WorldWideScience

Sample records for models conformal computational

  1. Electronic Service Architecture Model Assessment of Conformity to Cloud Computing Key Features

    OpenAIRE

    Stipravietis, P; Žeiris, E; Ziema, M

    2013-01-01

    The research examines electronic service execution possibilities in cloud computing environment and the key features of cloud computing. It also offers a method which allows quantitatively assess the conformity of existing e-service architecture model to cloud computing key features.The method allows evaluating the amount of necessary transformations and their efficiency. The offered solution is verified using the business process administered by Motor Insurance Bureau...

  2. TOPICAL REVIEW: Group theory and biomolecular conformation: I. Mathematical and computational models

    Science.gov (United States)

    Chirikjian, Gregory S.

    2010-08-01

    Biological macromolecules, and the complexes that they form, can be described in a variety of ways ranging from quantum mechanical and atomic chemical models, to coarser grained models of secondary structure and domains, to continuum models. At each of these levels, group theory can be used to describe both geometric symmetries and conformational motion. In this survey, a detailed account is provided of how group theory has been applied across computational structural biology to analyze the conformational shape and motion of macromolecules and complexes.

  3. Recent Advances in Computational Conformal Geometry

    OpenAIRE

    Gu, Xianfeng David; Luo, Feng; Yau, Shing-Tung

    2009-01-01

    Computational conformal geometry focuses on developing the computational methodologies on discrete surfaces to discover conformal geometric invariants. In this work, we briefly summarize the recent developments for methods and related applications in computational conformal geometry. There are two major approaches, holomorphic differentials and curvature flow. Holomorphic differential method is a linear method, which is more efficient and robust to triangulations with lower qua...

  4. Ligand-receptor affinities computed by an adapted linear interaction model for continuum electrostatics and by protein conformational averaging.

    Science.gov (United States)

    Nunes-Alves, Ariane; Arantes, Guilherme Menegon

    2014-08-25

    Accurate calculations of free energies involved in small-molecule binding to a receptor are challenging. Interactions between ligand, receptor, and solvent molecules have to be described precisely, and a large number of conformational microstates has to be sampled, particularly for ligand binding to a flexible protein. Linear interaction energy models are computationally efficient methods that have found considerable success in the prediction of binding free energies. Here, we parametrize a linear interaction model for implicit solvation with coefficients adapted by ligand and binding site relative polarities in order to predict ligand binding free energies. Results obtained for a diverse series of ligands suggest that the model has good predictive power and transferability. We also apply implicit ligand theory and propose approximations to average contributions of multiple ligand-receptor poses built from a protein conformational ensemble and find that exponential averages require proper energy discrimination between plausible binding poses and false-positives (i.e., decoys). The linear interaction model and the averaging procedures presented can be applied independently of each other and of the method used to obtain the receptor structural representation.

  5. Computation of conformational coupling in allosteric proteins.

    Directory of Open Access Journals (Sweden)

    Brian A Kidd

    2009-08-01

    Full Text Available In allosteric regulation, an effector molecule binding a protein at one site induces conformational changes, which alter structure and function at a distant active site. Two key challenges in the computational modeling of allostery are the prediction of the structure of one allosteric state starting from the structure of the other, and elucidating the mechanisms underlying the conformational coupling of the effector and active sites. Here we approach these two challenges using the Rosetta high-resolution structure prediction methodology. We find that the method can recapitulate the relaxation of effector-bound forms of single domain allosteric proteins into the corresponding ligand-free states, particularly when sampling is focused on regions known to change conformation most significantly. Analysis of the coupling between contacting pairs of residues in large ensembles of conformations spread throughout the landscape between and around the two allosteric states suggests that the transitions are built up from blocks of tightly coupled interacting sets of residues that are more loosely coupled to one another.

  6. Development of Conformation Independent Computational Models for the Early Recognition of Breast Cancer Resistance Protein Substrates

    Directory of Open Access Journals (Sweden)

    Melisa Edith Gantner

    2013-01-01

    Full Text Available ABC efflux transporters are polyspecific members of the ABC superfamily that, acting as drug and metabolite carriers, provide a biochemical barrier against drug penetration and contribute to detoxification. Their overexpression is linked to multidrug resistance issues in a diversity of diseases. Breast cancer resistance protein (BCRP is the most expressed ABC efflux transporter throughout the intestine and the blood-brain barrier, limiting oral absorption and brain bioavailability of its substrates. Early recognition of BCRP substrates is thus essential to optimize oral drug absorption, design of novel therapeutics for central nervous system conditions, and overcome BCRP-mediated cross-resistance issues. We present the development of an ensemble of ligand-based machine learning algorithms for the early recognition of BCRP substrates, from a database of 262 substrates and nonsubstrates compiled from the literature. Such dataset was rationally partitioned into training and test sets by application of a 2-step clustering procedure. The models were developed through application of linear discriminant analysis to random subsamples of Dragon molecular descriptors. Simple data fusion and statistical comparison of partial areas under the curve of ROC curves were applied to obtain the best 2-model combination, which presented 82% and 74.5% of overall accuracy in the training and test set, respectively.

  7. The Conformal Standard Model

    CERN Document Server

    Latosinski, Adam; Meissner, Krzysztof A; Nicolai, Hermann

    2015-01-01

    We present an extended version of the Conformal Standard Model (characterized by the absence of any new intermediate scales between the electroweak scale and the Planck scale) with an enlarged scalar sector coupling to right-chiral neutrinos in such a way that the scalar potential and the Yukawa couplings involving only right-chiral neutrinos are invariant under a new global symmetry SU(3)$_N$ which is broken explicitly only by the Yukawa interaction coupling right-chiral neutrinos and the electroweak lepton doublets. We point out four main advantages of such an enlargement, namely: (1) the economy of the (non-supersymmetric) Standard Model, and thus its observational success, is preserved; (2) thanks to the enlarged scalar sector the RG improved one-loop effective potential is everywhere positive with a stable global minimum, thereby avoiding the notorious instability of the Standard Model vacuum; (3) the pseudo-Goldstone bosons resulting from spontaneous breaking of the SU(3)$_N$ symmetry are natural Dark M...

  8. Spectra of conformal sigma models

    Energy Technology Data Exchange (ETDEWEB)

    Tlapak, Vaclav

    2015-04-15

    In this thesis the spectra of conformal sigma models defined on (generalized) symmetric spaces are analysed. The spaces where sigma models are conformal without the addition of a Wess-Zumino term are supermanifolds, in other words spaces that include fermionic directions. After a brief review of the general construction of vertex operators and the background field expansion, we compute the diagonal terms of the one-loop anomalous dimensions of sigma models on semi-symmetric spaces. We find that the results are formally identical to the symmetric case. However, unlike for sigma models on symmetric spaces, off diagonal terms that lead to operator mixing are also present. These are not computed here. We then present a detailed analysis of the one-loop spectrum of the supersphere S{sup 3} {sup vertical} {sup stroke} {sup 2} sigma model as one of the simplest examples. The analysis illustrates the power and simplicity of the construction. We use this data to revisit a duality with the OSP(4 vertical stroke 2) Gross-Neveu model that was proposed by Candu and Saleur. With the help of a recent all-loop result for the anomalous dimension of (1)/(2)BPS operators of Gross-Neveu models, we are able to recover the entire zero-mode spectrum of the supersphere model. We also argue that the sigma model constraints and its equations of motion are implemented correctly in the Gross-Neveu model, including the one-loop data. The duality is further supported by a new all-loop result for the anomalous dimension of the ground states of the sigma model. However, higher-gradient operators cannot be completely recovered. It is possible that this discrepancy is related to a known instability of the sigma model. The instability of sigma models is due to symmetry preserving high-gradient operators that become relevant at arbitrarily small values of the coupling. This feature has been observed long ago in one-loop calculations of the O(N)-vector model and soon been realized to be a generic

  9. Generative models of conformational dynamics.

    Science.gov (United States)

    Langmead, Christopher James

    2014-01-01

    Atomistic simulations of the conformational dynamics of proteins can be performed using either Molecular Dynamics or Monte Carlo procedures. The ensembles of three-dimensional structures produced during simulation can be analyzed in a number of ways to elucidate the thermodynamic and kinetic properties of the system. The goal of this chapter is to review both traditional and emerging methods for learning generative models from atomistic simulation data. Here, the term 'generative' refers to a model of the joint probability distribution over the behaviors of the constituent atoms. In the context of molecular modeling, generative models reveal the correlation structure between the atoms, and may be used to predict how the system will respond to structural perturbations. We begin by discussing traditional methods, which produce multivariate Gaussian models. We then discuss GAMELAN (GRAPHICAL MODELS OF ENERGY LANDSCAPES), which produces generative models of complex, non-Gaussian conformational dynamics (e.g., allostery, binding, folding, etc.) from long timescale simulation data.

  10. Computable models

    CERN Document Server

    Turner, Raymond

    2009-01-01

    Computational models can be found everywhere in present day science and engineering. In providing a logical framework and foundation for the specification and design of specification languages, Raymond Turner uses this framework to introduce and study computable models. In doing so he presents the first systematic attempt to provide computational models with a logical foundation. Computable models have wide-ranging applications from programming language semantics and specification languages, through to knowledge representation languages and formalism for natural language semantics. They are al

  11. A conformal model of gravitons

    CERN Document Server

    Donoghue, John F

    2016-01-01

    In the description of general covariance, the vierbein and the Lorentz connection can be treated as independent fundamental fields. With the usual gauge Lagrangian, the Lorentz connection is characterized by an asymptotically free running coupling. When running from high energy, the coupling gets large at a scale which can be called the Planck mass. If the Lorentz connection is confined at that scale, the low energy theory can have the Einstein Lagrangian induced at low energy through dimensional transmutation. However, in general there will be new divergences in such a theory and the Lagrangian basis should be expanded. I construct a conformally invariant model with a larger basis size which potentially may have the same property.

  12. Representation of target-bound drugs by computed conformers: implications for conformational libraries

    Directory of Open Access Journals (Sweden)

    Goede Andrean

    2006-06-01

    Full Text Available Abstract Background The increasing number of known protein structures provides valuable information about pharmaceutical targets. Drug binding sites are identifiable and suitable lead compounds can be proposed. The flexibility of ligands is a critical point for the selection of potential drugs. Since computed 3D structures of millions of compounds are available, the knowledge of their binding conformations would be a great benefit for the development of efficient screening methods. Results Integration of two public databases allowed superposition of conformers for 193 approved drugs with 5507 crystallised target-bound counterparts. The generation of 9600 drug conformers using an atomic force field was carried out to obtain an optimal coverage of the conformational space. Bioactive conformations are best described by a conformational ensemble: half of all drugs exhibit multiple active states, distributed over the entire range of the reachable energy and conformational space. A number of up to 100 conformers per drug enabled us to reproduce the bound states within a similarity threshold of 1.0 Å in 70% of all cases. This fraction rises to about 90% for smaller or average sized drugs. Conclusion Single drugs adopt multiple bioactive conformations if they interact with different target proteins. Due to the structural diversity of binding sites they adopt conformations that are distributed over a broad conformational space and wide energy range. Since the majority of drugs is well represented by a predefined low number of conformers (up to 100 this procedure is a valuable method to compare compounds by three-dimensional features or for fast similarity searches starting with pharmacophores. The underlying 9600 generated drug conformers are downloadable from the Super Drug Web site 1. All superpositions are visualised at the same source. Additional conformers (110,000 of 2400 classified WHO-drugs are also available.

  13. Conformal invariance in the long-range Ising model

    Energy Technology Data Exchange (ETDEWEB)

    Paulos, Miguel F. [CERN, Theory Group, Geneva (Switzerland); Rychkov, Slava, E-mail: slava.rychkov@lpt.ens.fr [CERN, Theory Group, Geneva (Switzerland); Laboratoire de Physique Théorique de l' École Normale Supérieure (LPTENS), Paris (France); Faculté de Physique, Université Pierre et Marie Curie (UPMC), Paris (France); Rees, Balt C. van [CERN, Theory Group, Geneva (Switzerland); Zan, Bernardo [Institute of Physics, Universiteit van Amsterdam, Amsterdam (Netherlands)

    2016-01-15

    We consider the question of conformal invariance of the long-range Ising model at the critical point. The continuum description is given in terms of a nonlocal field theory, and the absence of a stress tensor invalidates all of the standard arguments for the enhancement of scale invariance to conformal invariance. We however show that several correlation functions, computed to second order in the epsilon expansion, are nontrivially consistent with conformal invariance. We proceed to give a proof of conformal invariance to all orders in the epsilon expansion, based on the description of the long-range Ising model as a defect theory in an auxiliary higher-dimensional space. A detailed review of conformal invariance in the d-dimensional short-range Ising model is also included and may be of independent interest.

  14. Conformal invariance in the long-range Ising model

    Directory of Open Access Journals (Sweden)

    Miguel F. Paulos

    2016-01-01

    Full Text Available We consider the question of conformal invariance of the long-range Ising model at the critical point. The continuum description is given in terms of a nonlocal field theory, and the absence of a stress tensor invalidates all of the standard arguments for the enhancement of scale invariance to conformal invariance. We however show that several correlation functions, computed to second order in the epsilon expansion, are nontrivially consistent with conformal invariance. We proceed to give a proof of conformal invariance to all orders in the epsilon expansion, based on the description of the long-range Ising model as a defect theory in an auxiliary higher-dimensional space. A detailed review of conformal invariance in the d-dimensional short-range Ising model is also included and may be of independent interest.

  15. Monodromic vs geodesic computation of Virasoro classical conformal blocks

    Directory of Open Access Journals (Sweden)

    Konstantin Alkalaev

    2016-03-01

    Full Text Available We compute 5-point classical conformal blocks with two heavy, two light, and one superlight operator using the monodromy approach up to third order in the superlight expansion. By virtue of the AdS/CFT correspondence we show the equivalence of the resulting expressions to those obtained in the bulk computation for the corresponding geodesic configuration.

  16. Conformant Planning via Symbolic Model Checking

    CERN Document Server

    Cimatti, A; 10.1613/jair.774

    2011-01-01

    We tackle the problem of planning in nondeterministic domains, by presenting a new approach to conformant planning. Conformant planning is the problem of finding a sequence of actions that is guaranteed to achieve the goal despite the nondeterminism of the domain. Our approach is based on the representation of the planning domain as a finite state automaton. We use Symbolic Model Checking techniques, in particular Binary Decision Diagrams, to compactly represent and efficiently search the automaton. In this paper we make the following contributions. First, we present a general planning algorithm for conformant planning, which applies to fully nondeterministic domains, with uncertainty in the initial condition and in action effects. The algorithm is based on a breadth-first, backward search, and returns conformant plans of minimal length, if a solution to the planning problem exists, otherwise it terminates concluding that the problem admits no conformant solution. Second, we provide a symbolic representation ...

  17. A geodesic model in conformal superspace

    CERN Document Server

    Gomes, Henrique de A

    2016-01-01

    In this paper, I look for the most general geometrodynamical symmetries compatible with spatial relational principles. I argue that they lead either to a completely static Universe, or one embodying spatial conformal diffeomorphisms. Demanding locality for an action compatible with these principles severely limits its form, both for the gravitational part as well as all matter couplings. The simplest and most natural choice for pure gravity has two propagating physical degrees of freedom (and no refoliation-invariance). The system has a geometric interpretation as a geodesic model in infinite dimensional conformal superspace. Conformal superspace is a stratified manifold, with different strata corresponding to different isometry groups. Choosing space to be (homeomorphic to) $S^3$, conformal superspace has a preferred stratum with maximal stabilizer group. This stratum consists of a single point -- corresponding to the conformal geometry of the round 3-sphere. This is the most homogeneous non-degenerate geome...

  18. Analytical halo model of galactic conformity

    Science.gov (United States)

    Pahwa, Isha; Paranjape, Aseem

    2017-09-01

    We present a fully analytical halo model of colour-dependent clustering that incorporates the effects of galactic conformity in a halo occupation distribution framework. The model, based on our previous numerical work, describes conformity through a correlation between the colour of a galaxy and the concentration of its parent halo, leading to a correlation between central and satellite galaxy colours at fixed halo mass. The strength of the correlation is set by a tunable 'group quenching efficiency', and the model can separately describe group-level correlations between galaxy colour (1-halo conformity) and large-scale correlations induced by assembly bias (2-halo conformity). We validate our analytical results using clustering measurements in mock galaxy catalogues, finding that the model is accurate at the 10-20 per cent level for a wide range of luminosities and length-scales. We apply the formalism to interpret the colour-dependent clustering of galaxies in the Sloan Digital Sky Survey (SDSS). We find good overall agreement between the data and a model that has 1-halo conformity at a level consistent with previous results based on an SDSS group catalogue, although the clustering data require satellites to be redder than suggested by the group catalogue. Within our modelling uncertainties, however, we do not find strong evidence of 2-halo conformity driven by assembly bias in SDSS clustering.

  19. A probabilistic model of RNA conformational space

    DEFF Research Database (Denmark)

    Frellsen, Jes; Moltke, Ida; Thiim, Martin

    2009-01-01

    The increasing importance of non-coding RNA in biology and medicine has led to a growing interest in the problem of RNA 3-D structure prediction. As is the case for proteins, RNA 3-D structure prediction methods require two key ingredients: an accurate energy function and a conformational sampling...... procedure. Both are only partly solved problems. Here, we focus on the problem of conformational sampling. The current state of the art solution is based on fragment assembly methods, which construct plausible conformations by stringing together short fragments obtained from experimental structures. However...... efficient sampling of RNA conformations in continuous space, and with associated probabilities. We show that the model captures several key features of RNA structure, such as its rotameric nature and the distribution of the helix lengths. Furthermore, the model readily generates native-like 3-D...

  20. Computer modelling reveals new conformers of the ATP binding loop of Na+/K+-ATPase involved in the transphosphorylation process of the sodium pump

    Science.gov (United States)

    Tejral, Gracian; Sopko, Bruno; Necas, Alois; Schoner, Wilhelm

    2017-01-01

    Hydrolysis of ATP by Na+/K+-ATPase, a P-Type ATPase, catalyzing active Na+ and K+ transport through cellular membranes leads transiently to a phosphorylation of its catalytical α-subunit. Surprisingly, three-dimensional molecular structure analysis of P-type ATPases reveals that binding of ATP to the N-domain connected by a hinge to the P-domain is much too far away from the Asp369 to allow the transfer of ATP’s terminal phosphate to its aspartyl-phosphorylation site. In order to get information for how the transfer of the γ-phosphate group of ATP to the Asp369 is achieved, analogous molecular modeling of the M4–M5 loop of ATPase was performed using the crystal data of Na+/K+-ATPase of different species. Analogous molecular modeling of the cytoplasmic loop between Thr338 and Ile760 of the α2-subunit of Na+/K+-ATPase and the analysis of distances between the ATP binding site and phosphorylation site revealed the existence of two ATP binding sites in the open conformation; the first one close to Phe475 in the N-domain, the other one close to Asp369 in the P-domain. However, binding of Mg2+•ATP to any of these sites in the “open conformation” may not lead to phosphorylation of Asp369. Additional conformations of the cytoplasmic loop were found wobbling between “open conformation”  “semi-open conformation  “closed conformation” in the absence of 2Mg2+•ATP. The cytoplasmic loop’s conformational change to the “semi-open conformation”—characterized by a hydrogen bond between Arg543 and Asp611—triggers by binding of 2Mg2+•ATP to a single ATP site and conversion to the “closed conformation” the phosphorylation of Asp369 in the P-domain, and hence the start of Na+/K+-activated ATP hydrolysis. PMID:28316890

  1. Computer modelling reveals new conformers of the ATP binding loop of Na+/K+-ATPase involved in the transphosphorylation process of the sodium pump

    Directory of Open Access Journals (Sweden)

    Gracian Tejral

    2017-03-01

    Full Text Available Hydrolysis of ATP by Na+/K+-ATPase, a P-Type ATPase, catalyzing active Na+ and K+ transport through cellular membranes leads transiently to a phosphorylation of its catalytical α-subunit. Surprisingly, three-dimensional molecular structure analysis of P-type ATPases reveals that binding of ATP to the N-domain connected by a hinge to the P-domain is much too far away from the Asp369 to allow the transfer of ATP’s terminal phosphate to its aspartyl-phosphorylation site. In order to get information for how the transfer of the γ-phosphate group of ATP to the Asp369 is achieved, analogous molecular modeling of the M4–M5 loop of ATPase was performed using the crystal data of Na+/K+-ATPase of different species. Analogous molecular modeling of the cytoplasmic loop between Thr338 and Ile760 of the α2-subunit of Na+/K+-ATPase and the analysis of distances between the ATP binding site and phosphorylation site revealed the existence of two ATP binding sites in the open conformation; the first one close to Phe475 in the N-domain, the other one close to Asp369 in the P-domain. However, binding of Mg2+•ATP to any of these sites in the “open conformation” may not lead to phosphorylation of Asp369. Additional conformations of the cytoplasmic loop were found wobbling between “open conformation”  “semi-open conformation  “closed conformation” in the absence of 2Mg2+•ATP. The cytoplasmic loop’s conformational change to the “semi-open conformation”—characterized by a hydrogen bond between Arg543 and Asp611—triggers by binding of 2Mg2+•ATP to a single ATP site and conversion to the “closed conformation” the phosphorylation of Asp369 in the P-domain, and hence the start of Na+/K+-activated ATP hydrolysis.

  2. Refined conformal spectra in the dimer model

    CERN Document Server

    Rasmussen, Jorgen

    2012-01-01

    Working with Lieb's transfer matrix for the dimer model, we point out that the full set of dimer configurations may be partitioned into disjoint subsets (sectors) closed under the action of the transfer matrix. These sectors are labelled by an integer or half-integer quantum number we call the variation index. In the continuum scaling limit, each sector gives rise to a representation of the Virasoro algebra. We determine the corresponding conformal partition functions and their finitizations, and observe an intriguing link to the Ramond and Neveu-Schwarz sectors of the critical dense polymer model as described by a conformal field theory with central charge c=-2.

  3. Implementation of WPDL Conforming Workflow Model

    Institute of Scientific and Technical Information of China (English)

    张志君; 范玉顺

    2003-01-01

    Workflow process definition language (WPDL) facilitates the transfer of workflow process definitions between separate workflow products. However, much work is still needed to transfer the specific workflow model to a WPDL conforming model. CIMFlow is a workflow management system developed by the National CIMS Engineering Research Center. This paper discusses the methods by which the CIMFlow model conforms to the WPDL meta-model and the differences between the WPDL meta-model and the CIMFlow model. Some improvements are proposed for the WPDL specification. Finally, the mapping and translating methods between the entities and attributes are given for the two models. The proposed methods and improvements are valuable as a reference for other mapping applications and the WPDL specification.

  4. Triclosan Computational Conformational Chemistry Analysis for Antimicrobial Properties in Polymers.

    Science.gov (United States)

    Petersen, Richard C

    2015-03-01

    Triclosan is a diphenyl ether antimicrobial that has been analyzed by computational conformational chemistry for an understanding of Mechanomolecular Theory. Subsequent energy profile analysis combined with easily seen three-dimensional chemistry structure models for the nonpolar molecule Triclosan show how single bond rotations can alternate rapidly at a polar and nonpolar interface. Bond rotations for the center ether oxygen atom of the two aromatic rings then expose or hide nonbonding lone-pair electrons for the oxygen atom depending on the polar nature of the immediate local molecular environment. Rapid bond movements can subsequently produce fluctuations as vibration energy. Consequently, related mechanical molecular movements calculated as energy relationships by forces acting through different bond positions can help improve on current Mechanomolecular Theory. A previous controversy reported as a discrepancy in literature contends for a possible bacterial resistance from Triclosan antimicrobial. However, findings in clinical settings have not reported a single case for Triclosan bacterial resistance in over 40 years that has been documented carefully in government reports. As a result, Triclosan is recommended whenever there is a health benefit consistent with a number of approvals for use of Triclosan in healthcare devices. Since Triclosan is the most researched antimicrobial ever, literature meta analysis with computational chemistry can best describe new molecular conditions that were previously impossible by conventional chemistry methods. Triclosan vibrational energy can now explain the molecular disruption of bacterial membranes. Further, Triclosan mechanomolecular movements help illustrate use in polymer matrix composites as an antimicrobial with two new additive properties as a toughening agent to improve matrix fracture toughness from microcracking and a hydrophobic wetting agent to help incorporate strengthening fibers. Interrelated

  5. Anisotropic stellar models admitting conformal motion

    Science.gov (United States)

    Banerjee, Ayan; Banerjee, Sumita; Hansraj, Sudan; Ovgun, Ali

    2017-04-01

    We address the problem of finding static and spherically symmetric anisotropic compact stars in general relativity that admit conformal motions. The study is framed in the language of f( R) gravity theory in order to expose opportunity for further study in the more general theory. Exact solutions of compact stars are found under the assumption that spherically symmetric spacetimes admit conformal motion with anisotropic matter distribution in nature. In this work, two cases have been studied for the existence of such solutions: first, we consider the model given by f(R)=R and then f(R)=aR+b . Finally, specific characteristics and physical properties have been explored analytically along with graphical representations for conformally symmetric compact stars in f( R) gravity.

  6. 48 CFR 227.7203-14 - Conformity, acceptance, and warranty of computer software and computer software documentation.

    Science.gov (United States)

    2010-10-01

    ... 48 Federal Acquisition Regulations System 3 2010-10-01 2010-10-01 false Conformity, acceptance... Software Documentation 227.7203-14 Conformity, acceptance, and warranty of computer software and computer...) Conformity and acceptance. Solicitations and contracts requiring the delivery of computer software...

  7. Social Influences in the Voter Model: the Role of Conformity

    CERN Document Server

    Javarone, Marco Alberto

    2014-01-01

    We introduce a model to study the effects of social influences in opinion dynamics. In particular, we analyze the voter model, from a socio psychological perspective, by considering the role of conformity. Conformity is a central issue in social psychology as it represents one of people's behaviors that emerge as result of their interactions. We introduce a voter model where agents, linked in a network, change their opinion according to those of their neighbors and to their degree of conformity. In particular, agents can behave as conformists or non-conformists. In the former case, agents change opinion according to that of the majority of their social circle (i.e., the majority of their neighbors); in the latter case, they do the opposite, i.e., they assume the opposite opinion. We perform a computational study of the proposed model, with the aim to analyze the role of conformity in the voter model. Moreover, we want to investigate whether it is possible to achieve some kind of equilibrium or of order in the...

  8. Intrinsic Conformal Symmetries in Szekeres models

    CERN Document Server

    Apostolopoulos, Pantelis S

    2016-01-01

    We show that Spatially Inhomogeneous (SI) and Irrotational dust models admit a \\emph{6-dimensional algebra }of \\emph{Intrinsic Conformal Vector Fields} (ICVFs) $\\mathbf{X}_{\\alpha }$ satisfying $p_{a}^{c}p_{b}^{d}\\mathcal{L}_{\\mathbf{X}_{\\alpha }}p_{cd}=2\\phi (\\mathbf{X}_{\\alpha })p_{ab}$ where $p_{ab} $ is the associated metric of the 2d distribution $\\mathcal{X}$ normal to the fluid velocity $u^{a}$ and the radial unit spacelike vector field $x^{a}$. The Intrinsic Conformal (IC) algebra is determined for each of the curvature value $\\epsilon $ that characterizes the structure of the screen space $\\mathcal{X}$. In addition the conformal flatness of the hypersurfaces $\\mathbf{u}=\\mathbf{0}$ indicates the existence of a \\emph{10-dimensional algebra} of ICVFs of the 3d metric $h_{ab}$. We illustrate this expectation and propose a method to derive them by giving explicitly the \\emph{7 proper} ICVFs of the Lema\\^{\\i}tre-Tolman-Bondi (LTB) model which represents the simplest subclass within the Szekeres family.

  9. A probabilistic model of RNA conformational space

    DEFF Research Database (Denmark)

    Frellsen, Jes; Moltke, Ida; Thiim, Martin;

    2009-01-01

    The increasing importance of non-coding RNA in biology and medicine has led to a growing interest in the problem of RNA 3-D structure prediction. As is the case for proteins, RNA 3-D structure prediction methods require two key ingredients: an accurate energy function and a conformational sampling......, the discrete nature of the fragments necessitates the use of carefully tuned, unphysical energy functions, and their non-probabilistic nature impairs unbiased sampling. We offer a solution to the sampling problem that removes these important limitations: a probabilistic model of RNA structure that allows...... conformations for 9 out of 10 test structures, solely using coarse-grained base-pairing information. In conclusion, the method provides a theoretical and practical solution for a major bottleneck on the way to routine prediction and simulation of RNA structure and dynamics in atomic detail....

  10. Fisher zeros and conformality in lattice models

    CERN Document Server

    Meurice, Yannick; Berg, Bernd A; Du, Daping; Denbleyker, Alan; Liu, Yuzhi; Sinclair, Donald K; Unmuth-Yockey, Judah; Zou, Haiyuan

    2012-01-01

    Fisher zeros are the zeros of the partition function in the beta=2N_c/g^2 complex plane. When they pinch the real axis, finite size scaling allows to distinguish between first and second order transition and to estimate exponents. On the other hand, a gap signals confinement and the method can be used to explore the boundary of the conformal window. We present recent numerical results for 2D O(N) sigma models, 4D U(1) and SU(2) pure gauge and SU(3) with N_f=4and 12 flavors. We discuss attempts to understand some of these results using analytical methods. We discuss the 2-lattice matching and qualitative aspects of the renormalization group (RG) flows in the Migdal-Kadanoff approximation. We consider the effects of the boundary conditions on the nonperturbative part of the average energy in the 1D O(2) model

  11. Heterogeneous Conformism and Wealth Distribution in a Neoclassical Growth Model

    OpenAIRE

    Mino, Kazuo; Nakamoto, Yasuhiro

    2015-01-01

    This paper explores the role of consumption externalities in a neoclassical growth model in which households have heterogeneous preferences. We fi nd that a higher degree of average conformism accelerates the convergence speed of the economy towards the steady state as in the case of homogeneous conformism. Furthermore, we reveal that the wealth inequality expands or shrinks in the case of heterogeneous conformism, while it does not expand but shrinks in the case of homogeneous conformism.

  12. Computational ECD spectrum simulation of the phytotoxin scytalone: importance of solvent effects on conformer populations.

    Science.gov (United States)

    Mazzeo, Giuseppe; Cimmino, Alessio; Andolfi, Anna; Evidente, Antonio; Superchi, Stefano

    2014-09-01

    A time-dependent Density Functional Theory (TDDFT) computational simulation of the electronic circular dichroism (ECD) spectrum of the phytotoxin scytalone (1), produced by different plant pathogenic fungi and involved in melanin production, was undertaken with the aim to establish a nonempirical correlation between the spectrum and the absolute configuration of this compound. In fact, very low optical rotation data of do not afford a reliable absolute configuration assignment while, on the contrary, the use of ECD can provide a useful tool for its stereochemical description. This structurally simple molecule displayed a considerable molecular flexibility, which made it mandatory to obtain an accurate conformers distribution to get a good reproduction of the experimental ECD spectrum. Only the application of an implicit integral equation formalism Polarizable Continuum Model (IEF-PCM) solvation model in the calculations allowed us to properly describe the conformer populations and finally obtain a more than satisfactory spectral simulation.

  13. Higgs Triplet Model with Classically Conformal Invariance

    CERN Document Server

    Okada, Hiroshi; Yagyu, Kei

    2015-01-01

    We discuss an extension of the minimal Higgs triplet model with a classically conformal invariance and with a gauged $U(1)_{B-L}$ symmetry. In our scenario, tiny masses of neutrinos are generated by a hybrid contribution from the type-I and type-II seesaw mechanisms. The shape of the Higgs potential at low energies is determined by solving one-loop renormalization group equations for all the scalar quartic couplings with a set of initial values of parameters at the Planck scale. We find a successful set of the parameters in which the $U(1)_{B-L}$ symmetry is radiatively broken via the Coleman-Weinberg mechanism at the ${\\cal O}$(10) TeV scale, and the electroweak symmetry breaking is also triggered by the $U(1)_{B-L}$ breaking. Under this configuration, we can predict various low energy observables such as the mass spectrum of extra Higgs bosons, and the mixing angles. Furthermore, using these predicted mass parameters, we obtain upper limits on Yukawa couplings among an isospin triplet Higgs field and lepton...

  14. Conformational analysis of menthol diastereomers by NMR and DFT computation

    Science.gov (United States)

    Härtner, Julia; Reinscheid, Uwe M.

    2008-01-01

    Correlations between experimental and calculated 13C chemical shifts were performed with the series of all menthol diastereomers. In this way it could be shown that identification problems with newly isolated natural products can be solved. Starting from simulated, low energy conformers of menthol, neomenthol, isomenthol, and neoisomenthol the 13C chemical shifts were obtained using DFT calculations [functional: B3LYP, basis set: 6-31G(d,p)]. Due to differences in chemical shifts, the prochiral methyl groups of the isopropyl substituent of menthol could be differentiated using the correlations between experimental and calculated values. A conformational scan of the dihedral angle of the isopropyl group allowed the determination of the dominating rotamers of menthol (+68.4°) and neomenthol (+172.5°) using 13C chemical shifts. The results were supported by energy calculations, 1JCH and 3JHH measurements. The correlations and 3JHH measurements for isomenthol indicate conformational averaging impeding the determination of the isopropyl group rotamer. For neoisomenthol, MD simulations showed two chair conformations. However, in contrast to calculated energies and correlations between theoretical and experimental 13C chemical shifts, the measured 3JH3H2 coupling of 6.3 Hz indicates an equally populated equilibrium of both conformers.

  15. Computing Black Hole entropy in Loop Quantum Gravity from a Conformal Field Theory perspective

    CERN Document Server

    Agullo, Ivan; Diaz-Polo, Jacobo

    2009-01-01

    Motivated by the analogy proposed by Witten between Chern-Simons and Conformal Field Theories, we explore an alternative way of computing the entropy of a black hole starting from the isolated horizon framework in Loop Quantum Gravity. The consistency of the result opens a window for the interplay between Conformal Field Theory and the description of black holes in Loop Quantum Gravity.

  16. Computing black hole entropy in loop quantum gravity from a conformal field theory perspective

    Energy Technology Data Exchange (ETDEWEB)

    Agulló, Iván [Enrico Fermi Institute and Department of Physics, University of Chicago, Chicago, IL 60637 (United States); Borja, Enrique F. [Departamento de Física Teórica and IFIC, Centro Mixto Universidad de Valencia-CSIC, Facultad de Física, Universidad de Valencia, Burjassot-46100, Valencia (Spain); Díaz-Polo, Jacobo, E-mail: Ivan.Agullo@uv.es, E-mail: Enrique.Fernandez@uv.es, E-mail: Jacobo.Diaz@uv.es [Institute for Gravitation and the Cosmos, Physics Department, Penn State, University Park, PA 16802 (United States)

    2009-07-01

    Motivated by the analogy proposed by Witten between Chern-Simons and conformal field theories, we explore an alternative way of computing the entropy of a black hole starting from the isolated horizon framework in loop quantum gravity. The consistency of the result opens a window for the interplay between conformal field theory and the description of black holes in loop quantum gravity.

  17. Computational neurogenetic modeling

    CERN Document Server

    Benuskova, Lubica

    2010-01-01

    Computational Neurogenetic Modeling is a student text, introducing the scope and problems of a new scientific discipline - Computational Neurogenetic Modeling (CNGM). CNGM is concerned with the study and development of dynamic neuronal models for modeling brain functions with respect to genes and dynamic interactions between genes. These include neural network models and their integration with gene network models. This new area brings together knowledge from various scientific disciplines, such as computer and information science, neuroscience and cognitive science, genetics and molecular biol

  18. Wess-Zumino-Witten Model for Galilean Conformal Algebra

    CERN Document Server

    Chakraborty, Somdeb

    2012-01-01

    In this note, we construct a Wess-Zumino-Witten model based on the Galilean conformal algebra in 2-spacetime dimensions, which is a nonrelativistic analogue of the relativistic conformal algebra. We obtain exact background corresponding to \\sigma-models in six dimensions (the dimension of the group manifold) and a central charge c=6. We carry out a Sugawara type construction to verify the conformal invariance of the model. Further, we discuss the feasibility of the background obtained as a physical spacetime metric.

  19. Irregular conformal states and spectral curve: Irregular matrix model approach

    CERN Document Server

    Rim, Chaiho

    2016-01-01

    We present recent developments of irregular conformal conformal states. Irregular vertex operators and their adjoint are used to define the irregular conformal states and their Inner product. Free field formalism can be augmented by screening operators which provide more degrees of freedom. The inner product is conveniently given as partition function of a irregular matrix model. (Deformed) spectral curve is the loop equation of the matrix model at Nekrasov-Shatashivili limit. We present the details of analytic structure of the spectral curve for Virasoso symmetry and its extensions, W-symmetry and super-symmetry.

  20. Classical conformality in the Standard Model from Coleman's theory

    CERN Document Server

    Kawana, Kiyoharu

    2016-01-01

    The classical conformality is one of the possible candidates for explaining the gauge hierarchy of the Standard Model. We show that it is naturally obtained from the Coleman's theory on baby universe.

  1. Elucidating Ligand-Modulated Conformational Landscape of GPCRs Using Cloud-Computing Approaches.

    Science.gov (United States)

    Shukla, Diwakar; Lawrenz, Morgan; Pande, Vijay S

    2015-01-01

    G-protein-coupled receptors (GPCRs) are a versatile family of membrane-bound signaling proteins. Despite the recent successes in obtaining crystal structures of GPCRs, much needs to be learned about the conformational changes associated with their activation. Furthermore, the mechanism by which ligands modulate the activation of GPCRs has remained elusive. Molecular simulations provide a way of obtaining detailed an atomistic description of GPCR activation dynamics. However, simulating GPCR activation is challenging due to the long timescales involved and the associated challenge of gaining insights from the "Big" simulation datasets. Here, we demonstrate how cloud-computing approaches have been used to tackle these challenges and obtain insights into the activation mechanism of GPCRs. In particular, we review the use of Markov state model (MSM)-based sampling algorithms for sampling milliseconds of dynamics of a major drug target, the G-protein-coupled receptor β2-AR. MSMs of agonist and inverse agonist-bound β2-AR reveal multiple activation pathways and how ligands function via modulation of the ensemble of activation pathways. We target this ensemble of conformations with computer-aided drug design approaches, with the goal of designing drugs that interact more closely with diverse receptor states, for overall increased efficacy and specificity. We conclude by discussing how cloud-based approaches present a powerful and broadly available tool for studying the complex biological systems routinely. © 2015 Elsevier Inc. All rights reserved.

  2. An SIS model for cultural trait transmission with conformity bias.

    Science.gov (United States)

    Walters, Caroline E; Kendal, Jeremy R

    2013-12-01

    Epidemiological models have been applied to human health-related behaviors that are affected by social interaction. Typically these models have not considered conformity bias, that is, the exaggerated propensity to adopt commonly observed behaviors or opinions, or content biases, where the content of the learned trait affects the probability of adoption. Here we consider an interaction of these two effects, presenting an SIS-type model for the spread and persistence of a behavior which is transmitted via social learning. Uptake is controlled by a nonlinear dependence on the proportion of individuals demonstrating the behavior in a population. Three equilibrium solutions are found, their linear stability is analyzed and the results are compared with a model for unbiased social learning. Our analysis focuses on the effects of the strength of conformity bias and the effects of content biases which alter a conformity threshold frequency of the behavior, above which there is an exaggerated propensity for adoption. The strength of the conformity bias is found to qualitatively alter the predictions regarding whether the trait becomes endemic within the population and the proportion of individuals who display the trait when it is endemic. As the conformity strength increases, the number of feasible equilibrium solutions increases from two to three, leading to a situation where the stable equilibrium attained is dependent upon the initial state. Varying the conformity threshold frequency directionally alters the behavior invasion threshold. Finally we discuss the possible application of this model to binge drinking behavior.

  3. Prions: a model of conformational disease?

    Science.gov (United States)

    Morinet, F

    2014-04-01

    The discovery that a protein could mimic viral and bacterial pathogens around 1980 by Stanley Prusiner was unexpected. Evidence shows now that Creutzfeldt-Jakob disease and related disorders are caused by prions. Prions and, for example neurodegeneratives diseases, arise from the same general disease mechanism. In each, there is abnormal unfolding and then aggregation of proteins. The protein conformational changes associated with the pathogenesis of protein misfolding disorders produce β sheet rich oligomers that are partially resistant to proteolysis and have a high tendency to form amyloid-like aggregates. It is important to distinguish between prions and amyloids: prions need not to polymerize into amyloid fibrils and can undergo self-propagation as oligomers. The prion diseases are characterized by the conformational conversion of PrP(c) to PrP(sc), the fundamental even underlying prion diseases. Despite the obvious differences between prions and conventional infectious microorganisms, prions fulfill the Koch's postulates. Meaningful treatments are likely to require cocktails of drugs that interfere with the conversion of precursor into prions and enhance the clearance of prions; such an approach may find application in the more common degenerative diseases.

  4. Modeling Trusted Computing

    Institute of Scientific and Technical Information of China (English)

    CHEN Shuyi; WEN Yingyou; ZHAO Hong

    2006-01-01

    In this paper, a formal approach based on predicate logic is proposed for representing and reasoning of trusted computing models. Predicates are defined to represent the characteristics of the objects and the relationship among these objects in a trusted system according to trusted computing specifications. Inference rules of trusted relation are given too. With the semantics proposed, some trusted computing models are formalized and verified, which shows that Predicate calculus logic provides a general and effective method for modeling and reasoning trusted computing systems.

  5. An Efficient Null Model for Conformational Fluctuations in Proteins

    DEFF Research Database (Denmark)

    Harder, Tim Philipp; Borg, Mikael; Bottaro, Sandro

    2012-01-01

    limited to comparatively short timescales. TYPHON is a probabilistic method to explore the conformational space of proteins under the guidance of a sophisticated probabilistic model of local structure and a given set of restraints that represent nonlocal interactions, such as hydrogen bonds or disulfide...... bridges. The choice of the restraints themselves is heuristic, but the resulting probabilistic model is well-defined and rigorous. Conceptually, TYPHON constitutes a null model of conformational fluctuations under a given set of restraints. We demonstrate that TYPHON can provide information...

  6. Computational conformational antimicrobial analysis developing mechanomolecular theory for polymer biomaterials in materials science and engineering

    Science.gov (United States)

    Petersen, Richard C.

    2014-03-01

    Single-bond rotations or pyramidal inversions tend to either hide or expose relative energies that exist for atoms with nonbonding lone-pair electrons. Availability of lone-pair electrons depends on overall molecular electron distributions and differences in the immediate polarity of the surrounding pico/nanoenvironment. Stereochemistry three-dimensional aspects of molecules provide insight into conformations through single-bond rotations with associated lone-pair electrons on oxygen atoms in addition to pyramidal inversions with nitrogen atoms. When electrons are protected, potential energy is sheltered toward an energy minimum value to compatibilize molecularly with nonpolar environments. When electrons are exposed, maximum energy is available toward polar environment interactions. Computational conformational analysis software calculated energy profiles that exist during specific oxygen ether single-bond rotations with easy-to-visualize three-dimensional models for the trichlorinated bisaromatic ether triclosan antimicrobial polymer additive. As shown, fluctuating alternating bond rotations can produce complex interactions between molecules to provide entanglement strength for polymer toughness or alternatively disrupt weak secondary bonds of attraction to lower resin viscosity for new additive properties with nonpolar triclosan as a hydrophobic toughening/wetting agent. Further, bond rotations involving lone-pair electrons by a molecule at a nonpolar-hydrocarbon-membrane/polar-biologic-fluid interface might become sufficiently unstable to provide free mechanomolecular energies to disrupt weaker microbial membranes, for membrane transport of molecules into cells, provide cell signaling/recognition/defense and also generate enzyme mixing to speed reactions.

  7. The Conformal Camera in Modeling Active Binocular Vision

    Directory of Open Access Journals (Sweden)

    Jacek Turski

    2016-08-01

    Full Text Available Primate vision is an active process that constructs a stable internal representation of the 3D world based on 2D sensory inputs that are inherently unstable due to incessant eye movements. We present here a mathematical framework for processing visual information for a biologically-mediated active vision stereo system with asymmetric conformal cameras. This model utilizes the geometric analysis on the Riemann sphere developed in the group-theoretic framework of the conformal camera, thus far only applicable in modeling monocular vision. The asymmetric conformal camera model constructed here includes the fovea’s asymmetric displacement on the retina and the eye’s natural crystalline lens tilt and decentration, as observed in ophthalmological diagnostics. We extend the group-theoretic framework underlying the conformal camera to the stereo system with asymmetric conformal cameras. Our numerical simulation shows that the theoretical horopter curves in this stereo system are conics that well approximate the empirical longitudinal horopters of the primate vision system.

  8. Conformational Dynamics of apo-GlnBP Revealed by Experimental and Computational Analysis

    KAUST Repository

    Feng, Yitao

    2016-10-13

    The glutamine binding protein (GlnBP) binds l-glutamine and cooperates with its cognate transporters during glutamine uptake. Crystal structure analysis has revealed an open and a closed conformation for apo- and holo-GlnBP, respectively. However, the detailed conformational dynamics have remained unclear. Herein, we combined NMR spectroscopy, MD simulations, and single-molecule FRET techniques to decipher the conformational dynamics of apo-GlnBP. The NMR residual dipolar couplings of apo-GlnBP were in good agreement with a MD-derived structure ensemble consisting of four metastable states. The open and closed conformations are the two major states. This four-state model was further validated by smFRET experiments and suggests the conformational selection mechanism in ligand recognition of GlnBP. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

  9. Conformal Loop quantization of gravity coupled to the standard model

    Science.gov (United States)

    Pullin, Jorge; Gambini, Rodolfo

    2016-03-01

    We consider a local conformal invariant coupling of the standard model to gravity free of any dimensional parameter. The theory is formulated in order to have a quantized version that admits a spin network description at the kinematical level like that of loop quantum gravity. The Gauss constraint, the diffeomorphism constraint and the conformal constraint are automatically satisfied and the standard inner product of the spin-network basis still holds. The resulting theory has resemblances with the Bars-Steinhardt-Turok local conformal theory, except it admits a canonical quantization in terms of loops. By considering a gauge fixed version of the theory we show that the Standard model coupled to gravity is recovered and the Higgs boson acquires mass. This in turn induces via the standard mechanism masses for massive bosons, baryons and leptons.

  10. Modeling pedestrian's conformity violation behavior: a complex network based approach.

    Science.gov (United States)

    Zhou, Zhuping; Hu, Qizhou; Wang, Wei

    2014-01-01

    Pedestrian injuries and fatalities present a problem all over the world. Pedestrian conformity violation behaviors, which lead to many pedestrian crashes, are common phenomena at the signalized intersections in China. The concepts and metrics of complex networks are applied to analyze the structural characteristics and evolution rules of pedestrian network about the conformity violation crossings. First, a network of pedestrians crossing the street is established, and the network's degree distributions are analyzed. Then, by using the basic idea of SI model, a spreading model of pedestrian illegal crossing behavior is proposed. Finally, through simulation analysis, pedestrian's illegal crossing behavior trends are obtained in different network structures and different spreading rates. Some conclusions are drawn: as the waiting time increases, more pedestrians will join in the violation crossing once a pedestrian crosses on red firstly. And pedestrian's conformity violation behavior will increase as the spreading rate increases.

  11. Entanglement entropy through conformal interfaces in the 2D Ising model

    CERN Document Server

    Brehm, Enrico M

    2015-01-01

    We consider the entanglement entropy for the 2D Ising model at the conformal fixed point in the presence of interfaces. More precisely, we investigate the situation where the two subsystems are separated by a defect line that preserves conformal invariance. Using the replica trick, we compute the entanglement entropy between the two subsystems. We observe that the entropy, just like in the case without defects, shows a logarithmic scaling behavior with respect to the size of the system. Here, the prefactor of the logarithm depends on the strength of the defect encoded in the transmission coefficient. We also commend on the supersymmetric case.

  12. Radiative breaking of conformal symmetry in the Standard Model

    Science.gov (United States)

    Arbuzov, A. B.; Nazmitdinov, R. G.; Pavlov, A. E.; Pervushin, V. N.; Zakharov, A. F.

    2016-02-01

    Radiative mechanism of conformal symmetry breaking in a comformal-invariant version of the Standard Model is considered. The Coleman-Weinberg mechanism of dimensional transmutation in this system gives rise to finite vacuum expectation values and, consequently, masses of scalar and spinor fields. A natural bootstrap between the energy scales of the top quark and Higgs boson is suggested.

  13. Conformal profiles in the Hilhorst-van Leeuwen model

    Science.gov (United States)

    Karevski, D.; Turban, L.; Iglói, F.

    2000-04-01

    We study the critical energy and magnetization profiles for the Ising quantum chain with a marginal extended surface perturbation of the form A /y , y being the distance from the surface (Hilhorst-van Leeuwen model). For weak local couplings, A A c , there is surface order at the bulk critical point. If conformal invariance is assumed to hold with such marginal perturbations, it predicts conformal profiles with the same scaling form as for the unperturbed quantum chain, with marginal surface exponents replacing the unperturbed ones. The results of direct analytical and numerical calculations of the profiles confirm the validity of the conformal expressions in the regimes of second- and first-order surface transitions.

  14. Computer Modeling and Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Pronskikh, V. S. [Fermilab

    2014-05-09

    Verification and validation of computer codes and models used in simulation are two aspects of the scientific practice of high importance and have recently been discussed by philosophers of science. While verification is predominantly associated with the correctness of the way a model is represented by a computer code or algorithm, validation more often refers to model’s relation to the real world and its intended use. It has been argued that because complex simulations are generally not transparent to a practitioner, the Duhem problem can arise for verification and validation due to their entanglement; such an entanglement makes it impossible to distinguish whether a coding error or model’s general inadequacy to its target should be blamed in the case of the model failure. I argue that in order to disentangle verification and validation, a clear distinction between computer modeling (construction of mathematical computer models of elementary processes) and simulation (construction of models of composite objects and processes by means of numerical experimenting with them) needs to be made. Holding on to that distinction, I propose to relate verification (based on theoretical strategies such as inferences) to modeling and validation, which shares the common epistemology with experimentation, to simulation. To explain reasons of their intermittent entanglement I propose a weberian ideal-typical model of modeling and simulation as roles in practice. I suggest an approach to alleviate the Duhem problem for verification and validation generally applicable in practice and based on differences in epistemic strategies and scopes

  15. Computational Intelligence, Cyber Security and Computational Models

    CERN Document Server

    Anitha, R; Lekshmi, R; Kumar, M; Bonato, Anthony; Graña, Manuel

    2014-01-01

    This book contains cutting-edge research material presented by researchers, engineers, developers, and practitioners from academia and industry at the International Conference on Computational Intelligence, Cyber Security and Computational Models (ICC3) organized by PSG College of Technology, Coimbatore, India during December 19–21, 2013. The materials in the book include theory and applications for design, analysis, and modeling of computational intelligence and security. The book will be useful material for students, researchers, professionals, and academicians. It will help in understanding current research trends and findings and future scope of research in computational intelligence, cyber security, and computational models.

  16. Computational human body models

    NARCIS (Netherlands)

    Wismans, J.S.H.M.; Happee, R.; Dommelen, J.A.W. van

    2005-01-01

    Computational human body models are widely used for automotive crashsafety research and design and as such have significantly contributed to a reduction of traffic injuries and fatalities. Currently crash simulations are mainly performed using models based on crash-dummies. However crash dummies dif

  17. Computational human body models

    NARCIS (Netherlands)

    Wismans, J.S.H.M.; Happee, R.; Dommelen, J.A.W. van

    2005-01-01

    Computational human body models are widely used for automotive crashsafety research and design and as such have significantly contributed to a reduction of traffic injuries and fatalities. Currently crash simulations are mainly performed using models based on crash-dummies. However crash dummies

  18. Drugging specific conformational states of GPCRs: challenges and opportunities for computational chemistry.

    Science.gov (United States)

    Martí-Solano, Maria; Schmidt, Denis; Kolb, Peter; Selent, Jana

    2016-04-01

    Current advances in structural biology for membrane proteins support the existence of multiple Gprotein-coupled receptor (GPCR) conformations. These conformations can be associated to particular receptor states with definite coupling and signaling capacities. Drugging such receptor states represents an opportunity to discover a new generation of GPCR drugs with unprecedented specificity. However, exploiting recently available structural information to develop these drugs is still challenging. In this context, computational structure-based approaches can inform such drug development. In this review, we examine the potential of these approaches and the challenges they will need to overcome to guide the rational discovery of drugs targeting specific GPCR states.

  19. Conformational effects on the circular dichroism of Human Carbonic Anhydrase II: a multilevel computational study.

    Directory of Open Access Journals (Sweden)

    Tatyana G Karabencheva-Christova

    Full Text Available Circular Dichroism (CD spectroscopy is a powerful method for investigating conformational changes in proteins and therefore has numerous applications in structural and molecular biology. Here a computational investigation of the CD spectrum of the Human Carbonic Anhydrase II (HCAII, with main focus on the near-UV CD spectra of the wild-type enzyme and it seven tryptophan mutant forms, is presented and compared to experimental studies. Multilevel computational methods (Molecular Dynamics, Semiempirical Quantum Mechanics, Time-Dependent Density Functional Theory were applied in order to gain insight into the mechanisms of interaction between the aromatic chromophores within the protein environment and understand how the conformational flexibility of the protein influences these mechanisms. The analysis suggests that combining CD semi empirical calculations, crystal structures and molecular dynamics (MD could help in achieving a better agreement between the computed and experimental protein spectra and provide some unique insight into the dynamic nature of the mechanisms of chromophore interactions.

  20. Computationally Modeling Interpersonal Trust

    Directory of Open Access Journals (Sweden)

    Jin Joo eLee

    2013-12-01

    Full Text Available We present a computational model capable of predicting—above human accuracy—the degree of trust a person has toward their novel partner by observing the trust-related nonverbal cues expressed in their social interaction. We summarize our prior work, in which we identify nonverbal cues that signal untrustworthy behavior and also demonstrate the human mind’s readiness to interpret those cues to assess the trustworthiness of a social robot. We demonstrate that domain knowledge gained from our prior work using human-subjects experiments, when incorporated into the feature engineering process, permits a computational model to outperform both human predictions and a baseline model built in naivete' of this domain knowledge. We then present the construction of hidden Markov models to incorporate temporal relationships among the trust-related nonverbal cues. By interpreting the resulting learned structure, we observe that models built to emulate different levels of trust exhibit different sequences of nonverbal cues. From this observation, we derived sequence-based temporal features that further improve the accuracy of our computational model. Our multi-step research process presented in this paper combines the strength of experimental manipulation and machine learning to not only design a computational trust model but also to further our understanding of the dynamics of interpersonal trust.

  1. Computationally modeling interpersonal trust.

    Science.gov (United States)

    Lee, Jin Joo; Knox, W Bradley; Wormwood, Jolie B; Breazeal, Cynthia; Desteno, David

    2013-01-01

    We present a computational model capable of predicting-above human accuracy-the degree of trust a person has toward their novel partner by observing the trust-related nonverbal cues expressed in their social interaction. We summarize our prior work, in which we identify nonverbal cues that signal untrustworthy behavior and also demonstrate the human mind's readiness to interpret those cues to assess the trustworthiness of a social robot. We demonstrate that domain knowledge gained from our prior work using human-subjects experiments, when incorporated into the feature engineering process, permits a computational model to outperform both human predictions and a baseline model built in naiveté of this domain knowledge. We then present the construction of hidden Markov models to investigate temporal relationships among the trust-related nonverbal cues. By interpreting the resulting learned structure, we observe that models built to emulate different levels of trust exhibit different sequences of nonverbal cues. From this observation, we derived sequence-based temporal features that further improve the accuracy of our computational model. Our multi-step research process presented in this paper combines the strength of experimental manipulation and machine learning to not only design a computational trust model but also to further our understanding of the dynamics of interpersonal trust.

  2. Modelling proteins' hidden conformations to predict antibiotic resistance

    Science.gov (United States)

    Hart, Kathryn M.; Ho, Chris M. W.; Dutta, Supratik; Gross, Michael L.; Bowman, Gregory R.

    2016-10-01

    TEM β-lactamase confers bacteria with resistance to many antibiotics and rapidly evolves activity against new drugs. However, functional changes are not easily explained by differences in crystal structures. We employ Markov state models to identify hidden conformations and explore their role in determining TEM's specificity. We integrate these models with existing drug-design tools to create a new technique, called Boltzmann docking, which better predicts TEM specificity by accounting for conformational heterogeneity. Using our MSMs, we identify hidden states whose populations correlate with activity against cefotaxime. To experimentally detect our predicted hidden states, we use rapid mass spectrometric footprinting and confirm our models' prediction that increased cefotaxime activity correlates with reduced Ω-loop flexibility. Finally, we design novel variants to stabilize the hidden cefotaximase states, and find their populations predict activity against cefotaxime in vitro and in vivo. Therefore, we expect this framework to have numerous applications in drug and protein design.

  3. Activation of the aryl hydrocarbon receptor by carbaryl: Computational evidence of the ability of carbaryl to assume a planar conformation.

    Science.gov (United States)

    Casado, Susana; Alonso, Mercedes; Herradón, Bernardo; Tarazona, José V; Navas, José

    2006-12-01

    It has been accepted that aryl hydrocarbon receptor (AhR) ligands are compounds with two or more aromatic rings in a coplanar conformation. Although general agreement exists that carbaryl is able to activate the AhR, it has been proposed that such activation could occur through alternative pathways without ligand binding. This idea was supported by studies showing a planar conformation of carbaryl as unlikely. The objective of the present work was to clarify the process of AhR activation by carbaryl. In rat H4IIE cells permanently transfected with a luciferase gene under the indirect control of AhR, incubation with carbaryl led to an increase of luminescence. Ligand binding to the AhR was studied by means of a cell-free in vitro system in which the activation of AhR can occur only by ligand binding. In this system, exposure to carbaryl also led to activation of AhR. These results were similar to those obtained with the AhR model ligand beta-naphthoflavone, although this compound exhibited higher potency than carbaryl in both assays. By means of computational modeling (molecular mechanics and quantum chemical calculations), the structural characteristics and electrostatic properties of carbaryl were described in detail, and it was observed that the substituent at C-1 and the naphthyl ring were not coplanar. Assuming that carbaryl would interact with the AhR through a hydrogen bond, this interaction was studied computationally using hydrogen fluoride as a model H-bond donor. Under this situation, the stabilization energy of the carbaryl molecule would permit it to adopt a planar conformation. These results are in accordance with the mechanism traditionally accepted for AhR activation: Binding of ligands in a planar conformation.

