WorldWideScience

Sample records for models deposition studies

  1. NURE uranium deposit model studies

    International Nuclear Information System (INIS)

    Crew, M.E.

    1981-01-01

    The National Uranium Resource Evaluation (NURE) Program has sponsored uranium deposit model studies by Bendix Field Engineering Corporation (Bendix), the US Geological Survey (USGS), and numerous subcontractors. This paper deals only with models from the following six reports prepared by Samuel S. Adams and Associates: GJBX-1(81) - Geology and Recognition Criteria for Roll-Type Uranium Deposits in Continental Sandstones; GJBX-2(81) - Geology and Recognition Criteria for Uraniferous Humate Deposits, Grants Uranium Region, New Mexico; GJBX-3(81) - Geology and Recognition Criteria for Uranium Deposits of the Quartz-Pebble Conglomerate Type; GJBX-4(81) - Geology and Recognition Criteria for Sandstone Uranium Deposits in Mixed Fluvial-Shallow Marine Sedimentary Sequences, South Texas; GJBX-5(81) - Geology and Recognition Criteria for Veinlike Uranium Deposits of the Lower to Middle Proterozoic Unconformity and Strata-Related Types; GJBX-6(81) - Geology and Recognition Criteria for Sandstone Uranium Deposits of the Salt Wash Type, Colorado Plateau Province. A unique feature of these models is the development of recognition criteria in a systematic fashion, with a method for quantifying the various items. The recognition-criteria networks are used in this paper to illustrate the various types of deposits

  2. Model boiler studies on deposition and corrosion

    International Nuclear Information System (INIS)

    Balakrishnan, P.V.; McVey, E.G.

    1977-09-01

    Deposit formation was studied in a model boiler, with sea-water injections to simulate the in-leakage which could occur from sea-water cooled condensers. When All Volatile Treatment (AVT) was used for chemistry control the deposits consisted of the sea-water salts and corrosion products. With sodium phosphate added to the boiler water, the deposits also contained the phosphates derived from the sea-water salts. The deposits were formed in layers of differing compositions. There was no significant corrosion of the Fe-Ni-Cr alloy boiler tube under deposits, either on the open area of the tube or in crevices. However, carbon steel that formed a crevice around the tube was corroded severely when the boiler water did not contain phosphate. The observed corrosion of carbon steel was caused by the presence of acidic, highly concentrated chloride solution produced from the sea-water within the crevice. Results of theoretical calculations of the composition of the concentrated solution are presented. (author)

  3. Modeling study of deposition locations in the 291-Z plenum

    International Nuclear Information System (INIS)

    Mahoney, L.A.; Glissmeyer, J.A.

    1994-06-01

    The TEMPEST (Trent and Eyler 1991) and PART5 computer codes were used to predict the probable locations of particle deposition in the suction-side plenum of the 291-Z building in the 200 Area of the Hanford Site, the exhaust fan building for the 234-5Z, 236-Z, and 232-Z buildings in the 200 Area of the Hanford Site. The Tempest code provided velocity fields for the airflow through the plenum. These velocity fields were then used with TEMPEST to provide modeling of near-floor particle concentrations without particle sticking (100% resuspension). The same velocity fields were also used with PART5 to provide modeling of particle deposition with sticking (0% resuspension). Some of the parameters whose importance was tested were particle size, point of injection and exhaust fan configuration

  4. Multi-model study of HTAP II on sulfur and nitrogen deposition

    Science.gov (United States)

    Tan, Jiani; Fu, Joshua S.; Dentener, Frank; Sun, Jian; Emmons, Louisa; Tilmes, Simone; Sudo, Kengo; Flemming, Johannes; Eiof Jonson, Jan; Gravel, Sylvie; Bian, Huisheng; Davila, Yanko; Henze, Daven K.; Lund, Marianne T.; Kucsera, Tom; Takemura, Toshihiko; Keating, Terry

    2018-05-01

    This study uses multi-model ensemble results of 11 models from the second phase of Task Force Hemispheric Transport of Air Pollution (HTAP II) to calculate the global sulfur (S) and nitrogen (N) deposition in 2010. Modeled wet deposition is evaluated with observation networks in North America, Europe and East Asia. The modeled results agree well with observations, with 76-83 % of stations being predicted within ±50 % of observations. The models underestimate SO42-, NO3- and NH4+ wet depositions in some European and East Asian stations but overestimate NO3- wet deposition in the eastern United States. Intercomparison with previous projects (PhotoComp, ACCMIP and HTAP I) shows that HTPA II has considerably improved the estimation of deposition at European and East Asian stations. Modeled dry deposition is generally higher than the inferential data calculated by observed concentration and modeled velocity in North America, but the inferential data have high uncertainty, too. The global S deposition is 84 Tg(S) in 2010, with 49 % in continental regions and 51 % in the ocean (19 % of which coastal). The global N deposition consists of 59 Tg(N) oxidized nitrogen (NOy) deposition and 64 Tg(N) reduced nitrogen (NHx) deposition in 2010. About 65 % of N is deposited in continental regions, and 35 % in the ocean (15 % of which coastal). The estimated outflow of pollution from land to ocean is about 4 Tg(S) for S deposition and 18 Tg(N) for N deposition. Comparing our results to the results in 2001 from HTAP I, we find that the global distributions of S and N deposition have changed considerably during the last 10 years. The global S deposition decreases 2 Tg(S) (3 %) from 2001 to 2010, with significant decreases in Europe (5 Tg(S) and 55 %), North America (3 Tg(S) and 29 %) and Russia (2 Tg(S) and 26 %), and increases in South Asia (2 Tg(S) and 42 %) and the Middle East (1 Tg(S) and 44 %). The global N deposition increases by 7 Tg(N) (6 %), mainly contributed by South Asia

  5. Atmospheric Deposition Modeling Results

    Data.gov (United States)

    U.S. Environmental Protection Agency — This asset provides data on model results for dry and total deposition of sulfur, nitrogen and base cation species. Components include deposition velocities, dry...

  6. Development of a Zealand white rabbit deposition model to study inhalation anthrax

    Energy Technology Data Exchange (ETDEWEB)

    Asgharian, Bahman; Price, Owen; Kabilan, Senthil; Jacob, Richard E.; Einstein, Daniel R.; Kuprat, Andrew P.; Corley, Richard A.

    2016-01-28

    Despite using rabbits in several inhalation exposure experiments to study diseases such as anthrax, there is a lack of understanding regarding deposition characteristics and fate of inhaled particles (bio-aerosols and viruses) in the respiratory tracts of rabbits. Such information allows dosimetric extrapolation to humans to inform human outcomes. The lung geometry of the New Zealand white rabbit (referred to simply as rabbits throughout the article) was constructed using recently acquired scanned images of the conducting airways of rabbits and available information on its acinar region. In addition, functional relationships were developed for the lung and breathing parameters of rabbits as a function of body weight. The lung geometry and breathing parameters were used to extend the existing deposition model for humans and several other species to rabbits. Evaluation of the deposition model for rabbits was made by comparing predictions with available measurements in the literature. Deposition predictions in the lungs of rabbits indicated smaller deposition fractions compared to those found in humans across various particle diameter ranges. The application of the deposition model for rabbits was demonstrated by extrapolating deposition predictions in rabbits to find equivalent human exposure concentrations assuming the same dose-response relationship between the two species. Human equivalent exposure concentration levels were found to be much smaller than those for rabbits.

  7. Development of a Zealand White Rabbit Deposition Model to Study Inhalation Anthrax

    Science.gov (United States)

    Asgharian, Bahman; Price, Owen; Kabilan, Senthil; Jacob, Richard E.; Einstein, Daniel R.; Kuprat, A.P.; Corley, Richard A.

    2016-01-01

    Despite using rabbits in several inhalation exposure experiments to study diseases such as anthrax, there is a lack of understanding regarding deposition characteristics and fate of inhaled particles (bio-aerosols and viruses) in the respiratory tracts of rabbits. Such information allows dosimetric extrapolation to humans to inform human outcomes. The lung geometry of the New Zealand white rabbit (referred to simply as rabbits throughout the article) was constructed using recently acquired scanned images of the conducting airways of rabbits and available information on its acinar region. In addition, functional relationships were developed for the lung and breathing parameters of rabbits as a function of body weight. The lung geometry and breathing parameters were used to extend the existing deposition model for humans and several other species to rabbits. Evaluation of the deposition model for rabbits was made by comparing predictions with available measurements in the literature. Deposition predictions in the lungs of rabbits indicated smaller deposition fractions compared to those found in humans across various particle diameter ranges. The application of the deposition model for rabbits was demonstrated by extrapolating deposition predictions in rabbits to find equivalent human exposure concentrations assuming the same dose-response relationship between the two species. Human equivalent exposure concentration levels were found to be much smaller than those for rabbits. PMID:26895308

  8. Sensitivity study of the wet deposition schemes in the modelling of the Fukushima accident.

    Science.gov (United States)

    Quérel, Arnaud; Quélo, Denis; Roustan, Yelva; Mathieu, Anne; Kajino, Mizuo; Sekiyama, Thomas; Adachi, Kouji; Didier, Damien; Igarashi, Yasuhito

    2016-04-01

    The Fukushima-Daiichi release of radioactivity is a relevant event to study the atmospheric dispersion modelling of radionuclides. Actually, the atmospheric deposition onto the ground may be studied through the map of measured Cs-137 established consecutively to the accident. The limits of detection were low enough to make the measurements possible as far as 250km from the nuclear power plant. This large scale deposition has been modelled with the Eulerian model ldX. However, several weeks of emissions in multiple weather conditions make it a real challenge. Besides, these measurements are accumulated deposition of Cs-137 over the whole period and do not inform of deposition mechanisms involved: in-cloud, below-cloud, dry deposition. A comprehensive sensitivity analysis is performed in order to understand wet deposition mechanisms. It has been shown in a previous study (Quérel et al, 2016) that the choice of the wet deposition scheme has a strong impact on the assessment of the deposition patterns. Nevertheless, a "best" scheme could not be highlighted as it depends on the selected criteria: the ranking differs according to the statistical indicators considered (correlation, figure of merit in space and factor 2). A possibility to explain the difficulty to discriminate between several schemes was the uncertainties in the modelling, resulting from the meteorological data for instance. Since the move of the plume is not properly modelled, the deposition processes are applied with an inaccurate activity in the air. In the framework of the SAKURA project, an MRI-IRSN collaboration, new meteorological fields at higher resolution (Sekiyama et al., 2013) were provided and allows to reconsider the previous study. An updated study including these new meteorology data is presented. In addition, a focus on several releases causing deposition in located areas during known period was done. This helps to better understand the mechanisms of deposition involved following the

  9. Modeled Wet Nitrate Deposition

    Data.gov (United States)

    U.S. Environmental Protection Agency — Modeled data on nitrate wet deposition was obtained from Dr. Jeff Grimm at Penn State Univ. Nitrate wet depostion causes acidification and eutrophication of surface...

  10. A nonhuman primate aerosol deposition model for toxicological and pharmaceutical studies

    Energy Technology Data Exchange (ETDEWEB)

    Martonen, T.B.; Katz, I.M.; Musante, C.J. [US EPA, Research Triangle Park, NC (USA)

    2001-07-01

    Nonhuman primates may be used as human surrogates in inhalation exposure studies to assess either the (1) adverse health effects of airborne particulate matter or (2) therapeutic effects of aerosolized drugs and proteins. Mathematical models describing the behavior and fate of inhaled aerosols may be used to complement such laboratory investigations. In this work a mathematical description of the rhesus monkey (Macaca mulatta) lung is presented for use with an aerosol deposition model. Deposition patterns of 0.01- to 5-{mu}m-diameter monodisperse aerosols within lungs were calculated for 3 monkey lung models (using different descriptions of alveolated regions) and compared to human lung results obtained using a previously validated mathematical model of deposition physics. The findings suggest that there are significant differences between deposition patterns in monkeys and humans. The nonhuman primates had greater exposures to inhaled substances, particularly on the basis of deposition per unit airway surface area. However, the different alveolar volumes in the rhesus monkey models had only minor effects on aerosol dosimetry within those lungs. By being aware of such quantitative differences, investigators can employ the respective primate models (human and nonhuman) to more effectively design and interpret the results of future inhalation exposure experiments.

  11. Solution processed deposition of electron transport layers on perovskite crystal surface—A modeling based study

    Energy Technology Data Exchange (ETDEWEB)

    Mortuza, S.M.; Taufique, M.F.N.; Banerjee, Soumik, E-mail: soumik.banerjee@wsu.edu

    2017-02-01

    Highlights: • The model determined the surface coverage of solution-processed film on perovskite. • Calculated surface density map provides insight into morphology of the monolayer. • Carbonyl oxygen atom of PCBM strongly attaches to the (110) surface of perovskite. • Uniform distribution of clusters on perovskite surface at lower PCBM concentration. • Deposition rate of PCBM on the surface is very high at initial stage of film growth. - Abstract: The power conversion efficiency (PCE) of planar perovskite solar cells (PSCs) has reached up to ∼20%. However, structural and chemicals defects that lead to hysteresis in the perovskite based thin film pose challenges. Recent work has shown that thin films of [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) deposited on the photo absorption layer, using solution processing techniques, minimize surface pin holes and defects thereby increasing the PCE. We developed and employed a multiscale model based on molecular dynamics (MD) and kinetic Monte Carlo (kMC) to establish a relationship between deposition rate and surface coverage on perovskite surface. The MD simulations of PCBMs dispersed in chlorobenzene, sandwiched between (110) perovskite substrates, indicate that PCBMs are deposited through anchoring of the oxygen atom of carbonyl group to the exposed lead (Pb) atom of (110) perovskite surface. Based on rates of distinct deposition events calculated from MD, kMC simulations were run to determine surface coverage at much larger time and length scales than accessible by MD alone. Based on the model, a generic relationship is established between deposition rate of PCBMs and surface coverage on perovskite crystal. The study also provides detailed insights into the morphology of the deposited film.

  12. Solution processed deposition of electron transport layers on perovskite crystal surface—A modeling based study

    International Nuclear Information System (INIS)

    Mortuza, S.M.; Taufique, M.F.N.; Banerjee, Soumik

    2017-01-01

    Highlights: • The model determined the surface coverage of solution-processed film on perovskite. • Calculated surface density map provides insight into morphology of the monolayer. • Carbonyl oxygen atom of PCBM strongly attaches to the (110) surface of perovskite. • Uniform distribution of clusters on perovskite surface at lower PCBM concentration. • Deposition rate of PCBM on the surface is very high at initial stage of film growth. - Abstract: The power conversion efficiency (PCE) of planar perovskite solar cells (PSCs) has reached up to ∼20%. However, structural and chemicals defects that lead to hysteresis in the perovskite based thin film pose challenges. Recent work has shown that thin films of [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) deposited on the photo absorption layer, using solution processing techniques, minimize surface pin holes and defects thereby increasing the PCE. We developed and employed a multiscale model based on molecular dynamics (MD) and kinetic Monte Carlo (kMC) to establish a relationship between deposition rate and surface coverage on perovskite surface. The MD simulations of PCBMs dispersed in chlorobenzene, sandwiched between (110) perovskite substrates, indicate that PCBMs are deposited through anchoring of the oxygen atom of carbonyl group to the exposed lead (Pb) atom of (110) perovskite surface. Based on rates of distinct deposition events calculated from MD, kMC simulations were run to determine surface coverage at much larger time and length scales than accessible by MD alone. Based on the model, a generic relationship is established between deposition rate of PCBMs and surface coverage on perovskite crystal. The study also provides detailed insights into the morphology of the deposited film.

  13. Experimental Study and Mathematical Modeling of Asphaltene Deposition Mechanism in Core Samples

    Directory of Open Access Journals (Sweden)

    Jafari Behbahani T.

    2015-11-01

    Full Text Available In this work, experimental studies were conducted to determine the effect of asphaltene deposition on the permeability reduction and porosity reduction of carbonate, sandstone and dolomite rock samples using an Iranian bottom hole live oil sample which is close to reservoir conditions, whereas in the majority of previous work, a mixture of recombined oil (a mixture of dead oil and associated gas was injected into a core sample which is far from reservoir conditions. The effect of the oil injection rate on asphaltene deposition and permeability reduction was studied. The experimental results showed that an increase in the oil injection flow rate can result in an increase in asphaltene deposition and permeability reduction. Also, it can be observed that at lower injection flow rates, a monotonic decrease in permeability of the rock samples can be attained upon increasing the injection flow rate, while at higher injection rates, after a decrease in rock permeability, an increasing trend is observed before a steady-state condition can be reached. The experimental results also showed that the rock type can affect the amount of asphaltene deposition, and the asphaltene deposition has different mechanisms in sandstone and carbonate core samples. It can be seen that the adsorption and plugging mechanisms have a more important role in asphaltene deposition in carbonate core samples than sandstone core samples. From the results, it can be observed that the pore volumes of the injected crude oil are higher for sandstone cores compared with the carbonate cores. Also, it can be inferred that three depositional types may take place during the crude oil injection, i.e., continuous deposition for low-permeability cores, slow, steady plugging for high-permeability cores and steady deposition for medium-permeability cores. It can be seen from the experimental results that damage to the core samples was found to increase when the production pressures were

  14. How relevant is the deposition of mercury onto snowpacks? – Part 2: A modeling study

    Directory of Open Access Journals (Sweden)

    D. Durnford

    2012-10-01

    Full Text Available An unknown fraction of mercury that is deposited onto snowpacks is revolatilized to the atmosphere. Determining the revolatilized fraction is important since mercury that enters the snowpack meltwater may be converted to highly toxic bioaccumulating methylmercury. In this study, we present a new dynamic physically-based snowpack/meltwater model for mercury that is suitable for large-scale atmospheric models for mercury. It represents the primary physical and chemical processes that determine the fate of mercury deposited onto snowpacks. The snowpack/meltwater model was implemented in Environment Canada's atmospheric mercury model GRAHM. For the first time, observed snowpack-related mercury concentrations are used to evaluate and constrain an atmospheric mercury model. We find that simulated concentrations of mercury in both snowpacks and the atmosphere's surface layer agree closely with observations. The simulated concentration of mercury in both in the top 30 cm and the top 150 cm of the snowpack, averaged over 2005–2009, is predominantly below 6 ng L−1 over land south of 66.5° N but exceeds 18 ng L−1 over sea ice in extensive areas of the Arctic Ocean and Hudson Bay. The average simulated concentration of mercury in snowpack meltwater runoff tends to be higher on the Russian/European side (>20 ng L−1 of the Arctic Ocean than on the Canadian side (<10 ng L−1. The correlation coefficient between observed and simulated monthly mean atmospheric surface-level gaseous elemental mercury (GEM concentrations increased significantly with the inclusion of the new snowpack/meltwater model at two of the three stations (midlatitude, subarctic studied and remained constant at the third (arctic. Oceanic emissions are postulated to produce the observed summertime maximum in concentrations of surface-level atmospheric GEM at Alert in the Canadian Arctic and to generate the summertime volatility observed in

  15. Three dimensional modeling of depositional geometries. A case study from Tofane Group (Dolomites, Italy).

    Science.gov (United States)

    Gattolin, G.; Franceschi, M.; Breda, A.; Teza, G.; Preto, N.

    2012-04-01

    At the end of the Early Carnian, the Carnian Pluvial Event (CPE) resulted in a major crisis of carbonate factories. The sharp change in carbonate production lead to a dramatic modifications in depositional geometries. Steep clinoforms of the high-relief pre-crisis carbonate platforms were replaced by low-angle ramps. Spatial characters of depositional geometries can be decisive in identifying the genesis of geological bodies. We here show how 3D modeling techniques can be applied to help in quantifying and highlighting their variations. As case study we considered two outcrops in the Tofane Group (Dolomites, Italy). The first outcrop (bottom of southern walls of Tofana di Rozes) exposes a platform-to-basin transect of pre- and post-crisis platforms, the second (Dibona hut) a clinostratified carbonate body deposited during the Carnian crisis. Outcrop conditions at both sites, with vertical and hardly accessible walls, make the field tracing of depositional geometries particularly challenging. Line drawing on high resolution pictures can help (e.g. for clinoforms), but its use for quantification is hampered by perspective deformation. Three dimensional acquisition and modeling allow to retrieve the true spatial characters of sedimentary bodies in these outcrops. The geometry of the carbonate body at Dibona (~ 15000 sqm) was acquired with terrestrial LiDAR, while for Tofana photogrammetric techniques were applied because of the extension of the outcrop itself (~ 240000 sqm) and the lack of suitable points of view for terrestrial laser scanning. At Tofana, field observations reveal the presence of tens-hundreds m large carbonate mounds grown on a pre-existing inclined surface, intercalated with skeletal carbonates and siltites-arenites. This system rapidly evolves into a carbonate-clastic ramp. Photogrammetric topography acquisition permitted to place and visualize geological features in a three dimensional frame, thus obtaining a conceptual sedimentological model. A 3

  16. The model of atmospheric diffusion and deposition adopted for the German reactor risk study (phase A)

    International Nuclear Information System (INIS)

    Huebschmann, W.G.; Vogt, S.

    1980-01-01

    The consequence model of the German reactor risk study comprises the release of radioactivity and thermal energy from the containment, the atmospheric diffusion, and the deposition of activity on the ground, the calculation of dose equivalents induced via the main exposure pathways, and the calculation of early and late health effects to the population, taking into account emergency actions for the protection of the public. The following exposure pathways are included in the model: external irradiation from the passing cloud and from the activity deposited on the ground, inhalation of the cloud activity and of resuspended material, and ingestion of contaminated food. Account is taken of the following effects: building wake, plume rise to thermal energy release, dynamic change of diffusion parameters, and plume depletion due to radioactive decay, dry and wet deposition. The calculations are performed for 115 weather sequences with starting times evenly distributed over one year. It is shown that such a choice of weather sequences reflects the total variety of meteorological situations, including precipitation, in a statistically adequate way. The area of the Federal Republic of Germany is divided into four meteorological site-regions, each with typical meteorological characteristics. Each power reactor site is assigned to one of the meteorological site-regions

  17. Study on particle deposition in vertical square ventilation duct flows by different models

    International Nuclear Information System (INIS)

    Zhang Jinping; Li Angui

    2008-01-01

    A proper representation of the air flow in a ventilation duct is crucial for adequate prediction of the deposition velocity of particles. In this paper, the mean turbulent air flow fields are predicted by two different numerical models (the Reynolds stress transport model (RSM) and the realizable k-εmodel). Contours of mean streamwise velocity deduced from the k-ε model are compared with those obtained from the Reynolds stress transport model. Dimensionless deposition velocities of particles in downward and upward ventilation duct flows are also compared based on the flow fields presented by the two different numerical models. Trajectories of the particles are tracked using a one way coupling Lagrangian eddy-particle interaction model. Thousands of individual particles are released in the represented flow, and dimensionless deposition velocities are evaluated for the vertical walls in fully developed smooth vertical downward and upward square duct flows generated by the RSM and realizable k-ε model. The effects of particle diameter, dimensionless relaxation time, flow direction and air speed in vertical upward and downward square duct flows on the particle deposition velocities are discussed. The effects of lift and gravity on the particle deposition velocities are evaluated in vertical flows presented by the RSM. It is shown that the particle deposition velocities based on the RSM and realizable k-εmodel have subtle differences. The flow direction and the lift force significantly affect the particle deposition velocities in vertical duct flows. The simulation results are compared with earlier experimental data and the numerical results for fully developed duct flows. It is shown that the deposition velocities predicted are in agreement with the experimental data and the numerical results

  18. Experimental study and modelling of deuterium thermal release from Be-D co-deposited layers

    Science.gov (United States)

    Baldwin, M. J.; Schwarz-Selinger, T.; Doerner, R. P.

    2014-07-01

    A study of the thermal desorption of deuterium from 1 µm thick co-deposited Be-(0.1)D layers formed at 330 K by a magnetron sputtering technique is reported. A range of thermal desorption rates 0 ⩽ β ⩽ 1.0 K s-1 are explored with a view to studying the effectiveness of the proposed ITER wall and divertor bake procedure (β = 0 K s-1) to be carried out at 513 and 623 K. Fixed temperature bake durations up to 24 h are examined. The experimental thermal release data are used to validate a model input into the Tritium Migration and Analysis Program (TMAP-7). Good agreement with experiment is observed for a TMAP-7 model incorporating trap populations of activation energies for D release of 0.80 and 0.98 eV, and a dynamically computed surface D atomic to molecular recombination rate.

  19. Modelling and tracer studies of atmospheric dispersion and deposition in regions of complex topography

    International Nuclear Information System (INIS)

    Norden, C.E.

    1981-11-01

    An indium tracer aerosol generating apparatus based on an alcohol/oxygen burner, and an analytical procedure by which filter samples containing tracer material could be analysed quantitatively by means of neutron activation analysis, were developed for use in atmospheric dispersion and deposition studies. A number of series of atmospheric dispersion experiments were conducted in the Richards Bay and Koeberg- Cape Town areas. The results are given, comparing the airbone tracer concentrations measured at ground level with values predicted by means of a numerical model, utilising two to three schemes, varying in sophistication, for calculating the dispersion coefficients. Recommendations are given regarding a dispersion model and dispersion coefficients for regular use in the Koeberg area, and ways for estimating plume trajectories

  20. Model study on acidifying wet deposition in East Asia during wintertime

    Science.gov (United States)

    Han, Zhiwei; Ueda, Hiromasa; Sakurai, Tatsuya

    A regional air quality model (RAQM) has been developed and applied together with an aerosol model to investigate the states and characteristics of wet deposition in East Asia in December 2001. Model simulation is performed with monthly based emission inventory [Streets, D.G., Bond, T.C., Carmichael, G.R., Fernandes, S.D., Fu, Q., He, D., Klimont, Z., Nelson, S. M., Tsai, N.Y., Wang, M.Q., Woo, J.-H., Yarber, K.F., 2003. An inventory of gaseous and primary emissions in Asia in the year 2000. Journal of Geophysical Research 108(D21), 8809] and meteorological fields derived from MM5. Model results are compared with extensive monitoring data including relevant gaseous species and ions in precipitation. The validation demonstrates that this model system is able to represent most of the major physical and chemical processes involved in acid deposition and reproduces concentrations reasonably well, within a factor of 2 of observations in general. The study shows that the regions with pH less than 4.5 are mainly located in southwestern China, parts of the Yangtze Delta, the Yellow Sea and the Korean peninsula, indicating wide regions of acid precipitation in East Asia in wintertime. Japan islands mainly exhibit pH values of 4.5-5.0, whereas over wide areas of northern China, pH values are relatively high (⩾5.0) due to neutralization by alkaline materials such as calcium-laden particles and ammonia, which are more abundant in northern China than that in southern China. While acid rain over most of China is still characterized by sulfur-induced type, considerable areas of eastern China and the western Pacific Rim are found to be more affected by nitric acid than sulfuric acid in acidification of precipitation, which is supposed to result from a combined effect of variations in photochemistry and emission, suggesting the increasing importance of NO x emission in these regions.

  1. Numerical modeling of carrier gas flow in atomic layer deposition vacuum reactor: A comparative study of lattice Boltzmann models

    International Nuclear Information System (INIS)

    Pan, Dongqing; Chien Jen, Tien; Li, Tao; Yuan, Chris

    2014-01-01

    This paper characterizes the carrier gas flow in the atomic layer deposition (ALD) vacuum reactor by introducing Lattice Boltzmann Method (LBM) to the ALD simulation through a comparative study of two LBM models. Numerical models of gas flow are constructed and implemented in two-dimensional geometry based on lattice Bhatnagar–Gross–Krook (LBGK)-D2Q9 model and two-relaxation-time (TRT) model. Both incompressible and compressible scenarios are simulated and the two models are compared in the aspects of flow features, stability, and efficiency. Our simulation outcome reveals that, for our specific ALD vacuum reactor, TRT model generates better steady laminar flow features all over the domain with better stability and reliability than LBGK-D2Q9 model especially when considering the compressible effects of the gas flow. The LBM-TRT is verified indirectly by comparing the numerical result with conventional continuum-based computational fluid dynamics solvers, and it shows very good agreement with these conventional methods. The velocity field of carrier gas flow through ALD vacuum reactor was characterized by LBM-TRT model finally. The flow in ALD is in a laminar steady state with velocity concentrated at the corners and around the wafer. The effects of flow fields on precursor distributions, surface absorptions, and surface reactions are discussed in detail. Steady and evenly distributed velocity field contribute to higher precursor concentration near the wafer and relatively lower particle velocities help to achieve better surface adsorption and deposition. The ALD reactor geometry needs to be considered carefully if a steady and laminar flow field around the wafer and better surface deposition are desired

  2. Numerical modeling of carrier gas flow in atomic layer deposition vacuum reactor: A comparative study of lattice Boltzmann models

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Dongqing; Chien Jen, Tien [Department of Mechanical Engineering, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53201 (United States); Li, Tao [School of Mechanical Engineering, Dalian University of Technology, Dalian 116024 (China); Yuan, Chris, E-mail: cyuan@uwm.edu [Department of Mechanical Engineering, University of Wisconsin-Milwaukee, 3200 North Cramer Street, Milwaukee, Wisconsin 53211 (United States)

    2014-01-15

    This paper characterizes the carrier gas flow in the atomic layer deposition (ALD) vacuum reactor by introducing Lattice Boltzmann Method (LBM) to the ALD simulation through a comparative study of two LBM models. Numerical models of gas flow are constructed and implemented in two-dimensional geometry based on lattice Bhatnagar–Gross–Krook (LBGK)-D2Q9 model and two-relaxation-time (TRT) model. Both incompressible and compressible scenarios are simulated and the two models are compared in the aspects of flow features, stability, and efficiency. Our simulation outcome reveals that, for our specific ALD vacuum reactor, TRT model generates better steady laminar flow features all over the domain with better stability and reliability than LBGK-D2Q9 model especially when considering the compressible effects of the gas flow. The LBM-TRT is verified indirectly by comparing the numerical result with conventional continuum-based computational fluid dynamics solvers, and it shows very good agreement with these conventional methods. The velocity field of carrier gas flow through ALD vacuum reactor was characterized by LBM-TRT model finally. The flow in ALD is in a laminar steady state with velocity concentrated at the corners and around the wafer. The effects of flow fields on precursor distributions, surface absorptions, and surface reactions are discussed in detail. Steady and evenly distributed velocity field contribute to higher precursor concentration near the wafer and relatively lower particle velocities help to achieve better surface adsorption and deposition. The ALD reactor geometry needs to be considered carefully if a steady and laminar flow field around the wafer and better surface deposition are desired.

  3. A modeling study of the effect of gravity on airflow distribution and particle deposition in the lung.

    Science.gov (United States)

    Asgharian, Bahman; Price, Owen; Oberdörster, Gunter

    2006-06-01

    Inhalation of particles generated as a result of thermal degradation from fire or smoke, as may occur on spacecraft, is of major health concern to space-faring countries. Knowledge of lung airflow and particle transport under different gravity environments is required to addresses this concern by providing information on particle deposition. Gravity affects deposition of particles in the lung in two ways. First, the airflow distribution among airways is changed in different gravity environments. Second, particle losses by sedimentation are enhanced with increasing gravity. In this study, a model of airflow distribution in the lung that accounts for the influence of gravity was used for a mathematical description of particle deposition in the human lung to calculate lobar, regional, and local deposition of particles in different gravity environments. The lung geometry used in the mathematical model contained five lobes that allowed the assessment of lobar ventilation distribution and variation of particle deposition. At zero gravity, it was predicted that all lobes of the lung expanded and contracted uniformly, independent of body position. Increased gravity in the upright position increased the expansion of the upper lobes and decreased expansion of the lower lobes. Despite a slight increase in predicted deposition of ultrafine particles in the upper lobes with decreasing gravity, deposition of ultrafine particles was generally predicted to be unaffected by gravity. Increased gravity increased predicted deposition of fine and coarse particles in the tracheobronchial region, but that led to a reduction or even elimination of deposition in the alveolar region for coarse particles. The results from this study show that existing mathematical models of particle deposition at 1 G can be extended to different gravity environments by simply correcting for a gravity constant. Controlled studies in astronauts on future space missions are needed to validate these predictions.

  4. Numerical modeling study of the momentum deposition of small amplitude gravity waves in the thermosphere

    Energy Technology Data Exchange (ETDEWEB)

    Liu, X. [Chinese Academy of Sciences, Beijing (China). State Key Lab. of Space Weather; Henan Normal Univ., Xinxiang (China). College of Mathematics and Information Science; Xu, J. [Chinese Academy of Sciences, Beijing (China). State Key Lab. of Space Weather; Yue, J. [National Center for Atmospheric Research, Boulder, CO (United States). High Altitude Observatory; Hampton Univ., VA (United States). Atmospheric and Planetary Sciences; Vadas, S.L. [North West Research Associates, Inc., Boulder, CO (United States)

    2013-03-01

    We study the momentum deposition in the thermosphere from the dissipation of small amplitude gravity waves (GWs) within a wave packet using a fully nonlinear two-dimensional compressible numerical model. The model solves the nonlinear propagation and dissipation of a GW packet from the stratosphere into the thermosphere with realistic molecular viscosity and thermal diffusivity for various Prandtl numbers. The numerical simulations are performed for GW packets with initial vertical wavelengths ({lambda}{sub z}) ranging from 5 to 50 km. We show that {lambda}{sub z} decreases in time as a GW packet dissipates in the thermosphere, in agreement with the ray trace results of Vadas and Fritts (2005) (VF05). We also find good agreement for the peak height of the momentum flux (z{sub diss}) between our simulations and VF05 for GWs with initial {lambda}{sub z} {<=} 2{pi}H in an isothermal, windless background, where H is the density scale height.We also confirm that z{sub diss} increases with increasing Prandtl number. We include eddy diffusion in the model, and find that the momentum deposition occurs at lower altitudes and has two separate peaks for GW packets with small initial {lambda}{sub z}. We also simulate GW packets in a non-isothermal atmosphere. The net {lambda}{sub z} profile is a competition between its decrease from viscosity and its increase from the increasing background temperature. We find that the wave packet disperses more in the non-isothermal atmosphere, and causes changes to the momentum flux and {lambda}{sub z} spectra at both early and late times for GW packets with initial {lambda}{sub z} {>=} 10 km. These effects are caused by the increase in T in the thermosphere, and the decrease in T near the mesopause. (orig.)

  5. Development and test of models in the natural analogue studies of the Cigar Lake uranium deposit

    Energy Technology Data Exchange (ETDEWEB)

    Liu Jinsong

    1995-06-01

    In the model of steady-state near-field mass transport, the model concepts are essentially the same as those in the models developed for a nuclear waste repository. The validity of the model is tested against known helium release. The models shows that the release of Uranium is negligibly low, the release of sulfate is roughly balanced by the release of dissolved hydrogen, indicating possible water radiolysis. The release of radionuclides is in agreement with field observations. In the model of radiation energy deposition, the issue of water radiolysis is addressed directly by calculating the radiation energy deposited in the pore water in the ore body. In the test of the models of coupled solute transport with geochemical reactions, the observed hematisation in the clay halo adjacent to the ore is simulated. The model results show that, at a certain rate of oxidant production, hematite can possibly precipitate in the clay adjacent to the ore body, as observed. The model results also reveal a threshold of oxidant production rate for hematisation. In general, the three models are capable of predicting the most prominent features observed in the deposit. All models point to a certain extent of water radiolysis in the ore body. In addition, the existence of a negligibly permeable clay halo and the presence of reducing minerals like pyrite in the ore and nearby are of vital importance for the preservation of the Uranium ore. 107 refs, 7 figs, 5 tabs.

  6. Development and test of models in the natural analogue studies of the Cigar Lake uranium deposit

    International Nuclear Information System (INIS)

    Liu Jinsong.

    1995-06-01

    In the model of steady-state near-field mass transport, the model concepts are essentially the same as those in the models developed for a nuclear waste repository. The validity of the model is tested against known helium release. The models shows that the release of Uranium is negligibly low, the release of sulfate is roughly balanced by the release of dissolved hydrogen, indicating possible water radiolysis. The release of radionuclides is in agreement with field observations. In the model of radiation energy deposition, the issue of water radiolysis is addressed directly by calculating the radiation energy deposited in the pore water in the ore body. In the test of the models of coupled solute transport with geochemical reactions, the observed hematisation in the clay halo adjacent to the ore is simulated. The model results show that, at a certain rate of oxidant production, hematite can possibly precipitate in the clay adjacent to the ore body, as observed. The model results also reveal a threshold of oxidant production rate for hematisation. In general, the three models are capable of predicting the most prominent features observed in the deposit. All models point to a certain extent of water radiolysis in the ore body. In addition, the existence of a negligibly permeable clay halo and the presence of reducing minerals like pyrite in the ore and nearby are of vital importance for the preservation of the Uranium ore. 107 refs, 7 figs, 5 tabs

  7. Screening of inhibitors for remediation of asphaltene deposits: Experimental and modeling study

    Directory of Open Access Journals (Sweden)

    Mehdi Madhi

    2018-06-01

    revelation of the mechanism behind the SDS/asphaltene behavior in various concentrations of inhibitor. Effect of chosen inhibitors on asphaltene precipitation and consequently deposition in porous media was studied, and then experimental data were modeled for evaluation of permeability impairment mechanisms. Permeability revived after inhibitor squeezing and cake formation mechanism played an important role in permeability reduction before and after treatment in porous media. The findings can also be applied to prediction of future behavior of reservoirs in oil field scale and evaluation of formation damage in the different period of production if needed any treatment process. Keywords: Asphaltene, Precipitation, Deposition, Inhibitor, Permeability reduction

  8. TiOx deposited by magnetron sputtering: a joint modelling and experimental study

    Science.gov (United States)

    Tonneau, R.; Moskovkin, P.; Pflug, A.; Lucas, S.

    2018-05-01

    This paper presents a 3D multiscale simulation approach to model magnetron reactive sputter deposition of TiOx⩽2 at various O2 inlets and its validation against experimental results. The simulation first involves the transport of sputtered material in a vacuum chamber by means of a three-dimensional direct simulation Monte Carlo (DSMC) technique. Second, the film growth at different positions on a 3D substrate is simulated using a kinetic Monte Carlo (kMC) method. When simulating the transport of species in the chamber, wall chemistry reactions are taken into account in order to get the proper content of the reactive species in the volume. Angular and energy distributions of particles are extracted from DSMC and used for film growth modelling by kMC. Along with the simulation, experimental deposition of TiOx coatings on silicon samples placed at different positions on a curved sample holder was performed. The experimental results are in agreement with the simulated ones. For a given coater, the plasma phase hysteresis behaviour, film composition and film morphology are predicted. The used methodology can be applied to any coater and any films. This paves the way to the elaboration of a virtual coater allowing a user to predict composition and morphology of films deposited in silico.

  9. Laboratory measurements and model sensitivity studies of dust deposition ice nucleation

    Directory of Open Access Journals (Sweden)

    G. Kulkarni

    2012-08-01

    Full Text Available We investigated the ice nucleating properties of mineral dust particles to understand the sensitivity of simulated cloud properties to two different representations of contact angle in the Classical Nucleation Theory (CNT. These contact angle representations are based on two sets of laboratory deposition ice nucleation measurements: Arizona Test Dust (ATD particles of 100, 300 and 500 nm sizes were tested at three different temperatures (−25, −30 and −35 °C, and 400 nm ATD and kaolinite dust species were tested at two different temperatures (−30 and −35 °C. These measurements were used to derive the onset relative humidity with respect to ice (RHice required to activate 1% of dust particles as ice nuclei, from which the onset single contact angles were then calculated based on CNT. For the probability density function (PDF representation, parameters of the log-normal contact angle distribution were determined by fitting CNT-predicted activated fraction to the measurements at different RHice. Results show that onset single contact angles vary from ~18 to 24 degrees, while the PDF parameters are sensitive to the measurement conditions (i.e. temperature and dust size. Cloud modeling simulations were performed to understand the sensitivity of cloud properties (i.e. ice number concentration, ice water content, and cloud initiation times to the representation of contact angle and PDF distribution parameters. The model simulations show that cloud properties are sensitive to onset single contact angles and PDF distribution parameters. The comparison of our experimental results with other studies shows that under similar measurement conditions the onset single contact angles are consistent within ±2.0 degrees, while our derived PDF parameters have larger discrepancies.

  10. A coupled modelling effort to study the fate of contaminated sediments downstream of the Coles Hill deposit, Virginia, USA

    Directory of Open Access Journals (Sweden)

    C. F. Castro-Bolinaga

    2015-03-01

    Full Text Available This paper presents the preliminary results of a coupled modelling effort to study the fate of tailings (radioactive waste-by product downstream of the Coles Hill uranium deposit located in Virginia, USA. The implementation of the overall modelling process includes a one-dimensional hydraulic model to qualitatively characterize the sediment transport process under severe flooding conditions downstream of the potential mining site, a two-dimensional ANSYS Fluent model to simulate the release of tailings from a containment cell located partially above the local ground surface into the nearby streams, and a one-dimensional finite-volume sediment transport model to examine the propagation of a tailings sediment pulse in the river network located downstream. The findings of this investigation aim to assist in estimating the potential impacts that tailings would have if they were transported into rivers and reservoirs located downstream of the Coles Hill deposit that serve as municipal drinking water supplies.

  11. A radon progeny deposition model

    International Nuclear Information System (INIS)

    Rielage, Keith; Elliott, Steven R.; Hime, Andrew; Guiseppe, Vincent E.; Westerdale, S.

    2010-01-01

    The next generation low-background detectors operating underground aim for unprecedented low levels of radioactive backgrounds. Although the radioactive decays of airborne radon (particularly 222 Rn) and its subsequent progeny present in an experiment are potential backgrounds, also problematic is the deposition of radon progeny on detector materials. Exposure to radon at any stage of assembly of an experiment can result in surface contamination by progeny supported by the long half life (22 y) of 210 Pb on sensitive locations of a detector. An understanding of the potential surface contamination from deposition will enable requirements of radon-reduced air and clean room environments for the assembly of low background experiments. It is known that there are a number of environmental factors that govern the deposition of progeny onto surfaces. However, existing models have not explored the impact of some environmental factors important for low background experiments. A test stand has been constructed to deposit radon progeny on various surfaces under a controlled environment in order to develop a deposition model. Results from this test stand and the resulting deposition model are presented.

  12. A Radon Progeny Deposition Model

    International Nuclear Information System (INIS)

    Guiseppe, V. E.; Elliott, S. R.; Hime, A.; Rielage, K.; Westerdale, S.

    2011-01-01

    The next generation low-background detectors operating underground aim for unprecedented low levels of radioactive backgrounds. Although the radioactive decays of airborne radon (particularly 222 Rn) and its subsequent progeny present in an experiment are potential backgrounds, also problematic is the deposition of radon progeny on detector materials. Exposure to radon at any stage of assembly of an experiment can result in surface contamination by progeny supported by the long half life (22 y) of 210 Pb on sensitive locations of a detector. An understanding of the potential surface contamination from deposition will enable requirements of radon-reduced air and clean room environments for the assembly of low background experiments. It is known that there are a number of environmental factors that govern the deposition of progeny onto surfaces. However, existing models have not explored the impact of some environmental factors important for low background experiments. A test stand has been constructed to deposit radon progeny on various surfaces under a controlled environment in order to develop a deposition model. Results from this test stand and the resulting deposition model are presented.

  13. The Influence of Climate Change on Atmospheric Deposition of Mercury in the Arctic—A Model Sensitivity Study

    Science.gov (United States)

    Hansen, Kaj M.; Christensen, Jesper H.; Brandt, Jørgen

    2015-01-01

    Mercury (Hg) is a global pollutant with adverse health effects on humans and wildlife. It is of special concern in the Arctic due to accumulation in the food web and exposure of the Arctic population through a rich marine diet. Climate change may alter the exposure of the Arctic population to Hg. We have investigated the effect of climate change on the atmospheric Hg transport to and deposition within the Arctic by making a sensitivity study of how the atmospheric chemistry-transport model Danish Eulerian Hemispheric Model (DEHM) reacts to climate change forcing. The total deposition of Hg to the Arctic is 18% lower in the 2090s compared to the 1990s under the applied Special Report on Emissions Scenarios (SRES-A1B) climate scenario. Asia is the major anthropogenic source area (25% of the deposition to the Arctic) followed by Europe (6%) and North America (5%), with the rest arising from the background concentration, and this is independent of the climate. DEHM predicts between a 6% increase (Status Quo scenario) and a 37% decrease (zero anthropogenic emissions scenario) in Hg deposition to the Arctic depending on the applied emission scenario, while the combined effect of future climate and emission changes results in up to 47% lower Hg deposition. PMID:26378551

  14. Monte Carlo study of radial energy deposition from primary and secondary particles for narrow and large proton beamlet source models

    International Nuclear Information System (INIS)

    Peeler, Christopher R; Titt, Uwe

    2012-01-01

    In spot-scanning intensity-modulated proton therapy, numerous unmodulated proton beam spots are delivered over a target volume to produce a prescribed dose distribution. To accurately model field size-dependent output factors for beam spots, the energy deposition at positions radial to the central axis of the beam must be characterized. In this study, we determined the difference in the central axis dose for spot-scanned fields that results from secondary particle doses by investigating energy deposition radial to the proton beam central axis resulting from primary protons and secondary particles for mathematical point source and distributed source models. The largest difference in the central axis dose from secondary particles resulting from the use of a mathematical point source and a distributed source model was approximately 0.43%. Thus, we conclude that the central axis dose for a spot-scanned field is effectively independent of the source model used to calculate the secondary particle dose. (paper)

  15. A multi-model study of the hemispheric transport and deposition of oxidised nitrogen

    International Nuclear Information System (INIS)

    Sanderson, M.G.; Pringle, K.J.; Dentener, F.J.; Cuvelier, C.; Marmer, E.; Fiore, A.M.; Horowitz, L.W.; Keating, T.J.; Zuber, A.; Atherton, C.S.; Bergmann, D.J.; Diehl, T.; Duncan, B.N.; Doherty, R. M.; MacKenzie, I.A.; Hess, P.; Jacob, D.J.; Park, R.; Jonson, J.E.; Wind, P.; Kaminski, J.W.; Lupu, A.; Mancini, E.; Pitari, G.; Prather, M.J.; Schroeder, S.; Schultz, M.G.; Shindell, D.T.; Shindell, D.T.; Szopa, S.; Wild, O.

    2008-01-01

    Fifteen chemistry-transport models are used to quantify, for the first time, the export of oxidised nitrogen (NOy) to and from four regions (Europe, North America, South Asia, and East Asia), and to estimate the uncertainty in the results. Between 12 and 24% of the NOx emitted is exported from each region annually. The strongest impact of each source region on a foreign region is: Europe on East Asia, North America on Europe, South Asia on East Asia, and East Asia on North America. Europe exports the most NOy, and East Asia the least. East Asia receives the most NOy from the other regions. Between 8 and 15% of NOx emitted in each region is transported over distances larger than 1000 km, with 3-10% ultimately deposited over the foreign regions. (authors)

  16. Scenario and parameter studies on global deposition of radioactivity using the computer model GLODEP2

    International Nuclear Information System (INIS)

    Shapiro, C.S.

    1984-08-01

    The GLODEP2 computer code was utilized to determine biological impact to humans on a global scale using up-to-date estimates of biological risk. These risk factors use varied biological damage models for assessing effects. All the doses reported are the unsheltered, unweathered, smooth terrain, external gamma dose. We assume the unperturbed atmosphere in determining injection and deposition. Effects due to ''nuclear winter'' may invalidate this assumption. The calculations also include scenarios that attempt to assess the impact of the changing nature of the nuclear stockpile. In particular, the shift from larger to smaller yield nuclear devices significantly changes the injection pattern into the atmosphere, and hence significantly affects the radiation doses that ensue. We have also looked at injections into the equatorial atmosphere. In total, we report here the results for 8 scenarios. 10 refs., 6 figs., 11 tabs

  17. Erosion, Transportation, and Deposition on Outer Solar System Satellites: Landform Evolution Modeling Studies

    Science.gov (United States)

    Moore, Jeffrey Morgan; Howard, Alan D.; Schenk, Paul M.

    2013-01-01

    Mass movement and landform degradation reduces topographic relief by moving surface materials to a lower gravitational potential. In addition to the obvious role of gravity, abrasive mechanical erosion plays a role, often in combination with the lowering of cohesion, which allows disaggregation of the relief-forming material. The identification of specific landform types associated with mass movement and landform degradation provides information about local sediment particle size and abundance and transportation processes. Generally, mass movements can be classified in terms of the particle sizes of the transported material and the speed the material moved during transport. Most degradation on outer planet satellites appears consistent with sliding or slumping, impact erosion, and regolith evolution. Some satellites, such as Callisto and perhaps Hyperion and Iapetus, have an appearance that implies that some additional process is at work, most likely sublimation-driven landform modification and mass wasting. A variant on this process is thermally driven frost segregation as seen on all three icy Galilean satellites and perhaps elsewhere. Titan is unique among outer planet satellites in that Aeolian and fluvial processes also operate to erode, transport, and deposit material. We will evaluate the sequence and extent of various landform-modifying erosional and volatile redistribution processes that have shaped these icy satellites using a 3-D model that simulates the following surface and subsurface processes: 1) sublimation and re-condensation of volatiles; 2) development of refractory lag deposits; 3) disaggregation and downward sloughing of surficial material; 4) radiative heating/cooling of the surface (including reflection, emission, and shadowing by other surface elements); 5) thermal diffusion; and 6) vapor diffusion. The model will provide explicit simulations of landform development and thusly predicts the topographic and volatile evolution of the surface

  18. Laboratory model study of newly deposited dredger fills using improved multiple-vacuum preloading technique

    Directory of Open Access Journals (Sweden)

    Jingjin Liu

    2017-10-01

    Full Text Available Problems continue to be encountered concerning the traditional vacuum preloading method in field during the treatment of newly deposited dredger fills. In this paper, an improved multiple-vacuum preloading method was developed to consolidate newly dredger fills that are hydraulically placed in seawater for land reclamation in Lingang Industrial Zone of Tianjin City, China. With this multiple-vacuum preloading method, the newly deposited dredger fills could be treated effectively by adopting a novel moisture separator and a rapid improvement technique without sand cushion. A series of model tests was conducted in the laboratory for comparing the results from the multiple-vacuum preloading method and the traditional one. Ten piezometers and settlement plates were installed to measure the variations in excess pore water pressures and moisture content, and vane shear strength was measured at different positions. The testing results indicate that water discharge–time curves obtained by the traditional vacuum preloading method can be divided into three phases: rapid growth phase, slow growth phase, and steady phase. According to the process of fluid flow concentrated along tiny ripples and building of larger channels inside soils during the whole vacuum loading process, the fluctuations of pore water pressure during each loading step are divided into three phases: steady phase, rapid dissipation phase, and slow dissipation phase. An optimal loading pattern which could have a best treatment effect was proposed for calculating the water discharge and pore water pressure of soil using the improved multiple-vacuum preloading method. For the newly deposited dredger fills at Lingang Industrial Zone of Tianjin City, the best loading step was 20 kPa and the loading of 40–50 kPa produced the highest drainage consolidation. The measured moisture content and vane shear strength were discussed in terms of the effect of reinforcement, both of which indicate

  19. Three-dimensional geological modelling of anthropogenic deposits at small urban sites: a case study from Sheepcote Valley, Brighton, UK.

    Science.gov (United States)

    Tame, C; Cundy, A B; Royse, K R; Smith, M; Moles, N R

    2013-11-15

    Improvements in computing speed and capacity and the increasing collection and digitisation of geological data now allow geoscientists to produce meaningful 3D spatial models of the shallow subsurface in many large urban areas, to predict ground conditions and reduce risk and uncertainty in urban planning. It is not yet clear how useful this 3D modelling approach is at smaller urban scales, where poorly characterised anthropogenic deposits (artificial/made ground and fill) form the dominant subsurface material and where the availability of borehole and other geological data is less comprehensive. This is important as it is these smaller urban sites, with complex site history, which frequently form the focus of urban regeneration and redevelopment schemes. This paper examines the extent to which the 3D modelling approach previously utilised at large urban scales can be extended to smaller less well-characterised urban sites, using a historic landfill site in Sheepcote Valley, Brighton, UK as a case study. Two 3D models were generated and compared using GSI3D™ software, one using borehole data only, one combining borehole data with local geological maps and results from a desk study (involving collation of available site data, including ground contour plans). These models clearly delimit the overall subsurface geology at the site, and allow visualisation and modelling of the anthropogenic deposits present. Shallow geophysical data collected from the site partially validate the 3D modelled data, and can improve GSI3D™ outputs where boundaries of anthropogenic deposits may not be clearly defined by surface, contour or borehole data. Attribution of geotechnical and geochemical properties to the 3D model is problematic without intrusive investigations and sampling. However, combining available borehole data, shallow geophysical methods and site histories may allow attribution of generic fill properties, and consequent reduction of urban development risk and

  20. Sediment transport and deposition on a river-dominated tidal flat: An idealized model study

    Science.gov (United States)

    Sherwood, Christopher R.; Chen, Shih-Nan; Geyer, W. Rockwell; Ralston, David K.

    2010-01-01

    A 3-D hydrodynamic model is used to investigate how different size classes of river-derived sediment are transported, exported and trapped on an idealized, river-dominated tidal flat. The model is composed of a river channel flanked by sloping tidal flats, a configuration motivated by the intertidal region of the Skagit River mouth in Washington State, United States. It is forced by mixed tides and a pulse of freshwater and sediment with various settling velocities. In this system, the river not only influences stratification but also contributes a significant cross-shore transport. As a result, the bottom stress is strongly ebb-dominated in the channel because of the seaward advance of strong river flow as the tidal flats drain during ebbs. Sediment deposition patterns and mass budgets are sensitive to settling velocity. The lateral sediment spreading scales with an advective distance (settling time multiplied by lateral flow speed), thereby confining the fast settling sediment classes in the channel. Residual sediment transport is landward on the flats, because of settling lag, but is strongly seaward in the channel. The seaward transport mainly occurs during big ebbs and is controlled by a length scale ratio Ld/XWL, where Ld is a cross-shore advective distance (settling time multiplied by river outlet velocity), and XWL is the immersed cross-shore length of the intertidal zone. Sediment trapping requires Ld/XWL stratification and reducing tidal range both favor sediment trapping, whereas varying channel geometries and asymmetry of tides has relatively small impacts. Implications of the modeling results on the south Skagit intertidal region are discussed.

  1. Advanced deposition model for thermal activated chemical vapor deposition

    Science.gov (United States)

    Cai, Dang

    Thermal Activated Chemical Vapor Deposition (TACVD) is defined as the formation of a stable solid product on a heated substrate surface from chemical reactions and/or dissociation of gaseous reactants in an activated environment. It has become an essential process for producing solid film, bulk material, coating, fibers, powders and monolithic components. Global market of CVD products has reached multi billions dollars for each year. In the recent years CVD process has been extensively used to manufacture semiconductors and other electronic components such as polysilicon, AlN and GaN. Extensive research effort has been directed to improve deposition quality and throughput. To obtain fast and high quality deposition, operational conditions such as temperature, pressure, fluid velocity and species concentration and geometry conditions such as source-substrate distance need to be well controlled in a CVD system. This thesis will focus on design of CVD processes through understanding the transport and reaction phenomena in the growth reactor. Since the in situ monitor is almost impossible for CVD reactor, many industrial resources have been expended to determine the optimum design by semi-empirical methods and trial-and-error procedures. This approach has allowed the achievement of improvements in the deposition sequence, but begins to show its limitations, as this method cannot always fulfill the more and more stringent specifications of the industry. To resolve this problem, numerical simulation is widely used in studying the growth techniques. The difficulty of numerical simulation of TACVD crystal growth process lies in the simulation of gas phase and surface reactions, especially the latter one, due to the fact that very limited kinetic information is available in the open literature. In this thesis, an advanced deposition model was developed to study the multi-component fluid flow, homogeneous gas phase reactions inside the reactor chamber, heterogeneous surface

  2. Particle Tracking and Deposition from CFD Simulations using a Viscoelastic Particle Model

    NARCIS (Netherlands)

    Losurdo, M.

    2009-01-01

    In the present dissertation the mathematical modelling of particle deposition is studied and the solution algorithms for particle tracking, deposition and deposit growth are developed. Particle deposition is modelled according to mechanical impact and contact mechanics taking into account the

  3. Econometrics Models for Copper Recovery: A Case Study of North Waziristan-Copper Deposits

    International Nuclear Information System (INIS)

    Ali, S.; Khan, M.M.

    2010-01-01

    Fourteen econometrics models have been developed to evaluate the effects of various flotation process variables like, Propyl xanthate (X/sub 1/g/tonne), pH (X/sub 2/,) Sodium Cyanide (X/sub 3/ g/tonne), Sodium sulphide (X/sub 4/ g/tonne), Frother (X/sub 5/ g/tonne), Pulp density (X/sub 6/ w/vol), and Conditioning time (X/sub 7/ minute) on the copper recovery YR North Waziristan-NWFP Pakistan. Ordinary Least Square OLS method has been applied as an analytical technique for regression analysis. It has been concluded in this study that model given in equation 7 is best model among all. This equation shows that with the increase of one unit of X/sub 1/, Y/sub R/ will increase 0.05 units keeping all other variables constant. (author)

  4. Ellipsometry study on Pd thin film grown by atomic layer deposition with Maxwell–Garnett effective medium approximation model

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yihang; Zhou, Xueqi; Cao, Kun [State Key Laboratory of Digital of Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China); State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China); Chen, Xiuguo; Deng, Zhang [State Key Laboratory of Digital of Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China); Liu, Shiyuan, E-mail: shyliu@hust.edu.cn [State Key Laboratory of Digital of Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China); Shan, Bin [State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China); Chen, Rong, E-mail: rongchen@mail.hust.edu.cn [State Key Laboratory of Digital of Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China); School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2015-10-30

    Maxwell–Garnett effective medium approximation (MG-EMA) model is chosen to study Pd ultrathin film grown on Si substrate, as well as its growth on self-assembled monolayers (SAMs) modified substrate respectively. The general oscillator (GO) model with one Drude and two Lorentz oscillators is firstly applied to fix the optical constants of Pd. Compared with Pd bulk model, MG-EMA model with GO is more reliable to predict the film thickness verified by X-ray reflection test. The stable growth rate on Si substrate reveals our methods are feasible and the quartz crystal microbalance measurement confirms the stability of the ALD chamber. For Pd coverage, MG-EMA fitting result is similar to the statistical computation from scanning electron microscope when Pd ALD cycles are over 400, while large bias exists for cycles under 400, might be due to that air is not the proper filling medium between nanoparticles. Then we change the filling medium into SAMs as a comparison, better fitting performance is obtained. It is demonstrated that the filling medium between nanoparticles is important for the application of MG-EMA model. - Highlights: • Ultrathin Pd thin films were grown by atomic layer deposition. • The measurement of thin film was important to understand initial growth behavior. • Maxwell–Garnett effective medium approximation model was applied. • Pd nanoparticle size and coverage were studied. • The filling medium between nanoparticles was important for model application.

  5. Lagrangian-similarity diffusion-deposition model

    International Nuclear Information System (INIS)

    Horst, T.W.

    1979-01-01

    A Lagrangian-similarity diffusion model has been incorporated into the surface-depletion deposition model. This model predicts vertical concentration profiles far downwind of the source that agree with those of a one-dimensional gradient-transfer model

  6. Respiratory trace deposition models. Final report

    International Nuclear Information System (INIS)

    Yeh, H.C.

    1980-03-01

    Respiratory tract characteristics of four mammalian species (human, dog, rat and Syrian hamster) were studied, using replica lung casts. An in situ casting techniques was developed for making the casts. Based on an idealized branch model, over 38,000 records of airway segment diameters, lengths, branching angles and gravity angles were obtained from measurements of two humans, two Beagle dogs, two rats and one Syrian hamster. From examination of the trimmed casts and morphometric data, it appeared that the structure of the human airway is closer to a dichotomous structure, whereas for dog, rat and hamster, it is monopodial. Flow velocity in the trachea and major bronchi in living Beagle dogs was measured using an implanted, subminiaturized, heated film anemometer. A physical model was developed to simulate the regional deposition characteristics proposed by the Task Group on Lung Dynamics of the ICRP. Various simulation modules for the nasopharyngeal (NP), tracheobronchial (TB) and pulmonary (P) compartments were designed and tested. Three types of monodisperse aerosols were developed for animal inhalation studies. Fifty Syrian hamsters and 50 rats were exposed to five different sizes of monodisperse fused aluminosilicate particles labeled with 169 Yb. Anatomical lung models were developed for four species (human, Beagle dog, rat and Syrian hamster) that were based on detailed morphometric measurements of replica lung casts. Emphasis was placed on developing a lobar typical-path lung model and on developing a modeling technique which could be applied to various mammalian species. A set of particle deposition equations for deposition caused by inertial impaction, sedimentation, and diffusion were developed. Theoretical models of particle deposition were developed based on these equations and on the anatomical lung models

  7. Arc-related porphyry molybdenum deposit model: Chapter D in Mineral deposit models for resource assessment

    Science.gov (United States)

    Taylor, Ryan D.; Hammarstrom, Jane M.; Piatak, Nadine M.; Seal, Robert R.

    2012-01-01

    This report provides a descriptive model for arc-related porphyry molybdenum deposits. Presented within are geological, geochemical, and mineralogical characteristics that differentiate this deposit type from porphyry copper and alkali-feldspar rhyolite-granite porphyry molybdenum deposits. The U.S. Geological Survey's effort to update existing mineral deposit models spurred this research, which is intended to supplement previously published models for this deposit type that help guide mineral-resource and mineral-environmental assessments.

  8. Dry deposition models for radionuclides dispersed in air: a new approach for deposition velocity evaluation schema

    Science.gov (United States)

    Giardina, M.; Buffa, P.; Cervone, A.; De Rosa, F.; Lombardo, C.; Casamirra, M.

    2017-11-01

    In the framework of a National Research Program funded by the Italian Minister of Economic Development, the Department of Energy, Information Engineering and Mathematical Models (DEIM) of Palermo University and ENEA Research Centre of Bologna, Italy are performing several research activities to study physical models and mathematical approaches aimed at investigating dry deposition mechanisms of radioactive pollutants. On the basis of such studies, a new approach to evaluate the dry deposition velocity for particles is proposed. Comparisons with some literature experimental data show that the proposed dry deposition scheme can capture the main phenomena involved in the dry deposition process successfully.

  9. U3O8 production cost analysis study. Sandstone deposit mine model EA-730, Volume 1

    International Nuclear Information System (INIS)

    1978-08-01

    Objective was the development and testing of a model for estimating the production cost of conventional uranium mining. The model used evolved from a base case underground mine of 1000 tons per day output at a nominal depth of 900 feet, and from base-case open pit mines of 2000 tons per day output at 30-, 120-, and 240-foot depths. In addition, an alternate production method employing heap leaching was partially investigated, to be merged with similar work performed by another contractor. The model was internally structured into component submodels capable of reflecting the contributory factors which aggregate into the computed production cost. A financial submodel based on last-quarter 1976 prices used conventional accounting practices to generate a cash flow and profit-and-loss record over the mine life. From this a selling price was obtained based on a desired discounted cash flow return on equity. This submodel is also capable of accepting input inflation rates so that costs in current dollars for future years can be estimated. A Monte Carlo method of the analysis of variance was applied to 50 model runs to obtain a statistical estimate for the expected variance in production cost

  10. A Spectroscopic Study of the Energy Deposition in the Low Corona: Connecting Global Modeling to Observations

    Science.gov (United States)

    Szente, J.; Landi, E.; Toth, G.; Manchester, W.; van der Holst, B.; Gombosi, T. I.

    2017-12-01

    We are looking for signatures of coronal heating process using a physically consistent 3D MHD model of the global corona. Our approach is based on the Alfvén Wave Solar atmosphere Model (AWSoM), with a domain ranging from the upper chromosphere (50,000K) to the outer corona, and the solar wind is self-consistently heated and accelerated by the dissipation of low-frequency Alfvén waves. Taking into account separate electron and anisotropic proton heating, we model the coronal plasma at the same time and location as observed by Hinode/EIS, and calculate the synthetic spectra that we compare with the observations. With the obtained synthetic spectra, we are able to directly calculate line intensities, line width, thermal and nonthermal motions, line centroids, Doppler shift distributions and compare our predictions to real measurements. Our results directly test the extent to which Alfvénic heating is present in the low corona.

  11. A MULTILAYER BIOCHEMICAL DRY DEPOSITION MODEL 1. MODEL FORMULATION

    Science.gov (United States)

    A multilayer biochemical dry deposition model has been developed based on the NOAA Multilayer Model (MLM) to study gaseous exchanges between the soil, plants, and the atmosphere. Most of the parameterizations and submodels have been updated or replaced. The numerical integration ...

  12. A Hierarchical Agency Model of Deposit Insurance

    OpenAIRE

    Jonathan Carroll; Shino Takayama

    2010-01-01

    This paper develops a hierarchical agency model of deposit insurance. The main purpose is to undertake a game theoretic analysis of the consequences of deposit insurance schemes and their effects on monitoring incentives for banks. Using this simple framework, we analyze both risk- independent and risk-dependent premium schemes along with reserve requirement constraints. The results provide policymakers with not only a better understanding of the effects of deposit insurance on welfare and th...

  13. Uranium deposits of Gabon and Oklo reactors. Metallogenic model for rich deposits of the lower proterozoic

    International Nuclear Information System (INIS)

    Gauthier-Lafaye, F.

    1986-05-01

    The geology of the Franceville basin (Gabon) is examined: stratigraphy, tectonics and geodynamics. The mobile zone of the Ogooue is specially studied: lithology, metamorphism and tectonics, isotopic geochronologic data are given. The different uranium deposits are described. A whole chapter is devoted to the study of Oklo natural nuclear reactor. A metallogenic model is proposed evidencing conditions required for deposit genesis. Tectonics, microstructures sedimentology, organic matter, diagenesis and uraniferous mineralizations are examined [fr

  14. Integrated prospecting model in Jinguanchong uranium deposit

    International Nuclear Information System (INIS)

    Xie Yongjian

    2006-01-01

    Jinguanchong uranium deposit is large in scale, which brings difficulties to prospecting and researches. Based on conditions of mineral-formation, geophysics and geochemistry, this paper summarizes a few geophysical and geochemical prospecting methods applied to this deposit. The principles, characteristics, application condition and exploration phases of these prospecting methods are discussed and some prospecting examples are also given in the prospecting for Jinguanchong uranium deposit. Based on summarizing the practice and effects of different methods such as gamma and electromagnetic method, soil emanation prospecting, track etch technique and polonium method used in uranium prospecting, the author finally puts forward a primary uranium prospecting model for the further prospecting in Jinguanchong uranium deposit through combining the author's experience with practice. (authors)

  15. Crud deposition modeling on BWR fuel rods

    International Nuclear Information System (INIS)

    Kucuk, Aylin; Cheng, Bo; Potts, Gerald A.; Shiralkar, Bharat; Morgan, Dave; Epperson, Kenny; Gose, Garry

    2014-01-01

    Deposition of boiling water reactor (BWR) system corrosion products (crud) on operating fuel rods has resulted in performance-limiting conditions in a number of plants. The operational impact of performance-limiting conditions involving crud deposition can be detrimental to a BWR operator, resulting in unplanned or increased frequency of fuel inspections, fuel failure and associated radiological consequences, operational restrictions including core power derate and/or forced shutdowns to remove failed fuel, premature discharge of individual bundles or entire reloads, and/or undesirable core design restrictions. To facilitate improved management of crud-related fuel performance risks, EPRI has developed the CORAL (Crud DepOsition Risk Assessment ModeL) tool. This paper presents a summary of the CORAL elements and benchmarking results. Applications of CORAL as a tool for fuel performance risk assessment are also discussed. (author)

  16. On the Tengiz petroleum deposit previous study

    International Nuclear Information System (INIS)

    Nysangaliev, A.N.; Kuspangaliev, T.K.

    1997-01-01

    Tengiz petroleum deposit previous study is described. Some consideration about structure of productive formation, specific characteristic properties of petroleum-bearing collectors are presented. Recommendation on their detail study and using of experience on exploration and development of petroleum deposit which have analogy on most important geological and industrial parameters are given. (author)

  17. Facts and fallacies in wet deposition modelling

    International Nuclear Information System (INIS)

    ApSimon, H.M.; Goddard, A.J.H.; Manning, P.M.; Simms, K.

    1987-01-01

    Following a reactor accident, relatively high contamination at ground level can occur, even at quite long distances from the source, if the pollutant cloud encounters intense precipitation. To estimate such contamination and its extent properly, it is necessary to take into account the spatial and temporal structure of rain patterns and their motion. Currently, models of wet deposition are rather crude. Source meteorology is usually used and is clearly inadequate. Furthermore, no allowance is made for the dynamic nature of rainfall, which occurs as a result of vertical air motions and convergence; nor for the different scavenging mechanism operating in and below cloud. Meteorological information available on these aspects of wet deposition is reviewed, and their importance and inclusion in modelling and prediction of resulting ground contamination is indicated. Some of the pitfalls of simple modelling procedures are illustrated. (author)

  18. A geostatical model for USA uranium deposits

    International Nuclear Information System (INIS)

    Drew, M.W.

