WorldWideScience

Sample records for models co2 concentration

  1. Reversibility in an Earth System model in response to CO2 concentration changes

    International Nuclear Information System (INIS)

    Boucher, O; Halloran, P R; Burke, E J; Doutriaux-Boucher, M; Jones, C D; Lowe, J; Ringer, M A; Robertson, E; Wu, P

    2012-01-01

    We use the HadGEM2-ES Earth System model to examine the degree of reversibility of a wide range of components of the Earth System under idealized climate change scenarios where the atmospheric CO 2 concentration is gradually increased to four times the pre-industrial level and then reduced at a similar rate from several points along this trajectory. While some modelled quantities respond almost immediately to the atmospheric CO 2 concentrations, others exhibit a time lag relative to the change in CO 2 . Most quantities also exhibit a lag relative to the global-mean surface temperature change, which can be described as a hysteresis behaviour. The most surprising responses are from low-level clouds and ocean stratification in the Southern Ocean, which both exhibit hysteresis on timescales longer than expected. We see no evidence of critical thresholds in these simulations, although some of the hysteresis phenomena become more apparent above 2 × CO 2 or 3 × CO 2 . Our findings have implications for the parametrization of climate impacts in integrated assessment and simple climate models and for future climate studies of geoengineering scenarios. (letter)

  2. A terrestrial biosphere model optimized to atmospheric CO2 concentration and above ground woody biomass

    Science.gov (United States)

    Saito, M.; Ito, A.; Maksyutov, S. S.

    2013-12-01

    This study documents an optimization of a prognostic biosphere model (VISIT; Vegetation Integrative Similator for Trace gases) to observations of atmospheric CO2 concentration and above ground woody biomass by using a Bayesian inversion method combined with an atmospheric tracer transport model (NIES-TM; National Institute for Environmental Studies / Frontier Research Center for Global Change (NIES/FRCGC) off-line global atmospheric tracer transport model). The assimilated observations include 74 station records of surface atmospheric CO2 concentration and aggregated grid data sets of above ground woody biomass (AGB) and net primary productivity (NPP) over the globe. Both the biosphere model and the atmospheric transport model are used at a horizontal resolution of 2.5 deg x 2.5 deg grid with temporal resolutions of a day and an hour, respectively. The atmospheric transport model simulates atmospheric CO2 concentration with nine vertical levels using daily net ecosystem CO2 exchange rate (NEE) from the biosphere model, oceanic CO2 flux, and fossil fuel emission inventory. The models are driven by meteorological data from JRA-25 (Japanese 25-year ReAnalysis) and JCDAS (JMA Climate Data Assimilation System). Statistically optimum physiological parameters in the biosphere model are found by iterative minimization of the corresponding Bayesian cost function. We select thirteen physiological parameter with high sensitivity to NEE, NPP, and AGB for the minimization. Given the optimized physiological parameters, the model shows error reductions in seasonal variation of the CO2 concentrations especially in the northern hemisphere due to abundant observation stations, while errors remain at a few stations that are located in coastal coastal area and stations in the southern hemisphere. The model also produces moderate estimates of the mean magnitudes and probability distributions in AGB and NPP for each biome. However, the model fails in the simulation of the terrestrial

  3. [Dynamic observation, simulation and application of soil CO2 concentration: a review].

    Science.gov (United States)

    Sheng, Hao; Luo, Sha; Zhou, Ping; Li, Teng-Yi; Wang, Juan; Li, Jie

    2012-10-01

    Soil CO2 concentration is the consequences of biological activities in above- and below-ground, and its fluctuation may significantly affect the future atmospheric CO2 concentration and the projected climate change. This paper reviewed the methodologies for measuring the soil CO2 concentration in situ as well as their advantages and disadvantages, analyzed the variation patterns and controlling factors of soil CO2 concentration across the temporal (diurnal, several days, seasonal and inter-annual) and spatial (soil profile, site and landscape) scales, introduced the primary empirical and mechanical models for estimating and predicting soil CO2 concentration, and summarized the applications and constraints of soil CO2 concentration gradient in determining soil respiration. Four research priorities were proposed, i. e., to develop new techniques for collecting and determining the soil CO2 in severe soil conditions (e. g., flooding, lithoso and others), to approach the responses of soil CO2 concentration to weather change and related regulation mechanisms, to strengthen the researches on the spatial heterogeneity of soil CO2 concentration, and to expand the applications of soil CO2 concentration gradient in the measurement of tropical-subtropical soil respiration.

  4. Solubility of NaNd(CO3)2.6H2O(c) in concentrated Na2CO3 and NaHCO3 solutions

    International Nuclear Information System (INIS)

    Rao, L.; Rai, D.; Felmy, A.R.; Fulton, R.W.; Novak, C.F.

    1996-01-01

    NaNd(CO 3 ) 2 x 6 H 2 O(c) was identified to be the final equilibrium solid phase in suspensions containing concentrated sodium carbonate (0.1 to 2.0 M) and sodium bicarbonate (0.1 to 1.0 M), with either NaNd(CO 3 ) 2 x 6 H 2 O(c) or Nd 2 (CO 3 ) 3 x xH 2 O(s) as initial solids. A thermodynamic model, based on Pitzer's specific into-interaction approach, was developed to interpret the solubility of NaNd(CO 3 ) 2 x 6 H 2 O(c) as functions of sodium carbonate and sodium bicarbonate concentrations. In this model, the solubility data of NaNd(CO 3 ) 2 x 6 H 2 O(c) were explained by assuming the formation of NdCO 3 + , Nd(CO 3 ) 2 - and Nd(CO 3 ) 3 3- species and invoking the specific ion interactions between Na + and Nd(CO 3 ) 3 3- . Ion interaction parameters for Na + -Nd(CO 3 ) 3 3- were developed to fit the solubility data. Based on the model calculations, Nd(CO 3 ) 3 3- was the predominant aqueous neodymium species in 0.1 to 2 M sodium carbonate and 0.1 to 1 M sodium bicarbonate solutions. The logarithm of the NaNd(CO 3 ) 2 x 6 H 2 O solubility product (NaNd(CO 3 ) 2 x 6 H 2 O(c)=Na + +Nd 3+ +2 CO 3 2- +6 H 2 O) was calculated to be -21.39. This model also provided satisfactory interpretation of the solubility data of the analogous Am(III) system in less concentrated carbonate and bicarbonate solutions. (orig.)

  5. An econometric time-series analysis of global CO2 concentrations and emissions

    International Nuclear Information System (INIS)

    Cohen, B.C.; Labys, W.C.; Eliste, P.

    2001-01-01

    This paper extends previous work on the econometric modelling of CO 2 concentrations and emissions. The importance of such work rests in the fact that models of the Cohen-Labys variety represent the only alternative to scientific or physical models of CO 2 accumulations whose parameters are inferred rather than estimated. The stimulation for this study derives from the recent discovery of oscillations and cycles in the net biospheric flux of CO 2 . A variety of time series tests is thus used to search for the presence of normality, stationarity, cyclicality and stochastic processes in global CO 2 emissions and concentrations series. Given the evidence for cyclicality of a short-run nature in the spectra of these series, both structural time series and error correction model are applied to confirm the frequency and amplitude of these cycles. Our results suggest new possibilities for determining equilibrium levels of CO 2 concentrations and subsequently revising stabilization policies. (Author)

  6. Estimates of CO2 traffic emissions from mobile concentration measurements

    Science.gov (United States)

    Maness, H. L.; Thurlow, M. E.; McDonald, B. C.; Harley, R. A.

    2015-03-01

    We present data from a new mobile system intended to aid in the design of upcoming urban CO2-monitoring networks. Our collected data include GPS probe data, video-derived traffic density, and accurate CO2 concentration measurements. The method described here is economical, scalable, and self-contained, allowing for potential future deployment in locations without existing traffic infrastructure or vehicle fleet information. Using a test data set collected on California Highway 24 over a 2 week period, we observe that on-road CO2 concentrations are elevated by a factor of 2 in congestion compared to free-flow conditions. This result is found to be consistent with a model including vehicle-induced turbulence and standard engine physics. In contrast to surface concentrations, surface emissions are found to be relatively insensitive to congestion. We next use our model for CO2 concentration together with our data to independently derive vehicle emission rate parameters. Parameters scaling the leading four emission rate terms are found to be within 25% of those expected for a typical passenger car fleet, enabling us to derive instantaneous emission rates directly from our data that compare generally favorably to predictive models presented in the literature. The present results highlight the importance of high spatial and temporal resolution traffic data for interpreting on- and near-road concentration measurements. Future work will focus on transport and the integration of mobile platforms into existing stationary network designs.

  7. An analytical model for the distribution of CO2 sources and sinks, fluxes, and mean concentration within the roughness sub-layer

    Science.gov (United States)

    Siqueira, M. B.; Katul, G. G.

    2009-12-01

    A one-dimensional analytical model that predicts foliage CO2 uptake rates, turbulent fluxes, and mean concentration throughout the roughness sub-layer (RSL), a layer that extends from the ground surface up to 5 times the canopy height (h), is proposed. The model combines the mean continuity equation for CO2 with first-order closure principles for turbulent fluxes and simplified physiological and radiative transfer schemes for foliage uptake. This combination results in a second-order ordinary differential equation in which it is imposed soil respiration (RE) as lower and CO2 concentration well above the RSL as upper boundary conditions. An inverse version of the model was tested against data sets from two contrasting ecosystems: a tropical forest (TF, h=40 m) and a managed irrigated rice canopy (RC, h=0.7 m) - with good agreement noted between modeled and measured mean CO2 concentration profiles within the entire RSL (see figure). Sensitivity analysis on the model parameters revealed a plausible scaling regime between them and a dimensionless parameter defined by the ratio between external (RE) and internal (stomatal conductance) characteristics controlling the CO2 exchange process. The model can be used to infer the thickness of the RSL for CO2 exchange, the inequality in zero-plane displacement between CO2 and momentum, and its consequences on modeled CO2 fluxes. A simplified version of the solution is well suited for being incorporated into large-scale climate models. Furthermore, the model framework here can be used to a priori estimate relative contributions from the soil surface and the atmosphere to canopy-air CO2 concentration thereby making it synergetic to stable isotopes studies. Panels a) and c): Profiles of normalized measured leaf area density distribution (a) for TF and RC, respectively. Continuous lines are the constant a used in the model and dashed lines represent data-derived profiles. Panels b) and d) are modeled and ensemble-averaged measured

  8. Experimental and CFD modelling for thermal comfort and CO2 concentration in office building

    Science.gov (United States)

    Kabrein, H.; Hariri, A.; Leman, A. M.; Yusof, M. Z. M.; Afandi, A.

    2017-09-01

    Computational fluid dynamic CFD was used for simulating air flow, indoor air distribution and contamination concentration. Gases pollution and thermal discomfort affected occupational health and productivity of work place. The main objectives of this study are to investigate the impact of air change rate in CO2 concentration and to estimate the profile of CO2 concentration in the offices building. The thermal comfort and gases contamination are investigated by numerical analysis CFD which was validated by experiment. Thus the air temperature, air velocity and CO2 concentration were measured at several points in the chamber with four occupants. Comparing between experimental and numerical results showed good agreement. In addition, the CO2 concentration around human recorded high, compared to the other area. Moreover, the thermal comfort in this study is within the ASHRAE standard 55-2004.

  9. CO and NO2 pollution in a long two-way traffic road tunnel: investigation of NO2/NOx ratio and modelling of NO2 concentration.

    Science.gov (United States)

    Indrehus, O; Vassbotn, P

    2001-02-01

    The CO, NO and NO2 concentrations, visibility and air flow velocity were measured using continuous analysers in a long Norwegian road tunnel (7.5 km) with traffic in both directions in April 1994 and 1995. The traffic density was monitored at the same time. The NO2 concentration exceeded Norwegian air quality limits for road tunnels 17% of the time in 1994. The traffic through the tunnel decreased from 1994 to 1995, and the mean NO2 concentration was reduced from 0.73 to 0.22 ppm. The ventilation fan control, based on the CO concentration only, was unsatisfactory and the air flow was sometimes low for hours. Models for NO2 concentration based on CO concentration and absolute air flow velocity were developed and tested. The NO2/NOx ratio showed an increase for NOx levels above 2 ppm; a likely explanation for this phenomenon is NO oxidation by O2. Exposure to high NO2 concentrations may represent a health risk for people with respiratory and cardiac diseases. In long road tunnels with two-way traffic, this study indicates that ventilation fan control based on CO concentration should be adjusted for changes in vehicle CO emission and should be supplemented by air flow monitoring to limit the NO2 concentration.

  10. A Model for Interpreting High-Tower CO2 Concentration Records for the Surface Carbon Balance Information

    Science.gov (United States)

    Chen, B.; Chen, J. M.; Higuchi, K.; Chan, D.; Shashkov, A.

    2002-05-01

    Atmospheric CO2 concentration measurements have been made by scientists of Meteorological Service of Canada on a 40 m tower for the last 10 years at 15 minute intervals over a mostly intact boreal forest near Fraserdale (50N, 81W), Ontario, Canada. The long time records of CO2 as well as basic meteorological variables provide a unique opportunity to investigate any potential changes in the ecosystem in terms of carbon balance. A model is needed to decipher the carbon cycle signals from the diurnal and seasonal variation patterns in the CO2 record. For this purpose, the Boreal Ecosystem Productivity Simulator (BEPS) is expanded to include a one-dimensional CO2 vertical transfer model involving the interaction between plant canopies and the atmosphere in the surface layer and the diurnal dynamics of the mixed layer. An analytical solution of the scalar transfer equation within the surface layer is found using an assumption that the diurnal oscillation of CO2 concentration at a given height is sinusoidal, which is suitable for the investigation of the changes in diurnal variation pattern over the 10 year period. The complex interactions between the daily cycle of the atmosphere and vegetation CO2 exchange and the daily evolution of mixed layer entrainment of CO2 determines the CO2 variation pattern at a given height. The expanded BEPS can simulate within ñ2 ppm the hourly CO2 records at the 40 m measurement height. The annual totals of gross primary productivity (GPP), net primary productivity (NPP) and net ecosystem productivity (NEP), summed up from the hourly results, agree within 5% of previous estimates of BEPS at daily steps, indicating the internal consistency of the hourly model. The model is therefore ready for exploring changes in the CO2 record as affected by changes in the forest ecosystems upwind of the tower. Preliminary results indicate that the diurnal variation amplitude of CO2 has increased by 10-20% over the 10 years period, and this change can

  11. Modeling concentrations and fluxes of atmospheric CO2 in the North East Atlantic region

    DEFF Research Database (Denmark)

    Geels, C.; Christensen, J.H.; Hansen, A.W.

    2001-01-01

    As part of the Danish NEAREX project a three-dimensional Eulerian hemispheric air pollution model is used to study the transport and concentrations of atmospheric CO2 in the North East Atlantic region. The model domain covers the major part of the Northern Hemisphere and currently the model...

  12. Simulation and modeling CO2 absorption in biogas with DEA promoted K2CO3 solution in packed column

    Science.gov (United States)

    Nurkhamidah, Siti; Altway, Ali; Airlangga, Bramantyo; Emilia, Dwi Putri

    2017-05-01

    Absorption of carbon dioxide (CO2) using potassium carbonate (K2CO3) is one of biogas purification method. However, K2CO3 have slow mass transfer in liquid phase. So it is necessary to eliminate the disadvantage of CO2 absorption using K2CO3 by adding promotor (activator). Diethanol amine (DEA) is one of promotor which can increase its reaction rate. Simulation and modeling research of the CO2 absorption from biogas with DEA promoted K2CO3 solution has not been conducted. Thus, the main goal of this research is create model and simulation for the CO2 absorption from biogas with DEA promoted K2CO3 solution, then observe the influence of promoter concentration. DEA concentration varies between 1-5 %wt. From the simulation, we concluded that the CO2 removal rise with the increasing of promoter concentration. The highest CO2 removal is 54.5318 % at 5 % wt DEA concentration.

  13. Phytophthora quercina infections in elevated CO2 concentrations

    Directory of Open Access Journals (Sweden)

    Oszako Tomasz

    2016-09-01

    Full Text Available In the last decades, a new wave of oak decline has been observed in Poland. The most important pathogenic organisms involved in this phenomenon are probably soil-borne pathogens Phytophthoragenus, especially P. quercina. In this work, we sought to test the influence of elevated CO2 concentration on the susceptibility of oaks (Quercus robur L. to infection by P. quercina. In order to test the susceptibility of oak fine roots to infection, we applied phosphite-based fertiliser Actifos in 0.6% concentration. One-year-old oak seedlings were grown for one year in greenhouse with either an ambient atmosphere (400 ppm CO2 or an elevated (800 ppm concentration of CO2. Oaks grown at the elevated CO2 concentration developed longer shoots as proved by statistically significant differences. However, there was no difference in the development of root systems. The application of Actifos had a positive significant effect on the development of shoots and the surface area of fine roots under the elevated CO2 concentration.

  14. ISLSCP II Globalview: Atmospheric CO2 Concentrations

    Data.gov (United States)

    National Aeronautics and Space Administration — The GlobalView Carbon Dioxide (CO2) data product contains synchronized and smoothed time series of atmospheric CO2 concentrations at selected sites that were created...

  15. Modeling CO2-facilitated transport across a diethanolamine liquid membrane

    Energy Technology Data Exchange (ETDEWEB)

    Lihong Bao; Michael C. Trachtenberg [Carbozyme Inc., Monmouth Junction, NJ (United States)

    2005-12-15

    We compared experimental and model data for the facilitated transport of CO2 from a CO2-air mixture across an aqueous solution of diethanolamine (DEA) via a hollow fiber, contained liquid membrane (HFCLM) permeator. A two-step carbamate formation model was devised to analyze the data instead of the one-step mechanism used by previous investigators. The effects of DEA concentration, liquid membrane thickness and feed CO2 concentration were also studied. With a 20% (wt) DEA liquid membrane and feed of 15% CO2 in CO2-air mixture at atmosphere pressure, the permeance reached 1.51E-8 mol/m{sup 2} s Pa with a CO2/N2 selectivity of 115. Model predictions compared well with the experimental results at CO2 concentrations of industrial importance. Short-term stability of the HFCLM permeator performance was examined. The system was stable during 5-days of testing.

  16. Research of CO2 concentration in naturally ventilated lecture room

    Science.gov (United States)

    Laska, Marta; Dudkiewicz, Edyta

    2017-11-01

    Naturally ventilated buildings especially dedicated for educational purposes need to be design to achieve required level of thermal comfort and indoor air quality. It is crucial in terms of both: health and productivity of the room users. Higher requirements of indoor environment are important due to the level of students concentration, their ability to acquire new knowledge and willingness to interact with the lecturer. The article presents the results of experimental study and surveys undertaken in naturally ventilated lecture room. The data is analysed in terms of CO2 concentration and its possible influence on users. Furthermore the outcome of the research is compared with the CO2 concentration models available in the literature.

  17. Elevated CO2 concentration around alfalfa nodules increases N2 fixation

    OpenAIRE

    Fischinger, Stephanie A.; Hristozkova, Marieta; Mainassara, Zaman-Allah; Schulze, Joachim

    2009-01-01

    Nodule CO2 fixation via PEPC provides malate for bacteroids and oxaloacetate for N assimilation. The process is therefore of central importance for efficient nitrogen fixation. Nodule CO2 fixation is known to depend on external CO2 concentration. The hypothesis of the present paper was that nitrogen fixation in alfalfa plants is enhanced when the nodules are exposed to elevated CO2 concentrations. Therefore nodulated plants of alfalfa were grown in a hydroponic system that allowed separate ae...

  18. Dynamics of soil CO2 efflux under varying atmospheric CO2 concentrations reveal dominance of slow processes.

    Science.gov (United States)

    Kim, Dohyoung; Oren, Ram; Clark, James S; Palmroth, Sari; Oishi, A Christopher; McCarthy, Heather R; Maier, Chris A; Johnsen, Kurt

    2017-09-01

    We evaluated the effect on soil CO 2 efflux (F CO 2 ) of sudden changes in photosynthetic rates by altering CO 2 concentration in plots subjected to +200 ppmv for 15 years. Five-day intervals of exposure to elevated CO 2 (eCO 2 ) ranging 1.0-1.8 times ambient did not affect F CO 2 . F CO 2 did not decrease until 4 months after termination of the long-term eCO 2 treatment, longer than the 10 days observed for decrease of F CO 2 after experimental blocking of C flow to belowground, but shorter than the ~13 months it took for increase of F CO 2 following the initiation of eCO 2 . The reduction of F CO 2 upon termination of enrichment (~35%) cannot be explained by the reduction of leaf area (~15%) and associated carbohydrate production and allocation, suggesting a disproportionate contraction of the belowground ecosystem components; this was consistent with the reductions in base respiration and F CO 2 -temperature sensitivity. These asymmetric responses pose a tractable challenge to process-based models attempting to isolate the effect of individual processes on F CO2 . © 2017 John Wiley & Sons Ltd.

  19. [Effects of plastic film mulching on soil CO2 efflux and CO2 concentration in an oasis cotton field].

    Science.gov (United States)

    Yu, Yong-xiang; Zhao, Cheng-yi; Jia, Hong-tao; Yu, Bo; Zhou, Tian-he; Yang, Yu-guang; Zhao, Hua

    2015-01-01

    A field study was conducted to compare soil CO2 efflux and CO2 concentration between mulched and non-mulched cotton fields by using closed chamber method and diffusion chamber technique. Soil CO2 efflux and CO2 concentration exhibited a similar seasonal pattern, decreasing from July to October. Mulched field had a lower soil CO2 efflux but a higher CO2 concentration, compared to those of non-mulched fields. Over the measurement period, cumulative CO2 efflux was 1871.95 kg C . hm-2 for mulched field and 2032.81 kg C . hm-2 for non-mulched field. Soil CO2 concentration was higher in mulched field (ranging from 5137 to 25945 µL . L-1) than in non- mulched field (ranging from 2165 to 23986 µL . L-1). The correlation coefficients between soil CO2 concentrations at different depths and soil CO2 effluxes were 0.60 to 0.73 and 0.57 to 0.75 for the mulched and non-mulched fields, indicating that soil CO2 concentration played a crucial role in soil CO2 emission. The Q10 values were 2.77 and 2.48 for the mulched and non-mulched fields, respectively, suggesting that CO2 efflux in mulched field was more sensitive to the temperature.

  20. Modeling soil CO2 production and transport to investigate the intra-day variability of surface efflux and soil CO2 concentration measurements in a scots pine forest (Pinus Sylvestris, L.)

    OpenAIRE

    Goffin, Stéphanie; Wylock, Christophe; Haut, Benoît; Maier, Martin; Longdoz, Bernard; Aubinet, Marc

    2015-01-01

    Aimed:The main aim of this study is to improve the mechanistic understanding of soil CO2 efflux (Fs), especially its temporal variation at short-time scales, by investigating, through modeling, which underlying process among CO2 production and its transport up to the atmosphere is responsible for observed intra-day variation of Fs and soil CO2 concentration [CO2].Methods:In this study, a measurement campaign of Fs and vertical soil [CO2] profiles was conducted in a Scots Pine Forest soil in H...

  1. A joint global carbon inversion system using both CO2 and 13CO2 atmospheric concentration data

    Science.gov (United States)

    Chen, Jing M.; Mo, Gang; Deng, Feng

    2017-03-01

    Observations of 13CO2 at 73 sites compiled in the GLOBALVIEW database are used for an additional constraint in a global atmospheric inversion of the surface CO2 flux using CO2 observations at 210 sites (62 collocated with 13CO2 sites) for the 2002-2004 period for 39 land regions and 11 ocean regions. This constraint is implemented using prior CO2 fluxes estimated with a terrestrial ecosystem model and an ocean model. These models simulate 13CO2 discrimination rates of terrestrial photosynthesis and ocean-atmosphere diffusion processes. In both models, the 13CO2 disequilibrium between fluxes to and from the atmosphere is considered due to the historical change in atmospheric 13CO2 concentration. This joint inversion system using both13CO2 and CO2 observations is effectively a double deconvolution system with consideration of the spatial variations of isotopic discrimination and disequilibrium. Compared to the CO2-only inversion, this 13CO2 constraint on the inversion considerably reduces the total land carbon sink from 3.40 ± 0.84 to 2.53 ± 0.93 Pg C year-1 but increases the total oceanic carbon sink from 1.48 ± 0.40 to 2.36 ± 0.49 Pg C year-1. This constraint also changes the spatial distribution of the carbon sink. The largest sink increase occurs in the Amazon, while the largest source increases are in southern Africa, and Asia, where CO2 data are sparse. Through a case study, in which the spatial distribution of the annual 13CO2 discrimination rate over land is ignored by treating it as a constant at the global average of -14. 1 ‰, the spatial distribution of the inverted CO2 flux over land was found to be significantly modified (up to 15 % for some regions). The uncertainties in our disequilibrium flux estimation are 8.0 and 12.7 Pg C year-1 ‰ for land and ocean, respectively. These uncertainties induced the unpredictability of 0.47 and 0.54 Pg C year-1 in the inverted CO2 fluxes for land and ocean, respectively. Our joint inversion system is therefore

  2. Modeling the response of forest isoprene emissions to future increases in atmospheric CO2 concentration and changes in climate (Invited)

    Science.gov (United States)

    Monson, R. K.; Heald, C. L.; Guenther, A. B.; Wilkinson, M.

    2009-12-01

    Isoprene emissions from plants to the atmosphere are sensitive to changes in temperature, light and atmospheric CO2 concentration in both the short- (seconds-to-minutes) and long-term (hours-to-months). We now understand that the different time constants for these responses are due to controls by different sets of biochemical and physiological processes n leaves. Progress has been made in the past few years toward converting this process-level understanding into quantitative models. In this talk, we consider this progress with special emphasis on the short- and long-term responses to atmospheric CO2 concentration and temperature. A new biochemically-based model is presented for describing the CO2 responses, and the model is deployed in a global context to predict interactions between the influences of temperature and CO2 on the global isoprene emission rate. The model is based on the theory of enzyme-substrate kinetics, particularly with regard to those reactions that produce puruvate or glyceraldehyde 3-phosphate, the two chloroplastic substrates for isoprene biosynthesis. In the global model, when we accounted for CO2 inhibition of isoprene emission in the long-term response, we observed little impact on present-day global isoprene emission (increase from 508 to 523 Tg C yr-1). However, the large increases in future isoprene emissions predicted from past models which are due to a projected warmer climate, were entirely offset by including the CO2 effects. The isoprene emission response to CO2 was dominated by the long-term growth environment effect, with modulations of 10% or less from the short-term effect. We use this analysis as a framework for grounding future global models of isoprene emission in biochemical and physiological observations.

  3. A statistical analysis of three ensembles of crop model responses totemperature and CO2concentration

    DEFF Research Database (Denmark)

    Makowski, D; Asseng, S; Ewert, F.

    2015-01-01

    Ensembles of process-based crop models are increasingly used to simulate crop growth for scenarios of temperature and/or precipitation changes corresponding to different projections of atmospheric CO2 concentrations. This approach generates large datasets with thousands of simulated crop yield data...

  4. Revealing Transient Concentration of CO2 in a Mixed Matrix Membrane by IR Microimaging and Molecular Modeling

    KAUST Repository

    Hwang, Seungtaik

    2018-02-21

    Through IR microimaging the spatially and temporally resolved development of the CO2 concentration in a ZIF-8@6FDA-DAM mixed matrix membrane was visualized during transient adsorption. By recording the evolution of the CO2 concentration, it is observed that the CO2 molecules propagate from the ZIF-8 filler, which acts as a transport

  5. Revealing Transient Concentration of CO2 in a Mixed Matrix Membrane by IR Microimaging and Molecular Modeling

    KAUST Repository

    Hwang, Seungtaik; Semino, Rocio; Seoane, Beatriz; Zahan, Marufa; Chmelik, Christian; Valiullin, Rustem; Bertmer, Marko; Haase, Jü rgen; Kapteijn, Freek; Gascon, Jorge; Maurin, Guillaume; Kä rger, Jö rg

    2018-01-01

    Through IR microimaging the spatially and temporally resolved development of the CO2 concentration in a ZIF-8@6FDA-DAM mixed matrix membrane was visualized during transient adsorption. By recording the evolution of the CO2 concentration, it is observed that the CO2 molecules propagate from the ZIF-8 filler, which acts as a transport

  6. Enhanced electrocatalytic CO2 reduction via field-induced reagent concentration

    Science.gov (United States)

    Liu, Min; Pang, Yuanjie; Zhang, Bo; de Luna, Phil; Voznyy, Oleksandr; Xu, Jixian; Zheng, Xueli; Dinh, Cao Thang; Fan, Fengjia; Cao, Changhong; de Arquer, F. Pelayo García; Safaei, Tina Saberi; Mepham, Adam; Klinkova, Anna; Kumacheva, Eugenia; Filleter, Tobin; Sinton, David; Kelley, Shana O.; Sargent, Edward H.

    2016-09-01

    Electrochemical reduction of carbon dioxide (CO2) to carbon monoxide (CO) is the first step in the synthesis of more complex carbon-based fuels and feedstocks using renewable electricity. Unfortunately, the reaction suffers from slow kinetics owing to the low local concentration of CO2 surrounding typical CO2 reduction reaction catalysts. Alkali metal cations are known to overcome this limitation through non-covalent interactions with adsorbed reagent species, but the effect is restricted by the solubility of relevant salts. Large applied electrode potentials can also enhance CO2 adsorption, but this comes at the cost of increased hydrogen (H2) evolution. Here we report that nanostructured electrodes produce, at low applied overpotentials, local high electric fields that concentrate electrolyte cations, which in turn leads to a high local concentration of CO2 close to the active CO2 reduction reaction surface. Simulations reveal tenfold higher electric fields associated with metallic nanometre-sized tips compared to quasi-planar electrode regions, and measurements using gold nanoneedles confirm a field-induced reagent concentration that enables the CO2 reduction reaction to proceed with a geometric current density for CO of 22 milliamperes per square centimetre at -0.35 volts (overpotential of 0.24 volts). This performance surpasses by an order of magnitude the performance of the best gold nanorods, nanoparticles and oxide-derived noble metal catalysts. Similarly designed palladium nanoneedle electrocatalysts produce formate with a Faradaic efficiency of more than 90 per cent and an unprecedented geometric current density for formate of 10 milliamperes per square centimetre at -0.2 volts, demonstrating the wider applicability of the field-induced reagent concentration concept.