  4. On Friedmann-Robertson-Walker model in conformal teleparallel gravity

    Energy Technology Data Exchange (ETDEWEB)

    Silva, J.G.; Ulhoa, S.C. [International Center of Condensed Matter Physics Universidade de Brasilia, Instituto de Fisica, Brasilia, DF (Brazil); Santos, A.F. [Universidade Federal de Mato Grosso, Instituto de Fisica, Mato Grosso (Brazil); University of Victoria, Department of Physics and Astronomy, Victoria, BC (Canada)

    2016-03-15

    In this paper we use the conformal teleparallel gravity to study an isotropic and homogeneous Universe which is settled by the Friedmann-Robertson-Walker metric. The conformal symmetry demands the existence of a scalar field which works as a dark field for this model. We solve numerically the field equations then we obtain the behavior of some cosmological parameters such as the scale factor, the deceleration parameter and the energy density of the perfect fluid which is the matter field of our model. The field equations, which we called modified Friedmann equations, allow us to define a dark fluid, with dark energy density and pressure, responsible for the acceleration in the Universe, once we defined an equation of state for the dark fluid. (orig.)

  5. Conformal anomaly and compactification of Kaluza--Klein models

    Energy Technology Data Exchange (ETDEWEB)

    Vasilevich, D.V.; Shtykov, N.N.

    1988-10-01

    An O (d)-invariant regularization of d-dimensional Kaluza--Klein models with scalar and fermion fields is proposed. The regularization preserves the power divergences and does not give inverse powers of the cutoff parameter in the conformal anomaly. The one-loop corrections to the trace of the energy--momentum tensor are calculated for internal spaces S/sup 2/, S/sup 4/, and S/sup 6/.

  6. Conformal Sigma Models with Anomalous Dimensions and Ricci Solitons

    CERN Document Server

    Nitta, M

    2004-01-01

    We present new non-Ricci-flat Kahler metrics with U(N) and O(N) isometries as target manifolds of conformally invariant sigma models with an anomalous dimension. They are so-called Ricci solitons, special solutions to a Ricci-flow equation. These metrics explicitly contain the anomalous dimension and reduce to Ricci-flat Kahler metrics on the canonical line bundles over certain coset spaces in the limit of vanishing anomalous dimension.

  7. Duality and conformal twisted boundaries in the Ising model

    CERN Document Server

    Grimm, U

    2002-01-01

    There has been recent interest in conformal twisted boundary conditions and their realisations in solvable lattice models. For the Ising and Potts quantum chains, these amount to boundary terms that are related to duality, which is a proper symmetry of the model at criticality. Thus, at criticality, the duality-twisted Ising model is translationally invariant, similar to the more familiar cases of periodic and antiperiodic boundary conditions. The complete finite-size spectrum of the Ising quantum chain with this peculiar boundary condition is obtained.

  8. Teleparallel Conformal Invariant Models induced by Kaluza-Klein Reduction

    CERN Document Server

    Geng, Chao-Qiang

    2016-01-01

    We study the extensions of teleparallism in the Kaluza-Klein (KK) scenario by writing the analogous form to the torsion scalar $T_{\\text{NGR}}$ in terms of the corresponding antisymmetric tensors, given by $T_{\\text{NGR}} = a\\,T_{ijk} \\, T^{ijk} + b\\,T_{ijk} \\,T^{kji} + c\\,T^{j}{}_{ji} \\, T^{k}{}_{k}{}^{i}$, in the four-dimensional New General Relativity (NGR) with arbitrary coefficients $a$, $b$ and $c$. After the KK dimensional reduction, the Lagrangian in the Einstein-frame can be realized by taking $2a+b+c=0$ with the ghost-free condition $c\\leq0$ for the one-parameter family of teleparallelism. We demonstrate that the conformal invariant gravity models can be constructed by the requirement of $2a+b+4c=0$ or $2a+b=0$. In particular, this conformal gravity is described on the Weyl-Cartan geometry $Y_4$ with the ghost-free condition $c>0$. We also consider the weak field approximation and discuss the non-minimal coupled term of the scalar current and torsion vector. For the conformal invariant models with $...

  9. Understanding Student Computational Thinking with Computational Modeling

    CERN Document Server

    Aiken, John M; Douglas, Scott S; Burk, John B; Scanlon, Erin M; Thoms, Brian D; Schatz, Michael F

    2012-01-01

    Recently, the National Research Council's framework for next generation science standards highlighted "computational thinking" as one of its "fundamental practices". Students taking a physics course that employed the Arizona State University's Modeling Instruction curriculum were taught to construct computational models of physical systems. Student computational thinking was assessed using a proctored programming assignment, written essay, and a series of think-aloud interviews, where the students produced and discussed a computational model of a baseball in motion via a high-level programming environment (VPython). Roughly a third of the students in the study were successful in completing the programming assignment. Student success on this assessment was tied to how students synthesized their knowledge of physics and computation. On the essay and interview assessments, students displayed unique views of the relationship between force and motion; those who spoke of this relationship in causal (rather than obs...

  10. MODELING THE CHAIN CONFORMATION OF POLYMER MELTS IN CONTRACTION FLOW

    Institute of Scientific and Technical Information of China (English)

    Qing Shen; Jian-feng Hu; Qing-feng Gu

    2003-01-01

    A constitutive model of quasi-Newtonian fluid based on the type of flow is used in abrupt planar contraction flow.The numerical results from finite element analysis are consistent with experimental data for stress patterns and velocity profiles in the flow field. The chain conformations of polymer melts are then investigated in such a planar contraction by using the phenomenological model with internal parameters proposed by the author. That is, the shape and orientation of polymer chain coils are predicted and discussed in different flow regions of the contraction flow field that possess simple shear flow, extensional flow, vortical flow, and mixed flow respectively.

  11. Classically conformal radiative neutrino model with gauged B - L symmetry

    Science.gov (United States)

    Okada, Hiroshi; Orikasa, Yuta

    2016-09-01

    We propose a classically conformal model in a minimal radiative seesaw, in which we employ a gauged B - L symmetry in the standard model that is essential in order to work the Coleman-Weinberg mechanism well that induces the B - L symmetry breaking. As a result, nonzero Majorana mass term and electroweak symmetry breaking simultaneously occur. In this framework, we show a benchmark point to satisfy several theoretical and experimental constraints. Here theoretical constraints represent inert conditions and Coleman-Weinberg condition. Experimental bounds come from lepton flavor violations (especially μ → eγ), the current bound on the Z‧ mass at the CERN Large Hadron Collider, and neutrino oscillations.

  12. On Gravitino properties in a Conformal Supergravity Model

    CERN Document Server

    Mavromatos, Nick E

    2013-01-01

    In the context of a conformal Supergravity (SUGRA) model in the Einstein frame, in which the (next to) minimal supersymmetric standard model can embedded naturally to produce chaotic inflation scenarios, we study properties of gravitino in the cases where it is stable or unstable. In the latter case, we demonstrate that for large dilaton scale factors there is an enhanced magnitude of the gravitino width, when it decays to neutralino dark matter, as compared with the standard SUGRA case. In this context, we discuss the associated consequences as far as Big Bang Nucleosynthesis constraints and avoidance of gravitino overproduction are concerned.

  13. Conformal standard model with an extended scalar sector

    Energy Technology Data Exchange (ETDEWEB)

    Latosiński, Adam [Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut),Mühlenberg 1, D-14476 Potsdam (Germany); Lewandowski, Adrian; Meissner, Krzysztof A. [Faculty of Physics, University of Warsaw,Pasteura 5, 02-093 Warsaw (Poland); Nicolai, Hermann [Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut),Mühlenberg 1, D-14476 Potsdam (Germany)

    2015-10-26

    We present an extended version of the Conformal Standard Model (characterized by the absence of any new intermediate scales between the electroweak scale and the Planck scale) with an enlarged scalar sector coupling to right-chiral neutrinos. The scalar potential and the Yukawa couplings involving only right-chiral neutrinos are invariant under a new global symmetry SU(3){sub N} that complements the standard U(1){sub B−L} symmetry, and is broken explicitly only by the Yukawa interaction, of order O(10{sup −6}), coupling right-chiral neutrinos and the electroweak lepton doublets. We point out four main advantages of this enlargement, namely: (1) the economy of the (non-supersymmetric) Standard Model, and thus its observational success, is preserved; (2) thanks to the enlarged scalar sector the RG improved one-loop effective potential is everywhere positive with a stable global minimum, thereby avoiding the notorious instability of the Standard Model vacuum; (3) the pseudo-Goldstone bosons resulting from spontaneous breaking of the SU(3){sub N} symmetry are natural Dark Matter candidates with calculable small masses and couplings; and (4) the Majorana Yukawa coupling matrix acquires a form naturally adapted to leptogenesis. The model is made perturbatively consistent up to the Planck scale by imposing the vanishing of quadratic divergences at the Planck scale (‘softly broken conformal symmetry’). Observable consequences of the model occur mainly via the mixing of the new scalars and the standard model Higgs boson.

  14. Computationally modeling interpersonal trust

    OpenAIRE

    Jin Joo eLee; Brad eKnox; Jolie eBaumann; Cynthia eBreazeal; David eDeSteno

    2013-01-01

    We present a computational model capable of predicting—above human accuracy—the degree of trust a person has toward their novel partner by observing the trust-related nonverbal cues expressed in their social interaction. We summarize our prior work, in which we identify nonverbal cues that signal untrustworthy behavior and also demonstrate the human mind’s readiness to interpret those cues to assess the trustworthiness of a social robot. We demonstrate that domain knowledge gained from our pr...

  15. Virtually compliant: Immersive video gaming increases conformity to false computer judgments.

    Science.gov (United States)

    Weger, Ulrich W; Loughnan, Stephen; Sharma, Dinkar; Gonidis, Lazaros

    2015-08-01

    Real-life encounters with face-to-face contact are on the decline in a world in which many routine tasks are delegated to virtual characters-a development that bears both opportunities and risks. Interacting with such virtual-reality beings is particularly common during role-playing videogames, in which we incarnate into the virtual reality of an avatar. Video gaming is known to lead to the training and development of real-life skills and behaviors; hence, in the present study we sought to explore whether role-playing video gaming primes individuals' identification with a computer enough to increase computer-related social conformity. Following immersive video gaming, individuals were indeed more likely to give up their own best judgment and to follow the vote of computers, especially when the stimulus context was ambiguous. Implications for human-computer interactions and for our understanding of the formation of identity and self-concept are discussed.

  16. LHCb computing model

    CERN Document Server

    Frank, M; Pacheco, Andreu

    1998-01-01

    This document is a first attempt to describe the LHCb computing model. The CPU power needed to process data for the event filter and reconstruction is estimated to be 2.2 \\Theta 106 MIPS. This will be installed at the experiment and will be reused during non data-taking periods for reprocessing. The maximal I/O of these activities is estimated to be around 40 MB/s.We have studied three basic models concerning the placement of the CPU resources for the other computing activities, Monte Carlo-simulation (1:4 \\Theta 106 MIPS) and physics analysis (0:5 \\Theta 106 MIPS): CPU resources may either be located at the physicist's homelab, national computer centres (Regional Centres) or at CERN.The CPU resources foreseen for analysis are sufficient to allow 100 concurrent analyses. It is assumed that physicists will work in physics groups that produce analysis data at an average rate of 4.2 MB/s or 11 TB per month. However, producing these group analysis data requires reading capabilities of 660 MB/s. It is further assu...

  17. The Antares computing model

    Energy Technology Data Exchange (ETDEWEB)

    Kopper, Claudio, E-mail: claudio.kopper@nikhef.nl [NIKHEF, Science Park 105, 1098 XG Amsterdam (Netherlands)

    2013-10-11

    Completed in 2008, Antares is now the largest water Cherenkov neutrino telescope in the Northern Hemisphere. Its main goal is to detect neutrinos from galactic and extra-galactic sources. Due to the high background rate of atmospheric muons and the high level of bioluminescence, several on-line and off-line filtering algorithms have to be applied to the raw data taken by the instrument. To be able to handle this data stream, a dedicated computing infrastructure has been set up. The paper covers the main aspects of the current official Antares computing model. This includes an overview of on-line and off-line data handling and storage. In addition, the current usage of the “IceTray” software framework for Antares data processing is highlighted. Finally, an overview of the data storage formats used for high-level analysis is given.

  18. Correction: Absolute stereochemistry and preferred conformations of urate degradation intermediates from computed and experimental circular dichroism spectra.

    Science.gov (United States)

    Pipolo, Silvio; Percudani, Riccardo; Cammi, Roberto

    2016-04-14

    Correction for 'Absolute stereochemistry and preferred conformations of urate degradation intermediates from computed and experimental circular dichroism spectra' by Silvio Pipolo et al., Org. Biomol. Chem., 2011, 9, 5149-5155.

  19. Enhanced Sampling Methods for the Computation of Conformational Kinetics in Macromolecules

    Science.gov (United States)

    Grazioli, Gianmarc

    Calculating the kinetics of conformational changes in macromolecules, such as proteins and nucleic acids, is still very much an open problem in theoretical chemistry and computational biophysics. If it were feasible to run large sets of molecular dynamics trajectories that begin in one configuration and terminate when reaching another configuration of interest, calculating kinetics from molecular dynamics simulations would be simple, but in practice, configuration spaces encompassing all possible configurations for even the simplest of macromolecules are far too vast for such a brute force approach. In fact, many problems related to searches of configuration spaces, such as protein structure prediction, are considered to be NP-hard. Two approaches to addressing this problem are to either develop methods for enhanced sampling of trajectories that confine the search to productive trajectories without loss of temporal information, or coarse-grained methodologies that recast the problem in reduced spaces that can be exhaustively searched. This thesis will begin with a description of work carried out in the vein of the second approach, where a Smoluchowski diffusion equation model was developed that accurately reproduces the rate vs. force relationship observed in the mechano-catalytic disulphide bond cleavage observed in thioredoxin-catalyzed reduction of disulphide bonds. Next, three different novel enhanced sampling methods developed in the vein of the first approach will be described, which can be employed either separately or in conjunction with each other to autonomously define a set of energetically relevant subspaces in configuration space, accelerate trajectories between the interfaces dividing the subspaces while preserving the distribution of unassisted transition times between subspaces, and approximate time correlation functions from the kinetic data collected from the transitions between interfaces.

  20. DNA computing models

    CERN Document Server

    Ignatova, Zoya; Zimmermann, Karl-Heinz

    2008-01-01

    In this excellent text, the reader is given a comprehensive introduction to the field of DNA computing. The book emphasizes computational methods to tackle central problems of DNA computing, such as controlling living cells, building patterns, and generating nanomachines.

  1. Conformations of propargyl alcohol and its interaction with acetylene: A matrix isolation infrared and DFT computations

    Science.gov (United States)

    Sundararajan, K.; Gopi, R.; Ramanathan, N.

    2016-10-01

    Conformations of propargyl alcohol (PA) were studied using matrix isolation infrared spectroscopy. DFT computations using 6-311++G(d,p) basis set on the PA molecule identified two minima; gauche (g-PA) and trans (t-PA). Comparison of infrared spectra of PA trapped in Ar, N2 and Xe matrices with computations showed the evidence of the ground state g-PA conformer. Four minima were optimized on the potential energy surface for the hydrogen-bonded interaction of g-PA and acetylene (C2H2), corresponding to complex A (Csbnd H⋯O), complex B (Osbnd H⋯π) and complex C and D (Csbnd H⋯π). The structure, energies and the vibrational wavenumbers were computed for these complexes at B3LYP/6-311++G (d,p) level of theory. The infrared spectra of the hydrogen-bonded complexes between C2H2 and g-PA were studied in Ar matrix. The infrared spectra recorded under matrix isolation conditions revealed the formation of two types of complexes A (Csbnd H⋯O) and B (Osbnd H⋯π). Formation of these complexes was evidenced from the shifts in the vibrational wavenumber of the modes involving the C2H2 and PA submolecules.

  2. Probing classically conformal $B-L$ model with gravitational waves

    CERN Document Server

    Jinno, Ryusuke

    2016-01-01

    We study the cosmological history of the classical conformal $B-L$ gauge extension of the standard model, in which the physical scales are generated via the Coleman-Weinberg-type symmetry breaking. Especially, we consider the thermal phase transition of the U$(1)_{B-L}$ symmetry in the early universe and resulting gravitational-wave production. Due to the classical conformal invariance, the phase transition tends to be a first-order one with ultra-supercooling, which enhances the strength of the produced gravitational waves. We show that, requiring (1) U$(1)_{B-L}$ is broken after the reheating, (2) the $B-L$ gauge coupling does not blow up below the Planck scale, (3) the thermal phase transition completes in almost all the patches in the universe, the gravitational wave spectrum can be as large as $\\Omega_{\\rm GW} \\sim 10^{-8}$ at the frequency $f \\sim 0.01$-$1$Hz for some model parameters, and a vast parameter region can be tested by future interferometer experiments such as eLISA, LISA, BBO and DECIGO.

  3. Connecting free energy surfaces in implicit and explicit solvent: an efficient method to compute conformational and solvation free energies.

    Science.gov (United States)

    Deng, Nanjie; Zhang, Bin W; Levy, Ronald M

    2015-06-09

    The ability to accurately model solvent effects on free energy surfaces is important for understanding many biophysical processes including protein folding and misfolding, allosteric transitions, and protein–ligand binding. Although all-atom simulations in explicit solvent can provide an accurate model for biomolecules in solution, explicit solvent simulations are hampered by the slow equilibration on rugged landscapes containing multiple basins separated by barriers. In many cases, implicit solvent models can be used to significantly speed up the conformational sampling; however, implicit solvent simulations do not fully capture the effects of a molecular solvent, and this can lead to loss of accuracy in the estimated free energies. Here we introduce a new approach to compute free energy changes in which the molecular details of explicit solvent simulations are retained while also taking advantage of the speed of the implicit solvent simulations. In this approach, the slow equilibration in explicit solvent, due to the long waiting times before barrier crossing, is avoided by using a thermodynamic cycle which connects the free energy basins in implicit solvent and explicit solvent using a localized decoupling scheme. We test this method by computing conformational free energy differences and solvation free energies of the model system alanine dipeptide in water. The free energy changes between basins in explicit solvent calculated using fully explicit solvent paths agree with the corresponding free energy differences obtained using the implicit/explicit thermodynamic cycle to within 0.3 kcal/mol out of ∼3 kcal/mol at only ∼8% of the computational cost. We note that WHAM methods can be used to further improve the efficiency and accuracy of the implicit/explicit thermodynamic cycle.

  4. Modeling the conformational preference of the carbon-bonded covalent adduct formed upon exposure of 2'-deoxyguanosine to ochratoxin A.

    Science.gov (United States)

    Sharma, Purshotam; Manderville, Richard A; Wetmore, Stacey D

    2013-05-20

    The conformational flexibility of the C8-linked guanine adduct formed from attachment of ochratoxin A (OTA) was analyzed using a systematic computational approach and models ranging from the nucleobase to the adducted DNA helix. A focus was placed on the influence of the C8-modification of 2'-deoxyguanosine (dG) on the preferred relative arrangement of the nucleobase and the C8-substituent and, more importantly, the anti/syn conformational preference with respect to the glycosidic bond. Although OTA is twisted with respect to the base in the nucleobase model, addition of the deoxyribose sugar induces a further twist and restricts rotation about the C-C linkage due to close contacts between OTA and the sugar. The nucleoside model preferentially adpots a syn orientation (by 10-20 kJ mol(-1) depending on the OTA conformation) due to the presence of an O5'-H···N3 interaction. However, when this hydrogen bond is eliminated, which better mimics the DNA environment, a small (simulations and free energy analysis predict that both syn- and anti-conformations of OTB-dG are equally stable in helices when paired opposite cytosine. These results indicate that the adduct will likely adopt a syn conformation in an isolated nucleoside and nucleotide, while a mixture of syn and anti conformations will be observed in DNA duplexes. Since the syn conformation could stabilize base mismatches upon DNA replication or Z-DNA structures with varied biological outcomes, future computational and experimental work should elucidate the consequences of the conformational preference of this potentially harmful DNA lesion.

  5. Intrinsic α-helical and β-sheet conformational preferences: a computational case study of alanine.

    Science.gov (United States)

    Caballero, Diego; Määttä, Jukka; Zhou, Alice Qinhua; Sammalkorpi, Maria; O'Hern, Corey S; Regan, Lynne

    2014-07-01

    A fundamental question in protein science is what is the intrinsic propensity for an amino acid to be in an α-helix, β-sheet, or other backbone dihedral angle ( ϕ-ψ) conformation. This question has been hotly debated for many years because including all protein crystal structures from the protein database, increases the probabilities for α-helical structures, while experiments on small peptides observe that β-sheet-like conformations predominate. We perform molecular dynamics (MD) simulations of a hard-sphere model for Ala dipeptide mimetics that includes steric interactions between nonbonded atoms and bond length and angle constraints with the goal of evaluating the role of steric interactions in determining protein backbone conformational preferences. We find four key results. For the hard-sphere MD simulations, we show that (1) β-sheet structures are roughly three and half times more probable than α-helical structures, (2) transitions between α-helix and β-sheet structures only occur when the backbone bond angle τ (NCα C) is greater than 110°, and (3) the probability distribution of τ for Ala conformations in the "bridge" region of ϕ-ψ space is shifted to larger angles compared to other regions. In contrast, (4) the distributions obtained from Amber and CHARMM MD simulations in the bridge regions are broader and have increased τ compared to those for hard sphere simulations and from high-resolution protein crystal structures. Our results emphasize the importance of hard-sphere interactions and local stereochemical constraints that yield strong correlations between ϕ-ψ conformations and τ.

  6. Pure spinor superfields, with application to D=3 conformal models

    CERN Document Server

    Cederwall, Martin

    2009-01-01

    I review and discuss the construction of supersymmetry multiplets and manifestly supersymmetric Batalin-Vilkovisky actions using pure spinors, with emphasis on models with maximal supersymmetry. The special cases of D=3, N=8 (Bagger-Lambert-Gustavsson) and N=6 (Aharony-Bergman-Jafferis-Maldacena) conformal models are treated in detail. Most of the material is covered by the papers arXiv:0808.3242 and arXiv:0809.0318. This is the written version of a talk given at 4th Baltic-Nordic workshop "Algebra, Geometry and Mathematical Physics", Tartu, Estonia, October 9-11, 2008, to appear in the Proceedings of the Estonian Academy of Sciences, vol 4, 2010.

  7. Conformal loop quantum gravity coupled to the standard model

    Science.gov (United States)

    Campiglia, Miguel; Gambini, Rodolfo; Pullin, Jorge

    2017-01-01

    We argue that a conformally invariant extension of general relativity coupled to the standard model is the fundamental theory that needs to be quantized. We show that it can be treated by loop quantum gravity techniques. Through a gauge fixing and a modified Higgs mechanism particles acquire mass and one recovers general relativity coupled to the standard model. The theory suggests new views with respect to the definition of the Hamiltonian constraint in loop quantum gravity, the semi-classical limit and the issue of finite renormalization in quantum field theory in quantum space-time. It also gives hints about the elimination of ambiguities that arise in quantum field theory in quantum space-time in the calculation of back-reaction.

  8. Plasticity modeling & computation

    CERN Document Server

    Borja, Ronaldo I

    2013-01-01

    There have been many excellent books written on the subject of plastic deformation in solids, but rarely can one find a textbook on this subject. “Plasticity Modeling & Computation” is a textbook written specifically for students who want to learn the theoretical, mathematical, and computational aspects of inelastic deformation in solids. It adopts a simple narrative style that is not mathematically overbearing, and has been written to emulate a professor giving a lecture on this subject inside a classroom. Each section is written to provide a balance between the relevant equations and the explanations behind them. Where relevant, sections end with one or more exercises designed to reinforce the understanding of the “lecture.” Color figures enhance the presentation and make the book very pleasant to read. For professors planning to use this textbook for their classes, the contents are sufficient for Parts A and B that can be taught in sequence over a period of two semesters or quarters.

  9. Models of optical quantum computing

    Directory of Open Access Journals (Sweden)

    Krovi Hari

    2017-03-01

    Full Text Available I review some work on models of quantum computing, optical implementations of these models, as well as the associated computational power. In particular, we discuss the circuit model and cluster state implementations using quantum optics with various encodings such as dual rail encoding, Gottesman-Kitaev-Preskill encoding, and coherent state encoding. Then we discuss intermediate models of optical computing such as boson sampling and its variants. Finally, we review some recent work in optical implementations of adiabatic quantum computing and analog optical computing. We also provide a brief description of the relevant aspects from complexity theory needed to understand the results surveyed.

  10. Computational Tools for Modeling and Measuring Chromosome Structure

    Science.gov (United States)

    Ross, Brian Christopher

    DNA conformation within cells has many important biological implications, but there are challenges both in modeling DNA due to the need for specialized techniques, and experimentally since tracing out in vivo conformations is currently impossible. This thesis contributes two computational projects to these efforts. The first project is a set of online and offline calculators of conformational statistics using a variety of published and unpublished methods, addressing the current lack of DNA model-building tools intended for general use. The second project is a reconstructive analysis that could enable in vivo mapping of DNA conformation at high resolution with current experimental technology. (Copies available exclusively from MIT Libraries, libraries.mit.edu/docs - docs mit.edu)

  11. Conformational Transitions

    Science.gov (United States)

    Czerminski, Ryszard; Roitberg, Adrian; Choi, Chyung; Ulitsky, Alexander; Elber, Ron

    1991-10-01

    Two computational approaches to study plausible conformations of biological molecules and the transitions between them are presented and discussed. The first approach is a new search algorithm which enhances the sampling of alternative conformers using a mean field approximation. It is argued and demonstrated that the mean field approximation has a small effect on the location of the minima. The method is a combination of the LES protocol (Locally Enhanced Sampling) and simulated annealing. The LES method was used in the past to study the diffusion pathways of ligands from buried active sites in myoglobin and leghemoglobin to the exterior of the protein. The present formulation of LES and its implementation in a Molecular Dynamics program is described. An application for side chain placement in a tetrapeptide is presented. The computational effort associated with conformational searches using LES grows only linearly with the number of degrees of freedom, whereas in the exact case the computational effort grows exponentially. Such saving is of course associated with a mean field approximation. The second branch of studies pertains to the calculation of reaction paths in large and flexible biological systems. An extensive mapping of minima and barriers for two different tetrapeptides is calculated from the known minima and barriers of alanine tetrapeptide which we calculated recently.1 The tetrapeptides are useful models for the formation of secondary structure elements since they are the shortest possible polymers of this type which can still form a complete helical turn. The tetrapeptides are isobutyryl-val(χ1=60)-ala-ala and isobutyryl-val(χ1=-60)-ala-ala. Properties of the hundreds of minima and of the hundreds intervening barriers are discussed. Estimates for thermal transition times between the many conformers (and times to explore the complete phase space) are calculated and compared. It is suggested that the most significant effect of the side chain size is

  12. Conformational analysis of phloroglucinols from hypericum Brasiliense by using x-ray diffraction and molecular modeling

    Energy Technology Data Exchange (ETDEWEB)

    Leal, Katia Z.; Lindgren, Eric B.; Correa, Arthur L., E-mail: kzleal@uol.com.b [Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil). Inst. de Quimica. Dept. de Fisico-Quimica; Yoneda, Julliane D. [Universidade Federal Fluminense (UFF), Volta Redonda, RJ (Brazil). Polo Universitario de Volta Redonda; Pinheiro, Carlos B. [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Dept. de Fisica; Franca, Hildegardo S. [Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil). Faculdade de Farmacia. Dept. de Tecnologia Farmaceutica

    2010-07-01

    In this work we intend to verify the applicability of a computational methodology to predict structural features of organic compounds with biological activity. We selected three phloroglucinols and compared their calculated conformational data with their X-ray crystallographic structure. The results showed that conformations obtained by conformational analysis with the AM1 method followed by geometry optimization by using the DFT B3LYP/6-31 G(d,p) basis set are in very good agreement with X-ray data, indicating that the methodology employed here seems to be a very useful tool in order to predict the conformational preference for this class of compounds. (author)

  13. Computational modeling of concrete flow

    DEFF Research Database (Denmark)

    Roussel, Nicolas; Geiker, Mette Rica; Dufour, Frederic

    2007-01-01

    This paper provides a general overview of the present status regarding computational modeling of the flow of fresh concrete. The computational modeling techniques that can be found in the literature may be divided into three main families: single fluid simulations, numerical modeling of discrete...

  14. A Novel Forensic Computing Model

    Institute of Scientific and Technical Information of China (English)

    XU Yunfeng; LU Yansheng

    2006-01-01

    According to the requirement of computer forensic and network forensic, a novel forensic computing model is presented, which exploits XML/OEM/RM data model, Data fusion technology, forensic knowledgebase, inference mechanism of expert system and evidence mining engine. This model takes advantage of flexility and openness, so it can be widely used in mining evidence.

  15. Computer-Aided Modeling Framework

    DEFF Research Database (Denmark)

    Fedorova, Marina; Sin, Gürkan; Gani, Rafiqul

    development and application. The proposed work is a part of the project for development of methods and tools that will allow systematic generation, analysis and solution of models for various objectives. It will use the computer-aided modeling framework that is based on a modeling methodology, which combines....... In this contribution, the concept of template-based modeling is presented and application is highlighted for the specific case of catalytic membrane fixed bed models. The modeling template is integrated in a generic computer-aided modeling framework. Furthermore, modeling templates enable the idea of model reuse...... are generated through the template in ICAS-MoT and translated into a model object. Once in ICAS-MoT, the model is numerical analyzed, solved and identified. A computer-aided modeling framework integrating systematic model derivation and development tools has been developed. It includes features for model...

  16. Constructing Surrogate Models of Complex Systems with Enhanced Sparsity: Quantifying the influence of conformational uncertainty in biomolecular solvation

    Energy Technology Data Exchange (ETDEWEB)

    Lei, Huan; Yang, Xiu; Zheng, Bin; Baker, Nathan A.

    2015-11-05

    Biomolecules exhibit conformational fluctuations near equilibrium states, inducing uncertainty in various biological properties in a dynamic way. We have developed a general method to quantify the uncertainty of target properties induced by conformational fluctuations. Using a generalized polynomial chaos (gPC) expansion, we construct a surrogate model of the target property with respect to varying conformational states. We also propose a method to increase the sparsity of the gPC expansion by defining a set of conformational “active space” random variables. With the increased sparsity, we employ the compressive sensing method to accurately construct the surrogate model. We demonstrate the performance of the surrogate model by evaluating fluctuation-induced uncertainty in solvent-accessible surface area for the bovine trypsin inhibitor protein system and show that the new approach offers more accurate statistical information than standard Monte Carlo approaches. Further more, the constructed surrogate model also enables us to directly evaluate the target property under various conformational states, yielding a more accurate response surface than standard sparse grid collocation methods. In particular, the new method provides higher accuracy in high-dimensional systems, such as biomolecules, where sparse grid performance is limited by the accuracy of the computed quantity of interest. Our new framework is generalizable and can be used to investigate the uncertainty of a wide variety of target properties in biomolecular systems.

  17. Computational Recipe for Efficient Description of Large-Scale Conformational Changes in Biomolecular Systems.

    Science.gov (United States)

    Moradi, Mahmoud; Tajkhorshid, Emad

    2014-07-01

    Characterizing large-scale structural transitions in biomolecular systems poses major technical challenges to both experimental and computational approaches. On the computational side, efficient sampling of the configuration space along the transition pathway remains the most daunting challenge. Recognizing this issue, we introduce a knowledge-based computational approach toward describing large-scale conformational transitions using (i) nonequilibrium, driven simulations combined with work measurements and (ii) free energy calculations using empirically optimized biasing protocols. The first part is based on designing mechanistically relevant, system-specific reaction coordinates whose usefulness and applicability in inducing the transition of interest are examined using knowledge-based, qualitative assessments along with nonequilirbrium work measurements which provide an empirical framework for optimizing the biasing protocol. The second part employs the optimized biasing protocol resulting from the first part to initiate free energy calculations and characterize the transition quantitatively. Using a biasing protocol fine-tuned to a particular transition not only improves the accuracy of the resulting free energies but also speeds up the convergence. The efficiency of the sampling will be assessed by employing dimensionality reduction techniques to help detect possible flaws and provide potential improvements in the design of the biasing protocol. Structural transition of a membrane transporter will be used as an example to illustrate the workings of the proposed approach.

  18. Integrability and conformal data of the dimer model

    Science.gov (United States)

    Morin-Duchesne, Alexi; Rasmussen, Jørgen; Ruelle, Philippe

    2016-04-01

    The central charge of the dimer model on the square lattice is still being debated in the literature. In this paper, we provide evidence supporting the consistency of a c=-2 description. Using Lieb’s transfer matrix and its description in terms of the Temperley-Lieb algebra {{TL}}n at β =0, we provide a new solution of the dimer model in terms of the model of critical dense polymers on a tilted lattice and offer an understanding of the lattice integrability of the dimer model. The dimer transfer matrix is analyzed in the scaling limit, and the result for {L}0-\\frac{c}{24} is expressed in terms of fermions. Higher Virasoro modes are likewise constructed as limits of elements of {{TL}}n and are found to yield a c=-2 realization of the Virasoro algebra, familiar from fermionic bc ghost systems. In this realization, the dimer Fock spaces are shown to decompose, as Virasoro modules, into direct sums of Feigin-Fuchs modules, themselves exhibiting reducible yet indecomposable structures. In the scaling limit, the eigenvalues of the lattice integrals of motion are found to agree exactly with those of the c=-2 conformal integrals of motion. Consistent with the expression for {L}0-\\frac{c}{24} obtained from the transfer matrix, we also construct higher Virasoro modes with c = 1 and find that the dimer Fock space is completely reducible under their action. However, the transfer matrix is found not to be a generating function for the c = 1 integrals of motion. Although this indicates that Lieb’s transfer matrix description is incompatible with the c = 1 interpretation, it does not rule out the existence of an alternative, c = 1 compatible, transfer matrix description of the dimer model.

  19. 3D Cadastral Data Model Based on Conformal Geometry Algebra

    Directory of Open Access Journals (Sweden)

    Ji-yi Zhang

    2016-02-01

    Full Text Available Three-dimensional (3D cadastral data models that are based on Euclidean geometry (EG are incapable of providing a unified representation of geometry and topological relations for 3D spatial units in a cadastral database. This lack of unification causes problems such as complex expression structure and inefficiency in the updating of 3D cadastral objects. The inability of current cadastral data models to express cadastral objects in a unified manner can be attributed to the different expressions of dimensional objects. Because the hierarchical Grassmann structure corresponds to the hierarchical structure of dimensions in conformal geometric algebra (CGA, geometric objects in different dimensions can be constructed by outer products in a unified expression form, which enables the direct extension of two-dimensional (2D spatial representations to 3D spatial representations. The multivector structure in CGA can be employed to organize and store different dimensional objects in a multidimensional and unified manner. With the advantages of CGA in multidimensional expressions, a new 3D cadastral data model that is based on CGA is proposed in this paper. The geometries and topological relations of 3D spatial units can be represented in a unified form within the multivector structure. Detailed methods for 3D cadastral data model design based on CGA and data organization in CGA are introduced. The new cadastral data model is tested and analyzed with experimental data. The results indicate that the geometry and topological relations of 3D cadastral objects can be represented in a multidimensional manner with an intuitive topological structure and a unified dimensional expression.

  20. Computational modeling in biomechanics

    CERN Document Server

    Mofrad, Mohammad

    2010-01-01

    This book provides a glimpse of the diverse and important roles that modern computational technology is playing in various areas of biomechanics. It includes unique chapters on ab initio quantum mechanical, molecular dynamic and scale coupling methods..

  1. The role of conformal symmetry in gravity and the standard model

    CERN Document Server

    Lucat, Stefano

    2016-01-01

    In this paper we consider conformal symmetry in the context of manifolds with general affine connection. We extend the conformal transformation law of the metric to a general metric compatible affine connection, and find that it is a symmetry of both the geodesic equation and the Riemann tensor. We derive the generalised Jacobi equation and Raychaudhuri equation and show that they are both conformally invariant. Using the geodesic deviation~(Jacobi) equation we analyse the behaviour of geodesics in different conformal frames. Since we find that our version of conformal symmetry is exact in classical pure Einstein's gravity, we ask whether one can extend it to the standard model. We find that it is possible to write conformal invariant lagrangians in any dimensions for vector, fermion and scalar fields, but that such lagrangians are only gauge invariant in four dimensions. Provided one introduces a dilaton field, gravity can be conformally coupled to matter.

  2. The role of conformal symmetry in gravity and the standard model

    Science.gov (United States)

    Lucat, Stefano; Prokopec, Tomislav

    2016-12-01

    In this paper we consider conformal symmetry in the context of manifolds with general affine connection. We extend the conformal transformation law of the metric to a general metric compatible affine connection, and find that it is a symmetry of both the geodesic equation and the Riemann tensor. We derive the generalised Jacobi equation and Raychaudhuri equation and show that they are both conformally invariant. Using the geodesic deviation (Jacobi) equation we analyse the behaviour of geodesics in different conformal frames. Since we find that our version of conformal symmetry is exact in classical pure Einstein's gravity, we ask whether one can extend it to the standard model. We find that it is possible to write conformal invariant Lagrangians in any dimensions for vector, fermion and scalar fields, but that such Lagrangians are only gauge invariant in four dimensions. Provided one introduces a dilaton field, gravity can be conformally coupled to matter.

  3. The staggered six-vertex model: Conformal invariance and corrections to scaling

    Energy Technology Data Exchange (ETDEWEB)

    Frahm, Holger [Institut für Theoretische Physik, Leibniz Universität Hannover, Appelstraße 2, 30167 Hannover (Germany); Seel, Alexander [Lehrstuhl für Theoretische Elektrotechnik und Photonik, Universität Siegen, Hölderlinstraße 3, 57068 Siegen (Germany)

    2014-02-15

    We study the emergence of non-compact degrees of freedom in the low energy effective theory for a class of Z{sub 2}-staggered six-vertex models. In the finite size spectrum of the vertex model this shows up through the appearance of a continuum of critical exponents. To analyze this part of the spectrum we derive a set of coupled nonlinear integral equations from the Bethe ansatz solution of the vertex model which allow to compute the energies of the system for a range of anisotropies and of the staggering parameter. The critical theory is found to be independent of the staggering. Its spectrum and density of states coincide with the SL(2,R)/U(1) Euclidean black hole conformal field theory which has been identified previously in the continuum limit of the vertex model for a particular ‘self-dual’ choice of the staggering. We also study the asymptotic behavior of subleading corrections to the finite size scaling and discuss our findings in the context of the conformal field theory.

  4. The staggered six-vertex model: Conformal invariance and corrections to scaling

    Science.gov (United States)

    Frahm, Holger; Seel, Alexander

    2014-02-01

    We study the emergence of non-compact degrees of freedom in the low energy effective theory for a class of Z2-staggered six-vertex models. In the finite size spectrum of the vertex model this shows up through the appearance of a continuum of critical exponents. To analyze this part of the spectrum we derive a set of coupled nonlinear integral equations from the Bethe ansatz solution of the vertex model which allow to compute the energies of the system for a range of anisotropies and of the staggering parameter. The critical theory is found to be independent of the staggering. Its spectrum and density of states coincide with the SL(2,R)/U(1) Euclidean black hole conformal field theory which has been identified previously in the continuum limit of the vertex model for a particular ‘self-dual' choice of the staggering. We also study the asymptotic behavior of subleading corrections to the finite size scaling and discuss our findings in the context of the conformal field theory.

  5. Dynamic Aberration Correction for Conformal Window of High-Speed Aircraft Using Optimized Model-Based Wavefront Sensorless Adaptive Optics

    Science.gov (United States)

    Dong, Bing; Li, Yan; Han, Xin-li; Hu, Bin

    2016-01-01

    For high-speed aircraft, a conformal window is used to optimize the aerodynamic performance. However, the local shape of the conformal window leads to large amounts of dynamic aberrations varying with look angle. In this paper, deformable mirror (DM) and model-based wavefront sensorless adaptive optics (WSLAO) are used for dynamic aberration correction of an infrared remote sensor equipped with a conformal window and scanning mirror. In model-based WSLAO, aberration is captured using Lukosz mode, and we use the low spatial frequency content of the image spectral density as the metric function. Simulations show that aberrations induced by the conformal window are dominated by some low-order Lukosz modes. To optimize the dynamic correction, we can only correct dominant Lukosz modes and the image size can be minimized to reduce the time required to compute the metric function. In our experiment, a 37-channel DM is used to mimic the dynamic aberration of conformal window with scanning rate of 10 degrees per second. A 52-channel DM is used for correction. For a 128 × 128 image, the mean value of image sharpness during dynamic correction is 1.436 × 10−5 in optimized correction and is 1.427 × 10−5 in un-optimized correction. We also demonstrated that model-based WSLAO can achieve convergence two times faster than traditional stochastic parallel gradient descent (SPGD) method. PMID:27598161

  6. Dynamic Aberration Correction for Conformal Window of High-Speed Aircraft Using Optimized Model-Based Wavefront Sensorless Adaptive Optics.

    Science.gov (United States)

    Dong, Bing; Li, Yan; Han, Xin-Li; Hu, Bin

    2016-09-02

    For high-speed aircraft, a conformal window is used to optimize the aerodynamic performance. However, the local shape of the conformal window leads to large amounts of dynamic aberrations varying with look angle. In this paper, deformable mirror (DM) and model-based wavefront sensorless adaptive optics (WSLAO) are used for dynamic aberration correction of an infrared remote sensor equipped with a conformal window and scanning mirror. In model-based WSLAO, aberration is captured using Lukosz mode, and we use the low spatial frequency content of the image spectral density as the metric function. Simulations show that aberrations induced by the conformal window are dominated by some low-order Lukosz modes. To optimize the dynamic correction, we can only correct dominant Lukosz modes and the image size can be minimized to reduce the time required to compute the metric function. In our experiment, a 37-channel DM is used to mimic the dynamic aberration of conformal window with scanning rate of 10 degrees per second. A 52-channel DM is used for correction. For a 128 × 128 image, the mean value of image sharpness during dynamic correction is 1.436 × 10(-5) in optimized correction and is 1.427 × 10(-5) in un-optimized correction. We also demonstrated that model-based WSLAO can achieve convergence two times faster than traditional stochastic parallel gradient descent (SPGD) method.

  7. Computational modelling flow and transport

    NARCIS (Netherlands)

    Stelling, G.S.; Booij, N.

    1999-01-01

    Lecture notes CT wa4340. Derivation of equations using balance principles; numerical treatment of ordinary differential equations; time dependent partial differential equations; the strucure of a computer model:DUFLO; usage of numerical models.

  8. Mathematical Modeling and Computational Thinking

    Science.gov (United States)

    Sanford, John F.; Naidu, Jaideep T.

    2017-01-01

    The paper argues that mathematical modeling is the essence of computational thinking. Learning a computer language is a valuable assistance in learning logical thinking but of less assistance when learning problem-solving skills. The paper is third in a series and presents some examples of mathematical modeling using spreadsheets at an advanced…

  9. Computation models of discourse

    Energy Technology Data Exchange (ETDEWEB)

    Brady, M.; Berwick, R.C.

    1983-01-01

    This book presents papers on artificial intelligence and natural language. Topics considered include recognizing intentions from natural language utterances, cooperative responses from a portable natural language database query system, natural language generation as a computational problem, focusing in the comprehension of definite anaphora, and factors in forming discourse-dependent descriptions.

  10. Develop and test a solvent accessible surface area-based model in conformational entropy calculations.

    Science.gov (United States)

    Wang, Junmei; Hou, Tingjun

    2012-05-25

    It is of great interest in modern drug design to accurately calculate the free energies of protein-ligand or nucleic acid-ligand binding. MM-PBSA (molecular mechanics Poisson-Boltzmann surface area) and MM-GBSA (molecular mechanics generalized Born surface area) have gained popularity in this field. For both methods, the conformational entropy, which is usually calculated through normal-mode analysis (NMA), is needed to calculate the absolute binding free energies. Unfortunately, NMA is computationally demanding and becomes a bottleneck of the MM-PB/GBSA-NMA methods. In this work, we have developed a fast approach to estimate the conformational entropy based upon solvent accessible surface area calculations. In our approach, the conformational entropy of a molecule, S, can be obtained by summing up the contributions of all atoms, no matter they are buried or exposed. Each atom has two types of surface areas, solvent accessible surface area (SAS) and buried SAS (BSAS). The two types of surface areas are weighted to estimate the contribution of an atom to S. Atoms having the same atom type share the same weight and a general parameter k is applied to balance the contributions of the two types of surface areas. This entropy model was parametrized using a large set of small molecules for which their conformational entropies were calculated at the B3LYP/6-31G* level taking the solvent effect into account. The weighted solvent accessible surface area (WSAS) model was extensively evaluated in three tests. For convenience, TS values, the product of temperature T and conformational entropy S, were calculated in those tests. T was always set to 298.15 K through the text. First of all, good correlations were achieved between WSAS TS and NMA TS for 44 protein or nucleic acid systems sampled with molecular dynamics simulations (10 snapshots were collected for postentropy calculations): the mean correlation coefficient squares (R²) was 0.56. As to the 20 complexes, the TS

  11. Computing conformational free energy differences in explicit solvent: An efficient thermodynamic cycle using an auxiliary potential and a free energy functional constructed from the end points.

    Science.gov (United States)

    Harris, Robert C; Deng, Nanjie; Levy, Ronald M; Ishizuka, Ryosuke; Matubayasi, Nobuyuki

    2016-12-23

    Many biomolecules undergo conformational changes associated with allostery or ligand binding. Observing these changes in computer simulations is difficult if their timescales are long. These calculations can be accelerated by observing the transition on an auxiliary free energy surface with a simpler Hamiltonian and connecting this free energy surface to the target free energy surface with free energy calculations. Here, we show that the free energy legs of the cycle can be replaced with energy representation (ER) density functional approximations. We compute: (1) The conformational free energy changes for alanine dipeptide transitioning from the right-handed free energy basin to the left-handed basin and (2) the free energy difference between the open and closed conformations of β-cyclodextrin, a "host" molecule that serves as a model for molecular recognition in host-guest binding. β-cyclodextrin contains 147 atoms compared to 22 atoms for alanine dipeptide, making β-cyclodextrin a large molecule for which to compute solvation free energies by free energy perturbation or integration methods and the largest system for which the ER method has been compared to exact free energy methods. The ER method replaced the 28 simulations to compute each coupling free energy with two endpoint simulations, reducing the computational time for the alanine dipeptide calculation by about 70% and for the β-cyclodextrin by > 95%. The method works even when the distribution of conformations on the auxiliary free energy surface differs substantially from that on the target free energy surface, although some degree of overlap between the two surfaces is required. © 2016 Wiley Periodicals, Inc.

  12. Employing conformational analysis in the molecular modeling of agrochemicals: insights on QSAR parameters of 2,4-D

    Directory of Open Access Journals (Sweden)

    Matheus Puggina de Freitas

    2013-12-01

    Full Text Available A common practice to compute ligand conformations of compounds with various degrees of freedom to be used in molecular modeling (QSAR and docking studies is to perform a conformational distribution based on repeated random sampling, such as Monte-Carlo methods. Further calculations are often required. This short review describes some methods used for conformational analysis and the implications of using selected conformations in QSAR. A case study is developed for 2,4-dichlorophenoxyacetic acid (2,4-D, a widely used herbicide which binds to TIR1 ubiquitin ligase enzyme. The use of such an approach and semi-empirical calculations did not achieve all possible minima for 2,4-D. In addition, the conformations and respective energies obtained by the semi-empirical AM1 method do not match the calculated trends obtained by a high level DFT method. Similar findings were obtained for the carboxylate anion, which is the bioactive form. Finally, the crystal bioactive structure of 2,4-D was not found as a minimum when using Monte-Carlo/AM1 and is similarly populated with another conformer in implicit water solution according to optimization at the B3LYP/aug-cc-pVDZ level. Therefore, quantitative structure-activity relationship (QSAR methods based on three dimensional chemical structures are not fundamental to provide predictive models for 2,4-D congeners as TIR1 ubiquitin ligase ligands, since they do not necessarily reflect the bioactive conformation of this molecule. This probably extends to other systems.

  13. Computer-Aided Modeling Framework

    DEFF Research Database (Denmark)

    Fedorova, Marina; Sin, Gürkan; Gani, Rafiqul

    with them. As the required models may be complex and require multiple time and/or length scales, their development and application for product-process design is not trivial. Therefore, a systematic modeling framework can contribute by significantly reducing the time and resources needed for model...... development and application. The proposed work is a part of the project for development of methods and tools that will allow systematic generation, analysis and solution of models for various objectives. It will use the computer-aided modeling framework that is based on a modeling methodology, which combines....... In this contribution, the concept of template-based modeling is presented and application is highlighted for the specific case of catalytic membrane fixed bed models. The modeling template is integrated in a generic computer-aided modeling framework. Furthermore, modeling templates enable the idea of model reuse...

  14. Computational quantum chemistry and adaptive ligand modeling in mechanistic QSAR.

    Science.gov (United States)

    De Benedetti, Pier G; Fanelli, Francesca

    2010-10-01

    Drugs are adaptive molecules. They realize this peculiarity by generating different ensembles of prototropic forms and conformers that depend on the environment. Among the impressive amount of available computational drug discovery technologies, quantitative structure-activity relationship approaches that rely on computational quantum chemistry descriptors are the most appropriate to model adaptive drugs. Indeed, computational quantum chemistry descriptors are able to account for the variation of the intramolecular interactions of the training compounds, which reflect their adaptive intermolecular interaction propensities. This enables the development of causative, interpretive and reasonably predictive quantitative structure-activity relationship models, and, hence, sound chemical information finalized to drug design and discovery.

  15. Computational models of syntactic acquisition.

    Science.gov (United States)

    Yang, Charles

    2012-03-01

    The computational approach to syntactic acquisition can be fruitfully pursued by integrating results and perspectives from computer science, linguistics, and developmental psychology. In this article, we first review some key results in computational learning theory and their implications for language acquisition. We then turn to examine specific learning models, some of which exploit distributional information in the input while others rely on a constrained space of hypotheses, yet both approaches share a common set of characteristics to overcome the learning problem. We conclude with a discussion of how computational models connects with the empirical study of child grammar, making the case for computationally tractable, psychologically plausible and developmentally realistic models of acquisition. WIREs Cogn Sci 2012, 3:205-213. doi: 10.1002/wcs.1154 For further resources related to this article, please visit the WIREs website.

  16. An Expression of Periodic Phenomena of Fashion on Sexual Selection Model with Conformity Genes and Memes

    Science.gov (United States)

    Mutoh, Atsuko; Tokuhara, Shinya; Kanoh, Masayoshi; Oboshi, Tamon; Kato, Shohei; Itoh, Hidenori

    It is generally thought that living things have trends in their preferences. The mechanism of occurrence of another trends in successive periods is concerned in their conformity. According to social impact theory, the minority is always exists in the group. There is a possibility that the minority make the transition to the majority by conforming agents. Because of agent's promotion of their conform actions, the majority can make the transition. We proposed an evolutionary model with both genes and memes, and elucidated the interaction between genes and memes on sexual selection. In this paper, we propose an agent model for sexual selection imported the concept of conformity. Using this model we try an environment where male agents and female agents are existed, we find that periodic phenomena of fashion are expressed. And we report the influence of conformity and differentiation on the transition of their preferences.

  17. toolkit computational mesh conceptual model.

    Energy Technology Data Exchange (ETDEWEB)

    Baur, David G.; Edwards, Harold Carter; Cochran, William K.; Williams, Alan B.; Sjaardema, Gregory D.

    2010-03-01

    The Sierra Toolkit computational mesh is a software library intended to support massively parallel multi-physics computations on dynamically changing unstructured meshes. This domain of intended use is inherently complex due to distributed memory parallelism, parallel scalability, heterogeneity of physics, heterogeneous discretization of an unstructured mesh, and runtime adaptation of the mesh. Management of this inherent complexity begins with a conceptual analysis and modeling of this domain of intended use; i.e., development of a domain model. The Sierra Toolkit computational mesh software library is designed and implemented based upon this domain model. Software developers using, maintaining, or extending the Sierra Toolkit computational mesh library must be familiar with the concepts/domain model presented in this report.

  18. High-Dimensional Integrable Models with Conformal Invariance

    Institute of Scientific and Technical Information of China (English)

    LIN Ji; QIAN Xian-Ming

    2003-01-01

    Using the (2+1)-dimensional Schwartz derivative, the usual (2+1)-dimensional Schwartz Kadomtsev-Petviashvili (KP) equation is extended to (n+1)-dimensional conformal invariance equation. The extension possessestwo spatial-plane solitons solutions of a (3+1)-dimensional equation are obtained.

  19. Modeling the Conformation-Specific Infrared Spectra of N-Alkylbenzenes

    Science.gov (United States)

    Tabor, Daniel P.; Sibert, Edwin; Hewett, Daniel M.; Korn, Joseph A.; Zwier, Timothy S.

    2016-06-01

    Conformation-specific UV-IR double resonance spectra are presented for n-alkylbenzenes. With the aid of a local mode Hamiltonian that includes the effects of stretch-bend Fermi coupling, the spectra of ethyl, n-propyl, and n-butylbenzene are assigned to individual conformers. These molecules allow for further development of the work on a first principles method for calculating alkyl stretch spectra. Due to the consistency of the anharmonic couplings from conformer to conformer, construction of the model Hamiltonian for a given conformer only requires a harmonic frequency calculation at the conformer's minimum geometry as an input. The model Hamiltonian can be parameterized with either density functional theory or MP2 electronic structure calculations. The relative strengths and weaknesses of these methods are evaluated, including their predictions of the relative energetics of the conformers. Finally, the IR spectra for conformers that have the alkyl chain bend back and interact with the π cloud of the benzene ring are modeled.

  20. Patient-Specific Computational Modeling

    CERN Document Server

    Peña, Estefanía

    2012-01-01

    This book addresses patient-specific modeling. It integrates computational modeling, experimental procedures, imagine clinical segmentation and mesh generation with the finite element method (FEM) to solve problems in computational biomedicine and bioengineering. Specific areas of interest include cardiovascular problems, ocular and muscular systems and soft tissue modeling. Patient-specific modeling has been the subject of serious research over the last seven years and interest in the area is continually growing and this area is expected to further develop in the near future.

  1. Trust Models in Ubiquitous Computing

    DEFF Research Database (Denmark)

    Nielsen, Mogens; Krukow, Karl; Sassone, Vladimiro

    2008-01-01

    We recapture some of the arguments for trust-based technologies in ubiquitous computing, followed by a brief survey of some of the models of trust that have been introduced in this respect. Based on this, we argue for the need of more formal and foundational trust models.......We recapture some of the arguments for trust-based technologies in ubiquitous computing, followed by a brief survey of some of the models of trust that have been introduced in this respect. Based on this, we argue for the need of more formal and foundational trust models....

  2. Local conformal symmetry in black holes, standard model, and quantum gravity

    Science.gov (United States)

    Hooft, Gerard ’T.

    The black hole information problem and the firewall problem can be addressed by assuming an extra local symmetry: conformal invariance. It must be an exact symmetry, spontaneously broken by the vacuum, in a way similar to the Brout-Englert-Higgs (BEH) mechanism. We note how this symmetry formally removes the horizon and the singularity inside black holes. For the Standard Model this symmetry is severely restrictive, demanding all coupling constants, masses and even the cosmological constant to be computable, in principle. Finally, this symmetry suggests that the Weyl action (the square of the Weyl curvature) should be added to the Einstein-Hilbert action. The ensuing indefinite metric states are briefly studied, and we conclude with some remarks concerning the interpretation of quantum mechanics.

  3. Light manipulation with flat and conformal inhomogeneous dispersive impedance sheets: an efficient FDTD modeling.

    Science.gov (United States)

    Jafar-Zanjani, Samad; Cheng, Jierong; Mosallaei, Hossein

    2016-04-10

    An efficient auxiliary differential equation method for incorporating 2D inhomogeneous dispersive impedance sheets in the finite-difference time-domain solver is presented. This unique proposed method can successfully solve optical problems of current interest involving 2D sheets. It eliminates the need for ultrafine meshing in the thickness direction, resulting in a significant reduction of computation time and memory requirements. We apply the method to characterize a novel broad-beam leaky-wave antenna created by cascading three sinusoidally modulated reactance surfaces and also to study the effect of curvature on the radiation characteristic of a conformal impedance sheet holographic antenna. Considerable improvement in the simulation time based on our technique in comparison with the traditional volumetric model is reported. Both applications are of great interest in the field of antennas and 2D sheets.

  4. First Order Electroweak Phase Transition from (Non)Conformal Extensions of the Standard Model

    DEFF Research Database (Denmark)

    Sannino, Francesco; Virkajärvi, Jussi

    2015-01-01

    We analyse and compare the finite-temperature electroweak phase transition properties of classically (non)conformal extensions of the Standard Model. In the classically conformal scenarios the breaking of the electroweak symmetry is generated radiatively. The models feature new scalars coupled...... conformally to the Higgs sector as well as new fermions. We uncover the parameter space leading to a first order phase transition with(out) the Veltman conditions. We also discuss dark (matter) aspects of some of the models and compare with existing literature when appropriate. We observe that to accommodate...

  5. A model problem for conformal parameterizations of the Einstein constraint equations

    CERN Document Server

    Maxwell, David

    2009-01-01

    We investigate the possibility that the conformal and conformal thin sandwich (CTS) methods can be used to parameterize the set of solutions of the vacuum Einstein constraint equations. To this end we develop a model problem obtained by taking the quotient of certain symmetric data on conformally flat tori. Specializing the model problem to a three-parameter family of conformal data we observe a number of new phenomena for the conformal and CTS methods. Within this family, we obtain a general existence theorem so long as the mean curvature does not change sign. When the mean curvature changes sign, we find that for certain data solutions exist if and only if the transverse-traceless tensor is sufficiently small. When such solutions exist, there are generically more than one. Moreover, the theory for mean curvatures changing sign is shown to be extremely sensitive with respect to the value of a coupling constant in the Einstein constraint equations.

  6. Integrated Computational Model Development

    Science.gov (United States)

    2014-03-01

    68.5%, 9.6% and 21.9%, respectively. The alloy density and Vickers microhardness were ρ = 8.23 ± 0.01 g/cm3 and Hv = 5288 ± 1 MPa. [3...and 3-D. Techniques to mechanically test materials at smaller scales were developed to better inform the deformation models. Also methods were...situ microscale tension testing technique was adapted to enable microscale fatigue testing on tensile dog-bone specimens. Microscale tensile fatigue

  7. Conformal invariant Painlevé expansions and higher dimensional integrable models

    Institute of Scientific and Technical Information of China (English)

    楼森岳

    1999-01-01

    After the (1+1)-dimensional nonlinear Schr(?)dinger equation is embedded in higher dimensions and the usual singularity analysis approach is extended such that all the Painlev(?) expansion coefficients are conformal invariant, many higher dimensional integrable models are got after the nontrivial conformal invariant expansion coefficients are taken to be zero simply. The Painlev(?) properties of the obtained higher dimensional models (including some (3+1)-dimensional models) are proved.