    1979-01-01

    Evidence exists which suggests that the frequency distributions of both grade and size of metal deposits may be well approximated by lognormal distribution functions. Using data on presently viable deposits and a simplified function which links production cost to deposit grade and size, a bivariate lognormal deposit grade/size distribution may be calibrated for a given geological environment. Exploration is introduced by assuming that the proportion discovered of the potential uranium reserve available at or below a given production can be represented by a fraction of the average deposit size and the limit exploration expenditure. As output, the model derives estimates of total reserves linked to maximum production costs and to exploration expenditure where the latter may be expressed either as expenditure per lb of mineral discovered or as a given percentage of operating profit. Reserve/price functions have been derived for the USA based on USAEC data. Tentative conclusions which may be drawn from the results are: (1) Assuming that a similar proportion of profits continues to be allocated to exploration in the future, then the USA should be able to meet its own national demand for uranium up to the end of the century (say 2 M tons U) at prices up to US$35/lb U 3 O 8 (1.1.75$ values). (2) If instead of all exploration being funded from a fixed maximum proportion of mining company profits, consumers were to fund additional exploration separately, then it is possible that the total unit cost of uranium to the consumers would thereby be reduced. It should be stressed that these conclusions are tentative and are only as reliable as the input data and assumptions of the model. In particular no account is taken of commercial or political forces which could artificially restrict supplies or raise prices. The model should be regarded as a first attempt and is offered as a basis for discussion leading to further development. (author)

  19. Theoretical modelling of carbon deposition processes

    International Nuclear Information System (INIS)

    Marsh, G.R.; Norfolk, D.J.; Skinner, R.F.

    1985-01-01

    Work based on capsule experiments in the BNL Gamma Facility, aimed at elucidating the chemistry involved in the formation of carbonaceous deposit on CAGR fuel pin surfaces is described. Using a data-base derived from capsule experiments together with literature values for the kinetics of the fundamental reactions, a chemical model of the gas-phase processes has been developed. This model successfully reproduces the capsule results, whilst preliminary application to the WAGR coolant circuit indicates the likely concentration profiles of various radical species within the fuel channels. (author)

  20. Energy deposition model for I-125 photon radiation in water

    International Nuclear Information System (INIS)

    Fuss, M.C.; Garcia, G.; Munoz, A.; Oller, J.C.; Blanco, F.; Limao-Vieira, P.; Williart, A.; Garcia, G.; Huerga, C.; Tellez, M.

    2010-01-01

    In this study, an electron-tracking Monte Carlo algorithm developed by us is combined with established photon transport models in order to simulate all primary and secondary particle interactions in water for incident photon radiation. As input parameters for secondary electron interactions, electron scattering cross sections by water molecules and experimental energy loss spectra are used. With this simulation, the resulting energy deposition can be modelled at the molecular level, yielding detailed information about localization and type of single collision events. The experimental emission spectrum of I-125 seeds, as used for radiotherapy of different tumours, was used for studying the energy deposition in water when irradiating with this radionuclide. (authors)

  1. Energy deposition model for I-125 photon radiation in water

    Energy Technology Data Exchange (ETDEWEB)

    Fuss, M.C.; Garcia, G. [Instituto de Fisica Fundamental, Consejo Superior de Investigaciones Cientificas (CSIC), Madrid (Spain); Munoz, A.; Oller, J.C. [Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas (CIEMAT), Madrid (Spain); Blanco, F. [Departamento de Fisica Atomica, Molecular y Nuclear, Universidad Complutense de Madrid (Spain); Limao-Vieira, P. [Laboratorio de Colisoes Atomicas e Moleculares, Departamento de Fisica, CEFITEC, FCT-Universidade Nova de Lisboa, Caparica (Portugal); Williart, A.; Garcia, G. [Departamento de Fisica de los Materiales, Universidad Nacional de Educacion a Distancia, Madrid (Spain); Huerga, C.; Tellez, M. [Hospital Universitario La Paz, Madrid (Spain)

    2010-10-15

    In this study, an electron-tracking Monte Carlo algorithm developed by us is combined with established photon transport models in order to simulate all primary and secondary particle interactions in water for incident photon radiation. As input parameters for secondary electron interactions, electron scattering cross sections by water molecules and experimental energy loss spectra are used. With this simulation, the resulting energy deposition can be modelled at the molecular level, yielding detailed information about localization and type of single collision events. The experimental emission spectrum of I-125 seeds, as used for radiotherapy of different tumours, was used for studying the energy deposition in water when irradiating with this radionuclide. (authors)

  2. Modelling of stomatal conductance and ozone deposition flux of Norway Spruce using deposition model

    Czech Academy of Sciences Publication Activity Database

    Zapletal, M.; Chroust, P.; Večeřa, Zbyněk; Mikuška, Pavel; Cudlín, Pavel; Urban, Otmar; Pokorný, Radek; Czerný, Radek; Janouš, Dalibor; Taufarová, Klára

    2009-01-01

    Roč. 12, 2-3 (2009), s. 75-81 ISSN 1335-339X R&D Projects: GA MŽP SP/1B7/189/07 Institutional research plan: CEZ:AV0Z60870520; CEZ:AV0Z40310501 Keywords : ozone concentration * ozone deposition * stomatal conductance * deposition velocity * resistance model * tropo-spheric ozone Subject RIV: DG - Athmosphere Sciences, Meteorology

  3. Study on geologic structure of hydrogenic deposits

    International Nuclear Information System (INIS)

    1985-01-01

    The problem of studying geologic structure of hydrogenic uranium deposits developed by underground leaching (UL), is elucidated. Geologic maps of the surface are used to characterize engineering and geologic conditions. Main geologoic papers are maps drawn up according to boring data. For total geologic characteristic of the deposit 3 types of maps are usually drawn up: structural maps of isohypses or isodepths, lithologic-facies maps on the horizon and rhythm, and maps of epigenetic alterations (geochemmcal). Besides maps systems of sections are drawn up. Problems of studying lithologic-facies and geohemical peculiarities of deposits, epigenotic alterations, substance composition of ores and enclosing rocks, documentation and core sampting, are considered in details

  4. Data integration modeling applied to drill hole planning through semi-supervised learning: A case study from the Dalli Cu-Au porphyry deposit in the central Iran

    Science.gov (United States)

    Fatehi, Moslem; Asadi, Hooshang H.

    2017-04-01

    In this study, the application of a transductive support vector machine (TSVM), an innovative semi-supervised learning algorithm, has been proposed for mapping the potential drill targets at a detailed exploration stage. The semi-supervised learning method is a hybrid of supervised and unsupervised learning approach that simultaneously uses both training and non-training data to design a classifier. By using the TSVM algorithm, exploration layers at the Dalli porphyry Cu-Au deposit in the central Iran were integrated to locate the boundary of the Cu-Au mineralization for further drilling. By applying this algorithm on the non-training (unlabeled) and limited training (labeled) Dalli exploration data, the study area was classified in two domains of Cu-Au ore and waste. Then, the results were validated by the earlier block models created, using the available borehole and trench data. In addition to TSVM, the support vector machine (SVM) algorithm was also implemented on the study area for comparison. Thirty percent of the labeled exploration data was used to evaluate the performance of these two algorithms. The results revealed 87 percent correct recognition accuracy for the TSVM algorithm and 82 percent for the SVM algorithm. The deepest inclined borehole, recently drilled in the western part of the Dalli deposit, indicated that the boundary of Cu-Au mineralization, as identified by the TSVM algorithm, was only 15 m off from the actual boundary intersected by this borehole. According to the results of the TSVM algorithm, six new boreholes were suggested for further drilling at the Dalli deposit. This study showed that the TSVM algorithm could be a useful tool for enhancing the mineralization zones and consequently, ensuring a more accurate drill hole planning.

  5. Deposition of intranasal glucocorticoids--preliminary study.

    Science.gov (United States)

    Rapiejko, Piotr; Sosnowski, Tomasz R; Sova, Jarosław; Jurkiewicz, Dariusz

    2015-01-01

    Intranasal glucocorticoids are the treatment of choice in the therapy of rhinitis. The differences in efficiency of particular medications proven by therapeutic index may result from differences in composition of particular formulations as well as from diverse deposition in nasal cavities. Intranasal formulations of glucocorticoids differ in volume of a single dose in addition to variety in density, viscosity and dispenser nozzle structure. The aim of this report was to analyze the deposition of most often used intranasal glucocorticoids in the nasal cavity and assessment of the usefulness of a nose model from a 3D printer reflecting anatomical features of a concrete patient. Three newest and most often used in Poland intranasal glucocorticoids were chosen to analysis; mometasone furoate (MF), fluticasone propionate (FP) and fluticasone furoate (FF). Droplet size distribution obtained from the tested formulations was determined by use of a laser aerosol spectrometer Spraytec (Malvern Instruments, UK). The model of the nasal cavity was obtained using a 3D printer. The printout was based upon a tridimensional reconstruction of nasal cavity created on the basis of digital processing of computed tomography of paranasal sinuses. The deposition of examined medications was established by a method of visualization combined with image analysis using commercial substance which colored itself intensively under the influence of water being the dominant ingredient of all tested preparations. On the basis of obtained results regions of dominating deposition of droplets of intranasal medication on the wall and septum of the nasal cavity were compared. Droplet size of aerosol of tested intranasal medications typically lies within the range of 25-150 µm. All tested medications deposited mainly on the anterior part of inferior turbinate. FP preparation deposited also on the anterior part of the middle nasal turbinate, marginally embracing a fragment of the central part of this

  6. A predictive model for dimensional errors in fused deposition modeling

    DEFF Research Database (Denmark)

    Stolfi, A.

    2015-01-01

    This work concerns the effect of deposition angle (a) and layer thickness (L) on the dimensional performance of FDM parts using a predictive model based on the geometrical description of the FDM filament profile. An experimental validation over the whole a range from 0° to 177° at 3° steps and two...... values of L (0.254 mm, 0.330 mm) was produced by comparing predicted values with external face-to-face measurements. After removing outliers, the results show that the developed two-parameter model can serve as tool for modeling the FDM dimensional behavior in a wide range of deposition angles....

  7. EPR studies of a red wine bottle deposit, and the precipitates from a 'model' wine , and a white wine, both artificially aged

    International Nuclear Information System (INIS)

    Mitri, M.

    2003-01-01

    Full text: A red wine waxy bottle deposit is known to be an anthocyanin-protein compound. The EPR signal shows the presence of a free radical signal, and a Cu(2+) signal with N superhyperfme structure. Subsequently, EPR study of a model wine, catechin being the only phenol, showed a Cu(2+) signal and a free radical signal. The precipitate thrown by the model wine after artificial aging for 3 months at 45C showed a Cu(2+) signal of different bonding, and a free radical signal. All the previously mentioned Cu(2+) signals showed (differing) hyperfine structures. The precipitate thrown by a similarly artificially aged Chardonnay showed a free radical signal, and a Cu(2+) signal without hyperfine structure: no Cu(2+) signal was detected in the mother liquor. The Cu(2+) bonding in each case will be discussed

  8. A MULTILAYER BIOCHEMICAL DRY DEPOSITION MODEL 2. MODEL EVALUATION

    Science.gov (United States)

    The multilayer biochemical dry deposition model (MLBC) described in the accompanying paper was tested against half-hourly eddy correlation data from six field sites under a wide range of climate conditions with various plant types. Modeled CO2, O3, SO2<...

  9. Multiwalled Carbon Nanotube Deposition on Model Environmental Surfaces

    Science.gov (United States)

    Deposition of multiwalled carbon nanotubes (MWNTs) on model environmental surfaces was investigated using a quartz crystal microbalance with dissipation monitoring (QCM-D). Deposition behaviors of MWNTs on positively and negatively charged surfaces were in good agreement with Der...

  10. A new simulation model for electrochemical metal deposition

    International Nuclear Information System (INIS)

    Schmickler, W.; Poetting, K.; Mariscal, M.

    2006-01-01

    A new atomistic simulation model for electrochemical systems is presented. It combines microcanonical molecular dynamics for the electrode with stochastic dynamics for the solution, and allows the simulation of electrochemical deposition and dissolution for specific electrode potentials. As first applications the deposition of silver and platinum on Au(1 1 1) have been studied; both flat surfaces and surfaces with islands have been considered. The two systems behave quite differently: Ag on Au(1 1 1) grows layer by layer, while Pt forms a surface alloy on Au(1 1 1), which is followed by three-dimensional growth

  11. Understanding error generation in fused deposition modeling

    International Nuclear Information System (INIS)

    Bochmann, Lennart; Transchel, Robert; Wegener, Konrad; Bayley, Cindy; Helu, Moneer; Dornfeld, David

    2015-01-01

    Additive manufacturing offers completely new possibilities for the manufacturing of parts. The advantages of flexibility and convenience of additive manufacturing have had a significant impact on many industries, and optimizing part quality is crucial for expanding its utilization. This research aims to determine the sources of imprecision in fused deposition modeling (FDM). Process errors in terms of surface quality, accuracy and precision are identified and quantified, and an error-budget approach is used to characterize errors of the machine tool. It was determined that accuracy and precision in the y direction (0.08–0.30 mm) are generally greater than in the x direction (0.12–0.62 mm) and the z direction (0.21–0.57 mm). Furthermore, accuracy and precision tend to decrease at increasing axis positions. The results of this work can be used to identify possible process improvements in the design and control of FDM technology. (paper)

  12. Understanding error generation in fused deposition modeling

    Science.gov (United States)

    Bochmann, Lennart; Bayley, Cindy; Helu, Moneer; Transchel, Robert; Wegener, Konrad; Dornfeld, David

    2015-03-01

    Additive manufacturing offers completely new possibilities for the manufacturing of parts. The advantages of flexibility and convenience of additive manufacturing have had a significant impact on many industries, and optimizing part quality is crucial for expanding its utilization. This research aims to determine the sources of imprecision in fused deposition modeling (FDM). Process errors in terms of surface quality, accuracy and precision are identified and quantified, and an error-budget approach is used to characterize errors of the machine tool. It was determined that accuracy and precision in the y direction (0.08-0.30 mm) are generally greater than in the x direction (0.12-0.62 mm) and the z direction (0.21-0.57 mm). Furthermore, accuracy and precision tend to decrease at increasing axis positions. The results of this work can be used to identify possible process improvements in the design and control of FDM technology.

  13. Carbonate rock depositional models: A microfacies approach

    Energy Technology Data Exchange (ETDEWEB)

    Carozzi, A.V.

    1988-01-01

    Carbonate rocks contain more than 50% by weight carbonate minerals such as calcite, dolomite, and siderite. Understanding how these rocks form can lead to more efficient methods of petroleum exploration. Micofacies analysis techniques can be used as a method of predicting models of sedimentation for carbonate rocks. Micofacies in carbonate rocks can be seen clearly only in thin sections under a microscope. This section analysis of carbonate rocks is a tool that can be used to understand depositional environments, diagenetic evolution of carbonate rocks, and the formation of porosity and permeability in carbonate rocks. The use of micofacies analysis techniques is applied to understanding the origin and formation of carbonate ramps, carbonate platforms, and carbonate slopes and basins. This book will be of interest to students and professionals concerned with the disciplines of sedimentary petrology, sedimentology, petroleum geology, and palentology.

  14. Development of a Guinea Pig Lung Deposition Model

    Science.gov (United States)

    2016-01-01

    Development of a Guinea Pig Lung Deposition Model Distribution Statement A. Approved for public release; distribution is unlimited. January...4 Figure 2. Particle deposition in the lung of the guinea pig via endotracheal breathing...Particle deposition in the lungs of guinea pigs via nasal breathing. ......................................... 12 v PREFACE The research work

  15. Incorporation of a high-roughness lower boundary into a mesoscale model for studies of dry deposition over complex terrain

    Science.gov (United States)

    Physick, W. L.; Garratt, J. R.

    1995-04-01

    For flow over natural surfaces, there exists a roughness sublayer within the atmospheric surface layer near the boundary. In this sublayer (typically 50 z 0 deep in unstable conditions), the Monin-Obukhov (M-O) flux profile relations for homogeneous surfaces cannot be applied. We have incorporated a modified form of the M-O stability functions (Garratt, 1978, 1980, 1983) in a mesoscale model to take account of this roughness sublayer and examined the diurnal variation of the boundary-layer wind and temperature profiles with and without these modifications. We have also investigated the effect of the modified M-O functions on the aerodynamic and laminar-sublayer resistances associated with the transfer of trace gases to vegetation. Our results show that when an observation height or the lowest level in a model is within the roughness sublayer, neglect of the flux-profile modifications leads to an underestimate of resistances by 7% at the most.

  16. COMPARING OF DEPOSIT MODEL AND LIFE INSURANCE MODEL IN MACEDONIA

    Directory of Open Access Journals (Sweden)

    TATJANA ATANASOVA-PACHEMSKA

    2016-02-01

    Full Text Available In conditions of the continuous decline of the interest rates for bank deposits, and at a time when uncertainty about the future is increasing, physical and legal persons have doubts how to secure their future or how and where to invest their funds and thus to “fertilize” and increase their savings. Individuals usually choose to put their savings in the bank for a certain period, and for that period to receive certain interest, or decide to invest their savings in different types of life insurance and thus to "take care" of their life, their future and the future of their families. In mathematics are developed many models that relate to the compounding and the insurance. This paper is a comparison of the deposit model and the model of life insurance

  17. Improving deposition tester to study adherent deposits in papermaking

    OpenAIRE

    Monte Lara, Concepción; Sánchez, Mónica; Blanco Suárez, Ángeles; Negro Álvarez, Carlos; Tijero Miquel, Julio

    2012-01-01

    Conventional methods used for the quantification of adherent material contained in a pulp suspension propose either filtration of the sample, which may lead to loss of sticky material in the filtrate, or dilution of the pulp, which may cause destabilization of the dissolved and colloidal material; thus, leading to unreliable results. In 1998, the Cellulose and Paper Group of University Complutense of Madrid developed a deposition tester which aimed to quantify the adherence of material (micro...

  18. MIDDLE MIOCENE DEPOSITIONAL MODEL IN THE DRAVA DEPRESSION DESCRIBED BY GEOSTATISTICAL POROSITY AND THICKNESS MAPS (CASE STUDY: STARI GRADAC-BARCS NYUGAT FIELD

    Directory of Open Access Journals (Sweden)

    Tomislav Malvić

    2006-12-01

    Full Text Available Neogene depositional environments in the Drava depression can be classified in two groups. One group is of local alluvial fans, which were active during the period of Middle Miocene (Badenian extension through the entire Pannonian Basin. The second group is represented by continuous Pannonian and Pontian sedimentation starting with lacustrine environment of partly deep water and partly prodelta (turbidity fans and terminating at the delta plain sedimentation. The coarse-grained sediments of alluvial fans have the great hydrocarbon potential, because they often comprise reservoir rocks. Reservoir deposits are mostly overlain (as result of fan migration by pelitic seal deposits and sometimes including organic rich source facies. That Badenian sequences are often characterised by complete petroleum systems, what is confirmed by large number of oil and gas discoveries in such sediments in the Drava and other Croatian depressions. Alluvial environments are characterised by frequent changes of petrophysical properties, due to local character of depositional mechanism and material sources. In the presented paper, Stari Gradac-Barcs Nyugat field is selected as a case study for demonstrating the above mentioned heterogenic features of the Badenian sequences. Structural solutions are compared by maps of parameters related to depositional environment, i.e. porosity and thickness maps. Geostatistics were used for spatial extension of input dataset. The spatial variability of porosity values, i.e. reservoir quality, is interpreted by transition among different sub-environments (facies in the alluvial fan system.

  19. RANS modeling for particle transport and deposition in turbulent duct flows: Near wall model uncertainties

    International Nuclear Information System (INIS)

    Jayaraju, S.T.; Sathiah, P.; Roelofs, F.; Dehbi, A.

    2015-01-01

    Highlights: • Near-wall modeling uncertainties in the RANS particle transport and deposition are addressed in a turbulent duct flow. • Discrete Random Walk (DRW) model and Continuous Random Walk (CRW) model performances are tested. • Several near-wall anisotropic model accuracy is assessed. • Numerous sensitivity studies are performed to recommend a robust, well-validated near-wall model for accurate particle deposition predictions. - Abstract: Dust accumulation in the primary system of a (V)HTR is identified as one of the foremost concerns during a potential accident. Several numerical efforts have focused on the use of RANS methodology to better understand the complex phenomena of fluid–particle interaction at various flow conditions. In the present work, several uncertainties relating to the near-wall modeling of particle transport and deposition are addressed for the RANS approach. The validation analyses are performed in a fully developed turbulent duct flow setup. A standard k − ε turbulence model with enhanced wall treatment is used for modeling the turbulence. For the Lagrangian phase, the performance of a continuous random walk (CRW) model and a discrete random walk (DRW) model for the particle transport and deposition are assessed. For wall bounded flows, it is generally seen that accounting for near wall anisotropy is important to accurately predict particle deposition. The various near-wall correlations available in the literature are either derived from the DNS data or from the experimental data. A thorough investigation into various near-wall correlations and their applicability for accurate particle deposition predictions are assessed. The main outcome of the present work is a well validated turbulence model with optimal near-wall modeling which provides realistic particle deposition predictions

  20. An earth system model for evaluation of dry deposition

    Energy Technology Data Exchange (ETDEWEB)

    Arritt, R.W. [Iowa State Univ., Ames, IA (United States)

    1994-12-31

    A coupled model of atmosphere, soil, and vegetation showed that interactions among the various components can have important effects on dry deposition of SO{sub 2}. In particular, dry soil (near or below the wilting point) leads to an increase of stomatal resistance and a decrease in deposition. Once the soil moisture is at least twice the wilting point, the model results indicate that additional moisture has little effect on the accumulated daytime dry deposition.

  1. Application of natural analog studies to exploration for ore deposits

    International Nuclear Information System (INIS)

    Gustafson, D.L.

    1995-01-01

    Natural analogs are viewed as similarities in nature and are routinely utilized by exploration geologists in their search for economic mineral deposits. Ore deposit modeling is undertaken by geologists to direct their exploration activities toward favorable geologic environments and, therefore, successful programs. Two types of modeling are presented: (i) empirical model development based on the study of known ore deposit characteristics, and (ii) concept model development based on theoretical considerations and field observations that suggest a new deposit type, not known to exist in nature, may exist and justifies an exploration program. Key elements that are important in empirical model development are described, and examples of successful applications of these natural analogs to exploration are presented. A classical example of successful concept model development, the discovery of the McLaughlin gold mine in California, is presented. The utilization of natural analogs is an important facet of mineral exploration. Natural analogs guide explorationists in their search for new discoveries, increase the probability of success, and may decrease overall exploration expenditure

  2. A new approach for modeling dry deposition velocity of particles

    Science.gov (United States)

    Giardina, M.; Buffa, P.

    2018-05-01

    The dry deposition process is recognized as an important pathway among the various removal processes of pollutants in the atmosphere. In this field, there are several models reported in the literature useful to predict the dry deposition velocity of particles of different diameters but many of them are not capable of representing dry deposition phenomena for several categories of pollutants and deposition surfaces. Moreover, their applications is valid for specific conditions and if the data in that application meet all of the assumptions required of the data used to define the model. In this paper a new dry deposition velocity model based on an electrical analogy schema is proposed to overcome the above issues. The dry deposition velocity is evaluated by assuming that the resistances that affect the particle flux in the Quasi-Laminar Sub-layers can be combined to take into account local features of the mutual influence of inertial impact processes and the turbulent one. Comparisons with the experimental data from literature indicate that the proposed model allows to capture with good agreement the main dry deposition phenomena for the examined environmental conditions and deposition surfaces to be determined. The proposed approach could be easily implemented within atmospheric dispersion modeling codes and efficiently addressing different deposition surfaces for several particle pollution.

  3. Mathematical geology studies of deposit prospect types

    International Nuclear Information System (INIS)

    Liu Guangping

    1998-08-01

    Exact certainty prospect type of uranium deposit, not only can assure the quality of deposit prospects, but also increase economic benefits. Based on the standard of geological prospect of uranium deposit, the author introduces a method of Fuzzy Synthetical Comment for dividing prospect type of uranium deposit. The practical applications demonstrate that the regression accuracy, discriminated by Zadeh operator, of 15 known deposits is 100%

  4. Measured and modeled dry deposition velocities over the ESCOMPTE area

    Science.gov (United States)

    Michou, M.; Laville, P.; Serça, D.; Fotiadi, A.; Bouchou, P.; Peuch, V.-H.

    2005-03-01

    Measurements of the dry deposition velocity of ozone have been made by the eddy correlation method during ESCOMPTE (Etude sur Site pour COntraindre les Modèles de Pollution atmosphérique et de Transport d'Emissions). The strong local variability of natural ecosystems was sampled over several weeks in May, June and July 2001 for four sites with varying surface characteristics. The sites included a maize field, a Mediterranean forest, a Mediterranean shrub-land, and an almost bare soil. Measurements of nitrogen oxide deposition fluxes by the relaxed eddy correlation method have also been carried out at the same bare soil site. An evaluation of the deposition velocities computed by the surface module of the multi-scale Chemistry and Transport Model MOCAGE is presented. This module relies on a resistance approach, with a detailed treatment of the stomatal contribution to the surface resistance. Simulations at the finest model horizontal resolution (around 10 km) are compared to observations. If the seasonal variations are in agreement with the literature, comparisons between raw model outputs and observations, at the different measurement sites and for the specific observing periods, are contrasted. As the simulated meteorology at the scale of 10 km nicely captures the observed situations, the default set of surface characteristics (averaged at the resolution of a grid cell) appears to be one of the main reasons for the discrepancies found with observations. For each case, sensitivity studies have been performed in order to see the impact of adjusting the surface characteristics to the observed ones, when available. Generally, a correct agreement with the observations of deposition velocities is obtained. This advocates for a sub-grid scale representation of surface characteristics for the simulation of dry deposition velocities over such a complex area. Two other aspects appear in the discussion. Firstly, the strong influence of the soil water content to the plant

  5. Development of an ash particle deposition model considering build-up and removal mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Strandstroem, Kjell; Mueller, Christian; Hupa, Mikko [Aabo Akademi Process Chemistry Centre, Biskopsgatan 8, FI-20500 Aabo (Finland)

    2007-12-15

    Slagging and fouling on heat exchanger surfaces in power boilers fired with fossil fuels and fuel mixtures has a significant influence on boiler efficiency and availability. Mathematical modelling is since long considered a suitable method to assist boiler operators to determine optimized operating conditions for an existing furnace. The ultimate goal in ash deposition prediction is hereby the determination of the total amount of material deposited and hence the determination of the total reduction in efficiency. Depending on the fuels fired the total deposited mass is a combination of ash particle deposition and ash particle erosion due to non-sticky particles. The novel ash particle deposition model presented in this work considers deposition of sticky ash particles, cleansing of deposit by non-sticky sand particles and sticking of sand due to contact with sticky ash. The steady-state modelling results for the total amount of ash deposited on the deposition probe of an entrained flow reactor presented in this work agree well with the experimental data. Only at very high fractions of sand added as non-sticky material, a significant influence of the sand on the overall mass deposited was found. Since the model considers sticking of non-sticking sand due to contact with sticky ash, the fraction of sand deposited on the probe was especially studied. Using a correction factor to consider the influence of operating time on the steady-state simulations led to good agreement between simulations and experimental data. (author)

  6. Development of an ash particle deposition model considering build-up and removal mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Kjell Strandstroem; Christian Muellera; Mikko Hupa [Abo Akademi Process Chemistry Centre, Abo (Finland)

    2007-12-15

    Slagging and fouling on heat exchanger surfaces in power boilers fired with fossil fuels and fuel mixtures has a significant influence on boiler efficiency and availability. Mathematical modelling has long been considered a suitable method to assist boiler operators to determine optimized operating conditions for an existing furnace. The ultimate goal in ash deposition prediction is hereby the determination of the total amount of material deposited and hence the determination of the total reduction in efficiency. Depending on the fuels fired the total deposited mass is a combination of ash particle deposition and ash particle erosion due to non-sticky particles. The novel ash particle deposition model presented in this work considers deposition of sticky ash particles, cleansing of deposit by non-sticky sand particles and sticking of sand due to contact with sticky ash. The steady-state modelling results for the total amount of ash deposited on the deposition probe of an entrained flow reactor presented in this work agree well with the experimental data. Only at very high fractions of sand added as non-sticky material, a significant influence of the sand on the overall mass deposited was found. Since the model considers sticking of non-sticking sand due to contact with sticky ash, the fraction of sand deposited on the probe was especially studied. Using a correction factor to consider the influence of operating time on the steady-state simulations led to good agreement between simulations and experimental data. 12 refs., 10 figs.

  7. Modelling atmospheric deposition flux of Cadmium and Lead in urban areas

    International Nuclear Information System (INIS)

    Cherin, Nicolas

    2017-01-01

    According to WHO, air pollution is responsible for more than 3.7 million premature deaths each year (OMS, 2014). Moreover, among these deaths, more than 70 within urban areas. Consequently, the health and environmental impacts of pollutants within these urban areas are of great concern in air quality studies. The deposition fluxes of air pollutants, which can be significant near sources of pollution, have rarely been modeled within urban areas. Historically, atmospheric deposition studies have focused mostly on remote areas to assess the potential impacts on ecosystems of acid deposition and nitrogen loading. Therefore, current atmospheric deposition models may not be suitable to simulate deposition fluxes in urban areas, which include complex surface geometries and diverse land use types. Atmospheric dry deposition is typically modeled using an average roughness length, which depends on land use. This classical roughness-length approach cannot account for the spatial variability of dry deposition in complex settings such as urban areas. Urban canopy models have been developed to parameterize momentum and heat transfer. We extend this approach here to mass transfer, and a new dry deposition model based on the urban canyon concept is presented. It uses a local mixing-length parameterization of turbulence within the canopy, and a description of the urban canopy via key parameters to provide spatially distributed dry deposition fluxes. This approach provides spatially distributed dry deposition fluxes depending on surfaces (streets, walls, roofs) and flow regimes (recirculation and ventilation) within the urban area. (author) [fr

  8. A New Occurrence Model for National Assessment of Undiscovered Volcanogenic Massive Sulfide Deposits

    Science.gov (United States)

    Shanks, W.C. Pat; Dusel-Bacon, Cynthia; Koski, Randolph; Morgan, Lisa A.; Mosier, Dan; Piatak, Nadine M.; Ridley, Ian; Seal, Robert R.; Schulz, Klaus J.; Slack, John F.; Thurston, Roland

    2009-01-01

    Volcanogenic massive sulfide (VMS) deposits are very significant current and historical resources of Cu-Pb-Zn-Au-Ag, are active exploration targets in several areas of the United States and potentially have significant environmental effects. This new USGS VMS deposit model provides a comprehensive review of deposit occurrence and ore genesis, and fully integrates recent advances in the understanding of active seafloor VMS-forming environments, and integrates consideration of geoenvironmental consequences of mining VMS deposits. Because VMS deposits exhibit a broad range of geological and geochemical characteristics, a suitable classification system is required to incorporate these variations into the mineral deposit model. We classify VMS deposits based on compositional variations in volcanic and sedimentary host rocks. The advantage of the classification method is that it provides a closer linkage between tectonic setting and lithostratigraphic assemblages, and an increased predictive capability during field-based studies.

  9. Deposition to forests in Europe: most important factors influencing dry deposition and models used for generalisation

    International Nuclear Information System (INIS)

    Erisman, Jan Willem; Draaijers, Geert

    2003-01-01

    The influence of forest characteristics on deposition can be modelled reasonably well; forest edge effects and dynamical processes are still uncertain. - Dry deposition of gases and particles to forests is influenced by factors influencing the turbulent transport, such as wind speed, tree height, canopy closure, LAI, etc. as well as by factors influencing surface condition, such as precipitation, relative humidity, global radiation, etc. In this paper, an overview of these factors is given and it is shown which are the most important determining temporal and spatial variation of dry deposition of sodium and sulphur. Furthermore, it is evaluated how well current deposition models are able to describe the temporal and spatial variation in dry deposition. It is concluded that the temporal variation is not modelled well enough, because of limited surface-wetness exchange parameterisations. The influence of forest characteristics are modelled reasonably well, provided enough data describing the forests and the spatial variation in concentration is available. For Europe these data are not available. The means to decrease the atmospheric deposition through forest management is discussed

  10. Quality study of a fedspar deposit

    Directory of Open Access Journals (Sweden)

    Taboada, J.

    2000-12-01

    Full Text Available This work describes a pegmatite mineral deposit composed by some veins of a length between 50 and 800 meters and a width of almost 15 meters. With the purpose to evaluate the potential exploitation, we have characterized the quality of the selling product, through a sampling procedure, granulometric classification, magnetic separation, flotation process and mineralogical analysis. In order to establish the more able flotation process, we have tested different methods, that we also include here. Later on, and with the finality to establish the selling feldspar percentage in the deposit, we realized a geostatic study in order to identify, not only the different qualities but also its distribution in the deposit.

    Este trabajo describe un yacimiento de pegmatita compuesto por varios filones, que varían entre 50 y 800 metros de longitud y casi 15 metros de ancho. Con el fin de evaluar el potencial de explotación, se caracteriza la calidad del producto vendible. Esto se lleva a cabo mediante un procedimiento de muestreo, clasificación granulométrica, separación magnética, proceso de flotación y análisis mineralógico. Para establecer el proceso de flotación más eficaz, se ha experimentado con varios procedimientos, cuya breve descripción se incluye. Posteriormente, y con el fin de establecer el porcentaje de feldespato vendible en el yacimiento, se realizó un estudio geoestadístico para identificar tanto las categorías de calidad como su distribución en el yacimiento.

  11. Quartz-pebble-conglomerate gold deposits: Chapter P in Mineral deposit models for resource assessment

    Science.gov (United States)

    Taylor, Ryan D.; Anderson, Eric D.

    2018-05-17

    Quartz-pebble-conglomerate gold deposits represent the largest repository of gold on Earth, largely due to the deposits of the Witwatersrand Basin, which account for nearly 40 percent of the total gold produced throughout Earth’s history. This deposit type has had a controversial history in regards to genetic models. However, most researchers conclude that they are paleoplacer deposits that have been modified by metamorphism and hydrothermal fluid flow subsequent to initial sedimentation.The deposits are found exclusively within fault-bounded depositional basins. The periphery of these basins commonly consists of granite-greenstone terranes, classic hosts for lode gold that source the detrital material infilling the basin. The gold reefs are typically located along unconformities or, less commonly, at the top of sedimentary beds. Large quartz pebbles and heavy-mineral concentrates are found associated with the gold. Deposits that formed prior to the Great Oxidation Event (circa 2.4 giga-annum [Ga]) contain pyrite, whereas younger deposits contain iron oxides. Uranium minerals and hydrocarbons are also notable features of some deposits.Much of the gold in these types of deposits forms crystalline features that are the product of local remobilization. However, some gold grains preserve textures that are undoubtedly of detrital origin. Other heavy minerals, such as pyrite, contain growth banding that is truncated along broken margins, which indicates that they were transported into place as opposed to forming by in situ growth in a hydrothermal setting.The ore tailings associated with these deposits commonly contain uranium-rich minerals and sulfides. Oxidation of the sulfides releases sulfuric acid and mobilizes various metals into the environment. The neutralizing potential of the tailings is minimal, since carbonate minerals are rare. The continuity of the tabular ore bodies, such as those of the Witwatersrand Basin, has allowed these mines to be the deepest in

  12. An analytical model for particulate deposition on vertical heat transfer surfaces in a boiling environment

    International Nuclear Information System (INIS)

    Keefer, R.H.; Rider, J.L.; Waldman, L.A.

    1993-01-01

    A frequent problem in heat exchange equipment is the deposition of particulates entrained in the working fluid onto heat transfer surfaces. These deposits increase the overall heat transfer resistance and can significantly degrade the performance of the heat exchanger. Accurate prediction of the deposition rate is necessary to ensure that the design and specified operating conditions of the heat exchanger adequately address the effects of this deposit layer. Although the deposition process has been studied in considerable detail, much of the work has focused on investigating individual aspects of the deposition process. This paper consolidates this previous research into a mechanistically based analytical prediction model for particulate deposition from a boiling liquid onto vertical heat transfer surfaces. Consistent with the well known Kern-Seaton approach, the model postulates net particulate accumulation to depend on the relative contributions of deposition and reentrainment processes. Mechanisms for deposition include boiling, momentum, and diffusion effects. Reentrainment is presumed to occur via an intermittent erosion process, with the energy for particle removal being supplied by turbulent flow instabilities. The contributions of these individual mechanisms are integrated to obtain a single equation for the deposit thickness versus time. The validity of the resulting model is demonstrated by comparison with data published in the open literature. Model estimates show good agreement with data obtained over a range of thermal-hydraulic conditions in both flow and pool boiling environments. The utility of the model in performing parametric studies (e.g. to determine the effect of flow velocity on net deposition) is also demonstrated. The initial success of the model suggests that it could prove useful in establishing a range of heat exchanger. operating conditions to minimize deposition

  13. Acid deposition study in the Asian countries

    Energy Technology Data Exchange (ETDEWEB)

    Soon, Ting-Kueh [Tunku Abdul Rahman College, Kuala Lumpur (Malaysia); Lau, Wai-Yoo [Malaysian Scientific Association, Kuala Lumpur (Malaysia)

    1996-12-31

    The Association of South East Asian Nations or ASEAN is a regional association of seven countries, namely Indonesia, Malaysia, Philippines, Singapore, Thailand, Brunei and Vietnam, located at the south eastern part of the Asian continent. Together with the East Asian States of Japan, China, Korea and Taiwan, this part of the world is experiencing rapid economic growth, especially in the last decade. Rapid industrialization has resulted in an increased demand for energy in the manufacturing and transport sectors, and also for infrastructure development. This has led to a significant increase in gaseous emissions and a corresponding increase in atmospheric acidity. Acid deposition study in the ASEAN countries began in the mid-70s when Malaysia first started her acid rain monitoring network in 1976. This was followed closely by Singapore and the other ASEAN countries in the 80s. By now all ASEAN countries have their own acid rain monitoring networks with a number of these countries extending the monitoring to dry deposition as well.

  14. Modelled transport and deposition of sulphur over Southern Africa

    CSIR Research Space (South Africa)

    Zunckel, M

    2000-01-01

    Full Text Available Ambient SO2 concentrations and atmospheric deposition of sulphur resulting from emissions on the industrialised highveld region of South Africa are estimated using the multi-scale atmospheric transport and chemistry (MATCH) modelling system...

  15. Modeling the energy deposition in the Aurora KrF laser amplifier chain

    International Nuclear Information System (INIS)

    Comly, J.C.; Czuchlewski, S.J.; Greene, D.P.; Hanson, D.E.; Krohn, B.J.; McCown, A.W.

    1988-01-01

    Monte Carlo calculations model the energy depositions by highly energetic electron beams into the cavities of the four KrF laser amplifiers in the Aurora chain. Deposited energy density distributions are presented and studied as functions of e-beam energy and gas pressure. Results are useful for analyzing small signal gain (SSG) measurements and optimizing deposition in future experiments. 7 refs., 7 figs., 1 tab

  16. Development of a distributed air pollutant dry deposition modeling framework

    International Nuclear Information System (INIS)

    Hirabayashi, Satoshi; Kroll, Charles N.; Nowak, David J.

    2012-01-01

    A distributed air pollutant dry deposition modeling system was developed with a geographic information system (GIS) to enhance the functionality of i-Tree Eco (i-Tree, 2011). With the developed system, temperature, leaf area index (LAI) and air pollutant concentration in a spatially distributed form can be estimated, and based on these and other input variables, dry deposition of carbon monoxide (CO), nitrogen dioxide (NO 2 ), sulfur dioxide (SO 2 ), and particulate matter less than 10 microns (PM10) to trees can be spatially quantified. Employing nationally available road network, traffic volume, air pollutant emission/measurement and meteorological data, the developed system provides a framework for the U.S. city managers to identify spatial patterns of urban forest and locate potential areas for future urban forest planting and protection to improve air quality. To exhibit the usability of the framework, a case study was performed for July and August of 2005 in Baltimore, MD. - Highlights: ► A distributed air pollutant dry deposition modeling system was developed. ► The developed system enhances the functionality of i-Tree Eco. ► The developed system employs nationally available input datasets. ► The developed system is transferable to any U.S. city. ► Future planting and protection spots were visually identified in a case study. - Employing nationally available datasets and a GIS, this study will provide urban forest managers in U.S. cities a framework to quantify and visualize urban forest structure and its air pollution removal effect.

  17. Droplet model of pyrocarbon deposition from the gas phase. [HTGR

    Energy Technology Data Exchange (ETDEWEB)

    Linke, J; Koizlik, K; Luhleich, H; Nickel, H

    1975-01-15

    Based on extensive earlier work a model has been developed to describe the formation of carbon by pyrolysis of gaseous hydrocarbons. One of the central statements of this model is the assumption of the existence of a quasi liquid carbon phase during deposition process.This model is described and is discussed as are the consequences for the material properties and structural parameters which arise from it. To review the droplet model, statically deposited pyrocarbon is examined by characterization methods suitable to analyze just these structural parameters.The results prove the model conceptions to be realistic.

  18. Analytic model of heat deposition in spallation neutron target

    International Nuclear Information System (INIS)

    Findlay, D.J.S.

    2015-01-01

    A simple analytic model for estimating deposition of heat in a spallation neutron target is presented—a model that can readily be realised in an unambitious spreadsheet. The model is based on simple representations of the principal underlying physical processes, and is intended largely as a ‘sanity check’ on results from Monte Carlo codes such as FLUKA or MCNPX.

  19. Analytic model of heat deposition in spallation neutron target

    Energy Technology Data Exchange (ETDEWEB)

    Findlay, D.J.S.

    2015-12-11

    A simple analytic model for estimating deposition of heat in a spallation neutron target is presented—a model that can readily be realised in an unambitious spreadsheet. The model is based on simple representations of the principal underlying physical processes, and is intended largely as a ‘sanity check’ on results from Monte Carlo codes such as FLUKA or MCNPX.

  20. Modelling topographic potential for erosion and deposition using GIS

    Science.gov (United States)

    Helena Mitasova; Louis R. Iverson

    1996-01-01

    Modelling of erosion and deposition in complex terrain within a geographical information system (GIS) requires a high resolution digital elevation model (DEM), reliable estimation of topographic parameters, and formulation of erosion models adequate for digital representation of spatially distributed parameters. Regularized spline with tension was integrated within a...

  1. Development of a Parafin Wax deposition Unit for Fused Deposition Modelling (FDM)

    DEFF Research Database (Denmark)

    D'Angelo, Greta; Hansen, Hans Nørgaard; Pedersen, David Bue

    2014-01-01

    . This project illustrates the redesign of an extrusion unit for the deposition of paraffin wax in Fused Deposition Modelling (FDM) instead of the conventional polymeric materials. Among the benefits and brought by the use of paraffin wax in such system are: the possibility to make highly complex and precise...... parts to subsequently use in a Lost Wax Casting process, multi-material Additive Manufacturing and the use of wax as support material during the production of complicated parts. Moreover it is believed that including waxes among the materials usable in FDM would promote new ways of using and exploring...

  2. Metallogenesis and metallogenic model of Nuheting uranium deposit in Erlian Basin

    International Nuclear Information System (INIS)

    Li Hongjun; Kuang Wenzhan

    2010-01-01

    Based on the study on geological characteristics, metallogesis and geochemical features in Nuheting uranium deposit, it is considered that the deposit belongs to syn-sedimentary and epigenetic reworking type. The deposit position was controlled by the lake area developed during Erlian period in Late Cretaceous. The metallognesis has experienced three stages, they are syn-sedimentary metallogenesis, epigenetic reworking metallogenesis and exogenic metallogenesis. The ore-forming ages are respectively 85 Ma, (41±5)Ma and 6-13 Ma. Based on the summary of metallogenic geological features,metallogenesis and geochemical features, the metallogenic model of Nuheting uranium deposit has been established. (authors)

  3. Numerical Modelling of Suspended Transport and Deposition of Highway Deposited Sediments

    DEFF Research Database (Denmark)

    Bentzen, Thomas Ruby; Larsen, Torben; Bach, Christine

    Good data for calibration and validation of numerical models are of high importance. In the natural environment data can be hard to archive and the stochastic nature have governing influence on the data archived. Hence for modelling of suspended transport and deposition of particles, originating ...... from the highway surfaces, in highway detention ponds, four experiments are carried out. To simplify the complexity of a real pond and for easy control and measurement the sediment transports where carried out in two rectangular channels....

  4. Study on the optimization of the deposition rate of planetary GaN-MOCVD films based on CFD simulation and the corresponding surface model

    Science.gov (United States)

    Li, Jian; Fei, Ze-yuan; Xu, Yi-feng; Wang, Jie; Fan, Bing-feng; Ma, Xue-jin; Wang, Gang

    2018-02-01

    Metal-organic chemical vapour deposition (MOCVD) is a key technique for fabricating GaN thin film structures for light-emitting and semiconductor laser diodes. Film uniformity is an important index to measure equipment performance and chip processes. This paper introduces a method to improve the quality of thin films by optimizing the rotation speed of different substrates of a model consisting of a planetary with seven 6-inch wafers for the planetary GaN-MOCVD. A numerical solution to the transient state at low pressure is obtained using computational fluid dynamics. To evaluate the role of the different zone speeds on the growth uniformity, single factor analysis is introduced. The results show that the growth rate and uniformity are strongly related to the rotational speed. Next, a response surface model was constructed by using the variables and the corresponding simulation results. The optimized combination of the matching of different speeds is also proposed as a useful reference for applications in industry, obtained by a response surface model and genetic algorithm with a balance between the growth rate and the growth uniformity. This method can save time, and the optimization can obtain the most uniform and highest thin film quality.

  5. Solid Organic Deposition During Gas Injection Studies

    DEFF Research Database (Denmark)

    Dandekar, Abhijit Y.; Andersen, Simon Ivar; Stenby, Erling Halfdan

    2000-01-01

    Recently a series of first contact miscibility (swelling) experiments have been performed on undersaturated light and heavy oils using LPG rich and methane rich injection gases, in which solid organic deposition was observed. A compositional gradient in the oils during the gas injection process....... The asphaltene content of the different oil samples were determined by the TP 143 method. The standard asphaltenes and the solid organic deposit recovered from the swelling tests were analyzed using FTIR, HPLC-SEC and H-1 NMR. The aim of these analyses is to reveal the molecular nature of the deposits formed...... during the gas injection process in comparison with the standard asphaltenes in order to understand the mechanisms involved in asphaltene deposition....

  6. Molecular Models for DSMC Simulations of Metal Vapor Deposition

    OpenAIRE

    Venkattraman, A; Alexeenko, Alina A

    2010-01-01

    The direct simulation Monte Carlo (DSMC) method is applied here to model the electron‐beam (e‐beam) physical vapor deposition of copper thin films. A suitable molecular model for copper‐copper interactions have been determined based on comparisons with experiments for a 2D slit source. The model for atomic copper vapor is then used in axi‐symmetric DSMC simulations for analysis of a typical e‐beam metal deposition system with a cup crucible. The dimensional and non‐dimensional mass fluxes obt...

  7. Advances in the exploration model for Athabasca unconformity uranium deposits

    International Nuclear Information System (INIS)

    Wheatley, K.; Murphy, J.; Leppin, M.; Cutts, C.; Climie, J.A.

    1997-01-01

    This paper covers the genetic model of ore formation and exploration techniques Uranerz Exploration and Mining is presently using to explore for unconformity uranium deposits in the deeper parts of the Athabasca Basin. The main objectives of this paper are: 1) to present a genetic model for unconformity uranium deposits which is being used in our current exploration strategy, and 2) to present the sequence of exploration techniques used by Uranerz to explore for uranium in areas of the Athabasca Basin with up to 1000 m of sandstone cover. The Athabasca unconformity deposits are located in northern Saskatchewan, Canada. Within the Precambrian Athabasca Basin, exploration companies have discovered 18 uranium deposits. These contain more than 500 million kilograms of uranium, with average grades ranging from 0.3 to 12%. Uranerz discovered the Key Lake deposits in 1975, currently the largest and richest open pit uranium mine in the world. Uranerz also holds interests in the Rabbit Lake, Midwest Lake and McArthur River deposits, all in Saskatchewan, and is also actively exploring for uranium worldwide. The first discovery in the eastern Athabasca Basin was in 1968 at Rabbit Lake, followed by Key Lake in 1975. Both deposits had surficial indicators, such as radioactive boulders, strong geochemical anomalies in the surrounding lakes and swamps, and well-defined geophysical signatures. After the Key Lake discovery, an exploration model was devised which incorporated the underlying graphitic horizon and its strong electro-magnetic signature. Since then, there have been numerous new discoveries made by systematically drilling along these electro-magnetic conductors. The advancements in geophysical and geochemical techniques have led to discoveries at increasing depths. In 1988, the McArthur River deposit was discovered at a depth of 500 m. (author). 6 refs

  8. Modelling of diamond deposition microwave cavity generated plasmas

    International Nuclear Information System (INIS)

    Hassouni, K; Silva, F; Gicquel, A

    2010-01-01

    Some aspects of the numerical modelling of diamond deposition plasmas generated using microwave cavity systems are discussed. The paper mainly focuses on those models that allow (i) designing microwave cavities in order to optimize the power deposition in the discharge and (ii) estimating the detailed plasma composition in the vicinity of the substrate surface. The development of hydrogen plasma models that may be used for the self-consistent simulation of microwave cavity discharge is first discussed. The use of these models for determining the plasma configuration, composition and temperature is illustrated. Examples showing how to use these models in order to optimize the cavity structure and to obtain stable process operations are also given. A transport model for the highly reactive H 2 /CH 4 moderate pressure discharges is then presented. This model makes possible the determination of the time variation of plasma composition and temperature on a one-dimensional domain located on the plasma axis. The use of this model to analyse the transport phenomena and the chemical process in diamond deposition plasmas is illustrated. The model is also utilized to analyse pulsed mode discharges and the benefit they can bring as far as diamond growth rate and quality enhancement are concerned. We, in particular, show how the model can be employed to optimize the pulse waveform in order to improve the deposition process. Illustrations on how the model can give estimates of the species density at the growing substrate surface over a wide domain of deposition conditions are also given. This brings us to discuss the implication of the model prediction in terms of diamond growth rate and quality. (topical review)

  9. Modeling of gas flow and deposition profile in HWCVD processes

    Energy Technology Data Exchange (ETDEWEB)

    Pflug, Andreas; Höfer, Markus; Harig, Tino; Armgardt, Markus; Britze, Chris; Siemers, Michael; Melzig, Thomas; Schäfer, Lothar

    2015-11-30

    Hot wire chemical vapor deposition (HWCVD) is a powerful technology for deposition of high quality films on large area, where drawbacks of plasma based technology such as defect generation by ion bombardment and high equipment costs are omitted. While processes for diamond coatings using H{sub 2} and CH{sub 4} as precursor have been investigated in detail since 1990 and have been transferred to industry, research also focuses on silicon based coatings with H{sub 2}, SiH{sub 4} and NH{sub 3} as process gases. HWCVD of silicon based coatings is a promising alternative for state-of-the-art radiofrequency-plasma enhanced chemical vapor deposition reactors. The film formation in HWCVD results from an interaction of several concurrent chemical reactions such as gas phase chemistry, film deposition, abstraction of surplus hydrogen bonds and etching by atomic hydrogen. Since there is no easy relation between process parameters and resulting deposition profiles, substantial experimental effort is required to optimize the process for a given film specification and the desired film uniformity. In order to obtain a deeper understanding of the underlying mechanisms and to enable an efficient way of process optimization, simulation methods come into play. While diamond deposition occurs at pressures in the range of several kPa HWCVD deposition of Si based coatings operates at pressures in the 0.1–30 Pa range. In this pressure regime, particle based simulation methods focused on solving the Boltzmann equation are computationally feasible. In comparison to computational fluid dynamics this yields improved accuracy even near small gaps or orifices, where characteristic geometric dimensions approach the order of the mean free path of gas molecules. At Fraunhofer IST, a parallel implementation of the Direct Simulation Monte Carlo (DSMC) method extended by a reactive wall chemistry model is developed. To demonstrate the feasibility of three-dimensional simulation of HWCVD processes

  10. Compilation of information on uncertainties involved in deposition modeling

    International Nuclear Information System (INIS)

    Lewellen, W.S.; Varma, A.K.; Sheng, Y.P.

    1985-04-01

    The current generation of dispersion models contains very simple parameterizations of deposition processes. The analysis here looks at the physical mechanisms governing these processes in an attempt to see if more valid parameterizations are available and what level of uncertainty is involved in either these simple parameterizations or any more advanced parameterization. The report is composed of three parts. The first, on dry deposition model sensitivity, provides an estimate of the uncertainty existing in current estimates of the deposition velocity due to uncertainties in independent variables such as meteorological stability, particle size, surface chemical reactivity and canopy structure. The range of uncertainty estimated for an appropriate dry deposition velocity for a plume generated by a nuclear power plant accident is three orders of magnitude. The second part discusses the uncertainties involved in precipitation scavenging rates for effluents resulting from a nuclear reactor accident. The conclusion is that major uncertainties are involved both as a result of the natural variability of the atmospheric precipitation process and due to our incomplete understanding of the underlying process. The third part involves a review of the important problems associated with modeling the interaction between the atmosphere and a forest. It gives an indication of the magnitude of the problem involved in modeling dry deposition in such environments. Separate analytics have been done for each section and are contained in the EDB

  11. Mathematical modelling for dose deposition in photon-therapy

    International Nuclear Information System (INIS)

    Pichard, Teddy

    2016-01-01

    Radiotherapy treatments consists in irradiating the patient with beams of energetic particles (typically photons) targeting the tumor. Such particles are transported through the medium and deposit energy in the medium. This deposited energy is the so called dose, responsible for the biological effect of the radiations. The present work aim to develop numerical methods for dose computation and optimization that are competitive in terms of computational cost and accuracy compared to reference method. The motion of particles is first studied through a system of linear transport equations at the kinetic level. However, solving directly such systems is numerically too costly for medical application. Instead, the moment method is used with a special focus on the Mn models. Those moment equations are non-linear and valid under a condition called realizability. Standard numerical schemes for moment equations are constrained by stability conditions which happen to be very restrictive when the medium contains low density regions. Inconditionally stable numerical schemes adapted to moment equations (preserving the realizability property) are developed. Those schemes are shown to be competitive in terms of computational costs compared to reference approaches. Finally they are applied to in an optimization procedure aiming to maximize the dose in the tumor and to minimize the dose in healthy tissues. (author) [fr

  12. Study of obliquely deposited thin cobalt films

    International Nuclear Information System (INIS)

    Szmaja, W.; Kozlowski, W.; Balcerski, J.; Kowalczyk, P.J.; Grobelny, J.; Cichomski, M.

    2010-01-01

    Research highlights: → The paper reports simultaneously on the magnetic domain structure of obliquely deposited thin cobalt films (40 nm and 100 nm thick) and their morphological structure. Such studies are in fact rare (Refs. cited in the paper). → Moreover, to our knowledge, observations of the morphological structure of these films have not yet been carried out simultaneously by transmission electron microscopy (TEM) and atomic force microscopy (AFM). → The films of both thicknesses were found to have uniaxial in-plane magnetic anisotropy. → The magnetic microstructure of the films 40 nm thick was composed of domains running and magnetized predominantly in the direction perpendicular to the incidence plane of the vapor beam. → As the film thickness was changed from 40 nm to 100 nm, the magnetic anisotropy was observed to change from the direction perpendicular to parallel with respect to the incidence plane. → Thanks to the application of TEM and AFM, complementary information on the morphological structure of the films could be obtained. → In comparison with TEM images, AFM images revealed grains larger in size and slightly elongated in the direction perpendicular rather than parallel to the incidence plane. → These experimental findings clearly show that surface diffusion plays an important role in the process of film growth. → For the films 40 nm thick, the alignment of columnar grains in the direction perpendicular to the incidence plane was observed. → This correlates well with the magnetic domain structure of these films. → For the films 100 nm thick, the perpendicular alignment of columnar grains could also be found, although in fact with larger difficulty. → TEM studies showed that the films consisted mainly of the hexagonal close-packed (HCP) crystalline structure, but no preferred crystallographic orientation of the grains could be detected for the films of both thicknesses. → For the films 100 nm thick, the alignment of

  13. Kinetic Study of the Chemical Vapor Deposition of Tantalum in Long Narrow Channels

    DEFF Research Database (Denmark)

    Mugabi, James Atwoki; Eriksen, Søren; Petrushina, Irina

    2016-01-01

    A kinetic study of the chemical vapor deposition of tantalum in long narrow channels is done to optimize the industrial process for the manufacture of tantalum coated plate heat exchangers. The developed model fits well at temperatures between 750 and 850 °C, and in the pressure range of25–990 mbar....... According to the model, the predominant tantalum growth species is TaCl3. The temperature is shown to have a pronounced effect onthe morphology and rate of deposition of the tantalum and an apparent change in deposition mechanism occurs between 850–900 °C, resulting in the deposition rate at 900 °C being...

  14. Geological modeling of a stratified deposit with CAD-Based solid model automation

    Directory of Open Access Journals (Sweden)

    Ayten Eser

    Full Text Available Abstract The planning stages of mining activities require many comprehensive and detailed analyses. Determining the correct orebody model is the first stage and one of the most important. Three-dimensional solid modeling is one of the significant methods that can examine the position and shape of the ore deposit. Although there are many different types of mining software for determining a solid model, many users try to build geological models in the computer without knowing how these software packages work. As researchers on the subject, we wanted to answer the question "How would we do it". For this purpose, a system was developed for generating solid models using data obtained from boreholes. Obtaining this model in an AutoCAD environment will be important for geologists and engineers. Developed programs were first tested with virtual borehole data belonging to a virtual deposit. Then the real borehole data of a cement raw material site were successfully applied. This article allows readers not only to see a clear example of the programming approach to layered deposits but also to produce more complicated software in this context. Our study serves as a window to understanding the geological modeling process.

  15. Predictive models for deposit accumulation and corrosion on secondary side of steam generators

    International Nuclear Information System (INIS)

    Choi, Samuel; Moroney, Velvet; Marks, Chuck; Kreider, Marc

    2012-09-01

    Experience demonstrates that deposit accumulation in steam generators (SGs) can lead to corrosion of tubes. To minimize the probability of this corrosion, utilities employ a variety of deposit control strategies. However, these processes can involve significant costs and potentially affect outage critical paths. Since there has been no model that quantifies tube degradation as a function of deposit accumulation, utilities have had to make decisions regarding deposit control strategies without a reliable quantitative basis. The objective of this study is to develop methods that utilities can use to quantify benefits of SG deposit control strategies with regard to rates of secondary-side tube corrosion. Two different methodologies are employed in this work. The first methodology is empirical and is involved an attempt to correlate degradation rates with deposit accumulation as indicated by sludge pile height. Because there has been relatively little tube degradation in currently operating steam generators, this correlation is developed using data for Alloy 600MA SG tubes. To increase the number of units that could be used for defect/deposit correlations, a method to relate the sludge pile deposit mass and the number of tubes with non-zero sludge height is developed. The second methodology is theoretical and is based on the use of calculated differences in temperature and chemistry to predict the effect of deposits on corrosion rates. Computational fluid dynamics (CFD) models are developed to simulate thermal-hydraulic conditions representative of conditions that are present within porous deposits formed at the top of tube sheet. This paper will discuss the development and application of the predictive models for deposit accumulation and corrosion on the secondary side of steam generators. (authors)

  16. Studies of internal stress in diamond films prepared by DC plasma chemical vapour deposition

    International Nuclear Information System (INIS)

    Wang Wanlu; Gao Jinying; Liao Kejun; Liu Anmin

    1992-01-01

    The internal stress in diamond thin films deposited by DC plasma CVD was studied as a function of methane concentration and deposited temperature. Experimental results have shown that total stress in diamond thin films is sensitive to the deposition conditions. The results also indicate that the compressive stress can be explained in terms of amorphous state carbon and hydrogen, and tensile stress is ascribed to the grain boundary relaxation model due to high internal surface area and microstructure with voids

  17. Modeling airflow and particle transport/deposition in pulmonary airways.

    Science.gov (United States)

    Kleinstreuer, Clement; Zhang, Zhe; Li, Zheng

    2008-11-30

    A review of research papers is presented, pertinent to computer modeling of airflow as well as nano- and micron-size particle deposition in pulmonary airway replicas. The key modeling steps are outlined, including construction of suitable airway geometries, mathematical description of the air-particle transport phenomena and computer simulation of micron and nanoparticle depositions. Specifically, diffusion-dominated nanomaterial deposits on airway surfaces much more uniformly than micron particles of the same material. This may imply different toxicity effects. Due to impaction and secondary flows, micron particles tend to accumulate around the carinal ridges and to form "hot spots", i.e., locally high concentrations which may lead to tumor developments. Inhaled particles in the size range of 20nm< or =dp< or =3microm may readily reach the deeper lung region. Concerning inhaled therapeutic particles, optimal parameters for mechanical drug-aerosol targeting of predetermined lung areas can be computed, given representative pulmonary airways.

  18. Numerical modelling of laser rapid prototyping by fusion wire deposit

    OpenAIRE

    Arbaoui , Larbi; Masse , J.E.; Barrallier , Laurent; Mocellin , Katia

    2010-01-01

    International audience; A finite element model has been developed to simulate an innovative laser rapid prototyping process. Several numerical developments have been implemented in order to simulate the main steps of the rapid prototyping process: injection, heating, phase change and deposit. The numerical model also takes into account different phenomena: surface tension in the liquid state, asborptivity and plasma effects during materiallaser interaction. The threedimensional model is based...

  19. Fused deposition modelling of sodium caseinate dispersions

    NARCIS (Netherlands)

    Schutyser, M.A.I.; Houlder, S.; Wit, de Martin; Buijsse, C.A.P.; Alting, A.C.

    2018-01-01

    Only recently, researchers have started experimenting with 3D printing of foods. The aim of this study was to investigate 3D printed objects from sodium caseinate dispersions, exhibiting reversible gelation behaviour. Gelation and dispensing behaviour were explored and structures of different

  20. Modeling Subgrid Scale Droplet Deposition in Multiphase-CFD

    Science.gov (United States)

    Agostinelli, Giulia; Baglietto, Emilio

    2017-11-01

    The development of first-principle-based constitutive equations for the Eulerian-Eulerian CFD modeling of annular flow is a major priority to extend the applicability of multiphase CFD (M-CFD) across all two-phase flow regimes. Two key mechanisms need to be incorporated in the M-CFD framework, the entrainment of droplets from the liquid film, and their deposition. Here we focus first on the aspect of deposition leveraging a separate effects approach. Current two-field methods in M-CFD do not include appropriate local closures to describe the deposition of droplets in annular flow conditions. As many integral correlations for deposition have been proposed for lumped parameters methods applications, few attempts exist in literature to extend their applicability to CFD simulations. The integral nature of the approach limits its applicability to fully developed flow conditions, without geometrical or flow variations, therefore negating the scope of CFD application. A new approach is proposed here that leverages local quantities to predict the subgrid-scale deposition rate. The methodology is first tested into a three-field approach CFD model.

  1. A study of aerosol deposition by thermophoresis in cylindrical ducts

    International Nuclear Information System (INIS)

    Montassier, N.

    1990-01-01

    The scope of the study was aerosol deposition in cylindrical ducts, and the deposition due to thermophoresis particularly. The theoretical knowledge on this force and the basis of fluid mechanics are first recalled. An experimental study of thermophoretic deposition of particles in laminar flow was carried out in the particular case of uniform particle concentration and gas temperature at the inlet of the cooled tube. When the gas temperature was equilibrated with the wall temperature and thermophoretic particle deposition along the walls had ceased, the deposition efficiency approached a limit. Our experimental results showed that this limiting efficiency was independent on flow. Finally, for the laminar flow regime, a set of simple equations was developed in order to forecast the thermophoretic deposition of particles of any size along a cylindrical tube [fr

  2. New developments in fused deposition modeling of ceramics

    DEFF Research Database (Denmark)

    Bellini, Anna; Shor, L.; Guceri, S.I.

    2005-01-01

    Purpose - To shift from rapid prototyping (RP) to agile fabrication by broadening the material selection, e.g. using ceramics, hence improving the properties (e.g. mechanical properties) of fused deposition modeling (FDM) products. Design/methodology/approach - This paper presents the development...

  3. 3D Modelling of Transport, Deposition and Resuspension of Highway Deposited Sediments in wet Detention Ponds

    DEFF Research Database (Denmark)

    Bentzen, Thomas Ruby

    2010-01-01

    concrete channel with width of 0.8m and a water depth of approximately 0.8m and in circular flume experiments in order to reproduce near-bed specific processes such as resuspension and consolidation. With a fairly good agreement with measurements, modelling of hydrodynamics, transport of dissolved...... pollutants and particles in wet detention ponds is possible with application of a three dimensional RANS model and the advection/dispersion equation taken physical phenomena like wind, waves, deposition, erosion and consolidation of the bottom sediment into account....

  4. Progress in the Study of Coastal Storm Deposits

    Science.gov (United States)

    Xiong, Haixian; Huang, Guangqing; Fu, Shuqing; Qian, Peng

    2018-05-01

    Numerous studies have been carried out to identify storm deposits and decipher storm-induced sedimentary processes in coastal and shallow-marine areas. This study aims to provide an in-depth review on the study of coastal storm deposits from the following five aspects. 1) The formation of storm deposits is a function of hydrodynamic and sedimentary processes under the constraints of local geological and ecological factors. Many questions remain to demonstrate the genetic links between storm-related processes and a variety of resulting deposits such as overwash deposits, underwater deposits and hummocky cross-stratification (HCS). Future research into the formation of storm deposits should combine flume experiments, field observations and numerical simulations, and make full use of sediment source tracing methods. 2) Recently there has been rapid growth in the number of studies utilizing sediment provenance analysis to investigate the source of storm deposits. The development of source tracing techniques, such as mineral composition, magnetic susceptibility, microfossil and geochemical property, has allowed for better understanding of the depositional processes and environmental changes associated with coastal storms. 3) The role of extreme storms in the sedimentation of low-lying coastal wetlands with diverse ecosystem services has also drawn a great deal of attention. Many investigations have attempted to quantify widespread land loss, vertical marsh sediment accumulation and wetland elevation change induced by major hurricanes. 4) Paleostorm reconstructions based on storm sedimentary proxies have shown many advantages over the instrumental records and historic documents as they allow for the reconstruction of storm activities on millennial or longer time scales. Storm deposits having been used to establish proxies mainly include beach ridges and shelly cheniers, coral reefs, estuary-deltaic storm sequences and overwash deposits. Particularly over the past few

  5. Mechanistic study of aerosol dry deposition on vegetated canopies

    International Nuclear Information System (INIS)

    Petroff, A.

    2005-04-01

    The dry deposition of aerosols onto vegetated canopies is modelled through a mechanistic approach. The interaction between aerosols and vegetation is first formulated by using a set of parameters, which are defined at the local scale of one surface. The overall deposition is then deduced at the canopy scale through an up-scaling procedure based on the statistic distribution parameters. This model takes into account the canopy structural and morphological properties, and the main characteristics of the turbulent flow. Deposition mechanisms considered are Brownian diffusion, interception, initial and turbulent impaction, initially with coniferous branches and then with entire canopies of different roughness, such as grass, crop field and forest. (author)

  6. Occurrence model for volcanogenic beryllium deposits: Chapter F in Mineral deposit models for resource assessment

    Science.gov (United States)

    Foley, Nora K.; Hofstra, Albert H.; Lindsey, David A.; Seal, Robert R.; Jaskula, Brian W.; Piatak, Nadine M.