  7. Responses to atmospheric CO2 concentrations in crop simulation models: a review of current simple and semicomplex representations and options for model development.

    Science.gov (United States)

    Vanuytrecht, Eline; Thorburn, Peter J

    2017-05-01

    Elevated atmospheric CO 2 concentrations ([CO 2 ]) cause direct changes in crop physiological processes (e.g. photosynthesis and stomatal conductance). To represent these CO 2 responses, commonly used crop simulation models have been amended, using simple and semicomplex representations of the processes involved. Yet, there is no standard approach to and often poor documentation of these developments. This study used a bottom-up approach (starting with the APSIM framework as case study) to evaluate modelled responses in a consortium of commonly used crop models and illuminate whether variation in responses reflects true uncertainty in our understanding compared to arbitrary choices of model developers. Diversity in simulated CO 2 responses and limited validation were common among models, both within the APSIM framework and more generally. Whereas production responses show some consistency up to moderately high [CO 2 ] (around 700 ppm), transpiration and stomatal responses vary more widely in nature and magnitude (e.g. a decrease in stomatal conductance varying between 35% and 90% among models was found for [CO 2 ] doubling to 700 ppm). Most notably, nitrogen responses were found to be included in few crop models despite being commonly observed and critical for the simulation of photosynthetic acclimation, crop nutritional quality and carbon allocation. We suggest harmonization and consideration of more mechanistic concepts in particular subroutines, for example, for the simulation of N dynamics, as a way to improve our predictive understanding of CO 2 responses and capture secondary processes. Intercomparison studies could assist in this aim, provided that they go beyond simple output comparison and explicitly identify the representations and assumptions that are causal for intermodel differences. Additionally, validation and proper documentation of the representation of CO 2 responses within models should be prioritized. © 2017 John Wiley & Sons Ltd.

  8. Absorption capacity and viscosity for CO_2 capture process using high concentrated PZ-DEAE aqueous solution

    International Nuclear Information System (INIS)

    Fu, Dong; Wang, LeMeng; Mi, ChenLu; Zhang, Pan

    2016-01-01

    Highlights: • Absorption of CO_2 in high concentrated DEAE-PZ aqueous solutions were measured. • Viscosities of CO_2-unloaded and CO_2-loaded DEAE-PZ aqueous solutions were measured. • Weiland equation was used to calculate the viscosities. • Effects of temperature, concentration and CO_2 loading on viscosity were demonstrated. - Abstract: The absorption capacity of CO_2 in piperazine (PZ) promoted 2-diethylaminoethanol (DEAE) aqueous solution was measured. The viscosities of both CO_2-unloaded and CO_2-loaded PZ-DEAE aqueous solutions were measured and then modelled. The temperatures ranged from 303.2 K to 323.2 K. The mass fraction of PZ and DEAE respectively ranged from 0 to 0.075 and 0.3 to 0.5. The temperature and concentration dependences of absorption capacity were determined. The effects of temperature, mass fraction and CO_2 loading on viscosities are demonstrated.

  9. A possible CO2 conducting and concentrating mechanism in plant stomata SLAC1 channel.

    Directory of Open Access Journals (Sweden)

    Qi-Shi Du

    Full Text Available BACKGROUND: The plant SLAC1 is a slow anion channel in the membrane of stomatal guard cells, which controls the turgor pressure in the aperture-defining guard cells, thereby regulating the exchange of water vapour and photosynthetic gases in response to environmental signals such as drought, high levels of carbon dioxide, and bacterial invasion. Recent study demonstrated that bicarbonate is a small-molecule activator of SLAC1. Higher CO(2 and HCO(3(- concentration activates S-type anion channel currents in wild-type Arabidopsis guard cells. Based on the SLAC1 structure a theoretical model is derived to illustrate the activation of bicarbonate to SLAC1 channel. Meanwhile a possible CO(2 conducting and concentrating mechanism of the SLAC1 is proposed. METHODOLOGY: The homology structure of Arabidopsis thaliana SLAC1 (AtSLAC1 provides the structural basis for study of the conducting and concentrating mechanism of carbon dioxide in SLAC1 channels. The pK(a values of ionizable amino acid side chains in AtSLAC1 are calculated using software PROPKA3.0, and the concentration of CO(2 and anion HCO(3(- are computed based on the chemical equilibrium theory. CONCLUSIONS: The AtSLAC1 is modeled as a five-region channel with different pH values. The top and bottom layers of channel are the alkaline residue-dominated regions, and in the middle of channel there is the acidic region surrounding acidic residues His332. The CO(2 concentration is enhanced around 10(4 times by the pH difference between these regions, and CO(2 is stored in the hydrophobic region, which is a CO(2 pool. The pH driven CO(2 conduction from outside to inside balances the back electromotive force and maintain the influx of anions (e.g. Cl(- and NO(3(- from inside to outside. SLAC1 may be a pathway providing CO(2 for photosynthesis in the guard cells.

  10. Atmospheric CO2 Concentration Measurements with Clouds from an Airborne Lidar

    Science.gov (United States)

    Mao, J.; Abshire, J. B.; Kawa, S. R.; Riris, H.; Allan, G. R.; Hasselbrack, W. E.; Numata, K.; Chen, J. R.; Sun, X.; DiGangi, J. P.; Choi, Y.

    2017-12-01

    Globally distributed atmospheric CO2 concentration measurements with high precision, low bias and full seasonal sampling are crucial to advance carbon cycle sciences. However, two thirds of the Earth's surface is typically covered by clouds, and passive remote sensing approaches from space are limited to cloud-free scenes. NASA Goddard is developing a pulsed, integrated-path differential absorption (IPDA) lidar approach to measure atmospheric column CO2 concentrations, XCO2, from space as a candidate for NASA's ASCENDS mission. Measurements of time-resolved laser backscatter profiles from the atmosphere also allow this technique to estimate XCO2 and range to cloud tops in addition to those to the ground with precise knowledge of the photon path-length. We demonstrate this measurement capability using airborne lidar measurements from summer 2017 ASCENDS airborne science campaign in Alaska. We show retrievals of XCO2 to ground and to a variety of cloud tops. We will also demonstrate how the partial column XCO2 to cloud tops and cloud slicing approach help resolving vertical and horizontal gradient of CO2 in cloudy conditions. The XCO2 retrievals from the lidar are validated against in situ measurements and compared to the Goddard Parameterized Chemistry Transport Model (PCTM) simulations. Adding this measurement capability to the future lidar mission for XCO2 will provide full global and seasonal data coverage and some information about vertical structure of CO2. This unique facility is expected to benefit atmospheric transport process studies, carbon data assimilation in models, and global and regional carbon flux estimation.

  11. Elevated tropospheric CO2 and O3 concentrations impair organic pollutant removal from grassland soil.

    Science.gov (United States)

    Ai, Fuxun; Eisenhauer, Nico; Jousset, Alexandre; Butenschoen, Olaf; Ji, Rong; Guo, Hongyan

    2018-04-03

    The concentrations of tropospheric CO 2 and O 3 have been rising due to human activities. These rising concentrations may have strong impacts on soil functions as changes in plant physiology may lead to altered plant-soil interactions. Here, the effects of eCO 2 and eO 3 on the removal of polycyclic aromatic hydrocarbon (PAH) pollutants in grassland soil were studied. Both elevated CO 2 and O 3 concentrations decreased PAH removal with lowest removal rates at elevated CO 2 and elevated O 3 concentrations. This effect was linked to a shift in soil microbial community structure by structural equation modeling. Elevated CO 2 and O 3 concentrations reduced the abundance of gram-positive bacteria, which were tightly linked to soil enzyme production and PAH degradation. Although plant diversity did not buffer CO 2 and O 3 effects, certain soil microbial communities and functions were affected by plant communities, indicating the potential for longer-term phytoremediation approaches. Results of this study show that elevated CO 2 and O 3 concentrations may compromise the ability of soils to degrade organic pollutants. On the other hand, the present study also indicates that the targeted assembly of plant communities may be a promising tool to shape soil microbial communities for the degradation of organic pollutants in a changing world.

  12. Effects of Elevated CO2 Concentration on the Biomasses and Nitrogen Concentrations in the Organs of Sainfoin(Onobrychis viciaefolia Scop.)

    Institute of Scientific and Technical Information of China (English)

    ZHOU Zheng-chao; SHANGGUAN Zhou-ping

    2009-01-01

    In forage grasses,the nitrogen concentration is directly related to the nutritional value.The studies examined the hypothesis that global elevation of CO2 concentration probably affects the biomass,nitrogen(N)concentration,and allocation and distribution patterns in the organs of forage grasses.While sainfoin(Onobrychis viciaefolia Scop.)seedlings grew on a low nutrient soil in closed chambers for 90 days,they were exposed to two CO2 concentrations(ambient or ambient+350μmol mol-1 CO2)without adding nutrients to them.After 90 days exposure to CO2,the biomasses of leaves,stems,and roots,and N concentrations and contents of different parts were measured.Compared with the ambient CO2 concentration,the elevated CO2 concentration increased the total dry matter by 25.07%,mainly due to the root and leaf having positive response to the elevated CO2 concentration.However,the elevated CO2 concentration did not change the proportions of the dry matters in different parts and the total plants compared with the ambient CO2 concentration.The elevated CO2 concentration lowered the N concentrations of the plant parts.Because the dry matter was higher,the elevated CO2 concentration had no effect on the N content in the plants compared to the ambient CO2 concentration.The elevated CO2 concentration promoted N allocations of the different parts significantly and increased N allocation of the underground part.The results have confirmed the previous suggestions that the elevated CO2 concentration stimulates plant biomass production and decreases the N concentrations of the plant parts.

  13. Dynamics of soil CO 2 efflux under varying atmospheric CO 2 concentrations reveal dominance of slow processes

    Science.gov (United States)

    Dohyoung Kim; Ram Oren; James S. Clark; Sari Palmroth; A. Christopher Oishi; Heather R. McCarthy; Chris A. Maier; Kurt Johnsen

    2017-01-01

    We evaluated the effect on soil CO2 efflux (FCO2) of sudden changes in photosynthetic rates by altering CO2 concentration in plots subjected to +200 ppmv for 15 years. Five-day intervals of exposure to elevated CO2 (eCO2) ranging 1.0–1.8 times ambient did not affect FCO2. FCO2 did not decrease until 4 months after termination of the long-term eCO2 treatment, longer...

  14. A high precision mass spectrometry method for measuring O2/N2 ratios and CO2 concentrations in air

    International Nuclear Information System (INIS)

    Marca, A.D.; Dennis, P.F.; Etchells, A.

    2002-01-01

    A full, detailed understanding of the global carbon budget is needed for robust modelling of global climate and environmental change. Since the industrial revolution the carbon cycle has been shifted from a steady state in which removal of CO 2 from the atmosphere through photosynthesis is balanced by its addition through respiration. Currently increased respiration due to deforestation, modern agricultural practises and the burning of fossil fuels dominates photosynthesis resulting in modern atmospheric CO 2 concentrations some 32% higher than the year 1800 levels. However, the CO 2 concentration rises are lower than expected from known fossil fuel combustion inventories. A significant proportion of the excess CO 2 is taken up by the oceans, however a missing carbon sink must still be invoked to account for the difference between measured and expected CO 2 rises. A global greening as a result of increased photosynthesis is required to close the circle

  15. How Accurately Do Maize Crop Models Simulate the Interactions of Atmospheric CO2 Concentration Levels With Limited Water Supply on Water Use and Yield?

    Science.gov (United States)

    Durand, Jean-Louis; Delusca, Kenel; Boote, Ken; Lizaso, Jon; Manderscheid, Remy; Weigel, Hans Johachim; Ruane, Alexander Clark; Rosenzweig, Cynthia E.; Jones, Jim; Ahuja, Laj; hide

    2017-01-01

    This study assesses the ability of 21 crop models to capture the impact of elevated CO2 concentration [CO2] on maize yield and water use as measured in a 2-year Free Air Carbon dioxide Enrichment experiment conducted at the Thunen Institute in Braunschweig, Germany (Manderscheid et al. 2014). Data for ambient [CO2] and irrigated treatments were provided to the 21 models for calibrating plant traits, including weather, soil and management data as well as yield, grain number, above ground biomass, leaf area index, nitrogen concentration in biomass and grain, water use and soil water content. Models differed in their representation of carbon assimilation and evapotranspiration processes. The models reproduced the absence of yield response to elevated [CO2] under well-watered conditions, as well as the impact of water deficit at ambient [CO2], with 50 percent of models within a range of plus/minus 1 Mg ha(exp. -1) around the mean. The bias of the median of the 21 models was less than 1 Mg ha(exp. -1). However under water deficit in one of the two years, the models captured only 30 percent of the exceptionally high [CO2] enhancement on yield observed. Furthermore the ensemble of models was unable to simulate the very low soil water content at anthesis and the increase of soil water and grain number brought about by the elevated [CO2] under dry conditions. Overall, we found models with explicit stomatal control on transpiration tended to perform better. Our results highlight the need for model improvement with respect to simulating transpirational water use and its impact on water status during the kernel-set phase.

  16. CO2 Fluxes and Concentrations in a Residential Area in the Southern Hemisphere

    Science.gov (United States)

    Weissert, L. F.; Salmond, J. A.; Turnbull, J. C.; Schwendenmann, L.

    2014-12-01

    While cities are generally major sources of anthropogenic carbon dioxide (CO2) emissions, recent research has shown that parts of urban areas may also act as CO2 sinks due to CO2 uptake by vegetation. However, currently available results are related to a large degree of uncertainty due to the limitations of the applied methods and the limited number of studies available from urban areas, particularly from the southern hemisphere. In this study, we explore the potential of eddy covariance and tracer measurements (13C and 14C isotopes of CO2) to quantify and partition CO2 fluxes and concentrations in a residential urban area in Auckland, New Zealand. Based on preliminary results from autumn and winter (March to July 2014) the residential area is a small source of CO2 (0.11 mol CO2 m-2 day-1). CO2 fluxes and concentrations follow a distinct diurnal cycle with a morning peak between 7:00 and 9:00 (max: 0.25 mol CO2 m-2 day-1/412 ppm) and midday low with negative CO2 fluxes (min: -0.17 mol CO2 m-2 day-1/392 ppm) between 10:00 and 15:00 local time, likely due to photosynthetic CO2 uptake by local vegetation. Soil CO2 efflux may explain that CO2 concentrations increase and remain high (401 ppm) throughout the night. Mean diurnal winter δ13C values are in anti-phase with CO2 concentrations and vary between -9.0 - -9.7‰. The depletion of δ13C compared to clean atmospheric air (-8.2‰) is likely a result of local CO2 sources dominated by gasoline combustion (appr. 60%) during daytime. A sector analysis (based on prevailing wind) of CO2 fluxes and concentrations indicates lower CO2 fluxes and concentrations from the vegetation-dominated sector, further demonstrating the influence of vegetation on local CO2 concentrations. These results provide an insight into the temporal and spatial variability CO2 fluxes/concentrations and potential CO2 sinks and sources from a city in the southern hemisphere and add valuable information to the global database of urban CO2 fluxes.

  17. Specific radioactivity of glycolate and photorespiration during 14CO2 assimilation at four different CO2 concentrations by sunflower and bean leaves

    International Nuclear Information System (INIS)

    Fock, H.; Klug, K.; Krampitz, M.J.

    1979-01-01

    Using an open gas-exchange system, the rates of apparent CO 2 uptake (APS), true CO 2 uptake (TIPS), CO 2 evolution in light (PR), and the relative specific radioactivity of photorespiration (RSA) by sunflower and bean leaves were measured at four different CO 2 concentrations. At the end of the 14 CO 2 assimilation period the leaves were killed and extract for the analysis of glycolic acid. The rate of PR was CO 2 independent at low and normal CO 2 concentrations but inreased at CO 2 concentrations above normal. The ratio of PR/TPS which declined with an increase in CO 2 was compatible with the ratio of vo/2vo of the RuBP-Carboxylase/Oxygenase reaction. At low and normal concentrations of CO 2 the concentration as well as the specific radioactivity of glycolic acid increased with an increase in CO 2 and the relative specific activity (RSA) of glycolic acid resembled the RSA of photorespiration. It was concluded that these results support the concept of RuBP-carboxylase/oxygenase regulating the fluxes of carbon via the photosynthetic carbon reduction and the glycolate pathway. (orig.) [de

  18. Ecological imperatives for aquatic CO2-concentrating mechanisms.

    Science.gov (United States)

    Maberly, Stephen C; Gontero, Brigitte

    2017-06-01

    In aquatic environments, the concentration of inorganic carbon is spatially and temporally variable and CO2 can be substantially oversaturated or depleted. Depletion of CO2 plus low rates of diffusion cause inorganic carbon to be more limiting in aquatic than terrestrial environments, and the frequency of species with a CO2-concentrating mechanism (CCM), and their contribution to productivity, is correspondingly greater. Aquatic photoautotrophs may have biochemical or biophysical CCMs and exploit CO2 from the sediment or the atmosphere. Though partly constrained by phylogeny, CCM activity is related to environmental conditions. CCMs are absent or down-regulated when their increased energy costs, lower CO2 affinity, or altered mineral requirements outweigh their benefits. Aquatic CCMs are most widespread in environments with low CO2, high HCO3-, high pH, and high light. Freshwater species are generally less effective at inorganic carbon removal than marine species, but have a greater range of ability to remove carbon, matching the environmental variability in carbon availability. The diversity of CCMs in seagrasses and marine phytoplankton, and detailed mechanistic studies on larger aquatic photoautotrophs are understudied. Strengthening the links between ecology and CCMs will increase our understanding of the mechanisms underlying ecological success and will place mechanistic studies in a clearer ecological context. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  19. Changes in concentration and (delta) 13C value of dissolved CH4, CO2 and organic carbon in rice paddies under ambient and elevated concentrations of atmospheric CO2

    International Nuclear Information System (INIS)

    Weiguo Cheng; Yagi, Kazuyuki; Sakai, Hidemitsu; Hua Xu; Kobayashi, Kazuhiko

    2005-01-01

    Changes in concentration and (delta) 13 C value of dissolved CH 4 , CO 2 and organic carbon (DOC) in floodwater and soil solution from a Japanese rice paddy were studied under ambient and elevated concentrations of atmospheric CO 2 in controlled environment chambers. The concentrations of dissolved CH 4 in floodwater increased with rice growth (with some fluctuation), while the concentrations of CO 2 remained between 2.9 to 4.4 and 4.2 to 5.8 μg C mL -1 under conditions of ambient and elevated CO 2 concentration, respectively. The amount of CH 4 dissolved in soil solution under elevated CO 2 levels was significantly lower than under ambient CO 2 in the tillering stage, implying that the elevated CO 2 treatment accelerated CH 4 oxidation during the early stage of growth. However, during later stages of growth, production of CH 4 increased and the amount of CH 4 dissolved in soil solution under elevated CO 2 levels was, on average, greater than that under ambient CO 2 conditions. Significant correlation existed among the (delta) 13 C values of dissolved CH 4 , CO 2 , and DOC in floodwater (except for the samples taken immediately after pulse feeding with 13 C enriched CO 2 ), indicating that the origins and cycling of CH 4 , CO 2 and DOC were related. There were also significant correlations among the (delta) 13 C values of CH 4 , CO 2 and DOC in the soil solution. The turnover rate of CO 2 in soil solution was most rapid in the panicle formation stage of rice growth and that of CH 4 fastest in the grain filling stage. (Author)

  20. Response of Sphagnum mosses to increased CO2 concentration and nitrogen deposition

    International Nuclear Information System (INIS)

    Jauhiainen, J.

    1998-01-01

    The main objective of this work was to study the effects of different CO 2 concentration and N deposition rates on Sphagna adapted to grow along a nutrient availability gradient (i.e. ombrotrophy-mesotrophy-eutrophy). The study investigated: (i) the effects of various longterm CO 2 concentrations on the rate of net photosynthesis in Sphagna, (ii) the effects of the CO 2 and N treatments on the moss density, shoot dry masses, length increment and dry mass production in Sphagna, (iii) the concentrations of the major nutrients in Sphagna after prolonged exposure to the CO 2 and N treatments, and (iv) species dependent differences in potential NH 4 + and NO 3 - uptake rates. The internal nutrient concentration of the capitulum and the production of biomass were effected less by the elevated CO 2 concentrations because the availability of N was a controlling factor. In addition responses to the N treatments were related to ecological differences between the Sphagna species. Species with a high tolerance of N availability were able to acclimatise to the increased N deposition rates. The data suggests a high nutrient status is less significant than the adaptation of the Sphagna to their ecological niche (e.g. low tolerance of meso-eutrophic S. warnstorfii to high N deposition rate). At the highest N deposition rate the ombrotrophic S. fuscum had the highest increase in tissue N concentration among the Sphagna studied. S. fuscum almost died at the highest N deposition rate because of the damaging effects of N to the plant's metabolism. Ombrotrophic hummock species such as S. fuscum, were also found to have the highest potential N uptake rate (on density of dry mass basis) compared to lawn species. The rate of net photosynthesis was initially increased with elevated CO 2 concentrations, but photosynthesis was down regulated with prolonged exposure to CO 2 . The water use efficiency in Sphagna appeared not to be coupled with exposure to the long-term CO 2 concentration. The

  1. The optimal atmospheric CO2 concentration for the growth of winter wheat (Triticum aestivum).

    Science.gov (United States)

    Xu, Ming

    2015-07-20

    This study examined the optimal atmospheric CO2 concentration of the CO2 fertilization effect on the growth of winter wheat with growth chambers where the CO2 concentration was controlled at 400, 600, 800, 1000, and 1200 ppm respectively. I found that initial increase in atmospheric CO2 concentration dramatically enhanced winter wheat growth through the CO2 fertilization effect. However, this CO2 fertilization effect was substantially compromised with further increase in CO2 concentration, demonstrating an optimal CO2 concentration of 889.6, 909.4, and 894.2 ppm for aboveground, belowground, and total biomass, respectively, and 967.8 ppm for leaf photosynthesis. Also, high CO2 concentrations exceeding the optima not only reduced leaf stomatal density, length and conductance, but also changed the spatial distribution pattern of stomata on leaves. In addition, high CO2 concentration also decreased the maximum carboxylation rate (Vc(max)) and the maximum electron transport rate (J(max)) of leaf photosynthesis. However, the high CO2 concentration had little effect on leaf length and plant height. The optimal CO2 fertilization effect found in this study can be used as an indicator in selecting and breeding new wheat strains in adapting to future high atmospheric CO2 concentrations and climate change. Copyright © 2015. Published by Elsevier GmbH.

  2. Low concentration CO2 capture using physical adsorbents: Are Metal-Organic Frameworks becoming the new benchmark materials?

    KAUST Repository

    Belmabkhout, Youssef; Guillerm, Vincent; Eddaoudi, Mohamed

    2016-01-01

    The capture and separation of traces and concentrated CO2 from important commodities such as CH4, H2, O2 and N2, is becoming important in many areas related to energy security and environmental sustainability. While trace CO2 concentration removal applications have been modestly studied for decades, the spike in interest in the capture of concentrated CO2 was motivated by the need for new energy vectors to replace highly concentrated carbon fuels and the necessity to reduce emissions from fossil fuel-fired power plants. CO2 capture from various gas streams, at different concentrations, using physical adsorbents, such as activated carbon, zeolites, and metal-organic frameworks (MOFs), is attractive. However, the adsorbents must be designed with consideration of many parameters including CO2 affinity, kinetics, energetics, stability, capture mechanism, in addition to cost. Here, we perform a systematic analysis regarding the key technical parameters that are required for the best CO2 capture performance using physical adsorbents. We also experimentally demonstrate a suitable material model of Metal Organic Framework as advanced adsorbents with unprecedented properties for CO2 capture in a wide range of CO2 concentration. These recently developed class of MOF adsorbents represent a breakthrough finding in the removal of traces CO2 using physical adsorption. This platform shows colossal tuning potential for more efficient separation agents.

  3. Low concentration CO2 capture using physical adsorbents: Are Metal-Organic Frameworks becoming the new benchmark materials?

    KAUST Repository

    Belmabkhout, Youssef

    2016-03-30

    The capture and separation of traces and concentrated CO2 from important commodities such as CH4, H2, O2 and N2, is becoming important in many areas related to energy security and environmental sustainability. While trace CO2 concentration removal applications have been modestly studied for decades, the spike in interest in the capture of concentrated CO2 was motivated by the need for new energy vectors to replace highly concentrated carbon fuels and the necessity to reduce emissions from fossil fuel-fired power plants. CO2 capture from various gas streams, at different concentrations, using physical adsorbents, such as activated carbon, zeolites, and metal-organic frameworks (MOFs), is attractive. However, the adsorbents must be designed with consideration of many parameters including CO2 affinity, kinetics, energetics, stability, capture mechanism, in addition to cost. Here, we perform a systematic analysis regarding the key technical parameters that are required for the best CO2 capture performance using physical adsorbents. We also experimentally demonstrate a suitable material model of Metal Organic Framework as advanced adsorbents with unprecedented properties for CO2 capture in a wide range of CO2 concentration. These recently developed class of MOF adsorbents represent a breakthrough finding in the removal of traces CO2 using physical adsorption. This platform shows colossal tuning potential for more efficient separation agents.

  4. CO2 leakage monitoring and analysis to understand the variation of CO2 concentration in vadose zone by natural effects

    Science.gov (United States)

    Joun, Won-Tak; Ha, Seung-Wook; Kim, Hyun Jung; Ju, YeoJin; Lee, Sung-Sun; Lee, Kang-Kun

    2017-04-01

    Controlled ex-situ experiments and continuous CO2 monitoring in the field are significant implications for detecting and monitoring potential leakage from CO2 sequestration reservoir. However, it is difficult to understand the observed parameters because the natural disturbance will fluctuate the signal of detections in given local system. To identify the original source leaking from sequestration reservoir and to distinguish the camouflaged signal of CO2 concentration, the artificial leakage test was conducted in shallow groundwater environment and long-term monitoring have been performed. The monitoring system included several parameters such as pH, temperature, groundwater level, CO2 gas concentration, wind speed and direction, atmospheric pressure, borehole pressure, and rainfall event etc. Especially in this study, focused on understanding a relationship among the CO2 concentration, wind speed, rainfall and pressure difference. The results represent that changes of CO2 concentration in vadose zone could be influenced by physical parameters and this reason is helpful in identifying the camouflaged signal of CO2 concentrations. The 1-D column laboratory experiment also was conducted to understand the sparking-peak as shown in observed data plot. The results showed a similar peak plot and could consider two assumptions why the sparking-peak was shown. First, the trapped CO2 gas was escaped when the water table was changed. Second, the pressure equivalence between CO2 gas and water was broken when the water table was changed. These field data analysis and laboratory experiment need to advance due to comprehensively quantify local long-term dynamics of the artificial CO2 leaking aquifer. Acknowledgement Financial support was provided by the "R&D Project on Environmental Management of Geologic CO2 Storage" from the KEITI (Project Number: 2014001810003)

  5. Carbon Dioxide and Water Vapor Concentrations, Co-spectra and Fluxes from Latest Standardized Automated CO2/H2O Flux Systems versus Established Analyzer Models

    Science.gov (United States)

    Burba, G. G.; Kathilankal, J. C.; Begashaw, I.; Franzen, D.; Welles, J.; McDermitt, D. K.

    2017-12-01

    Spatial and temporal flux data coverage have improved significantly in recent years, due to standardization, automation and management of data collection, and better handling of the generated data. With more stations and networks, larger data streams from each station, and smaller operating budgets, modern tools are required to effectively and efficiently handle the entire process.These tools should produce standardized verifiable datasets, and provide a way to cross-share the standardized data with external collaborators to leverage available funding, and promote data analyses and publications. In 2015, new open-path and enclosed flux measurement systems1 were developed, based on established gas analyzer models2,3, with the goal of improving stability in the presence of contamination, refining temperature control and compensation, and providing more accurate gas concentration measurements. In 2017, the new open-path system was further refined to simplify hardware configuration, and to reduce power consumption and cost. Additionally, all new systems incorporate complete automated on-site flux calculations using EddyPro® Software4 run by a weatherized remotely-accessible microcomputer to provide standardized traceable data sets for fluxes and supporting variables. This presentation will describe details and results from the field tests of the new flux systems, in comparison to older models and reference instruments. References:1 Burba G., W. Miller, I. Begashaw, G. Fratini, F. Griessbaum, J. Kathilankal, L. Xu, D. Franz, E. Joseph, E. Larmanou, S. Miller, D. Papale, S. Sabbatini, T. Sachs, R. Sakai, D. McDermitt, 2017. Comparison of CO2 Concentrations, Co-spectra and Flux Measurements between Latest Standardized Automated CO2/H2O Flux Systems and Older Gas Analysers. 10th ICDC Conference, Switzerland: 21-25/08 2 Metzger, S., G. Burba, S. Burns, P. Blanken, J. Li, H. Luo, R. Zulueta, 2016. Optimization of an enclosed gas analyzer sampling system for measuring eddy

  6. Evasion of CO2 injected into the ocean in the context of CO2 stabilization

    International Nuclear Information System (INIS)

    Kheshgi, Haroon S.

