WorldWideScience

Sample records for models dems digital

  1. Coastal Digital Elevation Models (DEMs)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Digital elevation models (DEMs) of U.S. and other coasts that typically integrate ocean bathymetry and land topography. The DEMs support NOAA's mission to understand...

  2. Digital Elevation Model (DEM) 24K

    Data.gov (United States)

    Kansas Data Access and Support Center — Digital Elevation Model (DEM) is the terminology adopted by the USGS to describe terrain elevation data sets in a digital raster form. The standard DEM consists of a...

  3. Digital Elevation Models (DEMs) for the main 8 Hawaiian Islands

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Digital elevation model (DEM) data are arrays of regularly spaced elevation values referenced horizontally either to a Universal Transverse Mercator (UTM)...

  4. Digital Elevation Models (DEMs) for the main 8 Hawaiian Islands

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Digital elevation model (DEM) data are arrays of regularly spaced elevation values referenced horizontally either to a Universal Transverse Mercator (UTM) projection...

  5. Digital Elevation Model (DEM), Published in 2007, City of Dubuque.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Digital Elevation Model (DEM) dataset, was produced all or in part from Orthoimagery information as of 2007. Data by this publisher are often provided in State...

  6. The New Global Digital Elevation Model : TanDEM-X DEM and its Final Performance

    Science.gov (United States)

    Gonzalez, Carolina; Rizzoli, Paola; Martone, Michele; Wecklich, Christopher; Borla Tridon, Daniela; Bachmann, Markus; Fritz, Thomas; Wessel, Birgit; Krieger, Gerhard; Zink, Manfred

    2017-04-01

    Digital elevation models (DEMs) have become widely used in many scientific and commercial applications and there are several local products have been developed in the last years. They provide a representation of the topographic features of the landscape. The importance of them is known and valued in every geoscience field, but they have also vast use in navigation and in other commercial areas. The main goal of the TanDEM-X (TerraSARX add-on for Digital Elevation Measurements) mission is the generation of a global DEM, homogeneous in quality with unprecedented global accuracy and resolution, which has been completed in mid-2016. For over four years, the almost identical satellites TerraSAR-X and TanDEM-X acquired single-pass interferometric SAR image pairs, from which is it possible to derive the topographic height by unwrapping the interferometric phase, unaffected by temporal decorrelation. Both satellites have been flying in close formation with a flexible geometric configuration. An optimized acquisition strategy aimed at achieving an absolute vertical accuracy much better than 10 meters and a relative vertical accuracy of 2 m and 4 m for flat and steep terrain, respectively, within a horizontal raster of 12 m x 12 m, which slightly varies depending on the geographic latitude. In this paper, we assess the performance of the global Tandem-X DEM, characterized in terms of relative and absolute vertical accuracy. The coverage statistics are also discussed in comparison to the previous almost global but with lower resolution DEM provided by the Shuttle Radar Topography Mission (SRTM). The exceptional quality of the global DEM is confirmed by the obtained results and the global TanDEM-X DEM is now ready to be distributed to the scientific and commercial community.

  7. A 30 meter Digital Elevation Model (DEM) of the San Gorgonio Pass area, Riverside County, California.

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Digital Elevation Models (DEMs) are digital records of terrain elevations at regularly spaced intervals. The interval between elevations of 7.5 minute DEMs is...

  8. Digital Elevation Model (DEM), digital elevation model, Published in unknown, Louisiana State University - Louisiana Geographic Information Center.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Digital Elevation Model (DEM) dataset, was produced all or in part from LIDAR information as of unknown. It is described as 'digital elevation model'. Data by...

  9. The TanDEM-X Digital Elevation Model and Terrestrial Impact Craters

    OpenAIRE

    Gottwald, Manfred; Fritz, Thomas; Breit, Helko; Schättler, Birgit; Harris, Alan

    2014-01-01

    We use the global digital elevation model (DEM) generated in the TanDEM-X mission for mapping further confirmed terrestrial impact craters. This DEM provides the most accurate spaceborne global elevation data. It permits detailed studies of the topography of the sites of simple and complex structures with unprecedented accuracy.

  10. The Importance of Precise Digital Elevation Models (DEM) in Modelling Floods

    Science.gov (United States)

    Demir, Gokben; Akyurek, Zuhal

    2016-04-01

    Digital elevation Models (DEM) are important inputs for topography for the accurate modelling of floodplain hydrodynamics. Floodplains have a key role as natural retarding pools which attenuate flood waves and suppress flood peaks. GPS, LIDAR and bathymetric surveys are well known surveying methods to acquire topographic data. It is not only time consuming and expensive to obtain topographic data through surveying but also sometimes impossible for remote areas. In this study it is aimed to present the importance of accurate modelling of topography for flood modelling. The flood modelling for Samsun-Terme in Blacksea region of Turkey is done. One of the DEM is obtained from the point observations retrieved from 1/5000 scaled orthophotos and 1/1000 scaled point elevation data from field surveys at x-sections. The river banks are corrected by using the orthophotos and elevation values. This DEM is named as scaled DEM. The other DEM is obtained from bathymetric surveys. 296 538 number of points and the left/right bank slopes were used to construct the DEM having 1 m spatial resolution and this DEM is named as base DEM. Two DEMs were compared by using 27 x-sections. The maximum difference at thalweg of the river bed is 2m and the minimum difference is 20 cm between two DEMs. The channel conveyance capacity in base DEM is larger than the one in scaled DEM and floodplain is modelled in detail in base DEM. MIKE21 with flexible grid is used in 2- dimensional shallow water flow modelling. The model by using two DEMs were calibrated for a flood event (July 9, 2012). The roughness is considered as the calibration parameter. From comparison of input hydrograph at the upstream of the river and output hydrograph at the downstream of the river, the attenuation is obtained as 91% and 84% for the base DEM and scaled DEM, respectively. The time lag in hydrographs does not show any difference for two DEMs and it is obtained as 3 hours. Maximum flood extents differ for the two DEMs

  11. Digital Elevation Model (DEM), Topographic survey of Eureka Township, Published in unknown, Eureka County.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Digital Elevation Model (DEM) dataset, was produced all or in part from Field Survey/GPS information as of unknown. It is described as 'Topographic survey of...

  12. Digital elevation models (DEMs) of the Elwha River delta, Washington, September 2013

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This part of the data release presents a digital elevation model (DEM) derived from bathymetry and topography data of the Elwha River delta collected in September...

  13. A seamless, high-resolution, coastal digital elevation model (DEM) for Southern California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — A seamless, three-meter digital elevation model (DEM) was constructed for the entire Southern California coastal zone, extending 473 km from Point Conception to the...

  14. Digital elevation models (DEMs) of the Elwha River delta, Washington, May 2011

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This part of the data release presents a digital elevation model (DEM) derived from bathymetry and topography data of the Elwha River delta collected in May 2011....

  15. Digital elevation models (DEMs) of the Elwha River delta, Washington, August 2011

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This part of the data release presents a digital elevation model (DEM) derived from bathymetry and topography data of the Elwha River delta collected in August 2011....

  16. Digital Elevation Model (DEM), Published in unknown, DeKalb County.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Digital Elevation Model (DEM) dataset, was produced all or in part from LIDAR information as of unknown. Data by this publisher are often provided in State...

  17. A seamless, high-resolution, coastal digital elevation model (DEM) for Southern California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — A seamless, three-meter digital elevation model (DEM) was constructed for the entire Southern California coastal zone, extending 473 km from Point Conception to the...

  18. Digital elevation models (DEMs) of the Elwha River delta, Washington, July 2016

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This part of the data release presents a digital elevation model (DEM) derived from bathymetry and topography data of the Elwha River delta collected in July 2016....

  19. Digital elevation models (DEMs) of the Elwha River delta, Washington, September 2010

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This part of the data release presents a digital elevation model (DEM) derived from bathymetry and topography data of the Elwha River delta collected in September...

  20. Digital elevation models (DEMs) of the Elwha River delta, Washington, August 2012

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This part of the data release presents a digital elevation model (DEM) derived from bathymetry and topography data of the Elwha River delta collected in August 2012....

  1. San Francisco Bay-Delta bathymetric/topographic digital elevation model(DEM)

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — A high-resolution (10-meter per pixel) digital elevation model (DEM) was created for the Sacramento-San Joaquin Delta using both bathymetry and topography data. This...

  2. Open-Source Digital Elevation Model (DEMs) Evaluation with GPS and LiDAR Data

    Science.gov (United States)

    Khalid, N. F.; Din, A. H. M.; Omar, K. M.; Khanan, M. F. A.; Omar, A. H.; Hamid, A. I. A.; Pa'suya, M. F.

    2016-09-01

    Advanced Spaceborne Thermal Emission and Reflection Radiometer-Global Digital Elevation Model (ASTER GDEM), Shuttle Radar Topography Mission (SRTM), and Global Multi-resolution Terrain Elevation Data 2010 (GMTED2010) are freely available Digital Elevation Model (DEM) datasets for environmental modeling and studies. The quality of spatial resolution and vertical accuracy of the DEM data source has a great influence particularly on the accuracy specifically for inundation mapping. Most of the coastal inundation risk studies used the publicly available DEM to estimated the coastal inundation and associated damaged especially to human population based on the increment of sea level. In this study, the comparison between ground truth data from Global Positioning System (GPS) observation and DEM is done to evaluate the accuracy of each DEM. The vertical accuracy of SRTM shows better result against ASTER and GMTED10 with an RMSE of 6.054 m. On top of the accuracy, the correlation of DEM is identified with the high determination of coefficient of 0.912 for SRTM. For coastal zone area, DEMs based on airborne light detection and ranging (LiDAR) dataset was used as ground truth data relating to terrain height. In this case, the LiDAR DEM is compared against the new SRTM DEM after applying the scale factor. From the findings, the accuracy of the new DEM model from SRTM can be improved by applying scale factor. The result clearly shows that the value of RMSE exhibit slightly different when it reached 0.503 m. Hence, this new model is the most suitable and meets the accuracy requirement for coastal inundation risk assessment using open source data. The suitability of these datasets for further analysis on coastal management studies is vital to assess the potentially vulnerable areas caused by coastal inundation.

  3. Digital Elevation Model (DEM), GRID derived from USGS .dem, Published in 2007, 1:600 (1in=50ft) scale, Shawnee County.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Digital Elevation Model (DEM) dataset, published at 1:600 (1in=50ft) scale, was produced all or in part from LIDAR information as of 2007. It is described as...

  4. Digital Elevation Model (DEM), 5 Meter Auto-correlated DEM, Published in 2006, 1:24000 (1in=2000ft) scale, State of Utah Automated Geographic Reference Center.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Digital Elevation Model (DEM) dataset, published at 1:24000 (1in=2000ft) scale, was produced all or in part from Other information as of 2006. It is described...

  5. Digital Elevation Model (DEM), 2 Meter LIDAR Bare Earth DEM, Published in 2006, 1:12000 (1in=1000ft) scale, State of Utah Automated Geographic Reference Center.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Digital Elevation Model (DEM) dataset, published at 1:12000 (1in=1000ft) scale, was produced all or in part from LIDAR information as of 2006. It is described...

  6. Digital Elevation Model (DEM), Allegany County DEM 10 ft pixel, Published in 2005, 1:1200 (1in=100ft) scale, Allegany County Government.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Digital Elevation Model (DEM) dataset, published at 1:1200 (1in=100ft) scale, was produced all or in part from LIDAR information as of 2005. It is described as...

  7. Tectonic development of the Northwest Bonaparte Basin, Australia by using Digital Elevation Model (DEM)

    Science.gov (United States)

    Wahid, Ali; Salim, Ahmed Mohamed Ahmed; Ragab Gaafar, Gamal; Yusoff, AP Wan Ismail Wan

    2016-02-01

    The Bonaparte Basin consist of majorly offshore part is situated at Australia's NW continental margin, covers an area of approx. 270,000km2. Bonaparte Basin having a number of sub-basins and platform areas of Paleozoic and Mesozoic is structurally complex. This research established the geologic and geomorphologic studies using Digital Elevation Model (DEM) as a substitute approach in morphostructural analysis to unravel the geological complexities. Although DEMs have been in practice since 1990s, they still have not become common tool for mapping studies. The research work comprised of regional structural analysis with the help of integrated elevation data, satellite imageries, available open topograhic images and internal geological maps with interpreted seismic. The structural maps of the study area have been geo-referenced which further overlaid onto SRTM data and satellite images for combined interpretation which facilitate to attain Digital Elevation Model of the study area. The methodology adopts is to evaluate and redefine development of geodynamic processes involved in formation of Bonaparte Basin. The main objectives is to establish the geological histories by using digital elevation model. The research work will be useful to incorporate different tectonic events occurred at different Geological times in a digital elevation model. The integrated tectonic analysis of different digital data sets benefitted substantially from combining them into a common digital database. Whereas, the visualization software facilitates the overlay and combined interpretation of different data sets which is helpful to reveal hidden information not obvious or accessible otherwise for regional analysis.

  8. Digital Elevation Model (DEM), LiDAR-based Digital Elevation Model (DEM) in Esri GRID format. 5 foot resolution countywide., Published in 2010, 1:1200 (1in=100ft) scale, Brown County, WI.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Digital Elevation Model (DEM) dataset, published at 1:1200 (1in=100ft) scale, was produced all or in part from LIDAR information as of 2010. It is described as...

  9. Digital Elevation Model (DEM), Published in 1996, 1:2400 (1in=200ft) scale, Shawano County.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Digital Elevation Model (DEM) dataset, published at 1:2400 (1in=200ft) scale, was produced all or in part from Orthoimagery information as of 1996. Data by this...

  10. Digital Elevation Model (DEM), Published in 2007, 1:12000 (1in=1000ft) scale, Door County, Wisconsin.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Digital Elevation Model (DEM) dataset, published at 1:12000 (1in=1000ft) scale, was produced all or in part from LIDAR information as of 2007. Data by this...

  11. Digital Elevation Model (DEM), Published in 2005, 1:24000 (1in=2000ft) scale, Sauk County.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Digital Elevation Model (DEM) dataset, published at 1:24000 (1in=2000ft) scale, was produced all or in part from LIDAR information as of 2005. Data by this...

  12. Digital Elevation Model (DEM), Published in 2000, 1:7200 (1in=600ft) scale, Southern Georgia Regional Commission.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Digital Elevation Model (DEM) dataset, published at 1:7200 (1in=600ft) scale as of 2000. Data by this publisher are often provided in State Plane coordinate...

  13. Digital Elevation Model (DEM), Published in 2000, 1:12000 (1in=1000ft) scale, Off.of Admin - ITSD.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Digital Elevation Model (DEM) dataset, published at 1:12000 (1in=1000ft) scale, was produced all or in part from Other information as of 2000. Data by this...

  14. Digital Elevation Model (DEM), Published in 2004, 1:2400 (1in=200ft) scale, St. Croix County.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Digital Elevation Model (DEM) dataset, published at 1:2400 (1in=200ft) scale, was produced all or in part from Orthoimagery information as of 2004. Data by this...

  15. Digital Elevation Model (DEM), Published in unknown, 1:4800 (1in=400ft) scale, Stokes County.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Digital Elevation Model (DEM) dataset, published at 1:4800 (1in=400ft) scale, was produced all or in part from LIDAR information as of unknown. Data by this...

  16. Digital Elevation Model (DEM), Lanai Digital Elevation Model, Published in 2005, 1:24000 (1in=2000ft) scale, U.S. Geological Survey.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Digital Elevation Model (DEM) dataset, published at 1:24000 (1in=2000ft) scale, was produced all or in part from Orthoimagery information as of 2005. It is...

  17. Digital Elevation Model (DEM), Oahu Digital Elevation Model, Published in 2003, 1:24000 (1in=2000ft) scale, U.S. Geological Survey.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Digital Elevation Model (DEM) dataset, published at 1:24000 (1in=2000ft) scale, was produced all or in part from Orthoimagery information as of 2003. It is...

  18. Digital Elevation Model (DEM), Hawaii (Big Island) Digital Elevation Model, Published in 2004, 1:24000 (1in=2000ft) scale, U.S. Geological Survey.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Digital Elevation Model (DEM) dataset, published at 1:24000 (1in=2000ft) scale, was produced all or in part from Orthoimagery information as of 2004. It is...

  19. Digtial Elevation Model (DEM) 250K

    Data.gov (United States)

    Kansas Data Access and Support Center — Digital Elevation Model (DEM) is the terminology adopted by the USGS to describe terrain elevation data sets in a digital raster form. The standard DEM consists of a...

  20. Digitial Elevation Model (DEM) 100K

    Data.gov (United States)

    Kansas Data Access and Support Center — Digital Elevation Model (DEM) is the terminology adopted by the USG to describe terrain elevation data sets in a digital raster form. The standard DEM consists of a...

  1. San Francisco Bay-Delta bathymetric/topographic digital elevation model (DEM)

    Science.gov (United States)

    Fregoso, Theresa; Wang, Rueen-Fang; Ateljevich, Eli; Jaffe, Bruce E.

    2017-01-01

    A high-resolution (10-meter per pixel) digital elevation model (DEM) was created for the Sacramento-San Joaquin Delta using both bathymetry and topography data. This DEM is the result of collaborative efforts of the U.S. Geological Survey (USGS) and the California Department of Water Resources (DWR). The base of the DEM is from a 10-m DEM released in 2004 and updated in 2005 (Foxgrover and others, 2005) that used Environmental Systems Research Institute (ESRI), ArcGIS Topo to Raster module to interpolate grids from single beam bathymetric surveys collected by DWR, the Army Corp of Engineers (COE), the National Oceanic and Atmospheric Administration (NOAA), and the USGS, into a continuous surface. The Topo to Raster interpolation method was specifically designed to create hydrologically correct DEMs from point, line, and polygon data (Environmental Systems Research Institute, Inc., 2015). Elevation contour lines were digitized based on the single beam point data for control of channel morphology during the interpolation process. Checks were performed to ensure that the interpolated surfaces honored the source bathymetry, and additional contours and (or) point data were added as needed to help constrain the data. The original data were collected in the tidal datum Mean Lower or Low Water (MLLW) or the National Geodetic Vertical Datum of 1929 (NGVD29). All data were converted to NGVD29.The 2005 USGS DEM was updated by DWR, first by converting the DEM to the current modern datum of North American Vertical Datum of 1988 (NAVD88) and then by following the methodology of the USGS DEM, established for the 2005 DEM (Foxgrover and others, 2005) for adding newly collected single and multibeam bathymetric data. They then included topographic data from lidar surveys, providing the first DEM that included the land/water interface (Wang and Ateljevich, 2012).The USGS further updated and expanded the DWR DEM with the inclusion of USGS interpolated sections of single beam

  2. A Seamless, High-Resolution, Coastal Digital Elevation Model (DEM) for Southern California

    Science.gov (United States)

    Barnard, Patrick L.; Hoover, Daniel

    2010-01-01

    A seamless, 3-meter digital elevation model (DEM) was constructed for the entire Southern California coastal zone, extending 473 km from Point Conception to the Mexican border. The goal was to integrate the most recent, high-resolution datasets available (for example, Light Detection and Ranging (Lidar) topography, multibeam and single beam sonar bathymetry, and Interferometric Synthetic Aperture Radar (IfSAR) topography) into a continuous surface from at least the 20-m isobath to the 20-m elevation contour. This dataset was produced to provide critical boundary conditions (bathymetry and topography) for a modeling effort designed to predict the impacts of severe winter storms on the Southern California coast (Barnard and others, 2009). The hazards model, run in real-time or with prescribed scenarios, incorporates atmospheric information (wind and pressure fields) with a suite of state-of-the-art physical process models (tide, surge, and wave) to enable detailed prediction of water levels, run-up, wave heights, and currents. Research-grade predictions of coastal flooding, inundation, erosion, and cliff failure are also included. The DEM was constructed to define the general shape of nearshore, beach and cliff surfaces as accurately as possible, with less emphasis on the detailed variations in elevation inland of the coast and on bathymetry inside harbors. As a result this DEM should not be used for navigation purposes.

  3. Review of Digital Elevation Model (DEM) Based Research on China Loess Plateau

    Institute of Scientific and Technical Information of China (English)

    Tang Guo'an; Ge Shanshan; Li Fayuan; Zhou Jieyu

    2005-01-01

    The Loess Plateau is one of the hot research areas for its specific geographical features. In resent years, with the establishment of national multi-scale DEMs and the perfection of DEM based digital terrain analysis methods, new thoughts and methodologies have been constructed for the Loess Plateau research. This paper introduces the characteristics of DEM data, analyses the development stages of DEM applied in the Loess Plateau research, and discusses its further possible research direction. More discussions are focused on slope spectrum and its concept, as well as the significance in the Loess Plateau research.

  4. A time series of TanDEM-X digital elevation models to monitor a glacier surge

    Science.gov (United States)

    Wendt, Anja; Mayer, Christoph; Lambrecht, Astrid; Floricioiu, Dana

    2016-04-01

    Bivachny Glacier, a tributary of the more than 70 km long Fedchenko Glacier in the Pamir Mountains, Central Asia, is a surge-type glacier with three known surges during the 20th century. In 2011, the most recent surge started which, in contrast to the previous ones, evolved down the whole glacier and reached the confluence with Fedchenko Glacier. Spatial and temporal glacier volume changes can be derived from high-resolution digital elevation models (DEMs) based on bistatic InSAR data from the TanDEM-X mission. There are nine DEMs available between 2011 and 2015 covering the entire surge period in time steps from few months up to one year. During the surge, the glacier surface elevation increased by up to 130 m in the lower part of the glacier; and change rates of up to 0.6 m per day were observed. The surface height dataset was complemented with glacier surface velocity information from TerraSAR-X/ TanDEM-X data as well as optical Landsat imagery. While the glacier was practically stagnant in 2000 after the end of the previous surge in the 1990s, the velocity increase started in 2011 in the upper reaches of the ablation area and successively moved downwards and intensified, reaching up to 4.0 m per day. The combination of surface elevation changes and glacier velocities, both of high temporal and spatial resolution, provides the unique opportunity to describe and analyse the evolution of the surge in unprecedented detail. Especially the relation between the mobilization front and the local mass transport provides insight into the surge dynamics.

  5. Coastal Digital Elevation Models (DEMs) for tsunami hazard assessment on the French coasts

    Science.gov (United States)

    Maspataud, Aurélie; Biscara, Laurie; Hébert, Hélène; Schmitt, Thierry; Créach, Ronan

    2015-04-01

    Building precise and up-to-date coastal DEMs is a prerequisite for accurate modeling and forecasting of hydrodynamic processes at local scale. Marine flooding, originating from tsunamis, storm surges or waves, is one of them. Some high resolution DEMs are being generated for multiple coast configurations (gulf, embayment, strait, estuary, harbor approaches, low-lying areas…) along French Atlantic and Channel coasts. This work is undertaken within the framework of the TANDEM project (Tsunamis in the Atlantic and the English ChaNnel: Definition of the Effects through numerical Modeling) (2014-2017). DEMs boundaries were defined considering the vicinity of French civil nuclear facilities, site effects considerations and potential tsunamigenic sources. Those were identified from available historical observations. Seamless integrated topographic and bathymetric coastal DEMs will be used by institutions taking part in the study to simulate expected wave height at regional and local scale on the French coasts, for a set of defined scenarii. The main tasks were (1) the development of a new capacity of production of DEM, (2) aiming at the release of high resolution and precision digital field models referred to vertical reference frameworks, that require (3) horizontal and vertical datum conversions (all source elevation data need to be transformed to a common datum), on the basis of (4) the building of (national and/or local) conversion grids of datum relationships based on known measurements. Challenges in coastal DEMs development deal with good practices throughout model development that can help minimizing uncertainties. This is particularly true as scattered elevation data with variable density, from multiple sources (national hydrographic services, state and local government agencies, research organizations and private engineering companies) and from many different types (paper fieldsheets to be digitized, single beam echo sounder, multibeam sonar, airborne laser

  6. High-Accuracy Tidal Flat Digital Elevation Model Construction Using TanDEM-X Science Phase Data

    Science.gov (United States)

    Lee, Seung-Kuk; Ryu, Joo-Hyung

    2017-01-01

    This study explored the feasibility of using TanDEM-X (TDX) interferometric observations of tidal flats for digital elevation model (DEM) construction. Our goal was to generate high-precision DEMs in tidal flat areas, because accurate intertidal zone data are essential for monitoring coastal environment sand erosion processes. To monitor dynamic coastal changes caused by waves, currents, and tides, very accurate DEMs with high spatial resolution are required. The bi- and monostatic modes of the TDX interferometer employed during the TDX science phase provided a great opportunity for highly accurate intertidal DEM construction using radar interferometry with no time lag (bistatic mode) or an approximately 10-s temporal baseline (monostatic mode) between the master and slave synthetic aperture radar image acquisitions. In this study, DEM construction in tidal flat areas was first optimized based on the TDX system parameters used in various TDX modes. We successfully generated intertidal zone DEMs with 57-m spatial resolutions and interferometric height accuracies better than 0.15 m for three representative tidal flats on the west coast of the Korean Peninsula. Finally, we validated these TDX DEMs against real-time kinematic-GPS measurements acquired in two tidal flat areas; the correlation coefficient was 0.97 with a root mean square error of 0.20 m.

  7. Revealing topographic lineaments through IHS enhancement of DEM data. [Digital Elevation Model

    Science.gov (United States)

    Murdock, Gary

    1990-01-01

    Intensity-hue-saturation (IHS) processing of slope (dip), aspect (dip direction), and elevation to reveal subtle topographic lineaments which may not be obvious in the unprocessed data are used to enhance digital elevation model (DEM) data from northwestern Nevada. This IHS method of lineament identification was applied to a mosiac of 12 square degrees using a Cray Y-MP8/864. Square arrays from 3 x 3 to 31 x 31 points were tested as well as several different slope enhancements. When relatively few points are used to fit the plane, lineaments of various lengths are observed and a mechanism for lineament classification is described. An area encompassing the gold deposits of the Carlin trend and including the Rain in the southeast to Midas in the northwest is investigated in greater detail. The orientation and density of lineaments may be determined on the gently sloping pediment surface as well as in the more steeply sloping ranges.

  8. Digital Elevation Model (DEM), 2005 Digtial Elevation Model, Published in 2009, 1:2400 (1in=200ft) scale, Dane County Land Information Office.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Digital Elevation Model (DEM) dataset, published at 1:2400 (1in=200ft) scale, was produced all or in part from Other information as of 2009. It is described as...

  9. Application of Digital Elevation Model (DEM for description of soil microtopography changes in laboratory experiments

    Directory of Open Access Journals (Sweden)

    Stańczyk Tomasz

    2016-12-01

    Full Text Available In the study we evaluated spatial and quantitative changes in soil surface microtopography to describe water erosion process under simulated rain with use of a non-contact optical 3D scanner. The experiment was conducted in two variants: with and without drainage layer. Two clay soils collected from farmlands from the catchment of lake Zgorzała (Warsaw were investigated. Six tests of simulated rain were applied, with 55 mm·h−1. The surface roughness and microrelief were determined immediately after every 10 min of rainfall simulation by 3D scanner. The volume of surface and underground runoff as well as soil moisture were measured. The surface points coordinates obtained while scanning were interpolated using natural neighbour method and GIS software to generate Digital Elevation Models (DEM with a 0.5 mm resolution. Two DEM-derived surface roughness indices: Random Roughness (RR and Terrain Ruggedness Index (TRI were used for microrelief description. Calculated values of both roughness factors have decreased with time under the influence of rainfall in all analyzed variants. During the sprinkling the moisture of all samples had been growing rapidly from air-dry state reaching values close to the maximum water capacity (37–48% vol. in 20–30 min. Simultaneously the intensity of surface runoff was increasing and cumulative runoff value was: 17–35% for variants with drainage and 72–83% for the variants without drainage, relative to cumulative rainfall. The observed soil surface elevation changes were associated with aggregates decomposition, erosion and sedimentation, and above all, with a compaction of the soil, which was considered to be a dominant factor hindering the assessment of the erosion intensity of the of the scanned surface.

  10. Digital Elevation Model (DEM), 20' Grid DEM for Iredell County provided by 2003 Floodplain Mapping Program data, Published in 2007, 1:600 (1in=50ft) scale, Iredell County GIS.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Digital Elevation Model (DEM) dataset, published at 1:600 (1in=50ft) scale, was produced all or in part from LIDAR information as of 2007. It is described as...

  11. Digital Elevation Model (DEM), The OSIP 2.5FT gridded DEM was derived from LiDAR, Published in 2007, 1:600 (1in=50ft) scale, Ohio Geographically Referenced Information Program (OGRIP).

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Digital Elevation Model (DEM) dataset, published at 1:600 (1in=50ft) scale, was produced all or in part from LIDAR information as of 2007. It is described as...

  12. Digital Elevation Model (DEM), 5-ft dem derived from LIDAR point data. Some errors between mosaiced tile edges., Published in 2006, 1:600 (1in=50ft) scale, Lumpkin County, GA.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Digital Elevation Model (DEM) dataset, published at 1:600 (1in=50ft) scale, was produced all or in part from LIDAR information as of 2006. It is described as...

  13. Digital Elevation Model (DEM), 10' DEM from LIDAR (1.2 m raw point spacing, 36.6 cm vertical accuracy, 50 cm horizontal), Published in 2008, 1:1200 (1in=100ft) scale, CITY OF PORTAGE.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Digital Elevation Model (DEM) dataset, published at 1:1200 (1in=100ft) scale, was produced all or in part from LIDAR information as of 2008. It is described as...

  14. Digital Elevation Model (DEM), DEM created from LIDAR data collected in the spring of 2009 as part of an MPO aerial/contour collection., Published in 2009, 1:600 (1in=50ft) scale, City of Bismarck.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Digital Elevation Model (DEM) dataset, published at 1:600 (1in=50ft) scale, was produced all or in part from LIDAR information as of 2009. It is described as...

  15. A new 100-m Digital Elevation Model of the Antarctic Peninsula derived from ASTER Global DEM: methods and accuracy assessment

    Directory of Open Access Journals (Sweden)

    A. J. Cook

    2012-10-01

    Full Text Available A high resolution surface topography Digital Elevation Model (DEM is required to underpin studies of the complex glacier system on the Antarctic Peninsula. A complete DEM with better than 200 m pixel size and high positional and vertical accuracy would enable mapping of all significant glacial basins and provide a dataset for glacier morphology analyses. No currently available DEM meets these specifications. We present a new 100-m DEM of the Antarctic Peninsula (63–70° S, based on ASTER Global Digital Elevation Model (GDEM data. The raw GDEM products are of high-quality on the rugged terrain and coastal-regions of the Antarctic Peninsula and have good geospatial accuracy, but they also contain large errors on ice-covered terrain and we seek to minimise these artefacts. Conventional data correction techniques do not work so we have developed a method that significantly improves the dataset, smoothing the erroneous regions and hence creating a DEM with a pixel size of 100 m that will be suitable for many glaciological applications. We evaluate the new DEM using ICESat-derived elevations, and perform horizontal and vertical accuracy assessments based on GPS positions, SPOT-5 DEMs and the Landsat Image Mosaic of Antarctica (LIMA imagery. The new DEM has a mean elevation difference of −4 m (± 25 m RMSE from ICESat (compared to −13 m mean and ±97 m RMSE for the original ASTER GDEM, and a horizontal error of less than 2 pixels, although elevation accuracies are lower on mountain peaks and steep-sided slopes. The correction method significantly reduces errors on low relief slopes and therefore the DEM can be regarded as suitable for topographical studies such as measuring the geometry and ice flow properties of glaciers on the Antarctic Peninsula. The DEM is available for download from the NSIDC website: http://nsidc.org/data/nsidc-0516.html (Digital Elevation Model (DEM), A 10 meter digital elevation model (DEM) is a digital file consisting of terrain elevations for ground positions at regularly spaced horizontal intervals, Published in 2005, 1:24000 (1in=2000ft) scale, State of Utah Automated Geographic Reference Center.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Digital Elevation Model (DEM) dataset, published at 1:24000 (1in=2000ft) scale, was produced all or in part from Orthoimagery information as of 2005. It is...

  16. Digital Elevation Model (DEM), A 30 meter digital elevation model (DEM) is a digital file consisting of terrain elevations for ground positions at regularly spaced horizontal intervals, Published in 2000, 1:100000 (1in=8333ft) scale, State of Utah Automated Geographic Reference Center.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Digital Elevation Model (DEM) dataset, published at 1:100000 (1in=8333ft) scale, was produced all or in part from Orthoimagery information as of 2000. It is...

  17. Digital Elevation Model (DEM), Lidar data with break lines, Published in 2007, 1:2400 (1in=200ft) scale, Randolph County.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Digital Elevation Model (DEM) dataset, published at 1:2400 (1in=200ft) scale, was produced all or in part from LIDAR information as of 2007. It is described as...

  18. Digital Elevation Model (DEM), Published in 2002, 1:2400 (1in=200ft) scale, Columbia County Wisconsin Land Information Department.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Digital Elevation Model (DEM) dataset, published at 1:2400 (1in=200ft) scale, was produced all or in part from Orthoimagery information as of 2002. Data by this...

  19. Digital Elevation Model (DEM), NED Elevation Sets for the counties we serve from USGS, Published in 1999, Prairie Land Electric COOP, Inc..

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Digital Elevation Model (DEM) dataset, was produced all or in part from Not Provided information as of 1999. It is described as 'NED Elevation Sets for the...

  1. Capturing Micro-topography of an Arctic Tundra Landscape through Digital Elevation Models (DEMs) Acquired from Various Remote Sensing Platforms

    Science.gov (United States)

    Vargas, S. A., Jr.; Tweedie, C. E.; Oberbauer, S. F.

    2013-12-01

    The need to improve the spatial and temporal scaling and extrapolation of plot level measurements of ecosystem structure and function to the landscape level has been identified as a persistent research challenge in the arctic terrestrial sciences. Although there has been a range of advances in remote sensing capabilities on satellite, fixed wing, helicopter and unmanned aerial vehicle platforms over the past decade, these present costly, logistically challenging (especially in the Arctic), technically demanding solutions for applications in an arctic environment. Here, we present a relatively low cost alternative to these platforms that uses kite aerial photography (KAP). Specifically, we demonstrate how digital elevation models (DEMs) were derived from this system for a coastal arctic landscape near Barrow, Alaska. DEMs of this area acquired from other remote sensing platforms such as Terrestrial Laser Scanning (TLS), Airborne Laser Scanning, and satellite imagery were also used in this study to determine accuracy and validity of results. DEMs interpolated using the KAP system were comparable to DEMs derived from the other platforms. For remotely sensing acre to kilometer square areas of interest, KAP has proven to be a low cost solution from which derived products that interface ground and satellite platforms can be developed by users with access to low-tech solutions and a limited knowledge of remote sensing.

  2. Digital Elevation Model (DEM), Our DEM was created by using the LiDAR data from our recent acquisition. The layer was created with the help of contour data, mass points & breaklines., Published in 2012, Not Applicable scale, Chippewa County Government.

    Data.gov (United States)

    NSGIC Local Govt | GIS Inventory — Digital Elevation Model (DEM) dataset current as of 2012. Our DEM was created by using the LiDAR data from our recent acquisition. The layer was created with the...

  3. Digital Elevation Model (DEM), 1.7 meter DEM in Urban Areas, 5 Meter DEM in National Forest, flown as part of the LAR-IAC project, Published in 2006, 1:600 (1in=50ft) scale, County of Los Angeles.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Digital Elevation Model (DEM) dataset, published at 1:600 (1in=50ft) scale, was produced all or in part from LIDAR information as of 2006. It is described as...

  4. Arctic Digital Elevation Models (DEMs) generated by Surface Extraction from TIN-Based Searchspace Minimization (SETSM) algorithm from RPCs-based Imagery

    Science.gov (United States)

    Noh, M. J.; Howat, I. M.; Porter, C. C.; Willis, M. J.; Morin, P. J.

    2016-12-01

    The Arctic is undergoing rapid change associated with climate warming. Digital Elevation Models (DEMs) provide critical information for change measurement and infrastructure planning in this vulnerable region, yet the existing quality and coverage of DEMs in the Arctic is poor. Low contrast and repeatedly-textured surfaces, such as snow and glacial ice and mountain shadows, all common in the Arctic, challenge existing stereo-photogrammetric techniques. Submeter resolution, stereoscopic satellite imagery with high geometric and radiometric quality, and wide spatial coverage are becoming increasingly accessible to the scientific community. To utilize these imagery for extracting DEMs at a large scale over glaciated and high latitude regions we developed the Surface Extraction from TIN-based Searchspace Minimization (SETSM) algorithm. SETSM is fully automatic (i.e. no search parameter settings are needed) and uses only the satellite rational polynomial coefficients (RPCs). Using SETSM, we have generated a large number of DEMs (> 100,000 scene pair) from WorldView, GeoEye and QuickBird stereo images collected by DigitalGlobe Inc. and archived by the Polar Geospatial Center (PGC) at the University of Minnesota through an academic licensing program maintained by the US National Geospatial-Intelligence Agency (NGA). SETSM is the primary DEM generation software for the US National Science Foundation's ArcticDEM program, with the objective of generating high resolution (2-8m) topography for the entire Arctic landmass, including seamless DEM mosaics and repeat DEM strips for change detection. ArcticDEM is collaboration between multiple US universities, governmental agencies and private companies, as well as international partners assisting with quality control and registration. ArcticDEM is being produced using the petascale Blue Waters supercomputer at the National Center for Supercomputer Applications at the University of Illinois. In this paper, we introduce the SETSM

  5. High-resolution digital elevation models from single-pass TanDEM-X interferometry over mountainous regions: A case study of Inylchek Glacier, Central Asia

    Science.gov (United States)

    Neelmeijer, Julia; Motagh, Mahdi; Bookhagen, Bodo

    2017-08-01

    This study demonstrates the potential of using single-pass TanDEM-X (TDX) radar imagery to analyse inter- and intra-annual glacier changes in mountainous terrain. Based on SAR images acquired in February 2012, March 2013 and November 2013 over the Inylchek Glacier, Kyrgyzstan, we discuss in detail the processing steps required to generate three reliable digital elevation models (DEMs) with a spatial resolution of 10 m that can be used for glacial mass balance studies. We describe the interferometric processing steps and the influence of a priori elevation information that is required to model long-wavelength topographic effects. We also focus on DEM alignment to allow optimal DEM comparisons and on the effects of radar signal penetration on ice and snow surface elevations. We finally compare glacier elevation changes between the three TDX DEMs and the C-band shuttle radar topography mission (SRTM) DEM from February 2000. We introduce a new approach for glacier elevation change calculations that depends on the elevation and slope of the terrain. We highlight the superior quality of the TDX DEMs compared to the SRTM DEM, describe remaining DEM uncertainties and discuss the limitations that arise due to the side-looking nature of the radar sensor.

  6. Catchment properties in the Kruger National Park derived from the new TanDEM-X Intermediate Digital Elevation Model (IDEM)

    Science.gov (United States)

    Baade, J.; Schmullius, C.

    2015-04-01

    Digital Elevation Models (DEM) represent fundamental data for a wide range of Earth surface process studies. Over the past years the German TanDEM-X mission acquired data for a new, truly global Digital Elevation Model with unpreceded geometric resolution, precision and accuracy. First processed data sets (i. e. IDEM) with a geometric resolution of 0.4 to 3 arcsec have been made available for scientific purposes. This includes four 1° x 1° tiles covering the Kruger National Park in South Africa. Here we document the results of a local scale IDEM validation exercise utilizing RTK-GNSS-based ground survey points from a dried out reservoir basin and its vicinity characterized by pristine open Savanna vegetation. Selected precursor data sets (SRTM1, SRTM90, ASTER-GDEM2) were included in the analysis and highlight the immense progress in satellite-based Earth surface surveying over the past two decades. Surprisingly, the high precision and accuracy of the IDEM data sets have only little impact on the delineation of watersheds and the calculation of catchment size. But, when it comes to the derivation of topographic catchment properties (e.g. mean slope, etc.) the high resolution of the IDEM04 is of crucial importance, if - from a geomorphologist's view - it was not for the disturbing vegetation.

  7. Coastal Topography--Northeast Atlantic Coast, Post-Hurricane Sandy, 2012: Digital elevation model (DEM)

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — A DEM was produced for a portion of the New York, Delaware, Maryland, Virginia, and North Carolina coastlines, post-Hurricane Sandy (Sandy was an October 2012...

  8. Evaluating the Quality and Accuracy of TanDEM-X Digital Elevation Models at Archaeological Sites in the Cilician Plain, Turkey

    Directory of Open Access Journals (Sweden)

    Stefan Erasmi

    2014-10-01

    Full Text Available Satellite remote sensing provides a powerful instrument for mapping and monitoring traces of historical settlements and infrastructure, not only in distant areas and crisis regions. It helps archaeologists to embed their findings from field surveys into the broader context of the landscape. With the start of the TanDEM-X mission, spatially explicit 3D-information is available to researchers at an unprecedented resolution worldwide. We examined different experimental TanDEM-X digital elevation models (DEM that were processed from two different imaging modes (Stripmap/High Resolution Spotlight using the operational alternating bistatic acquisition mode. The quality and accuracy of the experimental DEM products was compared to other available DEM products and a high precision archaeological field survey. The results indicate the potential of TanDEM-X Stripmap (SM data for mapping surface elements at regional scale. For the alluvial plain of Cilicia, a suspected palaeochannel could be reconstructed. At the local scale, DEM products from TanDEM-X High Resolution Spotlight (HS mode were processed at 2 m spatial resolution using a merge of two monostatic/bistatic interferograms. The absolute and relative vertical accuracy of the outcome meet the specification of high resolution elevation data (HRE standards from the National System for Geospatial Intelligence (NSG at the HRE20 level.