  8. High-Dimensional Integrable Models with Conformal Invariance

    Institute of Scientific and Technical Information of China (English)

    LINJi; QIANXian-Ming

    2003-01-01

    Using the (2+1)-dimensional Schwartz dcrivative, the usual (2+1)-dimensional Schwartz Kadomtsev-Petviashvili (KP) equation is extended to (n+1)-dimensional conformal invariance equation. The extension possesses Painlcvc property. Some (3+1)-dimensional examples are given and some single three-dimensional camber soliton and two spatial-plane solitons solutions of a (3+1)-dimensional equation are obtained.

  9. Component Breakout Computer Model

    Science.gov (United States)

    1987-04-29

    Weapon Systems: A Policy Analysis." The Rand Graduate Institute. November 1983. Boger . D. "Statistical Models for Estimating Overhead Costs." M. S...SQUARE SCREEN PROGRAM BO DLS 70 LOCATE 3,5 100 PRINT " I I I I I I I I I I I I I I t I I I t I I i iiitiii I I I I i t I i 110 LOCATE 4,5 I 20...GOTO 4620 4610 REM ***********«««*«««**#«***********#******»,*###!^5|[^,„<c#,5|c„ dl -r C^M EED SUPPORT .c.50 REM A6(6)...N0 OF EMPLOYEES 4660 IF

  10. Modeling signal propagation mechanisms and ligand-based conformational dynamics of the Hsp90 molecular chaperone full-length dimer.

    Directory of Open Access Journals (Sweden)

    Giulia Morra

    2009-03-01

    Full Text Available Hsp90 is a molecular chaperone essential for protein folding and activation in normal homeostasis and stress response. ATP binding and hydrolysis facilitate Hsp90 conformational changes required for client activation. Hsp90 plays an important role in disease states, particularly in cancer, where chaperoning of the mutated and overexpressed oncoproteins is important for function. Recent studies have illuminated mechanisms related to the chaperone function. However, an atomic resolution view of Hsp90 conformational dynamics, determined by the presence of different binding partners, is critical to define communication pathways between remote residues in different domains intimately affecting the chaperone cycle. Here, we present a computational analysis of signal propagation and long-range communication pathways in Hsp90. We carried out molecular dynamics simulations of the full-length Hsp90 dimer, combined with essential dynamics, correlation analysis, and a signal propagation model. All-atom MD simulations with timescales of 70 ns have been performed for complexes with the natural substrates ATP and ADP and for the unliganded dimer. We elucidate the mechanisms of signal propagation and determine "hot spots" involved in interdomain communication pathways from the nucleotide-binding site to the C-terminal domain interface. A comprehensive computational analysis of the Hsp90 communication pathways and dynamics at atomic resolution has revealed the role of the nucleotide in effecting conformational changes, elucidating the mechanisms of signal propagation. Functionally important residues and secondary structure elements emerge as effective mediators of communication between the nucleotide-binding site and the C-terminal interface. Furthermore, we show that specific interdomain signal propagation pathways may be activated as a function of the ligand. Our results support a "conformational selection model" of the Hsp90 mechanism, whereby the protein may

  11. Efficient Computational Model of Hysteresis

    Science.gov (United States)

    Shields, Joel

    2005-01-01

    A recently developed mathematical model of the output (displacement) versus the input (applied voltage) of a piezoelectric transducer accounts for hysteresis. For the sake of computational speed, the model is kept simple by neglecting the dynamic behavior of the transducer. Hence, the model applies to static and quasistatic displacements only. A piezoelectric transducer of the type to which the model applies is used as an actuator in a computer-based control system to effect fine position adjustments. Because the response time of the rest of such a system is usually much greater than that of a piezoelectric transducer, the model remains an acceptably close approximation for the purpose of control computations, even though the dynamics are neglected. The model (see Figure 1) represents an electrically parallel, mechanically series combination of backlash elements, each having a unique deadband width and output gain. The zeroth element in the parallel combination has zero deadband width and, hence, represents a linear component of the input/output relationship. The other elements, which have nonzero deadband widths, are used to model the nonlinear components of the hysteresis loop. The deadband widths and output gains of the elements are computed from experimental displacement-versus-voltage data. The hysteresis curve calculated by use of this model is piecewise linear beyond deadband limits.

  12. A conditional random fields method for RNA sequence-structure relationship modeling and conformation sampling.

    Science.gov (United States)

    Wang, Zhiyong; Xu, Jinbo

    2011-07-01

    Accurate tertiary structures are very important for the functional study of non-coding RNA molecules. However, predicting RNA tertiary structures is extremely challenging, because of a large conformation space to be explored and lack of an accurate scoring function differentiating the native structure from decoys. The fragment-based conformation sampling method (e.g. FARNA) bears shortcomings that the limited size of a fragment library makes it infeasible to represent all possible conformations well. A recent dynamic Bayesian network method, BARNACLE, overcomes the issue of fragment assembly. In addition, neither of these methods makes use of sequence information in sampling conformations. Here, we present a new probabilistic graphical model, conditional random fields (CRFs), to model RNA sequence-structure relationship, which enables us to accurately estimate the probability of an RNA conformation from sequence. Coupled with a novel tree-guided sampling scheme, our CRF model is then applied to RNA conformation sampling. Experimental results show that our CRF method can model RNA sequence-structure relationship well and sequence information is important for conformation sampling. Our method, named as TreeFolder, generates a much higher percentage of native-like decoys than FARNA and BARNACLE, although we use the same simple energy function as BARNACLE. zywang@ttic.edu; j3xu@ttic.edu Supplementary data are available at Bioinformatics online.

  13. Molecular mechanics conformational analysis of tylosin

    Science.gov (United States)

    Ivanov, Petko M.

    1998-01-01

    The conformations of the 16-membered macrolide antibiotic tylosin were studied with molecular mechanics (AMBER∗ force field) including modelling of the effect of the solvent on the conformational preferences (GB/SA). A Monte Carlo conformational search procedure was used for finding the most probable low-energy conformations. The present study provides complementary data to recently reported analysis of the conformations of tylosin based on NMR techniques. A search for the low-energy conformations of protynolide, a 16-membered lactone containing the same aglycone as tylosin, was also carried out, and the results were compared with the observed conformation in the crystal as well as with the most probable conformations of the macrocyclic ring of tylosin. The dependence of the results on force field was also studied by utilizing the MM3 force field. Some particular conformations were computed with the semiempirical molecular orbital methods AM1 and PM3.

  14. Classical conformality in the Standard Model from Coleman’s theory

    Science.gov (United States)

    Kawana, Kiyoharu

    2016-09-01

    The classical conformality (CC) is one of the possible candidates for explaining the gauge hierarchy of the Standard Model (SM). We show that it is naturally obtained from the Coleman’s theory on baby universe.

  15. Conformal symmetry vs. chiral symmetry breaking in the SU(3) sextet model

    CERN Document Server

    Drach, Vincent; Hietanen, Ari; Pica, Claudio; Sannino, Francesco

    2015-01-01

    We present new results for the SU(3) "sextet model" with two flavors transforming according to the two-index symmetric representation of the gauge group. The simulations are performed using unimproved Wilson fermions. We measure the meson and baryon spectrum of the theory for multiple bare quark masses at two different lattice spacings. To address the pressing issue of whether the model is inside or below the conformal window, we compare the spectrum to the expectations for a theory with spontaneous chiral symmetry breaking and to those of an IR conformal theory. Regardless of the answer (conformal or chirally broken), the theory is a cornerstone in our understanding of near-conformal and composite dynamics, ranging from Technicolor models to unparticle physics. It is also interesting for the composite dynamics of vector-like singlets with respect to the Standard Model interactions.

  16. Computer Modelling of Dynamic Processes

    Directory of Open Access Journals (Sweden)

    B. Rybakin

    2000-10-01

    Full Text Available Results of numerical modeling of dynamic problems are summed in the article up. These problems are characteristic for various areas of human activity, in particular for problem solving in ecology. The following problems are considered in the present work: computer modeling of dynamic effects on elastic-plastic bodies, calculation and determination of performances of gas streams in gas cleaning equipment, modeling of biogas formation processes.

  17. Modeling conformational ensembles of slow functional motions in Pin1-WW.

    Directory of Open Access Journals (Sweden)

    Faruck Morcos

    Full Text Available Protein-protein interactions are often mediated by flexible loops that experience conformational dynamics on the microsecond to millisecond time scales. NMR relaxation studies can map these dynamics. However, defining the network of inter-converting conformers that underlie the relaxation data remains generally challenging. Here, we combine NMR relaxation experiments with simulation to visualize networks of inter-converting conformers. We demonstrate our approach with the apo Pin1-WW domain, for which NMR has revealed conformational dynamics of a flexible loop in the millisecond range. We sample and cluster the free energy landscape using Markov State Models (MSM with major and minor exchange states with high correlation with the NMR relaxation data and low NOE violations. These MSM are hierarchical ensembles of slowly interconverting, metastable macrostates and rapidly interconverting microstates. We found a low population state that consists primarily of holo-like conformations and is a "hub" visited by most pathways between macrostates. These results suggest that conformational equilibria between holo-like and alternative conformers pre-exist in the intrinsic dynamics of apo Pin1-WW. Analysis using MutInf, a mutual information method for quantifying correlated motions, reveals that WW dynamics not only play a role in substrate recognition, but also may help couple the substrate binding site on the WW domain to the one on the catalytic domain. Our work represents an important step towards building networks of inter-converting conformational states and is generally applicable.

  18. Computational models of complex systems

    CERN Document Server

    Dabbaghian, Vahid

    2014-01-01

    Computational and mathematical models provide us with the opportunities to investigate the complexities of real world problems. They allow us to apply our best analytical methods to define problems in a clearly mathematical manner and exhaustively test our solutions before committing expensive resources. This is made possible by assuming parameter(s) in a bounded environment, allowing for controllable experimentation, not always possible in live scenarios. For example, simulation of computational models allows the testing of theories in a manner that is both fundamentally deductive and experimental in nature. The main ingredients for such research ideas come from multiple disciplines and the importance of interdisciplinary research is well recognized by the scientific community. This book provides a window to the novel endeavours of the research communities to present their works by highlighting the value of computational modelling as a research tool when investigating complex systems. We hope that the reader...

  19. Computational models of adult neurogenesis

    Science.gov (United States)

    Cecchi, Guillermo A.; Magnasco, Marcelo O.

    2005-10-01

    Experimental results in recent years have shown that adult neurogenesis is a significant phenomenon in the mammalian brain. Little is known, however, about the functional role played by the generation and destruction of neurons in the context of an adult brain. Here, we propose two models where new projection neurons are incorporated. We show that in both models, using incorporation and removal of neurons as a computational tool, it is possible to achieve a higher computational efficiency that in purely static, synapse-learning-driven networks. We also discuss the implication for understanding the role of adult neurogenesis in specific brain areas like the olfactory bulb and the dentate gyrus.

  20. Computational Modeling of Simulation Tests.

    Science.gov (United States)

    1980-06-01

    Mexico , March 1979. 14. Kinney, G. F.,.::. IeiN, .hoce 1h Ir, McMillan, p. 57, 1962. 15. Courant and Friedrichs, ,U: r. on moca an.: Jho...AD 79 275 NEW MEXICO UNIV ALBUGUERGUE ERIC H WANG CIVIL ENGINE-ETC F/6 18/3 COMPUTATIONAL MODELING OF SIMULATION TESTS.(U) JUN 80 6 LEIGH, W CHOWN, B...COMPUTATIONAL MODELING OF SIMULATION TESTS00 0G. Leigh W. Chown B. Harrison Eric H. Wang Civil Engineering Research Facility University of New Mexico

  1. An Organic Receptor Isolated in an Unusual Intermediate Conformation: Computation, Crystallography, and Hirshfeld Surface Analysis.

    Science.gov (United States)

    Naik, Indravath Krishna; Sarkar, Rudraditya; Madhu, Vedichi; Bolligarla, Ramababu; Kishore, Ravada; Das, Samar K

    2017-05-04

    1,1″-1,4-Phenylene-bis(methylene)bis-4,4'-bipyridinium cation [C28H24N4](2+) (c), an organic receptor that generally crystallizes in its anti conformation, has recently been shown to be isolated in its syn conformation in an ion-paired compound [C28H24N4][Zn(dmit)2]·2DMF (dmit(2-) = 1,3-dithiole-2-thione-4,5-dithiolate; DMF = dimethylformamide). In this article, we demonstrated that the same receptor [C28H24N4](2+) (c) can also be stabilized in an unusual intermediate conformation (neither syn nor anti) with PF6(-) anion in compound [C28H24N4](PF6)2·(1,4-dioxane) (1·(1,4-dioxane)). The energetically favored anti conformation has been described in its nitrate salt [C28H24N4](NO3)2·2H2O (2·2H2O). Compounds 1·(1,4-dioxane) and 2·2H2O, crystallizing in triclinic and monoclinic systems with space groups P1̅ and P21/n, respectively, were additionally characterized by Hirshfeld surface analysis. The density functional theory calculations are performed to understand the internal mechanism of the stability of various conformers of cationic receptor c, compound 1, and compound 2. In conjunction with the electronic stability of the conformers, the natural bond orbital analysis and conformational equilibrium constants at different temperatures are also calculated to find out the sources of the different stability of the various conformers of experimentally synthesized compounds.

  2. Study on Clutter Model and Characteristics of Airborne Radar with Parabolic Conformal Phased Array

    Institute of Scientific and Technical Information of China (English)

    Hao Jiang; Nini Rao; Xingbo Chen; Jiabin Zhou; Chaoyang Qiu; Wen Zhai; Zhimei Hao

    2016-01-01

    The studies on clutter modeling and suppression of airborne radar with a parabolic conformal array are uncommon due to the complexity of this type of antenna array configuration. The correct understanding of clutter characteristics for airborne radar with a parabolic conformal antenna array is the prerequisite and foundation of optimal suppression of this type of clutter. This paper establishes the model of clutter echo of airborne parabolic conformal phased array radar and analyzes the structure characteristics and the distribution features of this type of clutter. The simulation results show that this type of clutter has the following characteristics: 1) The main lobe on the azimuth is seriously broadened, 2) the power spectrum presents strong heterogeneity, and 3) the freedom degrees are high. Based on the existing related clutter suppression methods, we verified the correctness of the constructed clutter model. This work has an important guidance to further study on clutter suppression methods in airborne parabolic conformal array radar.

  3. Climate Modeling Computing Needs Assessment

    Science.gov (United States)

    Petraska, K. E.; McCabe, J. D.

    2011-12-01

    This paper discusses early findings of an assessment of computing needs for NASA science, engineering and flight communities. The purpose of this assessment is to document a comprehensive set of computing needs that will allow us to better evaluate whether our computing assets are adequately structured to meet evolving demand. The early results are interesting, already pointing out improvements we can make today to get more out of the computing capacity we have, as well as potential game changing innovations for the future in how we apply information technology to science computing. Our objective is to learn how to leverage our resources in the best way possible to do more science for less money. Our approach in this assessment is threefold: Development of use case studies for science workflows; Creating a taxonomy and structure for describing science computing requirements; and characterizing agency computing, analysis, and visualization resources. As projects evolve, science data sets increase in a number of ways: in size, scope, timelines, complexity, and fidelity. Generating, processing, moving, and analyzing these data sets places distinct and discernable requirements on underlying computing, analysis, storage, and visualization systems. The initial focus group for this assessment is the Earth Science modeling community within NASA's Science Mission Directorate (SMD). As the assessment evolves, this focus will expand to other science communities across the agency. We will discuss our use cases, our framework for requirements and our characterizations, as well as our interview process, what we learned and how we plan to improve our materials after using them in the first round of interviews in the Earth Science Modeling community. We will describe our plans for how to expand this assessment, first into the Earth Science data analysis and remote sensing communities, and then throughout the full community of science, engineering and flight at NASA.

  4. Modeling and analysis of Schistosoma Argonaute protein molecular spatial conformation

    Institute of Scientific and Technical Information of China (English)

    Jianhua Zhang; Zhigang Shang; Xiaohui Zhang; Yuntao Zhang

    2011-01-01

    Objective: To analyze the amino acid sequence composition, secondary structure, the spatial conformation of its domain and other characteristics of Argonaute protein. Methods:Bioinformatics tools and the internet server were used. Firstly, the amino acid sequence composition features of the Argonaute protein were analyzed, and the phylogenetic tree was constructed. Secondly, Argonaute protein’s distribution of secondary structure and its physicochemical properties were predicted. Lastly, the protein functional expression form of the domain group was established through the Phyre-based analysis on the spatial conformation of Argonaute protein domains. Results: 593 amino acids were encoded by Argonaute protein, the phylogenetic tree was constructed, and Argonaute protein’s distribution of secondary structure and its physicochemical properties were obtained through analysis. In addition, the functional expression form which comprised the N-terminal PAZ domain and C-terminal Piwi domain for the Argonaute protein was obtained with Phyre. Conclusions: The information relationship between the structure and function of the Argonaute protein can be initially established with bioinformatics tools and the internet server, and this provides the theoretical basis for further clarifying the function of Schistosoma Argonaute protein.

  5. Kinetic Models of Cyclosporin A in Polar and Apolar Environments Reveal Multiple Congruent Conformational States.

    Science.gov (United States)

    Witek, Jagna; Keller, Bettina G; Blatter, Markus; Meissner, Axel; Wagner, Trixie; Riniker, Sereina

    2016-08-22

    The membrane permeability of cyclic peptides and peptidomimetics, which are generally larger and more complex than typical drug molecules, is likely strongly influenced by the conformational behavior of these compounds in polar and apolar environments. The size and complexity of peptides often limit their bioavailability, but there are known examples of peptide natural products such as cyclosporin A (CsA) that can cross cell membranes by passive diffusion. CsA is an undecapeptide with seven methylated backbone amides. Its crystal structure shows a "closed" twisted β-pleated sheet conformation with four intramolecular hydrogen bonds that is also observed in NMR measurements of CsA in chloroform. When binding to its target cyclophilin, on the other hand, CsA adopts an "open" conformation without intramolecular hydrogen bonds. In this study, we attempted to sample the complete conformational space of CsA in chloroform and in water by molecular dynamics simulations in order to better understand its conformational behavior in these two environments and to rationalize the good membrane permeability of CsA observed experimentally. From 10 μs molecular dynamics simulations in each solvent, Markov state models were constructed to characterize the metastable conformational states. The model in chloroform is compared to nuclear Overhauser effect NMR spectroscopy data reported in this study and taken from the literature. The conformational landscapes in the two solvents show significant overlap but also clearly distinct features.

  6. Pervasive Computing and Prosopopoietic Modelling

    DEFF Research Database (Denmark)

    Michelsen, Anders Ib

    2011-01-01

    into the other. It also indicates a generative creation that itself points to important issues of ontology with methodological implications for the design of computing. In this article these implications will be conceptualised as prosopopoietic modeling on the basis of Bernward Joerges introduction...... of the classical rhetoric term of ’prosopopoeia’ into the debate on large technological systems. First, the paper introduces the paradoxical distinction/complicity by debating Gilbert Simondon’s notion of a ‘margin of indeterminacy’ vis-a-vis computing. Second, it debates the idea of prosopopoietic modeling......, pointing to a principal role of the paradoxical distinction/complicity within the computational heritage in three cases: a. Prosopopoietic aspects of John von Neumann’s First Draft of a Report on the EDVAC from 1945. b. Herbert Simon’s notion of simulation in The Science of the Artificial from the 1970s. c...

  7. From Conformational Spread to Allosteric and Cooperative models of E. coli flagellar motor

    CERN Document Server

    Pezzotta, Alberto; Celani, Antonio

    2016-01-01

    Escherichia coli swims using flagella activated by rotary motors. The direction of rotation of the motors is indirectly regulated by the binding of a single messenger protein. The conformational spread model has been shown to accurately describe the equilibrium properties as well as the dynamics of the flagellar motor. In this paper we study this model from an analytic point of view. By exploiting the separation of timescales observed in experiments, we show how to reduce the conformational spread model to a coarse-grained, cooperative binding model. We show that this simplified model reproduces very well the dynamics of the motor switch.

  8. From conformational spread to allosteric and cooperative models of E. coli flagellar motor

    Science.gov (United States)

    Pezzotta, A.; Adorisio, M.; Celani, A.

    2017-02-01

    Escherichia coli swims using flagella activated by rotary motors. The direction of rotation of the motors is indirectly regulated by the binding of a single messenger protein. The conformational spread model has been shown to accurately describe the equilibrium properties as well as the dynamics of the flagellar motor. In this paper we study this model from an analytic point of view. By exploiting the separation of timescales observed in experiments, we show how to reduce the conformational spread model to a coarse-grained, cooperative binding model. We show that this simplified model reproduces very well the dynamics of the motor switch.

  9. Computer Profiling Based Model for Investigation

    Directory of Open Access Journals (Sweden)

    Neeraj Choudhary

    2011-10-01

    Full Text Available Computer profiling is used for computer forensic analysis, and proposes and elaborates on a novel model for use in computer profiling, the computer profiling object model. The computer profiling object model is an information model which models a computer as objects with various attributes and inter-relationships. These together provide the information necessary for a human investigator or an automated reasoning engine to make judgments as to the probable usage and evidentiary value of a computer system. The computer profiling object model can be implemented so as to support automated analysis to provide an investigator with the informationneeded to decide whether manual analysis is required.

  10. Minimal Models for a Superconductor-Insulator Conformal Quantum Phase Transition

    CERN Document Server

    Diamantini, M Cristina

    2013-01-01

    Conformal field theories do not only classify 2D classical critical behavior but they also govern a certain class of 2D quantum critical behavior. In this latter case it is the ground state wave functional of the quantum theory that is conformally invariant, rather than the classical action. We show that the superconducting-insulating (SI) quantum phase transition in 2D Josephson junction arrays (JJAs) is a (doubled) $c=1$ Gaussian conformal quantum critical point. The quantum action describing this system is a doubled Maxwell-Chern-Simons model in the strong coupling limit. We also argue that the SI quantum transitions in frustrated JJAs realize the other possible universality classes of conformal quantum critical behavior, corresponding to the unitary minimal models at central charge $c=1-6/m(m+1)$.

  11. A unified conformal model for fundamental interactions without dynamical Higgs field

    CERN Document Server

    Pawlowski, M; Marek Pawlowski; Ryszard Raczka

    1994-01-01

    A Higgsless model for strong, electro-weak and gravitational interactions is proposed. This model is based on the local symmetry group SU(3)xSU(2)xU(1)xC where C is the local conformal symmetry group. The natural minimal conformally invariant form of total lagrangian is postulated. It contains all Standard Model fields and gravitational interaction. Using the unitary gauge and the conformal scale fixing conditions we can eliminate all four real components of the Higgs doublet in this model. However the masses of vector mesons, leptons and quarks are automatically generated and are given by the same formulas as in the conventional Standard Model. The gravitational sector is analyzed and it is shown that the model admits in the classical limit the Einsteinian form of gravitational interactions. No figures.

  12. Hydronic distribution system computer model

    Energy Technology Data Exchange (ETDEWEB)

    Andrews, J.W.; Strasser, J.J.

    1994-10-01

    A computer model of a hot-water boiler and its associated hydronic thermal distribution loop has been developed at Brookhaven National Laboratory (BNL). It is intended to be incorporated as a submodel in a comprehensive model of residential-scale thermal distribution systems developed at Lawrence Berkeley. This will give the combined model the capability of modeling forced-air and hydronic distribution systems in the same house using the same supporting software. This report describes the development of the BNL hydronics model, initial results and internal consistency checks, and its intended relationship to the LBL model. A method of interacting with the LBL model that does not require physical integration of the two codes is described. This will provide capability now, with reduced up-front cost, as long as the number of runs required is not large.

  13. FORENSIC COMPUTING MODELS: TECHNICAL OVERVIEW

    Directory of Open Access Journals (Sweden)

    Gulshan Shrivastava

    2012-05-01

    Full Text Available In this paper, we deal with introducing a technique of digital forensics for reconstruction of events or evidences after the commitment of a crime through any of the digital devices. It shows a clear transparency between Computer Forensics and Digital Forensics and gives a brief description about the classification of Digital Forensics. It has also been described that how the emergences of various digital forensic models help digital forensic practitioners and examiners in doing digital forensics. Further, discussed Merits and Demerits of the required models and review of every major model.

  14. Pervasive Computing and Prosopopoietic Modelling

    DEFF Research Database (Denmark)

    Michelsen, Anders Ib

    2011-01-01

    that have spread vertiginiously since Mark Weiser coined the term ‘pervasive’, e.g., digitalised sensoring, monitoring, effectuation, intelligence, and display. Whereas Weiser’s original perspective may seem fulfilled since computing is everywhere, in his and Seely Brown’s (1997) terms, ‘invisible...... into the other. It also indicates a generative creation that itself points to important issues of ontology with methodological implications for the design of computing. In this article these implications will be conceptualised as prosopopoietic modeling on the basis of Bernward Joerges introduction......, pointing to a principal role of the paradoxical distinction/complicity within the computational heritage in three cases: a. Prosopopoietic aspects of John von Neumann’s First Draft of a Report on the EDVAC from 1945. b. Herbert Simon’s notion of simulation in The Science of the Artificial from the 1970s. c...

  15. Molecular modeling of sigma 1 receptor ligands: a model of binding conformational and electrostatic considerations.

    Science.gov (United States)

    Gund, Tamara M; Floyd, Jie; Jung, Dawoon

    2004-01-01

    We have performed molecular modeling studies on several sigma 1 specific ligands, including PD144418, spipethiane, haloperidol, pentazocine, and others to develop a pharmacophore for sigma 1 receptor-ligand binding, under the assumption that all the compounds interact at the same receptor binding site. The modeling studies have investigated the conformational and electrostatic properties of the ligands. Superposition of active molecules gave the coordinates of the hypothetical 5-point sigma 1 pharmacophore, as follows: R1 (0.85, 7.26, 0.30); R2 (5.47, 2.40, -1.51); R3 (-2.57, 4.82, -7.10); N (-0.71, 3.29, -6.40); carbon centroid (3.16, 4.83, -0.60), where R1, R2 were constructed onto the aromatic ring of each compound to represent hydrophobic interactions with the receptor; and R3 represents a hydrogen bond between the nitrogen atom and the receptor. Additional analyses were used to describe secondary binding sites to electronegative groups such as oxygen or sulfur atom. Those coordinates are (2.34, 5.08, -4.18). The model was verified by fitting other sigma 1 receptor ligands. This model may be used to search conformational databases for other possibly active ligands. In conjunction with rational drug design techniques the model may be useful in design and synthesis of novel sigma 1 ligands of high selectivity and potency. Calculations were performed using Sybyl 6.5.

  16. Applications of the Local Mode Model to CH Bond Length Changes, Molecular Conformations and Vibrational Dynamics

    OpenAIRE

    Henry, Bryan R.; Gough, Kathleen M.

    1983-01-01

    The theoretical basis for the local mode model is reviewed. The model is applied to gas phase overtone spectra of aromatic molecules to investigate both substituent induced CH bond length changes and conformationally inequivalent hydrogens. The dynamic implications of the local mode model are discussed.

  17. Parallel computing in enterprise modeling.

    Energy Technology Data Exchange (ETDEWEB)

    Goldsby, Michael E.; Armstrong, Robert C.; Shneider, Max S.; Vanderveen, Keith; Ray, Jaideep; Heath, Zach; Allan, Benjamin A.

    2008-08-01

    This report presents the results of our efforts to apply high-performance computing to entity-based simulations with a multi-use plugin for parallel computing. We use the term 'Entity-based simulation' to describe a class of simulation which includes both discrete event simulation and agent based simulation. What simulations of this class share, and what differs from more traditional models, is that the result sought is emergent from a large number of contributing entities. Logistic, economic and social simulations are members of this class where things or people are organized or self-organize to produce a solution. Entity-based problems never have an a priori ergodic principle that will greatly simplify calculations. Because the results of entity-based simulations can only be realized at scale, scalable computing is de rigueur for large problems. Having said that, the absence of a spatial organizing principal makes the decomposition of the problem onto processors problematic. In addition, practitioners in this domain commonly use the Java programming language which presents its own problems in a high-performance setting. The plugin we have developed, called the Parallel Particle Data Model, overcomes both of these obstacles and is now being used by two Sandia frameworks: the Decision Analysis Center, and the Seldon social simulation facility. While the ability to engage U.S.-sized problems is now available to the Decision Analysis Center, this plugin is central to the success of Seldon. Because Seldon relies on computationally intensive cognitive sub-models, this work is necessary to achieve the scale necessary for realistic results. With the recent upheavals in the financial markets, and the inscrutability of terrorist activity, this simulation domain will likely need a capability with ever greater fidelity. High-performance computing will play an important part in enabling that greater fidelity.

  18. Macromolecular Chain at a Cellular Surface: a Computer Simulation Model

    Science.gov (United States)

    Xie, Jun; Pandey, Ras

    2001-06-01

    Computer simulations are performed to study conformation and dynamics of relatively large chain macromolecule at the surface of a model cell membrane - a preliminary attempt to ultimately realistic model for protein on a cell membrane. We use a discrete lattice of size Lx × L × L. The chain molecule of length Lc is modelled by consecutive nodes connected by bonds on the trail of a random walk with appropriate constraints such as excluded volume, energy dependent configurational bias, etc. Monte Carlo method is used to move chains via segmental dynamics, i.e., end-move, kink-jump, crank-shaft, reptation, etc. Membrane substrate is designed by an ensemble of short chains on a flat surface. Large chain molecule is then driven toward the membrane by a field. We plan to examine the dynamics of chain macromolecule, spread of its density, and its conformation.

  19. Cosmic logic: a computational model

    Science.gov (United States)

    Vanchurin, Vitaly

    2016-02-01

    We initiate a formal study of logical inferences in context of the measure problem in cosmology or what we call cosmic logic. We describe a simple computational model of cosmic logic suitable for analysis of, for example, discretized cosmological systems. The construction is based on a particular model of computation, developed by Alan Turing, with cosmic observers (CO), cosmic measures (CM) and cosmic symmetries (CS) described by Turing machines. CO machines always start with a blank tape and CM machines take CO's Turing number (also known as description number or Gödel number) as input and output the corresponding probability. Similarly, CS machines take CO's Turing number as input, but output either one if the CO machines are in the same equivalence class or zero otherwise. We argue that CS machines are more fundamental than CM machines and, thus, should be used as building blocks in constructing CM machines. We prove the non-computability of a CS machine which discriminates between two classes of CO machines: mortal that halts in finite time and immortal that runs forever. In context of eternal inflation this result implies that it is impossible to construct CM machines to compute probabilities on the set of all CO machines using cut-off prescriptions. The cut-off measures can still be used if the set is reduced to include only machines which halt after a finite and predetermined number of steps.

  20. Improved Modeling of Open Waveguide Aperture Radiators for use in Conformal Antenna Arrays

    Science.gov (United States)

    Nelson, Gregory James

    Open waveguide apertures have been used as radiating elements in conformal arrays. Individual radiating element model patterns are used in constructing overall array models. The existing models for these aperture radiating elements may not accurately predict the array pattern for TEM waves which are not on boresight for each radiating element. In particular, surrounding structures can affect the far field patterns of these apertures, which ultimately affects the overall array pattern. New models of open waveguide apertures are developed here with the goal of accounting for the surrounding structure effects on the aperture far field patterns such that the new models make accurate pattern predictions. These aperture patterns (both E plane and H plane) are measured in an anechoic chamber and the manner in which they deviate from existing model patterns are studied. Using these measurements as a basis, existing models for both E and H planes are updated with new factors and terms which allow the prediction of far field open waveguide aperture patterns with improved accuracy. These new and improved individual radiator models are then used to predict overall conformal array patterns. Arrays of open waveguide apertures are constructed and measured in a similar fashion to the individual aperture measurements. These measured array patterns are compared with the newly modeled array patterns to verify the improved accuracy of the new models as compared with the performance of existing models in making array far field pattern predictions. The array pattern lobe characteristics are then studied for predicting fully circularly conformal arrays of varying radii. The lobe metrics that are tracked are angular location and magnitude as the radii of the conformal arrays are varied. A constructed, measured array that is close to conforming to a circular surface is compared with a fully circularly conformal modeled array pattern prediction, with the predicted lobe angular locations and

  1. DNA polymerase conformational dynamics and the role of fidelity-conferring residues: Insights from computational simulations

    Directory of Open Access Journals (Sweden)

    Massimiliano eMeli

    2016-05-01

    Full Text Available Herein we investigate the molecular bases of DNA polymerase I conformational dynamics that underlie the replication fidelity of the enzyme. Such fidelity is determined by conformational changes that promote the rejection of incorrect nucleotides before the chemical ligation step. We report a comprehensive atomic resolution study of wild type and mutant enzymes in different bound states and starting from different crystal structures, using extensive molecular dynamics (MD simulations that cover a total timespan of ~ 5 microseconds. The resulting trajectories are examined via a combination of novel methods of internal dynamics and energetics analysis, aimed to reveal the principal molecular determinants for the (destabilization of a certain conformational state. Our results show that the presence of fidelity-decreasing mutations or the binding of incorrect nucleotides in ternary complexes tend to favor transitions from closed towards open structures, passing through an ensemble of semi-closed intermediates. The latter ensemble includes the experimentally observed ajar conformation which, consistent with previous experimental observations, emerges as a molecular checkpoint for the selection of the correct nucleotide to incorporate. We discuss the implications of our results for the understanding of the relationships between the structure, dynamics and function of DNA polymerase I at the atomistic level.

  2. Minimal models of multidimensional computations.

    Directory of Open Access Journals (Sweden)

    Jeffrey D Fitzgerald

    2011-03-01

    Full Text Available The multidimensional computations performed by many biological systems are often characterized with limited information about the correlations between inputs and outputs. Given this limitation, our approach is to construct the maximum noise entropy response function of the system, leading to a closed-form and minimally biased model consistent with a given set of constraints on the input/output moments; the result is equivalent to conditional random field models from machine learning. For systems with binary outputs, such as neurons encoding sensory stimuli, the maximum noise entropy models are logistic functions whose arguments depend on the constraints. A constraint on the average output turns the binary maximum noise entropy models into minimum mutual information models, allowing for the calculation of the information content of the constraints and an information theoretic characterization of the system's computations. We use this approach to analyze the nonlinear input/output functions in macaque retina and thalamus; although these systems have been previously shown to be responsive to two input dimensions, the functional form of the response function in this reduced space had not been unambiguously identified. A second order model based on the logistic function is found to be both necessary and sufficient to accurately describe the neural responses to naturalistic stimuli, accounting for an average of 93% of the mutual information with a small number of parameters. Thus, despite the fact that the stimulus is highly non-Gaussian, the vast majority of the information in the neural responses is related to first and second order correlations. Our results suggest a principled and unbiased way to model multidimensional computations and determine the statistics of the inputs that are being encoded in the outputs.

  3. Toward logarithmic extensions of ^sl(2)_k conformal field models

    CERN Document Server

    Semikhatov, A M

    2007-01-01

    For positive integer p=k+2, we consider a logarithmic extension of the ^sl(2)_k conformal field theory of integrable representations by taking the kernel of two fermionic screening operators in a three-boson realization of ^sl(2)_k. The currents W^-(z) and W^+(z) of a W-algebra acting in the kernel are determined by a highest-weight state of dimension 4p-2 and charge 2p-1, and a (theta=1)-twisted highest-weight state of the same dimension 4p-2 and charge -2p+1. We construct 2p W-algebra representations, evaluate their characters, and show that together with the p-1 integrable representation characters they generate a modular group representation whose structure is described as a deformation of the (9p-3)-dimensional representation $R_{p+1} \\oplus C^2 \\otimes R_{p+1} \\oplus R_{p-1} \\oplus C^2 \\otimes R_{p-1} \\oplus C^3 \\otimes R_{p-1}$, where R_{p-1} is the SL(2,Z) representation on integrable representation characters and R_{p+1} is a (p+1)-dimensional SL(2,Z) representation known from the logarithmic (p,1) m...

  4. Temperature-Dependent Conformations of Model Viscosity Index Improvers

    Energy Technology Data Exchange (ETDEWEB)

    Ramasamy, Uma Shantini; Cosimbescu, Lelia; Martini, Ashlie

    2015-05-01

    Lubricants are comprised of base oils and additives where additives are chemicals that are deliberately added to the oil to enhance properties and inhibit degradation of the base oils. Viscosity index (VI) improvers are an important class of additives that reduce the decline of fluid viscosity with temperature [1], enabling optimum lubricant performance over a wider range of operating temperatures. These additives are typically high molecular weight polymers, such as, but not limited to, polyisobutylenes, olefin copolymer, and polyalkylmethacrylates, that are added in concentrations of 2-5% (w/w). Appropriate polymers, when dissolved in base oil, expand from a coiled to an uncoiled state with increasing temperature [2]. The ability of VI additives to increase their molar volume and improve the temperature-viscosity dependence of lubricants suggests there is a strong relationship between molecular structure and additive functionality [3]. In this work, we aim to quantify the changes in polymer size with temperature for four polyisobutylene (PIB) based molecular structures at the nano-scale using molecular simulation tools. As expected, the results show that the polymers adopt more conformations at higher temperatures, and there is a clear indication that the expandability of a polymer is strongly influenced by molecular structure.

  5. Deployable and Conformal Planar Micro-Devices: Design and Model Validation

    Directory of Open Access Journals (Sweden)

    Jinda Zhuang

    2014-08-01

    Full Text Available We report a design concept for a deployable planar microdevice and the modeling and experimental validation of its mechanical behavior. The device consists of foldable membranes that are suspended between flexible stems and actuated by push-pull wires. Such a deployable device can be introduced into a region of interest in its compact “collapsed” state and then deployed to conformally cover a large two-dimensional surface area for minimally invasive biomedical operations and other engineering applications. We develop and experimentally validate theoretical models based on the energy minimization approach to examine the conformality and figures of merit of the device. The experimental results obtained using model contact surfaces agree well with the prediction and quantitatively highlight the importance of the membrane bending modulus in controlling surface conformality. The present study establishes an early foundation for the mechanical design of this and related deployable planar microdevice concepts.

  6. Conformal symmetry of the critical 3D Ising model inside a sphere

    CERN Document Server

    Cosme, Catarina; Penedones, Joao

    2015-01-01

    We perform Monte-Carlo simulations of the three-dimensional Ising model at the critical temperature and zero magnetic field. We simulate the system in a ball with free boundary conditions on the two dimensional spherical boundary. Our results for one and two point functions in this geometry are consistent with the predictions from the conjectured conformal symmetry of the critical Ising model.

  7. Knee model of hydrodynamic lubrication during the gait cycle and the influence of prosthetic joint conformity.

    Science.gov (United States)

    Pascau, Antonio; Guardia, Blanca; Puertolas, José Antonio; Gómez-Barrena, Enrique

    2009-01-01

    The influence of the total joint components' elastic deformation on lubrication is generally accepted, but little is known about the influence of joint conformity under hydrodynamic lubrication based on fluid film interposition. The aim of this study was to evaluate induced pressure and stresses in the knee under fluid film lubrication during the stance phase of walking under various joint conformity conditions. A theoretical two-dimensional (2D) geometric model of knee prosthesis contact, with Dirichlet boundary conditions at both edges, and with a conformity index (CI) of 0, 0.3, 0.5, 0.6, 0.7, 0.8, 0.9, 0.92, 0.94, 0.96, 0.98, 0.99, 0.995, and 1.0, was used to calculate the spatiotemporal lubricant flow on a synovial fluid rheological model. With the instantaneous load as a source term, the Reynolds lubrication equation was subsequently solved following a finite volume approach in two dimensions and three dimensions. Conformity strongly influenced the peak pressure, from 47 MPa with CI = 0 to 1.4 MPa with CI = 1, with a definite behavior change from CI = 0.96. The role of hydrodynamic lubrication was restricted to early steps of the stance phase. With CI conformity > 0.96. The present model suggested the limited modifying effect of hydrodynamic lubrication in total knee replacement systems. However, its role during the early stance phase, coupled with high conformity, helps significantly to decrease compressive stresses on the polyethylene, fostering the beneficial effect of high conformity in a mixed lubrication regime. This beneficial effect may also be of great interest in total knee replacement systems based on materials with less deformation.

  8. Cosmic Logic: a Computational Model

    CERN Document Server

    Vanchurin, Vitaly

    2015-01-01

    We describe a simple computational model of cosmic logic suitable for analysis of, for example, discretized cosmological systems. The construction is based on a particular model of computation, developed by Alan Turing, with cosmic observers (CO), cosmic measures (CM) and cosmic symmetries (CS) described by Turing machines. CO machines always start with a blank tape and CM machines take CO's Turing number (also known as description number or G{\\" o}del number) as input and output the corresponding probability. Similarly, CS machines take CO's Turing number as input, but output either one if the CO machines are in the same equivalence class or zero otherwise. We argue that CS machines are more fundamental than CM machines and, thus, should be used as building blocks in constructing CM machines. We prove the non-computability of a CS machine which discriminates between two classes of CO machines: mortal that halts in finite time and immortal that runs forever. In context of eternal inflation this result implies...

  9. Experimental and computational study of crystalline formic acid composed of the higher-energy conformer.

    Science.gov (United States)

    Hakala, Mikko; Marushkevich, Kseniya; Khriachtchev, Leonid; Hämäläinen, Keijo; Räsänen, Markku

    2011-02-07

    Crystalline formic acid (FA) is studied experimentally and by first-principles simulations in order to identify a bulk solid structure composed of the higher-energy (cis) conformer. In the experiments, deuterated FA (HCOOD) was deposited in a Ne matrix and transformed to the cis conformer by vibrational excitation of the ground state (trans) form. Evaporation of the Ne host above 13 K prepared FA in a bulk solid state mainly composed of cis-FA. Infrared absorption spectroscopy at 4.3 K shows that the obtained solid differs from that composed of trans-FA molecules and that the state persists up to the annealing temperature of at least 110 K. The first-principles simulations reveal various energetically stable periodic chain structures containing cis-FA conformers. These chain structures contain either purely cis or both cis and trans forms. The vibrational frequencies of the calculated structures were compared to the experiment and a tentative assignment is given for a novel solid composed of cis-FA.

  10. Distinct conformational properties determined by implicit and explicit representation of protein-solvent interactions. An analytical and computer simulation study

    Science.gov (United States)

    Rocha, L. F. O.; Silva, I. R.; Caliri, A.

    2009-10-01

    In the protein folding problem, solvent-mediated forces are commonly represented by intra-chain pairwise contact energy. Although this approximation has proven to be useful in several circumstances, it is limited in some other aspects of the problem. Here we show that it is possible to achieve two models to represent the chain-solvent system, one of them with implicit and other with explicit solvent, such that both reproduce the same thermodynamic results. Firstly, lattice models treated by analytical methods, were used to show that the implicit and explicitly representation of solvent effects can be energetically equivalent only if local solvent properties are time and spatially invariant. Following, applying the same reasoning used for the lattice models, two inter-consistent Monte Carlo off-lattice models for implicit and explicit solvent are constructed, being that now in the latter the solvent properties are allowed to fluctuate. Then, it is shown that the chain configurational evolution as well as the globule equilibrium conformation are significantly distinct for implicit and explicit solvent systems. Actually, strongly contrasting with the implicit solvent version, the explicit solvent model predicts: (i) a malleable globule, in agreement with the estimated large protein-volume fluctuations; (ii) thermal conformational stability, resembling the conformational heat resistance of globular proteins, in which radii of gyration are practically insensitive to thermal effects over a relatively wide range of temperatures; and (iii) smaller radii of gyration at higher temperatures, indicating that the chain conformational entropy in the unfolded state is significantly smaller than that estimated from random coil configurations. Finally, we comment on the meaning of these results with respect to the understanding of the folding process.

  11. Computational Modeling in Tissue Engineering

    CERN Document Server

    2013-01-01

    One of the major challenges in tissue engineering is the translation of biological knowledge on complex cell and tissue behavior into a predictive and robust engineering process. Mastering this complexity is an essential step towards clinical applications of tissue engineering. This volume discusses computational modeling tools that allow studying the biological complexity in a more quantitative way. More specifically, computational tools can help in:  (i) quantifying and optimizing the tissue engineering product, e.g. by adapting scaffold design to optimize micro-environmental signals or by adapting selection criteria to improve homogeneity of the selected cell population; (ii) quantifying and optimizing the tissue engineering process, e.g. by adapting bioreactor design to improve quality and quantity of the final product; and (iii) assessing the influence of the in vivo environment on the behavior of the tissue engineering product, e.g. by investigating vascular ingrowth. The book presents examples of each...

  12. Business model elements impacting cloud computing adoption

    DEFF Research Database (Denmark)

    Bogataj, Kristina; Pucihar, Andreja; Sudzina, Frantisek

    The paper presents a proposed research framework for identification of business model elements impacting Cloud Computing Adoption. We provide a definition of main Cloud Computing characteristics, discuss previous findings on factors impacting Cloud Computing Adoption, and investigate technology...... adoption theories, such as Diffusion of Innovations, Technology Acceptance Model, Unified Theory of Acceptance and Use of Technology. Further on, at research model for identification of Cloud Computing Adoption factors from a business model perspective is presented. The following business model building...

  13. Business model elements impacting cloud computing adoption

    DEFF Research Database (Denmark)

    Bogataj, Kristina; Pucihar, Andreja; Sudzina, Frantisek

    adoption theories, such as Diffusion of Innovations, Technology Acceptance Model, Unified Theory of Acceptance and Use of Technology. Further on, at research model for identification of Cloud Computing Adoption factors from a business model perspective is presented. The following business model building......The paper presents a proposed research framework for identification of business model elements impacting Cloud Computing Adoption. We provide a definition of main Cloud Computing characteristics, discuss previous findings on factors impacting Cloud Computing Adoption, and investigate technology...

  14. MODEL IDENTIFICATION AND COMPUTER ALGEBRA.

    Science.gov (United States)

    Bollen, Kenneth A; Bauldry, Shawn

    2010-10-07

    Multiequation models that contain observed or latent variables are common in the social sciences. To determine whether unique parameter values exist for such models, one needs to assess model identification. In practice analysts rely on empirical checks that evaluate the singularity of the information matrix evaluated at sample estimates of parameters. The discrepancy between estimates and population values, the limitations of numerical assessments of ranks, and the difference between local and global identification make this practice less than perfect. In this paper we outline how to use computer algebra systems (CAS) to determine the local and global identification of multiequation models with or without latent variables. We demonstrate a symbolic CAS approach to local identification and develop a CAS approach to obtain explicit algebraic solutions for each of the model parameters. We illustrate the procedures with several examples, including a new proof of the identification of a model for handling missing data using auxiliary variables. We present an identification procedure for Structural Equation Models that makes use of CAS and that is a useful complement to current methods.

  15. Dose computation in conformal radiation therapy including geometric uncertainties: Methods and clinical implications

    Science.gov (United States)

    Rosu, Mihaela

    The aim of any radiotherapy is to tailor the tumoricidal radiation dose to the target volume and to deliver as little radiation dose as possible to all other normal tissues. However, the motion and deformation induced in human tissue by ventilatory motion is a major issue, as standard practice usually uses only one computed tomography (CT) scan (and hence one instance of the patient's anatomy) for treatment planning. The interfraction movement that occurs due to physiological processes over time scales shorter than the delivery of one treatment fraction leads to differences between the planned and delivered dose distributions. Due to the influence of these differences on tumors and normal tissues, the tumor control probabilities and normal tissue complication probabilities are likely to be impacted upon in the face of organ motion. In this thesis we apply several methods to compute dose distributions that include the effects of the treatment geometric uncertainties by using the time-varying anatomical information as an alternative to the conventional Planning Target Volume (PTV) approach. The proposed methods depend on the model used to describe the patient's anatomy. The dose and fluence convolution approaches for rigid organ motion are discussed first, with application to liver tumors and the rigid component of the lung tumor movements. For non-rigid behavior a dose reconstruction method that allows the accumulation of the dose to the deforming anatomy is introduced, and applied for lung tumor treatments. Furthermore, we apply the cumulative dose approach to investigate how much information regarding the deforming patient anatomy is needed at the time of treatment planning for tumors located in thorax. The results are evaluated from a clinical perspective. All dose calculations are performed using a Monte Carlo based algorithm to ensure more realistic and more accurate handling of tissue heterogeneities---of particular importance in lung cancer treatment planning.

  16. Los Alamos Center for Computer Security formal computer security model

    Energy Technology Data Exchange (ETDEWEB)

    Dreicer, J.S.; Hunteman, W.J.; Markin, J.T.

    1989-01-01

    This paper provides a brief presentation of the formal computer security model currently being developed at the Los Alamos Department of Energy (DOE) Center for Computer Security (CCS). The need to test and verify DOE computer security policy implementation first motivated this effort. The actual analytical model was a result of the integration of current research in computer security and previous modeling and research experiences. The model is being developed to define a generic view of the computer and network security domains, to provide a theoretical basis for the design of a security model, and to address the limitations of present formal mathematical models for computer security. The fundamental objective of computer security is to prevent the unauthorized and unaccountable access to a system. The inherent vulnerabilities of computer systems result in various threats from unauthorized access. The foundation of the Los Alamos DOE CCS model is a series of functionally dependent probability equations, relations, and expressions. The model is undergoing continued discrimination and evolution. We expect to apply the model to the discipline of the Bell and LaPadula abstract sets of objects and subjects. 6 refs.

  17. Conformal Extensions of the Standard Model with Veltman Conditions

    DEFF Research Database (Denmark)

    Antipin, Oleg; Mojaza, Matin; Sannino, Francesco

    2014-01-01

    the Higgs is predicted to have the experimental value of the mass equal to 126 GeV. This model also predicts the existence of one more standard model singlet scalar boson with a mass of 541 GeV and the Higgs self-coupling to emerge radiatively. We study several other PNC examples that generally predict...... a somewhat smaller mass of the Higgs to the perturbative order we have investigated them. Our results can be a useful guide when building extensions of the standard model featuring fundamental scalars....

  18. Discrete matrix models for partial sums of conformal blocks associated to Painlev\\'e transcendents

    CERN Document Server

    Balogh, F

    2014-01-01

    A recently formulated conjecture of Gamayun, Iorgov and Lisovyy gives an asymptotic expansion of the Jimbo--Miwa--Ueno isomonodromic $\\tau$-function for certain Painlev\\'e transcendents. The coefficients in this expansion are given in terms of conformal blocks of a two-dimensional conformal field theory, which can be written as infinite sums over pairs of partitions. In this note a discrete matrix model is proposed on a lattice whose partition function can be used to obtain a multiple integral representation for the length restricted partial sums of the Painlev\\'e conformal blocks. This leads to expressions of the partial sums involving H\\"ankel determinants associated to the discrete measure of the matrix model, or equivalently, Wronskians of the corresponding moment generating function which is shown to be of the generalized hypergeometric type.

  19. Modeling Pedestrian’s Conformity Violation Behavior: A Complex Network Based Approach

    Directory of Open Access Journals (Sweden)

    Zhuping Zhou

    2014-01-01

    Full Text Available Pedestrian injuries and fatalities present a problem all over the world. Pedestrian conformity violation behaviors, which lead to many pedestrian crashes, are common phenomena at the signalized intersections in China. The concepts and metrics of complex networks are applied to analyze the structural characteristics and evolution rules of pedestrian network about the conformity violation crossings. First, a network of pedestrians crossing the street is established, and the network’s degree distributions are analyzed. Then, by using the basic idea of SI model, a spreading model of pedestrian illegal crossing behavior is proposed. Finally, through simulation analysis, pedestrian’s illegal crossing behavior trends are obtained in different network structures and different spreading rates. Some conclusions are drawn: as the waiting time increases, more pedestrians will join in the violation crossing once a pedestrian crosses on red firstly. And pedestrian’s conformity violation behavior will increase as the spreading rate increases.

  20. International Conference on Computational Intelligence, Cyber Security, and Computational Models

    CERN Document Server

    Ramasamy, Vijayalakshmi; Sheen, Shina; Veeramani, C; Bonato, Anthony; Batten, Lynn

    2016-01-01

    This book aims at promoting high-quality research by researchers and practitioners from academia and industry at the International Conference on Computational Intelligence, Cyber Security, and Computational Models ICC3 2015 organized by PSG College of Technology, Coimbatore, India during December 17 – 19, 2015. This book enriches with innovations in broad areas of research like computational modeling, computational intelligence and cyber security. These emerging inter disciplinary research areas have helped to solve multifaceted problems and gained lot of attention in recent years. This encompasses theory and applications, to provide design, analysis and modeling of the aforementioned key areas.

  1. Conformity of pediatric/adolescent HIV clinics to the patient-centered medical home care model.

    Science.gov (United States)

    Yehia, Baligh R; Agwu, Allison L; Schranz, Asher; Korthuis, P Todd; Gaur, Aditya H; Rutstein, Richard; Sharp, Victoria; Spector, Stephen A; Berry, Stephen A; Gebo, Kelly A

    2013-05-01

    The patient-centered medical home (PCMH) has been introduced as a model for providing high-quality, comprehensive, patient-centered care that is both accessible and coordinated, and may provide a framework for optimizing the care of youth living with HIV (YLH). We surveyed six pediatric/adolescent HIV clinics caring for 578 patients (median age 19 years, 51% male, and 82% black) in July 2011 to assess conformity to the PCMH. Clinics completed a 50-item survey covering the six domains of the PCMH: (1) comprehensive care, (2) patient-centered care, (3) coordinated care, (4) accessible services, (5) quality and safety, and (6) health information technology. To determine conformity to the PCMH, a novel point-based scoring system was devised. Points were tabulated across clinics by domain to obtain an aggregate assessment of PCMH conformity. All six clinics responded. Overall, clinics attained a mean 75.8% [95% CI, 63.3-88.3%] on PCMH measures-scoring highest on patient-centered care (94.7%), coordinated care (83.3%), and quality and safety measures (76.7%), and lowest on health information technology (70.0%), accessible services (69.1%), and comprehensive care (61.1%). Clinics moderately conformed to the PCMH model. Areas for improvement include access to care, comprehensive care, and health information technology. Future studies are warranted to determine whether greater clinic PCMH conformity improves clinical outcomes and cost savings for YLH.

  2. The fine tuning of the cosmological constant in a conformal model

    Science.gov (United States)

    Jain, Pankaj; Kashyap, Gopal; Mitra, Subhadip

    2015-10-01

    We consider a conformal model involving two real scalar fields in which the conformal symmetry is broken by a soft mechanism and is not anomalous. One of these scalar fields is representative of the standard model Higgs. The model predicts exactly zero cosmological constant. In the simplest version of the model, some of the couplings need to be fine-tuned to very small values. We formulate the problem of fine tuning of these couplings. We argue that the problem arises since we require a soft mechanism to break conformal symmetry. The symmetry breaking is possible only if the scalar fields do not evolve significantly over the time scale of the Universe. Ignoring contributions due to quantum gravity, we present two solutions to this fine tuning problem. We argue that the problem is solved if the classical value of one of the scalar fields is super-Planckian, i.e. takes a value much larger than the Planck mass. The second solution involves introduction of a strongly coupled hidden sector that we call hypercolor. In this case, the conformal invariance is broken dynamically and triggers the breakdown of the electroweak symmetry. We argue that our analysis applies also to the case of the standard model Higgs multiplet.

  3. Conformational statistics of polymer chain terminally attached to wall(Ⅱ)——SAW model tail chain

    Institute of Scientific and Technical Information of China (English)

    吴大诚; 杜鹏; 康健

    1997-01-01

    The SAW tail chains were studied.The permitted conformational number and the mean square end-to-end distance as a function of the chain length N for such a model tail chain were obtained by computer simulations,including the exact enumeration and Monte Carlo method.These two basic quantities obeyed the relations deduced from the scaling law.The critical exponents and the lattice indexes were given by fitting the data of the computer experiments.It has been shown that there is a certain extension in the size of the SAW tail chains as well as the NRW tail chains in the direction normal to the wall.The normal component of the mean square end-to-end distance is almost twice as large as the parallel component of the short chain SAW.However,as N→∞,the effect of the wall on the chain conformation becomes a little weak because of the self-avoiding behavior for the model.That is quite different from the case of the NRW tail chain.

  4. Computational modelling of SCC flow

    DEFF Research Database (Denmark)

    Geiker, Mette Rica; Thrane, Lars Nyholm; Szabo, Peter

    2005-01-01

    To benefit from the full potential of self-compacting concrete (SCC) prediction tools are needed for the form filling of SCC. Such tools should take into account the properties of the concrete, the shape and size of the structural element, the position of rebars, and the casting technique. Exampl...... of computational models for the time dependent flow behavior are given, and advantages and disadvantages of discrete particle and single fluid models are briefly described.......To benefit from the full potential of self-compacting concrete (SCC) prediction tools are needed for the form filling of SCC. Such tools should take into account the properties of the concrete, the shape and size of the structural element, the position of rebars, and the casting technique. Examples...

  5. Computer modeling of piezoresistive gauges

    Energy Technology Data Exchange (ETDEWEB)

    Nutt, G. L.; Hallquist, J. O.

    1981-08-07

    A computer model of a piezoresistive gauge subject to shock loading is developed. The time-dependent two-dimensional response of the gauge is calculated. The stress and strain components of the gauge are determined assuming elastic-plastic material properties. The model is compared with experiment for four cases. An ytterbium foil gauge in a PPMA medum subjected to a 0.5 Gp plane shock wave, where the gauge is presented to the shock with its flat surface both parallel and perpendicular to the front. A similar comparison is made for a manganin foil subjected to a 2.7 Gp shock. The signals are compared also with a calibration equation derived with the gauge and medium properties accounted for but with the assumption that the gauge is in stress equilibrium with the shocked medium.

  6. Towards the Epidemiological Modeling of Computer Viruses

    OpenAIRE

    Xiaofan Yang; Lu-Xing Yang

    2012-01-01

    Epidemic dynamics of computer viruses is an emerging discipline aiming to understand the way that computer viruses spread on networks. This paper is intended to establish a series of rational epidemic models of computer viruses. First, a close inspection of some common characteristics shared by all typical computer viruses clearly reveals the flaws of previous models. Then, a generic epidemic model of viruses, which is named as the SLBS model, is proposed. Finally, diverse generalizations of ...