    2012-01-01

    Current global and domestic mineral resources of beryllium (Be) for industrial uses are dominated by ores produced from deposits of the volcanogenic Be type. Beryllium deposits of this type can form where hydrothermal fluids interact with fluorine and lithophile-element (uranium, thorium, rubidium, lithium, beryllium, cesium, tantalum, rare earth elements, and tin) enriched volcanic rocks that contain a highly reactive lithic component, such as carbonate clasts. Volcanic and hypabyssal high-silica biotite-bearing topaz rhyolite constitutes the most well-recognized igneous suite associated with such Be deposits. The exemplar setting is an extensional tectonic environment, such as that characterized by the Basin and Range Province, where younger topaz-bearing igneous rock sequences overlie older dolomite, quartzite, shale, and limestone sequences. Mined deposits and related mineralized rocks at Spor Mountain, Utah, make up a unique economic deposit of volcanogenic Be having extensive production and proven and probable reserves. Proven reserves in Utah, as reported by the U.S. Geological Survey National Mineral Information Center, total about 15,900 tons of Be that are present in the mineral bertrandite (Be4Si2O7(OH)2). At the type locality for volcanogenic Be, Spor Mountain, the tuffaceous breccias and stratified tuffs that host the Be ore formed as a result of explosive volcanism that brought carbonate and other lithic fragments to the surface through vent structures that cut the underlying dolomitic Paleozoic sedimentary rock sequences. The tuffaceous sediments and lithic clasts are thought to make up phreatomagmatic base surge deposits. Hydrothermal fluids leached Be from volcanic glass in the tuff and redeposited the Be as bertrandite upon reaction of the hydrothermal fluid with carbonate clasts in lithic-rich sections of tuff. The localization of the deposits in tuff above fluorite-mineralized faults in carbonate rocks, together with isotopic evidence for the

  7. Modelling transport and deposition of caesium and iodine from the Chernobyl accident using the DREAM model

    Directory of Open Access Journals (Sweden)

    J. Brandt

    2002-01-01

    Full Text Available A tracer model, DREAM (the Danish Rimpuff and Eulerian Accidental release Model, has been developed for modelling transport, dispersion and deposition (wet and dry of radioactive material from accidental releases, as the Chernobyl accident. The model is a combination of a Lagrangian model, that includes the near source dispersion, and an Eulerian model describing the long-range transport. The performance of the transport model has previously been tested within the European Tracer Experiment, ETEX, which included transport and dispersion of an inert, non-depositing tracer from a controlled release. The focus of this paper is the model performance with respect to the total deposition of  137Cs, 134Cs and 131I from the Chernobyl accident, using different relatively simple and comprehensive parameterizations for dry- and wet deposition. The performance, compared to measurements, of using different combinations of two different wet deposition parameterizations and three different parameterizations of dry deposition has been evaluated, using different statistical tests. The best model performance, compared to measurements, is obtained when parameterizing the total deposition combined of a simple method for dry deposition and a subgrid-scale averaging scheme for wet deposition based on relative humidities. The same major conclusion is obtained for all the three different radioactive isotopes and using two different deposition measurement databases. Large differences are seen in the results obtained by using the two different parameterizations of wet deposition based on precipitation rates and relative humidities, respectively. The parameterization based on subgrid-scale averaging is, in all cases, performing better than the parameterization based on precipitation rates. This indicates that the in-cloud scavenging process is more important than the below cloud scavenging process for the submicron particles and that the precipitation rates are

  8. Study of tokamaks carbon deposits after heat treatment

    International Nuclear Information System (INIS)

    Richou, M.; Martin, C.; Roubin, P.; Delhaes, P.; Couzi, M.; Brosset, C.; Pegourie, B.

    2006-01-01

    One of the most important problem of tokamak is the interaction plasma-wall. The wall component is the graphite. Meanwhile it is submitted to erosion phenomena, deposition and co-deposition with the hydrogen. This carbon deposits have been studied and show an oval shape. In order to obtain more information on the structure and the growth of these deposits, the authors heated them till 2500 C. Raman spectroscopy, transmission microscopy, magnetic and density measurements have been realized and compared for two types of samples: from Tore Supra and from Textor. (A.L.B.)

  9. A dynamic compartment model for assessing the transfer of radionuclide deposited onto flooded rice-fields

    International Nuclear Information System (INIS)

    Keum, Dong-Kwon; Lee, Han-Soo; Choi, Heui-Ju; Kang, Hee-Seok; Lim, Kwang-Muk; Choi, Young-Ho; Lee, Chang-Woo

    2004-01-01

    A dynamic compartment model has been studied to estimate the transfer of radionuclides deposited onto flooded rice-fields after an accidental release. In the model, a surface water compartment and a direct shoot-base absorption from the surface water to the rice-plant, which are major features discriminating the present model from the existing model, has been introduced to account for the flooded condition of rice-fields. The model has been applied to the deposition experiments of 137 Cs on rice-fields that were performed at three different times to simulate the deposition before transplanting (May 2) and during the growth of the rice (June 1 and August 12), respectively. In the case of the deposition of May 2, the root-uptake is the most predominant process for transferring 137 Cs to the rice-body and grain. When the radionuclide is applied just after transplanting (June 1), the activity of the body is controlled by the shoot-base absorption and the activity of the grain by the root-uptake. The deposition just before ear-emergence (August 12) shows that the shoot-base absorption contributes entirely to the increase of both the activities of the body and grain. The model prediction agrees within one or two factors with the experimental results obtained for a respective deposition experiment

  10. Modeling of thermophoretic deposition of aerosols in nuclear reactor containments

    International Nuclear Information System (INIS)

    Fernandes, A.; Loyalka, S.K.

    1996-01-01

    Aerosol released in postulated or real nuclear reactor accidents can deposit on containment surfaces via motion induced by temperature gradients in addition to the motion due to diffusion and gravity. The deposition due to temperature gradients is known as thermophoretic deposition, and it is currently modeled in codes such as CONTAIN in direct analogy with heat transfer, but there have been questions about such analogies. This paper focuses on a numerical solution of the particle continuity equation in laminar flow condition characteristics of natural convection. First, the thermophoretic deposition rate is calculated as a function of the Prandtl and Schmidt numbers, the thermophoretic coefficient K, and the temperature difference between the atmosphere and the wall. Then, the cases of diffusion alone and a boundary-layer approximation (due to Batchelor and Shen) to the full continuity equation are considered. It is noted that an analogy with heat transfer does not hold, but for the circumstances considered in this paper, the deposition rates from the diffusion solution and the boundary-layer approximation can be added to provide reasonably good agreement (maximum deviation 30%) with the full solution of the particle continuity equation. Finally, correlations useful for implementation in the reactor source term codes are provided

  11. Energy deposition studies for the LBNE beam absorber

    International Nuclear Information System (INIS)

    Rakhno, Igor L.; Mokhov, Nikolai V.; Tropin, Igor S.

    2015-01-01

    Results of detailed Monte Carlo energy deposition studies performed for the LBNE absorber core and the surrounding shielding with the MARS15 code are described. The model of the entire facility that includes a pion-production target, focusing horns, target chase, decay channel, hadron absorber system - all with corresponding radiation shielding - was developed using the recently implemented ROOT-based geometry option in the MARS15 code. This option provides substantial flexibility and automation when developing complex geometry models. Both normal operation and accidental conditions were studied. Various design options were considered, in particular the following: (i) filling the decay pipe with air or helium; (ii) the absorber mask material and shape; (iii) the beam spoiler material and size. Results of detailed thermal calculations with the ANSYS code helped to select the most viable absorber design options. (authors)

  12. Computational fluid dynamics modeling of Bacillus anthracis spore deposition in rabbit and human respiratory airways

    Energy Technology Data Exchange (ETDEWEB)

    Kabilan, S.; Suffield, S. R.; Recknagle, K. P.; Jacob, R. E.; Einstein, D. R.; Kuprat, A. P.; Carson, J. P.; Colby, S. M.; Saunders, J. H.; Hines, S. A.; Teeguarden, J. G.; Straub, T. M.; Moe, M.; Taft, S. C.; Corley, R. A.

    2016-09-01

    Three-dimensional computational fluid dynamics and Lagrangian particle deposition models were developed to compare the deposition of aerosolized Bacillus anthracis spores in the respiratory airways of a human with that of the rabbit, a species commonly used in the study of anthrax disease. The respiratory airway geometries for each species were derived respectively from computed tomography (CT) and µCT images. Both models encompassed airways that extended from the external nose to the lung with a total of 272 outlets in the human model and 2878 outlets in the rabbit model. All simulations of spore deposition were conducted under transient, inhalation–exhalation breathing conditions using average species-specific minute volumes. Two different exposure scenarios were modeled in the rabbit based upon experimental inhalation studies. For comparison, human simulations were conducted at the highest exposure concentration used during the rabbit experimental exposures. Results demonstrated that regional spore deposition patterns were sensitive to airway geometry and ventilation profiles. Due to the complex airway geometries in the rabbit nose, higher spore deposition efficiency was predicted in the nasal sinus compared to the human at the same air concentration of anthrax spores. In contrast, higher spore deposition was predicted in the lower conducting airways of the human compared to the rabbit lung due to differences in airway branching pattern. This information can be used to refine published and ongoing biokinetic models of inhalation anthrax spore exposures, which currently estimate deposited spore concentrations based solely upon exposure concentrations and inhaled doses that do not factor in species-specific anatomy and physiology for deposition.

  13. Modeling the global atmospheric transport and deposition of mercury to the Great Lakes

    Directory of Open Access Journals (Sweden)

    Mark D. Cohen

    2016-07-01

    Full Text Available Abstract Mercury contamination in the Great Lakes continues to have important public health and wildlife ecotoxicology impacts, and atmospheric deposition is a significant ongoing loading pathway. The objective of this study was to estimate the amount and source-attribution for atmospheric mercury deposition to each lake, information needed to prioritize amelioration efforts. A new global, Eulerian version of the HYSPLIT-Hg model was used to simulate the 2005 global atmospheric transport and deposition of mercury to the Great Lakes. In addition to the base case, 10 alternative model configurations were used to examine sensitivity to uncertainties in atmospheric mercury chemistry and surface exchange. A novel atmospheric lifetime analysis was used to characterize fate and transport processes within the model. Model-estimated wet deposition and atmospheric concentrations of gaseous elemental mercury (Hg(0 were generally within ∼10% of measurements in the Great Lakes region. The model overestimated non-Hg(0 concentrations by a factor of 2–3, similar to other modeling studies. Potential reasons for this disagreement include model inaccuracies, differences in atmospheric Hg fractions being compared, and the measurements being biased low. Lake Erie, downwind of significant local/regional emissions sources, was estimated by the model to be the most impacted by direct anthropogenic emissions (58% of the base case total deposition, while Lake Superior, with the fewest upwind local/regional sources, was the least impacted (27%. The U.S. was the largest national contributor, followed by China, contributing 25% and 6%, respectively, on average, for the Great Lakes. The contribution of U.S. direct anthropogenic emissions to total mercury deposition varied between 46% for the base case (with a range of 24–51% over all model configurations for Lake Erie and 11% (range 6–13% for Lake Superior. These results illustrate the importance of atmospheric

  14. Modeling transport and deposition of the Mekong River sediment

    Science.gov (United States)

    Xue, Zuo; He, Ruoying; Liu, J. Paul; Warner, John C.

    2012-01-01

    A Coupled Wave–Ocean–SedimentTransport Model was used to hindcast coastal circulation and fine sedimenttransport on the Mekong shelf in southeastern Asian in 2005. Comparisons with limited observations showed that the model simulation captured the regional patterns and temporal variability of surface wave, sea level, and suspended sediment concentration reasonably well. Significant seasonality in sedimenttransport was revealed. In summer, a large amount of fluvial sediments was delivered and deposited near the MekongRiver mouth. In the following winter, strong ocean mixing, and coastal current lead to resuspension and southwestward dispersal of a small fraction of previously deposited sediments. Model sensitivity experiments (with reduced physics) were performed to investigate the impact of tides, waves, and remotely forced ambient currents on the transport and dispersal of the fluvial sediment. Strong wave mixing and downwelling-favorable coastal current associated with the more energetic northeast monsoon in the winter season are the main factors controlling the southwestward along-shelf transport.

  15. A fundamental study of fission product deposition on the wall surface

    International Nuclear Information System (INIS)

    Ishiguro, R.; Sakashita, H.; Sugiyama, K.

    1987-01-01

    Deposition of soluble matters on wall surfaces is studied in the present report for the purpose to understand a mechanism of fission product deposition on the wall surface in a molten salt reactor. Calcium carbonate solution is used to observe the fundamental mechanism of deposition. The experiments are performed under conditions of turbulent flow of the solution over a heated wall. According to the experimental results a model is proposed to estimate deposition rate. The model consists of two parts, one is the initial nucleus formation on a clean wall surface and the other is the constant increase of deposition succeeding to the first stage. The model is assessed by comparing it with the experimental results. Both results coincide well in some parameters, but not so well in others. (author)

  16. Deposit model for heavy-mineral sands in coastal environments: Chapter L in Mineral deposit models for resource assessment

    Science.gov (United States)

    Van Gosen, Bradley S.; Fey, David L.; Shah, Anjana K.; Verplanck, Philip L.; Hoefen, Todd M.

    2014-01-01

    This report provides a descriptive model of heavy-mineral sands, which are sedimentary deposits of dense minerals that accumulate with sand, silt, and clay in coastal environments, locally forming economic concentrations of the heavy minerals. This deposit type is the main source of titanium feedstock for the titanium dioxide (TiO2) pigments industry, through recovery of the minerals ilmenite (Fe2+TiO3), rutile (TiO2), and leucoxene (an alteration product of ilmenite). Heavy-mineral sands are also the principal source of zircon (ZrSiO4) and its zirconium oxide; zircon is often recovered as a coproduct. Other heavy minerals produced as coproducts from some deposits are sillimanite/kyanite, staurolite, monazite, and garnet. Monazite [(Ce,La,Nd,Th)PO4] is a source of rare earth elements as well as thorium, which is used in thorium-based nuclear power under development in India and elsewhere.

  17. Reactive physical vapor deposition of TixAlyN: Integrated plasma-surface modeling characterization

    International Nuclear Information System (INIS)

    Zhang Da; Schaeffer, J.K.

    2004-01-01

    Reactive physical vapor deposition (RPVD) has been widely applied in the microelectronic industry for producing thin films. Fundamental understanding of RPVD mechanisms is needed for successful process development due to the high sensitivity of film properties on process conditions. An integrated plasma equipment-target nitridation modeling infrastructure for RPVD has therefore been developed to provide mechanistic insights and assist optimal process design. The target nitridation model computes target nitride coverage based on self-consistently derived plasma characteristics from the plasma equipment model; target sputter yields needed in the plasma equipment model are also self-consistently derived taking into account the yield-suppressing effect from nitridation. The integrated modeling infrastructure has been applied to investigating RPVD processing with a Ti 0.8 Al 0.2 compound target and an Ar/N 2 gas supply. It has been found that the process produces athermal metal neutrals as the primary deposition precursor. The metal stoichiometry in the deposited film is close to the target composition due to the predominance of athermal species in the flux that reaches the substrate. Correlations between process parameters (N 2 flow, target power), plasma characteristics, surface conditions, and deposition kinetics have been studied with the model. The deposition process is characterized by two regimes when the N 2 flow rate is varied. When N 2 is dilute relative to argon, target nitride coverage increases rapidly with increasing N 2 flow. The sputter yield and deposition rate consequently decrease. For less dilute N 2 mixtures, the sputter yield and deposition rate are stable due to the saturation of target nitridation. With increasing target power, the electron density increases nearly linearly while the variation of N generation is much smaller. Target nitridation and its suppression of the sputter yield saturate at high N 2 flow rendering these parameters

  18. Sediment-hosted gold deposits of the world: database and grade and tonnage models

    Science.gov (United States)

    Berger, Vladimir I.; Mosier, Dan L.; Bliss, James D.; Moring, Barry C.

    2014-01-01

    recommend using the appropriate grade and tonnage model presented in this study for mineral resource assessments depending on the geologic and mineralogical data available for a region. Tonnage and contained gold within the general sediment-hosted gold model are analyzed based on major geologic features such as tectonic setting and magmatic (dikes, sills, and stocks) or amagmatic environment. The results show a significant difference in tonnage and contained gold, with higher median values in deposits spatially associated with igneous rocks, regardless of structural style of the deposit. These results suggest that magmatic environments control mineralization intensity—an important consideration in the regional assessment of prospective areas for sediment-hosted gold deposits.

  19. A deposit model for magmatic iron-titanium-oxide deposits related to Proterozoic massif anorthosite plutonic suites: Chapter K in Mineral Deposit Models for Resource Assessment

    Science.gov (United States)

    Woodruff, Laurel G.; Nicholson, Suzanne W.; Fey, David L.

    2013-01-01

    This descriptive model for magmatic iron-titanium-oxide (Fe-Ti-oxide) deposits hosted by Proterozoic age massif-type anorthosite and related rock types presents their geological, mineralogical, geochemical, and geoenvironmental attributes. Although these Proterozoic rocks are found worldwide, the majority of known deposits are found within exposed rocks of the Grenville Province, stretching from southwestern United States through eastern Canada; its extension into Norway is termed the Rogaland Anorthosite Province. This type of Fe-Ti-oxide deposit dominated by ilmenite rarely contains more than 300 million tons of ore, with between 10- to 45-percent titanium dioxide (TiO2), 32- to 45-percent iron oxide (FeO), and less than 0.2-percent vanadium (V).

  20. Modeling and simulation of NiO dissolution and Ni deposition in molten carbonate fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Nam, Suk Woo; Choi, Hyung-Joon; Lim, Tae Hoon [Korea Institute of Science & Technology, Seoul (Korea, Republic of)] [and others

    1996-12-31

    Dissolution of NiO cathode into the electrolyte matrix is an important phenomena limiting the lifetime of molten carbonate fuel cell (MCFC). The dissolved nickel diffuses into the matrix and is reduced by dissolved hydrogen leading to the formation of metallic nickel films in the pores of the matrix. The growth of Ni films in the electrolyte matrix during the continuous cell operation results eventually in shorting between cathode and anode. Various mathematical and empirical models have been developed to describe the NiO dissolution and Ni deposition processes, and these models have some success in estimating the lifetime of MCFC by correlating the amount of Ni deposited in the matrix with shorting time. Since the exact mechanism of Ni deposition was not well understood, deposition reaction was assumed to be very fast in most of the models and the Ni deposition region was limited around a point in the matrix. In fact, formation of Ni films takes place in a rather broad region in the matrix, the location and thickness of the film depending on operating conditions as well as matrix properties. In this study, we assumed simple reaction kinetics for Ni deposition and developed a mathematical model to get the distribution of nickel in the matrix.

  1. A Study of Deposition Coatings Formed by Electroformed Metallic Materials.

    Directory of Open Access Journals (Sweden)

    Shoji Hayashi

    Full Text Available Major joining methods of dental casting metal include brazing and laser welding. However, brazing cannot be applied for electroformed metals since heat treatment could affect the fit, and, therefore, laser welding is used for such metals. New methods of joining metals that do not impair the characteristics of electroformed metals should be developed. When new coating is performed on the surface of the base metal, surface treatment is usually performed before re-coating. The effect of surface treatment is clinically evaluated by peeling and flex tests. However, these testing methods are not ideal for deposition coating strength measurement of electroformed metals. There have been no studies on the deposition coating strength and methods to test electroformed metals. We developed a new deposition coating strength test for electroformed metals. The influence of the negative electrolytic method, which is one of the electrochemical surface treatments, on the strength of the deposition coating of electroformed metals was investigated, and the following conclusions were drawn: 1. This process makes it possible to remove residual deposits on the electrodeposited metal surface layer. 2. Cathode electrolysis is a simple and safe method that is capable of improving the surface treatment by adjustments to the current supply method and current intensity. 3. Electrochemical treatment can improve the deposition coating strength compared to the physical or chemical treatment methods. 4. Electro-deposition coating is an innovative technique for the deposition coating of electroformed metal.

  2. Mineralogical and geological study of quaternary deposits and weathering profiles

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Gi Young; Lee, Bong Ho [Andong National Univ., Andong (Korea, Republic of)

    2004-01-15

    Movement history of a quaternary reverse fault cutting marine terrace deposit and tertiary bentonite in the Yangnammyon, Gyoungju city was studied by the mineralogical and microtextural analysis of the fault clays and weathered terrace deposits. Two types of fault clays were identified as greenish gray before the deposition of the marine terrace deposits and reddish brown after deposition. Greenish gray fault clay is composed mostly of smectite probably powdered from bentonite showing at least two events of movement from microtextures. After the bentonite was covered by quaternary marine gravel deposits, the reverse fault was reactivated cutting marine gravel deposits to form open spaces along the fault plane which allowed the hydrological infiltration of soil particles and deposition of clays in deep subsurface. The reddish brown 'fault' clays enclosed the fragments of dark brown ultrafine varved clay, proving two events of faulting, and slicken sides bisecting reddish brown clays suggest another faulting event in the final stage. Mineralogical and microtextural analysis of the fault clay show total five events of faulting, which had not been recognized even by thorough conventional paleoseismological investigation using trench, highlighting the importance of microtextural and mineralogical analysis in paleoseismology.

  3. Theoretical modeling of fine-particle deposition in 3-dimensional bronchial bifurcations

    International Nuclear Information System (INIS)

    Shaw, D.T.; Rajendran, N.; Liao, N.S.

    1978-01-01

    A theoretical model is developed for the prediction of the peak to average particle deposition flux in the human bronchial airways. The model involves the determination of the peak flux by a round-nose 2-dimensional bifurcation channel and the average deposition flux by a curved-tube model. The ''hot-spot'' effect for all generations in the human respiratory system is estimated. Hot spots are usually associated with the sites of bronchoconstriction or even chronic bronchitis and lung cancer. Recent studies indicate that lung cancer in smokers may be caused by the deposition of radioactive particles produced by the burning of tobacco leaves. High local concentrations of Po-210 have been measured in epithelium from bronchial bifurcations of smokes. This Po-210 is the radioactive daughter of Pb-210 which is produced from a long chain of radioactive decay starting from uranium in the fertilizer-enriched soil. It is found that the peak deposition flux is higher than the average deposition flux by a factor ranging between 5 and 30, depending on the generation number. The importance of this peak to average deposition flux ratio on consideration of environmental safety studies is discussed

  4. A predictive model for the chemical vapor deposition of polysilicon in a cold wall, rapid thermal system

    Energy Technology Data Exchange (ETDEWEB)

    Toprac, A.J.; Trachtenberg, I.; Edgar, T.F. (Univ. of Texas, Austin, TX (United States). Dept. of Chemical Engineering)

    1994-06-01

    The chemical vapor deposition of polysilicon from thermally activated silane in a cold wall, single-wafer rapid thermal system was studied by experimentation at a variety of low pressure conditions, including very high temperatures. The effect of diluent gas on polysilicon deposition rates was examined using hydrogen, helium, and krypton. A mass-transfer model for the chemical vapor deposition of polysilicon in a cold wall, rapid thermal system was developed. This model was used to produce an empirical rate expression for silicon deposition from silane by regressing kinetic parameters to fit experimental data. The resulting model provided accurate predictions over widely varying conditions in the experimental data.

  5. Nopal I uranium deposit: A study of radionuclide migration

    International Nuclear Information System (INIS)

    Wong, V.; Anthony, E.; Goodell, P.

    1996-01-01

    This summary reports on activities of naturally-occurring radionuclides for the Nopal I uranium deposit located in the Pena Blanca Uranium District, Chihuahua, Mexico. Activities were determined using gamma-ray spectroscopy. In addition, data reduction procedures and sample preparation (for Rn retention) will be discussed here. Nopal I uranium deposit has been identified as one of the most promising sites for analogue studies to the proposed high-level nuclear waste repository at Yucca Mountain, Nevada. The objective of this research is to study the potential for radionuclide migration by testing whether any portion of the deposit is in secular equilibrium

  6. Nopal I uranium deposit: A study of radionuclide migration

    Energy Technology Data Exchange (ETDEWEB)

    Wong, V.; Anthony, E.; Goodell, P. [Univ. of Texas, El Paso, TX (United States)

    1996-12-01

    This summary reports on activities of naturally-occurring radionuclides for the Nopal I uranium deposit located in the Pena Blanca Uranium District, Chihuahua, Mexico. Activities were determined using gamma-ray spectroscopy. In addition, data reduction procedures and sample preparation (for Rn retention) will be discussed here. Nopal I uranium deposit has been identified as one of the most promising sites for analogue studies to the proposed high-level nuclear waste repository at Yucca Mountain, Nevada. The objective of this research is to study the potential for radionuclide migration by testing whether any portion of the deposit is in secular equilibrium.

  7. Computational Fluid Dynamics Modeling of Bacillus anthracis Spore Deposition in Rabbit and Human Respiratory Airways

    Energy Technology Data Exchange (ETDEWEB)

    Kabilan, Senthil; Suffield, Sarah R.; Recknagle, Kurtis P.; Jacob, Rick E.; Einstein, Daniel R.; Kuprat, Andrew P.; Carson, James P.; Colby, Sean M.; Saunders, James H.; Hines, Stephanie; Teeguarden, Justin G.; Straub, Tim M.; Moe, M.; Taft, Sarah; Corley, Richard A.

    2016-09-30

    Three-dimensional computational fluid dynamics and Lagrangian particle deposition models were developed to compare the deposition of aerosolized Bacillus anthracis spores in the respiratory airways of a human with that of the rabbit, a species commonly used in the study of anthrax disease. The respiratory airway geometries for each species were derived from computed tomography (CT) or µCT images. Both models encompassed airways that extended from the external nose to the lung with a total of 272 outlets in the human model and 2878 outlets in the rabbit model. All simulations of spore deposition were conducted under transient, inhalation-exhalation breathing conditions using average species-specific minute volumes. The highest exposure concentration was modeled in the rabbit based upon prior acute inhalation studies. For comparison, human simulation was also conducted at the same concentration. Results demonstrated that regional spore deposition patterns were sensitive to airway geometry and ventilation profiles. Due to the complex airway geometries in the rabbit nose, higher spore deposition efficiency was predicted in the upper conducting airways compared to the human at the same air concentration of anthrax spores. As a result, higher particle deposition was predicted in the conducting airways and deep lung of the human compared to the rabbit lung due to differences in airway branching pattern. This information can be used to refine published and ongoing biokinetic models of inhalation anthrax spore exposures, which currently estimate deposited spore concentrations based solely upon exposure concentrations and inhaled doses that do not factor in species-specific anatomy and physiology.

  8. Evaluation of the various biokinetic models of liberation from characteristic deposition fraction of brazilian population sample

    International Nuclear Information System (INIS)

    Reis, Arlene A. dos; Cardoso, Joaquim C.S.; Lourenco, Maria Cristina

    2005-01-01

    The Publication 66 of International Commission of Radiological Protection (ICRP, 1994) presented the Human Respiratory tract Model that simulates the deposition and translocation of radioactive material in the air that penetrates in the body by inhalation. The main objective of this study is to evaluate the variation in fractional activity absorbed into blood when physiological and morphological parameters from Brazilian population are applied in the deposition model. The clearance model was implemented in the software Excel (version 2000) using a system of differential equations to solve simultaneous process of translocation and absorption of material deposited. After implementation were applied in the model fractional deposition calculated by deposition model using physiological and morphological parameters from Brazilian population. The results show that the variation in the clearance model depends on the material dissolution. For materials of rapid absorption, the variations calculated are not significant. Materials of moderate and slow absorption, presented variation greater than 20% in fractional activity absorbed into blood, depending on levels of exercise. (author)

  9. Regional deposition of thoron progeny in models of the human tracheobronchial tree

    International Nuclear Information System (INIS)

    Smith, S.M.; Cheng, Yung-Sung; Yeh, Hsu-Chi.

    1995-01-01

    Models of the human tracheobronchial tree have been used to determine total and regional aerosol deposition of inhaled particles. Particle sizes measured in these studies have all been > 40 nm in diameter. The deposition of aerosols < 40 nm in diameter has not been measured. Particles in the ultrafine aerosol size range include some combustion aerosols and indoor radon progeny. Also, the influence of reduced lung size and airflow rates on particle deposition in young children has not been determined. With their smaller lung size and smaller minute volumes, children may be at increased risk from ultrafine pollutants. In order to accurately determine dose of inhaled aerosols, the effects of particle size, minute volume, and age at exposure must be quantified. The purpose of this study was to determine the deposition efficiency of ultrafine aerosols smaller than 40 nm in diameter in models of the human tracheobronchia tree. This study demonstrates that the deposition efficiency of aerosols in the model of the child's tracheobronchial tree may be slightly higher than in the adult models

  10. Regional deposition of thoron progeny in models of the human tracheobronchial tree

    Energy Technology Data Exchange (ETDEWEB)

    Smith, S.M.; Cheng, Yung-Sung; Yeh, Hsu-Chi

    1995-12-01

    Models of the human tracheobronchial tree have been used to determine total and regional aerosol deposition of inhaled particles. Particle sizes measured in these studies have all been > 40 nm in diameter. The deposition of aerosols < 40 nm in diameter has not been measured. Particles in the ultrafine aerosol size range include some combustion aerosols and indoor radon progeny. Also, the influence of reduced lung size and airflow rates on particle deposition in young children has not been determined. With their smaller lung size and smaller minute volumes, children may be at increased risk from ultrafine pollutants. In order to accurately determine dose of inhaled aerosols, the effects of particle size, minute volume, and age at exposure must be quantified. The purpose of this study was to determine the deposition efficiency of ultrafine aerosols smaller than 40 nm in diameter in models of the human tracheobronchia tree. This study demonstrates that the deposition efficiency of aerosols in the model of the child`s tracheobronchial tree may be slightly higher than in the adult models.

  11. Particle deposition modeling in the secondary side of a steam generator bundle model

    Energy Technology Data Exchange (ETDEWEB)

    Mukin, Roman, E-mail: roman.mukin@psi.ch; Dehbi, Abdel, E-mail: abdel.dehbi@psi.ch

    2016-04-01

    A steam generator (SG) tube rupture (SGTR) model is studied in this paper. This model based on a experimental facility called Aerosol Trapping In a Steam Generator (ARTIST), which is a model of a scaled steam generator tube bundle consisting of 270 tubes and a guillotine tube to address aerosol deposition phenomena on two different scales: near the tube break, where the gas velocities and turbulence are very intensive, and far away from the break, where the flow velocities are three orders of magnitude lower. Owing to complexity of the flow, 3D simulations with highly resolved computational mesh near the break were done. First, the flow inside an isolated tube with a guillotine tube break has been studied in the framework of Reynolds Averaged Navier Stokes (RANS) approach. The next part is devoted to the simulation of an inclined gas jet entering the SG tube bundle via the guillotine tube breach with more advanced CFD tools. In particular, Detached Eddy Simulation (DES) and RANS are applied to tackle the wide range of flow scales. Flow field velocity comparison showed that DES results are reproducing wavy structure of the flow field in far field from the break observed in experiment. Particle transport and deposition is modelled by Lagrangian continuous random walk (CRW) model, which has been developed and validated previously. It is found that the DES combined with the CRW to supply fluctuating velocity components predicts deposition rates that are generally within the scatter of the measured data. Monodisperse, spherical SiO{sub 2} particles with AMMD = 1.4 μm were used as aerosol particles in simulations. To be economically feasible, the computations were made with the open source CFD code OpenFOAM. Comparison of the calculated flow with the experimental axial velocity distribution data at different vertical levels has been performed.

  12. Modelling of the aerosol deposition in a hydrogen catalytic recombiner

    International Nuclear Information System (INIS)

    Vendel, J.; Studer, E.; Zavaleta, P.; Hadida, Ph.

    1997-01-01

    Catalytic recombiners are used to remove the hydrogen released in case of a severe accident in a nuclear power plant, so as to reduce the risk of deflagration or detonation. H 2 PAR experiments are carried out to precise the behaviour of recombiners in term of poisoning by aerosols. Firstly, some calculations have been done with the Trio-EF code to assess the structure of convection loops in the experimental tent. We note that when the recombiner is active, it may have a strong influence on the flow inside the tent and may even interact with an other heat source such as a furnace. In the second part, we study the deposition of aerosols on catalytic plates for a given recombiner, when it is active or passive. We list the different mechanisms and quantify them by introducing the deposition velocity. In fact, thermophoresis appears to be the main mechanism, compared to brownian diffusion or difrusiophoresis, which governs aerosols deposition. It favours deposition on > plates and acts against it for > plates. (author)

  13. Hydraulic experiment on formation mechanism of tsunami deposit and verification of sediment transport model for tsunamis

    Science.gov (United States)

    Yamamoto, A.; Takahashi, T.; Harada, K.; Sakuraba, M.; Nojima, K.

    2017-12-01

    An underestimation of the 2011 Tohoku tsunami caused serious damage in coastal area. Reconsideration for tsunami estimation needs knowledge of paleo tsunamis. The historical records of giant tsunamis are limited, because they had occurred infrequently. Tsunami deposits may include many of tsunami records and are expected to analyze paleo tsunamis. However, present research on tsunami deposits are not able to estimate the tsunami source and its magnitude. Furthermore, numerical models of tsunami and its sediment transport are also important. Takahashi et al. (1999) proposed a model of movable bed condition due to tsunamis, although it has some issues. Improvement of the model needs basic data on sediment transport and deposition. This study investigated the formation mechanism of tsunami deposit by hydraulic experiment using a two-dimensional water channel with slope. In a fixed bed condition experiment, velocity, water level and suspended load concentration were measured at many points. In a movable bed condition, effects of sand grains and bore wave on the deposit were examined. Yamamoto et al. (2016) showed deposition range varied with sand grain sizes. In addition, it is revealed that the range fluctuated by number of waves and wave period. The measurements of velocity and water level showed that flow was clearly different near shoreline and in run-up area. Large velocity by return flow was affected the amount of sand deposit near shoreline. When a cutoff wall was installed on the slope, the amount of sand deposit repeatedly increased and decreased. Especially, sand deposit increased where velocity decreased. Takahashi et al. (1999) adapted the proposed model into Kesennuma bay when the 1960 Chilean tsunami arrived, although the amount of sand transportation was underestimated. The cause of the underestimation is inferred that the velocity of this model was underestimated. A relationship between velocity and sediment transport has to be studied in detail, but

  14. Phenomenological study of aerosol dry deposition in urban area: surface properties, turbulence and local meteorology influences

    International Nuclear Information System (INIS)

    Roupsard, P.

    2013-01-01

    Aerosol dry deposition is not much known for urban areas due to the lack of data. Knowledge on this phenomenon is necessary to understand pollutant fluxes in cities and to estimate inhabitant exposition to ionizing radiation of radioactive aerosols. A data providing could enable to enhance dry deposition models for these areas. An original experimental approach is performed to study submicron aerosol dry deposition on urban surfaces. Wind tunnel coupled to in situ experiments give results to study different physical phenomenon governing dry deposition. Dry deposition velocities are measured using aerosol tracers. These data are associated to turbulent and meteorological measured conditions. This database permits to classify the principal physical phenomenon for each experiment type. Finally, different phenomenon must be considered for chronic and acute exposition of urban surfaces to atmospheric particles. (author)

  15. Spectral Unmixing Modeling of the Aristarchus Pyroclastic Deposit: Assessing the Eruptive History of Glass-Rich Regional Lunar Pyroclastic Deposits

    Science.gov (United States)

    Jawin, E. R.; Head, J. W., III; Cannon, K.

    2017-12-01

    The Aristarchus pyroclastic deposit in central Oceanus Procellarum is understood to have formed in a gas-rich explosive volcanic eruption, and has been observed to contain abundant volcanic glass. However, the interpreted color (and therefore composition) of the glass has been debated. In addition, previous analyses of the pyroclastic deposit have been performed using lower resolution data than are currently available. In this work, a nonlinear spectral unmixing model was applied to Moon Mineralogy Mapper (M3) data of the Aristarchus plateau to investigate the detailed mineralogic and crystalline nature of the Aristarchus pyroclastic deposit by using spectra of laboratory endmembers including a suite of volcanic glasses returned from the Apollo 15 and 17 missions (green, orange, black beads), as well as synthetic lunar glasses (orange, green, red, yellow). Preliminary results of the M3 unmixing model suggest that spectra of the pyroclastic deposit can be modeled by a mixture composed predominantly of a featureless endmember approximating space weathering and a smaller component of glass. The modeled spectra were most accurate with a synthetic orange glass endmember, relative to the other glasses analyzed in this work. The results confirm that there is a detectable component of glass in the Aristarchus pyroclastic deposit which may be similar to the high-Ti orange glass seen in other regional pyroclastic deposits, with only minimal contributions of other crystalline minerals. The presence of volcanic glass in the pyroclastic deposit, with the low abundance of crystalline material, would support the model that the Aristarchus pyroclastic deposit formed in a long-duration, hawaiian-style fire fountain eruption. No significant detection of devitrified black beads in the spectral modeling results (as was observed at the Apollo 17 landing site in the Taurus-Littrow pyroclastic deposit), suggests the optical density of the eruptive plume remained low throughout the

  16. Coordination number constraint models for hydrogenated amorphous Si deposited by catalytic chemical vapour deposition

    Science.gov (United States)

    Kawahara, Toshio; Tabuchi, Norikazu; Arai, Takashi; Sato, Yoshikazu; Morimoto, Jun; Matsumura, Hideki

    2005-02-01

    We measured structure factors of hydrogenated amorphous Si by x-ray diffraction and analysed the obtained structures using a reverse Monte Carlo (RMC) technique. A small shoulder in the measured structure factor S(Q) was observed on the larger Q side of the first peak. The RMC results with an unconstrained model did not clearly show the small shoulder. Adding constraints for coordination numbers 2 and 3, the small shoulder was reproduced and the agreement with the experimental data became better. The ratio of the constrained coordination numbers was consistent with the ratio of Si-H and Si-H2 bonds which was estimated by the Fourier transformed infrared spectra of the same sample. This shoulder and the oscillation of the corresponding pair distribution function g(r) at large r seem to be related to the low randomness of cat-CVD deposited a-Si:H.

  17. Coordination number constraint models for hydrogenated amorphous Si deposited by catalytic chemical vapour deposition

    International Nuclear Information System (INIS)

    Kawahara, Toshio; Tabuchi, Norikazu; Arai, Takashi; Sato, Yoshikazu; Morimoto, Jun; Matsumura, Hideki

    2005-01-01

    We measured structure factors of hydrogenated amorphous Si by x-ray diffraction and analysed the obtained structures using a reverse Monte Carlo (RMC) technique. A small shoulder in the measured structure factor S(Q) was observed on the larger Q side of the first peak. The RMC results with an unconstrained model did not clearly show the small shoulder. Adding constraints for coordination numbers 2 and 3, the small shoulder was reproduced and the agreement with the experimental data became better. The ratio of the constrained coordination numbers was consistent with the ratio of Si-H and Si-H 2 bonds which was estimated by the Fourier transformed infrared spectra of the same sample. This shoulder and the oscillation of the corresponding pair distribution function g(r) at large r seem to be related to the low randomness of cat-CVD deposited a-Si:H

  18. Study of heat flux deposition in the Tore Supra Tokamak

    International Nuclear Information System (INIS)

    Carpentier, S.

    2009-02-01

    Accurate measurements of heat loads on internal tokamak components is essential for protection of the device during steady state operation. The optimisation of experimental scenarios also requires an in depth understanding of the physical mechanisms governing the heat flux deposition on the walls. The objective of this study is a detailed characterisation of the heat flux to plasma facing components (PFC) of the Tore Supra tokamak. The power deposited onto Tore Supra PFCs is calculated using an inverse method, which is applied to both the temperature maps measured by infrared thermography and to the enthalpy signals from calorimetry. The derived experimental heat flux maps calculated on the toroidal pumped limiter (TPL) are then compared with theoretical heat flux density distributions from a standard SOL-model. They are two experimental observations that are not consistent with the model: significant heat flux outside the theoretical wetted area, and heat load peaking close to the tangency point between the TPL and the last closed field surface (LCFS). An experimental analysis for several discharges with variable security factors q is made. In the area consistent with the theoretical predictions, this parametric study shows a clear dependence between the heat flux length λ q (estimated in the SOL (scrape-off layer) from the IR measurements) and the magnetic configuration. We observe that the spreading of heat fluxes on the component is compensated by a reduction of the power decay length λ q in the SOL when q decreases. On the other hand, in the area where the derived experimental heat loads are not consistent with the theoretical predictions, we observe that the spreading of heat fluxes outside the theoretical boundary increases when q decreases, and is thus not counterbalanced. (author)

  19. A study of VMS ore deposits by the proton microprobe

    International Nuclear Information System (INIS)

    Huston, D.L.; Large, R.R.; Bottril, R.S.; Sie, S.H.; Ryan, C.G.

    1991-01-01

    As part of studies into the mineralogical distribution of gold in volcanogenic massive sulfide (VMS) ore deposits PIXE analysis by the proton microprobe has been used to determine the gold content of pyrite and arsenopyrite from the Rosebery, Mt. Chalmers and Mt. Lyell deposits. In addition, the concentrations of Co, Ni, Cu, Zn, As, Sr, Y, Zr, Mo, Ag, Sb, Te, Au, Tl, Pb and Bi were also determined. 4 refs., 1 tab

  20. Atmospheric Energy Deposition Modeling and Inference for Varied Meteoroid Structures

    Science.gov (United States)

    Wheeler, Lorien; Mathias, Donovan; Stokan, Edward; Brown, Peter

    2018-01-01

    Asteroids populations are highly diverse, ranging from coherent monoliths to loosely-bound rubble piles with a broad range of material and compositional properties. These different structures and properties could significantly affect how an asteroid breaks up and deposits energy in the atmosphere, and how much ground damage may occur from resulting blast waves. We have previously developed a fragment-cloud model (FCM) for assessing the atmospheric breakup and energy deposition of asteroids striking Earth. The approach represents ranges of breakup characteristics by combining progressive fragmentation with releases of variable fractions of debris and larger discrete fragments. In this work, we have extended the FCM to also represent asteroids with varied initial structures, such as rubble piles or fractured bodies. We have used the extended FCM to model the Chelyabinsk, Benesov, Kosice, and Tagish Lake meteors, and have obtained excellent matches to energy deposition profiles derived from their light curves. These matches provide validation for the FCM approach, help guide further model refinements, and enable inferences about pre-entry structure and breakup behavior. Results highlight differences in the amount of small debris vs. discrete fragments in matching the various flare characteristics of each meteor. The Chelyabinsk flares were best represented using relatively high debris fractions, while Kosice and Benesov cases were more notably driven by their discrete fragmentation characteristics, perhaps indicating more cohesive initial structures. Tagish Lake exhibited a combination of these characteristics, with lower-debris fragmentation at high altitudes followed by sudden disintegration into small debris in the lower flares. Results from all cases also suggest that lower ablation coefficients and debris spread rates may be more appropriate for the way in which debris clouds are represented in FCM, offering an avenue for future model refinement.

  1. Fogwater deposition modeling for terrestrial ecosystems: A review of developments and measurements

    Science.gov (United States)

    Katata, Genki

    2014-07-01

    Recent progress in modeling fogwater (and low cloud water) deposition over terrestrial ecosystems during fogwater droplet interception by vegetative surfaces is reviewed. Several types of models and parameterizations for fogwater deposition are discussed with comparing assumptions, input parameter requirements, and modeled processes. The relationships among deposition velocity of fogwater (Vd) in model results, wind speed, and plant species structures associated with literature values are gathered for model validation. Quantitative comparisons between model results and observations in forest environments revealed differences as large as 2 orders of magnitude, which are likely caused by uncertainties in measurement techniques over heterogeneous landscapes. Results from the literature review show that Vd values ranged from 2.1 to 8.0 cm s-1 for short vegetation, whereas Vd = 7.7-92 cm s-1 and 0-20 cm s-1 for forests measured by throughfall-based methods and the eddy covariance method, respectively. This review also discusses the current understanding of the impacts of fogwater deposition on atmosphere-land interactions and over complex terrain based on results from numerical studies. Lastly, future research priorities in innovative modeling and observational approaches for model validation are outlined.

  2. Growth fluctuations in a class of deposition models

    CERN Document Server

    Balazs, M

    2003-01-01

    We compute the growth fluctuations in equilibrium of a wide class of deposition models. These models also serve as general frame to several nearest-neighbor particle jump processes, e.g. the simple exclusion or the zero range process, where our result turns to current fluctuations of the particles. We use martingale technique and coupling methods to show that, rescaled by time, the variance of the growth as seen by a deterministic moving observer has the form |V-C|*D, where V and C is the speed of the observer and the second class particle, respectively, and D is a constant connected to the equilibrium distribution of the model. Our main result is a generalization of Ferrari and Fontes' result for simple exclusion process. Law of large numbers and central limit theorem are also proven. We need some properties of the motion of the second class particle, which are known for simple exclusion and are partly known for zero range processes, and which are proven here for! a type of deposition models and also for a t...

  3. Neural Networks Technique, Lithofacies Classifications and Analysis and Depositional Environment Interpretation for 3-D Reservoir Geological Modeling and Exploration Studies (X Example)

    International Nuclear Information System (INIS)

    Iloghalu, E.; Chin, A.; Ebong, U.

    2003-01-01

    The value of borehole geology in Petroleum Exploration and Production cannot be over-emphasized. Reservoir characterization in mature fields and indeed mature basins requires high-resolution and high precision tools to determine the Stratigraphy and sedimentology of the areas of interest. The aim of reservoir studies is usually to determine the heterogeneity and the internal architecture of the reservoirs and the resulting model is simulated to derive the reservoir engineering properties, which impacts on quality decisions for optimal exploitation of the hydrocarbon in place. The point issues or challenges usually encountered in reservoir studies and management are baffles, barriers to flow, thief zones and other uncertainties that come about due to inadequate understanding of the sedimentology of the reservoirs in question. (Issues like preferential flow direction which significantly impact on secondary recovery and affect the costs). Recent advancements in borehole geology image and dips data helps to effectively itemize these uncertainties, and significantly reduce them to the barrest minimum. This work shows processed and interpreted image and dips data from a field, integrated with other petrophysical data and then incorporated into a field-wide study in the X-field. This was done using the most recent technological advancements in logging tools and in interpretation processes. The achievements include cost saving, higher precision results and reduced time or interpretation

  4. A model to explain joint patterns found in ignimbrite deposits

    Science.gov (United States)

    Tibaldi, A.; Bonali, F. L.

    2018-03-01

    The study of fracture systems is of paramount importance for economic applications, such as CO2 storage in rock successions, geothermal and hydrocarbon exploration and exploitation, and also for a better knowledge of seismogenic fault formation. Understanding the origin of joints can be useful for tectonic studies and for a geotechnical characterisation of rock masses. Here, we illustrate a joint pattern discovered in ignimbrite deposits of South America, which can be confused with conjugate tectonic joint sets but which have another origin. The pattern is probably common, but recognisable only in plan view and before tectonic deformation obscures and overprints it. Key sites have been mostly studied by field surveys in Bolivia and Chile. The pattern is represented by hundreds-of-meters up to kilometre-long swarms of master joints, which show circular to semi-circular geometries and intersections that have "X" and "Y" patterns. Inside each swarm, joints are systematic, rectilinear or curvilinear in plan view, and as much as 900 m long. In section view, they are from sub-vertical to vertical and do not affect the underlying deposits. Joints with different orientation mostly interrupt each other, suggesting they have the same age. This joint architecture is here interpreted as resulting from differential contraction after emplacement of the ignimbrite deposit above a complex topography. The set of the joint pattern that has suitable orientation with respect to tectonic stresses may act to nucleate faults.

  5. Ellipsometric study of nanostructured carbon films deposited by pulsed laser deposition

    International Nuclear Information System (INIS)

    Bereznai, M.; Budai, J.; Hanyecz, I.; Kopniczky, J.; Veres, M.; Koos, M.; Toth, Z.

    2011-01-01

    When depositing carbon films by plasma processes the resulting structure and bonding nature strongly depends on the plasma energy and background gas pressure. To produce different energy plasma, glassy carbon targets were ablated by laser pulses of different excimer lasers: KrF (248 nm) and ArF (193 nm). To modify plume characteristics argon atmosphere was applied. The laser plume was directed onto Si substrates, where the films were grown. To evaluate ellipsometric measurements first a combination of the Tauc-Lorentz oscillator and the Sellmeier formula (TL/S) was applied. Effective Medium Approximation models were also used to investigate film properties. Applying argon pressures above 10 Pa the deposits became nanostructured as indicated by high resolution scanning electron microscopy. Above ∼ 100 and ∼ 20 Pa films could not be deposited by KrF and ArF laser, respectively. Our ellipsometric investigations showed, that with increasing pressure the maximal refractive index of both series decreased, while the optical band gap starts with a decrease, but shows a non monotonous course. Correlation between the size of the nanostructures, bonding structure, which was followed by Raman spectroscopy and optical properties were also investigated.

  6. Analytical model for a cooperative ballistic deposition in one dimension

    Science.gov (United States)

    Hassan, M. Kamrul; Wessel, Niels; Kurths, Jürgen

    2003-06-01

    We formulate a model for a cooperative ballistic deposition (CBD) process whereby the incoming particles are correlated with those already adsorbed via attractive force. The strength of the correlation is controlled by a tunable parameter a that interpolates the classical car parking problem at a=0, the ballistic deposition at a=1, and the CBD model at a>1. The effects of the correlation in the CBD model are as follows. The jamming coverage q(a) increases with the strength of attraction a due to an ever-increasing tendency of cluster formation. The system almost reaches the closest packing structure as a→∞ but never forms a percolating cluster, which is typical of one-dimensional systems. In the large a regime, the mean cluster size k increases as a1/2. Furthermore, the asymptotic approach towards the closest packing is purely algebraic both with a as q(∞)-q(a)˜a-1/2 and with k as q(∞)-q(k)˜k-1, where q(∞)≃1.

  7. Modeling the Sulfate Deposition to the Greenland Ice Sheet From the Laki Eruption

    Science.gov (United States)

    Oman, L.; Robock, A.; Stenchikov, G.; Thordarson, T.; Gao, C.

    2005-12-01

    Using the state of the art Goddard Institute for Space Studies (GISS) modelE general circulation model, simulations were conducted of the chemistry and transport of aerosols resulting from the 1783-84 Laki (64°N) flood lava eruption. A set of 3 ensemble simulations from different initial conditions were conducted by injecting our estimate of the SO2 gas into the atmosphere by the 10 episodes of the eruption and allowing the sulfur chemistry model to convert this gas into sulfate aerosol. The SO2 gas and sulfate aerosol is transported by the model and wet and dry deposition is calculated over each grid box during the simulation. We compare the resulting sulfate deposition to the Greenland Ice Sheet in the model to 23 ice core measurements and find very good agreement. The model simulation deposits a range of 169 to over 300 kg/km2 over interior Greenland with much higher values along the coastal areas. This compares to a range of 62 to 324 kg/km2 for the 23 ice core measurements with an average value of 158 kg/km2. This comparison is one important model validation tool. Modeling and observations show fairly large spatial variations in the deposition of sulfate across the Greenland Ice Sheet for the Laki eruption, but the patterns are similar to those we modeled for the 1912 Katmai and 1991 Pinatubo eruptions. Estimates of sulfate loading based on single ice cores can show significant differences, so ideally several ice cores should be combined in reconstructing the sulfate loading of past volcanic eruptions, taking into account the characteristic spatial variations in the deposition pattern.

  8. Impact of enhanced ozone deposition and halogen chemistry on model performance

    Science.gov (United States)

    In this study, an enhanced ozone deposition scheme due to the interaction of iodide in sea-water and atmospheric ozone and the detailed chemical reactions of organic and inorganic halogen species are incorporated into the hemispheric Community Multiscale Air Quality model. Prelim...

  9. Studies on geneses of Lianshanguan granites and Lianshanguan uranium ore deposit

    International Nuclear Information System (INIS)

    Zhang Jiafu; Xu Guoqing; Wang Wenguang

    1994-02-01

    Based on the field work, and through the studies of thin-sections, minerals fluid inclusions, isotope geology, rare-earth elements and U-content in rocks and minerals, it is suggested that Lianshanguan granites are of magmatization genesis with multistage. The genetic model of mineralization of Lianshanguan uranium ore deposit is the magmatization-hydrothermal-filled uranium type. The role of mineralization of uranium ore deposit in that area is discussed. Furthermore, the direction of prospecting and following prospecting criteria for similar deposits in this area are also given

  10. EXPURT - a model for evaluating exposure from radioactive material deposited in the urban environment

    International Nuclear Information System (INIS)

    Crick, M.J.; Brown, J.

    1990-06-01

    This model, EXPURT (EXPosure from Urban Radionuclide Transfer), is described in detail. The model simulates the movement of activity deposited on various surfaces in the urban environment and, by taking into account the shielding properties of buildings and the habits of the population, evaluates the external doses to members of the population living in such urban environments, as a function of time after deposition. One of the other advantages of EXPURT over simpler models is that it can be used to assess the possible dose reductions that might be achieved by various decontamination techniques; for example, it can estimate the effectiveness of decontaminating roof surfaces alone in reducing exposure to individuals living in an urban environment. Sensitivity/uncertainty studies have been performed whereby those parameters contributing most to remaining uncertainty in the model's predictions of dose and dose rates were identified. Predictions of the EXPURT model were compared with those from a simpler external dose model in use at NRPB. (author)

  11. Post-deposition thermal annealing studies of hydrogenated microcrystalline silicon deposited at 40 deg. C

    International Nuclear Information System (INIS)

    Bronsveld, P.C.P.; Wagt, H.J. van der; Rath, J.K.; Schropp, R.E.I.; Beyer, W.

    2007-01-01

    Post-deposition thermal annealing studies, including gas effusion measurements, measurements of infrared absorption versus annealing state, cross-sectional transmission electron microscopy (X-TEM) and atomic force microscopy (AFM), are used for structural characterization of hydrogenated amorphous and microcrystalline silicon films, prepared by very high frequency plasma enhanced chemical vapor deposition (VHF-PECVD) at low substrate temperature (T S ). Such films are of interest for application in thin semiconductor devices deposited on cheap plastics. For T S ∼ 40 deg. C, H-evolution shows rather complicated spectra for (near-) microcrystalline material, with hydrogen effusion maxima seen at ∼ 200-250 deg. C, 380 deg. C and ∼ 450-500 deg. C, while for the amorphous material typical spectra for good-quality dense material are found. Effusion experiments of implanted He demonstrate for the microcrystalline material the presence of a rather open (void-rich) structure. A similar tendency can be concluded from Ne effusion experiments. Fourier Transform infrared (FTIR) spectra of stepwise annealed samples show Si-H bond rupture already at annealing temperatures of 150 deg. C. Combined AFM/X-TEM studies reveal a columnar microstructure for all of these (near-) microcrystalline materials, of which the open structure is the most probable explanation of the shift of the H-effusion maximum in (near-) microcrystalline material to lower temperature

  12. Response of Sphagnum fuscum to Nitrogen Deposition: A Case Study of Ombrogenous Peatlands in Alberta, Canada

    Science.gov (United States)

    Vitt, D.H.; Wieder, K.; Halsey, L.A.; Turetsky, M.

    2003-01-01

    Peatlands cover about 30% of northeastern Alberta and are ecosystems that are sensitive to nitrogen deposition. In polluted areas of the UK, high atmospheric N deposition (as a component of acid deposition) has been considered among the causes of Sphagnum decline in bogs (ombrogenous peatlands). In relatively unpolluted areas of western Canada and northern Sweden, short-term experimental studies have shown that Sphagnum responds quickly to nutrient loading, with uptake and retention of nitrogen and increased production. Here we examine the response of Sphagnum fuscum to enhanced nitrogen deposition generated during 34 years of oil sands mining through the determination of net primary production (NPP) and nitrogen concentrations in the upper peat column. We chose six continental bogs receiving differing atmospheric nitrogen loads (modeled using a CALPUFF 2D dispersion model). Sphagnum fuscum net primary production (NPP) at the high deposition site (Steepbank - mean of 600 g/m2; median of 486 g/m2) was over three times as high than at five other sites with lower N deposition. Additionally, production of S. fuscum may be influenced to some extent by distance of the moss surface from the water table. Across all sites, peat nitrogen concentrations are highest at the surface, decreasing in the top 3 cm with no significant change with increasing depth. We conclude that elevated N deposition at the Steepbank site has enhanced Sphagnum production. Increased N concentrations are evident only in the top 1-cm of the peat profile. Thus, 34 years after mine startup, increased N-deposition has increased net primary production of Sphagnum fuscum without causing elevated levels of nitrogen in the organic matter profile. A response to N-stress for Sphagnum fuscum is proposed at 14-34 kg ha-1 yr-1. A review of N-deposition values reveals a critical N-deposition value of between 14.8 and 15.7 kg ha -1 yr-1 for NPP of Sphagnum species.

  13. Dynamic Modeling for the Design and Cyclic Operation of an Atomic Layer Deposition (ALD Reactor

    Directory of Open Access Journals (Sweden)

    Curtisha D. Travis

    2013-08-01

    Full Text Available A laboratory-scale atomic layer deposition (ALD reactor system model is derived for alumina deposition using trimethylaluminum and water as precursors. Model components describing the precursor thermophysical properties, reactor-scale gas-phase dynamics and surface reaction kinetics derived from absolute reaction rate theory are integrated to simulate the complete reactor system. Limit-cycle solutions defining continuous cyclic ALD reactor operation are computed with a fixed point algorithm based on collocation discretization in time, resulting in an unambiguous definition of film growth-per-cycle (gpc. A key finding of this study is that unintended chemical vapor deposition conditions can mask regions of operation that would otherwise correspond to ideal saturating ALD operation. The use of the simulator for assisting in process design decisions is presented.

  14. CFD Modeling of Sodium-Oxide Deposition in Sodium-Cooled Fast Reactor Compact Heat Exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Tatli, Emre; Ferroni, Paolo; Mazzoccoli, Jason

    2015-09-02

    The possible use of compact heat exchangers (HXs) in sodium-cooled fast reactors (SFR) employing a Brayton cycle is promising due to their high power density and resulting small volume in comparison with conventional shell-and-tube HXs. However, the small diameter of their channels makes them more susceptible to plugging due to Na2O deposition during accident conditions. Although cold traps are designed to reduce oxygen impurity levels in the sodium coolant, their failure, in conjunction with accidental air ingress into the sodium boundary, could result in coolant oxygen levels that are above the saturation limit in the cooler parts of the HX channels. This can result in Na2O crystallization and the formation of solid deposits on cooled channel surfaces, limiting or even blocking coolant flow. The development of analysis tools capable of modeling the formation of these deposits in the presence of sodium flow will allow designers of SFRs to properly size the HX channels so that, in the scenario mentioned above, the reactor operator has sufficient time to detect and react to the affected HX. Until now, analytical methodologies to predict the formation of these deposits have been developed, but never implemented in a high-fidelity computational tool suited to modern reactor design techniques. This paper summarizes the challenges and the current status in the development of a Computational Fluid Dynamics (CFD) methodology to predict deposit formation, with particular emphasis on sensitivity studies on some parameters affecting deposition.

  15. Granite metallogenic specialization study based on RS information model-A case of hydrothermal uranium and tungsten deposits in Nanling region

    International Nuclear Information System (INIS)

    Huang Hongye; Qin Qiming

    2009-01-01

    According to the granite hydrothermal metallogenic principle, metallogenic specialization information model for uranium producing and tungsten producing granites in Nanling region is built up and the group factor system of granite metallogenic specialization is initially proposed by using RS information model. On the basis of the above aspects, the geographical index and coefficients of information model of granite metallogenic specialization are respectively analyzed, metallogenic specialization discrimination criterion is built up. After the non-discriminatory massif is forecasted, the results are basically accordant with geological fact, at the same time they are used in the geological metallogenic research, which indicates that metallogenic specialization information model is objective and operative, realizes quantitative appraisal on metallogenic specialization and provides a scientific basis for further discriminating the ore-forming massif. (authors)

  16. Observation- and model-based estimates of particulate dry nitrogen deposition to the oceans

    Directory of Open Access Journals (Sweden)

    A. R. Baker

    2017-07-01

    Full Text Available Anthropogenic nitrogen (N emissions to the atmosphere have increased significantly the deposition of nitrate (NO3− and ammonium (NH4+ to the surface waters of the open ocean, with potential impacts on marine productivity and the global carbon cycle. Global-scale understanding of the impacts of N deposition to the oceans is reliant on our ability to produce and validate models of nitrogen emission, atmospheric chemistry, transport and deposition. In this work,  ∼  2900 observations of aerosol NO3− and NH4+ concentrations, acquired from sampling aboard ships in the period 1995–2012, are used to assess the performance of modelled N concentration and deposition fields over the remote ocean. Three ocean regions (the eastern tropical North Atlantic, the northern Indian Ocean and northwest Pacific were selected, in which the density and distribution of observational data were considered sufficient to provide effective comparison to model products. All of these study regions are affected by transport and deposition of mineral dust, which alters the deposition of N, due to uptake of nitrogen oxides (NOx on mineral surfaces. Assessment of the impacts of atmospheric N deposition on the ocean requires atmospheric chemical transport models to report deposition fluxes; however, these fluxes cannot be measured over the ocean. Modelling studies such as the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP, which only report deposition flux, are therefore very difficult to validate for dry deposition. Here, the available observational data were averaged over a 5° × 5° grid and compared to ACCMIP dry deposition fluxes (ModDep of oxidised N (NOy and reduced N (NHx and to the following parameters from the Tracer Model 4 of the Environmental Chemical Processes Laboratory (TM4: ModDep for NOy, NHx and particulate NO3− and NH4+, and surface-level particulate NO3− and NH4+ concentrations. As a model ensemble, ACCMIP can be

  17. Nanoimprint Lithography on curved surfaces prepared by fused deposition modelling

    International Nuclear Information System (INIS)

    Köpplmayr, Thomas; Häusler, Lukas; Bergmair, Iris; Mühlberger, Michael

    2015-01-01

    Fused deposition modelling (FDM) is an additive manufacturing technology commonly used for modelling, prototyping and production applications. The achievable surface roughness is one of its most limiting aspects. It is however of great interest to create well-defined (nanosized) patterns on the surface for functional applications such as optical effects, electronics or bio-medical devices. We used UV-curable polymers of different viscosities and flexible stamps made of poly(dimethylsiloxane) (PDMS) to perform Nanoimprint Lithography (NIL) on FDM-printed curved parts. Substrates with different roughness and curvature were prepared using a commercially available 3D printer. The nanoimprint results were characterized by optical light microscopy, profilometry and atomic force microscopy (AFM). Our experiments show promising results in creating well-defined microstructures on the 3D-printed parts. (paper)

  18. Study on the electrical properties of ITO films deposited by facing target sputter deposition

    International Nuclear Information System (INIS)

    Kim, Youn J; Jin, Su B; Kim, Sung I; Choi, Yoon S; Choi, In S; Han, Jeon G

    2009-01-01

    This study examined the mechanism for the change in the electrical properties (carrier concentration (n) and mobility (μ)) of tin-doped indium oxide (ITO) films deposited by magnetron sputtering in a confined facing magnetic field. The relationship between the carrier concentration and the mobility was significantly different from the results reported for ITO films deposited by other magnetron sputtering processes. The lowest resistivity obtained for ITO films deposited in a confined facing magnetic field at low substrate temperatures (approximately 120 0 C) was 4.26 x 10 -4 Ω cm at a power density of 3 W cm -2 . Crystalline ITO films were obtained at a low power density range from 3 to 5 W cm -2 due to the increase in the substrate temperature from 120 to 162 0 C. This contributed to the increased carrier concentration and decreased electrical resistivity. X-ray photoelectron spectroscopy revealed an increase in the concentration of the Sn 4+ states. This was attributed to the formation of a crystalline ITO film, which effectively enhanced the carrier concentration and reduced the carrier mobility.

  19. Deposition of inhaled radionuclides in bronchial airways: Implications for extrapolation modeling

    International Nuclear Information System (INIS)

    Balashazy, I.; Hofmann, W.; Heistracher, T.

    1996-01-01

    The laboratory rat has frequently been used as a human surrogate to estimate potential health effects following the inhalation of radioactive aerosol particles. Interspecies differences in biological response are commonly related to interspecies differences in particle deposition efficiencies. In addition, the documented site selectivity of bronchial carcinomas suggests that localized particle deposition patterns within bronchial airway bifurcations may have important implications for inhalation risk assessments. Interspecies differences in particle deposition patterns may be related primarily to differences in airway morphometries. Thus the validity of extrapolating rat deposition data to human inhalation conditions depends on their morphometric similarities and differences. It is well known that there are significant structural differences between the human - rather symmetric - and the rat - monopodial - airway systems. In the present approach, we focus on localized deposition patterns and deposition efficiencies in selected asymmetric bronchial airway bifurcations, whose diameters, lengths and branching angles were derived from the stochastic airway models of human and rat lungs (Koblinger and Hofmann, 1985;1988), which are based on the morphometric data of Raabe et al. (1976). The effects of interspecies differences in particle deposition patterns are explored in this study for two asymmetric bifurcation geometries in segmental bronchi and terminal bronchioles of both the human and rat lungs at different particle sizes. In order to examine the effect of flow rate on particle deposition in the human lung, we selected two different minute volumes, i.e., 10 and 60 1 min -1 , which are representative of low and heavy physical activity breathing conditions. In the case of the rat we used a minute volume of 0.234 1 min -1 (Hofmann et al., 1993)

  20. Localization of gastrointestinal deposition of mercuric chloride studied in vivo

    International Nuclear Information System (INIS)

    Nielsen, J.B.; Andersen, H.L.; Soerensen, J.A.; Andersen, O.

    1992-01-01

    During the last 5 years, the site of gastrointestinal absorption of inorganic mercury has been attempted identified mainly by experiments using perfused intestinal segments in vitro or in situ. The present investigation will discuss the localization of the absorption site for mercuric chloride based on a completely undisturbed in vivo experimental model in mice. As the mice were allowed to eat their normal diet during the experimental period, the present results would independently add to existing knowledge on intestinal absorption sites for inorganic mercury. The mice were given 203 Hg labelled mercuric chloride orally, either through stomach tube or in the drinking water, and were killed after various time intervals. Mercury was localized and quantified in various segments of the gastrointestinal tract by gamma-counting. Time course analysis of the segmental deposition of mercury demonstrated that the deposition mainly takes place in the proximal jejunum and suggested that a larger part of the jejunum than previously reported is involved in absorption of mercury. Using this in vivo model, tetraethylthiuram disulfide was demonstrated to increase the intestinal deposition and absorption without changing the site of deposition. (au)

  1. The Cascade Drift Module: a GIS-based study on regional pesticide deposition

    NARCIS (Netherlands)

    Holterman, H.J.; Zande, van de J.C.

    2008-01-01

    The Cascade Project describes the modelling of spray drift and pesticide fate for a network of interconnected water bodies in a rural area. The present study concerns the first part of the proj ect, the Cascade Drift Module, which models the spatial and temporal distribution of deposits of spray

  2. Chemical bath deposited and dip coating deposited CuS thin films - Structure, Raman spectroscopy and surface study

    Science.gov (United States)

    Tailor, Jiten P.; Khimani, Ankurkumar J.; Chaki, Sunil H.

    2018-05-01

    The crystal structure, Raman spectroscopy and surface microtopography study on as-deposited CuS thin films were carried out. Thin films deposited by two techniques of solution growth were studied. The thin films used in the present study were deposited by chemical bath deposition (CBD) and dip coating deposition techniques. The X-ray diffraction (XRD) analysis of both the as-deposited thin films showed that both the films possess covellite phase of CuS and hexagonal unit cell structure. The determined lattice parameters of both the films are in agreement with the standard JCPDS as well as reported data. The crystallite size determined by Scherrer's equation and Hall-Williamsons relation using XRD data for both the as-deposited thin films showed that the respective values were in agreement with each other. The ambient Raman spectroscopy of both the as-deposited thin films showed major emission peaks at 474 cm-1 and a minor emmision peaks at 265 cm-1. The observed Raman peaks matched with the covellite phase of CuS. The atomic force microscopy of both the as-deposited thin films surfaces showed dip coating thin film to be less rough compared to CBD deposited thin film. All the obtained results are presented and deliberated in details.

  3. Laboratory Deposition Apparatus to Study the Effects of Wax Deposition on Pipe Magnetic Field Leakage Signals

    Directory of Open Access Journals (Sweden)

    Karim Mohd Fauzi Abd

    2014-07-01

    Full Text Available Accurate technique for wax deposition detection and severity measurement on cold pipe wall is important for pipeline cleaning program. Usually these techniques are validated by conventional techniques on laboratory scale wax deposition flow loop. However conventional techniques inherent limitations and it is difficult to reproduce a predetermine wax deposit profile and hardness at designated location in flow loop. An alternative wax deposition system which integrates modified pour casting method and cold finger method is presented. This system is suitable to reproduce high volume of medium hard wax deposit in pipe with better control of wax deposit profile and hardness.

  4. Interlaboratory model comparisons of atmospheric concentrations with and without deposition

    International Nuclear Information System (INIS)

    Kern, C.D.; Cooper, R.E.