    2004-01-01

    The eventual evasion of injected CO 2 to the atmosphere is one consideration when assessing deep-sea disposal of CO 2 as a potential response option to climate change concerns. Evasion estimated using an ocean carbon cycle model is compared to long-term trajectories for future CO 2 emissions, including illustrative cases leading to stabilization of CO 2 concentration at various levels. Modeled residence time for CO 2 injected into the deep ocean exceeds the 100-year time-scale usually considered in scenarios for future emissions, and the potential impacts of climate change. Illustrative cases leading monotonically to constant CO 2 concentration have been highlighted by the Intergovernmental Panel on Climate Change to give guidance on possible timing of emission reductions that may be required to stabilize greenhouse gas concentrations at various levels. For stabilization cases considered, significant modeled evasion does not occur until long after CO 2 emissions have reached a maximum and begun to decline. Illustrative cases can also lead to a maximum in CO 2 concentration followed by a decline to slowly decreasing concentrations. In such cases, future injection of emissions into the deep ocean leads to lower maximum CO 2 concentration, with less effect on concentration later on in time

  7. CO2 dispersion modelling over Paris region within the CO2-MEGAPARIS project

    Directory of Open Access Journals (Sweden)

    C. Lac

    2013-05-01

    sensitivity test without urban parameterisation removes the UHI and underpredicts nighttime BLH over urban and suburban sites, leading to large overestimation of nocturnal CO2 mixing ratio at the suburban sites (bias of +17 ppm. The agreement between observation and prediction for BLH and CO2 concentrations and urban–rural increments, both day and night, demonstrates the potential of using the urban mesoscale system in the context of inverse modelling

  8. Effects of long-term elevated atmospheric CO2 concentrations on Pinus ponderosa

    International Nuclear Information System (INIS)

    Surano, K.A.; Kercher, J.R.

    1993-01-01

    This report details the results from an experiment of the effects of long-term elevated atmospheric CO 2 concentrations on ponderosa pine (Pinus ponderosa Laws.) saplings and seedlings. The study began in 1983 as a pilot study designed to explore the feasibility of using open-top chambers for continuous multi-year exposures on sapling-sized trees and to examine possible CO 2 responses so that future research could be adequately designed. however, following the first year of exposure, preliminary results from the study indicated that measurements of CO 2 responses should be intensified. Open-top chambers proved suitable for use in multiyear exposures of mature trees. With respect to the preliminary examination of CO 2 responses, many interesting observations were made. The nature of the preliminary results suggests that future long-term field CO 2 exposures on perennial species may be critical to the understanding and preparation for future environments. Other research reported here attempted to adapt an existing western coniferous forest growth and succession model for use in elevated CO 2 scenarios using differential species responses, and assessed the usefulness of the model in that regard. Seven papers have been processed separately for inclusion in the appropriate data bases

  9. The effect of elevated CO{sub 2} concentration on photosynthesis of Sphagnum fuscum

    Energy Technology Data Exchange (ETDEWEB)

    Jauhiainen, J; Silvola, J [Joensuu Univ. (Finland). Dept. of Biology

    1997-12-31

    The objectives of the research were to measure photosynthesis of Sphagnum fuscum in long term exposure to four CO{sub 2} levels at semi-natural conditions, to find out if there is an acclimation of net photosynthesis into prevailing CO{sub 2} concentrations and to measure the moisture dependent net photosynthesis at various CO{sub 2} concentrations of samples grown at different CO{sub 2} concentrations

  10. The effect of elevated CO{sub 2} concentration on photosynthesis of Sphagnum fuscum

    Energy Technology Data Exchange (ETDEWEB)

    Jauhiainen, J.; Silvola, J. [Joensuu Univ. (Finland). Dept. of Biology

    1996-12-31

    The objectives of the research were to measure photosynthesis of Sphagnum fuscum in long term exposure to four CO{sub 2} levels at semi-natural conditions, to find out if there is an acclimation of net photosynthesis into prevailing CO{sub 2} concentrations and to measure the moisture dependent net photosynthesis at various CO{sub 2} concentrations of samples grown at different CO{sub 2} concentrations

  11. An approach for verifying biogenic greenhouse gas emissions inventories with atmospheric CO2 concentration data

    International Nuclear Information System (INIS)

    Ogle, Stephen M; Davis, Kenneth; Lauvaux, Thomas; Miles, Natasha L; Richardson, Scott; Schuh, Andrew; Cooley, Dan; Breidt, F Jay; West, Tristram O; Heath, Linda S; Smith, James E; McCarty, Jessica L; Gurney, Kevin R; Tans, Pieter; Denning, A Scott

    2015-01-01

    Verifying national greenhouse gas (GHG) emissions inventories is a critical step to ensure that reported emissions data to the United Nations Framework Convention on Climate Change (UNFCCC) are accurate and representative of a country’s contribution to GHG concentrations in the atmosphere. Furthermore, verifying biogenic fluxes provides a check on estimated emissions associated with managing lands for carbon sequestration and other activities, which often have large uncertainties. We report here on the challenges and results associated with a case study using atmospheric measurements of CO 2 concentrations and inverse modeling to verify nationally-reported biogenic CO 2 emissions. The biogenic CO 2 emissions inventory was compiled for the Mid-Continent region of United States based on methods and data used by the US government for reporting to the UNFCCC, along with additional sources and sinks to produce a full carbon balance. The biogenic emissions inventory produced an estimated flux of −408 ± 136 Tg CO 2 for the entire study region, which was not statistically different from the biogenic flux of −478 ± 146 Tg CO 2 that was estimated using the atmospheric CO 2 concentration data. At sub-regional scales, the spatial density of atmospheric observations did not appear sufficient to verify emissions in general. However, a difference between the inventory and inversion results was found in one isolated area of West-central Wisconsin. This part of the region is dominated by forestlands, suggesting that further investigation may be warranted into the forest C stock or harvested wood product data from this portion of the study area. The results suggest that observations of atmospheric CO 2 concentration data and inverse modeling could be used to verify biogenic emissions, and provide more confidence in biogenic GHG emissions reporting to the UNFCCC. (letter)

  12. Nutrient concentrations in a Littorella uniflora community at higher CO2 concentrations and reduced light intensities

    DEFF Research Database (Denmark)

    Andersen, T.; Pedersen, O.; Andersen, F. Ø.

    2005-01-01

    laboratory experiments with isoetid vegetation (Littorella uniflora) where water column CO2 and light could be manipulated in order to test whether (i) light and CO2 availability affect nutrient concentrations in isoetid vegetation, and (ii) if changes in light and CO2 climate affect fluxes of inorganic...... nitrogen (N) and phosphorus (P) from sediment to water column, which potentially could result in increased growth of epiphytic algae. 3. The results showed that the standing stocks of phosphorus and nitrogen in the L. uniflora vegetation were significantly influenced by CO2 concentration and light...... intensity. Both standing stocks of P and N were significantly higher in the mesocosm treatments with high CO2 concentration than in those at low CO2 concentration. Similarly, standing stocks of P and N enhanced with increasing light intensity. 4. Measurements of nutrient fluxes both in the field...

  13. Effects of export concentration on CO2 emissions in developed countries: an empirical analysis.

    Science.gov (United States)

    Apergis, Nicholas; Can, Muhlis; Gozgor, Giray; Lau, Chi Keung Marco

    2018-03-08

    This paper provides the evidence on the short- and the long-run effects of the export product concentration on the level of CO 2 emissions in 19 developed (high-income) economies, spanning the period 1962-2010. To this end, the paper makes use of the nonlinear panel unit root and cointegration tests with multiple endogenous structural breaks. It also considers the mean group estimations, the autoregressive distributed lag model, and the panel quantile regression estimations. The findings illustrate that the environmental Kuznets curve (EKC) hypothesis is valid in the panel dataset of 19 developed economies. In addition, it documents that a higher level of the product concentration of exports leads to lower CO 2 emissions. The results from the panel quantile regressions also indicate that the effect of the export product concentration upon the per capita CO 2 emissions is relatively high at the higher quantiles.

  14. Elevated temperature and CO2 concentration effects on xylem anatomy of Scots pine

    International Nuclear Information System (INIS)

    Kilpelainen, A.; Gerendiain, A.Z.; Luostarinen, K.; Peltola, H.; Kellomaki, S.

    2007-01-01

    The effects of carbon dioxide (CO 2 ) concentrations and elevated temperatures on the xylem anatomy of 20-year old Scots pine trees were investigated. The experiment was conducted in 16 chambers containing 4 trees each with a factorial combination of both ambient and elevated CO 2 concentrations and 2 different temperature regimes. CO 2 concentrations were doubled with a corresponding increase of between 2 and 6 degrees C according to each season over a period of 6 years. The study showed that elevated CO 2 concentrations increased the ring width in 4 of the 6 analyzed treatment years. Earlywood width increased during the first 2 years of the experiment, while latewood width increased during the third year of the study. The study also showed that the tracheid walls in both the latewood and earlywood samples were thicker when either temperature levels or CO 2 levels were increased. It was noted that combined CO 2 and temperature elevations resulted in thinner tracheid walls. However, latewood tracheid lumen diameters were larger in all CO 2 and temperature treatments than trees grown in ambient conditions. It was concluded that xylem anatomy was impacted more by increases in temperature than by elevated CO 2 concentrations. 48 refs., 2 tabs., 6 figs

  15. Diagnostic system for measuring temperature, pressure, CO.sub.2 concentration and H.sub.2O concentration in a fluid stream

    Science.gov (United States)

    Partridge, Jr., William P.; Jatana, Gurneesh Singh; Yoo, Ji Hyung; Parks, II, James E.

    2017-12-26

    A diagnostic system for measuring temperature, pressure, CO.sub.2 concentration and H.sub.2O concentration in a fluid stream is described. The system may include one or more probes that sample the fluid stream spatially, temporally and over ranges of pressure and temperature. Laser light sources are directed down pitch optical cables, through a lens and to a mirror, where the light sources are reflected back, through the lens to catch optical cables. The light travels through the catch optical cables to detectors, which provide electrical signals to a processer. The processer utilizes the signals to calculate CO.sub.2 concentration based on the temperatures derived from H.sub.2O vapor concentration. A probe for sampling CO.sub.2 and H.sub.2O vapor concentrations is also disclosed. Various mechanical features interact together to ensure the pitch and catch optical cables are properly aligned with the lens during assembly and use.

  16. RELATIONSHIP BETWEEN ATMOSPHERIC CO_2 AND CH_4 CONCENTRATIONS AT SYOWA STATION, ANTARCTICA

    OpenAIRE

    アオキ, シュウジ; ナカザワ, タカキヨ; ムラヤマ, ショウヘイ; シミズ, アキラ; ハヤシ, マサヒコ; イワイ, クニモト; Shuhji, AOKI; Takakiyo, NAKAZAWA; Shohei, MURAYAMA; Akira, SHIMIZU; Masahiko, HAYASHI; Kunimoto, IWAI

    1994-01-01

    Precise measurements of the atmospheric CO_2 and CH_4 concentrations have been continued at Syowa Station since 1984 and 1987,respectively. Measured concentrations show secular increase, together with seasonal cycle and irregular variations. Negative correlation is clearly seen between the secular trends of the CO_2 and CH_4 concentrations. The increase rates of CO_2 and CH_4 show oscillations with periods of 2.3 to 2.8 years. The phases of the average seasonal cycles of CO_2 and CH_4 coincid...

  17. Effect of Promoter Concentration on CO2 Separation Using K2CO3 With Reactive Absorption Method in Reactor Packed Column

    Directory of Open Access Journals (Sweden)

    Monde Junety

    2018-01-01

    Full Text Available The presence of carbon dioxide (CO2 in the gas is not expected because CO2 can reduce heating value and CO2 is the major emission contributor into the atmosphere. Various separation technologies can be used to reduce CO2 content and improve quality of gas. Chemical or reactive absorption is most widely used because it provides higher removal rate. This paper will study the effect of the addition di ethanolamine (DEA concentration into aqueous 30wt.% potassium carbonate(K2CO3 with reactive absorption method in a reactor packed column at temperature from 40°C to 80°C, DEA concentration range of (1% - 3% and absorbent flow rate (0.5, 0.75 and 1 L. min1. Contacting the gas and absorbent are countercurrent flow in packed column with 1.5 m high and 50 mm in diameter. The absorption column was randomly packed with a packing material raschig rings 5 mm in diameter. The CO2 loading in the liquid samples was determined by titration. It is found that the best result of CO2 loading is 0.065594 mole/mole K2CO3 and CO2 removal 28%. The result show that the loading capacity (mole CO2/mole K2CO3 and CO2 removal increased with the increase of DEA concentration.

  18. Seasonal dynamics of soil CO2 efflux and soil profile CO2 concentrations in arboretum of Moscow botanical garden

    Science.gov (United States)

    Goncharova, Olga; Udovenko, Maria; Matyshak, Georgy

    2016-04-01

    To analyse and predict recent and future climate change on a global scale exchange processes of greenhouse gases - primarily carbon dioxide - over various ecosystems are of rising interest. In order to upscale land-use dependent sources and sinks of CO2, knowledge of the local variability of carbon fluxes is needed. Among terrestrial ecosystems, urban areas play an important role because most of anthropogenic emissions of carbon dioxide originate from these areas. On the other hand, urban soils have the potential to store large amounts of soil organic carbon and, thus, contribute to mitigating increases in atmospheric CO2 concentrations. Research objectives: 1) estimate the seasonal dynamics of carbon dioxide production (emission - closed chamber technique and profile concentration - soil air sampling tubes method) by soils of Moscow State University Botanical Garden Arboretum planted with Picea obovata and Pinus sylvestris, 1) identification the factors that control CO2 production. The study was conducted with 1-2 weeks intervals between October 2013 and November 2015 at two sites. Carbon dioxide soil surface efflux during the year ranged from 0 to 800 mgCO2/(m2hr). Efflux values above 0 mgCO2/(m2hr) was observed during the all cold period except for only 3 weeks. Soil CO2 concentration ranged from 1600-3000 ppm in upper 10-cm layer to 10000-40000 ppm at a depth of 60 cm. The maximum concentrations of CO2 were recorded in late winter and late summer. We associate it with high biological activity (both heterotrophic and autotrophic) during the summer, and with physical gas jamming in the winter. The high value of annual CO2 production of the studied soils is caused by high organic matter content, slightly alkaline reaction, good structure and texture of urban soils. Differences in soil CO2 production by spruce and pine urban forest soils (in the pine forest 1.5-2.0 times higher) are caused by urban soil profiles construction, but not temperature regimes. Seasonal

  19. Transient modeling of electrochemically assisted CO2 capture and release

    DEFF Research Database (Denmark)

    Singh, Shobhana; Stechel, Ellen B.; Buttry, Daniel A.

    2017-01-01

    to analyze the time-dependent behavior of CO2 capture and electro-migration transport across the cell length. Given high nonlinearity of the system, we used a finite element method (FEM) to numerically solve the coupled mass transport equations. The model describes the concentration profiles by taking......The present work aims to develop a model of a new electrochemical CO2 separation and release technology. We present a one-dimensional transient model of an electrochemical cell for point source CO2 capture and release, which mainly focuses on the simultaneous mass transport and complex chemical...... reactions associated with the separation process. For concreteness, we use an ionic liquid (IL) with 2 M thiolate anion (RS−) in 1 M disulfide (RSSR) as an electrolyte in the electrochemical cell to capture, transport and release CO2 under standard operating conditions. We computationally solved the model...

  20. Global Monthly CO2 Flux Inversion Based on Results of Terrestrial Ecosystem Modeling

    Science.gov (United States)

    Deng, F.; Chen, J.; Peters, W.; Krol, M.

    2008-12-01

    Most of our understanding of the sources and sinks of atmospheric CO2 has come from inverse studies of atmospheric CO2 concentration measurements. However, the number of currently available observation stations and our ability to simulate the diurnal planetary boundary layer evolution over continental regions essentially limit the number of regions that can be reliably inverted globally, especially over continental areas. In order to overcome these restrictions, a nested inverse modeling system was developed based on the Bayesian principle for estimating carbon fluxes of 30 regions in North America and 20 regions for the rest of the globe. Inverse modeling was conducted in monthly steps using CO2 concentration measurements of 5 years (2000 - 2005) with the following two models: (a) An atmospheric transport model (TM5) is used to generate the transport matrix where the diurnal variation n of atmospheric CO2 concentration is considered to enhance the use of the afternoon-hour average CO2 concentration measurements over the continental sites. (b) A process-based terrestrial ecosystem model (BEPS) is used to produce hourly step carbon fluxes, which could minimize the limitation due to our inability to solve the inverse problem in a high resolution, as the background of our inversion. We will present our recent results achieved through a combination of the bottom-up modeling with BEPS and the top-down modeling based on TM5 driven by offline meteorological fields generated by the European Centre for Medium Range Weather Forecast (ECMFW).

  1. Response of Sphagnum mosses to increased CO{sub 2} concentration and nitrogen deposition

    Energy Technology Data Exchange (ETDEWEB)

    Jauhiainen, J.

    1998-12-31

    The main objective of this work was to study the effects of different CO{sub 2} concentration and N deposition rates on Sphagna adapted to grow along a nutrient availability gradient (i.e. ombrotrophy-mesotrophy-eutrophy). The study investigated: (i) the effects of various longterm CO{sub 2} concentrations on the rate of net photosynthesis in Sphagna, (ii) the effects of the CO{sub 2} and N treatments on the moss density, shoot dry masses, length increment and dry mass production in Sphagna, (iii) the concentrations of the major nutrients in Sphagna after prolonged exposure to the CO{sub 2} and N treatments, and (iv) species dependent differences in potential NH{sub 4}{sup +} and NO{sub 3}{sup -} uptake rates. The internal nutrient concentration of the capitulum and the production of biomass were effected less by the elevated CO{sub 2} concentrations because the availability of N was a controlling factor. In addition responses to the N treatments were related to ecological differences between the Sphagna species. Species with a high tolerance of N availability were able to acclimatise to the increased N deposition rates. The data suggests a high nutrient status is less significant than the adaptation of the Sphagna to their ecological niche (e.g. low tolerance of meso-eutrophic S. warnstorfii to high N deposition rate). At the highest N deposition rate the ombrotrophic S. fuscum had the highest increase in tissue N concentration among the Sphagna studied. S. fuscum almost died at the highest N deposition rate because of the damaging effects of N to the plant`s metabolism. Ombrotrophic hummock species such as S. fuscum, were also found to have the highest potential N uptake rate (on density of dry mass basis) compared to lawn species. The rate of net photosynthesis was initially increased with elevated CO{sub 2} concentrations, but photosynthesis was down regulated with prolonged exposure to CO{sub 2}. The water use efficiency in Sphagna appeared not to be coupled

  2. Stomatal response of Pinus sylvestriformis to elevated CO2 concentrations during the four years of exposure

    Institute of Scientific and Technical Information of China (English)

    ZHOU Yu-mei; HAN Shi-jie; LIU Ying; JIA Xia

    2005-01-01

    Four-year-old Pinus sylvestriformis were exposed for four growing seasons in open top chambers to ambient CO2 concentration (approx. 350 μmol·mol-1) and high CO2 concentrations (500 and 700 μmol·mol-1) at Research Station of Changbai Mountain Forest Ecosystems, Chinese Academy of Sciences at Antu Town, Jilin Province, China (42oN, 128oE). Stomatal response to elevated CO2 concentrations was examined by stomatal conductance (gs), ratio of intercellular to ambient CO2 concentration (ci/ca) and stomatal number. Reciprocal transfer experiments of stomatal conductance showed that stomatal conductance in high-[CO2]-grown plants increased in comparison with ambient-[CO2]-grown plants when measured at their respective growth CO2 concentration and at the same measurement CO2 concentration (except a reduction in 700 μmol·mol-1 CO2 grown plants compared with plants on unchambered field when measured at growth CO2 concentration and 350 μmol·mol-1CO2). High-[CO2]-grown plants exhibited lower ci/ca ratios than ambient-[CO2]-grown plants when measured at their respective growth CO2 concentration. However, ci/ca ratios increased for plants grown in high CO2 concentrations compared with control plants when measured at the same CO2 concentration. There was no significant difference in stomatal number per unit long needle between elevated and ambient CO2. However, elevated CO2 concentrations reduced the total stomatal number of whole needle by the decline of stomatal line and changed the allocation pattern of stomata between upper and lower surface of needle.

  3. Inferring CO2 Fluxes from OCO-2 for Assimilation into Land Surface Models to Calculate Net Ecosystem Exchange

    Science.gov (United States)

    Prouty, R.; Radov, A.; Halem, M.; Nearing, G. S.

    2016-12-01

    Investigations of mid to high latitude atmospheric CO2 show a growing seasonal amplitude. Land surface models poorly predict net ecosystem exchange (NEE) and are unable to substantiate these sporadic observations. An investigation of how the biosphere has reacted to changes in atmospheric CO2 is essential to our understanding of potential climate-vegetation feedbacks. A global, seasonal investigation of CO2-flux is then necessary in order to assimilate into land surface models for improving the prediction of annual NEE. The Atmospheric Radiation Measurement program (ARM) of DOE collects CO2-flux measurements (in addition to CO2 concentration and various other meteorological quantities) at several towers located around the globe at half hour temporal frequencies. CO2-fluxes are calculated via the eddy covariance technique, which utilizes CO2-densities and wind velocities to calculate CO2-fluxes. The global coverage of CO2 concentrations as provided by the Orbiting Carbon Observatory (OCO-2) provide satellite-derived CO2 concentrations all over the globe. A framework relating the satellite-inferred CO2 concentrations collocated with the ground-based ARM as well as Ameriflux stations would enable calculations of CO2-fluxes far from the station sites around the entire globe. Regression techniques utilizing deep-learning neural networks may provide such a framework. Additionally, meteorological reanalysis allows for the replacement of the ARM multivariable meteorological variables needed to infer the CO2-fluxes. We present the results of inferring CO2-fluxes from OCO-2 CO2 concentrations for a two year period, Sept. 2014- Sept. 2016 at the ARM station located near Oklahoma City. A feed-forward neural network (FFNN) is used to infer relationships between the following data sets: F([ARM CO2-density], [ARM Meteorological Data]) = [ARM CO2-Flux] F([OCO-2 CO2-density],[ARM Meteorological Data]) = [ARM CO2-Flux] F([ARM CO2-density],[Meteorological Reanalysis]) = [ARM CO2-Flux

  4. Evasion of CO{sub 2} injected into the ocean in the content of CO{sub 2} stabilization

    Energy Technology Data Exchange (ETDEWEB)

    Kheshgi, H.S. [ExxonMobil Research and Engineering Co., Annandale, NJ (United States)

    2004-08-01

    The eventual evasion of injected CO{sub 2} to the atmosphere is one consideration when assessing deep-sea disposal of CO{sub 2} as a potential response option to climate change concerns. Evasion estimated using an ocean carbon cycle model is compared to long-term trajectories for future CO{sub 2} emissions, including illustrative cases leading to stabilization of CO{sub 2} concentration at various levels. Modeled residence time for CO{sub 2} injected into the deep ocean exceeds the 100-year time-scale usually considered in scenarios for future emissions, and the potential impacts of climate change. Illustrative cases leading monotonically to constant CO{sub 2} concentration have been highlighted by the Intergovernmental Panel on Climate Change to give guidance on possible timing of emission reductions that may be required to stabilize greenhouse gas concentrations at various levels. For stabilization cases considered, significant modeled evasion does not occur until long after CO{sub 2} emissions have reached a maximum and begun to decline. Illustrative cases can also lead to a maximum in CO{sub 2} concentration followed by a decline to slowly decreasing concentrations. In such cases, future injection of emissions into the deep ocean leads to lower maximum CO{sub 2} concentration, with less effect on concentration later on in time. (author)

  5. Evasion of CO{sub 2} injected into the ocean in the context of CO{sub 2} stabilization

    Energy Technology Data Exchange (ETDEWEB)

    Kheshgi, Haroon S

    2004-08-01

    The eventual evasion of injected CO{sub 2} to the atmosphere is one consideration when assessing deep-sea disposal of CO{sub 2} as a potential response option to climate change concerns. Evasion estimated using an ocean carbon cycle model is compared to long-term trajectories for future CO{sub 2} emissions, including illustrative cases leading to stabilization of CO{sub 2} concentration at various levels. Modeled residence time for CO{sub 2} injected into the deep ocean exceeds the 100-year time-scale usually considered in scenarios for future emissions, and the potential impacts of climate change. Illustrative cases leading monotonically to constant CO{sub 2} concentration have been highlighted by the Intergovernmental Panel on Climate Change to give guidance on possible timing of emission reductions that may be required to stabilize greenhouse gas concentrations at various levels. For stabilization cases considered, significant modeled evasion does not occur until long after CO{sub 2} emissions have reached a maximum and begun to decline. Illustrative cases can also lead to a maximum in CO{sub 2} concentration followed by a decline to slowly decreasing concentrations. In such cases, future injection of emissions into the deep ocean leads to lower maximum CO{sub 2} concentration, with less effect on concentration later on in time.

  6. Associations between classroom CO2 concentrations and student attendance in Washington and Idaho.

    Science.gov (United States)

    Shendell, D G; Prill, R; Fisk, W J; Apte, M G; Blake, D; Faulkner, D

    2004-10-01

    Student attendance in American public schools is a critical factor in securing limited operational funding. Student and teacher attendance influence academic performance. Limited data exist on indoor air and environmental quality (IEQ) in schools, and how IEQ affects attendance, health, or performance. This study explored the association of student absence with measures of indoor minus outdoor carbon dioxide concentration (dCO(2)). Absence and dCO(2) data were collected from 409 traditional and 25 portable classrooms from 22 schools located in six school districts in the states of Washington and Idaho. Study classrooms had individual heating, ventilation, and air conditioning (HVAC) systems, except two classrooms without mechanical ventilation. Classroom attributes, student attendance and school-level ethnicity, gender, and socioeconomic status (SES) were included in multivariate modeling. Forty-five percent of classrooms studied had short-term indoor CO(2) concentrations above 1000 p.p.m. A 1000 p.p.m. increase in dCO(2) was associated (P student absence. Annual ADA was 2% higher (P student attendance, and occupant health and student performance, with longer term indoor minus outdoor CO(2) concentrations and more accurately measured ventilation rates. If our findings are confirmed, improving classroom ventilation should be considered a practical means of reducing student absence. Adequate or enhanced ventilation may be achieved, for example, with educational training programs for teachers and facilities staff on ventilation system operation and maintenance. Also, technological interventions such as improved automated control systems could provide continuous ventilation during occupied times, regardless of occupant thermal comfort demands.

  7. Relationship between carbon-14 concentrations in tree-ring cellulose and atmospheric CO2

    International Nuclear Information System (INIS)

    Yamada, Yoshimune; Yasuike, Kaeko; Komura, Kazuhisa

    2008-01-01

    Concentrations of organically-bound 14 C in the tree-ring cellulose of a Japanese Cedar (Cryptomeria japonica) grown in a rural region of Kanazawa, Ishikawa prefecture, Japan (36.5degN, 136.7degE), were measured for the ring-years from 1989 to 1998 to study relationship between 14 C concentrations in tree-ring cellulose and atmospheric CO 2 in a narrow region. An interesting result in comparing our data of tree-ring cellulose with those of atmospheric CO 2 is that the 14 C concentration in tree-ring cellulose was close to the corresponding average from mid-June to early September of 14 C concentrations in atmospheric CO 2 . Furthermore, the 14 C concentrations in tree-ring cellulose were found to be merely influenced by the drastic decrease of 14 C concentrations in atmospheric CO 2 in winter, which might be caused by air pollution from the Asian continent and additional local fossil fuel contribution. These results suggest that the 14 C concentration in tree-ring cellulose for a given growing year reflects the 14 C concentrations of atmospheric CO 2 during the warm summer months. (author)

  8. Effects of long-term elevated atmospheric CO{sub 2} concentrations on Pinus ponderosa

    Energy Technology Data Exchange (ETDEWEB)

    Surano, K.A.; Kercher, J.R. [eds.

    1993-10-01

    This report details the results from an experiment of the effects of long-term elevated atmospheric CO{sub 2} concentrations on ponderosa pine (Pinus ponderosa Laws.) saplings and seedlings. The study began in 1983 as a pilot study designed to explore the feasibility of using open-top chambers for continuous multi-year exposures on sapling-sized trees and to examine possible CO{sub 2} responses so that future research could be adequately designed. however, following the first year of exposure, preliminary results from the study indicated that measurements of CO{sub 2} responses should be intensified. Open-top chambers proved suitable for use in multiyear exposures of mature trees. With respect to the preliminary examination of CO{sub 2} responses, many interesting observations were made. The nature of the preliminary results suggests that future long-term field CO{sub 2} exposures on perennial species may be critical to the understanding and preparation for future environments. Other research reported here attempted to adapt an existing western coniferous forest growth and succession model for use in elevated CO{sub 2} scenarios using differential species responses, and assessed the usefulness of the model in that regard. Seven papers have been processed separately for inclusion in the appropriate data bases.

  9. 1.6 μm DIAL Measurement and Back Trajectory Analysis of CO2 Concentration Profiles in the Lower-Atmosphere

    Science.gov (United States)

    Shibata, Y.; Nagasawa, C.; Abo, M.

    2016-12-01

    Carbon dioxide (CO2) is the primary greenhouse gas emitted through human activities. In addition to the ground level CO2 network, vertical CO2 concentration profiles also play an important role for the estimation of the carbon budget and global warming in the inversion method. Especially, for the detailed analysis of forest carbon dynamics and CO2 fluxes of urban area, vertical CO2 concentration profiles with high spatial and temporal resolution in the lower atmosphere have been conducted by a differential absorption lidar (DIAL). We have observed several vertical profiles of CO2 concentrations for nighttime and daytime from 0.25 to 2.5 km altitude with range resolution of 300 m and integration time of 1 hour. In order to extract information on the origin of the CO2 masses, one day back trajectories were calculated by using a three dimensional (3-D) atmospheric transport model. In many cases, CO2 low concentration layers of over 1.5km altitude were flown by westerly winds from the forest. In another case, high concentration layers of CO2 were flown from the urban areas. As the spectra of absorption lines of any molecules are influenced basically by the temperature in the atmosphere, laser beams of three wavelengths around a CO2 absorption spectrum are transmitted alternately to the atmosphere for simultaneous measurements of CO2 concentration and temperature profiles. Moreover, a few processing algorithms of CO2-DIAL are also performed for improvement of measurement accuracy. For computation of trajectories and drawing their figures, the JRA-25 data provided by the cooperative research project for the JRA-25 long-term reanalysis of the Japan Meteorological Agency (JMA) and the Central Research Institute of Electric Power Industry (CRIEPI) and the NIPR trajectory model (Tomikawa and Sato, 2005; http://firp-nitram.nipr.ac.jp) were used. This work was financially supported by the System Development Program for Advanced Measurement and Analysis of the Japan Science and

  10. Carbon Balance at Landscape Level inferred fromTower CO2 Concentration Measurements

    Science.gov (United States)

    Chen, J. M.; Chen, B.; Higuchi, K.; Chan, D.; Shashkov, A.; Lin, H.; Liu, J.