  7. Integrability and conformal data of the dimer model

    CERN Document Server

    Morin-Duchesne, Alexi; Ruelle, Philippe

    2015-01-01

    The central charge of the dimer model on the square lattice is still being debated in the literature. In this paper, we provide evidence supporting the consistency of a $c=-2$ description. Using Lieb's transfer matrix and its description in terms of the Temperley-Lieb algebra $TL_n$ at $\\beta = 0$, we provide a new solution of the dimer model in terms of the model of critical dense polymers on a tilted lattice and offer an understanding of the lattice integrability of the dimer model. The dimer transfer matrix is analysed in the scaling limit and the result for $L_0-\\frac c{24}$ is expressed in terms of fermions. Higher Virasoro modes are likewise constructed as limits of elements of $TL_n$ and are found to yield a $c=-2$ realisation of the Virasoro algebra, familiar from fermionic $bc$ ghost systems. In this realisation, the dimer Fock spaces are shown to decompose, as Virasoro modules, into direct sums of Feigin-Fuchs modules, themselves exhibiting reducible yet indecomposable structures. In the scaling lim...

  8. Computational Insight into Solvent Effects on Conformation and Assembly of Structured Ionic Polymer

    Science.gov (United States)

    Senanayake, Manjula; Aryal, Dipak; Perahia, Dvora; Grest, Gary

    Structured ionomers are in the core of numerous current and potential new applications including clean energy, water purification membranes and sensors. The ability to facilitate ions and solvents transport is a key to their function and is controlled by their structure. One effective path for structural control is tuning their conformation by solvent interactions. Here, the confirmation and association of an ABCBA co-polymer where C is a randomly sulfonated polystyrene with sulfonation fractions f = 0 to 0.55, B is poly (ethylene-r-propylene), and A is poly (t-butyl styrene), in n-propanol are studied by molecular dynamic simulation. In contrast to the collapsed conformation of the ionizable block in hydrophobic solvents, we find that it remains swollen. Similar to hydrophobic solutions the co-polymers aggregate to form an ionizable core surrounded by extended hydrophobic chains. In contrast to the ``locked-in'' ionizable segments observed in cyclohexane/heptane, here the ionic clusters remain dynamic. Supported in part by DOE Grant No. DE-SC007908.

  9. Effects of carbon nanofiller characteristics on PTT chain conformation and dynamics: A computational study

    Science.gov (United States)

    Asadinezhad, Ahmad; Kelich, Payam

    2017-01-01

    The effects of nanofiller chemistry and geometry on static and dynamic properties of an aromatic polyester, poly (trimethylene terephthalate), were addressed thanks to long-run classical molecular dynamics simulation. Two carbon nanofillers, graphene and carbon nanotube, were employed, where graphene was used in pristine and functionalized forms and carbon nanotube was used in two different diameters. The nanofiller geometry and chemistry were found to exert significant effects on conformation and dynamic behavior of PTT chain at the interface within the time scale the simulation was performed. It was found that PTT chain underwent interaction of van der Waals type with nanofiller via two subsequent phases, adsorption and orientation. The former stage, with definite characteristic time, involved translation of polymer chain toward interface while the latter was controlled by vibrational motions of chain atoms. The consequence of interaction was an increase in conformational order of polymer chain by transition to folded shape being favorable for any subsequent structural ordering (crystallization). The interaction of polymer with nanofiller gave rise to a reduction in overall mobility of polymer chain characterized by crossover from normal diffusive motion to subdiffusive mode.

  10. COMPUTER-BASED PREDICTION OF TOXICITY USING THE ELECTRON-CONFORMATIONAL METHOD. APPLICATION TO FRAGRANCE ALLERGENS AND OTHER ENVIRONMENTAL POLLUTANTS

    Directory of Open Access Journals (Sweden)

    Natalia N. Gorinchoy

    2012-06-01

    Full Text Available The electron-conformational (EC method is employed for the toxicophore (Tph identification and quantitative prediction of toxicity using the training set of 24 compounds that are considered as fragrance allergens. The values of a=LD50 in oral exposure of rats were chosen as a measure of toxicity. EC parameters are evaluated on the base of conformational analysis and ab initio electronic structure calculations (including solvent influence. The Tph consists of four sites which in this series of compounds are represented by three carbon and one oxygen atoms, but may be any other atoms that have the same electronic and geometric features within the tolerance limits. The regression model taking into consideration the Tph flexibility, anti-Tph shielding, and influence of out-of-Tph functional groups predicts well the experimental values of toxicity (R2 = 0.93 with a reasonable leaveone- out cross-validation.

  11. DFT molecular modeling and NMR conformational analysis of a new longipinenetriolone diester

    Science.gov (United States)

    Cerda-García-Rojas, Carlos M.; Guerra-Ramírez, Diana; Román-Marín, Luisa U.; Hernández-Hernández, Juan D.; Joseph-Nathan, Pedro

    2006-05-01

    The structure and conformational behavior of the new natural compound (4 R,5 S,7 S,8 R,9 S,10 R,11 R)-longipin-2-en-7,8,9-triol-1-one 7-angelate-9-isovalerate (1) isolated from Stevia eupatoria, were studied by molecular modeling and NMR spectroscopy. A Monte Carlo search followed by DFT calculations at the B3LYP/6-31G* level provided the theoretical conformations of the sesquiterpene framework, which were in full agreement with results derived from the 1H- 1H coupling constant analysis.

  12. Conformational preferences of proline derivatives incorporated into vasopressin analogues: NMR and molecular modelling studies.

    Science.gov (United States)

    Sikorska, Emilia; Sobolewski, Dariusz; Kwiatkowska, Anna

    2012-04-01

    In this study, arginine vasopressin analogues modified with proline derivatives - indoline-2-carboxylic acid (Ica), (2S,4R)-4-(naphthalene-2-ylmethyl)pyrrolidine-2-carboxylic acid (Nmp), (2S,4S)-4-aminopyroglutamic acid (APy) and (2R,4S)-4-aminopyroglutamic acid, (Apy) - were examined using NMR spectroscopy and molecular modelling methods. The results have shown that Ica is involved in the formation of the cis peptide bond. Moreover, it reduces to a great extent the conformational flexibility of the peptide. In turn, incorporation of (2S,4R)-Nmp stabilizes the backbone conformation, which is heavily influenced by the pyrrolidine ring. However, the aromatic part of the Nmp side chain exhibits a high degree of conformational freedom. With analogues IV and V, introduction of the 4-aminopyroglumatic acid reduces locally conformational space of the peptides, but it also results in weaker interactions with the dodecylphosphocholine/sodium dodecyl sulphate micelle. Admittedly, both analogues are adsorbed on the micelle's surface but they do not penetrate into its core. With analogue V, the interactions between the peptide and the micelle seem to be so weak that conformational equilibrium is established between different bound states.

  13. Molecular modeling of the conformational dynamics of the cellular prion protein

    Science.gov (United States)

    Nguyen, Charles; Colling, Ian; Bartz, Jason; Soto, Patricia

    2014-03-01

    Prions are infectious agents responsible for transmissible spongiform encephalopathies (TSEs), a type of fatal neurodegenerative disease in mammals. Prions propagate biological information by conversion of the non-pathological version of the prion protein to the infectious conformation, PrPSc. A wealth of knowledge has shed light on the nature and mechanism of prion protein conversion. In spite of the significance of this problem, we are far from fully understanding the conformational dynamics of the cellular isoform. To remedy this situation we employ multiple biomolecular modeling techniques such as docking and molecular dynamics simulations to map the free energy landscape and determine what specific regions of the prion protein are most conductive to binding. The overall goal is to characterize the conformational dynamics of the cell form of the prion protein, PrPc, to gain insight into inhibition pathways against misfolding. NE EPSCoR FIRST Award to Patricia Soto.

  14. A conforming to interface structured adaptive mesh refinement technique for modeling fracture problems

    Science.gov (United States)

    Soghrati, Soheil; Xiao, Fei; Nagarajan, Anand

    2016-12-01

    A Conforming to Interface Structured Adaptive Mesh Refinement (CISAMR) technique is introduced for the automated transformation of a structured grid into a conforming mesh with appropriate element aspect ratios. The CISAMR algorithm is composed of three main phases: (i) Structured Adaptive Mesh Refinement (SAMR) of the background grid; (ii) r-adaptivity of the nodes of elements cut by the crack; (iii) sub-triangulation of the elements deformed during the r-adaptivity process and those with hanging nodes generated during the SAMR process. The required considerations for the treatment of crack tips and branching cracks are also discussed in this manuscript. Regardless of the complexity of the problem geometry and without using iterative smoothing or optimization techniques, CISAMR ensures that aspect ratios of conforming elements are lower than three. Multiple numerical examples are presented to demonstrate the application of CISAMR for modeling linear elastic fracture problems with intricate morphologies.

  15. Structural Exploration and Conformational Transitions in MDM2 upon DHFR Interaction from Homo sapiens: A Computational Outlook for Malignancy via Epigenetic Disruption.

    Science.gov (United States)

    Banerjee, Arundhati; Ray, Sujay

    2016-01-01

    Structural basis for exploration into MDM2 and MDM2-DHFR interaction plays a vital role in analyzing the obstruction in folate metabolism, nonsynthesis of purines, and further epigenetic regulation in Homo sapiens. Therefore, it leads to suppression of normal cellular behavior and malignancy. This has been earlier documented via yeast two-hybrid assays. So, with a novel outlook, this study explores the molecular level demonstration of the best satisfactory MDM2 model selection after performing manifold modeling techniques. Z-scores and other stereochemical features were estimated for comparison. Further, protein-protein docking was executed with MDM2 and the experimentally validated X-ray crystallographic DHFR. Residual disclosure from the best suited simulated protein complex disclosed 18 side chain and 3 ionic interactions to strongly accommodate MDM2 protein into the pocket-like zone in DHFR due to the positive environment by charged residues. Lysine residues from MDM2 played a predominant role. Moreover, evaluation from varied energy calculations, folding rate, and net area for solvent accessibility implied the active participation of MDM2 with DHFR. Fascinatingly, conformational transitions from coils to helices and β-sheets after interaction with DHFR affirm the conformational strength and firmer interaction of human MDM2-DHFR. Therefore, this probe instigates near-future clinical research and interactive computational investigations with mutations.

  16. Structural Exploration and Conformational Transitions in MDM2 upon DHFR Interaction from Homo sapiens: A Computational Outlook for Malignancy via Epigenetic Disruption

    Science.gov (United States)

    Banerjee, Arundhati; Ray, Sujay

    2016-01-01

    Structural basis for exploration into MDM2 and MDM2-DHFR interaction plays a vital role in analyzing the obstruction in folate metabolism, nonsynthesis of purines, and further epigenetic regulation in Homo sapiens. Therefore, it leads to suppression of normal cellular behavior and malignancy. This has been earlier documented via yeast two-hybrid assays. So, with a novel outlook, this study explores the molecular level demonstration of the best satisfactory MDM2 model selection after performing manifold modeling techniques. Z-scores and other stereochemical features were estimated for comparison. Further, protein-protein docking was executed with MDM2 and the experimentally validated X-ray crystallographic DHFR. Residual disclosure from the best suited simulated protein complex disclosed 18 side chain and 3 ionic interactions to strongly accommodate MDM2 protein into the pocket-like zone in DHFR due to the positive environment by charged residues. Lysine residues from MDM2 played a predominant role. Moreover, evaluation from varied energy calculations, folding rate, and net area for solvent accessibility implied the active participation of MDM2 with DHFR. Fascinatingly, conformational transitions from coils to helices and β-sheets after interaction with DHFR affirm the conformational strength and firmer interaction of human MDM2-DHFR. Therefore, this probe instigates near-future clinical research and interactive computational investigations with mutations. PMID:27213086

  17. Towards the Epidemiological Modeling of Computer Viruses

    Directory of Open Access Journals (Sweden)

    Xiaofan Yang

    2012-01-01

    Full Text Available Epidemic dynamics of computer viruses is an emerging discipline aiming to understand the way that computer viruses spread on networks. This paper is intended to establish a series of rational epidemic models of computer viruses. First, a close inspection of some common characteristics shared by all typical computer viruses clearly reveals the flaws of previous models. Then, a generic epidemic model of viruses, which is named as the SLBS model, is proposed. Finally, diverse generalizations of the SLBS model are suggested. We believe this work opens a door to the full understanding of how computer viruses prevail on the Internet.

  18. Conformational stability of fibrillar amyloid-beta oligomers via protofilament pair formation - a systematic computational study.

    Science.gov (United States)

    Kahler, Anna; Sticht, Heinrich; Horn, Anselm H C

    2013-01-01

    Amyloid-[Formula: see text] (A[Formula: see text]) oligomers play a crucial role in Alzheimer's disease due to their neurotoxic aggregation properties. Fibrillar A[Formula: see text] oligomerization can lead to protofilaments and protofilament pairs via oligomer elongation and oligomer association, respectively. Small fibrillar oligomers adopt the protofilament topology, whereas fibrils contain at least protofilament pairs. To date, the underlying growth mechanism from oligomers to the mature fibril still remains to be elucidated. Here, we performed all-atom molecular dynamics simulations in explicit solvent on single layer-like protofilaments and fibril-like protofilament pairs of different size ranging from the tetramer to the 48-mer. We found that the initial U-shaped topology per monomer is maintained over time in all oligomers. The observed deviations of protofilaments from the starting structure increase significantly with size due to the twisting of the in-register parallel [Formula: see text]-sheets. This twist causes long protofilaments to be unstable and leads to a breakage. Protofilament pairs, which are stabilized by a hydrophobic interface, exhibit more fibril-like properties such as the overall structure and the twist angle. Thus, they can act as stable conformational templates for further fibril growth. Key properties like the twist angle, shape complementarity, and energetics show a size-dependent behavior so that small oligomers favor the protofilament topology, whereas large oligomers favor the protofilament pair topology. The region for this conformational transition is at the size of approximately twelve A[Formula: see text] monomers. From that, we propose the following growth mechanism from A[Formula: see text] oligomers to fibrils: (1) elongation of short protofilaments; (2) breakage of large protofilaments; (3) formation of short protofilament pairs; and (4) elongation of protofilament pairs.

  19. Conformational stability of fibrillar amyloid-beta oligomers via protofilament pair formation - a systematic computational study.

    Directory of Open Access Journals (Sweden)

    Anna Kahler

    Full Text Available Amyloid-[Formula: see text] (A[Formula: see text] oligomers play a crucial role in Alzheimer's disease due to their neurotoxic aggregation properties. Fibrillar A[Formula: see text] oligomerization can lead to protofilaments and protofilament pairs via oligomer elongation and oligomer association, respectively. Small fibrillar oligomers adopt the protofilament topology, whereas fibrils contain at least protofilament pairs. To date, the underlying growth mechanism from oligomers to the mature fibril still remains to be elucidated. Here, we performed all-atom molecular dynamics simulations in explicit solvent on single layer-like protofilaments and fibril-like protofilament pairs of different size ranging from the tetramer to the 48-mer. We found that the initial U-shaped topology per monomer is maintained over time in all oligomers. The observed deviations of protofilaments from the starting structure increase significantly with size due to the twisting of the in-register parallel [Formula: see text]-sheets. This twist causes long protofilaments to be unstable and leads to a breakage. Protofilament pairs, which are stabilized by a hydrophobic interface, exhibit more fibril-like properties such as the overall structure and the twist angle. Thus, they can act as stable conformational templates for further fibril growth. Key properties like the twist angle, shape complementarity, and energetics show a size-dependent behavior so that small oligomers favor the protofilament topology, whereas large oligomers favor the protofilament pair topology. The region for this conformational transition is at the size of approximately twelve A[Formula: see text] monomers. From that, we propose the following growth mechanism from A[Formula: see text] oligomers to fibrils: (1 elongation of short protofilaments; (2 breakage of large protofilaments; (3 formation of short protofilament pairs; and (4 elongation of protofilament pairs.

  20. Quantum Computation Beyond the Circuit Model

    OpenAIRE

    Jordan, Stephen P.

    2008-01-01

    The quantum circuit model is the most widely used model of quantum computation. It provides both a framework for formulating quantum algorithms and an architecture for the physical construction of quantum computers. However, several other models of quantum computation exist which provide useful alternative frameworks for both discovering new quantum algorithms and devising new physical implementations of quantum computers. In this thesis, I first present necessary background material for a ge...

  1. Computational modeling of epithelial tissues.

    Science.gov (United States)

    Smallwood, Rod

    2009-01-01

    There is an extensive literature on the computational modeling of epithelial tissues at all levels from subcellular to whole tissue. This review concentrates on behavior at the individual cell to whole tissue level, and particularly on organizational aspects, and provides an indication of where information from other areas, such as the modeling of angiogenesis, is relevant. The skin, and the lining of all of the body cavities (lung, gut, cervix, bladder etc) are epithelial tissues, which in a topological sense are the boundary between inside and outside the body. They are thin sheets of cells (usually of the order of 0.5 mm thick) without extracellular matrix, have a relatively simple structure, and contain few types of cells. They have important barrier, secretory and transport functions, which are essential for the maintenance of life, so homeostasis and wound healing are important aspects of the behavior of epithelial tissues. Carcinomas originate in epithelial tissues.There are essentially two approaches to modeling tissues--to start at the level of the tissue (i.e., a length scale of the order of 1 mm) and develop generalized equations for behavior (a continuum approach); or to start at the level of the cell (i.e., a length scale of the order of 10 µm) and develop tissue behavior as an emergent property of cellular behavior (an individual-based approach). As will be seen, these are not mutually exclusive approaches, and they come in a variety of flavors.

  2. Linguistics Computation, Automatic Model Generation, and Intensions

    CERN Document Server

    Nourani, C F

    1994-01-01

    Techniques are presented for defining models of computational linguistics theories. The methods of generalized diagrams that were developed by this author for modeling artificial intelligence planning and reasoning are shown to be applicable to models of computation of linguistics theories. It is shown that for extensional and intensional interpretations, models can be generated automatically which assign meaning to computations of linguistics theories for natural languages. Keywords: Computational Linguistics, Reasoning Models, G-diagrams For Models, Dynamic Model Implementation, Linguistics and Logics For Artificial Intelligence

  3. Model dynamics for quantum computing

    Science.gov (United States)

    Tabakin, Frank

    2017-08-01

    A model master equation suitable for quantum computing dynamics is presented. In an ideal quantum computer (QC), a system of qubits evolves in time unitarily and, by virtue of their entanglement, interfere quantum mechanically to solve otherwise intractable problems. In the real situation, a QC is subject to decoherence and attenuation effects due to interaction with an environment and with possible short-term random disturbances and gate deficiencies. The stability of a QC under such attacks is a key issue for the development of realistic devices. We assume that the influence of the environment can be incorporated by a master equation that includes unitary evolution with gates, supplemented by a Lindblad term. Lindblad operators of various types are explored; namely, steady, pulsed, gate friction, and measurement operators. In the master equation, we use the Lindblad term to describe short time intrusions by random Lindblad pulses. The phenomenological master equation is then extended to include a nonlinear Beretta term that describes the evolution of a closed system with increasing entropy. An external Bath environment is stipulated by a fixed temperature in two different ways. Here we explore the case of a simple one-qubit system in preparation for generalization to multi-qubit, qutrit and hybrid qubit-qutrit systems. This model master equation can be used to test the stability of memory and the efficacy of quantum gates. The properties of such hybrid master equations are explored, with emphasis on the role of thermal equilibrium and entropy constraints. Several significant properties of time-dependent qubit evolution are revealed by this simple study.

  4. Fitmunk: improving protein structures by accurate, automatic modeling of side-chain conformations.

    Science.gov (United States)

    Porebski, Przemyslaw Jerzy; Cymborowski, Marcin; Pasenkiewicz-Gierula, Marta; Minor, Wladek

    2016-02-01

    Improvements in crystallographic hardware and software have allowed automated structure-solution pipelines to approach a near-`one-click' experience for the initial determination of macromolecular structures. However, in many cases the resulting initial model requires a laborious, iterative process of refinement and validation. A new method has been developed for the automatic modeling of side-chain conformations that takes advantage of rotamer-prediction methods in a crystallographic context. The algorithm, which is based on deterministic dead-end elimination (DEE) theory, uses new dense conformer libraries and a hybrid energy function derived from experimental data and prior information about rotamer frequencies to find the optimal conformation of each side chain. In contrast to existing methods, which incorporate the electron-density term into protein-modeling frameworks, the proposed algorithm is designed to take advantage of the highly discriminatory nature of electron-density maps. This method has been implemented in the program Fitmunk, which uses extensive conformational sampling. This improves the accuracy of the modeling and makes it a versatile tool for crystallographic model building, refinement and validation. Fitmunk was extensively tested on over 115 new structures, as well as a subset of 1100 structures from the PDB. It is demonstrated that the ability of Fitmunk to model more than 95% of side chains accurately is beneficial for improving the quality of crystallographic protein models, especially at medium and low resolutions. Fitmunk can be used for model validation of existing structures and as a tool to assess whether side chains are modeled optimally or could be better fitted into electron density. Fitmunk is available as a web service at http://kniahini.med.virginia.edu/fitmunk/server/ or at http://fitmunk.bitbucket.org/.

  5. Conformational and phase transitions in DNA--photosensitive surfactant solutions: Experiment and modeling.

    Science.gov (United States)

    Kasyanenko, N; Lysyakova, L; Ramazanov, R; Nesterenko, A; Yaroshevich, I; Titov, E; Alexeev, G; Lezov, A; Unksov, I

    2015-02-01

    DNA binding to trans- and cis-isomers of azobenzene containing cationic surfactant in 5 mM NaCl solution was investigated by the methods of dynamic light scattering (DLS), low-gradient viscometry (LGV), atomic force microscopy (AFM), circular dichroism (CD), gel electrophoresis (GE), flow birefringence (FB), UV-Vis spectrophotometry. Light-responsive conformational transitions of DNA in complex with photosensitive surfactant, changes in DNA optical anisotropy and persistent length, phase transition of DNA into nanoparticles induced by high surfactant concentration, as well as transformation of surfactant conformation under its binding to macromolecule were studied. Computer simulations of micelles formation for cis- and trans-isomers of azobenzene containing surfactant, as well as DNA-surfactant interaction, were carried out. Phase diagram for DNA-surfactant solutions was designed. The possibility to reverse the DNA packaging induced by surfactant binding with the dilution and light irradiation was shown.

  6. Bosonic seesaw mechanism in a classically conformal extension of the Standard Model

    CERN Document Server

    Haba, Naoyuki; Okada, Nobuchika; Yamaguchi, Yuya

    2015-01-01

    We suggest the so-called bosonic seesaw mechanism in the context of a classically conformal $U(1)_{B-L}$ extension of the Standard Model with two Higgs doublet fields. The $U(1)_{B-L}$ symmetry is radiatively broken via the Coleman-Weinberg mechanism, which also generates the mass terms for the two Higgs doublets through quartic Higgs couplings. Their masses are all positive but, nevertheless, the electroweak symmetry breaking is realized by the bosonic seesaw mechanism. Analyzing the renormalization group evolutions for all model couplings, we find that a large hierarchy among the quartic Higgs couplings, which is crucial for the bosonic seesaw mechanism to work, is dramatically reduced toward high energies. Therefore, the bosonic seesaw is naturally realized with only a mild hierarchy, if some fundamental theory, which provides the origin of the classically conformal invariance, completes our model at some high energy, for example, the Planck scale. We identify the regions of model parameters which satisfy ...

  7. Computational modeling of membrane proteins.

    Science.gov (United States)

    Koehler Leman, Julia; Ulmschneider, Martin B; Gray, Jeffrey J

    2015-01-01

    The determination of membrane protein (MP) structures has always trailed that of soluble proteins due to difficulties in their overexpression, reconstitution into membrane mimetics, and subsequent structure determination. The percentage of MP structures in the protein databank (PDB) has been at a constant 1-2% for the last decade. In contrast, over half of all drugs target MPs, only highlighting how little we understand about drug-specific effects in the human body. To reduce this gap, researchers have attempted to predict structural features of MPs even before the first structure was experimentally elucidated. In this review, we present current computational methods to predict MP structure, starting with secondary structure prediction, prediction of trans-membrane spans, and topology. Even though these methods generate reliable predictions, challenges such as predicting kinks or precise beginnings and ends of secondary structure elements are still waiting to be addressed. We describe recent developments in the prediction of 3D structures of both α-helical MPs as well as β-barrels using comparative modeling techniques, de novo methods, and molecular dynamics (MD) simulations. The increase of MP structures has (1) facilitated comparative modeling due to availability of more and better templates, and (2) improved the statistics for knowledge-based scoring functions. Moreover, de novo methods have benefited from the use of correlated mutations as restraints. Finally, we outline current advances that will likely shape the field in the forthcoming decade.

  8. Cupola Furnace Computer Process Model

    Energy Technology Data Exchange (ETDEWEB)

    Seymour Katz

    2004-12-31

    The cupola furnace generates more than 50% of the liquid iron used to produce the 9+ million tons of castings annually. The cupola converts iron and steel into cast iron. The main advantages of the cupola furnace are lower energy costs than those of competing furnaces (electric) and the ability to melt less expensive metallic scrap than the competing furnaces. However the chemical and physical processes that take place in the cupola furnace are highly complex making it difficult to operate the furnace in optimal fashion. The results are low energy efficiency and poor recovery of important and expensive alloy elements due to oxidation. Between 1990 and 2004 under the auspices of the Department of Energy, the American Foundry Society and General Motors Corp. a computer simulation of the cupola furnace was developed that accurately describes the complex behavior of the furnace. When provided with the furnace input conditions the model provides accurate values of the output conditions in a matter of seconds. It also provides key diagnostics. Using clues from the diagnostics a trained specialist can infer changes in the operation that will move the system toward higher efficiency. Repeating the process in an iterative fashion leads to near optimum operating conditions with just a few iterations. More advanced uses of the program have been examined. The program is currently being combined with an ''Expert System'' to permit optimization in real time. The program has been combined with ''neural network'' programs to affect very easy scanning of a wide range of furnace operation. Rudimentary efforts were successfully made to operate the furnace using a computer. References to these more advanced systems will be found in the ''Cupola Handbook''. Chapter 27, American Foundry Society, Des Plaines, IL (1999).

  9. Superspace conformal field theory

    Energy Technology Data Exchange (ETDEWEB)

    Quella, Thomas [Koeln Univ. (Germany). Inst. fuer Theoretische Physik; Schomerus, Volker [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2013-07-15

    Conformal sigma models and WZW models on coset superspaces provide important examples of logarithmic conformal field theories. They possess many applications to problems in string and condensed matter theory. We review recent results and developments, including the general construction of WZW models on type I supergroups, the classification of conformal sigma models and their embedding into string theory.

  10. Conformational Solvation Studies of LIGNOLs with Molecular Dynamics and Conductor-Like Screening Model

    Directory of Open Access Journals (Sweden)

    Thomas Sandberg

    2012-08-01

    Full Text Available Molecular dynamics (MD simulations were performed on sterically hindered -conidendrin-based chiral 1,4-diols (LIGNOLs from the naturally occurring lignan hydroxymatairesinol (HMR using the GROMACS software. The aim of this study was to explore the conformational behaviour of the LIGNOLs in aqueous solution adopting the TIP4P model. The topologies of the LIGNOLs were constructed manually and they were modeled with the OPLS-AA force field implemented in GROMACS. The four most relevant torsional angles in the LIGNOLs were properly analyzed during the simulations. The determining property for the conformation preferred in aqueous solution was found to be the lowest energy in gas phase. The solvation effects on the LIGNOLs were also studied by quantum chemical calculations applying the COnductor-like Screening MOdel (COSMO. The hydration studies of the MD simulations showed that several of these LIGNOLs, produced from a renewable source, have a great potential of acting as chiral catalysts.

  11. Electroweak symmetry breaking through bosonic seesaw mechanism in a classically conformal extension of the Standard Model

    CERN Document Server

    Haba, Naoyuki; Okada, Nobuchika; Yamaguchi, Yuya

    2015-01-01

    We suggest the so-called bosonic seesaw mechanism in the context of a classically conformal $U(1)_{B-L}$ extension of the Standard Model with two Higgs doublet fields. The $U(1)_{B-L}$ symmetry is radiatively broken via the Coleman-Weinberg mechanism, which also generates the mass terms for the two Higgs doublets through quartic Higgs couplings. Their masses are all positive but, nevertheless, the electroweak symmetry breaking is realized by the bosonic seesaw mechanism. We analyze the renormalization group evolutions for all model couplings, and find that a large hierarchy among the quartic Higgs couplings, which is crucial for the bosonic seesaw mechanism to work, is dramatically reduced toward high energies. Therefore, the bosonic seesaw is naturally realized with only a mild hierarchy, if some fundamental theory, which provides the origin of the classically conformal invariance, completes our model at some high energy, for example, the Planck scale. The requirements for the perturbativity of the running c...

  12. Disciplines, models, and computers: the path to computational quantum chemistry.

    Science.gov (United States)

    Lenhard, Johannes

    2014-12-01

    Many disciplines and scientific fields have undergone a computational turn in the past several decades. This paper analyzes this sort of turn by investigating the case of computational quantum chemistry. The main claim is that the transformation from quantum to computational quantum chemistry involved changes in three dimensions. First, on the side of instrumentation, small computers and a networked infrastructure took over the lead from centralized mainframe architecture. Second, a new conception of computational modeling became feasible and assumed a crucial role. And third, the field of computa- tional quantum chemistry became organized in a market-like fashion and this market is much bigger than the number of quantum theory experts. These claims will be substantiated by an investigation of the so-called density functional theory (DFT), the arguably pivotal theory in the turn to computational quantum chemistry around 1990.

  13. Computational biomechanics for medicine imaging, modeling and computing

    CERN Document Server

    Doyle, Barry; Wittek, Adam; Nielsen, Poul; Miller, Karol

    2016-01-01

    The Computational Biomechanics for Medicine titles provide an opportunity for specialists in computational biomechanics to present their latest methodologies and advancements. This volume comprises eighteen of the newest approaches and applications of computational biomechanics, from researchers in Australia, New Zealand, USA, UK, Switzerland, Scotland, France and Russia. Some of the interesting topics discussed are: tailored computational models; traumatic brain injury; soft-tissue mechanics; medical image analysis; and clinically-relevant simulations. One of the greatest challenges facing the computational engineering community is to extend the success of computational mechanics to fields outside traditional engineering, in particular to biology, the biomedical sciences, and medicine. We hope the research presented within this book series will contribute to overcoming this grand challenge.

  14. Conformal Wasserstein Distance: Comparing disk and sphere-type surfaces in polynomial time II, computational aspects

    CERN Document Server

    Lipman, Yaron; Daubechies, Ingrid

    2011-01-01

    This paper is a companion paper to [Lipman and Daubechies 2011]. We provide numerical procedures and algorithms for computing the alignment of and distance between two disk type surfaces. We furthermore generalize the framework to support sphere-type surfaces, prove a result connecting this distance to geodesic distortion, and provide convergence analysis on the discrete approximation to the arising mass-transportation problems.

  15. Computational Modelling in Cancer: Methods and Applications

    Directory of Open Access Journals (Sweden)

    Konstantina Kourou

    2015-01-01

    Full Text Available Computational modelling of diseases is an emerging field, proven valuable for the diagnosis, prognosis and treatment of the disease. Cancer is one of the diseases where computational modelling provides enormous advancements, allowing the medical professionals to perform in silico experiments and gain insights prior to any in vivo procedure. In this paper, we review the most recent computational models that have been proposed for cancer. Well known databases used for computational modelling experiments, as well as, the various markup language representations are discussed. In addition, recent state of the art research studies related to tumour growth and angiogenesis modelling are presented.

  16. Development of the new Conformal-Cubic Atmospheric Model (CCAM) in capturing the past season’s major rain events

    CSIR Research Space (South Africa)

    Park, R

    2010-09-01

    Full Text Available being made for rainfall, maximum and minimum temperatures, and wind fields using the new Conformal- Cubic Atmospheric Model (CCAM). This model has been adapted and developed since its initialisation, increasing its weather prediction capability in order...

  17. Conformal Complex Scalar Singlet Extensions of the Standard Model: Symmetry Breaking Patterns and Phenomenology

    CERN Document Server

    Wang, Zhi-Wei; Steele, T G; Mann, R B; Hanif, T

    2016-01-01

    We consider a conformal complex singlet extension of the Standard Model with a Higgs portal interaction. Two different scenarios depending on whether the global U(1) symmetry is broken or not have been studied. In the unbroken phase, the decay of the complex singlet is protected by the global U(1) symmetry which leads to an ideal cold dark matter candidate. In the broken phase, we are able to provide a second Higgs at $554\\,\\rm{GeV}$. In addition, gauging the global U(1) symmetry, we can construct an asymptotically safe U(1)' leptophobic model. We combine the notion of asymptotic safety with conformal symmetry and use the renormalization group equations as a bridge to connect UV boundary conditions and Electroweak/ TeV scale physics. We also provide a detailed example to show that these boundary conditions will lead to phenomenological signatures such as diboson excesses which could be tested at the LHC.

  18. Correlating galaxy colour and halo concentration: A tunable Halo Model of galactic conformity

    OpenAIRE

    Paranjape, Aseem; Kovac, Katarina; Hartley, William G.; Pahwa, Isha

    2015-01-01

    We extend the Halo Occupation Distribution (HOD) framework to generate mock galaxy catalogs exhibiting varying levels of "galactic conformity", which has emerged as a potentially powerful probe of environmental effects in galaxy evolution. Our model correlates galaxy colours in a group with the concentration of the common parent dark halo through a "group quenching efficiency" $\\rho$ which makes older, more concentrated halos $\\textit{at fixed mass}$ preferentially host redder galaxies. We fi...

  19. A transferable coarse-grained model for diphenylalanine: How to represent an environment driven conformational transition

    OpenAIRE

    Dalgıçdir, Cahit; Şensoy, Özge; Sayar, Mehmet; Peter, Christine

    2013-01-01

    A transferable coarse-grained model for diphenylalanine: How to represent an environment driven conformational transition Cahit Dalgicdir, Ozge Sensoy, Christine Peter, and Mehmet Sayar Citation: The Journal of Chemical Physics 139, 234115 (2013); doi: 10.1063/1.4848675 View online: http://dx.doi.org/10.1063/1.4848675 View Table of Contents: http://scitation.aip.org/content/aip/journal/jcp/139/23?ver=pdfcov Published by the AIP Publishing Articles you may be interested in...

  20. Exploratory conformational study of (+)-catechin. Modeling of the polarizability and electric dipole moment.

    Science.gov (United States)

    Bentz, Erika N; Pomilio, Alicia B; Lobayan, Rosana M

    2014-12-01

    The extension of the study of the conformational space of the structure of (+)-catechin at the B3LYP/6-31G(d,p) level of theory is presented in this paper. (+)-Catechin belongs to the family of the flavan-3-ols, which is one of the five largest phenolic groups widely distributed in nature, and whose biological activity and pharmaceutical utility are related to the antioxidant activity due to their ability to scavenge free radicals. The effects of free rotation around all C-O bonds of the OH substituents at different rings are taken into account, obtaining as the most stable conformer, one that had not been previously reported. One hundred seven structures, and a study of the effects of charge delocalization and stereoelectronic effects at the B3LYP/6-311++G(d,p) level are reported by natural bond orbital analysis, streamlining the order of these structures. For further analysis of the structural and molecular properties of this compound in a biological environment, the calculation of polarizabilities, and the study of the electric dipole moment are performed considering the whole conformational space described. The results are analyzed in terms of accumulated knowledge for (4α → 6″, 2α → O → 1″)-phenylflavans and (+)-catechin in previous works, enriching the study of both types of structures, and taking into account the importance of considering the whole conformational space in modeling both the polarizability and the electric dipole moment, also proposing to define a descriptive subspace of only 16 conformers.

  1. Using the fast fourier transform to accelerate the computational search for RNA conformational switches.

    Directory of Open Access Journals (Sweden)

    Evan Senter

    Full Text Available Using complex roots of unity and the Fast Fourier Transform, we design a new thermodynamics-based algorithm, FFTbor, that computes the Boltzmann probability that secondary structures differ by [Formula: see text] base pairs from an arbitrary initial structure of a given RNA sequence. The algorithm, which runs in quartic time O(n(4 and quadratic space O(n(2, is used to determine the correlation between kinetic folding speed and the ruggedness of the energy landscape, and to predict the location of riboswitch expression platform candidates. A web server is available at http://bioinformatics.bc.edu/clotelab/FFTbor/.

  2. Computational Models for Nonlinear Aeroelastic Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Clear Science Corp. and Duke University propose to develop and demonstrate new and efficient computational methods of modeling nonlinear aeroelastic systems. The...

  3. Conformal models of de Sitter space, initial conditions for inflation and the CMB

    CERN Document Server

    Lasenby, A; Lasenby, Anthony; Doran, Chris

    2004-01-01

    Conformal embedding of closed-universe models in a de Sitter background suggests a quantisation condition on the available conformal time. This condition implies that the universe is closed at no greater than the 10% level. When a massive scalar field is introduced to drive an inflationary phase this figure is reduced to closure at nearer the 1% level. In order to enforce the constraint on the available conformal time we need to consider conditions in the universe before the onset of inflation. A formal series around the initial singularity is constructed, which rests on a pair of dimensionless, scale-invariant parameters. For physically-acceptable models we find that both parameters are of order unity, so no fine tuning is required, except in the mass of the scalar field. For typical values of the input parameters we predict the observed values of the cosmological parameters, including the magnitude of the cosmological constant. The model produces a very good fit to the most recent CMBR data, predicting a lo...

  4. Model of computation for Fourier optical processors

    Science.gov (United States)

    Naughton, Thomas J.

    2000-05-01

    We present a novel and simple theoretical model of computation that captures what we believe are the most important characteristics of an optical Fourier transform processor. We use this abstract model to reason about the computational properties of the physical systems it describes. We define a grammar for our model's instruction language, and use it to write algorithms for well-known filtering and correlation techniques. We also suggest suitable computational complexity measures that could be used to analyze any coherent optical information processing technique, described with the language, for efficiency. Our choice of instruction language allows us to argue that algorithms describable with this model should have optical implementations that do not require a digital electronic computer to act as a master unit. Through simulation of a well known model of computation from computer theory we investigate the general-purpose capabilities of analog optical processors.

  5. A computational model for feature binding

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The "Binding Problem" is an important problem across many disciplines, including psychology, neuroscience, computational modeling, and even philosophy. In this work, we proposed a novel computational model, Bayesian Linking Field Model, for feature binding in visual perception, by combining the idea of noisy neuron model, Bayesian method, Linking Field Network and competitive mechanism. Simulation Experiments demonstrated that our model perfectly fulfilled the task of feature binding in visual perception and provided us some enlightening idea for future research.

  6. A computational model for feature binding

    Institute of Scientific and Technical Information of China (English)

    SHI ZhiWei; SHI ZhongZhi; LIU Xi; SHI ZhiPing

    2008-01-01

    The "Binding Problem" is an important problem across many disciplines, including psychology, neuroscience, computational modeling, and even philosophy. In this work, we proposed a novel computational model, Bayesian Linking Field Model, for feature binding in visual perception, by combining the idea of noisy neuron model, Bayesian method, Linking Field Network and competitive mechanism.Simulation Experiments demonstrated that our model perfectly fulfilled the task of feature binding in visual perception and provided us some enlightening idea for future research.

  7. Computational nanophotonics modeling and applications

    CERN Document Server

    Musa, Sarhan M

    2013-01-01

    This reference offers tools for engineers, scientists, biologists, and others working with the computational techniques of nanophotonics. It introduces the key concepts of computational methods in a manner that is easily digestible for newcomers to the field. The book also examines future applications of nanophotonics in the technical industry and covers new developments and interdisciplinary research in engineering, science, and medicine. It provides an overview of the key computational nanophotonics and describes the technologies with an emphasis on how they work and their key benefits.

  8. Conformity, anticonformity and polarization of opinions: insights from a mathematical model of opinion dynamics

    CERN Document Server

    Krüger, Tyll; Weron, Tomasz

    2016-01-01

    Understanding and quantifying polarization in social systems is important because of many reasons. It could for instance help to avoid segregation and conflicts in the society (DiMaggio et al. 1996) or to control polarized debates and predict their outcomes (Walton 1991). In a recent paper (Siedlecki et al. 2016) we used an agent-based model of a segmented society to check if the polarization may be induced by a competition between conformity and anticonformity. Among other things we have shown that the interplay of intra-clique conformity and inter-clique anticonformity may indeed lead to a bi-polarized state of the system. This paper is a continuation of the work done in (Siedlecki et al. 2016). We consider here a slightly modified version of the model that allows for mathematical treatment and gives more insight into the dynamics of the system. We determine conditions needed to arrive at consensus in a double-clique network with conformity and anticonformity as types of social influence and find regimes, i...

  9. Electroweak vacuum stability in classically conformal $B-L$ extension of the Standard Model

    CERN Document Server

    Das, Arindam; Papapietro, Nathan

    2015-01-01

    We consider the minimal U(1)$_{B-L}$ extension of the Standard Model (SM) with the classically conformal invariance, where an anomaly free U(1)$_{B-L}$ gauge symmetry is introduced along with three generations of right-handed neutrinos and a U(1)$_{B-L}$ Higgs field. Because of the classically conformal symmetry, all dimensional parameters are forbidden. The $B-L$ gauge symmetry is radiatively broken through the Coleman-Weinberg mechanism, generating the mass for the $U(1)_{B-L}$ gauge boson ($Z^\\prime$ boson) and the right-handed neutrinos. Through a small negative coupling between the SM Higgs doublet and the $B-L$ Higgs field, the negative mass term for the SM Higgs doublet is generated and the electroweak symmetry is broken. In this model context, we investigate the electroweak vacuum instability problem in the SM. It is known that in the classically conformal U(1)$_{B-L}$ extension of the SM, the electroweak vacuum remains unstable in the renormalization group analysis at the one-loop level. In this pape...

  10. Comment on the paper: “Spectroscopic and computational study of the major oxidation products formed during the reaction of two quercetin conformers with a free radical”

    Science.gov (United States)

    Scognamiglio, Monica; Temussi, Fabio; D'Abrosca, Brigida; Fiorentino, Antonio

    2013-12-01

    The title paper reports a study on the structural elucidation by spectroscopic and computational methods of the products obtained from the reaction of two conformers of quercetin with the 2,2-diphenyl-1-picrylhydrazyl radical (DPPH•). Many points of criticism, concerning both theoretical principles and experimental data, are highlighted in the present communication.

  11. Two Classes of Models of Granular Computing

    Institute of Scientific and Technical Information of China (English)

    Daowu Pei

    2006-01-01

    This paper reviews a class of important models of granular computing which are induced by equivalence relations, or by general binary relations, or by neighborhood systems, and propose a class of models of granular computing which are induced by coverings of the given universe.

  12. Large Scale Computations in Air Pollution Modelling

    DEFF Research Database (Denmark)

    Zlatev, Z.; Brandt, J.; Builtjes, P. J. H.

    Proceedings of the NATO Advanced Research Workshop on Large Scale Computations in Air Pollution Modelling, Sofia, Bulgaria, 6-10 July 1998......Proceedings of the NATO Advanced Research Workshop on Large Scale Computations in Air Pollution Modelling, Sofia, Bulgaria, 6-10 July 1998...

  13. Large Scale Computations in Air Pollution Modelling

    DEFF Research Database (Denmark)

    Zlatev, Z.; Brandt, J.; Builtjes, P. J. H.

    Proceedings of the NATO Advanced Research Workshop on Large Scale Computations in Air Pollution Modelling, Sofia, Bulgaria, 6-10 July 1998......Proceedings of the NATO Advanced Research Workshop on Large Scale Computations in Air Pollution Modelling, Sofia, Bulgaria, 6-10 July 1998...

  14. Computer Aided Continuous Time Stochastic Process Modelling

    DEFF Research Database (Denmark)

    Kristensen, N.R.; Madsen, Henrik; Jørgensen, Sten Bay

    2001-01-01

    A grey-box approach to process modelling that combines deterministic and stochastic modelling is advocated for identification of models for model-based control of batch and semi-batch processes. A computer-aided tool designed for supporting decision-making within the corresponding modelling cycle...

  15. Element-Based Computational Model

    Directory of Open Access Journals (Sweden)

    Conrad Mueller

    2012-02-01

    Full Text Available A variation on the data-flow model is proposed to use for developing parallel architectures. While the model is a data driven model it has significant differences to the data-flow model. The proposed model has an evaluation cycleof processing elements (encapsulated data that is similar to the instruction cycle of the von Neumann model. The elements contain the information required to process them. The model is inherently parallel. An emulation of the model has been implemented. The objective of this paper is to motivate support for taking the research further. Using matrix multiplication as a case study, the element/data-flow based model is compared with the instruction-based model. This is done using complexity analysis followed by empirical testing to verify this analysis. The positive results are given as motivation for the research to be taken to the next stage - that is, implementing the model using FPGAs.

  16. FT-IR spectroscopic, AM1 and PM3 computational studies of conformation of natural products: cytisine.

    Science.gov (United States)

    Górnicka, Elzbieta; Raczyńska, Ewa D

    2002-06-10

    Infrared spectra were recorded for cytisine (1) and its model compounds: N-methyl-2-pyridone (2) and piperidine (3) in solution. Eight solvents of different polarity, polarizability and acid-base properties: CCl(4), CS(2), CHCl(3), CDCl(3) (for comparison with the NMR spectra), CH(2)Cl(2), MeOH, Et(2)O and Et(3)N were chosen. Experimental FT-IR spectra were analysed with the help of those calculated for isolated derivatives at the AM1 and PM3 levels. Influence of environment on the conformational preferences in solvated cytisine was discussed and compared with those in the solid state (X-ray measurements) and in the gas phase (quantum-mechanical calculations).

  17. Conformational study of melectin and antapin antimicrobial peptides in model membrane environments

    Science.gov (United States)

    Kocourková, Lucie; Novotná, Pavlína; Čujová, Sabína; Čeřovský, Václav; Urbanová, Marie; Setnička, Vladimír

    2017-01-01

    Antimicrobial peptides have long been considered as promising compounds against drug-resistant pathogens. In this work, we studied the secondary structure of antimicrobial peptides melectin and antapin using electronic (ECD) and vibrational circular dichroism (VCD) spectroscopies that are sensitive to peptide secondary structures. The results from quantitative ECD spectral evaluation by Dichroweb and CDNN program and from the qualitative evaluation of the VCD spectra were compared. The antimicrobial activity of the selected peptides depends on their ability to adopt an amphipathic α-helical conformation on the surface of the bacterial membrane. Hence, solutions of different zwitterionic and negatively charged liposomes and micelles were used to mimic the eukaryotic and bacterial biological membranes. The results show a significant content of α-helical conformation in the solutions of negatively charged liposomes mimicking the bacterial membrane, thus correlating with the antimicrobial activity of the studied peptides. On the other hand in the solutions of zwitterionic liposomes used as models of the eukaryotic membranes, the fraction of α-helical conformation was lower, which corresponds with their moderate hemolytic activity.

  18. How ionic strength affects the conformational behavior of human and rat beta amyloids--a computational study.

    Directory of Open Access Journals (Sweden)

    Zdeněk Kříž

    Full Text Available Progressive cerebral deposition of amyloid beta occurs in Alzheimers disease and during the aging of certain mammals (human, monkey, dog, bear, cow, cat but not others (rat, mouse. It is possibly due to different amino acid sequences at positions 5, 10 and 13. To address this issue, we performed series of 100 ns long trajectories (each trajectory was run twice with different initial velocity distribution on amyloid beta (1-42 with the human and rat amino acid sequence in three different environments: water with only counter ions, water with NaCl at a concentration of 0.15 M as a model of intracellular Na(+ concentration at steady state, and water with NaCl at a concentration of 0.30 M as a model of intracellular Na(+ concentration under stimulated conditions. We analyzed secondary structure stability, internal hydrogen bonds, and residual fluctuation. It was observed that the change in ionic strength affects the stability of internal hydrogen bonds. Increasing the ionic strength increases atomic fluctuation in the hydrophobic core of the human amyloid, and decreases the atomic fluctuation in the case of rat amyloid. The secondary structure analyses show a stable α-helix part between residues 10 and 20. However, C-terminus of investigated amyloids is much more flexible showing no stable secondary structure elements. Increasing ionic strength of the solvent leads to decreasing stability of the secondary structural elements. The difference in conformational behavior of the three amino acids at position 5, 10 and 13 for human and rat amyloids significantly changes the conformational behavior of the whole peptide.

  19. Analysis of third-party certification approaches using an occupational health and safety conformity-assessment model.

    Science.gov (United States)

    Redinger, C F; Levine, S P

    1998-11-01

    The occupational health and safety conformity-assessment model presented in this article was developed (1) to analyze 22 public and private programs to determine the extent to which these programs use third parties in conformity-assessment determinations, and (2) to establish a framework to guide future policy developments related to the use of third parties in occupational health and safety conformity-assessment activities. The units of analysis for this study included select Occupational Safety and Health Administration programs and standards, International Organization for Standardization-based standards and guidelines, and standards and guidelines developed by nongovernmental bodies. The model is based on a 15-cell matrix that categorizes first-, second-, and third-party activities in terms of assessment, accreditation, and accreditation-recognition activities. The third-party component of the model has three categories: industrial hygiene/safety testing and sampling; product, equipment, and laboratory certification; and, occupational health and safety management system registration/certification. Using the model, 16 of the 22 programs were found to have a third-party component in their conformity-assessment structure. The analysis revealed that (1) the model provides a useful means to describe and analyze various third-party approaches, (2) the model needs modification to capture aspects of traditional governmental conformity-assessment/enforcement activities, and (3) several existing third-party conformity-assessment systems offer robust models that can guide future third-party policy formulation and implementation activities.

  20. ADVANCED COMPUTATIONAL METHODS IN DOSE MODELING: APPLICATION OF COMPUTATIONAL BIOPHYSICAL TRANSPORT, COMPUTATIONAL CHEMISTRY, AND COMPUTATIONAL BIOLOGY

    Science.gov (United States)

    Computational toxicology (CompTox) leverages the significant gains in computing power and computational techniques (e.g., numerical approaches, structure-activity relationships, bioinformatics) realized over the last few years, thereby reducing costs and increasing efficiency i...

  1. Triaspartate: a model system for conformationally flexible DDD motifs in proteins.

    Science.gov (United States)

    Duitch, Laura; Toal, Siobhan; Measey, Thomas J; Schweitzer-Stenner, Reinhard

    2012-05-01

    Understanding the interactions that govern turn formation in the unfolded state of proteins is necessary for a complete picture of the role that these turns play in both normal protein folding and functionally relevant yet disordered linear motifs. It is still unclear, however, whether short peptides can adopt stable turn structures in aqueous environments in the absence of any nonlocal interactions. To explore the effect that nearest-neighbor interactions and the local peptide environment have on the turn-forming capability of individual amino acid residues in short peptides, we combined vibrational (IR, Raman, and VCD), UV-CD, and (1)H NMR spectroscopies in order to probe the conformational ensemble of the central aspartic acid residue of the triaspartate peptide (DDD). The study was motivated by the recently discovered turn propensities of aspartic acid in GDG (Hagarman; et al. Chem.-Eur. J. 2011, 17, 6789). We investigated the DDD peptide under both acidic and neutral conditions in order to elucidate the effect that side-chain protonation has on the conformational propensity of the central aspartic acid residue. Amide I' profiles were analyzed in terms of two-dimensional Gaussian distributions representing conformational subdistributions in Ramachandran space. Interestingly, our results show that while the protonated form of the DDD peptide samples various turn-like conformations similar to GDG, deprotonation of the peptide eliminates this propensity for turns, causing the fully ionized peptide to exclusively sample pPII and β-strand-like structures. To further explore the factors stabilizing these more extended conformations in fully ionized DDD, we analyzed the temperature dependence of both the UV-CD spectrum and the (3)J(H(N),H(α)) coupling constants of the two amide protons (N- and C-terminal) in terms of a simple two-state (pPII-β) thermodynamic model. Thus, we were able to obtain the enthalpic and entropic differences between the pPII and

  2. A Bio-computing Analysis of the Resting-to-pulsed Conformational Changes in Cytochrome c Oxidase

    Directory of Open Access Journals (Sweden)

    T Alleyne

    2015-09-01

    Full Text Available Cytochrome c oxidase (Cox accepts electrons from its substrate, cytochrome c and passes these to oxygen, which is reduced to water. Kinetic studies show that an active form of the enzyme (pulsed and a slower form (resting exists. More efficient internal electron transfer and the switching of the enzyme’s oxygen/ligand binding site between opened and closed positions are said to account for the different rates of reduction. We employed bio-computing to analyse the structure of the oxygen/ligand binding site of bovine Cox under different redox states; a comparison with Thermus thermophilus Cox was also conducted. The study detected that the ligand binding site of Cox is exposed to the contents of the intermembrane space, and that the side chain of haem a3, located at the enzyme’s oxygen/ligand binding site, approached Pro-69 and Ile-34 in faraway subunit-II. However, no open-to-closed gating structures were detected at the ligand binding site. We concluded that the resting-to-pulse transition in Cox does not involve opening-up of the ligand binding site. We propose that the rates of ligand/oxygen/cyanide binding are partly controlled by “queuing” near the binding site and that the binding of oxygen to haem a3-CuB triggers the resting-to-pulsed transition via long-range conformational changes.

  3. Computational modeling of lipoprotein metabolism

    NARCIS (Netherlands)

    Schalkwijk, Daniël Bernardus van

    2013-01-01

    This PhD thesis contains the following chapters. The first part, containing chapter 2 and 3 mainly concerns model development. Chapter 2 describes the development of a mathematical modeling framework within which different diagnostic models based on lipoprotein profiles can be developed, and a first

  4. Synthesis, structural investigations, hydrogen-deuterium exchange studies, and molecular modeling of conformationally stablilized aromatic oligoamides.

    Science.gov (United States)

    Yan, Yan; Qin, Bo; Ren, Changliang; Chen, Xiuying; Yip, Yeow Kwan; Ye, Ruijuan; Zhang, Dawei; Su, Haibin; Zeng, Huaqiang

    2010-04-28

    Biasing the conformational preferences of aromatic oligoamides by internally placing intramolecular hydrogen bonds has led to a series of stably folded molecular strands. This article presents the results from extensive solid-state, solution, and computational studies on these folding oligomers. Depending on its backbone length, an oligoamide adopts a crescent or helical conformation. Surprisingly, despite the highly repetitive nature of the backbone, the internally placed, otherwise very similar intramolecular hydrogen bonds showed significantly different stabilities as demonstrated by hydrogen-deuterium exchange data. It was also observed that the hydrogen-bonding strength can be tuned by adjusting the substituents attached to the exterior of the aromatic backbones. Examining the amide hydrogen-deuterium exchange rates of trimers revealed that a six-membered hydrogen bond nearing the ester end is the weakest among all the four intramolecular hydrogen bonds of a molecule. This observation was verified by ab initio quantum mechanical calculations at the level of B3LYP/6-31G*. Such a "weak point" creates the "battle of the bulge" where backbone twisting is centered, which is consistently observed in the solid-state structures of the four trimer molecules studied. In the solid state, the oligomers assemble into interesting one-dimensional structures. A pronounced columnar packing of short oligomers (i.e., dimers, trimers, and tetramer) and channel-like, potentially ion-conducting stacks of longer oligomers (i.e., tetramer, pentamer, and hexamer) were observed.

  5. Multiple conformational states in retrospective virtual screening - homology models vs. crystal structures: beta-2 adrenergic receptor case study.

    Science.gov (United States)

    Mordalski, Stefan; Witek, Jagna; Smusz, Sabina; Rataj, Krzysztof; Bojarski, Andrzej J

    2015-01-01

    Distinguishing active from inactive compounds is one of the crucial problems of molecular docking, especially in the context of virtual screening experiments. The randomization of poses and the natural flexibility of the protein make this discrimination even harder. Some of the recent approaches to post-docking analysis use an ensemble of receptor models to mimic this naturally occurring conformational diversity. However, the optimal number of receptor conformations is yet to be determined. In this study, we compare the results of a retrospective screening of beta-2 adrenergic receptor ligands performed on both the ensemble of receptor conformations extracted from ten available crystal structures and an equal number of homology models. Additional analysis was also performed for homology models with up to 20 receptor conformations considered. The docking results were encoded into the Structural Interaction Fingerprints and were automatically analyzed by support vector machine. The use of homology models in such virtual screening application was proved to be superior in comparison to crystal structures. Additionally, increasing the number of receptor conformational states led to enhanced effectiveness of active vs. inactive compounds discrimination. For virtual screening purposes, the use of homology models was found to be most beneficial, even in the presence of crystallographic data regarding the conformational space of the receptor. The results also showed that increasing the number of receptors considered improves the effectiveness of identifying active compounds by machine learning methods. Graphical abstractComparison of machine learning results obtained for various number of beta-2 AR homology models and crystal structures.

  6. Bosonic seesaw mechanism in a classically conformal extension of the Standard Model

    Directory of Open Access Journals (Sweden)

    Naoyuki Haba

    2016-03-01

    Full Text Available We suggest the so-called bosonic seesaw mechanism in the context of a classically conformal U(1B−L extension of the Standard Model with two Higgs doublet fields. The U(1B−L symmetry is radiatively broken via the Coleman–Weinberg mechanism, which also generates the mass terms for the two Higgs doublets through quartic Higgs couplings. Their masses are all positive but, nevertheless, the electroweak symmetry breaking is realized by the bosonic seesaw mechanism. Analyzing the renormalization group evolutions for all model couplings, we find that a large hierarchy among the quartic Higgs couplings, which is crucial for the bosonic seesaw mechanism to work, is dramatically reduced toward high energies. Therefore, the bosonic seesaw is naturally realized with only a mild hierarchy, if some fundamental theory, which provides the origin of the classically conformal invariance, completes our model at some high energy, for example, the Planck scale. We identify the regions of model parameters which satisfy the perturbativity of the running couplings and the electroweak vacuum stability as well as the naturalness of the electroweak scale.

  7. Computer Aided Modelling – Opportunities and Challenges

    DEFF Research Database (Denmark)

    2011-01-01

    This chapter considers the opportunities that are present in developing, extending and applying aspects of computer-aided modelling principles and practice. What are the best tasks to be done by modellers and what needs the application of CAPE tools? How do we efficiently develop model-based solu......This chapter considers the opportunities that are present in developing, extending and applying aspects of computer-aided modelling principles and practice. What are the best tasks to be done by modellers and what needs the application of CAPE tools? How do we efficiently develop model...

  8. Introducing Seismic Tomography with Computational Modeling

    Science.gov (United States)

    Neves, R.; Neves, M. L.; Teodoro, V.

