publication of a paper, and the burst size spans several orders of magnitude. We also investigated the microscopic mechanisms for the evolution of citation networks, by proposing a linear preferential attachment with time dependent initial attractiveness. The model successfully reproduces the empirical citation distributions and accounts for the presence of citation bursts as well.

  15. Spatial Differentiation In Industrial Dynamics: A Core-Periphery Analysis Based On The Pavitt-Miozzo-Soete Taxonomy

    NARCIS (Netherlands)

    Capasso, M.; Cefis, E.; Frenken, K.

    2010-01-01

    We compare the industrial dynamics in the core, semi-periphery and periphery in The Netherlands in terms of firm entry-exit, size, growth and sectoral location patterns. The contribution of our work is to provide the first comprehensive study on spatial differentiation in industrial dynamics for all

  16. Supply based on demand dynamical model

    Science.gov (United States)

    Levi, Asaf; Sabuco, Juan; Sanjuán, Miguel A. F.

    2018-04-01

    We propose and numerically analyze a simple dynamical model that describes the firm behaviors under uncertainty of demand. Iterating this simple model and varying some parameter values, we observe a wide variety of market dynamics such as equilibria, periodic, and chaotic behaviors. Interestingly, the model is also able to reproduce market collapses.

  17. The CERN antiproton target: hydrocode analysis of its core material dynamic response under proton beam impact

    CERN Document Server

    Martin, Claudio Torregrosa; Calviani, Marco; Muñoz-Cobo, José-Luis

    2016-01-01

    Antiprotons are produced at CERN by colliding a 26 GeV/c proton beam with a fixed target made of a 3 mm diameter, 55 mm length iridium core. The inherent characteristics of antiproton production involve extremely high energy depositions inside the target when impacted by each primary proton beam, making it one of the most dynamically demanding among high energy solid targets in the world, with a rise temperature above 2000 {\\deg}C after each pulse impact and successive dynamic pressure waves of the order of GPa's. An optimized redesign of the current target is foreseen for the next 20 years of operation. As a first step in the design procedure, this numerical study delves into the fundamental phenomena present in the target material core under proton pulse impact and subsequent pressure wave propagation by the use of hydrocodes. Three major phenomena have been identified, (i) the dominance of a high frequency radial wave which produces destructive compressive-to-tensile pressure response (ii) The existence of...

  18. CERN antiproton target: Hydrocode analysis of its core material dynamic response under proton beam impact

    Directory of Open Access Journals (Sweden)

    Claudio Torregrosa Martin

    2016-07-01

    Full Text Available Antiprotons are produced at CERN by colliding a 26  GeV/c proton beam with a fixed target made of a 3 mm diameter, 55 mm length iridium core. The inherent characteristics of antiproton production involve extremely high energy depositions inside the target when impacted by each primary proton beam, making it one of the most dynamically demanding among high energy solid targets in the world, with a rise temperature above 2000 °C after each pulse impact and successive dynamic pressure waves of the order of GPa’s. An optimized redesign of the current target is foreseen for the next 20 years of operation. As a first step in the design procedure, this numerical study delves into the fundamental phenomena present in the target material core under proton pulse impact and subsequent pressure wave propagation by the use of hydrocodes. Three major phenomena have been identified, (i the dominance of a high frequency radial wave which produces destructive compressive-to-tensile pressure response (ii The existence of end-of-pulse tensile waves and its relevance on the overall response (iii A reduction of 44% in tensile pressure could be obtained by the use of a high density tantalum cladding.

  19. Alanine scan of core positions in ubiquitin reveals links between dynamics, stability, and function.

    Science.gov (United States)

    Lee, Shirley Y; Pullen, Lester; Virgil, Daniel J; Castañeda, Carlos A; Abeykoon, Dulith; Bolon, Daniel N A; Fushman, David

    2014-04-03

    Mutations at solvent-inaccessible core positions in proteins can impact function through many biophysical mechanisms including alterations to thermodynamic stability and protein dynamics. As these properties of proteins are difficult to investigate, the impacts of core mutations on protein function are poorly understood for most systems. Here, we determined the effects of alanine mutations at all 15 core positions in ubiquitin on function in yeast. The majority (13 of 15) of alanine substitutions supported yeast growth as the sole ubiquitin. Both the two null mutants (I30A and L43A) were less stable to temperature-induced unfolding in vitro than wild type (WT) but were well folded at physiological temperatures. Heteronuclear NMR studies indicated that the L43A mutation reduces temperature stability while retaining a ground-state structure similar to WT. This structure enables L43A to bind to common ubiquitin receptors in vitro. Many of the core alanine ubiquitin mutants, including one of the null variants (I30A), exhibited an increased accumulation of high-molecular-weight species, suggesting that these mutants caused a defect in the processing of ubiquitin-substrate conjugates. In contrast, L43A exhibited a unique accumulation pattern with reduced levels of high-molecular-weight species and undetectable levels of free ubiquitin. When conjugation to other proteins was blocked, L43A ubiquitin accumulated as free ubiquitin in yeast. Based on these findings, we speculate that ubiquitin's stability to unfolding may be required for efficient recycling during proteasome-mediated substrate degradation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Modeling Snow Regime in Cores of Small Planetary Bodies

    Science.gov (United States)

    Boukaré, C. E.; Ricard, Y. R.; Parmentier, E.; Parman, S. W.

    2017-12-01

    Observations of present day magnetic field on small planetary bodies such as Ganymede or Mercury challenge our understanding of planetary dynamo. Several mechanisms have been proposed to explain the origin of magnetic fields. Among the proposed scenarios, one family of models relies on snow regime. Snow regime is supported by experimental studies showing that melting curves can first intersect adiabats in regions where the solidifying phase is not gravitationaly stable. First solids should thus remelt during their ascent or descent. The effect of the snow zone on magnetic field generation remains an open question. Could magnetic field be generated in the snow zone? If not, what is the depth extent of the snow zone? How remelting in the snow zone drive compositional convection in the liquid layer? Several authors have tackled this question with 1D-spherical models. Zhang and Schubert, 2012 model sinking of the dense phase as internally heated convection. However, to our knowledge, there is no study on the convection structure associated with sedimentation and phase change at planetary scale. We extend the numerical model developped in [Boukare et al., 2017] to model snow dynamics in 2D Cartesian geometry. We build a general approach for modeling double diffusive convection coupled with solid-liquid phase change and phase separation. We identify several aspects that may govern the convection structure of the solidifying system: viscosity contrast between the snow zone and the liquid layer, crystal size, rate of melting/solidification and partitioning of light components during phase change.

  1. Neutron dynamics of fast-spectrum dedicated cores for waste transmutation; Etude et amelioration du comportement cinetique de coeurs rapides a la transmutation de dechets a vie longue

    Energy Technology Data Exchange (ETDEWEB)

    Massara, S

    2002-04-01

    Among different scenarios achieving minor actinide transmutation, the possibility of double strata scenarios with critical, fast spectrum, dedicated cores must be checked and quantified. In these cores, the waste fraction has to be at the highest level compatible with safety requirements during normal operation and transient conditions. As reactivity coefficients are poor in such critical cores (low delayed neutron fraction and Doppler feed-back, high coolant void coefficient), their dynamic behaviour during transient conditions must be carefully analysed. Three nitride-fuel configurations have been analysed: two liquid metal-cooled (sodium and lead) and a particle-fuel helium-cooled one. A dynamic code, MAT4 DYN, has been developed during the PhD thesis, allowing the study of loss of flow, reactivity insertion and loss of coolant accidents, and taking into account two fuel geometries (cylindrical and spherical) and two thermal-hydraulics models for the coolant (incompressible for liquid metals and compressible for helium). Dynamics calculations have shown that if the fuel nature is appropriately chosen (letting a sufficient margin during transients), this can counterbalance the bad state of reactivity coefficients for liquid metal-cooled cores, thus proving the interest of this kind of concept. On the other side, the gas-cooled core dynamics is very badly affected by the high value of the helium void coefficient (which is a consequence of the choice of a hard spectrum), this effect being amplified by the very low thermal inertia of particle-fuel design. So, a new kind of concept should be considered for a helium-cooled fast-spectrum dedicated core. (authors)

  2. Modelling the dynamics of youth subcultures

    OpenAIRE

    Holme, Petter; Gronlund, Andreas

    2005-01-01

    What are the dynamics behind youth subcultures such as punk, hippie, or hip-hop cultures? How does the global dynamics of these subcultures relate to the individual's search for a personal identity? We propose a simple dynamical model to address these questions and find that only a few assumptions of the individual's behaviour are necessary to regenerate known features of youth culture.

  3. Relating structure and dynamics in organisation models

    NARCIS (Netherlands)

    Jonker, C.M.; Treur, J.

    2003-01-01

    To understand how an organisational structure relates to dynamics is an interesting fundamental challenge in the area of social modelling. Specifications of organisational structure usually have a diagrammatic form that abstracts from more detailed dynamics. Dynamic properties of agent systems, on

  4. 3D Core Model for simulation of nuclear power plants: Simulation requirements, model features, and validation

    International Nuclear Information System (INIS)

    Zerbino, H.

    1999-01-01

    In 1994-1996, Thomson Training and Simulation (TT and S) earned out the D50 Project, which involved the design and construction of optimized replica simulators for one Dutch and three German Nuclear Power Plants. It was recognized early on that the faithful reproduction of the Siemens reactor control and protection systems would impose extremely stringent demands on the simulation models, particularly the Core physics and the RCS thermohydraulics. The quality of the models, and their thorough validation, were thus essential. The present paper describes the main features of the fully 3D Core model implemented by TT and S, and its extensive validation campaign, which was defined in extremely positive collaboration with the Customer and the Core Data suppliers. (author)

  5. Fuel requirements for experimental devices in MTR reactors. A perturbation model for reactor core analysis

    International Nuclear Information System (INIS)

    Beeckmans de West-Meerbeeck, A.

    1991-01-01

    Irradiation in neutron absorbing devices, requiring high fast neutron fluxes in the core or high thermal fluxes in the reflector and flux traps, lead to higher density fuel and larger core dimensions. A perturbation model of the reactor core helps to estimate the fuel requirements. (orig.)

  6. Addressing the challenges of standalone multi-core simulations in molecular dynamics

    Science.gov (United States)

    Ocaya, R. O.; Terblans, J. J.

    2017-07-01

    Computational modelling in material science involves mathematical abstractions of force fields between particles with the aim to postulate, develop and understand materials by simulation. The aggregated pairwise interactions of the material's particles lead to a deduction of its macroscopic behaviours. For practically meaningful macroscopic scales, a large amount of data are generated, leading to vast execution times. Simulation times of hours, days or weeks for moderately sized problems are not uncommon. The reduction of simulation times, improved result accuracy and the associated software and hardware engineering challenges are the main motivations for many of the ongoing researches in the computational sciences. This contribution is concerned mainly with simulations that can be done on a "standalone" computer based on Message Passing Interfaces (MPI), parallel code running on hardware platforms with wide specifications, such as single/multi- processor, multi-core machines with minimal reconfiguration for upward scaling of computational power. The widely available, documented and standardized MPI library provides this functionality through the MPI_Comm_size (), MPI_Comm_rank () and MPI_Reduce () functions. A survey of the literature shows that relatively little is written with respect to the efficient extraction of the inherent computational power in a cluster. In this work, we discuss the main avenues available to tap into this extra power without compromising computational accuracy. We also present methods to overcome the high inertia encountered in single-node-based computational molecular dynamics. We begin by surveying the current state of the art and discuss what it takes to achieve parallelism, efficiency and enhanced computational accuracy through program threads and message passing interfaces. Several code illustrations are given. The pros and cons of writing raw code as opposed to using heuristic, third-party code are also discussed. The growing trend

  7. A Dynamic Pore-Scale Model of Imbibition

    DEFF Research Database (Denmark)

    Mogensen, Kristian; Stenby, Erling Halfdan

    1998-01-01

    We present a dynamic pore-scale network model of imbibition, capable of calculating residual oil saturation for any given capillary number, viscosity ratio, contact angle and aspect ratio. Our goal is not to predict the outcome of core floods, but rather to perform a sensitivity analysis of the a......We present a dynamic pore-scale network model of imbibition, capable of calculating residual oil saturation for any given capillary number, viscosity ratio, contact angle and aspect ratio. Our goal is not to predict the outcome of core floods, but rather to perform a sensitivity analysis...... of the above-mentioned parameters, except the viscosity ratio. We find that contact angle, aspect ratio and capillary number all have a significant influence on the competition between piston-like advance, leading to high recovery, and snap-off, causing oil entrapment. Due to enormous CPU-time requirements we...... been entirely inhibited, in agreement with results obtained by Blunt using a quasi-static model. For higher aspect ratios, the effect of rate and contact angle is more pronounced. Many core floods are conducted at capillary numbers in the range 10 to10.6. We believe that the excellent recoveries...

  8. On-line core monitoring system based on buckling corrected modified one group model

    International Nuclear Information System (INIS)

    Freire, Fernando S.

    2011-01-01

    Nuclear power reactors require core monitoring during plant operation. To provide safe, clean and reliable core continuously evaluate core conditions. Currently, the reactor core monitoring process is carried out by nuclear code systems that together with data from plant instrumentation, such as, thermocouples, ex-core detectors and fixed or moveable In-core detectors, can easily predict and monitor a variety of plant conditions. Typically, the standard nodal methods can be found on the heart of such nuclear monitoring code systems. However, standard nodal methods require large computer running times when compared with standards course-mesh finite difference schemes. Unfortunately, classic finite-difference models require a fine mesh reactor core representation. To override this unlikely model characteristic we can usually use the classic modified one group model to take some account for the main core neutronic behavior. In this model a course-mesh core representation can be easily evaluated with a crude treatment of thermal neutrons leakage. In this work, an improvement made on classic modified one group model based on a buckling thermal correction was used to obtain a fast, accurate and reliable core monitoring system methodology for future applications, providing a powerful tool for core monitoring process. (author)

  9. Simulation of nonlinear dynamics of a PWR core by an improved lumped formulation for fuel heat transfer

    International Nuclear Information System (INIS)

    Su, Jian; Cotta, Renato M.

    2000-01-01

    In this work, thermohydraulic behaviour of PWR, during reactivity insertion and partial loss-of-flow, is simulated by using a simplified mathematical model of reactor core and primary coolant. An improved lumped parameter formulation for transient heat conduction in fuel rod is used for core heat transfer modelling. Transient temperature response of fuel, cladding and coolant is analysed. (author)

  10. Dynamic Model Development for Interplanetary Navigation

    OpenAIRE

    Eun-Seo Park; Young-Joo Song; Sung-Moon Yoo; Sang-Young Park; Kyu-Hong Choi; Jae-Cheol Yoon; Jo Ryeong Yim; Joon-Min Choi; Byung-Kyo Kim

    2005-01-01

    In this paper, the dynamic model development for interplanetary navigation has been discussed. The Cowell method for special perturbation theories was employed to develop an interplanetary trajectory propagator including the perturbations due to geopotential, the Earth's dynamic polar motion, the gravity of the Sun, the Moon and the other planets in the solar system, the relativistic effect of the Sun, solar radiation pressure, and atmospheric drag. The equations of motion in dynamic model we...

  11. Pore - to - Core Modeling of Soil Organic Matter Decomposition in 3D Soil Structures

    Science.gov (United States)

    Falconer, R. E.; Battaia, G.; Baveye, P.; Otten, W.

    2013-12-01

    There is a growing body of literature supporting the need for microbial contributions to be considered explicitly in carbon-climate models. There is also overwhelming evidence that physical protection within aggregates can play a significant role in organic matter dynamics. Yet current models of soil organic matter dynamics divide soil organic matter into conceptual pools with distinct turnover times, assuming that a combination of biochemical and physical properties control decay without explicit description. Albeit robust in their application, such models are not capable to account for changes in soil structure or microbial populations, or accurately predict the effect of wetness or priming. A spatially explicit model is presented that accounts for microbial dynamics and physical processes, permitting consideration of the heterogeneity of the physical and chemical microenvironments at scales relevant for microbes. Exemplified for fungi, we investigate how micro-scale processes manifest at the core scale with particular emphasis on evolution of CO2 and biomass distribution. The microbial model is based upon previous (Falconer et al, 2012) and includes the following processes: uptake, translocation, recycling, enzyme production, growth, spread and respiration. The model is parameterised through a combination of literature data and parameter estimation (Cazelles et al., 2012).The Carbon model comprises two pools, particulate organic matter which through enzymatic activity is converted into dissolved organic matter. The microbial and carbon dynamics occur within a 3D soil structure obtained by X-ray CT. We show that CO2 is affected not only by the amount of Carbon in the soil but also by microbial dynamics, soil structure and the spatial distribution of OM. The same amount of OM can result in substantially different respiration rates, with surprisingly more CO2 with increased clustering of OM. We can explain this from the colony dynamics, production of enzymes and

  12. CORTAP: a coupled neutron kinetics-heat transfer digital computer program for the dynamic simulation of the high temperature gas cooled reactor core

    International Nuclear Information System (INIS)

    Cleveland, J.C.

    1977-01-01

    CORTAP (Core Transient Analysis Program) was developed to predict the dynamic behavior of the High Temperature Gas Cooled Reactor (HTGR) core under normal operational transients and postulated accident conditions. CORTAP is used both as a stand-alone component simulation and as part of the HTGR nuclear steam supply (NSS) system simulation code ORTAP. The core thermal neutronic response is determined by solving the heat transfer equations for the fuel, moderator and coolant in an average powered region of the reactor core. The space independent neutron kinetics equations are coupled to the heat transfer equations through a rapidly converging iterative technique. The code has the capability to determine conservative fuel, moderator, and coolant temperatures in the ''hot'' fuel region. For transients involving a reactor trip, the core heat generation rate is determined from an expression for decay heat following a scram. Nonlinear effects introduced by temperature dependent fuel, moderator, and coolant properties are included in the model. CORTAP predictions will be compared with dynamic test results obtained from the Fort St. Vrain reactor owned by Public Service of Colorado, and, based on these comparisons, appropriate improvements will be made in CORTAP

  13. Dynamic connectivity modulates local activity in the core regions of the default-mode network.

    Science.gov (United States)

    Tang, Wei; Liu, Hesheng; Douw, Linda; Kramer, Mark A; Eden, Uri T; Hämäläinen, Matti S; Stufflebeam, Steven M

    2017-09-05

    Segregation and integration are distinctive features of large-scale brain activity. Although neuroimaging studies have been unraveling their neural correlates, how integration takes place over segregated modules remains elusive. Central to this problem is the mechanism by which a brain region adjusts its activity according to the influence it receives from other regions. In this study, we explore how dynamic connectivity between two regions affects the neural activity within a participating region. Combining functional magnetic resonance imaging (fMRI) and magnetoencephalography (MEG) in the same group of subjects, we analyzed resting-state data from the core of the default-mode network. We observed directed influence from the posterior cingulate cortex (PCC) to the anterior cingulate cortex (ACC) in the 10-Hz range. This time-varying influence was associated with the power alteration in the ACC: strong influence corresponded with a decrease of power around 13-16 Hz and an increase of power in the lower (1-7 Hz) and higher (30-55 Hz) ends of the spectrum. We also found that the amplitude of the 30- to 55-Hz activity was coupled to the phase of the 3- to 4-Hz activity in the ACC. These results characterized the local spectral changes associated with network interactions. The specific spectral information both highlights the functional roles of PCC-ACC connectivity in the resting state and provides insights into the dynamic relationship between local activity and coupling dynamics of a network.

  14. System dynamics modelling of situation awareness

    CSIR Research Space (South Africa)

    Oosthuizen, R

    2015-11-01

    Full Text Available . The feedback loops and delays in the Command and Control system also contribute to the complex dynamic behavior. This paper will build on existing situation awareness models to develop a System Dynamics model to support a qualitative investigation through...

  15. On-Line Core Thermal-Hydraulic Model Improvement

    Energy Technology Data Exchange (ETDEWEB)

    In, Wang Kee; Chun, Tae Hyun; Oh, Dong Seok; Shin, Chang Hwan; Hwang, Dae Hyun; Seo, Kyung Won

    2007-02-15

    The objective of this project is to implement a fast-running 4-channel based code CETOP-D in an advanced reactor core protection calculator system(RCOPS). The part required for the on-line calculation of DNBR were extracted from the source of the CETOP-D code based on analysis of the CETOP-D code. The CETOP-D code was revised to maintain the input and output variables which are the same as in CPC DNBR module. Since the DNBR module performs a complex calculation, it is divided into sub-modules per major calculation step. The functional design requirements for the DNBR module is documented and the values of the database(DB) constants were decided. This project also developed a Fortran module(BEST) of the RCOPS Fortran Simulator and a computer code RCOPS-SDNBR to independently calculate DNBR. A test was also conducted to verify the functional design and DB of thermal-hydraulic model which is necessary to calculate the DNBR on-line in RCOPS. The DNBR margin is expected to increase by 2%-3% once the CETOP-D code is used to calculate the RCOPS DNBR. It should be noted that the final DNBR margin improvement could be determined in the future based on overall uncertainty analysis of the RCOPS.

  16. Thermal fluid dynamic behavior of coolant helium gas in a typical reactor VHTGR channel of prismatic core

    International Nuclear Information System (INIS)

    Belo, Allan Cavalcante

    2016-01-01

    The current studies about the thermal fluid dynamic behavior of the VHTGR core reactors of 4 th generation are commonly developed in 3-D analysis in CFD (computational fluid dynamics), which often requires considerable time and complex mathematical calculations for carrying out these analysis. The purpose of this project is to achieve thermal fluid dynamic analysis of flow of gas helium refrigerant in a typical channel of VHTGR prismatic core reactor evaluating magnitudes of interest such as temperature, pressure and fluid velocity and temperature distribution in the wall of the coolant channel from the development of a computer code in MATLAB considering the flow on one-dimensional channel, thereby significantly reducing the processing time of calculations. The model uses three different references to the physical properties of helium: expressions given by the KTA (German committee of nuclear safety standards), the computational tool REFPROP and a set of constant values for the entire channel. With the use of these three references it is possible to simulate the flow treating the gas both compressible and incompressible. The results showed very close values for the interest quantities and revealed that there are no significant differences in the use of different references used in the project. Another important conclusion to be observed is the independence of helium in the gas compressibility effects on thermal fluid dynamic behavior. The study also indicated that the gas undergoes no severe effects due to high temperature variations in the channel, since this goes in the channel at 914 K and exits at approximately 1263 K, which shows the excellent use of helium as a refrigerant fluid in reactor channels VHTGR. The comparison of results obtained in this work with others in the literature served to confirm the effectiveness of the one-dimensional consideration of method of gas flow in the coolant channel to replace the models made in 3-D for the pressure range and

  17. Melting of iron at the Earth's core conditions by molecular dynamics simulation

    Directory of Open Access Journals (Sweden)

    Y. N. Wu

    2011-09-01

    Full Text Available By large scale molecular dynamics simulations of solid-liquid coexistence, we have investigated the melting of iron under pressures from 0 to 364 GPa. The temperatures of liquid and solid regions, and the pressure of the system are calculated to estimate the melting point of iron. We obtain the melting temperature of iron is about 6700±200K under the inner-outer core boundary, which is in good agreement with the result of Alfè et al. By the pair analysis technique, the microstructure of liquid iron under higher pressures is obviously different from that of lower pressures and ambient condition, indicating that the pressure-induced liquid-liquid phase transition may take place in iron melts.

  18. Dynamics of fault-fluid-hydrate system around a shale-cored anticline in deepwater Nigeria

    Science.gov (United States)

    Sultan, N.; Riboulot, V.; Ker, S.; Marsset, B.; GéLi, L.; Tary, J. B.; Klingelhoefer, F.; Voisset, M.; Lanfumey, V.; Colliat, J. L.; Adamy, J.; Grimaud, S.

    2011-12-01

    Gas hydrates were recovered by coring at the eastern border of a shale-cored anticline in the eastern Niger Delta. To characterize the link between faults and fluid release and to identify the role of fluid flow in the gas hydrate dynamics, three piezometers were deployed for periods ranging from 387 to 435 days. Two of them were deployed along a major fault linked to a shallow hydrocarbon reservoir while the third monitored the fluid pressure in a pockmark aligned above the same major fault. In addition, 10 ocean-bottom seismometers (OBS) were deployed for around 60 days. The piezometers simultaneously registered a prolonged fluid flow event lasting 90 days. During this time, OBS measurements record several episodic fluid release events. By combining and analyzing existing and newly acquired data, we show that the fluid-fault system operates according to the following three stages: (1) upward pore fluid migration through existing conduits and free gas circulation within several shallow sandy layers intersecting the major fault, (2) gas accumulation and pore pressure increases within sandy-silty layers, and (3) hydrofracturing and fluid pressure dissipation through sporadic degassing events, causing pore fluid circulation through shallow sandy layers and drawing overlying seawater into the sediment. This paper clearly demonstrates how an integrated approach based on seafloor observations, in situ measurements, and monitoring is essential for understanding fault-fluid-hydrate systems.

  19. Dynamic role of the liquid core of Mercury in its motion on Cassini's laws and in resonant librations

    Science.gov (United States)

    Barkin, Yu.; Ferrandiz, J. M.

    2007-08-01

    Introduction New approaches to the study of Mercury dynamics and the construction of analytical theory of its resonant rotation are suggested. Within these approaches Mercury is considered as a system of two non-spherical interacting bodies: a core and a mantle. The mantle of Mercury is considered as non-spherical, rigid (or elastic) layer. Inner shell is a liquid core, which occupies a large ellipsoidal cavity of Mercury. This Mercury system moves in the gravitational field of the Sun in resonant traslatoryrotary regime 3n = 2Omega (n is the mean orbital motion and Omega is the rotational angular velocity). In considered model Mercury moves on elliptical precessing orbit with inclination to Laplace plane i = 7`0029 and with eccentricity e = 0.2056. The orbit plane precesses with respect to normal nL to Laplace plane with the small angular velocity nmotion. We have n/n = -0.8294·10-6. For the study of Mercury rotation we have been used specially designed author's canonical equations of motion in Andoyer and Poincare variables.

  20. Launch Vehicle Dynamics Demonstrator Model

    Science.gov (United States)

    1963-01-01

    The effect of vibration on launch vehicle dynamics was studied. Conditions included three modes of instability. The film includes close up views of the simulator fuel tank with and without stability control.

  1. COLLAPSING HOT MOLECULAR CORES: A MODEL FOR THE DUST SPECTRUM AND AMMONIA LINE EMISSION OF THE G31.41+0.31 HOT CORE

    International Nuclear Information System (INIS)

    Osorio, Mayra; Anglada, Guillem; Lizano, Susana; D'Alessio, Paola

    2009-01-01

    We present a model aimed to reproduce the observed spectral energy distribution (SED) as well as the ammonia line emission of the G31.41+0.31 hot core. The hot core is modeled as an infalling envelope onto a massive star that is undergoing an intense accretion phase. We assume an envelope with a density and velocity structure resulting from the dynamical collapse of a singular logatropic sphere. The stellar and envelope physical properties are determined by fitting the observed SED. From these physical conditions, the emerging ammonia line emission is calculated and compared with subarcsecond resolution VLA data of the (4,4) transition taken from the literature. The only free parameter in this line fitting is the ammonia abundance. The observed intensities of the main and satellite ammonia (4,4) lines and their spatial distribution can be well reproduced provided the steep increase of the gas-phase ammonia abundance in the hotter (>100 K), inner regions of the core produced by the sublimation of icy mantles where ammonia molecules are trapped is taken into account. The model predictions for the (2,2), (4,4), and (5,5) transitions, obtained with the same set of parameters, are also reasonably in agreement, given the observational uncertainties, with the single-dish spectra of the region available in the literature. The best fit is obtained for a model with a central star of ∼25M sun , a mass accretion rate of ∼3 x 10 -3 M sun yr -1 , and a total luminosity of ∼2 x 10 5 L sun . The outer radius of the envelope is 30,000 AU, where kinetic temperatures as high as ∼40 K are reached. The gas-phase ammonia abundance ranges from ∼2 x 10 -8 in the outer region to ∼3 x 10 -6 in the inner region. To our knowledge, this is the first time that the dust and molecular line data of a hot molecular core, including subarcsecond resolution data that spatially resolve the structure of the core, have been simultaneously explained by a detailed, physically self

  2. Ekofisk chalk: core measurements, stochastic reconstruction, network modeling and simulation

    Energy Technology Data Exchange (ETDEWEB)

    Talukdar, Saifullah

    2002-07-01

    This dissertation deals with (1) experimental measurements on petrophysical, reservoir engineering and morphological properties of Ekofisk chalk, (2) numerical simulation of core flood experiments to analyze and improve relative permeability data, (3) stochastic reconstruction of chalk samples from limited morphological information, (4) extraction of pore space parameters from the reconstructed samples, development of network model using pore space information, and computation of petrophysical and reservoir engineering properties from network model, and (5) development of 2D and 3D idealized fractured reservoir models and verification of the applicability of several widely used conventional up scaling techniques in fractured reservoir simulation. Experiments have been conducted on eight Ekofisk chalk samples and porosity, absolute permeability, formation factor, and oil-water relative permeability, capillary pressure and resistivity index are measured at laboratory conditions. Mercury porosimetry data and backscatter scanning electron microscope images have also been acquired for the samples. A numerical simulation technique involving history matching of the production profiles is employed to improve the relative permeability curves and to analyze hysteresis of the Ekofisk chalk samples. The technique was found to be a powerful tool to supplement the uncertainties in experimental measurements. Porosity and correlation statistics obtained from backscatter scanning electron microscope images are used to reconstruct microstructures of chalk and particulate media. The reconstruction technique involves a simulated annealing algorithm, which can be constrained by an arbitrary number of morphological parameters. This flexibility of the algorithm is exploited to successfully reconstruct particulate media and chalk samples using more than one correlation functions. A technique based on conditional simulated annealing has been introduced for exact reproduction of vuggy

  3. Connecting micro dynamics and population distributions in system dynamics models.

    Science.gov (United States)

    Fallah-Fini, Saeideh; Rahmandad, Hazhir; Chen, Hsin-Jen; Xue, Hong; Wang, Youfa

    2013-01-01

    Researchers use system dynamics models to capture the mean behavior of groups of indistinguishable population elements (e.g., people) aggregated in stock variables. Yet, many modeling problems require capturing the heterogeneity across elements with respect to some attribute(s) (e.g., body weight). This paper presents a new method to connect the micro-level dynamics associated with elements in a population with the macro-level population distribution along an attribute of interest without the need to explicitly model every element. We apply the proposed method to model the distribution of Body Mass Index and its changes over time in a sample population of American women obtained from the U.S. National Health and Nutrition Examination Survey. Comparing the results with those obtained from an individual-based model that captures the same phenomena shows that our proposed method delivers accurate results with less computation than the individual-based model.