    2003-04-01

    Terrestrial carbon sinks are considerable in the global carbon budget, but the accumulation of carbon in terrestrial ecosystems is very small (~0.2% per year) relative to the total carbon stocks in forests. Currently, eddy-covariance instruments mounted on towers are the only reliable means to measure carbon balance of a land surface, albeit limited to small areas and not free of caveats. In our quest of understanding the collective performance of ecosystems under the changing climate, it is highly desirable to have the ability to acquire carbon cycle information for large areas (landscape) consisting of patches of different ecosystems. For this purpose we explored methodologies of inferring carbon cycle information from tower CO2 concentration measurements affected by large areas (100-10000 km2). An ecosystem model named Boreal Ecosystem Productivity Simulator (BEPS) is coupled with a carbon-specific Vertical Diffusion Scheme (VDS) in order to decipher temporal variations in CO2 for landscape-level photosynthesis and respiration information. The coupled BEPS-VDS is applied to a unique 9-year (1990-2000 with 1997-8 missing data) 5-minute CO2 record measured on a 40-m tower over boreal forests near Fraserdale, Ontario, Canada. Over the period, the mean diurnal amplitude of the measured CO2 at 40 m increased by 5.58 ppmv, or 28% in the growing season. The increase in nighttime ecosystem respiration, causing the increase in the daily maximum CO2 concentration, was responsible for 65% of the increase in the diurnal amplitude, i.e., 3.61 ppmv, corresponding to an increase in the mean daily air temperature by about 2.77 degC and precipitation by 5% over the same period. The rest (35%) is explained by the increase in ecosystem daytime photosynthesis, causing the decrease in the daily minimum CO2 concentration. As the nighttime stable boundary layer (SBL) (270-560 m) was much shallower than the daytime convective boundary layer (CBL) (1000-1600 m), the increase in

  11. Arctic Ocean CO2 uptake: an improved multiyear estimate of the air-sea CO2 flux incorporating chlorophyll a concentrations

    Science.gov (United States)

    Yasunaka, Sayaka; Siswanto, Eko; Olsen, Are; Hoppema, Mario; Watanabe, Eiji; Fransson, Agneta; Chierici, Melissa; Murata, Akihiko; Lauvset, Siv K.; Wanninkhof, Rik; Takahashi, Taro; Kosugi, Naohiro; Omar, Abdirahman M.; van Heuven, Steven; Mathis, Jeremy T.

    2018-03-01

    We estimated monthly air-sea CO2 fluxes in the Arctic Ocean and its adjacent seas north of 60° N from 1997 to 2014. This was done by mapping partial pressure of CO2 in the surface water (pCO2w) using a self-organizing map (SOM) technique incorporating chlorophyll a concentration (Chl a), sea surface temperature, sea surface salinity, sea ice concentration, atmospheric CO2 mixing ratio, and geographical position. We applied new algorithms for extracting Chl a from satellite remote sensing reflectance with close examination of uncertainty of the obtained Chl a values. The overall relationship between pCO2w and Chl a was negative, whereas the relationship varied among seasons and regions. The addition of Chl a as a parameter in the SOM process enabled us to improve the estimate of pCO2w, particularly via better representation of its decline in spring, which resulted from biologically mediated pCO2w reduction. As a result of the inclusion of Chl a, the uncertainty in the CO2 flux estimate was reduced, with a net annual Arctic Ocean CO2 uptake of 180 ± 130 Tg C yr-1. Seasonal to interannual variation in the CO2 influx was also calculated.

  12. Atmospheric CO2 concentration effects on rice water use and biomass production.

    Directory of Open Access Journals (Sweden)

    Uttam Kumar

    Full Text Available Numerous studies have addressed effects of rising atmospheric CO2 concentration on rice biomass production and yield but effects on crop water use are less well understood. Irrigated rice evapotranspiration (ET is composed of floodwater evaporation and canopy transpiration. Crop coefficient Kc (ET over potential ET, or ETo is crop specific according to FAO, but may decrease as CO2 concentration rises. A sunlit growth chamber experiment was conducted in the Philippines, exposing 1.44-m2 canopies of IR72 rice to four constant CO2 levels (195, 390, 780 and 1560 ppmv. Crop geometry and management emulated field conditions. In two wet (WS and two dry (DS seasons, final aboveground dry weight (agdw was measured. At 390 ppmv [CO2] (current ambient level, agdw averaged 1744 g m-2, similar to field although solar radiation was only 61% of ambient. Reduction to 195 ppmv [CO2] reduced agdw to 56±5% (SE, increase to 780 ppmv increased agdw to 128±8%, and 1560 ppmv increased agdw to 142±5%. In 2013WS, crop ET was measured by weighing the water extracted daily from the chambers by the air conditioners controlling air humidity. Chamber ETo was calculated according to FAO and empirically corrected via observed pan evaporation in chamber vs. field. For 390 ppmv [CO2], Kc was about 1 during crop establishment but increased to about 3 at flowering. 195 ppmv CO2 reduced Kc, 780 ppmv increased it, but at 1560 ppmv it declined. Whole-season crop water use was 564 mm (195 ppmv, 719 mm (390 ppmv, 928 mm (780 ppmv and 803 mm (1560 ppmv. With increasing [CO2], crop water use efficiency (WUE gradually increased from 1.59 g kg-1 (195 ppmv to 2.88 g kg-1 (1560 ppmv. Transpiration efficiency (TE measured on flag leaves responded more strongly to [CO2] than WUE. Responses of some morphological traits are also reported. In conclusion, increased CO2 promotes biomass more than water use of irrigated rice, causing increased WUE, but it does not help saving water. Comparability

  13. A modeling analysis of the interaction between forest age and forest responsiveness to increasing CO2 concentration

    International Nuclear Information System (INIS)

    Kirschbaum, M.U.F.

    2005-01-01

    In this study, both young forest plants and established forest stands were examined to gain insight into likely plant responses to increases in carbon dioxide (CO 2 ), temperature and altered rainfall patterns. Forests have rotations of about 10 to 200 years, during which time anthropogenic increases in atmospheric CO 2 concentrations and the associated changes in climate change can be substantial. The changes are most likely to influence the growth of established forest stands. The CenW forest growth model was used to examine the mechanisms that are responsible for the slowing of forest growth with age, including the response to increasing carbon dioxide. It was shown that inclusion of allocation shifts with tree height, individual tree mortality, changing respiration load and nutrient changes has only a small effect on the response to increasing carbon dioxide. When photosynthesis of mature trees decreases, growth response to increasing CO 2 is reduced. Since the number of interacting processes is so large, no simple and broad interaction between increased carbon dioxide and forest age were identified. It was concluded that it is not yet possible to predict the change in carbon dioxide response by forest age. 54 refs., 1 tab., 7 figs

  14. Evasion of CO{sub 2} injected into the ocean in the context of CO{sub 2} stabilization

    Energy Technology Data Exchange (ETDEWEB)

    Haroon S. Kheshgi [ExxonMobil Research and Engineering Company, Annandale, NJ (United States)

    2003-07-01

    The eventual evasion of injected CO{sub 2} to the atmosphere is one consideration when assessing deep sea disposal of CO{sub 2} as a potential response option to climate change concerns. Evasion estimated using an ocean carbon cycle model is compared to long-term trajectories for future CO{sub 2} emissions, including illustrative cases leading to stabilization of CO{sub 2} concentration at various levels. Modeled residence time for CO{sub 2} injected into the deep ocean exceeds the 100-year time scale usually considered in scenarios for future emissions, and the potential impacts of climate change. Illustrative cases leading monotonically to constant CO{sub 2} concentration have been highlighted by the Intergovernmental Panel on Climate Change to give guidance on possible timing of emission reductions that may be required to stabilize greenhouse gas concentrations at various levels. For stabilization cases considered, significant modeled evasion does not occur until long after CO{sub 2} emissions have reached a maximum and begun to decline. Illustrative cases can also lead to a maximum in CO{sub 2} concentration followed by a decline to slowly decreasing concentrations. In such cases, future injection of emissions into the deep ocean leads to lower maximum CO{sub 2} concentration, with less effect on concentration later on in time. 20 refs., 4 figs.

  15. Elevated temperature and CO{sub 2} concentration effects on xylem anatomy of Scots pine

    Energy Technology Data Exchange (ETDEWEB)

    Kilpelainen, A.; Gerendiain, A.Z.; Luostarinen, K.; Peltola, H.; Kellomaki, S. [Joensuu Univ., Joensuu (Finland). Faculty of Forestry

    2007-09-15

    The effects of carbon dioxide (CO{sub 2}) concentrations and elevated temperatures on the xylem anatomy of 20-year old Scots pine trees were investigated. The experiment was conducted in 16 chambers containing 4 trees each with a factorial combination of both ambient and elevated CO{sub 2} concentrations and 2 different temperature regimes. CO{sub 2} concentrations were doubled with a corresponding increase of between 2 and 6 degrees C according to each season over a period of 6 years. The study showed that elevated CO{sub 2} concentrations increased the ring width in 4 of the 6 analyzed treatment years. Earlywood width increased during the first 2 years of the experiment, while latewood width increased during the third year of the study. The study also showed that the tracheid walls in both the latewood and earlywood samples were thicker when either temperature levels or CO{sub 2} levels were increased. It was noted that combined CO{sub 2} and temperature elevations resulted in thinner tracheid walls. However, latewood tracheid lumen diameters were larger in all CO{sub 2} and temperature treatments than trees grown in ambient conditions. It was concluded that xylem anatomy was impacted more by increases in temperature than by elevated CO{sub 2} concentrations. 48 refs., 2 tabs., 6 figs.

  16. Equilibrium solubility of CO{sub 2} in aqueous solutions of 1-amino-2-propanol as function of concentration, temperature, and pressure

    Energy Technology Data Exchange (ETDEWEB)

    Rebolledo-Morales, Miguel Angel; Rebolledo-Libreros, Maria Esther [Instituto Mexicano del Petroleo, Direccion de Investigacion y Posgrado, Programa de Ingenieria Molecular, Area de Investigacion de Termofisica, Eje Central Lazaro Cardenas Norte 152, 07730 Mexico, D.F. (Mexico); Trejo, Arturo, E-mail: atrejo@imp.m [Instituto Mexicano del Petroleo, Direccion de Investigacion y Posgrado, Programa de Ingenieria Molecular, Area de Investigacion de Termofisica, Eje Central Lazaro Cardenas Norte 152, 07730 Mexico, D.F. (Mexico)

    2011-05-15

    Research highlights: Gas solubility of CO{sub 2} in aqueous solutions of 1-amino-2-propanol was measured. Solubility increases as pressure and concentration of 1-amino-2-propanol increase. The Kent-Eisenberg model was used to correlate all the experimental results. Aqueous solutions of MIPA are an excellent alternative to use in gas purification. - Abstract: Using a dynamic method with recirculation of the vapour phase, experimental values for the gas solubility of carbon dioxide in aqueous solutions of 1-amino-2-propanol (MIPA) were measured at T = (313.15 and 393.15) K, over the pressure range of (0.2 to 2436.4) kPa. The concentrations of the studied aqueous MIPA solutions were (0.20, 0.30, 0.40, and 0.50) mass fraction. The results of gas solubility are given as the partial pressure of CO{sub 2}, p{sub CO{sub 2}}, against its mole ratio, {alpha}{sub CO{sub 2}} (mol CO{sub 2} {center_dot} mol{sup -1} MIPA), and its mole fraction, x{sub CO{sub 2}}. It is observed that the solubility of CO{sub 2} increases as the concentration of MIPA in solution increases, at a given temperature throughout the pressure range considered; also the solubility values increase, under constant temperature, as the pressure increases in the studied concentration range of MIPA. The physicochemical model of Kent and Eisenberg was used to correlate simultaneously all the experimental results of the solubility of CO{sub 2} in the studied aqueous solutions of MIPA. The model correlates satisfactorily the experimental results. The deviation for pressure was 96.9 kPa using 62 experimental solubility points. The solubility results of carbon dioxide presented in this work are compared with those reported in the literature for aqueous solutions of monoethanolamine (MEA), diethanolamine (DEA), diisopropanolamine (DIPA), and N-methyldiethanolamine (MDEA) and it is possible to conclude that the aqueous solutions of MIPA are an excellent alternative to use in gas purification processes, since the

  17. Future concentrations of atmospheric greenhouse gases CO2, CFC and CH4 - an assessment on the educational level

    International Nuclear Information System (INIS)

    Hoppenau, S.

    1992-01-01

    A model on the educational level is described to estimate effective future atmospheric CO 2 concentrations. The effects of chlorofluorocarbon and methane emission and deforestation are taken into account. The influence of different emission scenarios on the time evolution of greenhouse-gas concentration are illustrated. Future global energy policies are discussed both under the aspects of rising world population and the reduction in global CO 2 emissions. The model can be handled on a PC or even on a pocket calculator

  18. Evaluation of Deep Learning Models for Predicting CO2 Flux

    Science.gov (United States)

    Halem, M.; Nguyen, P.; Frankel, D.

    2017-12-01

    Artificial neural networks have been employed to calculate surface flux measurements from station data because they are able to fit highly nonlinear relations between input and output variables without knowing the detail relationships between the variables. However, the accuracy in performing neural net estimates of CO2 flux from observations of CO2 and other atmospheric variables is influenced by the architecture of the neural model, the availability, and complexity of interactions between physical variables such as wind, temperature, and indirect variables like latent heat, and sensible heat, etc. We evaluate two deep learning models, feed forward and recurrent neural network models to learn how they each respond to the physical measurements, time dependency of the measurements of CO2 concentration, humidity, pressure, temperature, wind speed etc. for predicting the CO2 flux. In this paper, we focus on a) building neural network models for estimating CO2 flux based on DOE data from tower Atmospheric Radiation Measurement data; b) evaluating the impact of choosing the surface variables and model hyper-parameters on the accuracy and predictions of surface flux; c) assessing the applicability of the neural network models on estimate CO2 flux by using OCO-2 satellite data; d) studying the efficiency of using GPU-acceleration for neural network performance using IBM Power AI deep learning software and packages on IBM Minsky system.

  19. Thermodynamic modeling of neptunium(V) solubility in concentrated Na-CO3-HCO3-Cl-ClO4-H-OH-H2O systems

    International Nuclear Information System (INIS)

    Novak, C.F.; Roberts, K.E.

    1994-01-01

    Safety assessments of nuclear waste repositories often require estimation of actinide solubilities as a function of groundwater composition. Although considerable amount of research has been done on the solubility and speciation of actinides, relatively little has been done to unify these data into a model applicable to concentrate brines. Numerous authors report data on the aqueous chemical properties of Np(V) in NaClO 4 , Na 2 CO 3 , and NaCl media, but a consistent thermodynamic model for predicting these properties is not available. To meet this need, a model was developed to describe the solubility of Np(V) in Na-Cl-ClO 4 -CO 3 aqueous systems, based on the Pitzer activity coefficient formalism for concentrated electrolytes. Hydrolysis and/or carbonate complexation are the dominant aqueous reactions with neptunyl in these systems. Literature data for neptunyl extraction and solubility, and solubility data that the authors developed, are used to parameterize an integrated model for Np(V) solubility in the Np(V)-Na-CO 3 -HCO 3 -Cl-ClO 4 -H-OH-H 2 O system. The resulting model is tested against additional solubility data, and compared with Np(V) solubility experiments in complex synthetic brines

  20. Modelling plant responses to elevated CO2: how important is leaf area index?

    NARCIS (Netherlands)

    Ewert, F.

    2004-01-01

    Background and Aims The problem of increasing CO2 concentration [CO2] and associated climate change has [CO2] on plants. While variation in growth and productivity is generated much interest in modelling effects of closely related to the amount of intercepted radiation, largely determined by leaf

  1. Deep Sea Memory of High Atmospheric CO2 Concentration

    Science.gov (United States)

    Mathesius, Sabine; Hofmann, Matthias; Caldeira, Ken; Schellnhuber, Hans Joachim

    2015-04-01

    Carbon dioxide removal (CDR) from the atmosphere has been proposed as a powerful measure to mitigate global warming and ocean acidification. Planetary-scale interventions of that kind are often portrayed as "last-resort strategies", which need to weigh in if humankind keeps on enhancing the climate-system stock of CO2. Yet even if CDR could restore atmospheric CO2 to substantially lower concentrations, would it really qualify to undo the critical impacts of past emissions? In the study presented here, we employed an Earth System Model of Intermediate Complexity (EMIC) to investigate how CDR might erase the emissions legacy in the marine environment, focusing on pH, temperature and dissolved oxygen. Against a background of a world following the RCP8.5 emissions path ("business-as-usual") for centuries, we simulated the effects of two massive CDR interventions with CO2 extraction rates of 5 GtC yr-1 and 25 GtC yr-1, respectively, starting in 2250. We found that the 5 GtC yr-1 scheme would have only minor ameliorative influence on the oceans, even after several centuries of application. By way of contrast, the extreme 25 GtC yr-1 scheme eventually leads to tangible improvements. However, even with such an aggressive measure, past CO2 emissions leave a substantial legacy in the marine environment within the simulated period (i.e., until 2700). In summary, our study demonstrates that anthropogenic alterations of the oceans, caused by continued business-as-usual emissions, may not be reversed on a multi-centennial time scale by the most aspirational geoengineering measures. We also found that a transition from the RCP8.5 state to the state of a strong mitigation scenario (RCP2.6) is not possible, even under the assumption of extreme extraction rates (25 GtC yr-1). This is explicitly demonstrated by simulating additional scenarios, starting CDR already in 2150 and operating until the atmospheric CO2 concentration reaches 280 ppm and 180 ppm, respectively. The simulated

  2. Modeling char conversion under suspension fired conditions in O2/N2 and O2/CO2 atmospheres

    DEFF Research Database (Denmark)

    Brix, Jacob; Jensen, Peter Arendt; Jensen, Anker Degn

    2011-01-01

    The aim of this investigation has been to model combustion under suspension fired conditions in O2/N2 and O2/CO2 mixtures. Experiments used for model validation have been carried out in an electrically heated Entrained Flow Reactor (EFR) at temperatures between 1173 K and 1673 K with inlet O2...... concentrations between 5 and 28 vol.%. The COal COmbustion MOdel, COCOMO, includes the three char morphologies: cenospheric char, network char and dense char each divided between six discrete particle sizes. Both combustion and gasification with CO2 are accounted for and reaction rates include thermal char...

  3. Response of archaeal communities in the rhizosphere of maize and soybean to elevated atmospheric CO2 concentrations.

    Directory of Open Access Journals (Sweden)

    David M Nelson

    Full Text Available BACKGROUND: Archaea are important to the carbon and nitrogen cycles, but it remains uncertain how rising atmospheric carbon dioxide concentrations ([CO(2] will influence the structure and function of soil archaeal communities. METHODOLOGY/PRINCIPAL FINDINGS: We measured abundances of archaeal and bacterial 16S rRNA and amoA genes, phylogenies of archaeal 16S rRNA and amoA genes, concentrations of KCl-extractable soil ammonium and nitrite, and potential ammonia oxidation rates in rhizosphere soil samples from maize and soybean exposed to ambient (∼385 ppm and elevated (550 ppm [CO(2] in a replicated and field-based study. There was no influence of elevated [CO(2] on copy numbers of archaeal or bacterial 16S rRNA or amoA genes, archaeal community composition, KCl-extractable soil ammonium or nitrite, or potential ammonia oxidation rates for samples from maize, a model C(4 plant. Phylogenetic evidence indicated decreased relative abundance of crenarchaeal sequences in the rhizosphere of soybean, a model leguminous-C(3 plant, at elevated [CO(2], whereas quantitative PCR data indicated no changes in the absolute abundance of archaea. There were no changes in potential ammonia oxidation rates at elevated [CO(2] for soybean. Ammonia oxidation rates were lower in the rhizosphere of maize than soybean, likely because of lower soil pH and/or abundance of archaea. KCl-extractable ammonium and nitrite concentrations were lower at elevated than ambient [CO(2] for soybean. CONCLUSION: Plant-driven shifts in soil biogeochemical processes in response to elevated [CO(2] affected archaeal community composition, but not copy numbers of archaeal genes, in the rhizosphere of soybean. The lack of a treatment effect for maize is consistent with the fact that the photosynthesis and productivity of maize are not stimulated by elevated [CO(2] in the absence of drought.

  4. Measurements and modeling of CO2 concentration and isotopes to improve process-level understanding of Arctic and boreal carbon cycling. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Keeling, Ralph F. [Univ. of California, San Diego, CA (United States). Scripps Inst. of Oceanography

    2017-09-29

    The major goal of this project was to improve understanding of processes that control the exchanges of CO2 between the atmosphere and the land biosphere on decadal and longer time scales. The approach involves measuring the changes in atmospheric CO2 concentration and the isotopes of CO2 (13C/12C and 18O/16O) at background stations and uses these and other datasets to challenge and improve numerical models of the earth system. The project particularly emphasized the use of these data to improve understanding of changes occurring in boreal and arctic ecosystems over the past 50 years and to seek from these data improved understanding of large-scale processes impacting carbon cycling, such as the responses to warming, CO2 fertilization, and disturbance. The project also led to advances in the understanding of changes in water-use efficiency of land ecosystems globally based on trends in 13C/12C. The core element of this project was providing partial support for continuing measurements of CO2 concentrations and isotopes from the Scripps CO2 program, initiated by C. D. Keeling in the 1960s. The measurements included analysis of flasks collected at an array of ten stations distributed from the Arctic to the Antarctic. The project also supported modeling studies and interpretive work to help understand the origins of the large ~50% increase in the amplitude of the atmospheric CO2 cycle detected at high northern latitudes between 1960 and present and to understand the long-term trend in carbon 13C/12C of CO2. The seasonal cycle work was advanced through collaborations with colleagues at MPI Jena and Imperial College

  5. Contribution of Co2+ in increasing chlorophyll a concentration of Nannochloropsis salina in controlled Conwy medium

    Science.gov (United States)

    Hala, Y.; Taba, P.; Suryati, E.; Kasih, P.; Firman, N. F.

    2018-03-01

    A research in determining the contribution of Co2+ on the increase of chlorophyll a concentration of Nannochloropsis salina has been caried out. The cultivation of N. salina was conducted in the Conwy medium with a salinity of 5%o and 25%o and various Co2+ concentration (2, 4, and 8 ppm). In this research, Co2+ was exposed early in the cultivation of N. salina. The growth of N. salina was observed daily by counting the number of populations using a haemocytometer while the chlorophyll a concentration was determined by a Uv-Vis spectrophotometer. The results showed that the growth of N. salina in the control was higher than that in the medium containing Co2+. The optimum growth time was achieved on 15th days (5%) and 8th days (25%). In the cultivation medium with a salinity of 5%, Co2+ with a concentration of 2 ppm increased the chlorophyll a level while Co2+ with concentrations of 4 and 8 ppm decreased it. In the medium of cultivation with a salinity of 25%, the increase in chlorophyll a level was observed at Co2+ concentrations of 2 and 4 ppm whereas the decrease in chlorophyl a level was given at a concentration of 8 ppm. It can be concluded that at low concentrations, Co2+ increased the concentration of chlorophyll a in N. salina.

  6. Airborne Measurements of CO2 Column Concentration and Range Using a Pulsed Direct-Detection IPDA Lidar

    Science.gov (United States)

    Abshire, James B.; Ramanathan, Anand; Riris, Haris; Mao, Jianping; Allan, Graham R.; Hasselbrack, William E.; Weaver, Clark J.; Browell, Edward V.

    2013-01-01

    We have previously demonstrated a pulsed direct detection IPDA lidar to measure range and the column concentration of atmospheric CO2. The lidar measures the atmospheric backscatter profiles and samples the shape of the 1,572.33 nm CO2 absorption line. We participated in the ASCENDS science flights on the NASA DC-8 aircraft during August 2011 and report here lidar measurements made on four flights over a variety of surface and cloud conditions near the US. These included over a stratus cloud deck over the Pacific Ocean, to a dry lake bed surrounded by mountains in Nevada, to a desert area with a coal-fired power plant, and from the Rocky Mountains to Iowa, with segments with both cumulus and cirrus clouds. Most flights were to altitudes >12 km and had 5-6 altitude steps. Analyses show the retrievals of lidar range, CO2 column absorption, and CO2 mixing ratio worked well when measuring over topography with rapidly changing height and reflectivity, through thin clouds, between cumulus clouds, and to stratus cloud tops. The retrievals shows the decrease in column CO2 due to growing vegetation when flying over Iowa cropland as well as a sudden increase in CO2 concentration near a coal-fired power plant. For regions where the CO2 concentration was relatively constant, the measured CO2 absorption lineshape (averaged for 50 s) matched the predicted shapes to better than 1% RMS error. For 10 s averaging, the scatter in the retrievals was typically 2-3 ppm and was limited by the received signal photon count. Retrievals were made using atmospheric parameters from both an atmospheric model and from in situ temperature and pressure from the aircraft. The retrievals had no free parameters and did not use empirical adjustments, and >70% of the measurements passed screening and were used in analysis. The differences between the lidar-measured retrievals and in situ measured average CO2 column concentrations were 6 km.

  7. Fluidized bed combustion of single coal char particles at high CO{sub 2} concentration

    Energy Technology Data Exchange (ETDEWEB)

    Scala, F.; Chirone, R. [CNR, Naples (Italy)

    2010-12-15

    Combustion of single coal char particles was studied at 850{sup o}C in a lab-scale fluidized bed at high CO{sub 2} concentration, typical of oxyfiring conditions. The burning rate of the particles was followed as a function of time by continuously measuring the outlet CO and O{sub 2} concentrations. Some preliminary evaluations on the significance of homogeneous CO oxidation in the reactor and of carbon gasification by CO{sub 2} in the char were also carried out. Results showed that the carbon burning rate increases with oxygen concentration and char particle size. The particle temperature is approximately equal to that of the bed up to an oxygen concentration of 2%, but it is considerably higher for larger oxygen concentrations. Both CO{sub 2} gasification of char and homogeneous CO oxidation are not negligible. The gasification reaction rate is slow and it is likely to be controlled by intrinsic kinetics. During purely gasification conditions the extent of carbon loss due to particle attrition by abrasion (estimated from the carbon mass balance) appears to be much more important than under combustion conditions.

  8. Water Resources Response to Changes in Temperature, Rainfall and CO2 Concentration: A First Approach in NW Spain

    Directory of Open Access Journals (Sweden)

    Ricardo Arias

    2014-10-01

    Full Text Available Assessment of the diverse responses of water resources to climate change and high concentrations of CO2 is crucial for the appropriate management of natural ecosystems. Despite numerous studies on the impact of climate change on different regions, it is still necessary to evaluate the impact of these changes at the local scale. In this study, the Soil and Water Assessment Tool (SWAT model was used to evaluate the potential impact of changes in temperature, rainfall and CO2 concentration on water resources in a rural catchment in NW Spain for the periods 2031–2060 and 2069–2098, using 1981–2010 as a reference period. For the simulations we used compiled regional climate models of the ENSEMBLES project for future climate input data and two CO2 concentration scenarios (550 and 660 ppm. The results showed that changes in the concentration of CO2 and climate had a significant effect on water resources. Overall, the results suggest a decrease in streamflow of 16% for the period 2031–2060 (intermediate future and 35% by the end of the 21st century as a consequence of decreasing rainfall (2031–2060: −6%; 2069–2098: −15% and increasing temperature (2031–2060: 1.1 °C; 2069–2098: 2.2 °C.

  9. Growth under elevated atmospheric CO(2) concentration accelerates leaf senescence in sunflower (Helianthus annuus L.) plants.

    Science.gov (United States)

    de la Mata, Lourdes; Cabello, Purificación; de la Haba, Purificación; Agüera, Eloísa

    2012-09-15

    Some morphogenetic and metabolic processes were sensitive to a high atmospheric CO(2) concentration during sunflower primary leaf ontogeny. Young leaves of sunflower plants growing under elevated CO(2) concentration exhibited increased growth, as reflected by the high specific leaf mass referred to as dry weight in young leaves (16 days). The content of photosynthetic pigments decreased with leaf development, especially in plants grown under elevated CO(2) concentrations, suggesting that high CO(2) accelerates chlorophyll degradation, and also possibly leaf senescence. Elevated CO(2) concentration increased the oxidative stress in sunflower plants by increasing H(2)O(2) levels and decreasing activity of antioxidant enzymes such as catalase and ascorbate peroxidase. The loss of plant defenses probably increases the concentration of reactive oxygen species in the chloroplast, decreasing the photosynthetic pigment content as a result. Elevated CO(2) concentration was found to boost photosynthetic CO(2) fixation, especially in young leaves. High CO(2) also increased the starch and soluble sugar contents (glucose and fructose) and the C/N ratio during sunflower primary leaf development. At the beginning of senescence, we observed a strong increase in the hexoses to sucrose ratio that was especially marked at high CO(2) concentration. These results indicate that elevated CO(2) concentration could promote leaf senescence in sunflower plants by affecting the soluble sugar levels, the C/N ratio and the oxidative status during leaf ontogeny. It is likely that systemic signals produced in plants grown with elevated CO(2), lead to early senescence and a higher oxidation state of the cells of these plant leaves. Copyright © 2012 Elsevier GmbH. All rights reserved.

  10. Modeling and optimization of a concentrated solar supercritical CO2 power plant

    Science.gov (United States)

    Osorio, Julian D.