    1978-01-01

    To calculate the dose to the regional and U.S. populations, the pollutant concentration both with and without deposition and the amount of material deposited on the ground and watersheds around such a facility must be known. The following report (Article 50) of this document contains some initial estimates of population exposure from atmospheric effluents. The expertise of laboratories supported by U.S. Department of Energy funds ensures that the latest methods and data are available. Lawrence Livermore Laboratory (LLL) performed regional calculations (out to distances of the order of 200 km from a hypothetical fuel reprocessing plant). The Air Resources Laboratory (ARL) of the National Oceanic and Atmospheric Administration (NOAA), and Battelle Pacific Northwest Laboratories (PNL) performed U.S. scale calculations, and ARL also did the global calculations. Data from a winter and summer period were used to make comparisons of calculations by LLL, ARL, and PNL to determine which model should be used for the final calculations and to determine if a 200-km square area centered on the site would be large enough for dose calculations via the water and food pathways

  5. Proton microprobe study of tin-polymetallic deposits

    Energy Technology Data Exchange (ETDEWEB)

    Murao, S. [Geological Survey of Japan, Tsukuba, Ibaraki (Japan); Sie, S.H.; Suter, G.F. [Commonwealth Scientific and Industrial Research Organisation (CSIRO), North Ryde, NSW (Australia). Div. of Exploration Geoscience

    1996-12-31

    Tin-polymetallic vein type deposits are a complex mixture of cassiterite and sulfides and they are the main source of technologically important rare metals such as indium and bismuth. Constituent minerals are usually fine grained having wide range of chemical composition and often the elements of interest occur as trace elements not amenable to electron microprobe analysis. PIXE with a proton microprobe can be an effective tool to study such deposits by delineating the distribution of trace elements among carrier minerals. Two representative indium-bearing deposits of tin- polymetallic type, Tosham of India (Cu-ln-Bi-Sn-W-Ag), and Mount Pleasant of Canada (Zn-Cu-In-Bi-Sn-W), were studied to delineate the distribution of medical/high-tech rare metals and to examine the effectiveness of the proton probe analysis of such ore. One of the results of the study indicated that indium and bismuth are present in chalcopyrite in the deposits. In addition to these important rare metals, zinc, copper, arsenic, antimony, selenium, and tin are common in chalcopyrite and pyrite. Arsenopyrite contains nickel, copper, zinc, silver, tin, antimony and bismuth. In chalcopyrite and pyrite, zinc, arsenic, indium, bismuth and lead are richer in Mount Pleasant ore, but silver is higher at Tosham. Also thallium and gold were found only in Tosham pyrite. The Tosham deposit is related to S-type granite, while Mount Pleasant to A-type. It appears that petrographic character of the source magma is one of the factors to determine the trace element distribution in tin-polymetallic deposit. 6 refs., 2 figs.

  6. Proton microprobe study of tin-polymetallic deposits

    Energy Technology Data Exchange (ETDEWEB)

    Murao, S [Geological Survey of Japan, Tsukuba, Ibaraki (Japan); Sie, S H; Suter, G F [Commonwealth Scientific and Industrial Research Organisation (CSIRO), North Ryde, NSW (Australia). Div. of Exploration Geoscience

    1997-12-31

    Tin-polymetallic vein type deposits are a complex mixture of cassiterite and sulfides and they are the main source of technologically important rare metals such as indium and bismuth. Constituent minerals are usually fine grained having wide range of chemical composition and often the elements of interest occur as trace elements not amenable to electron microprobe analysis. PIXE with a proton microprobe can be an effective tool to study such deposits by delineating the distribution of trace elements among carrier minerals. Two representative indium-bearing deposits of tin- polymetallic type, Tosham of India (Cu-ln-Bi-Sn-W-Ag), and Mount Pleasant of Canada (Zn-Cu-In-Bi-Sn-W), were studied to delineate the distribution of medical/high-tech rare metals and to examine the effectiveness of the proton probe analysis of such ore. One of the results of the study indicated that indium and bismuth are present in chalcopyrite in the deposits. In addition to these important rare metals, zinc, copper, arsenic, antimony, selenium, and tin are common in chalcopyrite and pyrite. Arsenopyrite contains nickel, copper, zinc, silver, tin, antimony and bismuth. In chalcopyrite and pyrite, zinc, arsenic, indium, bismuth and lead are richer in Mount Pleasant ore, but silver is higher at Tosham. Also thallium and gold were found only in Tosham pyrite. The Tosham deposit is related to S-type granite, while Mount Pleasant to A-type. It appears that petrographic character of the source magma is one of the factors to determine the trace element distribution in tin-polymetallic deposit. 6 refs., 2 figs.

  7. Proton microprobe study of tin-polymetallic deposits

    International Nuclear Information System (INIS)

    Murao, S.; Sie, S.H.; Suter, G.F.

    1996-01-01

    Tin-polymetallic vein type deposits are a complex mixture of cassiterite and sulfides and they are the main source of technologically important rare metals such as indium and bismuth. Constituent minerals are usually fine grained having wide range of chemical composition and often the elements of interest occur as trace elements not amenable to electron microprobe analysis. PIXE with a proton microprobe can be an effective tool to study such deposits by delineating the distribution of trace elements among carrier minerals. Two representative indium-bearing deposits of tin- polymetallic type, Tosham of India (Cu-ln-Bi-Sn-W-Ag), and Mount Pleasant of Canada (Zn-Cu-In-Bi-Sn-W), were studied to delineate the distribution of medical/high-tech rare metals and to examine the effectiveness of the proton probe analysis of such ore. One of the results of the study indicated that indium and bismuth are present in chalcopyrite in the deposits. In addition to these important rare metals, zinc, copper, arsenic, antimony, selenium, and tin are common in chalcopyrite and pyrite. Arsenopyrite contains nickel, copper, zinc, silver, tin, antimony and bismuth. In chalcopyrite and pyrite, zinc, arsenic, indium, bismuth and lead are richer in Mount Pleasant ore, but silver is higher at Tosham. Also thallium and gold were found only in Tosham pyrite. The Tosham deposit is related to S-type granite, while Mount Pleasant to A-type. It appears that petrographic character of the source magma is one of the factors to determine the trace element distribution in tin-polymetallic deposit. 6 refs., 2 figs

  8. Modelling deposition of dioxin in Denmark; Modellering af dioxindeposition i Danmark

    Energy Technology Data Exchange (ETDEWEB)

    Mantzius Hansen, K.; Christensen, Jesper H.

    2008-06-15

    We have estimated the deposition of dioxin in Denmark for the years 1970, 1975, 1980, 1985, 1990, 1995, 2000 and 2004 as well as the contribution to air concentrations and depositions from Danish sources relative to the contribution from other European sources. The estimate is based on model simulations with the high-resolution atmospheric chemistry transport model DEHM, where dioxin is modelled as one compound in form of particles. Two different expert emission estimates from EMEP's Meteorological Synthesizing Centre East were used as model input. There are large differences in estimated emissions for some countries from 1990 and onwards, which has a large influence on the simulated depositions. However, it has not been possible to determine which estimate is the most realistic. The concentrations of dioxin in air as well as the depositions increase slightly up to 1980, from where they decrease until 2004. The simulated air concentrations in 2004 are 3,2 fg I-TEQ/m3 and 0,8 fg I-TEQ/m3 for the two emission estimates. The deposited amount of dioxin to Danish land surfaces are 36 g I-TEQ and 9 g I-TEQ for the two emission estimates for 2004. The relative contribution from Danish sources to the deposition of dioxin to Danish land surfaces are 14% and 15% for the two emission estimates for 2004. Despite of large differences in emissions and simulated air concentrations and depositions between the two applied emission estimates, the relative contribution of the Danish sources to the deposition in Denmark does not differ much between the two emission estimates. The contribution of Danish sources to the deposition to Danish land surfaces is estimated to be between 10% and 20%, although there is a large regional variation, from less than 5% to more than 40%. It should be kept in mind that there are sources that are not included in this estimate, such as sources outside Europe and re-emission from previously deposited dioxin, which potentially can give a large

  9. Geobotanical studies on uranium deposits of Udaipur, Rajasthan, India

    International Nuclear Information System (INIS)

    Aery, N.C.; Jain, G.S.

    1995-01-01

    Geobotanical studies were carried out on known uranium deposits of Udaisagar region in the district of Udaipur, Rajasthan. Releve method of Braun Blanquet was employed for community analysis. Though no species with an exclusive occurrence on uranium deposits was found, certain plant species registered higher constancy and fidelity on uranium rich soils in comparison to background soils. Obviously, these characteristic plant species have evolved tolerance to high uranium contents of the soils and might be neo-endemics. (author). 23 refs., 1 fig., 4 tabs

  10. Study of energy deposition in heavy-ion reactions

    International Nuclear Information System (INIS)

    Mota, V. De La; Abgrall, P.; Sebille, F.; Haddad, F.

    1993-01-01

    An investigation of energy deposition mechanisms in heavy-ion reactions at intermediate energies is presented. Theoretical simulations are performed in the framework of the semi-classical Landau-Vlasov model. They emphasize the influence of the initial non-equilibrium conditions, and the connection with the incident energy is discussed. Characteristic times involved in the energy thermalization process and finite size effects are analyzed. (authors) 20 refs., 4 figs

  11. Modelling pollutant deposition to vegetation: scaling down from the canopy to the biochemical level

    International Nuclear Information System (INIS)

    Taylor, G.E. Jr.; Constable, J.V.H.

    1994-01-01

    In the atmosphere, pollutants exist in either the gas, particle or liquid (rain and cloud water) phase. The most important gas-phase pollutants from a biological or ecological perspective are oxides of nitrogen (nitrogen dioxide, nitric acid vapor), oxides of sulfur (sulfur dioxide), ammonia, tropospheric ozone and mercury vapor. For liquid or particle phase pollutants, the suite of pollutants is varied and includes hydrogen ion, multiple heavy metals, and select anions. For many of these pollutants, plant canopies are a major sink within continental landscapes, and deposition is highly dependent on the (i) physical form or phase of the pollutant, (ii) meteorological conditions above and within the plant canopy, and (iii) physiological or biochemical properties of the leaf, both on the leaf surface and within the leaf interior. In large measure, the physical and chemical processes controlling deposition at the meteorological and whole-canopy levels are well characterized and have been mathematically modelled. In contrast, the processes operating on the leaf surface and within the leaf interior are not well understood and are largely specific for individual pollutants. The availability of process-level models to estimate deposition is discussed briefly at the canopy and leaf level; however, the majority of effort is devoted to modelling deposition at the leaf surface and leaf interior using the two-layer stagnant film model. This model places a premium on information of a physiological and biochemical nature, and highlights the need to distinguish clearly between the measurements of atmospheric chemistry and the physiologically effective exposure since the two may be very dissimilar. A case study of deposition in the Los Angeles Basin is used to demonstrate the modelling approach, to present the concept of exposure dynamics in the atmosphere versus that in the leaf interior, and to document the principle that most forest canopies are exposed to multiple chemical

  12. Evaluation of DUSTRAN Software System for Modeling Chloride Deposition on Steel Canisters

    Energy Technology Data Exchange (ETDEWEB)

    Tran, Tracy T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Jensen, Philip J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Fritz, Brad G. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Rutz, Frederick C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Devanathan, Ram [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-07-29

    The degradation of steel by stress corrosion cracking (SCC) when exposed to atmospheric conditions for decades is a significant challenge in the fossil fuel and nuclear industries. SCC can occur when corrosive contaminants such as chlorides are deposited on a susceptible material in a tensile stress state. The Nuclear Regulatory Commission has identified chloride-induced SCC as a potential cause for concern in stainless steel used nuclear fuel (UNF) canisters in dry storage. The modeling of contaminant deposition is the first step in predictive multiscale modeling of SCC that is essential to develop mitigation strategies, prioritize inspection, and ensure the integrity and performance of canisters, pipelines, and structural materials. A multiscale simulation approach can be developed to determine the likelihood that a canister would undergo SCC in a certain period of time. This study investigates the potential of DUSTRAN, a dust dispersion modeling system developed by Pacific Northwest National Laboratory, to model the deposition of chloride contaminants from sea salt aerosols on a steel canister. Results from DUSTRAN simulations run with historical meteorological data were compared against measured chloride data at a coastal site in Maine. DUSTRAN’s CALPUFF model tended to simulate concentrations higher than those measured; however, the closest estimations were within the same order of magnitude as the measured values. The decrease in discrepancies between measured and simulated values as the level of abstraction in wind speed decreased suggest that the model is very sensitive to wind speed. However, the influence of other parameters such as the distinction between open-ocean and surf-zone sources needs to be explored further. Deposition values predicted by the DUSTRAN system were not in agreement with concentration values and suggest that the deposition calculations may not fully represent physical processes. Overall, results indicate that with parameter

  13. The field experiments and model of the natural dust deposition effects on photovoltaic module efficiency.

    Science.gov (United States)

    Jaszczur, Marek; Teneta, Janusz; Styszko, Katarzyna; Hassan, Qusay; Burzyńska, Paulina; Marcinek, Ewelina; Łopian, Natalia

    2018-04-20

    The maximisation of the efficiency of the photovoltaic system is crucial in order to increase the competitiveness of this technology. Unfortunately, several environmental factors in addition to many alterable and unalterable factors can significantly influence the performance of the PV system. Some of the environmental factors that depend on the site have to do with dust, soiling and pollutants. In this study conducted in the city centre of Kraków, Poland, characterised by high pollution and low wind speed, the focus is on the evaluation of the degradation of efficiency of polycrystalline photovoltaic modules due to natural dust deposition. The experimental results that were obtained demonstrated that deposited dust-related efficiency loss gradually increased with the mass and that it follows the exponential. The maximum dust deposition density observed for rainless exposure periods of 1 week exceeds 300 mg/m 2 and the results in efficiency loss were about 2.1%. It was observed that efficiency loss is not only mass-dependent but that it also depends on the dust properties. The small positive effect of the tiny dust layer which slightly increases in surface roughness on the module performance was also observed. The results that were obtained enable the development of a reliable model for the degradation of the efficiency of the PV module caused by dust deposition. The novelty consists in the model, which is easy to apply and which is dependent on the dust mass, for low and moderate naturally deposited dust concentration (up to 1 and 5 g/m 2 and representative for many geographical regions) and which is applicable to the majority of cases met in an urban and non-urban polluted area can be used to evaluate the dust deposition-related derating factor (efficiency loss), which is very much sought after by the system designers, and tools used for computer modelling and system malfunction detection.

  14. Research study concerning the 3D printing adittion (FDM-fused deposition modeling) to design UAV (UAV-unconventional aerial vehicle) structures

    Science.gov (United States)

    Pascu, Nicoleta Elisabeta; CǎruÅ£aşu, Nicoleta LuminiÅ£a.; Geambaşu, Gabriel George; Adîr, Victor Gabriel; Arion, Aurel Florin; Ivaşcu, Laura

    2018-02-01

    Aerial vehicles have become indispensable. There are in this field UAV (Unconventional Aerial vehicle) and transportation airplanes and other aerospace vehicles for spatial tourism. Today, the research and development activity in aerospace industry is focused to obtain a good and efficient design for airplanes, to solve the problem of high pollution and to reduce the noise. For these goals are necessary to realize light and resistant components. The aerospace industry products are, generally, very complex concerning geometric shapes and the costs are high, usually. Due to the progress in this field (products obtained using FDM) was possible to reduce the number of used tools, welding belts, and, of course, to eliminate a lot of machine tools. In addition, the complex shapes are easier product using this high technology, the cost is more attractive and the time is lower. This paper allows to present a few aspects about FDM technology and the obtained structures using it, as follows: computer geometric modeling (different designing softs) to design and redesign complex structures using 3D printing, for this kind of vehicles; finite element analysis to identify what is the influence of design for different structures; testing the structures.

  15. Volcanogenic Massive Sulfide Deposits of the World - Database and Grade and Tonnage Models

    Science.gov (United States)

    Mosier, Dan L.; Berger, Vladimir I.; Singer, Donald A.

    2009-01-01

    Grade and tonnage models are useful in quantitative mineral-resource assessments. The models and database presented in this report are an update of earlier publications about volcanogenic massive sulfide (VMS) deposits. These VMS deposits include what were formerly classified as kuroko, Cyprus, and Besshi deposits. The update was necessary because of new information about some deposits, changes in information in some deposits, such as grades, tonnages, or ages, revised locations of some deposits, and reclassification of subtypes. In this report we have added new VMS deposits and removed a few incorrectly classified deposits. This global compilation of VMS deposits contains 1,090 deposits; however, it was not our intent to include every known deposit in the world. The data was recently used for mineral-deposit density models (Mosier and others, 2007; Singer, 2008). In this paper, 867 deposits were used to construct revised grade and tonnage models. Our new models are based on a reclassification of deposits based on host lithologies: Felsic, Bimodal-Mafic, and Mafic volcanogenic massive sulfide deposits. Mineral-deposit models are important in exploration planning and quantitative resource assessments for two reasons: (1) grades and tonnages among deposit types vary significantly, and (2) deposits of different types occur in distinct geologic settings that can be identified from geologic maps. Mineral-deposit models combine the diverse geoscience information on geology, mineral occurrences, geophysics, and geochemistry used in resource assessments and mineral exploration. Globally based deposit models allow recognition of important features and demonstrate how common different features are. Well-designed deposit models allow geologists to deduce possible mineral-deposit types in a given geologic environment and economists to determine the possible economic viability of these resources. Thus, mineral-deposit models play a central role in presenting geoscience

  16. Vegetation succession as affected by decreasing nitrogen deposition, soil characteristics and site management: A modelling approach

    NARCIS (Netherlands)

    Wamelink, G.W.W.; Dobben, van H.F.; Berendse, F.

    2009-01-01

    After many years of increasing nitrogen deposition, the deposition rates are now decreasing. A major question is whether this will result in the expected positive effects on plant species diversity. Long-term experiments that investigate the effects of decreasing deposition are not available. Model

  17. Indoor aerosol modeling for assessment of exposure and respiratory tract deposited dose

    Science.gov (United States)

    Hussein, Tareq; Wierzbicka, Aneta; Löndahl, Jakob; Lazaridis, Mihalis; Hänninen, Otto

    2015-04-01

    Air pollution is one of the major environmental problems that influence people's health. Exposure to harmful particulate matter (PM) occurs both outdoors and indoors, but while people spend most of their time indoors, the indoor exposures tend to dominate. Moreover, higher PM concentrations due to indoor sources and tightness of indoor environments may substantially add to the outdoor originating exposures. Empirical and real-time assessment of human exposure is often impossible; therefore, indoor aerosol modeling (IAM) can be used as a superior method in exposure and health effects studies. This paper presents a simple approach in combining available aerosol-based modeling techniques to evaluate the real-time exposure and respiratory tract deposited dose based on particle size. Our simple approach consists of outdoor aerosol data base, IAM simulations, time-activity pattern data-base, physical-chemical properties of inhaled aerosols, and semi-empirical deposition fraction of aerosols in the respiratory tract. These modeling techniques allow the characterization of regional deposited dose in any metric: particle mass, particle number, and surface area. The first part of this presentation reviews recent advances in simple mass-balance based modeling methods that are needed in analyzing the health relevance of indoor exposures. The second part illustrates the use of IAM in the calculations of exposure and deposited dose. Contrary to previous methods, the approach presented is a real-time approach and it goes beyond the exposure assessment to provide the required information for the health risk assessment, which is the respiratory tract deposited dose. This simplified approach is foreseen to support epidemiological studies focusing on exposures originating from both indoor and outdoor sources.

  18. New approaches in geological studies of tsunami deposits

    Science.gov (United States)

    Szczucinski, Witold

    2017-04-01

    During the last dozen of years tsunamis have appeared to be the most disastrous natural process worldwide. The dramatic, large tsunamis on Boxing Day, 2004 in the Indian Ocean and on March 11, 2011 offshore Japan caused catastrophes listed as the worst in terms of the number of victims and the economic losses, respectively. In the aftermath, they have become a topic of high public and scientific interest. The record of past tsunamis, mainly in form of tsunami deposits, is often the only way to identify tsunami risk at a particular coast due to relatively low frequency of their occurrence. The identification of paleotsunami deposits is often difficult mainly because the tsunami deposits are represented by various sediment types, may be similar to storm deposits or altered by post-depositional processes. There is no simple universal diagnostic set of criteria that can be applied to interpret tsunami deposits with certainty. Thus, there is a need to develop new methods, which would enhance 'classical', mainly sedimentological and stratigraphic approach. The objective of the present contribution is to show recent progress and application of new approaches including geochemistry (Chagué-Goff et al. 2017) and paleogenetics (Szczuciński et al. 2016) in studies of geological impacts of recent tsunamis from various geographical regions, namely in monsoonal-tropical, temperate and polar zones. It is mainly based on own studies of coastal zones affected by 2004 Indian Ocean Tsunami in Thailand, 2011 Tohoku-oki tsunami and older paleotsunamis in Japan, catastrophic saltwater inundations at the coasts of Baltic Sea and 2000 landslide-generated tsunami in Vaigat Strait (west Greenland). The study was partly funded by Polish National Science Centre grant No. 2011/01/B/ST10/01553. Chagué-Goff C., Szczuciński W., Shinozaki T., 2017. Applications of geochemistry in tsunami research: A review. Earth-Science Reviews 165: 203-244. Szczuciński W., Pawłowska J., Lejzerowicz F

  19. The computerized semi-quantitative comprehensive identification-evaluation model for the large-sized in-situ leachable sandstone type uranium deposits in Northern Xinjiang, China

    Energy Technology Data Exchange (ETDEWEB)

    Zhengbang, Wang; Mingkuan, Qin; Ruiquan, Zhao; Shenghuang, Tang [Beijing Research Inst. of Uranium Geology, CNNC (China); Baoqun, Wang; Shuangxing, Lin [Geo-prospecting Team No. 216, CNNC (China)

    2001-08-01

    The process of establishment of the model includes following steps: (1) Systematically studying a known typical in-situ leachable sandstone type uranium deposit--Deposit No. 512 in Yili basin, analyzing its controlling factors and establishing its metallogenetic model; (2) Establishing the metallogenetic models of this type of uranium deposit and uranium-bearing area on the basis of comparison study on the deposit No. 512 with the same type uranium deposits in the world; (3) Creating the computerized semi-quantitative comprehensive identification-evaluation model for the large-sized in-situ leachable sandstone type uranium deposits in northern Xinjiang; (4) Determining the standards of giving a evaluation-mark for each controlling factor of in-situ leachable sandstone type uranium deposit and uranium-bearing area; (5) Evaluating uranium potential and prospect of the unknown objective target.

  20. The computerized semi-quantitative comprehensive identification-evaluation model for the large-sized in-situ leachable sandstone type uranium deposits in Northern Xinjiang, China

    International Nuclear Information System (INIS)

    Wang Zhengbang; Qin Mingkuan; Zhao Ruiquan; Tang Shenghuang; Wang Baoqun; Lin Shuangxing

    2001-01-01

    The process of establishment of the model includes following steps: (1) Systematically studying a known typical in-situ leachable sandstone type uranium deposit--Deposit No. 512 in Yili basin, analyzing its controlling factors and establishing its metallogenetic model; (2) Establishing the metallogenetic models of this type of uranium deposit and uranium-bearing area on the basis of comparison study on the deposit No. 512 with the same type uranium deposits in the world; (3) Creating the computerized semi-quantitative comprehensive identification-evaluation model for the large-sized in-situ leachable sandstone type uranium deposits in northern Xinjiang; (4) Determining the standards of giving a evaluation-mark for each controlling factor of in-situ leachable sandstone type uranium deposit and uranium-bearing area; (5) Evaluating uranium potential and prospect of the unknown objective target

  1. X-ray absorption study of silicon carbide thin film deposited by pulsed laser deposition

    International Nuclear Information System (INIS)

    Monaco, G.; Suman, M.; Garoli, D.; Pelizzo, M.G.; Nicolosi, P.

    2011-01-01

    Silicon carbide (SiC) is an important material for several applications ranging from electronics to Extreme UltraViolet (EUV) space optics. Crystalline cubic SiC (3C-SiC) has a wide band gap (near 2.4 eV) and it is a promising material to be used in high frequency and high energetic electronic devices. We have deposited, by means of pulsed laser deposition (PLD), different SiC films on sapphire and silicon substrates both at mild (650 o C) and at room temperature. The resulted films have different structures such as: highly oriented polycrystalline, polycrystalline and amorphous which have been studied by means of X-ray absorption spectroscopy (XAS) near the Si L 2,3 edge and the C K edge using PES (photoemission spectroscopy) for the analysis of the valence bands structure and film composition. The samples obtained by PLD have shown different spectra among the grown films, some of them showing typical 3C-SiC absorption structure, but also the presence of some Si-Si and graphitic bonds.

  2. RESEARCH OF COMPETITION IN DEPOSIT MARKET OF UKRAINE BASED ON THE PANZAR-ROSSE MODEL

    Directory of Open Access Journals (Sweden)

    Iryna Didenko

    2016-11-01

    Full Text Available The problem in an adequate assessment of the level of competition in the banking market has prompted researchers to search constantly some new methods. The most famous of them were later successfully adapted to the banking market, are a models of Bresnahan, Panzar-Rosse, Bertrand, Iwat, Monti-Klein-Modesto Barros and others. In Ukraine, the process of assessing the level of competition in the banking sector is very relevant, in line with the recent reforms of particular relevance and distribution. Regarding the domestic deposit market, there is a shortage of qualitative analysis of this issue, unlike foreign practice. Therefore this study we try to solve this problem. The key goal of researchers in this study is in a detailed analysis to identify the important factors which make influence on the allocated markets, in particular on lending and deposit rates. Based on these factors there could be implemented internal adjustment processes taking place in the markets. The purpose of the article is to determine the level of competition in the deposit market of Ukraine in 2006-2015 basing on nonstructural Panzar- Rosse model and identify key factors that affect this level. Methodology. To research the level of competition in the deposit market of Ukraine the Panzar-Rosse model was used, in which separate 11 models were built using the integrated tool “Multiple regression” in the software package of statistics analysis STATISTICA. The input data in the model was presented with the information on financial performance of Ukrainian banks during ten years from 01.01.2005 till 01.01.2015. Results of this research showed that in Ukrainian deposit market there is a monopolistic competition, as proved by the calculated values of H-statistics index. The year of 2008, in the context of the global economic crisis, was marked as an unbalanced period for deposit market of Ukraine. Practical implications. Knowing the current state of competition level in the

  3. Conditions and development case studies for mountainous deposits in Siberia

    Science.gov (United States)

    Talgamer, B. L.; Franchuk, A. V.

    2017-10-01

    The article contains the materials on deposits development intensification under challenging climatic and mining conditions, including mountainous areas of Siberia. The exploitation case studies for mountainous deposits all over the world and in Russia have been described. The authors have been set out the factors impeding the development of such deposits, and the extent of mining and transportation equipment performance degradation is also indicated. There have been stated the characteristics and the description of one of the newly mountainous gold ore deposits in Siberia which is being developed at an altitude of 2684m. A number of specific factors concerning its development have also been introduced as well as the description of mining technologies engineered by Irkutsk National Research Technical University (IRNRTU) specialists. The depth and principal dimensions of the open pit together with the mining and transportation equipment and facilities have been justified. The prime cost analysis of mineral extraction has been made, which results showed the substantial growth in expenditures for the transportation of the overburden rocks and ores. In view of the above mentioned research, there appeared the necessity for the search of new and the enhancement of current transport vehicles and communications.

  4. Multiscale modeling, simulations, and experiments of coating growth on nanofibers. Part II. Deposition

    International Nuclear Information System (INIS)

    Buldum, A.; Clemons, C.B.; Dill, L.H.; Kreider, K.L.; Young, G.W.; Zheng, X.; Evans, E.A.; Zhang, G.; Hariharan, S.I.

    2005-01-01

    This work is Part II of an integrated experimental/modeling investigation of a procedure to coat nanofibers and core-clad nanostructures with thin-film materials using plasma-enhanced physical vapor deposition. In the experimental effort, electrospun polymer nanofibers are coated with aluminum materials under different operating conditions to observe changes in the coating morphology. This procedure begins with the sputtering of the coating material from a target. Part I [J. Appl. Phys. 98, 044303 (2005)] focused on the sputtering aspect and transport of the sputtered material through the reactor. That reactor level model determines the concentration field of the coating material. This field serves as input into the present species transport and deposition model for the region surrounding an individual nanofiber. The interrelationships among processing factors for the transport and deposition are investigated here from a detailed modeling approach that includes the salient physical and chemical phenomena. Solution strategies that couple continuum and atomistic models are used. At the continuum scale, transport dynamics near the nanofiber are described. At the atomic level, molecular dynamics (MD) simulations are used to study the deposition and sputtering mechanisms at the coating surface. Ion kinetic energies and fluxes are passed from the continuum sheath model to the MD simulations. These simulations calculate sputtering and sticking probabilities that in turn are used to calculate parameters for the continuum transport model. The continuum transport model leads to the definition of an evolution equation for the coating-free surface. This equation is solved using boundary perturbation and level set methods to determine the coating morphology as a function of operating conditions

  5. Raman microscopic studies of PVD deposited hard ceramic coatings

    International Nuclear Information System (INIS)

    Constable, C.P.

    2000-01-01

    PVD hard ceramic coatings grown via the combined cathodic arc/unbalance magnetron deposition process were studied using Raman microscopy. Characteristic spectra from binary, multicomponent, multilayered and superlattice coatings were acquired to gain knowledge of the solid-state physics associated with Raman scattering from polycrystalline PVD coatings and to compile a comprehensive spectral database. Defect-induced first order scattering mechanisms were observed which gave rise to two pronounced groups of bands related to the acoustical (150- 300cm -1 ) and optical (400-7 50cm -1 ) parts of the phonon spectrum. Evidence was gathered to support the theory that the optic modes were mainly due to the vibrations of the lighter elements and the acoustic modes due to the vibrations of the heavier elements within the lattice. A study into the deformation and disordering on the Raman spectral bands of PVD coatings was performed. TiAIN and TiZrN coatings were intentionally damaged via scratching methods. These scratches were then analysed by Raman mapping, both across and along, and a detailed spectral interpretation performed. Band broadening occurred which was related to 'phonon relaxation mechanisms' as a direct result of the breaking up of coating grains resulting in a larger proportion of grain boundaries per-unit-volume. A direct correlation of the amount of damage with band width was observed. Band shifts were also found to occur which were due to the stresses caused by the scratching process. These shifts were found to be the largest at the edges of scratches. The Raman mapping of 'droplets', a defect inherent to PVD deposition processes, found that higher compressive stresses and large amounts of disorder occurred for coating growth onto droplets. Strategies designed to evaluate the ability of Raman microscopy to monitor the extent of real wear on cutting tools were evaluated. The removal of a coating layer and subsequent detection of a base layer proved

  6. Numerical modelling of the erosion and deposition of sand inside a filter layer

    DEFF Research Database (Denmark)

    Jacobsen, Niels Gjøl; van Gent, Marcel R. A.; Fredsøe, Jørgen

    2017-01-01

    This paper treats the numerical modelling of the behaviour of a sand core covered by rocks and exposed to waves. The associated displacement of the rock is also studied. A design that allows for erosion and deposition of the sand core beneath a rock layer in a coastal structure requires an accurate...... prediction method to assure that the amount of erosion remains within acceptable limits. This work presents a numerical model that is capable of describing the erosion and deposition patterns inside of an open filter of rock on top of sand. The hydraulic loading is that of incident irregular waves...... and the open filters are surface piercing. Due to the few experimental data sets on sediment transport inside of rock layers, a sediment transport formulation has been proposed based on a matching between the numerical model and experimental data on the profile deformation inside an open filter. The rock layer...

  7. Evaluating Ammonia Deposition Rates for Deciduous Forest using Measurements and Modelling

    DEFF Research Database (Denmark)

    Hansen, Kristina; Geels, Camilla; Hertel, Ole

    ). However, there are relatively few datasets of atmospheric NH3 fluxes available for forests which can contribute verifying model results. The atmospheric dry deposition of NH3 for the beech (Fagus sylvatica) forest, Lille Bøgeskov, in Sorø, Denmark, is investigated using the high resolution...... these impacts, quantifying the magnitude of the NH3 flux in the biosphere atmosphere system is essential. Model simulations using the Danish Ammonia Modelling System (DAMOS) have recently indicated that particular forest ecosystems are exposed to critical load exceedances of N (Geels et al., not yet submitted......-agricultural areas (Skjøth et al. 2011, ACPD). New atmospheric NH3 flux measurements for Lille Bøgeskov have been conducted throughout 2011 and these data are presented and discussed in relation to the 2010 data of atmospheric NH3. Future studies aim to improve the description of dry deposition of NH3 for vegetative...

  8. Subsidence estimation of breakwater built on loosely deposited sandy seabed foundation: Elastic model or elasto-plastic model

    Directory of Open Access Journals (Sweden)

    Jianhua Shen

    2017-07-01

    Full Text Available In offshore area, newly deposited Quaternary loose seabed soils are widely distributed. There are a great number of offshore structures has been built on them in the past, or will be built on them in the future due to the fact that there would be no very dense seabed soil foundation could be chosen at planed sites sometimes. However, loosely deposited seabed foundation would bring great risk to the service ability of offshore structures after construction. Currently, the understanding on wave-induced liquefaction mechanism in loose seabed foundation has been greatly improved; however, the recognition on the consolidation characteristics and settlement estimation of loose seabed foundation under offshore structures is still limited. In this study, taking a semi-coupled numerical model FSSI-CAS 2D as the tool, the consolidation and settlement of loosely deposited sandy seabed foundation under an offshore breakwater is investigated. The advanced soil constitutive model Pastor-Zienkiewics Mark III (PZIII is used to describe the quasi-static behavior of loose sandy seabed soil. The computational results show that PZIII model is capable of being used for settlement estimation problem of loosely deposited sandy seabed foundation. For loose sandy seabed foundation, elastic deformation is the dominant component in consolidation process. It is suggested that general elastic model is acceptable for subsidence estimation of offshore structures on loose seabed foundation; however, Young's modulus E must be dependent on the confining effective stress, rather than a constant in computation.

  9. Inverse modeling of the Chernobyl source term using atmospheric concentration and deposition measurements

    Science.gov (United States)

    Evangeliou, Nikolaos; Hamburger, Thomas; Cozic, Anne; Balkanski, Yves; Stohl, Andreas

    2017-07-01

    This paper describes the results of an inverse modeling study for the determination of the source term of the radionuclides 134Cs, 137Cs and 131I released after the Chernobyl accident. The accident occurred on 26 April 1986 in the Former Soviet Union and released about 1019 Bq of radioactive materials that were transported as far away as the USA and Japan. Thereafter, several attempts to assess the magnitude of the emissions were made that were based on the knowledge of the core inventory and the levels of the spent fuel. More recently, when modeling tools were further developed, inverse modeling techniques were applied to the Chernobyl case for source term quantification. However, because radioactivity is a sensitive topic for the public and attracts a lot of attention, high-quality measurements, which are essential for inverse modeling, were not made available except for a few sparse activity concentration measurements far from the source and far from the main direction of the radioactive fallout. For the first time, we apply Bayesian inversion of the Chernobyl source term using not only activity concentrations but also deposition measurements from the most recent public data set. These observations refer to a data rescue attempt that started more than 10 years ago, with a final goal to provide available measurements to anyone interested. In regards to our inverse modeling results, emissions of 134Cs were estimated to be 80 PBq or 30-50 % higher than what was previously published. From the released amount of 134Cs, about 70 PBq were deposited all over Europe. Similar to 134Cs, emissions of 137Cs were estimated as 86 PBq, on the same order as previously reported results. Finally, 131I emissions of 1365 PBq were found, which are about 10 % less than the prior total releases. The inversion pushes the injection heights of the three radionuclides to higher altitudes (up to about 3 km) than previously assumed (≈ 2.2 km) in order to better match both concentration

  10. Inverse modeling of the Chernobyl source term using atmospheric concentration and deposition measurements

    Directory of Open Access Journals (Sweden)

    N. Evangeliou

    2017-07-01

    Full Text Available This paper describes the results of an inverse modeling study for the determination of the source term of the radionuclides 134Cs, 137Cs and 131I released after the Chernobyl accident. The accident occurred on 26 April 1986 in the Former Soviet Union and released about 1019 Bq of radioactive materials that were transported as far away as the USA and Japan. Thereafter, several attempts to assess the magnitude of the emissions were made that were based on the knowledge of the core inventory and the levels of the spent fuel. More recently, when modeling tools were further developed, inverse modeling techniques were applied to the Chernobyl case for source term quantification. However, because radioactivity is a sensitive topic for the public and attracts a lot of attention, high-quality measurements, which are essential for inverse modeling, were not made available except for a few sparse activity concentration measurements far from the source and far from the main direction of the radioactive fallout. For the first time, we apply Bayesian inversion of the Chernobyl source term using not only activity concentrations but also deposition measurements from the most recent public data set. These observations refer to a data rescue attempt that started more than 10 years ago, with a final goal to provide available measurements to anyone interested. In regards to our inverse modeling results, emissions of 134Cs were estimated to be 80 PBq or 30–50 % higher than what was previously published. From the released amount of 134Cs, about 70 PBq were deposited all over Europe. Similar to 134Cs, emissions of 137Cs were estimated as 86 PBq, on the same order as previously reported results. Finally, 131I emissions of 1365 PBq were found, which are about 10 % less than the prior total releases. The inversion pushes the injection heights of the three radionuclides to higher altitudes (up to about 3 km than previously assumed (≈ 2.2 km in order

  11. Cloud diagnosis impact on deposition modelling applied to the Fukushima accident

    Science.gov (United States)

    Quérel, Arnaud; Quélo, Denis; Roustan, Yelva; Mathieu, Anne

    2017-04-01

    The accident at the Fukushima Daiichi Nuclear Power Plant in Japan in March 2011 resulted in the release of several hundred PBq of activity into the environment. Most of the radioactivity was released in a time period of about 40 days. Radioactivity was dispersed in the atmosphere and the ocean and subsequently traces of radionuclides were detected all over Japan. At the Fukushima airport for instance, a deposit as large as 36 kBq/m2 of Cs-137 was measured resulting of an atmospheric deposition of the plume. Both dry and wet deposition were probably involved since a raining event occurred on the 15th of March when the plume was passing nearby. The accident scenario have given rise to a number of scientific investigations. Atmospheric deposition, for example, was studied by utilizing atmospheric transport models. In atmospheric transport models, some parameters, such as cloud diagnosis, are derived from meteorological data. This cloud diagnosis is a key issue for wet deposition modelling since it allows to distinguish between two processes: in-cloud scavenging which corresponds to the collection of radioactive particles into the cloud and below-cloud scavenging consequent to the removal of radioactive material due to the falling drops. Several parametrizations of cloud diagnosis exist in the literature, using different input data: relative humidity, liquid water content, also. All these diagnosis return a large range of cloud base heights and cloud top heights. In this study, computed cloud diagnostics are compared to the observations at the Fukushima airport. Atmospheric dispersion simulations at Japan scale are then performed utilizing the most reliable ones. Impact on results are discussed.

  12. Micron-sized and submicron-sized aerosol deposition in a new ex vivo preclinical model.

    Science.gov (United States)

    Perinel, Sophie; Leclerc, Lara; Prévôt, Nathalie; Deville, Agathe; Cottier, Michèle; Durand, Marc; Vergnon, Jean-Michel; Pourchez, Jérémie

    2016-07-07

    The knowledge of where particles deposit in the respiratory tract is crucial for understanding the health effects associated with inhaled drug particles. An ex vivo study was conducted to assess regional deposition patterns (thoracic vs. extrathoracic) of radioactive polydisperse aerosols with different size ranges [0.15 μm-0.5 μm], [0.25 μm-1 μm] and [1 μm-9 μm]. SPECT/CT analyses were performed complementary in order to assess more precisely the regional deposition of aerosols within the pulmonary tract. Experiments were set using an original respiratory tract model composed of a human plastinated head connected to an ex vivo porcine pulmonary tract. The model was ventilated by passive expansion, simulating pleural depressions. Aerosol was administered during nasal breathing. Planar scintigraphies allowed to calculate the deposited aerosol fractions for particles in the three size ranges from sub-micron to micron The deposited fractions obtained, for thoracic vs. extra-thoracic regions respectively, were 89 ± 4 % vs. 11 ± 4 % for [0.15 μm-0.5 μm], 78 ± 5 % vs. 22 ± 5 % for [0.25 μm-1 μm] and 35 ± 11 % vs.65 ± 11 % for [1 μm-9 μm]. Results obtained with this new ex vivo respiratory tract model are in good agreement with the in vivo data obtained in studies with baboons and humans.

  13. The quantitative studies on gas explosion suppression by an inert rock dust deposit.

    Science.gov (United States)

    Song, Yifan; Zhang, Qi

    2018-07-05

    The traditional defence against propagating gas explosions is the application of dry rock dust, but not much quantitative study on explosion suppression of rock dust has been made. Based on the theories of fluid dynamics and combustion, a simulated study on the propagation of premixed gas explosion suppressed by deposited inert rock dust layer is carried out. The characteristics of the explosion field (overpressure, temperature, flame speed and combustion rate) at different deposited rock dust amounts are investigated. The flame in the pipeline cannot be extinguished when the deposited rock dust amount is less than 12 kg/m 3 . The effects of suppressing gas explosion become weak when the deposited rock dust amount is greater than 45 kg/m 3 . The overpressure decreases with the increase of the deposited rock dust amounts in the range of 18-36 kg/m 3 and the flame speed and the flame length show the same trends. When the deposited rock dust amount is 36 kg/m 3 , the overpressure can be reduced by 40%, the peak flame speed by 50%, and the flame length by 42% respectively, compared with those of the gas explosion of stoichiometric mixture. In this model, the effective raised dust concentrations to suppress explosion are 2.5-3.5 kg/m 3 . Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Study of lead isotopes for investigating the origin of endogenic deposits with special reference to some ore deposits from India

    International Nuclear Information System (INIS)

    Chernyshev, I.V.; Safonov, Yu. G.; Radhakrishna, B.P.; Vasudev, V.N.; Krishna Rao, B.; Deb, M.

    1980-01-01

    The isotope composition of leads from ore deposits in general reflects the age of ore mineralisation and its genetical features. Calculations of the model age from lead isotope data form the basis for genetic reconstructions of Precambrain deposits. Radical improvement in the accuracy of mass spectrometric isotope lead analysis has made possible the employment of two-stage and in some cases more complicated models for genetic reconstructions. Fifteen galena samples from five sulphide and gold-sulphide deposits of the Indian Shield have been selected and determination of lead isotope composition has been carried out in the USSR using recently developed M.I.1320 Mass Spectrometer. The isotopic ratios of galena from Ingaldhal copper deposit are the most primitive among the analysed ores of the Indian Shield. The results of lead isotopic determination have been interpreted in terms of the general theory of 'plumbotectonics'. (auth.)

  15. Sediment-Hosted Zinc-Lead Deposits of the World - Database and Grade and Tonnage Models

    Science.gov (United States)

    Singer, Donald A.; Berger, Vladimir I.; Moring, Barry C.

    2009-01-01

    This report provides information on sediment-hosted zinc-lead mineral deposits based on the geologic settings that are observed on regional geologic maps. The foundation of mineral-deposit models is information about known deposits. The purpose of this publication is to make this kind of information available in digital form for sediment-hosted zinc-lead deposits. Mineral-deposit models are important in exploration planning and quantitative resource assessments: Grades and tonnages among deposit types are significantly different, and many types occur in different geologic settings that can be identified from geologic maps. Mineral-deposit models are the keystone in combining the diverse geoscience information on geology, mineral occurrences, geophysics, and geochemistry used in resource assessments and mineral exploration. Too few thoroughly explored mineral deposits are available in most local areas for reliable identification of the important geoscience variables, or for robust estimation of undiscovered deposits - thus, we need mineral-deposit models. Globally based deposit models allow recognition of important features because the global models demonstrate how common different features are. Well-designed and -constructed deposit models allow geologists to know from observed geologic environments the possible mineral-deposit types that might exist, and allow economists to determine the possible economic viability of these resources in the region. Thus, mineral-deposit models play the central role in transforming geoscience information to a form useful to policy makers. This publication contains a computer file of information on sediment-hosted zinc-lead deposits from around the world. It also presents new grade and tonnage models for nine types of these deposits and a file allowing locations of all deposits to be plotted in Google Earth. The data are presented in FileMaker Pro, Excel and text files to make the information available to as many as possible. The

  16. Study of hydrogeological and engineering-geological conditions of deposits

    International Nuclear Information System (INIS)

    1985-01-01

    Methods for hydrogeological and engineering-geological studies are considered as a part of the complex works dUring eXploration of hydrogenic uranium deposits to develop them by Underground ieaching (UL). Problems are enumerated and peculiarities Of hydrogeologic and engipeering-geological works at different stages are outlined (prospeccing - evaluating works, preliminary and detailed survey). Attention is paid to boring and equipment for hydrogeological and engineering - geological boreholes. Testing-filtering works are described, the latter includes: evacuations, fulnesses ( forcings), and tests of fulness-evacuation. The problem on steady-state observations in boreholes and laboratory studies of rocks and underground waters is discussed. Geological and geophysical methods for evaluation of rock and ore filtering properties are presented. Necessity of hydrogeological zonation of deposits as applied to UL is marked

  17. Experimental Setup for Ultrasonic-Assisted Desktop Fused Deposition Modeling System

    OpenAIRE

    Maidin, S.; Muhamad, M. K.; Pei, Eujin

    2014-01-01

    Fused deposition modeling (FDM) is an additive manufacturing (AM) process that has been used in various manufacturing fields. However, the drawback of FDM is poor surface finish of part produced, leading to surface roughness and requires hand finishing. In this study, ultrasonic technology will be integrated into a desktop FDM system. Ultrasound has been applied in various conventional machining process and shows good machined surface finish. However, very little research regarding the applic...

  18. Modeling of Atmospheric Transport and Deposition of Heavy Metals in the Katowice Province

    OpenAIRE

    Uliasz, M.; Olendrzynski, K.

    1996-01-01

    A large part of Poland's heavy industry, notably hard coal mining, ferrous and nonferrous metallurgy and power generation, is located in the Katowice province. Therefore, this heavy industrialized region, which is populated by four million people, experiences considerable problems with air pollution. In the METKAT study launched by the International Institute for Applied Systems Analysis we attempt to model atmospheric depositions of arsenic (As), cadmium (Cd), lead (Pb) and zinc (Zn) which a...

  19. Natural analogue study of uranium deposits in Japan with special reference to the Tono uranium deposit

    International Nuclear Information System (INIS)

    Komuro, Kosei; Sasao, Eiji

    2004-05-01

    In order to verify the safety assessment for geological disposal system of high-level radioactive waste, it is necessary to evaluate properly the stability of the disposal system under natural hydrogeological environment over long period of time (ten to hundred thousands years). For the safety assessment for that in the Japanese Islands, many geological processes inherent in the tectonically active Island-Arc system should be also taken into consideration in addition to those in stable continental environment. However, it is difficult because some processes such as earthquake seem to be accidental and some are periodic or gradual over our life scale. The uranium deposits in Japan are subjected to many geological processes inherent in the tectonically active Island-Arc system. The studies on long-term preservation of uranium deposits in Japan from a natural analogue viewpoint would be expected to provide useful information for the assessment in the Japanese Islands over long period of time. In order to understand the behavior of radionuclides under natural hydrogeological environment in Japanese Islands over long period of time, the uranium deposits in Japan, especially of the Tono uranium deposit was investigated from a natural analogue viewpoint under the course of joint research program by University of Tsukuba and Japan Nuclear Cycle Development Institute. Important conclusions obtained in the present study are summarized as follows: The migration behavior of the radionuclides in the granite area is mainly controlled by the stability of original minerals in oxic condition, being due to poor reducing agents such as organic matter and sulfide minerals. In the case of hydrothermal alteration, yttrialite and fergusonite were decomposed and thorogummite was formed at the altered part, whereas zircon and allanite have not been significantly altered. In the case of weathering, autunite and torbernite were formed, probably due to the high phosphorus weathering

  20. Modeling and control of diffusion and low-pressure chemical vapor deposition furnaces

    Science.gov (United States)

    De Waard, H.; De Koning, W. L.

    1990-03-01

    In this paper a study is made of the heat transfer inside cylindrical resistance diffusion and low-pressure chemical vapor deposition furnaces, aimed at developing an improved temperature controller. A model of the thermal behavior is derived which also covers the important class of furnaces equipped with semitransparent quartz process tubes. The model takes into account the thermal behavior of the thermocouples. It is shown that currently used temperature controllers are highly inefficient for very large scale integration applications. Based on the model an alternative temperature controller of the linear-quadratic-Gaussian type is proposed which features direct wafer temperature control. Some simulation results are given.

  1. Modeled subalpine plant community response to climate change and atmospheric nitrogen deposition in Rocky Mountain National Park, USA

    International Nuclear Information System (INIS)

    McDonnell, T.C.; Belyazid, S.; Sullivan, T.J.; Sverdrup, H.; Bowman, W.D.; Porter, E.M.

    2014-01-01

    To evaluate potential long-term effects of climate change and atmospheric nitrogen (N) deposition on subalpine ecosystems, the coupled biogeochemical and vegetation community competition model ForSAFE-Veg was applied to a site at the Loch Vale watershed of Rocky Mountain National Park, Colorado. Changes in climate and N deposition since 1900 resulted in pronounced changes in simulated plant species cover as compared with ambient and estimated future community composition. The estimated critical load (CL) of N deposition to protect against an average future (2010–2100) change in biodiversity of 10% was between 1.9 and 3.5 kg N ha −1  yr −1 . Results suggest that the CL has been exceeded and vegetation at the study site has already undergone a change of more than 10% as a result of N deposition. Future increases in air temperature are forecast to cause further changes in plant community composition, exacerbating changes in response to N deposition alone. - Highlights: • A novel calibration step was introduced for modeling biodiversity with ForSAFE-Veg. • Modeled increases in tree cover are consistent with empirical studies. • Reductions in N deposition decreased future graminoid percent cover. • Critical loads of N to protect biodiversity should consider climate change effects. - Subalpine plant biodiversity in Rocky Mountain National Park has already been impacted by N deposition and climate change and is expected to experience significant future effects

  2. Interdiffusion of Polycarbonate in Fused Deposition Modeling Welds

    Science.gov (United States)

    Seppala, Jonathan; Forster, Aaron; Satija, Sushil; Jones, Ronald; Migler, Kalman

    2015-03-01

    Fused deposition modeling (FDM), a now common and inexpensive additive manufacturing method, produces 3D objects by extruding molten polymer layer-by-layer. Compared to traditional polymer processing methods (injection, vacuum, and blow molding), FDM parts have inferior mechanical properties, surface finish, and dimensional stability. From a polymer processing point of view the polymer-polymer weld between each layer limits the mechanical strength of the final part. Unlike traditional processing methods, where the polymer is uniformly melted and entangled, FDM welds are typically weaker due to the short time available for polymer interdiffusion and entanglement. To emulate the FDM process thin film bilayers of polycarbonate/d-polycarbonate were annealed using scaled times and temperatures accessible in FDM. Shift factors from Time-Temperature Superposition, measured by small amplitude oscillatory shear, were used to calculate reasonable annealing times (min) at temperatures below the actual extrusion temperature. The extent of interdiffusion was then measured using neutron reflectivity. Analogous specimens were prepared to characterize the mechanical properties. FDM build parameters were then related to interdiffusion between welded layers and mechanical properties. Understating the relationship between build parameters, interdiffusion, and mechanical strength will allow FDM users to print stronger parts in an intelligent manner rather than using trial-and-error and build parameter lock-in.

  3. Metallogenic model for continental volcanic-type rich and large uranium deposits

    International Nuclear Information System (INIS)

    Chen Guihua

    1998-01-01

    A metallogenic model for continental volcanic-type rich and large/super large uranium deposits has been established on the basis of analysis of occurrence features and ore-forming mechanism of some continental volcanic-type rich and large/super large uranium deposits in the world. The model proposes that uranium-enriched granite or granitic basement is the foundation, premetallogenic polycyclic and multistage volcanic eruptions are prerequisites, intense tectonic-extensional environment is the key for the ore formation, and relatively enclosed geologic setting is the reliable protection condition of the deposit. By using the model the author explains the occurrence regularities of some rich and large/super large uranium deposits such as Strelichof uranium deposit in Russia, Dornot uranium deposit in Mongolia, Olympic Dam Cu-U-Au-REE deposit in Australia, uranium deposit No.460 and Zhoujiashan uranium deposit in China, and then compares the above deposits with a large poor uranium deposit No.661 as well

  4. Model for transfer of cesium and strontium to domestic animal products as a consequence of accidental deposition on ground

    International Nuclear Information System (INIS)

    Suolanen, V.

    1994-02-01

    In the study the contamination of domestic animal products (milk, beef, pork) and grain is predicted applying a compartment model approach to simulate the dynamic behaviour of radionuclides in the biosphere after an accidental atmospheric deposition. Further, the radionuclide intakes into human body by consumption of the contaminated domestic animal products and the arising internal doses, are studied. The contamination of domestic animal products and grain are predicted by considering three representative deposition cases. The considered deposition timepoints are: spring (1st of May), summer (1st of July) and autumn (1st of September). The nuclides considered are 137 Cs, 134 Cs and 90 Sr. (18 refs., 14 figs., 8 tabs.)

  5. Method of research and study of uranium deposits

    International Nuclear Information System (INIS)

    Lenoble, A.

    1955-01-01

    In a first part, the author gives a fast retrospective of the evaluations of the uranium deposits in the French Union. The author established a method of prospecting and studying, modifiable at all times following the experiences and the results, permitting to make the general inventory of uranium resources on the territory. The method is based on: 1 - the determination of geological guides in order to mark the most promising deposits, 2 - the definition of a methodology adapted to every steps of the research, 3 - the choice of the material adapted for each of the steps. This method, originally established for the prospecting in crystalline massifs, is adaptable to the prospecting of the sedimentary formations. (M.B.) [fr

  6. Experimental study on the particles deposition in the sampling duct

    Energy Technology Data Exchange (ETDEWEB)

    Vendel, J.; Charuau, J. [Institut de Protection et de Surete Nucleaire, Yvette (France)

    1995-02-01

    A high standard of protection against the harmful effects of radioactive aerosol dissemination requires a measurement, as representative as possible, of their concentration. This measurement depends on the techniques used for aerosol sampling and transfer to the detector, as well as on the location of the latter with respect to the potential sources. The aeraulic design of the apparatus is also an important factor. Once collected the aerosol particles often have to travel through a variably shaped duct to the measurement apparatus. This transport is responsible for losses due to the particles deposition on the walls, leading to a distortion on the concentration measurements and a change in the particle size distribution. To estimate and minimize measurement errors it is important to determine the optimal transport conditions when designing a duct; its diameter and material, the radius of curvature of the bends and the flow conditions must be defined in particular. This paper presents an experimental study in order to determine, for each deposition mechanism, the retained fraction, or the deposition velocity for different flow regimes. This study has pointed out that it exists a favourable flow regime for the particle transport through the sampling ducts (2 500 < Re < 5 000). It has been established, for any particle diameters, equations to predict the aerosol penetration in smooth-walled cylindrical metal ducts.

  7. Computational study of platinum nanoparticle deposition on the surfaces of crevices

    Energy Technology Data Exchange (ETDEWEB)

    Gu, H.F., E-mail: guhaifeng@hrbeu.edu.cn [Laboratory for Thermal-Hydraulics, Nuclear Energy and Safety Research Department, Paul Scherrer Institut, CH-5232 Villigen PSI (Switzerland); College of Nuclear Science and Technology, Harbin Engineering University, 150001 Harbin (China); Niceno, B. [Laboratory for Thermal-Hydraulics, Nuclear Energy and Safety Research Department, Paul Scherrer Institut, CH-5232 Villigen PSI (Switzerland); Grundler, P.V. [Laboratory for Nuclear Materials, Nuclear Energy and Safety Research Department, Paul Scherrer Institut, CH-5232 Villigen PSI (Switzerland); Sharabi, M. [Laboratory for Thermal-Hydraulics, Nuclear Energy and Safety Research Department, Paul Scherrer Institut, CH-5232 Villigen PSI (Switzerland); Mechanical Power Engineering Department, Mansoura University, 35516 Mansoura (Egypt); Veleva, L. [Laboratory for Nuclear Materials, Nuclear Energy and Safety Research Department, Paul Scherrer Institut, CH-5232 Villigen PSI (Switzerland); Hot Laboratory Division, Nuclear Energy and Safety Research Department, Paul Scherrer Institut, CH-5232 Villigen PSI (Switzerland); Ritter, S. [Laboratory for Nuclear Materials, Nuclear Energy and Safety Research Department, Paul Scherrer Institut, CH-5232 Villigen PSI (Switzerland)

    2016-08-01

    Highlights: • Nano-particle deposition on the surface of crevices is studied using RANS simulation. • Model results are validated by comparing with experimental data. • Behaviours and mechanisms of particle deposition in different crevices are analyzed. • RANS models with Lagrangian particle tracking method are evaluated and discussed. - Abstract: A well-known issue in boiling water reactors (BWR), which can threaten their structural integrity, is stress corrosion cracking (SCC) of reactor internals and recirculation pipes due to the accumulation of oxidizing radiolysis products of water. Currently, many operators of BWRs use combined platinum particle and hydrogen injection into the reactor water to mitigate SCC by lowering the electrochemical corrosion potential. It is essential for efficient mitigation that Pt particles reach all water-wetted surfaces, including crevices and cracks, which are also reached by the oxidizing species. In this study, a set of crevices with different widths and orientations with respect to the fluid flow are investigated using numerical simulation tools and compared against experimental findings. The Reynolds-Averaged Navier–Stokes models are used to compute the mean turbulent flow quantities in three-dimensional crevices, and the discrete random walk model is used to evaluate the effect of velocity fluctuations on particle movement. The Lagrangian particle tracking analysis is performed and the average concentration of deposited particles on the surface of crevices is evaluated and compared with experimental results. The results show that Reynolds stress model combined with enhanced wall treatment provides a more accurate prediction of particle concentration and distribution on the surface of crevices than SST k–ω turbulence model, which was expected, owing to the anisotropic nature of the Reynolds stress model. Furthermore, analyses on the particle deposition shows that three different mechanisms play important roles in

  8. Improvement and Validation of an Aerosol Deposition Model in the GAMMA-FP, a Fission Product Analysis Module for VHTRs

    International Nuclear Information System (INIS)

    Yoon, Churl; Lim, Hong Sik

    2013-01-01

    GAMMA-FP (GAs Multicomponent Mixture Analysis-Fission Products module), consists of gaseous and aerosol fission product analysis modules. The aerosol FP module adopts a multi-component and multi-sectional aerosol analysis model that has been developed based on the MAEROS model. For the first work of FP module development, the MAEROS model has been implemented and examined against some analytic solutions and experimental data by Yoo et al. An aerosol transport model was developed and implemented in the GAMMA-FP code, and verified. In this study, the aerosol deposition model in the GAMMA-FP code was improved by adopting recent achievements, and was validated against an experimental data available. The aerosol deposition model in the GAMMA-FP code has been improved and successfully validated against the STORM SR-11 deposition test. The simulation with the improved deposition model predicted the matched results with the experimental data well. For future studies, the aerosol deposition model by flow irregularities will be implemented and validated against the TRANSAT bend effect test

  9. Improvement and Validation of an Aerosol Deposition Model in the GAMMA-FP, a Fission Product Analysis Module for VHTRs

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Churl; Lim, Hong Sik [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-10-15

    GAMMA-FP (GAs Multicomponent Mixture Analysis-Fission Products module), consists of gaseous and aerosol fission product analysis modules. The aerosol FP module adopts a multi-component and multi-sectional aerosol analysis model that has been developed based on the MAEROS model. For the first work of FP module development, the MAEROS model has been implemented and examined against some analytic solutions and experimental data by Yoo et al. An aerosol transport model was developed and implemented in the GAMMA-FP code, and verified. In this study, the aerosol deposition model in the GAMMA-FP code was improved by adopting recent achievements, and was validated against an experimental data available. The aerosol deposition model in the GAMMA-FP code has been improved and successfully validated against the STORM SR-11 deposition test. The simulation with the improved deposition model predicted the matched results with the experimental data well. For future studies, the aerosol deposition model by flow irregularities will be implemented and validated against the TRANSAT bend effect test.

  10. Ellipsometry study of process deposition of amorphous Indium Gallium Zinc Oxide sputtered thin films

    International Nuclear Information System (INIS)

    Talagrand, C.; Boddaert, X.; Selmeczi, D.G.; Defranoux, C.; Collot, P.

    2015-01-01

    This paper reports on an InGaZnO optical study by spectrometric ellipsometry. First of all, the fitting results of different models and different structures are analysed to choose the most appropriate model. The Tauc–Lorentz model is suitable for thickness measurements but a more complex model allows the refractive index and extinction coefficient to be extracted more accurately. Secondly, different InGaZnO process depositions are carried out in order to investigate stability, influence of deposition time and uniformity. Films present satisfactory optical stability over time. InGaZnO optical property evolution as a function of deposition time is related to an increase in temperature. To understand the behaviour of uniformity, mapping measurements are correlated to thin film resistivity. Results show that temperature and resputtering are the two phenomena that affect IGZO uniformity. - Highlights: • Model and structure are investigated to fit IGZO ellipsometric angles. • Maximum refractive index rises with substrate temperature and thus deposition time. • Resputtering leads to inhomogeneity in IGZO electrical and optical properties

  11. Ellipsometry study of process deposition of amorphous Indium Gallium Zinc Oxide sputtered thin films

    Energy Technology Data Exchange (ETDEWEB)

    Talagrand, C., E-mail: talagrand@emse.fr [Ecole des Mines de Saint-Etienne CMP-GC, Dept PS2, Gardanne, 880 route de Mimet (France); Boddaert, X. [Ecole des Mines de Saint-Etienne CMP-GC, Dept PS2, Gardanne, 880 route de Mimet (France); Selmeczi, D.G.; Defranoux, C. [Semilab Semiconductor Physics Laboratory Co. Ltd., Budapest, 1117 (Hungary); Collot, P. [Ecole Nationale Supérieure d' Arts et Métiers ParisTech, Aix-en-Provence, 2 cours des Arts et Métiers (France)

    2015-09-01

    This paper reports on an InGaZnO optical study by spectrometric ellipsometry. First of all, the fitting results of different models and different structures are analysed to choose the most appropriate model. The Tauc–Lorentz model is suitable for thickness measurements but a more complex model allows the refractive index and extinction coefficient to be extracted more accurately. Secondly, different InGaZnO process depositions are carried out in order to investigate stability, influence of deposition time and uniformity. Films present satisfactory optical stability over time. InGaZnO optical property evolution as a function of deposition time is related to an increase in temperature. To understand the behaviour of uniformity, mapping measurements are correlated to thin film resistivity. Results show that temperature and resputtering are the two phenomena that affect IGZO uniformity. - Highlights: • Model and structure are investigated to fit IGZO ellipsometric angles. • Maximum refractive index rises with substrate temperature and thus deposition time. • Resputtering leads to inhomogeneity in IGZO electrical and optical properties.

  12. Validating modelled data on major and trace element deposition in southern Germany using Sphagnum moss

    Science.gov (United States)

    Kempter, Heike; Krachler, Michael; Shotyk, William; Zaccone, Claudio

    2017-10-01

    Sphagnum mosses were collected from four ombrotrophic bogs in two regions of southern Germany: Upper Bavaria (Oberbayern, OB) and the Northern Black Forest (Nordschwarzwald, NBF). Surfaces of Sphagnum carpets were marked with plastic mesh and, one year later, plant matter was harvested and productivity determined. Major and trace element concentrations (Ag, Al, As, Ba, Bi, Cd, Co, Cr, Cu, Fe, Mn, Mo, Pb, Rb, Sb, Sc, Sr, Th, Ti, Tl, U, V, Zn) were determined in acid digests using sector field ICP-MS. Up to 12 samples (40 × 40 cm) were collected per site, and 6-10 sites investigated per bog. Variation in element accumulation rates within a bog is mostly the result of the annual production rate of the Sphagnum mosses which masks not only the impact of site effects, such as microtopography and the presence of dwarf trees, but also local and regional conditions, including land use in the surrounding area, topography, etc. The difference in productivity between peat bogs results in distinctly higher element accumulation rates at the NBF bogs compared to those from OB for all studied elements. The comparison with the European Monitoring and Evaluation Program (EMEP; wet-only and total deposition) and Modelling of Air Pollutants and Ecosystem Impact (MAPESI; total deposition) data shows that accumulation rates obtained using Sphagnum are in the same range of published values for direct measurements of atmospheric deposition of As, Cd, Cu, Co, Pb, and V in both regions. The accordance is very dependent on how atmospheric deposition rates were obtained, as different models to calculate the deposition rates may yield different fluxes even for the same region. In future studies of atmospheric deposition of trace metals, both Sphagnum moss and deposition collectors have to be used on the same peat bog and results compared. Antimony, however, shows considerable discrepancy, because it is either under-estimated by Sphagnum moss or over-estimated by both atmospheric deposition

  13. Some Causative Factors in Bank Deposit Supply Model in Nigeria: A ...

    African Journals Online (AJOL)

    In this study, we examined some of the factors that influence the commercial bank deposit supply behaviour in Nigeria. Specifically, we examined the impact of deposit interest rate, foreign exchange rate, Treasury bill rate and Growth rate of Gross Domestic Product on the deposit output behaviour of commercial banks.

  14. Comparisons between a gas-phase model of silane chemical vapor deposition and laser-diagnostic measurements

    International Nuclear Information System (INIS)

    Breiland, W.G.; Coltrin, M.E.; Ho, P.

    1986-01-01

    Theoretical modeling and experimental measurements have been used to study gas-phase chemistry in the chemical vapor deposition (CVD) of silicon from silane. Pulsed laser Raman spectroscopy was used to obtain temperature profiles and to obtain absolute density profiles of silane during deposition at atmospheric and 6-Torr total pressures for temperatures ranging from 500 to 800 0 C. Laser-excited fluorescence was used to obtain relative density profiles of Si 2 during deposition at 740 0 C in helium with 0-12 Torr added hydrogen. These measurements are compared to predictions from the theoretical model of Coltrin, Kee, and Miller. The predictions agree qualitatively with experiment. These studies indicate that fluid mechanics and gas-phase chemical kinetics are important considerations in understanding the chemical vapor deposition process

  15. A climatological model for risk computations incorporating site- specific dry deposition influences

    International Nuclear Information System (INIS)

    Droppo, J.G. Jr.

    1991-07-01

    A gradient-flux dry deposition module was developed for use in a climatological atmospheric transport model, the Multimedia Environmental Pollutant Assessment System (MEPAS). The atmospheric pathway model computes long-term average contaminant air concentration and surface deposition patterns surrounding a potential release site incorporating location-specific dry deposition influences. Gradient-flux formulations are used to incorporate site and regional data in the dry deposition module for this atmospheric sector-average climatological model. Application of these formulations provide an effective means of accounting for local surface roughness in deposition computations. Linkage to a risk computation module resulted in a need for separate regional and specific surface deposition computations. 13 refs., 4 figs., 2 tabs

  16. Critique of the use of deposition velocity in modeling indoor air quality

    International Nuclear Information System (INIS)

    Nazaroff, W.W.; Weschler, C.J.

    1993-01-01

    Among the potential fates of indoor air pollutants are a variety of physical and chemical interactions with indoor surfaces. In deterministic mathematical models of indoor air quality, these interactions are usually represented as a first-order loss process, with the loss rate coefficient given as the product of the surface-to-volume ratio of the room times a deposition velocity. In this paper, the validity of this representation of surface-loss mechanisms is critically evaluated. From a theoretical perspective, the idea of a deposition velocity is consistent with the following representation of an indoor air environment. Pollutants are well-mixed throughout a core region which is separated from room surfaces by boundary layers. Pollutants migrate through the boundary layers by a combination of diffusion (random motion resulting from collisions with surrounding gas molecules), advection (transport by net motion of the fluid), and, in some cases, other transport mechanisms. The rate of pollutant loss to a surface is governed by a combination of the rate of transport through the boundary layer and the rate of reaction at the surface. The deposition velocity expresses the pollutant flux density (mass or moles deposited per area per time) to the surface divided by the pollutant concentration in the core region. This concept has substantial value to the extent that the flux density is proportional to core concentration. Published results from experimental and modeling studies of fine particles, radon decay products, ozone, and nitrogen oxides are used as illustrations of both the strengths and weaknesses of deposition velocity as a parameter to indicate the rate of indoor air pollutant loss on surfaces. 66 refs., 5 tabs

  17. Finite element modelling of stress development during deposition of ion assisted coatings

    International Nuclear Information System (INIS)

    Ward, D.J.; Arnell, R.D.