  9. Estimating Digital Terrain Model in forest areas from TanDEM-X and Stereo-photogrammetric technique by means of Random Volume over Ground model

    Science.gov (United States)

    Lee, S. K.; Fatoyinbo, T. E.; Lagomasino, D.; Osmanoglu, B.; Feliciano, E. A.

    2015-12-01

    The Digital Terrain Model (DTM) in forest areas is invaluable information for various environmental, hydrological and ecological studies, for example, watershed delineation, vegetation canopy height, water dynamic modeling, forest biomass and carbon estimations. There are few solutions to extract bare-earth Digital Elevation Model information. Airborne lidar systems are widely and successfully used for estimating bare-earth DEMs with centimeter-order accuracy and high spatial resolution. However, expensive cost of operation and small image coverage prevent the use of airborne lidar sensors for large- or global-scale. Although IceSAT/GLAS (Ice, Cloud, and Land Elevation Satellite/Geoscience Laser Altimeter System) lidar data sets have been available for global DTM estimate with relatively lower cost, the large footprint size of 70 m and the interval of 172 m are insufficient for various applications. In this study we propose to extract higher resolution bare-earth DEM over vegetated areas from the combination of interferometric complex coherence from single-pass TanDEM-X (TDX) data at HH polarization and Digital Surface Model (DSM) derived from high-resolution WorldView (WV) images by means of random volume over ground (RVoG) model. The RVoG model is a widely and successfully used model for polarimetric SAR interferometry (Pol-InSAR) forest canopy height inversion. The bare-earth DEM is obtained by complex volume decorrelation in the RVoG model with the DSM estimated by stereo-photogrammetric technique. Forest canopy height can be estimated by subtracting the estimated bare-earth model from the DSM. Finally, the DTM from airborne lidar system was used to validate the bare-earth DEM and forest canopy height estimates.

  10. A simulation of wide area surveillance (WAS) systems and algorithm for digital elevation model (DEM) extraction

    Science.gov (United States)

    Cheng, Beato T.

    2010-04-01

    With the advances in focal plane, electronics and memory storage technologies, wide area and persistence surveillance capabilities have become a reality in airborne ISR. A WAS system offers many benefits in comparison with the traditional airborne image capturing systems that provide little data overlap, both in terms of space and time. Unlike a fix-mount surveillance camera, a persistence WAS system can be deployed anywhere as desired, although the platform typically has to be in motion, say circling above an area of interest. Therefore, WAS is a perfect choice for surveillance that can provide near real time capabilities such as change detection and target tracking. However, the performance of a WAS system is still limited by the available technologies: the optics that control the field-of-view, the electronics and mechanical subsystems that control the scanning, the focal plane data throughput, and the dynamics of the platform all play key roles in the success of the system. It is therefore beneficial to develop a simulated version that can capture the essence of the system, in order to help provide insights into the design of an optimized system. We describe an approach to the simulation of a generic WAS system that allows focal plane layouts, scanning patterns, flight paths and platform dynamics to be defined by a user. The system generates simulated image data of the area ground coverage from reference databases (e.g. aerial imagery, and elevation data), based on the sensor model. The simulated data provides a basis for further algorithm development, such as image stitching/mosaic, registration, and geolocation. We also discuss an algorithm to extract the terrain elevation from the simulated data, and to compare that with the original DEM data.

  11. An automated, open-source pipeline for mass production of digital elevation models (DEMs) from very-high-resolution commercial stereo satellite imagery

    Science.gov (United States)

    Shean, David E.; Alexandrov, Oleg; Moratto, Zachary M.; Smith, Benjamin E.; Joughin, Ian R.; Porter, Claire; Morin, Paul

    2016-06-01

    We adapted the automated, open source NASA Ames Stereo Pipeline (ASP) to generate digital elevation models (DEMs) and orthoimages from very-high-resolution (VHR) commercial imagery of the Earth. These modifications include support for rigorous and rational polynomial coefficient (RPC) sensor models, sensor geometry correction, bundle adjustment, point cloud co-registration, and significant improvements to the ASP code base. We outline a processing workflow for ∼0.5 m ground sample distance (GSD) DigitalGlobe WorldView-1 and WorldView-2 along-track stereo image data, with an overview of ASP capabilities, an evaluation of ASP correlator options, benchmark test results, and two case studies of DEM accuracy. Output DEM products are posted at ∼2 m with direct geolocation accuracy of computing environment. We are leveraging these resources to produce dense time series and regional mosaics for the Earth's polar regions.

  12. External Validation of the ASTER GDEM2, GMTED2010 and CGIAR-CSI- SRTM v4.1 Free Access Digital Elevation Models (DEMs in Tunisia and Algeria

    Directory of Open Access Journals (Sweden)

    Djamel Athmania

    2014-05-01

    Full Text Available Digital Elevation Models (DEMs including Advanced Spaceborne Thermal Emission and Reflection Radiometer-Global Digital Elevation Model (ASTER GDEM, Shuttle Radar Topography Mission (SRTM, and Global Multi-resolution Terrain Elevation Data 2010 (GMTED2010 are freely available for nearly the entire earth’s surface. DEMs that are usually subject to errors need to be evaluated using reference elevation data of higher accuracy. This work was performed to assess the vertical accuracy of the ASTER GDEM version 2, (ASTER GDEM2, the Consultative Group on International Agriculture Research-Consortium for Spatial Information (CGIAR-CSI SRTM version 4.1 (SRTM v4.1 and the systematic subsample GMTED2010, at their original spatial resolution, using Global Navigation Satellite Systems (GNSS validation points. Two test sites, the Anaguid Saharan platform in southern Tunisia and the Tebessa basin in north eastern Algeria, were chosen for accuracy assessment of the above mentioned DEMs, based on geostatistical and statistical measurements. Within the geostatistical approach, empirical variograms of each DEM were compared with those of the GPS validation points. Statistical measures were computed from the elevation differences between the DEM pixel value and the corresponding GPS point. For each DEM, a Root Mean Square Error (RMSE was determined for model validation. In addition, statistical tools such as frequency histograms and Q-Q plots were used to evaluate error distributions in each DEM. The results indicate that the vertical accuracy of SRTM model is much higher than ASTER GDEM2 and GMTED2010 for both sites. In Anaguid test site, the vertical accuracy of SRTM is estimated 3.6 m (in terms of RMSE 5.3 m and 4.5 m for the ASTERGDEM2 and GMTED2010 DEMs, respectively. In Tebessa test site, the overall vertical accuracy shows a RMSE of 9.8 m, 8.3 m and 9.6 m for ASTER GDEM 2, SRTM and GMTED2010 DEM, respectively. This work is the first study to report the

  13. Digital Elevation Model (DEM), Countywide DEMs were created from the 2004 Maryland Statewide Lidar data.A map service has been created to host this data but local copies are recommended for complex processing and analysis as this data is very large.Contact the ESRGC to obtain a copy, Published in 2004, 1:1200 (1in=100ft) scale, Eastern Shore Regional GIS Cooperative.

    Data.gov (United States)

    NSGIC Regional | GIS Inventory — Digital Elevation Model (DEM) dataset current as of 2004. Countywide DEMs were created from the 2004 Maryland Statewide Lidar data.A map service has been created to...

  14. Digital Elevation Model (DEM) to Investigate the Results of Cutting%数字高程模型(DEM)成果裁切探讨

    Institute of Scientific and Technical Information of China (English)

    徐丽丽; 杨春全

    2015-01-01

    随着计算机技术及测绘产品的不断发展,数字高程模型( DEM)已成为地理信息空间系统和“数字地球”的重要组成部分。在测绘技术蓬勃发展的今天,数字高程模型( DEM)的生产已成为各生产部门较关注的问题之一,特别是近年来数字龙江地理空间框架建设一期工程对数字高程模型( DEM)产品成果的要求有很大提高,数字高程模型( DEM)成果的裁切也显得尤为重要,本文从工作中遇到的DEM成果裁切问题入手,结合笔者多年的测绘生产经验,研讨DEM成果裁切问题。%With the continuous development of computer technology and mapping products , digital elevation model ( DEM) has be-come more and more important part of spatial geographic information system and the “digital earth”.In the vigorous development of Surveying and mapping technology today , digital elevation model (DEM ) production has become one of the production department , especially in recent years , the construction of digital geo spatial framework of the Longjiang one phase of the project of digital elevation model ( DEM) product requirements are very high, the digital elevation model ( DEM) results of cutting is also very important , start-ing with the DEM results from the cutting problems encountered in the work , and combining the years of Surveying and mapping pro-duction experience ,research results of DEM cutting problem .

  15. Digital Elevation Model (DEM), Included in the USGS National Elevation Dataset at seamless.usgs.gov, Published in 2005, 1:24000 (1in=2000ft) scale, U.S. Geological Survey.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Digital Elevation Model (DEM) dataset, published at 1:24000 (1in=2000ft) scale, was produced all or in part from Hardcopy Maps information as of 2005. It is...

  16. Soil-landscape modelling using fuzzy c-means clustering of attribute data derived from a Digital Elevation Model (DEM).

    NARCIS (Netherlands)

    Bruin, de S.; Stein, A.

    1998-01-01

    This study explores the use of fuzzy c-means clustering of attribute data derived from a digital elevation model to represent transition zones in the soil-landscape. The conventional geographic model used for soil-landscape description is not able to properly deal with these. Fuzzy c-means clusterin

  17. Creating high-resolution bare-earth digital elevation models (DEMs) from stereo imagery in an area of densely vegetated deciduous forest using combinations of procedures designed for lidar point cloud filtering

    Science.gov (United States)

    DeWitt, Jessica D.; Warner, Timothy A.; Chirico, Pete; Bergstresser, Sarah

    2017-01-01

    For areas of the world that do not have access to lidar, fine-scale digital elevation models (DEMs) can be photogrammetrically created using globally available high-spatial resolution stereo satellite imagery. The resultant DEM is best termed a digital surface model (DSM) because it includes heights of surface features. In densely vegetated conditions, this inclusion can limit its usefulness in applications requiring a bare-earth DEM. This study explores the use of techniques designed for filtering lidar point clouds to mitigate the elevation artifacts caused by above ground features, within the context of a case study of Prince William Forest Park, Virginia, USA. The influences of land cover and leaf-on vs. leaf-off conditions are investigated, and the accuracy of the raw photogrammetric DSM extracted from leaf-on imagery was between that of a lidar bare-earth DEM and the Shuttle Radar Topography Mission DEM. Although the filtered leaf-on photogrammetric DEM retains some artifacts of the vegetation canopy and may not be useful for some applications, filtering procedures significantly improved the accuracy of the modeled terrain. The accuracy of the DSM extracted in leaf-off conditions was comparable in most areas to the lidar bare-earth DEM and filtering procedures resulted in accuracy comparable of that to the lidar DEM.

  18. DEM Particle Fracture Model

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Boning [Univ. of Colorado, Boulder, CO (United States); Herbold, Eric B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Homel, Michael A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Regueiro, Richard A. [Univ. of Colorado, Boulder, CO (United States)

    2015-12-01

    An adaptive particle fracture model in poly-ellipsoidal Discrete Element Method is developed. The poly-ellipsoidal particle will break into several sub-poly-ellipsoids by Hoek-Brown fracture criterion based on continuum stress and the maximum tensile stress in contacts. Also Weibull theory is introduced to consider the statistics and size effects on particle strength. Finally, high strain-rate split Hopkinson pressure bar experiment of silica sand is simulated using this newly developed model. Comparisons with experiments show that our particle fracture model can capture the mechanical behavior of this experiment very well, both in stress-strain response and particle size redistribution. The effects of density and packings o the samples are also studied in numerical examples.

  19. Mass changes of glaciers over the Central Karakoram derived from TanDEM-X and SRTM/X-SAR Digital Elevation Models

    Science.gov (United States)

    Rankl, Melanie; Braun, Matthias

    2015-04-01

    Snow cover and glaciers in the Karakoram region are important freshwater resources for many downriver communities as they provide water for irrigation and hydro power. A better understanding of current glacier changes is hence an important baseline information. Glaciers in the Karakoram have shown stable and positive glacier mass balances during recent years as well as stable and advancing termini positions. The Karakoram is also known for a large number of surge-type glaciers. Here, we present geodetic glacier elevation and mass changes using TanDEM-X and SRTM/X-SAR Digital Elevation Models between 2000 and 2012. Based on previous glacier inventories for the Karakoram, we show elevation changes and glacier mass balances for glaciers with advancing and stable termini between 2000 and 2012 as well as surge-type glaciers separately. In order to convert volume changes to mass changes, we applied different density scenarios (i.e., constant densities for ice and snow or zonally variable densities). Our findings show average glacier thickening of +0.01 ± 0.02 m a-1 or mass gain of +0.0099 ± 2.8x10-5 Gt a-1(using a density of 850 kg m-3) between 2000 and 2012 for parts of the Central Karakoram. Surge-type glaciers and advancing glaciers indicated slight surface lowering, while the majority of the studied glaciers showed stable termini and surface thickening. Our measurements are independent from varying penetration depths of the radar signal or temporal decorrelation between image acquisitions. Both datasets were acquired in the X-band frequency under assumed similar surface conditions. The bistatic TanDEM-X mission is highly suitable for interferometric processing due to high spatial resolutions and only 3 sec time lag between TanDEM-X and TerraSAR-X overpasses. We want to stress the enormous potential of the TanDEM-X mission to estimate geodetic glacier mass balances, in particular when compared to elevation data sets acquired in a similar frequency and comparable

  20. Digital Elevation Model (DEM), Countywide DEMs were created from the 2004 Maryland Statewide Lidar data.A map service has been created to host this data but local copies are recommended for complex processing and analysis as this data is very large.Contact the ESRGC to obtain a copy, Published in 2004, 1:1200 (1in=100ft) scale, Eastern Shore Regional GIS Cooperative.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Digital Elevation Model (DEM) dataset, published at 1:1200 (1in=100ft) scale, was produced all or in part from LIDAR information as of 2004. It is described as...

  1. Modeling Glacier Elevation Change from DEM Time Series

    Directory of Open Access Journals (Sweden)

    Di Wang

    2015-08-01

    Full Text Available In this study, a methodology for glacier elevation reconstruction from Digital Elevation Model (DEM time series (tDEM is described for modeling the evolution of glacier elevation and estimating related volume change, with focus on medium-resolution and noisy satellite DEMs. The method is robust with respect to outliers in individual DEM products. Fox Glacier and Franz Josef Glacier in New Zealand are used as test cases based on 31 Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER DEMs and the Shuttle Radar Topography Mission (SRTM DEM. We obtained a mean surface elevation lowering rate of −0.51 ± 0.02 m·a−1 and −0.09 ± 0.02 m·a−1 between 2000 and 2014 for Fox and Franz Josef Glacier, respectively. The specific volume difference between 2000 and 2014 was estimated as −0.77 ± 0.13 m·a−1 and −0.33 ± 0.06 m·a−1 by our tDEM method. The comparably moderate thinning rates are mainly due to volume gains after 2013 that compensate larger thinning rates earlier in the series. Terminus thickening prevailed between 2002 and 2007.

  2. ElevationDEM_DEM1M2005

    Data.gov (United States)

    Vermont Center for Geographic Information — This metadata applies to the following collection area(s): Essex County 2005 1m and Digital Elevation Model (DEM) datasets of various "hydro-treatments": DEM, DEMHF...

  3. ElevationDEM_DEM2M

    Data.gov (United States)

    Vermont Center for Geographic Information — This metadata applies to the following collection area(s): Bennington County 2012 2.0m and Digital Elevation Model (DEM) datasets of various "hydro-treatments": DEM,...

  4. ElevationDEM_DEM1M2009

    Data.gov (United States)

    Vermont Center for Geographic Information — This metadata applies to the following collection area(s): Essex County 2005 1m and Digital Elevation Model (DEM) datasets of various "hydro-treatments": DEM, DEMHF...

  5. ElevationDEM_DEM1M2010

    Data.gov (United States)

    Vermont Center for Geographic Information — This metadata applies to the following collection area(s): Essex County 2005 1m and Digital Elevation Model (DEM) datasets of various "hydro-treatments": DEM, DEMHF...

  6. ElevationDEM_DEM1M2007

    Data.gov (United States)

    Vermont Center for Geographic Information — This metadata applies to the following collection area(s): Essex County 2005 1m and Digital Elevation Model (DEM) datasets of various "hydro-treatments": DEM, DEMHF...

  7. High-resolution DEM Effects on Geophysical Flow Models

    Science.gov (United States)

    Williams, M. R.; Bursik, M. I.; Stefanescu, R. E. R.; Patra, A. K.

    2014-12-01

    Geophysical mass flow models are numerical models that approximate pyroclastic flow events and can be used to assess the volcanic hazards certain areas may face. One such model, TITAN2D, approximates granular-flow physics based on a depth-averaged analytical model using inputs of basal and internal friction, material volume at a coordinate point, and a GIS in the form of a digital elevation model (DEM). The volume of modeled material propagates over the DEM in a way that is governed by the slope and curvature of the DEM surface and the basal and internal friction angles. Results from TITAN2D are highly dependent upon the inputs to the model. Here we focus on a single input: the DEM, which can vary in resolution. High resolution DEMs are advantageous in that they contain more surface details than lower-resolution models, presumably allowing modeled flows to propagate in a way more true to the real surface. However, very high resolution DEMs can create undesirable artifacts in the slope and curvature that corrupt flow calculations. With high-resolution DEMs becoming more widely available and preferable for use, determining the point at which high resolution data is less advantageous compared to lower resolution data becomes important. We find that in cases of high resolution, integer-valued DEMs, very high-resolution is detrimental to good model outputs when moderate-to-low (<10-15°) slope angles are involved. At these slope angles, multiple adjacent DEM cell elevation values are equal due to the need for the DEM to approximate the low slope with a limited set of integer values for elevation. The first derivative of the elevation surface thus becomes zero. In these cases, flow propagation is inhibited by these spurious zero-slope conditions. Here we present evidence for this "terracing effect" from 1) a mathematically defined simulated elevation model, to demonstrate the terracing effects of integer valued data, and 2) a real-world DEM where terracing must be

  8. Digital Elevation Model (DEM), LiDAR acquired and processed over the entire county to support the generation of 1"=100' scale orthophotos & 2' contours. The Lidar LAS data has been classified to bare-earth as well as first-return points., Published in 2009, 1:1200 (1in=100ft) scale, Maryland National Capital Park and Planning Commission.

    Data.gov (United States)

    NSGIC Non-Profit | GIS Inventory — Digital Elevation Model (DEM) dataset current as of 2009. LiDAR acquired and processed over the entire county to support the generation of 1"=100' scale orthophotos...

  9. Digital Elevation Model (DEM), These data are a research product and not intended for use in management, regulation, litigation, or related activities. Data are in a gridded (TIFF) format with a horizontal resolution of 10 feet and a vertical resolution of 1 foot., Published in 2007, University of Connecticut.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Digital Elevation Model (DEM) dataset, was produced all or in part from LIDAR information as of 2007. It is described as 'These data are a research product and...

  10. A methodology to generate high-resolution digital elevation model (DEM) and surface water profile for a physical model using close range photogrammetric (CRP) technique

    Science.gov (United States)

    Mali, V. K.; Kuiry, S. N.

    2015-12-01

    Comprehensive understanding of the river flow dynamics with varying topography in a real field is very intricate and difficult. Conventional experimental methods based on manual data collection are time consuming and prone to many errors. Recently, remotely sensed satellite imageries are at the best to provide necessary information for large area provided the high resolution but which are very expensive and untimely, consequently, attaining accurate river bathymetry from relatively course resolution and untimely imageries are inaccurate and impractical. Despite of that, these data are often being used to calibrate the river flow models, though these models require highly accurate morpho-dynamic data in order to predict the flow field precisely. Under this circumstance, these data could be supplemented through experimental observations in a physical model with modern techniques. This paper proposes a methodology to generate highly accurate river bathymetry and water surface (WS) profile for a physical model of river network system using CRP technique. For the task accomplishment, a number of DSLR Nikon D5300 cameras (mounted at 3.5 m above the river bed) were used to capture the images of the physical model and the flooding scenarios during the experiments. During experiment, non-specular materials were introduced at the inlet and images were taken simultaneously from different orientations and altitudes with significant overlap of 80%. Ground control points were surveyed using two ultrasonic sensors with ±0.5 mm vertical accuracy. The captured images are, then processed in PhotoScan software to generate the DEM and WS profile. The generated data were then passed through statistical analysis to identify errors. Accuracy of WS profile was limited by extent and density of non-specular powder and stereo-matching discrepancies. Furthermore, several factors of camera including orientation, illumination and altitude of camera. The CRP technique for a large scale physical

  11. A methodology to generate high-resolution digital elevation model (DEM) and surface water profile for a physical model using close range photogrammetric (CRP) technique

    Science.gov (United States)

    Méndez Incera, F. J.; Erikson, L. H.; Ruggiero, P.; Barnard, P.; Camus, P.; Rueda Zamora, A. C.

    2014-12-01

    Comprehensive understanding of the river flow dynamics with varying topography in a real field is very intricate and difficult. Conventional experimental methods based on manual data collection are time consuming and prone to many errors. Recently, remotely sensed satellite imageries are at the best to provide necessary information for large area provided the high resolution but which are very expensive and untimely, consequently, attaining accurate river bathymetry from relatively course resolution and untimely imageries are inaccurate and impractical. Despite of that, these data are often being used to calibrate the river flow models, though these models require highly accurate morpho-dynamic data in order to predict the flow field precisely. Under this circumstance, these data could be supplemented through experimental observations in a physical model with modern techniques. This paper proposes a methodology to generate highly accurate river bathymetry and water surface (WS) profile for a physical model of river network system using CRP technique. For the task accomplishment, a number of DSLR Nikon D5300 cameras (mounted at 3.5 m above the river bed) were used to capture the images of the physical model and the flooding scenarios during the experiments. During experiment, non-specular materials were introduced at the inlet and images were taken simultaneously from different orientations and altitudes with significant overlap of 80%. Ground control points were surveyed using two ultrasonic sensors with ±0.5 mm vertical accuracy. The captured images are, then processed in PhotoScan software to generate the DEM and WS profile. The generated data were then passed through statistical analysis to identify errors. Accuracy of WS profile was limited by extent and density of non-specular powder and stereo-matching discrepancies. Furthermore, several factors of camera including orientation, illumination and altitude of camera. The CRP technique for a large scale physical

  12. Coastal DEMs with Cross-Track Interferometry

    NARCIS (Netherlands)

    Greidanus, H.S.F.; Huising, E.J.; Platschorre, Y.; Bree, R.J.P. van; Halsema, D. van; Vaessen, E.M.J.

    1999-01-01

    Digital elevation models (DEMs) are produced from airborne radar cross-track interferometric measurements. Radar DEMs recorded from perpendicular orientations are intercompared, and compared to DEMs derived from airborne laser altimetry

  13. ElevationDEM_DEM3p2M

    Data.gov (United States)

    Vermont Center for Geographic Information — This metadata applies to the following collection area(s): Chittenden County 2004 3.2m and Digital Elevation Model (DEM) datasets of various "hydro-treatments": DEM,...

  14. ElevationDEM_DEM1p6M2008

    Data.gov (United States)

    Vermont Center for Geographic Information — This metadata applies to the following collection area(s): Missisquoi Lower 2008 1.6m and Digital Elevation Model (DEM) datasets of various "hydro-treatments": DEM,...

  15. ElevationDEM_DEM0p7M2013

    Data.gov (United States)

    Vermont Center for Geographic Information — This metadata applies to the following collection area: Rutland/GI Counties 2013 0.7m and Digital Elevation Model (DEM) datasets of various "hydro-treatments": DEM,...

  16. ElevationDEM_DEM1p6M2010

    Data.gov (United States)

    Vermont Center for Geographic Information — This metadata applies to the following collection area(s): Missisquoi Upper 2010 1.6m and Digital Elevation Model (DEM) datasets of various "hydro-treatments": DEM,...

  17. ElevationDEM_DEM3p2M2004

    Data.gov (United States)

    Vermont Center for Geographic Information — This metadata applies to the following collection area(s): Chittenden County 2004 3.2m and Digital Elevation Model (DEM) datasets of various "hydro-treatments": DEM,...

  18. ElevationDEM_DEM0p7M2015

    Data.gov (United States)

    Vermont Center for Geographic Information — This metadata applies to the following collection area(s): Windham County 2015 0.7m and Digital Elevation Model (DEM) datasets of various "hydro-treatments": DEM,...

  19. ElevationDEM_DEM1p6M2012

    Data.gov (United States)

    Vermont Center for Geographic Information — This metadata applies to the following collection area(s): Addison County 2012 1.6m and Digital Elevation Model (DEM) datasets of various "hydro-treatments": DEM,...

  20. Shuttle radar DEM hydrological correction for erosion modelling in small catchments

    Science.gov (United States)

    Jarihani, Ben; Sidle, Roy; Bartley, Rebecca

    2016-04-01

    Digital Elevation Models (DEMs) that accurately replicate both landscape form and processes are critical to support modelling of environmental processes. Catchment and hillslope scale runoff and sediment processes (i.e., patterns of overland flow, infiltration, subsurface stormflow and erosion) are all topographically mediated. In remote and data-scarce regions, high resolution DEMs (LiDAR) are often not available, and moderate to course resolution digital elevation models (e.g., SRTM) have difficulty replicating detailed hydrological patterns, especially in relatively flat landscapes. Several surface reconditioning algorithms (e.g., Smoothing) and "Stream burning" techniques (e.g., Agree or ANUDEM), in conjunction with representation of the known stream networks, have been used to improve DEM performance in replicating known hydrology. Detailed stream network data are not available at regional and national scales, but can be derived at local scales from remotely-sensed data. This research explores the implication of high resolution stream network data derived from Google Earth images for DEM hydrological correction, instead of using course resolution stream networks derived from topographic maps. The accuracy of implemented method in producing hydrological-efficient DEMs were assessed by comparing the hydrological parameters derived from modified DEMs and limited high-resolution airborne LiDAR DEMs. The degree of modification is dominated by the method used and availability of the stream network data. Although stream burning techniques improve DEMs hydrologically, these techniques alter DEM characteristics that may affect catchment boundaries, stream position and length, as well as secondary terrain derivatives (e.g., slope, aspect). Modification of a DEM to better reflect known hydrology can be useful, however, knowledge of the magnitude and spatial pattern of the changes are required before using a DEM for subsequent analyses.

  1. Uncertainty of soil erosion modelling using open source high resolution and aggregated DEMs

    Directory of Open Access Journals (Sweden)

    Arun Mondal

    2017-05-01

    Full Text Available Digital Elevation Model (DEM is one of the important parameters for soil erosion assessment. Notable uncertainties are observed in this study while using three high resolution open source DEMs. The Revised Universal Soil Loss Equation (RUSLE model has been applied to analysis the assessment of soil erosion uncertainty using open source DEMs (SRTM, ASTER and CARTOSAT and their increasing grid space (pixel size from the actual. The study area is a part of the Narmada river basin in Madhya Pradesh state, which is located in the central part of India and the area covered 20,558 km2. The actual resolution of DEMs is 30 m and their increasing grid spaces are taken as 90, 150, 210, 270 and 330 m for this study. Vertical accuracy of DEMs has been assessed using actual heights of the sample points that have been taken considering planimetric survey based map (toposheet. Elevations of DEMs are converted to the same vertical datum from WGS 84 to MSL (Mean Sea Level, before the accuracy assessment and modelling. Results indicate that the accuracy of the SRTM DEM with the RMSE of 13.31, 14.51, and 18.19 m in 30, 150 and 330 m resolution respectively, is better than the ASTER and the CARTOSAT DEMs. When the grid space of the DEMs increases, the accuracy of the elevation and calculated soil erosion decreases. This study presents a potential uncertainty introduced by open source high resolution DEMs in the accuracy of the soil erosion assessment models. The research provides an analysis of errors in selecting DEMs using the original and increased grid space for soil erosion modelling.

  2. Impacts of DEM uncertainties on critical source areas identification for non-point source pollution control based on SWAT model

    Science.gov (United States)

    Xu, Fei; Dong, Guangxia; Wang, Qingrui; Liu, Lumeng; Yu, Wenwen; Men, Cong; Liu, Ruimin

    2016-09-01

    The impacts of different digital elevation model (DEM) resolutions, sources and resampling techniques on nutrient simulations using the Soil and Water Assessment Tool (SWAT) model have not been well studied. The objective of this study was to evaluate the sensitivities of DEM resolutions (from 30 m to 1000 m), sources (ASTER GDEM2, SRTM and Topo-DEM) and resampling techniques (nearest neighbor, bilinear interpolation, cubic convolution and majority) to identification of non-point source (NPS) critical source area (CSA) based on nutrient loads using the SWAT model. The Xiangxi River, one of the main tributaries of Three Gorges Reservoir in China, was selected as the study area. The following findings were obtained: (1) Elevation and slope extracted from the DEMs were more sensitive to DEM resolution changes. Compared with the results of the 30 m DEM, 1000 m DEM underestimated the elevation and slope by 104 m and 41.57°, respectively; (2) The numbers of subwatersheds and hydrologic response units (HRUs) were considerably influenced by DEM resolutions, but the total nitrogen (TN) and total phosphorus (TP) loads of each subwatershed showed higher correlations with different DEM sources; (3) DEM resolutions and sources had larger effects on CSAs identifications, while TN and TP CSAs showed different response to DEM uncertainties. TN CSAs were more sensitive to resolution changes, exhibiting six distribution patterns at all DEM resolutions. TP CSAs were sensitive to source and resampling technique changes, exhibiting three distribution patterns for DEM sources and two distribution patterns for DEM resampling techniques. DEM resolutions and sources are the two most sensitive SWAT model DEM parameters that must be considered when nutrient CSAs are identified.

  3. ElevationDEM_DEM1m

    Data.gov (United States)

    Vermont Center for Geographic Information — A "Bare Earth" Digital Elevation Model (DEM) data represents the bare ground surface without any objects like plants and buildings on it, was derived from the best...

  4. Digital elevation modelling using ASTER stereo imagery.

    Science.gov (United States)

    Forkuo, Eric Kwabena

    2010-04-01

    Digital elevation model (DEM) in recent times has become an integral part of national spatial data infrastructure of many countries world-wide due to its invaluable importance. Although DEMs are mostly generated from contours maps, stereo aerial photographs and air-borne and terrestrial laser scanning, the stereo interpretation and auto-correlation from satellite image stereo-pairs such as with SPOT, IRS, and relatively new ASTER imagery is also an effective means of producing DEM data. In this study, terrain elevation data were derived by applying photogrammetric process to ASTER stereo imagery. Also, the quality ofDEMs produced from ASTER stereo imagery was analysed by comparing it with DEM produced from topographic map at a scale of 1:50,000. While analyzing the vertical accuracy of the generated ASTER DEM, fifty ground control points were extracted from the map and overlaid on the DEM. Results indicate that a root-mean-square error in elevation of +/- 14 m was achieved with ASTER stereo image data of good quality. The horizontal accuracy obtained from the ground control points was 14.77, which is within the acceptable range of +/- 7m to +/- 25 m. The generated (15 m) DEM was compared with a 20m, 25m, and a 30 m pixel DEM to the original map. In all, the results proved that, the 15 m DEM conform to the original map DEM than the others. Overall, this analysis proves that, the generated digital terrain model, DEM is acceptable.

  5. Evaluation of Multiresolution Digital Elevation Model (DEM from Real-Time Kinematic GPS and Ancillary Data for Reservoir Storage Capacity Estimation

    Directory of Open Access Journals (Sweden)

    Yashon O. Ouma

    2016-04-01

    Full Text Available This study presents the estimation of reservoir storage capacity using multiresolution Real-Time Kinematic Global Positioning System (RTK-GPS DEM, in comparison with ASTER and contour-derived DEM. Through RMSE comparisons of the elevation point uncertainty and error analysis, the results shows that the RTK-GPS DEM gave the best results for the reservoir capacity-area power curve estimation, defined by a convex slope with an exponential deterministic relationship given by V = 0.09 × A 1.435 . The results further show the existence an empirical relationship between the reservoir volume certainty and the GPS point density d i as V e = c × d i ρ . This relationship is dependent on the reservoir terrain, slope and surface area. Validation of the results with in situ data showed the differences between the simulated and observed storage volumes was less than +10%, and using the Nash-Sutcliffe coefficient of efficiency on the storage volumes, an average efficiency of +0.7 on the monthly observed and simulated reservoir storage volume was observed.

  6. DEM resolution effects on shallow landslide hazard and soil redistribution modelling

    NARCIS (Netherlands)

    Claessens, L.F.G.; Heuvelink, G.B.M.; Schoorl, J.M.; Veldkamp, A.

    2005-01-01

    In this paper we analyse the effects of digital elevation model (DEM) resolution on the results of a model that simulates spatially explicit relative shallow landslide hazard and soil redistribution patterns and quantities. We analyse distributions of slope, specific catchment area and relative haza

  7. NTHMP DEM Project

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) to support individual coastal States as part of the...

  8. kawaihae_dem.grd

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NGDC builds and distributes high-resolution, coastal digital elevation models (DEMs) that integrate ocean bathymetry and land topography to support NOAA's mission to...

  9. NOAA VDatum DEM Project

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions in the Gulf of Mexico....

  10. ElevationDEM_DEMHF2M2012

    Data.gov (United States)

    Vermont Center for Geographic Information — This metadata applies to the following collection area(s): Bennington County 2012 2.0m and Digital Elevation Model (DEM) datasets of various "hydro-treatments": DEM,...

  11. Digital terrain modeling with the Chebyshev polynomials

    CERN Document Server

    Florinsky, I V

    2015-01-01

    Mathematical problems of digital terrain analysis include interpolation of digital elevation models (DEMs), DEM generalization and denoising, and computation of morphometric variables by calculation of partial derivatives of elevation. Traditionally, these procedures are based on numerical treatments of two-variable discrete functions of elevation. We developed a spectral analytical method and algorithm based on high-order orthogonal expansions using the Chebyshev polynomials of the first kind with the subsequent Fejer summation. The method and algorithm are intended for DEM analytical treatment, such as, DEM global approximation, denoising, and generalization as well as computation of morphometric variables by analytical calculation of partial derivatives. To test the method and algorithm, we used a DEM of the Northern Andes including 230,880 points (the elevation matrix 480 $\\times$ 481). DEMs were reconstructed with 480, 240, 120, 60, and 30 expansion coefficients. The first and second partial derivatives ...

  12. Hanalei, Hawaii Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These integrated...

  13. Savannah, Georgia Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These integrated...

  14. Unalaska, Alaska Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) to support individual coastal States as part of the...

  15. Hoonah, Alaska Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) to support individual coastal States as part of the...

  16. Port Orford, Oregon Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These integrated...

  17. Cordova, Alaska Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) to support individual coastal States as part of the...

  18. Fort Bragg, California Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These integrated...

  19. Garibaldi, Oregon Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These integrated...

  20. Crescent City, California Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These integrated...

  1. Juneau, Alaska Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) to support individual coastal States as part of the...

  2. Taholah, Washington Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These integrated...

  3. San Diego, California Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These integrated...

  4. Chenega, Alaska Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) to support individual coastal States as part of the...

  5. Akutan, Alaska Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) to support individual coastal States as part of the...

  6. Biloxi, Mississippi Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These integrated...

  7. Eureka, California Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These integrated...

  8. Mayaguez, Puerto Rico Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These integrated...

  9. Southeast Alaska Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) to support individual coastal States as part of the...

  10. Atka, Alaska Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These integrated...

  11. Ponce, Puerto Rico Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These integrated...

  12. Northern Gulf Coast Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions in the Gulf of Mexico....

  13. Daytona Beach, Florida Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These integrated...

  14. Ocean City, Maryland Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These integrated...

  15. Bar Harbor, Maine Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These integrated...

  16. Oahu, Hawaii Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These integrated...

  17. Panama City, Florida Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These integrated...

  18. New Orleans, Louisiana Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions in the Gulf of Mexico....

  19. Mobile, Alabama Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions in the Gulf of Mexico....

  20. Corpus Christi, Texas Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These integrated...

  1. Nantucket, Massachusetts Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These integrated...

  2. Fajardo, Puerto Rico Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These integrated...

  3. Monterey, California Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These integrated...

  4. Santa Barbara, California Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These integrated...

  5. Fort Bragg, California Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These integrated...

  6. Port Townsend, Washington Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These integrated...

  7. Key West, Florida Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These integrated...

  8. Dutch Harbor, Alaska Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These integrated...

  9. Portland, Maine Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These integrated...

  10. Nikolski, Alaska Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These integrated...

  11. Central Oregon Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These integrated...

  12. Keauhou, Hawaii Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These integrated...

  13. Kachemak Bay, Alaska Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These integrated...

  14. Puerto Rico Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These integrated...

  15. Adak, Alaska Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These integrated...

  16. Chignik, Alaska Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These integrated...

  17. Arena Cove, California Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These integrated...

  18. Craig, Alaska Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These integrated...

  19. Arecibo, Puerto Rico Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These integrated...

  20. Virginia Beach, Virginia Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These integrated...

  1. Montauk, New York Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These integrated...

  2. Shemya, Alaska Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These integrated...

  3. King Cove, Alaska Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These integrated...

  4. Lahaina, Hawaii Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These integrated...

  5. Palm Beach, Florida Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These integrated...

  6. Eureka, California Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These integrated...

  7. Kawaihae, Hawaii Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These integrated...

  8. Mayaguez, Puerto Rico Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These integrated...

  9. Hilo, Hawaii Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These integrated...

  10. Cordova, Alaska Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These integrated...

  11. Panama City, Florida Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions in the Gulf of Mexico....

  12. Elfin Cove Alaska Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) to support individual coastal States as part of the...

  13. Mariana Trench Bathymetric Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) created a bathymetric digital elevation model (DEM) for the Mariana Trench and adjacent seafloor in the Western...

  14. Central California Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These integrated...

  15. Chignik, Alaska Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These integrated...

  16. Midway Atoll Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These integrated...

  17. Monterey, California Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These integrated...

  18. Sand Point, Alaska Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These integrated...

  19. Guayama, Puerto Rico Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These integrated...

  20. Galveston, Texas Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These integrated...

  1. Whittier, Alaska Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) to support individual coastal States as part of the...

  2. La Push, Washington Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These integrated...

  3. Elfin Cove Alaska Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) to support individual coastal States as part of the...

  4. Yakutat, Alaska Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) to support individual coastal States as part of the...

  5. Akutan, Alaska Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) to support individual coastal States as part of the...

  6. Wake Island Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These integrated...

  7. Tatitlek, Alaska Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) to support individual coastal States as part of the...

  8. Santa Monica, California Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These integrated...

  9. Midway Atoll Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These integrated...

  10. Sitka, Alaska Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These integrated...

  11. An advanced distributed automated extraction of drainage network model on high-resolution DEM

    Science.gov (United States)

    Mao, Y.; Ye, A.; Xu, J.; Ma, F.; Deng, X.; Miao, C.; Gong, W.; Di, Z.

    2014-07-01

    A high-resolution and high-accuracy drainage network map is a prerequisite for simulating the water cycle in land surface hydrological models. The objective of this study was to develop a new automated extraction of drainage network model, which can get high-precision continuous drainage network on high-resolution DEM (Digital Elevation Model). The high-resolution DEM need too much computer resources to extract drainage network. The conventional GIS method often can not complete to calculate on high-resolution DEM of big basins, because the number of grids is too large. In order to decrease the computation time, an advanced distributed automated extraction of drainage network model (Adam) was proposed in the study. The Adam model has two features: (1) searching upward from outlet of basin instead of sink filling, (2) dividing sub-basins on low-resolution DEM, and then extracting drainage network on sub-basins of high-resolution DEM. The case study used elevation data of the Shuttle Radar Topography Mission (SRTM) at 3 arc-second resolution in Zhujiang River basin, China. The results show Adam model can dramatically reduce the computation time. The extracting drainage network was continuous and more accurate than HydroSHEDS (Hydrological data and maps based on Shuttle Elevation Derivatives at multiple Scales).

  12. Integration of 2-D hydraulic model and high-resolution lidar-derived DEM for floodplain flow modeling

    Science.gov (United States)

    Shen, D.; Wang, J.; Cheng, X.; Rui, Y.; Ye, S.

    2015-08-01

    The rapid progress of lidar technology has made the acquirement and application of high-resolution digital elevation model (DEM) data increasingly popular, especially in regards to the study of floodplain flow. However, high-resolution DEM data pose several disadvantages for floodplain modeling studies; e.g., the data sets contain many redundant interpolation points, large numbers of calculations are required to work with data, and the data do not match the size of the computational mesh. Two-dimensional (2-D) hydraulic modeling, which is a popular method for analyzing floodplain flow, offers highly precise elevation parameterization for computational mesh while ignoring much of the micro-topographic information of the DEM data itself. We offer a flood simulation method that integrates 2-D hydraulic model results and high-resolution DEM data, thus enabling the calculation of flood water levels in DEM grid cells through local inverse distance-weighted interpolation. To get rid of the false inundation areas during interpolation, it employs the run-length encoding method to mark the inundated DEM grid cells and determine the real inundation areas through the run-length boundary tracing technique, which solves the complicated problem of connectivity between DEM grid cells. We constructed a 2-D hydraulic model for the Gongshuangcha detention basin, which is a flood storage area of Dongting Lake in China, by using our integrated method to simulate the floodplain flow. The results demonstrate that this method can solve DEM associated problems efficiently and simulate flooding processes with greater accuracy than simulations only with DEM.