    Renewable energy sources are fundamental alternatives to supply the rising energy demand in the world and to reduce or replace fossil fuel technologies. In order to make renewable-based technologies suitable for commercial and industrial applications, two main challenges need to be solved: the design and manufacture of highly efficient devices and reliable systems to operate under intermittent energy supply conditions. In particular, power generation technologies based on solar energy are one of the most promising alternatives to supply the world energy demand and reduce the dependence on fossil fuel technologies. In this dissertation, the dynamic behavior of a Concentrated Solar Power (CSP) supercritical CO2 cycle is studied under different seasonal conditions. The system analyzed is composed of a central receiver, hot and cold thermal energy storage units, a heat exchanger, a recuperator, and multi-stage compression-expansion subsystems with intercoolers and reheaters between compressors and turbines respectively. The effects of operating and design parameters on the system performance are analyzed. Some of these parameters are the mass flow rate, intermediate pressures, number of compression-expansion stages, heat exchangers' effectiveness, multi-tank thermal energy storage, overall heat transfer coefficient between the solar receiver and the environment and the effective area of the recuperator. Energy and exergy models for each component of the system are developed to optimize operating parameters in order to lead to maximum efficiency. From the exergy analysis, the components with high contribution to exergy destruction were identified. These components, which represent an important potential of improvement, are the recuperator, the hot thermal energy storage tank and the solar receiver. Two complementary alternatives to improve the efficiency of concentrated solar thermal systems are proposed in this dissertation: the optimization of the system's operating

  11. Dynamics of dimethylsulphoniopropionate and dimethylsulphide under different CO2 concentrations during a mesocosm experiment

    Directory of Open Access Journals (Sweden)

    C. LeQuéré

    2008-03-01

    Full Text Available The potential impact of seawater acidification on the concentrations of dimethylsulfide (DMS and dimethylsulfoniopropionate (DMSP, and the activity of the enzyme DMSP-lyase was investigated during a pelagic ecosystem CO2 enrichment experiment (PeECE III in spring 2005. Natural phytoplankton blooms were studied for 24 days under present, double and triple partial pressures of CO2 (pCO2; pH=8.3, 8.0, 7.8 in triplicate 25 m3 enclosures. The results indicate similar DMSP concentrations and DMSP-lyase activity (DLA patterns for all treatments. Hence, DMSP and DLA do not seem to have been affected by the CO2 treatment. In contrast, DMS concentrations showed small but statistically significant differences in the temporal development of the low versus the high CO2 treatments. The low pCO2 enclosures had higher DMS concentrations during the first 10 days, after which the levels decreased earlier and more rapidly than in the other treatments. Integrated over the whole study period, DMS concentrations were not significantly different from those of the double and triple pCO2 treatments. Pigment and flow-cytometric data indicate that phytoplanktonic populations were generally similar between the treatments, suggesting a certain resilience of the marine ecosystem under study to the induced pH changes, which is reflected in DMSP and DLA. However, there were significant differences in bacterial community structure and the abundance of one group of viruses infecting nanoeukaryotic algae. The amount of DMS accumulated per total DMSP or chlorophyll-a differed significantly between the present and future scenarios, suggesting that the pathways for DMS production or bacterial DMS consumption were affected by seawater pH. A comparison with previous work (PeECE II suggests that DMS concentrations do not respond consistently to pelagic ecosystem CO2 enrichment experiments.

  12. Los Angeles megacity: a high-resolution land–atmosphere modelling system for urban CO2 emissions

    Directory of Open Access Journals (Sweden)

    S. Feng

    2016-07-01

    Full Text Available Megacities are major sources of anthropogenic fossil fuel CO2 (FFCO2 emissions. The spatial extents of these large urban systems cover areas of 10 000 km2 or more with complex topography and changing landscapes. We present a high-resolution land–atmosphere modelling system for urban CO2 emissions over the Los Angeles (LA megacity area. The Weather Research and Forecasting (WRF-Chem model was coupled to a very high-resolution FFCO2 emission product, Hestia-LA, to simulate atmospheric CO2 concentrations across the LA megacity at spatial resolutions as fine as  ∼  1 km. We evaluated multiple WRF configurations, selecting one that minimized errors in wind speed, wind direction, and boundary layer height as evaluated by its performance against meteorological data collected during the CalNex-LA campaign (May–June 2010. Our results show no significant difference between moderate-resolution (4 km and high-resolution (1.3 km simulations when evaluated against surface meteorological data, but the high-resolution configurations better resolved planetary boundary layer heights and vertical gradients in the horizontal mean winds. We coupled our WRF configuration with the Vulcan 2.2 (10 km resolution and Hestia-LA (1.3 km resolution fossil fuel CO2 emission products to evaluate the impact of the spatial resolution of the CO2 emission products and the meteorological transport model on the representation of spatiotemporal variability in simulated atmospheric CO2 concentrations. We find that high spatial resolution in the fossil fuel CO2 emissions is more important than in the atmospheric model to capture CO2 concentration variability across the LA megacity. Finally, we present a novel approach that employs simultaneous correlations of the simulated atmospheric CO2 fields to qualitatively evaluate the greenhouse gas measurement network over the LA megacity. Spatial correlations in the atmospheric CO2 fields reflect the coverage of

  13. Explaining CO2 fluctuations observed in snowpacks

    Science.gov (United States)

    Graham, Laura; Risk, David

    2018-02-01

    Winter soil carbon dioxide (CO2) respiration is a significant and understudied component of the global carbon (C) cycle. Winter soil CO2 fluxes can be surprisingly variable, owing to physical factors such as snowpack properties and wind. This study aimed to quantify the effects of advective transport of CO2 in soil-snow systems on the subdiurnal to diurnal (hours to days) timescale, use an enhanced diffusion model to replicate the effects of CO2 concentration depletions from persistent winds, and use a model-measure pairing to effectively explore what is happening in the field. We took continuous measurements of CO2 concentration gradients and meteorological data at a site in the Cape Breton Highlands of Nova Scotia, Canada, to determine the relationship between wind speeds and CO2 levels in snowpacks. We adapted a soil CO2 diffusion model for the soil-snow system and simulated stepwise changes in transport rate over a broad range of plausible synthetic cases. The goal was to mimic the changes we observed in CO2 snowpack concentration to help elucidate the mechanisms (diffusion, advection) responsible for observed variations. On subdiurnal to diurnal timescales with varying winds and constant snow levels, a strong negative relationship between wind speed and CO2 concentration within the snowpack was often identified. Modelling clearly demonstrated that diffusion alone was unable to replicate the high-frequency CO2 fluctuations, but simulations using above-atmospheric snowpack diffusivities (simulating advective transport within the snowpack) reproduced snow CO2 changes of the observed magnitude and speed. This confirmed that wind-induced ventilation contributed to episodic pulsed emissions from the snow surface and to suppressed snowpack concentrations. This study improves our understanding of winter CO2 dynamics to aid in continued quantification of the annual global C cycle and demonstrates a preference for continuous wintertime CO2 flux measurement systems.

  14. Carbonic anhydrase levels and internal lacunar CO/sub 2/ concentrations in aquatic macrophytes

    Energy Technology Data Exchange (ETDEWEB)

    Weaver, C.I.

    1979-01-01

    Carbonic anhydrase levels were examined in a variety of aquatic macrophytes from different habitats. In general, carbonic anhydrase levels increased across the habitat gradient such that activities were low in submersed aquatic macrophytes and high in emergent macrophytes with floating-leaved and free-floating plants exhibiting intermediate activities. Internal lacunar CO/sub 2/ concentrations were analyzed in relation to carbonic anhydrase activities. There was no correlation between these two parameters. Internal CO/sub 2/ concentrations ranged from low to high in submersed macrophytes, but were low in floating-leaved and emergent macrophytes. The observed internal CO/sub 2/ concentrations are discussed in relation to the individual morphologies of the plants and the environments in which they occurred.

  15. Thermodynamic balance of photosynthesis and transpiration at increasing CO2 concentrations and rapid light fluctuations.

    Science.gov (United States)

    Marín, Dolores; Martín, Mercedes; Serrot, Patricia H; Sabater, Bartolomé

    2014-02-01

    Experimental and theoretical flux models have been developed to reveal the influence of sun flecks and increasing CO2 concentrations on the energy and entropy balances of the leaf. The rapid and wide range of fluctuations in light intensity under field conditions were simulated in a climatic gas exchange chamber and we determined the energy and entropy balance of the leaf based on radiation and gas exchange measurements. It was estimated that the energy of photosynthetic active radiation (PAR) accounts for half of transpiration, which is the main factor responsible for the exportation of the entropy generated in photosynthesis (Sg) out of the leaf in order to maintain functional the photosynthetic machinery. Although the response of net photosynthetic production to increasing concentrations of CO2 under fluctuating light is similar to that under continuous light, rates of transpiration respond slowly to changes of light intensity and are barely affected by the concentration of CO2 in the range of 260-495 ppm, in which net photosynthesis increases by more than 100%. The analysis of the results confirms that future increases of CO2 will improve the efficiency of the conversion of radiant energy into biomass, but will not reduce the contribution of plant transpiration to the leaf thermal balance. Copyright © 2013 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  16. Energy from CO2 using capacitive electrodes – A model for energy extraction cycles

    NARCIS (Netherlands)

    Paz-García, J.M.; Dykstra, J.E.; Biesheuvel, P.M.; Hamelers, H.V.M.

    2015-01-01

    A model is presented for the process of harvesting electrical energy from CO2 emissions using capacitive cells. The principle consists of controlling the mixing process of a concentrated CO2 gas stream with a dilute CO2 gas stream (as, for example, exhaust gas and air), thereby converting part of

  17. Experimental and Numerical Modelling of CO2 Atmospheric Dispersion in Hazardous Gas Emission Sites.

    Science.gov (United States)

    Gasparini, A.; sainz Gracia, A. S.; Grandia, F.; Bruno, J.

    2015-12-01

    Under stable atmospheric conditions and/or in presence of topographic depressions, CO2 concentrations can reach high values resulting in lethal effect to living organisms. The distribution of denser than air gases released from the underground is governed by gravity, turbulence and dispersion. Once emitted, the gas distribution is initially driven by buoyancy and a gas cloud accumulates on the ground (gravitational phase); with time the density gradient becomes less important due to dispersion or mixing and gas distribution is mainly governed by wind and atmospheric turbulence (passive dispersion phase). Natural analogues provide evidences of the impact of CO2 leakage. Dangerous CO2 concentration in atmosphere related to underground emission have been occasionally reported although the conditions favouring the persistence of such a concentration are barely studied.In this work, the dynamics of CO2 in the atmosphere after ground emission is assessed to quantify their potential risk. Two approaches have been followed: (1) direct measurement of air concentration in a natural emission site, where formation of a "CO2 lake" is common and (2) numerical atmospheric modelling. Two sites with different morphology were studied: (a) the Cañada Real site, a flat terrain in the Volcanic Field of Campo de Calatrava (Spain); (b) the Solforata di Pomezia site, a rough terrain in the Alban Hills Volcanic Region (Italy). The comparison between field data and model calculations reveal that numerical dispersion models are capable of predicting the formation of CO2 accumulation over the ground as a consequence of underground gas emission. Therefore, atmospheric modelling could be included as a valuable methodology in the risk assessment of leakage in natural degassing systems and in CCS projects. Conclusions from this work provide clues on whether leakage may be a real risk for humans and under which conditions this risk needs to be included in the risk assessment.

  18. Intra-aggregate CO2 enrichment: a modelling approach for aerobic soils

    Science.gov (United States)

    Schlotter, D.; Schack-Kirchner, H.

    2013-02-01

    CO2 concentration gradients inside soil aggregates, caused by the respiration of soil microorganisms and fungal hyphae, might lead to variations in the soil solution chemistry on a mm-scale, and to an underestimation of the CO2 storage. But, up to now, there seems to be no feasible method for measuring CO2 inside natural aggregates with sufficient spatial resolution. We combined a one-dimensional model for gas diffusion in the inter-aggregate pore space with a cylinder diffusion model, simulating the consumption/production and diffusion of O2 and CO2 inside soil aggregates with air- and water-filled pores. Our model predicts that for aerobic respiration (respiratory quotient = 1) the intra-aggregate increase in the CO2 partial pressure can never be higher than 0.9 kPa for siliceous, and 0.1 kPa for calcaric aggregates, independent of the level of water-saturation. This suggests that only for siliceous aggregates CO2 produced by aerobic respiration might cause a high small-scale spatial variability in the soil solution chemistry. In calcaric aggregates, however, the contribution of carbonate species to the CO2 transport should lead to secondary carbonates on the aggregate surfaces. As regards the total CO2 storage in aerobic soils, both siliceous and calcaric, the effect of intra-aggregate CO2 gradients seems to be negligible. To assess the effect of anaerobic respiration on the intra-aggregate CO2 gradients, the development of a device for measuring CO2 on a mm-scale in soils is indispensable.

  19. Vegetative biomass predicts inflorescence production along a CO2 concentration gradient in mesic grassland

    Science.gov (United States)

    Fay, P. A.; Collins, H.; Polley, W.

    2016-12-01

    Atmospheric CO2 concentration will likely exceed 500 µL L-1 by 2050, often increasing plant community productivity in part by increasing abundance of species favored by increased CA . Whether increased abundance translates to increased inflorescence production is poorly understood, and is important because it indicates the potential effects of CO2 enrichment on genetic variability and the potential for evolutionary change in future generations. We examined whether the responses of inflorescence production to CO2 enrichment in four C4 grasses and a C3 forb were predicted their vegetative biomass, and by soil moisture, soil nitrogen, or light availability. Inflorescence production was studied in a long-term CO2 concentration gradient spanning pre-industrial to anticipated mid-21st century values (250 - 500 µL L-1) maintained on clay, silty clay and sandy loam soils common in the U.S. Southern Plains. We expected that CO2 enrichment would increase inflorescence production, and more so with higher water, nitrogen, or light availability. However, structural equation modeling revealed that vegetative biomass was the single consistent direct predictor of flowering for all species (p grass) and Solidago canadensis (C3 forb), direct CO2 effects on flowering were only weakly mediated by indirect effects of soil water content and soil NO3-N availability. For the decreasing species (Bouteloua curtipendula, C4 grass), the negative CO2-flowering relationship was cancelled (p = 0.39) by indirect effects of increased SWC and NO3-N on clay and silty clay soils. For the species with no CO2 response, inflorescence production was predicted only by direct water content (p grass) or vegetative biomass (p = 0.0009, Tridens albescens, C4 grass) effects. Light availability was unrelated to inflorescence production. Changes in inflorescence production are thus closely tied to direct and indirect effects of CO2 enrichment on vegetative biomass, and may either increase, decrease, or leave

  20. Modelling global nitrogen export to ground and surface water from natural ecosystems: impact of N deposition, climate, and CO2 concentration

    Science.gov (United States)

    Braakhekke, Maarten; Rebel, Karin; Dekker, Stefan; van Beek, Rens; Bierkens, Marc; Smith, Ben; Wassen, Martin

    2015-04-01

    For large regions in the world strong increases in atmospheric nitrogen (N) deposition are predicted as a result of emissions from fossil fuel combustion and food production. This will cause many previously N limited ecosystems to become N saturated, leading to increased export to ground and surface water and negative impacts on the environment and human health. However, precise N export fluxes are difficult to predict. Due to its strong link to carbon, N in vegetation and soil is also determined by productivity, as affected by rising atmospheric CO2 concentration and temperature, and denitrification. Furthermore, the N concentration of water delivered to streams depends strongly on local hydrological conditions. We aim to study how N delivery to ground and surface water is affected by changes in environmental factors. To this end we are developing a global dynamic modelling system that integrates representations of N cycling in vegetation and soil, and N delivery to ground and surface water. This will be achieved by coupling the dynamic global vegetation model LPJ-GUESS, which includes representations of N cycling, as well as croplands and pasture, to the global water balance model PCR-GLOBWB, which simulates surface runoff, interflow, groundwater recharge, and baseflow. This coupling will allow us to trace N across different systems and estimate the input of N into the riverine system which can be used as input for river biogeochemical models. We will present large scale estimates of N leaching and transport to ground and surface water for natural ecosystems in different biomes, based on a loose coupling of the two models. Furthermore, by means of a factorial model experiment we will explore how these fluxes are influenced by N deposition, temperature, and CO2 concentration.

  1. Effect of elevated CO2 concentration on growth course of tree seed-lings in Changbai Mountain

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    One-year-old seedlings of Pinus koraiensis, Pinus sylvestriformis, Phellodendron amurense were grown in open-top chambers (OTCs) with 700 and 500 mmol/mol CO2 concentrations, control chamber and on open site (ambient CO2, about 350 mmol/mol CO2) respectively at the Open Research Station of Changbai Mountain Forest Ecosystems, Chinese Academy of Sciences, and the growth course responses of three species to elevated CO2 and temperature during one growing season was studied from May to Oct. 1999. The results showed that increase in CO2 concentration enhanced the growth of seedlings and the effect of 700 mmol/mol CO2 was more remarkable than 500 mmol/mol CO2 on seedling growth. Under the condition of doubly elevated CO2 concentration, the biomass increased by 38% in average for coniferous seedlings and 60% for broad-leaved seedlings. With continuous treatment of high CO2 concentration, the monthly-accumulated biomass of shade-tolerant Pinus koraiensis seedlings was bigger in July than in August and September, while those of Pinus sylvestriformis and Phellodendron amurense seedlings showed an increase in July and August, or did not decrese until September. During the hot August, high CO2 concentration enhanced the growth of Pinus koraiensis seedlings by increasing temperature, but it did not show dominance in other two species.

  2. A reduced order model to analytically infer atmospheric CO2 concentration from stomatal and climate data

    Science.gov (United States)

    Konrad, Wilfried; Katul, Gabriel; Roth-Nebelsick, Anita; Grein, Michaela

    2017-06-01

    To address questions related to the acceleration or deceleration of the global hydrological cycle or links between the carbon and water cycles over land, reliable data for past climatic conditions based on proxies are required. In particular, the reconstruction of palaeoatmospheric CO2 content (Ca) is needed to assist the separation of natural from anthropogenic Ca variability and to explore phase relations between Ca and air temperature Ta time series. Both Ta and Ca are needed to fingerprint anthropogenic signatures in vapor pressure deficit, a major driver used to explain acceleration or deceleration phases in the global hydrological cycle. Current approaches to Ca reconstruction rely on a robust inverse correlation between measured stomatal density in leaves (ν) of many plant taxa and Ca. There are two methods that exploit this correlation: The first uses calibration curves obtained from extant species assumed to represent the fossil taxa, thereby restricting the suitable taxa to those existing today. The second is a hybrid eco-hydrological/physiological approach that determines Ca with the aid of systems of equations based on quasi-instantaneous leaf-gas exchange theories and fossil stomatal data collected along with other measured leaf anatomical traits and parameters. In this contribution, a reduced order model (ROM) is proposed that derives Ca from a single equation incorporating the aforementioned stomatal data, basic climate (e.g. temperature), estimated biochemical parameters of assimilation and isotope data. The usage of the ROM is then illustrated by applying it to isotopic and anatomical measurements from three extant species. The ROM derivation is based on a balance between the biochemical demand and atmospheric supply of CO2 that leads to an explicit expression linking stomatal conductance to internal CO2 concentration (Ci) and Ca. The resulting expression of stomatal conductance from the carbon economy of the leaf is then equated to another

  3. Trace and low concentration co2 removal methods and apparatus utilizing metal organic frameworks

    KAUST Repository

    Eddaoudi, Mohamed

    2016-03-10

    In general, this disclosure describes techniques for removing trace and low concentration CO2 from fluids using SIFSIX-n-M MOFs, wherein n is at least two and M is a metal. In some embodiments, the metal is zinc or copper. Embodiments include devices comprising SIFSIX-n-M MOFs for removing CO2 from fluids. In particular, embodiments relate to devices and methods utilizing SIFSIX-n-M MOFs for removing CO2 from fluids, wherein CO2 concentration is trace. Methods utilizing SIFSIX-n-M MOFs for removing CO2 from fluids can occur in confined spaces. SIFSIX-n-M MOFs can comprise bidentate organic ligands. In a specific embodiment, SIFSIX-n-M MOFs comprise pyrazine or dipryidilacetylene ligands.

  4. Concentration of Co2+, Fe3+ and Zn2+ ions with microbiological collectors

    International Nuclear Information System (INIS)

    Fisel, S.; Dulman, V.; Cecal, A.

    1975-01-01

    By means of the Spicaria Biolacea Abbott fungus a satisfactory microbiological concentration of 60 Co 2+ , sup(55+59)Fe 3+ and 65 Zn 2+ can be obtained under optimum experimental conditions. By repeating the cultures on the media obtained after filtration, multistage processes, and by adding the necessary nutritive substances, practically quantitative concentration of these three elements can be produced. The experimental results plead in favour of a concentration mechanism of the isotopes inside the cell with no surface adsorption. The influence of the experimental conditions i.e. pH, time and concentration have been investigated. (T.G.)

  5. Assessing Methods for Mapping 2D Field Concentrations of CO2 Over Large Spatial Areas for Monitoring Time Varying Fluctuations

    Science.gov (United States)

    Zaccheo, T. S.; Pernini, T.; Botos, C.; Dobler, J. T.; Blume, N.; Braun, M.; Levine, Z. H.; Pintar, A. L.

    2014-12-01

    This work presents a methodology for constructing 2D estimates of CO2 field concentrations from integrated open path measurements of CO2 concentrations. It provides a description of the methodology, an assessment based on simulated data and results from preliminary field trials. The Greenhouse gas Laser Imaging Tomography Experiment (GreenLITE) system, currently under development by Exelis and AER, consists of a set of laser-based transceivers and a number of retro-reflectors coupled with a cloud-based compute environment to enable real-time monitoring of integrated CO2 path concentrations, and provides 2D maps of estimated concentrations over an extended area of interest. The GreenLITE transceiver-reflector pairs provide laser absorption spectroscopy (LAS) measurements of differential absorption due to CO2 along intersecting chords within the field of interest. These differential absorption values for the intersecting chords of horizontal path are not only used to construct estimated values of integrated concentration, but also employed in an optimal estimation technique to derive 2D maps of underlying concentration fields. This optimal estimation technique combines these sparse data with in situ measurements of wind speed/direction and an analytic plume model to provide tomographic-like reconstruction of the field of interest. This work provides an assessment of this reconstruction method and preliminary results from the Fall 2014 testing at the Zero Emissions Research and Technology (ZERT) site in Bozeman, Montana. This work is funded in part under the GreenLITE program developed under a cooperative agreement between Exelis and the National Energy and Technology Laboratory (NETL) under the Department of Energy (DOE), contract # DE-FE0012574. Atmospheric and Environmental Research, Inc. is a major partner in this development.

  6. Modeling of CO2 storage in aquifers

    International Nuclear Information System (INIS)

    Savioli, Gabriela B; Santos, Juan E

    2011-01-01

    Storage of CO 2 in geological formations is a means of mitigating the greenhouse effect. Saline aquifers are a good alternative as storage sites due to their large volume and their common occurrence in nature. The first commercial CO 2 injection project is that of the Sleipner field in the Utsira Sand aquifer (North Sea). Nevertheless, very little was known about the effectiveness of CO 2 sequestration over very long periods of time. In this way, numerical modeling of CO 2 injection and seismic monitoring is an important tool to understand the behavior of CO 2 after injection and to make long term predictions in order to prevent CO 2 leaks from the storage into the atmosphere. The description of CO 2 injection into subsurface formations requires an accurate fluid-flow model. To simulate the simultaneous flow of brine and CO 2 we apply the Black-Oil formulation for two phase flow in porous media, which uses the PVT data as a simplified thermodynamic model. Seismic monitoring is modeled using Biot's equations of motion describing wave propagation in fluid-saturated poroviscoelastic solids. Numerical examples of CO 2 injection and time-lapse seismics using data of the Utsira formation show the capability of this methodology to monitor the migration and dispersal of CO 2 after injection.

  7. Geochemical modelling of worst-case leakage scenarios at potential CO2-storage sites - CO2 and saline water contamination of drinking water aquifers

    Science.gov (United States)

    Szabó, Zsuzsanna; Edit Gál, Nóra; Kun, Éva; Szőcs, Teodóra; Falus, György

    2017-04-01

    at seven potential CO2-storage areas have been modelled. The visualization of results has been automatized by R programming. The three types of models (equilibrium, kinetic batch and reactive transport) provide different type but overlapping information. All modelling output of both scenarios (CO2/brine) indicate the increase of ion-concentrations in the fresh water, which might exceed drinking water limit values. Transport models provide a possibility to identify the most suitable chemical parameter in the fresh water for leakage monitoring. This indicator parameter may show detectable and early changes even far away from the contamination source. In the CO2 models potassium concentration increase is significant and runs ahead of the other parameters. In the rock, the models indicate feldspar, montmorillonite, dolomite and illite dissolution whereas calcite, chlorite, kaolinite and silica precipitates, and in the case of CO2-inflow models, dawsonite traps a part of the leaking gas.

  8. Optimization of a prognostic biosphere model for terrestrial biomass and atmospheric CO2 variability

    International Nuclear Information System (INIS)

    Saito, M.; Ito, A.; Maksyutov, S.

    2014-01-01

    This study investigates the capacity of a prognostic biosphere model to simulate global variability in atmospheric CO 2 concentrations and vegetation carbon dynamics under current environmental conditions. Global data sets of atmospheric CO 2 concentrations, above-ground biomass (AGB), and net primary productivity (NPP) in terrestrial vegetation were assimilated into the biosphere model using an inverse modeling method combined with an atmospheric transport model. In this process, the optimal physiological parameters of the biosphere model were estimated by minimizing the misfit between observed and modeled values, and parameters were generated to characterize various biome types. Results obtained using the model with the optimized parameters correspond to the observed seasonal variations in CO 2 concentration and their annual amplitudes in both the Northern and Southern Hemispheres. In simulating the mean annual AGB and NPP, the model shows improvements in estimating the mean magnitudes and probability distributions for each biome, as compared with results obtained using prior simulation parameters. However, the model is less efficient in its simulation of AGB for forest type biomes. This misfit suggests that more accurate values of input parameters, specifically, grid mean AGB values and seasonal variabilities in physiological parameters, are required to improve the performance of the simulation model. (authors)

  9. Cyanobacterial carbon concentrating mechanisms facilitate sustained CO2 depletion in eutrophic lakes

    Science.gov (United States)

    Morales-Williams, Ana M.; Wanamaker, Alan D., Jr.; Downing, John A.

    2017-06-01

    Phytoplankton blooms are increasing in frequency, intensity, and duration in aquatic ecosystems worldwide. In many eutrophic lakes, these high levels of primary productivity correspond to periods of CO2 depletion in surface waters. Cyanobacteria and other groups of phytoplankton have the ability to actively transport bicarbonate (HCO3-) across their cell membrane when CO2 concentrations are limiting, possibly giving them a competitive advantage over algae not using carbon concentrating mechanisms (CCMs). To investigate whether CCMs can maintain phytoplankton bloom biomass under CO2 depletion, we measured the δ13C signatures of dissolved inorganic carbon (δ13CDIC) and phytoplankton particulate organic carbon (δ13Cphyto) in 16 mesotrophic to hypereutrophic lakes during the ice-free season of 2012. We used mass-balance relationships to determine the dominant inorganic carbon species used by phytoplankton under CO2 stress. We found a significant positive relationship between phytoplankton biomass and phytoplankton δ13C signatures as well as a significant nonlinear negative relationship between water column ρCO2 and isotopic composition of phytoplankton, indicating a shift from diffusive uptake to active uptake by phytoplankton of CO2 or HCO3- during blooms. Calculated photosynthetic fractionation factors indicated that this shift occurs specifically when surface water CO2 drops below atmospheric equilibrium. Our results indicate that active HCO3- uptake via CCMs may be an important mechanism in maintaining phytoplankton blooms when CO2 is depleted. Further increases in anthropogenic pressure, eutrophication, and cyanobacteria blooms are therefore expected to contribute to increased bicarbonate uptake to sustain primary production.

  10. Cyanobacterial carbon concentrating mechanisms facilitate sustained CO2 depletion in eutrophic lakes

    Directory of Open Access Journals (Sweden)

    A. M. Morales-Williams

    2017-06-01

    Full Text Available Phytoplankton blooms are increasing in frequency, intensity, and duration in aquatic ecosystems worldwide. In many eutrophic lakes, these high levels of primary productivity correspond to periods of CO2 depletion in surface waters. Cyanobacteria and other groups of phytoplankton have the ability to actively transport bicarbonate (HCO3− across their cell membrane when CO2 concentrations are limiting, possibly giving them a competitive advantage over algae not using carbon concentrating mechanisms (CCMs. To investigate whether CCMs can maintain phytoplankton bloom biomass under CO2 depletion, we measured the δ13C signatures of dissolved inorganic carbon (δ13CDIC and phytoplankton particulate organic carbon (δ13Cphyto in 16 mesotrophic to hypereutrophic lakes during the ice-free season of 2012. We used mass–balance relationships to determine the dominant inorganic carbon species used by phytoplankton under CO2 stress. We found a significant positive relationship between phytoplankton biomass and phytoplankton δ13C signatures as well as a significant nonlinear negative relationship between water column ρCO2 and isotopic composition of phytoplankton, indicating a shift from diffusive uptake to active uptake by phytoplankton of CO2 or HCO3− during blooms. Calculated photosynthetic fractionation factors indicated that this shift occurs specifically when surface water CO2 drops below atmospheric equilibrium. Our results indicate that active HCO3− uptake via CCMs may be an important mechanism in maintaining phytoplankton blooms when CO2 is depleted. Further increases in anthropogenic pressure, eutrophication, and cyanobacteria blooms are therefore expected to contribute to increased bicarbonate uptake to sustain primary production.