    2002-01-01

    Ion assisted physical vapour deposited (IAPVD) films typically have a high state of residual stress. This residual stress comprises two components: a thermal stress, which forms as the system cools to room temperature; and an intrinsic stress which is caused by the processes of deposition. Much work has been published on the tribology and mechanical behaviour of surface coatings without consideration of the residual stress. It was therefore considered desirable to develop a finite element (FE) simulation to be used either as a precursor to any realistic mechanical study of the behaviour of such surface coatings, or to be used as a tool to study the effects of varying the deposition parameters. Previous experimental work has shown that the residual stress is related to deposition parameters, such as incident ion and atom fluxes and energies, and recent molecular dynamics studies have indicated that trapped inert gas species may play a major role in the mechanism for creation of the intrinsic stress. The FE simulation assumes that the processes of ion bombardment and material deposition are consecutive, but as the analysis time step tends to zero this assumption approximates the simultaneity of the processes. Suitable mathematical descriptions are employed in the bombarded region of the growing coating to simulate the macroscopic effects of the microscopic atomic collision phenomena and diffusion processes. Two finite element simulations are presented. The first is based on an analytical model, which has gained popular acceptance and this was presented in a previous year at this conference. The second builds on this to simulate wider aspects of known behaviour and is presented in this follow-up paper. The predicted trends of mean stress and its distribution are similar to those observed in published experimental work

  18. Studies of Physicochemical Processes in Atmospheric Particles and Acid Deposition.

    Science.gov (United States)

    Pandis, Spyros N.

    A comprehensive chemical mechanism for aqueous -phase atmospheric chemistry was developed and its detailed sensitivity analysis was performed. The main aqueous-phase reaction pathways for the system are the oxidation of S(IV) to S(VI) by H_2O_2 , OH, O_2 (catalysed by Fe ^{3+} and Mn^ {2+}), O_3 and HSO_sp{5}{-}. The gas-phase concentrations of SO_2, H_2O_2, HO _2, OH, O_3 HCHO, NH_3, HNO_3 and HCl and the liquid water content of the cloud are of primary importance. The Lagrangian model predictions for temperature profile, fog development, liquid water content, gas-phase concentrations of SO_2 , HNO_3, and NH_3 , pH, aqueous-phase concentrations of SO _sp{4}{2-}, NH _sp{4}{+} and NO _sp{3}{-}, and finally deposition rates of the above ions match well the observed values. A third model was developed to study the distribution of acidity and solute concentration among the various droplet sizes in a fog or a cloud. Significant solute concentration differences can occur in aqueous droplets inside a fog or a cloud. Fogs in polluted environments have the potential to increase aerosol sulfate concentrations, but at the same time to cause reductions in the aerosol concentration of nitrate, chloride, ammonium and sodium as well as in the total aerosol mass concentration. The sulfate producd during fog episodes favors the aerosol particles that have access to most of the fog liquid water. Aerosol scavenging efficiencies of around 80% were calculated for urban fogs. Sampling and subsequent mixing of fog droplets of different sizes may result in measured concentrations that are not fully representative of the fogwater chemical composition. Isoprene and beta-pinene, at concentration levels ranging from a few ppb to a few ppm were reacted photochemically with NO_ {x} in the Caltech outdoor smog chamber facility. Aerosol formation from the isoprene photooxidation was found to be negligible even under extreme ambient conditions due to the relatively high vapor pressure of its

  19. Rheological characterization of plasticized corn proteins for fused deposition modeling

    Science.gov (United States)

    Chaunier, Laurent; Dalgalarrondo, Michèle; Della Valle, Guy; Lourdin, Denis; Marion, Didier; Leroy, Eric

    2017-10-01

    Additive Manufacturing (AM) of tailored natural biopolymer-based objects by Fused Deposition Modeling (FDM) opens new perspectives for applications such as biomedical temporary devices, or pharmaceutical tablets. This exploits the biocompatibility, resorbability and edibility properties of biopolymers. When adequately plasticized, zeins, storage proteins from endosperm of maize kernels, displayed thermomechanical properties possibly matching FDM processing requirements at a convenient temperature Tprinting=130°C. Indeed, with 20% glycerol added (Tg=42°C), plasticized zeins present a high modulus, E'>1GPa, at ambient conditions, which drops below 0.6 MPa at the processing temperature T=130°C, before flowing in the molten state. The rheological characterization shows that the processing window is limited by a progressive increase of viscosity linked to proteins aggregation and crosslinking by S-S bonding between cysteine amino acid residues, which can lead to gelation. However, for short residence time typical of FDM, the viscosity of plasticized zeins is comparable to the one of standard polymers, like ABS or PLA in their FDM processing conditions: indeed, in presence of glycerol, the molten zeins show a shear-thinning behavior with |η*|≈3kPa.s at 1s-1, decreasing to |η*|≈0.3kPa.s at 100s-1, at 130°C. Moreover, zeins presenting both hydrophilic and hydrophobic domains, amphiphilic plasticizers can be used supplementary to tune their rheological behavior. With 20% oleic acid added to the previous composition, the viscosity is divided down to a ratio about 1/2 at 100s-1 at 130°C, below the value of a standard polymer as PLA at its printing temperature. These results show the possible enhancement of the printability of zein-based materials in the molten state, by combining polar and amphiphilic plasticizers.

  20. Solar Energy Deposition Rates in the Mesosphere Derived from Airglow Measurements: Implications for the Ozone Model Deficit Problem

    Science.gov (United States)

    Mlynczak, Martin G.; Garcia, Rolando R.; Roble, Raymond G.; Hagan, Maura

    2000-01-01

    We derive rates of energy deposition in the mesosphere due to the absorption of solar ultraviolet radiation by ozone. The rates are derived directly from measurements of the 1.27-microns oxygen dayglow emission, independent of knowledge of the ozone abundance, the ozone absorption cross sections, and the ultraviolet solar irradiance in the ozone Hartley band. Fifty-six months of airglow data taken between 1982 and 1986 by the near-infrared spectrometer on the Solar-Mesosphere Explorer satellite are analyzed. The energy deposition rates exhibit altitude-dependent annual and semi-annual variations. We also find a positive correlation between temperatures and energy deposition rates near 90 km at low latitudes. This correlation is largely due to the semiannual oscillation in temperature and ozone and is consistent with model calculations. There is also a suggestion of possible tidal enhancement of this correlation based on recent theoretical and observational analyses. The airglow-derived rates of energy deposition are then compared with those computed by multidimensional numerical models. The observed and modeled deposition rates typically agree to within 20%. This agreement in energy deposition rates implies the same agreement exists between measured and modeled ozone volume mixing ratios in the mesosphere. Only in the upper mesosphere at midlatitudes during winter do we derive energy deposition rates (and hence ozone mixing ratios) consistently and significantly larger than the model calculations. This result is contrary to previous studies that have shown a large model deficit in the ozone abundance throughout the mesosphere. The climatology of solar energy deposition and heating presented in this paper is available to the community at the Middle Atmosphere Energy Budget Project web site at http://heat-budget.gats-inc.com.

  1. Modeling Non-Fickian Transport and Hyperexponential Deposition for Deep Bed Filtration

    DEFF Research Database (Denmark)

    Yuan, Hao; Shapiro, Alexander

    2010-01-01

    An integral model of the deep bed filtration process has been developed. It incorporates pore and particle size distributions, as well as the particle residence time distribution in the framework of the continuous time random walk theory. Numerical modeling is carried out to study the factors...... influencing breakthrough curves and deposition profiles for the deep bed filtration systems. Results are compared with a large set of experimental observations. Our findings show that highly dispersed breakthrough curves, e.g. those with early arrivals and large ending tails, correspond to large dispersion...

  2. A deposit model for carbonatite and peralkaline intrusion-related rare earth element deposits: Chapter J in Mineral deposit models for resource assessment

    Science.gov (United States)

    Verplanck, Philip L.; Van Gosen, Bradley S.; Seal, Robert R.; McCafferty, Anne E.

    2014-01-01

    Carbonatite and alkaline intrusive complexes, as well as their weathering products, are the primary sources of rare earth elements. A wide variety of other commodities have been exploited from carbonatites and alkaline igneous rocks including niobium, phosphate, titanium, vermiculite, barite, fluorite, copper, calcite, and zirconium. Other elements enriched in these deposits include manganese, strontium, tantalum, thorium, vanadium, and uranium. Carbonatite and peralkaline intrusion-related rare earth element deposits are presented together in this report because of the spatial, and potentially genetic, association between carbonatite and alkaline rocks. Although these rock types occur together at many locations, carbonatite and peralkaline intrusion-related rare earth element deposits are not generally found together.

  3. Lung dynamics of aerosol particles with special reference to deposition model

    International Nuclear Information System (INIS)

    Takahashi, Kanji

    1977-01-01

    A movement of aerosol particles in the lungs, which was inhaled into the respiratory organ was given an outline by means of technological deposition model. The respiratory organ was considered to be one airway system, and was divided into nasopharyngeal part, trachea-bronchial part, and pulmonary part. The transport of particles in the respiratory tract was explained by mentioning structual model of the airway system, standard respiratory flow, and distribution of flow speed in the respiratory tract. It was explained that particle deposition in the respiratory tract seemed to be caused by inertia impact at bifurcation, gravity deposition and scattering deposition at tubular wall, interruption effect in nasopharyngeal part, and scattering phoresis effect in the upper respiratory tract or gas exchange part. Furthermore, an outline of calculation of the deposition amount of particles was described from a standpoint of the above-mentioned structure, breathing air flow, and deposition structure of particles. (Kanao, N.)

  4. Comparative study on Pulsed Laser Deposition and Matrix Assisted Pulsed Laser Evaporation of urease thin films

    International Nuclear Information System (INIS)

    Smausz, Tomi; Megyeri, Gabor; Kekesi, Renata; Vass, Csaba; Gyoergy, Eniko; Sima, Felix; Mihailescu, Ion N.; Hopp, Bela

    2009-01-01

    Urease thin films were produced by Matrix Assisted Pulsed Laser Evaporation (MAPLE) and Pulsed Laser Deposition from two types of targets: frozen water solutions of urease with different concentrations (1-10% m/v) and pure urease pellets. The fluence of the ablating KrF excimer laser was varied between 300 and 2200 mJ/cm 2 . Fourier transform infrared spectra of the deposited films showed no difference as compared to the original urease. Morphologic studies proved that the films consist of a smooth 'base' layer with embedded micrometer-sized droplets. Absorption-coefficient measurements contradicted the traditional 'absorptive matrix' model for MAPLE deposition. The laser energy was absorbed by urease clusters leading to a local heating-up and evaporation of the frozen matrix from the uppermost layer accompanied by the release of dissolved urease molecules. Significant enzymatic activity of urease was preserved only during matrix assisted transfer.

  5. Modelling loans and deposits during electoral years i n Romania

    Directory of Open Access Journals (Sweden)

    Nicolae - Marius JULA

    2015-06-01

    Full Text Available This paper analyzes the effect of electoral years on loans and deposits for population in Romania. Using monthly data regarding the total loans and deposits, we identify the significance of the electoral timing on population´s behavior regarding financial decisions. We estimate that there are small changes in population´s affinity for increase in the indebtedness or for savings. We use dummy variables for electoral periods, and when these are econometrically significant there is an evidence of the influence of the electoral timings in population´s financial decisions.

  6. NRPB volunteer study: deposition and clearance of inhaled particles

    International Nuclear Information System (INIS)

    Etherington, G.; Smith, J.

    1996-01-01

    At the Board Meeting of the National Radiological Protection Board held on 15 February 1996, approval was given for an experimental study of the deposition and clearance of inhaled particles in the human nasal passage. This is the latest in a series of volunteer biokinetic studies that have been conducted at NRPB since its formation. This article explains the purpose of the study, how ethical approval was obtained, how the study will be performed, what volunteers will be asked to do, and what doses they will receive. Doses will of course be carefully controlled, and will be well below the annual limits set for such experiments. The success of the study is of course crucially dependent on recruitment of a sufficient number of volunteers. The aim of this article is to provide information to anyone who might be interested in volunteering. (UK)

  7. Modeling of thermal, electronic, hydrodynamic, and dynamic deposition processes for pulsed-laser deposition of thin films

    International Nuclear Information System (INIS)

    Liu, C.L.; LeBoeuf, J.N.; Wood, R.F.; Geohegan, D.B.; Donato, J.M.; Chen, K.R.; Puretzky, A.A.

    1994-11-01

    Various physical processes during laser ablation of solids for pulsed-laser deposition (PLD) are studied using a variety of computational techniques. In the course of the authors combined theoretical and experimental effort, they have been trying to work on as many aspects of PLD processes as possible, but with special focus on the following areas: (a) the effects of collisional interactions between the particles in the plume and in the background on the evolving flow field and on thin film growth, (b) interactions between the energetic particles and the growing thin films and their effects on film quality, (c) rapid phase transformations through the liquid and vapor phases under possibly nonequilibrium thermodynamic conditions induced by laser-solid interactions, (d) breakdown of the vapor into a plasma in the early stages of ablation through both electronic and photoionization processes, (c) hydrodynamic behavior of the vapor/plasma during and after ablation. The computational techniques used include finite difference (FD) methods, particle-in-cell model, and atomistic simulations using molecular dynamics (MD) techniques

  8. A deposit model for magmatic iron-titanium-oxide deposits related to Proterozoic massif anorthosite plutonic suites

    Science.gov (United States)

    Woodruff, Laurel G.; Nicholson, Suzanne W.; Fey, David L.

    2013-01-01

    This descriptive model for magmatic iron-titanium-oxide (Fe-Ti-oxide) deposits hosted by Proterozoic age massif-type anorthosite and related rock types presents their geological, mineralogical, geochemical, and geoenvironmental attributes. Although these Proterozoic rocks are found worldwide, the majority of known deposits are found within exposed rocks of the Grenville Province, stretching from southwestern United States through eastern Canada; its extension into Norway is termed the Rogaland Anorthosite Province. This type of Fe-Ti-oxide deposit dominated by ilmenite rarely contains more than 300 million tons of ore, with between 10- to 45-percent titanium dioxide (TiO2), 32- to 45-percent iron oxide (FeO), and less than 0.2-percent vanadium (V). The origin of these typically discordant ore deposits remains as enigmatic as the magmatic evolution of their host rocks. The deposits clearly have a magmatic origin, hosted by an age-constrained unique suite of rocks that likely are the consequence of a particular combination of tectonic circumstances, rather than any a priori temporal control. Principal ore minerals are ilmenite and hemo-ilmenite (ilmenite with extensive hematite exsolution lamellae); occurrences of titanomagnetite, magnetite, and apatite that are related to this deposit type are currently of less economic importance. Ore-mineral paragenesis is somewhat obscured by complicated solid solution and oxidation behavior within the Fe-Ti-oxide system. Anorthosite suites hosting these deposits require an extensive history of voluminous plagioclase crystallization to develop plagioclase-melt diapirs with entrained Fe-Ti-rich melt rising from the base of the lithosphere to mid- and upper-crustal levels. Timing and style of oxide mineralization are related to magmatic and dynamic evolution of these diapiric systems and to development and movement of oxide cumulates and related melts. Active mines have developed large open pits with extensive waste-rock piles, but

  9. Modelling heavy-ion energy deposition in extended media

    International Nuclear Information System (INIS)

    Mishustin, I.; Pshenichnov, I.; Greiner, W.; Mishustin, I.; Pshenichnov, I.

    2010-01-01

    We present recent developments of the Monte Carlo model for heavy-ion therapy (MCHIT), which is currently based on the Geant4 tool-kit of version 9.2. The major advancement of the model concerns the modelling of violent fragmentation reactions by means of the Fermi break-up model, which is used to simulate decays of hot fragments created after the first stage of nucleus-nucleus collisions. By means of MCHIT we study the dose distributions from therapeutic beams of carbon nuclei in tissue-like materials, like water and PMMA. The contributions to the total dose from primary beam nuclei and from charged secondary fragments produced in nuclear fragmentation reactions are calculated. The build-up of secondary fragments along the beam axis is calculated and compared with available experimental data. Finally, we demonstrate the impact of violent multifragment decays on energy distributions of secondary neutrons produced by carbon nuclei in water. (authors)

  10. Modelling heavy-ion energy deposition in extended media

    Energy Technology Data Exchange (ETDEWEB)

    Mishustin, I.; Pshenichnov, I.; Greiner, W. [Frankfurt Institute for Advanced Studies, J.-W. Goethe University, Frankfurt am Main (Germany); Mishustin, I. [Kurchatov Institute, Russian Research Center, Moscow (Russian Federation); Pshenichnov, I. [Institute for Nuclear Research, Russian Academy of Science, Moscow (Russian Federation)

    2010-10-15

    We present recent developments of the Monte Carlo model for heavy-ion therapy (MCHIT), which is currently based on the Geant4 tool-kit of version 9.2. The major advancement of the model concerns the modelling of violent fragmentation reactions by means of the Fermi break-up model, which is used to simulate decays of hot fragments created after the first stage of nucleus-nucleus collisions. By means of MCHIT we study the dose distributions from therapeutic beams of carbon nuclei in tissue-like materials, like water and PMMA. The contributions to the total dose from primary beam nuclei and from charged secondary fragments produced in nuclear fragmentation reactions are calculated. The build-up of secondary fragments along the beam axis is calculated and compared with available experimental data. Finally, we demonstrate the impact of violent multifragment decays on energy distributions of secondary neutrons produced by carbon nuclei in water. (authors)

  11. 3D modeling of surface quarries and deposits of mined materials and the monitoring of slopes

    Directory of Open Access Journals (Sweden)

    Ivan Maňas

    2007-06-01

    Full Text Available The application of computer technology by simulating opencast mining and deposits of raw materials. The mathematic principles of three-dimensional probabilistic models of raw materials deposits and a familiarization with the user interface software GEOLOGICKY MODEL. The principles of the simulation of opencast mines, generation intersections with models of raw materials deposits, computation of mining materials with the quality scaling,and the design of advanced mining with the software BANSKY MODEL.The monitoring the potential of dynamic movements’ of unstable slopes with the automatic total station and a following interpretation in general time intervals by means of the software MONITORING.

  12. A study of naturally occurring, radionuclide bearing deposits at Portland Creek, Newfoundland

    International Nuclear Information System (INIS)

    1985-01-01

    A small uraniferous peat deposit located near Portland Creek, Newfoundland was investigated as part of the National Uranium Tailings Program (NUTP). The purpose of the investigation was to provide data on naturally occurring uranium series radionuclides at a surface location that could be used to compare with the predictions of mathematical models. The investigation was carried out between August 18 and 30, 1984 by CBCL Limited with the assistance of Golder Associates, SENES Consultants Limited, Environmental Design Group and Monenco Analytical Laboratories. The investigation involved the determination of the geological and hydrogeological conditions of the deposit site and collection of soil, water and biological samples. The samples were analyzed for major element chemistry, uranium and its various decay series radionuclides including radium-226 and the ratio of uranium-234 to uranium-238. The uranium mineralization was found to be associated with a peat deposit that has accumulated in post-glacial time. The deposit is situated within a groundwater discharge zone at the toe of a granitic talus pile that extends downward from the Long Range Mountains. The concentration of uranium within the peat deposit was found to vary from 100 to 28000 ppm, however, the activities of the uranium decay series radionuclides were comparatively very low. Radium-226 activities were found to vary from 0.5 Bq/g to 15.0 Bq/g. Little influence from the deposit was noted in the surrounding water bodies, fish samples and vegetation. Based on the results of the study the uranium mineralization within the peat is considered to be the result of precipitation or adsorption from groundwater that had previously leached uranium from the granitic talus which forms the groundwater recharge zone. The major geochemical mechanism for deposition is considered to be associated with the strong reducing conditions encountered within the peat. Being a recent deposit (i.e. less than 10,000-15,000 years old

  13. An Optimal Investment Strategy and Multiperiod Deposit Insurance Pricing Model for Commercial Banks

    Directory of Open Access Journals (Sweden)

    Grant E. Muller

    2018-01-01

    Full Text Available We employ the method of stochastic optimal control to derive the optimal investment strategy for maximizing an expected exponential utility of a commercial bank’s capital at some future date T>0. In addition, we derive a multiperiod deposit insurance (DI pricing model that incorporates the explicit solution of the optimal control problem and an asset value reset rule comparable to the typical practice of insolvency resolution by insuring agencies. By way of numerical simulations, we study the effects of changes in the DI coverage horizon, the risk associated with the asset portfolio of the bank, and the bank’s initial leverage level (deposit-to-asset ratio on the DI premium while the optimal investment strategy is followed.

  14. Distributed Modeling of soil erosion and deposition affected by buffer strips

    DEFF Research Database (Denmark)

    Khademalrasoul, Ataalah; Heckrath, Goswin Johann; Iversen, Bo Vangsø

    bodies. Buffer zones can be efficient in terms of retaining sediment and phosphorus transported by water erosion. This study aimed at parameterizing a spatial distributed erosion model to evaluate the effect of different buffer zone properties and dimension. It was our hypothesis that the placement...... was surveyed during the runoff season. In addition, organic carbon and phosphorous contents as well as bulk density were determined in soils of eroding and depositional sites. General buffer zone properties were recorded. Here we present results from scenario analyses comparing measured sediment deposition......Soil degradation and environmental impacts due to water erosion are a growing concern globally. Large parts of Denmark are covered by gently rolling moraine landscape with moderately to locally highly erodible soils where water erosion causes off-site problems in the form of eutrophication of water...

  15. Carbonatites of the World, Explored Deposits of Nb and REE - Database and Grade and Tonnage Models

    Science.gov (United States)

    Berger, Vladimir I.; Singer, Donald A.; Orris, Greta J.

    2009-01-01

    This report is based on published tonnage and grade data on 58 Nb- and rare-earth-element (REE)-bearing carbonatite deposits that are mostly well explored and are partially mined or contain resources of these elements. The deposits represent only a part of the known 527 carbonatites around the world, but they are characterized by reliable quantitative data on ore tonnages and grades of niobium and REE. Grade and tonnage models are an important component of mineral resource assessments. Carbonatites present one of the main natural sources of niobium and rare-earth elements, the economic importance of which grows consistently. A purpose of this report is to update earlier publications. New information about known deposits, as well as data on new deposits published during the last decade, are incorporated in the present paper. The compiled database (appendix 1; linked to right) contains 60 explored Nb- and REE-bearing carbonatite deposits - resources of 55 of these deposits are taken from publications. In the present updated grade-tonnage model we have added 24 deposits comparing with the previous model of Singer (1998). Resources of most deposits are residuum ores in the upper part of carbonatite bodies. Mineral-deposit models are important in exploration planning and quantitative resource assessments for two reasons: (1) grades and tonnages among deposit types vary significantly, and (2) deposits of different types are present in distinct geologic settings that can be identified from geologic maps. Mineral-deposit models combine the diverse geoscience information on geology, mineral occurrences, geophysics, and geochemistry used in resource assessments and mineral exploration. Globally based deposit models allow recognition of important features and demonstrate how common different features are. Well-designed deposit models allow geologists to deduce possible mineral-deposit types in a given geologic environment, and the grade and tonnage models allow economists to

  16. Integration of rock physical signatures with depositional environments: A case study from East Coast of India

    Science.gov (United States)

    Mondal, Samit; Yadav, Ashok; Chatterjee, Rima

    2018-01-01

    Rock physical crossplots from different geological setup along eastern continental margin of India (ECMI) represent diversified signatures. To characterize the reservoirs in rock physics domain (velocity/modulus versus porosity) and then connecting the interpretation with geological model has been the objectives of the present study. Petrophysical logs (total porosity and volume of shale) from five wells located at sedimentary basins of ECMI have been analyzed to quantify the types of shale such as: laminated, dispersed and structural in reservoir. Presence of various shale types belonging to different depositional environments is coupled to define distinct rock physical crossplot trends for different geological setup. Wells from three different basins in East Coast of India have been used to capture diversity in depositional environments. Contact model theory has been applied to the crossplot to examine the change in rock velocity with change in reservoir properties like porosity and volume of shale. The depositional and diagenetic trends have been shown in the crossplot to showcase the prime controlling factor which reduces the reservoir porosity. Apart from that, the effect of geological factors like effective stress, sorting, packing, grain size uniformity on reservoir properties have also been focused. The rock physical signatures for distinct depositional environments, effect of crucial geological factors on crossplot trends coupled with established sedimentological models in drilled area are investigated to reduce the uncertainties in reservoir characterization for undrilled potentials.

  17. Model of modern dynamic deposition in the east China Sea

    Science.gov (United States)

    Zhou, Fugen

    1989-09-01

    Since the last rising of sea level, two branches of the Kuroshio, the Huanghai (Yellow Sea) coastal current (HCC; mainly cold water mass) and the Changjiang River outflow have controlled the modern dynamic deposition in the East China Sea. There are three depositing areas on the sea-bed under the above currents: a relict sand area un der the Taiwan Warm Current and the Huanghai Warm Current at the south-eastern area, the about 60 km2 round mud bank under the Huanghai Coastal Current at the northern area and the large subaqueous delta of mainly fine sand and silt under the Changjiang discharge flow in its estuary and the large narrow mud bank under the Zhejiang-Fujian Coastal Current, another round mud bank under the Changjiang discharge flow off Hangzhou Bay. The relict sand area has a coarsesand block under the Taiwan Warm Current bypassing Taiwan at the northern part of the island. The two round mud banks were formed in relatively static states by an anticlockwise converging cyclonic eddy. The coarsesand block was formed by a clockwise diverging cyclonic eddy. This new dynamic deposition theory can be used to explain not only the dynamic deposition process of clay, but also the patchy distribution of sediments on the shelves of the world ocean s.

  18. Modeling Dry Deposition of Aerosol Particles on Rough Surfaces

    Czech Academy of Sciences Publication Activity Database

    Hussein, T.; Smolík, Jiří; Kerminen, V.-M.; Kulmala, M.

    2012-01-01

    Roč. 46, č. 1 (2012), s. 44-59 ISSN 0278-6826 Institutional research plan: CEZ:AV0Z40720504 Keywords : aerosol particles * dry deposition * transport Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.780, year: 2012

  19. Application of covariance clouds for estimating the anisotropy ellipsoid eigenvectors, with case study in uranium deposit

    International Nuclear Information System (INIS)

    Jamali Esfahlan, D.; Madani, H.; Tahmaseb Nazemi, M. T.; Mahdavi, F.; Ghaderi, M. R.; Najafi, M.

    2010-01-01

    Various methods of Kriging and nonlinear geostatistical methods considered as acceptable methods for resource and reserve estimations have characters such as the least estimation variance in their nature, and accurate results in the acceptable confidence levels range could be achieved if the required parameters for the estimation are determined accurately. If the determined parameters don't have the sufficient accuracy, 3-D geostatistical estimations will not be reliable any more, and by this, all the quantitative parameters of the mineral deposit (e.g. grade-tonnage variations) will be misinterpreted. One of the most significant parameters for 3-D geostatistical estimation is the anisotropy ellipsoid. The anisotropy ellipsoid is important for geostatistical estimations because it determines the samples in different directions required for accomplishing the estimation. The aim of this paper is to illustrate a more simple and time preserving analytical method that can apply geophysical or geochemical analysis data from the core-length of boreholes for modeling the anisotropy ellipsoid. By this method which is based on the distribution of covariance clouds in a 3-D sampling space of a deposit, quantities, ratios, azimuth and plunge of the major-axis, semi-major axis and the minor-axis determine the ore-grade continuity within the deposit and finally the anisotropy ellipsoid of the deposit will be constructed. A case study of an uranium deposit is also analytically discussed for illustrating the application of this method.

  20. Radiological impact assessment in Bagjata uranium deposit: a case study

    International Nuclear Information System (INIS)

    Sarangi, A.K.; Bhowmik, S.C.; Jha, V.N.

    2007-01-01

    The uranium ore mining facility, in addition to the desirable product, produces wastes in the form of environmental releases or effluents to air, water and soil. The toxicological and other (non-radiological) effects are generally addressed in EIA/EMP studies as per MOEF guidelines. Since the uranium ore is radioactive, it is desirable to conduct a study on radiological effects considering the impacts of radiological releases to the environment. Before undertaking the commercial mining operations at Bagjata uranium deposit in the Singhbhum east district of Jharkhand, pre-operational radiological base line data were generated and a separate study on radiological impact on various environmental matrices was conducted in line with the International Atomic Energy Agency's laid out guidelines. The paper describes the philosophy of such studies and the findings that helped in formulating a separate environmental management plan. (author)

  1. 3D Numerical Modelling of Transport, Deposition and Resuspension of Highway Deposited Sediments in Wet Detention Ponds

    DEFF Research Database (Denmark)

    Bentzen, Thomas Ruby

    2009-01-01

    concrete channel with width of 0.8 m and a water depth of approximately 0.8 m and in circular flume experiments in order to reproduce near-bed specific processes such as resuspension and consolidation. With good agreement with measurements, modelling of hydrodynamics, transport of dissolved pollutants...... and particles in wet detention ponds is possible with application of a three dimensional RANS model and the advection/dispersion equation taken physical phenomena like wind, waves, deposition, erosion and consolidation of the bottom sediment into account....

  2. Studies of tritiated co-deposited Layers in TFTR

    International Nuclear Information System (INIS)

    Skinner, C.H.; Gentile, C.A.; Ascione, G.; Carpe, A.; Causey, R.A.; Hayashi, T.; Hogan, J.; Langish, S.W.; Nishi, M.F.; Shu, W.M.; Wampler, W.R.; Young, K.M.

    2000-01-01

    Plasma facing components in TFTR contain an important record of plasma wall interactions in reactor grade DT plasmas. Tiles, flakes, wall coupons, a stainless steel shutter and dust samples have been retrieved from the TFTR vessel for analysis. Selected samples have been baked to release tritium and assay the tritium content. The in-vessel tritium inventory is estimated to be 0.56 g and is consistent with the in-vessel tritium inventory derived from the difference between tritium fueling and tritium exhaust. The distribution of tritium on the limiter and vessel wall showed complex patterns of co-deposition. Relatively high concentrations of tritium were found at the top and bottom of the bumper limiter, as predicted by earlier BBQ modeling

  3. Studies of tritiated co-deposited layers in TFTR

    International Nuclear Information System (INIS)

    Skinner, C.H.; Gentile, C.A.; Ascione, G.; Carpe, A.; Causey, R.A.; Hayashi, T.; Hogan, J.; Langish, S.; Nishi, M.; Shu, W.M.; Wampler, W.R.; Young, K.M.

    2000-01-01

    Plasma facing components in TFTR contain an important record of plasma wall interactions in reactor grade DT plasmas. Tiles, flakes, wall coupons, a stainless steel shutter and dust samples have been retrieved from the TFTR vessel for analysis. Selected samples have been baked to release tritium and assay the tritium content. The in-vessel tritium inventory is estimated to be 0.56 g and is consistent with the in-vessel tritium inventory derived from the difference between tritium fueling and tritium exhaust. The distribution of tritium on the limiter and vessel wall showed complex patterns of co-deposition. Relatively high concentrations of tritium were found at the top and bottom of the bumper limiter, as predicted by earlier BBQ modeling

  4. Studies of tritiated co-deposited layers in TFTR

    International Nuclear Information System (INIS)

    Skinner, C.H.; Gentile, C.A.; Ascione, G.; Causey, R.A.; Hayaski, T.; Hogan, J.; Nishi, M.; Shu, W.M.; Wampler, William R.; Young, K.M.

    2000-01-01

    Plasma facing components in TFTR contain an important record of plasma wall interactions in reactor grade DT plasmas. Tiles, flakes, wall coupons and dust samples have been retrieved from the TFTR vessel for analysis. Selected samples have been baked to release tritium and assay the tritium content. The in-vessel tritium inventory is estimated to be 0.5 g and is consistent with the in-vessel tritium inventory derived from the difference between tritium fueling and tritium exhaust. Relatively high concentrations of tritium were found at the top and bottom of the bumper limiter, as predicted by earlier BBQ modeling. The distribution of tritium on the limiter and vessel wall showed complex patterns of co-deposition

  5. Characteristics and model of sandstone type uranium deposit in south of Songliao basin

    International Nuclear Information System (INIS)

    Yu Wenbin; Yu Zhenqing

    2010-01-01

    Through analyzing the uranium deposit tectonic environment, upper cretaceous sequence stratigraphy, depositional system, evolutionary characteristics of sand bodies, the effect of subsequent transformation and the characteristic of uranium deposit, the sandstone type uranium deposit in southern basin is different from typical interlayer oxidation zone sandstone type uranium deposit. The formation and evolution of sandstone-type uranium deposit are controlled by structure fensters; the favorable sedimentary facies type is braided river facies, and the ore body is braided river sand body. The size of uranium deposits is controlled by the local oxidation zone with the characteristics of sandstone type uranium deposit in partial oxidation zone. Uranium ore bodies which distribute in the roof wings of structure fenstes, and occur in gray layers between the upper and lower oxidation zone, showing tabular, and the plate of uranium ore body is controlled by the local oxidation zone. Based on the geological features of sandstone-type uranium deposits, the metallogenic model of local oxidation zones sandstone-type uranium deposits has been set up in the south of Songliao Baisn. (authors)

  6. Study on stability of a-SiCOF films deposited by plasma enhanced chemical vapor deposition

    International Nuclear Information System (INIS)

    Ding Shijin; Zhang Qingquan; Wang Pengfei; Zhang Wei; Wang Jitao

    2001-01-01

    Low-dielectric-constant a-SiCOF films have been prepared from TEOS, C 4 F 8 and Ar by using plasma enhanced chemical vapor deposition method. With the aid of X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR), the chemical bonding configuration, thermal stability and resistance to water of the films are explored

  7. Concurrent Modeling of Hydrodynamics and Interaction Forces Improves Particle Deposition Predictions.

    Science.gov (United States)

    Jin, Chao; Ren, Carolyn L; Emelko, Monica B

    2016-04-19

    It is widely believed that media surface roughness enhances particle deposition-numerous, but inconsistent, examples of this effect have been reported. Here, a new mathematical framework describing the effects of hydrodynamics and interaction forces on particle deposition on rough spherical collectors in absence of an energy barrier was developed and validated. In addition to quantifying DLVO force, the model includes improved descriptions of flow field profiles and hydrodynamic retardation functions. This work demonstrates that hydrodynamic effects can significantly alter particle deposition relative to expectations when only the DLVO force is considered. Moreover, the combined effects of hydrodynamics and interaction forces on particle deposition on rough, spherical media are not additive, but synergistic. Notably, the developed model's particle deposition predictions are in closer agreement with experimental observations than those from current models, demonstrating the importance of inclusion of roughness impacts in particle deposition description/simulation. Consideration of hydrodynamic contributions to particle deposition may help to explain discrepancies between model-based expectations and experimental outcomes and improve descriptions of particle deposition during physicochemical filtration in systems with nonsmooth collector surfaces.

  8. Recent developments in modelling of nitrogen deposition. Realization of nature targets under pressure

    International Nuclear Information System (INIS)

    Verhees, L.; Erbrink, H.; De Wolff, J.

    2010-01-01

    The objective of Natura 2000 is to reverse the decline in biodiversity. Nitrogen deposition is one of the main problems in implementation in the Netherlands. This article explains how nitrogen deposition is calculated with computer models and how contributions from various sources including dairy farming, road traffic and industry are related to each other, paying specific attention to the large local differences. [nl

  9. Heavy metal atmospheric deposition study in the South Ural Mountains

    International Nuclear Information System (INIS)

    Frontasyeva, M.V.; Smirnov, L.I.; Lyapunov, S.M.

    2004-01-01

    Samples of the mosses Hylocomium splendens and Pleurozium schreberi, collected in the summer of 1998, were used to study the atmospheric deposition of heavy metals and other toxic elements in the Chelyabinsk Region situated in the South Urals, one of the most heavily polluted industrial areas of the Russian Federation. Samples of natural soils were collected simultaneously with moss at the same 30 sites in order to investigate surface accumulation of heavy metals and to examine the correlation of elements in moss and soil samples in order to separate contributions from atmospheric deposition and from soil minerals. A total of 38 elements (Na, Mg, Al, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Zn, As, Se, Rb, Sr, Zr, Mo, Sb, Cs, Ba, La, Ce, Nd, Sm, Eu, Gd, Tb, Dy, Yb, Hf, Ta, W, Au, Th, U) in soil and 33 elements Na, Mg, Al, Cl, K, Ca, Sc, V, Cr, Mn, Fe, Co, Ni, Zn, As, Se, Br, Rb, Ag, Sb, Cs, Ba, La, Ce, Sm, Tb, Yb, Hf, Ta, W, Au, Th, U) were determined by epithermal neutron activation analysis. The elements Cu, Cd and Pb (in moss samples only) were obtained by atomic absorption spectrometry. VARIMAX rotated principal component analysis was used to identify and characterize different pollution sources and to point out the most polluted areas. (author)

  10. Multi-model Mean Nitrogen and Sulfur Deposition from the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP): Evaluation Historical and Projected Changes

    Science.gov (United States)

    Lamarque, J.-F.; Dentener, F.; McConnell, J.; Ro, C.-U.; Shaw, M.; Vet, R.; Bergmann, D.; Cameron-Smith, P.; Doherty, R.; Faluvegi, G.; hide

    2013-01-01

    We present multi-model global datasets of nitrogen and sulfate deposition covering time periods from 1850 to 2100, calculated within the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP). The computed deposition fluxes are compared to surface wet deposition and ice-core measurements. We use a new dataset of wet deposition for 2000-2002 based on critical assessment of the quality of existing regional network data. We show that for present-day (year 2000 ACCMIP time-slice), the ACCMIP results perform similarly to previously published multi-model assessments. For this time slice, we find a multi-model mean deposition of 50 Tg(N) yr1 from nitrogen oxide emissions, 60 Tg(N) yr1 from ammonia emissions, and 83 Tg(S) yr1 from sulfur emissions. The analysis of changes between 1980 and 2000 indicates significant differences between model and measurements over the United States but less so over Europe. This difference points towards misrepresentation of 1980 NH3 emissions over North America. Based on ice-core records, the 1850 deposition fluxes agree well with Greenland ice cores but the change between 1850 and 2000 seems to be overestimated in the Northern Hemisphere for both nitrogen and sulfur species. Using the Representative Concentration Pathways to define the projected climate and atmospheric chemistry related emissions and concentrations, we find large regional nitrogen deposition increases in 2100 in Latin America, Africa and parts of Asia under some of the scenarios considered. Increases in South Asia are especially large, and are seen in all scenarios, with 2100 values more than double 2000 in some scenarios and reaching 1300 mg(N) m2 yr1 averaged over regional to continental scale regions in RCP 2.6 and 8.5, 3050 larger than the values in any region currently (2000). The new ACCMIP deposition dataset provides novel, consistent and evaluated global gridded deposition fields for use in a wide range of climate and ecological studies.

  11. On the non-equilibrium phase transition in evaporation–deposition models

    International Nuclear Information System (INIS)

    Connaughton, Colm; Zaboronski, Oleg; Rajesh, R

    2010-01-01

    We study a system of diffusing–aggregating particles with deposition and evaporation of monomers. By combining theoretical and numerical methods, we establish a clearer understanding of the non-equilibrium phase transition known to occur in such systems. The transition is between a growing phase in which the total mass increases for all time and a non-growing phase in which the total mass is bounded. In addition to deriving rigorous bounds on the position of the transition point, we show that the growing phase is in the same universality class as diffusion–aggregation models with deposition but no evaporation. In this regime, the flux of mass in mass space becomes asymptotically constant (as a function of mass) at large times. The magnitude of this flux depends on the evaporation rate but the fact that it is asymptotically constant does not. The associated constant flux relation exactly determines the scaling of the two-point mass correlation function with mass in all dimensions while higher order mass correlation functions exhibit nonlinear multi-scaling in dimension less than two. If the deposition rate is below some critical value, a different stationary state is reached at large times characterized by a global balance between evaporation and deposition with a scale-by-scale balance between the mass fluxes due to aggregation and evaporation. Both the mass distribution and the flux decay exponentially in this regime. Finally, we develop a scaling theory of the model near the critical point, which yields non-trivial scaling laws for the critical two-point mass correlation function with mass. These results are well supported by numerical measurements

  12. Towards a CFD-based mechanistic deposit formation model for straw-fired boilers

    DEFF Research Database (Denmark)

    Kær, Søren Knudsen; Rosendahl, Lasse Aistrup; Baxter, L.L.

    2006-01-01

    is configured entirely through a graphical user interface integrated in the standard FLUENTe interface. The model considers fine and coarse mode ash deposition and sticking mechanisms for the complete deposit growth, as well as an influence on the local boundary conditions for heat transfer due to thermal...... in the reminder of the paper. The growth of deposits on furnace walls and super heater tubes is treated including the impact on heat transfer rates determined by the CFD code. Based on the commercial CFD code FLUENTe, the overall model is fully implemented through the User Defined Functions. The model...

  13. Macrophage Depletion Attenuates Extracellular Matrix Deposition and Ductular Reaction in a Mouse Model of Chronic Cholangiopathies

    Science.gov (United States)

    Syn, Wing-Kin; Lagaisse, Kimberly; van Hul, Noemi; Heindryckx, Femke; Sowa, Jan-Peter; Peeters, Liesbeth; Van Vlierberghe, Hans; Leclercq, Isabelle A.; Canbay, Ali

    2016-01-01

    Chronic cholangiopathies, such as primary and secondary sclerosing cholangitis, are progressive disease entities, associated with periportal accumulation of inflammatory cells, encompassing monocytes and macrophages, peribiliary extracellular matrix (ECM) deposition and ductular reaction (DR). This study aimed to elucidate the relevance of macrophages in the progression of chronic cholangiopathies through macrophage depletion in a 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) mouse model. One group of mice received a single i.p. injection of Clodronate encapsulated liposomes (CLOLipo) at day 7 of a 14 day DDC treatment, while control animals were co-treated with PBSLipo instead. Mice were sacrificed after 7 or respectively 14 days of treatment for immunohistochemical assessment of macrophage recruitment (F4/80), ECM deposition (Sirius Red, Laminin) and DR (CK19). Macrophage depletion during a 14 day DDC treatment resulted in a significant inhibition of ECM deposition. Porto-lobular migration patterns of laminin-rich ECM and ductular structures were significantly attenuated and a progression of DR was effectively inhibited by macrophage depletion. CLOLipo co-treatment resulted in a confined DR to portal regions without amorphous cell clusters. This study suggests that therapeutic options selectively directed towards macrophages might represent a feasible treatment for chronic cholestatic liver diseases. PMID:27618307

  14. Experimental and numerical study of deposit formation in secondary side SG TSP by electrokinetic approach

    International Nuclear Information System (INIS)

    Guillodo, Michael; Foucault, Marc; Ryckelynck, Natacha; Chahma, Farah; Guingo, Mathieu; Mansour, Carine; Alos-Ramos, Olga; Corredera, Geraldine

    2012-09-01

    Corrosion products deposit formation observed in PWR steam generators (SGs) - related to SG free span fouling and SG clogging - is now reported since several years. SG clogging is a localized phenomenon observed between the leading edge of the Tube Support Plate (TSP) and SG tubing materials. Based on visual inspections, it was found that the gaps between SG tubing material and TSP at the lower part of the broached holes were getting progressively blocked. Therefore, for safe operation, most affected PWRs had to be operated at reduced power. TSP blockage was mainly observed for low-pH water chemistry conditioning, which directly depends on the operating water chemistry. The TSP blockage mechanism is complex due to the localized conditions in which flow pattern change, chemistry and electrochemical conditions are not well understood. Electrokinetic considerations could be pointed out to explain the coupling of chemistry, materials and thermohydraulic (T/H) conditions. In this frame AREVA and EDF have launched a long-term R and D program in order to understand the mechanisms driving the formation of SG clogging. This study based on parametric laboratory tests aims to assess the role of secondary water chemistry, material and T/H conditions on deposit formation. The experimental approach focused on electrokinetic measurements of metallic substrates and on the assessment of oxidation properties of materials in secondary side chemistry. An overall analysis of recent results is presented to address SG deposit formation in secondary water chemistry for various conditioning amines - morpholine, ethanolamine and dimethylamine. To complete the study, the experimental results have been correlated to CFD simulations of particle deposition, by means of stochastic Lagrangian models. These calculations have in particular reproduced correctly the location of the most important particle deposit (the leading edge of the test tube), and have stressed the influence of the

  15. Studies on structure and organization of calcium carbonate deposits in algae

    Digital Repository Service at National Institute of Oceanography (India)

    Kerkar, V.; Untawale, A.G.

    The structure and organization of calcium carbonate deposits is studied in species of Halimeda, Udotea, Neomeris (Chlorophyta) and Padina (Phaeophyta). It was found that in Halimeda aragonite deposition takes place outside the cell wall...

  16. Plasma and process characterization of high power magnetron physical vapor deposition with integrated plasma equipment--feature profile model

    International Nuclear Information System (INIS)

    Zhang Da; Stout, Phillip J.; Ventzek, Peter L.G.

    2003-01-01

    High power magnetron physical vapor deposition (HPM-PVD) has recently emerged for metal deposition into deep submicron features in state of the art integrated circuit fabrication. However, the plasma characteristics and process mechanism are not well known. An integrated plasma equipment-feature profile modeling infrastructure has therefore been developed for HPM-PVD deposition, and it has been applied to simulating copper seed deposition with an Ar background gas for damascene metalization. The equipment scale model is based on the hybrid plasma equipment model [M. Grapperhaus et al., J. Appl. Phys. 83, 35 (1998); J. Lu and M. J. Kushner, ibid., 89, 878 (2001)], which couples a three-dimensional Monte Carlo sputtering module within a two-dimensional fluid model. The plasma kinetics of thermalized, athermal, and ionized metals and the contributions of these species in feature deposition are resolved. A Monte Carlo technique is used to derive the angular distribution of athermal metals. Simulations show that in typical HPM-PVD processing, Ar + is the dominant ionized species driving sputtering. Athermal metal neutrals are the dominant deposition precursors due to the operation at high target power and low pressure. The angular distribution of athermals is off axis and more focused than thermal neutrals. The athermal characteristics favor sufficient and uniform deposition on the sidewall of the feature, which is the critical area in small feature filling. In addition, athermals lead to a thick bottom coverage. An appreciable fraction (∼10%) of the metals incident to the wafer are ionized. The ionized metals also contribute to bottom deposition in the absence of sputtering. We have studied the impact of process and equipment parameters on HPM-PVD. Simulations show that target power impacts both plasma ionization and target sputtering. The Ar + ion density increases nearly linearly with target power, different from the behavior of typical ionized PVD processing. The

  17. Improved Formulations for Air-Surface Exchanges Related to National Security Needs: Dry Deposition Models

    Energy Technology Data Exchange (ETDEWEB)

    Droppo, James G.

    2006-07-01

    The Department of Homeland Security and others rely on results from atmospheric dispersion models for threat evaluation, event management, and post-event analyses. The ability to simulate dry deposition rates is a crucial part of our emergency preparedness capabilities. Deposited materials pose potential hazards from radioactive shine, inhalation, and ingestion pathways. A reliable characterization of these potential exposures is critical for management and mitigation of these hazards. A review of the current status of dry deposition formulations used in these atmospheric dispersion models was conducted. The formulations for dry deposition of particulate materials from am event such as a radiological attack involving a Radiological Detonation Device (RDD) is considered. The results of this effort are applicable to current emergency preparedness capabilities such as are deployed in the Interagency Modeling and Atmospheric Assessment Center (IMAAC), other similar national/regional emergency response systems, and standalone emergency response models. The review concludes that dry deposition formulations need to consider the full range of particle sizes including: 1) the accumulation mode range (0.1 to 1 micron diameter) and its minimum in deposition velocity, 2) smaller particles (less than .01 micron diameter) deposited mainly by molecular diffusion, 3) 10 to 50 micron diameter particles deposited mainly by impaction and gravitational settling, and 4) larger particles (greater than 100 micron diameter) deposited mainly by gravitational settling. The effects of the local turbulence intensity, particle characteristics, and surface element properties must also be addressed in the formulations. Specific areas for improvements in the dry deposition formulations are 1) capability of simulating near-field dry deposition patterns, 2) capability of addressing the full range of potential particle properties, 3) incorporation of particle surface retention/rebound processes, and

  18. Comparative study of tantalum deposition by chemical vapor deposition and electron beam vacuum evaporation

    International Nuclear Information System (INIS)

    Spitz, J.; Chevallier, J.

    1975-01-01

    The coating by tantalum of steel parts has been carried out by the two following methods: chemical vapor deposition by hydrogen reduction of TaCl 5 (temperature=1100 deg C, pressure=200 mmHg, H 2 /TaCl 5 =10); electron beam vacuum evaporation. In this case Ta was firstly condensed by ion plating (P(Ar)=5x10 -3 up to 2x10 -2 mmHg; U(c)=3 to -4kV and J(c)=0.2 to 1mAcm -2 ) in order to ensure a good adhesion between deposit and substrate; then by vacuum condensation (substrate temperature: 300 to 650 deg C) to ensure that the coating is impervious to HCl an H 2 SO 4 acids. The advantages and inconveniences of each method are discussed [fr

  19. Study on the Deposition Rate Depending on Substrate Position by Using Ion Beam Sputtering Deposition

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yonggi; Kim, Bomsok; Lee, Jaesang [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    Ion beams have been used for over thirty years to modify materials in manufacturing of integrated circuits, and improving the corrosion properties of surfaces. Recently, the requirements for ion beam processes are becoming especially challenging in the following areas : ultra shallow junction formation for LSI fabrication, low damage high rate ion beam sputtering and smoothing, high quality functional surface treatment for electrical and optical properties. Ion beam sputtering is an attractive technology for the deposition of thin film coatings onto a broad variety of polymer, Si-wafer, lightweight substrates. Demand for the decoration metal is increasing. In addition, lightweight of parts is important, because of energy issues in the industries. Although a lot of researches have been done with conventional PVD methods for the deposition of metal or ceramic films on the surface of the polymer, there are still adhesion problems.

  20. Defect studies of thin ZnO films prepared by pulsed laser deposition

    International Nuclear Information System (INIS)

    Vlček, M; Čížek, J; Procházka, I; Novotný, M; Bulíř, J; Lančok, J; Anwand, W; Brauer, G; Mosnier, J-P

    2014-01-01

    Thin ZnO films were grown by pulsed laser deposition on four different substrates: sapphire (0 0 0 1), MgO (1 0 0), fused silica and nanocrystalline synthetic diamond. Defect studies by slow positron implantation spectroscopy (SPIS) revealed significantly higher concentration of defects in the studied films when compared to a bulk ZnO single crystal. The concentration of defects in the films deposited on single crystal sapphire and MgO substrates is higher than in the films deposited on amorphous fused silica substrate and nanocrystalline synthetic diamond. Furthermore, the effect of deposition temperature on film quality was investigated in ZnO films deposited on synthetic diamond substrates. Defect studies performed by SPIS revealed that the concentration of defects firstly decreases with increasing deposition temperature, but at too high deposition temperatures it increases again. The lowest concentration of defects was found in the film deposited at 450° C.

  1. Modeling of phase transformations of Ti6Al4 V during laser metal deposition

    Science.gov (United States)

    Suárez, A.; Tobar, M. J.; Yáñez, A.; Pérez, I.; Sampedro, J.; Amigó, V.; Candel, J. J.

    The low density, excellent high temperature mechanical properties and good corrosion resistance of titanium and its alloys have led to a diversified range of successful applications. As a consequence, there is a demand of increasing the capabilities of processing such alloys. The laser cladding technique allows direct metal deposition with an excellent metallurgical bond and a pore free fine grained microstructure. A nonlinear transient thermo-metallurgical model was developed to study the technique with titanium alloys to get a better understanding of the thermal and metallurgical underlying aspects. The calculated temperatures and phase transformations are compared with experimental tests.

  2. Preliminary Investigation of Poly-Ether-Ether-Ketone Based on Fused Deposition Modeling for Medical Applications

    Directory of Open Access Journals (Sweden)

    Feng Zhao

    2018-02-01

    Full Text Available Poly-ether-ether-ketone (PEEK fabricated by fused deposition modeling for medical applications was evaluated in terms of mechanical strength and in vitro cytotoxicity in this study. Orthogonal experiments were firstly designed to investigate the significant factors on tensile strength. Nozzle temperature, platform temperature, and the filament diameter were tightly controlled for improved mechanical strength performance. These sensitive parameters affected the interlayer bonding and solid condition in the samples. Fourier transform infrared (FTIR spectrometry analysis was secondly conducted to compare the functional groups in PEEK granules, filaments, and printed parts. In vitro cytotoxicity test was carried out at last, and no toxic substances were introduced during the printing process.

  3. Morphology and structural studies of WO_3 films deposited on SrTiO_3 by pulsed laser deposition

    International Nuclear Information System (INIS)

    Kalhori, Hossein; Porter, Stephen B.; Esmaeily, Amir Sajjad; Coey, Michael; Ranjbar, Mehdi; Salamati, Hadi

    2016-01-01

    Highlights: • Highly oriented WO_3 stoichiometric films were determined using pulsed laser deposition method. • Effective parameters on thin films including temperature, oxygen partial pressure and laser energy fluency was studied. • A phase transition was observed in WO_3 films at 700 °C from monoclinic to tetragonal. - Abstract: WO_3 films have been grown by pulsed laser deposition on SrTiO_3 (001) substrates. The effects of substrate temperature, oxygen partial pressure and energy fluence of the laser beam on the physical properties of the films were studied. Reflection high-energy electron diffraction (RHEED) patterns during and after growth were used to determine the surface structure and morphology. The chemical composition and crystalline phases were obtained by XPS and XRD respectively. AFM results showed that the roughness and skewness of the films depend on the substrate temperature during deposition. Optimal conditions were determined for the growth of the highly oriented films.

  4. Study of liquid deposition during laser printing of liquids

    Energy Technology Data Exchange (ETDEWEB)

    Duocastella, M.; Patrascioiu, A. [Universitat de Barcelona, Departament de Fisica Aplicada i Optica, Marti i Franques 1, E-08028 Barcelona (Spain); Dinca, V. [Universitat de Barcelona, Departament de Fisica Aplicada i Optica, Marti i Franques 1, E-08028 Barcelona (Spain); National Institute for Lasers, Plasma and Radiation Physics, Atomistilor No. 409, PO Box MG 16, 077125 Bucharest (Romania); Fernandez-Pradas, J.M.; Morenza, J.L. [Universitat de Barcelona, Departament de Fisica Aplicada i Optica, Marti i Franques 1, E-08028 Barcelona (Spain); Serra, P., E-mail: pserra@ub.edu [Universitat de Barcelona, Departament de Fisica Aplicada i Optica, Marti i Franques 1, E-08028 Barcelona (Spain)

    2011-04-01

    Laser-induced forward transfer (LIFT) is a direct-writing technique which can be used to successfully print various complex and sensitive materials with a high degree of spatial resolution. However, the optimization of its performances requires a deep understanding of the LIFT dynamics. Such understanding should allow correlating the phenomena underlying the liquid transfer process with the morphology of the obtained deposits. To this end, in this work it is presented a study related to two aspects: first, the correlation of the morphological characteristics of the transferred droplets with the variation of the film thickness combined with laser fluence; and second, a correlation of the dependences observed with the dynamics of the transfer process. The work is focused on the understanding of the observed dependences for which the information provided by time-resolved analysis on liquid transfer dynamics has proved to be crucial.

  5. Study of liquid deposition during laser printing of liquids

    International Nuclear Information System (INIS)

    Duocastella, M.; Patrascioiu, A.; Dinca, V.; Fernandez-Pradas, J.M.; Morenza, J.L.; Serra, P.

    2011-01-01

    Laser-induced forward transfer (LIFT) is a direct-writing technique which can be used to successfully print various complex and sensitive materials with a high degree of spatial resolution. However, the optimization of its performances requires a deep understanding of the LIFT dynamics. Such understanding should allow correlating the phenomena underlying the liquid transfer process with the morphology of the obtained deposits. To this end, in this work it is presented a study related to two aspects: first, the correlation of the morphological characteristics of the transferred droplets with the variation of the film thickness combined with laser fluence; and second, a correlation of the dependences observed with the dynamics of the transfer process. The work is focused on the understanding of the observed dependences for which the information provided by time-resolved analysis on liquid transfer dynamics has proved to be crucial.

  6. Studies on deposition of radon daughters on glass surface

    International Nuclear Information System (INIS)

    Loerinc, M.; Feher, I.; Palfalvi, J.

    1998-01-01

    In a certain village in Northern Hungary, in some houses the radon concentration was found to be in the order of kBq.m -3 . In an attempt to decide whether an earthquake or the near-by mining activity is to blame, past radon concentration was studied making use of radon daughters embedded in the surface layer of glass sheets. In the investigation several conclusions were reached: drastic changes in Rn concentration could be excluded, ie., the high Rn concentration existed over the last 50 years; the continuing deposition of dirt on the glass surface and the occasional cleaning had no significant effect; the effect of corrosion processes at the glass surface should be further investigated. (A.K.)

  7. Imaging Quaternary glacial deposits and basement topography using the transient electromagnetic method for modeling aquifer environments

    Science.gov (United States)

    Simard, Patrick Tremblay; Chesnaux, Romain; Rouleau, Alain; Daigneault, Réal; Cousineau, Pierre A.; Roy, Denis W.; Lambert, Mélanie; Poirier, Brigitte; Poignant-Molina, Léo

    2015-08-01

    Aquifer formations along the northern shore of the Saint-Lawrence River in Quebec (Canada) mainly consist of glacial and coastal deposits of variable thickness overlying Precambrian bedrock. These deposits are important because they provide the main water supply for many communities. As part of a continuing project aimed at developing an inventory of the groundwater resources in the Charlevoix and Haute-Côte-Nord (CHCN) regions of the province of Quebec in Canada, the central loop transient electromagnetic (TEM) method was used to map the principal hydrogeological environments in these regions. One-dimensional smooth inversion models of the TEM soundings have been used to construct two-dimensional electrical resistivity sections, which provided images for hydrogeological validation. Electrical contour lines of aquifer environments were compared against available well logs and Quaternary surface maps in order to interpret TEM soundings. A calibration table was achieved to represent common deposits and basements. The calibration table was then exported throughout the CHCN region. This paper presents three case studies; one in the Forestville site, another in the Les Escoumins site and the other in the Saint-Urbain site. These sites were selected as targets for geophysical surveys because of the general lack of local direct hydrogeological data related to them.

  8. Organic geochemical study of domanik deposits, Tatarstan Republic.

    Science.gov (United States)

    Nosova, F. F.; Pronin, N. V.

    2010-05-01

    High-bituminous argillo-siliceous carbonate deposits of domanik formation (DF) occurring within pale depressions and down warps in the east of the Russian platform are treated by many investigators as a main source of oil and gas in the Volga-Ural province. In this study a special attention was turned to organic-rich rocks DF witch outcrop in the central part (Uratminskaya area 792, 806 boreholes) and in the west part (Sviyagskaya, 423) of the Tatarstan Republic. The aim of the present paper is to characterize the organic matter: origin, depositional environments, thermal maturity and biodegradation-weathering effects. Nowadays the most informative geochemical parameters are some biomarkers which qualitatively and are quantitatively defined from distributions of n-alkanes and branched alkanes. Biomarkers - it's original fingerprints of biomass of organic matter, that reflect molecular hydrocarbonic structure. The bulk, molecular composition of oil is initially a function of the type and maturity of the source rock from which it has been expelled, while the source rock type reflects both the nature of precursor organisms and the conditions of its deposition. Methodology used in this study included sampling, bitumen extraction, liquid-column chromatography and gas chromatography/mass spectrometry analyses. The bitumen was fractionated by column chromatography on silica gel. Non-aromatic or alifatics, aromatics and polar compounds were obtained. Alifatic were analysed by gas chromatography/mass spectrometry Percin Elmer. The hydrocarbons present in the sediments of DF and have a carbon numbers ranging from 12 through 38. The samples contain variably inputs from both terrigenous and non-terrigenous (probably marine algal) organic matter as evident in bimodal GC fingerprints of some samples. Pristane and phytane, also, occur in very high concentration in sample extracts. The relatively low Pr/Ph ratios, CPI and OEP<1 imply that the domanik organic matter was deposited

  9. Puff-plume atmospheric deposition model for use at SRP in emergency-response situations

    International Nuclear Information System (INIS)

    Garrett, A.J.; Murphy, C.E. Jr.

    1981-05-01

    An atmospheric transport and diffusion model developed for real-time calculation of the location and concentration of toxic or radioactive materials during an accidental release was improved by including deposition calculations

  10. Depositional history and fault-related studies, Bolinas Lagoon, California

    Science.gov (United States)

    Berquist, Joel R.

    1978-01-01

    Studies of core sediments and seismic reflection profiles elucidate the structure and depositional history of Bolinas Lagoon, Calif., which covers 4.4 km 2 and lies in the San Andreas fault zone at the southeast corner of the Point Reyes Peninsula 20 km northwest of San Francisco. The 1906 trace of the San Andreas fault crosses the west side of the lagoon and was determined from (1) tectonically caused salt-marsh destruction indicated by comparison of 1854 and 1929 U.S. Coast and Geodetic Survey (U.S.C. & G.S.) topographic surveys, (2) formation of a tidal channel along the border of destroyed salt marshes, and (3) azimuths of the trend of the fault measured in 1907. Subsidence in the lagoon of 30 cm occurred east of the San Andreas fault in 1906. Near the east shore, seismic-reflection profiling indicates the existence of a graben fault that may connect to a graben fault on the Golden Gate Platform. Comparison of radiocarbon dates on shells and plant debris from boreholes drilled on Stinson Beach spit with a relative sea-level curve constructed for southern San Francisco Bay indicates 5.8 to more than 17.9 m of tectonic subsidence of sediments now located 33 m below mean sea level. Cored sediments indicate a marine transgression dated at 7770?65 yrs B.P. overlying freshwater organic-rich lake deposits. Fossil pollen including 2 to 8 percent Picea (spruce) indicate a late Pleistocene (?)-Early Holocene climate, cooler, wetter, and foggier than at present. Above the transgression are discontinuous and interfingering sequences of transgressive-regressive marine, estuarine, and barrier sediments that reflect rapid lateral and vertical shifts of successive depositional environments. Fossil megafauna indicate (1) accumulation in a protected, shallow-water estuary or bay, and (2) that the lagoon was probably continuously shallow and never a deep-water embayment. Analysis of grain-size parameters, pollen frequencies, and organic remains from a core near the north end of

  11. The respiratory tract deposition model proposed by the ICRP Task Group

    International Nuclear Information System (INIS)

    James, A.C.; Briant, J.K.; Stahlhofen, W.; Rudolf, G.; Gehr, P.

    1990-11-01

    The Task Group has developed a new model of the deposition of inhaled aerosols in each anatomical region of the respiratory tract. The model is used to evaluate the fraction of airborne activity that is deposited in respiratory regions having distinct retention characteristics and clearance pathways: the anterior nares, the extrathoracic airways of the naso- and oropharynx and larynx, the bronchi, the bronchioles, and the alveolated airways of the lung. Drawn from experimental data on total and regional deposition in human subjects, the model is based on extrapolation of these data by means of a detailed theoretical model of aerosol transport and deposition within the lung. The Task Group model applies to all practical conditions, and for aerosol particles and vapors from atomic size up to very coarse aerosols with an activity median aerodynamic diameter of 100 μm. The model is designed to predict regional deposition in different subjects, including adults of either sex, children of various ages, and infants, and also to account for anatomical differences among Caucasian and non-Caucasian subjects. The Task Group model represents aerosol inhalability and regional deposition in different subjects by algebraic expressions of aerosol size, breathing rates, standard lung volumes, and scaling factors for airway dimensions. 35 refs., 13 figs., 2 tabs

  12. A study of wet deposition of atmospheric tritium releases at the Ontario Power Generation, Pickering Nuclear Generating Station

    International Nuclear Information System (INIS)

    Crooks, G.; DeWilde, J.; Yu, L.

    2001-01-01

    The Ontario Power Generation,Pickering Nuclear Generating Station (PNGS) has been investigating deposition of atmospheric releases of tritium on their site. This study has included numerical dispersion modelling studies conducted over the past three years, as well as an ongoing field monitoring study. The following paper will present results of the field monitoring study and make comparisons to the numerical modelling. The results of this study could be of potential use to nuclear stations in quantifying tritium deposition in near field regions where building wake effects dominate pollutant dispersion

  13. RHEED study of titanium dioxide with pulsed laser deposition

    DEFF Research Database (Denmark)

    Rasmussen, Inge Lise; Pryds, Nini; Schou, Jørgen

    2009-01-01

    Reflection high-energy electron diffraction (RHEED) operated at high pressure has been used to monitor the growth of thin films of titanium dioxide (TiO2) on (1 0 0) magnesium oxide (MgO) substrates by pulsed laser deposition (PLD). The deposition is performed with a synthetic rutile TiO2 target...

  14. Studies Concerning Water-Surface Deposits in Recovery Boilers

    Energy Technology Data Exchange (ETDEWEB)

    Strandberg, O; Arvesen, J; Dahl, L

    1971-11-15

    The Feed-water Committee of the Stiftelsen Svensk Cellulosaforskning (Foundation for Swedish Cellulose Research) has initiated research and investigations which aim to increase knowledge about water-surface deposits in boiler tubes, and the resulting risks of gas-surface corrosion in chemical recovery boilers (sulphate pulp industry). The Committee has arranged with AB Atomenergi, Studsvik, for investigations into the water-surface deposits on tubes from six Scandinavian boilers. These investigations have included direct measurements of the thermal conductivity of the deposits, and determinations of their quantity, thickness and structure have been carried out. Previous investigations have shown that gas-surface corrosion can occur at tube temperatures above 330 deg C. The measured values for the thermal conductivity of the deposits indicate that even with small quantities of deposit (c. 1 g/dm2 ) and a moderate boiler pressure (40 atm), certain types of deposit can give rise to the above-mentioned surface temperature, at which the risk of gas-surface corrosion becomes appreciable. For higher boiler pressures the risk is great even with a minimal layer of deposit. The critical deposit thickness can be as low as 0.1 mm

  15. PRISM -- A tool for modelling proton energy deposition in semiconductor materials

    International Nuclear Information System (INIS)

    Oldfield, M.K.; Underwood, C.I.

    1996-01-01

    This paper presents a description of, and test results from, a new PC based software simulation tool PRISM (Protons in Semiconductor Materials). The model describes proton energy deposition in complex 3D sensitive volumes of semiconductor materials. PRISM is suitable for simulating energy deposition in surface-barrier detectors and semiconductor memory devices, the latter being susceptible to Single-Event Upset (SEU) and Multiple-Bit Upset (MBU). The design methodology on which PRISM is based, together with the techniques used to simulate ion transport and energy deposition, are described. Preliminary test results used to analyze the PRISM model are presented

  16. Discussion on geochemical characteristics, mechanism and prospecting model of gluey type sandstone uranium mineralization--taking Redwell uranium deposit as an example

    International Nuclear Information System (INIS)

    Wang Jinping

    1998-01-01

    Redwell uranium deposit hosted in the red clastic rock formation, is a typical example of gluey type uranium mineralization, which has not been reported so far in China. Based on the study of geochemical characteristics of Redwell deposit, the author discusses the genetic mechanism of this type deposits, and proposes the prospecting model of 4 in 1 of red bed-fault-oil gas-uranium source

  17. Dynamic Monte-Carlo modeling of hydrogen retention and chemical erosion from Tore Supra deposits

    International Nuclear Information System (INIS)

    Rai, A.; Schneider, R.; Warrier, M.; Roubin, P.; Martin, C.

    2009-01-01

    A multi-scale model has been developed to study the hydrogen retention [A. Rai, R. Schneider, M. Warrier, J. Nucl. Mater. 374 (2008) 304] and chemical erosion of porous graphite. To model the chemical erosion process due to thermal hydrogen ions, Kueppers cycle [J. Kueppers, Surf. Sci. Rep. 22 (1995) 249; M. Wittmann, J. Kueppers, J. Nucl. Mater. 227 (1996) 186] has been introduced. The model is applied to study hydrogen transport in deposits collected from the leading edge of neutralizers of Tore Supra. The effect of internal structure on chemical erosion is studied. The MD study [E. Salonen et al., J. Nucl. Mater. 290-293 (2001) 144] shows that the experimentally observed decrease of erosion yield at higher fluxes is due to the decrease of carbon collision cross-section at a surface due to shielding by hydrogen atom already present on the surface. Inspired by this study, a simple multi-scale model is developed to describe the flux dependence of chemical erosion. The idea is to use the local chemistry effect from the Kueppers model to calculate the hydrocarbon molecule formation process and then to find the release probability of the produced hydrocarbon based on the purely geometrical constraints. The model represents quite well the trends in experimental data.

  18. Modeling the biogeochemical impact of atmospheric phosphate deposition from desert dust and combustion sources to the Mediterranean Sea

    Science.gov (United States)

    Richon, Camille; Dutay, Jean-Claude; Dulac, François; Wang, Rong; Balkanski, Yves

    2018-04-01

    Mediterranean are found localized, seasonally varying and small, but yet statistically significant. Differences in the geographical deposition patterns between phosphate from dust and from combustion will cause contrasted and significant changes in the biogeochemistry of the basin. We contrast the effects of combustion in the northern basin (Pcomb deposition effects are found to be 10 times more important in the northern Adriatic, close to the main source region) to the effects of dust in the southern basin. These different phosphorus sources should therefore be accounted for in modeling studies.