  13. Automated Generation of Digital Terrain Model using Point Clouds of Digital Surface Model in Forest Area

    Directory of Open Access Journals (Sweden)

    Yoshikazu Kamiya

    2011-04-01

    Full Text Available At present, most of the digital data acquisition methods generate Digital Surface Model (DSM and not a Digital Elevation Model (DEM. Conversion from DSM to DEM still has some drawbacks, especially the removing of off terrain point clouds and subsequently the generation of DEM within these spaces even though the methods are automated. In this paper it was intended to overcome this issue by attempting to project off terrain point clouds to the terrain in forest areas using Artificial Neural Networks (ANN instead of removing them and then filling gaps by interpolation. Five sites were tested and accuracies assessed. They all give almost the same results. In conclusion, the ANN has ability to obtain the DEM by projecting the DSM point clouds and greater accuracies of DEMs were obtained. If the size of the hollow areas resulting from the removal of DSM point clouds are larger the accuracies are reduced.

  14. Linear and nonlinear approach for DEM smoothening

    Directory of Open Access Journals (Sweden)

    2006-01-01

    Full Text Available One of the biggest problems faced while analyzing digital elevation models (DEMs, particularly DEMs that are produced using photogrammetry, is to avoid pits and peaks in DEMs. Peaks and pits, which are errors, are generated during the surface generation process. DEM smoothening is an important preprocessing step meant for removing these errors. This paper discusses two linear DEM smoothening methods, Gaussian blurring and mean smoothening, and two nonlinear DEM smoothening methods, morphological smoothening and morphological smoothening by reconstruction. The four methods are implemented on a photogrammetrically generated DEM. The drainage network of the resultant DEM is obtained using skeletonization by morphological thinning, and the fractal dimension of the extracted network is computed using the box dimension method. The fractal dimensions are then compared to study the effects of the four smoothening methods. The advantages of nonlinear DEM smoothening over linear DEM smoothening are discussed. This study is useful in landscape descriptions.

  15. NOAA Office for Coastal Management Coastal Inundation Digital Elevation Model: Charleston WFO (Georgia)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This digital elevation model (DEM) is a part of a series of DEMs produced for the National Oceanic and Atmospheric Administration Office for Coastal Management's Sea...

  16. NOAA Office for Coastal Management Coastal Inundation Digital Elevation Model: Brownsville, Texas Weather Forecast Office (WFO)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This digital elevation model (DEM) is a part of a series of DEMs produced for the National Oceanic and Atmospheric Administration Office for Coastal Management's Sea...

  17. NOAA Office for Coastal Management Coastal Inundation Digital Elevation Model: San Diego (CA) WFO

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This digital elevation model (DEM) is a part of a series of DEMs produced for the National Oceanic and Atmospheric Administration Office for Coastal Management's...

  18. NOAA Office for Coastal Management Coastal Inundation Digital Elevation Model: Seattle (WA) WFO - Grays Harbor County

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This digital elevation model (DEM) is a part of a series of DEMs produced for the National Oceanic and Atmospheric Administration Office for Coastal Management's Sea...

  19. NOAA Office for Coastal Management Coastal Inundation Digital Elevation Model: Corpus Christi Weather Forecast Office (WFO)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This digital elevation model (DEM) is a part of a series of DEMs produced for the National Oceanic and Atmospheric Administration Office for Coastal Management's Sea...

  20. NOAA Office for Coastal Management Coastal Inundation Digital Elevation Model: Portland WFO (WA)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This digital elevation model (DEM) is a part of a series of DEMs produced for the National Oceanic and Atmospheric Administration Office for Coastal Management's Sea...

  1. NOAA Office for Coastal Management Coastal Inundation Digital Elevation Model: Jacksonville WFO (Georgia)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This digital elevation model (DEM) is a part of a series of DEMs produced for the National Oceanic and Atmospheric Administration Office for Coastal Management's Sea...

  2. NOAA Office for Coastal Management Coastal Inundation Digital Elevation Model: Eureka (CA) WFO - Mendocino County

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This digital elevation model (DEM) is a part of a series of DEMs produced for the National Oceanic and Atmospheric Administration Office for Coastal Management's...

  3. NOAA Coastal Services Center Coastal Inundation Digital Elevation Model: Philadelphia WFO - Pennsylvania

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This digital elevation model (DEM) is a part of a series of DEMs produced for the National Oceanic and Atmospheric Administration Coastal Services Center's Sea Level...

  4. NOAA Office for Coastal Management Coastal Inundation Digital Elevation Model: Lake Charles, Texas WFO

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This digital elevation model (DEM) is a part of a series of DEMs produced for the National Oceanic and Atmospheric Administration Office for Coastal Management's...

  5. 基于数字高程模型DEM的溃坝生命损失风险分析%The risk analysis of dam failure caused loss of life based on digital elevation model(DEM)

    Institute of Scientific and Technical Information of China (English)

    董建良

    2014-01-01

    Digital Elevation Model(DEM) as a basis for spatial data in many fields have a wide range of appli-cations.In this paper,under lack of data of Youluokou dam downstream,on actual terrain situations,the com-putational domain downstream with topographic data and ArcGIS software platform to get the required informa-tion such as ground elevation,based on the application software and River2D BREACH hydrodynamic model simulations Reservoir dam downstream flood evolution ,estimated the loss of life downstream dam reservoir us-ing the Graham method,when the preliminary draw Youluokou dam suffered 5000 year return period flood,the auxiliary dam outburst resulted in loss of life and damage to the occurrence of piping risk is intolerable.It can also make reservoir management decision-makers of the consequences of dam failure which cause flooding to be aware and do the daily flood control scheduling and preparation of contingency plans ,the maximum level of protection of the safety of the people downstream of the reservoir ,to prevent the occurrence of disasters.%数字高程模型DEM作为基础空间数据,在众多领域有着广泛的应用。本文在油罗口水库大坝缺乏下游实测地形数据资料的情形下,以地形图数据和ArcGIS软件平台获取的计算域下游所需地面高程等信息为基础,应用BREACH软件及River2D水动力学模型模拟了水库下游溃坝洪水演进,采用Graham法估算了水库下游溃坝生命损失,初步得出油罗口水库大坝遭受重现期为5000a一遇洪水时,副坝发生管涌破坏溃决导致的生命损失风险是不可容忍的。由此也可以让水库管理决策人员对水库溃坝洪水可能造成的后果做到心中有数,做好日常的防洪调度及应急预案编制工作,最大程度保障水库下游人民群众生命安全,防止灾害的发生。

  6. ElevationDEM_DEM0p7M2014

    Data.gov (United States)

    Vermont Center for Geographic Information — This metadata applies to the following collection area(s): Rutland/GI Counties 2013 0.7m and Digital Elevation Model (DEM) datasets of various "hydro-treatments":...

  7. ElevationDEM_DEM1p4m

    Data.gov (United States)

    Vermont Center for Geographic Information — "Bare Earth" Digital Elevation Model (DEM) data, i.e., a bare ground surface without any objects like plants and buildings on it, was derived from the best available...

  8. Application of digital elevation model in delineating drainage networks

    Institute of Scientific and Technical Information of China (English)

    SUN Yan-ling; XIE De-ti; LIU Hong-bin; WEI Chao-fu

    2005-01-01

    A practical method to extract drainage network from DEM (digital elevation model) is introduced. DEM pretreatment includes depression and flat areas treatment. The flow direction of each grid cell in DEM is calculated according to the 8-direction pour point model, and then the flow accumulation grid from the flow direction grid. With the flow accumulation grid, streams are defined according to the given threshold value of flow accumulation. Taking Gufo River watershed as an example, the extraction of drainage network was done from DEM. The results are basically consistent with the digitized drainage network from the relief maps.

  9. NOAA Tsunami Inundation DEM Project

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These integrated...

  10. Stochastic Downscaling of Digital Elevation Models

    Science.gov (United States)

    Rasera, Luiz Gustavo; Mariethoz, Gregoire; Lane, Stuart N.

    2016-04-01

    High-resolution digital elevation models (HR-DEMs) are extremely important for the understanding of small-scale geomorphic processes in Alpine environments. In the last decade, remote sensing techniques have experienced a major technological evolution, enabling fast and precise acquisition of HR-DEMs. However, sensors designed to measure elevation data still feature different spatial resolution and coverage capabilities. Terrestrial altimetry allows the acquisition of HR-DEMs with centimeter to millimeter-level precision, but only within small spatial extents and often with dead ground problems. Conversely, satellite radiometric sensors are able to gather elevation measurements over large areas but with limited spatial resolution. In the present study, we propose an algorithm to downscale low-resolution satellite-based DEMs using topographic patterns extracted from HR-DEMs derived for example from ground-based and airborne altimetry. The method consists of a multiple-point geostatistical simulation technique able to generate high-resolution elevation data from low-resolution digital elevation models (LR-DEMs). Initially, two collocated DEMs with different spatial resolutions serve as an input to construct a database of topographic patterns, which is also used to infer the statistical relationships between the two scales. High-resolution elevation patterns are then retrieved from the database to downscale a LR-DEM through a stochastic simulation process. The output of the simulations are multiple equally probable DEMs with higher spatial resolution that also depict the large-scale geomorphic structures present in the original LR-DEM. As these multiple models reflect the uncertainty related to the downscaling, they can be employed to quantify the uncertainty of phenomena that are dependent on fine topography, such as catchment hydrological processes. The proposed methodology is illustrated for a case study in the Swiss Alps. A swissALTI3D HR-DEM (with 5 m resolution

  11. Accuracy Assessment of Digital Elevation Models Using GPS

    Science.gov (United States)

    Farah, Ashraf; Talaat, Ashraf; Farrag, Farrag A.

    2008-01-01

    A Digital Elevation Model (DEM) is a digital representation of ground surface topography or terrain with different accuracies for different application fields. DEM have been applied to a wide range of civil engineering and military planning tasks. DEM is obtained using a number of techniques such as photogrammetry, digitizing, laser scanning, radar interferometry, classical survey and GPS techniques. This paper presents an assessment study of DEM using GPS (Stop&Go) and kinematic techniques comparing with classical survey. The results show that a DEM generated from (Stop&Go) GPS technique has the highest accuracy with a RMS error of 9.70 cm. The RMS error of DEM derived by kinematic GPS is 12.00 cm.

  12. Application Research of DEMs-STP Mixture Model in 3D Stratum Modeling%DEMs-STP混合模型在三维地层建模中的应用研究

    Institute of Scientific and Technical Information of China (English)

    衣昕; 贾瑞生

    2012-01-01

    本文提出了一个多层DEM(Digital Elevation Model,DEM)及似三棱柱(Similar Tri-Prism,STP)混合的三维地层模型DEMs-STP,该模型使用多层DEM构建地表及地质分层界面,使用STP构造层间地质体,改进了STP的切割处理,并利用IDL作为开发工具,实现了三维可视化.实验结果表明,DEMs-STP混合数据模型具有同时表示空间对象表面和内部结构的能力,适合地质勘探领域的三维建模.

  13. ElevationDEM_DEMHF0p7M2013

    Data.gov (United States)

    Vermont Center for Geographic Information — This metadata applies to the following collection area: Rutland/GI Counties 2013 0.7m and Digital Elevation Model (DEM) datasets of various "hydro-treatments": DEM,...

  14. ElevationDEM_DEMHF1p6M2010

    Data.gov (United States)

    Vermont Center for Geographic Information — This metadata applies to the following collection area(s): Missisquoi Upper 2010 1.6m and Digital Elevation Model (DEM) datasets of various "hydro-treatments": DEM,...

  15. ElevationDEM_DEMHF1p6M2012

    Data.gov (United States)

    Vermont Center for Geographic Information — This metadata applies to the following collection area(s): Addison County 2012 1.6m and Digital Elevation Model (DEM) datasets of various "hydro-treatments": DEM,...

  16. ElevationDEM_DEMHF1p6M2008

    Data.gov (United States)

    Vermont Center for Geographic Information — This metadata applies to the following collection area(s): Missisquoi Lower 2008 1.6m and Digital Elevation Model (DEM) datasets of various "hydro-treatments": DEM,...

  17. Comparative study and error analysis of digital elevation model interpolations

    Institute of Scientific and Technical Information of China (English)

    CHEN Ji-long; WU Wei; LIU Hong-bin

    2008-01-01

    Researchers in P.R.China commonly create triangulate irregular networks (TINs) from contours and then convert TINs into digital elevation models (DEMs). However, the DEM produced by this method can not precisely describe and simulate key hydrological features such as rivers and drainage borders. Taking a hilly region in southwestern China as a research area and using ArcGISTM software, we analyzed the errors of different interpolations to obtain distributions of the errors and precisions of different algorithms and to provide references for DEM productions. The results show that different interpolation errors satisfy normal distributions, and large error exists near the structure line of the terrain. Furthermore, the results also show that the precision of a DEM interpolated with the Australian National University digital elevation model (ANUDEM) is higher than that interpolated with TIN. The DEM interpolated with TIN is acceptable for generating DEMs in the hilly region of southwestern China.

  18. Defining optimal DEM resolutions and point densities for modelling hydrologically sensitive areas in agricultural catchments dominated by microtopography

    Science.gov (United States)

    Thomas, I. A.; Jordan, P.; Shine, O.; Fenton, O.; Mellander, P.-E.; Dunlop, P.; Murphy, P. N. C.

    2017-02-01

    Defining critical source areas (CSAs) of diffuse pollution in agricultural catchments depends upon the accurate delineation of hydrologically sensitive areas (HSAs) at highest risk of generating surface runoff pathways. In topographically complex landscapes, this delineation is constrained by digital elevation model (DEM) resolution and the influence of microtopographic features. To address this, optimal DEM resolutions and point densities for spatially modelling HSAs were investigated, for onward use in delineating CSAs. The surface runoff framework was modelled using the Topographic Wetness Index (TWI) and maps were derived from 0.25 m LiDAR DEMs (40 bare-earth points m-2), resampled 1 m and 2 m LiDAR DEMs, and a radar generated 5 m DEM. Furthermore, the resampled 1 m and 2 m LiDAR DEMs were regenerated with reduced bare-earth point densities (5, 2, 1, 0.5, 0.25 and 0.125 points m-2) to analyse effects on elevation accuracy and important microtopographic features. Results were compared to surface runoff field observations in two 10 km2 agricultural catchments for evaluation. Analysis showed that the accuracy of modelled HSAs using different thresholds (5%, 10% and 15% of the catchment area with the highest TWI values) was much higher using LiDAR data compared to the 5 m DEM (70-100% and 10-84%, respectively). This was attributed to the DEM capturing microtopographic features such as hedgerow banks, roads, tramlines and open agricultural drains, which acted as topographic barriers or channels that diverted runoff away from the hillslope scale flow direction. Furthermore, the identification of 'breakthrough' and 'delivery' points along runoff pathways where runoff and mobilised pollutants could be potentially transported between fields or delivered to the drainage channel network was much higher using LiDAR data compared to the 5 m DEM (75-100% and 0-100%, respectively). Optimal DEM resolutions of 1-2 m were identified for modelling HSAs, which balanced the need

  19. A coupled DEM-CFD method for impulse wave modelling

    Science.gov (United States)

    Zhao, Tao; Utili, Stefano; Crosta, GiovanBattista

    2015-04-01

    Rockslides can be characterized by a rapid evolution, up to a possible transition into a rock avalanche, which can be associated with an almost instantaneous collapse and spreading. Different examples are available in the literature, but the Vajont rockslide is quite unique for its morphological and geological characteristics, as well as for the type of evolution and the availability of long term monitoring data. This study advocates the use of a DEM-CFD framework for the modelling of the generation of hydrodynamic waves due to the impact of a rapid moving rockslide or rock-debris avalanche. 3D DEM analyses in plane strain by a coupled DEM-CFD code were performed to simulate the rockslide from its onset to the impact with still water and the subsequent wave generation (Zhao et al., 2014). The physical response predicted is in broad agreement with the available observations. The numerical results are compared to those published in the literature and especially to Crosta et al. (2014). According to our results, the maximum computed run up amounts to ca. 120 m and 170 m for the eastern and western lobe cross sections, respectively. These values are reasonably similar to those recorded during the event (i.e. ca. 130 m and 190 m respectively). In these simulations, the slope mass is considered permeable, such that the toe region of the slope can move submerged in the reservoir and the impulse water wave can also flow back into the slope mass. However, the upscaling of the grains size in the DEM model leads to an unrealistically high hydraulic conductivity of the model, such that only a small amount of water is splashed onto the northern bank of the Vajont valley. The use of high fluid viscosity and coarse grain model has shown the possibility to model more realistically both the slope and wave motions. However, more detailed slope and fluid properties, and the need for computational efficiency should be considered in future research work. This aspect has also been

  20. San Juan Islands, Washington Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These integrated...

  1. Minnesota Digital Elevation Model - Tiled 93 Meter Resolution

    Data.gov (United States)

    Minnesota Department of Natural Resources — Digital Elevation Model (DEM) at a resolution of 93 meters. Original data resolution was 3 arc seconds which corresponds (approximately) to a matrix of points at a...

  2. San Francisco Bay, California Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These integrated...

  3. San Juan, Puerto Rico Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These integrated...

  4. Chignik, Alaska 1 arc-second Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) to support individual coastal States as part of the...

  5. Sand Point, Alaska MHW Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These integrated...

  6. Atlantic City, New Jersey Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These integrated...

  7. U.S. Virgin Islands Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These integrated...

  8. Myrtle Beach, South Carolina Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These integrated...

  9. South Padre Island, Texas Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These integrated...

  10. Morehead City, North Carolina Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These integrated...

  11. South Padre Island, Texas Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These integrated...

  12. Cape Hatteras, North Carolina Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These integrated...

  13. Pago Pago, American Samoa Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These integrated...

  14. Port San Luis, California Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These integrated...

  15. Morehead City, North Carolina Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These integrated...

  16. Prince William Sound, Alaska Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) to support individual coastal States as part of the...

  17. Port San Luis, California Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These integrated...

  18. Prince William Sound, Alaska Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) to support individual coastal States as part of the...

  19. ArcticDEM; A Publically Available, High Resolution Elevation Model of the Arctic

    Science.gov (United States)

    Morin, Paul; Porter, Claire; Cloutier, Michael; Howat, Ian; Noh, Myoung-Jong; Willis, Michael; Bates, Brian; Willamson, Cathleen; Peterman, Kennith

    2016-04-01

    A Digital Elevation Model (DEM) of the Arctic is needed for a large number of reasons, including: measuring and understanding rapid, ongoing changes to the Arctic landscape resulting from climate change and human use and mitigation and adaptation planning for Arctic communities. The topography of the Arctic is more poorly mapped than most other regions of Earth due to logistical costs and the limits of satellite missions with low-latitude inclinations. A convergence of civilian, high-quality sub-meter stereo imagery; petascale computing and open source photogrammetry software has made it possible to produce a complete, very high resolution (2 to 8-meter posting), elevation model of the Arctic. A partnership between the US National Geospatial-intelligence Agency and a team led by the US National Science Foundation funded Polar Geospatial Center is using stereo imagery from DigitalGlobe's Worldview-1, 2 and 3 satellites and the Ohio State University's Surface Extraction with TIN-based Search-space Minimization (SETSM) software running on the University of Illinois's Blue Water supercomputer to address this challenge. The final product will be a seemless, 2-m posting digital surface model mosaic of the entire Arctic above 60 North including all of Alaska, Greenland and Kamchatka. We will also make available the more than 300,000 individual time-stamped DSM strip pairs that were used to assemble the mosaic. The Arctic DEM will have a vertical precision of better than 0.5m and can be used to examine changes in land surfaces such as those caused by permafrost degradation or the evolution of arctic rivers and floodplains. The data set can also be used to highlight changing geomorphology due to Earth surface mass transport processes occurring in active volcanic and glacial environments. When complete the ArcticDEM will catapult the Arctic from the worst to among the best mapped regions on Earth.

  20. NOAA Office for Coastal Management Coastal Inundation Digital Elevation Model: Mississippi WFO - Harrison, Hancock, and Jackson Counties

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This digital elevation model (DEM) is a part of a series of DEMs produced for the National Oceanic and Atmospheric Administration Office for Coastal Management's Sea...

  1. NOAA Office for Coastal Management Coastal Inundation Digital Elevation Model: Portland (OR) WFO - Tillamook, Lincoln, and Lane Counties

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This digital elevation model (DEM) is a part of a series of DEMs produced for the National Oceanic and Atmospheric Administration Office for Coastal Management's Sea...

  2. NOAA Office for Coastal Management Coastal Inundation Digital Elevation Model: Tampa (FL) WFO - Citrus, Hernando, Pasco, Pinellas, and Hillsborough Counties

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This digital elevation model (DEM) is a part of a series of DEMs produced for the National Oceanic and Atmospheric Administration Office for Coastal Management's Sea...

  3. NOAA Office for Coastal Management Coastal Inundation Digital Elevation Model: Jacksonville (FL) WFO - Duval, Clay, and Nassau Counties

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This digital elevation model (DEM) is a part of a series of DEMs produced for the National Oceanic and Atmospheric Administration Office for Coastal Management's Sea...

  4. NOAA Office for Coastal Management Coastal Inundation Digital Elevation Model: Eureka (CA) WFO - Humboldt and Del Norte Counties

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This digital elevation model (DEM) is a part of a series of DEMs produced for the National Oceanic and Atmospheric Administration Office for Coastal Management's Sea...

  5. NOAA Office for Coastal Management Coastal Inundation Digital Elevation Model: Houston/Galveston, Texas Weather Forecast Office (WFO)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This digital elevation model (DEM) is a part of a series of DEMs produced for the National Oceanic and Atmospheric Administration Office for Coastal Management's Sea...

  6. NOAA Office for Coastal Management Coastal Inundation Digital Elevation Model: Portland (OR) WFO - Clatsop, Columbia, and Multnomah Counties

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This digital elevation model (DEM) is a part of a series of DEMs produced for the National Oceanic and Atmospheric Administration Office for Coastal Management's Sea...

  7. NOAA Office for Coastal Management Coastal Inundation Digital Elevation Model: Tampa (FL) WFO - Manatee, Sarasota, Charlotte, and Lee Counties

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This digital elevation model (DEM) is a part of a series of DEMs produced for the National Oceanic and Atmospheric Administration Office for Coastal Management's Sea...

  8. NOAA Office for Coastal Management Coastal Inundation Digital Elevation Model: Jacksonville (FL) WFO - St. Johns, Flagler and Putnam Counties

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This digital elevation model (DEM) is a part of a series of DEMs produced for the National Oceanic and Atmospheric Administration Office for Coastal Management's Sea...

  9. NOAA Office for Coastal Management Coastal Inundation Digital Elevation Model: Miami (FL) WFO - Collier and Monroe (Mainland) Counties

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This digital elevation model (DEM) is a part of a series of DEMs produced for the National Oceanic and Atmospheric Administration Office for Coastal Management's Sea...

  10. Hydrological modeling using high resolution dem to level control on highways

    Science.gov (United States)

    Akbulut, Zeynep; Cömert, Çetin

    2016-04-01

    Floods are natural disasters that must be managed, controlled and taken precautions before it happens considering the damage they inflicted to environment and human lives. As to highways, the main vein of urban life flow, must be taken into consideration as a different entity that affected by excessive rainfalls and floods. Due to inadequate drainage that allow rainfall to form water ponds on highways cause vehicles to lose control and that lead vehicles to have traffic accidents. To reduce the traffic accidents caused by ponding waters on highways we need to know area of inundation and water depths. In this context we used FLO-2D Basic Model (2009) to hydrological modeling of Black Sea Coastal Highway with meteorological and hydrological data using a Digital Elevation Model (DEM). In this study, ponding areas on highways determined by simulating the rainfall with a high resolution DEM that can represent the actual road surface correctly. With this information, General Directorate of Highways (GDH) in Turkey can adjust the cross-sectional and longitudinal slope or build better and bigger drainage structures where water accumulated to prevent ponding. With the results obtained from Hydrological Model, GDH can rapidly control highways conformity to regulations before highways come into service. Also these ponding areas acquired by reveals where to prioritize in flood risk managements. Key Words: Area of Inundation, Digital Elevation Model, FLO-2D, Hydrological Modeling, Highway, Rainfall-Runoff Simulation, Water Depth.

  11. DEM modeling of flexible structures against granular material avalanches

    Science.gov (United States)

    Lambert, Stéphane; Albaba, Adel; Nicot, François; Chareyre, Bruno

    2016-04-01

    This article presents the numerical modeling of flexible structures intended to contain avalanches of granular and coarse material (e.g. rock slide, a debris slide). The numerical model is based on a discrete element method (YADE-Dem). The DEM modeling of both the flowing granular material and the flexible structure are detailed before presenting some results. The flowing material consists of a dry polydisperse granular material accounting for the non-sphericity of real materials. The flexible structure consists in a metallic net hanged on main cables, connected to the ground via anchors, on both sides of the channel, including dissipators. All these components were modeled as flexible beams or wires, with mechanical parameters defined from literature data. The simulation results are presented with the aim of investigating the variability of the structure response depending on different parameters related to the structure (inclination of the fence, with/without brakes, mesh size opening), but also to the channel (inclination). Results are then compared with existing recommendations in similar fields.

  12. Coupling photogrammetric data with DFN-DEM model for rock slope hazard assessment

    Science.gov (United States)

    Donze, Frederic; Scholtes, Luc; Bonilla-Sierra, Viviana; Elmouttie, Marc

    2013-04-01

    Structural and mechanical analyses of rock mass are key components for rock slope stability assessment. The complementary use of photogrammetric techniques [Poropat, 2001] and coupled DFN-DEM models [Harthong et al., 2012] provides a methodology that can be applied to complex 3D configurations. DFN-DEM formulation [Scholtès & Donzé, 2012a,b] has been chosen for modeling since it can explicitly take into account the fracture sets. Analyses conducted in 3D can produce very complex and unintuitive failure mechanisms. Therefore, a modeling strategy must be established in order to identify the key features which control the stability. For this purpose, a realistic case is presented to show the overall methodology from the photogrammetry acquisition to the mechanical modeling. By combining Sirovision and YADE Open DEM [Kozicki & Donzé, 2008, 2009], it can be shown that even for large camera to rock slope ranges (tested about one kilometer), the accuracy of the data are sufficient to assess the role of the structures on the stability of a jointed rock slope. In this case, on site stereo pairs of 2D images were taken to create 3D surface models. Then, digital identification of structural features on the unstable block zone was processed with Sirojoint software [Sirovision, 2010]. After acquiring the numerical topography, the 3D digitalized and meshed surface was imported into the YADE Open DEM platform to define the studied rock mass as a closed (manifold) volume to define the bounding volume for numerical modeling. The discontinuities were then imported as meshed planar elliptic surfaces into the model. The model was then submitted to gravity loading. During this step, high values of cohesion were assigned to the discontinuities in order to avoid failure or block displacements triggered by inertial effects. To assess the respective role of the pre-existing discontinuities in the block stability, different configurations have been tested as well as different degree of

  13. Registering Thematic Mapper imagery to digital elevation models

    Science.gov (United States)

    Frew, J.

    1984-01-01

    The problems encountered when attempting to register Landsat Thematic Mapper (TM) data to U.S. geological survey digital elevation models (DEMs) are examined. It is shown that TM and DEM data are not available in the same map projection, necessitating geometric transformation of one of the data type, that the TM data are not accurately located in their nominal projection, and that TM data have higher resolution than most DEM data, but oversampling the DEM data to TM resolution introduces systematic noise. Further work needed in this area is discussed.

  14. Vibration induced flow in hoppers: DEM 2D polygon model

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    A two-dimensional discrete element model (DEM) simulation of cohesive polygonal particles has been developed to assess the benefit of point source vibration to induce flow in wedge-shaped hoppers. The particle-particle interaction model used is based on a multi-contact principle.The first part of the study investigated particle discharge under gravity without vibration to determine the critical orifice size (Be) to just sustain flow as a function of particle shape. It is shown that polygonal-shaped particles need a larger orifice than circular particles. It is also shown that Be decreases as the number of particle vertices increases. Addition of circular particles promotes flow of polygons in a linear manner.The second part of the study showed that vibration could enhance flow, effectively reducing Be. The model demonstrated the importance of vibrator location (height), consistent with previous continuum model results, and vibration amplitude in enhancing flow.

  15. Modelling above Ground Biomass in Tanzanian Miombo Woodlands Using TanDEM-X WorldDEM and Field Data

    Directory of Open Access Journals (Sweden)

    Stefano Puliti

    2017-09-01

    Full Text Available The use of Interferometric Synthetic Aperture Radar (InSAR data has great potential for monitoring large scale forest above ground biomass (AGB in the tropics due to the increased ability to retrieve 3D information even under cloud cover. To date; results in tropical forests have been inconsistent and further knowledge on the accuracy of models linking AGB and InSAR height data is crucial for the development of large scale forest monitoring programs. This study provides an example of the use of TanDEM-X WorldDEM data to model AGB in Tanzanian woodlands. The primary objective was to assess the accuracy of a model linking AGB with InSAR height from WorldDEM after the subtraction of ground heights. The secondary objective was to assess the possibility of obtaining InSAR height for field plots when the terrain heights were derived from global navigation satellite systems (GNSS; i.e., as an alternative to using airborne laser scanning (ALS. The results revealed that the AGB model using InSAR height had a predictive accuracy of R M S E = 24.1 t·ha−1; or 38.8% of the mean AGB when terrain heights were derived from ALS. The results were similar when using terrain heights from GNSS. The accuracy of the predicted AGB was improved when compared to a previous study using TanDEM-X for a sub-area of the area of interest and was of similar magnitude to what was achieved in the same sub-area using ALS data. Overall; this study sheds new light on the opportunities that arise from the use of InSAR data for large scale AGB modelling in tropical woodlands.

  16. Sensitivity of a Floodplain Hydrodynamic Model to Satellite-Based DEM Scale and Accuracy: Case Study—The Atchafalaya Basin

    Directory of Open Access Journals (Sweden)

    Hahn Chul Jung

    2015-06-01

    Full Text Available The hydrodynamics of low-lying riverine floodplains and wetlands play a critical role in hydrology and ecosystem processes. Because small topographic features affect floodplain storage and flow velocity, a hydrodynamic model setup of these regions imposes more stringent requirements on the input Digital Elevation Model (DEM compared to upland regions with comparatively high slopes. This current study provides a systematic approach to evaluate the required relative vertical accuracy and spatial resolution of current and future satellite-based altimeters within the context of DEM requirements for 2-D floodplain hydrodynamic models. A case study is presented for the Atchafalaya Basin with a model domain of 1190 km2. The approach analyzes the sensitivity of modeled floodplain water elevation and velocity to typical satellite-based DEM grid-box scale and vertical error, using a previously calibrated version of the physically-based flood inundation model (LISFLOOD-ACC. Results indicate a trade-off relationship between DEM relative vertical error and grid-box size. Higher resolution models are the most sensitive to vertical accuracy, but the impact diminishes at coarser resolutions because of spatial averaging. The results provide guidance to engineers and scientists when defining the observation scales of future altimetry missions such as the   Surface Water and Ocean Topography (SWOT mission from the perspective of numerical modeling requirements for large floodplains of O[103] km2 and greater.

  17. Modeling slow deformation of polygonal particles using DEM

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    We introduce two improvements in the numerical scheme to simulate collision and slow shearing of irregular particles. First, we propose an alternative approach based on simple relations to compute the frictional contact forces. The approach improves efficiency and accuracy of the Discrete Element Method (DEM) when modeling the dynamics of the granular packing. We determine the proper upper limit for the integration step in the standard numerical scheme using a wide range of material parameters. To this end, we study the kinetic energy decay in a stress controlled test between two particles. Second, we show that the usual way of defining the contact plane between two polygonal particles is, in general, not unique which leads to discontinuities in the direction of the contact plane while particles move. To solve this drawback, we introduce an accurate definition for the contact plane based on the shape of the overlap area between touching particles, which evolves continuously in time.

  18. Automated Quality Control for Ortholmages and DEMs

    DEFF Research Database (Denmark)

    Höhle, Joachim; Potucková, Marketa

    2005-01-01

    The checking of geometric accurancy of orthoimages and digital elevation models (DEMs) is discussed. As a reference, an existing orthoimage and a second orthoimage derived from an overlapping aerial image, are used. The proposed automated procedures for checking the orthoimages and DEMs are based...

  19. Finding the service you need: human centered design of a Digital Interactive Social Chart in DEMentia care (DEM-DISC).

    Science.gov (United States)

    van der Roest, H G; Meiland, F J M; Haaker, T; Reitsma, E; Wils, H; Jonker, C; Dröes, R M

    2008-01-01

    Community dwelling people with dementia and their informal carers experience a lot of problems. In the course of the disease process people with dementia become more dependent on others and professional help is often necessary. Many informal carers and people with dementia experience unmet needs with regard to information on the disease and on the available care and welfare offer, therefore they tend not to utilize the broad spectrum of available care and welfare services. This can have very negative consequences like unsafe situations, social isolation of the person with dementia and overburden of informal carers with consequent increased risk of illness for them. The development of a DEMentia specific Digital Interactive Social Chart (DEM-DISC) may counteract these problems. DEM-DISC is a demand oriented website for people with dementia and their carers, which is easy, accessible and provides users with customized information on healthcare and welfare services. DEM-DISC is developed according to the human centered design principles, this means that people with dementia, informal carers and healthcare professionals were involved throughout the development process. This paper describes the development of DEM-DISC from four perspectives, a domain specific content perspective, an ICT perspective, a user perspective and an organizational perspective. The aims and most important results from each perspective will be discussed. It is concluded that the human centered design was a valuable method for the development of the DEM-DISC.

  20. VT Lidar DEM (1 meter) - 2005 - Essex

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) This metadata applies to the following collection area(s): Essex County 2005 1m and Digital Elevation Model (DEM) datasets of various...

  1. VT Lidar DEM (1 meter) - 2009 - Washington

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) This metadata applies to the following collection area(s): Essex County 2005 1m and Digital Elevation Model (DEM) datasets of various...

  2. NOAA Office for Coastal Management Coastal Inundation Digital Elevation Model: Seattle (WA) WFO - Clallam, Jefferson, Kitsap, Mason, Pierce, and Thurston Counties

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This digital elevation model (DEM) is a part of a series of DEMs produced for the National Oceanic and Atmospheric Administration Office for Coastal Management's Sea...

  3. NOAA Office for Coastal Management Coastal Inundation Digital Elevation Model: Seattle (WA) WFO - Whatcom, San Juan, Skagit, Island, Snohomish, and King Counties

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This digital elevation model (DEM) is a part of a series of DEMs produced for the National Oceanic and Atmospheric Administration Office for Coastal Management's Sea...

  4. NOAA Office for Coastal Management Coastal Inundation Digital Elevation Model: San Francisco Bay/Monterey (CA) WFO - Sonoma, Marin, Napa, and Solano Counties

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This digital elevation model (DEM) is a part of a series of DEMs produced for the National Oceanic and Atmospheric Administration Office for Coastal Management's Sea...

  5. NOAA Office for Coastal Management Coastal Inundation Digital Elevation Model: San Francisco Bay/Monterey (CA) WFO - Contra Costa, San Francisco, Alameda, San Mateo, and Santa Clara Counties

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This digital elevation model (DEM) is a part of a series of DEMs produced for the National Oceanic and Atmospheric Administration Office for Coastal Management's Sea...

  6. NOAA Office for Coastal Management Coastal Inundation Digital Elevation Model: San Francisco Bay/Monterey (CA) WFO - Santa Cruz and Monterey Counties

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This digital elevation model (DEM) is a part of a series of DEMs produced for the National Oceanic and Atmospheric Administration Office for Coastal Management's Sea...

  7. NOAA Office for Coastal Management Coastal Inundation Digital Elevation Model: Los Angeles/Oxnard (CA) WFO - Los Angeles and Ventura Counties

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This digital elevation model (DEM) is a part of a series of DEMs produced for the National Oceanic and Atmospheric Administration Office for Coastal Management's Sea...

  8. 2012 NOAA Office for Coastal Management Coastal Inundation Digital Elevation Model: Mobile/Tallahassee (AL/FL) WFO - Wakulla (portion), Franklin (portion), Jefferson, Taylor, Dixie, and Levy Counties

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This digital elevation model (DEM) is a part of a series of DEMs produced for the National Oceanic and Atmospheric Administration Office for Coastal Management's Sea...

  9. NOAA Office for Coastal Management Coastal Inundation Digital Elevation Model: Miami (FL) WFO - Palm Beach, Broward, Miami-Dade, and Monroe (Keys) Counties

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This digital elevation model (DEM) is a part of a series of DEMs produced for the National Oceanic and Atmospheric Administration Office for Coastal Management's Sea...

  10. Generation of a new Greenland Ice Sheet Digital Elevation Model

    Science.gov (United States)

    Nagarajan, S.; Csatho, B. M.; Schenk, A. F.; Babonis, G. S.; Scambos, T. A.; Haran, T. M.; Kjaer, K. H.; Korsgaard, N. J.

    2011-12-01

    Currently available Digital Elevation Models(DEMs) of the Greenland Ice Sheet (GrIS) were originally derived from radar altimetry data, e.g. Bamber (Bamber et al., 2001) and later improved by photoclinometry to fill the regions between orbits (Scambos and Haran, 2002). The elevation error of these DEMs is a few meters in the higher part (above 2000 m) of the ice sheet, but it can be as much as 50-100 meters in marginal regions. The relatively low resolution and accuracy poses a problem, especially for ice sheet modeling. Although accurate elevation data have been collected by airborne and spaceborne laser altimetry (airborne: Airborne Topographic Mapper (ATM) (1993-present), Laser Vegetation Imaging Sensor(LVIS) (2007,2009 and 2011); spaceborne: Ice, Cloud, and land Elevation Satellite (ICESat) (2003-2009)) and DEMs have been derived from stereo satellite imagery (e.g., SPOT (40 m), ASTER (15 m)), a high resolution, consistent DEM of GrIS is not yet available. This is due to various problems, such as different error sources in the data and different dates of data acquisition. In order to overcome these difficulties, we generated a multi-resolution DEM of GrIS, reflecting June 2008 conditions, by fusing a photoclinometry DEM, SPOT and ASTER DEMs as well as elevations from ICESat, ATM and LVIS laser altimetry. The new multi-resolution DEM has a resolution of 40 m x 40 m in the marginal ice sheet regions and 250 m elsewhere. The ice sheet margin is mapped from SPOT and Landsat imagery and SPOT DEMs are used to cover the complex topography of ice sheet marginal regions. The accuracy of SPOT DEMs is approximately ± 6 m except in the areas covered by clouds regions, where the SPOT elevations were replaced by ASTER DEMs. The ASTER DEMs were checked and improved by the DEM derived from aerial photography from the 1980s. A new photoclinometry DEM, derived from Advanced Very High Resolution Radiometer (AVHRR) and Moderate Resolution Imaging Spectroradiometer (MODIS) imagery

  11. Assessing the quality of digital elevation models obtained from mini unmanned aerial vehicles for overland flow modelling in urban areas

    Science.gov (United States)

    Leitão, João P.; Moy de Vitry, Matthew; Scheidegger, Andreas; Rieckermann, Jörg

    2016-04-01

    Precise and detailed digital elevation models (DEMs) are essential to accurately predict overland flow in urban areas. Unfortunately, traditional sources of DEM, such as airplane light detection and ranging (lidar) DEMs and point and contour maps, remain a bottleneck for detailed and reliable overland flow models, because the resulting DEMs are too coarse to provide DEMs of sufficient detail to inform urban overland flows. Interestingly, technological developments of unmanned aerial vehicles (UAVs) suggest that they have matured enough to be a competitive alternative to satellites or airplanes. However, this has not been tested so far. In this study we therefore evaluated whether DEMs generated from UAV imagery are suitable for urban drainage overland flow modelling. Specifically, 14 UAV flights were conducted to assess the influence of four different flight parameters on the quality of generated DEMs: (i) flight altitude, (ii) image overlapping, (iii) camera pitch, and (iv) weather conditions. In addition, we compared the best-quality UAV DEM to a conventional lidar-based DEM. To evaluate both the quality of the UAV DEMs and the comparison to lidar-based DEMs, we performed regression analysis on several qualitative and quantitative metrics, such as elevation accuracy, quality of object representation (e.g. buildings, walls and trees) in the DEM, which were specifically tailored to assess overland flow modelling performance, using the flight parameters as explanatory variables. Our results suggested that, first, as expected, flight altitude influenced the DEM quality most, where lower flights produce better DEMs; in a similar fashion, overcast weather conditions are preferable, but weather conditions and other factors influence DEM quality much less. Second, we found that for urban overland flow modelling, the UAV DEMs performed competitively in comparison to a traditional lidar-based DEM. An important advantage of using UAVs to generate DEMs in urban areas is

  12. Visualization of a Digital Elevation Model

    OpenAIRE

    Linlin Lu; Huadong Guo

    2007-01-01

    In recent years, Geographic Information Systems (GIS) have gradually changed from using the traditional 2D map expression to 3D visualization. The combination of visual techniques and GIS is a multi discipline, leading edge field, the development of which needs advancement in many fields. This paper introduces related theories and algorithms of Digital Elevation Model (DEM) visualization. Advantages of the Triangle Irregular Network (TIN) model and data structure are illustrated. The algorith...

  13. Evaluation of ASTER and SRTM DEM data for lahar modeling: A case study on lahars from Popocatépetl Volcano, Mexico

    Science.gov (United States)

    Huggel, C.; Schneider, D.; Miranda, P. Julio; Delgado Granados, H.; Kääb, A.