  11. The possible evolution and future of CO2-concentrating mechanisms.

    Science.gov (United States)

    Raven, John A; Beardall, John; Sánchez-Baracaldo, Patricia

    2017-06-01

    CO2-concentrating mechanisms (CCMs), based either on active transport of inorganic carbon (biophysical CCMs) or on biochemistry involving supplementary carbon fixation into C4 acids (C4 and CAM), play a major role in global primary productivity. However, the ubiquitous CO2-fixing enzyme in autotrophs, Rubisco, evolved at a time when atmospheric CO2 levels were very much higher than today and O2 was very low and, as CO2 and O2 approached (by no means monotonically), today's levels, at some time subsequently many organisms evolved a CCM that increased the supply of CO2 and decreased Rubisco oxygenase activity. Given that CO2 levels and other environmental factors have altered considerably between when autotrophs evolved and the present day, and are predicted to continue to change into the future, we here examine the drivers for, and possible timing of, evolution of CCMs. CCMs probably evolved when CO2 fell to 2-16 times the present atmospheric level, depending on Rubisco kinetics. We also assess the effects of other key environmental factors such as temperature and nutrient levels on CCM activity and examine the evidence for evolutionary changes in CCM activity and related cellular processes as well as limitations on continuity of CCMs through environmental variations. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  12. Does the oil fortune vanish with Kyoto. The effects on energy consumption and emissions from stabilising the CO2 concentration

    International Nuclear Information System (INIS)

    Lindholt, Lars; Rosendahl, Knut Einar

    2000-01-01

    The article discusses measures for and the consequences of stabilising the CO 2 concentration at various levels on the oil industry, the environment and the energy policies. The structure of an international taxation scenario will depend on which CO 2 level and forecasting model are selected as well as the time profiles and levels of CO 2 emissions in the various countries

  13. Comprehensive ecosystem model-data synthesis using multiple data sets at two temperate forest free-air CO2 enrichment experiments: Model performance at ambient CO2 concentration

    Science.gov (United States)

    Walker, Anthony P.; Hanson, Paul J.; De Kauwe, Martin G.; Medlyn, Belinda E.; Zaehle, Sönke; Asao, Shinichi; Dietze, Michael; Hickler, Thomas; Huntingford, Chris; Iversen, Colleen M.; Jain, Atul; Lomas, Mark; Luo, Yiqi; McCarthy, Heather; Parton, William J.; Prentice, I. Colin; Thornton, Peter E.; Wang, Shusen; Wang, Ying-Ping; Warlind, David; Weng, Ensheng; Warren, Jeffrey M.; Woodward, F. Ian; Oren, Ram; Norby, Richard J.

    2014-05-01

    Free-air CO2 enrichment (FACE) experiments provide a remarkable wealth of data which can be used to evaluate and improve terrestrial ecosystem models (TEMs). In the FACE model-data synthesis project, 11 TEMs were applied to two decadelong FACE experiments in temperate forests of the southeastern U.S.—the evergreen Duke Forest and the deciduous Oak Ridge Forest. In this baseline paper, we demonstrate our approach to model-data synthesis by evaluating the models' ability to reproduce observed net primary productivity (NPP), transpiration, and leaf area index (LAI) in ambient CO2 treatments. Model outputs were compared against observations using a range of goodness-of-fit statistics. Many models simulated annual NPP and transpiration within observed uncertainty. We demonstrate, however, that high goodness-of-fit values do not necessarily indicate a successful model, because simulation accuracy may be achieved through compensating biases in component variables. For example, transpiration accuracy was sometimes achieved with compensating biases in leaf area index and transpiration per unit leaf area. Our approach to model-data synthesis therefore goes beyond goodness-of-fit to investigate the success of alternative representations of component processes. Here we demonstrate this approach by comparing competing model hypotheses determining peak LAI. Of three alternative hypotheses—(1) optimization to maximize carbon export, (2) increasing specific leaf area with canopy depth, and (3) the pipe model—the pipe model produced peak LAI closest to the observations. This example illustrates how data sets from intensive field experiments such as FACE can be used to reduce model uncertainty despite compensating biases by evaluating individual model assumptions.

  14. Experimental versus modelled water use in mature Norway spruce (Picea abies exposed to elevated CO2

    Directory of Open Access Journals (Sweden)

    Sebastian eLeuzinger

    2012-10-01

    Full Text Available Rising levels of atmospheric CO2 have often been reported to reduce plant water use. Such behaviour is also predicted by standard equations relating photosynthesis, stomatal conductance, and atmospheric CO2 concentration, which form the core of global dynamic vegetation models (DGVMs. Here, we provide first results from a free air CO2 enrichment (FACE experiment with naturally growing, mature (35 m Picea abies (L. (Norway spruce and compare them to simulations by the DGVM LPJ-GUESS. We monitored sap flow, stem water deficit, stomatal conductance, leaf water potential and soil moisture in five 35-40 m tall CO2-treated (550 ppm trees over two seasons. Using LPJ-GUESS, we simulated this experiment using climate data from a nearby weather station. While the model predicted a stable reduction of transpiration of between 9 and 18 % (at concentrations of 550-700ppm atmospheric CO2, the combined evidence from various methods characterising water use in our experimental trees suggest no changes in response to future CO2 concentrations. The discrepancy between the modelled and the experimental results may be a scaling issue: while dynamic vegetation models correctly predict leaf-level responses, they may not sufficiently account for the processes involved at the canopy and ecosystem scale, which could mitigate the first-order stomatal response.

  15. Utility of silicone filtering for diffusive model CO2 sensors in field experiments

    Directory of Open Access Journals (Sweden)

    Shinjiro Ohkubo

    2013-05-01

    Full Text Available Installing a diffusive model CO2 sensor in the soil is a direct and useful method to observe the time variation of gas CO2 concentration in soil. Furthermore, it requires no bulky measurement system. A hydrophobic silicone filter prevents water infiltration. Therefore, a sensor whose detection element is covered with a silicone filter can be durable in the field even when experiencing inundation (e.g. farmland with snow melting, wetland with varying water level. The utility of a diffusive model of CO2 sensor covered with silicone filter was examined in laboratory and field experiments. Applying the silicone filter delays the response to change in ambient CO2 concentration, which results from lower gas permeability than those of other conventionally used filters made of materials, such as polytetrafluoroethylene. Theoretically, apart from the precision of the sensor itself, diurnal variation of soil gas CO2 concentration is calculable from obtained series of data with a silicone-covered sensor with negligible error. The error is estimated at approximately 1% of the diurnal amplitude in most cases of a 10-min logging interval. Drastic changes that occur, such as those of a rainfall event, cause a larger gap separating calculated and real values. However, the proportion of this gap to the extent of the drastic increase was extremely small (0.43% for a 10-min logging interval. For accurate estimation, a smoothly varied data series must be prepared as input data. Using a moving average or applying a fitting curve can be useful when using a sensor or data logger with low resolution. Estimating the gas permeability coefficient is crucial for calculation. The gas permeability coefficient can be estimated through laboratory experiments. This study revealed the possibility of evaluating the time variation of soil gas CO2 concentration by installing a diffusive model of silicone-covered sensor in an inundated field.

  16. Modelling CO concentrations under free-flowing and congested traffic conditions in Ireland

    Energy Technology Data Exchange (ETDEWEB)

    Broderick, B; Budd, U; Misstear, B [Dept. of Civil, Structural and Environmental Engineering, Trinity Coll. Dublin (Ireland); Ceburnis, D; Jennings, S G [Dept. of Experimental Physics, National Univ. of Ireland, Galway (Ireland)

    2004-07-01

    The assessment and management of air quality is required under the EU Air Quality Framework Directive and its Daughter Directives (CEC, 1996, 1999, 2000) which specify the limits for certain pollutants, including carbon monoxide (CO). Air quality modelling is used to predict the future impact of road improvements, often as part of an Environmental Impact Assessment. The U.S. National Commission on Air Quality found in 1981 that such models may typically overpredict or underpredict actual concentrations by a factor of two. Even twenty years later the U.K. Department of the Environment Transport and the Regions (UK DETR, 2001) concurred that ''If the prediction of an annual mean concentration lies within {+-}50% of the measurement, a user would not consider that the model has behaved badly.'' The Daughter Directive (CEC, 2000) concerned with CO allows 50% uncertainty in modelling of the eight-hour average concentration. An assessment of CALINE4 was performed for two contrasting sites: a free-flowing motorway and a periodically-congested roundabout. Air quality was continuously monitored over a one-year period at both sites. The data collected was compared with model predictions based on local and regional meteorological data, site geometry and traffic volumes. The modelled and monitored results were compared through both graphical and statistical analysis (Broderick B.M. et al., 2003). (orig.)

  17. Modeling experimental stable isotope results from CO2 adsorption and diffusion experiments

    Science.gov (United States)

    Larson, T. E.

    2012-12-01

    Transport of carbon dioxide through porous media can be affected by diffusion, advection and adsorption processes. Developing new tools to understand which of these processes dominates migration of CO2 or other gases in the subsurface is important to a wide range of applications including CO2 storage. Whereas advection rates are not affected by isotope substitution in CO2, adsorption and diffusion constants are. For example, differences in the binary diffusion constant calculated between C12O2-He and C13O2-He results in a carbon isotope fractionation whereby the front of the chromatographic peak is enriched in carbon-12 and the tail of the peak is enriched in carbon-13. Interestingly, adsorption is shown to have an opposite, apparent inverse affect whereby the lighter isotopologues of CO2 are preferentially retained by the chromatographic column and the heavier isotopologues are eluted first. This apparent inverse chromatographic effect has been ascribed to Van der Waals dispersion forces. Smaller molar volumes of the heavier isotopologues resulting from increased bond strength (shorter bond length) effectively decreases Van der Waals forces in heavier isotopologues compared to lighter isotopologues. Here we discuss the possible application of stable isotope values measured across chromatographic peaks to differentiate diffusion-dominated from adsorption-dominated transport processes for CO2. Separate 1-dimensional flow-through columns were packed with quartz and illite, and one remained empty. Dry helium was used as a carrier gas. Constant flow rate, temperature and column pressure were maintained. After background CO2 concentrations were minimized and constant, a sustained pulse of CO2 was injected at the head of the column and the effluent was sampled at 4 minute intervals for CO2 concentration, and carbon and oxygen isotope ratios. The quartz-sand packed and empty columns resulted in similar trends in concentration and isotope ratios whereby CO2 concentrations

  18. Amelioration of boron toxicity in sweet pepper as affected by calcium management under an elevated CO2 concentration.

    Science.gov (United States)

    Piñero, María Carmen; Pérez-Jiménez, Margarita; López-Marín, Josefa; Del Amor, Francisco M

    2017-04-01

    We investigated B tolerance in sweet pepper plants (Capsicum annuun L.) under an elevated CO 2 concentration, combined with the application of calcium as a nutrient management amelioration technique. The data show that high B affected the roots more than the aerial parts, since there was an increase in the shoot/root ratio, when plants were grown with high B levels; however, the impact was lessened when the plants were grown at elevated CO 2 , since the root FW reduction caused by excess B was less marked at the high CO 2 concentration (30.9% less). Additionally, the high B concentration affected the membrane permeability of roots, which increased from 39 to 54% at ambient CO 2 concentration, and from 38 to 51% at elevated CO 2 concentration, producing a cation imbalance in plants, which was differentially affected by the CO 2 supply. The Ca surplus in the nutrient solution reduced the nutritional imbalance in sweet pepper plants produced by the high B concentration, at both CO 2 concentrations. The medium B concentration treatment (toxic according to the literature) did not result in any toxic effect. Hence, there is a need to review the literature on critical and toxic B levels taking into account increases in atmospheric CO 2 .

  19. Measurements and modeling of absorption by CO2 + H2O mixtures in the spectral region beyond the CO2 ν3-band head

    Science.gov (United States)

    Tran, H.; Turbet, M.; Chelin, P.; Landsheere, X.

    2018-05-01

    In this work, we measured the absorption by CO2 + H2O mixtures from 2400 to 2600 cm-1 which corresponds to the spectral region beyond the ν3 band head of CO2. Transmission spectra of CO2 mixed with water vapor were recorded with a high-resolution Fourier-transform spectrometer for various pressure, temperature and concentration conditions. The continuum absorption by CO2 due to the presence of water vapor was determined by subtracting from measured spectra the contribution of local lines of both species, that of the continuum of pure CO2 as well as of the self- and CO2-continua of water vapor induced by the H2O-H2O and H2O-CO2 interactions. The obtained results are in very good agreement with the unique previous measurement (in a narrower spectral range). They confirm that the H2O-continuum of CO2 is significantly larger than that observed for pure CO2. This continuum thus must be taken into account in radiative transfer calculations for media involving CO2+ H2O mixture. An empirical model, using sub-Lorentzian line shapes based on some temperature-dependent correction factors χ is proposed which enables an accurate description of the experimental results.

  20. CO2 absorption/emission and aerodynamic effects of trees on the concentrations in a street canyon in Guangzhou, China

    International Nuclear Information System (INIS)

    Li, Jian-Feng; Zhan, Jie-Min; Li, Y.S.; Wai, Onyx W.H.

    2013-01-01

    In this paper, the effects of trees on CO 2 concentrations in a street canyon in Guangzhou, China are examined by Computational Fluid Dynamics (CFD) simulations of the concentration distribution, taking into account both the CO 2 absorption/emission and aerodynamic effects of trees. Simulation results show that, under a 2 m/s southerly prevailing wind condition, CO 2 absorption by trees will reduce the CO 2 concentration by around 2.5% in the daytime and at the same time the trees' resistance will increase the difference of CO 2 concentrations in the street and at the inflow by 43%. As the traffic density increases to 50 vehicles/min, the effect of trees on the ambient CO 2 concentration will change from positive to negative. At night, trees have a negative effect on the concentration in the street canyon mainly because of their resistance to airflow. When environmental wind changes, the effect of trees will be different. -- Highlights: ► The trees affect CO 2 concentrations in a street canyon. ► Both the CO 2 absorption and flow resistance of trees are significant factors by day. ► As the emissions of CO 2 increase, the effect of trees will become negative. ► At night, trees have a negative effect on CO 2 concentration due to the resistance. -- The effects of trees on CO 2 concentrations in a street canyon are examined by CFD simulations, taking into account both the CO 2 absorption/emission and aerodynamic effects of trees

  1. Does carbon isotope data help explain atmospheric CO2 concentrations during glacial periods?

    International Nuclear Information System (INIS)

    Alverson, K.; Le Grand, P.

    2002-01-01

    An inverse ocean box modeling approach is used to address the question of what may have caused decreased atmospheric CO 2 concentration during glacial periods. The inverse procedure seeks solutions that are consistent, within prescribed uncertainties, with both available paleodata constraints and box model conservation equations while relaxing traditional assumptions such as exact steady state and precise prescription of uncertain model parameters. Decreased ventilation of Southern Ocean deep water, decreased Southern Ocean air-sea gas exchange, and enhanced high latitude biological pumping are all shown to be individually capable of explaining available paleodata constraints provided that significant calcium carbonate compensation is allowed. None of the scenarios require more than a very minor (order 1 deg. C) glacial reduction in low to mid latitude sea surface temperature although scenarios with larger changes are equally plausible. One explanation for the fairly wide range of plausible solutions is that most paleo-data directly constrain the inventory of paleo-tracers but only indirectly constrain their fluxes. Because the various scenarios that have been proposed to explain pCO 2 levels during the last glacial maximum are distinguished primarily by different fluxes, the data, including ocean 13 C concentrations, do not allow one to confidently chose between them. Oceanic 14 C data for the last glacial maximum, which can constrain water mass fluxes, present an excellent potential solution to this problem if their reliability is demonstrated in the future. (author)

  2. Response of biomass and nitrogen yield of white clover to radiation and atmospheric CO2 concentration

    International Nuclear Information System (INIS)

    Manderscheid, R.; Bender, J.; Schenk, U.; Weigel, H.J.

    1997-01-01

    The objectives of the present study were to test (i) whether the effect of season-long CO 2 enrichment on plant dry matter production of white clover (Trifolium repens cv. Karina) depends on the temperature or can solely be explained by changes in radiation use efficiency, and (ii) whether the atmospheric CO 2 concentration affects the relationship between tissue %N and plant biomass. Plants were grown in pots with adequate nutrient and water supply and were exposed to ambient and above ambient CO 2 concentrations (approximately +80 ppm, +160 ppm, +280 ppm) in open-top chambers for two seasons. Nitrogen fertilizer was given only before the experiment started to promote N 2 fixation. Plants were clipped to a height of 5 cm, when the canopy had reached a height of about 20 cm and when the CO 2 effect had not been diminished due to self-shading of the leaves. Photon exposure (400–700 nm) measured above the canopy was linearly related to the above ground biomass, the leaf area index and the nitrogen yield (r 2 > 0.94). The slopes of the curves depended on the CO 2 concentration. Since most of the radiation (>90%) was absorbed by the foliage, the slopes were used to calculate the CO 2 effect on the radiation use efficiency of biomass production, which is shown to increase curvilinearly between 380 and 660 ppm CO 2 from 2.7 g MJ −1 to 3.9 g MJ −1 . CO 2 enrichment increased above ground biomass by increasing the leaf number, the individual leaf weight and the leaf area; specific leaf weight was not affected. The relative CO 2 response varied between harvests; there was a slight but not significant positive relationship with mean daytime temperature. At the beginning of the season, plant nitrogen concentration in the above ground biomass was decreased by CO 2 enrichment. However, at later growth stages, when the plants depended solely on N 2 fixation, nitrogen concentration was found to be increased when the nitrogen concentration value was adjusted for the decrease

  3. Prediction of CO concentrations based on a hybrid Partial Least Square and Support Vector Machine model

    Science.gov (United States)

    Yeganeh, B.; Motlagh, M. Shafie Pour; Rashidi, Y.; Kamalan, H.

    2012-08-01

    Due to the health impacts caused by exposures to air pollutants in urban areas, monitoring and forecasting of air quality parameters have become popular as an important topic in atmospheric and environmental research today. The knowledge on the dynamics and complexity of air pollutants behavior has made artificial intelligence models as a useful tool for a more accurate pollutant concentration prediction. This paper focuses on an innovative method of daily air pollution prediction using combination of Support Vector Machine (SVM) as predictor and Partial Least Square (PLS) as a data selection tool based on the measured values of CO concentrations. The CO concentrations of Rey monitoring station in the south of Tehran, from Jan. 2007 to Feb. 2011, have been used to test the effectiveness of this method. The hourly CO concentrations have been predicted using the SVM and the hybrid PLS-SVM models. Similarly, daily CO concentrations have been predicted based on the aforementioned four years measured data. Results demonstrated that both models have good prediction ability; however the hybrid PLS-SVM has better accuracy. In the analysis presented in this paper, statistic estimators including relative mean errors, root mean squared errors and the mean absolute relative error have been employed to compare performances of the models. It has been concluded that the errors decrease after size reduction and coefficients of determination increase from 56 to 81% for SVM model to 65-85% for hybrid PLS-SVM model respectively. Also it was found that the hybrid PLS-SVM model required lower computational time than SVM model as expected, hence supporting the more accurate and faster prediction ability of hybrid PLS-SVM model.

  4. Plant growth and leaf-spot severity on eucalypt at different CO2 concentrations in the air

    Directory of Open Access Journals (Sweden)

    Carlos Eduardo Oliveira da Silva

    2014-03-01

    Full Text Available The objective of this work was to evaluate the effects of increased air-CO2 concentration on plant growth and on leaf-spot caused by Cylindrocladium candelabrum in Eucalyptus urophylla. Seedlings were cultivated for 30 days at 451, 645, 904, and 1,147 µmol mol-1 CO2 ; then, they were inoculated with the pathogen and kept under the same conditions for seven days. Increased CO2 concentration increased plant height and shoot dry matter mass, and decreased disease incidence and severity. Stem diameter was not affected by the treatments. Increased concentrations of atmospheric CO2 favorably affect eucalypt growth and reduce leaf-spot severity.

  5. A reaction-diffusion model of CO2 influx into an oocyte

    Science.gov (United States)

    Somersalo, Erkki; Occhipinti, Rossana; Boron, Walter F.; Calvetti, Daniela

    2012-01-01

    We have developed and implemented a novel mathematical model for simulating transients in surface pH (pHS) and intracellular pH (pHi) caused by the influx of carbon dioxide (CO2) into a Xenopus oocyte. These transients are important tools for studying gas channels. We assume that the oocyte is a sphere surrounded by a thin layer of unstirred fluid, the extracellular unconvected fluid (EUF), which is in turn surrounded by the well-stirred bulk extracellular fluid (BECF) that represents an infinite reservoir for all solutes. Here, we assume that the oocyte plasma membrane is permeable only to CO2. In both the EUF and intracellular space, solute concentrations can change because of diffusion and reactions. The reactions are the slow equilibration of the CO2 hydration-dehydration reactions and competing equilibria among carbonic acid (H2CO3)/bicarbonate ( HCO3-) and a multitude of non-CO2/HCO3- buffers. Mathematically, the model is described by a coupled system of reaction-diffusion equations that—assuming spherical radial symmetry—we solved using the method of lines with appropriate stiff solvers. In agreement with experimental data (Musa-Aziz et al, PNAS 2009, 106:5406–5411), the model predicts that exposing the cell to extracellular 1.5% CO2/10 mM HCO3- (pH 7.50) causes pHi to fall and pHS to rise rapidly to a peak and then decay. Moreover, the model provides insights into the competition between diffusion and reaction processes when we change the width of the EUF, membrane permeability to CO2, native extra-and intracellular carbonic anhydrase-like activities, the non-CO2/HCO3- (intrinsic) intracellular buffering power, or mobility of intrinsic intracellular buffers. PMID:22728674

  6. Atmospheric inversion of the surface CO2 flux with 13CO2 constraint

    Science.gov (United States)

    Chen, J. M.; Mo, G.; Deng, F.

    2013-10-01

    Observations of 13CO2 at 73 sites compiled in the GLOBALVIEW database are used for an additional constraint in a global atmospheric inversion of the surface CO2 flux using CO2 observations at 210 sites for the 2002-2004 period for 39 land regions and 11 ocean regions. This constraint is implemented using the 13CO2/CO2 flux ratio modeled with a terrestrial ecosystem model and an ocean model. These models simulate 13CO2 discrimination rates of terrestrial photosynthesis and respiration and ocean-atmosphere diffusion processes. In both models, the 13CO2 disequilibrium between fluxes to and from the atmosphere is considered due to the historical change in atmospheric 13CO2 concentration. For the 2002-2004 period, the 13CO2 constraint on the inversion increases the total land carbon sink from 3.40 to 3.70 Pg C yr-1 and decreases the total oceanic carbon sink from 1.48 to 1.12 Pg C yr-1. The largest changes occur in tropical areas: a considerable decrease in the carbon source in the Amazon forest, and this decrease is mostly compensated by increases in the ocean region immediately west of the Amazon and the southeast Asian land region. Our further investigation through different treatments of the 13CO2/CO2 flux ratio used in the inversion suggests that variable spatial distributions of the 13CO2 isotopic discrimination rate simulated by the models over land and ocean have considerable impacts on the spatial distribution of the inverted CO2 flux over land and the inversion results are not sensitive to errors in the estimated disequilibria over land and ocean.

  7. Monoterpene and herbivore-induced emissions from cabbage plants grown at elevated atmospheric CO 2 concentration

    Science.gov (United States)

    Vuorinen, Terhi; Reddy, G. V. P.; Nerg, Anne-Marja; Holopainen, Jarmo K.

    The warming of the lower atmosphere due to elevating CO 2 concentration may increase volatile organic compound (VOC) emissions from plants. Also, direct effects of elevated CO 2 on plant secondary metabolism are expected to lead to increased VOC emissions due to allocation of excess carbon on secondary metabolites, of which many are volatile. We investigated how growing at doubled ambient CO 2 concentration affects emissions from cabbage plants ( Brassica oleracea subsp. capitata) damaged by either the leaf-chewing larvae of crucifer specialist diamondback moth ( Plutella xylostella L.) or generalist Egyptian cotton leafworm ( Spodoptera littoralis (Boisduval)). The emission from cabbage cv. Lennox grown in both CO 2 concentrations, consisted mainly of monoterpenes (sabinene, limonene, α-thujene, 1,8-cineole, β-pinene, myrcene, α-pinene and γ-terpinene). ( Z)-3-Hexenyl acetate, sesquiterpene ( E, E)- α-farnesene and homoterpene ( E)-4,8-dimethyl-1,3,7-nonatriene (DMNT) were emitted mainly from herbivore-damaged plants. Plants grown at 720 μmol mol -1 of CO 2 had significantly lower total monoterpene emissions per shoot dry weight than plants grown at 360 μmol mol -1 of CO 2, while damage by both herbivores significantly increased the total monoterpene emissions compared to intact plants. ( Z)-3-Hexenyl acetate, ( E, E)- α-farnesene and DMNT emissions per shoot dry weight were not affected by the growth at elevated CO 2. The emission of DMNT was significantly enhanced from plants damaged by the specialist P. xylostella compared to the plants damaged by the generalist S. littoralis. The relative proportions of total monoterpenes and total herbivore-induced compounds of total VOCs did not change due to the growth at elevated CO 2, while insect damage increased significantly the proportion of induced compounds. The results suggest that VOC emissions that are induced by the leaf-chewing herbivores will not be influenced by elevated CO 2 concentration.

  8. Can rising CO2 concentrations in the atmosphere mitigate the impact of drought years on tree growth?

    Science.gov (United States)

    Achim, Alexis; Plumpton, Heather; Auty, David; Ogee, Jerome; MacCarthy, Heather; Bert, Didier; Domec, Jean-Christophe; Oren, Ram; Wingate, Lisa

    2015-04-01

    Atmospheric CO2 concentrations and nitrogen deposition rates have increased substantially over the last century and are expected to continue unabated. As a result, terrestrial ecosystems will experience warmer temperatures and some may even experience droughts of a more intense and frequent nature that could lead to widespread forest mortality. Thus there is mounting pressure to understand and predict how forest growth will be affected by such environmental interactions in the future. In this study we used annual tree growth data from the Duke Free Air CO2 Enrichment (FACE) experiment to determine the effects of elevated atmospheric CO2 concentration (+200 ppm) and Nitrogen fertilisation (11.2 g of N m-2 yr-1) on the stem biomass increments of mature loblolly pine (Pinus taeda L.) trees from 1996 to 2010. A non-linear mixed-effects model was developed to provide estimates of annual ring specific gravity in all trees using cambial age and annual ring width as explanatory variables. Elevated CO2 did not have a significant effect on annual ring specific gravity, but N fertilisation caused a slight decrease of approximately 2% compared to the non-fertilised in both the ambient and CO2-elevated plots. When basal area increments were multiplied by wood specific gravity predictions to provide estimates of stem biomass, there was a 40% increase in the CO2-elevated plots compared to those in ambient conditions. This difference remained relatively stable until the application of the fertilisation treatment, which caused a further increase in biomass increments that peaked after three years. Unexpectedly the magnitude of this second response was similar in the CO2-elevated and ambient plots (about 25% in each after 3 years), suggesting that there was no interaction between the concentration of CO2 and the availability of soil N on biomass increments. Importantly, during drier years when annual precipitation was less than 1000 mm we observed a significant decrease in annual

  9. Decontamination of solid matrices using supercritical CO2: study of contaminant-additives-CO2

    International Nuclear Information System (INIS)

    Galy, J.

    2006-11-01

    This work deals with the decontamination of solid matrices by supercritical CO 2 and more particularly with the study of the interactions between the surfactants and the CO 2 in one part, and with the interactions between the contaminant and the surfactants in another part. The first part of this study has revealed the different interactions between the Pluronics molecules and the supercritical CO 2 . The diagrams graphs have shown that the pluronics (PE 6100, PE 8100 and PE 10100) present a solubility in the supercritical CO 2 low but sufficient (0.1% m/m at 25 MPa and 313 K) for the studied application: the treatment of weak quantities of cerium oxide (or plutonium). An empirical approach based on the evolutions of the slops value and of the origin ordinates of the PT diagrams has been carried out to simulate the phase diagrams PT of the Pluronics. A modeling based on the state equations 'SAFT' (Statistical Associating Fluid Theory) has been studied in order to confirm the experimental results of the disorder points and to understand the role of the different blocks 'PEO' and 'PPO' in the behaviour of Pluronics; this modeling confirms the evolution of the slopes value with the 'CO 2 -phily' of the system. The measure of the surface tension in terms of the Pluronics concentration (PE 6100, 81000 and 10100) has shown different behaviours. For the PE 6100, the surface tension decreases when the surfactant concentration increases (at constant pressure and temperature); on the other hand, for the PE 8100 a slop rupture appears and corresponds to the saturation of the interface water/CO 2 and allows then to determine the Interface Saturation Concentration (ISC). The ISC value (at constant pressure and temperature) increases with an increase of the 'CO 2 -phily'). The model hydrophilous medium being an approximation, it has been replaced by a solid polar phase of CeO 2 . A parallel has been established between the evolution of the surface tension between the water and

  10. Changes in Air CO2 Concentration Differentially Alter Transcript Levels of NtAQP1 and NtPIP2;1 Aquaporin Genes in Tobacco Leaves

    Directory of Open Access Journals (Sweden)

    Francesca Secchi

    2016-04-01

    Full Text Available The aquaporin specific control on water versus carbon pathways in leaves is pivotal in controlling gas exchange and leaf hydraulics. We investigated whether Nicotiana tabacum aquaporin 1 (NtAQP1 and Nicotiana tabacum plasma membrane intrinsic protein 2;1 (NtPIP2;1 gene expression varies in tobacco leaves subjected to treatments with different CO2 concentrations (ranging from 0 to 800 ppm, inducing changes in photosynthesis, stomatal regulation and water evaporation from the leaf. Changes in air CO2 concentration ([CO2] affected net photosynthesis (Pn and leaf substomatal [CO2] (Ci. Pn was slightly negative at 0 ppm air CO2; it was one-third that of ambient controls at 200 ppm, and not different from controls at 800 ppm. Leaves fed with 800 ppm [CO2] showed one-third reduced stomatal conductance (gs and transpiration (E, and their gs was in turn slightly lower than in 200 ppm– and in 0 ppm–treated leaves. The 800 ppm air [CO2] strongly impaired both NtAQP1 and NtPIP2;1 gene expression, whereas 0 ppm air [CO2], a concentration below any in vivo possible conditions and specifically chosen to maximize the gene expression alteration, increased only the NtAQP1 transcript level. We propose that NtAQP1 expression, an aquaporin devoted to CO2 transport, positively responds to CO2 scarcity in the air in the whole range 0–800 ppm. On the contrary, expression of NtPIP2;1, an aquaporin not devoted to CO2 transport, is related to water balance in the leaf, and changes in parallel with gs. These observations fit in a model where upregulation of leaf aquaporins is activated at low Ci, while downregulation occurs when high Ci saturates photosynthesis and causes stomatal closure.