  4. Connecting micro dynamics and population distributions in system dynamics models

    Science.gov (United States)

    Rahmandad, Hazhir; Chen, Hsin-Jen; Xue, Hong; Wang, Youfa

    2014-01-01

    Researchers use system dynamics models to capture the mean behavior of groups of indistinguishable population elements (e.g., people) aggregated in stock variables. Yet, many modeling problems require capturing the heterogeneity across elements with respect to some attribute(s) (e.g., body weight). This paper presents a new method to connect the micro-level dynamics associated with elements in a population with the macro-level population distribution along an attribute of interest without the need to explicitly model every element. We apply the proposed method to model the distribution of Body Mass Index and its changes over time in a sample population of American women obtained from the U.S. National Health and Nutrition Examination Survey. Comparing the results with those obtained from an individual-based model that captures the same phenomena shows that our proposed method delivers accurate results with less computation than the individual-based model. PMID:25620842

  5. Adaptive numerical modeling of dynamic crack propagation

    International Nuclear Information System (INIS)

    Adouani, H.; Tie, B.; Berdin, C.; Aubry, D.

    2006-01-01

    We propose an adaptive numerical strategy that aims at developing reliable and efficient numerical tools to model dynamic crack propagation and crack arrest. We use the cohesive zone theory as behavior of interface-type elements to model crack. Since the crack path is generally unknown beforehand, adaptive meshing is proposed to model the dynamic crack propagation. The dynamic study requires the development of specific solvers for time integration. As both geometry and finite element mesh of the studied structure evolve in time during transient analysis, the stability behavior of dynamic solver becomes a major concern. For this purpose, we use the space-time discontinuous Galerkin finite element method, well-known to provide a natural framework to manage meshes that evolve in time. As an important result, we prove that the space-time discontinuous Galerkin solver is unconditionally stable, when the dynamic crack propagation is modeled by the cohesive zone theory, which is highly non-linear. (authors)

  6. Dynamics of an Alfvén Surface in Core Collapse Supernovae

    Science.gov (United States)

    Guilet, Jérôme; Foglizzo, Thierry; Fromang, Sébastien

    2011-03-01

    We investigate the dynamics of an Alfvén surface (where the Alfvén speed equals the advection velocity) in the context of core collapse supernovae during the phase of accretion on the proto-neutron star. Such a surface should exist even for weak magnetic fields because the advection velocity decreases to zero at the center of the collapsing core. In this decelerated flow, Alfvén waves created by the standing accretion shock instability or convection accumulate and amplify while approaching the Alfvén surface. We study this amplification using one-dimensional MHD simulations with explicit physical dissipation (resistivity and viscosity). In the linear regime, the amplification continues until the Alfvén wavelength becomes as small as the dissipative scale. A pressure feedback that increases the pressure in the upstream flow is created via a nonlinear coupling. We derive analytic formulae for the maximum amplification and the nonlinear coupling and check them with numerical simulations to very good accuracy. Interestingly, these quantities diverge if the dissipation is decreased to zero, scaling as the square root of the Reynolds number, suggesting large effects in weakly dissipative flows. We also characterize the nonlinear saturation of this amplification when compression effects become important, leading to either a change of the velocity gradient, or a steepening of the Alfvén wave. Applying these results to core collapse supernovae shows that the amplification can be fast enough to affect the dynamics if the magnetic field is strong enough for the Alfvén surface to lie in the region of strong velocity gradient just above the neutrinosphere. This requires the presence of a strong magnetic field in the progenitor star, which would correspond to the formation of a magnetar under the assumption of magnetic flux conservation. An extrapolation of our analytic formula (taking into account the nonlinear saturation) suggests that the Alfvén wave could reach an

  7. Integrating a human thermoregulatory model with a clothing model to predict core and skin temperatures.

    Science.gov (United States)

    Yang, Jie; Weng, Wenguo; Wang, Faming; Song, Guowen

    2017-05-01

    This paper aims to integrate a human thermoregulatory model with a clothing model to predict core and skin temperatures. The human thermoregulatory model, consisting of an active system and a passive system, was used to determine the thermoregulation and heat exchanges within the body. The clothing model simulated heat and moisture transfer from the human skin to the environment through the microenvironment and fabric. In this clothing model, the air gap between skin and clothing, as well as clothing properties such as thickness, thermal conductivity, density, porosity, and tortuosity were taken into consideration. The simulated core and mean skin temperatures were compared to the published experimental results of subject tests at three levels of ambient temperatures of 20 °C, 30 °C, and 40 °C. Although lower signal-to-noise-ratio was observed, the developed model demonstrated positive performance at predicting core temperatures with a maximum difference between the simulations and measurements of no more than 0.43 °C. Generally, the current model predicted the mean skin temperatures with reasonable accuracy. It could be applied to predict human physiological responses and assess thermal comfort and heat stress. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Structural Flexibility of the Nucleosome Core Particle at Atomic Resolution studied by Molecular Dynamics Simulation.

    Energy Technology Data Exchange (ETDEWEB)

    Roccatano, Danilo; Barthel, Andre; Zacharias, Martin W.

    2007-01-24

    The research described in this product was performed in part in the Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory. Comparative explicit solvent molecular dynamics (MD) simulations have been performed on a complete nucleosome core particle with and without N-terminal histone tails for more than 20 ns. Main purpose of the simulations was to study the dynamics of mobile elements such as histone N-terminal tails and how packing and DNA-bending influences the fine structure and dynamics of DNA. Except for the tails, histone and DNA molecules stayed on average close to the crystallographic start structure supporting the quality of the current force field approach. Despite the packing strain, no increase of transitions to noncanonical nucleic acid backbone conformations compared to regular B-DNA was observed. The pattern of kinks and bends along the DNA remained close to the experiment overall. In addition to the local dynamics, the simulations allowed the analysis of the superhelical mobility indicating a limited relative mobility of DNA segments separated by one superhelical turn (mean relative displacement of approximately 60.2 nm, mainly along the superhelical axis). An even higher rigidity was found for relative motions (distance fluctuations) of segments separated by half a superhelical turn (approximately 60.1 nm). The N-terminal tails underwent dramatic conformational rearrangements on the nanosecond time scale toward partially and transiently wrapped states around the DNA. Many of the histone tail changes corresponded to coupled association and folding events from fully solvent-exposed states toward complexes with the major and minor grooves of DNA. The simulations indicate that the rapid conformational changes of the tails can modulate the DNA accessibility within a few nanoseconds

  9. A Stochastic Cobweb Dynamical Model

    Directory of Open Access Journals (Sweden)

    Serena Brianzoni

    2008-01-01

    _,__0__1, and the forward predictor with probability (1−, so that the expected price at time is a random variable and consequently the dynamics describing the price evolution in time is governed by a stochastic dynamical system. The dynamical system becomes a Markov process when the memory rate vanishes. In particular, we study the Markov chain in the cases of discrete and continuous time. Using a mixture of analytical tools and numerical methods, we show that, when prices take discrete values, the corresponding Markov chain is asymptotically stable. In the case with continuous prices and nonnecessarily zero memory rate, numerical evidence of bounded price oscillations is shown. The role of the memory rate is studied through numerical experiments, this study confirms the stabilizing effects of the presence of resistant memory.

  10. Pattern formation with repulsive soft-core interactions: Discrete particle dynamics and Dean-Kawasaki equation

    Science.gov (United States)

    Delfau, Jean-Baptiste; Ollivier, Hélène; López, Cristóbal; Blasius, Bernd; Hernández-García, Emilio

    2016-10-01

    Brownian particles interacting via repulsive soft-core potentials can spontaneously aggregate, despite repelling each other, and form periodic crystals of particle clusters. We study this phenomenon in low-dimensional situations (one and two dimensions) at two levels of description: by performing numerical simulations of the discrete particle dynamics and by linear and nonlinear analysis of the corresponding Dean-Kawasaki equation for the macroscopic particle density. Restricting to low dimensions and neglecting fluctuation effects, we gain analytical insight into the mechanisms of the instability leading to clustering which turn out to be the interplay among diffusion, the intracluster forces, and the forces between neighboring clusters. We show that the deterministic part of the Dean-Kawasaki equation provides a good description of the particle dynamics, including width and shape of the clusters and over a wide range of parameters, and analyze with weakly nonlinear techniques the nature of the pattern-forming bifurcation in one and two dimensions. Finally, we briefly discuss the case of attractive forces.

  11. Comparison of static model and dynamic model for the evaluation of station blackout sequences

    International Nuclear Information System (INIS)

    Lee, Kwang-Nam; Kang, Sun-Koo; Hong, Sung-Yull.

    1992-01-01

    Station blackout is one of major contributors to the core damage frequency (CDF) in many PSA studies. Since station blackout sequence exhibits dynamic features, accurate calculation of CDF for the station blackout sequence is not possible with event tree/fault tree (ET/FT) method. Although the integral method can determine accurate CDF, it is time consuming and is difficult to evaluate various alternative AC source configuration and sensitivities. In this study, a comparison is made between static model and dynamic model and a new methodology which combines static model and dynamic model is provided for the accurate quantification of CDF and evaluation of improvement alternatives. Results of several case studies show that accurate calculation of CDF is possible by introducing equivalent mission time. (author)

  12. Very Large System Dynamics Models - Lessons Learned

    Energy Technology Data Exchange (ETDEWEB)

    Jacob J. Jacobson; Leonard Malczynski

    2008-10-01

    This paper provides lessons learned from developing several large system dynamics (SD) models. System dynamics modeling practice emphasize the need to keep models small so that they are manageable and understandable. This practice is generally reasonable and prudent; however, there are times that large SD models are necessary. This paper outlines two large SD projects that were done at two Department of Energy National Laboratories, the Idaho National Laboratory and Sandia National Laboratories. This paper summarizes the models and then discusses some of the valuable lessons learned during these two modeling efforts.

  13. ANDREA 2.2 and 2.3. Advances in modelling of VVER cores

    Energy Technology Data Exchange (ETDEWEB)

    Havluj, Frantisek; Hejzlar, Jonatan; Vocka, Radim; Vysoudil, Jiri [UJV Rez, Husinec-Rez (Czech Republic)

    2017-09-15

    In 2016 a new version of code ANDREA for core design and reload safety analysis of VVER reactors has been released. The new code version includes several major improvements. The first of them is a seamless incorporation of short time kinetics calculations (without temperature feedback) into the code. This new feature accompanied by the possibility of excore detector signal predictions enables precise interpretation of dynamic measurements of control assembly weight during the reactor startup. Second important enhancement resides in new flexible format of cross section libraries and in new fuel temperature model based on results of TRANSURANUS fuel performance code. The new code version has been thoroughly tested and validated for both VVER440 and VVER-1000 reactors. Furthermore for the new version 2.3 which is to be released shortly we have implemented the possibility of fluent control assemblies' motion and of non-equidistant axial nodalization schemes in VVER-440 calculations.

  14. A CFD Modeling Study for the Design of an Advanced HANARO Reactor Core Structure

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jong-Hark; Chae, Hee-Teak; Park, Cheol; Kim, Heo-Nil [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2007-07-01

    AHR(Advanced HANARO Reactor) based on HANARO has been under a conceptually designed with new ideas to implement new findings, which have been revealed from twelve years operation of HANARO. For example, a perforated structure to reduce the FIV(Flow Induced Vibration) of a fuel assembly has been considered to install. And a change of dual outlets to a single outlet has also been investigated to promote the accessibility and to work easily in the reactor pool. Those investigations have been conducted by the CFD (Computational Fluid Dynamics) method, which can provide us with an good understanding of three dimensional flow fields influenced by design changes without an experiment. In this study a CFD modeling study for an AHR core structure design is described.

  15. Five millennia of frozen vegetation and fire dynamics from an ice core in the Mongolian Altai

    Science.gov (United States)

    Brügger, S. O.; Gobet, E.; Sigl, M.; Osmont, D.; Papina, T.; Rudaya, N.; Schwikowski, M.; Tinner, W.

    2017-12-01

    The steppes of the Altai region in Central Asia are highly vulnerable to e.g. drought and overgrazing. Degradation during the past decades may undermine their resilience under global change conditions. Knowledge about past vegetation and fire dynamics in Mongolian Altai may contribute to a better understanding of future climate and human impact responses, however, paleo records are scarce in the area. Our novel high-alpine ice record from Tsambagarav glacier (48°39.338'N, 90°50.826'E, 4130m asl) in the Mongolian Altai provides unique paleoenvironmental informations at the landscape scale. The site is surrounded by dry steppes with scattered boreal tree stands. We assume that the site collects pollen and spores within several hundred km. The archive provides an exceptional temporal resolution with a sound chronology covering the past 5500 years (Herren et al. 2013). Microfossil analysis allows to reconstruct large-scale fire and vegetation dynamics to gain a better understanding of the timing and causes of late Holocene response variability. We use pollen as proxies for vegetation composition and structure, microscopic charcoal as a proxy for fire activity (Eichler et al. 2011), and spheroidal carbonaceous particles (SCPs or soots) as a proxy for fossil fuel combustion. Here we present the first microscopic charcoal record from Mongolia and link it to vegetation dynamics of the past. The reconstructed mid to late Holocene forest collapses likely in response to climate change underscore the vulnerability of relict forest ecosystems in the Mongolian Altai. Our multiproxy-study suggests that moisture is more important than temperature for forest preservation. The lacking resilience of vegetation to moisture changes in the past emphasizes the vulnerability of large forests in neighboring dry areas such as the Russian Altai, if global warming is associated to moisture declines as future projections forecast (IPCC; Climate Change 2013). References: Eichler et al. (2011

  16. Modeling microbial growth and dynamics.

    Science.gov (United States)

    Esser, Daniel S; Leveau, Johan H J; Meyer, Katrin M

    2015-11-01

    Modeling has become an important tool for widening our understanding of microbial growth in the context of applied microbiology and related to such processes as safe food production, wastewater treatment, bioremediation, or microbe-mediated mining. Various modeling techniques, such as primary, secondary and tertiary mathematical models, phenomenological models, mechanistic or kinetic models, reactive transport models, Bayesian network models, artificial neural networks, as well as agent-, individual-, and particle-based models have been applied to model microbial growth and activity in many applied fields. In this mini-review, we summarize the basic concepts of these models using examples and applications from food safety and wastewater treatment systems. We further review recent developments in other applied fields focusing on models that explicitly include spatial relationships. Using these examples, we point out the conceptual similarities across fields of application and encourage the combined use of different modeling techniques in hybrid models as well as their cross-disciplinary exchange. For instance, pattern-oriented modeling has its origin in ecology but may be employed to parameterize microbial growth models when experimental data are scarce. Models could also be used as virtual laboratories to optimize experimental design analogous to the virtual ecologist approach. Future microbial growth models will likely become more complex to benefit from the rich toolbox that is now available to microbial growth modelers.

  17. Discrete Dynamical Models of Walking Droplets

    Science.gov (United States)

    Rahman, Aminur

    2017-11-01

    In recent years discrete planar dynamical models of walking droplets (walkers) on a billiards table (Shirokoff, Chaos 2013) and walking in a straight-line confined geometry (Gilet, PRE 2014) have been developed. Gilet's model was then analyzed via dynamical systems theory (Rahman-Blackmore, C,S& F 2016). From the analysis it was shown that while Gilet's walker is confined under the threshold for chaos, it does escape the boundary once the system becomes chaotic. We modify the model to trap the walker in an annulur domain. This allows for connections between the dynamics, statistics, and experimental works (Filoux et al., PRE 2015). From this connection we derive a kicked rotator-like model for a walker in an annulus. We endeavor to manipulate the dynamics of the model to produce statistics similar to that of experiments.

  18. Development of 3D ferromagnetic model of tokamak core with strong toroidal asymmetry

    DEFF Research Database (Denmark)

    Markovič, Tomáš; Gryaznevich, Mikhail; Ďuran, Ivan

    2015-01-01

    Fully 3D model of strongly asymmetric tokamak core, based on boundary integral method approach (i.e. characterization of ferromagnet by its surface) is presented. The model is benchmarked on measurements on tokamak GOLEM, as well as compared to 2D axisymmetric core equivalent for this tokamak, pr...

  19. Structural dynamic modifications via models

    Indian Academy of Sciences (India)

    2nd Int. Modal Analysis Conference (Orlando) 2: 930±936. Natke H G (ed.) 1982 Identification of vibrating structures (New York: Springer Verlag, Wein). Rao S S 1989 Optimum design of structures under shock and vibration environment. Shock Vibr. Dig. 21(7):. Ravi S S A 1994 Structural dynamic modifications and design ...

  20. Dynamic Motion Modelling for Legged Robots

    OpenAIRE

    Edgington, Mark; Kassahun, Yohannes; Kirchner, Frank

    2010-01-01

    An accurate motion model is an important component in modern-day robotic systems, but building such a model for a complex system often requires an appreciable amount of manual effort. In this paper we present a motion model representation, the Dynamic Gaussian Mixture Model (DGMM), that alleviates the need to manually design the form of a motion model, and provides a direct means of incorporating auxiliary sensory data into the model. This representation and its accompanying algorithms are va...

  1. Little Earth Experiment: An instrument to model planetary cores.

    Science.gov (United States)

    Aujogue, Kélig; Pothérat, Alban; Bates, Ian; Debray, François; Sreenivasan, Binod

    2016-08-01

    In this paper, we present a new experimental facility, Little Earth Experiment, designed to study the hydrodynamics of liquid planetary cores. The main novelty of this apparatus is that a transparent electrically conducting electrolyte is subject to extremely high magnetic fields (up to 10 T) to produce electromagnetic effects comparable to those produced by moderate magnetic fields in planetary cores. This technique makes it possible to visualise for the first time the coupling between the principal forces in a convection-driven dynamo by means of Particle Image Velocimetry (PIV) in a geometry relevant to planets. We first present the technology that enables us to generate these forces and implement PIV in a high magnetic field environment. We then show that the magnetic field drastically changes the structure of convective plumes in a configuration relevant to the tangent cylinder region of the Earth's core.

  2. Performance modeling and analysis of parallel Gaussian elimination on multi-core computers

    Directory of Open Access Journals (Sweden)

    Fadi N. Sibai

    2014-01-01

    Full Text Available Gaussian elimination is used in many applications and in particular in the solution of systems of linear equations. This paper presents mathematical performance models and analysis of four parallel Gaussian Elimination methods (precisely the Original method and the new Meet in the Middle –MiM– algorithms and their variants with SIMD vectorization on multi-core systems. Analytical performance models of the four methods are formulated and presented followed by evaluations of these models with modern multi-core systems’ operation latencies. Our results reveal that the four methods generally exhibit good performance scaling with increasing matrix size and number of cores. SIMD vectorization only makes a large difference in performance for low number of cores. For a large matrix size (n ⩾ 16 K, the performance difference between the MiM and Original methods falls from 16× with four cores to 4× with 16 K cores. The efficiencies of all four methods are low with 1 K cores or more stressing a major problem of multi-core systems where the network-on-chip and memory latencies are too high in relation to basic arithmetic operations. Thus Gaussian Elimination can greatly benefit from the resources of multi-core systems, but higher performance gains can be achieved if multi-core systems can be designed with lower memory operation, synchronization, and interconnect communication latencies, requirements of utmost importance and challenge in the exascale computing age.

  3. Phone Routing using the Dynamic Memory Model

    DEFF Research Database (Denmark)

    Bendtsen, Claus Nicolaj; Krink, Thiemo

    2002-01-01

    In earlier studies a genetic algorithm (GA) extended with the dynamic memory model has shown remarkable performance on real-world-like problems. In this paper we experiment with routing in communication networks and show that the dynamic memory GA performs remarkable well compared to ant colony...

  4. Forecasting house prices in the 50 states using Dynamic Model Averaging and Dynamic Model Selection

    DEFF Research Database (Denmark)

    Bork, Lasse; Møller, Stig Vinther

    2015-01-01

    We examine house price forecastability across the 50 states using Dynamic Model Averaging and Dynamic Model Selection, which allow for model change and parameter shifts. By allowing the entire forecasting model to change over time and across locations, the forecasting accuracy improves substantia...

  5. The HTA core model: a novel method for producing and reporting health technology assessments

    DEFF Research Database (Denmark)

    Lampe, Kristian; Mäkelä, Marjukka; Garrido, Marcial Velasco

    2009-01-01

    OBJECTIVES: The aim of this study was to develop and test a generic framework to enable international collaboration for producing and sharing results of health technology assessments (HTAs). METHODS: Ten international teams constructed the HTA Core Model, dividing information contained....... The Model and Core HTAs were both validated. Guidance on the use of the HTA Core Model was compiled into a Handbook. RESULTS: The HTA Core Model considers health technologies through nine domains. Two applications of the Model were developed, one for medical and surgical interventions and another...... in a comprehensive HTA into standardized pieces, the assessment elements. Each element contains a generic issue that is translated into practical research questions while performing an assessment. Elements were described in detail in element cards. Two pilot assessments, designated as Core HTAs were also produced...

  6. Application of flexible model in neutron dynamics equations

    International Nuclear Information System (INIS)

    Liu Cheng; Zhao Fuyu; Fu Xiangang

    2009-01-01

    Big errors will occur in the modeling by multimode methodology when the available core physical parameter sets are insufficient. In this paper, the fuzzy logic membership function is introduced to figure out the values of these parameters on any point of lifetime through limited several sets of values, and thus to obtain the neutron dynamics equations on any point of lifetime. In order to overcome the effect of subjectivity in the membership function selection on the parameter calculation, quadratic optimization is carried out to the membership function by genetic algorithm, to result in a more accurate neutron kinetics equation on any point of lifetime. (authors)

  7. The CERIF Model As the Core of a Research Organization

    Directory of Open Access Journals (Sweden)

    Keith Jeffery

    2010-04-01

    Full Text Available A CERIF-CRIS consists of base entities with records describing components of the research and link entities describing relationships among records in the base entities. As an example, three base entities may contain records describing a person, a publication and a project while two link entities relate respectively the person to the publication in role author and the person to the project in role project leader. This powerful linking or inter-relating capability includes temporal as well as role aspects and inter-relates dynamically and flexibly all the components of R&D. The CERIF model can be extended to inter-relate appropriate information from legacy information systems in an organisation, such as those covering accounting, human resources, project management, assets, stock control, etc. A CERIF-CRIS can thus provide a flexible low-cost integration comparable with an ERP (Enterprise Resource Planning System, particularly in an organisation with R&D as its primary business.

  8. Dynamic logistic regression and dynamic model averaging for binary classification.

    Science.gov (United States)

    McCormick, Tyler H; Raftery, Adrian E; Madigan, David; Burd, Randall S

    2012-03-01

    We propose an online binary classification procedure for cases when there is uncertainty about the model to use and parameters within a model change over time. We account for model uncertainty through dynamic model averaging, a dynamic extension of Bayesian model averaging in which posterior model probabilities may also change with time. We apply a state-space model to the parameters of each model and we allow the data-generating model to change over time according to a Markov chain. Calibrating a "forgetting" factor accommodates different levels of change in the data-generating mechanism. We propose an algorithm that adjusts the level of forgetting in an online fashion using the posterior predictive distribution, and so accommodates various levels of change at different times. We apply our method to data from children with appendicitis who receive either a traditional (open) appendectomy or a laparoscopic procedure. Factors associated with which children receive a particular type of procedure changed substantially over the 7 years of data collection, a feature that is not captured using standard regression modeling. Because our procedure can be implemented completely online, future data collection for similar studies would require storing sensitive patient information only temporarily, reducing the risk of a breach of confidentiality. © 2011, The International Biometric Society.

  9. High energy pp and anti-pp elastic scattering in nucleon valence core model

    International Nuclear Information System (INIS)

    Islam, M.M.; Fearnley, T.

    1986-01-01

    Connection between the valence core model and the effective QCD models of nucleon structure is pointed out. Also, implication of recent anti-pp differential cross section measurements at 53 GeV on our previous calculations is discussed

  10. Fluid structure interaction in LMFBR cores modelling by an homogenization method

    International Nuclear Information System (INIS)

    Brochard, D.

    1988-01-01

    The upper plenum of the internals of PWR, the steam generator bundle, the nuclear reactor core, may be schematically represented by a beam bundle immersed in a fluid. The dynamical study of such a system needs to take into account fluid structure interaction. A refined model at the scale of the tubes can be used but leads to a very difficult problem to solve even on the largest computers. The homogenization method allows to have an approximation of the fluid structure interaction for the global behaviour of the bundle. It consists of replacing the heterogeneous physical medium (tubes and fluid) by an equivalent homogeneous medium whose characteristics are determined from the resolution of a set of problems on the elementary cell. The aim of this paper is to present the main steps of the determination of this equivalent medium in the case of small displacements (acoustic behaviour of the fluid). Then an application to LMFBR core geometry has been realised, which shows the lowering effect on eigenfrequencies due to the fluid. Some comparisons with test results will be presented. 6 refs, 7 figs, 2 tabs

  11. Stochastic population dynamic models as probability networks

    Science.gov (United States)

    M.E. and D.C. Lee. Borsuk

    2009-01-01

    The dynamics of a population and its response to environmental change depend on the balance of birth, death and age-at-maturity, and there have been many attempts to mathematically model populations based on these characteristics. Historically, most of these models were deterministic, meaning that the results were strictly determined by the equations of the model and...

  12. Damping mechanisms and models in structural dynamics

    DEFF Research Database (Denmark)

    Krenk, Steen

    2002-01-01

    Several aspects of damping models for dynamic analysis of structures are investigated. First the causality condition for structural response is used to identify rules for the use of complex-valued frequency dependent material models, illustrated by the shortcomings of the elastic hysteretic model...

  13. Permanent magnet synchronous motor dynamic modeling with ...

    African Journals Online (AJOL)

    This paper proposes dynamic modeling simulation for ac Surface Permanent Magnet Synchronous Motor (SPMSM) with the aid of MATLAB – Simulink environment. The proposed model would be used in many applications such as automotive, mechatronics, green energy applications, and machine drives. The modeling ...

  14. Incorporating Resilience into Dynamic Social Models

    Science.gov (United States)

    2016-07-20

    AFRL-AFOSR-VA-TR-2016-0258 Incorporating Resilience into Dynamic Social Models Eunice Santos UNIVERSITY OF TEXAS AT EL PASO 500 UNIV ST ADMIN BLDG...REPORT TYPE Final Report 3. DATES COVERED (From - To) 3/1/13-12/31/14 4. TITLE AND SUBTITLE Incorporating Resilience into Dynamic Social Models 5a...AVAILABILITY STATEMENT 13. SUPPLEMENTARY NOTES 14. ABSTRACT We propose an overarching framework designed to incorporate various aspects of social resilience

  15. Modeling the Power Variability of Core Speed Scaling on Homogeneous Multicore Systems

    Directory of Open Access Journals (Sweden)

    Zhihui Du

    2017-01-01

    Full Text Available We describe a family of power models that can capture the nonuniform power effects of speed scaling among homogeneous cores on multicore processors. These models depart from traditional ones, which assume that individual cores contribute to power consumption as independent entities. In our approach, we remove this independence assumption and employ statistical variables of core speed (average speed and the dispersion of the core speeds to capture the comprehensive heterogeneous impact of subtle interactions among the underlying hardware. We systematically explore the model family, deriving basic and refined models that give progressively better fits, and analyze them in detail. The proposed methodology provides an easy way to build power models to reflect the realistic workings of current multicore processors more accurately. Moreover, unlike the existing lower-level power models that require knowledge of microarchitectural details of the CPU cores and the last level cache to capture core interdependency, ours are easier to use and scalable to emerging and future multicore architectures with more cores. These attributes make the models particularly useful to system users or algorithm designers who need a quick way to estimate power consumption. We evaluate the family of models on contemporary x86 multicore processors using the SPEC2006 benchmarks. Our best model yields an average predicted error as low as 5%.