    2008-02-01

    Lahars are among the most serious and far-reaching volcanic hazards. In regions with potential interactions of lahars with populated areas and human structures the assessment of the related hazards is crucial for undertaking appropriate mitigating actions and reduce the associated risks. Modeling of lahars has become an important tool in such assessments, in particular where the geologic record of past events is insufficient. Mass-flow modeling strongly relies on digital terrain data. Availability of digital elevation models (DEMs), however, is often limited and thus an obstacle to lahar modeling. Remote-sensing technology has now opened new perspectives in generating DEMs. In this study, we evaluate the feasibility of DEMs derived from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) and the Shuttle Radar Topography Mission (SRTM) for lahar modeling on Popocatépetl Volcano, Mexico. Two GIS-based models are used for lahar modeling, LAHARZ and a flow-routing-based debris-flow model (modified single-flow direction model, MSF), both predicting areas potentially affected by lahars. Results of the lahar modeling show that both the ASTER and SRTM DEMs are basically suitable for use with LAHARZ and MSF. Flow-path prediction is found to be more reliable with SRTM data, though with a coarser spatial resolution. Errors of the ASTER DEM affecting the prediction of flow paths due to the sensor geometry are associated with deeply incised gorges with north-facing slopes. LAHARZ is more sensitive to errors of the ASTER DEM than the MSF model. Lahar modeling with the ASTER DEM results in a more finely spaced predicted inundation area but does not add any significant information in comparison with the SRTM DEM. Lahars at Popocatépetl are modeled with volumes of 1 × 10 5 to 8 × 10 6 m 3 based on ice-melt scenarios of the glaciers on top of the volcano and data on recent and historical lahar events. As regards recently observed lahars, the travel

  14. Evaluation on the accuracy of digital elevation models

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    There is a growing interest in investigating the accuracy of digital elevation model (DEM). However people usually have an unbalanced view on DEM errors. They emphasize DEM sampling errors, but ignore the impact of DEM resolution and terrain roughness on the accuracy of terrain representation. This research puts forward the concept of DEM terrain representation error (Et) and then investigates the generation, factors, measurement and simulation of DEM terrain representation errors. A multi-resolution and multi-relief comparative approach is used as the major methodology in this research. The experiment reveals a quantitative relationship between the error and the variation of resolution and terrain roughness at a global level. Root mean square error (RMS Et) is regressed against surface profile curvature (V) and DEM resolution (R) at 10 resolution levels. It is found that the RMS Et may be expressed as RMS Et = (0.0061· V+ 0.0052) . R - 0.022·V +0.2415. This result may be very useful in forecasting DEM accuracy, as well as in determining the DEM resolution related to the accuracy requirement of particular application.

  15. A Case Study of Using External DEM in InSAR DEM Generation

    Institute of Scientific and Technical Information of China (English)

    ZHOU Chunxia; GE Linlin; E Dongchen; CHANG Hsingchung

    2005-01-01

    Synthetic aperture radar interferometry (InSAR) has been used as an innovative technique for digital elevation model (DEM) and topographic map generation. In this paper, external DEMs are used for InSAR DEM generation to reduce the errors in data processing. The DEMs generated from repeat-pass InSAR are compared. For steep slopes and severe changes in topography, phase unwrapping quality can be improved by subtracting the phase calculated from an external DEM. It is affirmative that the absolute height accuracy of the InSAR DEM is improved by using external DEM. The data processing was undertaken without the use of ground control points and other manual operation.

  16. An assessment of TanDEM-X GlobalDEM over rural and urban areas

    Science.gov (United States)

    Koudogbo, Fifamè N.; Duro, Javier; Huber, Martin; Rudari, Roberto; Eddy, Andrew; Lucas, Richard

    2014-10-01

    Digital Elevation Model (DEM) is a key input for the development of risk management systems. Main limitation of the current available DEM is the low level of resolution. DEMs such as STRM 90m or ASTER are globally available free of charge, but offer limited use, for example, to flood modelers in most geographic areas. TanDEM-X (TerraSAR-X add-on for Digital Elevation Measurement), the first bistatic SAR can fulfil this gap. The mission objective is the generation of a consistent global digital elevation model with an unprecedented accuracy according to the HRTI-3 (High Resolution Terrain Information) specifications. The mission opens a new era in risk assessment. In the framework of ALTAMIRA INFORMATION research activities, the DIAPASON (Differential Interferometric Automated Process Applied to Survey Of Nature) processing chain has been successfully adapted to TanDEM-X CoSSC (Coregistered Slant Range Single Look Complex) data processing. In this study the capability of CoSSC data for DEM generation is investigated. Within the on-going FP7 RASOR project (Rapid Analysis and Spatialisation and Of Risk), the generated DEM are compared with Intermediate DEM derived from the TanDEM-X first global coverage. The results are presented and discussed.

  17. Generation of a new Greenland Ice Sheet Digital Elevation Model

    DEFF Research Database (Denmark)

    Nagarajan, Sudhagar; Csatho, Beata M; Schenk, Anton F

    Currently available Digital Elevation Models(DEMs) of the Greenland Ice Sheet (GrIS) were originally derived from radar altimetry data, e.g. Bamber (Bamber et al., 2001) and later improved by photoclinometry to fill the regions between orbits (Scambos and Haran, 2002). The elevation error...... m)), a high resolution, consistent DEM of GrIS is not yet available. This is due to various problems, such as different error sources in the data and different dates of data acquisition. In order to overcome these difficulties, we generated a multi-resolution DEM of GrIS, reflecting June 2008...... in an updated DEM. Finally, all elevations were corrected using elevation changes determined by SERAC (Surface Elevation Reconstruction And Change detection), to achieve a common reference date. Airborne laser altimetry elevations are used to evaluate the accuracy of the new GrIS DEM....

  18. Sensitivity of Coastal Flood Risk Assessments to Digital Elevation Models

    OpenAIRE

    Bas van de Sande; Claartje Hoyng; Joost Lansen

    2012-01-01

    Most coastal flood risk studies make use of a Digital Elevation Model (DEM) in addition to a projected flood water level in order to estimate the flood inundation and associated damages to property and livelihoods. The resolution and accuracy of a DEM are critical in a flood risk assessment, as land elevation largely determines whether a location will be flooded or will remain dry during a flood event. Especially in low lying deltaic areas, the land elevation variation is usually in the order...

  19. Digital Elevation Model Mosaic of Mercury

    Science.gov (United States)

    Cook, A. C.; Watters, T. R.; Robinson, M. S.

    2001-01-01

    At CEPS (Center for Earth and Planetary Studies) work has been underway since 2000 to semi-automatically stereo match all Mariner 10 stereo pairs. The resulting matched image coordinates are converted into longitude, latitude, and height points and then combined to form a map projected Digital Elevation Model (DEM) mosaic of the planet's surface. Stereo images from Mariner 10 cover one quarter of the planet's surface, mostly in the southern hemisphere. Additional information is contained in the original extended abstract.

  20. Pembuatan Digital Elevation Model Resolusi 10m dari Peta RBI dan Survei GPS dengan Algoritma Anudem

    Directory of Open Access Journals (Sweden)

    Indarto

    2014-04-01

    Full Text Available This study proposes the generation of Digital Elevation Model (DEM with spatial resolution of 10m x 10m by re-interpolation of elevation data. Data input for this study includes: (1 digitized datum coordinate from RBI map, (2 sample points surveyed by GPS, (3 digitized contour data fromSRTM DEM and ASTER GDEM2, and (4 digitized stream-network layer from RBI. All collected data were converted to mass point coordinats. On the top of Topogrid-ArcGIS, all points data were interpolated to produce DEM. After that the produced DEM were compared and evaluated to the SRTM and ASTER DEMvisually. The result shows that produced DEM are more accurate to represent the detailed topography of the study areas.

  1. An Adaptive Integration Model of Vector Polyline to DEM Data Based on Spherical Degeneration Quadtree Grids

    Science.gov (United States)

    Zhao, X. S.; Wang, J. J.; Yuan, Z. Y.; Gao, Y.

    2013-10-01

    Traditional geometry-based approach can maintain the characteristics of vector data. However, complex interpolation calculations limit its applications in high resolution and multi-source spatial data integration at spherical scale in digital earth systems. To overcome this deficiency, an adaptive integration model of vector polyline and spherical DEM is presented. Firstly, Degenerate Quadtree Grid (DQG) which is one of the partition models for global discrete grids, is selected as a basic framework for the adaptive integration model. Secondly, a novel shift algorithm is put forward based on DQG proximity search. The main idea of shift algorithm is that the vector node in a DQG cell moves to the cell corner-point when the displayed area of the cell is smaller or equal to a pixel of screen in order to find a new vector polyline approximate to the original one, which avoids lots of interpolation calculations and achieves seamless integration. Detailed operation steps are elaborated and the complexity of algorithm is analyzed. Thirdly, a prototype system has been developed by using VC++ language and OpenGL 3D API. ASTER GDEM data and DCW roads data sets of Jiangxi province in China are selected to evaluate the performance. The result shows that time consumption of shift algorithm decreased about 76% than that of geometry-based approach. Analysis on the mean shift error from different dimensions has been implemented. In the end, the conclusions and future works in the integration of vector data and DEM based on discrete global grids are also given.

  2. ASTER DEM performance

    Science.gov (United States)

    Fujisada, H.; Bailey, G.B.; Kelly, Glen G.; Hara, S.; Abrams, M.J.

    2005-01-01

    The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) instrument onboard the National Aeronautics and Space Administration's Terra spacecraft has an along-track stereoscopic capability using its a near-infrared spectral band to acquire the stereo data. ASTER has two telescopes, one for nadir-viewing and another for backward-viewing, with a base-to-height ratio of 0.6. The spatial resolution is 15 m in the horizontal plane. Parameters such as the line-of-sight vectors and the pointing axis were adjusted during the initial operation period to generate Level-1 data products with a high-quality stereo system performance. The evaluation of the digital elevation model (DEM) data was carried out both by Japanese and U.S. science teams separately using different DEM generation software and reference databases. The vertical accuracy of the DEM data generated from the Level-1A data is 20 m with 95% confidence without ground control point (GCP) correction for individual scenes. Geolocation accuracy that is important for the DEM datasets is better than 50 m. This appears to be limited by the spacecraft position accuracy. In addition, a slight increase in accuracy is observed by using GCPs to generate the stereo data. ?? 2005 IEEE.

  3. Synthetic Aperture Radar Interferometry for Digital Elevation Model of Kuwait Desert - Analysis of Errors

    Science.gov (United States)

    Jassar, H. K. Al; Rao, K. S.

    2012-07-01

    Using different combinations of 29 Advanced Synthetic Aperture Radar (ASAR) images, 43 Digital Elevations Models (DEM) were generated adopting SAR Interferometry (InSAR) technique. Due to sand movement in desert terrain, there is a poor phase correlation between different SAR images. Therefore, suitable methodology for generating DEMs of Kuwait desert terrain using InSAR technique were worked out. Time series analysis was adopted to derive the best DEM out of 43 DEMs. The problems related to phase de-correlation over desert terrain are discussed. Various errors associated with the DEM generation are discussed which include atmospheric effects, penetration into soil medium, sand movement. The DEM of Shuttle Radar Topography Mission (SRTM) is used as a reference. The noise levels of DEM of SRTM are presented.

  4. Digital elevation modeling via curvature interpolation for lidar data

    Science.gov (United States)

    Digital elevation model (DEM) is a three-dimensional (3D) representation of a terrain's surface - for a planet (including Earth), moon, or asteroid - created from point cloud data which measure terrain elevation. Its modeling requires surface reconstruction for the scattered data, which is an ill-p...

  5. Ohio-drainage digital elevation model for use with Water Resources Investigations Report 03-4164

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This coverage was derived from U.S. Geological Survey National Elevation Dataset (NED) Digital Elevation Models (DEMs) for all of Ohio and portions of Indiana,...

  6. Miami 1/3 arc-second MHW Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These integrated...

  7. LiDAR Derived Bare Earth Digital Elevation Model: Camas National Wildlife Refuge

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This dataset represents the Camas National Wildlife Refuge survey area in Jefferson and Clark County, ID. This bare earth digital elevation model (DEM) represent...

  8. Tampa Bay 1/3 arc-second MHW Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These integrated...

  9. St. Croix, U.S. Virgin Islands Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These integrated...

  10. Digital Elevation Model of Little Holland Tract, Sacramento-San Joaquin Delta, California, 2015

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This product is a digital elevation model (DEM) for the Little Holland Tract in the Sacramento-San Joaquin River Delta, California based on U.S. Geological Survey...

  11. King Cove, Alaska 8 arc-second Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) to support individual coastal States as part of the...

  12. Cold Bay, Alaska 8 arc-second Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) to support individual coastal States as part of the...

  13. King Cove, Alaska 8/15 arc-second Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) to support individual coastal States as part of the...

  14. Puget Sound 1/3 arc-second MHW Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These integrated...

  15. Central Florida 1/3 arc-second NAVD 88 Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These integrated...

  16. Tutuila, American Samoa 1/3 arc-second Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These integrated...

  17. LiDAR Derived Bare Earth Digital Elevation Model: Camas National Wildlife Refuge

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This dataset represents the Camas National Wildlife Refuge survey area in Jefferson and Clark County, ID. This bare earth digital elevation model (DEM) represent the...

  18. Global Topographic 30 Arc-Second Digital Elevation Model: Released 1996

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — GTOPO30 is a global digital elevation model (DEM) with a horizontal grid spacing of 30 arc seconds (approximately 1 kilometer). GTOPO30 was derived from several...

  19. Global Topographic 30 Arc-Second Digital Elevation Model: Released 1996

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — GTOPO30 is a global digital elevation model (DEM) with a horizontal grid spacing of 30 arc seconds (approximately 1 kilometer). GTOPO30 was derived from several...

  20. Digital elevation model of Little Holland Tract, Sacramento-San Joaquin Delta, California, 2015

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This product is a digital elevation model (DEM) for the Little Holland Tract in the Sacramento-San Joaquin River Delta, California based on U.S. Geological Survey...

  1. Digital Elevation Model of Kauai, Hawaii, Integrating Bathymetric and Topographic Datasets

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These integrated...

  2. Perryville and Ivanof Bay, Alaska 1/3 arc-second Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) to support individual coastal States as part of the...

  3. Cold Bay, Alaska 8/15 arc-second Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) to support individual coastal States as part of the...

  4. Puget Sound 1/3 arc-second NAVD 88 Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These integrated...

  5. Astoria, Oregon 1/3 arc-second MHW Coastal Digital Elevation Model Vers.3

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Centers for Environmental Information (NCEI) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These...

  6. Chignik, Alaska 1/3 arc-second Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) to support individual coastal States as part of the...

  7. King Cove, Alaska 8/3 arc-second Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) to support individual coastal States as part of the...

  8. St. Thomas and St. John, U.S. Virgin Islands Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These integrated...

  9. Quantifying Slopes with Digital Elevation Models of the Verdugo Hills, California: Effects of Resolution

    Science.gov (United States)

    Fielding, E. J.; Burbank, D. W.; Duncan, C. C.

    1996-01-01

    Quantification of surface slope angles is valuable in a wide variety of earth sciences. Slopes measured from digital elevation models (DEMs) or other topographic data sets depend strongly on the length scale or window size used in the slope calculations.

  10. An algorithm for treating flat areas and depressions in digital elevation models using linear interpolation

    Science.gov (United States)

    Digital elevation model (DEM) data are essential to hydrological applications and have been widely used to calculate a variety of useful topographic characteristics, e.g., slope, flow direction, flow accumulation area, stream channel network, topographic index, and others. Excep...

  11. Digital elevation model of Little Holland Tract, Sacramento-San Joaquin Delta, California, 2015

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This product is a digital elevation model (DEM) for the Little Holland Tract in the Sacramento-San Joaquin River Delta, California based on U.S. Geological Survey...

  12. Central Florida 1/3 arc-second MHW Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These integrated...

  13. Tampa Bay 1/3 arc-second NAVD 88 Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These integrated...

  14. Miami 1/3 arc-second NAVD 88 Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These integrated...

  15. Digital Elevation Model of Southeast Alaska, Integrating Bathymetric and Topographic Datasets

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) to support individual coastal States as part of the...

  16. Cold Bay, Alaska 8/3 arc-second Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) to support individual coastal States as part of the...

  17. Kodiak, Alaska 1/3 arc-second Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These integrated...

  18. Evaluation of lidar-derived DEMs through terrain analysis and field comparison

    Science.gov (United States)

    Cody P. Gillin; Scott W. Bailey; Kevin J. McGuire; Stephen P. Prisley

    2015-01-01

    Topographic analysis of watershed-scale soil and hydrological processes using digital elevation models (DEMs) is commonplace, but most studies have used DEMs of 10 m resolution or coarser. Availability of higher-resolution DEMs created from light detection and ranging (lidar) data is increasing but their suitability for such applications has received little critical...

  19. 2012 NOAA Office for Coastal Management Coastal Inundation Digital Elevation Model: Mobile/Tallahassee (AL/FL) WFO - Okaloosa (portion), Walton, Bay, Gulf, Franklin (portion), and Wakulla (portion) Counties

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This digital elevation model (DEM) is a part of a series of DEMs produced for the National Oceanic and Atmospheric Administration Office for Coastal Management's Sea...

  20. 2012 NOAA Office for Coastal Management Coastal Inundation Digital Elevation Model: Mobile/Tallahassee (AL/FL) WFO - Mobile County in Alabama and Escambia, Santa Rosa, and Okaloosa (portion) Counties in Florida

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This digital elevation model (DEM) is a part of a series of DEMs produced for the National Oceanic and Atmospheric Administration Office for Coastal Management's Sea...

  1. Arc ASCII and GeoTiff DEMs of the North-Central California Coast (DEM_#_ASCII and DEM_#_GeoTIFF)

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — A seamless, 2 meter resolution digital elevation model (DEM) was constructed for the open-coast region of the San Francisco Bay Area (outside of the Golden Gate...

  2. Arc ASCII and GeoTiff DEMs of the North-Central California Coast (DEM_#_ASCII and DEM_#_GeoTIFF)

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — A seamless, 2 meter resolution digital elevation model (DEM) was constructed for the open-coast region of the San Francisco Bay Area (outside of the Golden Gate...

  3. Assessment of Required Accuracy of Digital Elevation Data for Hydrologic Modeling

    Science.gov (United States)

    Kenward, T.; Lettenmaier, D. P.

    1997-01-01

    The effect of vertical accuracy of Digital Elevation Models (DEMs) on hydrologic models is evaluated by comparing three DEMs and resulting hydrologic model predictions applied to a 7.2 sq km USDA - ARS watershed at Mahantango Creek, PA. The high resolution (5 m) DEM was resempled to a 30 m resolution using method that constrained the spatial structure of the elevations to be comparable with the USGS and SIR-C DEMs. This resulting 30 m DEM was used as the reference product for subsequent comparisons. Spatial fields of directly derived quantities, such as elevation differences, slope, and contributing area, were compared to the reference product, as were hydrologic model output fields derived using each of the three DEMs at the common 30 m spatial resolution.

  4. Sensitivity of Coastal Flood Risk Assessments to Digital Elevation Models

    Directory of Open Access Journals (Sweden)

    Bas van de Sande

    2012-07-01

    Full Text Available Most coastal flood risk studies make use of a Digital Elevation Model (DEM in addition to a projected flood water level in order to estimate the flood inundation and associated damages to property and livelihoods. The resolution and accuracy of a DEM are critical in a flood risk assessment, as land elevation largely determines whether a location will be flooded or will remain dry during a flood event. Especially in low lying deltaic areas, the land elevation variation is usually in the order of only a few decimeters, and an offset of various decimeters in the elevation data has a significant impact on the accuracy of the risk assessment. Publicly available DEMs are often used in studies for coastal flood risk assessments. The accuracy of these datasets is relatively low, in the order of meters, and is especially low in comparison to the level of accuracy required for a flood risk assessment in a deltaic area. For a coastal zone area in Nigeria (Lagos State an accurate LiDAR DEM dataset was adopted as ground truth concerning terrain elevation. In the case study, the LiDAR DEM was compared to various publicly available DEMs. The coastal flood risk assessment using various publicly available DEMs was compared to a flood risk assessment using LiDAR DEMs. It can be concluded that the publicly available DEMs do not meet the accuracy requirement of coastal flood risk assessments, especially in coastal and deltaic areas. For this particular case study, the publically available DEMs highly overestimated the land elevation Z-values and thereby underestimated the coastal flood risk for the Lagos State area. The findings are of interest when selecting data sets for coastal flood risk assessments in low-lying deltaic areas.

  5. EVALUATION DIGITAL ELEVATION MODEL GENERATED BY SYNTHETIC APERTURE RADAR DATA

    OpenAIRE

    Makineci, H. B.; H. Karabörk

    2016-01-01

    Digital elevation model, showing the physical and topographical situation of the earth, is defined a tree-dimensional digital model obtained from the elevation of the surface by using of selected an appropriate interpolation method. DEMs are used in many areas such as management of natural resources, engineering and infrastructure projects, disaster and risk analysis, archaeology, security, aviation, forestry, energy, topographic mapping, landslide and flood analysis, Geographic Information S...

  6. First Bistatic Spaceborne SAR Experiments with TanDEM-X

    OpenAIRE

    Rodriguez-Cassola, Marc; Prats, Pau; Schulze, Daniel; Tous-Ramon, Nuria; Steinbrecher, Ulrich; Marotti, Luca; Nanninni, Matteo; Younis, Marwan; Lopez-Dekker, Paco; Zink, Manfred; Reigber, Andreas; Krieger, Gerhard; Moreira, Alberto

    2011-01-01

    TanDEM-X is a high-resolution interferometric mission with the main goal of providing a global and unprecedentedly accurate digital elevation model (DEM) of the Earth surface by means of single-pass X-band SAR interferometry. Despite its usual quasi-monostatic configuration, TanDEM-X is the first genuinely bistatic SAR system in space. During its monostatic commissioning phase, the system has been mainly operated in pursuit monostatic mode. However, some pioneering bistat...

  7. Digital elevation model and orthophotographs of Greenland based on aerial photographs from 1978-1987

    DEFF Research Database (Denmark)

    Korsgaard, Niels J.; Nuth, Christopher; Khan, Shfaqat Abbas

    2016-01-01

    Digital Elevation Models (DEMs) play a prominent role in glaciological studies for the mass balance of glaciers and ice sheets. By providing a time snapshot of glacier geometry, DEMs are crucial for most glacier evolution modelling studies, but are also important for cryospheric modelling...... and a 2 m black-and-white digital orthophotograph. Supporting data consist of a reliability mask and a photo footprint coverage with recording dates. Through one internal and two external validation tests, this DEM shows an accuracy better than 10 m horizontally and 6 m vertically while the precision...

  8. Registratiom of TM data to digital elevation models

    Science.gov (United States)

    1984-01-01

    Several problems arise when attempting to register LANDSAT thematic mapper data to U.S. B Geological Survey digital elevation models (DEMs). The TM data are currently available only in a rotated variant of the Space Oblique Mercator (SOM) map projection. Geometric transforms are thus; required to access TM data in the geodetic coordinates used by the DEMs. Due to positional errors in the TM data, these transforms require some sort of external control. The spatial resolution of TM data exceeds that of the most commonly DEM data. Oversampling DEM data to TM resolution introduces systematic noise. Common terrain processing algorithms (e.g., close computation) compound this problem by acting as high-pass filters.

  9. ALGORITHM FOR GENERATING DEM BASED ON CONE

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Digital elevation model (DEM) has a variety of applications in GIS and CAD.It is the basic model for generating three-dimensional terrain feature.Generally speaking,there are two methods for building DEM.One is based upon the digital terrain model of discrete points,and is characterized by fast speed and low precision.The other is based upon triangular digital terrain model,and slow speed and high precision are the features of the method.Combining the advantages of the two methods,an algorithm for generating DEM with discrete points is presented in this paper.When interpolating elevation,this method can create a triangle which includes interpolating point and the elevation of the interpolating point can be obtained from the triangle.The method has the advantage of fast speed,high precision and less memory.

  10. VT Lidar DEM (3.2 meter) - 2004 - Chittenden

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) This metadata applies to the following collection area(s): Chittenden County 2004 3.2m and Digital Elevation Model (DEM) datasets of various...

  11. VT Lidar Hydro-flattened DEM (2 meter) - 2012 - Bennington

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) This metadata applies to the following collection area(s): Bennington County 2012 2.0m and Digital Elevation Model (DEM) datasets of various...

  12. ElevationDEM_DEMHF0p7M2014

    Data.gov (United States)

    Vermont Center for Geographic Information — This metadata applies to the following collection area(s): Eastern VT 2014 0.7m and Digital Elevation Model (DEM) dataset of the following "hydro-treatment": *DEMHF....

  13. Input Data Boundary Outlines for DEMs of the North-Central California Coast (DEM_source_data.shp)

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — A GIS polygon shapefile outlining the boundaries of the native input datasets used to construct a seamless, 2-meter resolution digital elevation model (DEM) was...

  14. DEM investigation of weathered rocks using a novel bond contact model

    Institute of Scientific and Technical Information of China (English)

    Zhenming Shi; Tao Jiang; Mingjing Jiang; Fang Liu; Ning Zhang

    2015-01-01

    The distinct element method (DEM) incorporated with a novel bond contact model was applied in this paper to shed light on the microscopic physical origin of macroscopic behaviors of weathered rock, and to achieve the changing laws of microscopic parameters from observed decaying properties of rocks during weathering. The changing laws of macroscopic mechanical properties of typical rocks were summarized based on the existing research achievements. Parametric simulations were then conducted to analyze the relationships between macroscopic and microscopic parameters, and to derive the changing laws of microscopic parameters for the DEM model. Equipped with the microscopic weathering laws, a series of DEM simulations of basic laboratory tests on weathered rock samples was performed in comparison with analytical solutions. The results reveal that the relationships between macroscopic and microscopic parameters of rocks against the weathering period can be successfully attained by para-metric simulations. In addition, weathering has a significant impact on both stressestrain relationship and failure pattern of rocks.

  15. Modelling die filling with charged particles using DEM/CFD

    Institute of Scientific and Technical Information of China (English)

    Emmanuel Nkem Nwose; Chunlei Pei; Chuan-Yu Wu

    2012-01-01

    The effects of electrostatic charge on powder flow behaviour during die filling in a vacuum and in air were analysed using a coupled discrete element method and computational fluid dynamics (DEM/CFD) code,in which long range electrostatic interactions were implemented.The present 2D simulations revealed that both electrostatic charge and the presence of air can affect the powder flow behaviour during die filling.It was found that the electrostatic charge inhibited the flow of powders into the die and induced a loose packing structure.At the same filling speed,increasing the electrostatic charge led to a decrease in the fill ratio which quantifies the volumetric occupancy of powder in the die.In addition,increasing the shoe speed caused a further decrease in the fill ratio,which was characterised using the concept of critical filling speed.When the electrostatic charge was low,the air/particle interaction was strong so that a lower critical filling speed was obtained for die filling in air than in a vacuum.With high electrostatic charge,the electrostatic interactions became dominant.Consequently,similar fill ratio and critical filling speed were obtained for die filling in air and in a vacuum.

  16. 2D Flood Modelling Using Advanced Terrain Analysis Techniques And A Fully Continuous DEM-Based Rainfall-Runoff Algorithm

    Science.gov (United States)

    Nardi, F.; Grimaldi, S.; Petroselli, A.

    2012-12-01

    Remotely sensed Digital Elevation Models (DEMs), largely available at high resolution, and advanced terrain analysis techniques built in Geographic Information Systems (GIS), provide unique opportunities for DEM-based hydrologic and hydraulic modelling in data-scarce river basins paving the way for flood mapping at the global scale. This research is based on the implementation of a fully continuous hydrologic-hydraulic modelling optimized for ungauged basins with limited river flow measurements. The proposed procedure is characterized by a rainfall generator that feeds a continuous rainfall-runoff model producing flow time series that are routed along the channel using a bidimensional hydraulic model for the detailed representation of the inundation process. The main advantage of the proposed approach is the characterization of the entire physical process during hydrologic extreme events of channel runoff generation, propagation, and overland flow within the floodplain domain. This physically-based model neglects the need for synthetic design hyetograph and hydrograph estimation that constitute the main source of subjective analysis and uncertainty of standard methods for flood mapping. Selected case studies show results and performances of the proposed procedure as respect to standard event-based approaches.

  17. Laser altimetry data of Chang’E-1 and the global lunar DEM model

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The Laser AltiMeter (LAM), as one of the main payloads of Chang’E-1 probe, is used to measure the topography of the lunar surface. It performed the first measurement at 02:22 on November 28th, 2007. Up to December 4th 2008, the total number of measurements was approximately 9.12 million, covering the whole surface of the Moon. Using the LAM data, we constructed a global lunar Digtal Elevation Model (DEM) with 3 km spatial resolution. The model shows pronounced morphological characteristics, legible and vivid details of the lunar surface. The plane positioning accuracy of the DEM is 445 m (1σ), and the vertical accuracy is 60 m (1σ). From this DEM model, we measured the full range of the altitude difference on the lunar sur-face, which is about 19.807 km. The highest point is 10.629 km high, on a peak between crater Korolev and crater Dirichlet-Jackson at (158.656°W, 5.441°N) and the lowest point is -9.178 km in height, inside crater Antoniadi (172.413°W, 70.368°S) in the South Pole-Aitken Basin. By comparison, the DEM model of Chang’E-1 is better than the USA ULCN2005 in accuracy and resolution and is probably identical to the DEM of Japan SELENE, but the DEM of Chang’E-1 reveals a new lowest point, clearly lower than that of SELENE.

  18. Assessing the quality of Digital Elevation Models obtained from mini-Unmanned Aerial Vehicles for overland flow modelling in urban areas

    Science.gov (United States)

    Leitão, J. P.; Moy de Vitry, M.; Scheidegger, A.; Rieckermann, J.

    2015-06-01

    Precise and detailed Digital Elevation Models (DEMs) are essential to accurately predict overland flow in urban areas. Unfortunately, traditional sources of DEM remain a bottleneck for detailed and reliable overland flow models, because the resulting DEMs are too coarse to provide DEMs of sufficient detail to inform urban overland flows. Interestingly, technological developments of Unmanned Aerial Vehicles (UAVs) suggest that they have matured enough to be a competitive alternative to satellites or airplanes. However, this has not been tested so far. In this this study we therefore evaluated whether DEMs generated from UAV imagery are suitable for urban drainage overland flow modelling. Specifically, fourteen UAV flights were conducted to assess the influence of four different flight parameters on the quality of generated DEMs: (i) flight altitude, (ii) image overlapping, (iii) camera pitch and (iv) weather conditions. In addition, we compared the best quality UAV DEM to a conventional Light Detection and Ranging (LiDAR)-based DEM. To evaluate both the quality of the UAV DEMs and the comparison to LiDAR-based DEMs, we performed regression analysis on several qualitative and quantitative metrics, such as elevation accuracy, quality of object representation (e.g., buildings, walls and trees) in the DEM, which were specifically tailored to assess overland flow modelling performance, using the flight parameters as explanatory variables. Our results suggested that, first, as expected, flight altitude influenced the DEM quality most, where lower flights produce better DEMs; in a similar fashion, overcast weather conditions are preferable, but weather conditions and other factors influence DEM quality much less. Second, we found that for urban overland flow modelling, the UAV DEMs performed competitively in comparison to a traditional LiDAR-based DEM. An important advantage of using UAVs to generate DEMs in urban areas is their flexibility that enables more frequent

  19. Impact of DEM Resolution and Spatial Scale: Analysis of Influence Factors and Parameters on Physically Based Distributed Model

    Directory of Open Access Journals (Sweden)

    Hanchen Zhang

    2016-01-01

    Full Text Available Physically based distributed hydrological models were used to describe small-scale hydrological information in detail. However, the sensitivity of the model to spatially varied parameters and inputs limits the accuracy for application. In this paper, relevant influence factors and sensitive parameters were analyzed to solve this problem. First, a set of digital elevation model (DEM resolutions and channel thresholds were generated to extract the hydrological influence factors. Second, a numerical relationship between sensitive parameters and influence factors was established to define parameters reasonably. Next, the topographic index (TI was computed to study the similarity. At last, simulation results were analyzed in two different ways: (1 to observe the change regularity of influence factors and sensitive parameters through the variation of DEM resolutions and channel thresholds and (2 to compare the simulation accuracy of the nested catchment, particularly in the subcatchments and interior grids. Increasing the grid size from 250 m to 1000 m, the TI increased from 9.08 to 11.16 and the Nash-Sutcliffe efficiency (NSE decreased from 0.77 to 0.75. Utilizing the parameters calculated by the established relationship, the simulation results show the same NSE in the outlet and a better NSE in the simple subcatchment than the calculated interior grids.

  20. Vertical Accuracy Comparison of Digital Elevation Model from LIDAR and Multitemporal Satellite Imagery

    Science.gov (United States)

    Octariady, J.; Hikmat, A.; Widyaningrum, E.; Mayasari, R.; Fajari, M. K.

    2017-05-01

    Digital elevation model serves to illustrate the appearance of the earth's surface. DEM can be produced from a wide variety of data sources including from radar data, LiDAR data, and stereo satellite imagery. Making the LiDAR DEM conducted using point cloud data from LiDAR sensor. Making a DEM from stereo satellite imagery can be done using same temporal or multitemporal stereo satellite imagery. How much the accuracy of DEM generated from multitemporal stereo stellite imagery and LiDAR data is not known with certainty. The study was conducted using LiDAR DEM data and multitemporal stereo satellite imagery DEM. Multitemporal stereo satellite imagery generated semi-automatically by using 3 scene stereo satellite imagery with acquisition 2013-2014. The high value given each of DEM serve as the basis for calculating high accuracy DEM respectively. The results showed the high value differences in the fraction of the meter between LiDAR DEM and multitemporal stereo satellite imagery DEM.

  1. Rockslide and Impulse Wave Modelling in the Vajont Reservoir by DEM-CFD Analyses

    Science.gov (United States)

    Zhao, T.; Utili, S.; Crosta, G. B.

    2016-06-01

    This paper investigates the generation of hydrodynamic water waves due to rockslides plunging into a water reservoir. Quasi-3D DEM analyses in plane strain by a coupled DEM-CFD code are adopted to simulate the rockslide from its onset to the impact with the still water and the subsequent generation of the wave. The employed numerical tools and upscaling of hydraulic properties allow predicting a physical response in broad agreement with the observations notwithstanding the assumptions and characteristics of the adopted methods. The results obtained by the DEM-CFD coupled approach are compared to those published in the literature and those presented by Crosta et al. (Landslide spreading, impulse waves and modelling of the Vajont rockslide. Rock mechanics, 2014) in a companion paper obtained through an ALE-FEM method. Analyses performed along two cross sections are representative of the limit conditions of the eastern and western slope sectors. The max rockslide average velocity and the water wave velocity reach ca. 22 and 20 m/s, respectively. The maximum computed run up amounts to ca. 120 and 170 m for the eastern and western lobe cross sections, respectively. These values are reasonably similar to those recorded during the event (i.e. ca. 130 and 190 m, respectively). Therefore, the overall study lays out a possible DEM-CFD framework for the modelling of the generation of the hydrodynamic wave due to the impact of a rapid moving rockslide or rock-debris avalanche.

  2. A web-based platform for simulating seismic wave propagation in 3D shallow Earth models with DEM surface topography

    Science.gov (United States)

    Luo, Cong; Friederich, Wolfgang

    2016-04-01

    Realistic shallow seismic wave propagation simulation is an important tool for studying induced seismicity (e.g., during geothermal energy development). However over a long time, there is a significant problem which constrains computational seismologists from performing a successful simulation conveniently: pre-processing. Conventional pre-processing has often turned out to be inefficient and unrobust because of the miscellaneous operations, considerable complexity and insufficiency of available tools. An integrated web-based platform for shallow seismic wave propagation simulation has been built. It is aiming at providing a user-friendly pre-processing solution, and cloud-based simulation abilities. The main features of the platform for the user include: revised digital elevation model (DEM) retrieving and processing mechanism; generation of multi-layered 3D shallow Earth model geometry (the computational domain) with user specified surface topography based on the DEM; visualization of the geometry before the simulation; a pipeline from geometry to fully customizable hexahedral element mesh generation; customization and running the simulation on our HPC; post-processing and retrieval of the results over cloud. Regarding the computational aspect, currently the widely accepted specfem3D is chosen as the computational package; packages using different types of elements can be integrated as well in the future. According to our trial simulation experiments, this web-based platform has produced accurate waveforms while significantly simplifying and enhancing the pre-processing and improving the simulation success rate.

  3. A geomorphology-based approach for digital elevation model fusion - case study in Danang city, Vietnam

    Science.gov (United States)

    Tran, T. A.; Raghavan, V.; Masumoto, S.; Vinayaraj, P.; Yonezawa, G.

    2014-07-01

    Global digital elevation models (DEM) are considered a source of vital spatial information and find wide use in several applications. The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Global DEM (GDEM) and Shuttle Radar Topographic Mission (SRTM) DEM offer almost global coverage and provide elevation data for geospatial analysis. However, GDEM and SRTM still contain some height errors that affect the quality of elevation data significantly. This study aims to examine methods to improve the resolution as well as accuracy of available free DEMs by data fusion techniques and evaluating the results with a high-quality reference DEM. The DEM fusion method is based on the accuracy assessment of each global DEM and geomorphological characteristics of the study area. Land cover units were also considered to correct the elevation of GDEM and SRTM with respect to the bare-earth surface. The weighted averaging method was used to fuse the input DEMs based on a landform classification map. According to the landform types, the different weights were used for GDEM and SRTM. Finally, a denoising algorithm (Sun et al., 2007) was applied to filter the output-fused DEM. This fused DEM shows excellent correlation to the reference DEM, having a correlation coefficient R2 = 0.9986, and the accuracy was also improved from a root mean square error (RMSE) of 14.9 m in GDEM and 14.8 m in SRTM to 11.6 m in the fused DEM. The results of terrain-related parameters extracted from this fused DEM such as slope, curvature, terrain roughness index and normal vector of topographic surface are also very comparable to reference data.

  4. A DEM contact model for history-dependent powder flows

    Science.gov (United States)

    Hashibon, Adham; Schubert, Raphael; Breinlinger, Thomas; Kraft, Torsten

    2016-11-01

    Die filling is an important part of the powder handling process chain that greatly influences the characteristic structure and properties of the final part. Predictive modelling and simulation of the die-filling process can greatly contribute to the optimization of the part and the whole production procedure, e.g. by predicting the resulting powder compaction structure as a function of filling process parameters. The rheology of powders can be very difficult to model especially if heterogeneous agglomeration or time-dependent consolidation effects occur. We present a new discrete element contact force model that enables modelling complex powder flow characteristics including direct time-dependent consolidation effects and load history-dependent cohesion to describe the filling process of complex, difficult to handle powders. The model is demonstrated for simple flow and an industrial powder flow.

  5. Modeling Digital Video Database

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The main purpose of the model is to present how the UnifiedModeling L anguage (UML) can be used for modeling digital video database system (VDBS). It demonstrates the modeling process that can be followed during the analysis phase of complex applications. In order to guarantee the continuity mapping of the mo dels, the authors propose some suggestions to transform the use case diagrams in to an object diagram, which is one of the main diagrams for the next development phases.

  6. Parametrisation of a DEM model for railway ballast under different load cases.

    Science.gov (United States)

    Suhr, Bettina; Six, Klaus

    2017-01-01

    The prediction quality of discrete element method (DEM) models for railway ballast can be expected to depend on three points: the geometry representation of the single particles, the used contact models and the parametrisation using principal experiments. This works aims at a balanced approach, where none of the points is addressed with excessive depth. In a first step, a simple geometry representation is chosen and the simplified Hertz-Mindlin contact model is used. When experimental data of cyclic compression tests and monotonic direct shear tests are considered, the model can be parametrised to fit either one of the two tests, but not both with the same set of parameters. Similar problems can be found in literature for monotonic and cyclic triaxial tests of railway ballast. In this work, the comparison between experiment and simulation is conducted using the entire data of the test, e.g. shear force over shear path curve from the direct shear test. In addition to a visual comparison of the results also quantitative errors based on the sum of squares are defined. To improve the fit of the DEM model to both types of experiments, an extension on the Hertz-Mindlin contact law is used, which introduces additional physical effects (e.g. breakage of edges or yielding). This model introduces two extra material parameters and is successfully parametrised. Using only one set of parameters, the results of the DEM simulation are in good accordance with both experimental cyclic compression test and monotonic directs shear test.

  7. An advanced distributed automated extraction of drainage network model on high-resolution DEM

    Directory of Open Access Journals (Sweden)

    Y. Mao

    2014-07-01

    distributed automated extraction of drainage network model (Adam was proposed in the study. The Adam model has two features: (1 searching upward from outlet of basin instead of sink filling, (2 dividing sub-basins on low-resolution DEM, and then extracting drainage network on sub-basins of high-resolution DEM. The case study used elevation data of the Shuttle Radar Topography Mission (SRTM at 3 arc-second resolution in Zhujiang River basin, China. The results show Adam model can dramatically reduce the computation time. The extracting drainage network was continuous and more accurate than HydroSHEDS (Hydrological data and maps based on Shuttle Elevation Derivatives at multiple Scales.

  8. Effect of DEM Source and Resolution on Extracting River Network and Watershed within Multi-Lake Area in Tibet

    Science.gov (United States)

    Li, Yang; Li, Gang; Lin, Hui

    2014-11-01

    DEM defines drainage structures and basin through conducting overland flow simulation. Two matured DEM Sources are SRTM DEM (Shuttle Radar Topographic Mission) and ASTER GDEM (Advanced Space borne Thermal Emission and Reflection Radiometer Global Digital Elevation Model); The accuracy of hydrological characters that derived from DEM decreased from high resolution to coarse resolution and appeared to be different in different data source (Vaze,Teng, & Spencer, 2010).

  9. DEM Based Modeling: Grid or TIN? The Answer Depends

    Science.gov (United States)

    Ogden, F. L.; Moreno, H. A.