    2011-12-01

    Learning seismic tomography principles and techniques involves advanced physical and computational knowledge. In depth learning of such computational skills is a difficult cognitive process that requires a strong background in physics, mathematics and computer programming. The corresponding learning environments and pedagogic methodologies should then involve sets of computational modelling activities with computer software systems which allow students the possibility to improve their mathematical or programming knowledge and simultaneously focus on the learning of seismic wave propagation and inverse theory. To reduce the level of cognitive opacity associated with mathematical or programming knowledge, several computer modelling systems have already been developed (Neves & Teodoro, 2010). Among such systems, Modellus is particularly well suited to achieve this goal because it is a domain general environment for explorative and expressive modelling with the following main advantages: 1) an easy and intuitive creation of mathematical models using just standard mathematical notation; 2) the simultaneous exploration of images, tables, graphs and object animations; 3) the attribution of mathematical properties expressed in the models to animated objects; and finally 4) the computation and display of mathematical quantities obtained from the analysis of images and graphs. Here we describe virtual simulations and educational exercises which enable students an easy grasp of the fundamental of seismic tomography. The simulations make the lecture more interactive and allow students the possibility to overcome their lack of advanced mathematical or programming knowledge and focus on the learning of seismological concepts and processes taking advantage of basic scientific computation methods and tools.

  9. Uncertainty in biology a computational modeling approach

    CERN Document Server

    Gomez-Cabrero, David

    2016-01-01

    Computational modeling of biomedical processes is gaining more and more weight in the current research into the etiology of biomedical problems and potential treatment strategies.  Computational modeling allows to reduce, refine and replace animal experimentation as well as to translate findings obtained in these experiments to the human background. However these biomedical problems are inherently complex with a myriad of influencing factors, which strongly complicates the model building and validation process.  This book wants to address four main issues related to the building and validation of computational models of biomedical processes: Modeling establishment under uncertainty Model selection and parameter fitting Sensitivity analysis and model adaptation Model predictions under uncertainty In each of the abovementioned areas, the book discusses a number of key-techniques by means of a general theoretical description followed by one or more practical examples.  This book is intended for graduate stude...

  10. Conformal mapping modeling of metal plastic deformation and die cavity in special-shaped extrusion

    Institute of Scientific and Technical Information of China (English)

    齐红元; 朱衡君; 杜凤山; 刘才

    2002-01-01

    With the help of Complex Function Mapping studied results, the analysis function of Conformal Mapping is set up. Since the complicated three dimension's deformation problems are transferred into two dimension problems, both the stream function and strain ratio field are analyzed in the metal plastic deformation. Using the upper-bound principles, the theory of metal deformation and die cavity optimized modeling is established for random special-shaped product extrusion. As a result, this enables the realization of intelligent technique target in the die cavity of CAD/CAM integration.

  11. Visual and Computational Modelling of Minority Games

    OpenAIRE

    Robertas Damaševičius; Darius Ašeriškis

    2017-01-01

    The paper analyses the Minority Game and focuses on analysis and computational modelling of several variants (variable payoff, coalition-based and ternary voting) of Minority Game using UAREI (User-Action-Rule-Entities-Interface) model. UAREI is a model for formal specification of software gamification, and the UAREI visual modelling language is a language used for graphical representation of game mechanics. The URAEI model also provides the embedded executable modelling framework to evaluate...

  12. A study of the radiobiological modeling of the conformal radiation therapy in cancer treatment

    Science.gov (United States)

    Pyakuryal, Anil Prasad

    Cancer is one of the leading causes of mortalities in the world. The precise diagnosis of the disease helps the patients to select the appropriate modality of the treatments such as surgery, chemotherapy and radiation therapy. The physics of X-radiation and the advanced imaging technologies such as positron emission tomography (PET) and computed tomography (CT) plays an important role in the efficient diagnosis and therapeutic treatments in cancer. However, the accuracy of the measurements of the metabolic target volumes (MTVs) in the PET/CT dual-imaging modality is always limited. Similarly the external beam radiation therapy (XRT) such as 3D conformal radiotherapy (3DCRT) and intensity modulated radiation therapy (IMRT) is the most common modality in the radiotherapy treatment. These treatments are simulated and evaluated using the XRT plans and the standard methodologies in the commercial planning system. However, the normal organs are always susceptible to the radiation toxicity in these treatments due to lack of knowledge of the appropriate radiobiological models to estimate the clinical outcomes. We explored several methodologies to estimate MTVs by reviewing various techniques of the target volume delineation using the static phantoms in the PET scans. The review suggests that the more precise and practical method of delineating PET MTV should be an intermediate volume between the volume coverage for the standardized uptake value (SUV; 2.5) of glucose and the 50% (40%) threshold of the maximum SUV for the smaller (larger) volume delineations in the radiotherapy applications. Similarly various types of optimal XRT plans were designed using the CT and PET/CT scans for the treatment of various types of cancer patients. The qualities of these plans were assessed using the universal plan-indices. The dose-volume criteria were also examined in the targets and organs by analyzing the conventional dose-volume histograms (DVHs). The biological models such as tumor

  13. Classically conformal U(1)' extended standard model, electroweak vacuum stability, and LHC Run-2 bounds

    CERN Document Server

    Das, Arindam; Okada, Nobuchika; Takahashi, Dai-suke

    2016-01-01

    We consider the minimal U(1)' extension of the Standard Model (SM) with the classically conformal invariance, where an anomaly free U(1)' gauge symmetry is introduced along with three generations of right-handed neutrinos and a U(1)' Higgs field. Since the classically conformal symmetry forbids all dimensional parameters in the model, the U(1)' gauge symmetry is broken through the Coleman-Weinberg mechanism, generating the mass terms of the U(1)' gauge boson (Z' boson) and the right-handed neutrinos. Through a mixing quartic coupling between the U(1)' Higgs field and the SM Higgs doublet field, the radiative U(1)' gauge symmetry breaking also triggers the breaking of the electroweak symmetry. In this model context, we first investigate the electroweak vacuum instability problem in the SM. Employing the renormalization group equations at the two-loop level and the central values for the world average masses of the top quark ($m_t=173.34$ GeV) and the Higgs boson ($m_h=125.09$ GeV), we perform parameter scans t...

  14. Conformational analysis of glutamic acid: a density functional approach using implicit continuum solvent model.

    Science.gov (United States)

    Turan, Başak; Selçuki, Cenk

    2014-09-01

    Amino acids are constituents of proteins and enzymes which take part almost in all metabolic reactions. Glutamic acid, with an ability to form a negatively charged side chain, plays a major role in intra and intermolecular interactions of proteins, peptides, and enzymes. An exhaustive conformational analysis has been performed for all eight possible forms at B3LYP/cc-pVTZ level. All possible neutral, zwitterionic, protonated, and deprotonated forms of glutamic acid structures have been investigated in solution by using polarizable continuum model mimicking water as the solvent. Nine families based on the dihedral angles have been classified for eight glutamic acid forms. The electrostatic effects included in the solvent model usually stabilize the charged forms more. However, the stability of the zwitterionic form has been underestimated due to the lack of hydrogen bonding between the solute and solvent; therefore, it is observed that compact neutral glutamic acid structures are more stable in solution than they are in vacuum. Our calculations have shown that among all eight possible forms, some are not stable in solution and are immediately converted to other more stable forms. Comparison of isoelectronic glutamic acid forms indicated that one of the structures among possible zwitterionic and anionic forms may dominate over the other possible forms. Additional investigations using explicit solvent models are necessary to determine the stability of charged forms of glutamic acid in solution as our results clearly indicate that hydrogen bonding and its type have a major role in the structure and energy of conformers.

  15. Computer-Aided Modelling Methods and Tools

    DEFF Research Database (Denmark)

    Cameron, Ian; Gani, Rafiqul

    2011-01-01

    The development of models for a range of applications requires methods and tools. In many cases a reference model is required that allows the generation of application specific models that are fit for purpose. There are a range of computer aided modelling tools available that help to define...... a taxonomy of aspects around conservation, constraints and constitutive relations. Aspects of the ICAS-MoT toolbox are given to illustrate the functionality of a computer aided modelling tool, which incorporates an interface to MS Excel....

  16. A coupling of homology modeling with multiple molecular dynamics simulation for identifying representative conformation of GPCR structures: a case study on human bombesin receptor subtype-3.

    Science.gov (United States)

    Nowroozi, Amin; Shahlaei, Mohsen

    2017-02-01

    In this study, a computational pipeline was therefore devised to overcome homology modeling (HM) bottlenecks. The coupling of HM with molecular dynamics (MD) simulation is useful in that it tackles the sampling deficiency of dynamics simulations by providing good-quality initial guesses for the native structure. Indeed, HM also relaxes the severe requirement of force fields to explore the huge conformational space of protein structures. In this study, the interaction between the human bombesin receptor subtype-3 and MK-5046 was investigated integrating HM, molecular docking, and MD simulations. To improve conformational sampling in typical MD simulations of GPCRs, as in other biomolecules, multiple trajectories with different initial conditions can be employed rather than a single long trajectory. Multiple MD simulations of human bombesin receptor subtype-3 with different initial atomic velocities are applied to sample conformations in the vicinity of the structure generated by HM. The backbone atom conformational space distribution of replicates is analyzed employing principal components analysis. As a result, the averages of structural and dynamic properties over the twenty-one trajectories differ significantly from those obtained from individual trajectories.

  17. Notions of similarity for computational biology models

    KAUST Repository

    Waltemath, Dagmar

    2016-03-21

    Computational models used in biology are rapidly increasing in complexity, size, and numbers. To build such large models, researchers need to rely on software tools for model retrieval, model combination, and version control. These tools need to be able to quantify the differences and similarities between computational models. However, depending on the specific application, the notion of similarity may greatly vary. A general notion of model similarity, applicable to various types of models, is still missing. Here, we introduce a general notion of quantitative model similarities, survey the use of existing model comparison methods in model building and management, and discuss potential applications of model comparison. To frame model comparison as a general problem, we describe a theoretical approach to defining and computing similarities based on different model aspects. Potentially relevant aspects of a model comprise its references to biological entities, network structure, mathematical equations and parameters, and dynamic behaviour. Future similarity measures could combine these model aspects in flexible, problem-specific ways in order to mimic users\\' intuition about model similarity, and to support complex model searches in databases.

  18. Computational models for analyzing lipoprotein profiles

    NARCIS (Netherlands)

    Graaf, A.A. de; Schalkwijk, D.B. van

    2011-01-01

    At present, several measurement technologies are available for generating highly detailed concentration-size profiles of lipoproteins, offering increased diagnostic potential. Computational models are useful in aiding the interpretation of these complex datasets and making the data more accessible f

  19. Informing mechanistic toxicology with computational molecular models.

    Science.gov (United States)

    Goldsmith, Michael R; Peterson, Shane D; Chang, Daniel T; Transue, Thomas R; Tornero-Velez, Rogelio; Tan, Yu-Mei; Dary, Curtis C

    2012-01-01

    Computational molecular models of chemicals interacting with biomolecular targets provides toxicologists a valuable, affordable, and sustainable source of in silico molecular level information that augments, enriches, and complements in vitro and in vivo efforts. From a molecular biophysical ansatz, we describe how 3D molecular modeling methods used to numerically evaluate the classical pair-wise potential at the chemical/biological interface can inform mechanism of action and the dose-response paradigm of modern toxicology. With an emphasis on molecular docking, 3D-QSAR and pharmacophore/toxicophore approaches, we demonstrate how these methods can be integrated with chemoinformatic and toxicogenomic efforts into a tiered computational toxicology workflow. We describe generalized protocols in which 3D computational molecular modeling is used to enhance our ability to predict and model the most relevant toxicokinetic, metabolic, and molecular toxicological endpoints, thereby accelerating the computational toxicology-driven basis of modern risk assessment while providing a starting point for rational sustainable molecular design.

  20. Computational fluid dynamics modeling in yarn engineering

    CSIR Research Space (South Africa)

    Patanaik, A

    2011-07-01

    Full Text Available This chapter deals with the application of computational fluid dynamics (CFD) modeling in reducing yarn hairiness during the ring spinning process and thereby “engineering” yarn with desired properties. Hairiness significantly affects the appearance...

  1. Computational Models for Nonlinear Aeroelastic Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Clear Science Corp. and Duke University propose to develop and demonstrate a new and efficient computational method of modeling nonlinear aeroelastic systems. The...

  2. A new epidemic model of computer viruses

    Science.gov (United States)

    Yang, Lu-Xing; Yang, Xiaofan

    2014-06-01

    This paper addresses the epidemiological modeling of computer viruses. By incorporating the effect of removable storage media, considering the possibility of connecting infected computers to the Internet, and removing the conservative restriction on the total number of computers connected to the Internet, a new epidemic model is proposed. Unlike most previous models, the proposed model has no virus-free equilibrium and has a unique endemic equilibrium. With the aid of the theory of asymptotically autonomous systems as well as the generalized Poincare-Bendixson theorem, the endemic equilibrium is shown to be globally asymptotically stable. By analyzing the influence of different system parameters on the steady number of infected computers, a collection of policies is recommended to prohibit the virus prevalence.

  3. Computer Model Locates Environmental Hazards

    Science.gov (United States)

    2008-01-01

    Catherine Huybrechts Burton founded San Francisco-based Endpoint Environmental (2E) LLC in 2005 while she was a student intern and project manager at Ames Research Center with NASA's DEVELOP program. The 2E team created the Tire Identification from Reflectance model, which algorithmically processes satellite images using turnkey technology to retain only the darkest parts of an image. This model allows 2E to locate piles of rubber tires, which often are stockpiled illegally and cause hazardous environmental conditions and fires.

  4. Parallel computing in atmospheric chemistry models

    Energy Technology Data Exchange (ETDEWEB)

    Rotman, D. [Lawrence Livermore National Lab., CA (United States). Atmospheric Sciences Div.

    1996-02-01

    Studies of atmospheric chemistry are of high scientific interest, involve computations that are complex and intense, and require enormous amounts of I/O. Current supercomputer computational capabilities are limiting the studies of stratospheric and tropospheric chemistry and will certainly not be able to handle the upcoming coupled chemistry/climate models. To enable such calculations, the authors have developed a computing framework that allows computations on a wide range of computational platforms, including massively parallel machines. Because of the fast paced changes in this field, the modeling framework and scientific modules have been developed to be highly portable and efficient. Here, the authors present the important features of the framework and focus on the atmospheric chemistry module, named IMPACT, and its capabilities. Applications of IMPACT to aircraft studies will be presented.

  5. A Computational Framework for Realistic Retina Modeling.

    Science.gov (United States)

    Martínez-Cañada, Pablo; Morillas, Christian; Pino, Begoña; Ros, Eduardo; Pelayo, Francisco

    2016-11-01

    Computational simulations of the retina have led to valuable insights about the biophysics of its neuronal activity and processing principles. A great number of retina models have been proposed to reproduce the behavioral diversity of the different visual processing pathways. While many of these models share common computational stages, previous efforts have been more focused on fitting specific retina functions rather than generalizing them beyond a particular model. Here, we define a set of computational retinal microcircuits that can be used as basic building blocks for the modeling of different retina mechanisms. To validate the hypothesis that similar processing structures may be repeatedly found in different retina functions, we implemented a series of retina models simply by combining these computational retinal microcircuits. Accuracy of the retina models for capturing neural behavior was assessed by fitting published electrophysiological recordings that characterize some of the best-known phenomena observed in the retina: adaptation to the mean light intensity and temporal contrast, and differential motion sensitivity. The retinal microcircuits are part of a new software platform for efficient computational retina modeling from single-cell to large-scale levels. It includes an interface with spiking neural networks that allows simulation of the spiking response of ganglion cells and integration with models of higher visual areas.

  6. Proceedings Fifth Workshop on Developments in Computational Models--Computational Models From Nature

    CERN Document Server

    Cooper, S Barry; 10.4204/EPTCS.9

    2009-01-01

    The special theme of DCM 2009, co-located with ICALP 2009, concerned Computational Models From Nature, with a particular emphasis on computational models derived from physics and biology. The intention was to bring together different approaches - in a community with a strong foundational background as proffered by the ICALP attendees - to create inspirational cross-boundary exchanges, and to lead to innovative further research. Specifically DCM 2009 sought contributions in quantum computation and information, probabilistic models, chemical, biological and bio-inspired ones, including spatial models, growth models and models of self-assembly. Contributions putting to the test logical or algorithmic aspects of computing (e.g., continuous computing with dynamical systems, or solid state computing models) were also very much welcomed.

  7. Computer Modeling of Direct Metal Laser Sintering

    Science.gov (United States)

    Cross, Matthew

    2014-01-01

    A computational approach to modeling direct metal laser sintering (DMLS) additive manufacturing process is presented. The primary application of the model is for determining the temperature history of parts fabricated using DMLS to evaluate residual stresses found in finished pieces and to assess manufacturing process strategies to reduce part slumping. The model utilizes MSC SINDA as a heat transfer solver with imbedded FORTRAN computer code to direct laser motion, apply laser heating as a boundary condition, and simulate the addition of metal powder layers during part fabrication. Model results are compared to available data collected during in situ DMLS part manufacture.

  8. Computational Modeling of Culture's Consequences

    NARCIS (Netherlands)

    Hofstede, G.J.; Jonker, C.M.; Verwaart, T.

    2010-01-01

    This paper presents an approach to formalize the influence of culture on the decision functions of agents in social simulations. The key components are (a) a definition of the domain of study in the form of a decision model, (b) knowledge acquisition based on a dimensional theory of culture, resulti

  9. Computational aspects of premixing modelling

    Energy Technology Data Exchange (ETDEWEB)

    Fletcher, D.F. [Sydney Univ., NSW (Australia). Dept. of Chemical Engineering; Witt, P.J.

    1998-01-01

    In the steam explosion research field there is currently considerable effort being devoted to the modelling of premixing. Practically all models are based on the multiphase flow equations which treat the mixture as an interpenetrating continuum. Solution of these equations is non-trivial and a wide range of solution procedures are in use. This paper addresses some numerical aspects of this problem. In particular, we examine the effect of the differencing scheme for the convective terms and show that use of hybrid differencing can cause qualitatively wrong solutions in some situations. Calculations are performed for the Oxford tests, the BNL tests, a MAGICO test and to investigate various sensitivities of the solution. In addition, we show that use of a staggered grid can result in a significant error which leads to poor predictions of `melt` front motion. A correction is given which leads to excellent convergence to the analytic solution. Finally, we discuss the issues facing premixing model developers and highlight the fact that model validation is hampered more by the complexity of the process than by numerical issues. (author)

  10. Accelerated molecular dynamics and protein conformational change: a theoretical and practical guide using a membrane embedded model neurotransmitter transporter.

    Science.gov (United States)

    Gedeon, Patrick C; Thomas, James R; Madura, Jeffry D

    2015-01-01

    Molecular dynamics simulation provides a powerful and accurate method to model protein conformational change, yet timescale limitations often prevent direct assessment of the kinetic properties of interest. A large number of molecular dynamic steps are necessary for rare events to occur, which allow a system to overcome energy barriers and conformationally transition from one potential energy minimum to another. For many proteins, the energy landscape is further complicated by a multitude of potential energy wells, each separated by high free-energy barriers and each potentially representative of a functionally important protein conformation. To overcome these obstacles, accelerated molecular dynamics utilizes a robust bias potential function to simulate the transition between different potential energy minima. This straightforward approach more efficiently samples conformational space in comparison to classical molecular dynamics simulation, does not require advanced knowledge of the potential energy landscape and converges to the proper canonical distribution. Here, we review the theory behind accelerated molecular dynamics and discuss the approach in the context of modeling protein conformational change. As a practical example, we provide a detailed, step-by-step explanation of how to perform an accelerated molecular dynamics simulation using a model neurotransmitter transporter embedded in a lipid cell membrane. Changes in protein conformation of relevance to the substrate transport cycle are then examined using principle component analysis.

  11. Coarse-grained free energy functions for studying protein conformational changes: a double-well network model.

    Science.gov (United States)

    Chu, Jhih-Wei; Voth, Gregory A

    2007-12-01

    In this work, a double-well network model (DWNM) is presented for generating a coarse-grained free energy function that can be used to study the transition between reference conformational states of a protein molecule. Compared to earlier work that uses a single, multidimensional double-well potential to connect two conformational states, the DWNM uses a set of interconnected double-well potentials for this purpose. The DWNM free energy function has multiple intermediate states and saddle points, and is hence a "rough" free energy landscape. In this implementation of the DWNM, the free energy function is reduced to an elastic-network model representation near the two reference states. The effects of free energy function roughness on the reaction pathways of protein conformational change is demonstrated by applying the DWNM to the conformational changes of two protein systems: the coil-to-helix transition of the DB-loop in G-actin and the open-to-closed transition of adenylate kinase. In both systems, the rough free energy function of the DWNM leads to the identification of distinct minimum free energy paths connecting two conformational states. These results indicate that while the elastic-network model captures the low-frequency vibrational motions of a protein, the roughness in the free energy function introduced by the DWNM can be used to characterize the transition mechanism between protein conformations.

  12. Visual and Computational Modelling of Minority Games

    Directory of Open Access Journals (Sweden)

    Robertas Damaševičius

    2017-02-01

    Full Text Available The paper analyses the Minority Game and focuses on analysis and computational modelling of several variants (variable payoff, coalition-based and ternary voting of Minority Game using UAREI (User-Action-Rule-Entities-Interface model. UAREI is a model for formal specification of software gamification, and the UAREI visual modelling language is a language used for graphical representation of game mechanics. The URAEI model also provides the embedded executable modelling framework to evaluate how the rules of the game will work for the players in practice. We demonstrate flexibility of UAREI model for modelling different variants of Minority Game rules for game design.

  13. Multi-conformer molecules in solutions: an NMR-based DFT/MP2 conformational study of two glucopyranosides of a vitamin E model compound.

    Science.gov (United States)

    Nazarski, Ryszard B; Wałejko, Piotr; Witkowski, Stanisław

    2016-03-21

    Overall conformations of both anomeric per-O-acetylated glucosyl derivatives of 2,2,5,7,8-pentamethylchroman-6-ol were studied in the context of their high flexibility, on the basis of NMR spectra in CDCl3 solution and related DFT calculation results. A few computational protocols were used, including diverse density functional/basis set combinations with a special emphasis on accounting (at various steps of the study) for the impact of intramolecular London-dispersion (LD) effects on geometries and relative Gibbs free energies (ΔGs) of different conformers coexisting in solution. The solvent effect was simulated by an IEF-PCM approach with the UFF radii; its other variants, including the use of the recently introduced IDSCRF radii, were employed for a few compact B3LYP-GD3BJ optimized structures showing one small imaginary vibrational frequency. The advantage of using IDSCRF radii for such purposes was shown. Of the four tested DFT methods, only the application of the B3LYP/6-31+G(d,p) approximation afforded ensembles of 7-8 single forms for which population-average values of computed NMR parameters (δH, δC and some (n)JHH data) were in close agreement with those measured experimentally; binuclear (δH,C 1 : 1) correlations, rH,C(2) = 0.9998. The associated individual ΔG values, corrected for LD interactions by applying Grimme's DFT-D3 terms, afforded relative contents of different contributors to the analyzed conformational families in much better agreement with pertinent DFT/NMR-derived populations (i.e., both data sets were found to be practically equal within the limits of estimated errors) than those calculated from dispersion uncorrected ΔGs. All these main findings were confirmed by additional results obtained at the MP2 level of theory. Various other aspects of the study such as the crystal vs. solution structure, gg/gt rotamer ratio, diagnostic (de)shielding effects, dihydrogen C-H···H-C contacts, and doubtful applicability of some specialized

  14. Walking near a Conformal Fixed Point: the 2-d O(3) Model at theta near pi as a Test Case

    CERN Document Server

    de Forcrand, Philippe; Wiese, Uwe-Jens

    2012-01-01

    Slowly walking technicolor models provide a mechanism for electroweak symmetry breaking whose nonperturbative lattice investigation is rather challenging. Here we demonstrate walking near a conformal fixed point considering the 2-d lattice O(3) model at vacuum angle $\\theta \\approx \\pi$. The essential features of walking technicolor models are shared by this toy model and can be accurately investigated by numerical simulations. We show results for the running coupling and the beta-function and we perform a finite size scaling analysis of the massgap close to the conformal point.

  15. Computational and NMR Spectroscopic Evidence for Stereochemistry-Dependent Conformations of 2,2,6,6-Tetramethylpiperidinyl-Masked 1,2-Diols.

    Science.gov (United States)

    Fought, Ellie L; Chatterjee, Shreyosree; Windus, Theresa L; Chen, Jason S

    2015-10-16

    2,2,6,6-Tetramethylpiperidinyl-masked 1,2-diols exhibited stereochemistry-dependent hydroxyl proton chemical shifts: ca. 7 ppm for the syn diastereomer and ca. 2 ppm for the anti diastereomer. A computational search for low energy geometries revealed that the syn isomer favors a six-membered ring hydrogen bond to nitrogen and the anti isomer favors a five-membered ring hydrogen bond to oxygen. The computed low energy conformations were found to have a large difference in hydroxyl proton shielding that was reflected in the experimental chemical shift difference. This chemical shift difference was observed in a broad range of solvents, and thus may be useful as a stereochemical probe. The stereochemistry-dependent conformation and chemical shift signature appeared to be due to a syn pentane interaction between the gem-dimethyl groups on the 2,2,6,6-tetramethylpiperidinyl moiety.

  16. Conformational statistics of polymer chain terminally attached to wall (Ⅲ)——NRW model loop chain

    Institute of Scientific and Technical Information of China (English)

    吴大诚; 杜鹏; 康建

    1997-01-01

    When the two end groups of a linear polymer chain are absorbed on a solid surface,the polymer chain forms the "loop" conformation.Investigation has been made on the conformational statistics of a model loop chain by the normal landom walk (NRW) on a lattice confined in the half-infinite space.Based on the conformational distribution function of the NRW model tail chain,it is easy to deduce an analytical formula expressing the conforma-tional number of the model loop chain.It was found that the ratio of the conformational number of the model loop chain to that of the free chain varies with the power function N-2/3 when the chain length N→∞ The same result was obtained by means of the recursion equation.The ratio of the mean square end-to-end distance h2 for the model loop chain to its mean square bond length I2 is 2N/3 Compared with the free chain with the same length N,the mean square end-to-end distance of the model loop chain contracts to a certain extent.The basic relationships deduced were support

  17. Truncated Conformal Space Approach for Perturbed Wess-Zumino-Witten $SU(2)_k$ Models

    CERN Document Server

    Beria, M; Lepori, L; Konik, R M; Sierra, G

    2013-01-01

    We outline the application of the truncated conformal space approach (TCSA) to perturbations of $SU(2)_k$ Wess-Zumino-Witten theories. As examples of this methodology, we consider two distinct perturbations of $SU(2)_1$ and one of $SU(2)_2$. $SU(2)_1$ is first perturbed by its spin-1/2 field, a model which is equivalent to the sine-Gordon model at a particular value of its coupling $\\beta$. The sine-Gordon spectrum is correctly reproduced as well as the corresponding finite size corrections. We next study $SU(2)_1$ with a marginal current-current perturbation. The TCSA results can be matched to perturbation theory within an appropriate treatment of the UV divergences. Finally, we consider $SU(2)_2$ perturbed by its spin-1 field, which is equivalent to three decoupled massive Majorana fermions.In this case as well the TCSA reproduces accurately the known spectrum.

  18. Yang-Baxter σ -models, conformal twists, and noncommutative Yang-Mills theory

    Science.gov (United States)

    Araujo, T.; Bakhmatov, I.; Colgáin, E. Ó.; Sakamoto, J.; Sheikh-Jabbari, M. M.; Yoshida, K.

    2017-05-01

    The Yang-Baxter σ -model is a systematic way to generate integrable deformations of AdS5×S5 . We recast the deformations as seen by open strings, where the metric is undeformed AdS5×S5 with constant string coupling, and all information about the deformation is encoded in the noncommutative (NC) parameter Θ . We identify the deformations of AdS5 as twists of the conformal algebra, thus explaining the noncommutativity. We show that the unimodularity condition on r -matrices for supergravity solutions translates into Θ being divergence-free. Integrability of the σ -model for unimodular r -matrices implies the existence and planar integrability of the dual NC gauge theory.

  19. Classically conformal radiative neutrino model with gauged B−L symmetry

    Directory of Open Access Journals (Sweden)

    Hiroshi Okada

    2016-09-01

    Full Text Available We propose a classically conformal model in a minimal radiative seesaw, in which we employ a gauged B−L symmetry in the standard model that is essential in order to work the Coleman–Weinberg mechanism well that induces the B−L symmetry breaking. As a result, nonzero Majorana mass term and electroweak symmetry breaking simultaneously occur. In this framework, we show a benchmark point to satisfy several theoretical and experimental constraints. Here theoretical constraints represent inert conditions and Coleman–Weinberg condition. Experimental bounds come from lepton flavor violations (especially μ→eγ, the current bound on the Z′ mass at the CERN Large Hadron Collider, and neutrino oscillations.

  20. D-dimensional Conformal Field Theories with anomalous dimensions as Dual Resonance Models

    CERN Document Server

    Mack, Gerhard

    2009-01-01

    An exact correspondence is pointed out between conformal field theories in D dimensions and dual resonance models in D' dimensions, where D' may differ from D. Dual resonance models, pioneered by Veneziano, were forerunners of string theory. The analog of scattering amplitudes are called Mellin amplitudes; they depend on complex variables which substitute for the Mandelstam variables on which scattering amplitudes depend. The Mellin amplitudes satisfy exact duality - i.e. meromorphy with simple poles in single variables, and crossing symmetry - and an appropriate form of factorization which is implied by operator product expansions (OPE). Duality is a D-independent property. The positions of the leading poles are given by the dimensions of fields in the OPE; their residues depend on D and determine satellites. Dimensional reduction and induction D goes to D-1 and D+1 are discussed. Dimensional reduction leads to the appearence of Anti de Sitter space.

  1. Conformal or Walking? Monte Carlo renormalization group studies of SU(3) gauge models with fundamental fermions

    CERN Document Server

    Hasenfratz, Anna

    2010-01-01

    Strongly coupled gauge systems with many fermions are important in many phenomenological models. I use the 2-lattice matching Monte Carlo renormalization group method to study the fixed point structure and critical indexes of SU(3) gauge models with 8 and 12 flavors of fundamental fermions. With an improved renormalization group block transformation I am able to connect the perturbative and confining regimes of the N_f=8 flavor system, thus verifying its QCD-like nature. With N_f=12 flavors the data favor the existence of an infrared fixed point and conformal phase, though the results are also consistent with very slow walking. I measure the anomalous mass dimension in both systems at several gauge couplings and find that they are barely different from the free field value.

  2. Comment on the paper: "Spectroscopic and computational study of the major oxidation products formed during the reaction of two quercetin conformers with a free radical".

    Science.gov (United States)

    Scognamiglio, Monica; Temussi, Fabio; D'Abrosca, Brigida; Fiorentino, Antonio

    2013-12-01

    The title paper reports a study on the structural elucidation by spectroscopic and computational methods of the products obtained from the reaction of two conformers of quercetin with the 2,2-diphenyl-1-picrylhydrazyl radical (DPPH(•)). Many points of criticism, concerning both theoretical principles and experimental data, are highlighted in the present communication. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Computer simulations of the random barrier model

    DEFF Research Database (Denmark)

    Schrøder, Thomas; Dyre, Jeppe

    2002-01-01

    A brief review of experimental facts regarding ac electronic and ionic conduction in disordered solids is given followed by a discussion of what is perhaps the simplest realistic model, the random barrier model (symmetric hopping model). Results from large scale computer simulations are presented......, focusing on universality of the ac response in the extreme disorder limit. Finally, some important unsolved problems relating to hopping models for ac conduction are listed....

  4. Adsorption mechanisms of microcystin variant conformations at water-mineral interfaces: A molecular modeling investigation.

    Science.gov (United States)

    Pochodylo, Amy L; Aoki, Thalia G; Aristilde, Ludmilla

    2016-10-15

    Microcystins (MCs) are potent toxins released during cyanobacterial blooms. Clay minerals are implicated in trapping MCs within soil particles in surface waters and sediments. In the absence of molecular characterization, the relevance of previously proposed adsorption mechanisms is lacking. Towards obtaining this characterization, we conducted Monte Carlo simulations combined with molecular dynamics relaxation of two MC variants, MC-leucine-arginine (MC-LR) and MC-leucine-alanine (MC-LA), adsorbed on hydrated montmorillonite with different electrolytes. The resulting adsorbate structures revealed how MC conformations and aqueous conditions dictate binding interactions at the mineral surface. Electrostatic coupling between the arginine residue and a carboxylate in MC-LR excluded the participation of arginine in mediating adsorption on montmorillonite in a NaCl solution. However, in a CaCl2 solution, the complexation of Ca by two carboxylate moieties in MC-LR changed the MC conformation, which allowed arginine to mediate electrostatic interaction with the mineral. By contrast, due to the lack of arginine in MC-LA, complexation of Ca by only one carboxylate in MC-LA was required to favor Ca-bridging interaction with the mineral. Multiple water-bridged H-bonding interactions were also important in anchoring MCs at the mineral surface. Our modeling results offer molecular insights into the structural and chemical factors that can control the fate of MCs at water-mineral interfaces.

  5. Lipid tail protrusion in simulations predicts fusogenic activity of influenza fusion peptide mutants and conformational models.

    Directory of Open Access Journals (Sweden)

    Per Larsson

    Full Text Available Fusion peptides from influenza hemagglutinin act on membranes to promote membrane fusion, but the mechanism by which they do so remains unknown. Recent theoretical work has suggested that contact of protruding lipid tails may be an important feature of the transition state for membrane fusion. If this is so, then influenza fusion peptides would be expected to promote tail protrusion in proportion to the ability of the corresponding full-length hemagglutinin to drive lipid mixing in fusion assays. We have performed molecular dynamics simulations of influenza fusion peptides in lipid bilayers, comparing the X-31 influenza strain against a series of N-terminal mutants. As hypothesized, the probability of lipid tail protrusion correlates well with the lipid mixing rate induced by each mutant. This supports the conclusion that tail protrusion is important to the transition state for fusion. Furthermore, it suggests that tail protrusion can be used to examine how fusion peptides might interact with membranes to promote fusion. Previous models for native influenza fusion peptide structure in membranes include a kinked helix, a straight helix, and a helical hairpin. Our simulations visit each of these conformations. Thus, the free energy differences between each are likely low enough that specifics of the membrane environment and peptide construct may be sufficient to modulate the equilibrium between them. However, the kinked helix promotes lipid tail protrusion in our simulations much more strongly than the other two structures. We therefore predict that the kinked helix is the most fusogenic of these three conformations.

  6. Conformally symmetric vacuum solutions of the gravitational field equations in the brane-world models

    Science.gov (United States)

    Harko, T.; Mak, M. K.

    2005-10-01

    A class of exact solutions of the gravitational field equations in the vacuum on the brane are obtained by assuming the existence of a conformal Killing vector field, with non-static and non-central symmetry. In this case, the general solution of the field equations can be obtained in a parametric form in terms of the Bessel functions. The behavior of the basic physical parameters describing the non-local effects generated by the gravitational field of the bulk (dark radiation and dark pressure) is also considered in detail, and the equation of state satisfied at infinity by these quantities is derived. As a physical application of the obtained solutions we consider the behavior of the angular velocity of a test particle moving in a stable circular orbit. The tangential velocity of the particle is a monotonically increasing function of the radial distance and, in the limit of large values of the radial coordinate, tends to a constant value, which is independent on the parameters describing the model. Therefore, a brane geometry admitting a one-parameter group of conformal motions may provide an explanation for the dynamics of the neutral hydrogen clouds at large distances from the galactic center, which is usually explained by postulating the existence of the dark matter.

  7. Non-conformable, partial and conformable transposition

    DEFF Research Database (Denmark)

    König, Thomas; Mäder, Lars Kai

    2013-01-01

    Although member states are obliged to transpose directives into domestic law in a conformable manner and receive considerable time for their transposition activities, we identify three levels of transposition outcomes for EU directives: conformable, partially conformable and non-conformable....... Compared with existing transposition models, which do not distinguish between different transposition outcomes, we examine the factors influencing each transposition process by means of a competing risk analysis. We find that preference-related factors, in particular the disagreement of a member state...... and the Commission regarding a directive’s outcome, play a much more strategic role than has to date acknowledged in the transposition literature. Whereas disagreement of a member state delays conformable transposition, it speeds up non-conformable transposition. Disagreement of the Commission only prolongs...

  8. Mechanistic models in computational social science

    Science.gov (United States)

    Holme, Petter; Liljeros, Fredrik

    2015-09-01

    Quantitative social science is not only about regression analysis or, in general, data inference. Computer simulations of social mechanisms have an over 60 years long history. They have been used for many different purposes—to test scenarios, to test the consistency of descriptive theories (proof-of-concept models), to explore emergent phenomena, for forecasting, etc. In this essay, we sketch these historical developments, the role of mechanistic models in the social sciences and the influences from the natural and formal sciences. We argue that mechanistic computational models form a natural common ground for social and natural sciences, and look forward to possible future information flow across the social-natural divide.

  9. Mechanistic Models in Computational Social Science

    CERN Document Server

    Holme, Petter

    2015-01-01

    Quantitative social science is not only about regression analysis or, in general, data inference. Computer simulations of social mechanisms have an over 60 years long history. They have been used for many different purposes -- to test scenarios, to test the consistency of descriptive theories (proof-of-concept models), to explore emerging phenomena, for forecasting, etc. In this essay, we sketch these historical developments, the role of mechanistic models in the social sciences and the influences from natural and formal sciences. We argue that mechanistic computational models form a natural common ground for social and natural sciences, and look forward to possible future information flow across the social-natural divide.

  10. Computational modeling of failure in composite laminates

    NARCIS (Netherlands)

    Van der Meer, F.P.

    2010-01-01

    There is no state of the art computational model that is good enough for predictive simulation of the complete failure process in laminates. Already on the single ply level controversy exists. Much work has been done in recent years in the development of continuum models, but these fail to predict t

  11. Computational Intelligence. Mortality Models for the Actuary

    NARCIS (Netherlands)

    Willemse, W.J.

    2001-01-01

    This thesis applies computational intelligence to the field of actuarial (insurance) science. In particular, this thesis deals with life insurance where mortality modelling is important. Actuaries use ancient models (mortality laws) from the nineteenth century, for example Gompertz' and Makeham's la

  12. Generating computational models for serious gaming

    NARCIS (Netherlands)

    Westera, Wim

    2014-01-01

    Many serious games include computational models that simulate dynamic systems. These models promote enhanced interaction and responsiveness. Under the social web paradigm more and more usable game authoring tools become available that enable prosumers to create their own games, but the inclusion of

  13. Predicting bioactive conformations and binding modes of macrocycles

    Science.gov (United States)

    Anighoro, Andrew; de la Vega de León, Antonio; Bajorath, Jürgen

    2016-10-01

    Macrocyclic compounds experience increasing interest in drug discovery. It is often thought that these large and chemically complex molecules provide promising candidates to address difficult targets and interfere with protein-protein interactions. From a computational viewpoint, these molecules are difficult to treat. For example, flexible docking of macrocyclic compounds is hindered by the limited ability of current docking approaches to optimize conformations of extended ring systems for pose prediction. Herein, we report predictions of bioactive conformations of macrocycles using conformational search and binding modes using docking. Conformational ensembles generated using specialized search technique of about 70 % of the tested macrocycles contained accurate bioactive conformations. However, these conformations were difficult to identify on the basis of conformational energies. Moreover, docking calculations with limited ligand flexibility starting from individual low energy conformations rarely yielded highly accurate binding modes. In about 40 % of the test cases, binding modes were approximated with reasonable accuracy. However, when conformational ensembles were subjected to rigid body docking, an increase in meaningful binding mode predictions to more than 50 % of the test cases was observed. Electrostatic effects did not contribute to these predictions in a positive or negative manner. Rather, achieving shape complementarity at macrocycle-target interfaces was a decisive factor. In summary, a combined computational protocol using pre-computed conformational ensembles of macrocycles as a starting point for docking shows promise in modeling binding modes of macrocyclic compounds.

  14. Do's and Don'ts of Computer Models for Planning

    Science.gov (United States)

    Hammond, John S., III

    1974-01-01

    Concentrates on the managerial issues involved in computer planning models. Describes what computer planning models are and the process by which managers can increase the likelihood of computer planning models being successful in their organizations. (Author/DN)

  15. Do's and Don'ts of Computer Models for Planning

    Science.gov (United States)

    Hammond, John S., III

    1974-01-01

    Concentrates on the managerial issues involved in computer planning models. Describes what computer planning models are and the process by which managers can increase the likelihood of computer planning models being successful in their organizations. (Author/DN)

  16. Parallel Computing of Ocean General Circulation Model

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    This paper discusses the parallel computing of the thirdgeneration Ocea n General Circulation Model (OGCM) from the State Key Laboratory of Numerical Mo deling for Atmospheric Science and Geophysical Fluid Dynamics(LASG),Institute of Atmosphere Physics(IAP). Meanwhile, several optimization strategies for paralle l computing of OGCM (POGCM) on Scalable Shared Memory Multiprocessor (S2MP) are presented. Using Message Passing Interface (MPI), we obtain super linear speedup on SGI Origin 2000 for parallel OGCM(POGCM) after optimization.

  17. On the completeness of quantum computation models

    CERN Document Server

    Arrighi, Pablo

    2010-01-01

    The notion of computability is stable (i.e. independent of the choice of an indexing) over infinite-dimensional vector spaces provided they have a finite "tensorial dimension". Such vector spaces with a finite tensorial dimension permit to define an absolute notion of completeness for quantum computation models and give a precise meaning to the Church-Turing thesis in the framework of quantum theory. (Extra keywords: quantum programming languages, denotational semantics, universality.)

  18. Security Management Model in Cloud Computing Environment

    OpenAIRE

    2016-01-01

    In the cloud computing environment, cloud virtual machine (VM) will be more and more the number of virtual machine security and management faced giant Challenge. In order to address security issues cloud computing virtualization environment, this paper presents a virtual machine based on efficient and dynamic deployment VM security management model state migration and scheduling, study of which virtual machine security architecture, based on AHP (Analytic Hierarchy Process) virtual machine de...

  19. Finite difference computing with exponential decay models

    CERN Document Server

    Langtangen, Hans Petter

    2016-01-01

    This text provides a very simple, initial introduction to the complete scientific computing pipeline: models, discretization, algorithms, programming, verification, and visualization. The pedagogical strategy is to use one case study – an ordinary differential equation describing exponential decay processes – to illustrate fundamental concepts in mathematics and computer science. The book is easy to read and only requires a command of one-variable calculus and some very basic knowledge about computer programming. Contrary to similar texts on numerical methods and programming, this text has a much stronger focus on implementation and teaches testing and software engineering in particular. .

  20. A computational model of analogical reasoning

    Institute of Scientific and Technical Information of China (English)

    李波; 赵沁平

    1997-01-01

    A computational model of analogical reasoning is presented, which divides analogical reasoning process into four subprocesses, i.e. reminding, elaboration, matching and transfer. For each subprocess, its role and the principles it follows are given. The model is discussed in detail, including salient feature-based reminding, relevance-directed elaboration, an improved matching model and a transfer model. And the advantages of this model are summarized based on the results of BHARS, which is an analogical reasoning system implemented by this model.

  1. Modeling Cu2+-Aβ complexes from computational approaches

    Science.gov (United States)

    Alí-Torres, Jorge; Mirats, Andrea; Maréchal, Jean-Didier; Rodríguez-Santiago, Luis; Sodupe, Mariona

    2015-09-01

    Amyloid plaques formation and oxidative stress are two key events in the pathology of the Alzheimer disease (AD), in which metal cations have been shown to play an important role. In particular, the interaction of the redox active Cu2+ metal cation with Aβ has been found to interfere in amyloid aggregation and to lead to reactive oxygen species (ROS). A detailed knowledge of the electronic and molecular structure of Cu2+-Aβ complexes is thus important to get a better understanding of the role of these complexes in the development and progression of the AD disease. The computational treatment of these systems requires a combination of several available computational methodologies, because two fundamental aspects have to be addressed: the metal coordination sphere and the conformation adopted by the peptide upon copper binding. In this paper we review the main computational strategies used to deal with the Cu2+-Aβ coordination and build plausible Cu2+-Aβ models that will afterwards allow determining physicochemical properties of interest, such as their redox potential.

  2. Modeling Cu2+-Aβ complexes from computational approaches

    Directory of Open Access Journals (Sweden)

    Jorge Alí-Torres

    2015-09-01

    Full Text Available Amyloid plaques formation and oxidative stress are two key events in the pathology of the Alzheimer disease (AD, in which metal cations have been shown to play an important role. In particular, the interaction of the redox active Cu2+ metal cation with Aβ has been found to interfere in amyloid aggregation and to lead to reactive oxygen species (ROS. A detailed knowledge of the electronic and molecular structure of Cu2+-Aβ complexes is thus important to get a better understanding of the role of these complexes in the development and progression of the AD disease. The computational treatment of these systems requires a combination of several available computational methodologies, because two fundamental aspects have to be addressed: the metal coordination sphere and the conformation adopted by the peptide upon copper binding. In this paper we review the main computational strategies used to deal with the Cu2+-Aβ coordination and build plausible Cu2+-Aβ models that will afterwards allow determining physicochemical properties of interest, such as their redox potential.

  3. Modeling Cu{sup 2+}-Aβ complexes from computational approaches

    Energy Technology Data Exchange (ETDEWEB)

    Alí-Torres, Jorge [Departamento de Química, Universidad Nacional de Colombia- Sede Bogotá, 111321 (Colombia); Mirats, Andrea; Maréchal, Jean-Didier; Rodríguez-Santiago, Luis; Sodupe, Mariona, E-mail: Mariona.Sodupe@uab.cat [Departament de Química, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona (Spain)

    2015-09-15

    Amyloid plaques formation and oxidative stress are two key events in the pathology of the Alzheimer disease (AD), in which metal cations have been shown to play an important role. In particular, the interaction of the redox active Cu{sup 2+} metal cation with Aβ has been found to interfere in amyloid aggregation and to lead to reactive oxygen species (ROS). A detailed knowledge of the electronic and molecular structure of Cu{sup 2+}-Aβ complexes is thus important to get a better understanding of the role of these complexes in the development and progression of the AD disease. The computational treatment of these systems requires a combination of several available computational methodologies, because two fundamental aspects have to be addressed: the metal coordination sphere and the conformation adopted by the peptide upon copper binding. In this paper we review the main computational strategies used to deal with the Cu{sup 2+}-Aβ coordination and build plausible Cu{sup 2+}-Aβ models that will afterwards allow determining physicochemical properties of interest, such as their redox potential.

  4. Computational disease modeling – fact or fiction?

    Directory of Open Access Journals (Sweden)

    Stephan Klaas

    2009-06-01

    Full Text Available Abstract Background Biomedical research is changing due to the rapid accumulation of experimental data at an unprecedented scale, revealing increasing degrees of complexity of biological processes. Life Sciences are facing a transition from a descriptive to a mechanistic approach that reveals principles of cells, cellular networks, organs, and their interactions across several spatial and temporal scales. There are two conceptual traditions in biological computational-modeling. The bottom-up approach emphasizes complex intracellular molecular models and is well represented within the systems biology community. On the other hand, the physics-inspired top-down modeling strategy identifies and selects features of (presumably essential relevance to the phenomena of interest and combines available data in models of modest complexity. Results The workshop, "ESF Exploratory Workshop on Computational disease Modeling", examined the challenges that computational modeling faces in contributing to the understanding and treatment of complex multi-factorial diseases. Participants at the meeting agreed on two general conclusions. First, we identified the critical importance of developing analytical tools for dealing with model and parameter uncertainty. Second, the development of predictive hierarchical models spanning several scales beyond intracellular molecular networks was identified as a major objective. This contrasts with the current focus within the systems biology community on complex molecular modeling. Conclusion During the workshop it became obvious that diverse scientific modeling cultures (from computational neuroscience, theory, data-driven machine-learning approaches, agent-based modeling, network modeling and stochastic-molecular simulations would benefit from intense cross-talk on shared theoretical issues in order to make progress on clinically relevant problems.

  5. On the computational modeling of FSW processes

    OpenAIRE

    Agelet de Saracibar Bosch, Carlos; Chiumenti, Michèle; Santiago, Diego de; Cervera Ruiz, Miguel; Dialami, Narges; Lombera, Guillermo

    2010-01-01

    This work deals with the computational modeling and numerical simulation of Friction Stir Welding (FSW) processes. Here a quasi-static, transient, mixed stabilized Eulerian formulation is used. Norton-Hoff and Sheppard-Wright rigid thermoplastic material models have been considered. A product formula algorithm, leading to a staggered solution scheme, has been used. The model has been implemented into the in-house developed FE code COMET. Results obtained in the simulation of FSW process are c...

  6. An improved computational constitutive model for glass

    Science.gov (United States)

    Holmquist, Timothy J.; Johnson, Gordon R.; Gerlach, Charles A.

    2017-01-01

    In 2011, Holmquist and Johnson presented a model for glass subjected to large strains, high strain rates and high pressures. It was later shown that this model produced solutions that were severely mesh dependent, converging to a solution that was much too strong. This article presents an improved model for glass that uses a new approach to represent the interior and surface strength that is significantly less mesh dependent. This new formulation allows for the laboratory data to be accurately represented (including the high tensile strength observed in plate-impact spall experiments) and produces converged solutions that are in good agreement with ballistic data. The model also includes two new features: one that decouples the damage model from the strength model, providing more flexibility in defining the onset of permanent deformation; the other provides for a variable shear modulus that is dependent on the pressure. This article presents a review of the original model, a description of the improved model and a comparison of computed and experimental results for several sets of ballistic data. Of special interest are computed and experimental results for two impacts onto a single target, and the ability to compute the damage velocity in agreement with experiment data. This article is part of the themed issue 'Experimental testing and modelling of brittle materials at high strain rates'.

  7. Leptogenesis and Neutrino Oscillations in the Classically Conformal Standard Model with the Higgs Portal

    CERN Document Server

    Khoze, Valentin V

    2013-01-01

    The Standard Model with an added Higgs portal interaction and no explicit mass terms is a classically scale-invariant theory. In this case the scale of electroweak symmetry breaking can be induced radiatively by the Coleman-Weinberg mechanism operational in a hidden sector, and then transmitted to the Standard Model through the Higgs portal. The smallness of the generated values for the Higgs vev and mass, compared to the UV cutoff of our classically scale-invariant effective theory, is naturally explained by this mechanism. We show how these classically conformal models can generate the baryon asymmetry of the Universe without the need of introducing mass scales by hand or their resonant fine-tuning. The minimal model we consider is the Standard Model coupled to the Coleman-Weinberg scalar field charged under the $U(1)_{B-L}$ gauge group. Anomaly cancellation requires automatic inclusion of three generations of right-handed neutrinos. Their GeV-scale Majorana masses are induced by the Coleman-Weinberg field ...

  8. Conformational mechanics, adsorption, and normal force interactions of lubricin and hyaluronic acid on model surfaces.

    Science.gov (United States)

    Chang, Debby P; Abu-Lail, Nehal I; Guilak, Farshid; Jay, Gregory D; Zauscher, Stefan

    2008-02-19

    Glycoproteins, such as lubricin, and hyaluronic acid (HA) play a prominent role in the boundary lubrication mechanism in diarthrodial joints. Although many studies have tried to elucidate the lubrication mechanisms of articular cartilage, the molecular details of how lubricin and HA interact with cartilage surfaces and mediate their interaction still remain poorly understood. Here we used model substrates, functionalized with self-assembled monolayers terminating in hydroxyl or methyl groups, (1) to determine the effect of surface chemistry on lubricin and HA adsorption using surface plasmon resonance (SPR) and (2) to study normal force interactions between these surfaces as a function of lubricin and HA concentration using colloidal probe microscopy. We found that lubricin is amphiphilic and adsorbed strongly onto both methyl- and hydroxyl-terminated surfaces. On hydrophobic surfaces, lubricin likely adopts a compact, looplike conformation in which its hydrophobic domains at the N and C termini serve as surface anchors. On hydrophilic surfaces, lubricin likely adsorbs anywhere along its hydrophilic central domain and adopts, with increasing solution concentration, an extended tail-like conformation. Overall, lubricin develops strong repulsive interactions when compressing two surfaces into contact. Furthermore, upon surface separation, adhesion occurs between the surfaces as a result of molecular bridging and chain disentanglement. This behavior is in contrast to that of HA, which does not adsorb appreciably on either of the model surfaces and does not develop significant repulsive interactions. Adhesive forces, particularly between the hydrophobic surfaces, are large and not appreciably affected by HA. For a mixture of lubricin and HA, we observed slightly larger adsorptions and repulsions than those found for lubricin alone. Our experiments suggest that this interaction depends on unspecific physical rather than chemical interactions between lubricin and HA. We

  9. A Computational Model with Experimental Validation for DNA Flow in Microchannels

    Energy Technology Data Exchange (ETDEWEB)

    Nonaka, A; Gulati, S; Trebotich, D; Miller, G H; Muller, S J; Liepmann, D

    2005-02-02

    The authors compare a computational model to experimental data for DNA-laden flow in microchannels. The purpose of this work in progress is to validate a new numerical algorithm for viscoelastic flow using the Oldroyd-B model. The numerical approach is a stable and convergent polymeric stress-splitting scheme for viscoelasticity. They treat the hyperbolic part of the equations of motion with an embedded boundary method for solving hyperbolic conservation laws in irregular domains. They enforce incompressibility and evolve velocity and pressure with a projection method. The experiments are performed using epifluorescent microscopy and digital particle image velocimetry to measure velocity fields and track the conformation of biological macromolecules. They present results comparing velocity fields and the observations of computed fluid stress on molecular conformation in various microchannels.

  10. Computer Aided Modelling – Opportunities and Challenges

    DEFF Research Database (Denmark)

    Cameron, Ian; Gani, Rafiqul

    2011-01-01

    -based solutions to significant problems? The important issues of workflow and data flow are discussed together with fit-for-purpose model development. As well, the lack of tools around multiscale modelling provides opportunities for the development of efficient tools to address such challenges. The ability......This chapter considers the opportunities that are present in developing, extending and applying aspects of computer-aided modelling principles and practice. What are the best tasks to be done by modellers and what needs the application of CAPE tools? How do we efficiently develop model...... and opportunities are discussed for such systems....

  11. Time series modeling, computation, and inference

    CERN Document Server

    Prado, Raquel

    2010-01-01

    The authors systematically develop a state-of-the-art analysis and modeling of time series. … this book is well organized and well written. The authors present various statistical models for engineers to solve problems in time series analysis. Readers no doubt will learn state-of-the-art techniques from this book.-Hsun-Hsien Chang, Computing Reviews, March 2012My favorite chapters were on dynamic linear models and vector AR and vector ARMA models.-William Seaver, Technometrics, August 2011… a very modern entry to the field of time-series modelling, with a rich reference list of the current lit

  12. Conformal Nets II: Conformal Blocks

    Science.gov (United States)

    Bartels, Arthur; Douglas, Christopher L.; Henriques, André

    2017-03-01

    Conformal nets provide a mathematical formalism for conformal field theory. Associated to a conformal net with finite index, we give a construction of the `bundle of conformal blocks', a representation of the mapping class groupoid of closed topological surfaces into the category of finite-dimensional projective Hilbert spaces. We also construct infinite-dimensional spaces of conformal blocks for topological surfaces with smooth boundary. We prove that the conformal blocks satisfy a factorization formula for gluing surfaces along circles, and an analogous formula for gluing surfaces along intervals. We use this interval factorization property to give a new proof of the modularity of the category of representations of a conformal net.

  13. Conformal Nets II: Conformal Blocks

    Science.gov (United States)

    Bartels, Arthur; Douglas, Christopher L.; Henriques, André

    2017-08-01

    Conformal nets provide a mathematical formalism for conformal field theory. Associated to a conformal net with finite index, we give a construction of the `bundle of conformal blocks', a representation of the mapping class groupoid of closed topological surfaces into the category of finite-dimensional projective Hilbert spaces. We also construct infinite-dimensional spaces of conformal blocks for topological surfaces with smooth boundary. We prove that the conformal blocks satisfy a factorization formula for gluing surfaces along circles, and an analogous formula for gluing surfaces along intervals. We use this interval factorization property to give a new proof of the modularity of the category of representations of a conformal net.

  14. Computational algebraic geometry of epidemic models

    Science.gov (United States)

    Rodríguez Vega, Martín.

    2014-06-01

    Computational Algebraic Geometry is applied to the analysis of various epidemic models for Schistosomiasis and Dengue, both, for the case without control measures and for the case where control measures are applied. The models were analyzed using the mathematical software Maple. Explicitly the analysis is performed using Groebner basis, Hilbert dimension and Hilbert polynomials. These computational tools are included automatically in Maple. Each of these models is represented by a system of ordinary differential equations, and for each model the basic reproductive number (R0) is calculated. The effects of the control measures are observed by the changes in the algebraic structure of R0, the changes in Groebner basis, the changes in Hilbert dimension, and the changes in Hilbert polynomials. It is hoped that the results obtained in this paper become of importance for designing control measures against the epidemic diseases described. For future researches it is proposed the use of algebraic epidemiology to analyze models for airborne and waterborne diseases.

  15. Biomedical Imaging and Computational Modeling in Biomechanics

    CERN Document Server

    Iacoviello, Daniela

    2013-01-01

    This book collects the state-of-art and new trends in image analysis and biomechanics. It covers a wide field of scientific and cultural topics, ranging from remodeling of bone tissue under the mechanical stimulus up to optimizing the performance of sports equipment, through the patient-specific modeling in orthopedics, microtomography and its application in oral and implant research, computational modeling in the field of hip prostheses, image based model development and analysis of the human knee joint, kinematics of the hip joint, micro-scale analysis of compositional and mechanical properties of dentin, automated techniques for cervical cell image analysis, and iomedical imaging and computational modeling in cardiovascular disease.   The book will be of interest to researchers, Ph.D students, and graduate students with multidisciplinary interests related to image analysis and understanding, medical imaging, biomechanics, simulation and modeling, experimental analysis.