  16. Theoretical model for investigating the dynamic behaviour of the AST-500 type nuclear heating station reactor

    International Nuclear Information System (INIS)

    Grundmann, U.; Rohde, U.; Naumann, B.

    1985-01-01

    Studies on theoretical simulation of the dynamic behaviour of the AST-500 type reactor primary coolant system are summarized. The first version of a dynamic model in the form of the DYNAST code is described. The DYNAST code is based on a one-dimensional description of the primary coolant circuit including core, draught stack, and intermediate heat exchanger, a vapour dome model, and the point model of neutron kinetics. With the aid of the steady-state computational part of the DYNAST code, studies have been performed on different steady-state operating conditions. Furthermore, some methodological investigations on generalization and improvement of the dynamic model are considered and results presented. (author)

  17. Dynamic cognitive models of intertemporal choice.

    Science.gov (United States)

    Dai, Junyi; Pleskac, Timothy J; Pachur, Thorsten

    2018-03-24

    Traditionally, descriptive accounts of intertemporal choice have relied on static and deterministic models that assume alternative-wise processing of the options. Recent research, by contrast, has highlighted the dynamic and probabilistic nature of intertemporal choice and provided support for attribute-wise processing. Currently, dynamic models of intertemporal choice-which account for both the resulting choice and the time course over which the construction of a choice develops-rely exclusively on the framework of evidence accumulation. In this article, we develop and rigorously compare several candidate schemes for dynamic models of intertemporal choice. Specifically, we consider an existing dynamic modeling scheme based on decision field theory and develop two novel modeling schemes-one assuming lexicographic, noncompensatory processing, and the other built on the classical concepts of random utility in economics and discrimination thresholds in psychophysics. We show that all three modeling schemes can accommodate key behavioral regularities in intertemporal choice. When empirical choice and response time data were fit simultaneously, the models built on random utility and discrimination thresholds performed best. The results also indicated substantial individual differences in the dynamics underlying intertemporal choice. Finally, model recovery analyses demonstrated the benefits of including both choice and response time data for more accurate model selection on the individual level. The present work shows how the classical concept of random utility can be extended to incorporate response dynamics in intertemporal choice. Moreover, the results suggest that this approach offers a successful alternative to the dominating evidence accumulation approach when modeling the dynamics of decision making. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. Quantum kinetic Heisenberg models: a unique dynamics

    International Nuclear Information System (INIS)

    Timonen, J.; Pilling, D.J.; Bullough, R.K.

    1986-01-01

    We suggest that the dynamics Glauber embodied in his kinetic Ising model can be introduced similarly and in an apparently unique way, into the quantum statistical mechanics of the quantum-integrable models like the Heisenberg, sine-Gordon and Massive Thirring models. The latter may suggest an extension of the theory to unique kinetic Ising models in two dimensions. The kinetic repulsive bose gas which is studied in detail in the steady state seems to be a solvable kinetic model. (author)

  19. A core stochastic population projection model for Florida manatees (Trichechus manatus latirostris)

    Science.gov (United States)

    Runge, Michael C.; Sanders-Reed, Carol A.; Fonnesbeck, Christopher J.

    2007-01-01

    A stochastic, stage-based population model was developed to describe the life history and forecast the population dynamics of the Florida manatee (Trichechus manatus latirostris) in four separate regions of Florida. This population model includes annual variability in survival and reproductive rates, demographic stochasticity, effects of changes in warm-water capacity, and catastrophes. Further, the model explicitly accounts for uncertainty in parameter estimates. This model is meant to serve as a flexible tool for use in assessments relevant to management decision making, and was used in the State of Florida's recent biological status review. The parameter estimates and model structure described herein reflect our understanding of manatee demography at the time that this status review was completed. In the Northwest and Upper St. Johns regions, the model predicts that the populations will increase over time until warm-water capacity is reached, at which point growth will taper off. In the Atlantic region, the model predicts a stable or slightly increasing population over the next decade or so, and then a decrease as industrial warm-water capacity is lost. In the Southwest region, the model predicts a decline over time, driven by high annual mortality in the short-term and exacerbated by loss of industrial warm-water winter refuges over the next 40 years. Statewide, the likelihood of a 50% or greater decline in three manatee generations was 12%; the likelihood of a 20% or greater decline in two generations was 56%. These declines are largely driven by the anticipated loss of warm-water capacity, especially in the Atlantic and Southwest regions. The estimates of probability of extinction within 100 years were 11.9% for the Southwest region, 0.6% for the Northwest, 0.04% for the Atlantic, and population will fall below 1000 animals within 100 years was 2.3%. Thus, while the estimated probability of extinction is low, the model predicts that current and emerging

  20. Swarm Intelligence for Urban Dynamics Modelling

    Science.gov (United States)

    Ghnemat, Rawan; Bertelle, Cyrille; Duchamp, Gérard H. E.

    2009-04-01

    In this paper, we propose swarm intelligence algorithms to deal with dynamical and spatial organization emergence. The goal is to model and simulate the developement of spatial centers using multi-criteria. We combine a decentralized approach based on emergent clustering mixed with spatial constraints or attractions. We propose an extension of the ant nest building algorithm with multi-center and adaptive process. Typically, this model is suitable to analyse and simulate urban dynamics like gentrification or the dynamics of the cultural equipment in urban area.

  1. Swarm Intelligence for Urban Dynamics Modelling

    International Nuclear Information System (INIS)

    Ghnemat, Rawan; Bertelle, Cyrille; Duchamp, Gerard H. E.

    2009-01-01

    In this paper, we propose swarm intelligence algorithms to deal with dynamical and spatial organization emergence. The goal is to model and simulate the developement of spatial centers using multi-criteria. We combine a decentralized approach based on emergent clustering mixed with spatial constraints or attractions. We propose an extension of the ant nest building algorithm with multi-center and adaptive process. Typically, this model is suitable to analyse and simulate urban dynamics like gentrification or the dynamics of the cultural equipment in urban area.

  2. Organizational Models for Non-Core Processes Management: A Classification Framework

    Directory of Open Access Journals (Sweden)

    Alberto F. De Toni

    2012-12-01

    The framework enables the identification and the explanation of the main advantages and disadvantages of each strategy and to highlight how a company should coherently choose an organizational model on the basis of: (a the specialization/complexity of the non‐core processes, (b the focus on core processes, (c its inclination towards know‐how outsourcing, and (d the desired level of autonomy in the management of non‐core processes.

  3. Understanding and Modeling Teams As Dynamical Systems

    Directory of Open Access Journals (Sweden)

    Jamie C. Gorman

    2017-07-01

    Full Text Available By its very nature, much of teamwork is distributed across, and not stored within, interdependent people working toward a common goal. In this light, we advocate a systems perspective on teamwork that is based on general coordination principles that are not limited to cognitive, motor, and physiological levels of explanation within the individual. In this article, we present a framework for understanding and modeling teams as dynamical systems and review our empirical findings on teams as dynamical systems. We proceed by (a considering the question of why study teams as dynamical systems, (b considering the meaning of dynamical systems concepts (attractors; perturbation; synchronization; fractals in the context of teams, (c describe empirical studies of team coordination dynamics at the perceptual-motor, cognitive-behavioral, and cognitive-neurophysiological levels of analysis, and (d consider the theoretical and practical implications of this approach, including new kinds of explanations of human performance and real-time analysis and performance modeling. Throughout our discussion of the topics we consider how to describe teamwork using equations and/or modeling techniques that describe the dynamics. Finally, we consider what dynamical equations and models do and do not tell us about human performance in teams and suggest future research directions in this area.

  4. A STRONGLY COUPLED REACTOR CORE ISOLATION COOLING SYSTEM MODEL FOR EXTENDED STATION BLACK-OUT ANALYSES

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Haihua [Idaho National Laboratory; Zhang, Hongbin [Idaho National Laboratory; Zou, Ling [Idaho National Laboratory; Martineau, Richard Charles [Idaho National Laboratory

    2015-03-01

    The reactor core isolation cooling (RCIC) system in a boiling water reactor (BWR) provides makeup cooling water to the reactor pressure vessel (RPV) when the main steam lines are isolated and the normal supply of water to the reactor vessel is lost. The RCIC system operates independently of AC power, service air, or external cooling water systems. The only required external energy source is from the battery to maintain the logic circuits to control the opening and/or closure of valves in the RCIC systems in order to control the RPV water level by shutting down the RCIC pump to avoid overfilling the RPV and flooding the steam line to the RCIC turbine. It is generally considered in almost all the existing station black-out accidents (SBO) analyses that loss of the DC power would result in overfilling the steam line and allowing liquid water to flow into the RCIC turbine, where it is assumed that the turbine would then be disabled. This behavior, however, was not observed in the Fukushima Daiichi accidents, where the Unit 2 RCIC functioned without DC power for nearly three days. Therefore, more detailed mechanistic models for RCIC system components are needed to understand the extended SBO for BWRs. As part of the effort to develop the next generation reactor system safety analysis code RELAP-7, we have developed a strongly coupled RCIC system model, which consists of a turbine model, a pump model, a check valve model, a wet well model, and their coupling models. Unlike the traditional SBO simulations where mass flow rates are typically given in the input file through time dependent functions, the real mass flow rates through the turbine and the pump loops in our model are dynamically calculated according to conservation laws and turbine/pump operation curves. A simplified SBO demonstration RELAP-7 model with this RCIC model has been successfully developed. The demonstration model includes the major components for the primary system of a BWR, as well as the safety

  5. Energy Balance Models and Planetary Dynamics

    Science.gov (United States)

    Domagal-Goldman, Shawn

    2012-01-01

    We know that planetary dynamics can have a significant affect on the climate of planets. Planetary dynamics dominate the glacial-interglacial periods on Earth, leaving a significant imprint on the geological record. They have also been demonstrated to have a driving influence on the climates of other planets in our solar system. We should therefore expect th.ere to be similar relationships on extrasolar planets. Here we describe a simple energy balance model that can predict the growth and thickness of glaciers, and their feedbacks on climate. We will also describe model changes that we have made to include planetary dynamics effects. This is the model we will use at the start of our collaboration to handle the influence of dynamics on climate.

  6. Transformer core modeling for magnetizing inrush current investigation

    Directory of Open Access Journals (Sweden)

    A.Yahiou

    2014-03-01

    Full Text Available The inrush currents generated during an energization of power transformer can reach very high values and may cause many problems in power system. This magnetizing inrush current which occurs at the time of energization of a transformer is due to temporary overfluxing in the transformer core. Its magnitude mainly depends on switching parameters such as the resistance of the primary winding and the point-on-voltage wave (switching angle. This paper describes a system for measuring the inrush current which is composed principally of an acquisition card (EAGLE, and LabVIEW code. The system is also capable of presetting various combinations of switching parameters for the energization of a 2 kVA transformer via an electronic card. Moreover, an algorithm for calculating the saturation curve is presented taking the iron core reactive losses into account, thereby producing a nonlinear inductance. This curve is used to simulate the magnetizing inrush current using the ATP-EMTP software.

  7. Stability of core-shell nanowires in selected model solutions

    Science.gov (United States)

    Kalska-Szostko, B.; Wykowska, U.; Basa, A.; Zambrzycka, E.

    2015-03-01

    This paper presents the studies of stability of magnetic core-shell nanowires prepared by electrochemical deposition from an acidic solution containing iron in the core and modified surface layer. The obtained nanowires were tested according to their durability in distilled water, 0.01 M citric acid, 0.9% NaCl, and commercial white wine (12% alcohol). The proposed solutions were chosen in such a way as to mimic food related environment due to a possible application of nanowires as additives to, for example, packages. After 1, 2 and 3 weeks wetting in the solutions, nanoparticles were tested by Infrared Spectroscopy, Atomic Absorption Spectroscopy, Transmission Electron Microscopy and X-ray diffraction methods.

  8. Brand Equity Evolution: a System Dynamics Model

    Directory of Open Access Journals (Sweden)

    Edson Crescitelli

    2009-04-01

    Full Text Available One of the greatest challenges in brand management lies in monitoring brand equity over time. This paper aimsto present a simulation model able to represent this evolution. The model was drawn on brand equity concepts developed by Aaker and Joachimsthaler (2000, using the system dynamics methodology. The use ofcomputational dynamic models aims to create new sources of information able to sensitize academics and managers alike to the dynamic implications of their brand management. As a result, an easily implementable model was generated, capable of executing continuous scenario simulations by surveying casual relations among the variables that explain brand equity. Moreover, the existence of a number of system modeling tools will allow extensive application of the concepts used in this study in practical situations, both in professional and educational settings

  9. Discrete dynamic modeling of cellular signaling networks.

    Science.gov (United States)

    Albert, Réka; Wang, Rui-Sheng

    2009-01-01

    Understanding signal transduction in cellular systems is a central issue in systems biology. Numerous experiments from different laboratories generate an abundance of individual components and causal interactions mediating environmental and developmental signals. However, for many signal transduction systems there is insufficient information on the overall structure and the molecular mechanisms involved in the signaling network. Moreover, lack of kinetic and temporal information makes it difficult to construct quantitative models of signal transduction pathways. Discrete dynamic modeling, combined with network analysis, provides an effective way to integrate fragmentary knowledge of regulatory interactions into a predictive mathematical model which is able to describe the time evolution of the system without the requirement for kinetic parameters. This chapter introduces the fundamental concepts of discrete dynamic modeling, particularly focusing on Boolean dynamic models. We describe this method step-by-step in the context of cellular signaling networks. Several variants of Boolean dynamic models including threshold Boolean networks and piecewise linear systems are also covered, followed by two examples of successful application of discrete dynamic modeling in cell biology.

  10. Transformer core modeling for magnetizing inrush current investigation

    OpenAIRE

    A.Yahiou; A. Bayadi

    2014-01-01

    The inrush currents generated during an energization of power transformer can reach very high values and may cause many problems in power system. This magnetizing inrush current which occurs at the time of energization of a transformer is due to temporary overfluxing in the transformer core. Its magnitude mainly depends on switching parameters such as the resistance of the primary winding and the point-on-voltage wave (switching angle). This paper describes a system for measuring the inrush c...

  11. DYNAMICS OF MULTI-CORED MAGNETIC STRUCTURES IN THE QUIET SUN

    International Nuclear Information System (INIS)

    Requerey, Iker S.; Iniesta, Jose Carlos Del Toro; Rubio, Luis R. Bellot; Pillet, Valentín Martínez; Solanki, Sami K.; Schmidt, Wolfgang

    2015-01-01

    We report on the dynamical interaction of quiet-Sun magnetic fields and granular convection in the solar photosphere as seen by Sunrise. We use high spatial resolution (0.″15–0.″18) and temporal cadence (33 s) spectropolarimetric Imaging Magnetograph eXperiment data, together with simultaneous CN and Ca ii H filtergrams from Sunrise Filter Imager. We apply the SIR inversion code to the polarimetric data in order to infer the line of sight velocity and vector magnetic field in the photosphere. The analysis reveals bundles of individual flux tubes evolving as a single entity during the entire 23 minute data set. The group shares a common canopy in the upper photospheric layers, while the individual tubes continually intensify, fragment and merge in the same way that chains of bright points in photometric observations have been reported to do. The evolution of the tube cores are driven by the local granular convection flows. They intensify when they are “compressed” by surrounding granules and split when they are “squeezed” between two moving granules. The resulting fragments are usually later regrouped in intergranular lanes by the granular flows. The continual intensification, fragmentation and coalescence of flux results in magnetic field oscillations of the global entity. From the observations we conclude that the magnetic field oscillations first reported by Martínez González et al. correspond to the forcing by granular motions and not to characteristic oscillatory modes of thin flux tubes

  12. DYNAMICS OF MULTI-CORED MAGNETIC STRUCTURES IN THE QUIET SUN

    Energy Technology Data Exchange (ETDEWEB)

    Requerey, Iker S.; Iniesta, Jose Carlos Del Toro; Rubio, Luis R. Bellot [Instituto de Astrofísica de Andalucía (CSIC), Apdo. de Correos 3004, E-18080 Granada (Spain); Pillet, Valentín Martínez [National Solar Observatory, Boulder, CO 80303 (United States); Solanki, Sami K. [Max-Planck Institut für Sonnensystemforschung, Justus-von-Liebig-Weg 3, D-37077, Göttingen (Germany); Schmidt, Wolfgang, E-mail: iker@iaa.es [Kiepenheuer-Institut für Sonnenphysik, Schöneckstr. 6, D-79104, Freiburg (Germany)

    2015-09-01

    We report on the dynamical interaction of quiet-Sun magnetic fields and granular convection in the solar photosphere as seen by Sunrise. We use high spatial resolution (0.″15–0.″18) and temporal cadence (33 s) spectropolarimetric Imaging Magnetograph eXperiment data, together with simultaneous CN and Ca ii H filtergrams from Sunrise Filter Imager. We apply the SIR inversion code to the polarimetric data in order to infer the line of sight velocity and vector magnetic field in the photosphere. The analysis reveals bundles of individual flux tubes evolving as a single entity during the entire 23 minute data set. The group shares a common canopy in the upper photospheric layers, while the individual tubes continually intensify, fragment and merge in the same way that chains of bright points in photometric observations have been reported to do. The evolution of the tube cores are driven by the local granular convection flows. They intensify when they are “compressed” by surrounding granules and split when they are “squeezed” between two moving granules. The resulting fragments are usually later regrouped in intergranular lanes by the granular flows. The continual intensification, fragmentation and coalescence of flux results in magnetic field oscillations of the global entity. From the observations we conclude that the magnetic field oscillations first reported by Martínez González et al. correspond to the forcing by granular motions and not to characteristic oscillatory modes of thin flux tubes.

  13. Understanding the core of RNA interference: The dynamic aspects of Argonaute-mediated processes

    KAUST Repository

    Zhu, Lizhe

    2016-10-05

    At the core of RNA interference, the Argonaute proteins (Ago) load and utilize small guide nucleic acids to silence mRNAs or cleave foreign nucleic acids in a sequence specific manner. In recent years, based on extensive structural studies of Ago and its interaction with the nucleic acids, considerable progress has been made to reveal the dynamic aspects of various Ago-mediated processes. Here we review these novel insights into the guide-strand loading, duplex unwinding, and effects of seed mismatch, with a focus on two representative Agos, the human Ago 2 (hAgo2) and the bacterial Thermus thermophilus Ago (TtAgo). In particular, comprehensive molecular simulation studies revealed that although sharing similar overall structures, the two Agos have vastly different conformational landscapes and guide-strand loading mechanisms because of the distinct rigidity of their L1-PAZ hinge. Given the central role of the PAZ motions in regulating the exposure of the nucleic acid binding channel, these findings exemplify the importance of protein motions in distinguishing the overlapping, yet distinct, mechanisms of Ago-mediated processes in different organisms.

  14. Spatiotemporal dynamics of Raman coherence in hollow-core fibers for a pump-probe setup

    Science.gov (United States)

    Husakou, Anton; Wang, Ying-Ying; Alharbi, Meshaal; Benabid, Fetah

    2018-02-01

    We present an experimental and theoretical study of the stimulated Raman emission in hollow-core kagome waveguides in a pump-probe arrangement. We perform an experimental investigation of the power of the Stokes signal from the probe, which is below the stimulated Raman scattering threshold, as a function the pump-probe delay time. The results show the Stokes power to increase with pump-probe delay, reaching a maximum at 10 ns, and to decrease afterward. In view of a coherence decay time of only 0.25 ns, we demonstrate a surprisingly slow reduction of Stokes signal with the characteristic time much longer than the coherence decay time by a factor of up to 40. The numerical investigations explain the observed phenomenon as a result of the spatiotemporal dynamics of the probe pulse and Raman coherence. We show that the increase of the characteristic time can be related to the spatial position of the intense sideband generation event and its dependence on the pump-probe delay.

  15. GCFR Coupled Neutronic and Thermal-Fluid-Dynamics Analyses for a Core Containing Minor Actinides

    Directory of Open Access Journals (Sweden)

    Diego Castelliti

    2009-01-01

    Full Text Available Problems about future energy availability, climate changes, and air quality seem to play an important role in energy production. While current reactor generations provide a guaranteed and economical energy production, new nuclear power plant generation would increase the ways and purposes in which nuclear energy can be used. To explore these new technological applications, several governments, industries, and research communities decided to contribute to the next reactor generation, called “Generation IV.” Among the six Gen-IV reactor designs, the Gas Cooled Fast Reactor (GCFR uses a direct-cycle helium turbine for electricity generation and for a CO2-free thermochemical production of hydrogen. Additionally, the use of a fast spectrum allows actinides transmutation, minimizing the production of long-lived radioactive waste in an integrated fuel cycle. This paper presents an analysis of GCFR fuel cycle optimization and of a thermal-hydraulic of a GCFR-prototype under steady-state and transient conditions. The fuel cycle optimization was performed to assess the capability of the GCFR to transmute MAs, while the thermal-hydraulic analysis was performed to investigate the reactor and the safety systems behavior during a LOFA. Preliminary results show that limited quantities of MA are not affecting significantly the thermal-fluid-dynamics behavior of a GCFR core.

  16. The impact of vorticity waves on the shock dynamics in core-collapse supernovae

    Science.gov (United States)

    Huete, César; Abdikamalov, Ernazar; Radice, David

    2018-04-01

    Convective perturbations arising from nuclear shell burning can play an important role in propelling neutrino-driven core-collapse supernova explosions. In this work, we analyse the impact of vorticity waves on the shock dynamics, and subsequently on the post-shock flow, using the solution of the linear hydrodynamics equations. As a result of the interaction with the shock wave, vorticity waves increase their kinetic energy, and a new set of entropic and acoustic waves is deposited in the post-shock region. These perturbations interact with the neutrino-driven turbulent convection that develops in that region. Although both vorticity and acoustic waves inject non-radial motion into the gain region, the contribution of the acoustic waves is found to be negligibly small in comparison to that of the vorticity waves. On the other hand, entropy waves become buoyant and trigger more convection. Using the concept of critical neutrino luminosity, we assess the impact of these modes on the explosion conditions. While the direct injection of non-radial motion reduces the critical neutrino luminosity by ˜ 12 per cent for typical problem parameters, the buoyancy-driven convection triggered by entropy waves reduces the critical luminosity by ˜ 17-24 per cent, which approximately agrees with the results of three-dimensional neutrino-hydrodynamics simulations. Finally, we discuss the limits of validity of the assumptions employed.

  17. Information Dynamics in Networks: Models and Algorithms

    Science.gov (United States)

    2016-09-13

    Information Dynamics in Networks: Models and Algorithms In this project, we investigated how network structure interplays with higher level processes in...Models and Algorithms Report Title In this project, we investigated how network structure interplays with higher level processes in online social...Received Paper 1.00 2.00 3.00 . A Note on Modeling Retweet Cascades on Twitter, Workshop on Algorithms and Models for the Web Graph. 09-DEC-15

  18. Ultrafast Transient Absorption Spectroscopy Investigation of Photoinduced Dynamics in Novel Donor-Acceptor Core-Shell Nanostructures for Organic Photovoltaics

    Science.gov (United States)

    Strain, Jacob; Jamhawi, Abdelqader; Abeywickrama, Thulitha M.; Loomis, Wendy; Rathnayake, Hemali; Liu, Jinjun

    2016-06-01

    Novel donor-acceptor nanostructures were synthesized via covalent synthesis and/or UV cross-linking method. Their photoinduced dynamics were investigated with ultrafast transient absorption (TA) spectroscopy. These new nanostructures are made with the strategy in mind to reduce manufacturing steps in the process of fabricating an organic photovoltaic cell. By imitating the heterojunction interface within a fixed particle domain, several fabrication steps can be bypassed reducing cost and giving more applicability to other film deposition methods. Such applications include aerosol deposition and ink-jet printing. The systems that were studied by TA spectroscopy include PDIB core, PDIB-P3HT core-shell, and PDIB-PANT core-shell which range in size from 60 to 130 nm. Within the experimentally accessible spectra range there resides a region of ground state bleaching, stimulated emission, and excited-state absorption of both neutrals and anions. Control experiments have been carried out to assign these features. At high pump fluences the TA spectra of PDIB core alone also indicate an intramolecular charge separation. The TA spectroscopy results thus far suggest that the core-shells resemble the photoinduced dynamics of a standard film although the particles are dispersed in solution, which indicates the desired outcome of the work.

  19. Dynamics of the standard model

    CERN Document Server

    Donoghue, John F; Holstein, Barry R

    2014-01-01

    Describing the fundamental theory of particle physics and its applications, this book provides a detailed account of the Standard Model, focusing on techniques that can produce information about real observed phenomena. The book begins with a pedagogic account of the Standard Model, introducing essential techniques such as effective field theory and path integral methods. It then focuses on the use of the Standard Model in the calculation of physical properties of particles. Rigorous methods are emphasized, but other useful models are also described. This second edition has been updated to include recent theoretical and experimental advances, such as the discovery of the Higgs boson. A new chapter is devoted to the theoretical and experimental understanding of neutrinos, and major advances in CP violation and electroweak physics have been given a modern treatment. This book is valuable to graduate students and researchers in particle physics, nuclear physics and related fields.

  20. Setting up The Geological information and modelling Thematic Core Service for EPOS

    Science.gov (United States)

    Grellet, Sylvain; Häner, Rainer; Pedersen, Mikael; Lorenz, Henning; Carter, Mary; Cipolloni, Carlo; Robida, François

    2017-04-01

    Geological data and models are key assets for the EPOS community. The Geological information and modelling Thematic Core Service of EPOS is being designed as an efficient and sustainable access system for geological multi-scale data assets for EPOS through the integration of distributed infrastructure components (nodes) of geological surveys, research institutes and the international drilling community (ICDP/IODP). The TCS will develop and take benefit of the synergy between the existing data infrastructures of the Geological Surveys of Europe (EuroGeoSurveys / OneGeology-Europe / EGDI) and of the large amount of information produced by the research organisations. These nodes will offer a broad range of resources including: geological maps, borehole data, borehole associated observations (borehole log data, groundwater level, groundwater quality…) and archived information on physical material (samples, cores), geological models (3D, 4D), geohazards, geophysical data such as active seismic data and other analyses of rocks, soils and minerals. The services will be implemented based on international standards (such as INSPIRE, IUGS/CGI, OGC, W3C, ISO) in order to guarantee their interoperability with other EPOS TCS as well as their compliance with INSPIRE European Directive or international initiatives (such as OneGeology). We present the implementation of the thematic core services for geology and modelling, including scheduling of the development of the different components. The activity with the OGC groups already started in 2016 through an ad-hoc meeting on Borehole and 3D/4D and the way both will be interlinked will also be introduced. This will provide future virtual research environments with means to facilitate the use of existing information for future applications. In addition, workflows will be established that allow the integration of other existing and new data and applications. Processing and the use of simulation and visualization tools will

  1. Probing molecular adsorbates with core-level spectroscopies: Electronic structure and bonding models

    Science.gov (United States)

    Fohlisch, Alexander

    Resonantly excited X-ray emission spectroscopy has been applied to study the valence electronic structure of molecular adsorbates in an atom specific and orbital symmetry selective manner. In combination with ab initio cluster calculations, electronic structure and bonding models have been derived. Existing models of surface chemical bonding have been reviewed and partially revised. Most notably, the bonding mechanism of carbon monoxide (CO) on transition and noble metals has been revised and is found to be the result of a strong covalent interaction between the CO orbitals and the metal bands within each orbital symmetry. A characteristic allylic configuration is found in the π system and strong polarization within the σ system. The equilibrium properties of adsorbed CO are the direct result of a balance between the repulsive σ-interaction and the attractive π-interaction both in terms of the total energy and the local bond properties. The bonding of ammonia (NH3) on the Cu(110) surface is found to be dominated by a large covalent interaction, which contrasts the previous model of a strong electrostatic interaction. Furthermore, adsorbate-adsorbate interaction leads to a tilted adsorption geometry. Ethylene (C2H4) on Cu(110) is adsorbed in the di-σ configuration, according to the generally accepted Dewar Chatt Duncanson model for hydrocarbon adsorption. The application and interpretation of resonantly excited X-ray emission on these systems also required a thorough discussion of the spectroscopic process. Another topic was the vibrational fine structure in the X-ray photoemission core-level main lines of adsorbed molecules. The observation of the vibrational fine structure in molecular adsorbates is remarkable, as it was previously thought impossible to observe due to solid state broadening contributions. A detailed analysis of the vibrational fine structure and the line profile makes it possible to study the electronic and geometric properties of the core

  2. Forecasting with Dynamic Regression Models

    CERN Document Server

    Pankratz, Alan

    2012-01-01

    One of the most widely used tools in statistical forecasting, single equation regression models is examined here. A companion to the author's earlier work, Forecasting with Univariate Box-Jenkins Models: Concepts and Cases, the present text pulls together recent time series ideas and gives special attention to possible intertemporal patterns, distributed lag responses of output to input series and the auto correlation patterns of regression disturbance. It also includes six case studies.