  19. Clinical and MRI models predicting amyloid deposition in progressive aphasia and apraxia of speech.

    Science.gov (United States)

    Whitwell, Jennifer L; Weigand, Stephen D; Duffy, Joseph R; Strand, Edythe A; Machulda, Mary M; Senjem, Matthew L; Gunter, Jeffrey L; Lowe, Val J; Jack, Clifford R; Josephs, Keith A

    2016-01-01

    Beta-amyloid (Aβ) deposition can be observed in primary progressive aphasia (PPA) and progressive apraxia of speech (PAOS). While it is typically associated with logopenic PPA, there are exceptions that make predicting Aβ status challenging based on clinical diagnosis alone. We aimed to determine whether MRI regional volumes or clinical data could help predict Aβ deposition. One hundred and thirty-nine PPA (n = 97; 15 agrammatic, 53 logopenic, 13 semantic and 16 unclassified) and PAOS (n = 42) subjects were prospectively recruited into a cross-sectional study and underwent speech/language assessments, 3.0 T MRI and C11-Pittsburgh Compound B PET. The presence of Aβ was determined using a 1.5 SUVR cut-point. Atlas-based parcellation was used to calculate gray matter volumes of 42 regions-of-interest across the brain. Penalized binary logistic regression was utilized to determine what combination of MRI regions, and what combination of speech and language tests, best predicts Aβ (+) status. The optimal MRI model and optimal clinical model both performed comparably in their ability to accurately classify subjects according to Aβ status. MRI accurately classified 81% of subjects using 14 regions. Small left superior temporal and inferior parietal volumes and large left Broca's area volumes were particularly predictive of Aβ (+) status. Clinical scores accurately classified 83% of subjects using 12 tests. Phonological errors and repetition deficits, and absence of agrammatism and motor speech deficits were particularly predictive of Aβ (+) status. In comparison, clinical diagnosis was able to accurately classify 89% of subjects. However, the MRI model performed well in predicting Aβ deposition in unclassified PPA. Clinical diagnosis provides optimum prediction of Aβ status at the group level, although regional MRI measurements and speech and language testing also performed well and could have advantages in predicting Aβ status in unclassified PPA subjects.

  20. Clinical and MRI models predicting amyloid deposition in progressive aphasia and apraxia of speech

    Directory of Open Access Journals (Sweden)

    Jennifer L. Whitwell

    2016-01-01

    Full Text Available Beta-amyloid (Aβ deposition can be observed in primary progressive aphasia (PPA and progressive apraxia of speech (PAOS. While it is typically associated with logopenic PPA, there are exceptions that make predicting Aβ status challenging based on clinical diagnosis alone. We aimed to determine whether MRI regional volumes or clinical data could help predict Aβ deposition. One hundred and thirty-nine PPA (n = 97; 15 agrammatic, 53 logopenic, 13 semantic and 16 unclassified and PAOS (n = 42 subjects were prospectively recruited into a cross-sectional study and underwent speech/language assessments, 3.0 T MRI and C11-Pittsburgh Compound B PET. The presence of Aβ was determined using a 1.5 SUVR cut-point. Atlas-based parcellation was used to calculate gray matter volumes of 42 regions-of-interest across the brain. Penalized binary logistic regression was utilized to determine what combination of MRI regions, and what combination of speech and language tests, best predicts Aβ (+ status. The optimal MRI model and optimal clinical model both performed comparably in their ability to accurately classify subjects according to Aβ status. MRI accurately classified 81% of subjects using 14 regions. Small left superior temporal and inferior parietal volumes and large left Broca's area volumes were particularly predictive of Aβ (+ status. Clinical scores accurately classified 83% of subjects using 12 tests. Phonological errors and repetition deficits, and absence of agrammatism and motor speech deficits were particularly predictive of Aβ (+ status. In comparison, clinical diagnosis was able to accurately classify 89% of subjects. However, the MRI model performed well in predicting Aβ deposition in unclassified PPA. Clinical diagnosis provides optimum prediction of Aβ status at the group level, although regional MRI measurements and speech and language testing also performed well and could have advantages in predicting Aβ status in unclassified

  1. Modeling of Paleo Heat-and-Mass Trasport for Prognosys of Mineral Deposits Using GIS

    International Nuclear Information System (INIS)

    Cherkasov, Sergei; Vishnevskaya, Natalia; Cassard, Daniel; Sterligov, Boris; Arbuzova, Ekaterina

    2008-01-01

    The heat-and-mass flow from the mantle to the surface can be characterized by the three basic models. The first one represents just a convective heating of the crust by the hot mantle. Two other kinds of the heat-and-mass flow system are rather anomalous and sometimes serve as an engine for launching ore-forming processes. The second model describes a pipe-like conductive heat-and-flow system reasoning appearance of mafic-ultramafic intrusions coming to the surface directly from the upper mantle. The third model corresponds with a complicated convective-conductive process involving melting of crustal rocks, and forming magmatic chambers inside the crust. Analysis of gravimetric and seismic data using geographic informational systems allows us to locate elements of the anomalous heat-and-flow systems. Some of the elements (their projection on the surface) correlate with position of the known deposits of gold, silver, tungsten, tin, sometimes--molybdenum and base metals. The results of studies conducted by the Russian-French Metallogenic Laboratory in the frames of crystalline shields of Russia demonstrate location of 87% of the known gold-bearing deposits inside the zones defined by such analysis

  2. Energy deposition patterns within limb models heated with a mini annular phased array (MAPA) applicator

    International Nuclear Information System (INIS)

    Guerquin-Kern, J.L.; Hagmann, M.J.; Charny, C.K.; Levin, R.L.

    1986-01-01

    A series of experiments has been carried out in order to characterize a MAPA applicator prior to possible clinical implementation. The energy deposition patterns were determined in several human limb models of different complexities. The maximum energy deposition observed in a homogeneous cylindrical phantom was found to be at the middle of the applicator. For more realistically shaped, homogeneous limb models, the point of maximum energy deposition was shifted towards a smaller cross-sectional region; this was also the case for isolated human legs. Furthermore, significant heating was observed in the bone of the isolated legs. Such phenomena illustrate the limitation of using classical 2-D numerical models for predicting the energy deposition patterns in heterogeneous bodies

  3. Simulation and growing study of Cu–Al–S thin films deposited by atomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Duclaux, L., E-mail: loraine-externe.duclaux@edf.fr [Institute of Research and Development on Photovoltaic Energy (IRDEP), EDF R& D/CNRS/ChimieParistech, UMR 7174, 6 quai Watier, 78401 Chatou (France); Donsanti, F.; Vidal, J. [Institute of Research and Development on Photovoltaic Energy (IRDEP), EDF R& D/CNRS/ChimieParistech, UMR 7174, 6 quai Watier, 78401 Chatou (France); Bouttemy, M. [Lavoisier Institute of Versailles, UMR 8180, 45 avenue des Etats-Unis, 78035 Versailles cedex (France); Schneider, N.; Naghavi, N. [Institute of Research and Development on Photovoltaic Energy (IRDEP), EDF R& D/CNRS/ChimieParistech, UMR 7174, 6 quai Watier, 78401 Chatou (France)

    2015-11-02

    In this paper, we have explored the potential of Cu–Al–S compounds as p-type transparent conducting material by means of atomistic simulation using CuAlS{sub 2} as a reference ternary compound and atomic layer deposition (ALD) growth. We have identified key intrinsic point defects acting either as shallow acceptor or deep donor which define the conductivity of CuAlS{sub 2}. Higher p-type conductivity was found to be achievable under metal-poor and chalcogen-rich growth conditions. According to this precept, ALD growth of Cu{sub x}Al{sub y}S{sub z} was attempted using Cu(acac){sub 2} and Al(CH{sub 3}){sub 3} as precursors for Cu and Al respectively and under H{sub 2}S atmosphere. While as grown thin films present low content of Al, it influences the band gap values as well as the obtained structures. - Highlights: • Ab-initio investigation of CuAlS{sub 2} • Indentification of two opposite main-contributive intrinsic defects on the conductivity: V{sub Cu} and Al{sub Cu} • Synthesis of Cu-Al-S ternary compound using atomic layer deposition • Impact of aluminum insertion on the optical and structural properties of the films.

  4. Model catalysis by size-selected cluster deposition

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Scott [Univ. of Utah, Salt Lake City, UT (United States)

    2015-11-20

    This report summarizes the accomplishments during the last four years of the subject grant. Results are presented for experiments in which size-selected model catalysts were studied under surface science and aqueous electrochemical conditions. Strong effects of cluster size were found, and by correlating the size effects with size-dependent physical properties of the samples measured by surface science methods, it was possible to deduce mechanistic insights, such as the factors that control the rate-limiting step in the reactions. Results are presented for CO oxidation, CO binding energetics and geometries, and electronic effects under surface science conditions, and for the electrochemical oxygen reduction reaction, ethanol oxidation reaction, and for oxidation of carbon by water.

  5. Evaluation of five dry particle deposition parameterizations for incorporation into atmospheric transport models

    Science.gov (United States)

    Khan, Tanvir R.; Perlinger, Judith A.

    2017-10-01

    Despite considerable effort to develop mechanistic dry particle deposition parameterizations for atmospheric transport models, current knowledge has been inadequate to propose quantitative measures of the relative performance of available parameterizations. In this study, we evaluated the performance of five dry particle deposition parameterizations developed by Zhang et al. (2001) (Z01), Petroff and Zhang (2010) (PZ10), Kouznetsov and Sofiev (2012) (KS12), Zhang and He (2014) (ZH14), and Zhang and Shao (2014) (ZS14), respectively. The evaluation was performed in three dimensions: model ability to reproduce observed deposition velocities, Vd (accuracy); the influence of imprecision in input parameter values on the modeled Vd (uncertainty); and identification of the most influential parameter(s) (sensitivity). The accuracy of the modeled Vd was evaluated using observations obtained from five land use categories (LUCs): grass, coniferous and deciduous forests, natural water, and ice/snow. To ascertain the uncertainty in modeled Vd, and quantify the influence of imprecision in key model input parameters, a Monte Carlo uncertainty analysis was performed. The Sobol' sensitivity analysis was conducted with the objective to determine the parameter ranking from the most to the least influential. Comparing the normalized mean bias factors (indicators of accuracy), we find that the ZH14 parameterization is the most accurate for all LUCs except for coniferous forest, for which it is second most accurate. From Monte Carlo simulations, the estimated mean normalized uncertainties in the modeled Vd obtained for seven particle sizes (ranging from 0.005 to 2.5 µm) for the five LUCs are 17, 12, 13, 16, and 27 % for the Z01, PZ10, KS12, ZH14, and ZS14 parameterizations, respectively. From the Sobol' sensitivity results, we suggest that the parameter rankings vary by particle size and LUC for a given parameterization. Overall, for dp = 0.001 to 1.0 µm, friction velocity was one of

  6. Evaluation of five dry particle deposition parameterizations for incorporation into atmospheric transport models

    Directory of Open Access Journals (Sweden)

    T. R. Khan

    2017-10-01

    Full Text Available Despite considerable effort to develop mechanistic dry particle deposition parameterizations for atmospheric transport models, current knowledge has been inadequate to propose quantitative measures of the relative performance of available parameterizations. In this study, we evaluated the performance of five dry particle deposition parameterizations developed by Zhang et al. (2001 (Z01, Petroff and Zhang (2010 (PZ10, Kouznetsov and Sofiev (2012 (KS12, Zhang and He (2014 (ZH14, and Zhang and Shao (2014 (ZS14, respectively. The evaluation was performed in three dimensions: model ability to reproduce observed deposition velocities, Vd (accuracy; the influence of imprecision in input parameter values on the modeled Vd (uncertainty; and identification of the most influential parameter(s (sensitivity. The accuracy of the modeled Vd was evaluated using observations obtained from five land use categories (LUCs: grass, coniferous and deciduous forests, natural water, and ice/snow. To ascertain the uncertainty in modeled Vd, and quantify the influence of imprecision in key model input parameters, a Monte Carlo uncertainty analysis was performed. The Sobol' sensitivity analysis was conducted with the objective to determine the parameter ranking from the most to the least influential. Comparing the normalized mean bias factors (indicators of accuracy, we find that the ZH14 parameterization is the most accurate for all LUCs except for coniferous forest, for which it is second most accurate. From Monte Carlo simulations, the estimated mean normalized uncertainties in the modeled Vd obtained for seven particle sizes (ranging from 0.005 to 2.5 µm for the five LUCs are 17, 12, 13, 16, and 27 % for the Z01, PZ10, KS12, ZH14, and ZS14 parameterizations, respectively. From the Sobol' sensitivity results, we suggest that the parameter rankings vary by particle size and LUC for a given parameterization. Overall, for dp  =  0.001 to 1.0

  7. Stratigraphic model deposit Ofi Inf SDZ-2X A1, Jun in block in Orinoco Oil belt

    International Nuclear Information System (INIS)

    Martinez, E.; Sandoval, D.

    2010-01-01

    This work is about the Stratigraphic model deposit O fi I nf SDZ-2X A1, Junin block in Orinoco Oil belt.This model was based on a chrono stratigraphic interpretation and was defined the correlation between the main and secondary surfaces. The wells of the study area pass through the Cambrian, Cretaceous and Miocene sediments. The last is more interesting for the study because of the stratigraphic and sand body surface presence

  8. Mineralogical and geochemical study of contaminated soils on abandoned Sb deposits Dubrava and Poproc

    International Nuclear Information System (INIS)

    Klimko, T.; Jurkovic, L.

    2010-01-01

    In this paper we present initial results of mineralogical and geochemical study of secondary mineral phases, often with a high content of Sb and As, resulting from oxidation of sulphide minerals in the soil environment on two, now abandoned Sb deposits. Dubrava deposit is situated on the northern slopes of the Dumbier Low Tatras and Poproc deposit is located in the eastern part of Spis-Gemer Rudohorie. Both studied sites were in the past (second half of 20 th century) significant producers of antimony ore and Dubrava deposit belonged to medium-sized Sb deposits in the world.

  9. Iron deposition is independent of cellular inflammation in a cerebral model of multiple sclerosis

    Directory of Open Access Journals (Sweden)

    Lee Phil

    2011-06-01

    Full Text Available Abstract Background Perivenular inflammation is a common early pathological feature in multiple sclerosis (MS. A recent hypothesis stated that CNS inflammation is induced by perivenular iron deposits that occur in response to altered blood flow in MS subjects. In order to evaluate this hypothesis, an animal model was developed, called cerebral experimental autoimmune encephalomyelitis (cEAE, which presents with CNS perivascular iron deposits. This model was used to investigate the relationship of iron deposition to inflammation. Methods In order to generate cEAE, mice were given an encephalitogen injection followed by a stereotactic intracerebral injection of TNF-α and IFN-γ. Control animals received encephalitogen followed by an intracerebral injection of saline, or no encephalitogen plus an intracerebral injection of saline or cytokines. Laser Doppler was used to measure cerebral blood flow. MRI and iron histochemistry were used to localize iron deposits. Additional histological procedures were used to localize inflammatory cell infiltrates, microgliosis and astrogliosis. Results Doppler analysis revealed that cEAE mice had a reduction in cerebral blood flow compared to controls. MRI revealed T2 hypointense areas in cEAE animals that spatially correlated with iron deposition around vessels and at some sites of inflammation as detected by iron histochemistry. Vessels with associated iron deposits were distributed across both hemispheres. Mice with cEAE had more iron-labeled vessels compared to controls, but these vessels were not commonly associated with inflammatory cell infiltrates. Some iron-laden vessels had associated microgliosis that was above the background microglial response, and iron deposits were observed within reactive microglia. Vessels with associated astrogliosis were more commonly observed without colocalization of iron deposits. Conclusion The findings indicate that iron deposition around vessels can occur independently of

  10. A depositional model for the Taylor coal bed, Martin and Johnson counties, eastern Kentucky

    Science.gov (United States)

    Andrews, W.M.; Hower, J.C.; Ferm, J.C.; Evans, S.D.; Sirek, N.S.; Warrell, M.; Eble, C.F.

    1996-01-01

    This study investigated the Taylor coal bed in Johnson and Martin counties, eastern Kentucky, using field and petrographic techniques to develop a depositional model of the coal bed. Petrography and chemistry of the coal bed were examined. Multiple benches of the Taylor coal bed were correlated over a 10 km distance. Three sites were studied in detail. The coal at the western and eastern sites were relatively thin and split by thick clastic partings. The coal at the central site was the thickest and unsplit. Two major clastic partings are included in the coal bed. Each represents a separate and distinct fluvial splay. The Taylor is interpreted to have developed on a coastal plain with periodic flooding from nearby, structurally-controlled fluvial systems. Doming is unlikely due to the petrographic and chemical trends, which are inconsistent with modern Indonesian models. The depositional history and structural and stratigraphic setting suggest contemporaneous structural influence on thickness and quality of the Taylor coal bed in this area.

  11. Simulation study of depositing the carbon film on nanoparticles in the magnetized methane plasma

    Science.gov (United States)

    Mohammadzadeh, Hosein; Pourali, Nima; Ebadi, Zahra

    2018-03-01

    Plasma coating of nanoparticles in low-temperature magnetized methane plasma is studied by a simulation approach. To this end, by using the global model, the electron temperature and concentration of different species considered in this plasma are determined in the center of a capacitively coupled discharge. Then, the plasma-wall transition region in the presence of an oblique magnetic field is simulated by the multi-component fluid description. Nanoparticles with different radii are injected into the transition region and surface deposition and heating models, as well as dynamics and charging models, are employed to examine the coating process. The results of the simulation show that the non-spherical growth of nanoparticles is affected by the presence of the magnetic field, as with passing time, an oscillating increase is seen in the thickness of the film deposited on nanoparticles. Also, it is shown that the uniformity of the deposited film is dependent on the rotation velocity of nanoparticles. Generally, the obtained results imply that the sphericity of nanoparticles and uniformity of the film coated on them are controllable by the magnitude and orientation of the magnetic field.

  12. Hydromechanical modelling with application in sealing for underground waste deposition

    Energy Technology Data Exchange (ETDEWEB)

    Hasal, Martin, E-mail: martin.hasal@vsb.cz; Michalec, Zdeněk; Blaheta, Radim [Institute of Geonics AS CR, Studentska 1768, 70800 Ostrava-Poruba (Czech Republic)

    2015-03-10

    Hydro-mechanical models appear in simulation of many environmental problems related to construction of engineering barriers for contaminant spreading. The presented work aims in modelling bentonite-sand barriers, which can be used for nuclear waste isolation and similar problems. Particularly, we use hydro-mechanical model coupling unsaturated flow and (nonlinear) elasticity, implement such model in COMSOL software and show application in simulation of an infiltration test (2D axisymmetric model) and the SEALEX Water test WT1 experiment (3D model). Finally, we discuss the needs and possibilities of parallel high performance computing.

  13. A simple model to estimate deposition based on a statistical reassessment of global fallout data

    DEFF Research Database (Denmark)

    Palsson, S.E.; Howard, B.J.; Bergan, T.D.

    2013-01-01

    . A correlation was identified between fallout deposition and precipitation and an uneven distribution with latitude. In this study, the available data from 1954 to 1976 for 90Sr and 137Cs were reanalysed using analysis of covariance (ANCOVA) and logarithmically transformed values of the monthly deposition...

  14. Meso-scale modeling of air pollution transport/chemistry/deposition and its application

    International Nuclear Information System (INIS)

    Kitada, Toshihiro

    2007-01-01

    Transport/chemistry/deposition model for atmospheric trace chemical species is now regarded as an important tool for an understanding of the effects of various human activities, such as fuel combustion and deforestation, on human health, eco-system, and climate and for planning of appropriate control of emission sources. Several 'comprehensive' models have been proposed such as RADM (Chang, et al., 1987), STEM-II (Carmichael, et al., 1986), and CMAQ (Community Multi-scale Air Quality model, e.g., EPA website, 2003); the 'comprehensive' models include not only gas/aerosol phase chemistry but also aqueous phase chemistry in cloud/rain water in addition to the processes of advection, diffusion, wet deposition (mass transfer between aqueous and gas/aerosol phases), and dry deposition. The target of the development of the 'comprehensive' model will be that the model can correctly reproduce mass balance of various chemical species in the atmosphere with keeping adequate accuracy for calculated concentration distributions of chemical species. For the purpose, one of the important problems is a reliable wet deposition modeling, and here, we introduce two types of methods of 'cloud-resolving' and 'non-cloud-resolving' modeling for the wet deposition of pollutants. (author)

  15. A Generic Model for the Resuspension of Multilayer Aerosol Deposits by Turbulent Flow

    International Nuclear Information System (INIS)

    Friess, H.; Yadigaroglu, G.

    2001-01-01

    An idealized lattice structure is considered of multilayer aerosol deposits, where every particle at the deposit surface is associated with a resuspension rate constant depending on a statistically distributed particle parameter and on flow conditions. The response of this generic model is represented by a set of integrodifferential equations. As a first application of the general formalism, the behavior of Fromentin's multilayer model is analyzed, and the model parameters are adapted to experimental data. In addition, improved relations between model parameters and physical input parameters are proposed. As a second application, a method is proposed for building multilayer models by using resuspension rate constants of existing monolayer models. The method is illustrated by a sample of monolayer data resulting from the model of Reeks, Reed, and Hall. Also discussed is the error to be expected if a monolayer resuspension model, which works well for thin aerosol deposits, is applied to thick deposits under the classical monolayer assumption that all deposited particles interact with the fluid at all times

  16. Sources and processes contributing to nitrogen deposition: an adjoint model analysis applied to biodiversity hotspots worldwide.

    Science.gov (United States)

    Paulot, Fabien; Jacob, Daniel J; Henze, Daven K

    2013-04-02

    Anthropogenic enrichment of reactive nitrogen (Nr) deposition is an ecological concern. We use the adjoint of a global 3-D chemical transport model (GEOS-Chem) to identify the sources and processes that control Nr deposition to an ensemble of biodiversity hotspots worldwide and two U.S. national parks (Cuyahoga and Rocky Mountain). We find that anthropogenic sources dominate deposition at all continental sites and are mainly regional (less than 1000 km) in origin. In Hawaii, Nr supply is controlled by oceanic emissions of ammonia (50%) and anthropogenic sources (50%), with important contributions from Asia and North America. Nr deposition is also sensitive in complicated ways to emissions of SO2, which affect Nr gas-aerosol partitioning, and of volatile organic compounds (VOCs), which affect oxidant concentrations and produce organic nitrate reservoirs. For example, VOC emissions generally inhibit deposition of locally emitted NOx but significantly increase Nr deposition downwind. However, in polluted boreal regions, anthropogenic VOC emissions can promote Nr deposition in winter. Uncertainties in chemical rate constants for OH + NO2 and NO2 hydrolysis also complicate the determination of source-receptor relationships for polluted sites in winter. Application of our adjoint sensitivities to the representative concentration pathways (RCPs) scenarios for 2010-2050 indicates that future decreases in Nr deposition due to NOx emission controls will be offset by concurrent increases in ammonia emissions from agriculture.

  17. A theoretical model for prediction of deposition efficiency in cold spraying

    International Nuclear Information System (INIS)

    Li Changjiu; Li Wenya; Wang Yuyue; Yang Guanjun; Fukanuma, H.

    2005-01-01

    The deposition behavior of a spray particle stream with a particle size distribution was theoretically examined for cold spraying in terms of deposition efficiency as a function of particle parameters and spray angle. The theoretical relation was established between the deposition efficiency and spray angle. The experiments were conducted by measuring deposition efficiency at different driving gas conditions and different spray angles using gas-atomized copper powder. It was found that the theoretically estimated results agreed reasonably well with the experimental ones. Based on the theoretical model and experimental results, it was revealed that the distribution of particle velocity resulting from particle size distribution influences significantly the deposition efficiency in cold spraying. It was necessary for the majority of particles to achieve a velocity higher than the critical velocity in order to improve the deposition efficiency. The normal component of particle velocity contributed to the deposition of the particle under the off-nomal spray condition. The deposition efficiency of sprayed particles decreased owing to the decrease of the normal velocity component as spray was performed at off-normal angle

  18. Multi-model Mean Nitrogen and Sulfur Deposition from the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP): Evaluation of Historical and Projected Future Changes

    Energy Technology Data Exchange (ETDEWEB)

    Lamarque, Jean-Francois; Dentener, Frank; McConnell, J.R.; Ro, C-U; Shaw, Mark; Vet, Robert; Bergmann, D.; Cameron-Smith, Philip; Dalsoren, S.; Doherty, R.; Faluvegi, G.; Ghan, Steven J.; Josse, B.; Lee, Y. H.; MacKenzie, I. A.; Plummer, David; Shindell, Drew; Skeie, R. B.; Stevenson, D. S.; Strode, S.; Zeng, G.; Curran, M.; Dahl-Jensen, D.; Das, S.; Fritzsche, D.; Nolan, M.

    2013-08-20

    We present multi-model global datasets of nitrogen and sulfate deposition covering time periods from 1850 to 2100, calculated within the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP). The computed deposition fluxes are compared to surface wet deposition and ice-core measurements. We use a new dataset of wet deposition for 2000-2002 based on critical assessment of the quality of existing regional network data. We show that for present-day (year 2000 ACCMIP time-slice), the ACCMIP results perform similarly to previously published multi-model assessments. The analysis of changes between 1980 and 2000 indicates significant differences between model and measurements over the United States, but less so over Europe. This difference points towards misrepresentation of 1980 NH3 emissions over North America. Based on ice-core records, the 1850 deposition fluxes agree well with Greenland ice cores but the change between 1850 and 2000 seems to be overestimated in the Northern Hemisphere for both nitrogen and sulfur species. Using the Representative Concentration Pathways to define the projected climate and atmospheric chemistry related emissions and concentrations, we find large regional nitrogen deposition increases in 2100 in Latin America, Africa and parts of Asia under some of the scenarios considered. Increases in South Asia are especially large, and are seen in all scenarios, with 2100 values more than double 2000 in some scenarios and reaching >1300 mgN/m2/yr averaged over regional to continental scale regions in RCP 2.6 and 8.5, ~30-50% larger than the values in any region currently (2000). Despite known issues, the new ACCMIP deposition dataset provides novel, consistent and evaluated global gridded deposition fields for use in a wide range of climate and ecological studies.

  19. In situ thermal imaging and three-dimensional finite element modeling of tungsten carbide-cobalt during laser deposition

    International Nuclear Information System (INIS)

    Xiong Yuhong; Hofmeister, William H.; Cheng Zhao; Smugeresky, John E.; Lavernia, Enrique J.; Schoenung, Julie M.

    2009-01-01

    Laser deposition is being used for the fabrication of net shapes from a broad range of materials, including tungsten carbide-cobalt (WC-Co) cermets (composites composed of a metallic phase and a hard refractory phase). During deposition, an unusual thermal condition is created for cermets, resulting in rather complex microstructures. To provide a fundamental insight into the evolution of such microstructures, we studied the thermal behavior of WC-Co cermets during laser deposition involving complementary results from in situ high-speed thermal imaging and three-dimensional finite element modeling. The former allowed for the characterization of temperature gradients and cooling rates in the vicinity of the molten pool, whereas the latter allowed for simulation of the entire sample. By combining the two methods, a more robust analysis of the thermal behavior was achieved. The model and the imaging results correlate well with each other and with the alternating sublayers observed in the microstructure.

  20. Experimental Validation of Plastic Mandible Models Produced by a “Low-Cost” 3-Dimensional Fused Deposition Modeling Printer

    Science.gov (United States)

    Maschio, Federico; Pandya, Mirali; Olszewski, Raphael

    2016-01-01

    Background The objective of this study was to investigate the accuracy of 3-dimensional (3D) plastic (ABS) models generated using a low-cost 3D fused deposition modelling printer. Material/Methods Two human dry mandibles were scanned with a cone beam computed tomography (CBCT) Accuitomo device. Preprocessing consisted of 3D reconstruction with Maxilim software and STL file repair with Netfabb software. Then, the data were used to print 2 plastic replicas with a low-cost 3D fused deposition modeling printer (Up plus 2®). Two independent observers performed the identification of 26 anatomic landmarks on the 4 mandibles (2 dry and 2 replicas) with a 3D measuring arm. Each observer repeated the identifications 20 times. The comparison between the dry and plastic mandibles was based on 13 distances: 8 distances less than 12 mm and 5 distances greater than 12 mm. Results The mean absolute difference (MAD) was 0.37 mm, and the mean dimensional error (MDE) was 3.76%. The MDE decreased to 0.93% for distances greater than 12 mm. Conclusions Plastic models generated using the low-cost 3D printer UPplus2® provide dimensional accuracies comparable to other well-established rapid prototyping technologies. Validated low-cost 3D printers could represent a step toward the better accessibility of rapid prototyping technologies in the medical field. PMID:27003456

  1. Experimental Validation of Plastic Mandible Models Produced by a "Low-Cost" 3-Dimensional Fused Deposition Modeling Printer.

    Science.gov (United States)

    Maschio, Federico; Pandya, Mirali; Olszewski, Raphael

    2016-03-22

    The objective of this study was to investigate the accuracy of 3-dimensional (3D) plastic (ABS) models generated using a low-cost 3D fused deposition modelling printer. Two human dry mandibles were scanned with a cone beam computed tomography (CBCT) Accuitomo device. Preprocessing consisted of 3D reconstruction with Maxilim software and STL file repair with Netfabb software. Then, the data were used to print 2 plastic replicas with a low-cost 3D fused deposition modeling printer (Up plus 2®). Two independent observers performed the identification of 26 anatomic landmarks on the 4 mandibles (2 dry and 2 replicas) with a 3D measuring arm. Each observer repeated the identifications 20 times. The comparison between the dry and plastic mandibles was based on 13 distances: 8 distances less than 12 mm and 5 distances greater than 12 mm. The mean absolute difference (MAD) was 0.37 mm, and the mean dimensional error (MDE) was 3.76%. The MDE decreased to 0.93% for distances greater than 12 mm. Plastic models generated using the low-cost 3D printer UPplus2® provide dimensional accuracies comparable to other well-established rapid prototyping technologies. Validated low-cost 3D printers could represent a step toward the better accessibility of rapid prototyping technologies in the medical field.

  2. Application of Physiographic Soil Erosion–Deposition Model in ...

    Indian Academy of Sciences (India)

    69

    8 estimate the efficiency of empty flushing. The model was verified using data ... concern, as evidenced by the large number of reservoir sedimentation management .... the PSED model with the sediment flushing of the empty storage operation ...

  3. Interception of wet deposited atmospheric pollutants by herbaceous vegetation: Data review and modelling

    Energy Technology Data Exchange (ETDEWEB)

    Gonze, M.-A., E-mail: marc-andre.gonze@irsn.fr; Sy, M.M.

    2016-09-15

    Better understanding and predicting interception of wet deposited pollutants by vegetation remains a key issue in risk assessment studies of atmospheric pollution. We develop different alternative models, following either empirical or semi-mechanistic descriptions, on the basis of an exhaustive dataset consisting of 440 observations obtained in controlled experiments, from 1970 to 2014, for a wide variety of herbaceous plants, radioactive substances and rainfall conditions. The predictive performances of the models and the uncertainty/variability of the parameters are evaluated under Hierarchical Bayesian modelling framework. It is demonstrated that the variability of the interception fraction is satisfactorily explained and quite accurately modelled by a process-based alternative in which absorption of ionic substances onto the foliage surfaces is determined by their electrical valence. Under this assumption, the 95% credible interval of the predicted interception fraction encompasses 81% of the observations, including situations where either plant biomass or rainfall intensity are unknown. This novel approach is a serious candidate to challenge existing empirical relationships in radiological or chemical risk assessment tools. - Highlights: • Literature data on the interception of atmospheric pollutants by herbs were reviewed • Predictive models were developed and evaluated in the Bayesian modelling framework • Sensitivity of interception to environmental conditions was satisfactorily explained • 81% of the observations were satisfactorily predicted by a semi-mechanistic model • This model challenges empirical relationships currently used in risk assessment tools.

  4. [3D printing personalized implant manufactured via fused deposition modeling: an accuracy research].

    Science.gov (United States)

    Wang, Ning; Li, Jie; Wang, Xiaolong; Liu, Gang; Liu, Bin

    2015-10-01

    The aim of this study was to determine the accuracy of personalized implant fabricated via 3D printing and fused deposition modeling technique (FDM) and to compare the results with a real tooth. Six prepared extracted orthodontic teeth (in vivo) were scanned via cone beam computed tomography (CBCT) to obtain 3D data and to build the data models by using Mimics 15.0 software. The extracted orthodontic teeth (in vitro) and the personalized implants designed via 3D printing and FDM were scanned via CBCT to obtain data and to build the data models at the same parameters. The 3D deviations were compared among the in vivo teeth data models, in vitro teeth data models, and printing personalized implant data models by using the Geomagic studio software. The average deviations of high and low areas between date models of in vivo teeth and personalized implants were 0.19 mm and -0.16 mm, respectively, and the average deviations between in vitro and in vivo teeth were 0.14 mm and -0.07 mm, respectively. The independent t test showed that no statistically significant difference was observed between the two groups (P>0.05). 1) The personalized dental implants were manufactured via 3D printing and FDM with a high degree of precision. 2) Errors between the data models of in vitro and in vivo teeth were observed at the same CBCT parameters.

  5. A thermoluminescence study of vempalle dolomites and its depositional environments

    International Nuclear Information System (INIS)

    Bhattacharya, A.K.; Rao, C.N.; Kaul, I.K.

    1976-01-01

    An attempt has been made to interpret the depositional environment of Vempalle dolomites (India) by thermoluminescence method. It has been demonstrated that glow curve patterns reflect the environmental condition of deposition for carbonate sediments. The glow curves were obtained for natural samples as well as samples irradiated by Co 60 and compared. A majority of the samples were concluded to be diagenetic. (A.K.)

  6. The giant Jiaodong gold province: The key to a unified model for orogenic gold deposits?

    Directory of Open Access Journals (Sweden)

    David I. Groves

    2016-05-01

    Full Text Available Although the term orogenic gold deposit has been widely accepted for all gold-only lode-gold deposits, with the exception of Carlin-type deposits and rare intrusion-related gold systems, there has been continuing debate on their genesis. Early syngenetic models and hydrothermal models dominated by meteoric fluids are now clearly unacceptable. Magmatic-hydrothermal models fail to explain the genesis of orogenic gold deposits because of the lack of consistent spatially – associated granitic intrusions and inconsistent temporal relationships. The most plausible, and widely accepted, models involve metamorphic fluids, but the source of these fluids is hotly debated. Sources within deeper segments of the supracrustal successions hosting the deposits, the underlying continental crust, and subducted oceanic lithosphere and its overlying sediment wedge all have their proponents. The orogenic gold deposits of the giant Jiaodong gold province of China, in the delaminated North China Craton, contain ca. 120 Ma gold deposits in Precambrian crust that was metamorphosed over 2000 million years prior to gold mineralization. The only realistic source of fluid and gold is a subducted oceanic slab with its overlying sulfide-rich sedimentary package, or the associated mantle wedge. This could be viewed as an exception to a general metamorphic model where orogenic gold has been derived during greenschist- to amphibolite-facies metamorphism of supracrustal rocks: basaltic rocks in the Precambrian and sedimentary rocks in the Phanerozoic. Alternatively, if a holistic view is taken, Jiaodong can be considered the key orogenic gold province for a unified model in which gold is derived from late-orogenic metamorphic devolatilization of stalled subduction slabs and oceanic sediments throughout Earth history. The latter model satisfies all geological, geochronological, isotopic and geochemical constraints but the precise mechanisms of auriferous fluid release, like many

  7. Modelling the impact of climate change and atmospheric N deposition on French forests biodiversity

    International Nuclear Information System (INIS)

    Rizzetto, Simon; Belyazid, Salim; Gégout, Jean-Claude; Nicolas, Manuel; Alard, Didier; Corcket, Emmanuel; Gaudio, Noémie; Sverdrup, Harald; Probst, Anne

    2016-01-01

    A dynamic coupled biogeochemical–ecological model was used to simulate the effects of nitrogen deposition and climate change on plant communities at three forest sites in France. The three sites had different forest covers (sessile oak, Norway spruce and silver fir), three nitrogen loads ranging from relatively low to high, different climatic regions and different soil types. Both the availability of vegetation time series and the environmental niches of the understory species allowed to evaluate the model for predicting the composition of the three plant communities. The calibration of the environmental niches was successful, with a model performance consistently reasonably high throughout the three sites. The model simulations of two climatic and two deposition scenarios showed that climate change may entirely compromise the eventual recovery from eutrophication of the simulated plant communities in response to the reductions in nitrogen deposition. The interplay between climate and deposition was strongly governed by site characteristics and histories in the long term, while forest management remained the main driver of change in the short term. - Highlights: • The effects of N atmospheric deposition and climate change on vegetation were simulated. • The model ForSAFE-Veg was calibrated and validated carefully for three forests in France. • Climate has a greater influence on vegetation than N deposition in conifer forests. • N-poor ecosystems are, however, more sensitive to N deposition than to climate change. - Compared to nitrogen atmospheric deposition, climate appears to be the main driver of change in forest plant biodiversity on a century scale, except in N-poor ecosystems.

  8. Deposition behaviour of model biofuel ash in mixtures with quartz sand. Part 1: Experimental data

    Energy Technology Data Exchange (ETDEWEB)

    Mischa Theis; Christian Mueller; Bengt-Johan Skrifvars; Mikko Hupa; Honghi Tran [Aabo Akademi Process Chemistry Centre, Aabo (Finland). Combustion and Materials Chemistry

    2006-10-15

    Model biofuel ash of well-defined size and melting properties was fed into an entrained flow reactor (EFR) to simulate the deposition behaviour of commercially applied biofuel mixtures in large-scale boilers. The aim was to obtain consistent experimental data that can be used for validation of computational fluid dynamics (CFD)-based deposition models. The results showed that while up to 80 wt% of the feed was lost to the EFR wall, the composition of the model ash particles collected at the reactor exit did not change. When model ashes were fed into the reactor individually, the ash particles were found to be sticky when they contained more than 15 wt% molten phase. When model ashes were fed in mixtures with silica sand, it was found that only a small amount of sand particles was captured in the deposits; the majority rebounded upon impact. The presence of sand in the feed mixture reduced the deposit buildup by more than could be expected from linear interpolation between the model ash and the sand. The results suggested that sand addition to model ash may prevent deposit buildup through erosion. 22 refs., 6 figs., 3 tabs.

  9. Model predictions of long-lived storage of organic carbon in river deposits

    Directory of Open Access Journals (Sweden)

    M. A. Torres

    2017-11-01

    Full Text Available The mass of carbon stored as organic matter in terrestrial systems is sufficiently large to play an important role in the global biogeochemical cycling of CO2 and O2. Field measurements of radiocarbon-depleted particulate organic carbon (POC in rivers suggest that terrestrial organic matter persists in surface environments over millennial (or greater timescales, but the exact mechanisms behind these long storage times remain poorly understood. To address this knowledge gap, we developed a numerical model for the radiocarbon content of riverine POC that accounts for both the duration of sediment storage in river deposits and the effects of POC cycling. We specifically target rivers because sediment transport influences the maximum amount of time organic matter can persist in the terrestrial realm and river catchment areas are large relative to the spatial scale of variability in biogeochemical processes.Our results show that rivers preferentially erode young deposits, which, at steady state, requires that the oldest river deposits are stored for longer than expected for a well-mixed sedimentary reservoir. This geometric relationship can be described by an exponentially tempered power-law distribution of sediment storage durations, which allows for significant aging of biospheric POC. While OC cycling partially limits the effects of sediment storage, the consistency between our model predictions and a compilation of field data highlights the important role of storage in setting the radiocarbon content of riverine POC. The results of this study imply that the controls on the terrestrial OC cycle are not limited to the factors that affect rates of primary productivity and respiration but also include the dynamics of terrestrial sedimentary systems.

  10. Thermal analysis of fused deposition modeling process using infrared thermography imaging and finite element modeling

    Science.gov (United States)

    Zhou, Xunfei; Hsieh, Sheng-Jen

    2017-05-01

    After years of development, Fused Deposition Modeling (FDM) has become the most popular technique in commercial 3D printing due to its cost effectiveness and easy-to-operate fabrication process. Mechanical strength and dimensional accuracy are two of the most important factors for reliability of FDM products. However, the solid-liquid-solid state changes of material in the FDM process make it difficult to monitor and model. In this paper, an experimental model was developed to apply cost-effective infrared thermography imaging method to acquire temperature history of filaments at the interface and their corresponding cooling mechanism. A three-dimensional finite element model was constructed to simulate the same process using element "birth and death" feature and validated with the thermal response from the experimental model. In 6 of 9 experimental conditions, a maximum of 13% difference existed between the experimental and numerical models. This work suggests that numerical modeling of FDM process is reliable and can facilitate better understanding of bead spreading and road-to-road bonding mechanics during fabrication.

  11. Parameters for modelling the interception and retention of deposits from atmosphere by grain and leafy vegetables

    International Nuclear Information System (INIS)

    Simmonds, J.R.; Linsley, G.S.

    1982-01-01

    The Normalised Specific Activity (NSA), a quantity which relates the concentration of a contaminant per unit mass of vegetation to its daily rate of ground deposition, has been used as the basis for determining interception factors and retention half-lives for radioactive contaminants deposited on grain and leafy vegetables. The values are for use in assessing contamination levels on crops at harvest during condition of continuous deposition. The approach implicitly takes account of other processes which influence foliar contamination, namely, translocation and dilution due to plant growth. The respective NSA values for grain and prepared leafy vegetables determined from several separate experimental studies are fairly constant and are of about the same level for fall-out strontium and caesium. There is evidence from previous studies on herbage to suggest that similar NSA values might be expected for other contaminants on grain and leafy vegetables. Plutonium is an exception in that NSA values for grain and prepared leafy vegetables are lower than those for the fission products by factors of between 5 and 10 depending upon the source of the contaminant. Consideration has been given to determining the most appropriate value of the fraction of activity transferred from grain to flour during refining. This is an element dependent parameter and the values estimated for strontium, caesium and plutonium are respectively 0.15, 0.5 and 0.1. The study has indicated the need for data in several areas in order to improve the capability to model interception and retention on field crops in continuous and acute release conditions. (author)

  12. Effects of generation time on spray aerosol transport and deposition in models of the mouth-throat geometry.

    Science.gov (United States)

    Worth Longest, P; Hindle, Michael; Das Choudhuri, Suparna

    2009-06-01

    For most newly developed spray aerosol inhalers, the generation time is a potentially important variable that can be fully controlled. The objective of this study was to determine the effects of spray aerosol generation time on transport and deposition in a standard induction port (IP) and more realistic mouth-throat (MT) geometry. Capillary aerosol generation (CAG) was selected as a representative system in which spray momentum was expected to significantly impact deposition. Sectional and total depositions in the IP and MT geometries were assessed at a constant CAG flow rate of 25 mg/sec for aerosol generation times of 1, 2, and 4 sec using both in vitro experiments and a previously developed computational fluid dynamics (CFD) model. Both the in vitro and numerical results indicated that extending the generation time of the spray aerosol, delivered at a constant mass flow rate, significantly reduced deposition in the IP and more realistic MT geometry. Specifically, increasing the generation time of the CAG system from 1 to 4 sec reduced the deposition fraction in the IP and MT geometries by approximately 60 and 33%, respectively. Furthermore, the CFD predictions of deposition fraction were found to be in good agreement with the in vitro results for all times considered in both the IP and MT geometries. The numerical results indicated that the reduction in deposition fraction over time was associated with temporal dissipation of what was termed the spray aerosol "burst effect." Based on these results, increasing the spray aerosol generation time, at a constant mass flow rate, may be an effective strategy for reducing deposition in the standard IP and in more realistic MT geometries.

  13. A Mathematical Model for Non-monotonic Deposition Profiles in Deep Bed Filtration Systems

    DEFF Research Database (Denmark)

    Yuan, Hao; Shapiro, Alexander

    2011-01-01

    A mathematical model for suspension/colloid flow in porous media and non-monotonic deposition is proposed. It accounts for the migration of particles associated with the pore walls via the second energy minimum (surface associated phase). The surface associated phase migration is characterized...... by advection and diffusion/dispersion. The proposed model is able to produce a nonmonotonic deposition profile. A set of methods for estimating the modeling parameters is provided in the case of minimal particle release. The estimation can be easily performed with available experimental information....... The numerical modeling results highly agree with the experimental observations, which proves the ability of the model to catch a non-monotonic deposition profile in practice. An additional equation describing a mobile population behaving differently from the injected population seems to be a sufficient...

  14. Simulation study on insoluble granular corrosion products deposited in PWR core

    International Nuclear Information System (INIS)

    Yang Xu; Zhou Tao; Ru Xiaolong; Lin Daping; Fang Xiaolu

    2014-01-01

    In the operation of reactor, such as fuel rods, reactor vessel internals etc. will be affected by corrosion erosion of high pressure coolant. It will produce many insoluble corrosion products. The FLUENT software is adopted to simulate insoluble granular corrosion products deposit distribution in the reactor core. The fluid phase uses the standard model to predict the flow field in the channel and forecast turbulence variation in the near-wall region. The insoluble granular corrosion products use DPM (Discrete Phase Model) to track the trajectory of the particles. The discrete phase model in FLUENT follows the Euler-Lagrange approach. The fluid phase is treated as a continuum by solving the Navier-Stokes equations, while the dispersed phase is solved by tracking a large number of particles through the calculated flow field. Through the study found, Corrosion products particles form high concentration area near the symmetry, and the entrance section of the corrosion products particles concentration is higher than export section. Corrosion products particles deposition attached on large area for the entrance of the cladding, this will change the core neutron flux distribution and the thermal conductivity of cladding material, and cause core axial offset anomaly (AOA). Corrosion products particles dot deposit in the outlet of cladding, which can lead to pitting phenomenon in a sheath. Pitting area will cause deterioration of heat transfer, destroy the cladding integrity. In view of the law of corrosion products deposition and corrosion characteristics of components in the reactor core. this paper proposes regular targeted local cleanup and other mitigation measures. (authors)

  15. Estimating dual deposit insurance premium rates and forecasting non-performing loans: Two new models

    OpenAIRE

    Yoshino, Naoyuki; Taghizadeh-Hesary, Farhad; Nili, Farhad

    2015-01-01

    Risky banks that endanger the stability of the financial system should pay higher deposit insurance premiums than healthy banks and other financial institutions that have shown good financial performance. It is necessary, therefore, to have at least a dual fair premium rate system. In this paper, we develop a model for calculating dual fair premium rates. Our definition of a fair premium rate in this paper is a rate that could cover the operational expenditures of the deposit insuring organiz...

  16. Control of remediation of uranium deposit Straz with use of numerical modelling approach

    International Nuclear Information System (INIS)

    Novak, J.; Muzak, J.; Smetana, R.

    2002-01-01

    The chemical mining of uranium on the deposit Straz has caused large contamination of groundwater of cretaceous collectors in Straz block of Northbohemian cretaceous table. The low cenomanian aquifer where the uranium deposit is placed is mainly afflicted. In the cenomanian collector there is now more than 4.8 mil. t dissolved solids mainly SO 4 2- , Al, Fe, NH 4 + etc. The total salinity reaches up to 80 g/l. The upper laying turonian collector is drinking water reservoir for larger region. Its contamination is weaker than in cenomanian collector. Use of complex 3D Transport - Reaction Model can be divided into two separate parts. First modelling step is a quantification of overflow between individual mesh elements calculated out of calibrated mixed-hybrid flow model. Two different types of mathematical models are used to accomplish the task: Flow model based on a primary formulation of finite element method, which calculates spatial distribution of piezometric head and flow velocity vectors in selected points of area considered (finite element mesh nodes). This model exactly describes hydraulic situation in area studied; Flow model based on mixed-hybrid formulation of finite element method. This model strictly complies with exact water balance at inter-element faces. In the second part transport-reaction model based on finite volume method is used for calculations using pre-calculated advective velocity field in the area considered. The finite-element mesh covering about 40 km 2 consists of about 16,000 spatial elements. In the leaching fields area the length of the triangular edge is 100-150 meters, vertically the horizon is split into 9-13 layers. The geological boundary-lines were constructed from a database containing information about almost 10 thousand wells. Permeability parameters are defined on the bases of hydrogeological model calculations (calibration) and their vertical distribution is defined more precisely using the GTIS (Geotechnological

  17. Tracing contaminant pathways in sandy heterogeneous glaciofluvial sediments using a sedimentary depositional model

    International Nuclear Information System (INIS)

    Webb, E.K.; Anderson, M.P.

    1990-01-01

    Heterogeneous sedimentary deposits present complications for tracking contaminant movement by causing a complex advective flow field. Connected areas of high conductivity produce so-called fast paths that control movement of solutes. Identifying potential fast paths and describing the variation in hydraulic properties was attempted through simulating the deposition of a glaciofluvial deposit (outwash). Glaciofluvial deposits usually consist of several depositional facies, each of which has different physical characteristics, depositional structures and hydraulic properties. Therefore, it is unlikely that the property of stationarity (a constant mean hydraulic conductivity and a mono-modal probability distribution) holds for an entire glaciofluvial sequence. However, the process of dividing an outwash sequence into geologic facies presumably identifies units of material with similar physical characteristics. It is proposed that patterns of geologic facies determined by field observation can be quantified by mathematical simulation of sediment deposition. Subsequently, the simulated sediment distributions can be used to define the distribution of hydrogeologic parameters and locate possible fast paths. To test this hypothesis, a hypothetical glacial outwash deposit based on geologic facies descriptions contained in the literature was simulated using a sedimentary depositional model, SEDSIM, to produce a three-dimensional description of sediment grain size distributions. Grain size distributions were then used to estimate the spatial distribution of hydraulic conductivity. Subsequently a finite-difference flow model and linked particle tracking algorithm were used to trace conservative transport pathways. This represents a first step in describing the spatial heterogeneity of hydrogeologic characteristics for glaciofluvial and other braided stream environments. (Author) (39 refs., 7 figs.)

  18. Mobile geophysical study of peat deposits in Fuhrberger Field, Germany

    Science.gov (United States)

    Wunderlich, T.; Petersen, H.; Hagrey, S. A. al; Rabbel, W.

    2012-04-01

    In the water protection area of Fuhrberger Field, north of Hanover, geophysical techniques were applied to study the stakeholder problem of the source detection for nitrate accumulations in the ground water. We used our mobile multisensor platform to conduct measurements using Ground Penetrating Radar (GPR, 200 MHz antenna) and Electromagnetic Induction (EMI, EM31). This aims to study the subsurface occurrences of peat deposits (surplus of organic carbon) supposed to be a source of nitrate emissions due to the aeration and the drawdown of groundwater levels (e.g. by pumping, drainage etc.). Resulting EMI and GPR signals show high data quality. Measured apparent electrical conductivity shows very low values (energy and EMI apparent electrical conductivities are plotted on aerial photographs and compared to each other's and with vegetation intensity. We could separate areas characterized by low reflection energy and high conductivity, and vice versa. Briefly, organic rich sediments such as peats are assumed to have a relative high conductivity and thus low GPR reflectivity. Some areas of local conductivity increase correspond to a deep reflection interface (as seen in the radargrams), which even vanishes due to the high attenuation caused by the high conductivity. This implies that the upper layer is more conductive than the lower layer. Several local areas with these characteristics are found at the study sites. We recommend shallow drillings at representative points to deliver the necessary confirmation with ground truth information. Acknowledgments: iSOIL (Interactions between soil related sciences - Linking geophysics, soil science and digital soil mapping) is a Collaborative Project (Grant Agreement number 211386) co-funded by the Research DG of the European Commission within the RTD activities of the FP7 Thematic Priority Environment.

  19. Defects study of hydrogenated amorphous silicon samples and their relation with the substrate and deposition conditions

    International Nuclear Information System (INIS)

    Darwich, R.

    2009-07-01

    The goal of this work is to study the properties of the defects aiming to explore the types of defects and the effect of various deposition parameters such as substrate temperature, the kind of the substrate, gas pressure and deposition rate. Two kinds of samples have been used; The first one was a series of Schottky diodes, and the second one a series of solar cells (p-i-n junction) deposited on crystalline silicon or on corning glass substrates with different deposition parameters. The deposition parameters were chosen to obtain materials whose their structures varying from amorphous to microcrystalline silicon including polymorphous silicon. Our results show that the polymorphous silicon samples deposited at high deposition rates present the best photovoltaic properties in comparison with those deposited at low rates. Also we found that the defects concentration in high deposition rate samples is less at least by two orders than that obtained in low deposition rate polymorphous, microcrystalline and amorphous samples. This study shows also that there is no effect of the substrate, or the thin films of highly doped amorphous silicon deposited on the substrate, on the creation and properties of these defects. Finally, different experimental methods have been used; a comparison between their results has been presented. (author)

  20. Modeling of the Effect of Path Planning on Thermokinetic Evolutions in Laser Powder Deposition Process

    Science.gov (United States)

    Foroozmehr, Ehsan; Kovacevic, Radovan

    2011-07-01

    A thermokinetic model coupling finite-element heat transfer with transformation kinetics is developed to determine the effect of deposition patterns on the phase-transformation kinetics of laser powder deposition (LPD) process of a hot-work tool steel. The finite-element model is used to define the temperature history of the process used in an empirical-based kinetic model to analyze the tempering effect of the heating and cooling cycles of the deposition process. An area is defined to be covered by AISI H13 on a substrate of AISI 1018 with three different deposition patterns: one section, two section, and three section. The two-section pattern divides the area of the one-section pattern into two sections, and the three-section pattern divides that area into three sections. The results show that dividing the area under deposition into smaller areas can influence the phase transformation kinetics of the process and, consequently, change the final hardness of the deposited material. The two-section pattern shows a higher average hardness than the one-section pattern, and the three-section pattern shows a fully hardened surface without significant tempered zones of low hardness. To verify the results, a microhardness test and scanning electron microscope were used.

  1. Outcrop - core correlation and seismic modeling of the Athabasca Oil Sands Deposit, Fort McMurray area, northeast Alberta

    Energy Technology Data Exchange (ETDEWEB)

    Hein, F.J. [Alberta Geological Survey, Calgary, AB (Canada); Langenberg, C.W.; Cotterill, D.C.; Berhane, H. [Alberta Geological Survey, Edmonton, AB (Canada); Lawton, D.; Cunningham, J. [Calgary Univ., AB (Canada)

    1999-11-01

    A joint study between the Alberta Geological Survey and the University of Calgary was conducted which involved a detailed facies analysis of cores and outcrops from the Athabasca Oil Sands Deposit in Alberta`s Steepbank area. A unified facies classification for the deposit was developed. Larger scale facies associations were also determined, as well as proxy sonic logs for outcrops used in seismic modeling. The cores which were displayed exhibited detailed sedimentological and stratigraphic analysis of 10 outcrops in the area. 7 refs.

  2. Mineral-deposit model for lithium-cesium-tantalum pegmatites

    Science.gov (United States)

    Bradley, Dwight C.; McCauley, Andrew D.; Stillings, Lisa L.

    2017-06-20

    Lithium-cesium-tantalum (LCT) pegmatites comprise a compositionally defined subset of granitic pegmatites. The major minerals are quartz, potassium feldspar, albite, and muscovite; typical accessory minerals include biotite, garnet, tourmaline, and apatite. The principal lithium ore minerals are spodumene, petalite, and lepidolite; cesium mostly comes from pollucite; and tantalum mostly comes from columbite-tantalite. Tin ore as cassiterite and beryllium ore as beryl also occur in LCT pegmatites, as do a number of gemstones and high-value museum specimens of rare minerals. Individual crystals in LCT pegmatites can be enormous: the largest spodumene was 14 meters long, the largest beryl was 18 meters long, and the largest potassium feldspar was 49 meters long.Lithium-cesium-tantalum pegmatites account for about one-fourth of the world’s lithium production, most of the tantalum production, and all of the cesium production. Giant deposits include Tanco in Canada, Greenbushes in Australia, and Bikita in Zimbabwe. The largest lithium pegmatite in the United States, at King’s Mountain, North Carolina, is no longer being mined although large reserves of lithium remain. Depending on size and attitude of the pegmatite, a variety of mining techniques are used, including artisanal surface mining, open-pit surface mining, small underground workings, and large underground operations using room-and-pillar design. In favorable circumstances, what would otherwise be gangue minerals (quartz, potassium feldspar, albite, and muscovite) can be mined along with lithium and (or) tantalum as coproducts.Most LCT pegmatites are hosted in metamorphosed supracrustal rocks in the upper greenschist to lower amphibolite facies. Lithium-cesium-tantalum pegmatite intrusions generally are emplaced late during orogeny, with emplacement being controlled by pre-existing structures. Typically, they crop out near evolved, peraluminous granites and leucogranites from which they are inferred to be

  3. Predictive modeling capabilities from incident powder and laser to mechanical properties for laser directed energy deposition

    Science.gov (United States)

    Shin, Yung C.; Bailey, Neil; Katinas, Christopher; Tan, Wenda

    2018-01-01

    This paper presents an overview of vertically integrated comprehensive predictive modeling capabilities for directed energy deposition processes, which have been developed at Purdue University. The overall predictive models consist of vertically integrated several modules, including powder flow model, molten pool model, microstructure prediction model and residual stress model, which can be used for predicting mechanical properties of additively manufactured parts by directed energy deposition processes with blown powder as well as other additive manufacturing processes. Critical governing equations of each model and how various modules are connected are illustrated. Various illustrative results along with corresponding experimental validation results are presented to illustrate the capabilities and fidelity of the models. The good correlations with experimental results prove the integrated models can be used to design the metal additive manufacturing processes and predict the resultant microstructure and mechanical properties.

  4. Predictive modeling capabilities from incident powder and laser to mechanical properties for laser directed energy deposition

    Science.gov (United States)

    Shin, Yung C.; Bailey, Neil; Katinas, Christopher; Tan, Wenda

    2018-05-01

    This paper presents an overview of vertically integrated comprehensive predictive modeling capabilities for directed energy deposition processes, which have been developed at Purdue University. The overall predictive models consist of vertically integrated several modules, including powder flow model, molten pool model, microstructure prediction model and residual stress model, which can be used for predicting mechanical properties of additively manufactured parts by directed energy deposition processes with blown powder as well as other additive manufacturing processes. Critical governing equations of each model and how various modules are connected are illustrated. Various illustrative results along with corresponding experimental validation results are presented to illustrate the capabilities and fidelity of the models. The good correlations with experimental results prove the integrated models can be used to design the metal additive manufacturing processes and predict the resultant microstructure and mechanical properties.

  5. Global deposition and transport efficiencies of radioactive species with respect to modelling credibility after Fukushima (Japan, 2011)

    International Nuclear Information System (INIS)

    Evangeliou, Nikolaos; Balkanski, Yves; Florou, Heleni; Eleftheriadis, Konstantinos; Cozic, Anne; Kritidis, Panayotis

    2015-01-01

    In this study we conduct a detailed comparison of the modelling response of the Fukushima Dai-ichi Nuclear Power Plant (FDNPP) accident with global and local observations. We use five different model versions characterized by different horizontal and vertical resolutions of the same General Circulation Model (GCM). Transport efficiencies of 137 Cs across the world are presented as an indication of the expected radioactive impact. Activity concentrations were well represented showing lower Normalized Mean Biases (NMBs) when the better resolved versions of the GCM were used. About 95% of the results using the zoom configuration over Europe (zEur) remained within a factor of 10 from the observations. Close to Japan, the model reproduced well 137 Cs concentrations using the zoom version over Asia (zAsia) showing high correlations, while more than 64% of the modelling results were found within a factor of two from the observations and more than 92% within a factor of 10. Labile and refractory rare radionuclides calculated indirectly showed larger deviations, with about 60% of the simulated concentrations within a factor of 10 from the observations. We estimate that around 23% of the released 137 Cs remained into Japan, while 76% deposited in the oceans. Around 163 TBq deposited over North America, among which 95 TBq over USA, 40 TBq over Canada and 5 TBq over Greenland). About 14 TBq deposited over Europe (mostly in the European part of Russia, Sweden and Norway) and 47 TBq over Asia (mostly in the Asian part of Russia, Philippines and South Korea), while traces were observed over Africa, Oceania and Antarctica. Since the radioactive plume followed a northward direction before its arrival to USA and then to Europe, a significant amount of about 69 TBq deposited in the Arctic, as well. These patterns of deposition are fully consistent with the most recent reports for the accident. - Highlights: • 5 versions of an Eulerian model were used to simulate the Fukushima

  6. SEM and XPS study of layer-by-layer deposited polypyrrole thin films

    Science.gov (United States)

    Pigois-Landureau, E.; Nicolau, Y. F.; Delamar, M.

    1996-01-01

    Layer-by-layer deposition of thin films (a few nm) of polypyrrole was carried out on various substrates such as silver, platinum, electrochemically oxidized aluminum and pretreated glass. SEM micrographs showed that the deposited layers nucleate by an island-type mechanism on hydrated alumina and KOH-pretreated (hydrophilic) glass before forming a continuous film. However, continuous thin films are obtained on chromic acid pretreated (hydrophobic) glass and sputtered Ag or Pt on glass after only 3-4 deposition cycles. The mean deposition rate evaluated by XPS for the first deposition cycles on Ag and Pt is 3 and 4 nm/cycle, respectively, in agreement with previous gravimetric determinations on thicker films, proving the constancy of the deposition rate. The XPS study of the very thin films obtained by a few deposition cycles shows that the first polypyrrole layers are dedoped by hydroxydic (basic) substrate surfaces.

  7. SEM and XPS study of layer-by-layer deposited polypyrrole thin films

    International Nuclear Information System (INIS)

    Pigois-Landureau, E.; Nicolau, Y.F.; Delamar, M.

    1996-01-01

    Layer-by-layer deposition of thin films (a few nm) of polypyrrole was carried out on various substrates such as silver, platinum, electrochemically oxidized aluminum and pretreated glass. SEM micrographs showed that the deposited layers nucleate by an island-type mechanism on hydrated alumina and KOH-pretreated (hydrophilic) glass before forming a continuous film. However, continuous thin films are obtained on chromic acid pretreated (hydrophobic) glass and sputtered Ag or Pt on glass after only 3 endash 4 deposition cycles. The mean deposition rate evaluated by XPS for the first deposition cycles on Ag and Pt is 3 and 4 nm/cycle, respectively, in agreement with previous gravimetric determinations on thicker films, proving the constancy of the deposition rate. The XPS study of the very thin films obtained by a few deposition cycles shows that the first polypyrrole layers are dedoped by hydroxydic (basic) substrate surfaces. copyright 1996 American Institute of Physics

  8. Study on the deposition patterns of aerosol inhalation scintigraphy, 2

    International Nuclear Information System (INIS)

    Watanabe, Hiroyuki

    1989-01-01

    The superimposed images obtained by the SPECT of aeresol inhalation scintigraphy and chest CT were applied in 7 cases of diffuse panbronchiolitis. Aerosol deposition patterns were examined, and hot spots were compared with bronchial morphological abnormalities. The results were as follows: 1. Nevertheless, aerosol deposition patterns were characterized by defects of the depositions in the outer zone and hot spots in the inner zone, hot spots distributed from the inner zone to the outer zone. 2. Hot spots and bronchial morphological abnormalities were markedly matched in the inner zone; however, they were mismatched in the outer zone. I concluded that the mechanisms of hot spot formation in the inner zone were different from those in the outer zone. (author)

  9. ELLIPSOMETRIC STUDY OF SEMITRANSPARENT SILVER LAYERS DEPOSITED ON GLASS

    Directory of Open Access Journals (Sweden)

    Víctor Toranzos

    2014-12-01

    Full Text Available Using ellipsometry, the film structure is characterized by optical indices n, k (visible region, 450 nm <  < 580 nm and the thickness (15 < d < 35 nm. The optical indices change with the quantity of silver deposited, obtaining effective indices of 1.0 < n < 1.8 and 1.6 < k < 2.6 to the smaller deposits that belong to a volumetric fraction between 0.35 and 0.5 of silver in the air. An effective optical thickness film decrease is observed when the silver volumetric fraction increases, and a thickness increase with close indices to solid silver when the deposited silver increases. Optical and effective medium theory indices are compared.

  10. The fate of SOC during the processes of water erosion and subsequent deposition: a field study.

    Science.gov (United States)

    van Hemelryck, H.; Govers, G.; van Oost, K.; Merckx, R.

    2009-04-01

    Globally soils are the largest terrestrial pool of carbon (C). A relatively small increase or decrease in soil carbon content due to changes in land use or management practices could therefore result in a significant net exchange of C between the soil C reservoir and the atmosphere. As such, the geomorphic processes of water and tillage erosion have been identified to significantly impact on this large pool of soil organic carbon (SOC). Soil erosion, transport and deposition not only result in redistribution of sediments and associated carbon within a landscape, but also affect the exchange of C between the pedosphere and the atmosphere. The direction and magnitude of an erosion-induced change in the global C balance is however a topic of much debate as opposing processes interact: i) At eroding sites a net uptake of C could be the result of reduced respiration rates and continued inputs of newly produced carbon. ii) Colluvial deposition of eroded sediment and SOC leads to the burial of the original topsoil and this may constrain the decomposition of its containing SOC. iii) Eroded sediment could be transported to distal depositional environments or fluvial systems where it will either be conserved or become rapidly mineralized. iv) Increased emission of CO2 due to erosion may result from the disruptive energy of erosive forces causing the breakdown of aggregates and exposing previously protected SOC to microbial decomposition. The above-mentioned processes show a large spatial and temporal variability and assessing their impact requires an integrated modeling approach. However uncertainties about the basic processes that accompany SOC displacement are still large. This study focuses on one of these large information gaps: the fate of eroded and subsequently deposited SOC. A preceding experimental study (Van Hemelryck et al., 2008) was used to identify controlling factors (erosional intensity, changes in soil structure,…). However this experimental research

  11. Antibody deposition in tumor in relation to blood clearance using a nephrectomized mouse model

    International Nuclear Information System (INIS)

    Nelp, W.B.; Eary, J.F.; Beaumier, P.; Krohn, K.A.; Hellstrom, K.E.; Hellstrom, I.

    1985-01-01

    The purpose of this experiment was to study tumor deposition of monoclonal anti-p97 melanoma antibody (Fab) as a function of its blood concentration over time. I-131-anti-p97 Fab and I-125 non-specific Fab were injected I.V. into 28 control athymic (nude) mice (CM) bearing human xenografted malignant melanoma containing p-97 antigen. Fab (M.W. 50,000) is rapidly excreted by kidney and >90% excretion occurred in 24 hr. To create maximum sustained high blood concentrations of Fab 10 similar mice were likewise injected 1 hr after acute nephrectomy (NM). In this case 24 hr. body excretion was <1%. Blood clearance in CM was biexponential with initial T-1/2 0.4 hr. (80%) a second T-1/2 of 4.4 hr. In NM clearance was monoexponential with a T-1/2 of 29.6 hr. Blood concentrations at 4 hrs. were 2 vs. 19% dose/gm (CM vs NM) and 0.15 vs 12 at 24 hrs. This tumor binding resembled a 2nd order phenomenon. Such information may be useful in predicting the effect of dosage manipulations (multiple bolus or sustained infusions) designed to increase Fab blood levels and enhance tumor labeling with Fab. The NM model should be useful to study the kinetics of antibody tumor deposition with various antibodies

  12. Modelling nitrogen saturation and carbon accumulation in heathland soils under elevated nitrogen deposition

    International Nuclear Information System (INIS)

    Evans, C.D.; Caporn, S.J.M.; Carroll, J.A.; Pilkington, M.G.; Wilson, D.B.; Ray, N.; Cresswell, N.

    2006-01-01

    A simple model of nitrogen (N) saturation, based on an extension of the biogeochemical model MAGIC, has been tested at two long-running heathland N manipulation experiments. The model simulates N immobilisation as a function of organic soil C/N ratio, but permits a proportion of immobilised N to be accompanied by accumulation of soil carbon (C), slowing the rate of C/N ratio change and subsequent N saturation. The model successfully reproduced observed treatment effects on soil C and N, and inorganic N leaching, for both sites. At the C-rich upland site, N addition led to relatively small reductions in soil C/N, low inorganic N leaching, and a substantial increase in organic soil C. At the C-poor lowland site, soil C/N ratio decreases and N leaching increases were much more dramatic, and soil C accumulation predicted to be smaller. The study suggests that (i) a simple model can effectively simulate observed changes in soil and leachate N; (ii) previous model predictions based on a constant soil C pool may overpredict future N leaching; (iii) N saturation may develop most rapidly in dry, organic-poor, high-decomposition systems; and (iv) N deposition may lead to significantly enhanced soil C sequestration, particularly in wet, nutrient-poor, organic-rich systems. - Enhanced carbon sequestration may slow the rate of nitrogen saturation in heathlands

  13. Deposition of reactive nitrogen during the Rocky Mountain Airborne Nitrogen and Sulfur (RoMANS) study

    International Nuclear Information System (INIS)

    Beem, Katherine B.; Raja, Suresh; Schwandner, Florian M.; Taylor, Courtney; Lee, Taehyoung; Sullivan, Amy P.; Carrico, Christian M.; McMeeking, Gavin R.; Day, Derek; Levin, Ezra; Hand, Jenny; Kreidenweis, Sonia M.; Schichtel, Bret; Malm, William C.; Collett, Jeffrey L.