    2015-12-01

    The availability of petascale supercomputing power has enabled process-based hydrological simulations on large watersheds and two-way coupling with mesoscale atmospheric models. Of course with increasing watershed scale come corresponding increases in watershed complexity, including wide ranging water management infrastructure and objectives, and ever increasing demands for forcing data. Simulations of large watersheds using grid-based models apply a fixed resolution over the entire watershed. In large watersheds, this means an enormous number of grids, or coarsening of the grid resolution to reduce memory requirements. One alternative to grid-based methods is the triangular irregular network (TIN) approach. TINs provide the flexibility of variable resolution, which allows optimization of computational resources by providing high resolution where necessary and low resolution elsewhere. TINs also increase required effort in model setup, parameter estimation, and coupling with forcing data which are often gridded. This presentation discusses the costs and benefits of the use of TINs compared to grid-based methods, in the context of large watershed simulations within the traditional gridded WRF-HYDRO framework and the new TIN-based ADHydro high performance computing watershed simulator.

  10. DEM Solutions Develops Answers to Modeling Lunar Dust and Regolith

    Science.gov (United States)

    Dunn, Carol Anne; Calle, Carlos; LaRoche, Richard D.

    2010-01-01

    With the proposed return to the Moon, scientists like NASA-KSC's Dr. Calle are concerned for a number of reasons. We will be staying longer on the planet's surface, future missions may include dust-raising activities, such as excavation and handling of lunar soil and rock, and we will be sending robotic instruments to do much of the work for us. Understanding more about the chemical and physical properties of lunar dust, how dust particles interact with each other and with equipment surfaces and the role of static electricity build-up on dust particles in the low-humidity lunar environment is imperative to the development of technologies for removing and preventing dust accumulation, and successfully handling lunar regolith. Dr. Calle is currently working on the problems of the electrostatic phenomena of granular and bulk materials as they apply to planetary surfaces, particularly to those of Mars and the Moon, and is heavily involved in developing instrumentation for future planetary missions. With this end in view, the NASA Kennedy Space Center's Innovative Partnerships Program Office partnered with OEM Solutions, Inc. OEM Solutions is a global leader in particle dynamics simulation software, providing custom solutions for use in tackling tough design and process problems related to bulk solids handling. Customers in industries such as pharmaceutical, chemical, mineral, and materials processing as well as oil and gas production, agricultural and construction, and geo-technical engineering use OEM Solutions' EDEM(TradeMark) software to improve the design and operation of their equipment while reducing development costs, time-to-market and operational risk. EDEM is the world's first general-purpose computer-aided engineering (CAE) tool to use state-of-the-art discrete element modeling technology for the simulation and analysis of particle handling and manufacturing operations. With EDEM you'can quickly and easily create a parameterized model of your granular solids

  11. DEM-based model for reconstructing volcano's morphology from primary volcanic landforms

    Science.gov (United States)

    Gayer, Eric; Lopez, Philippe; Michon, Laurent

    2014-05-01

    Volumes of magma intruded in and emitted by volcanoes through time can be estimated by reconstruction of volcano's morphology and time sequence. Classical approaches for quantifying magma volumes on active volcanoes are based on the difference between pre- and post-eruption digital elevation models (DEM), but this kind of approach needs the pre-eruptive surfaces to be available. For old and eroded volcanoes these surfaces are poorly constrained. However, because the geometrical form of many volcanic edifices exhibits a remarkable symmetry we propose, here, a new approach using primary volcanic landforms in order to estimate the amount of the both erupted and eroded material and to locate eruptive centers. A large fraction of composite volcanoes have near constant slope on their flanks and a form that is concave upwards near their summits. But many phenomena can lead to non-symetrical edifices and complex morphologies can result, for example from parasitic centers of volcanism on the flanks, from alternation of short effusive and explosive construction phases, from flank or caldera collapses, or from glacial and other types of erosion. In this study we propose that, on the first order approximation, complex morphologies can be modeled by piling regular cones. In this model, cones centers and slopes are derived by fitting primary volcanic landform with a linear function :elevation=f(distance from center). Such an approach allows to estimate both errors on location of the eruptive center and on the volume of the resulting cones. This model can then be used for quantifying volume of erupted and eroded material, and for quantifying catastrophic events as giant landslides or flank collapse. This approach is tested on four different active volcanoes : Mount Mayon (Philippines), Mount Fuji (Japan), Mount Etna (Sicily) and Mount Teide (Canary Island) to estimate errors in volume between modeled and actual edifices. It is then used on volcanoes of La Réunion hotspot to

  12. Micromechanics of non-active clays in saturated state and DEM modelling

    Directory of Open Access Journals (Sweden)

    Pagano Arianna Gea

    2017-01-01

    Full Text Available The paper presents a conceptual micromechanical model for 1-D compression behaviour of non-active clays in saturated state. An experimental investigation was carried out on kaolin clay samples saturated with fluids of different pH and dielectric permittivity. The effect of pore fluid characteristics on one-dimensional compressibility behaviour of kaolin was investigated. A three dimensional Discrete Element Method (DEM was implemented in order to simulate the response of saturated kaolin observed during the experiments. A complex contact model was introduced, considering both the mechanical and physico-chemical microscopic interactions between clay particles. A simple analysis with spherical particles only was performed as a preliminary step in the DEM study in the elastic regime.

  13. 3D Digital Modelling

    DEFF Research Database (Denmark)

    Hundebøl, Jesper

    wave of new building information modelling tools demands further investigation, not least because of industry representatives' somewhat coarse parlance: Now the word is spreading -3D digital modelling is nothing less than a revolution, a shift of paradigm, a new alphabet... Research qeustions. Based...... on empirical probes (interviews, observations, written inscriptions) within the Danish construction industry this paper explores the organizational and managerial dynamics of 3D Digital Modelling. The paper intends to - Illustrate how the network of (non-)human actors engaged in the promotion (and arrest) of 3......D Modelling (in Denmark) stabilizes - Examine how 3D Modelling manifests itself in the early design phases of a construction project with a view to discuss the effects hereof for i.a. the management of the building process. Structure. The paper introduces a few, basic methodological concepts...

  14. Using digital elevation models as an environmental predictor for soil clay contents

    DEFF Research Database (Denmark)

    Greve, Mogens Humlekrog; Bou Kheir, Rania; Greve, Mette Balslev

    2012-01-01

    The objective of this study was to evaluate the Shuttle Radar Topography Mission (SRTM) digital elevation model (DEM) as an environmental predictor for soil clay content (SCC). It was based on the applicability of different DEMs, i.e., SRTM with 90-m resolution and airborne Light Detection...... and Ranging (LIDAR) (in 24- and 90-m resolution), using regression-tree analysis. Ten terrain parameters were generated from these DEMs. These terrain parameters were used along other environmental variables to statistically explain SCC content in Denmark. Results indicated that the SRTM tree model (T1: 90-m...

  15. DEM Modelling of Granule Rearrangement and Fracture Behaviours During a Closed-Die Compaction.

    Science.gov (United States)

    Furukawa, Ryoichi; Kadota, Kazunori; Noguchi, Tetsuro; Shimosaka, Atsuko; Shirakawa, Yoshiyuki

    2017-01-26

    The closed-die compaction behaviour of D-mannitol granules has been simulated by the discrete element method (DEM) to investigate the granule rearrangement and fracture behaviour during compaction which affects the compactibility of the tablet. The D-mannitol granules produced in a fluidized bed were modelled as agglomerates of primary particles connected by linear spring bonds. The validity of the model granule used in the DEM simulation was demonstrated by comparing to the experimental results of a uniaxial compression test. During uniaxial compression, the numerical results of the force-displacement curve corresponded reasonably well to the experimental data. The closed-die compaction of the modelled granules was carried out to investigate the rearrangement and fracture behaviours of the granule at different upper platen velocities. The forces during closed-die compaction calculated by DEM fluctuated in the low-pressure region due to the rearrangement of granules. A Heckel analysis showed that the force fluctuation occurred at the initial bending region of the Heckel plot, which represents the granule rearrangement and fracture. Furthermore, the upper platen velocity affected the trend of compaction forces, which can lead to compaction failure due to capping. These results could contribute to designing the appropriate granules during closed-die compaction.

  16. Fluid-particle flow modelling and validation using two-way-coupled mesoscale SPH-DEM

    CERN Document Server

    Robinson, Martin; Ramaioli, Marco

    2013-01-01

    We present a meshless simulation method for multiphase fluid-particle flows coupling Smoothed Particle Hydrodynamics (SPH) and the Discrete Element Method (DEM). Rather than fully resolving the interstitial fluid, which is often infeasible, the unresolved fluid model is based on the locally averaged Navier Stokes equations, which are coupled with a DEM model for the solid phase. In contrast to similar mesh-based Discrete Particle Methods (DPMs), this is a purely particle-based method and enjoys the flexibility that comes from the lack of a prescribed mesh. It is suitable for problems such as free surface flow or flow around complex, moving and/or intermeshed geometries. It can be used for both one and two-way coupling and is applicable to both dilute and dense particle flows. A comprehensive validation procedure for fluid-particle simulations is presented and applied to the SPH-DEM method, using simulations of single and multiple particle sedimentation in a 3D fluid column and comparison with analytical model...

  17. The Sensitivity of a Volcanic Flow Model to Digital Elevation Models From Diverse Sources: Digitized Map Contours and Airborne Interferometric Radar

    Science.gov (United States)

    Stevens, N. F.; Manville, V.; Heron, D. W.

    2001-12-01

    A growing trend in the field of volcanic hazard assessment is the use of computer models of a variety of flows to predict potential areas of devastation. The accuracy of these computer models depends on two factors, the nature and veracity of the flow model itself, and the accuracy of the topographic data set over which it is run. All digital elevation models (DEMs) contain innate errors. The nature of these depends on the accuracy of the original measurements of the terrain, and on the method used to build the DEM. We investigate the effect that these errors have on the performance of a simple volcanic flow model designed to delineate areas at risk from lahar inundation. The volcanic flow model was run over two DEMs of southern Ruapehu volcano derived from (1) digitized 1:50,000 topographic maps, and (2) airborne C-band synthetic aperture radar interferometry obtained using the NASA AIRSAR system. On steep slopes (exceeding 4 degrees), drainage channels are more likely to be incised deeply, and flow paths predicted by the model are generally in agreement for both DEMs despite the differing nature of the source data. Over shallow slopes (approx. 4 degrees and less), where channels are less deep and are more likely to meander, problems were encountered with flow path prediction in both DEMs due to interpolation errors and forestry. The predicted lateral and longitudinal extent of deposit inundation was also sensitive to the type of DEM used, most likely in response to the differing degrees of surface texture preserved in the DEMs. A technique to refine contour-derived DEMs and reduce the error in predicted flow paths was tested to improve the reliability of the modeled flow path predictions. The suitability of forthcoming topographic measurements acquired by a single-pass space-borne instrument, the NASA Shuttle Radar Topography Mission (SRTM) are also tested.

  18. Predictive vegetation modeling for conservation: impact of error propagation from digital elevation data.

    Science.gov (United States)

    Van Niel, Kimberly P; Austin, Mike P

    2007-01-01

    The effect of digital elevation model (DEM) error on environmental variables, and subsequently on predictive habitat models, has not been explored. Based on an error analysis of a DEM, multiple error realizations of the DEM were created and used to develop both direct and indirect environmental variables for input to predictive habitat models. The study explores the effects of DEM error and the resultant uncertainty of results on typical steps in the modeling procedure for prediction of vegetation species presence/absence. Results indicate that all of these steps and results, including the statistical significance of environmental variables, shapes of species response curves in generalized additive models (GAMs), stepwise model selection, coefficients and standard errors for generalized linear models (GLMs), prediction accuracy (Cohen's kappa and AUC), and spatial extent of predictions, were greatly affected by this type of error. Error in the DEM can affect the reliability of interpretations of model results and level of accuracy in predictions, as well as the spatial extent of the predictions. We suggest that the sensitivity of DEM-derived environmental variables to error in the DEM should be considered before including them in the modeling processes.

  19. Wavelet based analysis of TanDEM-X and LiDAR DEMs across a tropical vegetation heterogeneity gradient driven by fire disturbance in Indonesia

    NARCIS (Netherlands)

    Grandi, De Elsa Carla; Mitchard, Edward; Hoekman, Dirk

    2016-01-01

    Three-dimensional information provided by TanDEM-X interferometric phase and airborne Light Detection and Ranging (LiDAR) Digital ElevationModels (DEMs) were used to detect differences in vegetation heterogeneity through a disturbance gradient in Indonesia. The range of vegetation types developed

  20. Interferometric SAR Coherence Models for Characterization of Hemiboreal Forests Using TanDEM-X Data

    Directory of Open Access Journals (Sweden)

    Aire Olesk

    2016-08-01

    Full Text Available In this study, four models describing the interferometric coherence of the forest vegetation layer are proposed and compared with the TanDEM-X data. Our focus is on developing tools for hemiboreal forest height estimation from single-pol interferometric SAR measurements, suitable for wide area forest mapping with limited a priori information. The multi-temporal set of 19 TanDEM-X interferometric pairs and the 90th percentile forest height maps are derived from Airborne LiDAR Scanning (ALS, covering an area of 2211 ha of forests over Estonia. Three semi-empirical models along with the Random Volume over Ground (RVoG model are examined for applicable parameter ranges and model performance under various conditions for over 3000 forest stands. This study shows that all four models performed well in describing the relationship between forest height and interferometric coherence. Use of an advanced model with multiple parameters is not always justified when modeling the volume decorrelation in the boreal and hemiboreal forests. The proposed set of semi-empirical models, show higher robustness compared to a more advanced RVoG model under a range of seasonal and environmental conditions during data acquisition. We also examine the dynamic range of parameters that different models can take and propose optimal conditions for forest stand height inversion for operationally-feasible scenarios.

  1. Determining the optimum cell size of digital elevation model for hydrologic application

    Indian Academy of Sciences (India)

    Arabinda Sharma; K N Tiwari; P B S Bhadoria

    2011-08-01

    Scale is one of the most important but unsolved issues in various scientific disciplines that deal with spatial data. The arbitrary choice of grid cell size for contour interpolated digital elevation models (DEM) is one of the major sources of uncertainty in the hydrologic modelling process. In this paper, an attempt was made to identify methods for determining an optimum cell size for a contour interpolated DEM in prior to hydrologic modelling. Twenty-meter interval contour lines were used to generate DEMs of five different resolutions, viz., 30, 45, 60, 75, and 90 m using TOPOGRID algorithm. The obtained DEMs were explored for their intrinsic quality using four different methods, i.e., sink analysis, fractal dimension of derived stream network, entropy measurement and semivariogram modelling. These methods were applied to determine the level artifacts (interpolation error) in DEM surface as well as derived stream network, spatial information content and spatial variability respectively. The results indicated that a 90 m cell size is sufficient to capture the terrain variability for subsequent hydrologic modelling in the study area. The significance of this research work is that it provides methods which DEM users can apply to select an appropriate DEM cell size in prior to detailed hydrologic modelling.

  2. Uncertainty aspects of the digital elevation model for the Forsmark area

    Energy Technology Data Exchange (ETDEWEB)

    Stroemgren, Maarten; Brydsten, Lars (Umeaa Univ., Umeaa (Sweden))

    2009-10-15

    A digital elevation model (DEM) describes the terrain relief. A proper DEM is an important data source for many of the different site description models conducted in the Forsmark region. Input data for the Forsmark DEM is elevation data for both land and sea areas of different origin and quality. No statistical analysis of the error in the Forsmark DEM is so far carried out. However, the Forsmark DEM is part of the quality assessment of the regolith depth model for the Forsmark area since it represents the upper surface of the regolith depth model. The aim of this project was to calculate the errors in different areas in the Forsmark DEM and present them in terms of general descriptive statistics. Measurements have confirmed the knowledge that the 0.25-metre DEM produced from the laser scanning measurements in the Laxemar-Simpevarp area is of very high quality. The 0.25-metre DEM was used to calculate the errors of the 10 and 50-metre DEMs, and the errors for different sea shoreline sources. These error distributions were placed randomly among points for the same data sources in the Forsmark area and used for correction of the original elevation levels. Using the corrected input data for the 10 and 50-metre DEMs and for the sea shoreline, a new DEM was produced. All other input data remained unchanged. The error for the Forsmark DEM was calculated for areas within the data sources corrected from the 0.25-metre DEM. The 0.25-metre DEM from the Laxemar-Simpevarp area was also used for a calculation of how density of input data points used in interpolation affects quality in a 20-metre DEM. Part of the input data was removed in the sea area, new DEMs were produced and compared to the existing Forsmark DEM within the areas of the removed data, to get a measure of the error in these areas of the DEM. In areas of input data for the sea shoreline, the quality of the Forsmark DEM is high. The errors within the SKB 10-metre DEM are slightly less than within the extension

  3. Quality Assessment for the First Part of the Tandem-X Global Digital Elevation Model

    Science.gov (United States)

    Brautigam, B.; Martone, M.; Rizzoli, P.; Gonzalez, C.; Wecklich, C.; Borla Tridon, D.; Bachmann, M.; Schulze, D.; Zink, M.

    2015-04-01

    TanDEM-X is an innovative synthetic aperture radar (SAR) mission with the main goal to generate a global and homogeneous digital elevation model (DEM) of the Earth's land masses. The final DEM product will reach a new dimension of detail with respect to resolution and quality. The absolute horizontal and vertical accuracy shall each be less than 10 m in a 90% confidence interval at a pixel spacing of 12 m. The relative vertical accuracy specification for the TanDEM-X mission foresees a 90% point-to-point error of 2 m (4 m) for areas with predominant terrain slopes smaller than 20% (greater than 20%) within a 1° longitude by 1° latitude cell. The global DEM is derived from interferometric SAR acquisitions performed by two radar satellites flying in close orbit formation. Interferometric performance parameters like the coherence between the two radar images have been monitored and evaluated throughout the mission. In a further step, over 500,000 single SAR scenes are interferometrically processed, calibrated, and mosaicked into a global DEM product which will be completely available in the second half of 2016. This paper presents an up-todate quality status of the single interferometric acquisitions as well as of 50% of the final DEM. The overall DEM quality of these first products promises accuracies well within the specification, especially in terms of absolute height accuracy.

  4. Design flood of ungauged basins based on DEM

    Institute of Scientific and Technical Information of China (English)

    Zhang Ting; Feng Ping

    2012-01-01

    In this paper, the northern mountainous area of Fuzhou City which is an ungauged basin has been taken for example to discuss the method of design flood calculation by means of combining the DEM (digital elevation model) and the Xin' anjiang Model ( three components ). The problem of estimating the parameters of the runoff model has been solved by using the parameters of the reference station. In the conflux calculation, the isochrones are obtained by DEM which helps to avoid the cumbersome work of drawing them on the map. With the establishment of the digital elevation model throughout the country, it is practically significant to use it in the hydrological estimation.

  5. DEM error retrieval by analyzing time series of differential interferograms

    OpenAIRE

    Bombrun, Lionel; Gay, Michel; Trouvé, Emmanuel; Vasile, Gabriel; Mars, Jerome,

    2009-01-01

    International audience; 2-pass Differential Synthetic Aperture Radar Interferometry (D-InSAR) processing have been successfully used by the scientific community to derive velocity fields. Nevertheless, a precise Digital Elevation Model (DEM) is necessary to remove the topographic component from the interferograms. This letter presents a novel method to detect and retrieve DEM errors by analyzing time series of differential interferograms. The principle of the method is based on the comparison...

  6. A Global Corrected SRTM DEM Product Over Vegetated Areas Using LiDAR Data

    Science.gov (United States)

    Zhao, X.; Guo, Q.; Su, Y.; Hu, T.

    2016-12-01

    The Shuttle Radar Topography Mission (SRTM) digital elevation model (DEM) is one of the most complete and frequently used global-scale DEM products in various applications. However, previous studies have shown that the SRTM DEM is systematically higher than the actual land surface in vegetated mountain areas. The objective of this study is to propose a procedure to calibrate the SRTM DEM over global vegetated mountain areas. To address this, we firstly collected airborne LiDAR data over 200,000 km2 globally used as ground truth data to analyze the uncertainty of the SRTM DEM. The Geoscience Laser Altimeter System (GLAS)/ICESat (Ice, Cloud, and land Elevation Satellite) data were used as complementary data in areas lack of airborne LiDAR data. Secondly, we modelled the SRTM DEM error for each vegetation type using regression methods. Tree height, canopy cover, and terrain slope were used as dependent variables to model the SRTM DEM error. Finally, these regression models were used to estimate the SRTM DEM error in vegetated mountain areas without LiDAR data coverage, and therefore correct the SRTM DEM. Our results show that the new corrected SRTM DEM can significantly reduce the systematic bias of the SRTM DEM in vegetated mountain areas.

  7. VT Lidar Hydro-flattened DEM (1.6 meter) - 2008 - West Franklin

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) This metadata applies to the following collection area(s): Missisquoi Lower 2008 1.6m and Digital Elevation Model (DEM) datasets of various...

  8. VT Lidar Hydro-flattened DEM (1.6 meter) - 2010 - East Franklin/West Orleans

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) This metadata applies to the following collection area(s): Missisquoi Upper 2010 1.6m and Digital Elevation Model (DEM) datasets of various...

  9. VT Lidar Hydro-flattened DEM (0.7 meter) - 2014 - Chittenden, Lamoille, Orleans, & Washington Counties

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) This metadata applies to the following collection area(s): Eastern VT 2014 0.7m and Digital Elevation Model (DEM) dataset of the following...

  10. VT Lidar Hydro-flattened DEM (0.7 meter) - 2015 - Windham County

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) This metadata applies to the following collection area(s): Windham County 2015 0.7m and Digital Elevation Model (DEM) dataset of the following...

  11. VT Lidar Hydro-flattened DEM (1.6 meter) - 2012 - Addison

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) This metadata applies to the following collection area(s): Addison County 2012 1.6m and Digital Elevation Model (DEM) datasets of various...

  12. Research on Digital Product Modeling Key Technologies of Digital Manufacturing

    Institute of Scientific and Technical Information of China (English)

    DING Guoping; ZHOU Zude; HU Yefa; ZHAO Liang

    2006-01-01

    With the globalization and diversification of the market and the rapid development of Information Technology (IT) and Artificial Intelligence (AI), the digital revolution of manufacturing is coming. One of the key technologies in digital manufacturing is product digital modeling. This paper firstly analyzes the information and features of the product digital model during each stage in the product whole lifecycle, then researches on the three critical technologies of digital modeling in digital manufacturing-product modeling, standard for the exchange of product model data and digital product data management. And the potential signification of the product digital model during the process of digital manufacturing is concluded-product digital model integrates primary features of each stage during the product whole lifecycle based on graphic features, applies STEP as data exchange mechanism, and establishes PDM system to manage the large amount, complicated and dynamic product data to implement the product digital model data exchange, sharing and integration.

  13. A comparative analysis of different DEM interpolation methods

    Directory of Open Access Journals (Sweden)

    P.V. Arun

    2013-12-01

    Full Text Available Visualization of geospatial entities generally entails Digital Elevation Models (DEMs that are interpolated to establish three dimensional co-ordinates for the entire terrain. The accuracy of generated terrain model depends on the interpolation mechanism adopted and hence it is needed to investigate the comparative performance of different approaches in this context. General interpolation techniques namely Inverse Distance Weighted, kriging, ANUDEM, Nearest Neighbor, and Spline approaches have been compared. Differential ground field survey has been conducted to generate reference DEM as well as specific set of test points for comparative evaluation. We have also investigated the suitability of Shuttle Radar Topographic Mapper Digital Elevation Mapper for Indian terrain by comparing it with the Survey of India (SOI Digital Elevation Model (DEM. Contours were generated at different intervals for comparative analysis and found SRTM as more suitable. The terrain sensitivity of various methods has also been analyzed with reference to the study area.

  14. Simulation of Hydraulic and Natural Fracture Interaction Using a Coupled DFN-DEM Model

    Energy Technology Data Exchange (ETDEWEB)

    J. Zhou; H. Huang; M. Deo

    2016-03-01

    The presence of natural fractures will usually result in a complex fracture network due to the interactions between hydraulic and natural fracture. The reactivation of natural fractures can generally provide additional flow paths from formation to wellbore which play a crucial role in improving the hydrocarbon recovery in these ultra-low permeability reservoir. Thus, accurate description of the geometry of discrete fractures and bedding is highly desired for accurate flow and production predictions. Compared to conventional continuum models that implicitly represent the discrete feature, Discrete Fracture Network (DFN) models could realistically model the connectivity of discontinuities at both reservoir scale and well scale. In this work, a new hybrid numerical model that couples Discrete Fracture Network (DFN) and Dual-Lattice Discrete Element Method (DL-DEM) is proposed to investigate the interaction between hydraulic fracture and natural fractures. Based on the proposed model, the effects of natural fracture orientation, density and injection properties on hydraulic-natural fractures interaction are investigated.

  15. DEM-based Modeling at the Hillslope Scale: Recent Results and Future Process Research Needs

    Science.gov (United States)

    McDonnell, J.; Coles, A.; Gabrielli, C. P.; Appels, W. M.; Ameli, A.

    2015-12-01

    Hillslope scale patterns of overland flow, infiltration, subsurface stormflow and groundwater recharge are all topographically mediated. However, the mechanisms by which macro-, meso- and micro-topographies control filling and spilling of lateral flow, and vertical infiltration, are still poorly understood. Here we present high-resolution DEMs derived from ground-based LiDAR, airborne LiDAR, and GPR (ground penetrating rebar!) with model analysis to examine the topographic controls on water flow at three distinct hillslopes. We explore surface topographic effects on rainfall- and snowmelt-infiltration and overland flow on the Canadian Prairies; the surface and subsurface topographic controls on lateral subsurface stormflow generation and groundwater recharge at a steep, wet temperate rainforest in New Zealand; and subsurface topographic controls on patterns of groundwater recharge at a forested hillslope on the Georgia Piedmont in the United States. We demonstrate how these studies reveal future research needs for improving DEM-based watershed delineation and modeling along with some surprising similarities between topographic controls on soil surface infiltration and overland flow and twin subsurface processes at the soil-bedrock interface.

  16. Estuarine Bathymetric Digital Elevation Models (30 meter and 3 arc second resolution) Derived From Source Hydrographic Survey Soundings Collected by NOAA

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These Bathymetric Digital Elevation Models (DEM) were generated from original point soundings collected during hydrographic surveys conducted by the National Ocean...

  17. Digital Architecture Planning Model

    Energy Technology Data Exchange (ETDEWEB)

    Oxstrand, Johanna Helene [Idaho National Lab. (INL), Idaho Falls, ID (United States). Light Water Reactor Sustainability Program (LWRS); Al Rashdan, Ahmad Yahya Mohammad [Idaho National Lab. (INL), Idaho Falls, ID (United States). Light Water Reactor Sustainability Program (LWRS); Bly, Aaron Douglas [Idaho National Lab. (INL), Idaho Falls, ID (United States). Light Water Reactor Sustainability Program (LWRS); Rice, Brandon Charles [Idaho National Lab. (INL), Idaho Falls, ID (United States). Light Water Reactor Sustainability Program (LWRS); Fitzgerald, Kirk [Idaho National Lab. (INL), Idaho Falls, ID (United States). Light Water Reactor Sustainability Program (LWRS); Wilson, Keith Leon [Idaho National Lab. (INL), Idaho Falls, ID (United States). Light Water Reactor Sustainability Program (LWRS)

    2016-03-01

    As part of the U.S. Department of Energy’s Light Water Reactor Sustainability Program, the Digital Architecture (DA) Project focuses on providing a model that nuclear utilities can refer to when planning deployment of advanced technologies. The digital architecture planning model (DAPM) is the methodology for mapping power plant operational and support activities into a DA that unifies all data sources needed by the utilities to operate their plants. The DA is defined as a collection of information technology capabilities needed to support and integrate a wide spectrum of real-time digital capabilities for performance improvements of nuclear power plants. DA can be thought of as integration of the separate instrumentation and control and information systems already in place in nuclear power plants, which are brought together for the purpose of creating new levels of automation in plant work activities. A major objective in DAPM development was to survey all key areas that needed to be reviewed in order for a utility to make knowledgeable decisions regarding needs and plans to implement a DA at the plant. The development was done in two steps. First, researchers surveyed the nuclear industry in order to learn their near-term plans for adopting new advanced capabilities and implementing a network (i.e., wireless and wire) infrastructure throughout the plant, including the power block. Secondly, a literature review covering regulatory documents, industry standards, and technical research reports and articles was conducted. The objective of the review was to identify key areas to be covered by the DAPM, which included the following: 1. The need for a DA and its benefits to the plant 2. Resources required to implement the DA 3. Challenges that need to be addressed and resolved to implement the DA 4. Roles and responsibilities of the DA implementation plan. The DAPM was developed based on results from the survey and the literature review. Model development, including

  18. The influence of digital elevation model resolution on overland flow networks for modelling urban pluvial flooding.

    Science.gov (United States)

    Leitão, J P; Boonya-Aroonnet, S; Prodanović, D; Maksimović, C

    2009-01-01

    This paper presents the developments towards the next generation of overland flow modelling of urban pluvial flooding. Using a detailed analysis of the Digital Elevation Model (DEM) the developed GIS tools can automatically generate surface drainage networks which consist of temporary ponds (floodable areas) and flow paths and link them with the underground network through inlets. For different commercially-available Rainfall-Runoff simulation models, the tool will generate the overland flow network needed to model the surface runoff and pluvial flooding accurately. In this paper the emphasis is placed on a sensitivity analysis of ponds and preferential overland flow paths creation. Different DEMs for three areas were considered in order to compare the results obtained. The DEMs considered were generated using different acquisition techniques and hence represent terrain with varying levels of resolution and accuracy. The results show that DEMs can be used to generate surface flow networks reliably. As expected, the quality of the surface network generated is highly dependent on the quality and resolution of the DEMs and successful representation of buildings and streets.

  19. DEM generated from InSAR in mountainous terrain and its accuracy analysis

    Science.gov (United States)

    Hu, Hongbing; Zhan, Yulan

    2011-02-01

    Digital Elevation Model (DEM) derived from survey data is accurate but it is very expensive and time-consuming. In recent years, remote sensing techniques including Synthetic Apenture Radar Interferometry (InSAR) had been developed as a powerful method to derive high precision DEM, especially in mountainous or deep forest areas. The purpose of this paper is to illustrate the principle of InSAR and show the result of a case study in Gejiu city, Yunnan province, China. The accuracy of DEM derived from InSAR (abbreviation as InSAR-DEM) is also evaluated by comparing it with DEM generated from topographic map at the scale of 1:50000 (abbreviation as TOP-DEM). The result shows that: (1)The general precision of the whole selected area acquired by subtracting InSAR-DEM from TOP-DEM is that the maximum, the minimum, the RMSE, and the mean of difference of the two DEMs are 203m, -188m, 26.9m and 5.7m respectively. (2)The topographic trend represented by the two DEMs is coincident, even though TOP-DEM is finer than InSAR-DEM, especial at the valley. (3) Contour maps with the interval of 100m and 50m converted from InSAR-DEM and TOP-DEM respectively show accordant relief trend. Contour from TOP-DEM is smoother than that of from InSAR-DEM, while Contour from InSAR-DEM has more islands than that of from TOP-DEM.(4) Coherence has great influence on the precision of InSAR-DEM, the precision of low-coherence area approaches 100 m while that of high-coherence area can up to m level. (5) The relief trend of 6 profiles represented by InSAR-DEM and TOP-DEM is accordant with tiny difference in partial minutiae. InSAR-DEM displays hypsographies at relative flat areas including surface of water, which reflects the influence of flat earth on InSAR to a certain extent.

  20. From digital elevation model data to terrain depiction data

    Science.gov (United States)

    Helmetag, Arnd; Smietanski, Guillaume; Baumgart, Michael; Kubbat, Wolfgang

    1999-07-01

    The analysis of accidents focused our work on the avoidance of 'Controlled Flight Into Terrain' caused by insufficient situation awareness. Analysis of safety concepts led us to the design of the proposed synthetic vision system that will be described. Since most information on these 3D-Displays is shown in a graphical way, it can intuitively be seized by the pilot. One key element of SVS is terrain depiction, that is the topic of this paper. Real time terrain depiction has to face two requirements. On the one hand spatial awareness requires recognition of synthetic environment demanding characteristics. On the other hand the number of rendered polygons has to be minimized due to limitations of real time image generation performance. Visual quality can significantly be enhanced if equidistant data like Digital Elevation Model data (DEM) are vectorized. One method of data vectorization will be explained in detail and advantages will be mentioned. In Virtual Reality (VR) applications, conventional decimation software degrades the visual quality of geometry that is compensated by complex textures and lighting. Since terrain decimated with those tools looses its characteristics, and textures are not acceptable for several reasons, a terrain specific decimation has to be performed. How can a Digital Elevation Model (DEM) be decimated without decreasing the visualization value? In this paper, extraction of terrain characteristics and adapted decimation will be proposed. Steps from DEM to Terrain Depiction Data (TDD) are discussed in detail.

  1. Bermuda 1 arc-second Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The 1 arc-second Bermuda DEM will be used to support NOAA's tsunami forecast system and for tsunami inundation modeling. This DEM encompasses the islands of Bermuda...

  2. U.S. Virgin Islands Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The 1 arc-second Virgin Islands DEM will be used to support NOAA's tsunami forecast system and for tsunami inundation modeling. This DEM encompasses the Virgin...

  3. British Columbia 3 arc-second Bathymetric Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The 3 arc-second British Columbia DEM will be used to support NOAA's tsunami forecast system and for tsunami inundation modeling. This DEM covers the coastal area...

  4. Bermuda 3 arc-second Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The 3 arc-second Bermuda DEM will be used to support NOAA's tsunami forecast system and for tsunami inundation modeling. This DEM encompasses the islands of Bermuda...

  5. Using Digital Elevation Models and LAHARZ to Forecast Inundation by Lahars

    Science.gov (United States)

    Schilling, S. P.; Iverson, R. M.

    2005-12-01

    LAHARZ is a statistically based method for evaluating the effects of three-dimensional topography on lahar inundation patterns. The method applies the average behavior of past lahars to forecast inundation areas and portray them on maps. LAHARZ software runs on a Geographic Information System (GIS) and requires inputs consisting of prospective lahar volumes appropriate for the size and geologic history of a given volcano, identification of lahar source areas, and a digital elevation model (DEM) of topography. When using LAHARZ, the attributes of the input DEM have a significant impact on delineation of hazard zones. During a volcano crisis, there may be no option other than to select any available DEM to construct hazard zones. Ideally, users should obtain and evaluate existing or construct new DEMs before a crisis situation. Considerations before using a DEM are its extent, resolution, projection, datum, construction method, and quality. DEMs should include the volcano edifice and its drainages, which may reach hundreds of kilometers away from the volcano. The DEM should have sufficient resolution to depict drainage shapes accurately. For example, a DEM with 1-km resolution will not portray a 500-m wide drainage accurately. Projection, datum, and algoritm used for DEM generation ensure the constructed hazard zones can be displayed accurately with other data used in hazard map preparation. Methods for checking horizontal and vertical accuracy can range from inspecting the DEM visually and comparing it with published topographic maps to visiting locations in the field visible in the DEM (e.g., road intersections or mountain peaks) and comparing coordinates with a global positioning system (GPS) at an accuracy equal to or higher than the DEM for comparison. The DEM should be hydrologically correct. It should route a hypothetical flow of water along drainage thalwegs downstream effectively. Hydrologic functions called by LAHARZ can be used to ensure continuity of flow

  6. RADAR INTERFEROMETRY APPLICATION FOR DIGITAL ELEVATION MODEL IN MOUNT BROMO, INDONESIA

    Directory of Open Access Journals (Sweden)

    Noorlaila Hayati

    2015-06-01

    Full Text Available This paper reviewed the result and processing of digital elevation model (DEM using L-Band ALOS PALSAR data and two-pass radar interferometry method in Bromo Mountain region. Synthetic Aperture Radar is an advanced technology that has been used to monitor deformation, land cover change, image detection and especially topographic information such as DEM.  We used two scenes of SAR imageries to generate DEM extraction which assumed there is no deformation effect between two acquisitions. We could derive topographic information using phase difference by combining two single looks complex (SLC images called focusing process. The next steps were doing interferogram generation, phase unwrapping and geocoding. DEM-InSAR was compared to SRTM 90m that there were significant elevation differences between two DEMs such as smoothing surface and detail topographic. Particularly for hilly areas, DEM-InSAR showed better quality than SRTM 90 m where the elevation could have 25.94 m maximum gap. Although the processing involved adaptive filter to amplify the phase signal, we concluded that InSAR DEM result still had error noise because of signal wavelength, incidence angle, SAR image relationship, and only using ascending orbit direction.

  7. Accuracy of Cartosat-1 DEM and its derived attribute at multiple scale representation

    Indian Academy of Sciences (India)

    Samadrita Mukherjee; Sandip Mukherjee; A Bhardwaj; Anirban Mukhopadhyay; R D Garg; S Hazra

    2015-04-01

    Digital Elevation Model (DEM) provides basic information about terrain relief and is used for morphological characterisation, hydrological modelling and infrastructural studies. This paper investigates the accuracy of DEM and its derived attributes in multiple scales. This study was carried out for a part of Shiwalik Himalaya using Cartosat-1 stereo pair data. DEM at various cell sizes were generated and information content was compared using mean elevation, variance and entropy statistics. Various post-spacing DEMs were validated to understand variation in vertical accuracy along different scales. The vertical accuracy (3.14–7.24 m) is affected in larger spacing DEM and elevation is underestimated. Slope of terrain also has similar impacts. The DEM and slope accuracy are also affected by the terrain roughness while assessing coarser grid size.

  8. Effects of lidar point density on bare earth extraction and DEM creation

    Science.gov (United States)

    Puetz, Angela M.; Olsen, R. Chris; Anderson, Brian

    2009-05-01

    Data density has a crucial impact on the accuracy of Digital Elevation Models (DEMs). In this study, DEMs were created from a high point-density LIDAR dataset using the bare earth extraction module in Quick Terrain Modeler. Lower point-density LIDAR collects were simulated by randomly selecting points from the original dataset at a series of decreasing percentages. The DEMs created from the lower resolution datasets are compared to the original DEM. Results show a decrease in DEM accuracy as the resolution of the LIDAR dataset is reduced. Some analysis is made of the types of errors encountered in the lower resolution DEMs. It is also noted that the percentage of points classified as bare earth decreases as the resolution of the LIDAR dataset is reduced.

  9. Evaluation of digital elevation models for delineation of hydrological response units in a Himalayan watershed

    NARCIS (Netherlands)

    Saran, S.; Sterk, G.; Peters, P.D.; Dadhwal, V.K.

    2010-01-01

    This study reports results from evaluation of the quality of digital elevation model (DEM) from four sources viz. topographic map (1: 50,000), Shuttle Radar Topographic Mission (SRTM) (90 m), optical stereo pair from ASTER (15 m) and CARTOSAT (2.5 m) and their use in derivation of hydrological respo

  10. Lunar Topography and Basins Mapped Using a Clementine Stereo Digital Elevation Model

    Science.gov (United States)

    Cook, A. C.; Spudis, P. D.; Robinson, M. S.; Watters, T. R.

    2002-01-01

    Planet-wide (1 km/pixel and 5 km/pixel) Digital Elevation Models (DEM) of the Moon have been produced using Clementine UVVIS (Ultraviolet-Visible) stereo. Six new basins have been discovered, two suspected basins have been confirmed, and the dimensions of existing basins better defined. Additional information is contained in the original extended abstract.

  11. Evaluation of digital elevation models for delineation of hydrological response units in a Himalayan watershed

    NARCIS (Netherlands)

    Saran, S.; Sterk, G.; Peters, P.; Dadhwal, V.K.

    2010-01-01

    This study reports results from evaluation of the quality of digital elevation model (DEM) from four sources viz. topographic map (1:50,000), Shuttle Radar Topographic Mission (SRTM) (90 m), optical stereo pair from ASTER (15 m) and CARTOSAT (2.5 m) and their use in derivation of hydrological respon

  12. Comparison of 7.5-minute and 1-degree digital elevation models

    Science.gov (United States)

    Isaacson, Dennis L.; Ripple, William J.

    1995-01-01

    We compared two digital elevation models (DEM's) for the Echo Mountain SE quadrangle in the Cascade Mountains of Oregon. Comparisons were made between 7.5-minute (1:24,000-scale) and 1-degree (1:250,000-scale) images using the variables of elevation, slope aspect, and slope gradient. Both visual and statistical differences are presented.

  13. How processing digital elevation models can affect simulated water budgets.

    Science.gov (United States)

    Kuniansky, Eve L; Lowery, Mark A; Campbell, Bruce G

    2009-01-01

    For regional models, the shallow water table surface is often used as a source/sink boundary condition, as model grid scale precludes simulation of the water table aquifer. This approach is appropriate when the water table surface is relatively stationary. Since water table surface maps are not readily available, the elevation of the water table used in model cells is estimated via a two-step process. First, a regression equation is developed using existing land and water table elevations from wells in the area. This equation is then used to predict the water table surface for each model cell using land surface elevation available from digital elevation models (DEM). Two methods of processing DEM for estimating the land surface for each cell are commonly used (value nearest the cell centroid or mean value in the cell). This article demonstrates how these two methods of DEM processing can affect the simulated water budget. For the example presented, approximately 20% more total flow through the aquifer system is simulated if the centroid value rather than the mean value is used. This is due to the one-third greater average ground water gradients associated with the centroid value than the mean value. The results will vary depending on the particular model area topography and cell size. The use of the mean DEM value in each model cell will result in a more conservative water budget and is more appropriate because the model cell water table value should be representative of the entire cell area, not the centroid of the model cell.