  3. Modelling of reactor control and protection systems in the core simulator program GARLIC

    International Nuclear Information System (INIS)

    Beraha, D.; Lupas, O.; Ploegert, K.

    1984-01-01

    For analysis of the interaction between control and limitation systems and the power distribution in the reactor core, a valuable tool is provided by the joint simulation of the core and the interacting systems. To this purpose, the core simulator GARLIC has been enhanced by models of the systems for controlling and limiting the reactor power and the power distribution in the core as well as by modules for calculating safety related core parameters. The computer-based core protection system, first installed in the Grafenrheinfeld NPP, has been included in the simulation. In order to evaluate the accuracy of GARLIC-simulations, the code has been compared with a design code in the train of a verification phase. The report describes the program extensions and the results of the verification. (orig.) [de

  4. Dynamic load modeling using neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, C.; Silva, A.P. Alves da; Torres, G. Lambert [Escola Federal de Engenharia de Itajuba, MG (Brazil). Inst. de Engenharia Eletrica

    1996-07-01

    Accurate dynamic load models allow more precise calculations of power system controls and stability limits. System identification methods can be applied to estimate load models based on measurements. Parametric and nonparametric are the two classes in system identification methods. The parametric approach has been the only one used for load modeling so far. In this paper, the performance of a nonparametric load model based on the functional polynomial artificial neural network is compared with a linear model and with the popular Zip model. The impact of clustering different load compositions is also investigated. Substation buses (138 kV) from the Brazilian system feeding important industrial consumers have been modeled. (author)

  5. Automated adaptive inference of phenomenological dynamical models

    Science.gov (United States)

    Daniels, Bryan

    Understanding the dynamics of biochemical systems can seem impossibly complicated at the microscopic level: detailed properties of every molecular species, including those that have not yet been discovered, could be important for producing macroscopic behavior. The profusion of data in this area has raised the hope that microscopic dynamics might be recovered in an automated search over possible models, yet the combinatorial growth of this space has limited these techniques to systems that contain only a few interacting species. We take a different approach inspired by coarse-grained, phenomenological models in physics. Akin to a Taylor series producing Hooke's Law, forgoing microscopic accuracy allows us to constrain the search over dynamical models to a single dimension. This makes it feasible to infer dynamics with very limited data, including cases in which important dynamical variables are unobserved. We name our method Sir Isaac after its ability to infer the dynamical structure of the law of gravitation given simulated planetary motion data. Applying the method to output from a microscopically complicated but macroscopically simple biological signaling model, it is able to adapt the level of detail to the amount of available data. Finally, using nematode behavioral time series data, the method discovers an effective switch between behavioral attractors after the application of a painful stimulus.

  6. Effect of attractive interactions on the water-like anomalies of a core-softened model potential

    International Nuclear Information System (INIS)

    Pant, Shashank; Gera, Tarun; Choudhury, Niharendu

    2013-01-01

    It is now well established that water-like anomalies can be reproduced by a spherically symmetric potential with two length scales, popularly known as core-softened potential. In the present study we aim to investigate the effect of attractive interactions among the particles in a model fluid interacting with core-softened potential on the existence and location of various water-like anomalies in the temperature-pressure plane. We employ extensive molecular dynamic simulations to study anomalous nature of various order parameters and properties under isothermal compression. Order map analyses have also been done for all the potentials. We observe that all the systems with varying depth of attractive wells show structural, dynamic, and thermodynamic anomalies. As many of the previous studies involving model water and a class of core softened potentials have concluded that the structural anomaly region encloses the diffusion anomaly region, which in turn, encloses the density anomaly region, the same pattern has also been observed in the present study for the systems with less depth of attractive well. For the systems with deeper attractive well, we observe that the diffusion anomaly region shifts toward higher densities and is not always enclosed by the structural anomaly region. Also, density anomaly region is not completely enclosed by diffusion anomaly region in this case

  7. Field based model for pedestrian dynamics

    Science.gov (United States)

    Yu, Bin; Zhang, Michael; Wang, Zhongren

    2018-03-01

    A pedestrian’s physical movement is simulated as a response to the pedestrian subjective evaluation of the objective environment. The objective environment is modeled by presumed fields statically or dynamically superposed. Regulation functions, which consider not only force caused by presumed fields but also local crowd densities around pedestrians, are introduced for consideration of pedestrians’ intelligence. Numerical experiments indicate that the model can be calibrated to reproduce a fundamental diagram that matches an empirical one proposed by Weidmann. Such experiments prove the model to be a useful tool for study of pedestrian dynamics.

  8. Dynamic optimization deterministic and stochastic models

    CERN Document Server

    Hinderer, Karl; Stieglitz, Michael

    2016-01-01

    This book explores discrete-time dynamic optimization and provides a detailed introduction to both deterministic and stochastic models. Covering problems with finite and infinite horizon, as well as Markov renewal programs, Bayesian control models and partially observable processes, the book focuses on the precise modelling of applications in a variety of areas, including operations research, computer science, mathematics, statistics, engineering, economics and finance. Dynamic Optimization is a carefully presented textbook which starts with discrete-time deterministic dynamic optimization problems, providing readers with the tools for sequential decision-making, before proceeding to the more complicated stochastic models. The authors present complete and simple proofs and illustrate the main results with numerous examples and exercises (without solutions). With relevant material covered in four appendices, this book is completely self-contained.

  9. Online Learning of Industrial Manipulators' Dynamics Models

    DEFF Research Database (Denmark)

    Polydoros, Athanasios

    2017-01-01

    The robotics industry has introduced light-weight compliant manipulators to increase the safety during human-robot interaction. This characteristic is achieved by replacing the stiff actuators of the traditional robots with compliant ones which creates challenges in the analytical derivation...... of the dynamics models. Those mainly derive from physics-based methods and thus they are based on physical properties which are hard to be calculated.  In this thesis, is presented, a novel online machine learning approach  which is able to model both inverse and forward dynamics models of industrial manipulators......, it was compared with multiple other state-of-the-art machine learning algorithms. Moreover, the thesis presents the application of the proposed learning method on robot control for achieving trajectory execution while learning the inverse dynamics models  on-the-fly . Also it is presented the application...

  10. Dynamic Factor Models for the Volatility Surface

    DEFF Research Database (Denmark)

    van der Wel, Michel; Ozturk, Sait R.; Dijk, Dick van

    The implied volatility surface is the collection of volatilities implied by option contracts for different strike prices and time-to-maturity. We study factor models to capture the dynamics of this three-dimensional implied volatility surface. Three model types are considered to examine desirable...

  11. Hierarchical Structured Model for Nonlinear Dynamical Processes ...

    African Journals Online (AJOL)

    The mathematical representation of the process, in this context, is by a set of linear stochastic differential equations (SDE) with unique solutions. The problem of realization is that of constructing the dynamical system by looking at the problem of scientific model building. In model building, one must be able to calculate the ...

  12. Dynamic spatial panels : models, methods, and inferences

    NARCIS (Netherlands)

    Elhorst, J. Paul

    This paper provides a survey of the existing literature on the specification and estimation of dynamic spatial panel data models, a collection of models for spatial panels extended to include one or more of the following variables and/or error terms: a dependent variable lagged in time, a dependent

  13. Dynamic modeling of the INAPRO aquaponic system

    NARCIS (Netherlands)

    Karimanzira, Divas; Keesman, Karel J.; Kloas, Werner; Baganz, Daniela; Rauschenbach, Thomas

    2016-01-01

    The use of modeling techniques to analyze aquaponics systems is demonstrated with an example of dynamic modeling for the production of Nile tilapia (Oreochromis niloticus) and tomatoes (Solanum lycopersicon) using the innovative double recirculating aquaponic system ASTAF-PRO. For the management

  14. Comparison of Hard-Core and Soft-Core Potentials for Modelling Flocking in Free Space

    OpenAIRE

    Smith, J. A; Martin, A. M

    2009-01-01

    An investigation into the properties of a two dimensional (2D+1) system of self propelled particles (known as boids) in free space is conducted using a Lagrangian Individual-Based Model. A potential, associated with each boid is specified and a Lagrangian is subsequently derived in order to obtain the equations of motion for each particle in the flock. The Morse potential and the Lennard-Jones potential, both well understood in atomic and molecular physics, are specified. In contrast to the o...

  15. Progress in core and fuel modelling to calculate severe accidents

    International Nuclear Information System (INIS)

    Bonnet, M.; Baldi, St.; Porta, J.

    2000-01-01

    The use of CERMET type composite fuels lead to a correct use of plutonium; a good thermomechanical behaviour due to a low operating temperature thanks to a high thermo-conductivity, that favours high burn-up due to the low fission gas release. However, the increase in the metallic mass, an alloy of zircaloy in the core, as well as the composite nature of the fuel with two very different melting temperatures (∼ 1,600 deg C for the metal, and 2,300 deg C for the ceramic) lead to a behaviour very different from that of the traditional ceramic fuel in the event of an accident. (authors)

  16. Core-shell particles as model compound for studying fouling

    DEFF Research Database (Denmark)

    Christensen, Morten Lykkegaard; Nielsen, Troels Bach; Andersen, Morten Boel Overgaard

    2008-01-01

    Synthetic colloidal particles with hard cores and soft, water-swollen shells were used to study cake formation during ultrafiltration. The total cake resistance was lowest for particles with thick shells, which indicates that interparticular forces between particles (steric hindrance...... and electrostatic repulsion) influenced cake formation. At low pressure the specific cake resistance could be predicted from the Kozeny-Carman equation. At higher pressures, the resistance increased due to cake compression. Both cake formation and compression were reversible. For particles with thick shells...

  17. Session 6: Dynamic Modeling and Systems Analysis

    Science.gov (United States)

    Csank, Jeffrey; Chapman, Jeffryes; May, Ryan

    2013-01-01

    These presentations cover some of the ongoing work in dynamic modeling and dynamic systems analysis. The first presentation discusses dynamic systems analysis and how to integrate dynamic performance information into the systems analysis. The ability to evaluate the dynamic performance of an engine design may allow tradeoffs between the dynamic performance and operability of a design resulting in a more efficient engine design. The second presentation discusses the Toolbox for Modeling and Analysis of Thermodynamic Systems (T-MATS). T-MATS is a Simulation system with a library containing the basic building blocks that can be used to create dynamic Thermodynamic Systems. Some of the key features include Turbo machinery components, such as turbines, compressors, etc., and basic control system blocks. T-MAT is written in the Matlab-Simulink environment and is open source software. The third presentation focuses on getting additional performance from the engine by allowing the limit regulators only to be active when a limit is danger of being violated. Typical aircraft engine control architecture is based on MINMAX scheme, which is designed to keep engine operating within prescribed mechanical/operational safety limits. Using a conditionally active min-max limit regulator scheme, additional performance can be gained by disabling non-relevant limit regulators

  18. Dynamical modeling of surface tension

    International Nuclear Information System (INIS)

    Brackbill, J.U.; Kothe, D.B.

    1996-01-01

    In a recent review it is said that free-surface flows ''represent some of the difficult remaining challenges in computational fluid dynamics''. There has been progress with the development of new approaches to treating interfaces, such as the level-set method and the improvement of older methods such as the VOF method. A common theme of many of the new developments has been the regularization of discontinuities at the interface. One example of this approach is the continuum surface force (CSF) formulation for surface tension, which replaces the surface stress given by Laplace's equation by an equivalent volume force. Here, we describe how CSF might be made more useful. Specifically, we consider a derivation of the CSF equations from a minimization of surface energy as outlined by Jacqmin. This reformulation suggests that if one eliminates the computation of curvature in terms of a unit normal vector, parasitic currents may be eliminated For this reformulation to work, it is necessary that transition region thickness be controlled. Various means for this, in addition to the one discussed by Jacqmin are discussed

  19. Brain Dynamics An Introduction to Models and Simualtions

    CERN Document Server

    Haken, Hermann

    2008-01-01

    Brain Dynamics serves to introduce graduate students and nonspecialists from various backgrounds to the field of mathematical and computational neurosciences. Some of the advanced chapters will also be of interest to the specialists. The book approaches the subject through pulse-coupled neural networks, with at their core the lighthouse and integrate-and-fire models, which allow for the highly flexible modelling of realistic synaptic activity, synchronization and spatio-temporal pattern formation. Topics also include pulse-averaged equations and their application to movement coordination. The book closes with a short analysis of models versus the real neurophysiological system. The second edition has been thoroughly updated and augmented by two extensive chapters that discuss the interplay between pattern recognition and synchronization. Further, to enhance the usefulness as textbook and for self-study, the detailed solutions for all 34 exercises throughout the text have been added.

  20. Nonlinear dynamic phenomena in the beer model

    DEFF Research Database (Denmark)

    Mosekilde, Erik; Laugesen, Jakob Lund

    2007-01-01

    The production-distribution system or "beer game" is one of the most well-known system dynamics models. Notorious for the complex dynamics it produces, the beer game has been used for nearly five decades to illustrate how structure generates behavior and to explore human decision making. Here we ...... in models that use piecewise-linear functions to represent nonlinearities are likely to show similar qualitative differences from the bifurcations known from smooth systems.......The production-distribution system or "beer game" is one of the most well-known system dynamics models. Notorious for the complex dynamics it produces, the beer game has been used for nearly five decades to illustrate how structure generates behavior and to explore human decision making. Here we...... present a formal bifurcation analysis to analyse the complex dynamics produced by the model. Consistent with the rules of the game, the model constitutes a piecewise-linear map with nonlinearities arising from non-negativity constraints. The bifurcations that occur in piecewise-linear systems...

  1. Modelling biased human trust dynamics

    NARCIS (Netherlands)

    Hoogendoorn, M.; Jaffry, S.W.; Maanen, P.P. van; Treur, J.

    2013-01-01

    Abstract. Within human trust related behaviour, according to the literature from the domains of Psychology and Social Sciences often non-rational behaviour can be observed. Current trust models that have been developed typically do not incorporate non-rational elements in the trust formation

  2. [Construction of the addiction prevention core competency model for preventing addictive behavior in adolescents].

    Science.gov (United States)

    Park, Hyun Sook; Jung, Sun Young

    2013-12-01

    This study was done to provide fundamental data for the development of competency reinforcement programs to prevent addictive behavior in adolescents through the construction and examination of an addiction prevention core competency model. In this study core competencies for preventing addictive behavior in adolescents through competency modeling were identified, and the addiction prevention core competency model was developed. It was validated methodologically. Competencies for preventing addictive behavior in adolescents as defined by the addiction prevention core competency model are as follows: positive self-worth, self-control skill, time management skill, reality perception skill, risk coping skill, and positive communication with parents and with peers or social group. After construction, concurrent cross validation of the addiction prevention core competency model showed that this model was appropriate. The study results indicate that the addiction prevention core competency model for the prevention of addictive behavior in adolescents through competency modeling can be used as a foundation for an integral approach to enhance adolescent is used as an adjective and prevent addictive behavior. This approach can be a school-centered, cost-efficient strategy which not only reduces addictive behavior in adolescents, but also improves the quality of their resources.

  3. Development of two mix model postprocessors for the investigation of shell mix in indirect drive implosion cores

    International Nuclear Information System (INIS)

    Welser-Sherrill, L.; Mancini, R. C.; Haynes, D. A.; Haan, S. W.; Koch, J. A.; Izumi, N.; Tommasini, R.; Golovkin, I. E.; MacFarlane, J. J.; Radha, P. B.; Delettrez, J. A.; Regan, S. P.; Smalyuk, V. A.

    2007-01-01

    The presence of shell mix in inertial confinement fusion implosion cores is an important characteristic. Mixing in this experimental regime is primarily due to hydrodynamic instabilities, such as Rayleigh-Taylor and Richtmyer-Meshkov, which can affect implosion dynamics. Two independent theoretical mix models, Youngs' model and the Haan saturation model, were used to estimate the level of Rayleigh-Taylor mixing in a series of indirect drive experiments. The models were used to predict the radial width of the region containing mixed fuel and shell materials. The results for Rayleigh-Taylor mixing provided by Youngs' model are considered to be a lower bound for the mix width, while those generated by Haan's model incorporate more experimental characteristics and consequently have larger mix widths. These results are compared with an independent experimental analysis, which infers a larger mix width based on all instabilities and effects captured in the experimental data

  4. Modelling oxygen transfer using dynamic alpha factors.

    Science.gov (United States)

    Jiang, Lu-Man; Garrido-Baserba, Manel; Nolasco, Daniel; Al-Omari, Ahmed; DeClippeleir, Haydee; Murthy, Sudhir; Rosso, Diego

    2017-11-01

    Due to the importance of wastewater aeration in meeting treatment requirements and due to its elevated energy intensity, it is important to describe the real nature of an aeration system to improve design and specification, performance prediction, energy consumption, and process sustainability. Because organic loadings drive aeration efficiency to its lowest value when the oxygen demand (energy) is the highest, the implications of considering their dynamic nature on energy costs are of utmost importance. A dynamic model aimed at identifying conservation opportunities is presented. The model developed describes the correlation between the COD concentration and the α factor in activated sludge. Using the proposed model, the aeration efficiency is calculated as a function of the organic loading (i.e. COD). This results in predictions of oxygen transfer values that are more realistic than the traditional method of assuming constant α values. The model was applied to two water resource recovery facilities, and was calibrated and validated with time-sensitive databases. Our improved aeration model structure increases the quality of prediction of field data through the recognition of the dynamic nature of the alpha factor (α) as a function of the applied oxygen demand. For the cases presented herein, the model prediction of airflow improved by 20-35% when dynamic α is used. The proposed model offers a quantitative tool for the prediction of energy demand and for minimizing aeration design uncertainty. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Modeling the Dynamics of Compromised Networks

    Energy Technology Data Exchange (ETDEWEB)

    Soper, B; Merl, D M

    2011-09-12

    Accurate predictive models of compromised networks would contribute greatly to improving the effectiveness and efficiency of the detection and control of network attacks. Compartmental epidemiological models have been applied to modeling attack vectors such as viruses and worms. We extend the application of these models to capture a wider class of dynamics applicable to cyber security. By making basic assumptions regarding network topology we use multi-group epidemiological models and reaction rate kinetics to model the stochastic evolution of a compromised network. The Gillespie Algorithm is used to run simulations under a worst case scenario in which the intruder follows the basic connection rates of network traffic as a method of obfuscation.

  6. Improvement of Axial Reflector Cross Section Generation Model for PWR Core Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Shim, Cheon Bo; Lee, Kyung Hoon; Cho, Jin Young [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    This paper covers the study for improvement of axial reflector XS generation model. In the next section, the improved 1D core model is represented in detail. Reflector XS generated by the improved model is compared to that of the conventional model in the third section. Nuclear design parameters generated by these two XS sets are also covered in that section. Significant of this study is discussed in the last section. Two-step procedure has been regarded as the most practical approach for reactor core designs because it offers core design parameters quite rapidly within acceptable range. Thus this approach is adopted for SMART (System-integrated Modular Advanced Reac- Tor) core design in KAERI with the DeCART2D1.1/ MASTER4.0 (hereafter noted as DeCART2D/ MASTER) code system. Within the framework of the two-step procedure based SMART core design, various researches have been studied to improve the core design reliability and efficiency. One of them is improvement of reflector cross section (XS) generation models. While the conventional FA/reflector two-node model used for most core designs to generate reflector XS cannot consider the actual configuration of fuel rods that intersect at right angles to axial reflectors, the revised model reflects the axial fuel configuration by introducing the radially simplified core model. The significance of the model revision is evaluated by observing HGC generated by DeCART2D, reflector XS, and core design parameters generated by adopting the two models. And it is verified that about 30 ppm CBC error can be reduced and maximum Fq error decreases from about 6 % to 2.5 % by applying the revised model. Error of AO and axial power shapes are also reduced significantly. Therefore it can be concluded that the simplified 1D core model improves the accuracy of the axial reflector XS and leads to the two-step procedure reliability enhancement. Since it is hard for core designs to be free from the two-step approach, it is necessary to find

  7. Constraints from material properties on the dynamics and evolution of Earth's core

    OpenAIRE

    Davies, C.; Pozzo, M.; Gubbins, D.; Alfe, D.

    2015-01-01

    The Earth's magnetic field is powered by energy supplied by the slow cooling and freezing of the liquid iron core. Efforts to determine the thermal and chemical history of the core have been hindered by poor knowledge of the properties of liquid iron alloys at the extreme pressures and temperatures that exist in the core. This obstacle is now being overcome by high-pressure experiments and advanced mineral physics computations. Using these approaches, updated transport properties for Fe-Si-O ...

  8. The use of CORE model by metacognitive skill approach in developing characters junior high school students

    Science.gov (United States)

    Fisher, Dahlia; Yaniawati, Poppy; Kusumah, Yaya Sukjaya

    2017-08-01

    This study aims to analyze the character of students who obtain CORE learning model using metacognitive approach. The method in this study is qualitative research and quantitative research design (Mixed Method Design) with concurrent embedded strategy. The research was conducted on two groups: an experimental group and the control group. An experimental group consists of students who had CORE model learning using metacognitive approach while the control group consists of students taught by conventional learning. The study was conducted the object this research is the seventh grader students in one the public junior high schools in Bandung. Based on this research, it is known that the characters of the students in the CORE model learning through metacognitive approach is: honest, hard work, curious, conscientious, creative and communicative. Overall it can be concluded that CORE model learning is good for developing characters of a junior high school student.

  9. Ab Initio Study of 40Ca with an Importance Truncated No-Core Shell Model

    Energy Technology Data Exchange (ETDEWEB)

    Roth, R; Navratil, P

    2007-05-22

    We propose an importance truncation scheme for the no-core shell model, which enables converged calculations for nuclei well beyond the p-shell. It is based on an a priori measure for the importance of individual basis states constructed by means of many-body perturbation theory. Only the physically relevant states of the no-core model space are considered, which leads to a dramatic reduction of the basis dimension. We analyze the validity and efficiency of this truncation scheme using different realistic nucleon-nucleon interactions and compare to conventional no-core shell model calculations for {sup 4}He and {sup 16}O. Then, we present the first converged calculations for the ground state of {sup 40}Ca within no-core model spaces including up to 16{h_bar}{Omega}-excitations using realistic low-momentum interactions. The scheme is universal and can be easily applied to other quantum many-body problems.

  10. Feature Extraction for Structural Dynamics Model Validation

    Energy Technology Data Exchange (ETDEWEB)

    Farrar, Charles [Los Alamos National Laboratory; Nishio, Mayuko [Yokohama University; Hemez, Francois [Los Alamos National Laboratory; Stull, Chris [Los Alamos National Laboratory; Park, Gyuhae [Chonnam Univesity; Cornwell, Phil [Rose-Hulman Institute of Technology; Figueiredo, Eloi [Universidade Lusófona; Luscher, D. J. [Los Alamos National Laboratory; Worden, Keith [University of Sheffield

    2016-01-13

    As structural dynamics becomes increasingly non-modal, stochastic and nonlinear, finite element model-updating technology must adopt the broader notions of model validation and uncertainty quantification. For example, particular re-sampling procedures must be implemented to propagate uncertainty through a forward calculation, and non-modal features must be defined to analyze nonlinear data sets. The latter topic is the focus of this report, but first, some more general comments regarding the concept of model validation will be discussed.

  11. Modeling Gas Dynamics in California Sea Lions

    Science.gov (United States)

    2015-09-30

    1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Modeling Gas Dynamics in California Sea Lions Andreas...California sea lions . The model will be calibrated against measured arterial and venous PO2 levels from California sea lions , and estimate the error between...existing model with new species-specific parameter estimates for California sea lions . Aim 2: Compare estimated and measured arterial and venous

  12. Modeling Computer Virus and Its Dynamics

    OpenAIRE

    Peng, Mei; He, Xing; Huang, Junjian; Dong, Tao

    2013-01-01

    Based on that the computer will be infected by infected computer and exposed computer, and some of the computers which are in suscepitible status and exposed status can get immunity by antivirus ability, a novel coumputer virus model is established. The dynamic behaviors of this model are investigated. First, the basic reproduction number R0, which is a threshold of the computer virus spreading in internet, is determined. Second, this model has a virus-free equilibrium P0, which means that th...

  13. Nonparametric and semiparametric dynamic additive regression models

    DEFF Research Database (Denmark)

    Scheike, Thomas Harder; Martinussen, Torben

    Dynamic additive regression models provide a flexible class of models for analysis of longitudinal data. The approach suggested in this work is suited for measurements obtained at random time points and aims at estimating time-varying effects. Both fully nonparametric and semiparametric models can...... in special cases. We investigate the finite sample properties of the estimators and conclude that the asymptotic results are valid for even samll samples....

  14. Modeling and interpreting mesoscale network dynamics.

    Science.gov (United States)

    Khambhati, Ankit N; Sizemore, Ann E; Betzel, Richard F; Bassett, Danielle S

    2017-06-20

    Recent advances in brain imaging techniques, measurement approaches, and storage capacities have provided an unprecedented supply of high temporal resolution neural data. These data present a remarkable opportunity to gain a mechanistic understanding not just of circuit structure, but also of circuit dynamics, and its role in cognition and disease. Such understanding necessitates a description of the raw observations, and a delineation of computational models and mathematical theories that accurately capture fundamental principles behind the observations. Here we review recent advances in a range of modeling approaches that embrace the temporally-evolving interconnected structure of the brain and summarize that structure in a dynamic graph. We describe recent efforts to model dynamic patterns of connectivity, dynamic patterns of activity, and patterns of activity atop connectivity. In the context of these models, we review important considerations in statistical testing, including parametric and non-parametric approaches. Finally, we offer thoughts on careful and accurate interpretation of dynamic graph architecture, and outline important future directions for method development. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  15. Dynamic Modeling of Solar Dynamic Components and Systems

    Science.gov (United States)

    Hochstein, John I.; Korakianitis, T.

    1992-01-01

    The purpose of this grant was to support NASA in modeling efforts to predict the transient dynamic and thermodynamic response of the space station solar dynamic power generation system. In order to meet the initial schedule requirement of providing results in time to support installation of the system as part of the initial phase of space station, early efforts were executed with alacrity and often in parallel. Initially, methods to predict the transient response of a Rankine as well as a Brayton cycle were developed. Review of preliminary design concepts led NASA to select a regenerative gas-turbine cycle using a helium-xenon mixture as the working fluid and, from that point forward, the modeling effort focused exclusively on that system. Although initial project planning called for a three year period of performance, revised NASA schedules moved system installation to later and later phases of station deployment. Eventually, NASA selected to halt development of the solar dynamic power generation system for space station and to reduce support for this project to two-thirds of the original level.

  16. Dynamic Models of Insurgent Activity

    Science.gov (United States)

    2014-05-19

    IKENET  and  the   Enron  e-­‐ mail  datasets.  We  show  that  the  self-­‐exciting  models  adequately  capture  major...the  West  Point  and   Enron   networks.  This  work  is  under  review  at  J.  Amer.  Stat.  Assoc.   Agent

  17. Modeling Dynamic Regulatory Processes in Stroke

    Science.gov (United States)

    McDermott, Jason E.; Jarman, Kenneth; Taylor, Ronald; Lancaster, Mary; Shankaran, Harish; Vartanian, Keri B.; Stevens, Susan L.; Stenzel-Poore, Mary P.; Sanfilippo, Antonio

    2012-01-01

    The ability to examine the behavior of biological systems in silico has the potential to greatly accelerate the pace of discovery in diseases, such as stroke, where in vivo analysis is time intensive and costly. In this paper we describe an approach for in silico examination of responses of the blood transcriptome to neuroprotective agents and subsequent stroke through the development of dynamic models of the regulatory processes observed in the experimental gene expression data. First, we identified functional gene clusters from these data. Next, we derived ordinary differential equations (ODEs) from the data relating these functional clusters to each other in terms of their regulatory influence on one another. Dynamic models were developed by coupling these ODEs into a model that simulates the expression of regulated functional clusters. By changing the magnitude of gene expression in the initial input state it was possible to assess the behavior of the networks through time under varying conditions since the dynamic model only requires an initial starting state, and does not require measurement of regulatory influences at each time point in order to make accurate predictions. We discuss the implications of our models on neuroprotection in stroke, explore the limitations of the approach, and report that an optimized dynamic model can provide accurate predictions of overall system behavior under several different neuroprotective paradigms. PMID:23071432

  18. Modeling dynamic regulatory processes in stroke.

    Directory of Open Access Journals (Sweden)

    Jason E McDermott

    Full Text Available The ability to examine the behavior of biological systems in silico has the potential to greatly accelerate the pace of discovery in diseases, such as stroke, where in vivo analysis is time intensive and costly. In this paper we describe an approach for in silico examination of responses of the blood transcriptome to neuroprotective agents and subsequent stroke through the development of dynamic models of the regulatory processes observed in the experimental gene expression data. First, we identified functional gene clusters from these data. Next, we derived ordinary differential equations (ODEs from the data relating these functional clusters to each other in terms of their regulatory influence on one another. Dynamic models were developed by coupling these ODEs into a model that simulates the expression of regulated functional clusters. By changing the magnitude of gene expression in the initial input state it was possible to assess the behavior of the networks through time under varying conditions since the dynamic model only requires an initial starting state, and does not require measurement of regulatory influences at each time point in order to make accurate predictions. We discuss the implications of our models on neuroprotection in stroke, explore the limitations of the approach, and report that an optimized dynamic model can provide accurate predictions of overall system behavior under several different neuroprotective paradigms.