    2010-01-01

    Increases in reactive nitrogen deposition are a growing concern in the U.S. Rocky Mountain west. The Rocky Mountain Airborne Nitrogen and Sulfur (RoMANS) study was designed to improve understanding of the species and pathways that contribute to nitrogen deposition in Rocky Mountain National Park (RMNP). During two 5-week field campaigns in spring and summer of 2006, the largest contributor to reactive nitrogen deposition in RMNP was found to be wet deposition of ammonium (34% spring and summer), followed by wet deposition of nitrate (24% spring, 28% summer). The third and fourth most important reactive nitrogen deposition pathways were found to be wet deposition of organic nitrogen (17%, 12%) and dry deposition of ammonia (14%, 16%), neither of which is routinely measured by air quality/deposition networks operating in the region. Total reactive nitrogen deposition during the spring campaign was determined to be 0.45 kg ha -1 and more than doubled to 0.95 kg ha -1 during the summer campaign. - The reactive nitrogen deposition budget for Rocky Mountain National Park.

  14. Methodology and significance of studies of atmospheric deposition in highway runoff

    Science.gov (United States)

    Colman, John A.; Rice, Karen C.; Willoughby, Timothy C.

    2001-01-01

    Atmospheric deposition and the processes that are involved in causing and altering atmospheric deposition in relation to highway surfaces and runoff were evaluated nationwide. Wet deposition is more easily monitored than dry deposition, and data on wet deposition are available for major elements and water properties (constituents affecting acid deposition) from the inter-agency National Atmospheric Deposition Program/ National Trends Network (NADP/NTN). Many trace constituents (metals and organic compounds) of interest in highway runoff loads, however, are not included in the NADP/NTN. Dry deposition, which constitutes a large part of total atmospheric deposition for many constituents in highway runoff loads, is difficult to monitor accurately. Dry-deposition rates are not widely available.Many of the highway-runoff investigations that have addressed atmospheric-deposition sources have had flawed investigative designs or problems with methodology. Some results may be incorrect because of reliance on time-aggregated data collected during a period of changing atmospheric emissions. None of the investigations used methods that could accurately quantify the part of highway runoff load that can be attributed to ambient atmospheric deposition. Lack of information about accurate ambient deposition rates and runoff loads was part of the problem. Samples collected to compute the rates and loads were collected without clean-sampling methods or sampler protocols, and without quality-assurance procedures that could validate the data. Massbudget calculations comparing deposition and runoff did not consider loss of deposited material during on-highway processing. Loss of deposited particles from highway travel lanes could be large, as has been determined in labeled particle studies, because of resuspension caused by turbulence from passing traffic. Although a cause of resuspension of large particles, traffic turbulence may increase the rate of deposition for small particles and

  15. Boiling of water in flow restricted areas modeled by colloidal silica deposits

    International Nuclear Information System (INIS)

    Peixinho, Jorge; Lefevre, Gregory; Coudert, Francois-Xavier; Hurisse, Olivier

    2012-09-01

    Understanding the effects of particle deposits on evaporation and boiling of water represents an important issue for EDF because it causes a severe reduction in efficiency particularly in steam generators of pressurized water reactor. These deposits are made of oxide metallic particles and the deposition process depends on multiple factors. Here we mimic deposits using a simple system made of hydrophilic silica particles. The present study reports experiments on evaporation or boiling of water confined in the pores of colloidal mono-dispersed silica micro-sphere deposits. The boiling of water confined in the pores of the colloidal crystal is studied using optical microscopy, scanning electron microscopy, nitrogen adsorption, water adsorption through infrared attenuated total reflectance spectroscopy, differential scanning calorimetry and thermal gravimetric analysis. By comparison of the results with silica deposits and alumina membranes with cylindrical pores, our study shows that the morphology of the pores contributes to the evaporation and boiling of water. The measurements suggest that particle resuspension and crust formation take place during drying at elevated temperature and are responsible for cracks formation within the deposit film. (authors)

  16. Study of ion implantation in grown layers of multilayer coatings under ion-plasma vacuum deposition

    International Nuclear Information System (INIS)

    Voevodin, A.A.; Erokhin, A.L.

    1993-01-01

    The model of ion implantation into growing layers of a multilayer coating produced with vacuum ion-plasma deposition was developed. The model takes into account a possibility for ions to pass through the growing layer and alloys to find the distribution of implanted atoms over the coating thickness. The experimental vitrification of the model was carried out on deposition of Ti and TiN coatings

  17. Simulation of size-dependent aerosol deposition in a realistic model of the upper human airways

    NARCIS (Netherlands)

    Frederix, E.M.A.; Kuczaj, Arkadiusz K.; Nordlund, Markus; Belka, M.; Lizal, F.; Elcner, J.; Jicha, M.; Geurts, Bernardus J.

    An Eulerian internally mixed aerosol model is used for predictions of deposition inside a realistic cast of the human upper airways. The model, formulated in the multi-species and compressible framework, is solved using the sectional discretization of the droplet size distribution function to

  18. Comparing i-Tree modeled ozone deposition with field measurements in a periurban Mediterranean forest

    Science.gov (United States)

    A. Morani; D. Nowak; S. Hirabayashi; G. Guidolotti; M. Medori; V. Muzzini; S. Fares; G. Scarascia Mugnozza; C. Calfapietra

    2014-01-01

    Ozone flux estimates from the i-Tree model were compared with ozone flux measurements using the Eddy Covariance technique in a periurban Mediterranean forest near Rome (Castelporziano). For the first time i-Tree model outputs were compared with field measurements in relation to dry deposition estimates. Results showed generally a...

  19. LH power deposition and CD efficiency studies by application of modulated power at JET

    International Nuclear Information System (INIS)

    Kirov, K.K.; Baranov, Yu.; Mailloux, J.; Mayoral, M.-L.; Nave, M.F.F.; Ongena, J.

    2010-01-01

    The lower hybrid (LH) power deposition and the current drive (CD) efficiency were assessed by the application of modulated LH power. Density and magnetic field scans were performed and the response of the electron temperature provided by the available electron cyclotron emission diagnostic was investigated by means of fast Fourier transform analysis. An innovative technique based on a comparison between modelled and experimental data was developed and used in the study. The LH waves are absorbed by fast electrons with energies of a few times the thermal one, causing a modification in the electron distribution function (EDF) by creating a plateau in the parallel direction. The phase of the temperature perturbations, φ, as well as the ratio between the amplitudes of the third and the main harmonics, δT e3 /δT e1 , are found to be strongly affected by the plateau of the EDF as the broader the plateau the larger |φ|, (φ e3 /δT e1 are. Transport and Fokker-Planck modelling was used to support this conclusion as well as to interpret the experimental data and hence to assess the LHCD efficiency and deposition profile. The results from the analysis are consistent with broad off-axis LH power deposition profile. For densities between 1 x 10 19 and 4 x 10 19 m -3 , which is the accessibility limit at the highest magnetic field discharges, a gradual shift of the maximum of the power deposition to the periphery and a degradation of the CD efficiency was observed.

  20. Modeling film uniformity and symmetry in ionized metal physical vapor deposition with cylindrical targets

    International Nuclear Information System (INIS)

    Lu Junqing; Yang Lin; Yoon, Jae Hong; Cho, Tong Yul; Tao Guoqing

    2008-01-01

    Severe asymmetry of the metal deposits on the trench sidewalls occurs near the wafer edge during low pressure ionized metal physical vapor deposition of Cu seed layer for microprocessor interconnects. To investigate this process and mitigate the asymmetry, an analytical view factor model based on the analogy between metal sputtering and diffuse thermal radiation was constructed to investigate deposition uniformity and symmetry for cylindrical target sputtering in low pressure (below 0.1 Pa) ionized Cu physical vapor deposition. The model predictions indicate that as the distance from the cylindrical target to wafer increases, the metal film thickness becomes more uniform across the wafer and the asymmetry of the metal deposits at the wafer edge increases significantly. These trends are similar to those for planar targets. To minimize the asymmetry, the height of the cylindrical target should be kept at a minimum. For cylindrical targets, the outward-facing sidewall of the trench could receive more direct Cu fluxes than the inward-facing one when the target to wafer distance is short. The predictions also indicate that increasing the diameter of the cylindrical target could significantly reduce the asymmetry in metal deposits at the wafer edge and make the film thickness more uniform across the wafer

  1. Mathematical modeling of the lithium deposition overcharge reaction in lithium-ion batteries using carbon-based negative electrodes

    International Nuclear Information System (INIS)

    Arora, P.; Doyle, M.; White, R.E.

    1999-01-01

    Two major issues facing lithium-ion battery technology are safety and capacity grade during cycling. A significant amount of work has been done to improve the cycle life and to reduce the safety problems associated with these cells. This includes newer and better electrode materials, lower-temperature shutdown separators, nonflammable or self-extinguishing electrolytes, and improved cell designs. The goal of this work is to predict the conditions for the lithium deposition overcharge reaction on the negative electrode (graphite and coke) and to investigate the effect of various operating conditions, cell designs and charging protocols on the lithium deposition side reaction. The processes that lead to capacity fading affect severely the cycle life and rate behavior of lithium-ion cells. One such process is the overcharge of the negative electrode causing lithium deposition, which can lead to capacity losses including a loss of active lithium and electrolyte and represents a potential safety hazard. A mathematical model is presented to predict lithium deposition on the negative electrode under a variety of operating conditions. The Li x C 6 vertical bar 1 M LiPF 6 , 2:1 ethylene carbonate/dimethyl carbonate, poly(vinylidene fluoride-hexafluoropropylene) vert b ar LiMn 2 O 4 cell is simulated to investigate the influence of lithium deposition on the charging behavior of intercalation electrodes. The model is used to study the effect of key design parameters (particle size, electrode thickness, and mass ratio) on the lithium deposition overcharge reaction. The model predictions are compared for coke and graphite-based negative electrodes. The cycling behavior of these cells is simulated before and after overcharge to understand the hazards and capacity fade problems, inherent in these cells, can be minimized

  2. Modeling of Filament Deposition Rapid Prototyping Process with a Closed form Solution

    Science.gov (United States)

    Devlin, Steven Leon

    Fused Deposition Modeling (FDM(TM)) or fused filament fabrication (FFF) systems are extrusion-based technologies used to produce functional or near functional parts from a wide variety of plastic materials. First patented by S. Scott Crump and commercialized by Stratasys, Ltd in the early 1990s, this technology, like many additive manufacturing systems, offers significant opportunities for the design and production of complex part structures that are difficult if not impossible to produce using traditional manufacturing methods. Standing on the shoulders of a twenty-five year old invention, a rapidly growing open-source development community has exponentially driven interest in FFF technology. However, part quality often limits use in final product commercial markets. Development of accurate and repeatable methods for determining material strength in FFF produced parts is essential for wide adoption into mainstream manufacturing. This study builds on the empirical, squeeze flow and intermolecular diffusion model research conducted by David Grewell and Avraham Benatar, applying a combined model to predict auto adhesion or healing to FFF part samples. In this research, an experimental study and numerical modeling were performed in order to drive and validate a closed form heat transfer solution for extrusion processes to develop temperature field models. An extrusion-based 3D printing system, with the capacity to vary deposition speeds and temperatures, was used to fabricate the samples. Standardized specimens of Polylactic Acid (PLA) and Acrylonitrile Butadiene Styrene (ABS) filament were used to fabricate the samples with different speeds and temperatures. Micro-scanning of cut and lapped specimens, using an optical microscope, was performed to find the effect of the speed and the temperature on the geometry of the cross-sections. It was found that by increasing the speed of the extrusion printing, the area of the cross-section and the maximum thickness decrease

  3. Isotope studies of UK tufa deposits and associated source waters

    International Nuclear Information System (INIS)

    Thorpe, P.M.

    1981-12-01

    Tufa is a secondary deposit of calcium carbonate precipitated from springs and streams. Previous attempts to date tufa deposits directly with 14 C have had limited success. The major problem is to quantify the amount of carbon incorporated in tufa, derived from the dissolution of carbonate bedrock, essentially free of 14 C. The isotopic composition of tufa-depositing streamwaters is similar to that of water recharging aquifers. The 14 C levels of recent tufa layers, at three sites, were similar to those of the source waters. 14 C dates from tufa at these sites suggested a Postglacial origin when corrected for bedrock carbon dilution of 16 to 24%. This dilution was overestimated by consideration of carbon mass balance using characteristic stable carbon isotope compositions (delta 13 C) for the biogenic and bedrock components. This method of correction is often applied to 14 C dates from groundwaters. The carbon isotope composition of spring waters supplying the tufa-depositing streams was realistically explained by a two stage process of carbonate dissolution under open and then closed conditions with respect to gaseous carbon dioxide. Seasonal variations in the 14 C and delta 13 C composition of stream and spring waters, downstream increases in 14 C and delta 13 C and seasonal variations in the oxygen and hydrogen isotopic composition of rainfall are explained. (author)

  4. Comparative studies of spray pyrolysis deposited copper sulfide ...

    Indian Academy of Sciences (India)

    X-ray diffraction analysis showed that while the layer/glass sample has an individual CuS (covellite) ... that all these materials have a relatively high absorption coefficient (∼5 × .... and S2 that were deposited on glass substrates, had the co-.

  5. Geochemistry of the Cigar Lake uranium deposit: XPS studies

    International Nuclear Information System (INIS)

    Sunder, S.; Cramer, J.J.; Miller, N.H.

    1996-01-01

    Samples of uranium ore from the Cigar Lake deposit in northern Saskatchewan, Canada, were analyzed using XPS. High-resolution spectra were recorded for the strongest bands of the major elements (U 4f, C 1 s, O 1 s, Pb 4 f, S 2 p, Cu 2 p, Fe 2 p, and the valence region (0-20 eV)) to obtain chemical state information for these samples. In general, the U VI /U IV ratio was very low, i.e., much less than 0.5, the threshold for the oxidative dissolution of UO 2 . The low values of the U VI /U IV ratio observed for samples from the Cigar Lake deposit indicate thermodynamic stability of the uranium ore in the reduced aqueous environment. Similarities between the disposal vault envisaged in the Canadian Nuclear Fuel Waste Management Program and the Cigar Lake deposit suggest that, if geochemical conditions in the vault were to be similar to those in the deposit, the long-term dissolution of UO 2 fuel would be very minimal. (orig.)

  6. Thermokinetic Modeling of Phase Transformation in the Laser Powder Deposition Process

    Science.gov (United States)

    Foroozmehr, Ehsan; Kovacevic, Radovan

    2009-08-01

    A finite element model coupled with a thermokinetic model is developed to predict the phase transformation of the laser deposition of AISI 4140 on a substrate with the same material. Four different deposition patterns, long-bead, short-bead, spiral-in, and spiral-out, are used to cover a similar area. Using a finite element model, the temperature history of the laser powder deposition (LPD) process is determined. The martensite transformation as well as martensite tempering is considered to calculate the final fraction of martensite, ferrite, cementite, ɛ-carbide, and retained austenite. Comparing the surface hardness topography of different patterns reveals that path planning is a critical parameter in laser surface modification. The predicted results are in a close agreement with the experimental results.

  7. New simple deposition model based on reassessment of global fallout data 1954 - 1976

    Energy Technology Data Exchange (ETDEWEB)

    Palsson, S.E. [Icelandic Radiation Safety Authority, Reykjavik (Iceland); Bergan, T.D. [Directorate for Civil Protection and Emergency Planning, Toensberg (Norway); Howard, B.J. [Centre for Ecology and Hydrology, Lancaster Environment Centre, Lancaster (United Kingdom); Ikaeheimonen, T.K. [STUK - Radiation and Nuclear Safety Authority, Helsinki (Finland); Isaksson, M. [Univ. of Gothenburg. Dept. of Radiation Physics, Institute of Clinical Sciences, Sahlgren Academy, Gothenburg (Sweden); Nielsen, Sven P. [Technical Univ. of Denmark. DTU Nutech, Roskilde (Denmark); Paatero, J. [Finnish Meteorological Institute. Observation Services, Helsinki (Finland)

    2012-12-15

    Atmospheric testing of nuclear weapons began in 1945 and largely ceased in 1963. This testing is the major cause of distribution of man-made radionuclides over the globe and constitutes a background that needs to be considered when effects of other sources are estimated. The main radionuclides of long term (after the first months) concern are generally assumed to be {sup 137}Cs and {sup 90}Sr. It has been known for a long time that the deposition density of {sup 137}Cs and {sup 90}Sr is approximately proportional to the amount of precipitation. But the use of this proportional relationship raised some questions such as (a) over how large area can it be assumed that the concentration in precipitation is the same at any given time; (b) how does this agree with the observed latitude dependency of deposition density and (c) are the any other parameters that could be of use in a simple model describing global fallout? These issues were amongst those taken up in the NKS-B EcoDoses activity. The preliminary results for {sup 137}Cs and {sup 90}Sr showed for each that the measured concentration had been similar at many European and N-American sites at any given time and that the change with time had been similar. These finding were followed up in a more thorough study in this (DepEstimates) activity. Global data (including the US EML and UK AERE data sets) from 1954 - 1976 for {sup 90}Sr and {sup 137}Cs were analysed testing how well different potential explanatory variables could describe the deposition density. The best fit was obtained by not assuming the traditional proportional relationship, but instead a non-linear power function. The predictions obtained using this new model may not be significantly different from those obtained using the traditional model, when using a limited data set such as from one country as a test in this report showed. But for larger data sets and understanding of underlying processes the new model should be an improvement. (Author)

  8. CuFeO2 formation using fused deposition modeling 3D printing and sintering technique

    Science.gov (United States)

    Salea, A.; Dasaesamoh, A.; Prathumwan, R.; Kongkaew, T.; Subannajui, K.

    2017-09-01

    CuFeO2 is a metal oxide mineral material which is called delafossite. It can potentially be used as a chemical catalyst, and gas sensing material. There are methods to fabricate CuFeO2 such as chemical synthesis, sintering, sputtering, and chemical vapor deposition. In our work, CuFeO2 is prepared by Fused Deposition Modeling (FDM) 3D printing. The composite filament which composed of Cu and Fe elements is printed in three dimensions, and then sintered and annealed at high temperature to obtain CuFeO2. Suitable polymer blend and maximum percent volume of metal powder are studied. When percent volume of metal powder is increased, melt flow rate of polymer blend is also increased. The most suitable printing condition is reported and the properties of CuFeO2 are observed by Scanning Electron Microscopy, and Dynamic Scanning Calorimeter, X-ray diffraction. As a new method to produce semiconductor, this technique has a potential to allow any scientist or students to design and print a catalyst or sensing material by the most conventional 3D printing machine which is commonly used around the world.

  9. Kinetic model for hydroxyapatite precipitation on human enamel surface by electrolytic deposition

    International Nuclear Information System (INIS)

    Lei Caixia; Liao Yingmin; Feng Zude

    2009-01-01

    The electrolytic deposition (ELD) of hydroxyapatite (HAP) coating on human enamel surface for different loading times at varied temperatures (ranging from 37 deg. C to 85 deg. C) and varied current densities (ranging from 0.05 mA cm -2 to 10 mA cm -2 ) was investigated in this study. Thin film x-ray diffraction, Fourier transform infrared and micro-Raman spectra analysis, as well as an environmental scanning electron microscope, were used to characterize the coating. The results showed that only the HAP phase occurred on the enamel surface after ELD experiments. The contents of HAP deposits on the enamel surface linearly changed proportional to the square root of the loading time, which was in good agreement with the kinetic model of ELD of HAP coating based on one-dimensional diffusion. The induction periods were observed on all the regression lines, and the rate of the HAP coating formation on enamel showed a linear relationship with the current density. It was implied that the diffusion process was the rate-determining step in the ELD of the HAP coating on human enamel.

  10. Kinetic model for hydroxyapatite precipitation on human enamel surface by electrolytic deposition

    Energy Technology Data Exchange (ETDEWEB)

    Lei Caixia; Liao Yingmin; Feng Zude, E-mail: zdfeng@xmu.edu.c [College of Materials, Xiamen University, Xiamen 361005 (China)

    2009-06-15

    The electrolytic deposition (ELD) of hydroxyapatite (HAP) coating on human enamel surface for different loading times at varied temperatures (ranging from 37 deg. C to 85 deg. C) and varied current densities (ranging from 0.05 mA cm{sup -2} to 10 mA cm{sup -2}) was investigated in this study. Thin film x-ray diffraction, Fourier transform infrared and micro-Raman spectra analysis, as well as an environmental scanning electron microscope, were used to characterize the coating. The results showed that only the HAP phase occurred on the enamel surface after ELD experiments. The contents of HAP deposits on the enamel surface linearly changed proportional to the square root of the loading time, which was in good agreement with the kinetic model of ELD of HAP coating based on one-dimensional diffusion. The induction periods were observed on all the regression lines, and the rate of the HAP coating formation on enamel showed a linear relationship with the current density. It was implied that the diffusion process was the rate-determining step in the ELD of the HAP coating on human enamel.

  11. The Limit Deposit Velocity model, a new approach

    Directory of Open Access Journals (Sweden)

    Miedema Sape A.

    2015-12-01

    Full Text Available In slurry transport of settling slurries in Newtonian fluids, it is often stated that one should apply a line speed above a critical velocity, because blow this critical velocity there is the danger of plugging the line. There are many definitions and names for this critical velocity. It is referred to as the velocity where a bed starts sliding or the velocity above which there is no stationary bed or sliding bed. Others use the velocity where the hydraulic gradient is at a minimum, because of the minimum energy consumption. Most models from literature are one term one equation models, based on the idea that the critical velocity can be explained that way.

  12. Early diagenesis of recently deposited organic matter: A 9-yr time-series study of a flood deposit

    Science.gov (United States)

    Tesi, T.; Langone, L.; Goñi, M. A.; Wheatcroft, R. A.; Miserocchi, S.; Bertotti, L.

    2012-04-01

    In Fall 2000, the Po River (Italy) experienced a 100-yr return period flood that resulted in a 1-25 cm-thick deposit in the adjacent prodelta (10-25 m water depth). In the following years, numerous post-depositional perturbations occurred including bioturbation, reworking by waves with heights exceeding 5 m, as well as periods of extremely high and low sediment supply. Cores collected in the central prodelta after the Fall 2000 flood and over the following 9 yr, allowed characterization of the event-strata in their initial state and documentation of their subsequent evolution. Sedimentological characteristics were investigated using X-radiographs and sediment texture analyses, whereas the composition of sedimentary organic matter (OM) was studied via bulk and biomarker analyses, including organic carbon (OC), total nitrogen (TN), carbon stable isotope composition (δ13C), lignin phenols, cutin-products, p-hydroxy benzenes, benzoic acids, dicarboxylic acids, and fatty acids. The 9-yr time-series analysis indicated that roughly the lower half of the original event bed was preserved in the sediment record. Conversely, the upper half of the deposit experienced significant alterations including bioturbation, addition of new material, as well as coarsening. Comparison of the recently deposited material with 9-yr old preserved strata represented a unique natural laboratory to investigate the diagenesis of sedimentary OM in a non-steady system. Bulk data indicated that OC and TN were degraded at similar rates (loss ∼17%) whereas biomarkers exhibited a broad spectrum of reactivities (loss from ∼6% to ∼60%) indicating selective preservation during early diagenesis. Given the relevance of episodic sedimentation in several margins, this study has demonstrated the utility of event-response and time-series sampling of the seabed for understanding the early diagenesis in non-steady conditions.

  13. Modeling dry and wet deposition of sulfate, nitrate, and ammonium ions in Jiuzhaigou National Nature Reserve, China using a source-oriented CMAQ model: Part I. Base case model results.

    Science.gov (United States)

    Qiao, Xue; Tang, Ya; Hu, Jianlin; Zhang, Shuai; Li, Jingyi; Kota, Sri Harsha; Wu, Li; Gao, Huilin; Zhang, Hongliang; Ying, Qi

    2015-11-01

    A source-oriented Community Multiscale Air Quality (CMAQ) model driven by the meteorological fields generated by the Weather Research and Forecasting (WRF) model was used to study the dry and wet deposition of nitrate (NO3(-)), sulfate (SO4(2-)), and ammonium (NH4(+)) ions in the Jiuzhaigou National Nature Reserve (JNNR), China from June to August 2010 and to identify the contributions of different emission sectors and source regions that were responsible for the deposition fluxes. The model performance is evaluated in this paper and the source contribution analyses are presented in a companion paper. The results show that WRF is capable of reproducing the observed precipitation rates with a Mean Normalized Gross Error (MNGE) of 8.1%. Predicted wet deposition fluxes of SO4(2-) and NO3(-) at the Long Lake (LL) site (3100 m a.s.l.) during the three-month episode are 2.75 and 0.34 kg S(N) ha(-1), which agree well with the observed wet deposition fluxes of 2.42 and 0.39 kg S(N) ha(-1), respectively. Temporal variations in the weekly deposition fluxes at LL are also well predicted. Wet deposition flux of NH4(+) at LL is over-predicted by approximately a factor of 3 (1.60 kg N ha(-1)vs. 0.56 kg N ha(-1)), likely due to missing alkaline earth cations such as Ca(2+) in the current CMAQ simulations. Predicted wet deposition fluxes are also in general agreement with observations at four Acid Deposition Monitoring Network in East Asia (EANET) sites in western China. Predicted dry deposition fluxes of SO4(2-) (including gas deposition of SO2) and NO3(-) (including gas deposition of HNO3) are 0.12 and 0.12 kg S(N) h a(-1) at LL and 0.07 and 0.08 kg S(N) ha(-1) at Jiuzhaigou Bureau (JB) in JNNR, respectively, which are much lower than the corresponding wet deposition fluxes. Dry deposition flux of NH4(+) (including gas deposition of NH3) is 0.21 kg N ha(-1) at LL, and is also much lower than the predicted wet deposition flux. For both dry and wet deposition fluxes, predictions

  14. Model shear tests of canisters with smectite clay envelopes in deposition holes

    International Nuclear Information System (INIS)

    Boergesson, L.

    1986-01-01

    The consequences of rock displacement across a deposition hole has been investigated by some model tests. The model was scaled 1:10 to a real deposition hole. It was filled with a canister made of solid copper surrounded by highly compacted water saturated MX-80 bentonite. Before shear the swelling pressure was measured by six transducers in order to follow the water uptake process. During shear, pressure, strain, force and deformation were measured in altogether 18 points. The shearing was made at different rates in the various tests. An extensive sampling after shear was made through which the density, water content, degree of saturation, homogenization and the effect of shear on the bentonite and canister could be studied. One important conlusion from these tests was that the rate dependence is about 10% increased shear resistance per decade increased rate of shear. This resulted also in a very clear increase in strain in the canister with increased rate. The results also showed that the saturated bentonite has excellent stress distributing properties and that there is no risk of destroying the canister if the rock displacement is smaller than the thickness of the bentonite cover. The high density of the clay makes the bentonite produce such a high swelling pressure that the material will be very stiff. In the case of a larger shear deformation corresponding to ≅ 50% of the bentonite thickness the result will be a rather large deformation of the canister. A lower density would be preferable if it can be accepted with respect to other required isolating properties. The results also showed that three-dimensional FEM calculation using non-linear material properties is necessary to simulate the shear process. The rate dependence may be taken into account by adapting the properties to the actual rate of shear but might in a later stage be included in the model by giving the material viscous properties. (orig./HP)

  15. Distribution and Orientation of Carbon Fibers in Polylactic Acid Parts Produced by Fused Deposition Modeling

    DEFF Research Database (Denmark)

    Hofstätter, Thomas; W. Gutmann, Ingomar; Koch, Thomas

    2016-01-01

    The aim of this paper is the understanding of the fiber orientation by investigations in respect to the inner configuration of a polylactic acid matrix reinforced with short carbon fibers after a fused deposition modeling extrusion process. The final parts were analyzed by X-ray, tomography......, and magnetic resonance imaging allowing a resolved orientation of the fibers and distribution within the part. The research contributes to the understanding of the fiber orientation and fiber reinforcement of fused deposition modeling parts in additive manufacturing....

  16. Lower Silurian `hot shales' in North Africa and Arabia: regional distribution and depositional model

    Science.gov (United States)

    Lüning, S.; Craig, J.; Loydell, D. K.; Štorch, P.; Fitches, B.

    2000-03-01

    Lowermost Silurian organic-rich (`hot') shales are the origin of 80-90% of Palaeozoic sourced hydrocarbons in North Africa and also played a major role in petroleum generation on the Arabian Peninsula. In most cases, the shales were deposited directly above upper Ordovician (peri-) glacial sandstones during the initial early Silurian transgression that was a result of the melting of the late Ordovician icecap. Deposition of the main organic-rich shale unit in the North African/Arabian region was restricted to the earliest Silurian Rhuddanian stage ( acuminatus, atavus and probably early cyphus graptolite biozones). During this short period (1-2 m.y.), a favourable combination of factors existed which led to the development of exceptionally strong oxygen-deficiency in the area. In most countries of the study area, the post-Rhuddanian Silurian shales are organically lean and have not contributed to petroleum generation. The distribution and thickness of the basal Silurian `hot' shales have been mapped in detail for the whole North African region, using logs from some 300 exploration wells in Libya, Tunisia, Algeria and Morocco. In addition, all relevant, accessible published and unpublished surface and subsurface data of the lower Silurian shales in North Africa and Arabia have been reviewed, including sedimentological, biostratigraphic and organic geochemical data. The lowermost Silurian hot shales of northern Gondwana are laterally discontinuous and their distribution and thickness were controlled by the early Silurian palaeorelief which was shaped mainly by glacial processes of the late Ordovician ice age and by Pan-African and Infracambrian compressional and extensional tectonism. The thickest and areally most extensive basal Silurian organic-rich shales in North Africa occur in Algeria, Tunisia and western Libya, while on the Arabian Peninsula they are most prolific in Saudi Arabia, Oman, Jordan and Iraq. The hot shales were not deposited in Egypt, which was a

  17. Sensitivity of the modelled deposition of Caesium-137 from the Fukushima Dai-ichi nuclear power plant to the wet deposition parameterisation in NAME

    International Nuclear Information System (INIS)

    Leadbetter, Susan J.; Hort, Matthew C.; Jones, Andrew R.; Webster, Helen N.; Draxler, Roland R.

    2015-01-01

    This paper describes an investigation into the impact of different meteorological data sets and different wet scavenging coefficients on the model predictions of radionuclide deposits following the accident at the Fukushima Dai-ichi nuclear power plant in March 2011. Three separate operational meteorological data sets, the UK Met Office global meteorology, the ECMWF global meteorology and the Japan Meteorological Agency (JMA) mesoscale meteorology as well as radar rainfall analyses from JMA were all used as inputs to the UK Met Office's dispersion model NAME (the Numerical Atmospheric-dispersion Modelling Environment). The model predictions of Caesium-137 deposits based on these meteorological models all showed good agreement with observations of deposits made in eastern Japan with correlation coefficients ranging from 0.44 to 0.80. Unexpectedly the NAME run using radar rainfall data had a lower correlation coefficient (R = 0.66), when compared to observations, than the run using the JMA mesoscale model rainfall (R = 0.76) or the run using ECMWF met data (R = 0.80). Additionally the impact of modifying the wet scavenging coefficients used in the parameterisation of wet deposition was investigated. The results showed that modifying the scavenging parameters had a similar impact to modifying the driving meteorology on the rank calculated from comparing the modelled and observed deposition

  18. A study of U-Pb isotopic evolutionary system in Chanziping uranium deposit

    International Nuclear Information System (INIS)

    Xu Weichang; Huang Shijie; Xia Yuliang.

    1988-01-01

    Chanziping uranium deposit occurred in the black siliceous slate of Lower cambrian. The uranium mineralization was controlled by both interstratified fault belt and the ore-bearing beds. Based on the study of the U-Pb isotopic system of the various rocks, ores and minerals in the ore-bearing beds, the authors find out the obvious disequilibrium of U-Pb isotopic composition in most rock samples which indicates the loss of uranium form the ore-bearing beds and surrounding granite. Its counting loss ranges from 30 to 80%. The age of rich ores of the U-Pb concordance diagram and the U-Pb three stage model are t 1 = 523 ± 19M. Y. , t 2 = 22 ± 2 M.Y.. The isochronal ages for pitchblend are 75 ± 4 M.Y., 43 ± 7 M.Y., and for rock is 416 M.y.. These data shows that the uranium in ore-bearing beds was mainly derived from the ore-bearing beds itself and partly from the surrounding granite. The ore deposit can be considered to be of stratabound uranium deposit of sedimentation and late transformation type

  19. Investigation of dimensional variation in parts manufactured by fused deposition modeling using Gauge Repeatability and Reproducibility

    Science.gov (United States)

    Mohamed, Omar Ahmed; Hasan Masood, Syed; Lal Bhowmik, Jahar

    2018-02-01

    In the additive manufacturing (AM) market, the question is raised by industry and AM users on how reproducible and repeatable the fused deposition modeling (FDM) process is in providing good dimensional accuracy. This paper aims to investigate and evaluate the repeatability and reproducibility of the FDM process through a systematic approach to answer this frequently asked question. A case study based on the statistical gage repeatability and reproducibility (gage R&R) technique is proposed to investigate the dimensional variations in the printed parts of the FDM process. After running the simulation and analysis of the data, the FDM process capability is evaluated, which would help the industry for better understanding the performance of FDM technology.

  20. Hydrothermal alteration, fumarolic deposits and fluids from Lastarria Volcanic Complex: A multidisciplinary study

    OpenAIRE

    Aguilera, Felipe; Layana, Susana; Rodríguez-Díaz, Augusto; González, Cristóbal; Cortés, Julio; Inostroza, Manuel

    2016-01-01

    A multidisciplinary study that includes processing of Landsat ETM+ satellite images, chemistry of gas condensed, mineralogy and chemistry of fumarolic deposits, and fluid inclusion data from native sulphur deposits, has been carried out in the Lastarria Volcanic Complex (LVC) with the objective to determine the distribution and characteristics of hydrothermal alteration zones and to establish the relations between gas chemistry and fumarolic deposits. Satellite image processing shows the pres...

  1. Evaluation of Inhaled Versus Deposited Dose Using the Exponential Dose-Response Model for Inhalational Anthrax in Nonhuman Primate, Rabbit, and Guinea Pig.

    Science.gov (United States)

    Gutting, Bradford W; Rukhin, Andrey; Mackie, Ryan S; Marchette, David; Thran, Brandolyn

    2015-05-01

    The application of the exponential model is extended by the inclusion of new nonhuman primate (NHP), rabbit, and guinea pig dose-lethality data for inhalation anthrax. Because deposition is a critical step in the initiation of inhalation anthrax, inhaled doses may not provide the most accurate cross-species comparison. For this reason, species-specific deposition factors were derived to translate inhaled dose to deposited dose. Four NHP, three rabbit, and two guinea pig data sets were utilized. Results from species-specific pooling analysis suggested all four NHP data sets could be pooled into a single NHP data set, which was also true for the rabbit and guinea pig data sets. The three species-specific pooled data sets could not be combined into a single generic mammalian data set. For inhaled dose, NHPs were the most sensitive (relative lowest LD50) species and rabbits the least. Improved inhaled LD50 s proposed for use in risk assessment are 50,600, 102,600, and 70,800 inhaled spores for NHP, rabbit, and guinea pig, respectively. Lung deposition factors were estimated for each species using published deposition data from Bacillus spore exposures, particle deposition studies, and computer modeling. Deposition was estimated at 22%, 9%, and 30% of the inhaled dose for NHP, rabbit, and guinea pig, respectively. When the inhaled dose was adjusted to reflect deposited dose, the rabbit animal model appears the most sensitive with the guinea pig the least sensitive species. © 2014 Society for Risk Analysis.

  2. Subretinal Pigment Epithelial Deposition of Drusen Components Including Hydroxyapatite in a Primary Cell Culture Model.

    Science.gov (United States)

    Pilgrim, Matthew G; Lengyel, Imre; Lanzirotti, Antonio; Newville, Matt; Fearn, Sarah; Emri, Eszter; Knowles, Jonathan C; Messinger, Jeffrey D; Read, Russell W; Guidry, Clyde; Curcio, Christine A

    2017-02-01

    Extracellular deposits containing hydroxyapatite, lipids, proteins, and trace metals that form between the basal lamina of the RPE and the inner collagenous layer of Bruch's membrane are hallmarks of early AMD. We examined whether cultured RPE cells could produce extracellular deposits containing all of these molecular components. Retinal pigment epithelium cells isolated from freshly enucleated porcine eyes were cultured on Transwell membranes for up to 6 months. Deposit composition and structure were characterized using light, fluorescence, and electron microscopy; synchrotron x-ray diffraction and x-ray fluorescence; secondary ion mass spectroscopy; and immunohistochemistry. Apparently functional primary RPE cells, when cultured on 10-μm-thick inserts with 0.4-μm-diameter pores, can produce sub-RPE deposits that contain hydroxyapatite, lipids, proteins, and trace elements, without outer segment supplementation, by 12 weeks. The data suggest that sub-RPE deposit formation is initiated, and probably regulated, by the RPE, as well as the loss of permeability of the Bruch's membrane and choriocapillaris complex associated with age and early AMD. This cell culture model of early AMD lesions provides a novel system for testing new therapeutic interventions against sub-RPE deposit formation, an event occurring well in advance of the onset of vision loss.

  3. Comparison of a model vapor deposited glass films to equilibrium glass films

    Science.gov (United States)

    Flenner, Elijah; Berthier, Ludovic; Charbonneau, Patrick; Zamponi, Francesco

    Vapor deposition of particles onto a substrate held at around 85% of the glass transition temperature can create glasses with increased density, enthalpy, kinetic stability, and mechanical stability compared to an ordinary glass created by cooling. It is estimated that an ordinary glass would need to age thousands of years to reach the kinetic stability of a vapor deposited glass, and a natural question is how close to the equilibrium is the vapor deposited glass. To understand the process, algorithms akin to vapor deposition are used to create simulated glasses that have a higher kinetic stability than their annealed counterpart, although these glasses may not be well equilibrated either. Here we use novel models optimized for a swap Monte Carlo algorithm in order to create equilibrium glass films and compare their properties with those of glasses obtained from vapor deposition algorithms. This approach allows us to directly assess the non-equilibrium nature of vapor-deposited ultrastable glasses. Simons Collaboration on Cracking the Glass Problem and NSF Grant No. DMR 1608086.

  4. New models of droplet deposition and entrainment for prediction of CHF in cylindrical rod bundles

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Haibin, E-mail: hb-zhang@xjtu.edu.cn [School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an 710049 (China); Department of Chemical Engineering, Imperial College, London SW7 2BY (United Kingdom); Hewitt, G.F. [Department of Chemical Engineering, Imperial College, London SW7 2BY (United Kingdom)

    2016-08-15

    Highlights: • New models of droplet deposition and entrainment in rod bundles is developed. • A new phenomenological model to predict the CHF in rod bundles is described. • The present model is well able to predict CHF in rod bundles. - Abstract: In this paper, we present a new set of model of droplet deposition and entrainment in cylindrical rod bundles based on the previously proposed model for annuli (effectively a “one-rod” bundle) (2016a). These models make it possible to evaluate the differences of the rates of droplet deposition and entrainment for the respective rods and for the outer tube by taking into account the geometrical characteristics of the rod bundles. Using these models, a phenomenological model to predict the CHF (critical heat flux) for upward annular flow in vertical rod bundles is described. The performance of the model is tested against the experimental data of Becker et al. (1964) for CHF in 3-rod and 7-rod bundles. These data include tests in which only the rods were heated and data for simultaneous uniform and non-uniform heating of the rods and the outer tube. It was shown that the predicted CHFs by the present model agree well with the experimental data and with the experimental observation that dryout occurred first on the outer rods in 7-rod bundles. It is expected that the methodology used will be generally applicable in the prediction of CHF in rod bundles.

  5. The study on microb and organic metallogenetic process of the interlayer oxidized zone uranium deposit. A case study of the Shihongtan uranium deposit in Turpan-Hami basin

    International Nuclear Information System (INIS)

    Qiao Haiming; Shang Gaofeng

    2010-01-01

    Microbial and organic process internationally leads the field in the study of metallogenetic process presently. Focusing on Shi Hongtan uranium deposit, a typical interlayer oxidized zone sandstone-type deposit, this paper analyzes the geochemical characteristics of microb and organic matter in the deposit, and explores the interaction of microb and organic matter. It considers that the anaerobic bacterium actively takes part in the formation of the interlayer oxidized zone, as well as the mobilization and migration of uranium. In the redox (oxidation-reduction) transition zone, sulphate-reducing bacteria reduced sulphate to stink damp, lowing Eh and acidifying pH in the groundwater, which leads to reducing and absorbing of uranium, by using light hydrocarbon which is the product of the biochemical process of organism and the soluble organic matter as the source of carbon. The interaction of microb and organic matter controls the metallogenetic process of uranium in the deposit. (authors)

  6. Simulation of nitrogen deposition in the North China Plain by the FRAME model

    Directory of Open Access Journals (Sweden)

    Y. Zhang

    2011-11-01

    Full Text Available Simulation of atmospheric nitrogen (N deposition in the North China Plain (NCP at high resolution, 5 × 5 km2, was conducted for the first time by the Fine Resolution Atmospheric Multi-pollutant Exchange (FRAME model. The total N deposition budget was 1481 Gg in this region, with 77 % from reduced N and 23 % from oxidized N, and the annual deposition rate (47 kg N ha−1 was much higher than previously reported values for other parts of the world such as the UK (13 kg N ha−1, Poland (7.3 kg N ha−1 and EU27 (8.6 kg N ha−1. The exported N component (1981 Gg was much higher than the imported N component (584 Gg, suggesting that the NCP is an important net emission source of N pollutants. Contributions of N deposition budgets from the seven provinces in this region were proportional to their area ratios. The calculated spatial distributions of N deposition displayed high rates of reduced N deposition in the south and of oxidized N deposition in the eastern part. The N deposition exceeded an upper limit of 30 kg N ha−1 for natural ecosystems over more than 90 % of the region, resulting in terrestrial ecosystem deterioration, impaired air quality and coastal eutrophication not only in the NCP itself but also in surrounding areas including the Bohai Sea and the Yellow Sea.

  7. A field study of pollutant deposition in radiation fog

    Energy Technology Data Exchange (ETDEWEB)

    Waldman, J.M.; Jacob, D.J.; Munger, J.W.; Hoffman, M.R.

    1986-04-01

    Deposition during fog episodes can make a significant contribution to the overall flux of pollutants in certain ecosystems. Furthermore, when atmospheric stagnation prevents normal ventilation in a region, fog deposition may become the main route of pollutant removal. Fogs can consequently exert dominant control over pollutant levels in certain atmospheres. The southern San Joaquin Valley (SJV) of California is a region prone to wintertime episodes of atmospheric stagnation. These lead to elevated pollutant concentrations and/or dense, widespread fogs. Major oil-recovery operations plus widespread agricultural and livestock feeding activities are important sources of SO/sub 2/, NO/sub X/ and NH/sub 3/ in the valley. A multifaceted program of field monitoring was conducted in the SJV during the winter 1984-1985, focusing on aspects of pollutant scavenging and removal in the fog-laden atmosphere. Concentrations of major species were measured in gas, dry aerosol and fogwater phases. In addition, depositional fluxes were monitored by surrogate-surface methods. These measurements were employed to directly assess the magnitude of removal enhancement by fog.

  8. Real-time kinetic modeling of YSZ thin film roughness deposited by e-beam evaporation technique

    International Nuclear Information System (INIS)

    Galdikas, A.; Cerapaite-Trusinskiene, R.; Laukaitis, G.; Dudonis, J.

    2008-01-01

    In the present study, the process of yttrium-stabilized zirconia (YSZ) thin films deposition on optical quartz (SiO 2 ) substrates using e-beam deposition technique controlling electron gun power is analyzed. It was found that electron gun power influences the non-monotonous kinetics of YSZ film surface roughness. The evolution of YSZ thin film surface roughness was analyzed by a kinetic model. The model is based on the rate equations and includes processes of surface diffusion of the adatoms and the clusters, nucleation, growth and coalescence of islands in the case of thin film growth in Volmer-Weber mode. The analysis of the experimental results done by modeling explains non-monotonous kinetics and dependence of the surface roughness on the electron gun power. A good quantitative agreement with experimental results is obtained taking into account the initial roughness of the substrate surface and the amount of the clusters in the flux of evaporated material.

  9. Ultrastructural study of electron dense deposits in renal tubular basement membrane: prevalence and relationship to epithelial atrophy.

    Science.gov (United States)

    Yong, Jim L C; Killingsworth, Murray C

    2014-08-01

    This study reports the prevalence of immune deposits associated with the proximal and distal tubules in a series of routine renal biopsies received in our department during a single calendar year. From 87 cases, 65 (74%) were found to have glomerular immune deposits by immunofluorescence. Tubular immune deposits were found in 12 cases (18%), 3 of which had no glomerular deposits. By transmission electron microscopy (EM), 58 cases (66%) were found to have deposits of granular or vesicular material associated with the tubular basement membranes (TBM). Finely granular electron dense deposits appeared to correspond to the immune deposits seen by immunofluorescence microscopy (IF) and may be a sensitive marker of immune deposition.

  10. Modelling of local carbon deposition on rough test limiter exposed to the edge plasma of TEXTOR

    International Nuclear Information System (INIS)

    Dai Shuyu; Sun Jizhong; Wang Dezhen; Kirschner, A.; Matveev, D.; Borodin, D.; Bjoerkas, C.

    2013-01-01

    A Monte-Carlo code called SURO has been developed to study the influence of surface roughness on the impurity deposition characteristic in fusion experiments. SURO uses the test particle approach to describe the impact of background plasma and the deposition of impurity particles on a sinusoidal surface. The local impact angle and dynamic change of surface roughness as well as surface concentrations of different species due to erosion and deposition are taken into account. Coupled with 3D Monte-Carlo code ERO, SURO was used to study the impact of surface roughness on 13 C deposition in 13 CH 4 injection experiments in TEXTOR. The simulations showed that the amount of net deposited 13 C species increases with surface roughness. Parameter studies with varying 12 C and 13 C fluxes were performed to gain insight into impurity deposition characteristic on the rough surface. Calculations of the exposure time needed for surface smoothing for TEXTOR and ITER were also carried out for different scenarios. (author)

  11. An analytical–numerical model of laser direct metal deposition track and microstructure formation

    International Nuclear Information System (INIS)

    Ahsan, M Naveed; Pinkerton, Andrew J

    2011-01-01

    Multiple analytical and numerical models of the laser metal deposition process have been presented, but most rely on sequential solution of the energy and mass balance equations or discretization of the problem domain. Laser direct metal deposition is a complex process involving multiple interdependent processes which can be best simulated using a fully coupled mass-energy balance solution. In this work a coupled analytical–numerical solution is presented. Sub-models of the powder stream, quasi-stationary conduction in the substrate and powder assimilation into the area of the substrate above the liquidus temperature are combined. An iterative feedback loop is used to ensure mass and energy balances are maintained at the melt pool. The model is verified using Ti–6Al–4V single track deposition, produced with a coaxial nozzle and a diode laser. The model predictions of local temperature history, the track profile and microstructure scale show good agreement with the experimental results. The model is a useful industrial aid and alternative to finite element methods for selecting the parameters to use for laser direct metal deposition when separate geometric and microstructural outcomes are required

  12. Vacuum fused deposition modelling system to improve tensile ...

    African Journals Online (AJOL)

    In the printing process, the interlayer bonding is made too quick thus the layers are not fully fused together causing the reduced tensile strength. This paper presents a possible solution to this problem by incorporating vacuum technology in FDM system to improve tensile strength of 3D printed specimens. In this study, a ...

  13. A Holistic Model That Physicochemically Links Iron Oxide - Apatite and Iron Oxide - Copper - Gold Deposits to Magmas

    Science.gov (United States)

    Simon, A. C.; Reich, M.; Knipping, J.; Bilenker, L.; Barra, F.; Deditius, A.; Lundstrom, C.; Bindeman, I. N.

    2015-12-01

    Iron oxide-apatite (IOA) and iron oxide-copper-gold deposits (IOCG) are important sources of their namesake metals and increasingly for rare earth metals in apatite. Studies of natural systems document that IOA and IOCG deposits are often spatially and temporally related with one another and coeval magmatism. However, a genetic model that accounts for observations of natural systems remains elusive, with few observational data able to distinguish among working hypotheses that invoke meteoric fluid, magmatic-hydrothermal fluid, and immiscible melts. Here, we use Fe and O isotope data and high-resolution trace element (e.g., Ti, V, Mn, Al) data of individual magnetite grains from the world-class Los Colorados (LC) IOA deposit in the Chilean Iron Belt to elucidate the origin of IOA and IOCG deposits. Values of d56Fe range from 0.08‰ to 0.26‰, which are within the global range of ~0.06‰ to 0.5‰ for magnetite formed at magmatic conditions. Values of δ18O for magnetite and actinolite are 2.04‰ and 6.08‰, respectively, consistent with magmatic values. Ti, V, Al, and Mn are enriched in magnetite cores and decrease systematically from core to rim. Plotting [Al + Mn] vs. [Ti + V] indicates that magnetite cores are consistent with magmatic and/or magmatic-hydrothermal (i.e., porphyry) magnetites. Decreasing Al, Mn, Ti, V is consistent with a cooling trend from porphyry to Kiruna to IOCG systems. The data from LC are consistent with the following new genetic model for IOA and IOCG systems: 1) magnetite cores crystallize from silicate melt; 2) these magnetite crystals are nucleation sites for aqueous fluid that exsolves and scavenges inter alia Fe, P, S, Cu, Au from silicate melt; 3) the magnetite-fluid suspension is less dense that the surrounding magma, allowing ascent; 4) as the suspension ascends, magnetite grows in equilibrium with the fluid and takes on a magmatic-hydrothermal character (i.e., lower Al, Mn, Ti, V); 5) during ascent, magnetite, apatite and

  14. Carbonatite and alkaline intrusion-related rare earth element deposits–A deposit model

    Science.gov (United States)

    Verplanck, Philip L.; Van Gosen, Bradley S.

    2011-01-01

    The rare earth elements are not as rare in nature as their name implies, but economic deposits with these elements are not common and few deposits have been large producers. In the past 25 years, demand for rare earth elements has increased dramatically because of their wide and diverse use in high-technology applications. Yet, presently the global production and supply of rare earth elements come from only a few sources. China produces more than 95 percent of the world's supply of rare earth elements. Because of China's decision to restrict exports of these elements, the price of rare earth elements has increased and industrial countries are concerned about supply shortages. As a result, understanding the distribution and origin of rare earth elements deposits, and identifying and quantifying our nation's rare earth elements resources have become priorities. Carbonatite and alkaline intrusive complexes, as well as their weathering products, are the primary sources of rare earth elements. The general mineral deposit model summarized here is part of an effort by the U.S. Geological Survey's Mineral Resources Program to update existing models and develop new descriptive mineral deposit models to supplement previously published models for use in mineral-resource and mineral-environmental assessments. Carbonatite and alkaline intrusion-related REE deposits are discussed together because of their spatial association, common enrichment in incompatible elements, and similarities in genesis. A wide variety of commodities have been exploited from carbonatites and alkaline igneous rocks, such as rare earth elements, niobium, phosphate, titanium, vermiculite, barite, fluorite, copper, calcite, and zirconium. Other enrichments include manganese, strontium, tantalum, thorium, vanadium, and uranium.

  15. Voltage uniformity study in large-area reactors for RF plasma deposition

    Energy Technology Data Exchange (ETDEWEB)

    Sansonnens, L.; Pletzer, A.; Magni, D.; Howling, A.A.; Hollenstein, C. [Ecole Polytechnique Federale, Lausanne (Switzerland). Centre de Recherche en Physique des Plasma (CRPP); Schmitt, J.P.M. [Balzers Process Systems, Palaiseau (France)

    1996-09-01

    Non-uniform voltage distribution across the electrode area results in inhomogeneous thin-film RF plasma deposition in large area reactors. In this work, a two-dimensional analytic model for the calculation of the voltage distribution across the electrode area is presented. The results of this model are in good agreement with measurements performed without plasma at 13.56 MHz and 70 MHz in a large area reactor. The principal voltage inhomogeneities are caused by logarithmic singularities in the vicinity of RF connections and not by standing waves. These singularities are only described by a two-dimensional model and cannot be intuitively predicted by analogy to a one-dimensional case. Plasma light emission measurements and thickness homogeneity studies of a-Si:H films show that the plasma reproduces these voltage inhomogeneities. Improvement of the voltage uniformity is investigated by changing the number and position of the RF connections. (author) 13 figs., 20 refs.

  16. Uranium metallogenic model related to CO2 and hydrocarbon in granite type uranium deposits

    International Nuclear Information System (INIS)

    Ou Guangxi; Chen Anfu; Cui Jianyong; Xu Yinhuan; Wang Chunhua; Xu Yan

    2001-01-01

    The report is concerned with the inseparable connections between the uranium migration, enrichment rule and the geochemical characteristics of CO 2 and hydrocarbon gas, as well as the relations between the deposit locations and the gas abnormal distribution in rocky body, which are based on the analysis of some data and phenomena in 11 typical deposits in 2 granite type uranium ore fields, including the observations of 250 rocky fluid inclusion sections and the analyzed data of which 2470 are in gas composition, 200 in uranium content, 50 in thermometry. All the conclusions are drawn from different angles for the first time and this new exploration and advancement fills up the blank of gas geochemistry study in uranium deposits or other metal deposits

  17. Activity build-up on the circulation loops of boiling water reactors: Basics for modelling of transport and deposition processes

    International Nuclear Information System (INIS)

    Covelli, B.; Alder, H.P.

    1988-03-01

    In the past 20 years the radiation field of nuclear power plant loops outside the core zone was the object of investigations in many countries. In this context test loops were built and basic research done. At our Institute PSI the installation of a LWR-contamination loop is planned for this year. This experimental loop has the purpose to investigate the complex phenomena of activity deposition from the primary fluid of reactor plants and to formulate analytical models. From the literature the following conclusions can be drawn: The principal correlations of the activity build-up outside the core are known. The plant specific single phenomena as corrosion, crud-transport, activation and deposit of cobalt in the oxide layer are complex and only partially understood. The operational experience of particular plants with low contaminated loops (BWR-recirculation loops) show that in principle the problem is manageable. The reduction of the activity build-up in older plants necessitates a combination of measures to modify the crud balance in the primary circuit. In parallel to the experimental work several simulation models in the form of computer programs were developed. These models have the common feature that they are based on mass balances, in which the exchange of materials and the sedimentation processes are described by global empirical transport coefficients. These models yield satisfactory results and allow parameter studies; the application however is restricted to the particular installation. All programs lack models that describe the thermodynamic and hydrodynamic mechanisms on the surface of deposition layers. Analytical investigations on fouling of process equipment led to models that are also applicable to the activity build-up in reactor loops. Therefore it seems appropriate to combine the nuclear simulation models with the fundamental equations for deposition. 10 refs., 18 figs., 3 tabs

  18. Kinetic Monte-Carlo modeling of hydrogen retention and re-emission from Tore Supra deposits

    International Nuclear Information System (INIS)

    Rai, A.; Schneider, R.; Warrier, M.; Roubin, P.; Martin, C.; Richou, M.

    2009-01-01

    A multi-scale model has been developed to study the reactive-diffusive transport of hydrogen in porous graphite [A. Rai, R. Schneider, M. Warrier, J. Nucl. Mater. (submitted for publication). http://dx.doi.org/10.1016/j.jnucmat.2007.08.013.]. The deposits found on the leading edge of the neutralizer of Tore Supra are multi-scale in nature, consisting of micropores with typical size lower than 2 nm (∼11%), mesopores (∼5%) and macropores with a typical size more than 50 nm [C. Martin, M. Richou, W. Sakaily, B. Pegourie, C. Brosset, P. Roubin, J. Nucl. Mater. 363-365 (2007) 1251]. Kinetic Monte-Carlo (KMC) has been used to study the hydrogen transport at meso-scales. Recombination rate and the diffusion coefficient calculated at the meso-scale was used as an input to scale up and analyze the hydrogen transport at macro-scale. A combination of KMC and MCD (Monte-Carlo diffusion) method was used at macro-scales. Flux dependence of hydrogen recycling has been studied. The retention and re-emission analysis of the model has been extended to study the chemical erosion process based on the Kueppers-Hopf cycle [M. Wittmann, J. Kueppers, J. Nucl. Mater. 227 (1996) 186].

  19. The OML-SprayDrift model for predicting pesticide drift and deposition from ground boom sprayers

    DEFF Research Database (Denmark)

    Løfstrøm, Per; Bruus, Marianne; Andersen, Helle Vibeke

    2013-01-01

    In order to predict the exposure of hedgerows and other neighboring biotopes to pesticides from field-spray applications, an existing Gaussian atmospheric dispersion and deposition model was developed to model the changes in droplet size due to evaporation affecting the deposition velocity....... The Gaussian tilting plume principle was applied inside the stayed track. The model was developed on one set of field experiments using a flat-fan nozzle and validated against another set of field experiments using an air-induction nozzle. The vertical spray-drift profile was measured using hair curlers...... at increasing distances. The vertical concentration profile downwind has a maximum just above the ground in our observations and calculations. The model accounts for the meteorological conditions, droplet ejection velocity and size spectrum. Model validation led to an R2 value of 0.78, and 91% of the calculated...

  20. Considerations on thermic and mechanic processes that appear when 3D printing using ABS fused deposition modelling technology

    Science.gov (United States)

    Amza, Catalin Gheorghe; Niţoi, Dan Florin

    2018-02-01

    3D printers are of recent history, but with an extremely rapid evolution both in technology and hardware involved. At present excellent performances are reached in applications such as 3D printing of various Acrylonitrile butadiene styrene (ABS) plastic parts for house building using Fused Deposition Modelling technology. Nevertheless, the thermic and mechanic processes that appear when manufacturing such plastic components are quite complex. This aspect is very important, especially when one wants to optimize the manufacturing of parts with certain geometrical complexity. The Finite Element Analysis/Modelling (FEA/FEM) is among the few methods that can study the thermic transfer processes and shape modifications that can appear due to non-seamar behavior that takes place when the ABS plastic material is cooling down. The current papers present such an analysis when simulating the deposition of several strings of materials. A thermic analysis is made followed by a study of deformations that appear when the structure cools down.

  1. Theoretical study of thin metallic deposit layers: from electronic structure to kinetics

    International Nuclear Information System (INIS)

    Senhaji, Abdelali

    1993-01-01

    We have studied the relation between the equilibrium surface segregation in an alloy A c B 1-c and the kinetics of dissolution of a few metallic layers of A (or B) deposited on a B (or A) substrate. We used an energetic model derived from the electronic structure (T.B.I.M.) allowing us to study the surface segregation both in disordered and in ordered alloys. Moreover we have developed a kinetic model (K.T.B.I.M.) consistent with the TBIM energetic model to study the kinetics both of segregation and dissolution. This process has been applied to the Cu-Pt system for which Auger, LEED and photoemission experiments are in progress at L.U.R.E. Concerning the equilibrium surface segregation in the ordered state we have studied all the possible terminations for the (111) and (100) faces in the various ordered structures occurring on the F.C.C. lattice (L1 0 , L1 1 - L1 2 and L'). In particular we have determined the domain of (meta)stability of each termination, which is very useful to understand the competition between single and double steps in ordered alloys. Studying the kinetics of dissolution of a few layers of Cu (or Pt) deposited on the (111) or (100) face of a Pt (or Cu) substrate, we have shown the formation of surface compounds with a great variety of behaviours depending on the face or on the temperature. All these behaviours can be rationalized with the local equilibrium concept, which we have defined accurately within our model and which allows to connect the dissolution mode with the equilibrium segregation. (author) [fr

  2. Economic filters for evaluating porphyry copper deposit resource assessments using grade-tonnage deposit models, with examples from the U.S. Geological Survey global mineral resource assessment: Chapter H in Global mineral resource assessment

    Science.gov (United States)

    Robinson, Gilpin R.; Menzie, W. David

    2012-01-01

    An analysis of the amount and location of undiscovered mineral resources that are likely to be economically recoverable is important for assessing the long-term adequacy and availability of mineral supplies. This requires an economic evaluation of estimates of undiscovered resources generated by traditional resource assessments (Singer and Menzie, 2010). In this study, simplified engineering cost models were used to estimate the economic fraction of resources contained in undiscovered porphyry copper deposits, predicted in a global assessment of copper resources. The cost models of Camm (1991) were updated with a cost index to reflect increases in mining and milling costs since 1989. The updated cost models were used to perform an economic analysis of undiscovered resources estimated in porphyry copper deposits in six tracts located in North America. The assessment estimated undiscovered porphyry copper deposits within 1 kilometer of the land surface in three depth intervals.

  3. Main geologic characteristics and metallogenic models of uranium deposits in Zhejiang

    International Nuclear Information System (INIS)

    Tang Qitao

    2000-01-01

    Uranium resources in Zhejiang is abundant with numerous mineralization types. According to the genesis they can be classified into: sedimentary-reworking type, hydrothermal type and infiltration type. The author briefly describes main geologic characteristics and metallogenic models of different type uranium deposits

  4. Modelling the impact of climate change and atmospheric N deposition on French forests biodiversity.

    Science.gov (United States)

    Rizzetto, Simon; Belyazid, Salim; Gégout, Jean-Claude; Nicolas, Manuel; Alard, Didier; Corcket, Emmanuel; Gaudio, Noémie; Sverdrup, Harald; Probst, Anne

    2016-06-01

    A dynamic coupled biogeochemical-ecological model was used to simulate the effects of nitrogen deposition and climate change on plant communities at three forest sites in France. The three sites had different forest covers (sessile oak, Norway spruce and silver fir), three nitrogen loads ranging from relatively low to high, different climatic regions and different soil types. Both the availability of vegetation time series and the environmental niches of the understory species allowed to evaluate the model for predicting the composition of the three plant communities. The calibration of the environmental niches was successful, with a model performance consistently reasonably high throughout the three sites. The model simulations of two climatic and two deposition scenarios showed that climate change may entirely compromise the eventual recovery from eutrophication of the simulated plant communities in response to the reductions in nitrogen deposition. The interplay between climate and deposition was strongly governed by site characteristics and histories in the long term, while forest management remained the main driver of change in the short term. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Modeling of Ammonia Dry Deposition to a Pocosin Landscape Downwind of a Large Poultry Facility

    Science.gov (United States)

    A semi-empirical bi-directional flux modeling approach is used to estimate NH3 air concentrations and dry deposition fluxes to a portion of the Pocosin Lakes National Wildlife Refuge (PLNWR) downwind of a large poultry facility. Meteorological patterns at PLNWR are such that som...

  6. 3D printing of CNT- and graphene-based conductive polymer nanocomposites by fused deposition modeling

    NARCIS (Netherlands)

    Gnanasekaran, K.; Heijmans, T.; van Bennekom, S.; Woldhuis, H.; Wijnia, S.; de With, G.; Friedrich, H.

    2017-01-01

    Fused deposition modeling (FDM) is limited by the availability of application specific functional materials. Here we illustrate printing of non-conventional polymer nanocomposites (CNT- and graphene-based polybutylene terephthalate (PBT)) on a commercially available desktop 3D printer leading toward

  7. Comparisons of measured and modelled ozone deposition to forests in northern Europe

    DEFF Research Database (Denmark)

    Touvinen, J. P.; Simpson, D.; Mikkelsen, Teis Nørgaard

    2001-01-01

    The performance of a new dry deposition module, developedfor the European-scale mapping and modelling of ozone flux to vegetation, was tested against micrometeorological ozone and water vapour flux measurements. The measurement data are for twoconiferous (Scots pine in Finland, Norway spruce...

  8. Fused Deposition Modeling 3D Printing for (Bio)analytical Device Fabrication : Procedures, Materials, and Applications

    NARCIS (Netherlands)

    Salentijn, Gert Ij; Oomen, Pieter E; Grajewski, Maciej; Verpoorte, Elisabeth

    2017-01-01

    In this work, the use of fused deposition modeling (FDM) in a (bio)analytical/lab-on-a-chip research laboratory is described. First, the specifications of this 3D printing method that are important for the fabrication of (micro)devices were characterized for a benchtop FDM 3D printer. These include

  9. Environmental radioactivity in Caithness and Sutherland. Pt. 1: Food-chain model validation and the attribution of radionuclide sources to deposition

    International Nuclear Information System (INIS)

    Rose, C.L.; Halliwell, C.M.

    1995-01-01

    This study is part of a continuing programme investigating the behaviour of environmental radioactivity in the vicinity of the AEA Technology establishment at Dounreay, Caithness and Sutherland. The study aims were to assess the applicability of a National Radiological Protection Board (NRPB) food-chain model to the Caithness and Sutherland area, and to determine the contribution of different radionuclide sources to activities in measured total deposition in the same region. The NRPB model predicts the movement of radionuclides through the food-chain, and in this study was validated by comparing model outputs with measured crop data (ryegrass and clover). Five radionuclides ( 137 Cs, 90 Sr, 239+240 Pu, 238 Pu, 241 Am) were considered. The contribution of different radionuclide sources to activities in total deposition were divided into three categories: Dounreay stack inputs, sea-to-land transfer, and the combined contribution from nuclear weapons testing and Chernobyl fallout. The analyses indicated that the contribution of the Dounreay stack to total deposition was very small for the radionuclides studied. The Chernobyl accident made a large impact on the total deposition of 137 Cs in the study area, and 90 Sr deposition was also affected by this, but to a much lesser extent. The Chernobyl accident appeared to have no effect on total Pu deposition in the region. The cessation of nuclear weapons testing and the length of time since Chernobyl meant that actual 137 Cs and 90 Sr deposition as a result of weapons/Chernobyl inputs had reached a low level by the end of the study period (summer 1987). It became evident that a contribution to total deposition was being made by additional factors, thought to be local resuspension of large particles for 137 Cs, and possibly deposition of plant material for 90 Sr. For Pu, sea-to-land transfer was probably an important contributor at coastal sites. (Author)

  10. Morphological Study Of Palladium Thin Films Deposited By Sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Salcedo, K L; Rodriguez, C A [Grupo Plasma Laser y Aplicaciones, Ingenieria Fisica, Universidad Tecnologica de Pereira (Colombia); Perez, F A [WNANO, West Virginia University (United States); Riascos, H [Grupo Plasma Laser y Aplicaciones, Departamento de Fisica, Universidad Tecnologica de Pereira (Colombia)

    2011-01-01

    This paper presents a morphological analysis of thin films of palladium (Pd) deposited on a substrate of sapphire (Al{sub 2}O{sub 3}) at a constant pressure of 3.5 mbar at different substrate temperatures (473 K, 523 K and 573 K). The films were morphologically characterized by means of an Atomic Force Microscopy (AFM); finding a relation between the roughness and the temperature. A morphological analysis of the samples through AFM was carried out and the roughness was measured by simulating the X-ray reflectivity curve using GenX software. A direct relation between the experimental and simulation data of the Palladium thin films was found.

  11. Morphological Study Of Palladium Thin Films Deposited By Sputtering

    International Nuclear Information System (INIS)

    Salcedo, K L; Rodriguez, C A; Perez, F A; Riascos, H

    2011-01-01

    This paper presents a morphological analysis of thin films of palladium (Pd) deposited on a substrate of sapphire (Al 2 O 3 ) at a constant pressure of 3.5 mbar at different substrate temperatures (473 K, 523 K and 573 K). The films were morphologically characterized by means of an Atomic Force Microscopy (AFM); finding a relation between the roughness and the temperature. A morphological analysis of the samples through AFM was carried out and the roughness was measured by simulating the X-ray reflectivity curve using GenX software. A direct relation between the experimental and simulation data of the Palladium thin films was found.

  12. Impinging jet study of the deposition of colloidal particles on synthetic polymer (Zeonor)

    DEFF Research Database (Denmark)

    Vlček, Jakub; Lapčík, Lubomír; Cech, Jiri

    2014-01-01

    In this study, an impinging jet deposition experiments were performed on synthetic polymer (Zeonor) original and by micro-embossing modified substrates with exactly defined topology as confirmed by AFM and SEM. Deposition experiments were performed at ambient temperature and at selected flow regi...