  14. Validation of DEM modeling of sintering using an in situ X-ray microtomography analysis of the sintering of NaCl powder

    Science.gov (United States)

    Martin, Sylvain; Navarro, Sebastián; Palancher, Hervé; Bonnin, Anne; Léchelle, Jacques; Guessasma, Mohamed; Fortin, Jérôme; Saleh, Khashayar

    2016-11-01

    This paper aims to validate the discrete element method (DEM) model of sintering. In situ X-ray microtomography experiments have been carried out at the ESRF to follow the sintering of NaCl powder, the properties of which are close to the DEM model assumptions. DEM simulations are then run using an improved implicit method. The comparison between experiment and simulation shows the capability of DEM to predict the behavior of the sample on both particle and packing scale. The main advantages and limits of this approach are finally discussed based on these results and those of previous studies.

  15. New trends in flood risk analysis: working with 2D flow models, laser DEM and a GIS environment

    OpenAIRE

    Archambeau, Pierre; Dewals, Benjamin; Erpicum, Sébastien; Detrembleur, Sylvain; Pirotton, Michel

    2004-01-01

    This paper outlines the integration of new and accurate laser DEM into the determination of floodplains. Global and robust GIS environment is absolutely necessary to manage this very large amounts of topographic data. The development and interaction of 2D flow models, simplified or not, ensures to offer more accurate and flexible physically based tools to the decision-makers. Peer reviewed

  16. Digital elevation model and orthophotographs of Greenland based on aerial photographs from 1978–1987

    Science.gov (United States)

    Korsgaard, Niels J.; Nuth, Christopher; Khan, Shfaqat A.; Kjeldsen, Kristian K.; Bjørk, Anders A.; Schomacker, Anders; Kjær, Kurt H.

    2016-01-01

    Digital Elevation Models (DEMs) play a prominent role in glaciological studies for the mass balance of glaciers and ice sheets. By providing a time snapshot of glacier geometry, DEMs are crucial for most glacier evolution modelling studies, but are also important for cryospheric modelling in general. We present a historical medium-resolution DEM and orthophotographs that consistently cover the entire surroundings and margins of the Greenland Ice Sheet 1978–1987. About 3,500 aerial photographs of Greenland are combined with field surveyed geodetic ground control to produce a 25 m gridded DEM and a 2 m black-and-white digital orthophotograph. Supporting data consist of a reliability mask and a photo footprint coverage with recording dates. Through one internal and two external validation tests, this DEM shows an accuracy better than 10 m horizontally and 6 m vertically while the precision is better than 4 m. This dataset proved successful for topographical mapping and geodetic mass balance. Other uses include control and calibration of remotely sensed data such as imagery or InSAR velocity maps. PMID:27164457

  17. Digital elevation model and orthophotographs of Greenland based on aerial photographs from 1978-1987.

    Science.gov (United States)

    Korsgaard, Niels J; Nuth, Christopher; Khan, Shfaqat A; Kjeldsen, Kristian K; Bjørk, Anders A; Schomacker, Anders; Kjær, Kurt H

    2016-05-10

    Digital Elevation Models (DEMs) play a prominent role in glaciological studies for the mass balance of glaciers and ice sheets. By providing a time snapshot of glacier geometry, DEMs are crucial for most glacier evolution modelling studies, but are also important for cryospheric modelling in general. We present a historical medium-resolution DEM and orthophotographs that consistently cover the entire surroundings and margins of the Greenland Ice Sheet 1978-1987. About 3,500 aerial photographs of Greenland are combined with field surveyed geodetic ground control to produce a 25 m gridded DEM and a 2 m black-and-white digital orthophotograph. Supporting data consist of a reliability mask and a photo footprint coverage with recording dates. Through one internal and two external validation tests, this DEM shows an accuracy better than 10 m horizontally and 6 m vertically while the precision is better than 4 m. This dataset proved successful for topographical mapping and geodetic mass balance. Other uses include control and calibration of remotely sensed data such as imagery or InSAR velocity maps.

  18. How to bridge the gap between "unresolved" model and "resolved" model in CFD-DEM coupled method for sediment transport?

    Science.gov (United States)

    Liu, D.; Fu, X.; Liu, X.

    2016-12-01

    In nature, granular materials exist widely in water bodies. Understanding the fundamentals of solid-liquid two-phase flow, such as turbulent sediment-laden flow, is of importance for a wide range of applications. A coupling method combining computational fluid dynamics (CFD) and discrete element method (DEM) is now widely used for modeling such flows. In this method, when particles are significantly larger than the CFD cells, the fluid field around each particle should be fully resolved. On the other hand, the "unresolved" model is designed for the situation where particles are significantly smaller than the mesh cells. Using "unresolved" model, large amount of particles can be simulated simultaneously. However, there is a gap between these two situations when the size of DEM particles and CFD cell is in the same order of magnitude. In this work, the most commonly used void fraction models are tested with numerical sedimentation experiments. The range of applicability for each model is presented. Based on this, a new void fraction model, i.e., a modified version of "tri-linear" model, is proposed. Particular attention is paid to the smooth function of void fraction in order to avoid numerical instability. The results show good agreement with the experimental data and analytical solution for both single-particle motion and also group-particle motion, indicating great potential of the new void fraction model.

  19. Evaluation Digital Elevation Model Generated by Synthetic Aperture Radar Data

    Science.gov (United States)

    Makineci, H. B.; Karabörk, H.

    2016-06-01

    Digital elevation model, showing the physical and topographical situation of the earth, is defined a tree-dimensional digital model obtained from the elevation of the surface by using of selected an appropriate interpolation method. DEMs are used in many areas such as management of natural resources, engineering and infrastructure projects, disaster and risk analysis, archaeology, security, aviation, forestry, energy, topographic mapping, landslide and flood analysis, Geographic Information Systems (GIS). Digital elevation models, which are the fundamental components of cartography, is calculated by many methods. Digital elevation models can be obtained terrestrial methods or data obtained by digitization of maps by processing the digital platform in general. Today, Digital elevation model data is generated by the processing of stereo optical satellite images, radar images (radargrammetry, interferometry) and lidar data using remote sensing and photogrammetric techniques with the help of improving technology. One of the fundamental components of remote sensing radar technology is very advanced nowadays. In response to this progress it began to be used more frequently in various fields. Determining the shape of topography and creating digital elevation model comes the beginning topics of these areas. It is aimed in this work , the differences of evaluation of quality between Sentinel-1A SAR image ,which is sent by European Space Agency ESA and Interferometry Wide Swath imaging mode and C band type , and DTED-2 (Digital Terrain Elevation Data) and application between them. The application includes RMS static method for detecting precision of data. Results show us to variance of points make a high decrease from mountain area to plane area.

  20. EVALUATION DIGITAL ELEVATION MODEL GENERATED BY SYNTHETIC APERTURE RADAR DATA

    Directory of Open Access Journals (Sweden)

    H. B. Makineci

    2016-06-01

    Full Text Available Digital elevation model, showing the physical and topographical situation of the earth, is defined a tree-dimensional digital model obtained from the elevation of the surface by using of selected an appropriate interpolation method. DEMs are used in many areas such as management of natural resources, engineering and infrastructure projects, disaster and risk analysis, archaeology, security, aviation, forestry, energy, topographic mapping, landslide and flood analysis, Geographic Information Systems (GIS. Digital elevation models, which are the fundamental components of cartography, is calculated by many methods. Digital elevation models can be obtained terrestrial methods or data obtained by digitization of maps by processing the digital platform in general. Today, Digital elevation model data is generated by the processing of stereo optical satellite images, radar images (radargrammetry, interferometry and lidar data using remote sensing and photogrammetric techniques with the help of improving technology. One of the fundamental components of remote sensing radar technology is very advanced nowadays. In response to this progress it began to be used more frequently in various fields. Determining the shape of topography and creating digital elevation model comes the beginning topics of these areas. It is aimed in this work , the differences of evaluation of quality between Sentinel-1A SAR image ,which is sent by European Space Agency ESA and Interferometry Wide Swath imaging mode and C band type , and DTED-2 (Digital Terrain Elevation Data and application between them. The application includes RMS static method for detecting precision of data. Results show us to variance of points make a high decrease from mountain area to plane area.

  1. Composite wedge failure using photogrammetric measurements and DFN-DEM modelling

    Directory of Open Access Journals (Sweden)

    Viviana Bonilla-Sierra

    2017-02-01

    Full Text Available Analysis and prediction of structural instabilities in open pit mines are an important design and operational consideration for ensuring safety and productivity of the operation. Unstable wedges and blocks occurring at the surface of the pit walls may be identified through three-dimensional (3D image analysis combined with the discrete fracture network (DFN approach. Kinematic analysis based on polyhedral modelling can be used for first pass analysis but cannot capture composite failure mechanisms involving both structurally controlled and rock mass progressive failures. A methodology is proposed in this paper to overcome such limitations by coupling DFN models with geomechanical simulations based on the discrete element method (DEM. Further, high resolution photogrammetric data are used to identify valid model scenarios. An identified wedge failure that occurred in an Australian coal mine is used to validate the methodology. In this particular case, the failure surface was induced as a result of the rock mass progressive failure that developed from the toe of the structure inside the intact rock matrix. Analysis has been undertaken to determine in what scenarios the measured and predicted failure surfaces can be used to calibrate strength parameters in the model.

  2. Validation of Orthorectified Interferometric Radar Imagery and Digital Elevation Models

    Science.gov (United States)

    Smith Charles M.

    2004-01-01

    This work was performed under NASA's Verification and Validation (V&V) Program as an independent check of data supplied by EarthWatch, Incorporated, through the Earth Science Enterprise Scientific Data Purchase (SDP) Program. This document serves as the basis of reporting results associated with validation of orthorectified interferometric interferometric radar imagery and digital elevation models (DEM). This validation covers all datasets provided under the first campaign (Central America & Virginia Beach) plus three earlier missions (Indonesia, Red River: and Denver) for a total of 13 missions.

  3. DEM Resolution Impact on the Estimation of the Physical Characteristics of Watersheds by Using SWAT

    Directory of Open Access Journals (Sweden)

    Waranyu Buakhao

    2016-01-01

    Full Text Available A digital elevation model (DEM is an important spatial input for automatic extraction of topographic parameters for the soil and water assessment tool (SWAT. The objective of this study was to investigate the impact of DEM resolution (from 5 to 90 m on the delineation process of a SWAT model with two types of watershed characteristics (flat area and mountain area and three sizes of watershed area (about 20,000, 200,000, and 1,500,000 hectares. The results showed that the total lengths of the streamline, main channel slope, watershed area, and area slope were significantly different when using the DEM datasets to delineate. Delineation using the SRTM DEM (90 m, ASTER DEM (30 m, and LDD DEM (5 m for all watershed characteristics showed that the watershed sizes and shapes obtained were only slightly different, whereas the area slopes obtained were significantly different. The total lengths of the generated streams increased when the resolution of the DEM used was higher. The stream slopes obtained using the small area sizes were insignificant, whereas the slopes obtained using the large area sizes were significantly different. This suggests that water resource model users should use the ASTER DEM as opposed to a finer resolution DEM for model input to save time for the model calibration and validation.

  4. VT Lidar Hydro-flattened DEM (0.7 meter) - 2013 - Rutland/West Washington/Grand Isle

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) This metadata applies to the following collection area: Rutland/GI Counties 2013 0.7m and Digital Elevation Model (DEM) datasets of various...

  5. Forest decline model development with LANDSAT TM, SPOT, and DEM DATA

    Science.gov (United States)

    Brockhaus, John A.; Campbell, Michael V.; Khorram, Siamak; Bruck, Robert I.; Stallings, Casson

    1991-09-01

    The relationships between percent defoliation and digital near-infrared reflectance data detected by the Landsat thematic mapper and SPOT sensors were investigated. These data were both found to be negatively correlated with defoliation data collected within the boreal montane spruce-fir ecosystem of the Black Mountains, North Carolina. Correlation coefficients were significant at the 0.05 level. Linear regression analysis demonstrated that neither source of satellite-based remotely-sensed data is an accurate predictor of defoliation. The addition of digital elevation data, however, as an independent variable to the regression equations significantly improved the predictive reliability of the models.

  6. Error analysis in the digital elevation model of Kuwait desert derived from repeat pass synthetic aperture radar interferometry

    Science.gov (United States)

    Rao, Kota S.; Al Jassar, Hala K.

    2010-09-01

    The aim of this paper is to analyze the errors in the Digital Elevation Models (DEMs) derived through repeat pass SAR interferometry (InSAR). Out of 29 ASAR images available to us, 8 are selected for this study which has unique data set forming 7 InSAR pairs with single master image. The perpendicular component of baseline (B highmod) varies between 200 to 400 m to generate good quality DEMs. The Temporal baseline (T) varies from 35 days to 525 days to see the effect of temporal decorrelation. It is expected that all the DEMs be similar to each other spatially with in the noise limits. However, they differ very much with one another. The 7 DEMs are compared with the DEM of SRTM for the estimation of errors. The spatial and temporal distribution of errors in the DEM is analyzed by considering several case studies. Spatial and temporal variability of precipitable water vapour is analysed. Precipitable water vapour (PWV) corrections to the DEMs are implemented and found to have no significant effect. The reasons are explained. Temporal decorrelation of phases and soil moisture variations seem to have influence on the accuracy of the derived DEM. It is suggested that installing a number of corner reflectors (CRs) and the use of Permanent Scatter approach may improve the accuracy of the results in desert test sites.

  7. EFFECT OF DIGITAL ELEVATION MODEL RESOLUTION ON EMPIRICAL ESTIMATION OF SOIL LOSS AND SEDIMENT TRANSPORT WITH GIS

    Institute of Scientific and Technical Information of China (English)

    Simon WU; Jonathan LI; Gordon HUANG; G.M.ZENG

    2004-01-01

    The horizontal accuracy of topographic data represented by digital elevation model (DEM) resolution brings about uncertainties in landscape process modeling with raster GIS. This paper presents a study on the effect of topographic variability on cell-based empirical estimation of soil loss and sediment transport. An original DEM of 10m resolution for a case watershed was re-sampled to three realizations of higher grid sizes for a comparative examination. Equations based on the USLE are applied to the watershed to calculate soil loss from each cell and total sediment transport to streams. The study found that the calculated total soil loss from the watershed decreases with the increasing DEM resolution with a linear correlation as spatial variability is reduced by cell aggregation. The USLE topographic factors (LS) extracted from applied DEMs represent spatial variability, and determine the estimations as shown in the modeling results. The commonly used USGS 30m DEM appears to be able to reflect essential spatial variability and suitable for the empirical estimation. The appropriateness of a DEM resolution is dependent upon specific landscape characteristics, applied model and its parameterization. This work attempts to provide a general framework for the research in the DEM-based empirical modeling.

  8. Modeling overland flow-driven erosion across a watershed DEM using the Landlab modeling framework.

    Science.gov (United States)

    Adams, J. M.; Gasparini, N. M.; Tucker, G. E.; Hobley, D. E. J.; Hutton, E. W. H.; Nudurupati, S. S.; Istanbulluoglu, E.

    2015-12-01

    Many traditional landscape evolution models assume steady-state hydrology when computing discharge, and generally route flow in a single direction, along the path of steepest descent. Previous work has demonstrated that, for larger watersheds or short-duration storms, hydrologic steady-state may not be achieved. In semiarid regions, often dominated by convective summertime storms, landscapes are likely heavily influenced by these short-duration but high-intensity periods of rainfall. To capture these geomorphically significant bursts of rain, a new overland flow method has been implemented in the Landlab modeling framework. This overland flow method routes a hydrograph across a landscape, and allows flow to travel in multiple directions out of a given grid node. This study compares traditional steady-state flow routing and incision methods to the new, hydrograph-driven overland flow and erosion model in Landlab. We propose that for short-duration, high-intensity precipitation events, steady-state, single-direction flow routing models will significantly overestimate discharge and erosion when compared with non-steady, multiple flow direction model solutions. To test this hypothesis, discharge and erosion are modeled using both steady-state and hydrograph methods. A stochastic storm generator is used to generate short-duration, high-intensity precipitation intervals, which drive modeled discharge and erosion across a watershed imported from a digital elevation model, highlighting Landlab's robust raster-gridding library and watershed modeling capabilities. For each storm event in this analysis, peak discharge at the outlet, incision rate at the outlet, as well as total discharge and erosion depth are compared between methods. Additionally, these results are organized by storm duration and intensity to understand how erosion rates scale with precipitation between both flow routing methods. Results show that in many cases traditional steady-state methods overestimate

  9. A new lunar digital elevation model from the Lunar Orbiter Laser Altimeter and SELENE Terrain Camera

    Science.gov (United States)

    Barker, M. K.; Mazarico, E.; Neumann, G. A.; Zuber, M. T.; Haruyama, J.; Smith, D. E.

    2016-07-01

    We present an improved lunar digital elevation model (DEM) covering latitudes within ±60°, at a horizontal resolution of 512 pixels per degree (∼60 m at the equator) and a typical vertical accuracy ∼3 to 4 m. This DEM is constructed from ∼ 4.5 ×109 geodetically-accurate topographic heights from the Lunar Orbiter Laser Altimeter (LOLA) onboard the Lunar Reconnaissance Orbiter, to which we co-registered 43,200 stereo-derived DEMs (each 1° × 1°) from the SELENE Terrain Camera (TC) (∼1010 pixels total). After co-registration, approximately 90% of the TC DEMs show root-mean-square vertical residuals with the LOLA data of profiles (typically amounting to <10 m horizontally and <1 m vertically). By combining both co-registered datasets, we obtain a near-global DEM with high geodetic accuracy, and without the need for surface interpolation. We evaluate the resulting LOLA + TC merged DEM (designated as "SLDEM2015") with particular attention to quantifying seams and crossover errors.

  10. A New Lunar Digital Elevation Model from the Lunar Orbiter Laser Altimeter and SELENE Terrain Camera

    Science.gov (United States)

    Barker, M. K.; Mazarico, E.; Neumann, G. A.; Zuber, M. T.; Haruyama, J.; Smith, D. E.

    2015-01-01

    We present an improved lunar digital elevation model (DEM) covering latitudes within +/-60 deg, at a horizontal resolution of 512 pixels per degree ( approx.60 m at the equator) and a typical vertical accuracy approx.3 to 4 m. This DEM is constructed from approx.4.5 ×10(exp 9) geodetically-accurate topographic heights from the Lunar Orbiter Laser Altimeter (LOLA) onboard the Lunar Reconnaissance Orbiter, to which we co-registered 43,200 stereo-derived DEMs (each 1 deg×1 deg) from the SELENE Terrain Camera (TC) ( approx.10(exp 10) pixels total). After co-registration, approximately 90% of the TC DEMs show root-mean-square vertical residuals with the LOLA data of < 5 m compared to approx.50% prior to co-registration. We use the co-registered TC data to estimate and correct orbital and pointing geolocation errors from the LOLA altimetric profiles (typically amounting to < 10 m horizontally and < 1 m vertically). By combining both co-registered datasets, we obtain a near-global DEM with high geodetic accuracy, and without the need for surface interpolation. We evaluate the resulting LOLA + TC merged DEM (designated as "SLDEM2015") with particular attention to quantifying seams and crossover errors.

  11. Mapping debris-flow hazard in Honolulu using a DEM

    Science.gov (United States)

    Ellen, Stephen D.; Mark, Robert K.; ,

    1993-01-01

    A method for mapping hazard posed by debris flows has been developed and applied to an area near Honolulu, Hawaii. The method uses studies of past debris flows to characterize sites of initiation, volume at initiation, and volume-change behavior during flow. Digital simulations of debris flows based on these characteristics are then routed through a digital elevation model (DEM) to estimate degree of hazard over the area.

  12. THE SCHEME FOR THE DATABASE BUILDING AND UPDATING OF 1:10 000 DIGITAL ELEVATION MODELS

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The National Bureau of Surveying and Mapping of China has planned to speed up the development of spatial data infrastructure (SDI) in the coming few years. This SDI consists of four types of digital products, i. e., digital orthophotos, digital elevation models,digital line graphs and digital raster graphs. For the DEM,a scheme for the database building and updating of 1:10 000 digital elevation models has been proposed and some experimental tests have also been accomplished. This paper describes the theoretical (and/or technical)background and reports some of the experimental results to support the scheme. Various aspects of the scheme such as accuracy, data sources, data sampling, spatial resolution, terrain modeling, data organization, etc are discussed.

  13. The status and models of digital publishing

    OpenAIRE

    Cong, Ting

    2010-01-01

    This Thesis examines the current impact of digital technology upon certain aspects of the publishing industry, especially the e-book industry. It reviews the key developments in globally digital publishing and sums up several publishing models of digital contents.

  14. STATISTICAL EVALUATION OF FITTING ACCURACY OF GLOBAL AND LOCAL DIGITAL ELEVATION MODELS IN IRAN

    Directory of Open Access Journals (Sweden)

    F. Alidoost

    2013-09-01

    Full Text Available Digital Elevation Models (DEMs are one of the most important data for various applications such as hydrological studies, topography mapping and ortho image generation. There are well-known DEMs of the whole world that represent the terrain's surface at variable resolution and they are also freely available for 99% of the globe. However, it is necessary to assess the quality of the global DEMs for the regional scale applications.These models are evaluated by differencing with other reference DEMs or ground control points (GCPs in order to estimate the quality and accuracy parameters over different land cover types. In this paper, a comparison of ASTER GDEM ver2, SRTM DEM with more than 800 reference GCPs and also with a local elevation model over the area of Iran is presented. This study investigates DEM’s characteristics such as systematic error (bias, vertical accuracy and outliers for DEMs using both the usual (Mean error, Root Mean Square Error, Standard Deviation and the robust (Median, Normalized Median Absolute Deviation, Sample Quantiles descriptors. Also, the visual assessment tools are used to illustrate the quality of DEMs, such as normalized histograms and Q-Q plots. The results of the study confirmed that there is a negative elevation bias of approximately 5 meters of GDEM ver2. The measured RMSE and NMAD for elevation differences of GDEM-GCPs are 7.1 m and 3.2 m, respectively, while these values for SRTM and GCPs are 9.0 m and 4.4 m. On the other hand, in comparison with the local DEM, GDEM ver2 exhibits the RMSE of about 6.7 m, a little higher than the RMSE of SRTM (5.1 m.The results of height difference classification and other statistical analysis of GDEM ver2-local DEM and SRTM-local DEM reveal that SRTM is slightly more accurate than GDEM ver2. Accordingly, SRTM has no noticeable bias and shift from Local DEM and they have more consistency to each other, while GDEM ver2 has always a negative bias.

  15. A global digital elevation model - GTOP030

    Science.gov (United States)

    1999-01-01

    GTOP030, the U.S. Geological Survey's (USGS) digital elevation model (DEM) of the Earth, provides the flrst global coverage of moderate resolution elevation data.  The original GTOP30 data set, which was developed over a 3-year period through a collaborative effort led by the USGS, was completed in 1996 at the USGS EROS Data Center in Sioux Falls, South Dakota.  The collaboration involved contributions of staffing, funding, or source data from cooperators including the National Aeronautics and Space Administration (NASA), the United Nations Environment Programme Global Resource Information Database (UNEP/GRID), the U.S. Agency for International Development (USAID), the Instituto Nacional de Estadistica Geografia e Informatica (INEGI) of Mexico, the Geographical Survey Institute (GSI) of Japan, Manaaki Whenua Landcare Research of New Zealand, and the Scientific Committee on Antarctic Research (SCAR). In 1999, work was begun on an update to the GTOP030 data set. Additional data sources are being incorporated into GTOP030 with an enhanced and improved data set planned for release in 2000.

  16. Research on the equivalence between digital core and rock physics models

    Science.gov (United States)

    Yin, Xingyao; Zheng, Ying; Zong, Zhaoyun

    2017-06-01

    In this paper, we calculate the elastic modulus of 3D digital cores using the finite element method, systematically study the equivalence between the digital core model and various rock physics models, and carefully analyze the conditions of the equivalence relationships. The influences of the pore aspect ratio and consolidation coefficient on the equivalence relationships are also further refined. Theoretical analysis indicates that the finite element simulation based on the digital core is equivalent to the boundary theory and Gassmann model. For pure sandstones, effective medium theory models (SCA and DEM) and the digital core models are equivalent in cases when the pore aspect ratio is within a certain range, and dry frame models (Nur and Pride model) and the digital core model are equivalent in cases when the consolidation coefficient is a specific value. According to the equivalence relationships, the comparison of the elastic modulus results of the effective medium theory and digital rock physics is an effective approach for predicting the pore aspect ratio. Furthermore, the traditional digital core models with two components (pores and matrix) are extended to multiple minerals to more precisely characterize the features and mineral compositions of rocks in underground reservoirs. This paper studies the effects of shale content on the elastic modulus in shaly sandstones. When structural shale is present in the sandstone, the elastic modulus of the digital cores are in a reasonable agreement with the DEM model. However, when dispersed shale is present in the sandstone, the Hill model cannot describe the changes in the stiffness of the pore space precisely. Digital rock physics describes the rock features such as pore aspect ratio, consolidation coefficient and rock stiffness. Therefore, digital core technology can, to some extent, replace the theoretical rock physics models because the results are more accurate than those of the theoretical models.

  17. Back to the Future: Have Remotely Sensed Digital Elevation Models Improved Hydrological Parameter Extraction?

    Science.gov (United States)

    Jarihani, B.

    2015-12-01

    Digital Elevation Models (DEMs) that accurately replicate both landscape form and processes are critical to support modeling of environmental processes. Pre-processing analysis of DEMs and extracting characteristics of the watershed (e.g., stream networks, catchment delineation, surface and subsurface flow paths) is essential for hydrological and geomorphic analysis and sediment transport. This study investigates the status of the current remotely-sensed DEMs in providing advanced morphometric information of drainage basins particularly in data sparse regions. Here we assess the accuracy of three available DEMs: (i) hydrologically corrected "H-DEM" of Geoscience Australia derived from the Shuttle Radar Topography Mission (SRTM) data; (ii) the Advanced Spaceborne Thermal Emission and Reflection Radiometer Global Digital Elevation Model (ASTER GDEM) version2 1-arc-second (~30 m) data; and (iii) the 9-arc-second national GEODATA DEM-9S ver3 from Geoscience Australia and the Australian National University. We used ESRI's geospatial data model, Arc Hydro and HEC-GeoHMS, designed for building hydrologic information systems to synthesize geospatial and temporal water resources data that support hydrologic modeling and analysis. A coastal catchment in northeast Australia was selected as the study site where very high resolution LiDAR data are available for parts of the area as reference data to assess the accuracy of other lower resolution datasets. This study provides morphometric information for drainage basins as part of the broad research on sediment flux from coastal basins to Great Barrier Reef, Australia. After applying geo-referencing and elevation corrections, stream and sub basins were delineated for each DEM. Then physical characteristics for streams (i.e., length, upstream and downstream elevation, and slope) and sub-basins (i.e., longest flow lengths, area, relief and slopes) were extracted and compared with reference datasets from LiDAR. Results showed that

  18. Synergetic merging of Cartosat-1 and RAMP to generate improved digital elevation model of Schirmacher oasis, east Antarctica

    Science.gov (United States)

    Jawak, S. D.; Luis, A. J.

    2014-11-01

    Available digital elevation models (DEMs) of Antarctic region generated by using radar altimetry and the Antarctic digital database (ADD) indicate elevation variations of up to hundreds of meters, which necessitates the generation of local DEM and its validation by using ground reference. An enhanced digital elevation model (eDEM) of the Schirmacher oasis region, east Antarctica, is generated synergistically by using Cartosat-1 stereo pair-derived photogrammetric DEM (CartoDEM)-based point elevation dataset and multitemporal radarsat Antarctic mapping project version 2 (RAMPv2) DEM-based point elevation dataset. In this study, we analyzed suite of interpolation techniques for constructing a DEM from RAMPv2 and CartoDEM-based point elevation datasets, in order to determine the level of confidence with which the interpolation techniques can generate a better interpolated continuous surface, and eventually improves the elevation accuracy of DEM from synergistically fused RAMPv2 and CartoDEM point elevation datasets. RAMPv2 points and CartoDEM points were used as primary data for various interpolation techniques such as ordinary kriging (OK), simple kriging (SK), universal kriging (UK), disjunctive kriging (DK) techniques, inverse distance weighted (IDW), global polynomial (GP) with power 1 and 2, local polynomial (LP) and radial basis functions (RBF). Cokriging of 2 variables with second dataset was used for ordinary cokriging (OCoK), simple cokriging (SCoK), universal cokriging (UCoK) and disjunctive cokriging (DCoK). The IDW, GP, LP, RBF, and kriging methods were applied to one variable, while Cokriging experiments were employed on two variables. The experiment of dataset and its combination produced two types of point elevation map categorized as (1) one variable (RAMPv2 Point maps and CartoDEM Point maps) and (2) two variables (RAMPv2 Point maps + CartoDEM Point maps). Interpolated surfaces were evaluated with the help of differential global positioning system

  19. Theoretical model of digital archives

    Directory of Open Access Journals (Sweden)

    Alenka Kavčič-Čolić

    2004-01-01

    Full Text Available There are certain conditions that national organizations should fulfill to became trusted digital repositories. Among other things, their deposit system should be in compliance with the reference model for an Open Archival Information System (OAIS. In this paper the model OAIS is presented as well as some important international experiences regarding its implementation. The joint project of the National and University Library and The Jozef Stefan Institute, which is aimed at developing such a digital archive based on OAIS, is also mentioned.

  20. A high-fidelity multiresolution digital elevation model for Earth systems

    Science.gov (United States)

    Duan, Xinqiao; Li, Lin; Zhu, Haihong; Ying, Shen

    2017-01-01

    The impact of topography on Earth systems variability is well recognised. As numerical simulations evolved to incorporate broader scales and finer processes, accurately assimilating or transforming the topography to produce more exact land-atmosphere-ocean interactions, has proven to be quite challenging. Numerical schemes of Earth systems often use empirical parameterisation at sub-grid scale with downscaling to express topographic endogenous processes, or rely on insecure point interpolation to induce topographic forcing, which creates bias and input uncertainties. Digital elevation model (DEM) generalisation provides more sophisticated systematic topographic transformation, but existing methods are often difficult to be incorporated because of unwarranted grid quality. Meanwhile, approaches over discrete sets often employ heuristic approximation, which are generally not best performed. Based on DEM generalisation, this article proposes a high-fidelity multiresolution DEM with guaranteed grid quality for Earth systems. The generalised DEM surface is initially approximated as a triangulated irregular network (TIN) via selected feature points and possible input features. The TIN surface is then optimised through an energy-minimised centroidal Voronoi tessellation (CVT). By devising a robust discrete curvature as density function and exact geometry clipping as energy reference, the developed curvature CVT (cCVT) converges, the generalised surface evolves to a further approximation to the original DEM surface, and the points with the dual triangles become spatially equalised with the curvature distribution, exhibiting a quasi-uniform high-quality and adaptive variable resolution. The cCVT model was then evaluated on real lidar-derived DEM datasets and compared to the classical heuristic model. The experimental results show that the cCVT multiresolution model outperforms classical heuristic DEM generalisations in terms of both surface approximation precision and

  1. Calculation and Error Analysis of a Digital Elevation Model of Hofsjokull, Iceland from SAR Interferometry

    Science.gov (United States)

    Barton, Jonathan S.; Hall, Dorothy K.; Sigurosson, Oddur; Williams, Richard S., Jr.; Smith, Laurence C.; Garvin, James B.

    1999-01-01

    Two ascending European Space Agency (ESA) Earth Resources Satellites (ERS)-1/-2 tandem-mode, synthetic aperture radar (SAR) pairs are used to calculate the surface elevation of Hofsjokull, an ice cap in central Iceland. The motion component of the interferometric phase is calculated using the 30 arc-second resolution USGS GTOPO30 global digital elevation product and one of the ERS tandem pairs. The topography is then derived by subtracting the motion component from the other tandem pair. In order to assess the accuracy of the resultant digital elevation model (DEM), a geodetic airborne laser-altimetry swath is compared with the elevations derived from the interferometry. The DEM is also compared with elevations derived from a digitized topographic map of the ice cap from the University of Iceland Science Institute. Results show that low temporal correlation is a significant problem for the application of interferometry to small, low-elevation ice caps, even over a one-day repeat interval, and especially at the higher elevations. Results also show that an uncompensated error in the phase, ramping from northwest to southeast, present after tying the DEM to ground-control points, has resulted in a systematic error across the DEM.

  2. The use of LIDAR as a data source for digital elevation models – a study of the relationship between the accuracy of digital elevation models and topographical attributes in northern peatlands

    Directory of Open Access Journals (Sweden)

    A. Hasan

    2011-06-01

    Full Text Available It is important to study the factors affecting estimates of wetness since wetness is crucial in climate change studies. The availability of digital elevation models (DEMs generated with high resolution data is increasing, and their use is expanding. LIDAR earth elevation data have been used to create several DEMs with different resolutions, using various interpolation parameters, in order to compare the models with collected surface data. The aim is to study the accuracy of DEMs in relation to topographical attributes such as slope and drainage area, which are normally used to estimate the wetness in terms of topographic wetness indices. Evaluation points were chosen from the high-resolution LIDAR dataset at a maximum distance of 10 mm from the cell center for each DEM resolution studied, 0.5, 1, 5, 10, 30 and 90 m. The interpolation method used was inverse distance weighting method with four search radii: 1, 2, 5 and 10 m. The DEM was evaluated using a quantile-quantile test and the normalized median absolute deviation. The accuracy of the estimated elevation for different slopes was tested using the DEM with 0.5 m resolution. Drainage areas were investigated at three resolutions, with coinciding evaluation points. The ability of the model to generate the drainage area at each resolution was obtained by pairwise comparison of three data subsets.

    The results show that the accuracy of the elevations obtained with the DEM model are the same for different resolutions, but vary with search radius. The accuracy of the values (NMAD of errors varies from 29.7 mm to 88.9 mm, being higher for flatter areas. It was also found that the accuracy of the drainage area is highly dependent on DEM resolution. Coarse resolution yielded larger estimates of the drainage area but lower slope values. This may lead to overestimation of wetness values when using a coarse resolution DEM.

  3. A RIVER FLOW ROUTING MODEL BASED ON DIGITAL DRAINAGE NETWORK

    Institute of Scientific and Technical Information of China (English)

    YUAN Fei; REN Li-liang; YU Zhong-bo; XU Jing

    2005-01-01

    On the basis of Digital Elevation Model (DEM) data, watershed delineation and spatial topological relationship were proposed by the Digital Elevation Drainage Network Model (DEDNM) for the area upstream of the Hanzhong Hydrological Station in the Hanjiang River in China. Then, the Muskingum-Cunge method considering lateral flow into the river was applied to flood routing on the platform of digital basin derived from DEDNM. Because of considering lateral flow into the river, the Muskingum-Cunge method performs better than the Muskingum method in terms of the Nash-Sutcliffe model efficiency coefficient and the relative error of flood discharge peak value. With a routing-after-superposition algorithm, the Muskingum-Cunge method performs better than the Muskingum method in terms of the Nash-Sutcliffe model efficiency coefficient and the relative error of flood discharge peak value. As a result, the digital basin coupled with the Muskingum-Cunge method provides a better platform for water resources management and flood control.

  4. Cost Model for Digital Preservation: Cost of Digital Migration

    DEFF Research Database (Denmark)

    Kejser, Ulla Bøgvad; Nielsen, Anders Bo; Thirifays, Alex

    2011-01-01

    The Danish Ministry of Culture has funded a project to set up a model for costing preservation of digital materials held by national cultural heritage institutions. The overall objective of the project was to increase cost effectiveness of digital preservation activities and to provide a basis...... for comparing and estimating future cost requirements for digital preservation. In this study we describe an activity-based costing methodology for digital preservation based on the Open Archice Information System (OAIS) Reference Model. Within this framework, which we denote the Cost Model for Digital...... Preservation (CMDP), the focus is on costing the functional entity Preservation Planning from the OAIS and digital migration activities. In order to estimate these costs we have identified cost-critical activities by analysing the functions in the OAIS model and the flows between them. The analysis has been...

  5. Robust Mosaicking of Stereo Digital Elevation Models from the Ames Stereo Pipeline

    Science.gov (United States)

    Kim, Tae Min; Moratto, Zachary M.; Nefian, Ara Victor

    2010-01-01

    Robust estimation method is proposed to combine multiple observations and create consistent, accurate, dense Digital Elevation Models (DEMs) from lunar orbital imagery. The NASA Ames Intelligent Robotics Group (IRG) aims to produce higher-quality terrain reconstructions of the Moon from Apollo Metric Camera (AMC) data than is currently possible. In particular, IRG makes use of a stereo vision process, the Ames Stereo Pipeline (ASP), to automatically generate DEMs from consecutive AMC image pairs. However, the DEMs currently produced by the ASP often contain errors and inconsistencies due to image noise, shadows, etc. The proposed method addresses this problem by making use of multiple observations and by considering their goodness of fit to improve both the accuracy and robustness of the estimate. The stepwise regression method is applied to estimate the relaxed weight of each observation.

  6. Contour-based automatic crater recognition using digital elevation models from Chang'E missions

    Science.gov (United States)

    Zuo, Wei; Zhang, Zhoubin; Li, Chunlai; Wang, Rongwu; Yu, Linjie; Geng, Liang

    2016-12-01

    In order to provide fundamental information for exploration and related scientific research on the Moon and other planets, we propose a new automatic method to recognize craters on the lunar surface based on contour data extracted from a digital elevation model (DEM). Through DEM and image processing, this method can be used to reconstruct contour surfaces, extract and combine contour lines, set the characteristic parameters of crater morphology, and establish a crater pattern recognition program. The method has been tested and verified with DEM data from Chang'E-1 (CE-1) and Chang'E-2 (CE-2), showing a strong crater recognition ability with high detection rate, high robustness, and good adaptation to recognize various craters with different diameter and morphology. The method has been used to identify craters with high precision and accuracy on the Moon. The results meet requirements for supporting exploration and related scientific research for the Moon and planets.

  7. Klasifikasi Bentuk Wilayah yang Diturunkan dari Digital Elevation Models: Kasus DAS Citarum, Sub DAS Cilalawi, Jawa Barat

    Directory of Open Access Journals (Sweden)

    Salwati

    2008-05-01

    Full Text Available Application of GIS technology (Geographic Information System, that is Digital Elevation Models (DEMs for the analysis of landform or slope have been conducted in the Citarum watershed, Purwakarta West Java Province from August until November 2003. Research aim to make landform classification of DEMs use classification of ISODATA and to evaluate the quality of landform classification which alighted from DEMs. To reach the target have been made DEMs, is later then degraded to become map set of regional form. DEMS made from contour map scale 1 : 25.000 with inteval of 12.5 m use Arcview version 2.65 with resolution of 25 m, and slope classification made software of ER Mapper. Field observation conducted for validation result of classification. Result of research indicate that wave landform (slope 8-15% and hilly (slope 15-30% in sub watershed of Cilalawi is DEMs have lower level class of fact in the field. While set of regional form level of (slope 30% in sub of DAS Cilalawi have bevel class which almost is equal to fact in the field. Result of the research indicated that map of landform or alighted from slope is DEMs not entirely as according to situation in fact of the field. Interconnected the mentioned sliver with quality map of used contour. Thereby verification in field is absolutely needed.

  8. Global Maps from Interferometeric TanDEM-X Data: Applications and Potentials

    Science.gov (United States)

    Rizzoli, Paola; Martone, Michele; Brautigam, Benjamin; Zink, Manfred

    2015-05-01

    TanDEM-X is a spaceborne Synthetic Aperture Radar (SAR) mission, whose goal is the generation of a global Digital Elevation Model (DEM) with unprecedented accuracy, by using interferometric SAR (InSAR) techniques (InSAR). TanDEM-X offers a huge global data set of bistatic InSAR acquisitions, each of them supplemented by quick look images of different SAR quantities, such as amplitude, coherence, and DEM. Global quick look mosaics of the interferometric coherence and of the relative height error can be considered for mission performance monitoring and acquisition strategy optimization. The aim of this paper is to present the use of such mosaics within the TanDEM-X mission and to show their potentials for future scientific applications for example in the fields of glaciology and forestry.

  9. Evaluating the impact of lower resolutions of digital elevation model on rainfall-runoff modeling for ungauged catchments.

    Science.gov (United States)

    Ghumman, Abul Razzaq; Al-Salamah, Ibrahim Saleh; AlSaleem, Saleem Saleh; Haider, Husnain

    2017-02-01

    Geomorphological instantaneous unit hydrograph (GIUH) usually uses geomorphologic parameters of catchment estimated from digital elevation model (DEM) for rainfall-runoff modeling of ungauged watersheds with limited data. Higher resolutions (e.g., 5 or 10 m) of DEM play an important role in the accuracy of rainfall-runoff models; however, such resolutions are expansive to obtain and require much greater efforts and time for preparation of inputs. In this research, a modeling framework is developed to evaluate the impact of lower resolutions (i.e., 30 and 90 m) of DEM on the accuracy of Clark GIUH model. Observed rainfall-runoff data of a 202-km(2) catchment in a semiarid region was used to develop direct runoff hydrographs for nine rainfall events. Geographical information system was used to process both the DEMs. Model accuracy and errors were estimated by comparing the model results with the observed data. The study found (i) high model efficiencies greater than 90% for both the resolutions, and (ii) that the efficiency of Clark GIUH model does not significantly increase by enhancing the resolution of the DEM from 90 to 30 m. Thus, it is feasible to use lower resolutions (i.e., 90 m) of DEM in the estimation of peak runoff in ungauged catchments with relatively less efforts. Through sensitivity analysis (Monte Carlo simulations), the kinematic wave parameter and stream length ratio are found to be the most significant parameters in velocity and peak flow estimations, respectively; thus, they need to be carefully estimated for calculation of direct runoff in ungauged watersheds using Clark GIUH model.