  19. Coupling population dynamics with earth system models: the POPEM model.

    Science.gov (United States)

    Navarro, Andrés; Moreno, Raúl; Jiménez-Alcázar, Alfonso; Tapiador, Francisco J

    2017-09-16

    Precise modeling of CO 2 emissions is important for environmental research. This paper presents a new model of human population dynamics that can be embedded into ESMs (Earth System Models) to improve climate modeling. Through a system dynamics approach, we develop a cohort-component model that successfully simulates historical population dynamics with fine spatial resolution (about 1°×1°). The population projections are used to improve the estimates of CO 2 emissions, thus transcending the bulk approach of existing models and allowing more realistic non-linear effects to feature in the simulations. The module, dubbed POPEM (from Population Parameterization for Earth Models), is compared with current emission inventories and validated against UN aggregated data. Finally, it is shown that the module can be used to advance toward fully coupling the social and natural components of the Earth system, an emerging research path for environmental science and pollution research.

  20. Structural response of reactor-core hexcan subassemblies subjected to dynamic overpressurization under accident conditions

    International Nuclear Information System (INIS)

    Pfeiffer, P.A.; Kulak, R.F.

    1993-01-01

    This paper presents a two-dimensional structural analysis for the evaluation of a single core subassembly due to internal overpressure associated with possible failure of fuel pins having high fission gas plenum pressure. Structural models are developed for the subassemblies and their surroundings with emphasis on the critical physical aspects of the problem. With these models the strains, deformations and the extent of permanent damage (plastic strain) to the subassemblies can be assessed. The nonlinear structural analyses was performed with a finite element program called STRAW (Structural Transient Response of Assembly Wrappers). This finite element program is applicable to nonlinear large displacement problems. The results of this study indicate that the permanent deformation (damage) is strongly influenced by the rise time (time to reach peak pressure) of the pressure pulse and the pressure in the fuel pin. The rise time is influenced by the opening time of the flow path for release of gas from the fuel pin plenum. Several examples are illustrated with various rise times and pressure magnitudes and the resulting permanent deformation of the hexcan wall

  1. Dynamic structural response of reactor-core subassemblies (hexcans) due to accident overpressurization

    International Nuclear Information System (INIS)

    Pfeiffer, P.A.; Kulak, R.F.

    1993-01-01

    This paper presents a two-dimensional structural analysis for the evaluation of a single core subassembly due to internal overpressure associated with possible failure of fuel pins having high fission gas plenum pressure. Structural models are developed for the subassemblies and their surroundings with emphasis on the critical physical aspects of the problem. With these models the strains, deformations and the extent of permanent damage (plastic strain) to the subassemblies can be assessed. The nonlinear structural analyses was performed with a finite element program called STRAW (Structural Transient Response of Assembly Wrappers). This finite element program is applicable to nonlinear large displacement problems. The results of this study indicate that the permanent deformation (damage) is strongly influenced by the rise time (time to reach peak pressure) of the pressure pulse and the pressure in the fuel pin. The rise time is influenced by the opening time of the flow path for release of gas from the fuel pin plenum. Several examples are illustrated with various rise times and pressure magnitudes and the resulting permanent deformation of the hexcan wall

  2. Dynamic structural response of reactor-core subassemblies (hexcans) due to accident overpressurization

    International Nuclear Information System (INIS)

    Pfeiffer, P.A.; Kulak, R.F.

    1993-01-01

    This paper presents a two-dimensional structural analysis for the evaluation of a single core subassembly due to internal overpressure associated with possible failure of fuel pins having high fission gas plenum pressure. Structural models are developed for the subassemblies and their surroundings with emphasis on the critical physical aspects of the problem. With these models the strains, deformations and the extent of permanent damage (plastic strain) to the subassemblies can be assessed. The nonlinear structural analyses was performed with a finite element program called STRAW (Structural Transient Response of Assembly Wrappers). This finite element program is applicable to nonlinear large displacement problems. The results of this study indicate that the permanent deformation (damage) is strongly influenced by the rise time (time to reach peak pressure) of the pressure pulse and the pressure in the fuel pin. The rise time is influenced by the opening time of the flow path for release of gas from the fuel pin plenum. Several examples are illustrated with various rise times and pressure magnitudes and the resulting permanent deformation of the hexcan wall. (author)

  3. Modeling the dynamics of dissent

    Science.gov (United States)

    Lee, Eun; Holme, Petter; Lee, Sang Hoon

    2017-11-01

    We investigate the formation of opinion against authority in an authoritarian society composed of agents with different levels of authority. We explore a ;dissenting; opinion, held by lower-ranking, obedient, or less authoritative people, spreading in an environment of an ;affirmative; opinion held by authoritative leaders. A real-world example would be a corrupt society where people revolt against such leaders, but it can be applied to more general situations. In our model, agents can change their opinion depending on their authority relative to their neighbors and their own confidence level. In addition, with a certain probability, agents can override the affirmative opinion to take the dissenting opinion of a neighbor. Based on analytic derivation and numerical simulations, we observe that both the network structure and heterogeneity in authority, and their correlation, significantly affect the possibility of the dissenting opinion to spread through the population. In particular, the dissenting opinion is suppressed when the authority distribution is very heterogeneous and there exists a positive correlation between the authority and the number of neighbors of people (degree). Except for such an extreme case, though, spreading of the dissenting opinion takes place when people have the tendency to override the authority to hold the dissenting opinion, but the dissenting opinion can take a long time to spread to the entire society, depending on the model parameters. We argue that the internal social structure of agents sets the scale of the time to reach consensus, based on the analysis of the underlying structural properties of opinion spreading.

  4. Dynamical properties of the Rabi model

    International Nuclear Information System (INIS)

    Hu, Binglu; Zhou, Huili; Chen, Shujie; Xianlong, Gao; Wang, Kelin

    2017-01-01

    We study the dynamical properties of the quantum Rabi model using a systematic expansion method. Based on the observation that the parity symmetry of the Rabi model is kept during evolution of the states, we decompose the initial state and the time-dependent one into positive and negative parity parts expanded by superposition of the coherent states. The evolutions of the corresponding positive and the negative parities are obtained, in which the expansion coefficients in the dynamical equations are known from the derived recurrence relation. (paper)

  5. Research on nonlinear stochastic dynamical price model

    International Nuclear Information System (INIS)

    Li Jiaorui; Xu Wei; Xie Wenxian; Ren Zhengzheng

    2008-01-01

    In consideration of many uncertain factors existing in economic system, nonlinear stochastic dynamical price model which is subjected to Gaussian white noise excitation is proposed based on deterministic model. One-dimensional averaged Ito stochastic differential equation for the model is derived by using the stochastic averaging method, and applied to investigate the stability of the trivial solution and the first-passage failure of the stochastic price model. The stochastic price model and the methods presented in this paper are verified by numerical studies

  6. Modelling environmental dynamics. Advances in goematic solutions

    Energy Technology Data Exchange (ETDEWEB)

    Paegelow, Martin [Toulouse-2 Univ., 31 (France). GEODE UMR 5602 CNRS; Camacho Olmedo, Maria Teresa (eds.) [Granada Univ (Spain). Dpto. de Analisis Geografico Regional y Geografia Fisica

    2008-07-01

    Modelling environmental dynamics is critical to understanding and predicting the evolution of the environment in response to the large number of influences including urbanisation, climate change and deforestation. Simulation and modelling provide support for decision making in environmental management. The first chapter introduces terminology and provides an overview of methodological modelling approaches which may be applied to environmental and complex dynamics. Based on this introduction this book illustrates various models applied to a large variety of themes: deforestation in tropical regions, fire risk, natural reforestation in European mountains, agriculture, biodiversity, urbanism, climate change and land management for decision support, etc. These case studies, provided by a large international spectrum of researchers and presented in a uniform structure, focus particularly on methods and model validation so that this book is not only aimed at researchers and graduates but also at professionals. (orig.)

  7. Modeling emotional dynamics : currency versus field.

    Energy Technology Data Exchange (ETDEWEB)

    Sallach, D .L.; Decision and Information Sciences; Univ. of Chicago

    2008-08-01

    Randall Collins has introduced a simplified model of emotional dynamics in which emotional energy, heightened and focused by interaction rituals, serves as a common denominator for social exchange: a generic form of currency, except that it is active in a far broader range of social transactions. While the scope of this theory is attractive, the specifics of the model remain unconvincing. After a critical assessment of the currency theory of emotion, a field model of emotion is introduced that adds expressiveness by locating emotional valence within its cognitive context, thereby creating an integrated orientation field. The result is a model which claims less in the way of motivational specificity, but is more satisfactory in modeling the dynamic interaction between cognitive and emotional orientations at both individual and social levels.

  8. Dynamical Frustration in ANNNI Model and Annealing

    Science.gov (United States)

    Sen, Parongama; Das, Pratap K.

    Simulated annealing is usually applied to systems with frustration, like spin glasses and optimisation problems, where the energy landscape is complex with many spurious minima. There are certain other systems, however, which have very simple energy landscape picture and ground states, but still the system fails to reach its ground state during a energy-lowering dynamical process. This situation corresponds to "dynamical frustration ". We have specifically considered the case of the axial next nearest neighbour (ANNNI) chain, where such a situation is encountered. In Sect. II, we elaborate the notion of dynamic frustration with examples and in Sect. III, the dynamics in ANNNI model is discussed in detail. The results of application of the classical and quantum annealing are discussed in Sects. IV and V. Summary and some concluding comments are given in the last section.

  9. Dynamic Radiation Environment Assimilation Model: DREAM

    Science.gov (United States)

    Reeves, G. D.; Chen, Y.; Cunningham, G. S.; Friedel, R. W. H.; Henderson, M. G.; Jordanova, V. K.; Koller, J.; Morley, S. K.; Thomsen, M. F.; Zaharia, S.

    2012-03-01

    The Dynamic Radiation Environment Assimilation Model (DREAM) was developed to provide accurate, global specification of the Earth's radiation belts and to better understand the physical processes that control radiation belt structure and dynamics. DREAM is designed using a modular software approach in order to provide a computational framework that makes it easy to change components such as the global magnetic field model, radiation belt dynamics model, boundary conditions, etc. This paper provides a broad overview of the DREAM model and a summary of some of the principal results to date. We describe the structure of the DREAM model, describe the five major components, and illustrate the various options that are available for each component. We discuss how the data assimilation is performed and the data preprocessing and postprocessing that are required for producing the final DREAM outputs. We describe how we apply global magnetic field models for conversion between flux and phase space density and, in particular, the benefits of using a self-consistent, coupled ring current-magnetic field model. We discuss some of the results from DREAM including testing of boundary condition assumptions and effects of adding a source term to radial diffusion models. We also describe some of the testing and validation of DREAM and prospects for future development.

  10. Modeling of heat and mass transfer processes during core melt discharge from a reactor pressure vessel

    Energy Technology Data Exchange (ETDEWEB)

    Dinh, T.N.; Bui, V.A.; Nourgaliev, R.R. [Royal Institute of Technology, Stockholm (Sweden)] [and others

    1995-09-01

    The objective of the paper is to study heat and mass transfer processes related to core melt discharge from a reactor vessel is a severe light water reactor accident. The phenomenology of the issue includes (1) melt convection in and heat transfer from the melt pool in contact with the vessel lower head wall; (2) fluid dynamics and heat transfer of the melt flow in the growing discharge hole; and (3) multi-dimensional heat conduction in the ablating lower head wall. A program of model development, validation and application is underway (i) to analyse the dominant physical mechanisms determining characteristics of the lower head ablation process; (ii) to develop and validate efficient analytic/computational methods for estimating heat and mass transfer under phase-change conditions in irregular moving-boundary domains; and (iii) to investigate numerically the melt discharge phenomena in a reactor-scale situation, and, in particular, the sensitivity of the melt discharge transient to structural differences and various in-vessel melt progression scenarios. The paper presents recent results of the analysis and model development work supporting the simulant melt-structure interaction experiments.

  11. The L1495-B218 filaments in Taurus seen in NH3 & CCS and Dynamical Stability of Filaments and Dense Cores

    Science.gov (United States)

    Seo, Youngmin

    2016-01-01

    We present deep NH3 map of L1495-B218 filaments and the dense cores embedded within the filaments in Taurus. The L1495-B218 filaments form an interconnected, nearby, large complex extending 8 pc. We observed the filaments in NH3 (1,1) & (2,2) and CCS 21-10 with spectral resolution of 0.038 km/s and spatial resolution of 31". The CSAR algorithm, which is a hybrid of seeded-watershed and binary dendrogram algorithm, identifies 39 leaves and 16 branches in NH3 (1,1). Applying a virial analysis for the 39 NH3 leaves, we find only 9 out of 39 leaves are gravitationally bound, and 12 out of 30 gravitationally unbound leaves are pressure-confined. Our analysis suggests that a dense core may form as a pressure-confined structure, evolve to a gravitationally bound core, and then undergo collapse to form a protostar (Seo et al. 2015).We also present more realistic dynamic stability conditions for dense cores with converging motions and under the influence of radiation pressure. The critical Bonnor-Ebert sphere and the isothermal cylinder have been widely used to test stability of dense cores and filaments; however, these assume a quiescent environment while actual star forming regions are turbulent and illuminated by radiation. In a new analysis of stability conditions we account for converging motions which have been modeled toward starless cores (Seo et al. 2011) and the effect of radiation fields into account. We find that the critical size of a dense core having a homologous converging motion with its peak speed being the sound speed is roughly half of the critical size of the Bonnor-Ebert sphere (Seo et al. 2013). We also find that the critical mass/line density of a dense core/filament irradiated by radiation are considerably smaller than that of the Bonnor-Ebert sphere/isothermal cylinder when the radiation pressure is stronger than the central gas pressure of dense core/isothermal cylinder. For inner Galactic regions and regions near OB associations, the critical

  12. Mathematical Model for Thermal Processes of Single-Core Power Cable

    Directory of Open Access Journals (Sweden)

    D. I. Zalizny

    2012-01-01

    Full Text Available The paper proposes a mathematical model for thermal processes that permits to calculate non-stationary thermal processes of core insulation and surface of a single-core power cable in real-time mode. The model presents the cable as four thermal homogeneous bodies: core, basic insulation, protective sheath and internal environment. Thermal processes between homogeneous bodies are described by a system of four differential equations. The paper contains a proposal to solve this system of equations with the help of a thermal equivalent circuit and the Laplace transform. All design ratios for thermal parameters and algorithm for calculating temperature of core insulation and temperature of power cable surface. These algorithms can be added in the software of microprocessor devices. The paper contains results of experimental investigations and reveals that an absolute error of the mathematical model does not exceed 3ºС.

  13. System Dynamics Modelling in CRM: Window Fashions Gallery

    Directory of Open Access Journals (Sweden)

    F.T. Yuen

    2010-09-01

    Full Text Available The core research issue on which this study focuses is customer relationship management (CRM in a designated window fashions firm. A system dynamics-based CRM model is developed to help evaluate the effectiveness of CRM in the firm and examine factors affecting customer satisfaction. Different relationships and linkages between the firm, its employees, and its customers are identified to establish feedback loops that analyze the system over time. The analysis of the CRM model shows that employee satisfaction is the key leverage point affecting customer satisfaction, number of customers, and sales volume of the firm. Product attractiveness and service quality also play an important role in influencing the level of customer satisfaction. On the other hand, advertising and employee training have only minor effects on customer satisfaction.

  14. Modelling the WWER-type reactor dynamics using a hybrid computer. Part 1

    International Nuclear Information System (INIS)

    Karpeta, C.

    Results of simulation studies into reactor and steam generator dynamics of a WWER type power plant are presented. Spatial kinetics of the reactor core is described by a nodal approximation to diffusion equations, xenon poisoning equations and heat transfer equations. The simulation of the reactor model dynamics was performed on a hybrid computer. Models of both a horizontal and a vertical steam generator were developed. The dynamics was investigated over a large range of power by computing the transients on a digital computer. (author)

  15. IAEA CRP on HTGR Uncertainties in Modeling: Assessment of Phase I Lattice to Core Model Uncertainties

    Energy Technology Data Exchange (ETDEWEB)

    Rouxelin, Pascal Nicolas [Idaho National Lab. (INL), Idaho Falls, ID (United States); Strydom, Gerhard [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-09-01

    Best-estimate plus uncertainty analysis of reactors is replacing the traditional conservative (stacked uncertainty) method for safety and licensing analysis. To facilitate uncertainty analysis applications, a comprehensive approach and methodology must be developed and applied. High temperature gas cooled reactors (HTGRs) have several features that require techniques not used in light-water reactor analysis (e.g., coated-particle design and large graphite quantities at high temperatures). The International Atomic Energy Agency has therefore launched the Coordinated Research Project on HTGR Uncertainty Analysis in Modeling to study uncertainty propagation in the HTGR analysis chain. The benchmark problem defined for the prismatic design is represented by the General Atomics Modular HTGR 350. The main focus of this report is the compilation and discussion of the results obtained for various permutations of Exercise I 2c and the use of the cross section data in Exercise II 1a of the prismatic benchmark, which is defined as the last and first steps of the lattice and core simulation phases, respectively. The report summarizes the Idaho National Laboratory (INL) best estimate results obtained for Exercise I 2a (fresh single-fuel block), Exercise I 2b (depleted single-fuel block), and Exercise I 2c (super cell) in addition to the first results of an investigation into the cross section generation effects for the super-cell problem. The two dimensional deterministic code known as the New ESC based Weighting Transport (NEWT) included in the Standardized Computer Analyses for Licensing Evaluation (SCALE) 6.1.2 package was used for the cross section evaluation, and the results obtained were compared to the three dimensional stochastic SCALE module KENO VI. The NEWT cross section libraries were generated for several permutations of the current benchmark super-cell geometry and were then provided as input to the Phase II core calculation of the stand alone neutronics Exercise

  16. A Stochastic Model for Malaria Transmission Dynamics

    Directory of Open Access Journals (Sweden)

    Rachel Waema Mbogo

    2018-01-01

    Full Text Available Malaria is one of the three most dangerous infectious diseases worldwide (along with HIV/AIDS and tuberculosis. In this paper we compare the disease dynamics of the deterministic and stochastic models in order to determine the effect of randomness in malaria transmission dynamics. Relationships between the basic reproduction number for malaria transmission dynamics between humans and mosquitoes and the extinction thresholds of corresponding continuous-time Markov chain models are derived under certain assumptions. The stochastic model is formulated using the continuous-time discrete state Galton-Watson branching process (CTDSGWbp. The reproduction number of deterministic models is an essential quantity to predict whether an epidemic will spread or die out. Thresholds for disease extinction from stochastic models contribute crucial knowledge on disease control and elimination and mitigation of infectious diseases. Analytical and numerical results show some significant differences in model predictions between the stochastic and deterministic models. In particular, we find that malaria outbreak is more likely if the disease is introduced by infected mosquitoes as opposed to infected humans. These insights demonstrate the importance of a policy or intervention focusing on controlling the infected mosquito population if the control of malaria is to be realized.

  17. Overall feature of EAST operation space by using simple Core-SOL-Divertor model

    International Nuclear Information System (INIS)

    Hiwatari, R.; Hatayama, A.; Zhu, S.; Takizuka, T.; Tomita, Y.

    2005-01-01

    We have developed a simple Core-SOL-Divertor (C-S-D) model to investigate qualitatively the overall features of the operational space for the integrated core and edge plasma. To construct the simple C-S-D model, a simple core plasma model of ITER physics guidelines and a two-point SOL-divertor model are used. The simple C-S-D model is applied to the study of the EAST operational space with lower hybrid current drive experiments under various kinds of trade-off for the basic plasma parameters. Effective methods for extending the operation space are also presented. As shown by this study for the EAST operation space, it is evident that the C-S-D model is a useful tool to understand qualitatively the overall features of the plasma operation space. (author)

  18. Dynamic Model Averaging in Large Model Spaces Using Dynamic Occam's Window.

    Science.gov (United States)

    Onorante, Luca; Raftery, Adrian E

    2016-01-01

    Bayesian model averaging has become a widely used approach to accounting for uncertainty about the structural form of the model generating the data. When data arrive sequentially and the generating model can change over time, Dynamic Model Averaging (DMA) extends model averaging to deal with this situation. Often in macroeconomics, however, many candidate explanatory variables are available and the number of possible models becomes too large for DMA to be applied in its original form. We propose a new method for this situation which allows us to perform DMA without considering the whole model space, but using a subset of models and dynamically optimizing the choice of models at each point in time. This yields a dynamic form of Occam's window. We evaluate the method in the context of the problem of nowcasting GDP in the Euro area. We find that its forecasting performance compares well with that of other methods.

  19. Dynamic Model Averaging in Large Model Spaces Using Dynamic Occam’s Window*

    Science.gov (United States)

    Onorante, Luca; Raftery, Adrian E.

    2015-01-01

    Bayesian model averaging has become a widely used approach to accounting for uncertainty about the structural form of the model generating the data. When data arrive sequentially and the generating model can change over time, Dynamic Model Averaging (DMA) extends model averaging to deal with this situation. Often in macroeconomics, however, many candidate explanatory variables are available and the number of possible models becomes too large for DMA to be applied in its original form. We propose a new method for this situation which allows us to perform DMA without considering the whole model space, but using a subset of models and dynamically optimizing the choice of models at each point in time. This yields a dynamic form of Occam’s window. We evaluate the method in the context of the problem of nowcasting GDP in the Euro area. We find that its forecasting performance compares well with that of other methods. PMID:26917859

  20. Synchronizing early Eocene deep-sea and continental records - cyclostratigraphic age models for the Bighorn Basin Coring Project drill cores

    Science.gov (United States)

    Westerhold, Thomas; Röhl, Ursula; Wilkens, Roy H.; Gingerich, Philip D.; Clyde, William C.; Wing, Scott L.; Bowen, Gabriel J.; Kraus, Mary J.

    2018-03-01

    A consistent chronostratigraphic framework is required to understand the effect of major paleoclimate perturbations on both marine and terrestrial ecosystems. Transient global warming events in the early Eocene, at 56-54 Ma, show the impact of large-scale carbon input into the ocean-atmosphere system. Here we provide the first timescale synchronization of continental and marine deposits spanning the Paleocene-Eocene Thermal Maximum (PETM) and the interval just prior to the Eocene Thermal Maximum 2 (ETM-2). Cyclic variations in geochemical data come from continental drill cores of the Bighorn Basin Coring Project (BBCP, Wyoming, USA) and from marine deep-sea drilling deposits retrieved by the Ocean Drilling Program (ODP). Both are dominated by eccentricity-modulated precession cycles used to construct a common cyclostratigraphic framework. Integration of age models results in a revised astrochronology for the PETM in deep-sea records that is now generally consistent with independent 3He age models. The duration of the PETM is estimated at ˜ 200 kyr for the carbon isotope excursion and ˜ 120 kyr for the associated pelagic clay layer. A common terrestrial and marine age model shows a concurrent major change in marine and terrestrial biota ˜ 200 kyr before ETM-2. In the Bighorn Basin, the change is referred to as Biohorizon B and represents a period of significant mammalian turnover and immigration, separating the upper Haplomylus-Ectocion Range Zone from the Bunophorus Interval Zone and approximating the Wa-4-Wa-5 land mammal zone boundary. In sediments from ODP Site 1262 (Walvis Ridge), major changes in the biota at this time are documented by the radiation of a second generation of apical spine-bearing sphenolith species (e.g., S. radians and S. editus), the emergence of T. orthostylus, and the marked decline of D. multiradiatus.

  1. System and mathematical modeling of quadrotor dynamics

    Science.gov (United States)

    Goodman, Jacob M.; Kim, Jinho; Gadsden, S. Andrew; Wilkerson, Stephen A.

    2015-05-01

    Unmanned aerial systems (UAS) are becoming increasingly visible in our daily lives; and range in operation from search and rescue, monitoring hazardous environments, and to the delivery of goods. One of the most popular UAS are based on a quad-rotor design. These are typically small devices that rely on four propellers for lift and movement. Quad-rotors are inherently unstable, and rely on advanced control methodologies to keep them operating safely and behaving in a predictable and desirable manner. The control of these devices can be enhanced and improved by making use of an accurate dynamic model. In this paper, we examine a simple quadrotor model, and note some of the additional dynamic considerations that were left out. We then compare simulation results of the simple model with that of another comprehensive model.

  2. New concepts for dynamic plant uptake models

    DEFF Research Database (Denmark)

    Rein, Arno; Legind, Charlotte Nielsen; Trapp, Stefan

    2011-01-01

    Models for the prediction of chemical uptake into plants are widely applied tools for human and wildlife exposure assessment, pesticide design and for environmental biotechnology such as phytoremediation. Steady-state considerations are often applied, because they are simple and have a small data...... need. However, often the emission pattern is non-steady. Examples are pesticide spraying, or the application of manure and sewage sludge on agricultural fields. In these scenarios, steady-state solutions are not valid, and dynamic simulation is required. We compared different approaches for dynamic...... modelling of plant uptake in order to identify relevant processes and timescales of processes in the soil–plant–air system. Based on the outcome, a new model concept for plant uptake models was developed, approximating logistic growth and coupling transpiration to growing plant mass. The underlying system...

  3. On the mathematical modeling of soccer dynamics

    Science.gov (United States)

    Machado, J. A. Tenreiro; Lopes, António M.

    2017-12-01

    This paper addresses the modeling and dynamical analysis of soccer teams. Two modeling perspectives based on the concepts of fractional calculus are adopted. In the first, the power law behavior and fractional-order integration are explored. In the second, a league season is interpreted in the light of a system where the teams are represented by objects (particles) that evolve in time and interact (collide) at successive rounds with dynamics driven by the outcomes of the matches. The two proposed models embed implicitly details of players and coaches, or strategical and tactical maneuvers during the matches. Therefore, the scale of observation focuses on the teams behavior in the scope of the observed variables. Data characterizing two European soccer leagues in the season 2015-2016 are adopted and processed. The model leads to the emergence of patterns that are analyzed and interpreted.

  4. BWR stability using a reducing dynamical model

    International Nuclear Information System (INIS)

    Ballestrin Bolea, J. M.; Blazquez Martinez, J. B.

    1990-01-01

    BWR stability can be treated with reduced order dynamical models. When the parameters of the model came from dynamical models. When the parameters of the model came from experimental data, the predictions are accurate. In this work an alternative derivation for the void fraction equation is made, but remarking the physical structure of the parameters. As the poles of power/reactivity transfer function are related with the parameters, the measurement of the poles by other techniques such as noise analysis will lead to the parameters, but the system of equations is non-linear. Simple parametric calculation of decay ratio are performed, showing why BWRs become unstable when they are operated at low flow and high power. (Author)

  5. Attosecond transient-absorption dynamics of xenon core-excited states in a strong driving field

    Science.gov (United States)

    Kobayashi, Yuki; Timmers, Henry; Sabbar, Mazyar; Leone, Stephen R.; Neumark, Daniel M.

    2017-03-01

    We present attosecond transient-absorption experiments on xenon 4 d-16 p core-level states resonantly driven by intense (1.6 ×1014W/cm 2 ) few-cycle near-infrared laser pulses. In this strongly driven regime, broad induced absorption features with half-cycle (1.3-fs) delay-dependent modulation are observed over the range of 58-65 eV, predicted as a signature of the breakdown of the rotating-wave approximation in strong-field driving of Autler-Townes splitting [A. N. Pfeiffer and S. R. Leone, Phys. Rev. A 85, 053422 (2012), 10.1103/PhysRevA.85.053422]. Relevant atomic states are identified by a numerical model involving three electronic states, and the mechanism behind the broad induced absorption is discussed in the Floquet formalism. These results demonstrate that a near-infrared field well into the tunneling regime can still control the optical properties of an atomic system over a several-electron-volt spectral range and with attosecond precision.

  6. Record Dynamics in the Parking Lot Model

    DEFF Research Database (Denmark)

    Sibani, Paolo; Boettcher, Stefan

    2016-01-01

    We study the aging dynamics in the parking lot model of granular relaxation with extensive numerical simulations. Our results reveal the log-Poisson statistics in the progression of intermittent events that lead to ever slower increases in the density. Defining clusters as domains of parked cars...