  16. Analisis Model Manajemen Insiden Berbasis Cloud Computing

    Directory of Open Access Journals (Sweden)

    Anggi Sukamto

    2015-05-01

    Full Text Available Dukungan teknologi informasi yang diterapkan oleh organisasi membutuhkan suatu manajemen agar penggunaannya dapat memenuhi tujuan penerapan teknologi tersebut. Salah satu kerangka kerja manajemen layanan teknologi informasi yang dapat diadopsi oleh organisasi adalah Information Technology Infrastructure Library (ITIL. Dukungan layanan (service support merupakan bagian dari proses ITIL. Pada umumnya, aktivitas dukungan layanan dilaksanakan dengan penggunaan teknologi yang dapat diakses melalui internet. Kondisi tersebut mengarah pada suatu konsep cloud computing. Cloud computing memungkinkan suatu instansi atau perusahaan untuk bisa mengatur sumber daya melalui jaringan internet. Fokus penelitian ini adalah menganalisis proses dan pelaku yang terlibat dalam dukungan layanan khususnya pada proses manajemen insiden, serta mengidentifikasi potensi penyerahan pelaku ke bentuk layanan cloud computing. Berdasarkan analisis yang dilakukan maka usulan model manajemen insiden berbasis cloud ini dapat diterapkan dalam suatu organisasi yang telah menggunakan teknologi komputer untuk mendukung kegiatan operasional. Kata Kunci—Cloud computing, ITIL, Manajemen Insiden, Service Support, Service Desk.

  17. Applied Mathematics, Modelling and Computational Science

    CERN Document Server

    Kotsireas, Ilias; Makarov, Roman; Melnik, Roderick; Shodiev, Hasan

    2015-01-01

    The Applied Mathematics, Modelling, and Computational Science (AMMCS) conference aims to promote interdisciplinary research and collaboration. The contributions in this volume cover the latest research in mathematical and computational sciences, modeling, and simulation as well as their applications in natural and social sciences, engineering and technology, industry, and finance. The 2013 conference, the second in a series of AMMCS meetings, was held August 26–30 and organized in cooperation with AIMS and SIAM, with support from the Fields Institute in Toronto, and Wilfrid Laurier University. There were many young scientists at AMMCS-2013, both as presenters and as organizers. This proceedings contains refereed papers contributed by the participants of the AMMCS-2013 after the conference. This volume is suitable for researchers and graduate students, mathematicians and engineers, industrialists, and anyone who would like to delve into the interdisciplinary research of applied and computational mathematics ...

  18. Utilizing computer models for optimizing classroom acoustics

    Science.gov (United States)

    Hinckley, Jennifer M.; Rosenberg, Carl J.

    2002-05-01

    The acoustical conditions in a classroom play an integral role in establishing an ideal learning environment. Speech intelligibility is dependent on many factors, including speech loudness, room finishes, and background noise levels. The goal of this investigation was to use computer modeling techniques to study the effect of acoustical conditions on speech intelligibility in a classroom. This study focused on a simulated classroom which was generated using the CATT-acoustic computer modeling program. The computer was utilized as an analytical tool in an effort to optimize speech intelligibility in a typical classroom environment. The factors that were focused on were reverberation time, location of absorptive materials, and background noise levels. Speech intelligibility was measured with the Rapid Speech Transmission Index (RASTI) method.

  19. Integrating interactive computational modeling in biology curricula.

    Science.gov (United States)

    Helikar, Tomáš; Cutucache, Christine E; Dahlquist, Lauren M; Herek, Tyler A; Larson, Joshua J; Rogers, Jim A

    2015-03-01

    While the use of computer tools to simulate complex processes such as computer circuits is normal practice in fields like engineering, the majority of life sciences/biological sciences courses continue to rely on the traditional textbook and memorization approach. To address this issue, we explored the use of the Cell Collective platform as a novel, interactive, and evolving pedagogical tool to foster student engagement, creativity, and higher-level thinking. Cell Collective is a Web-based platform used to create and simulate dynamical models of various biological processes. Students can create models of cells, diseases, or pathways themselves or explore existing models. This technology was implemented in both undergraduate and graduate courses as a pilot study to determine the feasibility of such software at the university level. First, a new (In Silico Biology) class was developed to enable students to learn biology by "building and breaking it" via computer models and their simulations. This class and technology also provide a non-intimidating way to incorporate mathematical and computational concepts into a class with students who have a limited mathematical background. Second, we used the technology to mediate the use of simulations and modeling modules as a learning tool for traditional biological concepts, such as T cell differentiation or cell cycle regulation, in existing biology courses. Results of this pilot application suggest that there is promise in the use of computational modeling and software tools such as Cell Collective to provide new teaching methods in biology and contribute to the implementation of the "Vision and Change" call to action in undergraduate biology education by providing a hands-on approach to biology.

  20. Integrating interactive computational modeling in biology curricula.

    Directory of Open Access Journals (Sweden)

    Tomáš Helikar

    2015-03-01

    Full Text Available While the use of computer tools to simulate complex processes such as computer circuits is normal practice in fields like engineering, the majority of life sciences/biological sciences courses continue to rely on the traditional textbook and memorization approach. To address this issue, we explored the use of the Cell Collective platform as a novel, interactive, and evolving pedagogical tool to foster student engagement, creativity, and higher-level thinking. Cell Collective is a Web-based platform used to create and simulate dynamical models of various biological processes. Students can create models of cells, diseases, or pathways themselves or explore existing models. This technology was implemented in both undergraduate and graduate courses as a pilot study to determine the feasibility of such software at the university level. First, a new (In Silico Biology class was developed to enable students to learn biology by "building and breaking it" via computer models and their simulations. This class and technology also provide a non-intimidating way to incorporate mathematical and computational concepts into a class with students who have a limited mathematical background. Second, we used the technology to mediate the use of simulations and modeling modules as a learning tool for traditional biological concepts, such as T cell differentiation or cell cycle regulation, in existing biology courses. Results of this pilot application suggest that there is promise in the use of computational modeling and software tools such as Cell Collective to provide new teaching methods in biology and contribute to the implementation of the "Vision and Change" call to action in undergraduate biology education by providing a hands-on approach to biology.

  1. Computer modeling of loudspeaker arrays in rooms

    Science.gov (United States)

    Schwenke, Roger

    2002-05-01

    Loudspeakers present a special challenge to computational modeling of rooms. When modeling a collection of noncorrelated sound sources, such as a group of musicians, coarse resolution power spectrum and directivities are sufficient. In contrast, a typical loudspeaker array consists of many speakers driven with the same signal, and are therefore almost completely correlated. This can lead to a quite complicated, but stable, pattern of spatial nulls and lobes which depends sensitively on frequency. It has been shown that, to model these interactions accurately, one must have loudspeaker data with 1 deg spatial resolution, 1/24 octave frequency resolution including phase. It will be shown that computer models at such a high resolution can in fact inform design decisions of loudspeaker arrays.

  2. Computational models for synthetic marine infrared clutter

    Science.gov (United States)

    Constantikes, Kim T.; Zysnarski, Adam H.

    1996-06-01

    The next generation of ship defense missiles will need to engage stealthy, passive, sea-skimming missiles. Detection and guidance will occur against a background of sea surface and horizon which can present significant clutter problems for infrared seekers, particularly when targets are comparatively dim. We need a variety of sea clutter models: statistical image models for signal processing algorithm design, clutter occurrence models for systems effectiveness assessment, and constructive image models for synthesizing very large field-of-view (FOV) images with high spatial and temporal resolution. We have implemented and tested such a constructive model. First principle models of water waves and light transport provide a computationally intensive clutter model implemented as a raytracer. Our models include sea, sky, and solar radiance; reflectance; attenuating atmospheres; constructive solid geometry targets; target and water wave dynamics; and simple sensor image formation.

  3. Computational modelling for dry-powder inhalers

    NARCIS (Netherlands)

    Kröger, Ralf; Woolhouse, Robert; Becker, Michael; Wachtel, Herbert; de Boer, Anne; Horner, Marc

    2012-01-01

    Computational fluid dynamics (CFD) is a simulation tool used for modelling powder flow through inhalers to allow optimisation both of device design and drug powder. Here, Ralf Kröger, Consulting Senior CFD Engineer, ANSYS Germany GmbH; Marc Horner, Lead Technical Services Engineer, Healthcare, ANSYS

  4. Agent based computational model of trust

    NARCIS (Netherlands)

    A. Gorobets (Alexander); B. Nooteboom (Bart)

    2004-01-01

    textabstractThis paper employs the methodology of Agent-Based Computational Economics (ACE) to investigate under what conditions trust can be viable in markets. The emergence and breakdown of trust is modeled in a context of multiple buyers and suppliers. Agents adapt their trust in a partner, the w

  5. Integer Programming Models for Computational Biology Problems

    Institute of Scientific and Technical Information of China (English)

    Giuseppe Lancia

    2004-01-01

    The recent years have seen an impressive increase in the use of Integer Programming models for the solution of optimization problems originating in Molecular Biology. In this survey, some of the most successful Integer Programming approaches are described, while a broad overview of application areas being is given in modern Computational Molecular Biology.

  6. Computational modelling for dry-powder inhalers

    NARCIS (Netherlands)

    Kröger, Ralf; Woolhouse, Robert; Becker, Michael; Wachtel, Herbert; de Boer, Anne; Horner, Marc

    2012-01-01

    Computational fluid dynamics (CFD) is a simulation tool used for modelling powder flow through inhalers to allow optimisation both of device design and drug powder. Here, Ralf Kröger, Consulting Senior CFD Engineer, ANSYS Germany GmbH; Marc Horner, Lead Technical Services Engineer, Healthcare,

  7. A Stochastic Dynamic Model of Computer Viruses

    Directory of Open Access Journals (Sweden)

    Chunming Zhang

    2012-01-01

    Full Text Available A stochastic computer virus spread model is proposed and its dynamic behavior is fully investigated. Specifically, we prove the existence and uniqueness of positive solutions, and the stability of the virus-free equilibrium and viral equilibrium by constructing Lyapunov functions and applying Ito's formula. Some numerical simulations are finally given to illustrate our main results.

  8. STEW A Nonlinear Data Modeling Computer Program

    CERN Document Server

    Chen, H

    2000-01-01

    A nonlinear data modeling computer program, STEW, employing the Levenberg-Marquardt algorithm, has been developed to model the experimental sup 2 sup 3 sup 9 Pu(n,f) and sup 2 sup 3 sup 5 U(n,f) cross sections. This report presents results of the modeling of the sup 2 sup 3 sup 9 Pu(n,f) and sup 2 sup 3 sup 5 U(n,f) cross-section data. The calculation of the fission transmission coefficient is based on the double-humped-fission-barrier model of Bjornholm and Lynn. Incident neutron energies of up to 5 MeV are considered.

  9. STEW: A Nonlinear Data Modeling Computer Program

    Energy Technology Data Exchange (ETDEWEB)

    Chen, H.

    2000-03-04

    A nonlinear data modeling computer program, STEW, employing the Levenberg-Marquardt algorithm, has been developed to model the experimental {sup 239}Pu(n,f) and {sup 235}U(n,f) cross sections. This report presents results of the modeling of the {sup 239}Pu(n,f) and {sup 235}U(n,f) cross-section data. The calculation of the fission transmission coefficient is based on the double-humped-fission-barrier model of Bjornholm and Lynn. Incident neutron energies of up to 5 MeV are considered.

  10. Evaluating computational models of cholesterol metabolism.

    Science.gov (United States)

    Paalvast, Yared; Kuivenhoven, Jan Albert; Groen, Albert K

    2015-10-01

    Regulation of cholesterol homeostasis has been studied extensively during the last decades. Many of the metabolic pathways involved have been discovered. Yet important gaps in our knowledge remain. For example, knowledge on intracellular cholesterol traffic and its relation to the regulation of cholesterol synthesis and plasma cholesterol levels is incomplete. One way of addressing the remaining questions is by making use of computational models. Here, we critically evaluate existing computational models of cholesterol metabolism making use of ordinary differential equations and addressed whether they used assumptions and make predictions in line with current knowledge on cholesterol homeostasis. Having studied the results described by the authors, we have also tested their models. This was done primarily by testing the effect of statin treatment in each model. Ten out of eleven models tested have made assumptions in line with current knowledge of cholesterol metabolism. Three out of the ten remaining models made correct predictions, i.e. predicting a decrease in plasma total and LDL cholesterol or increased uptake of LDL upon treatment upon the use of statins. In conclusion, few models on cholesterol metabolism are able to pass a functional test. Apparently most models have not undergone the critical iterative systems biology cycle of validation. We expect modeling of cholesterol metabolism to go through many more model topologies and iterative cycles and welcome the increased understanding of cholesterol metabolism these are likely to bring.

  11. Classically conformal U(1 ) ' extended standard model, electroweak vacuum stability, and LHC Run-2 bounds

    Science.gov (United States)

    Das, Arindam; Oda, Satsuki; Okada, Nobuchika; Takahashi, Dai-suke

    2016-06-01

    We consider the minimal U(1 ) ' extension of the standard model (SM) with the classically conformal invariance, where an anomaly-free U(1 ) ' gauge symmetry is introduced along with three generations of right-handed neutrinos and a U(1 ) ' Higgs field. Since the classically conformal symmetry forbids all dimensional parameters in the model, the U(1 ) ' gauge symmetry is broken by the Coleman-Weinberg mechanism, generating the mass terms of the U(1 ) ' gauge boson (Z' boson) and the right-handed neutrinos. Through a mixing quartic coupling between the U(1 ) ' Higgs field and the SM Higgs doublet field, the radiative U(1 ) ' gauge symmetry breaking also triggers the breaking of the electroweak symmetry. In this model context, we first investigate the electroweak vacuum instability problem in the SM. Employing the renormalization group equations at the two-loop level and the central values for the world average masses of the top quark (mt=173.34 GeV ) and the Higgs boson (mh=125.09 GeV ), we perform parameter scans to identify the parameter region for resolving the electroweak vacuum instability problem. Next we interpret the recent ATLAS and CMS search limits at the LHC Run-2 for the sequential Z' boson to constrain the parameter region in our model. Combining the constraints from the electroweak vacuum stability and the LHC Run-2 results, we find a bound on the Z' boson mass as mZ'≳3.5 TeV . We also calculate self-energy corrections to the SM Higgs doublet field through the heavy states, the right-handed neutrinos and the Z' boson, and find the naturalness bound as mZ'≲7 TeV , in order to reproduce the right electroweak scale for the fine-tuning level better than 10%. The resultant mass range of 3.5 TeV ≲mZ'≲7 TeV will be explored at the LHC Run-2 in the near future.

  12. Applied modelling and computing in social science

    CERN Document Server

    Povh, Janez

    2015-01-01

    In social science outstanding results are yielded by advanced simulation methods, based on state of the art software technologies and an appropriate combination of qualitative and quantitative methods. This book presents examples of successful applications of modelling and computing in social science: business and logistic process simulation and optimization, deeper knowledge extractions from big data, better understanding and predicting of social behaviour and modelling health and environment changes.

  13. Mechanistic models in computational social science

    OpenAIRE

    Petter eHolme; Fredrik eLiljeros

    2015-01-01

    Quantitative social science is not only about regression analysis or, in general, data inference. Computer simulations of social mechanisms have an over 60 years long history. They have been used for many different purposes—to test scenarios, to test the consistency of descriptive theories (proof-of-concept models), to explore emergent phenomena, for forecasting, etc. In this essay, we sketch these historical developments, the role of mechanistic models in the social sciences and the influenc...

  14. Mechanistic models in computational social science

    OpenAIRE

    Holme, Petter; Liljeros, Fredrik

    2015-01-01

    Quantitative social science is not only about regression analysis or, in general, data inference. Computer simulations of social mechanisms have an over 60 years long history. They have been used for many different purposes -- to test scenarios, to test the consistency of descriptive theories (proof-of-concept models), to explore emergent phenomena, for forecasting, etc. In this essay, we sketch these historical developments, the role of mechanistic models in the social sciences and the influ...

  15. Can an Asymptotically-Safe Conformal $U(1)'$ Model Address the LHC Diboson Excess?

    CERN Document Server

    Wang, Zhi-Wei; Steele, T G; Mann, R B

    2015-01-01

    We consider an asymptotically-safe conformal leptophobic $U(1)'$ model to address the diboson excess recently observed at LHC. A broad selection of UV boundary conditions corresponding to different asymptotic safety (AS) scenarios have been studied. We find the AS scenarios to have very strong predictive power, allowing unique determination of most of the parameters in the model. We obtain the interrelationships among the couplings, the unification scale $M_{UV}$ and the generations of quarks coupled to the $Z'$, and especially the correlation between $M_{UV}$ and the top quark Yukawa coupling $Y_t$. We find one of the AS boundary conditions provides a diboson excess of around 4 fb, which is close to the current best fit value. This requires a top quark Yukawa coupling $Y_t=0.954$ and a unification scale $M_{UV}=1.85\\times 10^{11}\\,\\rm{GeV}$, which is much lower than the Planck scale. In addition, this model also admits dark matter with a mass around $1\\,\\rm{TeV}$.

  16. A microelectronic portal imaging device for image guided conformal microirradiation of murine cancer models.

    Science.gov (United States)

    Price, Samantha G; Silvius, Alexander A; Izaguirre, Enrique W

    2014-01-01

    Image guided conformal small animal orthovoltage microirradiators are currently under development to perform radiobiological experiments with preclinical cancer models. An important component of these instruments is the treatment delivery image guidance system, a microelectronic portal imaging device (μEPID). Here, we present the design and implementation of a μEPID, specifically designed and constructed for small animal orthovoltage microirradiators. The μEPID can acquire images in the range of 60 kVp to 320 kVp x-ray photon energies and can endure high doses from orthovoltage beams without radiation damage. The μEPID can acquire 200 μm resolution images at a rate of 17 frames per second for online in vivo co-registration between irradiation beams and small animal anatomy. An exposure with less than 1% of a 2 Gy treatment field is required for imaging, which is an adequate ratio between imaging dose and treatment dose to avoid undesired irradiation of healthy tissue or alteration of the preclinical cancer model. The μEPID was calibrated for microdosimetry with a precision of 4.1% with respect to an ion chamber, used as a gold standard. To validate the in vivo device performance, irradiations of lung, brain, and xenograft breast cancer preclinical models were performed and analyzed.

  17. Investigating the conformational stability of prion strains through a kinetic replication model.

    Directory of Open Access Journals (Sweden)

    Mattia Zampieri

    2009-07-01

    Full Text Available Prion proteins are known to misfold into a range of different aggregated forms, showing different phenotypic and pathological states. Understanding strain specificities is an important problem in the field of prion disease. Little is known about which PrP(Sc structural properties and molecular mechanisms determine prion replication, disease progression and strain phenotype. The aim of this work is to investigate, through a mathematical model, how the structural stability of different aggregated forms can influence the kinetics of prion replication. The model-based results suggest that prion strains with different conformational stability undergoing in vivo replication are characterizable in primis by means of different rates of breakage. A further role seems to be played by the aggregation rate (i.e. the rate at which a prion fibril grows. The kinetic variability introduced in the model by these two parameters allows us to reproduce the different characteristic features of the various strains (e.g., fibrils' mean length and is coherent with all experimental observations concerning strain-specific behavior.

  18. Classically conformal U(1)$^\\prime$ extended Standard Model and Higgs vacuum stability

    CERN Document Server

    Oda, Satsuki; Takahashi, Dai-suke

    2015-01-01

    We consider the minimal U(1)$^\\prime$ extension of the Standard Model (SM) with conformal invariance at the classical level, where in addition to the SM particle contents, three generations of right-handed neutrinos and a U(1)$^\\prime$ Higgs field are introduced. In the presence of the three right-handed neutrinos, which are responsible for the seesaw mechanism, this model is free from all the gauge and gravitational anomalies. The U(1)$^\\prime$ gauge symmetry is radiatively broken via the Coleman-Weinberg mechanism, by which the U(1)$^\\prime$ gauge boson ($Z^\\prime$ boson) mass as well as the Majorana mass for the right-handed neutrinos are generated. The radiative U(1)$^\\prime$ symmetry breaking also induces a negative mass squared for the SM Higgs doublet to trigger the electroweak symmetry breaking. In this context, we investigate a possibility to solve the SM Higgs vacuum instability problem. The model includes only three free parameters (U(1)$^\\prime$ charge of the SM Higgs doublet, U(1)$^\\prime$ gauge ...

  19. The role of conformal symmetry in gravity and the standard model

    NARCIS (Netherlands)

    Lucat, Stefano; Prokopec, Tomislav

    2016-01-01

    In this paper we consider conformal symmetry in the context of manifolds with general affine connection. We extend the conformal transformation law of the metric to a general metric compatible affine connection, and find that it is a symmetry of both the geodesic equation and the Riemann tensor. We

  20. A Dualistic Model To Describe Computer Architectures

    Science.gov (United States)

    Nitezki, Peter; Engel, Michael

    1985-07-01

    The Dualistic Model for Computer Architecture Description uses a hierarchy of abstraction levels to describe a computer in arbitrary steps of refinement from the top of the user interface to the bottom of the gate level. In our Dualistic Model the description of an architecture may be divided into two major parts called "Concept" and "Realization". The Concept of an architecture on each level of the hierarchy is an Abstract Data Type that describes the functionality of the computer and an implementation of that data type relative to the data type of the next lower level of abstraction. The Realization on each level comprises a language describing the means of user interaction with the machine, and a processor interpreting this language in terms of the language of the lower level. The surface of each hierarchical level, the data type and the language express the behaviour of a ma-chine at this level, whereas the implementation and the processor describe the structure of the algorithms and the system. In this model the Principle of Operation maps the object and computational structure of the Concept onto the structures of the Realization. Describing a system in terms of the Dualistic Model is therefore a process of refinement starting at a mere description of behaviour and ending at a description of structure. This model has proven to be a very valuable tool in exploiting the parallelism in a problem and it is very transparent in discovering the points where par-allelism is lost in a special architecture. It has successfully been used in a project on a survey of Computer Architecture for Image Processing and Pattern Analysis in Germany.

  1. Processor core model for quantum computing.

    Science.gov (United States)

    Yung, Man-Hong; Benjamin, Simon C; Bose, Sougato

    2006-06-09

    We describe an architecture based on a processing "core," where multiple qubits interact perpetually, and a separate "store," where qubits exist in isolation. Computation consists of single qubit operations, swaps between the store and the core, and free evolution of the core. This enables computation using physical systems where the entangling interactions are "always on." Alternatively, for switchable systems, our model constitutes a prescription for optimizing many-qubit gates. We discuss implementations of the quantum Fourier transform, Hamiltonian simulation, and quantum error correction.

  2. Computer Model Of Fragmentation Of Atomic Nuclei

    Science.gov (United States)

    Wilson, John W.; Townsend, Lawrence W.; Tripathi, Ram K.; Norbury, John W.; KHAN FERDOUS; Badavi, Francis F.

    1995-01-01

    High Charge and Energy Semiempirical Nuclear Fragmentation Model (HZEFRG1) computer program developed to be computationally efficient, user-friendly, physics-based program for generating data bases on fragmentation of atomic nuclei. Data bases generated used in calculations pertaining to such radiation-transport applications as shielding against radiation in outer space, radiation dosimetry in outer space, cancer therapy in laboratories with beams of heavy ions, and simulation studies for designing detectors for experiments in nuclear physics. Provides cross sections for production of individual elements and isotopes in breakups of high-energy heavy ions by combined nuclear and Coulomb fields of interacting nuclei. Written in ANSI FORTRAN 77.

  3. Shape: automatic conformation prediction of carbohydrates using a genetic algorithm

    Directory of Open Access Journals (Sweden)

    Rosen Jimmy

    2009-09-01

    Full Text Available Abstract Background Detailed experimental three dimensional structures of carbohydrates are often difficult to acquire. Molecular modelling and computational conformation prediction are therefore commonly used tools for three dimensional structure studies. Modelling procedures generally require significant training and computing resources, which is often impractical for most experimental chemists and biologists. Shape has been developed to improve the availability of modelling in this field. Results The Shape software package has been developed for simplicity of use and conformation prediction performance. A trivial user interface coupled to an efficient genetic algorithm conformation search makes it a powerful tool for automated modelling. Carbohydrates up to a few hundred atoms in size can be investigated on common computer hardware. It has been shown to perform well for the prediction of over four hundred bioactive oligosaccharides, as well as compare favourably with previously published studies on carbohydrate conformation prediction. Conclusion The Shape fully automated conformation prediction can be used by scientists who lack significant modelling training, and performs well on computing hardware such as laptops and desktops. It can also be deployed on computer clusters for increased capacity. The prediction accuracy under the default settings is good, as it agrees well with experimental data and previously published conformation prediction studies. This software is available both as open source and under commercial licenses.

  4. Conformal house

    DEFF Research Database (Denmark)

    Ryttov, Thomas Aaby; Sannino, Francesco

    2010-01-01

    fixed point. As a consistency check we recover the previously investigated bounds of the conformal windows when restricting to a single matter representation. The earlier conformal windows can be imagined to be part now of the new conformal house. We predict the nonperturbative anomalous dimensions...... at the infrared fixed points. We further investigate the effects of adding mass terms to the condensates on the conformal house chiral dynamics and construct the simplest instanton induced effective Lagrangian terms...

  5. Mechanistic models in computational social science

    Directory of Open Access Journals (Sweden)

    Petter eHolme

    2015-09-01

    Full Text Available Quantitative social science is not only about regression analysis or, in general, data inference. Computer simulations of social mechanisms have an over 60 years long history. They have been used for many different purposes—to test scenarios, to test the consistency of descriptive theories (proof-of-concept models, to explore emergent phenomena, for forecasting, etc. In this essay, we sketch these historical developments, the role of mechanistic models in the social sciences and the influences from the natural and formal sciences. We argue that mechanistic computational models form a natural common ground for social and natural sciences, and look forward to possible future information flow across the social-natural divide.

  6. Computational modelling of evolution: ecosystems and language

    CERN Document Server

    Lipowski, Adam

    2008-01-01

    Recently, computational modelling became a very important research tool that enables us to study problems that for decades evaded scientific analysis. Evolutionary systems are certainly examples of such problems: they are composed of many units that might reproduce, diffuse, mutate, die, or in some cases for example communicate. These processes might be of some adaptive value, they influence each other and occur on various time scales. That is why such systems are so difficult to study. In this paper we briefly review some computational approaches, as well as our contributions, to the evolution of ecosystems and language. We start from Lotka-Volterra equations and the modelling of simple two-species prey-predator systems. Such systems are canonical example for studying oscillatory behaviour in competitive populations. Then we describe various approaches to study long-term evolution of multi-species ecosystems. We emphasize the need to use models that take into account both ecological and evolutionary processe...

  7. Queuing theory models for computer networks

    Science.gov (United States)

    Galant, David C.

    1989-01-01

    A set of simple queuing theory models which can model the average response of a network of computers to a given traffic load has been implemented using a spreadsheet. The impact of variations in traffic patterns and intensities, channel capacities, and message protocols can be assessed using them because of the lack of fine detail in the network traffic rates, traffic patterns, and the hardware used to implement the networks. A sample use of the models applied to a realistic problem is included in appendix A. Appendix B provides a glossary of terms used in this paper. This Ames Research Center computer communication network is an evolving network of local area networks (LANs) connected via gateways and high-speed backbone communication channels. Intelligent planning of expansion and improvement requires understanding the behavior of the individual LANs as well as the collection of networks as a whole.

  8. Computer Aided Design Modeling for Heterogeneous Objects

    CERN Document Server

    Gupta, Vikas; Tandon, Puneet

    2010-01-01

    Heterogeneous object design is an active research area in recent years. The conventional CAD modeling approaches only provide geometry and topology of the object, but do not contain any information with regard to the materials of the object and so can not be used for the fabrication of heterogeneous objects (HO) through rapid prototyping. Current research focuses on computer-aided design issues in heterogeneous object design. A new CAD modeling approach is proposed to integrate the material information into geometric regions thus model the material distributions in the heterogeneous object. The gradient references are used to represent the complex geometry heterogeneous objects which have simultaneous geometry intricacies and accurate material distributions. The gradient references helps in flexible manipulability and control to heterogeneous objects, which guarantees the local control over gradient regions of developed heterogeneous objects. A systematic approach on data flow, processing, computer visualizat...

  9. Rough – Granular Computing knowledge discovery models

    Directory of Open Access Journals (Sweden)

    Mohammed M. Eissa

    2016-11-01

    Full Text Available Medical domain has become one of the most important areas of research in order to richness huge amounts of medical information about the symptoms of diseases and how to distinguish between them to diagnose it correctly. Knowledge discovery models play vital role in refinement and mining of medical indicators to help medical experts to settle treatment decisions. This paper introduces four hybrid Rough – Granular Computing knowledge discovery models based on Rough Sets Theory, Artificial Neural Networks, Genetic Algorithm and Rough Mereology Theory. A comparative analysis of various knowledge discovery models that use different knowledge discovery techniques for data pre-processing, reduction, and data mining supports medical experts to extract the main medical indicators, to reduce the misdiagnosis rates and to improve decision-making for medical diagnosis and treatment. The proposed models utilized two medical datasets: Coronary Heart Disease dataset and Hepatitis C Virus dataset. The main purpose of this paper was to explore and evaluate the proposed models based on Granular Computing methodology for knowledge extraction according to different evaluation criteria for classification of medical datasets. Another purpose is to make enhancement in the frame of KDD processes for supervised learning using Granular Computing methodology.

  10. Computational Modeling of Vortex Generators for Turbomachinery

    Science.gov (United States)

    Chima, R. V.

    2002-01-01

    In this work computational models were developed and used to investigate applications of vortex generators (VGs) to turbomachinery. The work was aimed at increasing the efficiency of compressor components designed for the NASA Ultra Efficient Engine Technology (UEET) program. Initial calculations were used to investigate the physical behavior of VGs. A parametric study of the effects of VG height was done using 3-D calculations of isolated VGs. A body force model was developed to simulate the effects of VGs without requiring complicated grids. The model was calibrated using 2-D calculations of the VG vanes and was validated using the 3-D results. Then three applications of VGs to a compressor rotor and stator were investigated: 1) The results of the 3-D calculations were used to simulate the use of small casing VGs used to generate rotor preswirl or counterswirl. Computed performance maps were used to evaluate the effects of VGs. 2) The body force model was used to simulate large part-span splitters on the casing ahead of the stator. Computed loss buckets showed the effects of the VGs. 3) The body force model was also used to investigate the use of tiny VGs on the stator suction surface for controlling secondary flows. Near-surface particle traces and exit loss profiles were used to evaluate the effects of the VGs.

  11. An assessment of CSIRO Conformal Cubic Atmospheric Model simulations over Sri Lanka

    Science.gov (United States)

    Thevakaran, A.; McGregor, J. L.; Katzfey, J.; Hoffmann, P.; Suppiah, R.; Sonnadara, D. U. J.

    2016-03-01

    In this study, we present an assessment of the Conformal Cubic Atmospheric Model (CCAM) 50 km simulations forced by the sea surface temperature and sea ice concentration of six global climate models (GCMs) (ACCESS1-0, CCSM4, GFDL-CM3, NorESM, MPI-ESM and CNRM-CM5) from the Coupled Model Inter-comparison Project Phase 5 (CMIP5) over South Asia, centred on Sri Lanka. The model simulations were compared with the data provided by the Asian Precipitation Highly Resolved Observational Data Integration towards Evaluation of Water Resource (APHRODITE) project and ERA-Interim from the European Centre for Medium range Weather Forecast (ECMWF) over a broad region centred on Sri Lanka. This broad region includes South Asia and northern Indian Ocean. Statistical measures such as pattern correlations, mean biases and root mean square errors were calculated separately for the four seasons. Results based on statistical tests indicate that the current CCAM simulations capture the spatial patterns of 10 m wind speed, mean sea level pressure, temperature and rainfall over a broad region over South Asia fairly well. The annual cycles of temperature and rainfall were also compared against observations over the northern and southern regions of Sri Lanka by taking the field average of each model and the observed data. The characteristics of the observed annual variations of rainfall and temperature over the smaller domains are not very well captured by the CCAM simulations. There are differences in the magnitudes of the temperature and rainfall in the six member CCAM simulations. Comparatively, the two CCAM simulations CNRM-CM5 and GFDL-CM3 show slightly better agreement over the Sri Lankan region.

  12. Sticker DNA computer model--PartⅡ:Application

    Institute of Scientific and Technical Information of China (English)

    XU Jin; LI Sanping; DONG Yafei; WEI Xiaopeng

    2004-01-01

    Sticker model is one of the basic models in the DNA computer models. This model is coded with single-double stranded DNA molecules. It has the following advantages that the operations require no strands extension and use no enzymes; What's more, the materials are reusable. Therefore, it arouses attention and interest of scientists in many fields. In this paper, we extend and improve the sticker model, which will be definitely beneficial to the construction of DNA computer. This paper is the second part of our series paper, which mainly focuses on the application of sticker model. It mainly consists of the following three sections: the matrix representation of sticker model is first presented; then a brief review of the past research on graph and combinatorial optimization, such as the minimal set covering problem, the vertex covering problem, Hamiltonian path or cycle problem, the maximal clique problem, the maximal independent problem and the Steiner spanning tree problem, is described; Finally a DNA algorithm for the graph isomorphic problem based on the sticker model is given.

  13. Conformity of the time and root characteristics received at modeling of linear systems in the environment of MATLAB

    Directory of Open Access Journals (Sweden)

    Vitaliy Borodenko

    2009-10-01

    Full Text Available The author analyses conformity of the time and root characteristics received at modeling of linear systems in the environment of MATLAB, to each other and to the standard approach. The author studies conditions of reception of false or inexact results at the analysis of regulation quality on the transition characteristic.

  14. Reconstruction of the standard model with classical conformal invariance in noncommutative geometry

    CERN Document Server

    Yang, Masaki J S

    2015-01-01

    In this paper, we derive the standard model with classical conformal invariance from the Yang--Mills--Higgs model in noncommutative geometry (NCG). In the ordinary context of the NCG, the {\\it distance matrix} $M_{nm}$ which corresponds to the vacuum expectation value of Higgs fields is taken to be finite. However, since $M_{nm}$ is arbitrary in this formulation, we can take all $M_{nm}$ to be zero. In the original composite scheme, the Higgs field itself vanishes with the condition $M_{nm} = 0$. Then, we adopt the elemental scheme, in which the gauge and the Higgs bosons are regarded as elemental fields. By these assumptions, all scalars do not have vevs at tree level. The symmetry breaking mechanism will be implemented by the Coleman--Weinberg mechanism. As a result, we show a possibility to solve the hierarchy problem in the context of NCG. Unfortunately, the Coleman--Weinberg mechanism does not work in the SM Higgs sector, because the Coleman--Weinberg effective potential becomes unbounded from below for ...

  15. Social influences on young adults' alcohol consumption: norms, modeling, pressure, socializing, and conformity.

    Science.gov (United States)

    Oostveen, T; Knibbe, R; de Vries, H

    1996-01-01

    This study aims to assess which types of social influence are correlated with young people's (15-24 years) heavy drinking (six or more glasses) in public drinking places during the weekend. Drinking in public drinking places can be defined as a "timeout" situation. Therefore we assumed that situational factors (e.g., importance of socializing and direct pressures on drinking) would contribute more to the explained variance than variables indicating cognitive social influences (e.g., social norms and modeling). Stepwise regression analyses showed that in total 25% of the variance was explained by social norms of family and peers (15%), importance of socializing in drinking situations (7%), modeling (2%) and group size (1%). The results show that both a cognitive factor and a situational factor appear to be most strongly correlated with young people's frequency of heavy drinking in public drinking places. Within the category of situational influences those variables indicating direct social pressures were only weakly related or not significant. Studies focusing on measuring the impact of social influences may profit from including the concept of the importance of socializing and conformity as an additional factor.

  16. Enzyme as catalytic wheel powered by a Markovian engine: conformational coupling and barrier surfing models

    Science.gov (United States)

    Tsong, Tian Yow; Chang, Cheng-Hung

    2005-05-01

    We examine a typical Michaelis-Menten Enzyme (MME) and redress it to form a transducer of free energy, and electric, acoustic, or other types of energy. This amendment and extension is necessary in lieu of recent experiments in which enzymes are shown to perform pump, motor, and locomotion functions resembling their macroscopic counterparts. Classical textbook depicts enzyme, or an MME, as biocatalyst which can enhance the rate of a chemical reaction by lowering the activation barrier but cannot shift the thermodynamic equilibrium of the biochemical reaction. An energy transducer, on the other hand, must also be able to harvest, store, or divert energy and in doing so alter the chemical equilibrium, change the energy form, fuel an energy consuming process, or perform all these functions stepwise in one catalytic turnover. The catalytic wheel presented in this communication is both a catalyst and an energy transducer and can perform all these tasks with ease. A Conformational Coupling Model for the rotary motors and a Barrier Surfing Model for the track-guided stepping motors and transporters, are presented and compared. It is shown that the core engine of the catalytic wheel, or a Brownian motor, is a Markovian engine. It remains to be seen if this core engine is the basic mechanism for a wide variety of bio-molecular energy transducers, as well as certain other dynamic systems, for example, the Parrondo's Games.

  17. A model-free temperature-dependent conformational study of n-pentane in nematic liquid crystals

    Science.gov (United States)

    Burnell, E. Elliott; Weber, Adrian C. J.; Dong, Ronald Y.; Meerts, W. Leo; de Lange, Cornelis A.

    2015-01-01

    The proton NMR spectra of n-pentane orientationally ordered in two nematic liquid-crystal solvents are studied over a wide temperature range and analysed using covariance matrix adaptation evolutionary strategy. Since alkanes possess small electrostatic moments, their anisotropic intermolecular interactions are dominated by short-range size-and-shape effects. As we assumed for n-butane, the anisotropic energy parameters of each n-pentane conformer are taken to be proportional to those of ethane and propane, independent of temperature. The observed temperature dependence of the n-pentane dipolar couplings allows a model-free separation between conformer degrees of order and conformer probabilities, which cannot be achieved at a single temperature. In this way for n-pentane 13 anisotropic energy parameters (two for trans trans, tt, five for trans gauche, tg, and three for each of gauche+ gauche+, pp, and gauche+ gauche-, pm), the isotropic trans-gauche energy difference Etg and its temperature coefficient Etg ' are obtained. The value obtained for the extra energy associated with the proximity of the two methyl groups in the gauche+ gauche- conformers (the pentane effect) is sensitive to minute details of other assumptions and is thus fixed in the calculations. Conformer populations are affected by the environment. In particular, anisotropic interactions increase the trans probability in the ordered phase.

  18. A model-free temperature-dependent conformational study of n-pentane in nematic liquid crystals

    Energy Technology Data Exchange (ETDEWEB)

    Burnell, E. Elliott, E-mail: elliott.burnell@ubc.ca [Chemistry Department, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1 (Canada); Weber, Adrian C. J., E-mail: webera@brandonu.ca [Chemistry Department, Brandon University, 270-18th Street, Brandon, Manitoba R7A 6A9 (Canada); Dong, Ronald Y., E-mail: rondong@phas.ubc.ca [Department of Physics and Astronomy, University of British Columbia, 6224 Agricultural Road, Vancouver, British Columbia V6T 1Z1 (Canada); Meerts, W. Leo, E-mail: leo.meerts@science.ru.nl [Radboud University, Institute for Molecules and Materials, Heyendaalseweg 135, NL-6525 AJ Nijmegen (Netherlands); Laser Centre, Vrije Universiteit, De Boelelaan 1081, 1081 HV Amsterdam (Netherlands); Lange, Cornelis A. de, E-mail: c.a.de.lange@vu.nl [Laser Centre, Vrije Universiteit, De Boelelaan 1081, 1081 HV Amsterdam (Netherlands)

    2015-01-14

    The proton NMR spectra of n-pentane orientationally ordered in two nematic liquid-crystal solvents are studied over a wide temperature range and analysed using covariance matrix adaptation evolutionary strategy. Since alkanes possess small electrostatic moments, their anisotropic intermolecular interactions are dominated by short-range size-and-shape effects. As we assumed for n-butane, the anisotropic energy parameters of each n-pentane conformer are taken to be proportional to those of ethane and propane, independent of temperature. The observed temperature dependence of the n-pentane dipolar couplings allows a model-free separation between conformer degrees of order and conformer probabilities, which cannot be achieved at a single temperature. In this way for n-pentane 13 anisotropic energy parameters (two for trans trans, tt, five for trans gauche, tg, and three for each of gauche{sub +} gauche{sub +}, pp, and gauche{sub +} gauche{sub −}, pm), the isotropic trans-gauche energy difference E{sub tg} and its temperature coefficient E{sub tg}{sup ′} are obtained. The value obtained for the extra energy associated with the proximity of the two methyl groups in the gauche{sub +} gauche{sub −} conformers (the pentane effect) is sensitive to minute details of other assumptions and is thus fixed in the calculations. Conformer populations are affected by the environment. In particular, anisotropic interactions increase the trans probability in the ordered phase.

  19. Computing the complexity for Schelling segregation models

    Science.gov (United States)

    Gerhold, Stefan; Glebsky, Lev; Schneider, Carsten; Weiss, Howard; Zimmermann, Burkhard

    2008-12-01

    The Schelling segregation models are "agent based" population models, where individual members of the population (agents) interact directly with other agents and move in space and time. In this note we study one-dimensional Schelling population models as finite dynamical systems. We define a natural notion of entropy which measures the complexity of the family of these dynamical systems. The entropy counts the asymptotic growth rate of the number of limit states. We find formulas and deduce precise asymptotics for the number of limit states, which enable us to explicitly compute the entropy.

  20. Computer Modelling of 3D Geological Surface

    CERN Document Server

    Kodge, B G

    2011-01-01

    The geological surveying presently uses methods and tools for the computer modeling of 3D-structures of the geographical subsurface and geotechnical characterization as well as the application of geoinformation systems for management and analysis of spatial data, and their cartographic presentation. The objectives of this paper are to present a 3D geological surface model of Latur district in Maharashtra state of India. This study is undertaken through the several processes which are discussed in this paper to generate and visualize the automated 3D geological surface model of a projected area.

  1. Computational Study of a Primitive Life Model

    Science.gov (United States)

    Andrecut, Mircea

    We present a computational study of a primitive life model. The calculation involves a discrete treatment of a partial differential equation and some details of that problems are explained. We show that the investigated model is equivalent to a diffusively coupled logistic lattice. The bifurcation diagrams were calculated for different values of the control parameters. The obtained diagrams have shown that the time dependence of the population of the investigated model exhibits transitions between ordered and chaotic behavior. We have investigated also the patterns formation in this system.

  2. Male Wistar rats show individual differences in an animal model of conformity.

    Science.gov (United States)

    Jolles, Jolle W; de Visser, Leonie; van den Bos, Ruud

    2011-09-01

    Conformity refers to the act of changing one's behaviour to match that of others. Recent studies in humans have shown that individual differences exist in conformity and that these differences are related to differences in neuronal activity. To understand the neuronal mechanisms in more detail, animal tests to assess conformity are needed. Here, we used a test of conformity in rats that has previously been evaluated in female, but not male, rats and assessed the nature of individual differences in conformity. Male Wistar rats were given the opportunity to learn that two diets differed in palatability. They were subsequently exposed to a demonstrator that had consumed the less palatable food. Thereafter, they were exposed to the same diets again. Just like female rats, male rats decreased their preference for the more palatable food after interaction with demonstrator rats that had eaten the less palatable food. Individual differences existed for this shift, which were only weakly related to an interaction between their own initial preference and the amount consumed by the demonstrator rat. The data show that this conformity test in rats is a promising tool to study the neurobiology of conformity.

  3. Computational Modeling of Pollution Transmission in Rivers

    Science.gov (United States)

    Parsaie, Abbas; Haghiabi, Amir Hamzeh

    2017-06-01

    Modeling of river pollution contributes to better management of water quality and this will lead to the improvement of human health. The advection dispersion equation (ADE) is the government equation on pollutant transmission in the river. Modeling the pollution transmission includes numerical solution of the ADE and estimating the longitudinal dispersion coefficient (LDC). In this paper, a novel approach is proposed for numerical modeling of the pollution transmission in rivers. It is related to use both finite volume method as numerical method and artificial neural network (ANN) as soft computing technique together in simulation. In this approach, the result of the ANN for predicting the LDC was considered as input parameter for the numerical solution of the ADE. To validate the model performance in real engineering problems, the pollutant transmission in Severn River has been simulated. Comparison of the final model results with measured data of the Severn River showed that the model has good performance. Predicting the LDC by ANN model significantly improved the accuracy of computer simulation of the pollution transmission in river.

  4. Spreading of a chain macromolecule onto a cell membrane by a computer simulation Model

    Science.gov (United States)

    Xie, Jun; Pandey, Ras

    2002-03-01

    Computer simulations are performed to study conformation and dynamics of a relatively large chain macromolecule at the surface of a model membrane - a preliminary attempt to ultimately realistic model for protein on a cell membrane. We use a discrete lattice of size Lx × L × L. The chain molecule of length Lc is modeled by consecutive nodes connected by bonds on the trail of a random walk with appropriate constraints such as excluded volume, energy dependent configurational bias, etc. Monte Carlo method is used to move chains via segmental dynamics, i.e., end-move, kink-jump, crank-shaft, reptation, etc. Membrane substrate is designed by a self-assemble biased short chains on a substrate. Large chain molecule is then driven toward the membrane by a field. We investigate the dynamics of chain macromolecule, spread of its density, and conformation.

  5. Finding low-energy conformations of lattice protein models by quantum annealing

    CERN Document Server

    Perdomo-Ortiz, Alejandro; Drew-Brook, Marshall; Rose, Geordie; Aspuru-Guzik, Alán

    2012-01-01

    Lattice protein folding models are a cornerstone of computational biophysics. Although these models are a coarse grained representation, they provide useful insight into the energy landscape of natural proteins. Finding low-energy three-dimensional structures is an intractable problem even in the simplest model, the Hydrophobic-Polar (HP) model. Exhaustive search of all possible global minima is limited to sequences in the tens of amino acids. Description of protein-like properties are more accurately described by generalized models, such as the one proposed by Miyazawa and Jernigan (MJ), which explicitly take into account the unique interactions among all 20 amino acids. There is theoretical and experimental evidence of the advantage of solving classical optimization problems using quantum annealing over its classical analogue (simulated annealing). In this report, we present a benchmark implementation of quantum annealing for a biophysical problem (six different experiments up to 81 superconducting quantum ...

  6. The Moyal Momentum algebra applied to (theta)-deformed 2d conformal models and KdV-hierarchies

    CERN Document Server

    Boulahoual, A

    2002-01-01

    The properties of the Das-Popowicz Moyal momentum algebra that we introduce in hep-th/0207242 are reexamined in details and used to discuss some aspects of integrable models and 2d conformal field theories. Among the results presented, we setup some useful convention notations which lead to extract some non trivial properties of the Moyal momentum algebra. We use the particular sub-algebra sl(n)-{Sigma}_{n}^{(0,n)} to construct the sl(2)-Liouville conformal model and its sl(3)-Toda extension. We show also that the central charge, a la Feigin-Fuchs, associated to the spin-2 conformal current of the (theta)-Liouville model is given by c(theta)=1+24.theta^{2}. Moreover, the results obtained for the Das-Popowicz Mm algebra are applied to study systematically some properties of the Moyal KdV and Boussinesq hierarchies generalizing some known results. We discuss also the primarity condition of conformal $w_{\\theta}$-currents and interpret this condition as being a dressing gauge symmetry in the Moyal momentum space...

  7. Method of generating a computer readable model

    DEFF Research Database (Denmark)

    2008-01-01

    A method of generating a computer readable model of a geometrical object constructed from a plurality of interconnectable construction elements, wherein each construction element has a number of connection elements for connecting the construction element with another construction element. The met......A method of generating a computer readable model of a geometrical object constructed from a plurality of interconnectable construction elements, wherein each construction element has a number of connection elements for connecting the construction element with another construction element....... The method comprises encoding a first and a second one of the construction elements as corresponding data structures, each representing the connection elements of the corresponding construction element, and each of the connection elements having associated with it a predetermined connection type. The method...

  8. Computer Modelling and Simulation for Inventory Control

    Directory of Open Access Journals (Sweden)

    G.K. Adegoke

    2012-07-01

    Full Text Available This study concerns the role of computer simulation as a device for conducting scientific experiments on inventory control. The stores function utilizes a bulk of physical assets and engages a bulk of financial resources in a manufacturing outfit therefore there is a need for an efficient inventory control. The reason being that inventory control reduces cost of production and thereby facilitates the effective and efficient accomplishment of production objectives of an organization. Some mathematical and statistical models were used to compute the Economic Order Quantity (EOQ. Test data were gotten from a manufacturing company and same were simulated. The results generated were used to predict a real life situation and have been presented and discussed. The language of implementation for the three models is Turbo Pascal due to its capability, generality and flexibility as a scientific programming language.

  9. Computational hemodynamics theory, modelling and applications

    CERN Document Server

    Tu, Jiyuan; Wong, Kelvin Kian Loong

    2015-01-01

    This book discusses geometric and mathematical models that can be used to study fluid and structural mechanics in the cardiovascular system.  Where traditional research methodologies in the human cardiovascular system are challenging due to its invasive nature, several recent advances in medical imaging and computational fluid and solid mechanics modelling now provide new and exciting research opportunities. This emerging field of study is multi-disciplinary, involving numerical methods, computational science, fluid and structural mechanics, and biomedical engineering. Certainly any new student or researcher in this field may feel overwhelmed by the wide range of disciplines that need to be understood. This unique book is one of the first to bring together knowledge from multiple disciplines, providing a starting point to each of the individual disciplines involved, attempting to ease the steep learning curve. This book presents elementary knowledge on the physiology of the cardiovascular system; basic knowl...

  10. A computer model of auditory stream segregation.

    Science.gov (United States)

    Beauvois, M W; Meddis, R

    1991-08-01

    A computer model is described which simulates some aspects of auditory stream segregation. The model emphasizes the explanatory power of simple physiological principles operating at a peripheral rather than a central level. The model consists of a multi-channel bandpass-filter bank with a "noisy" output and an attentional mechanism that responds selectively to the channel with the greatest activity. A "leaky integration" principle allows channel excitation to accumulate and dissipate over time. The model produces similar results to two experimental demonstrations of streaming phenomena, which are presented in detail. These results are discussed in terms of the "emergent properties" of a system governed by simple physiological principles. As such the model is contrasted with higher-level Gestalt explanations of the same phenomena while accepting that they may constitute complementary kinds of explanation.

  11. A Neural Computational Model of Incentive Salience

    OpenAIRE

    Jun Zhang; Berridge, Kent C; Amy J Tindell; Kyle S Smith; J Wayne Aldridge

    2009-01-01

    Incentive salience is a motivational property with ‘magnet-like’ qualities. When attributed to reward-predicting stimuli (cues), incentive salience triggers a pulse of ‘wanting’ and an individual is pulled toward the cues and reward. A key computational question is how incentive salience is generated during a cue re-encounter, which combines both learning and the state of limbic brain mechanisms. Learning processes, such as temporal-difference models, provide one way for stimuli to acquire ca...

  12. AMAR: A Computational Model of Autosegmental Phonology

    Science.gov (United States)

    1993-10-01

    the 8th International Joint Conference on Artificial Inteligence . 683-5. Koskenniemi, K. 1984. A general computational model for word-form recognition...NUMBER Massachusetts Institute of Technology Artificial Intelligence Laboratory AI-TR 1450 545 Technology Square Cambridge, Massachusetts 02139 9...reader a feel for the workinigs of ANIAR. this chapter will begini withi a very sininpb examl- ple based oni ani artificial tonie laniguage with oiony t

  13. Computational Biology: Modeling Chronic Renal Allograft Injury.

    Science.gov (United States)

    Stegall, Mark D; Borrows, Richard

    2015-01-01

    New approaches are needed to develop more effective interventions to prevent long-term rejection of organ allografts. Computational biology provides a powerful tool to assess the large amount of complex data that is generated in longitudinal studies in this area. This manuscript outlines how our two groups are using mathematical modeling to analyze predictors of graft loss using both clinical and experimental data and how we plan to expand this approach to investigate specific mechanisms of chronic renal allograft injury.

  14. Computational fluid dynamics modelling in cardiovascular medicine.

    Science.gov (United States)

    Morris, Paul D; Narracott, Andrew; von Tengg-Kobligk, Hendrik; Silva Soto, Daniel Alejandro; Hsiao, Sarah; Lungu, Angela; Evans, Paul; Bressloff, Neil W; Lawford, Patricia V; Hose, D Rodney; Gunn, Julian P

    2016-01-01

    This paper reviews the methods, benefits and challenges associated with the adoption and translation of computational fluid dynamics (CFD) modelling within cardiovascular medicine. CFD, a specialist area of mathematics and a branch of fluid mechanics, is used routinely in a diverse range of safety-critical engineering systems, which increasingly is being applied to the cardiovascular system. By facilitating rapid, economical, low-risk prototyping, CFD modelling has already revolutionised research and development of devices such as stents, valve prostheses, and ventricular assist devices. Combined with cardiovascular imaging, CFD simulation enables detailed characterisation of complex physiological pressure and flow fields and the computation of metrics which cannot be directly measured, for example, wall shear stress. CFD models are now being translated into clinical tools for physicians to use across the spectrum of coronary, valvular, congenital, myocardial and peripheral vascular diseases. CFD modelling is apposite for minimally-invasive patient assessment. Patient-specific (incorporating data unique to the individual) and multi-scale (combining models of different length- and time-scales) modelling enables individualised risk prediction and virtual treatment planning. This represents a significant departure from traditional dependence upon registry-based, population-averaged data. Model integration is progressively moving towards 'digital patient' or 'virtual physiological human' representations. When combined with population-scale numerical models, these models have the potential to reduce the cost, time and risk associated with clinical trials. The adoption of CFD modelling signals a new era in cardiovascular medicine. While potentially highly beneficial, a number of academic and commercial groups are addressing the associated methodological, regulatory, education- and service-related challenges.

  15. A world-line framework for 1D Topological Conformal sigma-models

    CERN Document Server

    Baulieu, L; Toppan, F

    2015-01-01

    We use world-line methods for pseudo-supersymmetry to construct $sl(2|1)$-invariant actions for the $(2,2,0)$ chiral and ($1,2,1)$ real supermultiplets of the twisted $D$-module representations of the $sl(2|1)$ superalgebra. The derived one-dimensional topological conformal $\\sigma$-models are invariant under nilpotent operators. The actions are constructed for both parabolic and hyperbolic/trigonometric realizations (with extra potential terms in the latter case). The scaling dimension $\\lambda$ of the supermultiplets defines a coupling constant, $2\\lambda+1$, the free theories being recovered at $\\lambda=-\\frac{1}{2}$. We also present, generalizing previous works, the $D$-module representations of one-dimensional superconformal algebras induced by ${\\cal N}=(p,q)$ pseudo-supersymmetry acting on $(k,n,n-k)$ supermultiplets. Besides $sl(2|1)$, we obtain the superalgebras $A(1,1)$, $D(2,1;\\alpha)$, $D(3,1)$, $D(4,1)$, $A(2,1)$ from $(p,q)= (1,1), (2,2), (3,3), (4,4), (5,1)$, at given $k,n$ and critical values ...

  16. Vacuum creation of massive vector bosons and its application to a conformal cosmological model

    CERN Document Server

    Blaschke, D B; Smolyansky, S A

    2004-01-01

    In the simple model of a massive vector field in flat space-time, we derive a kinetic equation of non-Markovian type, describing the vacuum pair creation under the action of external fields of different nature. We use for this aim the non-perturbative methods of kinetic theory in combination with a new element when the transition of the instantaneous quasiparticle representation is realized within the oscillator (holomorphic) representation. We study in detail the process of vacuum creation of vector bosons generated by a time-dependent boson mass in accordance with a conformal-invariant scalar-tensor gravitational theory and its cosmological application. It is indicated that the choice of the equation of state (EoS) of the Universe allows to obtain a number density of the vector bosons that is sufficient to explain the observed number density of photons in the cosmic microwave background radiation. It is shown that the vector boson gas created from the vacuum is in a strong non-equilibrium state and correspo...

  17. A world-line framework for 1D topological conformal σ-models

    Science.gov (United States)

    Baulieu, L.; Holanda, N. L.; Toppan, F.

    2015-11-01

    We use world-line methods for pseudo-supersymmetry to construct sl(2|1)-invariant actions for the (2, 2, 0) chiral and (1, 2, 1) real supermultiplets of the twisted D-module representations of the sl(2|1) superalgebra. The derived one-dimensional topological conformal σ-models are invariant under nilpotent operators. The actions are constructed for both parabolic and hyperbolic/trigonometric realizations (with extra potential terms in the latter case). The scaling dimension λ of the supermultiplets defines a coupling constant, 2λ + 1, the free theories being recovered at λ = - /1 2 . We also present, generalizing previous works, the D-module representations of one-dimensional superconformal algebras induced by N = ( p , q ) pseudo-supersymmetry acting on (k, n, n - k) supermultiplets. Besides sl(2|1), we obtain the superalgebras A(1, 1), D(2, 1; α), D(3, 1), D(4, 1), A(2, 1) from (p, q) = (1, 1), (2, 2), (3, 3), (4, 4), (5, 1), at given k, n and critical values of λ.

  18. Social conformity despite individual preferences for distinctiveness.

    Science.gov (United States)

    Smaldino, Paul E; Epstein, Joshua M

    2015-03-01

    We demonstrate that individual behaviours directed at the attainment of distinctiveness can in fact produce complete social conformity. We thus offer an unexpected generative mechanism for this central social phenomenon. Specifically, we establish that agents who have fixed needs to be distinct and adapt their positions to achieve distinctiveness goals, can nevertheless self-organize to a limiting state of absolute conformity. This seemingly paradoxical result is deduced formally from a small number of natural assumptions and is then explored at length computationally. Interesting departures from this conformity equilibrium are also possible, including divergence in positions. The effect of extremist minorities on these dynamics is discussed. A simple extension is then introduced, which allows the model to generate and maintain social diversity, including multimodal distinctiveness distributions. The paper contributes formal definitions, analytical deductions and counterintuitive findings to the literature on individual distinctiveness and social conformity.

  19. Transitive conformal holonomy groups

    CERN Document Server

    Alt, Jesse

    2011-01-01

    For $(M,[g])$ a conformal manifold of signature $(p,q)$ and dimension at least three, the conformal holonomy group $\\mathrm{Hol}(M,[g]) \\subset O(p+1,q+1)$ is an invariant induced by the canonical Cartan geometry of $(M,[g])$. We give a description of all possible connected conformal holonomy groups which act transitively on the M\\"obius sphere $S^{p,q}$, the homogeneous model space for conformal structures of signature $(p,q)$. The main part of this description is a list of all such groups which also act irreducibly on $\\R^{p+1,q+1}$. For the rest, we show that they must be compact and act decomposably on $\\R^{p+1,q+1}$, in particular, by known facts about conformal holonomy the conformal class $[g]$ must contain a metric which is locally isometric to a so-called special Einstein product.