  10. Modelling digital thunder

    Energy Technology Data Exchange (ETDEWEB)

    Blanco, Francesco; La Rocca, Paola; Petta, Catia; Riggi, Francesco [Department of Physics and Astronomy, University of Catania, and INFN, Catania, Via S. Sofia 64, I95123 Catania (Italy)], E-mail: Francesco.Riggi@ct.infn.it

    2009-01-15

    An educational model simulation of the sound produced by lightning in the sky has been employed to demonstrate realistic signatures of thunder and its connection to the particular structure of the lightning channel. Algorithms used in the past have been revisited and implemented, making use of current computer techniques. The basic properties of the mathematical model, together with typical results and suggestions for additional developments are discussed. The paper is intended as a teaching aid for students and teachers in the context of introductory physics courses at university level.

  11. Forecasting Rainfall Induced Landslide using High Resolution DEM and Simple Water Budget Model

    Science.gov (United States)

    Luzon, P. K. D.; Lagmay, A. M. F. A.

    2014-12-01

    Philippines is hit by an average of 20 typhoons per year bringing large amount of rainfall. Monsoon carrying rain coming from the southwest of the country also contributes to the annual total rainfall that causes different hazards. Such is shallow landslide mainly triggered by high saturation of soil due to continuous downpour which could take up from hours to days. Recent event like this happened in Zambales province September of 2013 where torrential rain occurred for 24 hours amounting to half a month of rain. Rainfall intensity measured by the nearest weather station averaged to 21 mm/hr from 10 pm of 22 until 10 am the following day. The monsoon rains was intensified by the presence of Typhoon Usagi positioned north and heading northwest of the country. A number of landslides due to this happened in 3 different municipalities; Subic, San Marcelino and Castillejos. The disaster have taken 30 lives from the province. Monitoring these areas for the entire country is but a big challenge in all aspect of disaster preparedness and management. The approach of this paper is utilizing the available forecast of rainfall amount to monitor highly hazardous area during the rainy seasons and forecasting possible landslide that could happen. A simple water budget model following the equation Perct=Pt-R/Ot-∆STt-AETt (where as the terms are Percolation, Runoff, Change in Storage, and Actual Evapotraspiration) was implemented in quantifying all the water budget component. Computations are in Python scripted grid system utilizing the widely used GIS forms for easy transfer of data and faster calculation. Results of successive runs will let percolation and change in water storage as indicators of possible landslide.. This approach needs three primary sets of data; weather data, topographic data, and soil parameters. This research uses 5 m resolution DEM (IfSAR) to define the topography. Soil parameters are from fieldworks conducted. Weather data are from the Philippine

  12. Modelling Digital Thunder

    Science.gov (United States)

    Blanco, Francesco; La Rocca, Paola; Petta, Catia; Riggi, Francesco

    2009-01-01

    An educational model simulation of the sound produced by lightning in the sky has been employed to demonstrate realistic signatures of thunder and its connection to the particular structure of the lightning channel. Algorithms used in the past have been revisited and implemented, making use of current computer techniques. The basic properties of…

  13. Modelling Digital Thunder

    Science.gov (United States)

    Blanco, Francesco; La Rocca, Paola; Petta, Catia; Riggi, Francesco

    2009-01-01

    An educational model simulation of the sound produced by lightning in the sky has been employed to demonstrate realistic signatures of thunder and its connection to the particular structure of the lightning channel. Algorithms used in the past have been revisited and implemented, making use of current computer techniques. The basic properties of…

  14. Evaluating the influence of spatial resolutions of DEM on watershed runoff and sediment yield using SWAT

    Indian Academy of Sciences (India)

    A Sivasena Reddy; M Janga Reddy

    2015-10-01

    Digital elevation model (DEM) of a watershed forms key basis for hydrologic modelling and its resolution plays a key role in accurate prediction of various hydrological processes. This study appraises the effect of different DEMs with varied spatial resolutions (namely TOPO 20 m, CARTO 30 m, ASTER 30 m, SRTM 90 m, GEO-AUS 500 m and USGS 1000 m) on hydrological response of watershed using Soil and Water Assessment Tool (SWAT) and applied for a case study of Kaddam watershed in India for estimating runoff and sediment yield. From the results of case study, it was observed that reach lengths, reach slopes, minimum and maximum elevations, sub-watershed areas, land use mapping areas within the sub-watershed and number of HRUs varied substantially due to DEM resolutions, and consequently resulted in a considerable variability in estimated daily runoff and sediment yields. It was also observed that, daily runoff values have increased (decreased) on low (high) rainy days respectively with coarser resolution of DEM. The daily sediment yield values from each sub-watershed decreased with coarser resolution of the DEM. The study found that the performance of SWAT model prediction was not influenced much for finer resolution DEMs up to 90 m for estimation of runoff, but it certainly influenced the estimation of sediment yields. The DEMs of TOPO 20 m and CARTO 30 m provided better estimates of sub-watershed areas, runoff and sediment yield values over other DEMs.

  15. The Black Top Hat function applied to a DEM: A tool to estimate recent incision in a mountainous watershed (Estibère Watershed, Central Pyrenees)

    Science.gov (United States)

    Rodriguez, Felipe; Maire, Eric; Courjault-Radé, Pierre; Darrozes, José

    2002-03-01

    The Top Hat Transform function is a grey-level image analysis tool that allows extracting peaks and valleys in a non-uniform background. This function can be applied onto a grey-level Digital Elevation Model (DEM). It is herein applied to quantify the volume of recent incised material in a mountainous Pyrenean watershed. Grey-level Closing operation applied to the Present-Day DEM gives a new image called ``paleo'' DEM. The Black Top Hat function consists in the subtraction of the ``paleo'' DEM with the Present-Day DEM. It gives a new DEM representing all valleys whose sizes range between the size of the structuring element and the null value as no threshold is used. The calculation of the incised volume is directly derived from the subtraction between the two DEM's. The geological significance of the quantitative results is discussed.

  16. Local validation of EU-DEM using Least Squares Collocation

    Science.gov (United States)

    Ampatzidis, Dimitrios; Mouratidis, Antonios; Gruber, Christian; Kampouris, Vassilios

    2016-04-01

    In the present study we are dealing with the evaluation of the European Digital Elevation Model (EU-DEM) in a limited area, covering few kilometers. We compare EU-DEM derived vertical information against orthometric heights obtained by classical trigonometric leveling for an area located in Northern Greece. We apply several statistical tests and we initially fit a surface model, in order to quantify the existing biases and outliers. Finally, we implement a methodology for orthometric heights prognosis, using the Least Squares Collocation for the remaining residuals of the first step (after the fitted surface application). Our results, taking into account cross validation points, reveal a local consistency between EU-DEM and official heights, which is better than 1.4 meters.

  17. The effects of digital elevation model resolution on the calculation and predictions of topographic wetness indices.

    Energy Technology Data Exchange (ETDEWEB)

    Drover, Damion, Ryan

    2011-12-01

    One of the largest exports in the Southeast U.S. is forest products. Interest in biofuels using forest biomass has increased recently, leading to more research into better forest management BMPs. The USDA Forest Service, along with the Oak Ridge National Laboratory, University of Georgia and Oregon State University are researching the impacts of intensive forest management for biofuels on water quality and quantity at the Savannah River Site in South Carolina. Surface runoff of saturated areas, transporting excess nutrients and contaminants, is a potential water quality issue under investigation. Detailed maps of variable source areas and soil characteristics would therefore be helpful prior to treatment. The availability of remotely sensed and computed digital elevation models (DEMs) and spatial analysis tools make it easy to calculate terrain attributes. These terrain attributes can be used in models to predict saturated areas or other attributes in the landscape. With laser altimetry, an area can be flown to produce very high resolution data, and the resulting data can be resampled into any resolution of DEM desired. Additionally, there exist many maps that are in various resolutions of DEM, such as those acquired from the U.S. Geological Survey. Problems arise when using maps derived from different resolution DEMs. For example, saturated areas can be under or overestimated depending on the resolution used. The purpose of this study was to examine the effects of DEM resolution on the calculation of topographic wetness indices used to predict variable source areas of saturation, and to find the best resolutions to produce prediction maps of soil attributes like nitrogen, carbon, bulk density and soil texture for low-relief, humid-temperate forested hillslopes. Topographic wetness indices were calculated based on the derived terrain attributes, slope and specific catchment area, from five different DEM resolutions. The DEMs were resampled from LiDAR, which is a

  18. Digital Literacy and Metaphorical Models

    Directory of Open Access Journals (Sweden)

    Carolina Girón García

    2014-09-01

    Full Text Available It is an acknowledged fact that the appearance of new genres in cyberspace has shifted the main focus of instruction strategies nowadays. Learners of any field are challenged by the acquisition of a new type of literacy, digital literacy –how to read and write, or how to interact, in and through the Internet. In this line, websites often show expressions like "home", "visit", "down-load", "link", etc. which are used in a new sense that did not exist before the digital era. Such expressions constitute the manifestation of mental models that have been transferred from traditional conceptual domains onto the new knowledge domain of the Internet. These conceptual metaphors are some of the cognitive models that help in the conceptualization of new cybergenres. This paper points at describing how these cognitive models build our notion of diverse cybergenres in English – e.g. the weblog, the social network, the cybertask. Our aim here consists in detecting these metaphorical models as well as describing and classifying their conceptual mappings between domains. With that purpose, some digital materials are analyzed, so as to test the hypothesis that such mappings and models guide the user's representation of the genre, as a coherent structure.

  19. Modified method for extraction of watershed boundary with digital elevation modeling

    Institute of Scientific and Technical Information of China (English)

    WANGDian-zhong; HAOZhan-qing; XIONGZai-ping

    2004-01-01

    Boundary extraction of watershed is an important step in forest landscape research. The boundary of the upriver watershed of the Hunhe River in the sub-alpine Qingyuan County of eastern Liaoning Province, China was extracted by digital elevation modeling (DEM) data in Arclnfo8.1. Remote sensing image of the corresponding region was applied to help modify its copy according to Enhanced Thematic Mapper (ETM) image's profuse geomorphological structure information. Both the DEM-dependent boundary and modified copy were overlapped with county map and drainage network map to visually check the effects of result. Overlap of county map suggested a nice extraction of the boundary line since the two layers matched precisely,which indicated the DEM-dependent boundary by program was effective and precise. Further upload of drainage network showed discrepancies between the boundary and the drainage network. Altogether, there were three sections of the extraction result that needed to correct. Compared with this extraction boundary, the modified boundary had a better match to the drainage network as well as to the county map. Comprehensive analysis demonstrated that the program extraction has generally fine precision in position and excels the digitized result by hand. The errors of the DEM-dependant extraction are due to the fact that it is difficult for program to recognize sections of complex landform especially altered by human activities, but these errors are discernable and adjustable because the spatial resolution of ETM image is less than that of DEM. This study result proved that application of remote sensing information could help obtain better result when DEM method is used in extraction of watershed boundary.

  20. Digital models for architectonical representation

    Directory of Open Access Journals (Sweden)

    Stefano Brusaporci

    2011-12-01

    Full Text Available Digital instruments and technologies enrich architectonical representation and communication opportunities. Computer graphics is organized according the two phases of visualization and construction, that is modeling and rendering, structuring dichotomy of software technologies. Visualization modalities give different kinds of representations of the same 3D model and instruments produce a separation between drawing and image’s creation. Reverse modeling can be related to a synthesis process, ‘direct modeling’ follows an analytic procedure. The difference between interactive and not interactive applications is connected to the possibilities offered by informatics instruments, and relates to modeling and rendering. At the same time the word ‘model’ describes different phenomenon (i.e. files: mathematical model of the building and of the scene; raster representation and post-processing model. All these correlated different models constitute the architectonical interpretative model, that is a simulation of reality made by the model for improving the knowledge.

  1. Incorporating DEM uncertainty in coastal inundation mapping.

    Directory of Open Access Journals (Sweden)

    Javier X Leon

    Full Text Available Coastal managers require reliable spatial data on the extent and timing of potential coastal inundation, particularly in a changing climate. Most sea level rise (SLR vulnerability assessments are undertaken using the easily implemented bathtub approach, where areas adjacent to the sea and below a given elevation are mapped using a deterministic line dividing potentially inundated from dry areas. This method only requires elevation data usually in the form of a digital elevation model (DEM. However, inherent errors in the DEM and spatial analysis of the bathtub model propagate into the inundation mapping. The aim of this study was to assess the impacts of spatially variable and spatially correlated elevation errors in high-spatial resolution DEMs for mapping coastal inundation. Elevation errors were best modelled using regression-kriging. This geostatistical model takes the spatial correlation in elevation errors into account, which has a significant impact on analyses that include spatial interactions, such as inundation modelling. The spatial variability of elevation errors was partially explained by land cover and terrain variables. Elevation errors were simulated using sequential Gaussian simulation, a Monte Carlo probabilistic approach. 1,000 error simulations were added to the original DEM and reclassified using a hydrologically correct bathtub method. The probability of inundation to a scenario combining a 1 in 100 year storm event over a 1 m SLR was calculated by counting the proportion of times from the 1,000 simulations that a location was inundated. This probabilistic approach can be used in a risk-aversive decision making process by planning for scenarios with different probabilities of occurrence. For example, results showed that when considering a 1% probability exceedance, the inundated area was approximately 11% larger than mapped using the deterministic bathtub approach. The probabilistic approach provides visually intuitive maps

  2. Fast Ray Tracing of Lunar Digital Elevation Models

    Science.gov (United States)

    McClanahan, Timothy P.; Evans, L. G.; Starr, R. D.; Mitrofanov, I.

    2009-01-01

    Ray-tracing (RT) of Lunar Digital Elevation Models (DEM)'s is performed to virtually derive the degree of radiation incident to terrain as a function of time, orbital and ephemeris constraints [I- 4]. This process is an integral modeling process in lunar polar research and exploration due to the present paucity of terrain information at the poles and mission planning activities for the anticipated spring 2009 launch of the Lunar Reconnaissance Orbiter (LRO). As part of the Lunar Exploration Neutron Detector (LEND) and Lunar Crater Observation and Sensing Satellite (LCROSS) preparations RI methods are used to estimate the critical conditions presented by the combined effects of high latitude, terrain and the moons low obliquity [5-7]. These factors yield low incident solar illumination and subsequently extreme thermal, and radiation conditions. The presented research uses RT methods both for radiation transport modeling in space and regolith related research as well as to derive permanently shadowed regions (PSR)'s in high latitude topographic minima, e.g craters. These regions are of scientific and human exploration interest due to the near constant low temperatures in PSRs, inferred to be < 100 K. Hydrogen is thought to have accumulated in PSR's through the combined effects of periodic cometary bombardment and/or solar wind processes, and the extreme cold which minimizes hydrogen sublimation [8-9]. RT methods are also of use in surface position optimization for future illumination dependent on surface resources e.g. power and communications equipment.

  3. 数字高程模型信息提取与数字水文模型研究进展%A Review of the Digital Elevation Model Extraction and Digital Hydrological Modeling

    Institute of Scientific and Technical Information of China (English)

    任立良; 刘新仁

    2000-01-01

    In this paper, the methodology of drainage network extraction from grid-based the digital elevation model (DEM) is reviewed. Then the current situation of application of information extracted from a DEM data in the field of hydrology and water resources are remarked. It is shown that the digital model plays a great role in data mining in hydrology and water resources. Water-related data measured at gauged stations could be assimilated to areal information over a catchment by the digital model, so as to serve for all trades and professions of national economy. Finally the position and the perspective of the digital hydrology (DH)in digital earth are discussed. The DH is an important component of digital earth. It needs further research.%回顾了数字高程模型(DEM)数据的信息提取方法,阐述了由DEM提取的信息在水文水资源领域应用的现状,探讨了数字模型在水文科学中的作用和数字水文在数字地球所处的地位及应用前景。

  4. An improved method to represent DEM uncertainty in glacial lake outburst flood propagation using stochastic simulations

    Science.gov (United States)

    Watson, Cameron S.; Carrivick, Jonathan; Quincey, Duncan

    2015-10-01

    Modelling glacial lake outburst floods (GLOFs) or 'jökulhlaups', necessarily involves the propagation of large and often stochastic uncertainties throughout the source to impact process chain. Since flood routing is primarily a function of underlying topography, communication of digital elevation model (DEM) uncertainty should accompany such modelling efforts. Here, a new stochastic first-pass assessment technique was evaluated against an existing GIS-based model and an existing 1D hydrodynamic model, using three DEMs with different spatial resolution. The analysis revealed the effect of DEM uncertainty and model choice on several flood parameters and on the prediction of socio-economic impacts. Our new model, which we call MC-LCP (Monte Carlo Least Cost Path) and which is distributed in the supplementary information, demonstrated enhanced 'stability' when compared to the two existing methods, and this 'stability' was independent of DEM choice. The MC-LCP model outputs an uncertainty continuum within its extent, from which relative socio-economic risk can be evaluated. In a comparison of all DEM and model combinations, the Shuttle Radar Topography Mission (SRTM) DEM exhibited fewer artefacts compared to those with the Advanced Spaceborne Thermal Emission and Reflection Radiometer Global Digital Elevation Model (ASTER GDEM), and were comparable to those with a finer resolution Advanced Land Observing Satellite Panchromatic Remote-sensing Instrument for Stereo Mapping (ALOS PRISM) derived DEM. Overall, we contend that the variability we find between flood routing model results suggests that consideration of DEM uncertainty and pre-processing methods is important when assessing flow routing and when evaluating potential socio-economic implications of a GLOF event. Incorporation of a stochastic variable provides an illustration of uncertainty that is important when modelling and communicating assessments of an inherently complex process.

  5. Cost Model for Digital Curation: Cost of Digital Migration

    DEFF Research Database (Denmark)

    Kejser, Ulla Bøgvad; Nielsen, Anders Bo; Thirifays, Alex

    2009-01-01

    The Danish Ministry of Culture is currently funding a project to set up a model for costing preservation of digital materials held by national cultural heritage institutions. The overall objective of the project is to provide a basis for comparing and estimating future financial requirements...... for digital preservation and to increase cost effectiveness of digital preservation activities. In this study we describe an activity based costing methodology for digital preservation based on the OAIS Reference Model. In order to estimate the cost of digital migrations we have identified cost critical...... model provides a sound overall framework for cost breakdown, but that some functions, especially when it comes to performing and evaluating the actual migration, need additional detailing in order to cost activities accurately....

  6. A new seamless, high-resolution digital elevation model of the San Francisco Bay-Delta Estuary, California

    Science.gov (United States)

    Fregoso, Theresa; Wang, Rueen-Fang; Ateljevich, Eli; Jaffe, Bruce E.

    2017-06-14

    Climate change, sea-level rise, and human development have contributed to the changing geomorphology of the San Francisco Bay - Delta (Bay-Delta) Estuary system. The need to predict scenarios of change led to the development of a new seamless, high-resolution digital elevation model (DEM) of the Bay – Delta that can be used by modelers attempting to understand potential future changes to the estuary system. This report details the three phases of the creation of this DEM. The first phase took a bathymetric-only DEM created in 2005 by the U.S. Geological Survey (USGS), refined it with additional data, and identified areas that would benefit from new surveys. The second phase began a USGS collaboration with the California Department of Water Resources (DWR) that updated a 2012 DWR seamless bathymetric/topographic DEM of the Bay-Delta with input from the USGS and modifications to fit the specific needs of USGS modelers. The third phase took the work from phase 2 and expanded the coverage area in the north to include the Yolo Bypass up to the Fremont Weir, the Sacramento River up to Knights Landing, and the American River up to the Nimbus Dam, and added back in the elevations for interior islands. The constant evolution of the Bay-Delta will require continuous updates to the DEM of the Delta, and there still are areas with older data that would benefit from modern surveys. As a result, DWR plans to continue updating the DEM.

  7. Cost Model for Digital Curation: Cost of Digital Migration

    DEFF Research Database (Denmark)

    Kejser, Ulla Bøgvad; Nielsen, Anders Bo; Thirifays, Alex

    2009-01-01

    activities by analysing the OAIS Model, and supplemented this analysis with findings from other models, literature and own experience. To verify the model it has been tested on two sets of data from a normalisation project and a migration project at the Danish National Archives. The study found that the OAIS...... for digital preservation and to increase cost effectiveness of digital preservation activities. In this study we describe an activity based costing methodology for digital preservation based on the OAIS Reference Model. In order to estimate the cost of digital migrations we have identified cost critical...... model provides a sound overall framework for cost breakdown, but that some functions, especially when it comes to performing and evaluating the actual migration, need additional detailing in order to cost activities accurately....

  8. Extract relevant features from DEM for groundwater potential mapping

    Science.gov (United States)

    Liu, T.; Yan, H.; Zhai, L.

    2015-06-01

    Multi-criteria evaluation (MCE) method has been applied much in groundwater potential mapping researches. But when to data scarce areas, it will encounter lots of problems due to limited data. Digital Elevation Model (DEM) is the digital representations of the topography, and has many applications in various fields. Former researches had been approved that much information concerned to groundwater potential mapping (such as geological features, terrain features, hydrology features, etc.) can be extracted from DEM data. This made using DEM data for groundwater potential mapping is feasible. In this research, one of the most widely used and also easy to access data in GIS, DEM data was used to extract information for groundwater potential mapping in batter river basin in Alberta, Canada. First five determining factors for potential ground water mapping were put forward based on previous studies (lineaments and lineament density, drainage networks and its density, topographic wetness index (TWI), relief and convergence Index (CI)). Extraction methods of the five determining factors from DEM were put forward and thematic maps were produced accordingly. Cumulative effects matrix was used for weight assignment, a multi-criteria evaluation process was carried out by ArcGIS software to delineate the potential groundwater map. The final groundwater potential map was divided into five categories, viz., non-potential, poor, moderate, good, and excellent zones. Eventually, the success rate curve was drawn and the area under curve (AUC) was figured out for validation. Validation result showed that the success rate of the model was 79% and approved the method's feasibility. The method afforded a new way for researches on groundwater management in areas suffers from data scarcity, and also broaden the application area of DEM data.

  9. Effect of Uncertainty of Grid DEM on TOPMODEL: Evaluation and Analysis

    Institute of Scientific and Technical Information of China (English)

    WANG Peifa; DU Jinkang; FENG Xuezhi; KANG Guoding

    2006-01-01

    TOPMODEL, a semi-distributed hydrological model, has been widely used. In the process of simulation of the model, Digital Elevation Model (DEM) is used to provide the input data, such as topographic index and distance to the drainage outlet; thus DEM plays an important role in TOPMODEL. This study aims at examining the impacts of DEM uncertainty on the simulation results of TOPMODEL. In this paper, the effects were evaluated mainly from quantitative and qualitative aspects. Firstly, DEM uncertainty was simulated by using the Monte Carlo method, and for every DEM realization, the topographic index and distance to the drainage outlet were extracted. Secondly, the obtained topographic index and the distance to the drainage outlet were input to the TOPMODEL to simulate seven rainstorm-flood events, and four evaluation indices, such as Nash and Sutcliffe efficiency criterion (EFF), sum of squared residuals over all time steps (SSE), sum of squared log residuals over all time steps (SLE) and sum of absolute errors over all time steps (SAE) were recorded. Thirdly, these four evaluation indices were analyzed in statistical manner (minimum, maximum, range, standard deviation and mean value), and effect of DEM uncertainty on TOPMODEL was quantitatively analyzed. Finally, the simulated hydrographs from TOPMODEL using the original DEM and realizations of DEM were qualitatively evaluated under each flood cases. Results show that the effect of DEM uncertainty on TOPMODEL is inconsiderable and could be ignored in the model's application. This can be explained by: 1)TOPMODEL is not sensitive to the distribution of topographic index and distance to the drainage outlet; 2) the distribution of topographic index and distance to the drainage outlet are slightly affected by DEM uncertainty.

  10. Bathymetric survey of water reservoirs in north-eastern Brazil based on TanDEM-X satellite data.

    Science.gov (United States)

    Zhang, Shuping; Foerster, Saskia; Medeiros, Pedro; de Araújo, José Carlos; Motagh, Mahdi; Waske, Bjoern

    2016-11-15

    Water scarcity in the dry season is a vital problem in dryland regions such as northeastern Brazil. Water supplies in these areas often come from numerous reservoirs of various sizes. However, inventory data for these reservoirs is often limited due to the expense and time required for their acquisition via field surveys, particularly in remote areas. Remote sensing techniques provide a valuable alternative to conventional reservoir bathymetric surveys for water resource management. In this study single pass TanDEM-X data acquired in bistatic mode were used to generate digital elevation models (DEMs) in the Madalena catchment, northeastern Brazil. Validation with differential global positioning system (DGPS) data from field measurements indicated an absolute elevation accuracy of approximately 1m for the TanDEM-X derived DEMs (TDX DEMs). The DEMs derived from TanDEM-X data acquired at low water levels show significant advantages over bathymetric maps derived from field survey, particularly with regard to coverage, evenly distributed measurements and replication of reservoir shape. Furthermore, by mapping the dry reservoir bottoms with TanDEM-X data, TDX DEMs are free of emergent and submerged macrophytes, independent of water depth (e.g. >10m), water quality and even weather conditions. Thus, the method is superior to other existing bathymetric mapping approaches, particularly for inland water bodies. The proposed approach relies on (nearly) dry reservoir conditions at times of image acquisition and is thus restricted to areas that show considerable water levels variations. However, comparisons between TDX DEM and the bathymetric map derived from field surveys show that the amount of water retained during the dry phase has only marginal impact on the total water volume derivation from TDX DEM. Overall, DEMs generated from bistatic TanDEM-X data acquired in low water periods constitute a useful and efficient data source for deriving reservoir bathymetry and show

  11. Investigating mixing and segregation using discrete element modelling (DEM) in the Freeman FT4 rheometer.

    Science.gov (United States)

    Yan, Zilin; Wilkinson, Sam K; Stitt, Edmund H; Marigo, Michele

    2016-11-20

    Mixing and segregation in a Freeman FT4 powder rheometer, using binary mixtures with varied particle size ratio and volume fraction, were studied using the Discrete Element Method (DEM). As the blade moves within the particle bed, size induced segregations can occur via a sifting mechanism. A larger particle size ratio and/or a larger volume fraction of large particles lead to a quicker segregation process. A higher particle velocity magnitude can promote the segregation process and the rate for the segregation index increases in the radial direction: from the centre towards the outer layer. In the current DEM simulations, it is shown that the change in flow energy associated with segregation and mixing depends on the choice of frictional input parameters. FT4 is proposed as a potential tool to compare and rank the segregation tendency for particulate materials with distinct differences in flow energy of each component. This is achieved by measuring the flow energy gradient after a number of test cycles for mixing powders with different flow properties. Employing the FT4 dynamic powder characterisation can be advantageous to establish blending performances in an industrial context.

  12. Which DEM is the best for glaciology? -Evaluation of global-scale DEM products-

    Science.gov (United States)

    Nagai, Hiroto; Tadono, Takeo

    2017-04-01

    Digital elevation models (DEMs) are fundamental geospatial data to study glacier distribution, changes, dynamics, mass balance and various geomorphological conditions. This study evaluates latest global-scale free DEMs in order to clarify their superiority and inferiority in glaciological uses. Three DEMs are now available; the 1-arcsec. product obtained from the Shuttle Radar Topographic Mission (SRTM1), the second version of Global Digital Elevation Model of the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER GDEM2), and the first resampled dataset acquired by the Advanced Land observing Satellite, namely ALOS World 3D-30m (AW3D30). These DEMs have common specifications of global coverage (B>C). In the Tone river basin, SRTM1 has equivalent accuracy to AW3D30. High resolution (2.5 m) of the original stereo-pair images for AW3D30 (i.e. ALOS PRISM imagery) contributes for the best absolute accuracy. Glaciers on rather flat terrains are usually distributed in higher latitude (e.g. Antarctica and Greenland), where SRTM1 is unable. Glaciers at mid-to-low latitudes glaciers are usually distributed in high and steep mountains, where SRTM1 has lower accuracy than AW3D30. AW3D30 would contributes as a preferable option for glaciology in a global scale. At the tops of high mountains in the Nepal Himalaya, however, AW3D30 has a large area of data missing due to snow cover. This inferiority should be improved by filling with other datasets in the next version. ASTER GDEM2 has less area of data missing in the Nepal Himalaya, which would contribute for coarse uses such as generation of river basin, brief drawing of a topographic map, etc.

  13. Generation of Statewide DEMs and Orthoimages – Guidelines and Methodology

    Directory of Open Access Journals (Sweden)

    Giribabu Dandabathula

    2015-06-01

    Full Text Available Cartosat-1 is a global, high resolution stereographic imaging mission to support enhanced applications in several areas of terrain mapping, natural resources management, disaster management, infrastructure and development planning. A collaborative project of generating statewide Digital Elevation Model (DEMs and mosaic of Ortho-image for all the states and union territories in India has completed under the project namely Space based Information Support for Decentralized Planning (SIS-DP using Photogrammetric techniques with Cartosat-1 stereo data.  Approximately 11000 stereo pairs of Cartosat-1 data were used in this process. Photogrammetric blocks for each state were processed using existing reference tiles and accordingly ortho-images were generated. The paper outlines the methodology for generating state-wide Digital Elevation Models (DEMs and ortho-images. The guidelines that govern the quality of the output were discussed. Dissemination mechanism via public accessible web platform was described.

  14. Generating DEM from LIDAR data - comparison of available software tools

    Science.gov (United States)

    Korzeniowska, K.; Lacka, M.

    2011-12-01

    In recent years many software tools and applications have appeared that offer procedures, scripts and algorithms to process and visualize ALS data. This variety of software tools and of "point cloud" processing methods contributed to the aim of this study: to assess algorithms available in various software tools that are used to classify LIDAR "point cloud" data, through a careful examination of Digital Elevation Models (DEMs) generated from LIDAR data on a base of these algorithms. The works focused on the most important available software tools: both commercial and open source ones. Two sites in a mountain area were selected for the study. The area of each site is 0.645 sq km. DEMs generated with analysed software tools ware compared with a reference dataset, generated using manual methods to eliminate non ground points. Surfaces were analysed using raster analysis. Minimum, maximum and mean differences between reference DEM and DEMs generated with analysed software tools were calculated, together with Root Mean Square Error. Differences between DEMs were also examined visually using transects along the grid axes in the test sites.

  15. Development of an Antarctic digital elevation model by integrating cartographic and remotely sensed data: A geographic information system based approach

    Science.gov (United States)

    Liu, Hongxing; Jezek, Kenneth C.; Li, Biyan

    1999-10-01

    We present a high-resolution digital elevation model (DEM) of the Antarctic. It was created in a geographic information system (GIS) environment by integrating the best available topographic data from a variety of sources. Extensive GIS-based error detection and correction operations ensured that our DEM is free of gross errors. The carefully designed interpolation algorithms for different types of source data and incorporation of surface morphologic information preserved and enhanced the fine surface structures present in the source data. The effective control of adverse edge effects and the use of the Hermite blending weight function in data merging minimized the discontinuities between different types of data, leading to a seamless and topographically consistent DEM throughout the Antarctic. This new DEM provides exceptional topographical details and represents a substantial improvement in horizontal resolution and vertical accuracy over the earlier, continental-scale renditions, particularly in mountainous and coastal regions. It has a horizontal resolution of 200 m over the rugged mountains, 400 m in the coastal regions, and approximately 5 km in the interior. The vertical accuracy of the DEM is estimated at about 100-130 m over the rugged mountainous area, better than 2 m for the ice shelves, better than 15 m for the interior ice sheet, and about 35 m for the steeper ice sheet perimeter. The Antarctic DEM can be obtained from the authors.

  16. ASTER-Derived 30-Meter-Resolution Digital Elevation Models of Afghanistan

    Science.gov (United States)

    Chirico, Peter G.; Warner, Michael B.

    2007-01-01

    INTRODUCTION The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) is an imaging instrument aboard the Terra satellite, launched on December 19, 1999, as part of the National Aeronautics and Space Administration's (NASA) Earth Observing System (EOS). The ASTER sensor consists of three subsystems: the visible and near infrared (VNIR), the shortwave infrared (SWIR), and the thermal infrared (TIR), each with a different spatial resolution (VNIR, 15 meters; SWIR, 30 meters, TIR 90 meters). The VNIR system has the capability to generate along-track stereo images that can be used to create digital elevation models (DEMs) at 30-meter resolution. Currently, the only available DEM dataset for Afghanistan is the 90-meter-resolution Shuttle Radar Topography Mission (SRTM) data. This dataset is appropriate for macroscale DEM analysis and mapping. However, ASTER provides a low cost opportunity to generate higher resolution data. For this publication, study areas were identified around populated areas and areas where higher resolution elevation data were desired to assist in natural resource assessments. The higher resolution fidelity of these DEMs can also be used for other terrain analysis including landform classification and geologic structure analysis. For this publication, ASTER scenes were processed and mosaicked to generate 36 DEMs which were created and extracted using PCI Geomatics' OrthoEngine 3D Stereo software. The ASTER images were geographically registered to Landsat data with at least 15 accurate and well distributed ground control points with a root mean square error (RMSE) of less that one pixel (15 meters). An elevation value was then assigned to each ground control point by extracting the elevation from the 90-meter SRTM data. The 36 derived DEMs demonstrate that the software correlated on nearly flat surfaces and smooth slopes accurately. Larger errors occur in cloudy and snow-covered areas, lakes, areas with steep slopes, and

  17. High Resolution Digital Elevation Models of Pristine Explosion Craters

    Science.gov (United States)

    Farr, T. G.; Krabill, W.; Garvin, J. B.

    2004-01-01

    In order to effectively capture a realistic terrain applicable to studies of cratering processes and landing hazards on Mars, we have obtained high resolution digital elevation models of several pristine explosion craters at the Nevada Test Site. We used the Airborne Terrain Mapper (ATM), operated by NASA's Wallops Flight Facility to obtain DEMs with 1 m spacing and 10 cm vertical errors of 4 main craters and many other craters and collapse pits. The main craters that were mapped are Sedan, Scooter, Schooner, and Danny Boy. The 370 m diameter Sedan crater, located on Yucca Flat, is the largest and freshest explosion crater on Earth that was formed under conditions similar to hypervelocity impact cratering. As such, it is effectively pristine, having been formed in 1962 as a result of a controlled detonation of a 100 kiloton thermonuclear device, buried at the appropriate equivalent depth of burst required to make a simple crater. Sedan was formed in alluvium of mixed lithology and subsequently studied using a variety of field-based methods. Nearby secondary craters were also formed at the time and were also mapped by ATM. Adjacent to Sedan and also in alluvium is Scooter, about 90 m in diameter and formed by a high-explosive event. Schooner (240 m) and Danny Boy (80 m) craters were also important targets for ATM as they were excavated in hard basalt and therefore have much rougher ejecta. This will allow study of ejecta patterns in hard rock as well as engineering tests of crater and rock avoidance and rover trafficability. In addition to the high resolution DEMs, crater geometric characteristics, RMS roughness maps, and other higher-order derived data products will be generated using these data. These will provide constraints for models of landing hazards on Mars and for rover trafficability. Other planned studies will include ejecta size-frequency distribution at the resolution of the DEM and at finer resolution through air photography and field measurements

  18. Digital Modeling Phenomenon Of Surface Ground Movement

    Directory of Open Access Journals (Sweden)

    Ioan Voina

    2016-11-01

    Full Text Available With the development of specialized software applications it was possible to approach and resolve complex problems concerning automating and process optimization for which are being used field data. Computerized representation of the shape and dimensions of the Earth requires a detailed mathematical modeling, known as "digital terrain model". The paper aims to present the digital terrain model of Vulcan mining, Hunedoara County, Romania. Modeling consists of a set of mathematical equations that define in detail the surface of Earth and has an approximate surface rigorously and mathematical, that calculated the land area. Therefore, the digital terrain model means a digital representation of the earth's surface through a mathematical model that approximates the land surface modeling, which can be used in various civil and industrial applications in. To achieve the digital terrain model of data recorded using linear and nonlinear interpolation method based on point survey which highlights the natural surface studied. Given the complexity of this work it is absolutely necessary to know in detail of all topographic elements of work area, without the actions to be undertaken to project and manipulate would not be possible. To achieve digital terrain model, within a specialized software were set appropriate parameters required to achieve this case study. After performing all steps we obtained digital terrain model of Vulcan Mine. Digital terrain model is the complex product, which has characteristics that are equivalent to the specialists that use satellite images and information stored in a digital model, this is easier to use.

  19. An evaluation of onshore digital elevation models for tsunami inundation modelling

    Science.gov (United States)

    Griffin, J.; Latief, H.; Kongko, W.; Harig, S.; Horspool, N.; Hanung, R.; Rojali, A.; Maher, N.; Fountain, L.; Fuchs, A.; Hossen, J.; Upi, S.; Dewanto, S. E.; Cummins, P. R.

    2012-12-01

    Tsunami inundation models provide fundamental information about coastal areas that may be inundated in the event of a tsunami along with additional parameters such as flow depth and velocity. This can inform disaster management activities including evacuation planning, impact and risk assessment and coastal engineering. A fundamental input to tsunami inundation models is adigital elevation model (DEM). Onshore DEMs vary widely in resolution, accuracy, availability and cost. A proper assessment of how the accuracy and resolution of DEMs translates into uncertainties in modelled inundation is needed to ensure results are appropriately interpreted and used. This assessment can in turn informdata acquisition strategies depending on the purpose of the inundation model. For example, lower accuracy elevation data may give inundation results that are sufficiently accurate to plan a community's evacuation route but not sufficient to inform engineering of a vertical evacuation shelters. A sensitivity study is undertaken to assess the utility of different available onshore digital elevation models for tsunami inundation modelling. We compare airborne interferometric synthetic aperture radar (IFSAR), ASTER and SRTM against high resolution (historical tsunami run-up data. Large vertical errors (> 10 m) and poor resolution of the coastline in the ASTER and SRTM elevation models cause modelled inundation to be much less compared with models using better data and with observations. Therefore we recommend that ASTER and SRTM should not be used for modelling tsunami inundation in order to determine tsunami extent or any other measure of onshore tsunami hazard. We suggest that for certain disaster management applications where the important factor is the extent of inundation, such as evacuation planning, airborne IFSAR provides a good compromise between cost and accuracy; however the representation of flow parameters such as depth and velocity is not sufficient to inform detailed

  20. TanDEM-X the Earth surface observation project from space level - basis and mission status

    Directory of Open Access Journals (Sweden)

    Jerzy Wiśniowski

    2015-03-01

    Full Text Available TanDEM-X is DLR (Deutsches Zentrum für Luft- und Raumfahrt the Earth surface observation project using high-resolution SAR interferometry. It opens a new era in space borne radar remote sensing. The system is based on two satellites: TerraSAR-X (TSX and TanDEM-X (TDX flying on the very close, strictly controlled orbits. This paper gives an overview of the radar technology and overview of the TanDEM-X mission concept which is based on several innovative technologies. The primary objective of the mission is to deliver a global digital elevation model (DEM with an unprecedented accuracy, which is equal to or surpass the HRTI-3 specifications (12 m posting, relative height accuracy ±2 m for slope < 20% and ±4 m for slope > 20% [8]. Beyond that, TanDEM-X provides a highly reconfigurable platform for the demonstration of new radar imaging techniques and applications.[b]Keywords[/b]: remote sensing, Bistatic SAR, digital elevation model (DEM, Helix formation, SAR interferomery, HRTI-3, synchronization

  1. Digital Model of Railway Electric Traction Lines

    Science.gov (United States)

    Garg, Rachana; Mahajan, Priya; Kumar, Parmod

    2016-08-01

    The characteristic impedance and propagation constant define the behavior of signal propagation over the transmission lines. The digital model for railway traction lines which includes railway tracks is developed, using curve fitting technique in MATLAB. The sensitivity of this model has been computed with respect to frequency. The digital sensitivity values are compared with the values of analog sensitivity. The developed model is useful for digital protection, integrated operation, control and planning of the system.

  2. Digital Model of Railway Electric Traction Lines

    Science.gov (United States)

    Garg, Rachana; Mahajan, Priya; Kumar, Parmod

    2017-08-01

    The characteristic impedance and propagation constant define the behavior of signal propagation over the transmission lines. The digital model for railway traction lines which includes railway tracks is developed, using curve fitting technique in MATLAB. The sensitivity of this model has been computed with respect to frequency. The digital sensitivity values are compared with the values of analog sensitivity. The developed model is useful for digital protection, integrated operation, control and planning of the system.

  3. Cost Model for Digital Preservation: Cost of Digital Migration

    Directory of Open Access Journals (Sweden)

    Ulla Bøgvad Kejser

    2011-03-01

    Full Text Available The Danish Ministry of Culture has funded a project to set up a model for costing preservation of digital materials held by national cultural heritage institutions. The overall objective of the project was to increase cost effectiveness of digital preservation activities and to provide a basis for comparing and estimating future cost requirements for digital preservation. In this study we describe an activity-based costing methodology for digital preservation based on the Open Archice Information System (OAIS Reference Model. Within this framework, which we denote the Cost Model for Digital Preservation (CMDP, the focus is on costing the functional entity Preservation Planning from the OAIS and digital migration activities. In order to estimate these costs we have identified cost-critical activities by analysing the functions in the OAIS model and the flows between them. The analysis has been supplemented with findings from the literature, and our own knowledge and experience. The identified cost-critical activities have subsequently been deconstructed into measurable components, cost dependencies have been examined, and the resulting equations expressed in a spreadsheet. Currently the model can calculate the cost of different migration scenarios for a series of preservation formats for text, images, sound, video, geodata, and spreadsheets. In order to verify the model it has been tested on cost data from two different migration projects at the Danish National Archives (DNA. The study found that the OAIS model provides a sound overall framework for the cost breakdown, but that some functions need additional detailing in order to cost activities accurately. Running the two sets of empirical data showed among other things that the model underestimates the cost of manpower-intensive migration projects, while it reinstates an often underestimated cost, which is the cost of developing migration software. The model has proven useful for estimating the

  4. Human Digital Modeling & Hand Scanning Lab

    Data.gov (United States)

    Federal Laboratory Consortium — This laboratory incorporates specialized scanning equipment, computer workstations and software applications for the acquisition and analysis of digitized models of...