  7. Learning About Learning in Dynamic Economic Models

    NARCIS (Netherlands)

    Kendrick, D.A.; Amman, H.M.; Tucci, M.P.

    This chapter of the Handbook of Computational Economics is mostly about research on active learning and is confined to discussion of learning in dynamic models in which the systems equations are linear, the criterion function is quadratic and the additive noise terms are Gaussian. Though there is

  8. Object Oriented Modelling and Dynamical Simulation

    DEFF Research Database (Denmark)

    Wagner, Falko Jens; Poulsen, Mikael Zebbelin

    1998-01-01

    This report with appendix describes the work done in master project at DTU.The goal of the project was to develop a concept for simulation of dynamical systems based on object oriented methods.The result was a library of C++-classes, for use when both building componentbased models and when...

  9. A Stochastic Dynamic Model of Computer Viruses

    Directory of Open Access Journals (Sweden)

    Chunming Zhang

    2012-01-01

    Full Text Available A stochastic computer virus spread model is proposed and its dynamic behavior is fully investigated. Specifically, we prove the existence and uniqueness of positive solutions, and the stability of the virus-free equilibrium and viral equilibrium by constructing Lyapunov functions and applying Ito's formula. Some numerical simulations are finally given to illustrate our main results.

  10. Modelling the Dynamics of Emotional Awareness

    NARCIS (Netherlands)

    Thilakarathne, D.J.; Treur, J.; Schaub, T.

    2014-01-01

    In this paper, based on literature from Cognitive and Affective Neuroscience, a computational agent model is introduced incorporating the role of emotional awareness states in the dynamics of action generation. More specifically, it covers both automatic, unconscious (bottom-up) and more cognitive

  11. Some dynamical aspects of interacting quintessence model

    Indian Academy of Sciences (India)

    Binayak S Choudhury

    2018-03-16

    Mar 16, 2018 ... show the phase-space analysis for the 'best-fit Universe' or concordance model. In our analysis, we observe the existence of late-time scaling attractors. Keywords. Accelerated expansion of the Universe; quintessence; dynamical system; Friedmann–Lemaitre–. Robertson–Walker Universe; interacting ...

  12. Dynamic Model Development for Interplanetary Navigation

    Directory of Open Access Journals (Sweden)

    Eun-Seo Park

    2005-12-01

    Full Text Available In this paper, the dynamic model development for interplanetary navigation has been discussed. The Cowell method for special perturbation theories was employed to develop an interplanetary trajectory propagator including the perturbations due to geopotential, the Earth's dynamic polar motion, the gravity of the Sun, the Moon and the other planets in the solar system, the relativistic effect of the Sun, solar radiation pressure, and atmospheric drag. The equations of motion in dynamic model were numerically integrated using Adams-Cowell 11th order predictor-corrector method. To compare the influences of each perturbation, trajectory propagation was performed using initial transfer orbit elements of the Mars Express mission launched in 2003, because it can be the criterion to choose proper perturbation models for navigation upon required accuracy. To investigate the performance of dynamic model developed, it was tested whether the spacecraft can reach the Mars. The interplanetary navigation tool developed in this study demonstrated the spacecraft entering the Mars SOI(Sphere of Influence and its velocity relative to the Mars was less than the escape velocity of the Mars, hence, the spacecraft can arrive at the target planet. The obtained results were also verified by using the AGI Satellite Tool Kit. It is concluded that the developed program is suitable for supporting interplanetary spacecraft mission for a future Korean Mars mission.

  13. Nearly Unbiased Estimationin Dynamic Panel Data Models

    NARCIS (Netherlands)

    M.A. Carree (Martin)

    2002-01-01

    textabstractThis paper introduces two easy to calculate estimators with desirable properties for the autoregressive parameter in dynamic panel data models. The estimators are (nearly) unbiased and perform satisfactorily even for small samples in either the time-series or cross-section dimension.

  14. Experimental Study and Mathematical Modeling of Asphaltene Deposition Mechanism in Core Samples

    Directory of Open Access Journals (Sweden)

    Jafari Behbahani T.

    2015-11-01

    increased. The experimental results show that the amount of remaining asphaltene in carbonate core samples is higher than those in sandstone core samples. Also, SEM (Scanning Electron Microscopy micrographs of carbonate core samples showed the formation of large clusters of asphaltene in comparison with sandstone core samples during natural depletion. It can be seen from the modeling results that the proposed model based on the multilayer adsorption equilibrium mechanism and four material balance equations is more accurate than those obtained from the monolayer adsorption equilibrium adsorption mechanism and two material balance equations, and is in agreement with the experimental data of natural depletion reported in this work and with those reported in the literature.

  15. Modeling of Reactor Kinetics and Dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Matthew Johnson; Scott Lucas; Pavel Tsvetkov

    2010-09-01

    In order to model a full fuel cycle in a nuclear reactor, it is necessary to simulate the short time-scale kinetic behavior of the reactor as well as the long time-scale dynamics that occur with fuel burnup. The former is modeled using the point kinetics equations, while the latter is modeled by coupling fuel burnup equations with the kinetics equations. When the equations are solved simultaneously with a nonlinear equation solver, the end result is a code with the unique capability of modeling transients at any time during a fuel cycle.

  16. The quantum Rabi model: solution and dynamics

    International Nuclear Information System (INIS)

    Xie, Qiongtao; Zhong, Honghua; Lee, Chaohong; Batchelor, Murray T

    2017-01-01

    This article presents a review of recent developments on various aspects of the quantum Rabi model. Particular emphasis is given on the exact analytic solution obtained in terms of confluent Heun functions. The analytic solutions for various generalisations of the quantum Rabi model are also discussed. Results are also reviewed on the level statistics and the dynamics of the quantum Rabi model. The article concludes with an introductory overview of several experimental realisations of the quantum Rabi model. An outlook towards future developments is also given. (topical review)

  17. Dynamic Modeling of CDS Index Tranche Spreads

    DEFF Research Database (Denmark)

    Dorn, Jochen

    This paper provides a Market Model which implies a dynamics for standardized CDS index tranche spreads, i.e. tranches which securitise CDS index series and dispose of predefined subordination. This model is useful for pricing options on tranches with future Issue Dates as well as for modeling...... options on structured credit derivatives. With the upcoming regulation of the CDS market in perspective, the model presented here is also an attempt to face the effects on pricing approaches provoked by an eventual Clearing Chamber . It becomes also possible to calibrate Index Tranche Options with bespoke...... tenors/tranche subordination to market data obtained by more liquid Index Tranche Options with standard characteristics....

  18. Uncertainty and its propagation in dynamics models

    International Nuclear Information System (INIS)

    Devooght, J.

    1994-01-01

    The purpose of this paper is to bring together some characteristics due to uncertainty when we deal with dynamic models and therefore to propagation of uncertainty. The respective role of uncertainty and inaccuracy is examined. A mathematical formalism based on Chapman-Kolmogorov equation allows to define a open-quotes subdynamicsclose quotes where the evolution equation takes the uncertainty into account. The problem of choosing or combining models is examined through a loss function associated to a decision

  19. Bulk dynamics for interfacial growth models

    OpenAIRE

    Lopez, Cristobal; Garrido, Pedro L.; Santos, Francisco de los

    2000-01-01

    We study the influence of the bulk dynamics of a growing cluster of particles on the properties of its interface. First, we define a general bulk growth model by means of a continuum Master equation for the evolution of the bulk density field. This general model just considers an arbitrary addition of particles (though it can be easily generalized to consider subtraction) with no other physical restriction. The corresponding Langevin equation for this bulk density field is derived where the i...

  20. Modeling dynamic functional connectivity using a wishart mixture model

    DEFF Research Database (Denmark)

    Nielsen, Søren Føns Vind; Madsen, Kristoffer Hougaard; Schmidt, Mikkel Nørgaard

    2017-01-01

    Dynamic functional connectivity (dFC) has recently become a popular way of tracking the temporal evolution of the brains functional integration. However, there does not seem to be a consensus on how to choose the complexity, i.e. number of brain states, and the time-scale of the dynamics, i.......e. the window length. In this work we use the Wishart Mixture Model (WMM) as a probabilistic model for dFC based on variational inference. The framework admits arbitrary window lengths and number of dynamic components and includes the static one-component model as a special case. We exploit that the WMM...... framework provides model selection by quantifying models generalization to new data. We use this to quantify the number of states within a prespecified window length. We further propose a heuristic procedure for choosing the window length based on contrasting for each window length the predictive...

  1. Dynamics of Green AuNP Formation and Their Application in Core-Shell Nanostructures

    DEFF Research Database (Denmark)

    Engelbrekt, Christian; Zhang, Jingdong; Jensen, Palle Skovhus

    The formation of gold nanoparticles in our optimized synthesis is achieved through reduction of tetrachloroauric acid in 2 - (N - morpholino)ethanesulphonic acid (MES) buffered glucose and stabilization by starch at room temperature. The formation has been followed by measuring the electrochemical...... potential, conductivity, pH, turbidity, UV - Vis extinction , core size and hydrodynamic diameter . The synthesized AuNPs have been employed as core particles in advanced core - shell structures with highly porous platinum nanoparticle coating or copper oxide shells. These hold poten- tials as effective...

  2. A Hierarchical Latent Stochastic Differential Equation Model for Affective Dynamics

    Science.gov (United States)

    Oravecz, Zita; Tuerlinckx, Francis; Vandekerckhove, Joachim

    2011-01-01

    In this article a continuous-time stochastic model (the Ornstein-Uhlenbeck process) is presented to model the perpetually altering states of the core affect, which is a 2-dimensional concept underlying all our affective experiences. The process model that we propose can account for the temporal changes in core affect on the latent level. The key…

  3. Dynamics in coarse-grained models for oligomer-grafted silica nanoparticles

    KAUST Repository

    Hong, Bingbing

    2012-01-01

    Coarse-grained models of poly(ethylene oxide) oligomer-grafted nanoparticles are established by matching their structural distribution functions to atomistic simulation data. Coarse-grained force fields for bulk oligomer chains show excellent transferability with respect to chain lengths and temperature, but structure and dynamics of grafted nanoparticle systems exhibit a strong dependence on the core-core interactions. This leads to poor transferability of the core potential to conditions different from the state point at which the potential was optimized. Remarkably, coarse graining of grafted nanoparticles can either accelerate or slowdown the core motions, depending on the length of the grafted chains. This stands in sharp contrast to linear polymer systems, for which coarse graining always accelerates the dynamics. Diffusivity data suggest that the grafting topology is one cause of slower motions of the cores for short-chain oligomer-grafted nanoparticles; an estimation based on transition-state theory shows the coarse-grained core-core potential also has a slowing-down effect on the nanoparticle organic hybrid materials motions; both effects diminish as grafted chains become longer. © 2012 American Institute of Physics.

  4. The equivalent thermal conductivity of lattice core sandwich structure: A predictive model

    International Nuclear Information System (INIS)

    Cheng, Xiangmeng; Wei, Kai; He, Rujie; Pei, Yongmao; Fang, Daining

    2016-01-01

    Highlights: • A predictive model of the equivalent thermal conductivity was established. • Both the heat conduction and radiation were considered. • The predictive results were in good agreement with experiment and FEM. • Some methods for improving the thermal protection performance were proposed. - Abstract: The equivalent thermal conductivity of lattice core sandwich structure was predicted using a novel model. The predictive results were in good agreement with experimental and Finite Element Method results. The thermal conductivity of the lattice core sandwich structure was attributed to both core conduction and radiation. The core conduction caused thermal conductivity only relied on the relative density of the structure. And the radiation caused thermal conductivity increased linearly with the thickness of the core. It was found that the equivalent thermal conductivity of the lattice core sandwich structure showed a highly dependent relationship on temperature. At low temperatures, the structure exhibited a nearly thermal insulated behavior. With the temperature increasing, the thermal conductivity of the structure increased owing to radiation. Therefore, some attempts, such as reducing the emissivity of the core or designing multilayered structure, are believe to be of benefit for improving the thermal protection performance of the structure at high temperatures.

  5. Dynamic modeling of oil boom failure using computational fluid dynamics

    International Nuclear Information System (INIS)

    Goodman, R. H.; Brown, H. M.; An, C. F.; Rowe, R. D.

    1997-01-01

    Oil retention boom failure mechanisms have been identified and studied using computational fluid dynamics (CFD), a powerful modeling tool combining fluid dynamics and mathematics with high speed computer technology. This study utilized a commercially available CFD package, 'Fluent', to simulate the oil-water flow around a barrier. 'Drainage failure', 'droplet entrainment' and 'critical accumulation' were modeled using this software. Flow characteristics were found to be different for different failure mechanisms. In the drainage failure process, the oil slick was compressed against the barrier until the slick was deep enough for the oil to leak under the barrier. During boom failure due to droplet entrainment, the oil-water interface of the oil slick was wavy and unstable. During boom failure due to critical accumulation, the oil remained a single mass and moved under the barrier readily. The most significant observation, however, was that flow patterns around barriers are modified by the presence of oil. Therefore, towing and wave-conformity tests of booms will not be meaningful unless such tests are conducted with oil present. 15 refs., 11 figs

  6. Flexibility control and simulation with multi-model and LQG/LTR design for PWR core load following operation

    International Nuclear Information System (INIS)

    Li, Gang; Zhao, Fuyu

    2013-01-01

    Highlights: ► The nonlinear model and linear multi-model of a PWR core are developed. ► The LQG/LTR robust control is used to design local controllers of the core. ► LTR principles are analyzed and proved theoretically. ► Flexibility control is proposed to design flexibility controllers for the core. ► The nonlinear core load following control system is effective. - Abstract: The objective of this investigation is to design a nonlinear Pressurized Water Reactor (PWR) core load following control system. On the basis of modeling a nonlinear PWR core, linearized models of the core at five power levels are chosen as local models of the core to substitute the nonlinear core model in the global range of power level. The Linear Quadratic Gaussian with Loop Transfer Recovery (LQG/LTR) robust optimal control is used to contrive a controller with the robustness of a core local model as a local controller of the nonlinear core. Meanwhile, LTR principles are analyzed and proved theoretically by adopting the matrix inversion lemma. Based on the local controllers, the principle of flexibility control is presented to design a flexibility controller of the nonlinear core at a random power level. A nonlinear core model and a flexibility controller at a random power level compose a core load following control subsystem. The combination of core load following control subsystems at all power levels is the core load following control system. Finally, the core load following control system is simulated and the simulation results show that the control system is effective

  7. Modelling of the liquid level during uncovering of the TMI-2 core

    International Nuclear Information System (INIS)

    Ardron, K.H.; Cain, D.G.

    1980-01-01

    Calculation of the path followed by the falling liquid level in the core is an important part of the analysis of fuel heat-up, and the damage sustained in the accident at TMI-2. This paper describes the development and application of a model for predicting liquid level in the TMI-2 core during uncovering. The calculational method is shown to give a satisfactory representation of level height data obtained in TMI boil-down simulation tests in the Semi-scale facility. The model is combined with a best estimate of make-up flow to the TMI-2 core to calculate the level trajectory during core uncovering. Results are found to be sensitive to the assumed degree of steam condensation on the make-up flow

  8. Direct modeling for computational fluid dynamics

    Science.gov (United States)

    Xu, Kun

    2015-06-01

    All fluid dynamic equations are valid under their modeling scales, such as the particle mean free path and mean collision time scale of the Boltzmann equation and the hydrodynamic scale of the Navier-Stokes (NS) equations. The current computational fluid dynamics (CFD) focuses on the numerical solution of partial differential equations (PDEs), and its aim is to get the accurate solution of these governing equations. Under such a CFD practice, it is hard to develop a unified scheme that covers flow physics from kinetic to hydrodynamic scales continuously because there is no such governing equation which could make a smooth transition from the Boltzmann to the NS modeling. The study of fluid dynamics needs to go beyond the traditional numerical partial differential equations. The emerging engineering applications, such as air-vehicle design for near-space flight and flow and heat transfer in micro-devices, do require further expansion of the concept of gas dynamics to a larger domain of physical reality, rather than the traditional distinguishable governing equations. At the current stage, the non-equilibrium flow physics has not yet been well explored or clearly understood due to the lack of appropriate tools. Unfortunately, under the current numerical PDE approach, it is hard to develop such a meaningful tool due to the absence of valid PDEs. In order to construct multiscale and multiphysics simulation methods similar to the modeling process of constructing the Boltzmann or the NS governing equations, the development of a numerical algorithm should be based on the first principle of physical modeling. In this paper, instead of following the traditional numerical PDE path, we introduce direct modeling as a principle for CFD algorithm development. Since all computations are conducted in a discretized space with limited cell resolution, the flow physics to be modeled has to be done in the mesh size and time step scales. Here, the CFD is more or less a direct

  9. Observation Data Model Core Components, its Implementation in the Table Access Protocol Version 1.1

    Science.gov (United States)

    Louys, Mireille; Tody, Doug; Dowler, Patrick; Durand, Daniel; Michel, Laurent; Bonnarel, Francos; Micol, Alberto; IVOA DataModel Working Group; Louys, Mireille; Tody, Doug; Dowler, Patrick; Durand, Daniel

    2017-05-01

    This document defines the core components of the Observation data model that are necessary to perform data discovery when querying data centers for astronomical observations of interest. It exposes use-cases to be carried out, explains the model and provides guidelines for its implementation as a data access service based on the Table Access Protocol (TAP). It aims at providing a simple model easy to understand and to implement by data providers that wish to publish their data into the Virtual Observatory. This interface integrates data modeling and data access aspects in a single service and is named ObsTAP. It will be referenced as such in the IVOA registries. In this document, the Observation Data Model Core Components (ObsCoreDM) defines the core components of queryable metadata required for global discovery of observational data. It is meant to allow a single query to be posed to TAP services at multiple sites to perform global data discovery without having to understand the details of the services present at each site. It defines a minimal set of basic metadata and thus allows for a reasonable cost of implementation by data providers. The combination of the ObsCoreDM with TAP is referred to as an ObsTAP service. As with most of the VO Data Models, ObsCoreDM makes use of STC, Utypes, Units and UCDs. The ObsCoreDM can be serialized as a VOTable. ObsCoreDM can make reference to more complete data models such as Characterisation DM, Spectrum DM or Simple Spectral Line Data Model (SSLDM). ObsCore shares a large set of common concepts with DataSet Metadata Data Model (Cresitello-Dittmar et al. 2016) which binds together most of the data model concepts from the above models in a comprehensive and more general frame work. This current specification on the contrary provides guidelines for implementing these concepts using the TAP protocol and answering ADQL queries. It is dedicated to global discovery.

  10. Selecting core-hole localization or delocalization in CS2 by photofragmentation dynamics.

    Science.gov (United States)

    Guillemin, R; Decleva, P; Stener, M; Bomme, C; Marin, T; Journel, L; Marchenko, T; Kushawaha, R K; Jänkälä, K; Trcera, N; Bowen, K P; Lindle, D W; Piancastelli, M N; Simon, M

    2015-01-21

    Electronic core levels in molecules are highly localized around one atomic site. However, in single-photon ionization of symmetric molecules, the question of core-hole localization versus delocalization over two equivalent atoms has long been debated as the answer lies at the heart of quantum mechanics. Here, using a joint experimental and theoretical study of core-ionized carbon disulfide (CS2), we demonstrate that it is possible to experimentally select distinct molecular-fragmentation pathways in which the core hole can be considered as either localized on one sulfur atom or delocalized between two indistinguishable sulfur atoms. This feat is accomplished by measuring photoelectron angular distributions within the frame of the molecule, directly probing entanglement or disentanglement of quantum pathways as a function of how the molecule dissociates.

  11. Dynamic Modeling of ThermoFluid Systems

    DEFF Research Database (Denmark)

    Jensen, Jakob Munch

    2003-01-01

    The objective of the present study has been to developed dynamic models for two-phase flow in pipes (evaporation and condensation). Special attention has been given to modeling evaporators for refrigeration plant particular dry-expansion evaporators. Models of different complexity have been...... formulated. The different models deviate with respect to the detail¿s included and calculation time in connection with simulation. The models have been implemented in a new library named ThermoTwoPhase to the programming language Modelica. A test rig has been built with an evaporator instrumented in a way...... that the models can be validated against experimental data. The models developed van be used in connection with intelligent control of refrigerant flow to dry-expansion evaporators....

  12. Statistical models of petrol engines vehicles dynamics

    Science.gov (United States)

    Ilie, C. O.; Marinescu, M.; Alexa, O.; Vilău, R.; Grosu, D.

    2017-10-01

    This paper focuses on studying statistical models of vehicles dynamics. It was design and perform a one year testing program. There were used many same type cars with gasoline engines and different mileage. Experimental data were collected of onboard sensors and those on the engine test stand. A database containing data of 64th tests was created. Several mathematical modelling were developed using database and the system identification method. Each modelling is a SISO or a MISO linear predictive ARMAX (AutoRegressive-Moving-Average with eXogenous inputs) model. It represents a differential equation with constant coefficients. It were made 64th equations for each dependency like engine torque as output and engine’s load and intake manifold pressure, as inputs. There were obtained strings with 64 values for each type of model. The final models were obtained using average values of the coefficients. The accuracy of models was assessed.

  13. A metapopulation model with Markovian landscape dynamics.

    Science.gov (United States)

    McVinish, R; Pollett, P K; Chan, Y S

    2016-12-01

    We study a variant of Hanski's incidence function model that allows habitat patch characteristics to vary over time following a Markov process. The widely studied case where patches are classified as either suitable or unsuitable is included as a special case. For large metapopulations, we determine a recursion for the probability that a given habitat patch is occupied. This recursion enables us to clarify the role of landscape dynamics in the survival of a metapopulation. In particular, we show that landscape dynamics affects the persistence and equilibrium level of the metapopulation primarily through its effect on the distribution of a local population's life span. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Formation and Collapse of Quiescent Cloud Cores Induced by Dynamic Compressions

    OpenAIRE

    Gómez, Gilberto C.; Vázquez-Semadeni, Enrique; Shadmehri, Mohsen; Ballesteros-Paredes, Javier

    2007-01-01

    (Abridged) We present numerical hydrodynamical simulations of the formation, evolution and gravitational collapse of isothermal molecular cloud cores. A compressive wave is set up in a constant sub-Jeans density distribution of radius r = 1 pc. As the wave travels through the simulation grid, a shock-bounded spherical shell is formed. The inner shock of this shell reaches and bounces off the center, leaving behind a central core with an initially almost uniform density distribution, surrounde...

  15. Analytical modeling of core hydraulics and flow management in breeder reactors

    International Nuclear Information System (INIS)

    Carelli, M.D.; Willis, J.M.

    1979-01-01

    An analytical model representing the hydraulic behavior of the primary system of fast breeder nuclear reactors is discussed. A computer code capable of detailing the core flow distribution and characterizing the flow and pressure drop in each reactor component is presented. Application of this method to the reactor core thermal-hydraulic design has allowed optimization of the flow management with consequent upgrading in performance, reduction of unnecessary conservatism and very substantial cost savings. Typical quantitative examples are presented

  16. Indonesia’s Electricity Demand Dynamic Modelling

    Science.gov (United States)

    Sulistio, J.; Wirabhuana, A.; Wiratama, M. G.

    2017-06-01

    Electricity Systems modelling is one of the emerging area in the Global Energy policy studies recently. System Dynamics approach and Computer Simulation has become one the common methods used in energy systems planning and evaluation in many conditions. On the other hand, Indonesia experiencing several major issues in Electricity system such as fossil fuel domination, demand - supply imbalances, distribution inefficiency, and bio-devastation. This paper aims to explain the development of System Dynamics modelling approaches and computer simulation techniques in representing and predicting electricity demand in Indonesia. In addition, this paper also described the typical characteristics and relationship of commercial business sector, industrial sector, and family / domestic sector as electricity subsystems in Indonesia. Moreover, it will be also present direct structure, behavioural, and statistical test as model validation approach and ended by conclusions.

  17. Dynamic Circuit Model for Spintronic Devices

    KAUST Repository

    Alawein, Meshal

    2017-01-09

    In this work we propose a finite-difference scheme based circuit model of a general spintronic device and benchmark it with other models proposed for spintronic switching devices. Our model is based on the four-component spin circuit theory and utilizes the widely used coupled stochastic magnetization dynamics/spin transport framework. In addition to the steady-state analysis, this work offers a transient analysis of carrier transport. By discretizing the temporal and spatial derivatives to generate a linear system of equations, we derive new and simple finite-difference conductance matrices that can, to the first order, capture both static and dynamic behaviors of a spintronic device. We also discuss an extension of the spin modified nodal analysis (SMNA) for time-dependent situations based on the proposed scheme.

  18. Friction modelling of preloaded tube contact dynamics

    International Nuclear Information System (INIS)

    Hassan, M.A.; Rogers, R.J.

    2005-01-01

    Many loosely supported components are subjected to flow-induced vibration leading to localized wear. Life prediction depends on robust and accurate modelling of the nonlinear dynamics as the components interact with their supports. The output of such analysis is the component dynamic response and impact forces, including friction forces during stick-slip motions. Such results are used to determine the normal work rates, which are utilized to predict fretting wear damage. Accurate estimates of these parameters are essential. This paper presents simulations of a loosely supported fuel-channel tube subject to turbulence excitation. The effects of tube/support clearance and preload are investigated. Several friction models, including velocity-limited, spring-damper and force-balance are utilized. A comparison of these models is carried out to investigate their accuracy. The results show good agreement with experimental work rates when a simple iterative procedure to update the friction forces is used

  19. Traffic flow dynamics data, models and simulation

    CERN Document Server

    Treiber, Martin

    2013-01-01

    This textbook provides a comprehensive and instructive coverage of vehicular traffic flow dynamics and modeling. It makes this fascinating interdisciplinary topic, which to date was only documented in parts by specialized monographs, accessible to a broad readership. Numerous figures and problems with solutions help the reader to quickly understand and practice the presented concepts. This book is targeted at students of physics and traffic engineering and, more generally, also at students and professionals in computer science, mathematics, and interdisciplinary topics. It also offers material for project work in programming and simulation at college and university level. The main part, after presenting different categories of traffic data, is devoted to a mathematical description of the dynamics of traffic flow, covering macroscopic models which describe traffic in terms of density, as well as microscopic many-particle models in which each particle corresponds to a vehicle and its driver. Focus chapters on ...

  20. Friction modelling of preloaded tube contact dynamics

    International Nuclear Information System (INIS)

    Hassan, M.A.; Rogers, R.J.

    2004-01-01

    Many loosely supported components are subjected to flow-induced vibration leading to localized wear. Life prediction depends on robust and accurate modelling of the nonlinear dynamics as the components interact with their supports. The output of such analysis is the component dynamic response and impact forces, including friction forces during stick-slip motions. Such results are used to determine the normal work rates, which are utilized to predict fretting wear damage. Accurate estimates of these parameters are essential. This paper presents simulations of a loosely supported fuel-channel tube subject to turbulence excitation. The effects of tube/support clearance and preload are investigated. Several friction models, including velocity-limited, spring-damper, and force-balance are utilized. A comparison of these models is carried out to investigate their accuracy. The results show good agreement with experimental work rates when a simple iterative procedure to update the friction forces is used. (authors)

  1. Dynamic Intellectual Capital Model in a Company

    Directory of Open Access Journals (Sweden)

    Vladimir Shatrevich

    2015-06-01

    Full Text Available The aim of this paper is to indicate the relations between company’s value added (VA and intangible assets. Authors declare that Intellectual capital (IC is one of the most relevant intangibles for a company, and the concept with measurement, and the relation with value creation is necessary for modern markets. Since relationship between IC elements and VA are complicated, this paper is aimed to create a usable dynamic model for building company’s value added through intellectual capital. The model is incorporating that outputs from IC elements are not homogeneously received and made some contributions to dynamic nature of IC relation and VA. Variables that will help companies to evaluate contribution of each element of IC are added to the model. This paper emphasizes the importance of a company’s IC and the positive interaction between them in generating profits for company.

  2. Complex networks under dynamic repair model

    Science.gov (United States)

    Chaoqi, Fu; Ying, Wang; Kun, Zhao; Yangjun, Gao

    2018-01-01

    Invulnerability is not the only factor of importance when considering complex networks' security. It is also critical to have an effective and reasonable repair strategy. Existing research on network repair is confined to the static model. The dynamic model makes better use of the redundant capacity of repaired nodes and repairs the damaged network more efficiently than the static model; however, the dynamic repair model is complex and polytropic. In this paper, we construct a dynamic repair model and systematically describe the energy-transfer relationships between nodes in the repair process of the failure network. Nodes are divided into three types, corresponding to three structures. We find that the strong coupling structure is responsible for secondary failure of the repaired nodes and propose an algorithm that can select the most suitable targets (nodes or links) to repair the failure network with minimal cost. Two types of repair strategies are identified, with different effects under the two energy-transfer rules. The research results enable a more flexible approach to network repair.