  11. Soil CO2 concentration does not affect growth or root respiration in bean or citrus

    NARCIS (Netherlands)

    Bouma, T.J.; Nielsen, K.F.; Eissenstat, D.M.; Lynch, J.P.

    1997-01-01

    Contrasting effects of soil CO2 concentration on root respiration rates during short-term CO2 exposure, and on plant growth during long-term CO2 exposure, have been reported, Here we examine the effects of both short-and long-term exposure to soil CO2 on the root respiration of intact plants and on

  12. Magnetic properties of iron-based catalysts activated by various CO{sub 2} concentrations

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Jung Tae; Kim, Chul Sung [Kookmin University, Seoul (Korea, Republic of); Chun, Dong Hyun; Park, Ji Chan [Korea Institute of Energy Research, Daejeon (Korea, Republic of)

    2014-12-15

    Fresh catalyst samples of 100Fe/5.26Cu/4.76K/18.2SiO{sub 2} in part per weight were synthesized by using a combination of a co-precipitation technique and spray-drying method and were activated in situ by using syngas (H{sub 2}/CO/xCO{sub 2}) with different amounts of CO{sub 2} (x = 0.0, 0.5, 1.0, and 2.0). All activated catalyst samples showed similar XRD patterns, a combination of ferrihydrite, magnetite, χ-carbide, and ε'-carbide, regardless of the CO{sub 2} contents. From the Moessbauer spectra, we also observed a combination of ferrihydrite, magnetite, χ-carbide, and ε'-carbide in all activated catalyst samples. The main compound of the activated catalyst sample activated by using CO{sub 2}-free syngas (H{sub 2}/CO) was magnetic χ-carbide, and the main compound changed from χ-carbide to ferrihydrite with increasing CO{sub 2} concentration, confirmed by both, Moessbauer spectra and XRD pattern.

  13. Fabrication of Graded Porous and Skin-Core Structure RDX-Based Propellants via Supercritical CO2 Concentration Profile

    Science.gov (United States)

    Yang, Weitao; Li, Yuxiang; Ying, Sanjiu

    2015-04-01

    A fabrication process to produce graded porous and skin-core structure propellants via supercritical CO2 concentration profile is reported in this article. It utilizes a partial gas saturation technique to obtain nonequilibrium gas concentration profiles in propellants. Once foamed, the propellant obtains a graded porous or skin-pore structure. This fabrication method was studied with RDX(Hexogen)-based propellant under an SC-CO2 saturation condition. The principle was analyzed and the one-dimensional diffusion model was employed to estimate the gas diffusion coefficient and to predict the gas concentration profiles inside the propellant. Scanning electron microscopy images were used to analyze the effects of partial saturation on the inner structure. The results also suggested that the sorption time and desorption time played an important role in gas profile generation and controlled the inner structure of propellants.

  14. Effects of climate, CO2 concentration, nitrogen deposition, and stand age changes on the carbon budget of China's forests

    Science.gov (United States)

    Zhang, C.; Ju, W.; Zhang, F.; Mao, D.; Wang, X.

    2017-12-01

    Forests play an irreplaceable role in the Earth's terrestrial carbon budget which retard the atmospheric CO2 buildup. Understanding the factors controlling forest carbon budget is critical for reducing uncertainties in projections of future climate. The relative importance of climate, atmospheric CO2 concentration, nitrogen deposition, and stand age changes on carbon budget, however, remains unclear for China's forests. In this study, we quantify individual contribution of these drivers to the trends of forest carbon budget in China from 1901 to 2012 by integrating national datasets, the updated Integrated Terrestrial Ecosystem Carbon Cycle (InTEC) model and factorial simulations. Results showed that the average carbon sink in China's forests from 1982 to 2012 was 186.9 Tg C yr-1 with 68% (127.6 Tg C yr-1) of the sink in living biomass because of the integrated effects of climate, atmospheric CO2 concentration, nitrogen deposition, and stand age factors. Compared with the simulation of all factors combined, the estimated carbon sink during 1901-2012 would be reduced by 41.8 Tg C yr-1 if climate change, atmospheric CO2 concentration and nitrogen deposition factors were omitted, and reduced by 25.0 Tg C yr-1 if stand age factor was omitted. In most decades, these factors increased forest carbon sinks with the largest of 101.3, 62.9, and 44.0 Tg C yr-1 from 2000 to 2012 contributed by stand age, CO2 concentration and nitrogen deposition, respectively. During 1901-2012, climate change, CO2 concentration, nitrogen deposition and stand age contributed -13.3, 21.4, 15.4 and 25.0 Tg C yr-1 to the averaged carbon sink of China's forests, respectively. Our study also showed diverse regional patterns of forest carbon budget related to the importance of driving factors. Stand age effect was the largest in most regions, but the effects of CO2 concentration and nitrogen deposition were dominant in southern China.

  15. Modeling CO2 Storage in Fractured Reservoirs: Fracture-Matrix Interactions of Free-Phase and Dissolved CO2

    Science.gov (United States)

    Oldenburg, C. M.; Zhou, Q.; Birkholzer, J. T.

    2017-12-01

    The injection of supercritical CO2 (scCO2) in fractured reservoirs has been conducted at several storage sites. However, no site-specific dual-continuum modeling for fractured reservoirs has been reported and modeling studies have generally underestimated the fracture-matrix interactions. We developed a conceptual model for enhanced CO2 storage to take into account global scCO2 migration in the fracture continuum, local storage of scCO2 and dissolved CO2 (dsCO2) in the matrix continuum, and driving forces for scCO2 invasion and dsCO2 diffusion from fractures. High-resolution discrete fracture-matrix models were developed for a column of idealized matrix blocks bounded by vertical and horizontal fractures and for a km-scale fractured reservoir. The column-scale simulation results show that equilibrium storage efficiency strongly depends on matrix entry capillary pressure and matrix-matrix connectivity while the time scale to reach equilibrium is sensitive to fracture spacing and matrix flow properties. The reservoir-scale modeling results shows that the preferential migration of scCO2 through fractures is coupled with bulk storage in the rock matrix that in turn retards the fracture scCO2 plume. We also developed unified-form diffusive flux equations to account for dsCO2 storage in brine-filled matrix blocks and found solubility trapping is significant in fractured reservoirs with low-permeability matrix.

  16. Modelling CO2 emissions from water surface of a boreal hydroelectric reservoir.

    Science.gov (United States)

    Wang, Weifeng; Roulet, Nigel T; Kim, Youngil; Strachan, Ian B; Del Giorgio, Paul; Prairie, Yves T; Tremblay, Alain

    2018-01-15

    To quantify CO 2 emissions from water surface of a reservoir that was shaped by flooding the boreal landscape, we developed a daily time-step reservoir biogeochemistry model. We calibrated the model using the measured concentrations of dissolved organic and inorganic carbon (C) in a young boreal hydroelectric reservoir, Eastmain-1 (EM-1), in northern Quebec, Canada. We validated the model against observed CO 2 fluxes from an eddy covariance tower in the middle of EM-1. The model predicted the variability of CO 2 emissions reasonably well compared to the observations (root mean square error: 0.4-1.3gCm -2 day -1 , revised Willmott index: 0.16-0.55). In particular, we demonstrated that the annual reservoir surface effluxes were initially high, steeply declined in the first three years, and then steadily decreased to ~115gCm -2 yr -1 with increasing reservoir age over the estimated "engineering" reservoir lifetime (i.e., 100years). Sensitivity analyses revealed that increasing air temperature stimulated CO 2 emissions by enhancing CO 2 production in the water column and sediment, and extending the duration of open water period over which emissions occur. Increasing the amount of terrestrial organic C flooded can enhance benthic CO 2 fluxes and CO 2 emissions from the reservoir water surface, but the effects were not significant over the simulation period. The model is useful for the understanding of the mechanism of C dynamics in reservoirs and could be used to assist the hydro-power industry and others interested in the role of boreal hydroelectric reservoirs as sources of greenhouse gas emissions. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Exchange of carbonyl sulfide (OCS) between soils and atmosphere under various CO2 concentrations

    Science.gov (United States)

    Bunk, Rüdiger; Behrendt, Thomas; Yi, Zhigang; Andreae, Meinrat O.; Kesselmeier, Jürgen

    2017-06-01

    A new continuous integrated cavity output spectroscopy analyzer and an automated soil chamber system were used to investigate the exchange processes of carbonyl sulfide (OCS) between soils and the atmosphere under laboratory conditions. The exchange patterns of OCS between soils and the atmosphere were found to be highly dependent on soil moisture and ambient CO2 concentration. With increasing soil moisture, OCS exchange ranged from emission under dry conditions to an uptake within an optimum moisture range, followed again by emission at high soil moisture. Elevated CO2 was found to have a significant impact on the exchange rate and direction as tested with several soils. There is a clear tendency toward a release of OCS at higher CO2 levels (up to 7600 ppm), which are typical for the upper few centimeters within soils. At high soil moisture, the release of OCS increased sharply. Measurements after chloroform vapor application show that there is a biotic component to the observed OCS exchange. Furthermore, soil treatment with the fungi inhibitor nystatin showed that fungi might be the dominant OCS consumers in the soils we examined. We discuss the influence of soil moisture and elevated CO2 on the OCS exchange as a change in the activity of microbial communities. Physical factors such as diffusivity that are governed by soil moisture also play a role. Comparing KM values of the enzymes to projected soil water CO2 concentrations showed that competitive inhibition is unlikely for carbonic anhydrase and PEPCO but might occur for RubisCO at higher CO2 concentrations.

  18. An inverse analysis reveals limitations of the soil-CO2 profile method to calculate CO2 production and efflux for well-structured soils

    Directory of Open Access Journals (Sweden)

    M. D. Corre

    2010-08-01

    Full Text Available Soil respiration is the second largest flux in the global carbon cycle, yet the underlying below-ground process, carbon dioxide (CO2 production, is not well understood because it can not be measured in the field. CO2 production has frequently been calculated from the vertical CO2 diffusive flux divergence, known as "soil-CO2 profile method". This relatively simple model requires knowledge of soil CO2 concentration profiles and soil diffusive properties. Application of the method for a tropical lowland forest soil in Panama gave inconsistent results when using diffusion coefficients (D calculated based on relationships with soil porosity and moisture ("physically modeled" D. Our objective was to investigate whether these inconsistencies were related to (1 the applied interpolation and solution methods and/or (2 uncertainties in the physically modeled profile of D. First, we show that the calculated CO2 production strongly depends on the function used to interpolate between measured CO2 concentrations. Secondly, using an inverse analysis of the soil-CO2 profile method, we deduce which D would be required to explain the observed CO2 concentrations, assuming the model perception is valid. In the top soil, this inversely modeled D closely resembled the physically modeled D. In the deep soil, however, the inversely modeled D increased sharply while the physically modeled D did not. When imposing a constraint during the fit parameter optimization, a solution could be found where this deviation between the physically and inversely modeled D disappeared. A radon (Rn mass balance model, in which diffusion was calculated based on the physically modeled or constrained inversely modeled D, simulated observed Rn profiles reasonably well. However, the CO2 concentrations which corresponded to the constrained inversely modeled D were too small compared to the measurements. We suggest that, in well-structured soils, a missing description of steady state CO2

  19. Experimental study of the aqueous CO2-NH3 rate of reaction for temperatures from 15 °C to 35 °C, NH3 concentrations from 5% to 15% and CO2 loadings from 0.2 to 0.6

    DEFF Research Database (Denmark)

    Lillia, Stefano; Bonalumi, Davide; Fosbøl, Philip L.

    2018-01-01

    , and lastly CO2 loadings from 0.2 to 0.6. The resulting overall mass transfer coefficient of absorption measured follows the trends described by the modelling of the reactor and the equations used to describe the rate of the absorption reactions. Moreover, the overall mass transfer coefficient of absorption...... loading conditions. The kinetic model intercept the values found in literature in every range of concentration. Consequently, the model is valid in every conditions and the rate of the reaction between NH3 and CO2 in liquid phase is described with an Arrhenius constant with a pre-exponential factor of 1......The absorption reaction between aqueous NH3 and CO2 was studied using the Wetted Wall Column. A total of 27 different cases are investigated in the region defined by temperatures from 15 °C to 35 °C, NH3 concentrations from 5% to 15%, which are the typical solvent conditions in absorption columns...

  20. Photosynthetic response to variation in CO2 concentrations and temperature of four broad-leaved trees in Beijing region

    Institute of Scientific and Technical Information of China (English)

    Zhibo MA; Shengqing SHI; Qinyan MA; Yutao WANG; Xingliang LIU

    2008-01-01

    Responses of the photosynthetic characteris-tics to variation in CO2 concentration and temperature of Ginkgo biloba, Eucornmia ulmoides, Magnolia denudata and Tiliajaponica were measured during the peak growing season. The results show that the ambient CO2 concentra-tion could not meet the requirements for photosynthesis of these four species. The optimal temperatures for pho-tosynthesis were lower than the average daytime air tem-perature. Hence, the photosynthesis of these four species was restricted by the low CO2 concentration and high daytime air temperature at the time of measurement. Marked enhancements in the net photosynthetic rate were found in all four species when the CO2 concentration was doubled. When the dependency on CO2 and temperature were examined simultaneously, it was seen that for increased CO2 concentrations there was a shift in the optimum temperature for M. denudata and T. japonica towards higher temperatures. Due to their independence on CO2 concentrations, this trend could not be found in the G. biloba and E. ulmoides data sets. The stomatal con-ductance (Gs) was sensitive to a vapor pressure deficit (VPD) which in turn was sensitive to temperature. An increase in temperature would cause the VPD to increase and plants might be assumed to react by reducing their stomatal apertures. The effect on stomatal resistance would be most significant at high temperatures. The restriction to stomatal conductance for these four species would increase if CO2 concentrations were elevated at the same temperature.

  1. The relationship between termite mound CH4/CO2 emissions and internal concentration ratios are species specific

    Science.gov (United States)

    Jamali, H.; Livesley, S. J.; Hutley, L. B.; Fest, B.; Arndt, S. K.

    2012-12-01

    1. We investigated the relative importance of CH4 and CO2 fluxes from soil and termite mounds at four different sites in the tropical savannas of Northern Australia near Darwin and assessed different methods to indirectly predict CH4 fluxes based on CO2 fluxes and internal gas concentrations. 2. The annual flux from termite mounds and surrounding soil was dominated by CO2 with large variations among sites. On a CO2-e basis, annual CH4 flux estimates from termite mounds were 5- to 46-fold smaller than the concurrent annual CO2 flux estimates. Differences between annual soil CO2 and soil CH4 (CO2-e) fluxes were even greater, soil CO2 fluxes being almost three orders of magnitude greater than soil CH4 (CO2-e) fluxes at site. 3. There were significant relationships between mound CH4 flux and mound CO2 flux, enabling the prediction of CH4 flux from measured CO2 flux, however, these relationships were clearly termite species specific. 4. We also observed significant relationships between mound flux and gas concentration inside mound, for both CH4 and CO2, and for all termite species, thereby enabling the prediction of flux from measured mound internal gas concentration. However, these relationships were also termite species specific. Using the relationship between mound internal gas concentration and flux from one species to predict mound fluxes from other termite species (as has been done in past) would result in errors of more than 5-fold for CH4 and 3-fold for CO2. 5. This study highlights that CO2 fluxes from termite mounds are generally more than one order of magnitude greater than CH4 fluxes. There are species-specific relationships between CH4 and CO2 fluxes from a~mound, and between the inside mound concentration of a gas and the mound flux emission of the same gas, but these relationships vary greatly among termite species. Consequently, there is no generic relationship that will allow for the prediction of CH4 fluxes from termite mounds of all species.

  2. Sensitivity of Terrestrial Water and Energy Budgets to CO2-Physiological Forcing: An Investigation Using an Offline Land Model

    Science.gov (United States)

    Gopalakrishnan, Ranjith; Bala, Govindsamy; Jayaraman, Mathangi; Cao, Long; Nemani, Ramakrishna; Ravindranath, N. H.

    2011-01-01

    Increasing concentrations of atmospheric carbon dioxide (CO2) influence climate by suppressing canopy transpiration in addition to its well-known greenhouse gas effect. The decrease in plant transpiration is due to changes in plant physiology (reduced opening of plant stomata). Here, we quantify such changes in water flux for various levels of CO2 concentrations using the National Center for Atmospheric Research s (NCAR) Community Land Model. We find that photosynthesis saturates after 800 ppmv (parts per million, by volume) in this model. However, unlike photosynthesis, canopy transpiration continues to decline at about 5.1% per 100 ppmv increase in CO2 levels. We also find that the associated reduction in latent heat flux is primarily compensated by increased sensible heat flux. The continued decline in canopy transpiration and subsequent increase in sensible heat flux at elevated CO2 levels implies that incremental warming associated with the physiological effect of CO2 will not abate at higher CO2 concentrations, indicating important consequences for the global water and carbon cycles from anthropogenic CO2 emissions. Keywords: CO2-physiological effect, CO2-fertilization, canopy transpiration, water cycle, runoff, climate change 1.

  3. The relationships between termite mound CH4/CO2 emissions and internal concentration ratios are species specific

    Directory of Open Access Journals (Sweden)

    H. Jamali

    2013-04-01

    Full Text Available We investigated the relative importance of CH4 and CO2 fluxes from soil and termite mounds at four different sites in the tropical savannas of northern Australia near Darwin and assessed different methods to indirectly predict CH4 fluxes based on CO2 fluxes and internal gas concentrations. The annual flux from termite mounds and surrounding soil was dominated by CO2 with large variations among sites. On a carbon dioxide equivalent (CO2-e basis, annual CH4 flux estimates from termite mounds were 5- to 46-fold smaller than the concurrent annual CO2 flux estimates. Differences between annual soil CO2 and soil CH4 (CO2-e fluxes were even greater, soil CO2 fluxes being almost three orders of magnitude greater than soil CH4 (CO2-e fluxes at site. The contribution of CH4 and CO2 emissions from termite mounds to the total CH4 and CO2 emissions from termite mounds and soil in CO2-e was less than 1%. There were significant relationships between mound CH4 flux and mound CO2 flux, enabling the prediction of CH4 flux from measured CO2 flux; however, these relationships were clearly termite species specific. We also observed significant relationships between mound flux and gas concentration inside mound, for both CH4 and CO2, and for all termite species, thereby enabling the prediction of flux from measured mound internal gas concentration. However, these relationships were also termite species specific. Using the relationship between mound internal gas concentration and flux from one species to predict mound fluxes from other termite species (as has been done in the past would result in errors of more than 5-fold for mound CH4 flux and 3-fold for mound CO2 flux. This study highlights that CO2 fluxes from termite mounds are generally more than one order of magnitude greater than CH4 fluxes. There are species-specific relationships between CH4 and CO2 fluxes from a mound, and between the inside mound concentration of a gas and the mound flux emission of the

  4. The relationships between termite mound CH4/CO2 emissions and internal concentration ratios are species specific

    Science.gov (United States)

    Jamali, H.; Livesley, S. J.; Hutley, L. B.; Fest, B.; Arndt, S. K.

    2013-04-01

    We investigated the relative importance of CH4 and CO2 fluxes from soil and termite mounds at four different sites in the tropical savannas of northern Australia near Darwin and assessed different methods to indirectly predict CH4 fluxes based on CO2 fluxes and internal gas concentrations. The annual flux from termite mounds and surrounding soil was dominated by CO2 with large variations among sites. On a carbon dioxide equivalent (CO2-e) basis, annual CH4 flux estimates from termite mounds were 5- to 46-fold smaller than the concurrent annual CO2 flux estimates. Differences between annual soil CO2 and soil CH4 (CO2-e) fluxes were even greater, soil CO2 fluxes being almost three orders of magnitude greater than soil CH4 (CO2-e) fluxes at site. The contribution of CH4 and CO2 emissions from termite mounds to the total CH4 and CO2 emissions from termite mounds and soil in CO2-e was less than 1%. There were significant relationships between mound CH4 flux and mound CO2 flux, enabling the prediction of CH4 flux from measured CO2 flux; however, these relationships were clearly termite species specific. We also observed significant relationships between mound flux and gas concentration inside mound, for both CH4 and CO2, and for all termite species, thereby enabling the prediction of flux from measured mound internal gas concentration. However, these relationships were also termite species specific. Using the relationship between mound internal gas concentration and flux from one species to predict mound fluxes from other termite species (as has been done in the past) would result in errors of more than 5-fold for mound CH4 flux and 3-fold for mound CO2 flux. This study highlights that CO2 fluxes from termite mounds are generally more than one order of magnitude greater than CH4 fluxes. There are species-specific relationships between CH4 and CO2 fluxes from a mound, and between the inside mound concentration of a gas and the mound flux emission of the same gas, but

  5. The Impact of Prior Biosphere Models in the Inversion of Global Terrestrial CO2 Fluxes by Assimilating OCO-2 Retrievals

    Science.gov (United States)

    Philip, Sajeev; Johnson, Matthew S.

    2018-01-01

    Atmospheric mixing ratios of carbon dioxide (CO2) are largely controlled by anthropogenic emissions and biospheric fluxes. The processes controlling terrestrial biosphere-atmosphere carbon exchange are currently not fully understood, resulting in terrestrial biospheric models having significant differences in the quantification of biospheric CO2 fluxes. Atmospheric transport models assimilating measured (in situ or space-borne) CO2 concentrations to estimate "top-down" fluxes, generally use these biospheric CO2 fluxes as a priori information. Most of the flux inversion estimates result in substantially different spatio-temporal posteriori estimates of regional and global biospheric CO2 fluxes. The Orbiting Carbon Observatory 2 (OCO-2) satellite mission dedicated to accurately measure column CO2 (XCO2) allows for an improved understanding of global biospheric CO2 fluxes. OCO-2 provides much-needed CO2 observations in data-limited regions facilitating better global and regional estimates of "top-down" CO2 fluxes through inversion model simulations. The specific objectives of our research are to: 1) conduct GEOS-Chem 4D-Var assimilation of OCO-2 observations, using several state-of-the-science biospheric CO2 flux models as a priori information, to better constrain terrestrial CO2 fluxes, and 2) quantify the impact of different biospheric model prior fluxes on OCO-2-assimilated a posteriori CO2 flux estimates. Here we present our assessment of the importance of these a priori fluxes by conducting Observing System Simulation Experiments (OSSE) using simulated OCO-2 observations with known "true" fluxes.

  6. CO2 release experiment in the shallow subsurface at the Brackenridge Field Laboratory and numerical modeling

    Science.gov (United States)

    Yang, C.; Romanak, K.; Hovorka, S.

    2009-12-01

    Soil gas monitoring is one cost-effective approach to detect CO2 leak at geological sequestration sites. Therefore understanding CO2 gas transport in soil zones is important for detection of CO2 leaks. A field experiment of a small CO2 release was conducted at the Brackenridge Field Laboratory, the University of Texas at Austin. The field site consists of one injection well, two sensor wells and one gas station well (Figure 1). The injection well was completed with a PVC pipe to a depth of 1.1 m below surface. CO2 sensors were deployed in sensor wells about 42 cm from the injection well at depths of 1.1 m having no subsurface PVC pipes but only a PVC protector cap at the surface. The gas monitoring station about 72 cm away from the injection well contains 3 copper tubes each set at different depths in sand pack isolated with bentonite clay. The CO2 release experiment started on March 4, 2009. A total 36.76 liters of CO2 were injected at 1 m depth at a rate of 100 ml/minute for 6 hours. Subsurface CO2 gas concentrations (before, during, and after the injection) were continuously monitored in sensor wells. Real-time CO2 concentrations were monitored at the gas station using an SRI 8610 gas chromatograph (GC) fitted with flame ionization detector (FID) and a thermal conductivity detector (TCD). A numerical model was constructed to simulate CO2 release experiments. The model takes into account CO2 diffusion and dissolution in pore water. Air in the pore space is assumed stagnant. Model domain consists of four soil layers and one atmospheric layer. The groundwater table is about 2.4 meters below ground surface. The model was calibrated with respect to diffusion coefficient (transport parameter) and the injection rate (mass parameter). Model results fit well with CO2 measurements at the sensor wells and the gas station. However, the calibrated injection rate underestimates measured injection rate.

  7. Sensitivity of terrestrial water and energy budgets to CO2-physiological forcing: an investigation using an offline land model

    International Nuclear Information System (INIS)

    Gopalakrishnan, Ranjith; Jayaraman, Mathangi; Ravindranath, N H; Bala, Govindsamy; Cao, Long; Nemani, Ramakrishna

    2011-01-01

    Increasing concentrations of atmospheric carbon dioxide (CO 2 ) influence climate by suppressing canopy transpiration in addition to its well-known greenhouse gas effect. The decrease in plant transpiration is due to changes in plant physiology (reduced opening of plant stomata). Here, we quantify such changes in water flux for various levels of CO 2 concentrations using the National Center for Atmospheric Research's (NCAR) Community Land Model. We find that photosynthesis saturates after 800 ppmv (parts per million, by volume) in this model. However, unlike photosynthesis, canopy transpiration continues to decline at about 5.1% per 100 ppmv increase in CO 2 levels. We also find that the associated reduction in latent heat flux is primarily compensated by increased sensible heat flux. The continued decline in canopy transpiration and subsequent increase in sensible heat flux at elevated CO 2 levels implies that incremental warming associated with the physiological effect of CO 2 will not abate at higher CO 2 concentrations, indicating important consequences for the global water and carbon cycles from anthropogenic CO 2 emissions.

  8. The crystallization kinetic model of nano-CaCO3 in CO2-ammonia-phosphogypsum three-phase reaction system

    Science.gov (United States)

    Liu, Hao; Lan, Peiqiang; Lu, Shangqing; Wu, Sufang

    2018-06-01

    Phosphogypsum (PG) as a low-cost calcium resource was used to prepare nano-CaCO3 in a three-phase system by reactions. Based on the population balance equation, nano-CaCO3 crystal nucleation and growth model in the gas (CO2)-liquid (NH3·H2O)-solid (CaSO4) three-phase system was established. The crystallization kinetic model of nano-CaCO3 in CO2-NH3·H2O-CaSO4 reactions system was experimental developed over an optimized temperature range of 20-40 °C and CO2 flow rate range of 138-251 ml/min as rCaCO3 =kn 32 πM2γ3/3R3ρ2T3 (C -C∗)0.8/[ ln (C /C∗) ]3 + πρ/3M kg3 kn(C -C∗) 2t3 , where nano-CaCO3 nucleation rate constant was kn = 6.24 ×1019 exp(-15940/RT) and nano-CaCO3 growth rate constant was kg = 0.79 exp(-47650/RT) respectively. Research indicated that nucleation rates and growth rates both increased with the increasing of temperature and CO32- ion concentration. And crystal growth was dependent on temperature more than that of nucleation process because the activation energy of CaCO3 growth was bigger than that of CaCO3 nucleation. Decreasing the reaction temperature and CO2 flow rate was more beneficial for producing nano-size CaCO3 because of the lower CaCO3 growth rates. The deduced kinetic equation could briefly predict the average particle sizes of nano-CaCO3.

  9. Correlation of Amine Swingbed On-Orbit CO2 Performance with a Hardware Independent Predictive Model

    Science.gov (United States)

    Papale, William; Sweterlitsch, Jeffery

    2015-01-01

    The Amine Swingbed Payload is an experimental system deployed on the International Space Station (ISS) that includes a two-bed, vacuum regenerated, amine-based carbon dioxide (CO2) removal subsystem as the principal item under investigation. The aminebased subsystem, also described previously in various publications as CAMRAS 3, was originally designed, fabricated and tested by Hamilton Sundstrand Space Systems International, Inc. (HSSSI) and delivered to NASA in November 2008. The CAMRAS 3 unit was subsequently designed into a flight payload experiment in 2010 and 2011, with flight test integration activities accomplished on-orbit between January 2012 and March 2013. Payload activation was accomplished in May 2013 followed by a 1000 hour experimental period. The experimental nature of the Payload and the interaction with the dynamic ISS environment present unique scientific and engineering challenges, in particular to the verification and validation of the expected Payload CO2 removal performance. A modeling and simulation approach that incorporates principles of chemical reaction engineering has been developed for the amine-based system to predict the dynamic cabin CO2 partial pressure with given inputs of sorbent bed size, process air flow, operating temperature, half-cycle time, CO2 generation rate, cabin volume and the magnitude of vacuum available. Simulation runs using the model to predict ambient CO2 concentrations show good correlation to on-orbit performance measurements and ISS dynamic concentrations for the assumed operating conditions. The dynamic predictive modelling could benefit operational planning to help ensure ISS CO2 concentrations are maintained below prescribed limits and for the Orion vehicle to simulate various operating conditions, scenarios and transients.

  10. [Effect of carbon substrate concentration on N2, N2O, NO, CO2, and CH4 emissions from a paddy soil in anaerobic condition].