  20. Analytical performance modeling for computer systems

    CERN Document Server

    Tay, Y C

    2013-01-01

    This book is an introduction to analytical performance modeling for computer systems, i.e., writing equations to describe their performance behavior. It is accessible to readers who have taken college-level courses in calculus and probability, networking and operating systems. This is not a training manual for becoming an expert performance analyst. Rather, the objective is to help the reader construct simple models for analyzing and understanding the systems that they are interested in.Describing a complicated system abstractly with mathematical equations requires a careful choice of assumpti

  1. ADGEN: ADjoint GENerator for computer models

    Energy Technology Data Exchange (ETDEWEB)

    Worley, B.A.; Pin, F.G.; Horwedel, J.E.; Oblow, E.M.

    1989-05-01

    This paper presents the development of a FORTRAN compiler and an associated supporting software library called ADGEN. ADGEN reads FORTRAN models as input and produces and enhanced version of the input model. The enhanced version reproduces the original model calculations but also has the capability to calculate derivatives of model results of interest with respect to any and all of the model data and input parameters. The method for calculating the derivatives and sensitivities is the adjoint method. Partial derivatives are calculated analytically using computer calculus and saved as elements of an adjoint matrix on direct assess storage. The total derivatives are calculated by solving an appropriate adjoint equation. ADGEN is applied to a major computer model of interest to the Low-Level Waste Community, the PRESTO-II model. PRESTO-II sample problem results reveal that ADGEN correctly calculates derivatives of response of interest with respect to 300 parameters. The execution time to create the adjoint matrix is a factor of 45 times the execution time of the reference sample problem. Once this matrix is determined, the derivatives with respect to 3000 parameters are calculated in a factor of 6.8 that of the reference model for each response of interest. For a single 3000 for determining these derivatives by parameter perturbations. The automation of the implementation of the adjoint technique for calculating derivatives and sensitivities eliminates the costly and manpower-intensive task of direct hand-implementation by reprogramming and thus makes the powerful adjoint technique more amenable for use in sensitivity analysis of existing models. 20 refs., 1 fig., 5 tabs.

  2. Computational acoustic modeling of cetacean vocalizations

    Science.gov (United States)

    Gurevich, Michael Dixon

    A framework for computational acoustic modeling of hypothetical vocal production mechanisms in cetaceans is presented. As a specific example, a model of a proposed source in the larynx of odontocetes is developed. Whales and dolphins generate a broad range of vocal sounds, but the exact mechanisms they use are not conclusively understood. In the fifty years since it has become widely accepted that whales can and do make sound, how they do so has remained particularly confounding. Cetaceans' highly divergent respiratory anatomy, along with the difficulty of internal observation during vocalization have contributed to this uncertainty. A variety of acoustical, morphological, ethological and physiological evidence has led to conflicting and often disputed theories of the locations and mechanisms of cetaceans' sound sources. Computational acoustic modeling has been used to create real-time parametric models of musical instruments and the human voice. These techniques can be applied to cetacean vocalizations to help better understand the nature and function of these sounds. Extensive studies of odontocete laryngeal morphology have revealed vocal folds that are consistently similar to a known but poorly understood acoustic source, the ribbon reed. A parametric computational model of the ribbon reed is developed, based on simplified geometrical, mechanical and fluid models drawn from the human voice literature. The physical parameters of the ribbon reed model are then adapted to those of the odontocete larynx. With reasonable estimates of real physical parameters, both the ribbon reed and odontocete larynx models produce sounds that are perceptually similar to their real-world counterparts, and both respond realistically under varying control conditions. Comparisons of acoustic features of the real-world and synthetic systems show a number of consistencies. While this does not on its own prove that either model is conclusively an accurate description of the source, it

  3. Computational Design Modelling : Proceedings of the Design Modelling Symposium

    CERN Document Server

    Kilian, Axel; Palz, Norbert; Scheurer, Fabian

    2012-01-01

    This book publishes the peer-reviewed proceeding of the third Design Modeling Symposium Berlin . The conference constitutes a platform for dialogue on experimental practice and research within the field of computationally informed architectural design. More than 60 leading experts the computational processes within the field of computationally informed architectural design to develop a broader and less exotic building practice that bears more subtle but powerful traces of the complex tool set and approaches we have developed and studied over recent years. The outcome are new strategies for a reasonable and innovative implementation of digital potential in truly innovative and radical design guided by both responsibility towards processes and the consequences they initiate.

  4. Computer Modeling of Human Delta Opioid Receptor

    Directory of Open Access Journals (Sweden)

    Tatyana Dzimbova

    2013-04-01

    Full Text Available The development of selective agonists of δ-opioid receptor as well as the model of interaction of ligands with this receptor is the subjects of increased interest. In the absence of crystal structures of opioid receptors, 3D homology models with different templates have been reported in the literature. The problem is that these models are not available for widespread use. The aims of our study are: (1 to choose within recently published crystallographic structures templates for homology modeling of the human δ-opioid receptor (DOR; (2 to evaluate the models with different computational tools; and (3 to precise the most reliable model basing on correlation between docking data and in vitro bioassay results. The enkephalin analogues, as ligands used in this study, were previously synthesized by our group and their biological activity was evaluated. Several models of DOR were generated using different templates. All these models were evaluated by PROCHECK and MolProbity and relationship between docking data and in vitro results was determined. The best correlations received for the tested models of DOR were found between efficacy (erel of the compounds, calculated from in vitro experiments and Fitness scoring function from docking studies. New model of DOR was generated and evaluated by different approaches. This model has good GA341 value (0.99 from MODELLER, good values from PROCHECK (92.6% of most favored regions and MolProbity (99.5% of favored regions. Scoring function correlates (Pearson r = -0.7368, p-value = 0.0097 with erel of a series of enkephalin analogues, calculated from in vitro experiments. So, this investigation allows suggesting a reliable model of DOR. Newly generated model of DOR receptor could be used further for in silico experiments and it will give possibility for faster and more correct design of selective and effective ligands for δ-opioid receptor.

  5. Fluorine Substitution in Neurotransmitters: Microwave Spectroscopy and Modelling of the Conformational Space and Non Bonding Interactions

    Science.gov (United States)

    Melandri, S.; Maris, A.; Merloni, A.

    2011-06-01

    Fluorine substitution in molecules is a common practice in bio-organic chemistry in order to modulate physicochemical properties and biological activity of molecules and an increasing number of drugs on the market contain fluorine, the presence of which is often of major importance to modify pharmacokinetics properties and molecular activity. The rationale for such a strategy is that fluorine is generally a stronger electron acceptor than the other halogen atoms and its size is intermediate between that of hydrogen and oxygen. We have studied two fluorinated analogs of 2-phenylethylamine (PEA), the prototype molecule for adrenergic neurotransmitters, namely: 4-Fluoro (4FPEA) and 2-Fluoro-2-phenylethylamine (2FPEA) by Molecular Beam Fourier Transform Microwave Spectroscopy in the frequency range 6-18 GHz and ab initio calculations at the MP2/6311++G** level. The aim is to obtain information on the spatial arrangement of the ethylamine side chain and the effects of fluorination on the energy landscape. The conformational space is dominated by low energy gauche conformations stabilized by weak interactions between the aminic hydrogens and the electron cloud of the benzene ring and anti conformations higher in energy. In 2FPEA the presence of the fluorine atom almost duplicate the number of possible conformation with respect to 4FPEA. We observed two conformers of 4FPEA and five conformers of 2FPEA which have been classified with the guide provided by accurate ab initio calculations. The identification of the conformational species was helped by the analysis of the quadrupole hyperfine pattern which is greatly influenced by the orientation of the amino group and acts as a fingerprint for each conformation. The orientation of the dipole moment within the principal axis frame and the order of stability of the different conformations are other independent pieces of evidence for the unambiguous assignment and identification of the conformers. The order of stability was

  6. Interlanguages and synchronic models of computation

    CERN Document Server

    Berka, Alexander Victor

    2010-01-01

    A novel language system has given rise to promising alternatives to standard formal and processor network models of computation. An interstring linked with a abstract machine environment, shares sub-expressions, transfers data, and spatially allocates resources for the parallel evaluation of dataflow. Formal models called the a-Ram family are introduced, designed to support interstring programming languages (interlanguages). Distinct from dataflow, graph rewriting, and FPGA models, a-Ram instructions are bit level and execute in situ. They support sequential and parallel languages without the space/time overheads associated with the Turing Machine and l-calculus, enabling massive programs to be simulated. The devices of one a-Ram model, called the Synchronic A-Ram, are fully connected and simpler than FPGA LUT's. A compiler for an interlanguage called Space, has been developed for the Synchronic A-Ram. Space is MIMD. strictly typed, and deterministic. Barring memory allocation and compilation, modules are ref...

  7. A Neural Computational Model of Incentive Salience

    Science.gov (United States)

    Zhang, Jun; Berridge, Kent C.; Tindell, Amy J.; Smith, Kyle S.; Aldridge, J. Wayne

    2009-01-01

    Incentive salience is a motivational property with ‘magnet-like’ qualities. When attributed to reward-predicting stimuli (cues), incentive salience triggers a pulse of ‘wanting’ and an individual is pulled toward the cues and reward. A key computational question is how incentive salience is generated during a cue re-encounter, which combines both learning and the state of limbic brain mechanisms. Learning processes, such as temporal-difference models, provide one way for stimuli to acquire cached predictive values of rewards. However, empirical data show that subsequent incentive values are also modulated on the fly by dynamic fluctuation in physiological states, altering cached values in ways requiring additional motivation mechanisms. Dynamic modulation of incentive salience for a Pavlovian conditioned stimulus (CS or cue) occurs during certain states, without necessarily requiring (re)learning about the cue. In some cases, dynamic modulation of cue value occurs during states that are quite novel, never having been experienced before, and even prior to experience of the associated unconditioned reward in the new state. Such cases can include novel drug-induced mesolimbic activation and addictive incentive-sensitization, as well as natural appetite states such as salt appetite. Dynamic enhancement specifically raises the incentive salience of an appropriate CS, without necessarily changing that of other CSs. Here we suggest a new computational model that modulates incentive salience by integrating changing physiological states with prior learning. We support the model with behavioral and neurobiological data from empirical tests that demonstrate dynamic elevations in cue-triggered motivation (involving natural salt appetite, and drug-induced intoxication and sensitization). Our data call for a dynamic model of incentive salience, such as presented here. Computational models can adequately capture fluctuations in cue-triggered ‘wanting’ only by

  8. A neural computational model of incentive salience.

    Science.gov (United States)

    Zhang, Jun; Berridge, Kent C; Tindell, Amy J; Smith, Kyle S; Aldridge, J Wayne

    2009-07-01

    Incentive salience is a motivational property with 'magnet-like' qualities. When attributed to reward-predicting stimuli (cues), incentive salience triggers a pulse of 'wanting' and an individual is pulled toward the cues and reward. A key computational question is how incentive salience is generated during a cue re-encounter, which combines both learning and the state of limbic brain mechanisms. Learning processes, such as temporal-difference models, provide one way for stimuli to acquire cached predictive values of rewards. However, empirical data show that subsequent incentive values are also modulated on the fly by dynamic fluctuation in physiological states, altering cached values in ways requiring additional motivation mechanisms. Dynamic modulation of incentive salience for a Pavlovian conditioned stimulus (CS or cue) occurs during certain states, without necessarily requiring (re)learning about the cue. In some cases, dynamic modulation of cue value occurs during states that are quite novel, never having been experienced before, and even prior to experience of the associated unconditioned reward in the new state. Such cases can include novel drug-induced mesolimbic activation and addictive incentive-sensitization, as well as natural appetite states such as salt appetite. Dynamic enhancement specifically raises the incentive salience of an appropriate CS, without necessarily changing that of other CSs. Here we suggest a new computational model that modulates incentive salience by integrating changing physiological states with prior learning. We support the model with behavioral and neurobiological data from empirical tests that demonstrate dynamic elevations in cue-triggered motivation (involving natural salt appetite, and drug-induced intoxication and sensitization). Our data call for a dynamic model of incentive salience, such as presented here. Computational models can adequately capture fluctuations in cue-triggered 'wanting' only by incorporating

  9. A neural computational model of incentive salience.

    Directory of Open Access Journals (Sweden)

    Jun Zhang

    2009-07-01

    Full Text Available Incentive salience is a motivational property with 'magnet-like' qualities. When attributed to reward-predicting stimuli (cues, incentive salience triggers a pulse of 'wanting' and an individual is pulled toward the cues and reward. A key computational question is how incentive salience is generated during a cue re-encounter, which combines both learning and the state of limbic brain mechanisms. Learning processes, such as temporal-difference models, provide one way for stimuli to acquire cached predictive values of rewards. However, empirical data show that subsequent incentive values are also modulated on the fly by dynamic fluctuation in physiological states, altering cached values in ways requiring additional motivation mechanisms. Dynamic modulation of incentive salience for a Pavlovian conditioned stimulus (CS or cue occurs during certain states, without necessarily requiring (relearning about the cue. In some cases, dynamic modulation of cue value occurs during states that are quite novel, never having been experienced before, and even prior to experience of the associated unconditioned reward in the new state. Such cases can include novel drug-induced mesolimbic activation and addictive incentive-sensitization, as well as natural appetite states such as salt appetite. Dynamic enhancement specifically raises the incentive salience of an appropriate CS, without necessarily changing that of other CSs. Here we suggest a new computational model that modulates incentive salience by integrating changing physiological states with prior learning. We support the model with behavioral and neurobiological data from empirical tests that demonstrate dynamic elevations in cue-triggered motivation (involving natural salt appetite, and drug-induced intoxication and sensitization. Our data call for a dynamic model of incentive salience, such as presented here. Computational models can adequately capture fluctuations in cue-triggered 'wanting' only by

  10. Computational Modeling of Large Wildfires: A Roadmap

    KAUST Repository

    Coen, Janice L.

    2010-08-01

    Wildland fire behavior, particularly that of large, uncontrolled wildfires, has not been well understood or predicted. Our methodology to simulate this phenomenon uses high-resolution dynamic models made of numerical weather prediction (NWP) models coupled to fire behavior models to simulate fire behavior. NWP models are capable of modeling very high resolution (< 100 m) atmospheric flows. The wildland fire component is based upon semi-empirical formulas for fireline rate of spread, post-frontal heat release, and a canopy fire. The fire behavior is coupled to the atmospheric model such that low level winds drive the spread of the surface fire, which in turn releases sensible heat, latent heat, and smoke fluxes into the lower atmosphere, feeding back to affect the winds directing the fire. These coupled dynamic models capture the rapid spread downwind, flank runs up canyons, bifurcations of the fire into two heads, and rough agreement in area, shape, and direction of spread at periods for which fire location data is available. Yet, intriguing computational science questions arise in applying such models in a predictive manner, including physical processes that span a vast range of scales, processes such as spotting that cannot be modeled deterministically, estimating the consequences of uncertainty, the efforts to steer simulations with field data ("data assimilation"), lingering issues with short term forecasting of weather that may show skill only on the order of a few hours, and the difficulty of gathering pertinent data for verification and initialization in a dangerous environment. © 2010 IEEE.

  11. DYNAMIC TASK PARTITIONING MODEL IN PARALLEL COMPUTING

    Directory of Open Access Journals (Sweden)

    Javed Ali

    2012-04-01

    Full Text Available Parallel computing systems compose task partitioning strategies in a true multiprocessing manner. Such systems share the algorithm and processing unit as computing resources which leads to highly inter process communications capabilities. The main part of the proposed algorithm is resource management unit which performs task partitioning and co-scheduling .In this paper, we present a technique for integrated task partitioning and co-scheduling on the privately owned network. We focus on real-time and non preemptive systems. A large variety of experiments have been conducted on the proposed algorithm using synthetic and real tasks. Goal of computation model is to provide a realistic representation of the costs of programming The results show the benefit of the task partitioning. The main characteristics of our method are optimal scheduling and strong link between partitioning, scheduling and communication. Some important models for task partitioning are also discussed in the paper. We target the algorithm for task partitioning which improve the inter process communication between the tasks and use the recourses of the system in the efficient manner. The proposed algorithm contributes the inter-process communication cost minimization amongst the executing processes.

  12. Computer modeling for optimal placement of gloveboxes

    Energy Technology Data Exchange (ETDEWEB)

    Hench, K.W.; Olivas, J.D. [Los Alamos National Lab., NM (United States); Finch, P.R. [New Mexico State Univ., Las Cruces, NM (United States)

    1997-08-01

    Reduction of the nuclear weapons stockpile and the general downsizing of the nuclear weapons complex has presented challenges for Los Alamos. One is to design an optimized fabrication facility to manufacture nuclear weapon primary components (pits) in an environment of intense regulation and shrinking budgets. Historically, the location of gloveboxes in a processing area has been determined without benefit of industrial engineering studies to ascertain the optimal arrangement. The opportunity exists for substantial cost savings and increased process efficiency through careful study and optimization of the proposed layout by constructing a computer model of the fabrication process. This paper presents an integrative two- stage approach to modeling the casting operation for pit fabrication. The first stage uses a mathematical technique for the formulation of the facility layout problem; the solution procedure uses an evolutionary heuristic technique. The best solutions to the layout problem are used as input to the second stage - a computer simulation model that assesses the impact of competing layouts on operational performance. The focus of the simulation model is to determine the layout that minimizes personnel radiation exposures and nuclear material movement, and maximizes the utilization of capacity for finished units.

  13. Computer model of tetrahedral amorphous diamond

    Science.gov (United States)

    Djordjević, B. R.; Thorpe, M. F.; Wooten, F.

    1995-08-01

    We computer generate a model of amorphous diamond using the Wooten-Weaire method, with fourfold coordination everywhere. We investigate two models: one where four-membered rings are allowed and the other where the four-membered rings are forbidden; each model consisting of 4096 atoms. Starting from the perfect diamond crystalline structure, we first randomize the structure by introducing disorder through random bond switches at a sufficiently high temperature. Subsequently, the temperature is reduced in stages, and the topological and geometrical relaxation of the structure takes place using the Keating potential. After a long annealing process, a random network of comparatively low energy is obtained. We calculate the pair distribution function, mean bond angle, rms angular deviation, rms bond length, rms bond-length deviation, and ring statistics for the final relaxed structures. We minimize the total strain energy by adjusting the density of the sample. We compare our results with similar computer-generated models for amorphous silicon, and with experimental measurement of the structure factor for (predominantly tetrahedral) amorphous carbon.

  14. Computer Generated Cardiac Model For Nuclear Medicine

    Science.gov (United States)

    Hills, John F.; Miller, Tom R.

    1981-07-01

    A computer generated mathematical model of a thallium-201 myocardial image is described which is based on realistic geometric and physiological assumptions. The left ventricle is represented by an ellipsoid truncated by aortic and mitral valve planes. Initially, an image of a motionless left ventricle is calculated with the location, size, and relative activity of perfusion defects selected by the designer. The calculation includes corrections for photon attenuation by overlying structures and the relative distribution of activity within the tissues. Motion of the ventricular walls is simulated either by a weighted sum of images at different stages in the cardiac cycle or by a blurring function whose width varies with position. Camera and collimator blurring are estimated by the MTF of the system measured at a representative depth in a phantom. Statistical noise is added using a Poisson random number generator. The usefulness of this model is due to two factors: the a priori characterization of location and extent of perfusion defects and the strong visual similarity of the images to actual clinical studies. These properties should permit systematic evaluation of image processing algorithms using this model. The principles employed in developing this cardiac image model can readily be applied to the simulation of other nuclear medicine studies and to other medical imaging modalities including computed tomography, ultrasound, and digital radiography.

  15. Computational analysis of the MCoTI-II plant defence knottin reveals a novel intermediate conformation that facilitates trypsin binding

    Science.gov (United States)

    Jones, Peter M.; George, Anthony M.

    2016-03-01

    MCoTI-I and II are plant defence proteins, potent trypsin inhibitors from the bitter gourd Momordica cochinchinensis. They are members of the Knottin Family, which display exceptional stability due to unique topology comprising three interlocked disulfide bridges. Knottins show promise as scaffolds for new drug development. A crystal structure of trypsin-bound MCoTI-II suggested that loop 1, which engages the trypsin active site, would show decreased dynamics in the bound state, an inference at odds with an NMR analysis of MCoTI-I, which revealed increased dynamics of loop 1 in the presence of trypsin. To investigate this question, we performed unrestrained MD simulations of trypsin-bound and free MCoTI-II. This analysis found that loop 1 of MCoTI-II is not more dynamic in the trypsin-bound state than in the free state. However, it revealed an intermediate conformation, transitional between the free and bound MCoTI-II states. The data suggest that MCoTI-II binding involves a process in which initial interaction with trypsin induces transitions between the free and intermediate conformations, and fluctuations between these states account for the increase in dynamics of loop 1 observed for trypsin-bound MCoTI-I. The MD analysis thus revealed new aspects of the inhibitors’ dynamics that may be of utility in drug design.

  16. COMMON PHASES OF COMPUTER FORENSICS INVESTIGATION MODELS

    Directory of Open Access Journals (Sweden)

    Yunus Yusoff

    2011-06-01

    Full Text Available The increasing criminal activities using digital information as the means or targets warrant for a structured manner in dealing with them. Since 1984 when a formalized process been introduced, a great number of new and improved computer forensic investigation processes have been developed. In this paper, we reviewed a few selected investigation processes that have been produced throughout the yearsand then identified the commonly shared processes. Hopefully, with the identification of the commonly shard process, it would make it easier for the new users to understand the processes and also to serve as the basic underlying concept for the development of a new set of processes. Based on the commonly shared processes, we proposed a generic computer forensics investigation model, known as GCFIM.

  17. Transportation Conformity

    Science.gov (United States)

    This section provides information on: current laws, regulations and guidance, policy and technical guidance, project-level conformity, general information, contacts and training, adequacy review of SIP submissions

  18. 40 CFR 194.23 - Models and computer codes.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Models and computer codes. 194.23... General Requirements § 194.23 Models and computer codes. (a) Any compliance application shall include: (1... obtain stable solutions; (iv) Computer models accurately implement the numerical models; i.e.,...

  19. Computational modeling of a forward lunge

    DEFF Research Database (Denmark)

    Eriksen, Tine Alkjær; Wieland, Maja Rose; Andersen, Michael Skipper

    2012-01-01

    during forward lunging. Thus, the purpose of the present study was to establish a musculoskeletal model of the forward lunge to computationally investigate the complete mechanical force equilibrium of the tibia during the movement to examine the loading pattern of the cruciate ligaments. A healthy female...... was selected out of a group of healthy subjects, who all performed a forward lunge on a force platform, targeting a knee flexion angle of 90˚. Skin-markers were placed on anatomical landmarks on the subject and the movement was recorded by five video cameras. The three-dimensional kinematic data describing...... the forward lunge movement were extracted and used to develop a biomechanical model of the lunge movement. The model comprised two legs including femur, crus, rigid foot segments and the pelvis. Each leg had 35 independent muscle units, which were recruited according to a minimum fatigue criterion...

  20. Computer model for analyzing sodium cold traps

    Energy Technology Data Exchange (ETDEWEB)

    McPheeters, C C; Raue, D J

    1983-05-01

    A computer model was developed to simulate the processes that occur in sodium cold traps. The Model for Analyzing Sodium Cold Traps (MASCOT) simulates any desired configuration of mesh arrangements and dimensions and calculates pressure drops and flow distributions, temperature profiles, impurity concentration profiles, and impurity mass distributions. The calculated pressure drop as a function of impurity mass content determines the capacity of the cold trap. The accuracy of the model was checked by comparing calculated mass distributions with experimentally determined mass distributions from literature publications and with results from our own cold trap experiments. The comparisons were excellent in all cases. A parametric study was performed to determine which design variables are most important in maximizing cold trap capacity.

  1. A Graph Model for Imperative Computation

    CERN Document Server

    McCusker, Guy

    2009-01-01

    Scott's graph model is a lambda-algebra based on the observation that continuous endofunctions on the lattice of sets of natural numbers can be represented via their graphs. A graph is a relation mapping finite sets of input values to output values. We consider a similar model based on relations whose input values are finite sequences rather than sets. This alteration means that we are taking into account the order in which observations are made. This new notion of graph gives rise to a model of affine lambda-calculus that admits an interpretation of imperative constructs including variable assignment, dereferencing and allocation. Extending this untyped model, we construct a category that provides a model of typed higher-order imperative computation with an affine type system. An appropriate language of this kind is Reynolds's Syntactic Control of Interference. Our model turns out to be fully abstract for this language. At a concrete level, it is the same as Reddy's object spaces model, which was the first "...

  2. Solution conformation of carbohydrates: a view by using NMR assisted by modeling.

    Science.gov (United States)

    Díaz, Dolores; Canales-Mayordomo, Angeles; Cañada, F Javier; Jiménez-Barbero, Jesús

    2015-01-01

    Structural elucidation of complex carbohydrates in solution is not a trivial task. From the NMR view point, the limited chemical shift dispersion of sugar NMR spectra demands the combination of a variety of NMR techniques as well as the employment of molecular modeling methods. Herein, a general protocol for assignment of resonances and determination of inter-proton distances within the saccharides by homonuclear and heteronuclear experiments (i.e., (1)H and (13)C) is described. In addition, several computational tools and procedures for getting a final ensemble of geometries that represent the structure in solution are presented.

  3. Influence of Tableting on the Conformation and Thermal Stability of Trypsin as a Model Protein

    DEFF Research Database (Denmark)

    Klukkert, Marten; Van De Weert, Marco; Fanø, Mathias

    2015-01-01

    conformation and the extent of their reversibility were determined using solid- and liquid-state IR spectroscopy together with principal component analysis and an area overlap approach. Trypsin enzymatic activity was determined by a photometric assay. Liquid-state differential scanning calorimetry......The objective of this study was to investigate the influence of compaction on the conformation of trypsin, its transition temperature (Tm ) of unfolding, and its folding reversibility after thermal denaturation. Plain trypsin was compacted at 40-382 MPa. Pressure-induced changes in the trypsin...... was performed to determine the Tm as well as the folding reversibility after thermal denaturation of the reconstituted samples. It was found that compacted samples showed reduced activity accompanied by an altered secondary structure. Conformational changes that occur in the solid state were partially...

  4. Modelling of data uncertainties on hybrid computers

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, Anke (ed.)

    2016-06-15

    The codes d{sup 3}f and r{sup 3}t are well established for modelling density-driven flow and nuclide transport in the far field of repositories for hazardous material in deep geological formations. They are applicable in porous media as well as in fractured rock or mudstone, for modelling salt- and heat transport as well as a free groundwater surface. Development of the basic framework of d{sup 3}f and r{sup 3}t had begun more than 20 years ago. Since that time significant advancements took place in the requirements for safety assessment as well as for computer hardware development. The period of safety assessment for a repository of high-level radioactive waste was extended to 1 million years, and the complexity of the models is steadily growing. Concurrently, the demands on accuracy increase. Additionally, model and parameter uncertainties become more and more important for an increased understanding of prediction reliability. All this leads to a growing demand for computational power that requires a considerable software speed-up. An effective way to achieve this is the use of modern, hybrid computer architectures which requires basically the set-up of new data structures and a corresponding code revision but offers a potential speed-up by several orders of magnitude. The original codes d{sup 3}f and r{sup 3}t were applications of the software platform UG /BAS 94/ whose development had begun in the early nineteennineties. However, UG had recently been advanced to the C++ based, substantially revised version UG4 /VOG 13/. To benefit also in the future from state-of-the-art numerical algorithms and to use hybrid computer architectures, the codes d{sup 3}f and r{sup 3}t were transferred to this new code platform. Making use of the fact that coupling between different sets of equations is natively supported in UG4, d{sup 3}f and r{sup 3}t were combined to one conjoint code d{sup 3}f++. A direct estimation of uncertainties for complex groundwater flow models with the

  5. Computational modeling of Li-ion batteries

    Science.gov (United States)

    Grazioli, D.; Magri, M.; Salvadori, A.

    2016-08-01

    This review focuses on energy storage materials modeling, with particular emphasis on Li-ion batteries. Theoretical and computational analyses not only provide a better understanding of the intimate behavior of actual batteries under operational and extreme conditions, but they may tailor new materials and shape new architectures in a complementary way to experimental approaches. Modeling can therefore play a very valuable role in the design and lifetime prediction of energy storage materials and devices. Batteries are inherently multi-scale, in space and time. The macro-structural characteristic lengths (the thickness of a single cell, for instance) are order of magnitudes larger than the particles that form the microstructure of the porous electrodes, which in turn are scale-separated from interface layers at which atomistic intercalations occur. Multi-physics modeling concepts, methodologies, and simulations at different scales, as well as scale transition strategies proposed in the recent literature are here revised. Finally, computational challenges toward the next generation of Li-ion batteries are discussed.

  6. Computational modeling of Li-ion batteries

    Science.gov (United States)

    Grazioli, D.; Magri, M.; Salvadori, A.

    2016-12-01

    This review focuses on energy storage materials modeling, with particular emphasis on Li-ion batteries. Theoretical and computational analyses not only provide a better understanding of the intimate behavior of actual batteries under operational and extreme conditions, but they may tailor new materials and shape new architectures in a complementary way to experimental approaches. Modeling can therefore play a very valuable role in the design and lifetime prediction of energy storage materials and devices. Batteries are inherently multi-scale, in space and time. The macro-structural characteristic lengths (the thickness of a single cell, for instance) are order of magnitudes larger than the particles that form the microstructure of the porous electrodes, which in turn are scale-separated from interface layers at which atomistic intercalations occur. Multi-physics modeling concepts, methodologies, and simulations at different scales, as well as scale transition strategies proposed in the recent literature are here revised. Finally, computational challenges toward the next generation of Li-ion batteries are discussed.

  7. Modeling Reality - How Computers Mirror Life

    Science.gov (United States)

    Bialynicki-Birula, Iwo; Bialynicka-Birula, Iwona

    2005-01-01

    The bookModeling Reality covers a wide range of fascinating subjects, accessible to anyone who wants to learn about the use of computer modeling to solve a diverse range of problems, but who does not possess a specialized training in mathematics or computer science. The material presented is pitched at the level of high-school graduates, even though it covers some advanced topics (cellular automata, Shannon's measure of information, deterministic chaos, fractals, game theory, neural networks, genetic algorithms, and Turing machines). These advanced topics are explained in terms of well known simple concepts: Cellular automata - Game of Life, Shannon's formula - Game of twenty questions, Game theory - Television quiz, etc. The book is unique in explaining in a straightforward, yet complete, fashion many important ideas, related to various models of reality and their applications. Twenty-five programs, written especially for this book, are provided on an accompanying CD. They greatly enhance its pedagogical value and make learning of even the more complex topics an enjoyable pleasure.

  8. COMPUTER MODELING OF EMBRYONIC MORTALITY AT CRIOCONSERVATION

    Directory of Open Access Journals (Sweden)

    Gorbunov,

    2016-08-01

    Full Text Available The purpose of the research was to determine the regularities of influence of mammalian embryos heterogeneity and effectiveness of cryoconservation steps on their viability by using the developed simulation model. The model is based on analytical expressions that reflect the main causes of embryonic mortality during in vitro and in vivo cultivation, crioconservation and embryo transplantation. Reduction of viability depends on a set of biological factors such as the animal special, donor and recipient state, quality of embryos, and of technological ones such as the efficiency of cryopreservation method, and embryo transplantation. Fulfilled computer experiment showed, that divergence of embryos viability depending on biological parameters variations changes in a range from 0 to 100%, whereas efficiency index of chosen technology has an inaccuracy about 1%. The comparative analysis of alternative technologies of embryos cryopreservation showed the maximum efficiency of stages of use of the cryoprotectant, freezing regime and in vitro and in vivo cultivation of biological object. The application of computer modeling gives an opportunity to reduce the range of embryos viability results, obtained in different experiments is many times, thereby to shorten the time, monetary costs and the slaughter of laboratory animals in obtaining reliable results.

  9. Computer-aided modeling framework – a generic modeling template

    DEFF Research Database (Denmark)

    Fedorova, Marina; Sin, Gürkan; Gani, Rafiqul

    This work focuses on the development of a computer-aided modeling framework. The framework is a knowledge-based system that is built on a generic modeling language and structured on workflows for different modeling tasks. The overall objective is to support model developers and users to generate...... and test models systematically, efficiently and reliably. In this way, development of products and processes can be made faster, cheaper and more efficient. In this contribution, as part of the framework, a generic modeling template for the systematic derivation of problem specific models is presented....... The application of the modeling template is highlighted with a case study related to the modeling of a catalytic membrane reactor coupling dehydrogenation of ethylbenzene with hydrogenation of nitrobenzene...

  10. Optimization and mathematical modeling in computer architecture

    CERN Document Server

    Sankaralingam, Karu; Nowatzki, Tony

    2013-01-01

    In this book we give an overview of modeling techniques used to describe computer systems to mathematical optimization tools. We give a brief introduction to various classes of mathematical optimization frameworks with special focus on mixed integer linear programming which provides a good balance between solver time and expressiveness. We present four detailed case studies -- instruction set customization, data center resource management, spatial architecture scheduling, and resource allocation in tiled architectures -- showing how MILP can be used and quantifying by how much it outperforms t

  11. Dynamical Models for Computer Viruses Propagation

    Directory of Open Access Journals (Sweden)

    José R. C. Piqueira

    2008-01-01

    Full Text Available Nowadays, digital computer systems and networks are the main engineering tools, being used in planning, design, operation, and control of all sizes of building, transportation, machinery, business, and life maintaining devices. Consequently, computer viruses became one of the most important sources of uncertainty, contributing to decrease the reliability of vital activities. A lot of antivirus programs have been developed, but they are limited to detecting and removing infections, based on previous knowledge of the virus code. In spite of having good adaptation capability, these programs work just as vaccines against diseases and are not able to prevent new infections based on the network state. Here, a trial on modeling computer viruses propagation dynamics relates it to other notable events occurring in the network permitting to establish preventive policies in the network management. Data from three different viruses are collected in the Internet and two different identification techniques, autoregressive and Fourier analyses, are applied showing that it is possible to forecast the dynamics of a new virus propagation by using the data collected from other viruses that formerly infected the network.

  12. Computational social dynamic modeling of group recruitment.

    Energy Technology Data Exchange (ETDEWEB)

    Berry, Nina M.; Lee, Marinna; Pickett, Marc; Turnley, Jessica Glicken (Sandia National Laboratories, Albuquerque, NM); Smrcka, Julianne D. (Sandia National Laboratories, Albuquerque, NM); Ko, Teresa H.; Moy, Timothy David (Sandia National Laboratories, Albuquerque, NM); Wu, Benjamin C.

    2004-01-01

    The Seldon software toolkit combines concepts from agent-based modeling and social science to create a computationally social dynamic model for group recruitment. The underlying recruitment model is based on a unique three-level hybrid agent-based architecture that contains simple agents (level one), abstract agents (level two), and cognitive agents (level three). This uniqueness of this architecture begins with abstract agents that permit the model to include social concepts (gang) or institutional concepts (school) into a typical software simulation environment. The future addition of cognitive agents to the recruitment model will provide a unique entity that does not exist in any agent-based modeling toolkits to date. We use social networks to provide an integrated mesh within and between the different levels. This Java based toolkit is used to analyze different social concepts based on initialization input from the user. The input alters a set of parameters used to influence the values associated with the simple agents, abstract agents, and the interactions (simple agent-simple agent or simple agent-abstract agent) between these entities. The results of phase-1 Seldon toolkit provide insight into how certain social concepts apply to different scenario development for inner city gang recruitment.

  13. Conformational restrictions in ligand binding to the human intestinal di-/tripeptide transporter

    DEFF Research Database (Denmark)

    Våbenø, Jon; Nielsen, Carsten Uhd; Steffansen, Bente

    2005-01-01

    by conformational analysis and 2D dihedral driving analysis of 15 hPEPT1 substrates, which suggested that psi(1) approximately 165 degrees , omega(1) approximately 180 degrees , and phi(2) approximately 280 degrees were descriptive of the bioactive conformation. Subsequently, the conformational energy required......The aim of the present study was to develop a computational method aiding the design of dipeptidomimetic pro-moieties targeting the human intestinal di-/tripeptide transporter hPEPT1. First, the conformation in which substrates bind to hPEPT1 (the bioactive conformation) was identified...... to change the peptide backbone conformation (DeltaE(bbone)) from the global energy minimum conformation to the identified bioactive conformation was calculated for 20 hPEPT1 targeted model prodrugs with known K(i) values. Quantitatively, an inverse linear relationship (r(2)=0.81, q(2)=0.80) was obtained...

  14. Non-conforming finite-element formulation for cardiac electrophysiology: an effective approach to reduce the computation time of heart simulations without compromising accuracy

    Science.gov (United States)

    Hurtado, Daniel E.; Rojas, Guillermo

    2017-08-01

    Computer simulations constitute a powerful tool for studying the electrical activity of the human heart, but computational effort remains prohibitively high. In order to recover accurate conduction velocities and wavefront shapes, the mesh size in linear element (Q1) formulations cannot exceed 0.1 mm. Here we propose a novel non-conforming finite-element formulation for the non-linear cardiac electrophysiology problem that results in accurate wavefront shapes and lower mesh-dependance in the conduction velocity, while retaining the same number of global degrees of freedom as Q1 formulations. As a result, coarser discretizations of cardiac domains can be employed in simulations without significant loss of accuracy, thus reducing the overall computational effort. We demonstrate the applicability of our formulation in biventricular simulations using a coarse mesh size of ˜ 1 mm, and show that the activation wave pattern closely follows that obtained in fine-mesh simulations at a fraction of the computation time, thus improving the accuracy-efficiency trade-off of cardiac simulations.

  15. Analysis of a Model for Computer Virus Transmission

    Directory of Open Access Journals (Sweden)

    Peng Qin

    2015-01-01

    Full Text Available Computer viruses remain a significant threat to computer networks. In this paper, the incorporation of new computers to the network and the removing of old computers from the network are considered. Meanwhile, the computers are equipped with antivirus software on the computer network. The computer virus model is established. Through the analysis of the model, disease-free and endemic equilibrium points are calculated. The stability conditions of the equilibria are derived. To illustrate our theoretical analysis, some numerical simulations are also included. The results provide a theoretical basis to control the spread of computer virus.

  16. Workers’ Conformism

    Directory of Open Access Journals (Sweden)

    Nikolay Ivantchev

    2013-10-01

    Full Text Available Conformism was studied among 46 workers with different kinds of occupations by means of two modified scales measuring conformity by Santor, Messervey, and Kusumakar (2000 – scale for perceived peer pressure and scale for conformism in antisocial situations. The hypothesis of the study that workers’ conformism is expressed in a medium degree was confirmed partly. More than a half of the workers conform in a medium degree for taking risk, and for the use of alcohol and drugs, and for sexual relationships. More than a half of the respondents conform in a small degree for anti-social activities (like a theft. The workers were more inclined to conform for risk taking (10.9%, then – for the use of alcohol, drugs and for sexual relationships (8.7%, and in the lowest degree – for anti-social activities (6.5%. The workers who were inclined for the use of alcohol and drugs tended also to conform for anti-social activities.

  17. Conformal Bootstrap in Mellin Space

    CERN Document Server

    Gopakumar, Rajesh; Sen, Kallol; Sinha, Aninda

    2016-01-01

    We propose a new approach towards analytically solving for the dynamical content of Conformal Field Theories (CFTs) using the bootstrap philosophy. This combines the original bootstrap idea of Polyakov with the modern technology of the Mellin representation of CFT amplitudes. We employ exchange Witten diagrams with built in crossing symmetry as our basic building blocks rather than the conventional conformal blocks in a particular channel. Demanding consistency with the operator product expansion (OPE) implies an infinite set of constraints on operator dimensions and OPE coefficients. We illustrate the power of this method in the epsilon expansion of the Wilson-Fisher fixed point by computing operator dimensions and, strikingly, OPE coefficients to higher orders in epsilon than currently available using other analytic techniques (including Feynman diagram calculations). Our results enable us to get a somewhat better agreement of certain observables in the 3d Ising model, with the precise numerical values that...

  18. Conformational analysis: a tool for the elucidation of the antioxidant properties of ferulic acid derivatives in membrane models.

    Science.gov (United States)

    Anselmi, Cecilia; Centini, Marisanna; Andreassi, Marco; Buonocore, Anna; La Rosa, Caterina; Facino, Roberto Maffei; Sega, Alessandro; Tsuno, Fumi

    2004-09-03

    With the aim to search and design more effective and safe antioxidant molecules to be used as functional ingredients in cosmetic formulations for UV protection, we evaluated the antioxidant/radical scavenging activities of ferulic acid and of some alkyl ferulates in both acellular and cellular systems. Ferulic acid esters, equipotent as antioxidant in homogeneous phase, showed when tested in membranous systems (rat liver microsomes, rat erythrocytes) marked differences in antioxidant potency. The n-C(12) derivative was the most potent, followed by n-C(8), n-C(16) and branched C(8), and then by ferulic acid. A conformational study carried out by NMR and modelling, indicates that the different antioxidant activity of ferulates in membrane models is due to the different spatial conformation and arrangement of the side chain of the molecule, which governs the access and binding to the phospholipid bilayer, the modality of orientation of the scavenging/quenching nucleus (phenol moiety), and hence the overall antioxidant potency of the derivative. These results emphasize the need of analytical studies (NMR and molecular modelling) addressed to the knowledge of the conformational parameters in combination with conventional antioxidant testings for understanding the antioxidant behaviour of a molecule in a biological membrane/system.

  19. Computational models of intergroup competition and warfare.

    Energy Technology Data Exchange (ETDEWEB)

    Letendre, Kenneth (University of New Mexico); Abbott, Robert G.

    2011-11-01

    This document reports on the research of Kenneth Letendre, the recipient of a Sandia Graduate Research Fellowship at the University of New Mexico. Warfare is an extreme form of intergroup competition in which individuals make extreme sacrifices for the benefit of their nation or other group to which they belong. Among animals, limited, non-lethal competition is the norm. It is not fully understood what factors lead to warfare. We studied the global variation in the frequency of civil conflict among countries of the world, and its positive association with variation in the intensity of infectious disease. We demonstrated that the burden of human infectious disease importantly predicts the frequency of civil conflict and tested a causal model for this association based on the parasite-stress theory of sociality. We also investigated the organization of social foraging by colonies of harvester ants in the genus Pogonomyrmex, using both field studies and computer models.

  20. Computer modeling of thermoelectric generator performance

    Science.gov (United States)

    Chmielewski, A. B.; Shields, V.

    1982-01-01

    Features of the DEGRA 2 computer code for simulating the operations of a spacecraft thermoelectric generator are described. The code models the physical processes occurring during operation. Input variables include the thermoelectric couple geometry and composition, the thermoelectric materials' properties, interfaces and insulation in the thermopile, the heat source characteristics, mission trajectory, and generator electrical requirements. Time steps can be specified and sublimation of the leg and hot shoe is accounted for, as are shorts between legs. Calculations are performed for conduction, Peltier, Thomson, and Joule heating, the cold junction can be adjusted for solar radition, and the legs of the thermoelectric couple are segmented to enhance the approximation accuracy. A trial run covering 18 couple modules yielded data with 0.3% accuracy with regard to test data. The model has been successful with selenide materials, SiGe, and SiN4, with output of all critical operational variables.

  1. A computational model of motor neuron degeneration.

    Science.gov (United States)

    Le Masson, Gwendal; Przedborski, Serge; Abbott, L F

    2014-08-20

    To explore the link between bioenergetics and motor neuron degeneration, we used a computational model in which detailed morphology and ion conductance are paired with intracellular ATP production and consumption. We found that reduced ATP availability increases the metabolic cost of a single action potential and disrupts K+/Na+ homeostasis, resulting in a chronic depolarization. The magnitude of the ATP shortage at which this ionic instability occurs depends on the morphology and intrinsic conductance characteristic of the neuron. If ATP shortage is confined to the distal part of the axon, the ensuing local ionic instability eventually spreads to the whole neuron and involves fasciculation-like spiking events. A shortage of ATP also causes a rise in intracellular calcium. Our modeling work supports the notion that mitochondrial dysfunction can account for salient features of the paralytic disorder amyotrophic lateral sclerosis, including motor neuron hyperexcitability, fasciculation, and differential vulnerability of motor neuron subpopulations.

  2. Electromagnetic Physics Models for Parallel Computing Architectures

    Science.gov (United States)

    Amadio, G.; Ananya, A.; Apostolakis, J.; Aurora, A.; Bandieramonte, M.; Bhattacharyya, A.; Bianchini, C.; Brun, R.; Canal, P.; Carminati, F.; Duhem, L.; Elvira, D.; Gheata, A.; Gheata, M.; Goulas, I.; Iope, R.; Jun, S. Y.; Lima, G.; Mohanty, A.; Nikitina, T.; Novak, M.; Pokorski, W.; Ribon, A.; Seghal, R.; Shadura, O.; Vallecorsa, S.; Wenzel, S.; Zhang, Y.

    2016-10-01

    The recent emergence of hardware architectures characterized by many-core or accelerated processors has opened new opportunities for concurrent programming models taking advantage of both SIMD and SIMT architectures. GeantV, a next generation detector simulation, has been designed to exploit both the vector capability of mainstream CPUs and multi-threading capabilities of coprocessors including NVidia GPUs and Intel Xeon Phi. The characteristics of these architectures are very different in terms of the vectorization depth and type of parallelization needed to achieve optimal performance. In this paper we describe implementation of electromagnetic physics models developed for parallel computing architectures as a part of the GeantV project. Results of preliminary performance evaluation and physics validation are presented as well.

  3. Local conformational perturbations of the DNA molecule in the SG-model

    Energy Technology Data Exchange (ETDEWEB)

    Krasnobaeva, L. A., E-mail: kla1983@mail.ru [Tomsk State University, Pr. Lenina 36, Tomsk 634050 (Russian Federation); Siberian State Medical University Moscowski Trakt 2, Tomsk, 634050 (Russian Federation); Shapovalov, A. V. [Tomsk State University, Pr. Lenina 36, Tomsk 634050 (Russian Federation)

    2015-11-17

    Within the formalism of the Fokker–Planck equation, the influence of nonstationary external force, random force, and dissipation effects on dynamics local conformational perturbations (kink) propagating along the DNA molecule is investigated. Such waves have an important role in the regulation of important biological processes in living systems at the molecular level. As a dynamic model of DNA was used a modified sine-Gordon equation, simulating the rotational oscillations of bases in one of the chains DNA. The equation of evolution of the kink momentum is obtained in the form of the stochastic differential equation in the Stratonovich sense within the framework of the well-known McLaughlin and Scott energy approach. The corresponding Fokker–Planck equation for the momentum distribution function coincides with the equation describing the Ornstein–Uhlenbek process with a regular nonstationary external force. The influence of the nonlinear stochastic effects on the kink dynamics is considered with the help of the Fokker– Planck nonlinear equation with the shift coefficient dependent on the first moment of the kink momentum distribution function. Expressions are derived for average value and variance of the momentum. Examples are considered which demonstrate the influence of the external regular and random forces on the evolution of the average value and variance of the kink momentum. Within the formalism of the Fokker–Planck equation, the influence of nonstationary external force, random force, and dissipation effects on the kink dynamics is investigated in the sine–Gordon model. The equation of evolution of the kink momentum is obtained in the form of the stochastic differential equation in the Stratonovich sense within the framework of the well-known McLaughlin and Scott energy approach. The corresponding Fokker–Planck equation for the momentum distribution function coincides with the equation describing the Ornstein–Uhlenbek process with a regular

  4. Direct modeling for computational fluid dynamics

    Science.gov (United States)

    Xu, Kun

    2015-06-01

    All fluid dynamic equations are valid under their modeling scales, such as the particle mean free path and mean collision time scale of the Boltzmann equation and the hydrodynamic scale of the Navier-Stokes (NS) equations. The current computational fluid dynamics (CFD) focuses on the numerical solution of partial differential equations (PDEs), and its aim is to get the accurate solution of these governing equations. Under such a CFD practice, it is hard to develop a unified scheme that covers flow physics from kinetic to hydrodynamic scales continuously because there is no such governing equation which could make a smooth transition from the Boltzmann to the NS modeling. The study of fluid dynamics needs to go beyond the traditional numerical partial differential equations. The emerging engineering applications, such as air-vehicle design for near-space flight and flow and heat transfer in micro-devices, do require further expansion of the concept of gas dynamics to a larger domain of physical reality, rather than the traditional distinguishable governing equations. At the current stage, the non-equilibrium flow physics has not yet been well explored or clearly understood due to the lack of appropriate tools. Unfortunately, under the current numerical PDE approach, it is hard to develop such a meaningful tool due to the absence of valid PDEs. In order to construct multiscale and multiphysics simulation methods similar to the modeling process of constructing the Boltzmann or the NS governing equations, the development of a numerical algorithm should be based on the first principle of physical modeling. In this paper, instead of following the traditional numerical PDE path, we introduce direct modeling as a principle for CFD algorithm development. Since all computations are conducted in a discretized space with limited cell resolution, the flow physics to be modeled has to be done in the mesh size and time step scales. Here, the CFD is more or less a direct

  5. A Behavioral Model of Conumption Patterns : The Effects of Cognitive Dissonance and Conformity

    NARCIS (Netherlands)

    Nir, A.

    2004-01-01

    Cognitive dissonance causes people to rationalize actions that differ from their own preferences.Conformity, on the other hand, causes people to change their behavior as a result of pressure from others.This paper investigates the consequences of preference dynamic that occur when individuals ration

  6. A Behavioral Model of Conumption Patterns : The Effects of Cognitive Dissonance and Conformity

    NARCIS (Netherlands)

    Nir, A.

    2004-01-01

    Cognitive dissonance causes people to rationalize actions that differ from their own preferences.Conformity, on the other hand, causes people to change their behavior as a result of pressure from others.This paper investigates the consequences of preference dynamic that occur when individuals

  7. Conformational studies of immunodominant myelin basic protein 1-11 analogues using NMR and molecular modeling.

    Science.gov (United States)

    Laimou, Despina; Lazoura, Eliada; Troganis, Anastassios N; Matsoukas, Minos-Timotheos; Deraos, Spyros N; Katsara, Maria; Matsoukas, John; Apostolopoulos, Vasso; Tselios, Theodore V

    2011-11-01

    Τwo dimensional nuclear magnetic resonance studies complimented by molecular dynamics simulations were conducted to investigate the conformation of the immunodominant epitope of acetylated myelin basic protein residues 1-11 (Ac-MBP(1-11)) and its altered peptide ligands, mutated at position 4 to an alanine (Ac-MBP(1-11)[4A]) or a tyrosine residue (Ac-MBP(1-11)[4Y]). Conformational analysis of the three analogues indicated that they adopt an extended conformation in DMSO solution as no long distance NOE connectivities were observed and seem to have a similar conformation when bound to the active site of the major histocompatibility complex (MHC II). The interaction of each peptide with MHC class II I-A(u) was further investigated in order to explore the molecular mechanism of experimental autoimmune encephalomyelitis induction/inhibition in mice. The present findings indicate that the Gln(3) residue, which serves as a T-cell receptor (TCR) contact site in the TCR/peptide/I-A(u) complex, has a different orientation in the mutated analogues especially in the Ac-MBP(1-11)[4A] peptide. In particular the side chain of Gln(3) is not solvent exposed as for the native Ac-MBP(1-11) and it is not available for interaction with the TCR.

  8. Stochastic linear programming models, theory, and computation

    CERN Document Server

    Kall, Peter

    2011-01-01

    This new edition of Stochastic Linear Programming: Models, Theory and Computation has been brought completely up to date, either dealing with or at least referring to new material on models and methods, including DEA with stochastic outputs modeled via constraints on special risk functions (generalizing chance constraints, ICC’s and CVaR constraints), material on Sharpe-ratio, and Asset Liability Management models involving CVaR in a multi-stage setup. To facilitate use as a text, exercises are included throughout the book, and web access is provided to a student version of the authors’ SLP-IOR software. Additionally, the authors have updated the Guide to Available Software, and they have included newer algorithms and modeling systems for SLP. The book is thus suitable as a text for advanced courses in stochastic optimization, and as a reference to the field. From Reviews of the First Edition: "The book presents a comprehensive study of stochastic linear optimization problems and their applications. … T...

  9. A global conformance quality model. A new strategic tool for minimizing defects caused by variation, error, and complexity

    Energy Technology Data Exchange (ETDEWEB)

    Hinckley, C. Martin [Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    1994-01-01

    The performance of Japanese products in the marketplace points to the dominant role of quality in product competition. Our focus is motivated by the tremendous pressure to improve conformance quality by reducing defects to previously unimaginable limits in the range of 1 to 10 parts per million. Toward this end, we have developed a new model of conformance quality that addresses each of the three principle defect sources: (1) Variation, (2) Human Error, and (3) Complexity. Although the role of variation in conformance quality is well documented, errors occur so infrequently that their significance is not well known. We have shown that statistical methods are not useful in characterizing and controlling errors, the most common source of defects. Excessive complexity is also a root source of defects, since it increases errors and variation defects. A missing link in the defining a global model has been the lack of a sound correlation between complexity and defects. We have used Design for Assembly (DFA) methods to quantify assembly complexity and have shown that assembly times can be described in terms of the Pareto distribution in a clear exception to the Central Limit Theorem. Within individual companies we have found defects to be highly correlated with DFA measures of complexity in broad studies covering tens of millions of assembly operations. Applying the global concepts, we predicted that Motorola`s Six Sigma method would only reduce defects by roughly a factor of two rather than orders of magnitude, a prediction confirmed by Motorola`s data. We have also shown that the potential defects rates of product concepts can be compared in the earliest stages of development. The global Conformance Quality Model has demonstrated that the best strategy for improvement depends upon the quality control strengths and weaknesses.

  10. Predicting side-chain conformations of methionine using a hard-sphere model with stereochemical constraints

    Science.gov (United States)

    Virrueta, A.; Gaines, J.; O'Hern, C. S.; Regan, L.

    2015-03-01

    Current research in the O'Hern and Regan laboratories focuses on the development of hard-sphere models with stereochemical constraints for protein structure prediction as an alternative to molecular dynamics methods that utilize knowledge-based corrections in their force-fields. Beginning with simple hydrophobic dipeptides like valine, leucine, and isoleucine, we have shown that our model is able to reproduce the side-chain dihedral angle distributions derived from sets of high-resolution protein crystal structures. However, methionine remains an exception - our model yields a chi-3 side-chain dihedral angle distribution that is relatively uniform from 60 to 300 degrees, while the observed distribution displays peaks at 60, 180, and 300 degrees. Our goal is to resolve this discrepancy by considering clashes with neighboring residues, and averaging the reduced distribution of allowable methionine structures taken from a set of crystallized proteins. We will also re-evaluate the electron density maps from which these protein structures are derived to ensure that the methionines and their local environments are correctly modeled. This work will ultimately serve as a tool for computing side-chain entropy and protein stability. A. V. is supported by an NSF Graduate Research Fellowship and a Ford Foundation Fellowship. J. G. is supported by NIH training Grant NIH-5T15LM007056-28.

  11. Statistics, Computation, and Modeling in Cosmology

    Science.gov (United States)

    Jewell, Jeff; Guiness, Joe; SAMSI 2016 Working Group in Cosmology

    2017-01-01

    Current and future ground and space based missions are designed to not only detect, but map out with increasing precision, details of the universe in its infancy to the present-day. As a result we are faced with the challenge of analyzing and interpreting observations from a wide variety of instruments to form a coherent view of the universe. Finding solutions to a broad range of challenging inference problems in cosmology is one of the goals of the “Statistics, Computation, and Modeling in Cosmology” workings groups, formed as part of the year long program on ‘Statistical, Mathematical, and Computational Methods for Astronomy’, hosted by the Statistical and Applied Mathematical Sciences Institute (SAMSI), a National Science Foundation funded institute. Two application areas have emerged for focused development in the cosmology working group involving advanced algorithmic implementations of exact Bayesian inference for the Cosmic Microwave Background, and statistical modeling of galaxy formation. The former includes study and development of advanced Markov Chain Monte Carlo algorithms designed to confront challenging inference problems including inference for spatial Gaussian random fields in the presence of sources of galactic emission (an example of a source separation problem). Extending these methods to future redshift survey data probing the nonlinear regime of large scale structure formation is also included in the working group activities. In addition, the working group is also focused on the study of ‘Galacticus’, a galaxy formation model applied to dark matter-only cosmological N-body simulations operating on time-dependent halo merger trees. The working group is interested in calibrating the Galacticus model to match statistics of galaxy survey observations; specifically stellar mass functions, luminosity functions, and color-color diagrams. The group will use subsampling approaches and fractional factorial designs to statistically and

  12. Performance of Air Pollution Models on Massively Parallel Computers

    DEFF Research Database (Denmark)

    Brown, John; Hansen, Per Christian; Wasniewski, Jerzy

    1996-01-01

    To compare the performance and use of three massively parallel SIMD computers, we implemented a large air pollution model on the computers. Using a realistic large-scale model, we gain detailed insight about the performance of the three computers when used to solve large-scale scientific problems...... that involve several types of numerical computations. The computers considered in our study are the Connection Machines CM-200 and CM-5, and the MasPar MP-2216...

  13. Computational Models to Synthesize Human Walking

    Institute of Scientific and Technical Information of China (English)

    Lei Ren; David Howard; Laurence Kenney

    2006-01-01

    The synthesis of human walking is of great interest in biomechanics and biomimetic engineering due to its predictive capabilities and potential applications in clinical biomechanics, rehabilitation engineering and biomimetic robotics. In this paper,the various methods that have been used to synthesize humanwalking are reviewed from an engineering viewpoint. This involves a wide spectrum of approaches, from simple passive walking theories to large-scale computational models integrating the nervous, muscular and skeletal systems. These methods are roughly categorized under four headings: models inspired by the concept of a CPG (Central Pattern Generator), methods based on the principles of control engineering, predictive gait simulation using optimisation, and models inspired by passive walking theory. The shortcomings and advantages of these methods are examined, and future directions are discussed in the context of providing insights into the neural control objectives driving gait and improving the stability of the predicted gaits. Future advancements are likely to be motivated by improved understanding of neural control strategies and the subtle complexities of the musculoskeletal system during human locomotion. It is only a matter of time before predictive gait models become a practical and valuable tool in clinical diagnosis, rehabilitation engineering and robotics.

  14. Methodical Approaches to Teaching of Computer Modeling in Computer Science Course

    Science.gov (United States)

    Rakhimzhanova, B. Lyazzat; Issabayeva, N. Darazha; Khakimova, Tiyshtik; Bolyskhanova, J. Madina

    2015-01-01

    The purpose of this study was to justify of the formation technique of representation of modeling methodology at computer science lessons. The necessity of studying computer modeling is that the current trends of strengthening of general education and worldview functions of computer science define the necessity of additional research of the…

  15. Congruence between a theoretical continuum of masculinity and the Rasch model: examining the Conformity to Masculine Norms Inventory.