  3. A simple reactivity feedback model accounting for radial core expansion effects in the liquid metal fast reactor

    International Nuclear Information System (INIS)

    Kwon, Young Min; Lee, Yong Bum; Chang, Won Pyo; Haha, Do Hee

    2002-01-01

    The radial core expansion due to the structure temperature rise is one of major negative reactivity insertion mechanisms in metallic fueled reactor. Thermal expansion is a result of both the laws of nature and the particular core design and it causes negative reactivity feedback by the combination of increased core volume captures and increased core surface leakage. The simple radial core expansion reactivity feedback model developed for the SSC-K code was evaluated by the code-to-code comparison analysis. From the comparison results, it can be stated that the radial core expansion reactivity feedback model employed into the SSC-K code may be reasonably accurate in the UTOP analysis

  4. A simple reactivity feedback model accounting for radial core expansion effects in the liquid metal fast reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Young Min; Lee, Yong Bum; Chang, Won Pyo; Haha, Do Hee [KAERI, Taejon (Korea, Republic of)

    2002-10-01

    The radial core expansion due to the structure temperature rise is one of major negative reactivity insertion mechanisms in metallic fueled reactor. Thermal expansion is a result of both the laws of nature and the particular core design and it causes negative reactivity feedback by the combination of increased core volume captures and increased core surface leakage. The simple radial core expansion reactivity feedback model developed for the SSC-K code was evaluated by the code-to-code comparison analysis. From the comparison results, it can be stated that the radial core expansion reactivity feedback model employed into the SSC-K code may be reasonably accurate in the UTOP analysis.

  5. Analysing the temporal dynamics of model performance for hydrological models

    NARCIS (Netherlands)

    Reusser, D.E.; Blume, T.; Schaefli, B.; Zehe, E.

    2009-01-01

    The temporal dynamics of hydrological model performance gives insights into errors that cannot be obtained from global performance measures assigning a single number to the fit of a simulated time series to an observed reference series. These errors can include errors in data, model parameters, or

  6. Programming models used on Many-Core architectures

    Science.gov (United States)

    Novotný, Jan

    2014-12-01

    The time in which we live is characterized by an ever-increasing amount of data that we are able to explore and acquire. In all fields of science we could find some examples. Processing large volumes of information thus brings the requirement for engaging computational science. With increasing demands on data processing is advantageous to use new technology and start using parallel computation. Effective use of current technology requires from programmers new knowledge and skills. They meet with the countless new programming models and tools. In this article, we summarize the most commonly used programming models and points which good programming model should meet. The article also try to highlight the reasons why one should use a structured parallel programming.

  7. Developing a theory of the strategic core of teams: a role composition model of team performance.

    Science.gov (United States)

    Humphrey, Stephen E; Morgeson, Frederick P; Mannor, Michael J

    2009-01-01

    Although numerous models of team performance have been articulated over the past 20 years, these models have primarily focused on the individual attribute approach to team composition. The authors utilized a role composition approach, which investigates how the characteristics of a set of role holders impact team effectiveness, to develop a theory of the strategic core of teams. Their theory suggests that certain team roles are most important for team performance and that the characteristics of the role holders in the "core" of the team are more important for overall team performance. This theory was tested in 778 teams drawn from 29 years of major league baseball (1974'-2002). Results demonstrate that although high levels of experience and job-related skill are important predictors of team performance, the relationships between these constructs and team performance are significantly stronger when the characteristics are possessed by core role holders (as opposed to non-core role holders). Further, teams that invest more of their financial resources in these core roles are able to leverage such investments into significantly improved performance. These results have implications for team composition models, as they suggest a new method for considering individual contributions to a team's success that shifts the focus onto core roles. (PsycINFO Database Record (c) 2009 APA, all rights reserved).

  8. Dynamical model for retrieval of tram schedule

    Science.gov (United States)

    Nagatani, Takashi

    2007-04-01

    We present the dynamical model for retrieval of a tram schedule when trams arrive at stops slower or faster than the schedule. Trams speed up or stop shorter to retrieve the delay. The dynamics of the trams is expressed in terms of the nonlinear maps. We study the dynamical behavior of trams when they control the speed and stopping time to retrieve the schedule. The arrival times of trams exhibit the complex behavior with varying trips. The trams show the periodic and irregular (chaotic) motions even if there are no noises. The tram chaos is controlled by varying both stopping time and degree of speedup. The tram schedule is connected with the complex motions of trams. The region map (phase diagram) is shown to control the complex motions of trams.

  9. A computational model for dynamic vision

    Science.gov (United States)

    Moezzi, Saied; Weymouth, Terry E.

    1990-01-01

    This paper describes a novel computational model for dynamic vision which promises to be both powerful and robust. Furthermore the paradigm is ideal for an active vision system where camera vergence changes dynamically. Its basis is the retinotopically indexed object-centered encoding of the early visual information. Specifically, the relative distances of objects to a set of referents is encoded in image registered maps. To illustrate the efficacy of the method, it is applied to the problem of dynamic stereo vision. Integration of depth information over multiple frames obtained by a moving robot generally requires precise information about the relative camera position from frame to frame. Usually, this information can only be approximated. The method facilitates the integration of depth information without direct use or knowledge of camera motion.

  10. An introduction to modeling neuronal dynamics

    CERN Document Server

    Börgers, Christoph

    2017-01-01

    This book is intended as a text for a one-semester course on Mathematical and Computational Neuroscience for upper-level undergraduate and beginning graduate students of mathematics, the natural sciences, engineering, or computer science. An undergraduate introduction to differential equations is more than enough mathematical background. Only a slim, high school-level background in physics is assumed, and none in biology. Topics include models of individual nerve cells and their dynamics, models of networks of neurons coupled by synapses and gap junctions, origins and functions of population rhythms in neuronal networks, and models of synaptic plasticity. An extensive online collection of Matlab programs generating the figures accompanies the book. .

  11. Modelling and parameter estimation of dynamic systems

    CERN Document Server

    Raol, JR; Singh, J

    2004-01-01

    Parameter estimation is the process of using observations from a system to develop mathematical models that adequately represent the system dynamics. The assumed model consists of a finite set of parameters, the values of which are calculated using estimation techniques. Most of the techniques that exist are based on least-square minimization of error between the model response and actual system response. However, with the proliferation of high speed digital computers, elegant and innovative techniques like filter error method, H-infinity and Artificial Neural Networks are finding more and mor

  12. Dynamical Field Model of Hand Preference

    Science.gov (United States)

    Franceschetti, Donald R.; Cantalupo, Claudio

    2000-11-01

    Dynamical field models of information processing in the nervous system are being developed by a number of groups of psychologists and physicists working together to explain The details of behaviors exhibited by a number of animal species. Here we adapt such a model to the expression of hand preference in a small primate, the bushbaby (Otolemur garnetti) . The model provides a theoretical foundation for the interpretation of an experiment currently underway in which a several of these animals are forced to extend either right or left hand to retrieve a food item from a rotating turntable.

  13. Five challenges in modelling interacting strain dynamics

    Directory of Open Access Journals (Sweden)

    Paul S. Wikramaratna

    2015-03-01

    Full Text Available Population epidemiological models where hosts can be infected sequentially by different strains have the potential to help us understand many important diseases. Researchers have in recent years started to develop and use such models, but the extra layer of complexity from multiple strains brings with it many technical challenges. It is therefore hard to build models which have realistic assumptions yet are tractable. Here we outline some of the main challenges in this area. First we begin with the fundamental question of how to translate from complex small-scale dynamics within a host to useful population models. Next we consider the nature of so-called “strain space”. We describe two key types of host heterogeneities, and explain how models could help generate a better understanding of their effects. Finally, for diseases with many strains, we consider the challenge of modelling how immunity accumulates over multiple exposures.

  14. Structural system identification: Structural dynamics model validation

    Energy Technology Data Exchange (ETDEWEB)

    Red-Horse, J.R.

    1997-04-01

    Structural system identification is concerned with the development of systematic procedures and tools for developing predictive analytical models based on a physical structure`s dynamic response characteristics. It is a multidisciplinary process that involves the ability (1) to define high fidelity physics-based analysis models, (2) to acquire accurate test-derived information for physical specimens using diagnostic experiments, (3) to validate the numerical simulation model by reconciling differences that inevitably exist between the analysis model and the experimental data, and (4) to quantify uncertainties in the final system models and subsequent numerical simulations. The goal of this project was to develop structural system identification techniques and software suitable for both research and production applications in code and model validation.

  15. Symplectic symmetry and the ab initio no-core shell model

    Energy Technology Data Exchange (ETDEWEB)

    Draayer, J.P.; Dytrych, T.; Sviratcheva, K.D.; Bahri, C. [Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803 (United States); Vary, J.P. [Department of Physics and Astronomy, Iowa State University, Ames, IA 50011 (United States)

    2007-12-15

    The symplectic symmetry of eigenstates for the O{sub gs}{sup +} in {sup 16}O and the O{sub gs}{sup +}s and lowest 2{sup +} and 4{sup +} configurations of {sup 12}C that are well-converged within the framework of the no-core shell model with the JISP16 realistic interaction is examined. These states are found to project at the 85-90% level onto very few symplectic representations including the most deformed configuration, which confirms the importance of a symplectic no-core shell model and reaffirms the relevance of the Elliott SU(3) model upon which the symplectic scheme is built. (Author)

  16. The No-Core Gamow Shell Model: Including the continuum in the NCSM

    CERN Document Server

    Barrett, B R; Michel, N; Płoszajczak, M

    2015-01-01

    We are witnessing an era of intense experimental efforts that will provide information about the properties of nuclei far from the line of stability, regarding resonant and scattering states as well as (weakly) bound states. This talk describes our formalism for including these necessary ingredients into the No-Core Shell Model by using the Gamow Shell Model approach. Applications of this new approach, known as the No-Core Gamow Shell Model, both to benchmark cases as well as to unstable nuclei will be given.

  17. Symplectic Symmetry and the Ab Initio No-Core Shell Model

    Energy Technology Data Exchange (ETDEWEB)

    Draayer, Jerry P.; Dytrych, Tomas; Sviratcheva, Kristina D.; Bahri, Chairul; /Louisiana State U.; Vary, James P.; /Iowa State U. /LLNL, Livermore /SLAC

    2007-03-14

    The symplectic symmetry of eigenstates for the 0{sub gs}{sup +} in {sup 16}O and the 0{sub gs}{sup +} and lowest 2{sup +} and 4{sup +} configurations of {sup 12}C that are well-converged within the framework of the no-core shell model with the JISP16 realistic interaction is examined. These states are found to project at the 85-90% level onto very few symplectic representations including the most deformed configuration, which confirms the importance of a symplectic no-core shell model and reaffirms the relevance of the Elliott SU(3) model upon which the symplectic scheme is built.

  18. Seasonal spectral dynamics and carbon fluxes at core EOS sites using EO-1 Hyperion images

    Science.gov (United States)

    Lagomasino, D.; Campbell, P.; Price, R. M.

    2010-12-01

    Fluxes of water and carbon into the atmosphere are critical components in order to monitor and predict climate change. Spatial heterogeneity and seasonal changes in vegetation contribute to ambiguities in regional and global CO2 and water cycle dynamics. Satellite remote sensing is essential for monitoring the spatial and temporal dynamics of various vegetation types for the purposes of determining carbon and water fluxes. Satellite data from the EO-1 Hyperion sensor was acquired for five Earth Observing Satellite (EOS) sites, Mongu (Zambia, Africa), Konza Prairie (Kansas, USA), Duke Forest (North Carolina, USA), Barrow (Alaska, USA) and Sevilleta (New Mexico, USA). Each EOS site represented a distinct vegetative ecosystem type; hardwood forest, grassland, evergreen forest, lichens, and shrubland/grassland respectively. Satellite data was atmospherically corrected using the Atmosphere CORrection Now (ACORN) model and subsequently, the spectral reflectance data was extracted in the vicinity of existing flux towers. The EO-1 Hyperion sensor proved advantageous because of its high and continuous spectral resolution (10 nm intervals from 355 to 2578 nm wavelengths). The high spectral resolution allowed us calculate biophysical indices based on specific wavelengths in the electromagnetic spectrum that are associated with alterations in foliar chemistry and plant membrane structure (i.e., vegetation stress) brought upon by many environmental factors. Previous studies have focused on relationships within a specific site or vegetation community. This study however, incorporated many sites with different vegetation types and various geographic locations throughout the world. Monitoring the fluctuations in vegetation stress with contemporaneous environmental conditions and carbon flux measurements from each site will provide better insight into water and carbon flux dynamics in many different biomes. Noticeable spectral signatures were identified based on site specific

  19. Towards dynamic genome-scale models.

    Science.gov (United States)

    Gilbert, David; Heiner, Monika; Jayaweera, Yasoda; Rohr, Christian

    2017-10-13

    The analysis of the dynamic behaviour of genome-scale models of metabolism (GEMs) currently presents considerable challenges because of the difficulties of simulating such large and complex networks. Bacterial GEMs can comprise about 5000 reactions and metabolites, and encode a huge variety of growth conditions; such models cannot be used without sophisticated tool support. This article is intended to aid modellers, both specialist and non-specialist in computerized methods, to identify and apply a suitable combination of tools for the dynamic behaviour analysis of large-scale metabolic designs. We describe a methodology and related workflow based on publicly available tools to profile and analyse whole-genome-scale biochemical models. We use an efficient approximative stochastic simulation method to overcome problems associated with the dynamic simulation of GEMs. In addition, we apply simulative model checking using temporal logic property libraries, clustering and data analysis, over time series of reaction rates and metabolite concentrations. We extend this to consider the evolution of reaction-oriented properties of subnets over time, including dead subnets and functional subsystems. This enables the generation of abstract views of the behaviour of these models, which can be large-up to whole genome in size-and therefore impractical to analyse informally by eye. We demonstrate our methodology by applying it to a reduced model of the whole-genome metabolism of Escherichia coli K-12 under different growth conditions. The overall context of our work is in the area of model-based design methods for metabolic engineering and synthetic biology. © The Author 2017. Published by Oxford University Press.

  20. Dynamical Analysis of bantam-Regulated Drosophila Circadian Rhythm Model

    Science.gov (United States)

    Li, Ying; Liu, Zengrong

    MicroRNAs (miRNAs) interact with 3‧untranslated region (UTR) elements of target genes to regulate mRNA stability or translation, and play a crucial role in regulating many different biological processes. bantam, a conserved miRNA, is involved in several functions, such as regulating Drosophila growth and circadian rhythm. Recently, it has been discovered that bantam plays a crucial role in the core circadian pacemaker. In this paper, based on experimental observations, a detailed dynamical model of bantam-regulated circadian clock system is developed to show the post-transcriptional behaviors in the modulation of Drosophila circadian rhythm, in which the regulation of bantam is incorporated into a classical model. The dynamical behaviors of the model are consistent with the experimental observations, which shows that bantam is an important regulator of Drosophila circadian rhythm. The sensitivity analysis of parameters demonstrates that with the regulation of bantam the system is more sensitive to perturbations, indicating that bantam regulation makes it easier for the organism to modulate its period against the environmental perturbations. The effectiveness in rescuing locomotor activity rhythms of mutated flies shows that bantam is necessary for strong and sustained rhythms. In addition, the biological mechanisms of bantam regulation are analyzed, which may help us more clearly understand Drosophila circadian rhythm regulated by other miRNAs.

  1. Non-equilibrium dynamics of hard-core bosons on 1D lattices: short vs large time results

    Science.gov (United States)

    Rigol, Marcos; Muramatsu, Alejandro

    2005-03-01

    Based on an exact treatment we study the non-equilibrium dynamics of hard-core bosons on one-dimensional lattices. Starting from a pure Fock state we find that quasi-long range correlations develop very fast in the system, and they lead to the emergence of quasi-condensates at finite momentum [1]. The exponent observed in the power-law decay of the one-particle density matrix, which develops dynamically, is the same that has been proven to be universal in the equilibrium case [2]. We also study the time evolution of clouds of hard-core bosons when they are released from a harmonic trap. In this case we show that the momentum distribution of the free expanding hard-core bosons approaches to the one of noninteracting fermions [3], in contrast to the known behavior in equilibrium systems. [1] M. Rigol and A. Muramatsu, cond-mat/0403387, to appear in Phys. Rev. Lett. (2004). [2] M. Rigol and A. Muramatsu, Phys. Rev. A 70, 031603(R) (2004); ibid. cond-mat/0409132. [3] M. Rigol and A. Muramatsu, cond-mat/0410683.

  2. Thermal Modeling of the Injection of Standard and Thermally Insulated Cored Wire

    Science.gov (United States)

    Castro-Cedeno, E.-I.; Jardy, A.; Carré, A.; Gerardin, S.; Bellot, J. P.

    2017-12-01

    Cored wire injection is a widespread method used to perform alloying additions during ferrous and non-ferrous liquid metal treatment. The wire consists of a metal casing that is tightly wrapped around a core of material; the casing delays the release of the material as the wire is immersed into the melt. This method of addition presents advantages such as higher repeatability and yield of cored material with respect to bulk additions. Experimental and numerical work has been performed by several authors on the subject of alloy additions, spherical and cylindrical geometries being mainly considered. Surprisingly this has not been the case for cored wire, where the reported experimental or numerical studies are scarce. This work presents a 1-D finite volume numerical model aimed for the simulation of the thermal phenomena which occurs when the wire is injected into a liquid metal bath. It is currently being used as a design tool for the conception of new types of cored wire. A parametric study on the effect of injection velocity and steel casing thickness for an Al cored wire immersed into a steel melt at 1863 K (1590 °C) is presented. The standard single casing wire is further compared against a wire with multiple casings. Numerical results show that over a certain range of injection velocities, the core contents' release is delayed in the multiple casing when compared to a single casing wire.

  3. Modelling Holocene peatland and permafrost dynamics with the LPJ-GUESS dynamic vegetation model

    Science.gov (United States)

    Chaudhary, Nitin; Miller, Paul A.; Smith, Benjamin

    2016-04-01

    Dynamic global vegetation models (DGVMs) are an important platform to study past, present and future vegetation patterns together with associated biogeochemical cycles and climate feedbacks (e.g. Sitch et al. 2008, Smith et al. 2001). However, very few attempts have been made to simulate peatlands using DGVMs (Kleinen et al. 2012, Tang et al. 2015, Wania et al. 2009a). In the present study, we have improved the peatland dynamics in the state-of-the-art dynamic vegetation model (LPJ-GUESS) in order to understand the long-term evolution of northern peatland ecosystems and to assess the effect of changing climate on peatland carbon balance. We combined a dynamic multi-layer approach (Frolking et al. 2010, Hilbert et al. 2000) with soil freezing-thawing functionality (Ekici et al. 2015, Wania et al. 2009a) in LPJ-GUESS. The new model is named LPJ-GUESS Peatland (LPJ-GUESS-P) (Chaudhary et al. in prep). The model was calibrated and tested at the sub-arctic mire in Stordalen, Sweden, and the model was able to capture the reported long-term vegetation dynamics and peat accumulation patterns in the mire (Kokfelt et al. 2010). For evaluation, the model was run at 13 grid points across a north to south transect in Europe. The modelled peat accumulation values were found to be consistent with the published data for each grid point (Loisel et al. 2014). Finally, a series of additional experiments were carried out to investigate the vulnerability of high-latitude peatlands to climate change. We find that the Stordalen mire will sequester more carbon in the future due to milder and wetter climate conditions, longer growing seasons, and the carbon fertilization effect. References: - Chaudhary et al. (in prep.). Modelling Holocene peatland and permafrost dynamics with the LPJ-GUESS dynamic vegetation model - Ekici A, et al. 2015. Site-level model intercomparison of high latitude and high altitude soil thermal dynamics in tundra and barren landscapes. The Cryosphere 9: 1343

  4. Modeling the dynamic characteristics of pneumatic muscle.

    Science.gov (United States)

    Reynolds, D B; Repperger, D W; Phillips, C A; Bandry, G

    2003-03-01

    A pneumatic muscle (PM) system was studied to determine whether a three-element model could describe its dynamics. As far as the authors are aware, this model has not been used to describe the dynamics of PM. A new phenomenological model consists of a contractile (force-generating) element, spring element, and damping element in parallel. The PM system was investigated using an apparatus that allowed precise and accurate actuation pressure (P) control by a linear servo-valve. Length change of the PM was measured by a linear potentiometer. Spring and damping element functions of P were determined by a static perturbation method at several constant P values. These results indicate that at constant P, PM behaves as a spring and damper in parallel. The contractile element function of P was determined by the response to a step input in P, using values of spring and damping elements from the perturbation study. The study showed that the resulting coefficient functions of the three-element model describe the dynamic response to the step input of P accurately, indicating that the static perturbation results can be applied to the dynamic case. This model is further validated by accurately predicting the contraction response to a triangular P waveform. All three elements have pressure-dependent coefficients for pressure P in the range 207 < or = P < or = 621 kPa (30 < or = P < or = 90 psi). Studies with a step decrease in P (relaxation of the PM) indicate that the damping element coefficient is smaller during relaxation than contraction.

  5. Mechanical behavior of a sandwich with corrugated GRP core: numerical modeling and experimental validation

    Directory of Open Access Journals (Sweden)

    D. Tumino

    2014-10-01

    Full Text Available In this work the mechanical behaviour of a core reinforced composite sandwich structure is studied. The sandwich employs a Glass Reinforced Polymer (GRP orthotropic material for both the two external skins and the inner core web. In particular, the core is designed in order to cooperate with the GRP skins in membrane and flexural properties by means of the addition of a corrugated laminate into the foam core. An analytical model has been developed to replace a unit cell of this structure with an orthotropic equivalent thick plate that reproduces the in plane and out of plane behaviour of the original geometry. Different validation procedures have been implemented to verify the quality of the proposed method. At first a comparison has been performed between the analytical model and the original unit cell modelled with a Finite Element mesh. Elementary loading conditions are reproduced and results are compared. Once the reliability of the analytical model was assessed, this homogenised model was implemented within the formulation of a shell finite element. The goal of this step is to simplify the FE analysis of complex structures made of corrugated core sandwiches; in fact, by using the homogenised element, the global response of a real structure can be investigated only with the discretization of its mid-surface. Advantages are mainly in terms of time to solution saving and CAD modelling simplification. Last step is then the comparison between this FE model and experiments made on sandwich beams and panels whose skins and corrugated cores are made of orthotropic cross-ply GRP laminates. Good agreement between experimental and numerical results confirms the validity of the proposed model.

  6. Dynamic alignment models for neural coding.

    Directory of Open Access Journals (Sweden)

    Sepp Kollmorgen

    2014-03-01

    Full Text Available Recently, there have been remarkable advances in modeling the relationships between the sensory environment, neuronal responses, and behavior. However, most models cannot encompass variable stimulus-response relationships such as varying response latencies and state or context dependence of the neural code. Here, we consider response modeling as a dynamic alignment problem and model stimulus and response jointly by a mixed pair hidden Markov model (MPH. In MPHs, multiple stimulus-response relationships (e.g., receptive fields are represented by different states or groups of states in a Markov chain. Each stimulus-response relationship features temporal flexibility, allowing modeling of variable response latencies, including noisy ones. We derive algorithms for learning of MPH parameters and for inference of spike response probabilities. We show that some linear-nonlinear Poisson cascade (LNP models are a special case of MPHs. We demonstrate the efficiency and usefulness of MPHs in simulations of both jittered and switching spike responses to white noise and natural stimuli. Furthermore, we apply MPHs to extracellular single and multi-unit data recorded in cortical brain areas of singing birds to showcase a novel method for estimating response lag distributions. MPHs allow simultaneous estimation of receptive fields, latency statistics, and hidden state dynamics and so can help to uncover complex stimulus response relationships that are subject to variable timing and involve diverse neural codes.

  7. Dynamic alignment models for neural coding.

    Science.gov (United States)

    Kollmorgen, Sepp; Hahnloser, Richard H R

    2014-03-01

    Recently, there have been remarkable advances in modeling the relationships between the sensory environment, neuronal responses, and behavior. However, most models cannot encompass variable stimulus-response relationships such as varying response latencies and state or context dependence of the neural code. Here, we consider response modeling as a dynamic alignment problem and model stimulus and response jointly by a mixed pair hidden Markov model (MPH). In MPHs, multiple stimulus-response relationships (e.g., receptive fields) are represented by different states or groups of states in a Markov chain. Each stimulus-response relationship features temporal flexibility, allowing modeling of variable response latencies, including noisy ones. We derive algorithms for learning of MPH parameters and for inference of spike response probabilities. We show that some linear-nonlinear Poisson cascade (LNP) models are a special case of MPHs. We demonstrate the efficiency and usefulness of MPHs in simulations of both jittered and switching spike responses to white noise and natural stimuli. Furthermore, we apply MPHs to extracellular single and multi-unit data recorded in cortical brain areas of singing birds to showcase a novel method for estimating response lag distributions. MPHs allow simultaneous estimation of receptive fields, latency statistics, and hidden state dynamics and so can help to uncover complex stimulus response relationships that are subject to variable timing and involve diverse neural codes.

  8. Simple mathematical models of gene regulatory dynamics

    CERN Document Server

    Mackey, Michael C; Tyran-Kamińska, Marta; Zeron, Eduardo S

    2016-01-01

    This is a short and self-contained introduction to the field of mathematical modeling of gene-networks in bacteria. As an entry point to the field, we focus on the analysis of simple gene-network dynamics. The notes commence with an introduction to the deterministic modeling of gene-networks, with extensive reference to applicable results coming from dynamical systems theory. The second part of the notes treats extensively several approaches to the study of gene-network dynamics in the presence of noise—either arising from low numbers of molecules involved, or due to noise external to the regulatory process. The third and final part of the notes gives a detailed treatment of three well studied and concrete examples of gene-network dynamics by considering the lactose operon, the tryptophan operon, and the lysis-lysogeny switch. The notes contain an index for easy location of particular topics as well as an extensive bibliography of the current literature. The target audience of these notes are mainly graduat...

  9. A Typed Model for Dynamic Authorizations

    Directory of Open Access Journals (Sweden)

    Silvia Ghilezan

    2016-02-01

    Full Text Available Security requirements in distributed software systems are inherently dynamic. In the case of authorization policies, resources are meant to be accessed only by authorized parties, but the authorization to access a resource may be dynamically granted/yielded. We describe ongoing work on a model for specifying communication and dynamic authorization handling. We build upon the pi-calculus so as to enrich communication-based systems with authorization specification and delegation; here authorizations regard channel usage and delegation refers to the act of yielding an authorization to another party. Our model includes: (i a novel scoping construct for authorization, which allows to specify authorization boundaries, and (ii communication primitives for authorizations, which allow to pass around authorizations to act on a given channel. An authorization error may consist in, e.g., performing an action along a name which is not under an appropriate authorization scope. We introduce a typing discipline that ensures that processes never reduce to authorization errors, even when authorizations are dynamically delegated.

  10. Dynamical Causal Modeling from a Quantum Dynamical Perspective

    Science.gov (United States)

    Demiralp, Emre; Demiralp, Metin

    2010-09-01

    Recent research suggests that any set of first order linear vector ODEs can be converted to a set of specific vector ODEs adhering to what we have called "Quantum Harmonical Form (QHF)". QHF has been developed using a virtual quantum multi harmonic oscillator system where mass and force constants are considered to be time variant and the Hamiltonian is defined as a conic structure over positions and momenta to conserve the Hermiticity. As described in previous works, the conversion to QHF requires the matrix coefficient of the first set of ODEs to be a normal matrix. In this paper, this limitation is circumvented using a space extension approach expanding the potential applicability of this method. Overall, conversion to QHF allows the investigation of a set of ODEs using mathematical tools available to the investigation of the physical concepts underlying quantum harmonic oscillators. The utility of QHF in the context of dynamical systems and dynamical causal modeling in behavioral and cognitive neuroscience is briefly discussed.

  11. Enhanced photocurrent and dynamic response in vertically aligned In₂S₃/Ag core/shell nanorod array photoconductive devices.

    Science.gov (United States)

    Cansizoglu, Hilal; Cansizoglu, Mehmet F; Watanabe, Fumiya; Karabacak, Tansel

    2014-06-11

    Enhanced photocurrent values were achieved through a semiconductor-core/metal-shell nanorod array photoconductive device geometry. Vertically aligned indium sulfide (In2S3) nanorods were formed as the core by using glancing angle deposition technique (GLAD). A thin silver (Ag) layer is conformally coated around nanorods as the metallic shell through a high pressure sputter deposition method. This was followed by capping the nanorods with a metallic blanket layer of Ag film by utilizing a new small angle deposition technique combined with GLAD. Radial interface that was formed by the core/shell geometry provided an efficient charge carrier collection by shortening carrier transit times, which led to a superior photocurrent and gain. Thin metal shells around nanorods acted as a passivation layer to decrease surface states that cause prolonged carrier lifetimes and slow recovery of the photocurrent in nanorods. A combination of efficient carrier collection with surface passivation resulted in enhanced photocurrent and dynamic response at the same time in one device structure. In2S3 nanorod devices without the metal shell and with relatively thicker metal shell were also fabricated and characterized for comparison. In2S3 nanorods with thin metal shell showed the highest photosensitivity (photocurrent/dark current) response compared to two other designs. Microstructural, morphological, and electronic properties of the core/shell nanorods were used to explain the results observed.