  13. Effects of build parameters on linear wear loss in plastic part produced by fused deposition modeling

    Science.gov (United States)

    Mohamed, Omar Ahmed; Masood, Syed Hasan; Bhowmik, Jahar Lal

    2017-07-01

    Fused Deposition Modeling (FDM) is one of the prominent additive manufacturing technologies for producing polymer products. FDM is a complex additive manufacturing process that can be influenced by many process conditions. The industrial demands required from the FDM process are increasing with higher level product functionality and properties. The functionality and performance of FDM manufactured parts are greatly influenced by the combination of many various FDM process parameters. Designers and researchers always pay attention to study the effects of FDM process parameters on different product functionalities and properties such as mechanical strength, surface quality, dimensional accuracy, build time and material consumption. However, very limited studies have been carried out to investigate and optimize the effect of FDM build parameters on wear performance. This study focuses on the effect of different build parameters on micro-structural and wear performance of FDM specimens using definitive screening design based quadratic model. This would reduce the cost and effort of additive manufacturing engineer to have a systematic approachto make decision among the manufacturing parameters to achieve the desired product quality.

  14. A preliminary deposit model for lithium-cesium-tantalum (LCT) pegmatites

    Science.gov (United States)

    Bradley, Dwight; McCauley, Andrew

    2013-01-01

    This report is part of an effort by the U.S. Geological Survey to update existing mineral deposit models and to develop new ones. We emphasize practical aspects of pegmatite geology that might directly or indirectly help in exploration for lithium-cesium-tantalum (LCT) pegmatites, or for assessing regions for pegmatite-related mineral resource potential. These deposits are an important link in the world’s supply chain of rare and strategic elements, accounting for about one-third of world lithium production, most of the tantalum, and all of the cesium.

  15. System of the creation of a model for the coal deposit, and the subsequent

    Directory of Open Access Journals (Sweden)

    Staněk František

    1996-09-01

    Full Text Available In the paper, methodics of creating a model for different type of the coal deposit is described, including the processing of reserves text and graphic outputs. It is also useful in cases of the deposit with a great number of seams of various thicknesses that is heavily tectonically disturbed and divided into tectonic blocks. The development of seams is variable in both the thickness and quality. Splitting of the seams occurs, separate benches are formed and, on the contrary, connected into one seam.

  16. Error Analysis: How Precise is Fused Deposition Modeling in Fabrication of Bone Models in Comparison to the Parent Bones?

    Science.gov (United States)

    Reddy, M V; Eachempati, Krishnakiran; Gurava Reddy, A V; Mugalur, Aakash

    2018-01-01

    Rapid prototyping (RP) is used widely in dental and faciomaxillary surgery with anecdotal uses in orthopedics. The purview of RP in orthopedics is vast. However, there is no error analysis reported in the literature on bone models generated using office-based RP. This study evaluates the accuracy of fused deposition modeling (FDM) using standard tessellation language (STL) files and errors generated during the fabrication of bone models. Nine dry bones were selected and were computed tomography (CT) scanned. STL files were procured from the CT scans and three-dimensional (3D) models of the bones were printed using our in-house FDM based 3D printer using Acrylonitrile Butadiene Styrene (ABS) filament. Measurements were made on the bone and 3D models according to data collection procedures for forensic skeletal material. Statistical analysis was performed to establish interobserver co-relation for measurements on dry bones and the 3D bone models. Statistical analysis was performed using SPSS version 13.0 software to analyze the collected data. The inter-observer reliability was established using intra-class coefficient for both the dry bones and the 3D models. The mean of absolute difference is 0.4 that is very minimal. The 3D models are comparable to the dry bones. STL file dependent FDM using ABS material produces near-anatomical 3D models. The high 3D accuracy hold a promise in the clinical scenario for preoperative planning, mock surgery, and choice of implants and prostheses, especially in complicated acetabular trauma and complex hip surgeries.

  17. Error analysis: How precise is fused deposition modeling in fabrication of bone models in comparison to the parent bones?

    Directory of Open Access Journals (Sweden)

    M V Reddy

    2018-01-01

    Full Text Available Background: Rapid prototyping (RP is used widely in dental and faciomaxillary surgery with anecdotal uses in orthopedics. The purview of RP in orthopedics is vast. However, there is no error analysis reported in the literature on bone models generated using office-based RP. This study evaluates the accuracy of fused deposition modeling (FDM using standard tessellation language (STL files and errors generated during the fabrication of bone models. Materials and Methods: Nine dry bones were selected and were computed tomography (CT scanned. STL files were procured from the CT scans and three-dimensional (3D models of the bones were printed using our in-house FDM based 3D printer using Acrylonitrile Butadiene Styrene (ABS filament. Measurements were made on the bone and 3D models according to data collection procedures for forensic skeletal material. Statistical analysis was performed to establish interobserver co-relation for measurements on dry bones and the 3D bone models. Statistical analysis was performed using SPSS version 13.0 software to analyze the collected data. Results: The inter-observer reliability was established using intra-class coefficient for both the dry bones and the 3D models. The mean of absolute difference is 0.4 that is very minimal. The 3D models are comparable to the dry bones. Conclusions: STL file dependent FDM using ABS material produces near-anatomical 3D models. The high 3D accuracy hold a promise in the clinical scenario for preoperative planning, mock surgery, and choice of implants and prostheses, especially in complicated acetabular trauma and complex hip surgeries.

  18. Modeling of gas-phase chemistry in the chemical vapor deposition of polysilicon in a cold wall system

    Energy Technology Data Exchange (ETDEWEB)

    Toprac, A.J.; Edgar, T.F.; Trachtenberg, I. (Univ. of Texas, Austin, TX (United States). Dept. of Chemical Engineering)

    1993-06-01

    The relative contribution of gas-phase chemistry to deposition processes is an important issue both from the standpoint of operation and modeling of these processes. In polysilicon deposition from thermally activated silane in a cold wall rapid thermal chemical vapor deposition (RTCVD) system, the relative contribution of gas-phase chemistry to the overall deposition rate was examined by a mass-balance model. Evaluating the process at conditions examined experimentally, the model indicated that gas-phase reactions may be neglected to good accuracy in predicting polysilicon deposition rate. The model also provided estimates of the level of gas-phase generated SiH[sub 2] associated with deposition on the cold-process chamber walls.

  19. The impact of atmospheric deposition and climate on forest growth in Europe using two empirical modelling approaches

    Science.gov (United States)

    Dobbertin, M.; Solberg, S.; Laubhann, D.; Sterba, H.; Reinds, G. J.; de Vries, W.

    2009-04-01

    Most recent studies show increasing forest growth in central Europe, rather than a decline as was expected due to negative effects of air pollution. While nitrogen deposition, increasing temperature and change in forest management are discussed as possible causes, quantification of the various environmental factors has rarely been undertaken. In our study, we used data from several hundreds of intensive monitoring plots from the ICP Forests network in Europe, ranging from northern Finland to Spain and southern Italy. Five-year growth data for the period 1994-1999 were available from roughly 650 plots to examine the influence of environmental factors on forest growth. Evaluations focused on the influence of nitrogen, sulphur and acid deposition, temperature, precipitation and drought. Concerning the latter meteorological variables we used the deviation from the long-term (30 years) mean. The study included the main tree species common beech (Fagus sylvatica), sessile or pedunculate oak (Quercus petraea and Q. robur), Scots pine (Pinus sylvestris) and Norway spruce (Picea abies). Two very different approaches were used. In the first approach an individual tree-based regression model was applied (Laubhahn et al., 2009), while in the second approach a stand-based model was applied (Solberg et al., 2009). The individual tree-based model had measured basal area increment of each individual tree as a growth response variable and tree size (diameter at breast height), tree competition (basal area of larger trees and stand density index), site factors (e.g. soil C/N ratio, temperature), and environmental factors (e.g. temperature change compared to long-term average, nitrogen and sulphur deposition) as influencing parameters. In the stand-growth model, stem volume increment was used as the growth response variable, after filtering out the expected growth. Expected growth was modelled as a function of site productivity, stand age and a stand density index. Relative volume

  20. Charge deposition model for investigating SE-microdose effect in trench power MOSFETs

    International Nuclear Information System (INIS)

    Wan Xin; Zhou Weisong; Liu Daoguang; Bo Hanliang; Xu Jun

    2015-01-01

    It was demonstrated that heavy ions can induce large current—voltage (I–V) characteristics shift in commercial trench power MOSFETs, named single event microdose effect (SE-microdose effect). A model is presented to describe this effect. This model calculates the charge deposition by a single heavy ion hitting oxide and the subsequent charge transport under an electric field. Holes deposited at the SiO 2 /Si interface by a Xe ion are calculated by using this model. The calculated results were then used in Sentaurus TCAD software to simulate a trench power MOSFET's I–V curve shift after a Xe ion has hit it. The simulation results are consistent with the related experiment's data. In the end, several factors which affect the SE-microdose effect in trench power MOSFETs are investigated by using this model. (paper)

  1. Charge deposition model for investigating SE-microdose effect in trench power MOSFETs

    Science.gov (United States)

    Xin, Wan; Weisong, Zhou; Daoguang, Liu; Hanliang, Bo; Jun, Xu

    2015-05-01

    It was demonstrated that heavy ions can induce large current—voltage (I-V) characteristics shift in commercial trench power MOSFETs, named single event microdose effect (SE-microdose effect). A model is presented to describe this effect. This model calculates the charge deposition by a single heavy ion hitting oxide and the subsequent charge transport under an electric field. Holes deposited at the SiO2/Si interface by a Xe ion are calculated by using this model. The calculated results were then used in Sentaurus TCAD software to simulate a trench power MOSFET's I-V curve shift after a Xe ion has hit it. The simulation results are consistent with the related experiment's data. In the end, several factors which affect the SE-microdose effect in trench power MOSFETs are investigated by using this model.

  2. A COMPARISON OF THE TENSILE STRENGTH OF PLASTIC PARTS PRODUCED BY A FUSED DEPOSITION MODELING DEVICE

    Directory of Open Access Journals (Sweden)

    Juraj Beniak

    2015-12-01

    Full Text Available Rapid Prototyping systems are nowadays increasingly used in many areas of industry, not only for producing design models but also for producing parts for final use. We need to know the properties of these parts. When we talk about the Fused Deposition Modeling (FDM technique and FDM devices, there are many possible settings for devices and models which could influence the properties of a final part. In addition, devices based on the same principle may use different operational software for calculating the tool path, and this may have a major impact. The aim of this paper is to show the tensile strength value for parts produced from different materials on the Fused Deposition Modeling device when the horizontal orientation of the specimens is changed.

  3. Operational Efficiency of Bank Loans and Deposits: A Case Study of Vietnamese Banking System

    Directory of Open Access Journals (Sweden)

    Tram Nguyen

    2018-01-01

    Full Text Available This paper examines whether there is a causal relationship between bank loans and deposits in the Vietnamese banking system and the efficiency of the use of loans and deposits by the Vietnamese banks. In a country such as Vietnam, where inter-bank money markets are relatively underdeveloped, one would expect a reasonably strong relationship between deposits and loans. A pooled cross-sectional sample of financial ratios is collected from annual reports of 44 Vietnamese banks covering the period 2008–2015. The explanatory power of instrumental variables in relation to the endogenous variables is tested. A deterministic frontier model based on corrected ordinary least squares, estimated by three-stage least squares on a simultaneous equations model, is employed to derive the frontiers for the sampled banks as well as to estimate the causality between bank loans and deposits. Our findings suggest that, in an underdeveloped banking system such as Vietnam, bank deposits have a positive and significant impact on bank loans, but the reverse relationship is not significant. It is further suggested that in deposit-taking and loan-creating activities, Vietnamese banks performed moderately well over the period examined; however, in the near future, they should start to focus more on deposit-taking activities.

  4. Mosses as an integrating tool for monitoring PAH atmospheric deposition: comparison with total deposition and evaluation of bioconcentration factors. A year-long case-study.

    Science.gov (United States)

    Foan, Louise; Domercq, Maria; Bermejo, Raúl; Santamaría, Jesús Miguel; Simon, Valérie

    2015-01-01

    Polycyclic aromatic hydrocarbon (PAH) atmospheric deposition was evaluated at a remote site in Northern Spain using moss biomonitoring with Hylocomium splendens (Hedw.) Schimp., and by measuring the total deposition fluxes of PAHs. The year-long study allowed seasonal variations of PAH content in mosses to be observed, and these followed a similar trend to those of PAH fluxes in total deposition. Generally, atmospheric deposition of PAHs is greater in winter than in summer, due to more PAH emissions from domestic heating, less photoreactivity of the compounds, and intense leaching of the atmosphere by wet deposition. However, fractionation of these molecules between the environmental compartments occurs: PAH fluxes in total deposition and PAH concentrations in mosses are correlated with their solubility (r=0.852, pPAH fluxes can be estimated with moss biomonitoring data if the bioconcentration or 'enriching' factors are known. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. A study of the performance and properties of diamond like carbon (DLC) coatings deposited by plasma chemical vapor deposition (CVD) for two stroke engine components

    Energy Technology Data Exchange (ETDEWEB)

    Tither, D. [BEP Grinding Ltd., Manchester (United Kingdom); Ahmed, W.; Sarwar, M.; Penlington, R. [Univ. of Northumbria, Newcastle-upon-Tyne (United Kingdom)

    1995-12-31

    Chemical vapor deposition (CVD) using microwave and RF plasma is arguably the most successful technique for depositing diamond and diamond like carbon (DLC) films for various engineering applications. However, the difficulties of depositing diamond are nearly as extreme as it`s unique combination of physical, chemical and electrical properties. In this paper, the modified low temperature plasma enhanced CVD system is described. The main focus of this paper will be work related to deposition of DLC on metal matrix composite materials (MMCs) for application in two-stroke engine components and results will be presented from SEM, mechanical testing and composition analysis studies. The authors have demonstrated the feasibility of depositing DLC on MMCs for the first time using a vacuum deposition process.

  6. Study of nozzle deposit formation mechanism for direct injection gasoline engines; Chokufun gasoline engine yo nozzle no deposit seisei kaiseki

    Energy Technology Data Exchange (ETDEWEB)

    Kinoshita, M; Saito, A [Toyota Central Research and Development Labs., Inc., Aichi (Japan); Matsushita, S [Toyota Motor Corp., Aichi (Japan); Shibata, H [Nippon Soken, Inc., Tokyo (Japan); Niwa, Y [Denso Corp., Aichi (Japan)

    1997-10-01

    Nozzles in fuel injectors for direct injection gasoline engines are exposed to high temperature combustion gases and soot. In such a rigorous environment, it is a fear that fuel flow rate changes in injectors by deposit formation on nozzles. Fundamental factors of nozzle deposit formation were investigated through injector bench tests and engine dynamometer tests. Deposit formation processes were observed by SEM through engine dynamometer tests. The investigation results reveal nozzle deposit formation mechanism and how to suppress the deposit. 4 refs., 8 figs., 3 tabs.

  7. A Theoretically Consistent Framework for Modelling Lagrangian Particle Deposition in Plant Canopies

    Science.gov (United States)

    Bailey, Brian N.; Stoll, Rob; Pardyjak, Eric R.

    2018-06-01

    We present a theoretically consistent framework for modelling Lagrangian particle deposition in plant canopies. The primary focus is on describing the probability of particles encountering canopy elements (i.e., potential deposition), and provides a consistent means for including the effects of imperfect deposition through any appropriate sub-model for deposition efficiency. Some aspects of the framework draw upon an analogy to radiation propagation through a turbid medium with which to develop model theory. The present method is compared against one of the most commonly used heuristic Lagrangian frameworks, namely that originally developed by Legg and Powell (Agricultural Meteorology, 1979, Vol. 20, 47-67), which is shown to be theoretically inconsistent. A recommendation is made to discontinue the use of this heuristic approach in favour of the theoretically consistent framework developed herein, which is no more difficult to apply under equivalent assumptions. The proposed framework has the additional advantage that it can be applied to arbitrary canopy geometries given readily measurable parameters describing vegetation structure.

  8. A Corrected Formulation of the Multilayer Model (MLM) for Inferring Gaseous Dry Deposition to Vegetated Surfaces

    Science.gov (United States)

    Saylor, Rick D.; Wolfe, Glenn M.; Meyers, Tilden P.; Hicks, Bruce B.

    2014-01-01

    The Multilayer Model (MLM) has been used for many years to infer dry deposition fluxes from measured trace species concentrations and standard meteorological measurements for national networks in the U.S., including the U.S. Environmental Protection Agency's Clean Air Status and Trends Network (CASTNet). MLM utilizes a resistance analogy to calculate deposition velocities appropriate for whole vegetative canopies, while employing a multilayer integration to account for vertically varying meteorology, canopy morphology and radiative transfer within the canopy. However, the MLM formulation, as it was originally presented and as it has been subsequently employed, contains a non-physical representation related to the leaf-level quasi-laminar boundary layer resistance that affects the calculation of the total canopy resistance. In this note, the non-physical representation of the canopy resistance as originally formulated in MLM is discussed and a revised, physically consistent, formulation is suggested as a replacement. The revised canopy resistance formulation reduces estimates of HNO3 deposition velocities by as much as 38% during mid-day as compared to values generated by the original formulation. Inferred deposition velocities for SO2 and O3 are not significantly altered by the change in formulation (less than 3%). Inferred deposition loadings of oxidized and total nitrogen from CASTNet data may be reduced by 10-20% and 5-10%, respectively, for the Eastern U. S. when employing the revised formulation of MLM as compared to the original formulation.

  9. An oxygen isotope study on hydrothermal sources of granite-type uranium deposits in South China

    International Nuclear Information System (INIS)

    Yongfei, Z.

    1987-01-01

    The usefulness of oxygen isotope measurements in solving problems of hydrothermal sources has been demonstrated in a number of detailed studies of the granite type uranium deposits in this paper. Remarkly the granite-type uranium deposits in Southr China have been shown to have formed from magmatic water, meteoric water, of mixtures of both the above, and origin of waters in the ore-forming fluid may be different for differing uranium deposits ore differing stages of the mineralization. Consequences obtained in this study for typical uranium deposits of different age and geologic sitting agree well with that obtained by other geologic-geochemical investigation. Furthermore, not only meteoric water is of importance to origin and evolution of the ore-forming fluid, but also mixing of waters from different sources is considered to be one of the most characteristic features of many hydrothermal uranium deposits related to granitoids or volcanics. (C.D.G.) [pt

  10. Field Measurements and Modeling of Dust Transport and Deposition on a Hawaiian Volcano

    Science.gov (United States)

    Douglas, M.; Stock, J. D.; Cerovski-Darriau, C.; Bishaw, K.; Bedford, D.

    2017-12-01

    The western slopes of Hawaii's Mauna Kea volcano are mantled by fine-grained soils that record volcanic airfall and eolian deposition. Where exposed, strong winds transport this sediment across west Hawaii, affecting tourism and local communities by decreasing air and water quality. Operations on US Army's Ke'amuku Maneuver Area (KMA) have the potential to increase dust flux from these deposits. To understand regional dust transport and composition, the USGS established 18 ground monitoring sites and sampling locations surrounding KMA. For over three years, each station measured vertical and horizontal dust flux while co-located anemometers measured wind speed and direction. We use these datasets to develop a model for dust supply and transport to assess whether KMA is a net dust sink or source. We find that horizontal dust flux rates are most highly correlated with entrainment threshold wind speeds of 8 m/s. Using a dust model that partitions measured horizontal dust flux into inward- and outward-directed components, we predict that KMA is currently a net dust sink. Geochemical analysis of dust samples illustrates that organics and pedogenic carbonate make up to 70% of their mass. Measured vertical dust deposition rates of 0.005 mm/m2/yr are similar to deposition rates of 0.004 mm/m2/yr predicted from the divergence of dust across KMA's boundary. These rates are low compared to pre-historic rates of 0.2-0.3 mm/yr estimated from radiocarbon dating of buried soils. Therefore, KMA's soils record persistent deposition both over past millennia and at present at rates that imply infrequent, large dust storms. Such events led to soil-mantled topography in an otherwise rocky Pleistocene volcanic landscape. A substantial portion of fine-grained soils in other leeward Hawaiian Island landscapes may have formed from similar eolian deposition, and not direct weathering of parent rock.

  11. Modeling growth kinetics of thin films made by atomic layer deposition in lateral high-aspect-ratio structures

    Science.gov (United States)

    Ylilammi, Markku; Ylivaara, Oili M. E.; Puurunen, Riikka L.

    2018-05-01

    The conformality of thin films grown by atomic layer deposition (ALD) is studied using all-silicon test structures with long narrow lateral channels. A diffusion model, developed in this work, is used for studying the propagation of ALD growth in narrow channels. The diffusion model takes into account the gas transportation at low pressures, the dynamic Langmuir adsorption model for the film growth and the effect of channel narrowing due to film growth. The film growth is calculated by solving the diffusion equation with surface reactions. An efficient analytic approximate solution of the diffusion equation is developed for fitting the model to the measured thickness profile. The fitting gives the equilibrium constant of adsorption and the sticking coefficient. This model and Gordon's plug flow model are compared. The simulations predict the experimental measurement results quite well for Al2O3 and TiO2 ALD processes.

  12. A Computational Study of Nasal Spray Deposition Pattern in Four Ethnic Groups.

    Science.gov (United States)

    Keeler, Jarrod A; Patki, Aniruddha; Woodard, Charles R; Frank-Ito, Dennis O

    2016-04-01

    Very little is known about the role of nasal morphology due to ethnic variation on particle deposition pattern in the sinonasal cavity. This preliminary study utilizes computational fluid dynamics (CFD) modeling to investigate sinonasal airway morphology and deposition patterns of intranasal sprayed particles in the nose and sinuses of individuals from four different ethnic groups: African American (Black); Asian; Caucasian; and Latin American. Sixteen subjects (four from each ethnic group) with "normal" sinus protocol computed tomography (CT) were selected for CFD analysis. Three-dimensional reconstruction of each subject's sinonasal cavity was created from their personal CT images. CFD simulations were carried out in ANSYS Fluent(™) in two phases: airflow phase was done by numerically solving the Navier-Stokes equations for steady state laminar inhalation; and particle dispersed phase was solved by tracking injected (sprayed) particles through the calculated airflow field. A total of 10,000 particle streams were released from each nostril, 1000 particles per diameter ranging from 5 μm to 50 μm, with size increments of 5 μm. As reported in the literature, Caucasians (5.31 ± 0.42 cm(-1)) and Latin Americans (5.16 ± 0.40cm(-1)) had the highest surface area to volume ratio, while African Americans had highest nasal index (95.91 ± 2.22). Nasal resistance (NR) was highest among Caucasians (0.046 ± 0.008 Pa.s/mL) and Asians (0.042 ± 0.016Pa.s/mL). Asians and African Americans had the most regions with particle deposition for small (5 μm-15 μm) and large (20 μm-50 μm) particle sizes, respectively. Asians and Latin Americans individuals had the most consistent regional particle deposition pattern in the main nasal cavities within their respective ethnic groups. Preliminary results from these ethnic groups investigated showed that Caucasians and Latin Americans had the least patent nasal cavity. Furthermore, Caucasians

  13. Two depositional models for Pliocene coastal plain fluvial systems, Goliad Formation, south Texas Gulf Coastal plain

    International Nuclear Information System (INIS)

    Hoel, H.D.; Galloway, W.E.

    1983-01-01

    The Goliad Formation consists of four depositional systems-the Realitos and Mathis bed-load fluvial systems in the southwest and the Cuero and Eagle Lake mixed-load fluvial systems in the northeast. Five facies are recognized in the Realitos and Mathis bed-load fluvial systems: (1) primary channel-fill facies, (2) chaotic flood channel-fill facies, (3) complex splay facies, (4) flood plain facies, and (5) playa facies. A model for Realitos-Mathis depositional environments shows arid-climate braided stream complexes with extremely coarse sediment load, highly variable discharge, and marked channel instability. Broad, shallow, straight to slightly sinuous primary channels were flanked by wide flood channels. Flood channels passed laterally into broad, low-relief flood plains. Small playas occupied topographic lows near large channel axes. Three facies are recognized in the Cuero and Eagle Lake mixed-load fluvial systems: (1) channel-fill facies, (2) crevasse splay facies, and (3) flood plain facies. A model for Cuero-Eagle Lake depositional environments shows coarse-grained meander belts in a semi-arid climate. Slightly to moderately sinuous meandering streams were flanked by low, poorly developed natural levees. Crevasse splays were common, but tended to be broad and ill-defined. Extensive, low-relief flood plains occupied interaxial areas. The model proposed for the Realitos and Mathis fluvial systems may aid in recognition of analogous ancient depositional systems. In addition, since facies characteristics exercise broad controls on Goliad uranium mineralization, the proposed depositional models aid in defining target zones for Goliad uranium exploration

  14. Volcanogenic massive sulfide occurrence model: Chapter C in Mineral deposit models for resource assessment

    Science.gov (United States)

    Shanks, W.C. Pat; Koski, Randolph A.; Mosier, Dan L.; Schulz, Klaus J.; Morgan, Lisa A.; Slack, John F.; Ridley, W. Ian; Dusel-Bacon, Cynthia; Seal, Robert R.; Piatak, Nadine M.; Shanks, W.C. Pat; Thurston, Roland

    2012-01-01

    Volcanogenic massive sulfide deposits, also known as volcanic-hosted massive sulfide, volcanic-associated massive sulfide, or seafloor massive sulfide deposits, are important sources of copper, zinc, lead, gold, and silver (Cu, Zn, Pb, Au, and Ag). These deposits form at or near the seafloor where circulating hydrothermal fluids driven by magmatic heat are quenched through mixing with bottom waters or porewaters in near-seafloor lithologies. Massive sulfide lenses vary widely in shape and size and may be podlike or sheetlike. They are generally stratiform and may occur as multiple lenses.

  15. Radioactive waste disposal and study of mineral deposit of uranium

    International Nuclear Information System (INIS)

    Doi, Kazumi

    2003-01-01

    To realize high level radioactive waste disposal, it is need to guarantee with high reliability safety of isolation of radioactive waste during some ten thousand years. There are two important factors related to geophysics such as ground water and diastrophism. The problems to be solved in the present point are followings; 1) increasing data of characteristics of radionuclide within high level radioactive waste, 2) development of undisruptive exploration technologies of lithosphere, especially formal fabric of pore and 3) improvement of protection technologies of diastrophism. Our country has to make efforts to realize the safety of isolation of radioactive waste on the basis of researches, by means of keeping them in the strong facilities without disposal. The formation of concentrated uranium in the mineral deposit was explained in relation with high level radioactive waste disposal. (S.Y.)

  16. A Study of CRUD Deposition Processing and Composition Materials

    International Nuclear Information System (INIS)

    Jung, Yanghong; Kim, H. M.; Yoo, B. O.; Baik, S. J.; Ahn, S. B.

    2013-07-01

    After cutting and drilling the spent fuel, we made a scrapping crud from the surface on the cladding. To scrap crud on the cladding surface, we made a special apparatus which has a 1/1,000 mm accuracy, but we could not taken crud. Thus, we effort the most possible use equipment to take crud samples, but unfortunately failed to get crud. We assume the crud would be dissolved. Because of the two fuel cladding, 17ACE7 and Plus 7, which were storage in PIEF pool for few years, it would be chemical reaction between pool water and crud deposited on the cladding. But we could not know the reason clearly. Therefore, it was impossible to analysis the crud, after that this project had to be stopped

  17. Laser ablation studies of Deposited Silver Colloids Active in SERS

    International Nuclear Information System (INIS)

    La Porte, R.T.; Moreno, D.S.; Striano, M.C.; Munnoz, M.M.; Garcia-Ramos, J.V.; Cortes, S.S.; Koudoumas, E.

    2002-01-01

    Laser ablation of deposited silver colloids, active in SERS, is carried out at three different laser wavelengths (KrF, XeCl and Nd:YAG at λ = 248, 308 and 532 nm respectively). Emission form excited neutral Ag and Na atoms, present in the ablation plume, is detected with spectral and temporal resolution. The expansion velocity of Ag in the plume is estimated in ∼1x104m s-1, Low-fluence laser ablation of the colloids yields ionized species that are analyzed by time-of-flight mass spectroscopy. Na+ and Agn+(n≤3) are observed. Composition of the mass spectra and widths of the mass peaks are found to be dependent on laser wavelength, suggesting that the dominant ablation mechanisms are different at the different wavelenghts.

  18. Comparison of estimation and simulation methods for modeling block 1 of anomaly no.3 in Narigan Uranium mineral deposit

    International Nuclear Information System (INIS)

    Jamali Esfahlan, D.; Madani, H.

    2011-01-01

    Geostatistical methods are applied for modeling the mineral deposits at the final stage of the detailed exploration. By applying the results of these models, the technical and economic feasibility studies are conducted for the deposits. The geostatistical modeling methods are usually consist of estimation and simulation methods. The estimation techniques, such as Kriging, construct spatial relation (geological continuation model) between data, by providing the best unique guesses for unknown features. However, when applying this technique for a grid of drill-holes over a deposit, an obvious discrepancy exists between the real geological features and the Kriging estimation map. Because of the limited number of sampled data applied for Kriging, it could not appear as the same as the real features. Also the spatial continuity estimated by the Kriging maps, are smoother than the real unknown features. On the other hand, the objective of simulation is to provide some functions or sets of variable values, to be compatible with the existing information. This means that the simulated values have an average and the variance similar to the raw data and may even be the same as the measurements. we studied the Anomaly No.3 of Narigan uranium mineral deposit, located in the central Iran region and applied the Kriging estimation and the sequential Gaussian simulation methods, and finally by comparing the results we concluded that the Kriging estimation method is more reliable for long term planning of a mine. Because of the reconstructing random structures, the results of the simulation methods indicate that they could also be applied for short term planning in mine exploitation.

  19. Adjusting particle-size distributions to account for aggregation in tephra-deposit model forecasts

    Science.gov (United States)

    Mastin, Larry G.; Van Eaton, Alexa; Durant, A.J.

    2016-01-01

    Volcanic ash transport and dispersion (VATD) models are used to forecast tephra deposition during volcanic eruptions. Model accuracy is limited by the fact that fine-ash aggregates (clumps into clusters), thus altering patterns of deposition. In most models this is accounted for by ad hoc changes to model input, representing fine ash as aggregates with density ρagg, and a log-normal size distribution with median μagg and standard deviation σagg. Optimal values may vary between eruptions. To test the variance, we used the Ash3d tephra model to simulate four deposits: 18 May 1980 Mount St. Helens; 16–17 September 1992 Crater Peak (Mount Spurr); 17 June 1996 Ruapehu; and 23 March 2009 Mount Redoubt. In 192 simulations, we systematically varied μagg and σagg, holding ρagg constant at 600 kg m−3. We evaluated the fit using three indices that compare modeled versus measured (1) mass load at sample locations; (2) mass load versus distance along the dispersal axis; and (3) isomass area. For all deposits, under these inputs, the best-fit value of μagg ranged narrowly between  ∼  2.3 and 2.7φ (0.20–0.15 mm), despite large variations in erupted mass (0.25–50 Tg), plume height (8.5–25 km), mass fraction of fine ( discrete process that is insensitive to eruptive style or magnitude. This result offers the potential for a simple, computationally efficient parameterization scheme for use in operational model forecasts. Further research may indicate whether this narrow range also reflects physical constraints on processes in the evolving cloud.

  20. Flow of groundwater from great depths into the near surface deposits - modelling of a local domain in northeast Uppland

    International Nuclear Information System (INIS)

    Holmen, Johan G.; Forsman, Jonas

    2005-01-01

    Purpose: To study the flow of groundwater from rock masses at great depths and into the surface near deposits by use of mathematical models; and to estimate the spatial and temporal distribution of groundwater from great depths in the surface near deposits (quaternary deposits). The study is about the hydraulic interaction between the geosphere and the biosphere. Methodology: The system studied is represented by time dependent three dimensional mathematical models. The models include groundwater flows in the rock mass and in the quaternary deposits as well as surface water flows. The established groundwater models have such a resolution (degree of detail) that both rock masses at great depth and near surface deposits are included in the flow system studied. The modelling includes simulations under both steady state conditions and transient conditions The transient simulations represents the varying state of the groundwater system studied, caused by the variation in hydro-meteorological conditions during a normal year, a wet-year and a dry-year. The boundary condition along the topography of the model is a non-linear boundary condition, representing the ground surface above the sea and the varying actual groundwater recharge. Area studied: The area studied is located in Sweden, in the Northeast of the Uppland province, close to the Forsmark nuclear power plant. Water balance modelling: To obtain three significantly different groundwater recharge periods for the transient groundwater flow simulations a water balance modelling was carried out based on a statistical analysis of available hydro-meteorological data. To obtain a temporal distribution of the runoff (i.e. potential groundwater recharge), we have conducted a numerical time dependent water balance modelling. General conclusions of groundwater modelling: The discharge areas for the flow paths from great depth are given by the topography and located along valleys and lakes; the spatial and temporal extension of

  1. Flow of groundwater from great depths into the near surface deposits - modelling of a local domain in northeast Uppland

    Energy Technology Data Exchange (ETDEWEB)

    Holmen, Johan G.; Forsman, Jonas [Golder Associates, Stockholm (Sweden)

    2005-01-15

    Purpose: To study the flow of groundwater from rock masses at great depths and into the surface near deposits by use of mathematical models; and to estimate the spatial and temporal distribution of groundwater from great depths in the surface near deposits (quaternary deposits). The study is about the hydraulic interaction between the geosphere and the biosphere. Methodology: The system studied is represented by time dependent three dimensional mathematical models. The models include groundwater flows in the rock mass and in the quaternary deposits as well as surface water flows. The established groundwater models have such a resolution (degree of detail) that both rock masses at great depth and near surface deposits are included in the flow system studied. The modelling includes simulations under both steady state conditions and transient conditions The transient simulations represents the varying state of the groundwater system studied, caused by the variation in hydro-meteorological conditions during a normal year, a wet-year and a dry-year. The boundary condition along the topography of the model is a non-linear boundary condition, representing the ground surface above the sea and the varying actual groundwater recharge. Area studied: The area studied is located in Sweden, in the Northeast of the Uppland province, close to the Forsmark nuclear power plant. Water balance modelling: To obtain three significantly different groundwater recharge periods for the transient groundwater flow simulations a water balance modelling was carried out based on a statistical analysis of available hydro-meteorological data. To obtain a temporal distribution of the runoff (i.e. potential groundwater recharge), we have conducted a numerical time dependent water balance modelling. General conclusions of groundwater modelling: The discharge areas for the flow paths from great depth are given by the topography and located along valleys and lakes; the spatial and temporal extension of

  2. A dermal model for spray painters, part I : subjective exposure modelling of spray paint deposition

    NARCIS (Netherlands)

    Brouwer, D.H.; Semple, S.; Marquart, J.; Cherrie, J.W.

    2001-01-01

    The discriminative power of existing dermal exposure models is limited. Most models only allow occupational hygienists to rank workers between and within workplaces according to broad bands of dermal exposure. No allowance is made for the work practices of different individuals. In this study a

  3. DIAPARK. A theoretical model for radiological assessments after short-term release and deposition of radionuclides

    International Nuclear Information System (INIS)

    Eklund, J.; Mueller, H.; Proehl, G.; Jacob, P.

    1995-05-01

    The DIAPARK program package is an enhancement of the ECOSYS-87 model for radioecological assessment, developed by GSF. The program version of the ECOSYS-87 model covers primarily the results and information derived from measurements performed after the Chernobyl reactor accident. Much importance has been attached to making the model fit for customized adjustment by modification of model parameters in order to be able to take into account the various conditions in various regions. The program package allows calculation of the deposition and interception, food contamination (as determined by plant contamination, contamination of animal products, radioactivity levels changed by storage and processing), doses resulting from ingestion and inhalation, and external exposure. (HP) [de

  4. The rudist buildup depositional model, reservoir architecture and development strategy of the cretaceous Sarvak formation of Southwest Iran

    Directory of Open Access Journals (Sweden)

    Yang Du

    2015-03-01

    Full Text Available This paper studies the lithofacies, sedimentary facies, depositional models and reservoir architecture of the rudist-bearing Sar-3 zone of Cretaceous Sarvak in the Southwest of Iran by utilizing coring, thin section, XRD data of five coring wells and 3D seismic data. Research results include the following: According to lithofacies features and their association, the rudist-mound and tidal flat are the main microfacies in the Sar-3 depositional time. By investigating the regional tectonic setting and seismic interpretation, a depositional model was built for the Sar-3 zone, which highlights four key points: 1 The distribution of the rudist-buildup is controlled by the paleo-high. 2 The build-up outside of the wide colonize stage but reached the wave-base level in a short time by regression and formation uplift, and was destroyed by the high energy current, then forming the moundy allochthonous deposition after being dispersed and redeposited. 3 The tidal flat develops widely in the upper Sar-3, and the deposition thickness depends on the paleo-structure. The tidal channel develops in the valley and fringe of the Paleo-structure. 4 The exposure within the leaching effect by the meteoric water of the top of Sar-3 is the main controlling factor of the reservoir vertical architecture. The Sar-3 zone featured as the dualistic architecture consists of two regions: the lower is the rudist reef limestone reservoir and the upper is the tidal condense limestone interlayer. The thickness of each is controlled by the paleo-structure. The Paleo-high zone is the preferential development zone. Based on reservoir characteristics of the different zones, a targeted development strategy has been proposed. Keeping the trajectory in the middle of the oil-layer in the paleo-high, and in the paleo-low, make the trajectory crossing the oil-zone and then keep it in the lower.

  5. Use of regression‐based models to map sensitivity of aquatic resources to atmospheric deposition in Yosemite National Park, USA

    Science.gov (United States)

    Clow, David W.; Nanus, Leora; Huggett, Brian

    2010-01-01

    An abundance of exposed bedrock, sparse soil and vegetation, and fast hydrologic flushing rates make aquatic ecosystems in Yosemite National Park susceptible to nutrient enrichment and episodic acidification due to atmospheric deposition of nitrogen (N) and sulfur (S). In this study, multiple linear regression (MLR) models were created to estimate fall‐season nitrate and acid neutralizing capacity (ANC) in surface water in Yosemite wilderness. Input data included estimated winter N deposition, fall‐season surface‐water chemistry measurements at 52 sites, and basin characteristics derived from geographic information system layers of topography, geology, and vegetation. The MLR models accounted for 84% and 70% of the variance in surface‐water nitrate and ANC, respectively. Explanatory variables (and the sign of their coefficients) for nitrate included elevation (positive) and the abundance of neoglacial and talus deposits (positive), unvegetated terrain (positive), alluvium (negative), and riparian (negative) areas in the basins. Explanatory variables for ANC included basin area (positive) and the abundance of metamorphic rocks (positive), unvegetated terrain (negative), water (negative), and winter N deposition (negative) in the basins. The MLR equations were applied to 1407 stream reaches delineated in the National Hydrography Data Set for Yosemite, and maps of predicted surface‐water nitrate and ANC concentrations were created. Predicted surface‐water nitrate concentrations were highest in small, high‐elevation cirques, and concentrations declined downstream. Predicted ANC concentrations showed the opposite pattern, except in high‐elevation areas underlain by metamorphic rocks along the Sierran Crest, which had relatively high predicted ANC (>200 μeq L−1). Maps were created to show where basin characteristics predispose aquatic resources to nutrient enrichment and acidification effects from N and S deposition. The maps can be used to help guide

  6. Use of regression-based models to map sensitivity of aquatic resources to atmospheric deposition in Yosemite National Park, USA

    Science.gov (United States)

    Clow, D. W.; Nanus, L.; Huggett, B. W.

    2010-12-01

    An abundance of exposed bedrock, sparse soil and vegetation, and fast hydrologic flushing rates make aquatic ecosystems in Yosemite National Park susceptible to nutrient enrichment and episodic acidification due to atmospheric deposition of nitrogen (N) and sulfur (S). In this study, multiple-linear regression (MLR) models were created to estimate fall-season nitrate and acid neutralizing capacity (ANC) in surface water in Yosemite wilderness. Input data included estimated winter N deposition, fall-season surface-water chemistry measurements at 52 sites, and basin characteristics derived from geographic information system layers of topography, geology, and vegetation. The MLR models accounted for 84% and 70% of the variance in surface-water nitrate and ANC, respectively. Explanatory variables (and the sign of their coefficients) for nitrate included elevation (positive) and the abundance of neoglacial and talus deposits (positive), unvegetated terrain (positive), alluvium (negative), and riparian (negative) areas in the basins. Explanatory variables for ANC included basin area (positive) and the abundance of metamorphic rocks (positive), unvegetated terrain (negative), water (negative), and winter N deposition (negative) in the basins. The MLR equations were applied to 1407 stream reaches delineated in the National Hydrography Dataset for Yosemite, and maps of predicted surface-water nitrate and ANC concentrations were created. Predicted surface-water nitrate concentrations were highest in small, high-elevation cirques, and concentrations declined downstream. Predicted ANC concentrations showed the opposite pattern, except in high-elevation areas underlain by metamorphic rocks along the Sierran Crest, which had relatively high predicted ANC (>200 µeq L-1). Maps were created to show where basin characteristics predispose aquatic resources to nutrient enrichment and acidification effects from N and S deposition. The maps can be used to help guide development of

  7. Optical modeling of plasma-deposited ZnO films: Electron scattering at different length scales

    International Nuclear Information System (INIS)

    Knoops, Harm C. M.; Loo, Bas W. H. van de; Smit, Sjoerd; Ponomarev, Mikhail V.; Weber, Jan-Willem; Sharma, Kashish; Kessels, Wilhelmus M. M.; Creatore, Mariadriana

    2015-01-01

    In this work, an optical modeling study on electron scattering mechanisms in plasma-deposited ZnO layers is presented. Because various applications of ZnO films pose a limit on the electron carrier density due to its effect on the film transmittance, higher electron mobility values are generally preferred instead. Hence, insights into the electron scattering contributions affecting the carrier mobility are required. In optical models, the Drude oscillator is adopted to represent the free-electron contribution and the obtained optical mobility can be then correlated with the macroscopic material properties. However, the influence of scattering phenomena on the optical mobility depends on the considered range of photon energy. For example, the grain-boundary scattering is generally not probed by means of optical measurements and the ionized-impurity scattering contribution decreases toward higher photon energies. To understand this frequency dependence and quantify contributions from different scattering phenomena to the mobility, several case studies were analyzed in this work by means of spectroscopic ellipsometry and Fourier transform infrared (IR) spectroscopy. The obtained electrical parameters were compared to the results inferred by Hall measurements. For intrinsic ZnO (i-ZnO), the in-grain mobility was obtained by fitting reflection data with a normal Drude model in the IR range. For Al-doped ZnO (Al:ZnO), besides a normal Drude fit in the IR range, an Extended Drude fit in the UV-vis range could be used to obtain the in-grain mobility. Scattering mechanisms for a thickness series of Al:ZnO films were discerned using the more intuitive parameter “scattering frequency” instead of the parameter “mobility”. The interaction distance concept was introduced to give a physical interpretation to the frequency dependence of the scattering frequency. This physical interpretation furthermore allows the prediction of which Drude models can be used in a specific

  8. Laboratory studies of immersion and deposition mode ice nucleation of ozone aged mineral dust particles

    Directory of Open Access Journals (Sweden)

    Z. A. Kanji

    2013-09-01

    Full Text Available Ice nucleation in the atmosphere is central to the understanding the microphysical properties of mixed-phase and cirrus clouds. Ambient conditions such as temperature (T and relative humidity (RH, as well as aerosol properties such as chemical composition and mixing state play an important role in predicting ice formation in the troposphere. Previous field studies have reported the absence of sulfate and organic compounds on mineral dust ice crystal residuals sampled at mountain top stations or aircraft based measurements despite the long-range transport mineral dust is subjected to. We present laboratory studies of ice nucleation for immersion and deposition mode on ozone aged mineral dust particles for 233 T ns are reported and observed to increase as a function of decreasing temperature. We present first results that demonstrate enhancement of the ice nucleation ability of aged mineral dust particles in both the deposition and immersion mode due to ageing. We also present the first results to show a suppression of heterogeneous ice nucleation activity without the condensation of a coating of (inorganic material. In immersion mode, low ozone exposed Ka particles showed enhanced ice activity requiring a median freezing temperature of 1.5 K warmer than that of untreated Ka, whereas high ozone exposed ATD particles showed suppressed ice nucleation requiring a median freezing temperature of 3 K colder than that of untreated ATD. In deposition mode, low exposure Ka had ice active fractions of an order of magnitude higher than untreated Ka, whereas high ozone exposed ATD had ice active fractions up to a factor of 4 lower than untreated ATD. From our results, we derive and present parameterizations in terms of ns(T that can be used in models to predict ice nuclei concentrations based on available aerosol surface area.

  9. Airflow structures and nano-particle deposition in a human upper airway model

    Science.gov (United States)

    Zhang, Z.; Kleinstreuer, C.

    2004-07-01

    Considering a human upper airway model, or equivalently complex internal flow conduits, the transport and deposition of nano-particles in the 1-150 nm diameter range are simulated and analyzed for cyclic and steady flow conditions. Specifically, using a commercial finite-volume software with user-supplied programs as a solver, the Euler-Euler approach for the fluid-particle dynamics is employed with a low-Reynolds-number k- ω model for laminar-to-turbulent airflow and the mass transfer equation for dispersion of nano-particles or vapors. Presently, the upper respiratory system consists of two connected segments of a simplified human cast replica, i.e., the oral airways from the mouth to the trachea (Generation G0) and an upper tracheobronchial tree model of G0-G3. Experimentally validated computational fluid-particle dynamics results show the following: (i) transient effects in the oral airways appear most prominently during the decelerating phase of the inspiratory cycle; (ii) selecting matching flow rates, total deposition fractions of nano-size particles for cyclic inspiratory flow are not significantly different from those for steady flow; (iii) turbulent fluctuations which occur after the throat can persist downstream to at least Generation G3 at medium and high inspiratory flow rates (i.e., Qin⩾30 l/min) due to the enhancement of flow instabilities just upstream of the flow dividers; however, the effects of turbulent fluctuations on nano-particle deposition are quite minor in the human upper airways; (iv) deposition of nano-particles occurs to a relatively greater extent around the carinal ridges when compared to the straight tubular segments in the bronchial airways; (v) deposition distributions of nano-particles vary with airway segment, particle size, and inhalation flow rate, where the local deposition is more uniformly distributed for large-size particles (say, dp=100 nm) than for small-size particles (say, dp=1 nm); (vi) dilute 1 nm particle

  10. Sediment transport modeling in deposited bed sewers: unified form of May's equations using the particle swarm optimization algorithm.

    Science.gov (United States)

    Safari, Mir Jafar Sadegh; Shirzad, Akbar; Mohammadi, Mirali

    2017-08-01

    May proposed two dimensionless parameters of transport (η) and mobility (F s ) for self-cleansing design of sewers with deposited bed condition. The relationships between those two parameters were introduced in conditional form for specific ranges of F s , which makes it difficult to use as a practical tool for sewer design. In this study, using the same experimental data used by May and employing the particle swarm optimization algorithm, a unified equation is recommended based on η and F s . The developed model is compared with original May relationships as well as corresponding models available in the literature. A large amount of data taken from the literature is used for the models' evaluation. The results demonstrate that the developed model in this study is superior to May and other existing models in the literature. Due to the fact that in May's dimensionless parameters more effective variables in the sediment transport process in sewers with deposited bed condition are considered, it is concluded that the revised May equation proposed in this study is a reliable model for sewer design.

  11. isotopic chronological study on gold-stibium deposits in Bayinbuluke area of Tianshan mountains

    International Nuclear Information System (INIS)

    Chen Fuwen; Li Huaqin

    2003-01-01

    Several gold-stibium deposits have recently been found in Bayinbuluke area of Tianshan Mountains, such as the Dashankou gold deposit and Chahansala stibium deposit. isotopic chronological study of mineralization show that the fluid inclusion Rb-Sr isochron age for gold-bearing pyrite-quartz veins and pyrite-limonite-quartz veins from the Dashankou gold mine are 354 ± 8.1 Ma (2 σ) and 344 ± 21 Ma (2 σ), respectively. The two ages are consistent in test errors, indicating the gold deposit was formed in early Carboniferous and related to regional shearing; the fluid inclusion Rb-Sr isochron age for quartz-stibnite veins and quartz-tetrahedrite-bismuthinite-stibnite veins from the Chahansala stibium mine is 257 ± 23 Ma (2 σ), indicating the deposit was formed during the late Hercynian-Early Indosinian Period and related to intracontinental deformation. (authors)

  12. Surface studies of tungsten erosion and deposition in JT-60U

    International Nuclear Information System (INIS)

    Ueda, Y.; Fukumoto, M.; Nishikawa, M.; Tanabe, T.; Miya, N.; Arai, T.; Masaki, K.; Ishimoto, Y.; Tsuzuki, K.; Asakura, N.

    2007-01-01

    In order to study tungsten erosion and migration in JT-60U, 13 W tiles have been installed in the outer divertor region and tungsten deposition on graphite tiles was measured. Dense local tungsten deposition was observed on a CFC tile toroidally adjacent to the W tiles, which resulted from prompt ionization and short range migration of tungsten along field lines. Tungsten deposition with relatively high surface density was found on an inner divertor tile around standard inner strike positions and on an outer wing tile of a dome. On the outer wing tile, tungsten deposition was relatively high compared with carbon deposition. In addition, roughly uniform tungsten depth distribution near the upper edge of the inner divertor tile was observed. This could be due to lift-up of strike point positions in selected 25 shots and tungsten flow in the SOL plasma

  13. Modelling stomatal ozone flux and deposition to grassland communities across Europe

    International Nuclear Information System (INIS)

    Ashmore, M.R.; Bueker, P.; Emberson, L.D.; Terry, A.C.; Toet, S.

    2007-01-01

    Regional scale modelling of both ozone deposition and the risk of ozone impacts is poorly developed for grassland communities. This paper presents new predictions of stomatal ozone flux to grasslands at five different locations in Europe, using a mechanistic model of canopy development for productive grasslands to generate time series of leaf area index and soil water potential as inputs to the stomatal component of the DO 3 SE ozone deposition model. The parameterisation of both models was based on Lolium perenne, a dominant species of productive pasture in Europe. The modelled seasonal time course of stomatal ozone flux to both the whole canopy and to upper leaves showed large differences between climatic zones, which depended on the timing of the start of the growing season, the effect of soil water potential, and the frequency of hay cuts. Values of modelled accumulated flux indices and the AOT40 index showed a five-fold difference between locations, but the locations with the highest flux differed depending on the index used; the period contributing to the accumulation of AOT40 did not always coincide with the modelled period of active ozone canopy uptake. Use of a fixed seasonal profile of leaf area index in the flux model produced very different estimates of annual accumulated total canopy and leaf ozone flux when compared with the flux model linked to a simulation of canopy growth. Regional scale model estimates of both the risks of ozone impacts and of total ozone deposition will be inaccurate unless the effects of climate and management in modifying grass canopy growth are incorporated. - Modelled stomatal flux of ozone to productive grasslands in Europe shows different spatial and temporal variation to AOT40, and is modified by management and soil water status

  14. MESOI Version 2.0: an interactive mesoscale Lagrangian puff dispersion model with deposition and decay

    International Nuclear Information System (INIS)

    Ramsdell, J.V.; Athey, G.F.; Glantz, C.S.

    1983-11-01

    MESOI Version 2.0 is an interactive Lagrangian puff model for estimating the transport, diffusion, deposition and decay of effluents released to the atmosphere. The model is capable of treating simultaneous releases from as many as four release points, which may be elevated or at ground-level. The puffs are advected by a horizontal wind field that is defined in three dimensions. The wind field may be adjusted for expected topographic effects. The concentration distribution within the puffs is initially assumed to be Gaussian in the horizontal and vertical. However, the vertical concentration distribution is modified by assuming reflection at the ground and the top of the atmospheric mixing layer. Material is deposited on the surface using a source depletion, dry deposition model and a washout coefficient model. The model also treats the decay of a primary effluent species and the ingrowth and decay of a single daughter species using a first order decay process. This report is divided into two parts. The first part discusses the theoretical and mathematical bases upon which MESOI Version 2.0 is based. The second part contains the MESOI computer code. The programs were written in the ANSI standard FORTRAN 77 and were developed on a VAX 11/780 computer. 43 references, 14 figures, 13 tables

  15. Lacustrine-humate model for primary uranium ore deposits, Grants Uranium Region, New Mexico

    International Nuclear Information System (INIS)

    Turner-Peterson, C.E.

    1985-01-01

    Two generations of uranium ore, primary and redistributed, occur in fluvial sandstones of the Upper Jurassic Morrison Formation in the San Juan basin; the two stages of ore formation can be related to the hydrologic history of the basin. Primary ore formed soon after Morrison deposition, in the Late Jurassic to Early Cretaceous, and a model, the lacustrine-humate model, is offered that views primary mineralization as a diagenetic event related to early pore fluid evolution. The basic premise is that the humate, a pore-filling organic material closely associated with primary ore, originated as humic acids dissolved in pore waters of greenish-gray lacustrine mudstones deposited in the mud-flat facies of the Brushy Basin Member and similar K shale beds in the Westwater Canyon Member. During compaction associated with early burial, formation water expelled from lacustrine mudstone units carried these humic acids into adjacent sandstone beds where the organics precipitated, forming the humate deposits that concentrated uranium. During the Tertiary, much later in the hydrologic history of the basin, when Jurassic sediments were largely compacted, oxygenated ground water flowed basinward from uplifted basin margins. This invasion of Morrison sandstone beds by oxidizing ground waters redistributed uranium from primary ores along redox boundaries, forming ore deposits that resemble roll-front-type uranium ores. 11 figures

  16. A Lagrangian Approach for Calculating Microsphere Deposition in a One-Dimensional Lung-Airway Model.

    Science.gov (United States)

    Vaish, Mayank; Kleinstreuer, Clement

    2015-09-01

    Using the open-source software openfoam as the solver, a novel approach to calculate microsphere transport and deposition in a 1D human lung-equivalent trumpet model (TM) is presented. Specifically, for particle deposition in a nonlinear trumpetlike configuration a new radial force has been developed which, along with the regular drag force, generates particle trajectories toward the wall. The new semi-empirical force is a function of any given inlet volumetric flow rate, micron-particle diameter, and lung volume. Particle-deposition fractions (DFs) in the size range from 2 μm to 10 μm are in agreement with experimental datasets for different laminar and turbulent inhalation flow rates as well as total volumes. Typical run times on a single processor workstation to obtain actual total deposition results at comparable accuracy are 200 times less than that for an idealized whole-lung geometry (i.e., a 3D-1D model with airways up to 23rd generation in single-path only).

  17. Modelling impacts of atmospheric deposition and temperature on long-term DOC trends.

    Science.gov (United States)

    Sawicka, K; Rowe, E C; Evans, C D; Monteith, D T; E I Vanguelova; Wade, A J; J M Clark

    2017-02-01

    It is increasingly recognised that widespread and substantial increases in Dissolved organic carbon (DOC) concentrations in remote surface, and soil, waters in recent decades are linked to declining acid deposition. Effects of rising pH and declining ionic strength on DOC solubility have been proposed as potential dominant mechanisms. However, since DOC in these systems is derived mainly from recently-fixed carbon, and since organic matter decomposition rates are considered sensitive to temperature, uncertainty persists over the extent to which other drivers that could influence DOC production. Such potential drivers include fertilisation by nitrogen (N) and global warming. We therefore ran the dynamic soil chemistry model MADOC for a range of UK soils, for which time series data are available, to consider the likely relative importance of decreased deposition of sulphate and chloride, accumulation of reactive N, and higher temperatures, on soil DOC production in different soils. Modelled patterns of DOC change generally agreed favourably with measurements collated over 10-20years, but differed markedly between sites. While the acidifying effect of sulphur deposition appeared to be the predominant control on the observed soil water DOC trends in all the soils considered other than a blanket peat, the model suggested that over the long term, the effects of nitrogen deposition on N-limited soils may have been sufficient to raise the "acid recovery DOC baseline" significantly. In contrast, reductions in non-marine chloride deposition and effects of long term warming appeared to have been relatively unimportant. The suggestion that future DOC concentrations might exceed preindustrial levels as a consequence of nitrogen pollution has important implications for drinking water catchment management and the setting and pursuit of appropriate restoration targets, but findings still require validation from reliable centennial-scale proxy records, such as those being developed

  18. Comparison of Spheroidal Carbonaceous Particle Data with Modelled Atmospheric Black Carbon Concentration and Deposition and Air Mass Sources in Northern Europe, 1850–2010

    Directory of Open Access Journals (Sweden)

    Meri Ruppel

    2013-01-01

    Full Text Available Spheroidal carbonaceous particles (SCP are a well-defined fraction of black carbon (BC, produced only by the incomplete combustion of fossil fuels such as coal and oil. Their past concentrations have been studied using environmental archives, but, additionally, historical trends of BC concentration and deposition can be estimated by modelling. These models are based on BC emission inventories, but actual measurements of BC concentration and deposition play an essential role in their evaluation and validation. We use the chemistry transport model OsloCTM2 to model historical time series of BC concentration and deposition from energy and industrial sources and compare these to sedimentary measurements of SCPs obtained from lake sediments in Northern Europe from 1850 to 2010. To determine the origin of SCPs we generated back trajectories of air masses to the study sites. Generally, trends of SCP deposition and modelled results agree reasonably well, showing rapidly increasing values from 1950, to a peak in 1980, and a decrease towards the present. Empirical SCP data show differences in deposition magnitude between the sites that are not captured by the model but which may be explained by different air mass transport patterns. The results highlight the need for numerous observational records to reliably validate model results.

  19. Kinetic study on hot-wire-assisted atomic layer deposition of nickel thin films

    International Nuclear Information System (INIS)

    Yuan, Guangjie; Shimizu, Hideharu; Momose, Takeshi; Shimogaki, Yukihiro

    2014-01-01

    High-purity Ni films were deposited using hot-wire-assisted atomic layer deposition (HW-ALD) at deposition temperatures of 175, 250, and 350 °C. Negligible amount of nitrogen or carbon contamination was detected, even though the authors used NH 2 radical as the reducing agent and nickelocene as the precursor. NH 2 radicals were generated by the thermal decomposition of NH 3 with the assist of HW and used to reduce the adsorbed metal growth precursors. To understand and improve the deposition process, the kinetics of HW-ALD were analyzed using a Langmuir-type model. Unlike remote-plasma-enhanced atomic layer deposition, HW-ALD does not lead to plasma-induced damage. This is a significant advantage, because the authors can supply sufficient NH 2 radicals to deposit high-purity metallic films by adjusting the distance between the hot wire and the substrate. NH 2 radicals have a short lifetime, and it was important to use a short distance between the radical generation site and substrate. Furthermore, the impurity content of the nickel films was independent of the deposition temperature, which is evidence of the temperature-independent nature of the NH 2 radical flux and the reactivity of the NH 2 radicals

  20. Modelling impacts of temperature, and acidifying and eutrophying deposition on DOC trends

    Science.gov (United States)

    Sawicka, Kasia; Rowe, Ed; Evans, Chris; Monteith, Don; Vanguelova, Elena; Wade, Andrew; Clark, Joanna

    2017-04-01

    Surface water dissolved organic carbon (DOC) concentrations in large parts of the northern hemisphere have risen over the past three decades, raising concern about enhanced contributions of carbon to the atmosphere and seas and oceans. The effect of declining acid deposition has been identified as a key control on DOC trends in soil and surface waters, since pH and ionic strength affect sorption and desorption of DOC. However, since DOC is derived mainly from recently-fixed carbon, and organic matter decomposition rates are considered sensitive to temperature, uncertainty persists regarding the extent to the relative importance of different drivers that affect these upward trends. We ran the dynamic model MADOC (Model of Acidity and Soil Organic Carbon) for a range of UK soils (podzols, gleysols and peatland), for which the time-series were available, to consider the likely relative importance of decreased deposition of sulphate and chloride, accumulation of reactive N, and higher temperatures, on DOC production in different soils. Modelled patterns of DOC change generally agreed favourably with measurements collated over 10-20 years, but differed markedly between sites. While the acidifying effect of sulphur deposition appeared to be the predominant control on the observed soil water DOC trends in all the soils considered other than a blanket peat, the model suggested that over the long term, the effects of nitrogen deposition on N-limited soils may have been sufficient to elevate the DOC recovery trajectory significantly. The second most influential cause of rising DOC in the model simulations was N deposition in ecosystems that are N-limited and respond with stimulated plant growth. Although non-marine chloride deposition made some contribution to acidification and recovery, it was not amongst the main drivers of DOC change. Warming had almost no effect on modelled historic DOC trends, but may prove to be a significant driver of DOC in future via its influence

  1. Zinc and cadmium mobility in a 5-year-old dredged sediment deposit: experiments and modelling

    Energy Technology Data Exchange (ETDEWEB)

    Lions, J. [BRGM, Orleans (France). Water Div.; Centre National de Recherche sur les Sites et Sols Pollues, Douai (France); Lee, J. van der [Ecole des Mines de Paris, Fontainebleau (France). Geosciences - Reactive Hydrodynamics Group; Guerin, V.; Bataillard, P. [BRGM, Orleans (France). Environment and Process Div.; Centre National de Recherche sur les Sites et Sols Pollues, Douai (France); Laboudigue, A. [Ecole des Mines de Douai (France). Environmental and Civil Engineering; Centre National de Recherche sur les Sites et Sols Pollues, Douai (France)

    2007-08-15

    Background. Landfill deposits of contaminated, dredged sediments are subject to chemical alteration and especially to oxidation processes. Accordingly, sulphides are gradually oxidized leading to the formation of secondary phases and associated metals could become mobile and redistributed among the sediment components, such as carbonates, clay and freshly precipitated (hydr)oxides. Once mobilised, metals could represent a hazard for the environment and especially for drinking water supply facilities. Methods. In the present study, leaching experiments have been carried out on a dredged sediment to study metal mobilisation after 5 years of field aging. First, kinetic batch tests allowed one to evaluate the impact of solid-liquid contact time and to determine the kinetic parameters. Secondly, two types of dynamic experiments have been conducted: dynamic flush reactor and column leach test to evaluate the impact of solution renewing by excluding or not excluding the transport processes, respectively. In order to evaluate the impact of calcium on the metal mobilisation, the column leaching test is conducted with pure water and Ca(NO{sub 3}){sub 2} solution, at the beginning and at the end of the injection, respectively. Geochemical and reactive transport modelling of the experiments was performed using the geochemical code CHESS and the reactive transport model HYTEC. Results and Discussion. The studied sediment is complex with numerous reactive phases such as sulphides, (hydr)oxides, organic matter, phyllosilicates. All leaching tests highlight that zinc and cadmium are mobilised in significant concentrations and lead remains insoluble. A conceptual geochemical model of the sediment has been built to allow simulations of the whole experiments, based on a single, coherent phase description and parameter set. Simulations of the batch, flush and column experiments were performed taking into account the major reaction-controlling mechanisms including, among others, p

  2. Numerical modelling of local deposition patients, activity distributions and cellular hit probabilities of inhaled radon progenies in human airways

    International Nuclear Information System (INIS)

    Farkas, A.; Balashazy, I.; Szoeke, I.

    2003-01-01

    The general objective of our research is modelling the biophysical processes of the effects of inhaled radon progenies. This effort is related to the rejection or support of the linear no threshold (LNT) dose-effect hypothesis, which seems to be one of the most challenging tasks of current radiation protection. Our approximation and results may also serve as a useful tool for lung cancer models. In this study, deposition patterns, activity distributions and alpha-hit probabilities of inhaled radon progenies in the large airways of the human tracheobronchial tree are computed. The airflow fields and related particle deposition patterns strongly depend on the shape of airway geometry and breathing pattern. Computed deposition patterns of attached an unattached radon progenies are strongly inhomogeneous creating hot spots at the carinal regions and downstream of the inner sides of the daughter airways. The results suggest that in the vicinity of the carinal regions the multiple hit probabilities are quite high even at low average doses and increase exponentially in the low-dose range. Thus, even the so-called low doses may present high doses for large clusters of cells. The cell transformation probabilities are much higher in these regions and this phenomenon cannot be modeled with average burdens. (authors)

  3. Optical study of plasma sprayed hydroxyapatite coatings deposited at different spray distance

    Science.gov (United States)

    Belka, R.; Kowalski, S.; Żórawski, W.

    2017-08-01

    Series of hydroxyapatite (HA) coatings deposited on titanium substrate at different spray (plasma gun to workpiece) distance were investigated. The optical methods as dark field confocal microscopy, Raman/PL and UV-VIS spectroscopy were used for study the influence of deposition process on structural degradation of HA precursor. The hydroxyl group concentration was investigated by study the OH mode intensity in the Raman spectra. Optical absorption coefficients at near UV region were analyzed by Diffuse Reflectance Spectroscopy. PL intensity observed during Raman measurement was also considered as relation to defects concentration and degradation level. It was confirmed the different gunsubstrate distance has a great impact on structure of deposited HA ceramics.

  4. Benefaction studies on the Hasan Celebi magnetite deposit, Turkey

    Science.gov (United States)

    Pressler, Jean W.; Akar, Ali

    1972-01-01

    Bench-scale and semicontinuous tests were performed on surface, trench, and diamond drill core samples from the Hasan Celebi low-grade magnetite deposit to determine the optimum benefication procedures utilizing wet magnetic separation techniques. Composite core samples typically contain about 27 percent recoverable magnetite and require crushing and grinding through 1 mm in size to insure satisfactory separation of the gangue from the magnetite. Regrinding and cleaning the magnetite concentrate to 80 percent minus 150-mesh is necessary to obtain an optimum of 66 percent iron. Semicontinuous pilot-plant testing with the wet magnetic drum using the recycled middling technique indicates that as much as 83 percent of the acid-soluble iron can be recovered into a concentrate containing 66 percent iron, with minimum deleterious elements. This represents 27 weight percent of the original ore. Further tests will continue when the Maden Tetkik ve Arama Enstitusu (MTA) receives 24 tons of bulk sample from an exploratory drift and cross-cut now being driven through a section of the major reserve area.

  5. Models of WO x films growth during pulsed laser deposition at elevated pressures of reactive gas

    Science.gov (United States)

    Gnedovets, A. G.; Fominski, V. Y.; Nevolin, V. N.; Romanov, R. I.; Fominski, D. V.; Soloviev, A. A.

    2017-12-01

    The films of tungsten oxides were prepared by pulsed laser ablation of W target in a reactive gas atmosphere (air of laboratory humidity). Optical analysis and ion signal measurements for the laser plume allowed to recognise a threshold gas pressure that suppresses the deposition of non-scattered atomic flux from the plume. When the pressure exceeds about 40 Pa, the films grow due to the deposition of species that could be formed in collisions of W atoms with reactive molecules (e.g., O2). Kinetic Monte Carlo method was used for modelling film growth. Comparison of the model structures with the experimentally prepared films has shown that the growth mechanism of ballistic deposition at a pressure of 40 Pa could be changed on the diffusion limited aggregation at a pressure of ~100 Pa. Thus, a cauliflower structure of the film transformed to a web-like structure. For good correlation of experimental and model structures of WO x , a dimension of structural elements in the model should coincide with W-O cluster size.

  6. A comparative study of transfer factors of water, iodine and strontium on rye-grass and clover. Development of a model of evaluation of the limits of foliar contamination by wet deposit

    International Nuclear Information System (INIS)

    Angeletti, Livio; Levi, Emilio.

    1977-07-01

    Transfer factors of water, iodine ( 131 I) and strontium ( 85 Sr) on above-ground parts of rye-grass and clover were determined as a function of aspersion intensities. An analysis of the results showed the effect of aspersion intensities, nature of the chemical element and plant species on the values of transfer factors of iodine and strontium. It also made it possible to propose a simple method of evaluation of contamination limits of the aerial parts of plants by wet deposit, based on transfer values of water on plants only [fr

  7. Atmospheric organic nitrogen deposition: Analysis of nationwide data and a case study in Northeast China

    International Nuclear Information System (INIS)

    Jiang, C.M.; Yu, W.T.; Ma, Q.; Xu, Y.G.; Zou, H.; Zhang, S.C.; Sheng, W.P.

    2013-01-01

    The origin of atmospheric dissolved organic nitrogen (DON) deposition is not very clear at present. Across China, the DON deposition was substantially larger than that of world and Europe, and we found significant positive correlation between contribution of DON and the deposition flux with pristine site data lying in outlier, possibly reflecting the acute air quality problems in China. For a case study in Northeast China, we revealed the deposited DON was mainly derived from intensive agricultural activities rather than the natural sources by analyzing the compiled dataset across China and correlating DON flux with NH 4 + –N and NO 3 − –N. Crop pollens and combustion of fossil fuels for heating probably contributed to summer and autumn DON flux respectively. Overall, in Northeast China, DON deposition could exert important roles in agro-ecosystem nutrient management and carbon sequestration of natural ecosystems; nationally, it was suggested to found rational network for monitoring DON deposition. -- Highlights: •Contribution and deposition flux of DON across China was positively correlated. •Deposited DON was more influenced by human in China than across the world and Europe. •DON of a farmland in Northeast China was mainly derived from agricultural activities. •Crop pollen and combustion of fossil fuels contributed to summer and autumn DON. •Deposited DON should not be neglected when evaluating its ecological impacts. -- Synthesis of DON deposition across China implied regional importance of anthropogenic sources, and an observation in Northeast China suggested the ecological significances of the DON flux should be considered