    Science.gov (United States)

    Ludlow, L H; Mahalik, J R

    2001-01-01

    The purpose of this study was to examine the psychometric structure of the Conformity to Masculine Norms Inventory (CMNI) in relation to the Rasch model. The CMNI was specifically constructed to measure a set of unidimensional constructs. As such, the items were intended to define a uniform spread of locations along each construct. The CMNI measures conformity to twelve masculine norms: winning, emotional control, risk-taking, violence, dominance, playboy, self-reliance, primacy of work, power over women, disdain for homosexuals, physical toughness, and pursuit of status. Three hundred forty-eight men participated in the study. In addition to examining global Rasch characteristics and the unidimensionality of each of the 12 scales, a detailed Rasch rating scale analysis is provided for the Violence Scale with unusual response patterns discussed in terms of their clinical usefulness. The results across all 12 scales reveal an excellent congruence between the theoretically derived construct of conformity to masculine norms and the theoretically defined objectives of the Rasch rating scale model.

  16. Conformational thermodynamics guided structural reconstruction of biomolecular fragments.

    Science.gov (United States)

    Sikdar, Samapan; Chakrabarti, J; Ghosh, Mahua

    2016-02-01

    Computational prediction of structure for macromolecular fragments is a formidable challenge. Here we show that the differences in conformational thermodynamics, computed using the equilibrium distribution of dihedral angles from molecular dynamics simulation, can identify the better model for the missing residues in the metal ion free (apo) skeletal muscle Troponin C (TnC). We use the model to understand Troponin I interaction with calcium (Ca(2+)) ion bound TnC. Our method to compare conformational thermodynamics between different models can be easily generalized to any macromolecule to understand the structure and function even if experimental structures are not resolved.

  17. Preliminary Phase Field Computational Model Development

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yulan [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hu, Shenyang Y. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Xu, Ke [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Suter, Jonathan D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); McCloy, John S. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Johnson, Bradley R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Ramuhalli, Pradeep [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2014-12-15

    This interim report presents progress towards the development of meso-scale models of magnetic behavior that incorporate microstructural information. Modeling magnetic signatures in irradiated materials with complex microstructures (such as structural steels) is a significant challenge. The complexity is addressed incrementally, using the monocrystalline Fe (i.e., ferrite) film as model systems to develop and validate initial models, followed by polycrystalline Fe films, and by more complicated and representative alloys. In addition, the modeling incrementally addresses inclusion of other major phases (e.g., martensite, austenite), minor magnetic phases (e.g., carbides, FeCr precipitates), and minor nonmagnetic phases (e.g., Cu precipitates, voids). The focus of the magnetic modeling is on phase-field models. The models are based on the numerical solution to the Landau-Lifshitz-Gilbert equation. From the computational standpoint, phase-field modeling allows the simulation of large enough systems that relevant defect structures and their effects on functional properties like magnetism can be simulated. To date, two phase-field models have been generated in support of this work. First, a bulk iron model with periodic boundary conditions was generated as a proof-of-concept to investigate major loop effects of single versus polycrystalline bulk iron and effects of single non-magnetic defects. More recently, to support the experimental program herein using iron thin films, a new model was generated that uses finite boundary conditions representing surfaces and edges. This model has provided key insights into the domain structures observed in magnetic force microscopy (MFM) measurements. Simulation results for single crystal thin-film iron indicate the feasibility of the model for determining magnetic domain wall thickness and mobility in an externally applied field. Because the phase-field model dimensions are limited relative to the size of most specimens used in

  18. Modeling simulation and visualization of conformal 3D lung tumor dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Santhanam, Anand; Willoughby, Twyla R; Meeks, Sanford L; Kupelian, Patrick A [Department of Radiation Oncology, M D Anderson Cancer Center Orlando, 1400S Orange Ave., Orlando, FL 32806 (United States); Rolland, Jannick P [College of Optics and Photonics, University of Central Florida, 4000 Central Florida Blvd, Orlando, FL 32816 (United States)

    2009-10-21

    Lung tumors move during breathing depending on the patient's patho-physiological condition and orientation, thereby compromising the accurate deposition of the radiation dose during radiotherapy. In this paper, we present and validate a computer-based simulation framework to calculate the delivered dose to a 3D moving tumor and its surrounding normal tissues. The computer-based simulation framework models a 3D volumetric lung tumor and its surrounding tissues, simulates the tumor motion during a simulated dose delivery both as a self-reproducible motion and a random motion using the dose extracted from a treatment plan, and predicts the amount and location of radiation doses deposited. A radiation treatment plan of a small lung tumor (1-3 cm diameter) was developed in a commercial planning system (iPlan software, BrainLab, Munich, Germany) to simulate the radiation dose delivered. The dose for each radiation field was extracted from the software. The tumor motion was simulated for varying values of its rate, amplitude and direction within a single breath as well as from one breath to another. Such variations represent the variations in tumor motion induced by breathing variations. During the simulation of dose delivery, the dose on the target was summed to generate the real-time dose to the tumor for each beam independently. The simulation results show that the dose accumulated on the tumor varies significantly with both the tumor size and the tumor's motion rate, amplitude and direction. For a given tumor motion rate, amplitude and direction, the smaller the tumor size the smaller is the percentage of the radiation dose accumulated. The simulation results are validated by comparing the center plane of the 3D tumor with 2D film dosimetry measurements using a programmable 4D motion phantom moving in a self-reproducible pattern. The results also show the real-time capability of the framework at 40 discrete tumor motion steps per breath, which is higher than

  19. Final technical report for DOE Computational Nanoscience Project: Integrated Multiscale Modeling of Molecular Computing Devices

    Energy Technology Data Exchange (ETDEWEB)

    Cummings, P. T.

    2010-02-08

    This document reports the outcomes of the Computational Nanoscience Project, "Integrated Multiscale Modeling of Molecular Computing Devices". It includes a list of participants and publications arising from the research supported.

  20. Evaluation of Marine Corps Manpower Computer Simulation Model

    Science.gov (United States)

    2016-12-01

    MARINE CORPS MANPOWER COMPUTER SIMULATION MODEL by Eric S. Anderson December 2016 Thesis Advisor: Arnold Buss Second Reader: Neil Rowe...Master’s thesis 4. TITLE AND SUBTITLE EVALUATION OF MARINE CORPS MANPOWER COMPUTER SIMULATION MODEL 5. FUNDING NUMBERS ACCT: 622716 JON...overall end strength are maintained. To assist their mission, an agent-based computer simulation model was developed in the Java computer language

  1. Computational Granular Dynamics Models and Algorithms

    CERN Document Server

    Pöschel, Thorsten

    2005-01-01

    Computer simulations not only belong to the most important methods for the theoretical investigation of granular materials, but also provide the tools that have enabled much of the expanding research by physicists and engineers. The present book is intended to serve as an introduction to the application of numerical methods to systems of granular particles. Accordingly, emphasis is placed on a general understanding of the subject rather than on the presentation of the latest advances in numerical algorithms. Although a basic knowledge of C++ is needed for the understanding of the numerical methods and algorithms in the book, it avoids usage of elegant but complicated algorithms to remain accessible for those who prefer to use a different programming language. While the book focuses more on models than on the physics of granular material, many applications to real systems are presented.

  2. Modeling groundwater flow on massively parallel computers

    Energy Technology Data Exchange (ETDEWEB)

    Ashby, S.F.; Falgout, R.D.; Fogwell, T.W.; Tompson, A.F.B.

    1994-12-31

    The authors will explore the numerical simulation of groundwater flow in three-dimensional heterogeneous porous media. An interdisciplinary team of mathematicians, computer scientists, hydrologists, and environmental engineers is developing a sophisticated simulation code for use on workstation clusters and MPPs. To date, they have concentrated on modeling flow in the saturated zone (single phase), which requires the solution of a large linear system. they will discuss their implementation of preconditioned conjugate gradient solvers. The preconditioners under consideration include simple diagonal scaling, s-step Jacobi, adaptive Chebyshev polynomial preconditioning, and multigrid. They will present some preliminary numerical results, including simulations of groundwater flow at the LLNL site. They also will demonstrate the code`s scalability.

  3. Method of generating a computer readable model

    DEFF Research Database (Denmark)

    2008-01-01

    A method of generating a computer readable model of a geometrical object constructed from a plurality of interconnectable construction elements, wherein each construction element has a number of connection elements for connecting the construction element with another construction element....... The method comprises encoding a first and a second one of the construction elements as corresponding data structures, each representing the connection elements of the corresponding construction element, and each of the connection elements having associated with it a predetermined connection type. The method...... further comprises determining a first connection element of the first construction element and a second connection element of the second construction element located in a predetermined proximity of each other; and retrieving connectivity information of the corresponding connection types of the first...

  4. Computational Process Modeling for Additive Manufacturing (OSU)

    Science.gov (United States)

    Bagg, Stacey; Zhang, Wei

    2015-01-01

    Powder-Bed Additive Manufacturing (AM) through Direct Metal Laser Sintering (DMLS) or Selective Laser Melting (SLM) is being used by NASA and the Aerospace industry to "print" parts that traditionally are very complex, high cost, or long schedule lead items. The process spreads a thin layer of metal powder over a build platform, then melts the powder in a series of welds in a desired shape. The next layer of powder is applied, and the process is repeated until layer-by-layer, a very complex part can be built. This reduces cost and schedule by eliminating very complex tooling and processes traditionally used in aerospace component manufacturing. To use the process to print end-use items, NASA seeks to understand SLM material well enough to develop a method of qualifying parts for space flight operation. Traditionally, a new material process takes many years and high investment to generate statistical databases and experiential knowledge, but computational modeling can truncate the schedule and cost -many experiments can be run quickly in a model, which would take years and a high material cost to run empirically. This project seeks to optimize material build parameters with reduced time and cost through modeling.

  5. Immunomodulation targeting abnormal protein conformation reduces pathology in a mouse model of Alzheimer's disease.

    Directory of Open Access Journals (Sweden)

    Fernando Goñi

    Full Text Available Many neurodegenerative diseases are characterized by the conformational change of normal self-proteins into amyloidogenic, pathological conformers, which share structural properties such as high β-sheet content and resistance to degradation. The most common is Alzheimer's disease (AD where the normal soluble amyloid β (sAβ peptide is converted into highly toxic oligomeric Aβ and fibrillar Aβ that deposits as neuritic plaques and congophilic angiopathy. Currently, there is no highly effective treatment for AD, but immunotherapy is emerging as a potential disease modifying intervention. A major problem with most active and passive immunization approaches for AD is that both the normal sAβ and pathogenic forms are equally targeted with the potential of autoimmune inflammation. In order to avoid this pitfall, we have developed a novel immunomodulatory method that specifically targets the pathological conformations, by immunizing with polymerized British amyloidosis (pABri related peptide which has no sequence homology to Aβ or other human proteins. We show that the pABri peptide through conformational mimicry induces a humoral immune response not only to the toxic Aβ in APP/PS1 AD transgenic mice but also to paired helical filaments as shown on AD human tissue samples. Treated APP/PS1 mice had a cognitive benefit compared to controls (p<0.0001, associated with a reduction in the amyloid burden (p = 0.0001 and Aβ40/42 levels, as well as reduced Aβ oligomer levels. This type of immunomodulation has the potential to be a universal β-sheet disrupter, which could be useful for the prevention or treatment of a wide range of neurodegenerative diseases.

  6. Conformational and Cs+ complexation properties of norbadione-A: a molecular modeling study.

    Science.gov (United States)

    Schurhammer, R; Diss, R; Spiess, B; Wipff, G

    2008-01-28

    We report a quantum mechanical (QM) and classical molecular dynamics (MD) study of the conformational and complexation properties of norbadione-A (NBA), a key pigment involved in the Cs+ complexation by mushrooms. The Z versus E isomers of its pulvinic moieties are compared in their neutral (Pulv0), mono- (Pulv(-1)) and di-deprotonated (Pulv(-2)) states, and the 1H chemical shifts are calculated ab initio. Pulv(-1) is found to be stabilized in the E form by an internal COOH(-)O(enolate) hydrogen-bond. No energy minimum is found for the corresponding COO(-)HO(enol) state, indicating that the conjugated enol function of Pulv0 is more acidic than the COOH function. Further deprotonation leads to the Z and E forms of Pulv(-2) that are close in energy and both account for a marked downfield shift delta of ortho-H8 protons. A similar shift is found upon deprotonation of the enol function of an ester analogue of Pulv0. Therefore, contrary to previous assumptions (ref. 7: P. Kuad, et al., J. Am. Chem. Soc., 2005, 127, 1323), the large shift of delta(H8) around pH 9.5 upon deprotonation of NBA or of pulvinic acid cannot be taken as an indicator of an E-to-Z conformational switch, but merely reflects the pH-induced conformational change of the carboxylate group adjacent to the (H8)-ring. The QM and MD studies on NBA(2-) and NBA(4-) support the view that both species prefer the E/E form with two intramolecular COOH(-)O(enolate) hydrogen-bonds in the gas phase and in solution. Finally, we simulated mono- and di-nuclear complexes of Cs+ with NBA(2-) and NBA(4-) by MD, showing that only the NBA(4-) state populated at high pH values can bind two Cs+ cations, with both E and Z conformations of the pulvinic arms.

  7. Minimal lectures on two-dimensional conformal field theory

    CERN Document Server

    Ribault, Sylvain

    2016-01-01

    We provide a brief but self-contained review of conformal field theory on the Riemann sphere. We first introduce general axioms such as local conformal invariance, and derive Ward identities and BPZ equations. We then define Liouville theory and minimal models by specific axioms on their spectrums and degenerate fields. We solve these theories by computing three- and four-point functions, and discuss their existence and uniqueness.

  8. Gravothermal Star Clusters - Theory and Computer Modelling

    Science.gov (United States)

    Spurzem, Rainer

    2010-11-01

    In the George Darwin lecture, delivered to the British Royal Astronomical Society in 1960 by Viktor A. Ambartsumian he wrote on the evolution of stellar systems that it can be described by the "dynamic evolution of a gravitating gas" complemented by "a statistical description of the changes in the physical states of stars". This talk will show how this physical concept has inspired theoretical modeling of star clusters in the following decades up to the present day. The application of principles of thermodynamics shows, as Ambartsumian argued in his 1960 lecture, that there is no stable state of equilibrium of a gravitating star cluster. The trend to local thermodynamic equilibrium is always disturbed by escaping stars (Ambartsumian), as well as by gravothermal and gravogyro instabilities, as it was detected later. Here the state-of-the-art of modeling the evolution of dense stellar systems based on principles of thermodynamics and statistical mechanics (Fokker-Planck approximation) will be reviewed. Recent progress including rotation and internal correlations (primordial binaries) is presented. The models have also very successfully been used to study dense star clusters around massive black holes in galactic nuclei and even (in a few cases) relativistic supermassive dense objects in centres of galaxies (here again briefly touching one of the many research fields of V.A. Ambartsumian). For the modern present time of high-speed supercomputing, where we are tackling direct N-body simulations of star clusters, we will show that such direct modeling supports and proves the concept of the statistical models based on the Fokker-Planck theory, and that both theoretical concepts and direct computer simulations are necessary to support each other and make scientific progress in the study of star cluster evolution.

  9. A Quantitative bgl Operon Model for E. coli Requires BglF Conformational Change for Sugar Transport

    Science.gov (United States)

    Chopra, Paras; Bender, Andreas

    The bgl operon is responsible for the metabolism of β-glucoside sugars such as salicin or arbutin in E. coli. Its regulatory system involves both positive and negative feedback mechanisms and it can be assumed to be more complex than that of the more closely studied lac and trp operons. We have developed a quantitative model for the regulation of the bgl operon which is subject to in silico experiments investigating its behavior under different hypothetical conditions. Upon administration of 5mM salicin as an inducer our model shows 80-fold induction, which compares well with the 60-fold induction measured experimentally. Under practical conditions 5-10mM inducer are employed, which is in line with the minimum inducer concentration of 1mM required by our model. The necessity of BglF conformational change for sugar transport has been hypothesized previously, and in line with those hypotheses our model shows only minor induction if conformational change is not allowed. Overall, this first quantitative model for the bgl operon gives reasonable predictions that are close to experimental results (where measured). It will be further refined as values of the parameters are determined experimentally. The model was developed in Systems Biology Markup Language (SBML) and it is available from the authors and from the Biomodels repository [www.ebi.ac.uk/biomodels].

  10. Conformal Infinity

    Directory of Open Access Journals (Sweden)

    Frauendiener Jörg

    2000-08-01

    Full Text Available The notion of conformal infinity has a long history within the research in Einstein's theory of gravity. Today, ``conformal infinity'' is related with almost all other branches of research in general relativity, from quantisation procedures to abstract mathematical issues to numerical applications. This review article attempts to show how this concept gradually and inevitably evolved out of physical issues, namely the need to understand gravitational radiation and isolated systems within the theory of gravitation and how it lends itself very naturally to solve radiation problems in numerical relativity. The fundamental concept of null-infinity is introduced. Friedrich's regular conformal field equations are presented and various initial value problems for them are discussed. Finally, it is shown that the conformal field equations provide a very powerful method within numerical relativity to study global problems such as gravitational wave propagation and detection.

  11. Conformal Infinity

    Science.gov (United States)

    Frauendiener, Jörg

    2004-12-01

    The notion of conformal infinity has a long history within the research in Einstein's theory of gravity. Today, "conformal infinity" is related to almost all other branches of research in general relativity, from quantisation procedures to abstract mathematical issues to numerical applications. This review article attempts to show how this concept gradually and inevitably evolved from physical issues, namely the need to understand gravitational radiation and isolated systems within the theory of gravitation, and how it lends itself very naturally to the solution of radiation problems in numerical relativity. The fundamental concept of null-infinity is introduced. Friedrich's regular conformal field equations are presented and various initial value problems for them are discussed. Finally, it is shown that the conformal field equations provide a very powerful method within numerical relativity to study global problems such as gravitational wave propagation and detection.

  12. General Conformity

    Science.gov (United States)

    The General Conformity requirements ensure that the actions taken by federal agencies in nonattainment and maintenance areas do not interfere with a state’s plans to meet national standards for air quality.

  13. Conformal Infinity

    Directory of Open Access Journals (Sweden)

    Frauendiener Jörg

    2004-01-01

    Full Text Available The notion of conformal infinity has a long history within the research in Einstein's theory of gravity. Today, 'conformal infinity' is related to almost all other branches of research in general relativity, from quantisation procedures to abstract mathematical issues to numerical applications. This review article attempts to show how this concept gradually and inevitably evolved from physical issues, namely the need to understand gravitational radiation and isolated systems within the theory of gravitation, and how it lends itself very naturally to the solution of radiation problems in numerical relativity. The fundamental concept of null-infinity is introduced. Friedrich's regular conformal field equations are presented and various initial value problems for them are discussed. Finally, it is shown that the conformal field equations provide a very powerful method within numerical relativity to study global problems such as gravitational wave propagation and detection.

  14. Comparison of Different INC Physical Models of MCNPX to Compute Spallation Neutronics of LBE Target

    Science.gov (United States)

    Feghhi, Seyed Amir Hossein; Gholamzadeh, Zohreh; Tenreiro, Claudio; Alipoor, Zahra

    2015-04-01

    Spallation particles can utilize in different fields such as neutron scattering studies, external source for burning spent fuel as well as running subcritical reactors. Different computational particle transport codes are widely used to model spallation process into the heavy targets. Among these codes, MCNPX 2.6.0 comprises various intra nuclear cascade models for spallation calculations. Impact of different intra nuclear cascade models on calculation of neutronic parameters of LBE target has been evaluated in this work. Escaped neutron yield, energy deposition and residual nuclei production in the spallation target has been calculated using the physical models. A comparison between the computational and experimental has been carried out to validate the computational data. The simulation data showed there is a good conformity between the obtained data from Bertini/Drenser and Isabel/Drenser. The data achieved by Bertini/Abla and Isabel/Abla models are close to each other for the studied parameters as well. Among the studied models, CEM showed more discrepancies with experimental and other computational data. According to the obtained data, INCL4/Drenser, INCL4/Abla and Isabel/Drenser models can meet more agreements with experimental data.

  15. Theoretical Investigation of C-H Vibrational Spectroscopy. 1. Modeling of Methyl and Methylene Groups of Ethanol with Different Conformers.

    Science.gov (United States)

    Wang, Lin; Ishiyama, Tatsuya; Morita, Akihiro

    2017-09-14

    A flexible and polarizable molecular model of ethanol is developed to extend our investigation of thermodynamic, structural, and vibrational properties of the liquid and interface. A molecular dynamics (MD) simulation with the present model confirmed that this model well reproduces a number of properties of liquid ethanol, including density, heat of vaporization, surface tension, molecular dipole moment, and trans/gauche ratio. In particular, the present model can describe vibrational IR, Raman, and sum frequency generation (SFG) spectra of ethanol and partially deuterated analogues with reliable accuracy. The improved accuracy is largely attributed to proper modeling of the conformational dependence and the intramolecular couplings including Fermi resonance in C-H vibrations. Precise dependence of torsional motions is found to be critical in representing vibrational spectra of the C-H bending. This model allows for further vibrational analysis of complicated alkyl groups widely observed in various organic molecules with MD simulation.

  16. Effects of hydrophobic and dipole-dipole interactions on the conformational transitions of a model polypeptide

    Science.gov (United States)

    Mu, Yan; Gao, Yi Qin

    2007-09-01

    We studied the effects of hydrophobicity and dipole-dipole interactions between the nearest-neighbor amide planes on the secondary structures of a model polypeptide by calculating the free energy differences between different peptide structures. The free energy calculations were performed with low computational costs using the accelerated Monte Carlo simulation (umbrella sampling) method, with a bias-potential method used earlier in our accelerated molecular dynamics simulations. It was found that the hydrophobic interaction enhances the stability of α helices at both low and high temperatures but stabilizes β structures only at high temperatures at which α helices are not stable. The nearest-neighbor dipole-dipole interaction stabilizes β structures under all conditions, especially in the low temperature region where α helices are the stable structures. Our results indicate clearly that the dipole-dipole interaction between the nearest neighboring amide planes plays an important role in determining the peptide structures. Current research provides a more unified and quantitative picture for understanding the effects of different forms of interactions on polypeptide structures. In addition, the present model can be extended to describe DNA/RNA, polymer, copolymer, and other chain systems.

  17. A Granular Computing Model Based on Tolerance relation

    Institute of Scientific and Technical Information of China (English)

    WANG Guo-yin; HU Feng; HUANG Hai; WU Yu

    2005-01-01

    Granular computing is a new intelligent computing theory based on partition of problem concepts. It is an important problem in Rough Set theory to process incomplete information systems directly. In this paper, a granular computing model based on tolerance relation for processing incomplete information systems is developed. Furthermore, a criteria condition for attribution necessity is proposed in this model.

  18. Application of computer simulated persons in indoor environmental modeling

    DEFF Research Database (Denmark)

    Topp, C.; Nielsen, P. V.; Sørensen, Dan Nørtoft

    2002-01-01

    Computer simulated persons are often applied when the indoor environment is modeled by computational fluid dynamics. The computer simulated persons differ in size, shape, and level of geometrical complexity, ranging from simple box or cylinder shaped heat sources to more humanlike models. Little...

  19. Performance of Air Pollution Models on Massively Parallel Computers

    DEFF Research Database (Denmark)

    Brown, John; Hansen, Per Christian; Wasniewski, Jerzy

    1996-01-01

    To compare the performance and use of three massively parallel SIMD computers, we implemented a large air pollution model on the computers. Using a realistic large-scale model, we gain detailed insight about the performance of the three computers when used to solve large-scale scientific problems...

  20. Computational Modeling of Biological Systems From Molecules to Pathways

    CERN Document Server

    2012-01-01

    Computational modeling is emerging as a powerful new approach for studying and manipulating biological systems. Many diverse methods have been developed to model, visualize, and rationally alter these systems at various length scales, from atomic resolution to the level of cellular pathways. Processes taking place at larger time and length scales, such as molecular evolution, have also greatly benefited from new breeds of computational approaches. Computational Modeling of Biological Systems: From Molecules to Pathways provides an overview of established computational methods for the modeling of biologically and medically relevant systems. It is suitable for researchers and professionals working in the fields of biophysics, computational biology, systems biology, and molecular medicine.

  1. A Packet Routing Model for Computer Networks

    Directory of Open Access Journals (Sweden)

    O. Osunade

    2012-05-01

    Full Text Available The quest for reliable data transmission in today’s computer networks and internetworks forms the basis for which routing schemes need be improved upon. The persistent increase in the size of internetwork leads to a dwindling performance of the present routing algorithms which are meant to provide optimal path for forwarding packets from one network to the other. A mathematical and analytical routing model framework is proposed to address the routing needs to a substantial extent. The model provides schemes typical of packet sources, queuing system within a buffer, links and bandwidth allocation and time-based bandwidth generator in routing chunks of packets to their destinations. Principal to the choice of link are such design considerations as least-congested link in a set of links, normalized throughput, mean delay and mean waiting time and the priority of packets in a set of prioritized packets. These performance metrics were targeted and the resultant outcome is a fair, load-balanced network.

  2. Computational modeling of acute myocardial infarction.

    Science.gov (United States)

    Sáez, P; Kuhl, E

    2016-01-01

    Myocardial infarction, commonly known as heart attack, is caused by reduced blood supply and damages the heart muscle because of a lack of oxygen. Myocardial infarction initiates a cascade of biochemical and mechanical events. In the early stages, cardiomyocytes death, wall thinning, collagen degradation, and ventricular dilation are the immediate consequences of myocardial infarction. In the later stages, collagenous scar formation in the infarcted zone and hypertrophy of the non-infarcted zone are auto-regulatory mechanisms to partly correct for these events. Here we propose a computational model for the short-term adaptation after myocardial infarction using the continuum theory of multiplicative growth. Our model captures the effects of cell death initiating wall thinning, and collagen degradation initiating ventricular dilation. Our simulations agree well with clinical observations in early myocardial infarction. They represent a first step toward simulating the progression of myocardial infarction with the ultimate goal to predict the propensity toward heart failure as a function of infarct intensity, location, and size.

  3. Computer modeling of complete IC fabrication process

    Science.gov (United States)

    Dutton, Robert W.

    1987-05-01

    The development of fundamental algorithms for process and device modeling as well as novel integration of the tools for advanced Integrated Circuit (IC) technology design is discussed. The development of the first complete 2D process simulator, SUPREM 4, is reported. The algorithms are discussed as well as application to local-oxidation and extrinsic diffusion conditions which occur in CMOS AND BiCMOS technologies. The evolution of 1D (SEDAN) and 2D (PISCES) device analysis is discussed. The application of SEDAN to a variety of non-silicon technologies (GaAs and HgCdTe) are considered. A new multi-window analysis capability for PISCES which exploits Monte Carlo analysis of hot carriers has been demonstrated and used to characterize a variety of silicon MOSFET and GaAs MESFET effects. A parallel computer implementation of PISCES has been achieved using a Hypercube architecture. The PISCES program has been used for a range of important device studies including: latchup, analog switch analysis, MOSFET capacitance studies and bipolar transient device for ECL gates. The program is broadly applicable to RAM and BiCMOS technology analysis and design. In the analog switch technology area this research effort has produced a variety of important modeling and advances.

  4. A Survey of Formal Models for Computer Security.

    Science.gov (United States)

    1981-09-30

    presenting the individual models. 6.1 Basic Concepts and Trends The finite state machine model for computation views a computer system as a finite...top-level specification. The simplest description of the top-level model for DSU is given by Walker, et al. [36]. It is a finite state machine model , with

  5. A semantic-web approach for modeling computing infrastructures

    NARCIS (Netherlands)

    M. Ghijsen; J. van der Ham; P. Grosso; C. Dumitru; H. Zhu; Z. Zhao; C. de Laat

    2013-01-01

    This paper describes our approach to modeling computing infrastructures. Our main contribution is the Infrastructure and Network Description Language (INDL) ontology. The aim of INDL is to provide technology independent descriptions of computing infrastructures, including the physical resources as w

  6. Computational and Modeling Strategies for Cell Motility

    Science.gov (United States)

    Wang, Qi; Yang, Xiaofeng; Adalsteinsson, David; Elston, Timothy C.; Jacobson, Ken; Kapustina, Maryna; Forest, M. Gregory

    A predictive simulation of the dynamics of a living cell remains a fundamental modeling and computational challenge. The challenge does not even make sense unless one specifies the level of detail and the phenomena of interest, whether the focus is on near-equilibrium or strongly nonequilibrium behavior, and on localized, subcellular, or global cell behavior. Therefore, choices have to be made clear at the outset, ranging from distinguishing between prokaryotic and eukaryotic cells, specificity within each of these types, whether the cell is "normal," whether one wants to model mitosis, blebs, migration, division, deformation due to confined flow as with red blood cells, and the level of microscopic detail for any of these processes. The review article by Hoffman and Crocker [48] is both an excellent overview of cell mechanics and an inspiration for our approach. One might be interested, for example, in duplicating the intricate experimental details reported in [43]: "actin polymerization periodically builds a mechanical link, the lamellipodium, connecting myosin motors with the initiation of adhesion sites, suggesting that the major functions driving motility are coordinated by a biomechanical process," or to duplicate experimental evidence of traveling waves in cells recovering from actin depolymerization [42, 35]. Modeling studies of lamellipodial structure, protrusion, and retraction behavior range from early mechanistic models [84] to more recent deterministic [112, 97] and stochastic [51] approaches with significant biochemical and structural detail. Recent microscopic-macroscopic models and algorithms for cell blebbing have been developed by Young and Mitran [116], which update cytoskeletal microstructure via statistical sampling techniques together with fluid variables. Alternatively, whole cell compartment models (without spatial details) of oscillations in spreading cells have been proposed [35, 92, 109] which show positive and negative feedback

  7. Delineating the conformal window

    DEFF Research Database (Denmark)

    Frandsen, Mads Toudal; Pickup, Thomas; Teper, Michael

    2011-01-01

    We identify and characterise the conformal window in gauge theories relevant for beyond the standard model building, e.g. Technicolour, using the criteria of metric confinement and causal analytic couplings, which are known to be consistent with the phase diagram of supersymmetric QCD from Seiberg...... duality. Using these criteria we find perturbation theory to be consistent throughout the predicted conformal window for several of these gauge theories and we discuss recent lattice results in the light of our findings....

  8. Group Size and Conformity

    OpenAIRE

    Bond, Rod

    2005-01-01

    Abstract This paper reviews theory and research on the relationship between group size and conformity and presents a meta-analysis of 125 Asch-type conformity studies. It questions the assumption of a single function made in formal models of social influence and proposes instead that the function will vary depending on which social influence process predominates. It is argued that normative influence is lik...

  9. Conformism and Wealth Distribution

    OpenAIRE

    Mino, Kazuo; Nakamoto, Yasuhiro

    2014-01-01

    This paper explores the role of consumption externalities in a neoclassical growth model in which households have heterogeneous preferences. We fi?nd that the degree of conformism in consumption held by each household signifi?cantly affects the speed of convergence of the aggregate economy as well as the patterns of wealth distribution in the steady state equilibrium. In particular, a higher degree of consumption conformism accelerates the convergence speed of the economy towards the steady s...

  10. Computational Models of Spreadsheet Development: Basis for Educational Approaches

    CERN Document Server

    Hodnigg, Karin; Mittermeir, Roland T

    2008-01-01

    Among the multiple causes of high error rates in spreadsheets, lack of proper training and of deep understanding of the computational model upon which spreadsheet computations rest might not be the least issue. The paper addresses this problem by presenting a didactical model focussing on cell interaction, thus exceeding the atomicity of cell computations. The approach is motivated by an investigation how different spreadsheet systems handle certain computational issues implied from moving cells, copy-paste operations, or recursion.

  11. Inflation and reheating in the Starobinsky model with conformal HiggsField

    Science.gov (United States)

    Gorbunov, D. S.; Tokareva, A. A.

    2013-12-01

    This is a talk presented by A.A. Tokareva at Baikal summer school on physics of elementary particles and astrophysics 2012. We studied the reheating after the Starobinsky inflation and have found that the main process is the inflaton decay to SM gauge fields due to the conformal anomaly. The reheating temperature is low leading to the possibility to detect the gravity wave signal from inflation and evaporation of structures formed after inflation in DECIGO and BBO experiments. Also we give predictions for the parameters of scalar perturbation spectrum at the next-to-leading order of slow roll and obtain a bound on the Higgs mass.

  12. Conformations of double-headed, triple-tailed phospholipid oxidation lipid products in model membranes

    DEFF Research Database (Denmark)

    Hermetter, Albin; Kopec, Wojciech; Khandelia, Himanshu

    2013-01-01

    lipid in a Schiff base reaction to form a conjugate lipid (SCH) with two head groups, and three acyl tails. We investigate the conformations and properties of this unique class of adduct lipids using molecular dynamics simulations, and show that their insertion into lipid bilayers of POPC increases...... between the two head groups of the SCH. Schiff base formation of lipids can alter the concentration, homeostasis and localizations of phosphatidylserine and phosphatidylethanol lipids in membranes, and can therefore influence several membrane-associated processes including fusion and budding. The current...

  13. Cyndi: a multi-objective evolution algorithm based method for bioactive molecular conformational generation

    Directory of Open Access Journals (Sweden)

    Li Honglin

    2009-03-01

    Full Text Available Abstract Background Conformation generation is a ubiquitous problem in molecule modelling. Many applications require sampling the broad molecular conformational space or perceiving the bioactive conformers to ensure success. Numerous in silico methods have been proposed in an attempt to resolve the problem, ranging from deterministic to non-deterministic and systemic to stochastic ones. In this work, we described an efficient conformation sampling method named Cyndi, which is based on multi-objective evolution algorithm. Results The conformational perturbation is subjected to evolutionary operation on the genome encoded with dihedral torsions. Various objectives are designated to render the generated Pareto optimal conformers to be energy-favoured as well as evenly scattered across the conformational space. An optional objective concerning the degree of molecular extension is added to achieve geometrically extended or compact conformations which have been observed to impact the molecular bioactivity (J Comput -Aided Mol Des 2002, 16: 105–112. Testing the performance of Cyndi against a test set consisting of 329 small molecules reveals an average minimum RMSD of 0.864 Å to corresponding bioactive conformations, indicating Cyndi is highly competitive against other conformation generation methods. Meanwhile, the high-speed performance (0.49 ± 0.18 seconds per molecule renders Cyndi to be a practical toolkit for conformational database preparation and facilitates subsequent pharmacophore mapping or rigid docking. The copy of precompiled executable of Cyndi and the test set molecules in mol2 format are accessible in Additional file 1. Conclusion On the basis of MOEA algorithm, we present a new, highly efficient conformation generation method, Cyndi, and report the results of validation and performance studies comparing with other four methods. The results reveal that Cyndi is capable of generating geometrically diverse conformers and outperforms

  14. Elements of matrix modeling and computing with Matlab

    CERN Document Server

    White, Robert E

    2006-01-01

    As discrete models and computing have become more common, there is a need to study matrix computation and numerical linear algebra. Encompassing a diverse mathematical core, Elements of Matrix Modeling and Computing with MATLAB examines a variety of applications and their modeling processes, showing you how to develop matrix models and solve algebraic systems. Emphasizing practical skills, it creates a bridge from problems with two and three variables to more realistic problems that have additional variables. Elements of Matrix Modeling and Computing with MATLAB focuses on seven basic applicat

  15. Modelling, abstraction, and computation in systems biology: A view from computer science.

    Science.gov (United States)

    Melham, Tom

    2013-04-01

    Systems biology is centrally engaged with computational modelling across multiple scales and at many levels of abstraction. Formal modelling, precise and formalised abstraction relationships, and computation also lie at the heart of computer science--and over the past decade a growing number of computer scientists have been bringing their discipline's core intellectual and computational tools to bear on biology in fascinating new ways. This paper explores some of the apparent points of contact between the two fields, in the context of a multi-disciplinary discussion on conceptual foundations of systems biology. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. A cost modelling system for cloud computing

    OpenAIRE

    Ajeh, Daniel; Ellman, Jeremy; Keogh, Shelagh

    2014-01-01

    An advance in technology unlocks new opportunities for organizations to increase their productivity, efficiency and process automation while reducing the cost of doing business as well. The emergence of cloud computing addresses these prospects through the provision of agile systems that are scalable, flexible and reliable as well as cost effective. Cloud computing has made hosting and deployment of computing resources cheaper and easier with no up-front charges but pay per-use flexible payme...

  17. Modeling the accessible conformations of the intrinsically unstructured transactivation domain of p53.

    Science.gov (United States)

    Lowry, David F; Stancik, Amber; Shrestha, Ranjay Mann; Daughdrill, Gary W

    2008-05-01

    Internuclear distances derived from paramagnetic relaxation enhancement (PRE) data were used to restrain molecular dynamics simulations of the intrinsically unstructured transactivation domain of the tumor suppressor protein, p53. About 1000 structures were simulated using ensemble averaging of replicate molecules to compensate for the inherent bias in the PRE-derived distances. Gyration radii measurements on these structures show that the p53 transactivation domain (p53TAD) is statistically predominantly in a partially collapsed state that is unlike the open structure that is found for p53TAD bound to either the E3 ubiquitin ligase, MDM2, or the 70 kDa subunit of replication protein A, RPA70. Contact regions that potentially mediate the collapse were identified and found to consist of mostly hydrophobic residues. The identified contact regions preferentially place the MDM2 and RPA70 binding regions in close proximity. We show that our simulations thoroughly sample the available range of conformations and that a fraction of the molecules are in an open state that would be competent for binding either MDM2 or RPA70. We also show that the Stokes radius estimated from the average gyration radius of the ensemble is in good agreement with the value determined using size exclusion chromatography. Finally, the presence of a persistent loop localized to a PXP motif was identified. Serine residues flanking the PXP motif become phosphorylated in response to DNA damage, and we postulate that this will perturb the equilibrium population to more open conformations.

  18. [SPC/E and TIP4P models for investigation of the conformational mobility of the insulin superfamily peptides].

    Science.gov (United States)

    Ksenofontova, O I

    2014-01-01

    In this work we carried out a comparative analysis of the two most popular water models-SPC/E and TIP4P and estimated the ability of using ones for insulin superfamily peptides-proinsulin and insulin-like growth factors (IGF1 and IGF2). It was shown that root-mean-square deviations and radius of gyration had tend to be in reversed phase when both water models were used. Only IGF1 had a plateau after 9000 ps. In addition, it was shown that in spite of the general nature of insulin-like packing maintenance, there were some differences in the secondary structures, when we used TIP4P and SPC/E. These differences could influence on the overall molecule dynamics and the ability to accept necessary conformation for interaction with cognate receptors. On the basis of the received data we concluded that it is necessary to use several, not one, water models for the study of the peptides conformational mobility.

  19. Predictive Capability Maturity Model for computational modeling and simulation.

    Energy Technology Data Exchange (ETDEWEB)

    Oberkampf, William Louis; Trucano, Timothy Guy; Pilch, Martin M.

    2007-10-01

    The Predictive Capability Maturity Model (PCMM) is a new model that can be used to assess the level of maturity of computational modeling and simulation (M&S) efforts. The development of the model is based on both the authors experience and their analysis of similar investigations in the past. The perspective taken in this report is one of judging the usefulness of a predictive capability that relies on the numerical solution to partial differential equations to better inform and improve decision making. The review of past investigations, such as the Software Engineering Institute's Capability Maturity Model Integration and the National Aeronautics and Space Administration and Department of Defense Technology Readiness Levels, indicates that a more restricted, more interpretable method is needed to assess the maturity of an M&S effort. The PCMM addresses six contributing elements to M&S: (1) representation and geometric fidelity, (2) physics and material model fidelity, (3) code verification, (4) solution verification, (5) model validation, and (6) uncertainty quantification and sensitivity analysis. For each of these elements, attributes are identified that characterize four increasing levels of maturity. Importantly, the PCMM is a structured method for assessing the maturity of an M&S effort that is directed toward an engineering application of interest. The PCMM does not assess whether the M&S effort, the accuracy of the predictions, or the performance of the engineering system satisfies or does not satisfy specified application requirements.

  20. A conformal block Farey tail

    Science.gov (United States)

    Maloney, Alexander; Maxfield, Henry; Ng, Gim Seng

    2017-06-01

    We investigate the constraints of crossing symmetry on CFT correlation functions. Four point conformal blocks are naturally viewed as functions on the upper-half plane, on which crossing symmetry acts by PSL(2, Z ) modular transformations. This allows us to construct a unique, crossing symmetric function out of a given conformal block by averaging over PSL(2, Z ). In some two dimensional CFTs the correlation functions are precisely equal to the modular average of the contributions of a finite number of light states. For example, in the two dimensional Ising and tri-critical Ising model CFTs, the correlation functions of identical operators are equal to the PSL(2, Z ) average of the Virasoro vacuum block; this determines the 3 point function coefficients uniquely in terms of the central charge. The sum over PSL(2, Z ) in CFT2 has a natural AdS3 interpretation as a sum over semi-classical saddle points, which describe particles propagating along rational tangles in the bulk. We demonstrate this explicitly for the correlation function of certain heavy operators, where we compute holographically the semi-classical conformal block with a heavy internal operator.

  1. Experiments and simulation models of a basic computation element of an autonomous molecular computing system.

    Science.gov (United States)

    Takinoue, Masahiro; Kiga, Daisuke; Shohda, Koh-Ichiroh; Suyama, Akira

    2008-10-01

    Autonomous DNA computers have been attracting much attention because of their ability to integrate into living cells. Autonomous DNA computers can process information through DNA molecules and their molecular reactions. We have already proposed an idea of an autonomous molecular computer with high computational ability, which is now named Reverse-transcription-and-TRanscription-based Autonomous Computing System (RTRACS). In this study, we first report an experimental demonstration of a basic computation element of RTRACS and a mathematical modeling method for RTRACS. We focus on an AND gate, which produces an output RNA molecule only when two input RNA molecules exist, because it is one of the most basic computation elements in RTRACS. Experimental results demonstrated that the basic computation element worked as designed. In addition, its behaviors were analyzed using a mathematical model describing the molecular reactions of the RTRACS computation elements. A comparison between experiments and simulations confirmed the validity of the mathematical modeling method. This study will accelerate construction of various kinds of computation elements and computational circuits of RTRACS, and thus advance the research on autonomous DNA computers.

  2. Performance evaluation and modeling of a conformal filter (CF) based real-time standoff hazardous material detection sensor

    Science.gov (United States)

    Nelson, Matthew P.; Tazik, Shawna K.; Bangalore, Arjun S.; Treado, Patrick J.; Klem, Ethan; Temple, Dorota

    2017-05-01

    Hyperspectral imaging (HSI) systems can provide detection and identification of a variety of targets in the presence of complex backgrounds. However, current generation sensors are typically large, costly to field, do not usually operate in real time and have limited sensitivity and specificity. Despite these shortcomings, HSI-based intelligence has proven to be a valuable tool, thus resulting in increased demand for this type of technology. By moving the next generation of HSI technology into a more adaptive configuration, and a smaller and more cost effective form factor, HSI technologies can help maintain a competitive advantage for the U.S. armed forces as well as local, state and federal law enforcement agencies. Operating near the physical limits of HSI system capability is often necessary and very challenging, but is often enabled by rigorous modeling of detection performance. Specific performance envelopes we consistently strive to improve include: operating under low signal to background conditions; at higher and higher frame rates; and under less than ideal motion control scenarios. An adaptable, low cost, low footprint, standoff sensor architecture we have been maturing includes the use of conformal liquid crystal tunable filters (LCTFs). These Conformal Filters (CFs) are electro-optically tunable, multivariate HSI spectrometers that, when combined with Dual Polarization (DP) optics, produce optimized spectral passbands on demand, which can readily be reconfigured, to discriminate targets from complex backgrounds in real-time. With DARPA support, ChemImage Sensor Systems (CISS™) in collaboration with Research Triangle Institute (RTI) International are developing a novel, real-time, adaptable, compressive sensing short-wave infrared (SWIR) hyperspectral imaging technology called the Reconfigurable Conformal Imaging Sensor (RCIS) based on DP-CF technology. RCIS will address many shortcomings of current generation systems and offer improvements in

  3. Infinite Time Cellular Automata: A Real Computation Model

    CERN Document Server

    Givors, Fabien; Ollinger, Nicolas

    2010-01-01

    We define a new transfinite time model of computation, infinite time cellular automata. The model is shown to be as powerful than infinite time Turing machines, both on finite and infinite inputs; thus inheriting many of its properties. We then show how to simulate the canonical real computation model, BSS machines, with infinite time cellular automata in exactly \\omega steps.

  4. Learning Anatomy: Do New Computer Models Improve Spatial Understanding?

    Science.gov (United States)

    Garg, Amit; Norman, Geoff; Spero, Lawrence; Taylor, Ian

    1999-01-01

    Assesses desktop-computer models that rotate in virtual three-dimensional space. Compares spatial learning with a computer carpal-bone model horizontally rotating at 10-degree views with the same model rotating at 90-degree views. (Author/CCM)

  5. A simulation model of a star computer network

    CERN Document Server

    Gomaa, H

    1979-01-01

    A simulation model of the CERN (European Organization for Nuclear Research) SPS star computer network is described. The model concentrates on simulating the message handling computer, through which all messages in the network pass. The implementation of the model and its calibration are also described. (6 refs).

  6. Conformal expansions and renormalons

    CERN Document Server

    Gardi, E; Gardi, Einan; Grunberg, Georges

    2001-01-01

    The large-order behaviour of QCD is dominated by renormalons. On the other hand renormalons do not occur in conformal theories, such as the one describing the infrared fixed-point of QCD at small beta_0 (the Banks--Zaks limit). Since the fixed-point has a perturbative realization, all-order perturbative relations exist between the conformal coefficients, which are renormalon-free, and the standard perturbative coefficients, which contain renormalons. Therefore, an explicit cancellation of renormalons should occur in these relations. The absence of renormalons in the conformal limit can thus be seen as a constraint on the structure of the QCD perturbative expansion. We show that the conformal constraint is non-trivial: a generic model for the large-order behaviour violates it. We also analyse a specific example, based on a renormalon-type integral over the two-loop running-coupling, where the required cancellation does occur.

  7. Graph Partitioning Models for Parallel Computing

    Energy Technology Data Exchange (ETDEWEB)

    Hendrickson, B.; Kolda, T.G.

    1999-03-02

    Calculations can naturally be described as graphs in which vertices represent computation and edges reflect data dependencies. By partitioning the vertices of a graph, the calculation can be divided among processors of a parallel computer. However, the standard methodology for graph partitioning minimizes the wrong metric and lacks expressibility. We survey several recently proposed alternatives and discuss their relative merits.

  8. Reflection and transmission of conformal perturbation defects

    CERN Document Server

    Brunner, Ilka

    2015-01-01

    We consider reflection and transmission of interfaces which implement renormalisation group flows between conformal fixed points in two dimensions. Such an RG interface is constructed from the identity defect in the ultraviolet CFT by perturbing the theory on one side of the defect line. We compute reflection and transmission coefficients in perturbation theory to third order in the coupling constant and check our calculations against exact constructions of RG interfaces between coset models.

  9. Steady-state brain glucose transport kinetics re-evaluated with a four-state conformational model

    Directory of Open Access Journals (Sweden)

    João M N Duarte

    2009-10-01

    Full Text Available Glucose supply from blood to brain occurs through facilitative transporter proteins. A near linear relation between brain and plasma glucose has been experimentally determined and described by a reversible model of enzyme kinetics. A conformational four-state exchange model accounting for trans-acceleration and asymmetry of the carrier was included in a recently developed multi-compartmental model of glucose transport. Based on this model, we demonstrate that brain glucose (Gbrain as function of plasma glucose (Gplasma can be described by a single analytical equation namely comprising three kinetic compartments: blood, endothelial cells and brain. Transport was described by four parameters: apparent half saturation constant Kt, apparent maximum rate constant Tmax, glucose consumption rate CMRglc, and the iso-inhibition constant Kii that suggests Gbrain as inhibitor of the isomerisation of the unloaded carrier. Previous published data, where Gbrain was quantified as a function of plasma glucose by either biochemical methods or NMR spectroscopy, were used to determine the aforementioned kinetic parameters. Glucose transport was characterized by Kt ranging from 1.5 to 3.5 mM, Tmax/CMRglc from 4.6 to 5.6, and Kii from 51 to 149 mM. It was noteworthy that Kt was on the order of a few mM, as previously determined from the reversible model. The conformational four-state exchange model of glucose transport into the brain includes both efflux and transport inhibition by Gbrain, predicting that Gbrain eventually approaches a maximum concentration. However, since Kii largely exceeds Gplasma, iso-inhibition is unlikely to be of substantial importance for plasma glucose below 25 mM. As a consequence, the reversible model can account for most experimental observations under euglycaemia and moderate cases of hypo- and hyperglycaemia.

  10. COMPUTER MODEL FOR ORGANIC FERTILIZER EVALUATION

    Directory of Open Access Journals (Sweden)

    Zdenko Lončarić

    2009-12-01

    seedlings with highest mass and leaf area are produced using growing media with pH close to 6 and with EC lower than 2 dSm-1. It could be concluded that conductivity approx. 3 dSm-1 has inhibitory effect on lettuce if pH is about 7 or higher. The computer model shows that raising pH and EC resulted in decreasing growth which could be expressed as increasing stress index. The lettuce height as a function of pH and EC is incorporated into the model as stress function showing increase of lettuce height by lowering EC from 4 to 1 dSm-1or pH from 7.4 to 6. The highest growing media index (8.1 was determined for mixture of composted pig manure and peat (1:1, and lowest (2.3 for composted horse manure and peat (1:2.

  11. The complete guide to blender graphics computer modeling and animation

    CERN Document Server

    Blain, John M

    2014-01-01

    Smoothly Leads Users into the Subject of Computer Graphics through the Blender GUIBlender, the free and open source 3D computer modeling and animation program, allows users to create and animate models and figures in scenes, compile feature movies, and interact with the models and create video games. Reflecting the latest version of Blender, The Complete Guide to Blender Graphics: Computer Modeling & Animation, 2nd Edition helps beginners learn the basics of computer animation using this versatile graphics program. This edition incorporates many new features of Blender, including developments

  12. Editorial: Modelling and computational challenges in granular materials

    NARCIS (Netherlands)

    Weinhart, Thomas; Thornton, Anthony Richard; Einav, Itai

    2015-01-01

    This is the editorial for the special issue on “Modelling and computational challenges in granular materials” in the journal on Computational Particle Mechanics (CPM). The issue aims to provide an opportunity for physicists, engineers, applied mathematicians and computational scientists to discuss

  13. Reduced computational models of serotonin synthesis, release, and reuptake.

    Science.gov (United States)

    Flower, Gordon; Wong-Lin, KongFatt

    2014-04-01

    Multiscale computational models can provide systemic evaluation and prediction of neuropharmacological drug effects. To date, little computational modeling work has been done to bridge from intracellular to neuronal circuit level. A complex model that describes the intracellular dynamics of the presynaptic terminal of a serotonergic neuron has been previously proposed. By systematically perturbing the model's components, we identify the slow and fast dynamical components of the model, and the reduced slow or fast mode of the model is computationally significantly more efficient with accuracy not deviating much from the original model. The reduced fast-mode model is particularly suitable for incorporating into neurobiologically realistic spiking neuronal models, and hence for large-scale realistic computational simulations. We also develop user-friendly software based on the reduced models to allow scientists to rapidly test and predict neuropharmacological drug effects at a systems level.

  14. Estimation of conformal cosmological model parameters with SDSS and SNLS supernova samples

    Science.gov (United States)

    Pervushin, V. N.; Arbuzov, A. B.; Zakharov, A. F.

    2017-03-01

    In spite of an enormous progress of standard ΛCDM cosmology (SC) a number of alternative approaches has been suggested because there are great puzzles with an origin and essence of dark matter and dark energy which unavoidably arise in the framework of the standard approach. Alternative approaches have to pass a number of observational tests including one with distant type Ia supernovae (SNe Ia) data. As it was shown [1] a conformal cosmological (CC) approach can explain cosmological SNe Ia data without introducing Λ-term, however, introducing an exotic rigid equation of state is needed. Later on, these statements were confirmed with larger samples of observational data [2, 3]. In the paper we check previous claims with joint SDSS-II and SNLS supernova samples.

  15. CYCLOPETIDE ALKALOIDS. SYNTHETIC, SPECTROSCOPIC AND CONFORMATIONAL STUDIES OF PHENCYCLOPEPTINE MODEL COMPOUNDS

    Energy Technology Data Exchange (ETDEWEB)

    Goff, Dane; Lagarias, J. Clark; Shih, Willy C.; Klein, Melvin P.; Rapoport, Henry

    1980-05-01

    Peptide cyclization via the p-nitrophenyl ester of 4-methyl-3-[4'-{beta}-N-(N'-tert-butyloxycarbonyl-L~prolyl)-aminoethyl]phenoxy-pentanoic acid (9) has afforded a single cyclopeptide diastereomer,9R-isopropyl-5S,6-trimethylene-8-dearnino-1,2-dihydro-p-phencyclopeptine (4), in 36% yield. From the comparative analysis of the UV, IR, CD, and {sup 1}H NMR spectra of 4 and cyclopeptide 5S,6-trimethylene 8-deamino-1,2-dihydro-p-phencyclopeptine (3d), of known geometry, the conformational identities of the 14-membered ring systems were ascertained. From these data the assignment of R stereochemistry at C9 for cyclopeptide 4 was deduced. Since the stereochemistry at C9 in the naturally occurring phencyclopeptines is the same, these results suggest a feasible route to the stereoselective total synthesis of the phencyclopeptines.

  16. An Emotional Agent Model Based on Granular Computing

    Directory of Open Access Journals (Sweden)

    Jun Hu

    2012-01-01

    Full Text Available Affective computing has a very important significance for fulfilling intelligent information processing and harmonious communication between human being and computers. A new model for emotional agent is proposed in this paper to make agent have the ability of handling emotions, based on the granular computing theory and the traditional BDI agent model. Firstly, a new emotion knowledge base based on granular computing for emotion expression is presented in the model. Secondly, a new emotional reasoning algorithm based on granular computing is proposed. Thirdly, a new emotional agent model based on granular computing is presented. Finally, based on the model, an emotional agent for patient assistant in hospital is realized, experiment results show that it is efficient to handle simple emotions.

  17. Performance Models for Split-execution Computing Systems

    Energy Technology Data Exchange (ETDEWEB)

    Humble, Travis S [ORNL; McCaskey, Alex [ORNL; Schrock, Jonathan [ORNL; Seddiqi, Hadayat [ORNL; Britt, Keith A [ORNL; Imam, Neena [ORNL

    2016-01-01

    Split-execution computing leverages the capabilities of multiple computational models to solve problems, but splitting program execution across different computational models incurs costs associated with the translation between domains. We analyze the performance of a split-execution computing system developed from conventional and quantum processing units (QPUs) by using behavioral models that track resource usage. We focus on asymmetric processing models built using conventional CPUs and a family of special-purpose QPUs that employ quantum computing principles. Our performance models account for the translation of a classical optimization problem into the physical representation required by the quantum processor while also accounting for hardware limitations and conventional processor speed and memory. We conclude that the bottleneck in this split-execution computing system lies at the quantum-classical interface and that the primary time cost is independent of quantum processor behavior.

  18. Model for personal computer system selection.

    Science.gov (United States)

    Blide, L

    1987-12-01

    Successful computer software and hardware selection is best accomplished by following an organized approach such as the one described in this article. The first step is to decide what you want to be able to do with the computer. Secondly, select software that is user friendly, well documented, bug free, and that does what you want done. Next, you select the computer, printer and other needed equipment from the group of machines on which the software will run. Key factors here are reliability and compatibility with other microcomputers in your facility. Lastly, you select a reliable vendor who will provide good, dependable service in a reasonable time. The ability to correctly select computer software and hardware is a key skill needed by medical record professionals today and in the future. Professionals can make quality computer decisions by selecting software and systems that are compatible with other computers in their facility, allow for future net-working, ease of use, and adaptability for expansion as new applications are identified. The key to success is to not only provide for your present needs, but to be prepared for future rapid expansion and change in your computer usage as technology and your skills grow.

  19. Computer modeling of a convective steam superheater

    Science.gov (United States)

    Trojan, Marcin

    2015-03-01

    Superheater is for generating superheated steam from the saturated steam from the evaporator outlet. In the case of pulverized coal fired boiler, a relatively small amount of ash causes problems with ash fouling on the heating surfaces, including the superheaters. In the convection pass of the boiler, the flue gas temperature is lower and ash deposits can be loose or sintered. Ash fouling not only reduces heat transfer from the flue gas to the steam, but also is the cause of a higher pressure drop on the flue gas flow path. In the case the pressure drop is greater than the power consumed by the fan increases. If the superheater surfaces are covered with ash than the steam temperature at the outlet of the superheater stages falls, and the flow rates of the water injected into attemperator should be reduced. There is also an increase in flue gas temperature after the different stages of the superheater. Consequently, this leads to a reduction in boiler efficiency. The paper presents the results of computational fluid dynamics simulations of the first stage superheater of both the boiler OP-210M using the commercial software. The temperature distributions of the steam and flue gas along the way they flow together with temperature of the tube walls and temperature of the ash deposits will be determined. The calculated steam temperature is compared with measurement results. Knowledge of these temperatures is of great practical importance because it allows to choose the grade of steel for a given superheater stage. Using the developed model of the superheater to determine its degree of ash fouling in the on-line mode one can control the activation frequency of steam sootblowers.

  20. Computer modeling of a convective steam superheater

    Directory of Open Access Journals (Sweden)

    Trojan Marcin

    2015-03-01

    Full Text Available Superheater is for generating superheated steam from the saturated steam from the evaporator outlet. In the case of pulverized coal fired boiler, a relatively small amount of ash causes problems with ash fouling on the heating surfaces, including the superheaters. In the convection pass of the boiler, the flue gas temperature is lower and ash deposits can be loose or sintered. Ash fouling not only reduces heat transfer from the flue gas to the steam, but also is the cause of a higher pressure drop on the flue gas flow path. In the case the pressure drop is greater than the power consumed by the fan increases. If the superheater surfaces are covered with ash than the steam temperature at the outlet of the superheater stages falls, and the flow rates of the water injected into attemperator should be reduced. There is also an increase in flue gas temperature after the different stages of the superheater. Consequently, this leads to a reduction in boiler efficiency. The paper presents the results of computational fluid dynamics simulations of the first stage superheater of both the boiler OP-210M using the commercial software. The temperature distributions of the steam and flue gas along the way they flow together with temperature of the tube walls and temperature of the ash deposits will be determined. The calculated steam temperature is compared with measurement results. Knowledge of these temperatures is of great practical importance because it allows to choose the grade of steel for a given superheater stage. Using the developed model of the superheater to determine its degree of ash fouling in the on-line mode one can control the activation frequency of steam sootblowers.