  12. Size effect in the melting and freezing behaviors of Al/Ti core-shell nanoparticles using molecular dynamics simulations

    Science.gov (United States)

    Jin-Ping, Zhang; Yang-Yang, Zhang; Er-Ping, Wang; Cui-Ming, Tang; Xin-Lu, Cheng; Qiu-Hui, Zhang

    2016-03-01

    The thermal stability of Ti@Al core/shell nanoparticles with different sizes and components during continuous heating and cooling processes is examined by a molecular dynamics simulation with embedded atom method. The thermodynamic properties and structure evolution during continuous heating and cooling processes are investigated through the characterization of the potential energy, specific heat distribution, and radial distribution function (RDF). Our study shows that, for fixed Ti core size, the melting temperature decreases with Al shell thickness, while the crystallizing temperature and glass formation temperature increase with Al shell thickness. Diverse melting mechanisms have been discovered for different Ti core sized with fixed Al shell thickness nanoparticles. The melting temperature increases with the Ti core radius. The trend agrees well with the theoretical phase diagram of bimetallic nanoparticles. In addition, the glass phase formation of Al-Ti nanoparticles for the fast cooling rate of 12 K/ps, and the crystal phase formation for the low cooling rate of 0.15 K/ps. The icosahedron structure is formed in the frozen 4366 Al-Ti atoms for the low cooling rate. Project supported by the National Natural Science Foundation of China (Grant No. 21401064), the Science & Technology Development Program of Henan Province, China (Grant No. 142300410282), and the Program of Henan Educational Committee, China (Grant No. 13B140986).

  13. A model for the design and programming of multi-cores

    NARCIS (Netherlands)

    Jesshope, C.; Grandinetti, L.

    2008-01-01

    This paper describes a machine/programming model for the era of multi-core chips. It is derived from the sequential model but replaces sequential composition with concurrent composition at all levels in the program except at the level where the compiler is able to make deterministic decisions on

  14. Design of homogeneous trench-assisted multi-core fibers based on analytical model

    DEFF Research Database (Denmark)

    Ye, Feihong; Tu, Jiajing; Saitoh, Kunimasa

    2016-01-01

    We present a design method of homogeneous trench-assisted multicore fibers (TA-MCFs) based on an analytical model utilizing an analytical expression for the mode coupling coefficient between two adjacent cores. The analytical model can also be used for crosstalk (XT) properties analysis, such as ...

  15. A finite element model for independent wire rope core with double ...

    Indian Academy of Sciences (India)

    to model and analyse independent wire rope core accurately (IWRC). In this paper, ... Although considerable research studies have been carried out about the analytical solutions of IWRCs by Costello & Sinha ... straight strand as being the main component for modelling IWRC and more complex wire ropes by using IWRC.

  16. Muscle spindles exhibit core lesions and extensive degeneration of intrafusal fibers in the Ryr1I4895T/wt mouse model of core myopathy

    International Nuclear Information System (INIS)

    Zvaritch, Elena; MacLennan, David H.

    2015-01-01

    Muscle spindles from the hind limb muscles of adult Ryr1 I4895T/wt (IT/+) mice exhibit severe structural abnormalities. Up to 85% of the spindles are separated from skeletal muscle fascicles by a thick layer of connective tissue. Many intrafusal fibers exhibit degeneration, with Z-line streaming, compaction and collapse of myofibrillar bundles, mitochondrial clumping, nuclear shrinkage and pyknosis. The lesions resemble cores observed in the extrafusal myofibers of this animal model and of core myopathy patients. Spindle abnormalities precede those in extrafusal fibers, indicating that they are a primary pathological feature in this murine Ryr1-related core myopathy. Muscle spindle involvement, if confirmed for human core myopathy patients, would provide an explanation for an array of devastating clinical features characteristic of these diseases and provide novel insights into the pathology of RYR1-related myopathies. - Highlights: • Muscle spindles exhibit structural abnormalities in a mouse model of core myopathy. • Myofibrillar collapse and mitochondrial clumping is observed in intrafusal fibers. • Myofibrillar degeneration follows a pattern similar to core formation in extrafusal myofibers. • Muscle spindle abnormalities are a part of the pathological phenotype in the mouse model of core myopathy. • Direct involvement of muscle spindles in the pathology of human RYR1-related myopathies is proposed

  17. Modeling plasmaspheric dynamics with SAMI3 (Invited)

    Science.gov (United States)

    Huba, J. D.; Krall, J.; Wu, T.

    2013-12-01

    The NRL SAMI3 ionosphere/plasmasphere code is used to study plasmaspheric dynamics under both quiet and stormtime conditions. The SAMI3 ionosphere code includes 7 ion species (H+, He+, O+ ,N+, O2+, N2+, NO+), each treated as a separate fluid, with temperature equations being solved for H+, He+, O+ and e. Winds in SAMI3 are provided by HWM07 or HWM93 and the wind-driven ionospheric dynamo potential is computed self-consistently, based on current conservation. For this study SAMI3 is driven by the Weimer empirical model as well as a modified Volland-Stern potential at high latitudes. A time-varying high-latitude potential in combination with losses imposed for `open' field lines (L > 7) produces a dynamic plasmapause. Modeling results will be compared with observational data (e.g., plume formation, refilling, TEC). Research supported by NRL Base Funds and NASA.

  18. The modeling of core melting and in-vessel corium relocation in the APRIL code

    Energy Technology Data Exchange (ETDEWEB)

    Kim. S.W.; Podowski, M.Z.; Lahey, R.T. [Rensselaer Polytechnic Institute, Troy, NY (United States)] [and others

    1995-09-01

    This paper is concerned with the modeling of severe accident phenomena in boiling water reactors (BWR). New models of core melting and in-vessel corium debris relocation are presented, developed for implementation in the APRIL computer code. The results of model testing and validations are given, including comparisons against available experimental data and parametric/sensitivity studies. Also, the application of these models, as parts of the APRIL code, is presented to simulate accident progression in a typical BWR reactor.

  19. Probability modeling of the number of positive cores in a prostate cancer biopsy session, with applications.

    Science.gov (United States)

    Serfling, Robert; Ogola, Gerald

    2016-02-10

    Among men, prostate cancer (CaP) is the most common newly diagnosed cancer and the second leading cause of death from cancer. A major issue of very large scale is avoiding both over-treatment and under-treatment of CaP cases. The central challenge is deciding clinical significance or insignificance when the CaP biopsy results are positive but only marginally so. A related concern is deciding how to increase the number of biopsy cores for larger prostates. As a foundation for improved choice of number of cores and improved interpretation of biopsy results, we develop a probability model for the number of positive cores found in a biopsy, given the total number of cores, the volumes of the tumor nodules, and - very importantly - the prostate volume. Also, three applications are carried out: guidelines for the number of cores as a function of prostate volume, decision rules for insignificant versus significant CaP using number of positive cores, and, using prior distributions on total tumor size, Bayesian posterior probabilities for insignificant CaP and posterior median CaP. The model-based results have generality of application, take prostate volume into account, and provide attractive tradeoffs of specificity versus sensitivity. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  20. Modelling high-resolution electron microscopy based on core-loss spectroscopy

    International Nuclear Information System (INIS)

    Allen, L.J.; Findlay, S.D.; Oxley, M.P.; Witte, C.; Zaluzec, N.J.

    2006-01-01

    There are a number of factors affecting the formation of images based on core-loss spectroscopy in high-resolution electron microscopy. We demonstrate unambiguously the need to use a full nonlocal description of the effective core-loss interaction for experimental results obtained from high angular resolution electron channelling electron spectroscopy. The implications of this model are investigated for atomic resolution scanning transmission electron microscopy. Simulations are used to demonstrate that core-loss spectroscopy images formed using fine probes proposed for future microscopes can result in images that do not correspond visually with the structure that has led to their formation. In this context, we also examine the effect of varying detector geometries. The importance of the contribution to core-loss spectroscopy images by dechannelled or diffusely scattered electrons is reiterated here

  1. The dynamic radiation environment assimilation model (DREAM)

    Energy Technology Data Exchange (ETDEWEB)

    Reeves, Geoffrey D [Los Alamos National Laboratory; Koller, Josef [Los Alamos National Laboratory; Tokar, Robert L [Los Alamos National Laboratory; Chen, Yue [Los Alamos National Laboratory; Henderson, Michael G [Los Alamos National Laboratory; Friedel, Reiner H [Los Alamos National Laboratory

    2010-01-01

    The Dynamic Radiation Environment Assimilation Model (DREAM) is a 3-year effort sponsored by the US Department of Energy to provide global, retrospective, or real-time specification of the natural and potential nuclear radiation environments. The DREAM model uses Kalman filtering techniques that combine the strengths of new physical models of the radiation belts with electron observations from long-term satellite systems such as GPS and geosynchronous systems. DREAM includes a physics model for the production and long-term evolution of artificial radiation belts from high altitude nuclear explosions. DREAM has been validated against satellites in arbitrary orbits and consistently produces more accurate results than existing models. Tools for user-specific applications and graphical displays are in beta testing and a real-time version of DREAM has been in continuous operation since November 2009.

  2. Dynamic energy-demand models. A comparison

    International Nuclear Information System (INIS)

    Yi, Feng

    2000-01-01

    This paper compares two second-generation dynamic energy demand models, a translog (TL) and a general Leontief (GL), in the study of price elasticities and factor substitutions of nine Swedish manufacturing industries: food, textiles, wood, paper, printing, chemicals, non-metallic minerals, base metals and machinery. Several model specifications are tested with likelihood ratio test. There is a disagreement on short-run adjustments; the TL model accepts putty-putty production technology of immediate adjustments, implying equal short- and long-run price elasticities of factors, while the GL model rejects immediate adjustments, giving out short-run elasticities quite different from the long-run. The two models also disagree in substitutability in many cases. 21 refs

  3. Dynamical symmetries of the shell model

    Energy Technology Data Exchange (ETDEWEB)

    Van Isacker, P

    2000-07-01

    The applications of spectrum generating algebras and of dynamical symmetries in the nuclear shell model are many and varied. They stretch back to Wigner's early work on the supermultiplet model and encompass important landmarks in our understanding of the structure of the atomic nucleus such as Racah's SU(2) pairing model and Elliot's SU(3) rotational model. One of the aims of this contribution has been to show the historical importance of the idea of dynamical symmetry in nuclear physics. Another has been to indicate that, in spite of being old, this idea continues to inspire developments that are at the forefront of today's research in nuclear physics. It has been argued in this contribution that the main driving features of nuclear structure can be represented algebraically but at the same time the limitations of the symmetry approach must be recognised. It should be clear that such approach can only account for gross properties and that any detailed description requires more involved numerical calculations of which we have seen many fine examples during this symposium. In this way symmetry techniques can be used as an appropriate starting point for detailed calculations. A noteworthy example of this approach is the pseudo-SU(3) model which starting from its initial symmetry Ansatz has grown into an adequate and powerful description of the nucleus in terms of a truncated shell model. (author)

  4. Ex-Vessel Core Melt Modeling Comparison between MELTSPREAD-CORQUENCH and MELCOR 2.1

    Energy Technology Data Exchange (ETDEWEB)

    Robb, Kevin R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Farmer, Mitchell [Argonne National Lab. (ANL), Argonne, IL (United States); Francis, Matthew W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2014-03-01

    System-level code analyses by both United States and international researchers predict major core melting, bottom head failure, and corium-concrete interaction for Fukushima Daiichi Unit 1 (1F1). Although system codes such as MELCOR and MAAP are capable of capturing a wide range of accident phenomena, they currently do not contain detailed models for evaluating some ex-vessel core melt behavior. However, specialized codes containing more detailed modeling are available for melt spreading such as MELTSPREAD as well as long-term molten corium-concrete interaction (MCCI) and debris coolability such as CORQUENCH. In a preceding study, Enhanced Ex-Vessel Analysis for Fukushima Daiichi Unit 1: Melt Spreading and Core-Concrete Interaction Analyses with MELTSPREAD and CORQUENCH, the MELTSPREAD-CORQUENCH codes predicted the 1F1 core melt readily cooled in contrast to predictions by MELCOR. The user community has taken notice and is in the process of updating their systems codes; specifically MAAP and MELCOR, to improve and reduce conservatism in their ex-vessel core melt models. This report investigates why the MELCOR v2.1 code, compared to the MELTSPREAD and CORQUENCH 3.03 codes, yield differing predictions of ex-vessel melt progression. To accomplish this, the differences in the treatment of the ex-vessel melt with respect to melt spreading and long-term coolability are examined. The differences in modeling approaches are summarized, and a comparison of example code predictions is provided.

  5. Dynamical Model for Indoor Radon Concentration Monitoring

    Czech Academy of Sciences Publication Activity Database

    Brabec, Marek; Jílek, K.

    2009-01-01

    Roč. 20, č. 6 (2009), s. 718-729 ISSN 1180-4009. [TIES 2007. Annual Meeting of the International Environmental Society /18./. Mikulov, 16.08.2007-20.08.2007] Institutional research plan: CEZ:AV0Z10300504 Keywords : non-parametric regression * dynamic modeling * time-varying coefficients Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 1.000, year: 2009

  6. SNR 2 core dynamics and shut-down signals in a protected loss-of-flow incident

    International Nuclear Information System (INIS)

    Kleefeldt, K.

    1982-01-01

    The dynamic behavior of a 1300 MWe Core during a loss-of-flow incident has been analyzed by use of the SAS3D code for a given pump coast down characteristic and constant core inlet temperature. Emphasis was placed on the questions: How fast and via which monitored parameters can the incident be recognized by the reactor protection system. What is the tolerable time span for the shut-down action without exceeding safety limits. Key prameters and limit values as well as conceivable reactivity feed-back effects are discussed. The result is, that three out of four choosen monitored parameters are capable of initiating a shut-down action in time. In addition, the amount of shut-down reactivity required for a successful scram was briefly investigated

  7. Conformational and nuclear dynamics effects in molecular Auger spectra: fluorine core-hole decay in CF4

    Science.gov (United States)

    Arion, T.; Takahashi, O.; Püttner, R.; Ulrich, V.; Barth, S.; Lischke, T.; Bradshaw, A. M.; Förstel, M.; Hergenhahn, U.

    2014-06-01

    In a molecular Auger spectrum information on the decaying state is implicitly ensemble-averaged. For a repulsive core-ionized state, for example, contributions from all parts of its potential curve are superimposed in the Auger spectrum. Using carbon tetrafluoride (CF4, tetrafluoromethane), we demonstrate for the first time that these contributions can be disentangled by recording photoelectron-Auger electron coincidence spectra with high energy resolution. For the F K-VV spectrum of CF4, there are significant differences in the Auger decay at different intermediate state (single core hole) geometries. With the help of calculations, we show that these differences result primarily from zero-point fluctuations in the neutral molecular ground state, but are amplified by the nuclear dynamics during Auger decay.

  8. Conformational and nuclear dynamics effects in molecular Auger spectra: fluorine core-hole decay in CF4

    International Nuclear Information System (INIS)

    Arion, T; Ulrich, V; Barth, S; Lischke, T; Bradshaw, A M; Takahashi, O; Püttner, R; Förstel, M; Hergenhahn, U

    2014-01-01

    In a molecular Auger spectrum information on the decaying state is implicitly ensemble-averaged. For a repulsive core-ionized state, for example, contributions from all parts of its potential curve are superimposed in the Auger spectrum. Using carbon tetrafluoride (CF 4 , tetrafluoromethane), we demonstrate for the first time that these contributions can be disentangled by recording photoelectron–Auger electron coincidence spectra with high energy resolution. For the F K-VV spectrum of CF 4 , there are significant differences in the Auger decay at different intermediate state (single core hole) geometries. With the help of calculations, we show that these differences result primarily from zero-point fluctuations in the neutral molecular ground state, but are amplified by the nuclear dynamics during Auger decay. (paper)

  9. Simple Models for the Dynamic Modeling of Rotating Tires

    Directory of Open Access Journals (Sweden)

    J.C. Delamotte

    2008-01-01

    Full Text Available Large Finite Element (FE models of tires are currently used to predict low frequency behavior and to obtain dynamic model coefficients used in multi-body models for riding and comfort. However, to predict higher frequency behavior, which may explain irregular wear, critical rotating speeds and noise radiation, FE models are not practical. Detailed FE models are not adequate for optimization and uncertainty predictions either, as in such applications the dynamic solution must be computed a number of times. Therefore, there is a need for simpler models that can capture the physics of the tire and be used to compute the dynamic response with a low computational cost. In this paper, the spectral (or continuous element approach is used to derive such a model. A circular beam spectral element that takes into account the string effect is derived, and a method to simulate the response to a rotating force is implemented in the frequency domain. The behavior of a circular ring under different internal pressures is investigated using modal and frequency/wavenumber representations. Experimental results obtained with a real untreaded truck tire are presented and qualitatively compared with the simple model predictions with good agreement. No attempt is made to obtain equivalent parameters for the simple model from the real tire results. On the other hand, the simple model fails to represent the correct variation of the quotient of the natural frequency by the number of circumferential wavelengths with the mode count. Nevertheless, some important features of the real tire dynamic behavior, such as the generation of standing waves and part of the frequency/wavenumber behavior, can be investigated using the proposed simplified model.

  10. Modeling Overlapping Laminations in Magnetic Core Materials Using 2-D Finite-Element Analysis

    DEFF Research Database (Denmark)

    Jensen, Bogi Bech; Guest, Emerson David; Mecrow, Barrie C.

    2015-01-01

    This paper describes a technique for modeling overlapping laminations in magnetic core materials using two-dimensional finite-element (2-D FE) analysis. The magnetizing characteristic of the overlapping region is captured using a simple 2-D FE model of the periodic overlapping geometry...... and a composite material is created, which has the same magnetization characteristic. The benefit of this technique is that it allows a designer to perform design and optimization of magnetic cores with overlapped laminations using a 2-D FE model rather than a 3-D FE model, which saves modeling and simulation...... time. The modeling technique is verified experimentally by creating a composite material of a lap joint with a 3-mm overlapping region and using it in a 2-D FE model of a ring sample made up of a stack of 20 laminations. The B-H curve of the simulated ring sample is compared with the B-H curve obtained...

  11. Nonparametric modeling of dynamic functional connectivity in fmri data

    DEFF Research Database (Denmark)

    Nielsen, Søren Føns Vind; Madsen, Kristoffer H; Røge, Rasmus

    2015-01-01

    dynamic changes. The existing approaches modeling dynamic connectivity have primarily been based on time-windowing the data and k-means clustering. We propose a nonparametric generative model for dynamic FC in fMRI that does not rely on specifying window lengths and number of dynamic states. Rooted...

  12. Population Model with a Dynamic Food Supply

    Science.gov (United States)

    Dickman, Ronald; da Silva Nascimento, Jonas

    2009-09-01

    We propose a simple population model including the food supply as a dynamic variable. In the model, survival of an organism depends on a certain minimum rate of food consumption; a higher rate of consumption is required for reproduction. We investigate the stationary behavior under steady food input, and the transient behavior of growth and decay when food is present initially but is not replenished. Under a periodic food supply, the system exhibits period-doubling bifurcations and chaos in certain ranges of the reproduction rate. Bifurcations and chaos are favored by a slow reproduction rate and a long period of food-supply oscillation.

  13. Modeling of the Reactor Core Isolation Cooling Response to Beyond Design Basis Operations - Interim Report

    Energy Technology Data Exchange (ETDEWEB)

    Ross, Kyle [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Cardoni, Jeffrey N. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Wilson, Chisom Shawn [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Morrow, Charles [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Osborn, Douglas [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Gauntt, Randall O. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-12-01

    Efforts are being pursued to develop and qualify a system-level model of a reactor core isolation (RCIC) steam-turbine-driven pump. The model is being developed with the intent of employing it to inform the design of experimental configurations for full-scale RCIC testing. The model is expected to be especially valuable in sizing equipment needed in the testing. An additional intent is to use the model in understanding more fully how RCIC apparently managed to operate far removed from its design envelope in the Fukushima Daiichi Unit 2 accident. RCIC modeling is proceeding along two avenues that are expected to complement each other well. The first avenue is the continued development of the system-level RCIC model that will serve in simulating a full reactor system or full experimental configuration of which a RCIC system is part. The model reasonably represents a RCIC system today, especially given design operating conditions, but lacks specifics that are likely important in representing the off-design conditions a RCIC system might experience in an emergency situation such as a loss of all electrical power. A known specific lacking in the system model, for example, is the efficiency at which a flashing slug of water (as opposed to a concentrated jet of steam) could propel the rotating drive wheel of a RCIC turbine. To address this specific, the second avenue is being pursued wherein computational fluid dynamics (CFD) analyses of such a jet are being carried out. The results of the CFD analyses will thus complement and inform the system modeling. The system modeling will, in turn, complement the CFD analysis by providing the system information needed to impose appropriate boundary conditions on the CFD simulations. The system model will be used to inform the selection of configurations and equipment best suitable of supporting planned RCIC experimental testing. Preliminary investigations with the RCIC model indicate that liquid water ingestion by the turbine

  14. A dynamical model for bark beetle outbreaks.

    Science.gov (United States)

    Křivan, Vlastimil; Lewis, Mark; Bentz, Barbara J; Bewick, Sharon; Lenhart, Suzanne M; Liebhold, Andrew

    2016-10-21

    Tree-killing bark beetles are major disturbance agents affecting coniferous forest ecosystems. The role of environmental conditions on driving beetle outbreaks is becoming increasingly important as global climatic change alters environmental factors, such as drought stress, that, in turn, govern tree resistance. Furthermore, dynamics between beetles and trees are highly nonlinear, due to complex aggregation behaviors exhibited by beetles attacking trees. Models have a role to play in helping unravel the effects of variable tree resistance and beetle aggregation on bark beetle outbreaks. In this article we develop a new mathematical model for bark beetle outbreaks using an analogy with epidemiological models. Because the model operates on several distinct time scales, singular perturbation methods are used to simplify the model. The result is a dynamical system that tracks populations of uninfested and infested trees. A limiting case of the model is a discontinuous function of state variables, leading to solutions in the Filippov sense. The model assumes an extensive seed-bank so that tree recruitment is possible even if trees go extinct. Two scenarios are considered for immigration of new beetles. The first is a single tree stand with beetles immigrating from outside while the second considers two forest stands with beetle dispersal between them. For the seed-bank driven recruitment rate, when beetle immigration is low, the forest stand recovers to a beetle-free state. At high beetle immigration rates beetle populations approach an endemic equilibrium state. At intermediate immigration rates, the model predicts bistability as the forest can be in either of the two equilibrium states: a healthy forest, or a forest with an endemic beetle population. The model bistability leads to hysteresis. Interactions between two stands show how a less resistant stand of trees may provide an initial toe-hold for the invasion, which later leads to a regional beetle outbreak in the

  15. Modeling thermohydrodynamic processes in the water-cooled reactor core

    International Nuclear Information System (INIS)

    Semenovich, O.

    2015-01-01

    Has been made the computer code of simulation of the processes of the hydrodynamics and heat transfer in the flow of coolant, which should act as a liaison between the system code and the subchannel code. This code is designed to calculate the parameters of the coolant, which are averaged over the cross section of the fuel assembly, so we'll call it the cassette thermohydraulic code (or just – cassette code). For the numerical implementation of the proposed mathematical subchannel model used semi-implicit numerical scheme. All variables that are present in the source terms and in the terms describing of interconnect on the interphases surfaces and on the surfaces of solid walls are treated in an implicit interpretation: they are interpreted as the values in new point in time. The phase velocities included in the convective terms of the mass and the energy, and pressure, which is present in all members of differentiable equations are interpreted in the same way. In contrast, members of the convective flux of mass, momentum, energy evaluated at the old time step, that is, in explicit form. For discretization in space (axial) variable used ”chess” grid. The results of computational experiments are presented [ru

  16. Modeling the Dynamic Digestive System Microbiome

    Directory of Open Access Journals (Sweden)

    Anne M. Estes

    2015-08-01

    Full Text Available “Modeling the Dynamic Digestive System Microbiome” is a hands-on activity designed to demonstrate the dynamics of microbiome ecology using dried pasta and beans to model disturbance events in the human digestive system microbiome. This exercise demonstrates how microbiome diversity is influenced by: 1 niche availability and habitat space and 2 a major disturbance event, such as antibiotic use. Students use a pictorial key to examine prepared models of digestive system microbiomes to determine what the person with the microbiome “ate.” Students then model the effect of taking antibiotics by removing certain “antibiotic sensitive” pasta. Finally, they add in “environmental microbes” or “native microbes” to recolonize the digestive system, determine how resilient their model microbome community is to disturbance, and discuss the implications. Throughout the exercise, students discuss differences in the habitat space available and microbiome community diversity. This exercise can be modified to discuss changes in the microbiome due to diet shifts and the emergence of antibiotic resistance in more depth.

  17. Conceptual Model of Dynamic Geographic Environment

    Directory of Open Access Journals (Sweden)

    Martínez-Rosales Miguel Alejandro

    2014-04-01

    Full Text Available In geographic environments, there are many and different types of geographic entities such as automobiles, trees, persons, buildings, storms, hurricanes, etc. These entities can be classified into two groups: geographic objects and geographic phenomena. By its nature, a geographic environment is dynamic, thus, it’s static modeling is not sufficient. Considering the dynamics of geographic environment, a new type of geographic entity called event is introduced. The primary target is a modeling of geographic environment as an event sequence, because in this case the semantic relations are much richer than in the case of static modeling. In this work, the conceptualization of this model is proposed. It is based on the idea to process each entity apart instead of processing the environment as a whole. After that, the so called history of each entity and its spatial relations to other entities are defined to describe the whole environment. The main goal is to model systems at a conceptual level that make use of spatial and temporal information, so that later it can serve as the semantic engine for such systems.

  18. Quadratic tracer dynamical models tobacco growth

    International Nuclear Information System (INIS)

    Qiang Jiyi; Hua Cuncai; Wang Shaohua

    2011-01-01

    In order to study the non-uniformly transferring process of some tracer dosages, we assume that the absorption of some tracer by tobacco is a quadratic function of the tracer quantity of the tracer in the case of fast absorption, whereas the exclusion of the tracer from tobacco is a linear function of the tracer quantity in the case of slow exclusion, after the tracer is introduced into tobacco once at zero time. A single-compartment quadratic dynamical model of Logistic type is established for the leaves of tobacco. Then, a two-compartment quadratic dynamical model is established for leaves and calms of the tobacco. Qualitative analysis of the models shows that the tracer applied to the leaves of the tobacco is excluded finally; however, the tracer stays at the tobacco for finite time. Two methods are also given for computing the parameters in the models. Finally, the results of the models are verified by the 32 P experiment for the absorption of tobacco. (authors)

  19. Rapid, dynamic segregation of core forming melts: Results from in-situ High Pressure- High Temperature X-ray Tomography

    Science.gov (United States)

    Watson, H. C.; Yu, T.; Wang, Y.

    2011-12-01

    The timing and mechanisms of core formation in the Earth, as well as in Earth-forming planetesimals is a problem of significant importance in our understanding of the early evolution of terrestrial planets . W-Hf isotopic signatures in meteorites indicate that core formation in small pre-differentiated planetesimals was relatively rapid, and occurred over the span of a few million years. This time scale is difficult to achieve by percolative flow of the metallic phase through a silicate matrix in textural equilibrium. It has been suggested that during this active time in the early solar system, dynamic processes such as impacts may have caused significant deformation in the differentiating planetesimals, which could lead to much higher permeability of the core forming melts. Here, we have measured the change in permeability of core forming melts in a silicate matrix due to deformation. Mixtures of San Carlos olivine and FeS close to the equilibrium percolation threshold (~5 vol%FeS) were pre-synthesized to achieve an equilibrium microstructure, and then loaded into the rotational Drickamer apparatus at GSE-CARS, sector 13-BMD, at the Advanced Photon Source (Argonne National Laboratory). The samples were subsequently pressed to ~2GPa, and heated to 1100°C. Alternating cycles of rotation to collect X-ray tomography images, and twisting to deform the sample were conducted until the sample had been twisted by 1080°. Qualitative and quantitative analyses were performed on the resulting 3-dimensional x-ray tomographic images to evaluate the effect of shear deformation on permeability and migration velocity. Lattice-Boltzmann simulations were conducted, and show a marked increase in the permeability with increasing deformation, which would allow for much more rapid core formation in planetesimals.

  20. Multi-Core Programming Design Patterns: Stream Processing Algorithms for Dynamic Scene Perceptions

    Science.gov (United States)

    2014-05-01

    Tsukuba, Japan ], 142–151, IEEE (2008). [17] Agullo, E., Demmel, J., Dongarra, J., Hadri, B., Kurzak, J., Langou, J., Ltaief, H., Luszczek, P., and Tomov ...Release; Distribution Unlimited. [20] Song, F., Tomov , S., and Dongarra, J., “Enabling and scaling matrix computations on heterogeneous multi- core and