  5. The impact of resolution on the accuracy of hydrologic data derived from DEMs

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Hydrologic data derived from digital elevation models (DEM) has been regarded as an effective method in the spatial analysis of geographical information systems (GIS). However, both DEM resolution and terrain complexity has impacts on the accuracy of hydrologic derivatives. In this study, a multi-resolution and multi-relief comparative approach was used as a major methodology to investigate the accuracy of hydrologic data derived from DEMs. The experiment reveals that DEM terrain representation error affects the accuracy of DEM hydrological derivatives (drainage networks and watershed etc.). Coarser DEM resolutions can usually cause worse results. However, uncertain result commonly exists in this calculation. The derivative errors can be found closely related with DEM vertical resolution and terrain roughness. DEM vertical resolution can be found closely related with the accuracy of DEM hydrological derivatives, especially in the smooth plain area. If the mean slope is less than 4 degrees, the derived hydrologic data are usually unreliable. This result may be helpful in estimating the accuracy of the hydrologic derivatives and determining the DEM resolution that is appropriate to the accuracy requirement of a particular user. By applying a threshold value to subset the cells of a higher accumulation flow, a stream network of a specific network density can be extracted. Some very important geomorphologic characteristics, e.g., shallow and deep gullies, can be separately extracted by means of adjusting the threshold value. However, such a flow accumulation based processing method can not correctly derive those streams that pass through the working area because it is hard to accumulate enough flow direction values to express the stream channels at the stream's entrance area. Consequently, errors will definitely occur at the stream's entrance area. In addition, erroneous derivatives can also be found in deriving some particular rivers, e.g., perched (hanging up) rivers

  6. Interpolation Routines Assessment in ALS-Derived Digital Elevation Models for Forestry Applications

    Directory of Open Access Journals (Sweden)

    Antonio Luis Montealegre

    2015-07-01

    Full Text Available Airborne Laser Scanning (ALS is capable of estimating a variety of forest parameters using different metrics extracted from the normalized heights of the point cloud using a Digital Elevation Model (DEM. In this study, six interpolation routines were tested over a range of land cover and terrain roughness in order to generate a collection of DEMs with spatial resolution of 1 and 2 m. The accuracy of the DEMs was assessed twice, first using a test sample extracted from the ALS point cloud, second using a set of 55 ground control points collected with a high precision Global Positioning System (GPS. The effects of terrain slope, land cover, ground point density and pulse penetration on the interpolation error were examined stratifying the study area with these variables. In addition, a Classification and Regression Tree (CART analysis allowed the development of a prediction uncertainty map to identify in which areas DEMs and Airborne Light Detection and Ranging (LiDAR derived products may be of low quality. The Triangulated Irregular Network (TIN to raster interpolation method produced the best result in the validation process with the training data set while the Inverse Distance Weighted (IDW routine was the best in the validation with GPS (RMSE of 2.68 cm and RMSE of 37.10 cm, respectively.

  7. Hydrologic analysis of a flood based on a new Digital Elevation Model

    Science.gov (United States)

    Nishio, M.; Mori, M.

    2015-06-01

    These The present study aims to simulate the hydrologic processes of a flood, based on a new, highly accurate Digital Elevation Model (DEM). The DEM is provided by the Ministry of Land, Infrastructure, Transport and Tourism (MLIT) of Japan, and has a spatial resolution of five meters. It was generated by the new National Project in 2012. The Hydrologic Engineering Center - Hydrologic Modeling System (HEC-HMS) is used to simulate the hydrologic process of a flood of the Onga River in Iizuka City, Japan. A large flood event in the typhoon season in 2003 caused serious damage around the Iizuka City area. Precise records of rainfall data from the Automated Meteorological Data Acquisition System (AMeDAS) were input into the HEC-HMS. The estimated flood area of the simulation results by HEC-HMS was identical to the observed flood area. A watershed aggregation map is also generated by HEC-HMS around the Onga River.

  8. Digital elevation modeling via curvature interpolation for LiDAR data

    Directory of Open Access Journals (Sweden)

    Hwamog Kim

    2016-03-01

    Full Text Available Digital elevation model (DEM is a three-dimensional (3D representation of a terrain's surface - for a planet (including Earth, moon, or asteroid - created from point cloud data which measure terrain elevation. Its modeling requires surface reconstruction for the scattered data, which is an ill-posed problem and most computational algorithms become overly expensive as the number of sample points increases. This article studies an effective partial differential equation (PDE-based algorithm, called the curvature interpolation method (CIM. The new method iteratively utilizes curvature information, estimated from an intermediate surface, to construct a reliable image surface that contains all of the data points. The CIM is applied for DEM for point cloud data acquired by light detection and ranging (LiDAR technology. It converges to a piecewise smooth image, requiring O(N operations independently of the number of sample points, where $N$ is the number of grid points.

  9. A Vector-based Method for the Extraction of Catchment from Grid DEMs

    Institute of Scientific and Technical Information of China (English)

    ZHU Qing; TIAN Yixiang

    2005-01-01

    The methodology of catchment extraction especially from regular grid digital elevation models (DEMs) is briefly reviewed.Then an efficient algorithm, which combines vector process and traditional neighbourhood raster process, is designed for extracting the catchments and subcatchments from depressionless DEMs.The catchment area of each river in the grid DEM data is identified and delineated, then is divided into subcatchments as required.Compared to traditional processes, this method for identifying catchments focuses on the boundaries instead of the area inside the catchments and avoids the boundary intersection phenomena.Last, the algorithm is tested with a set of DEMs of different sizes, and the result proves that the computation efficiency and accuracy are better than existent methods.

  10. ICESAT VALIDATION OF TANDEM-X I-DEMS OVER THE UK

    Directory of Open Access Journals (Sweden)

    L. Feng

    2016-06-01

    Full Text Available From the latest TanDEM-X mission (bistatic X-Band interferometric SAR, globally consistent Digital Elevation Model (DEM will be available from 2017, but their accuracy has not yet been fully characterised. This paper presents the methods and implementation of statistical procedures for the validation of the vertical accuracy of TanDEM-X iDEMs at grid-spacing of approximately 12.5 m, 30 m and 90 m based on processed ICESat data over the UK in order to assess their potential extrapolation across the globe. The accuracy of the TanDEM-X iDEM in UK was obtained as follows: against ICESat GLA14 elevation data, TanDEM-X iDEM has −0.028±3.654 m over England and Wales and 0.316 ± 5.286 m over Scotland for 12 m, −0.073 ± 6.575 m for 30 m, and 0.0225 ± 9.251 m at 90 m. Moreover, 90 % of all results at the three resolutions of TanDEM-X iDEM data (with a linear error at 90 % confidence level are below 16.2 m. These validation results also indicate that derivative topographic parameters (slope, aspect and relief have a strong effect on the vertical accuracy of the TanDEM-X iDEMs. In high-relief and large slope terrain, large errors and data voids are frequent, and their location is strongly influenced by topography, whilst in the low- to medium-relief and low slope sites, errors are smaller. ICESat derived elevations are heavily influenced by surface slope within the 70 m footprint as well as there being slope dependent errors in the TanDEM-X iDEMs.

  11. Icesat Validation of Tandem-X I-Dems Over the UK

    Science.gov (United States)

    Feng, L.; Muller, J.-P.

    2016-06-01

    From the latest TanDEM-X mission (bistatic X-Band interferometric SAR), globally consistent Digital Elevation Model (DEM) will be available from 2017, but their accuracy has not yet been fully characterised. This paper presents the methods and implementation of statistical procedures for the validation of the vertical accuracy of TanDEM-X iDEMs at grid-spacing of approximately 12.5 m, 30 m and 90 m based on processed ICESat data over the UK in order to assess their potential extrapolation across the globe. The accuracy of the TanDEM-X iDEM in UK was obtained as follows: against ICESat GLA14 elevation data, TanDEM-X iDEM has -0.028±3.654 m over England and Wales and 0.316 ± 5.286 m over Scotland for 12 m, -0.073 ± 6.575 m for 30 m, and 0.0225 ± 9.251 m at 90 m. Moreover, 90 % of all results at the three resolutions of TanDEM-X iDEM data (with a linear error at 90 % confidence level) are below 16.2 m. These validation results also indicate that derivative topographic parameters (slope, aspect and relief) have a strong effect on the vertical accuracy of the TanDEM-X iDEMs. In high-relief and large slope terrain, large errors and data voids are frequent, and their location is strongly influenced by topography, whilst in the low- to medium-relief and low slope sites, errors are smaller. ICESat derived elevations are heavily influenced by surface slope within the 70 m footprint as well as there being slope dependent errors in the TanDEM-X iDEMs.

  12. Incorporating the effect of DEM resolution and accuracy for improved flood inundation mapping

    Science.gov (United States)

    Saksena, Siddharth; Merwade, Venkatesh

    2015-11-01

    Topography plays a major role in determining the accuracy of flood inundation areas. However, many areas in the United States and around the world do not have access to high quality topographic data in the form of Digital Elevation Models (DEM). For such areas, an improved understanding of the effects of DEM properties such as horizontal resolution and vertical accuracy on flood inundation maps may eventually lead to improved flood inundation modeling and mapping. This study attempts to relate the errors arising from DEM properties such as spatial resolution and vertical accuracy to flood inundation maps, and then use this relationship to create improved flood inundation maps from coarser resolution DEMs with low accuracy. The results from the five stream reaches used in this study show that water surface elevations (WSE) along the stream and the flood inundation area have a linear relationship with both DEM resolution and accuracy. This linear relationship is then used to extrapolate the water surface elevations from coarser resolution DEMs to get water surface elevations corresponding to a finer resolution DEM. Application of this approach show that improved results can be obtained from flood modeling by using coarser and less accurate DEMs, including public domain datasets such as the National Elevation Dataset and Shuttle Radar Topography Mission (SRTM) DEMs. The improvement in the WSE and its application to obtain better flood inundation maps is dependent on the study reach characteristics such as land use, valley shape, reach length and width. Application of the approach presented in this study on more reaches may lead to development of guidelines for flood inundation mapping using coarser resolution and less accurate topographic datasets.

  13. Automated identification of stream-channel geomorphic features from high‑resolution digital elevation models in West Tennessee watersheds

    Science.gov (United States)

    Cartwright, Jennifer M.; Diehl, Timothy H.

    2017-01-17

    High-resolution digital elevation models (DEMs) derived from light detection and ranging (lidar) enable investigations of stream-channel geomorphology with much greater precision than previously possible. The U.S. Geological Survey has developed the DEM Geomorphology Toolbox, containing seven tools to automate the identification of sites of geomorphic instability that may represent sediment sources and sinks in stream-channel networks. These tools can be used to modify input DEMs on the basis of known locations of stormwater infrastructure, derive flow networks at user-specified resolutions, and identify possible sites of geomorphic instability including steep banks, abrupt changes in channel slope, or areas of rough terrain. Field verification of tool outputs identified several tool limitations but also demonstrated their overall usefulness in highlighting likely sediment sources and sinks within channel networks. In particular, spatial clusters of outputs from multiple tools can be used to prioritize field efforts to assess and restore eroding stream reaches.

  14. A Combined SRTM Digital Elevation Model for Zanjan State of Iran Based on the Corrective Surface Idea

    Science.gov (United States)

    Kiamehr, Ramin

    2016-04-01

    One arc-second high resolution version of the SRTM model recently published for the Iran by the US Geological Survey database. Digital Elevation Models (DEM) is widely used in different disciplines and applications by geoscientist. It is an essential data in geoid computation procedure, e.g., to determine the topographic, downward continuation (DWC) and atmospheric corrections. Also, it can be used in road location and design in civil engineering and hydrological analysis. However, a DEM is only a model of the elevation surface and it is subject to errors. The most important parts of errors could be comes from the bias in height datum. On the other hand, the accuracy of DEM is usually published in global sense and it is important to have estimation about the accuracy in the area of interest before using of it. One of the best methods to have a reasonable indication about the accuracy of DEM is obtained from the comparison of their height versus the precise national GPS/levelling data. It can be done by the determination of the Root-Mean-Square (RMS) of fitting between the DEM and leveling heights. The errors in the DEM can be approximated by different kinds of functions in order to fit the DEMs to a set of GPS/levelling data using the least squares adjustment. In the current study, several models ranging from a simple linear regression to seven parameter similarity transformation model are used in fitting procedure. However, the seven parameter model gives the best fitting with minimum standard division in all selected DEMs in the study area. Based on the 35 precise GPS/levelling data we obtain a RMS of 7 parameter fitting for SRTM DEM 5.5 m, The corrective surface model in generated based on the transformation parameters and included to the original SRTM model. The result of fitting in combined model is estimated again by independent GPS/leveling data. The result shows great improvement in absolute accuracy of the model with the standard deviation of 3.4 meter.

  15. DEM/CFD modelling of the deposition of dilute granular systems in a vertical container

    Institute of Scientific and Technical Information of China (English)

    YU Shen; GUO Yu; WU ChuanYu

    2009-01-01

    Deposition of granular materials into a container is a general industrial packing process. In this study, the deposition behaviour of dilute granular mixtures consisting of two types of particles that were of the same particle size but different particle densities in the presence of air was numerically analyzed using a coupled discrete element method (DEM) and computational fluid dynamics (CFD). Bilayer gra-nular mixtures with light particles at bottom and heavy particles at top were first simulated. It was found that the presence of air significantly affected the flow behaviour of the bilayer mixtures. For the system with a relatively low initial void fraction, the air entrapped inside the container escaped through the dilated zones induced due to the friction between the powder bed and wall surfaces. The escaping air streams entrained light particles that were originally located at the bottom of the granular system. Consequently, these light particles were migrated to the top of the granular bed at the end of deposition process. More light particles were migrated when the deposition distance was increased. For the sys-tem with a high initial void fraction, some light particles penetrated into the top layer of heavy particles and created a mixing zone. Deposition of random mixtures with different initial void fractions was also investigated and the influence of initial void fraction on the segregation behaviour was explored as well. It was found that the increase of void fraction promoted segregation during the deposition in air. It was demonstrated that, for granular mixtures consisting of particles of different air sensitivities, the pres-ence of air had a significant impact on the mixing and segregation behaviour during the deposition.

  16. Building a 2.5D Digital Elevation Model from 2D Imagery

    Science.gov (United States)

    Padgett, Curtis W.; Ansar, Adnan I.; Brennan, Shane; Cheng, Yang; Clouse, Daniel S.; Almeida, Eduardo

    2013-01-01

    When projecting imagery into a georeferenced coordinate frame, one needs to have some model of the geographical region that is being projected to. This model can sometimes be a simple geometrical curve, such as an ellipse or even a plane. However, to obtain accurate projections, one needs to have a more sophisticated model that encodes the undulations in the terrain including things like mountains, valleys, and even manmade structures. The product that is often used for this purpose is a Digital Elevation Model (DEM). The technology presented here generates a high-quality DEM from a collection of 2D images taken from multiple viewpoints, plus pose data for each of the images and a camera model for the sensor. The technology assumes that the images are all of the same region of the environment. The pose data for each image is used as an initial estimate of the geometric relationship between the images, but the pose data is often noisy and not of sufficient quality to build a high-quality DEM. Therefore, the source imagery is passed through a feature-tracking algorithm and multi-plane-homography algorithm, which refine the geometric transforms between images. The images and their refined poses are then passed to a stereo algorithm, which generates dense 3D data for each image in the sequence. The 3D data from each image is then placed into a consistent coordinate frame and passed to a routine that divides the coordinate frame into a number of cells. The 3D points that fall into each cell are collected, and basic statistics are applied to determine the elevation of that cell. The result of this step is a DEM that is in an arbitrary coordinate frame. This DEM is then filtered and smoothed in order to remove small artifacts. The final step in the algorithm is to take the initial DEM and rotate and translate it to be in the world coordinate frame [such as UTM (Universal Transverse Mercator), MGRS (Military Grid Reference System), or geodetic] such that it can be saved in

  17. 1-Meter Digital Elevation Model specification

    Science.gov (United States)

    Arundel, Samantha T.; Archuleta, Christy-Ann M.; Phillips, Lori A.; Roche, Brittany L.; Constance, Eric W.

    2015-10-21

    In January 2015, the U.S. Geological Survey National Geospatial Technical Operations Center began producing the 1-Meter Digital Elevation Model data product. This new product was developed to provide high resolution bare-earth digital elevation models from light detection and ranging (lidar) elevation data and other elevation data collected over the conterminous United States (lower 48 States), Hawaii, and potentially Alaska and the U.S. territories. The 1-Meter Digital Elevation Model consists of hydroflattened, topographic bare-earth raster digital elevation models, with a 1-meter x 1-meter cell size, and is available in 10,000-meter x 10,000-meter square blocks with a 6-meter overlap. This report details the specifications required for the production of the 1-Meter Digital Elevation Model.

  18. Digital Elevation Models of Greenland based on combined radar and laser altimetry as well as high-resolution stereoscopic imagery

    Science.gov (United States)

    Levinsen, J. F.; Smith, B. E.; Sandberg Sorensen, L.; Khvorostovsky, K.; Simonsen, S. B.; Forsberg, R.

    2015-12-01

    A number of Digital Elevation Models (DEMs) of Greenland exist, each of which are applicable for different purposes. This study presents two such DEMs: One developed by merging contemporary radar and laser altimeter data, and one derived from high-resolution stereoscopic imagery. All products are made freely available. The former DEM covers the entire Greenland. It is specific to the year 2010, providing it with an advantage over previous models suffering from either a reduced spatial/ temporal data coverage or errors from surface elevation changes (SEC) occurring during data acquisition. Radar data are acquired with Envisat and CryoSat-2, and laser data with the Ice, Cloud, and land Elevation Satellite, the Land, Vegetation, and Ice Sensor, and the Airborne Topographic Mapper. Correcting radar data for errors from slope effects and surface penetration of the echoes, and merging these with laser data, yields a DEM capable of resolving both surface depressions as well as topographic features at higher altitudes. The spatial resolution is 2 x 2 km, making the DEM ideal for application in surface mass balance studies, SEC detection from radar altimetry, or for correcting such data for slope-induced errors. The other DEM is developed in a pilot study building the expertise to map all ice-free parts of Greenland. The work combines WorldView-2 and -3 as well as GeoEye1 imagery from 2014 and 2015 over the Disko, Narsaq, Tassilaq, and Zackenberg regions. The novelty of the work is the determination of the product specifications after elaborate discussions with interested parties from government institutions, the tourist industry, etc. Thus, a 10 m DEM, 1.5 m orthophotos, and vector maps are produced. This opens to the possibility of using orthophotos with up-to-date contour lines or for deriving updated coastlines to aid, e.g., emergency management. This allows for a product development directly in line with the needs of parties with specific interests in Greenland.

  19. Improving Cartosat-1 DEM accuracy using synthetic stereo pair and triplet

    Science.gov (United States)

    Giribabu, D.; Srinivasa Rao, S.; Krishna Murthy, Y. V. N.

    2013-03-01

    Cartosat-1 is the first Indian Remote Sensing Satellite capable of providing along-track stereo images. Cartosat-1 provides forward stereo images with look angles +26° and -5° with respect to nadir for generating Digital Elevation Models (DEMs), Orthoimages and value added products for various applications. A pitch bias of -21° to the satellite resulted in giving reverse tilt mode stereo pair with look angles of +5° and -26° with respect to nadir. This paper compares DEMs generated using forward, reverse and other possible synthetic stereo pairs for two different types of topographies. Stereo triplet was used to generate DEM for Himalayan mountain topography to overcome the problem of occlusions. For flat to undulating topography it was shown that using Cartosat-1 synthetic stereo pair with look angles of -26° and +26° will produce improved version of DEM. Planimetric and height accuracy (Root Mean Square Error (RMSE)) of less than 2.5 m and 2.95 m respectively were obtained and qualitative analysis shows finer details in comparison with other DEMs. For rugged terrain and steep slopes of Himalayan mountain topography simple stereo pairs may not provide reliable accuracies in DEMs due to occlusions and shadows. Stereo triplet from Cartosat-1 was used to generate DEM for mountainous topography. This DEM shows better reconstruction of elevation model even at occluded region when compared with simple stereo pair based DEM. Planimetric and height accuracy (RMSE) of nearly 3 m were obtained and qualitative analysis shows reduction of outliers at occluded region.

  20. Evaluation of topographic index in relation to terrain roughness and DEM grid spacing

    Indian Academy of Sciences (India)

    Samadrita Mukherjee; Sandip Mukherjee; R D Garg; A Bhardwaj; P L N Raju

    2013-06-01

    Topographic index is an important attribute of digital elevation model (DEM) which indicates soil saturation. It is used for estimation of run-off, soil moisture, depth of ground water and hydrological simulation. Topographic index is derived from DEMs; hence the accuracy of DEM influences its computation. Commonly the raster based grid DEM is widely used to simulate hydrological model parameter, and accuracy varies with respect to DEM grid size and morphological characteristics of terrain. In this study topographic index is evaluated in terms of DEM grid size and terrain roughness. The study was carried out on four small watersheds, having different roughness characteristics, located over the Himalayan terrain. Topographic index surface is derived for each watershed from different grid spacing DEM (10–150 m), analysed and validated. It is found that DEM grid spacing affects the topographic index. The surface representation is smooth in the coarse grid spacing and the pattern of topographic index changes with grid spacing. The spatial autocorrelation of topographic index surface reduces when calculated from larger spacing DEM. The mean of the topographic index surface increases and standard deviation decreases with the increase of grid spacing and the effect is more pronounced in the rough terrain. Accuracy of the topographic index is also evaluated with respect to grid spacing and terrain roughness by comparing the topographic index surface with respect to reference data (10 m grid spacing topographic index surface). The RMSE and mean error of topographic index surface increases in larger grid spacing and the effect is more in rugged terrain.

  1. DIGITAL ELEVATION MODEL INTERPOLATION BY FUSION OF MORPHOLOGICAL RECONSTRUCTION AND DISTANCE TRANSFORMATION

    Directory of Open Access Journals (Sweden)

    J. Shen

    2017-09-01

    Full Text Available Interpolation methods have significant impacts on the accuracy of the digital elevation model (DEM from contours which are one of frequently employed data sources. In this paper, an interpolation method is presented to build DEM from contour lines by fusion/integration of morphological reconstruction and distance transformation with obstacles. Particularly, morphological reconstruction is used to get the elevation values of the higher contour lines and the lower contour lines of any a spatial point between two contour lines, and distance transformation with obstacles is used to get the geodesic distances of the spatial point to the higher contour lines and the lower contour lines respectively. At last, linear interpolation along water flow line is used to get the elevation values of the pixels to be interpolated. The experiment demonstrates that feasibility of our proposed method.

  2. A digital elevation model of the Greenland ice sheet and validation with airborne laser altimeter data

    Science.gov (United States)

    Bamber, Jonathan L.; Ekholm, Simon; Krabill, William B.

    1997-01-01

    A 2.5 km resolution digital elevation model (DEM) of the Greenland ice sheet was produced from the 336 days of the geodetic phase of ERS-1. During this period the altimeter was operating in ice-mode over land surfaces providing improved tracking around the margins of the ice sheet. Combined with the high density of tracks during the geodetic phase, a unique data set was available for deriving a DEM of the whole ice sheet. The errors present in the altimeter data were investigated via a comparison with airborne laser altimeter data obtained for the southern half of Greenland. Comparison with coincident satellite data showed a correlation with surface slope. An explanation for the behavior of the bias as a function of surface slope is given in terms of the pattern of surface roughness on the ice sheet.

  3. Development of an Integrated Digital Elevation Model for Safe Takeoff and Landing of the Aircraft

    Science.gov (United States)

    Ciećko, Adam; Jarmołowski, Wojciech

    2013-12-01

    The article describes preliminary results of the augmentation of Global Navigation Satellite System/Inertial Navigation System positioning (GNSS/INS) by Digital Elevation Model (DEM) based on the data from the Shuttle Radar Topography Mission (SRTM) and data from field survey. The prototype software is developed to refer the position of the aircraft to DEM and informs the user about the current relevant flight parameters. The number of the parameters may be arbitrarily increased, however, currently we investigate the altitude above the terrain and the aircraft position relative to the descent path and airfield. The study provides some information on the local SRTM accuracy in relation to the field survey of the airfield "Dajtki" - Aeroclub of Warmia and Mazury in Olsztyn.

  4. Enhancing Digital Book Clustering by LDAC Model

    Science.gov (United States)

    Wang, Lidong; Jie, Yuan

    In Digital Library (DL) applications, digital book clustering is an important and urgent research task. However, it is difficult to conduct effectively because of the great length of digital books. To do the correct clustering for digital books, a novel method based on probabilistic topic model is proposed. Firstly, we build a topic model named LDAC. The main goal of LDAC topic modeling is to effectively extract topics from digital books. Subsequently, Gibbs sampling is applied for parameter inference. Once the model parameters are learned, each book is assigned to the cluster which maximizes the posterior probability. Experimental results demonstrate that our approach based on LDAC is able to achieve significant improvement as compared to the related methods.

  5. From Digital Disruption to Business Model Scalability

    DEFF Research Database (Denmark)

    Nielsen, Christian; Lund, Morten; Thomsen, Peter Poulsen

    2017-01-01

    This article discusses the terms disruption, digital disruption, business models and business model scalability. It illustrates how managers should be using these terms for the benefit of their business by developing business models capable of achieving exponentially increasing returns to scale...... will seldom lead to business model scalability capable of competing with digital disruption(s)....... as a response to digital disruption. A series of case studies illustrate that besides frequent existing messages in the business literature relating to the importance of creating agile businesses, both in growing and declining economies, as well as hard to copy value propositions or value propositions that take...

  6. Modeling digital switching circuits with linear algebra

    CERN Document Server

    Thornton, Mitchell A

    2014-01-01

    Modeling Digital Switching Circuits with Linear Algebra describes an approach for modeling digital information and circuitry that is an alternative to Boolean algebra. While the Boolean algebraic model has been wildly successful and is responsible for many advances in modern information technology, the approach described in this book offers new insight and different ways of solving problems. Modeling the bit as a vector instead of a scalar value in the set {0, 1} allows digital circuits to be characterized with transfer functions in the form of a linear transformation matrix. The use of transf

  7. 2009-2011 CA Coastal California TopoBathy Merged Project Digital Elevation Model (DEM)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This project merged recently collected topographic, bathymetric, and acoustic elevation data along the entire California coastline from approximately the 10 meter...

  8. NOAA orthorectified Digital Elevation Model (DEM) image tiles, Bombay Hook, Delaware, 2011 (NODC Accession 0112173)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NOAA Bombay Hook Project covers 177 square kilometers of the Bombay Hook National Wildlife Refuge and surrounding areas in Kent County, Delaware. The Dewberry...

  9. 2013 NOAA Coastal California TopoBathy Merge Project Digital Elevation Model (DEM)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This project merged recently collected topographic, bathymetric, and acoustic elevation data along the entire California coastline from approximately the 10 meter...

  10. Elevation validation and geomorphic metric comparison with focus on ASTER GDEM2, SRTM- C, ALOS World 3D, and TanDEM-X

    Science.gov (United States)

    Purinton, Benjamin; Bookhagen, Bodo

    2017-04-01

    Geomorphologists use digital elevation models (DEMs) to quantify changes in topography - often without rigorous accuracy assessments. In this study we validate and compare elevation accuracy and derived geomorphic metrics from the current generation of satellite-derived DEMs on the southern Central Andean Plateau. The average elevation of 3.7 km, diverse topography and relief, lack of vegetation, and clear skies create ideal conditions for remote sensing in this study area. DEMs at resolutions of 5-30 m are sourced from open-access, research agreement, and commercial outlets, with a focus on the 30 m SRTM-C, 30 m ASTER GDEM2, 12 m TanDEM-X, and 5 m ALOS World 3D data. In addition to these edited products, manually generated DEMs included 10 m single-CoSSC TerraSAR-X / TanDEM-X DEMs and a 30 m stacked ASTER L1A stereopair DEM. We assessed vertical accuracy by comparing standard deviations (SD) of the DEM elevation versus 307,509 differential GPS (dGPS) measurements with employed a Fourier analysis to identify DEM frequencies and their spectral power. The optical 5 m ALOS World 3D DEM shows high-frequency noise in 2-8 pixel steps, with no corresponding landscape features in this highly diffusive, vegetation-free environment. Finally, we explore the geomorphometric potential of the higher-quality 12 m TanDEM-X DEM through a hillslope length and surface roughness assessment across steep environmental, climatic and topographic gradients in the Quebrada del Toro catchment, west of Salta, Argentina.

  11. A robust interpolation method for constructing digital elevation models from remote sensing data

    Science.gov (United States)

    Chen, Chuanfa; Liu, Fengying; Li, Yanyan; Yan, Changqing; Liu, Guolin

    2016-09-01

    A digital elevation model (DEM) derived from remote sensing data often suffers from outliers due to various reasons such as the physical limitation of sensors and low contrast of terrain textures. In order to reduce the effect of outliers on DEM construction, a robust algorithm of multiquadric (MQ) methodology based on M-estimators (MQ-M) was proposed. MQ-M adopts an adaptive weight function with three-parts. The weight function is null for large errors, one for small errors and quadric for others. A mathematical surface was employed to comparatively analyze the robustness of MQ-M, and its performance was compared with those of the classical MQ and a recently developed robust MQ method based on least absolute deviation (MQ-L). Numerical tests show that MQ-M is comparative to the classical MQ and superior to MQ-L when sample points follow normal and Laplace distributions, and under the presence of outliers the former is more accurate than the latter. A real-world example of DEM construction using stereo images indicates that compared with the classical interpolation methods, such as natural neighbor (NN), ordinary kriging (OK), ANUDEM, MQ-L and MQ, MQ-M has a better ability of preserving subtle terrain features. MQ-M replaces thin plate spline for reference DEM construction to assess the contribution to our recently developed multiresolution hierarchical classification method (MHC). Classifying the 15 groups of benchmark datasets provided by the ISPRS Commission demonstrates that MQ-M-based MHC is more accurate than MQ-L-based and TPS-based MHCs. MQ-M has high potential for DEM construction.

  12. Assessment of multiresolution segmentation for delimiting drumlins in digital elevation models.

    Science.gov (United States)

    Eisank, Clemens; Smith, Mike; Hillier, John

    2014-06-01

    Mapping or "delimiting" landforms is one of geomorphology's primary tools. Computer-based techniques such as land-surface segmentation allow the emulation of the process of manual landform delineation. Land-surface segmentation exhaustively subdivides a digital elevation model (DEM) into morphometrically-homogeneous irregularly-shaped regions, called terrain segments. Terrain segments can be created from various land-surface parameters (LSP) at multiple scales, and may therefore potentially correspond to the spatial extents of landforms such as drumlins. However, this depends on the segmentation algorithm, the parameterization, and the LSPs. In the present study we assess the widely used multiresolution segmentation (MRS) algorithm for its potential in providing terrain segments which delimit drumlins. Supervised testing was based on five 5-m DEMs that represented a set of 173 synthetic drumlins at random but representative positions in the same landscape. Five LSPs were tested, and four variants were computed for each LSP to assess the impact of median filtering of DEMs, and logarithmic transformation of LSPs. The testing scheme (1) employs MRS to partition each LSP exhaustively into 200 coarser scales of terrain segments by increasing the scale parameter (SP), (2) identifies the spatially best matching terrain segment for each reference drumlin, and (3) computes four segmentation accuracy metrics for quantifying the overall spatial match between drumlin segments and reference drumlins. Results of 100 tests showed that MRS tends to perform best on LSPs that are regionally derived from filtered DEMs, and then log-transformed. MRS delineated 97% of the detected drumlins at SP values between 1 and 50. Drumlin delimitation rates with values up to 50% are in line with the success of manual interpretations. Synthetic DEMs are well-suited for assessing landform quantification methods such as MRS, since subjectivity in the reference data is avoided which increases the

  13. Spatial Characterization of Landscapes through Multifractal Analysis of DEM

    Directory of Open Access Journals (Sweden)

    P. L. Aguado

    2014-01-01

    Full Text Available Landscape evolution is driven by abiotic, biotic, and anthropic factors. The interactions among these factors and their influence at different scales create a complex dynamic. Landscapes have been shown to exhibit numerous scaling laws, from Horton’s laws to more sophisticated scaling of heights in topography and river network topology. This scaling and multiscaling analysis has the potential to characterise the landscape in terms of the statistical signature of the measure selected. The study zone is a matrix obtained from a digital elevation model (DEM (map 10 × 10 m, and height 1 m that corresponds to homogeneous region with respect to soil characteristics and climatology known as “Monte El Pardo” although the water level of a reservoir and the topography play a main role on its organization and evolution. We have investigated whether the multifractal analysis of a DEM shows common features that can be used to reveal the underlying patterns and information associated with the landscape of the DEM mapping and studied the influence of the water level of the reservoir on the applied analysis. The results show that the use of the multifractal approach with mean absolute gradient data is a useful tool for analysing the topography represented by the DEM.

  14. Evaluation of ASTER GDEM2 in Comparison with GDEM1, SRTM DEM and Topographic-Map-Derived DEM Using Inundation Area Analysis and RTK-dGPS Data

    Directory of Open Access Journals (Sweden)

    Beni Raharjo

    2012-08-01

    Full Text Available This study evaluates the quality of the Advanced Spaceborne Thermal Emission Radiometer-Global Digital Elevation Model version 2 (ASTER GDEM2 in comparison with the previous version (GDEM1 as well as the Shuttle Radar Topographic Mission (SRTM DEM and topographic-map-derived DEM (Topo-DEM using inundation area analysis for the projected location of the Karian dam, Indonesia. In addition, the vertical accuracy of each DEM is evaluated using the Real-Time Kinematic differential Global Positioning Systems (RTK-dGPS data obtained from an intensive geodetic survey. The results of the inundation area analysis show that GDEM2 produced a higher maximum contour level (MCL (64 m than did GDEM1 (55 m, and thus, GDME2 has a better quality. In addition, the GDEM2-derived MCL is similar to those produced by SRTM DEM (69 m and Topo-DEM (62 m. The improvement in the contour level in GDEM2 is believed to be related to the successful removal of voids (artifacts and anomalies present in GDEM1. However, our RTK-dGPS results show that the vertical accuracy of GDEM2 is much lower than that of GDEM1 and the other DEMs, which is contradictory to the accuracy stated in the GDEM2 validation document. The vertical profiles of all DEMs show that GDEM2 contains a comparatively large number of undulation effects, thereby resulting in higher root mean square error (RMSE values. These undulation effects may have been introduced during the GDEM2 validation process. Although the results of this study may be site-specific, it is important that they be considered for the improvement of the next GDEM version.

  15. The AviaDem forecasting model: illustration of a forecasting case at Amsterdam Schiphol Airport

    NARCIS (Netherlands)

    Veldhuis, J.; Lieshout, R.

    2010-01-01

    The paper describes an aviation market forecasting model which focuses on market forecasts for airports. Most forecasting models in use today assess aviation trends resulting from macroeconomic trends. The model described in this paper has this feature built in, but the added value of this model is

  16. SPATIAL RESOLUTION EFFECTS OF DIGITAL TERRAIN MODELS ON LANDSLIDE SUSCEPTIBILITY ANALYSIS

    Directory of Open Access Journals (Sweden)

    K. T. Chang

    2016-06-01

    Full Text Available The purposes of this study are to identify the maximum number of correlated factors for landslide susceptibility mapping and to evaluate landslide susceptibility at Sihjhong river catchment in the southern Taiwan, integrating two techniques, namely certainty factor (CF and artificial neural network (ANN. The landslide inventory data of the Central Geological Survey (CGS, MOEA in 2004-2014 and two digital elevation model (DEM datasets including a 5-meter LiDAR DEM and a 30-meter Aster DEM were prepared. We collected thirteen possible landslide-conditioning factors. Considering the multi-collinearity and factor redundancy, we applied the CF approach to optimize these thirteen conditioning factors. We hypothesize that if the CF values of the thematic factor layers are positive, it implies that these conditioning factors have a positive relationship with the landslide occurrence. Therefore, based on this assumption and positive CF values, seven conditioning factors including slope angle, slope aspect, elevation, terrain roughness index (TRI, terrain position index (TPI, total curvature, and lithology have been selected for further analysis. The results showed that the optimized-factors model provides a better accuracy for predicting landslide susceptibility in the study area. In conclusion, the optimized-factors model is suggested for selecting relative factors of landslide occurrence.

  17. Carbonate reservoir characterization with pore type inversion using differential effective medium (DEM) model at "X" field, East Java

    Science.gov (United States)

    Rosid, M. S.; Wahyuni, S. D.; Haidar, M. W.

    2017-07-01

    Pore system in the carbonate reservoirs is very complex than in clastic rocks. There are three types of classification of pore types in carbonate rocks: interparticle, stiff, and crack. The complexity of the pore types can cause changes in P-wave velocity by 40 %, as well as create a carbonate reservoir characterization becomes difficult when the S wave estimation is done only with the type of dominant pore (interparticle). Therefore, modeling the elastic moduli of rocks become essential to solve the problem of complexity of pore types in carbonate rocks. Differential Effective Medium (DEM) is a method of modeling the elastic moduli of rocks that takes into account the heterogeneity of types of pores in carbonate rocks by adding pore-type inclusions little by little into the parent material (host material) until the proportion of the material is reached. In addition, to the elastic moduli which have taken into account the heterogeneity of pore type. The inversion result shows that carbonate reservoir at "X" field is dominated by crack pore type and the relation between S wave and P wave is expressed by VS=-0.05 VP2+VP-1.1 and not in linear correlation.

  18. Coupled hydro-thermo-mechanical modeling of hydraulic fracturing in quasi-brittle rocks using BPM-DEM

    Directory of Open Access Journals (Sweden)

    Ingrid Tomac

    2017-02-01

    Full Text Available This paper presents an improved understanding of coupled hydro-thermo-mechanical (HTM hydraulic fracturing of quasi-brittle rock using the bonded particle model (BPM within the discrete element method (DEM. BPM has been recently extended by the authors to account for coupled convective–conductive heat flow and transport, and to enable full hydro-thermal fluid–solid coupled modeling. The application of the work is on enhanced geothermal systems (EGSs, and hydraulic fracturing of hot dry rock (HDR is studied in terms of the impact of temperature difference between rock and a flowing fracturing fluid. Micro-mechanical investigation of temperature and fracturing fluid effects on hydraulic fracturing damage in rocks is presented. It was found that fracture is shorter with pronounced secondary microcracking along the main fracture for the case when the convective–conductive thermal heat exchange is considered. First, the convection heat exchange during low-viscosity fluid infiltration in permeable rock around the wellbore causes significant rock cooling, where a finger-like fluid infiltration was observed. Second, fluid infiltration inhibits pressure rise during pumping and delays fracture initiation and propagation. Additionally, thermal damage occurs in the whole area around the wellbore due to rock cooling and cold fluid infiltration. The size of a damaged area around the wellbore increases with decreasing fluid dynamic viscosity. Fluid and rock compressibility ratio was found to have significant effect on the fracture propagation velocity.

  19. Towards a Discrete Element Method (DEM) for modeling anisotropic, nano- and colloidal scale particles in Molecular Dynamics (MD)

    Science.gov (United States)

    Marson, Ryan; Spellings, Matthew; Anderson, Joshua; Glotzer, Sharon

    2014-03-01

    Faceted shapes, such as polyhedra, are commonly created in experimental systems of nanoscale, colloidal, and granular particles. Many interesting physical phenomena, like crystalline nucleation and growth, vacancy motion, and glassy dynamics, are challenging to model in these systems because they require detailed dynamical information at the individual particle level. Within the granular materials community the Discrete Element Method has been used extensively to model systems of anisotropic particles under gravity, with friction. We report the first implementation of DEM MD intended for thermodynamic nanoscale simulation. Our method is implemented in parallel on the GPU within the HOOMD-Blue framework. By decomposing the force calculation into its components, this implementation can take advantage of massive data parallelism, enabling optimal use of the GPU for even relatively small systems while achieving a speedup of 60 times over a single CPU core. This method is a natural extension of classical molecular dynamics into the realm of faceted particles, and allows simulation of disparate size scales ranging from the nanoscale to granular particulates, all within the same framework.

  20. Exploring Digital News Publishing Business Models

    DEFF Research Database (Denmark)

    Lindskow, Kasper

    News publishers in the industrialized world are experiencing a fundamental challenge to their business models because of the changing modes of consumption, competition, and production of their offerings that are associated with the emergence of the networked information society. The erosion...... of the traditional business models poses an existential threat to news publishing and has given rise to a continuing struggle among news publishers to design digital business models that will be sustainable in the future. This dissertation argues that a central and underresearched aspect of digital news publishing...... business models concerns the production networks that support the co-production of digital news offerings. To fill this knowledge gap, this dissertation explores the strategic design of the digital news publishing production networks that are associated with HTML-based news offerings on the open Web...