    Science.gov (United States)

    Chen, Nuo; Liao, Ting-ting; Wang, Rui; Zheng, Xun-hua; Hu, Rong-gui; Butterbach-Bahl, Klaus

    2014-09-01

    Understanding the effects of carbon and nitrogen substrates concentrations on the emissions of denitrification gases including nitrogen (N2) , nitrous oxide (N2O) and nitric oxide (NO), carbon dioxide (CO2) and methane (CH4) from anaerobic paddy soils is believed to be helpful for development of greenhouse gas mitigation strategies. Moreover, understanding the quantitative dependence of denitrification products compositions on carbon substrate concentration could provide some key parameters or parameterization scheme for developing process-oriented model(s) of nitrogen transformation. Using a silt loam soil collected from a paddy field, we investigated the influence of carbon substrate concentration on the emissions of the denitrification gases, CO2 and CH4 from anaerobically incubated soils by setting two treatments: control (CK) with initial soil nitrate and dissolved organic carbon (DOC) concentrations of ~ 50 mg.kg-1 and -28 mg kg-1 , respectively; and DOC added (C + ) with initial soil nitrate and DOC concentrations of ~50 mg.kg-1 and ~300 mg.kg-1 , respectively. The emissions of denitrification gases, CO2 and CH4, as well as concentrations of carbon and nitrogen substrates for each treatment were dynamically measured, using the gas-flow-soil-core technique and a paralleling substrate monitoring system. The results showed that CH4 emission was not observed in CK treatment while observed in C treatment. Aggregate emission of greenhouse gases for C + treatment was significantly higher comparing with the CK treatment (P emissions in total nitrogen gases emissions were approximately 9% , 35% and 56% for CK treatment, respectively; and approximately 31% , 50% and 19% for C+ treatment, respectively, with significant differences between these two treatments (P carbon substrate concentrations can significantly change the composition of nitrogen gas emissions. The results also implicated that organic fertilizer should not be applied to nitrate-rich paddy soils prior to

  11. Performance of a geostationary mission, geoCARB, to measure CO2, CH4 and CO column-averaged concentrations

    Directory of Open Access Journals (Sweden)

    I. N. Polonsky

    2014-04-01

    Full Text Available GeoCARB is a proposed instrument to measure column averaged concentrations of CO2, CH4 and CO from geostationary orbit using reflected sunlight in near-infrared absorption bands of the gases. The scanning options, spectral channels and noise characteristics of geoCARB and two descope options are described. The accuracy of concentrations from geoCARB data is investigated using end-to-end retrievals; spectra at the top of the atmosphere in the geoCARB bands are simulated with realistic trace gas profiles, meteorology, aerosol, cloud and surface properties, and then the concentrations of CO2, CH4 and CO are estimated from the spectra after addition of noise characteristic of geoCARB. The sensitivity of the algorithm to aerosol, the prior distributions assumed for the gases and the meteorology are investigated. The contiguous spatial sampling and fine temporal resolution of geoCARB open the possibility of monitoring localised sources such as power plants. Simulations of emissions from a power plant with a Gaussian plume are conducted to assess the accuracy with which the emission strength may be recovered from geoCARB spectra. Scenarios for "clean" and "dirty" power plants are examined. It is found that a reliable estimate of the emission rate is possible, especially for power plants that have particulate filters, by averaging emission rates estimated from multiple snapshots of the CO2 field surrounding the plant. The result holds even in the presence of partial cloud cover.

  12. APO observations in Southern Greenland: evaluation of modelled air-sea O2 and CO2 fluxes

    Science.gov (United States)

    Bonne, Jean-Louis; Bopp, Laurent; Delmotte, Marc; Cadule, Patricia; Resplandy, Laure; Nevison, Cynthia; Manizza, Manfredi; Valentin Lavric, Jost; Manning, Andrew C.; Masson-Delmotte, Valérie

    2014-05-01

    Since September 2007, the atmospheric CO2 mole fraction and O2/N2 ratio (a proxy for O2 concentration) have been monitored continuously at the coastal site of Ivittuut, southern Greenland (61.21° N, 48.17° W). From 2007 to 2013, our measurements show multi-annual trends of +2.0 ppm/year and -20 per meg/year respectively for CO2 and O2/N2, with annual average peak-to-peak seasonal amplitudes of 14+/-1 ppm and 130+/-15 per meg. We investigate the implications of our data set in terms of APO (Atmospheric Potential Oxygen). This tracer, obtained by a linear combination of CO2 and O2/N2 data, is invariant to CO2 and O2 exchanges in the land biota, but sensitive to the oceanic component of the O2 cycle. It is used as a bridge to evaluate air-sea CO2 and O2 fluxes from atmospheric variations of CO2 and O2/N2. Global ocean biogeochemical models produce estimates of CO2 and O2 air-sea fluxes. Atmospheric APO variations can be simulated through transportation of these fluxes in the atmosphere by Eulerian transport models. Thus, model values of atmospheric APO can be extracted at the station location. This study is based on air-sea flux outputs from CMIP5 simulations. After atmospheric transportation, they give access to atmospheric APO climatologies which can be compared, in terms of seasonal cycles and inter-annual variability, to the in situ observations. A preliminary study is based on the CCSM ocean model air-sea fluxes transported in the atmosphere with the MATCH transport model, over the period 1979-2004. The amplitude of the APO seasonal cycle is correctly captured, but year to year variations on this seasonal cycle appears to be underestimated compared to observations. The LMDZ atmospheric transport model is also used to transport the ocean fluxes from five CMIP5 models, over the period 1979-2005, showing different amplitudes and timings of APO seasonal cycles. This methodology is a first step to evaluate the origin of observed APO variations at our site and then

  13. Productive and morphogenetic responses of buffel grass at different air temperatures and CO2 concentrations

    Directory of Open Access Journals (Sweden)

    Roberta Machado Santos

    2014-08-01

    Full Text Available The objective of the present trial was to evaluate the productive and morphogenetic characteristics of buffel grass subjected to different air temperatures and CO2 concentrations. Three cultivars of buffel grass (Biloela, Aridus and West Australian were compared. Cultivars were grown in growth chambers at three temperatures (day/night: 26/20, 29/23, and 32/26 °C, combined with two concentrations of CO2: 370 and 550 µmol mol-1. The experimental design was completely randomized, in a 3 × 3 × 2 factorial arrangement with three replications. There were interactions between buffel grass cultivars and air temperatures on leaf elongation rate (LER, leaf appearance rate (LAR, leaf lifespan (LL and senescence rate (SR, whereas cultivars vs. carbon dioxide concentration affected forage mass (FM, root mass (RM, shoot/root ratio, LL and SR. Leaf elongation rate and SR were higher as the air temperature was raised. Increasing air temperature also promoted an increase in LAR, except for West Australian. High CO2 concentration provided greater SR of plants, except for Biloela. Cultivar West Australian had higher FM in relation to Biloela and Aridus when the CO2 concentration was increased to 550 µmol mol-1. West Australian was the only cultivar that responded with more forage mass when it was exposed to higher carbon dioxide concentrations, whereas Aridus had depression in forage mass. The increase in air temperatures affects morphogenetic responses of buffel grass, accelerating its vegetative development without increasing forage mass. Elevated carbon dioxide concentration changes productive responses of buffel grass.

  14. CO{sub 2} exchange, environmental productivity indices, and productivity of Agaves and Cacti under current and elevated atmospheric CO{sub 2} concentrations. Terminal report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-06-01

    The research described in the proposal investigated net CO{sub 2} uptake and biomass accumulation for an extremely productive CAM plant, the prickly pear cactus Opuntia ficus-indica, under conditions of elevated CO{sub 2} concentrations for relatively long periods. The influences of soil water status, air temperature, and the photosynthetic photon flux (PPF) on net CO{sub 2} uptake over 24-h periods were evaluated to enable predictions to be made based on an Environmental Productivity Index (EPI). Specifically, EPI predicts the fraction of maximal daily net CO{sub 2} uptake based on prevailing environmental conditions. It is the product of indices for temperature, soil water, and intercepted PPF, each of which range from 0.00 when that index factor completely inhibits net CO{sub 2} uptake to 1.00 when no limitation occurs. For instance, the Water Index is 1.00 under wet conditions and decreases to 0.00 during prolonged drought. Although the major emphasis of the research was on net CO{sub 2} uptake and the resulting biomass production for O. ficus-indica, effects of elevated CO{sub 2} concentrations on root: shoot ratios and on the activities of the two carboxylating enzymes were also investigated. Moreover, experiments were also done on other CAM plants, including Agave deserti, Agave salmiana, and Hylocereus undatus, and Stenocereus queretaroensis.

  15. Toward verifying fossil fuel CO2 emissions with the CMAQ model: motivation, model description and initial simulation.

    Science.gov (United States)

    Liu, Zhen; Bambha, Ray P; Pinto, Joseph P; Zeng, Tao; Boylan, Jim; Huang, Maoyi; Lei, Huimin; Zhao, Chun; Liu, Shishi; Mao, Jiafu; Schwalm, Christopher R; Shi, Xiaoying; Wei, Yaxing; Michelsen, Hope A

    2014-04-01

    Motivated by the question of whether and how a state-of-the-art regional chemical transport model (CTM) can facilitate characterization of CO2 spatiotemporal variability and verify CO2 fossil-fuel emissions, we for the first time applied the Community Multiscale Air Quality (CMAQ) model to simulate CO2. This paper presents methods, input data, and initial results for CO2 simulation using CMAQ over the contiguous United States in October 2007. Modeling experiments have been performed to understand the roles of fossil-fuel emissions, biosphere-atmosphere exchange, and meteorology in regulating the spatial distribution of CO2 near the surface over the contiguous United States. Three sets of net ecosystem exchange (NEE) fluxes were used as input to assess the impact of uncertainty of NEE on CO2 concentrations simulated by CMAQ. Observational data from six tall tower sites across the country were used to evaluate model performance. In particular, at the Boulder Atmospheric Observatory (BAO), a tall tower site that receives urban emissions from Denver CO, the CMAQ model using hourly varying, high-resolution CO2 fossil-fuel emissions from the Vulcan inventory and Carbon Tracker optimized NEE reproduced the observed diurnal profile of CO2 reasonably well but with a low bias in the early morning. The spatial distribution of CO2 was found to correlate with NO(x), SO2, and CO, because of their similar fossil-fuel emission sources and common transport processes. These initial results from CMAQ demonstrate the potential of using a regional CTM to help interpret CO2 observations and understand CO2 variability in space and time. The ability to simulate a full suite of air pollutants in CMAQ will also facilitate investigations of their use as tracers for CO2 source attribution. This work serves as a proof of concept and the foundation for more comprehensive examinations of CO2 spatiotemporal variability and various uncertainties in the future. Atmospheric CO2 has long been modeled

  16. A multi-model approach to monitor emissions of CO2 and CO from an urban–industrial complex

    Directory of Open Access Journals (Sweden)

    I. Super

    2017-11-01

    Full Text Available Monitoring urban–industrial emissions is often challenging because observations are scarce and regional atmospheric transport models are too coarse to represent the high spatiotemporal variability in the resulting concentrations. In this paper we apply a new combination of an Eulerian model (Weather Research and Forecast, WRF, with chemistry and a Gaussian plume model (Operational Priority Substances – OPS. The modelled mixing ratios are compared to observed CO2 and CO mole fractions at four sites along a transect from an urban–industrial complex (Rotterdam, the Netherlands towards rural conditions for October–December 2014. Urban plumes are well-mixed at our semi-urban location, making this location suited for an integrated emission estimate over the whole study area. The signals at our urban measurement site (with average enhancements of 11 ppm CO2 and 40 ppb CO over the baseline are highly variable due to the presence of distinct source areas dominated by road traffic/residential heating emissions or industrial activities. This causes different emission signatures that are translated into a large variability in observed ΔCO : ΔCO2 ratios, which can be used to identify dominant source types. We find that WRF-Chem is able to represent synoptic variability in CO2 and CO (e.g. the median CO2 mixing ratio is 9.7 ppm, observed, against 8.8 ppm, modelled, but it fails to reproduce the hourly variability of daytime urban plumes at the urban site (R2 up to 0.05. For the urban site, adding a plume model to the model framework is beneficial to adequately represent plume transport especially from stack emissions. The explained variance in hourly, daytime CO2 enhancements from point source emissions increases from 30 % with WRF-Chem to 52 % with WRF-Chem in combination with the most detailed OPS simulation. The simulated variability in ΔCO :  ΔCO2 ratios decreases drastically from 1.5 to 0.6 ppb ppm−1, which agrees

  17. A multi-model approach to monitor emissions of CO2 and CO from an urban-industrial complex

    Science.gov (United States)

    Super, Ingrid; Denier van der Gon, Hugo A. C.; van der Molen, Michiel K.; Sterk, Hendrika A. M.; Hensen, Arjan; Peters, Wouter

    2017-11-01

    Monitoring urban-industrial emissions is often challenging because observations are scarce and regional atmospheric transport models are too coarse to represent the high spatiotemporal variability in the resulting concentrations. In this paper we apply a new combination of an Eulerian model (Weather Research and Forecast, WRF, with chemistry) and a Gaussian plume model (Operational Priority Substances - OPS). The modelled mixing ratios are compared to observed CO2 and CO mole fractions at four sites along a transect from an urban-industrial complex (Rotterdam, the Netherlands) towards rural conditions for October-December 2014. Urban plumes are well-mixed at our semi-urban location, making this location suited for an integrated emission estimate over the whole study area. The signals at our urban measurement site (with average enhancements of 11 ppm CO2 and 40 ppb CO over the baseline) are highly variable due to the presence of distinct source areas dominated by road traffic/residential heating emissions or industrial activities. This causes different emission signatures that are translated into a large variability in observed ΔCO : ΔCO2 ratios, which can be used to identify dominant source types. We find that WRF-Chem is able to represent synoptic variability in CO2 and CO (e.g. the median CO2 mixing ratio is 9.7 ppm, observed, against 8.8 ppm, modelled), but it fails to reproduce the hourly variability of daytime urban plumes at the urban site (R2 up to 0.05). For the urban site, adding a plume model to the model framework is beneficial to adequately represent plume transport especially from stack emissions. The explained variance in hourly, daytime CO2 enhancements from point source emissions increases from 30 % with WRF-Chem to 52 % with WRF-Chem in combination with the most detailed OPS simulation. The simulated variability in ΔCO :  ΔCO2 ratios decreases drastically from 1.5 to 0.6 ppb ppm-1, which agrees better with the observed standard

  18. Decontamination of solid matrices using supercritical CO{sub 2}: study of contaminant-additives-CO{sub 2}; Decontamination de matrices organiques solides par CO{sub 2} supercritique: etude des interactions contaminant-additifs-CO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Galy, J

    2006-11-15

    This work deals with the decontamination of solid matrices by supercritical CO{sub 2} and more particularly with the study of the interactions between the surfactants and the CO{sub 2} in one part, and with the interactions between the contaminant and the surfactants in another part. The first part of this study has revealed the different interactions between the Pluronics molecules and the supercritical CO{sub 2}. The diagrams graphs have shown that the pluronics (PE 6100, PE 8100 and PE 10100) present a solubility in the supercritical CO{sub 2} low but sufficient (0.1% m/m at 25 MPa and 313 K) for the studied application: the treatment of weak quantities of cerium oxide (or plutonium). An empirical approach based on the evolutions of the slops value and of the origin ordinates of the PT diagrams has been carried out to simulate the phase diagrams PT of the Pluronics. A modeling based on the state equations 'SAFT' (Statistical Associating Fluid Theory) has been studied in order to confirm the experimental results of the disorder points and to understand the role of the different blocks 'PEO' and 'PPO' in the behaviour of Pluronics; this modeling confirms the evolution of the slopes value with the 'CO{sub 2}-phily' of the system. The measure of the surface tension in terms of the Pluronics concentration (PE 6100, 81000 and 10100) has shown different behaviours. For the PE 6100, the surface tension decreases when the surfactant concentration increases (at constant pressure and temperature); on the other hand, for the PE 8100 a slop rupture appears and corresponds to the saturation of the interface water/CO{sub 2} and allows then to determine the Interface Saturation Concentration (ISC). The ISC value (at constant pressure and temperature) increases with an increase of the 'CO{sub 2}-phily'). The model hydrophilous medium being an approximation, it has been replaced by a solid polar phase of CeO{sub 2}. A parallel has

  19. Thermodynamic modeling of NH_3-CO_2-SO_2-K_2SO_4-H_2O system for combined CO_2 and SO_2 capture using aqueous NH_3

    International Nuclear Information System (INIS)

    Qi, Guojie; Wang, Shujuan

    2017-01-01

    Highlights: • A new application of aqueous NH_3 based combined CO_2 and SO_2 process was proposed. • A thermodynamic model simulated the heat of absorption and the K_2SO_4 precipitation. • The CO_2 content can be regenerated in a stripper with lower heat of desorption. • The SO_2 content can be removed by K_2SO_4 precipitation from the lean NH_3 solvent. - Abstract: A new application of aqueous NH_3 based post-combustion CO_2 and SO_2 combined capture process was proposed to simultaneously capture CO_2 and SO_2, and remove sulfite by solid (K_2SO_4) precipitation method. The thermodynamic model of the NH_3-CO_2-SO_2-K_2SO_4-H_2O system for the combined CO_2 and SO_2 capture process was developed and validated in this work to analyze the heat of CO_2 and SO_2 absorption in the NH_3-CO_2-SO_2-H_2O system, and the K_2SO_4 precipitation characteristics in the NH_3-CO_2-SO_2-K_2SO_4-H_2O system. The average heat of CO_2 absorption in the NH_3-CO_2-H_2O system at 40 °C is around −73 kJ/mol CO_2 in 2.5 wt% NH_3 with CO_2 loading between 0.2 and 0.5 C/N. The average heat of SO_2 absorption in the NH_3-SO_2-H_2O system at 40 °C is around −120 kJ/mol SO_2 in 2.5 wt% NH_3 with SO_2 loading between 0 and 0.5 S/N. The average heat of CO_2 absorption in the NH_3-CO_2-SO_2-H_2O system at 40 °C is 77, 68, and 58 kJ/mol CO_2 in 2.5 wt% NH_3 with CO_2 loading between 0.2 and 0.5 C/N, when SO_2 loading is 0, 0.1, 0.2 S/N, respectively. The solubility of K_2SO_4 increases with temperature, CO_2 and SO_2 loadings, but decreases with NH_3 concentration in the CO_2 and SO_2 loaded aqueous NH_3. The thermodynamic evaluation indicates that the combined CO_2 and SO_2 capture process could employ the typical absorption/regeneration process to simultaneously capture CO_2 and SO_2 in an absorber, thermally desorb CO_2 in a stripper, and feasibly remove sulfite (oxidized to sulfate) content by precipitating K_2SO_4 from the lean NH_3 solvent after the lean/rich heat exchanger.

  20. Carbon assimilation in Eucalyptus urophylla grown under high atmospheric CO2 concentrations: A proteomics perspective.

    Science.gov (United States)

    Santos, Bruna Marques Dos; Balbuena, Tiago Santana

    2017-01-06

    Photosynthetic organisms may be drastically affected by the future climate projections of a considerable increase in CO 2 concentrations. Growth under a high concentration of CO 2 could stimulate carbon assimilation-especially in C3-type plants. We used a proteomics approach to test the hypothesis of an increase in the abundance of the enzymes involved in carbon assimilation in Eucalyptus urophylla plants grown under conditions of high atmospheric CO 2 . Our strategy allowed the profiling of all Calvin-Benson cycle enzymes and associated protein species. Among the 816 isolated proteins, those involved in carbon fixation were found to be the most abundant ones. An increase in the abundance of six key enzymes out of the eleven core enzymes involved in carbon fixation was detected in plants grown at a high CO 2 concentration. Proteome changes were corroborated by the detection of a decrease in the stomatal aperture and in the vascular bundle area in Eucalyptus urophylla plantlets grown in an environment of high atmospheric CO 2 . Our proteomics approach indicates a positive metabolic response regarding carbon fixation in a CO 2 -enriched atmosphere. The slight but significant increase in the abundance of the Calvin enzymes suggests that stomatal closure did not prevent an increase in the carbon assimilation rates. The sample enrichment strategy and data analysis used here enabled the identification of all enzymes and most protein isoforms involved in the Calvin-Benson-Bessham cycle in Eucalyptus urophylla. Upon growth in CO 2 -enriched chambers, Eucalyptus urophylla plantlets responded by reducing the vascular bundle area and stomatal aperture size and by increasing the abundance of six of the eleven core enzymes involved in carbon fixation. Our proteome approach provides an estimate on how a commercially important C3-type plant would respond to an increase in CO 2 concentrations. Additionally, confirmation at the protein level of the predicted genes involved in

  1. VOLATILECALC: A silicate melt-H2O-CO2 solution model written in Visual Basic for excel

    Science.gov (United States)

    Newman, S.; Lowenstern, J. B.

    2002-01-01

    We present solution models for the rhyolite-H2O-CO2 and basalt-H2O-CO2 systems at magmatic temperatures and pressures below ~ 5000 bar. The models are coded as macros written in Visual Basic for Applications, for use within MicrosoftR Excel (Office'98 and 2000). The series of macros, entitled VOLATILECALC, can calculate the following: (1) Saturation pressures for silicate melt of known dissolved H2O and CO2 concentrations and the corresponding equilibrium vapor composition; (2) open- and closed-system degassing paths (melt and vapor composition) for depressurizing rhyolitic and basaltic melts; (3) isobaric solubility curves for rhyolitic and basaltic melts; (4) isoplethic solubility curves (constant vapor composition) for rhyolitic and basaltic melts; (5) polybaric solubility curves for the two end members and (6) end member fugacities of H2O and CO2 vapors at magmatic temperatures. The basalt-H2O-CO2 macros in VOLATILECALC are capable of calculating melt-vapor solubility over a range of silicate-melt compositions by using the relationships provided by Dixon (American Mineralogist 82 (1997) 368). The output agrees well with the published solution models and experimental data for silicate melt-vapor systems for pressures below 5000 bar. ?? 2002 Elsevier Science Ltd. All rights reserved.

  2. Effect of CO2 Concentration on Growth and Biochemical Composition of Newly Isolated Indigenous Microalga Scenedesmus bajacalifornicus BBKLP-07.

    Science.gov (United States)

    Patil, Lakkanagouda; Kaliwal, Basappa

    2017-05-01

    Photosynthetic mitigation of CO 2 through microalgae is gaining great importance due to its higher photosynthetic ability compared to plants, and the biomass can be commercially exploited for various applications. CO 2 fixation capability of the newly isolated freshwater microalgae Scenedesmus bajacalifornicus BBKLP-07 was investigated using a 1-l photobioreactor. The cultivation was carried at varying concentration of CO 2 ranging from 5 to 25%, and the temperature and light intensities were kept constant. A maximum CO 2 fixation rate was observed at 15% CO 2 concentration. Characteristic growth parameters such as biomass productivity, specific growth rate, and maximum biomass yield, and biochemical parameters such as carbohydrate, protein, lipid, chlorophyll, and carotenoid were determined and discussed. It was observed that the effect of CO 2 concentration on growth and biochemical composition was quite significant. The maximum biomass productivity was 0.061 ± 0.0007 g/l/day, and the rate of CO 2 fixation was 0.12 ± 0.002 g/l/day at 15% CO 2 concentration. The carbohydrate and lipid content were maximum at 25% CO 2 with 26.19 and 25.81% dry cell weight whereas protein, chlorophyll, and carotenoid contents were 32.89% dry cell weight, 25.07 μg/ml and 6.15 μg/ml respectively at 15% CO 2 concentration.

  3. Absorber Model for CO2 Capture by Monoethanolamine

    DEFF Research Database (Denmark)

    Faramarzi, Leila; Kontogeorgis, Georgios; Michelsen, Michael Locht

    2010-01-01

    The rate-based steady-state model proposed by Gabrielsen et al. (Gabrielsen, J.; Michelsen, M. L.; Kontogeorgis, G. M.; Stenby, E. H. AIChE J. 2006, 52, 10, 3443-3451) for the design of the CO2-2-amino-2-methylpropanol absorbers is adopted and improved for the design of the CO2-monoethanolamine......, and their impact on the model's prediction is compared. The model has been successfully applied to CO2 absorber packed columns and validated against pilot plant data with good agreement....

  4. [Influence of elevated atmospheric CO2 concentration on photosynthesis and leaf nitrogen partition in process of photosynthetic carbon cycle in Musa paradisiaca].

    Science.gov (United States)

    Sun, G; Zhao, P; Zeng, X; Peng, S

    2001-06-01

    The photosynthetic rate (Pn) in leaves of Musa paradisiaca grown under elevated CO2 concentration (700 +/- 56 microliters.L-1) for one week was 5.14 +/- 0.32 mumol.m-2.s-1, 22.1% higher than that under ambient CO2 concentration, while under elevated CO2 concentration for 8 week, the Pn decreased by 18.1%. It can be inferred that the photosynthetic acclimation to elevated CO2 concentration and the Pn inhibition occurred in leaves of M. paradisiaca. The respiration rate in light (Rd) was lower in leaves under higher CO2 concentration, compared with that under ambient CO2 concentration. If the respiration in light was not included, the difference in CO2 compensation point for the leaves of both plants was not significant. Under higher CO2 concentration for 8 weeks, the maximum carboxylation rate(Vcmax) and electron transportation rate (J) in leaves decreased respectively by 30.5% and 14.8%, compared with that under ambient CO2 concentration. The calculated apparent quantum yield (alpha) in leaves under elevated CO2 concentration according to the initial slope of Pn/PAR was reduced to 0.014 +/- 0.010 molCO2.mol-1 quanta, compared with the value of 0.025 +/- 0.005 molCO2.mol-1 quanta in the control. The efficiency of light energy conversion also decreased from 0.203 to 0.136 electrons.quanta-1 in plants under elevated CO2 concentration. A lower partitioning coefficient for leaf nitrogen in Rubisco, bioenergetics and thylakoid light-harvesting components was observed in plants under higher CO2 concentration. The results indicated that the multi-process of photosynthesis was suppressed significantly by a long-term (8 weeks) higher CO2 concentration incubation.

  5. CO{sub 2} exchange environmental productivity indices, and productivity of agaves and cacti under current and elevated atmospheric CO{sub 2} concentrations. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Nobel, P.S.

    1994-12-31

    The research described in the proposal investigated net CO{sub 2} uptake and biomass accumulation for an extremely productive CAM plant, the prickly pear cactus Opuntia ficus-indica, under conditions of elevated CO{sub 2} concentrations for relatively long periods. The influences of soil water status, air temperature, and the photosynthetic photon flux (PPF) on net CO{sub 2} uptake over 24-h periods were evaluated to enable predictions to be made based on an Environmental Productivity Index (EPI). Specifically, EPI predicts the fraction of maximal daily net CO{sub 2} uptake based on prevailing environmental conditions. It is the product of indices for temperature, soil water, and intercepted PPF, each of which range from 0.00 when that index factor completely inhibits net CO{sub 2} uptake to 1.00 when no limitation occurs. For instance, the Water Index is 1.00 under wet conditions and decreases to 0.00 during prolonged drought. Although the major emphasis of the research was on net C0{sub 2} uptake and the resulting biomass production for O. ficus-indica, effects of elevated CO{sub 2} concentrations on root: shoot ratios and on the activities of the two carboxylating enzymes were also investigated. Moreover, experiments were also done on other CAM plants, including Agave deserti, Agave salmiana, and Hylocereus undatus, and Stenocereus queretaroensis.

  6. Modeling and validation of on-road CO2 emissions inventories at the urban regional scale

    International Nuclear Information System (INIS)

    Brondfield, Max N.; Hutyra, Lucy R.; Gately, Conor K.; Raciti, Steve M.; Peterson, Scott A.

    2012-01-01

    On-road emissions are a major contributor to rising concentrations of atmospheric greenhouse gases. In this study, we applied a downscaling methodology based on commonly available spatial parameters to model on-road CO 2 emissions at the 1 × 1 km scale for the Boston, MA region and tested our approach with surface-level CO 2 observations. Using two previously constructed emissions inventories with differing spatial patterns and underlying data sources, we developed regression models based on impervious surface area and volume-weighted road density that could be scaled to any resolution. We found that the models accurately reflected the inventories at their original scales (R 2 = 0.63 for both models) and exhibited a strong relationship with observed CO 2 mixing ratios when downscaled across the region. Moreover, the improved spatial agreement of the models over the original inventories confirmed that either product represents a viable basis for downscaling in other metropolitan regions, even with limited data. - Highlights: ► We model two on-road CO 2 emissions inventories using common spatial parameters. ► Independent CO 2 observations are used to validate the emissions models. ► The downscaled emissions models capture the urban spatial heterogeneity of Boston. ► Emissions estimates show a strong non-linear relationship with observed CO 2 . ► Our study is repeatable, even in areas with limited data. - This work presents a new, reproducible methodology for downscaling and validating on-road CO 2 emissions estimates.

  7. Sensitive indicators of Stipa bungeana response to precipitation under ambient and elevated CO2 concentration

    Science.gov (United States)

    Shi, Yaohui; Zhou, Guangsheng; Jiang, Yanling; Wang, Hui; Xu, Zhenzhu

    2018-02-01

    Precipitation is a primary environmental factor in the semiarid grasslands of northern China. With increased concentrations of atmospheric greenhouse gases, precipitation regimes will change, and high-impact weather events may be more common. Currently, many ecophysiological indicators are known to reflect drought conditions, but these indicators vary greatly among species, and few studies focus on the applicability of these drought indicators under high CO2 conditions. In this study, five precipitation levels (- 30%, - 15%, control, + 15%, and + 30%) were used to simulate the effects of precipitation change on 18 ecophysiological characteristics in Stipa bungeana, including leaf area, plant height, leaf nitrogen (N), and chlorophyll content, among others. Two levels of CO2 concentration (ambient, 390 ppm; 550 ppm) were used to simulate the effects of elevated CO2 on these drought indicators. Using gray relational analysis and phenotypic plasticity analysis, we found that total leaf area or leaf number (morphology), leaf water potential or leaf water content (physiology), and aboveground biomass better reflected the water status of S. bungeana under ambient and elevated CO2 than the 13 other analyzed variables. The sensitivity of drought indicators changed under the elevated CO2 condition. By quantifying the relationship between precipitation and the five most sensitive indicators, we found that the thresholds of precipitation decreased under elevated CO2 concentration. These results will be useful for objective monitoring and assessment of the occurrence and development of drought events in S. bungeana grasslands.

  8. Estimating Indoor PM2.5 and CO Concentrations in Households in Southern Nepal: The Nepal Cookstove Intervention Trials.

    Directory of Open Access Journals (Sweden)

    Chen Chen

    Full Text Available High concentrations of household air pollution (HAP due to biomass fuel usage with unvented, insufficient combustion devices are thought to be an important health risk factor in South Asia population. To better characterize the indoor concentrations of particulate matter (PM2.5 and carbon monoxide (CO, and to understand their impact on health in rural southern Nepal, this study analyzed daily monitoring data collected with DataRAM pDR-1000 and LASCAR CO data logger in 2980 households using traditional biomass cookstove indoor through the Nepal Cookstove Intervention Trial-Phase I between March 2010 and October 2011. Daily average PM2.5 and CO concentrations collected in area near stove were 1,376 (95% CI, 1,331-1,423 μg/m3 and 10.9 (10.5-11.3 parts per million (ppm among households with traditional cookstoves. The 95th percentile, hours above 100μg/m3 for PM2.5 or 6ppm for CO, and hours above 1000μg/m3 for PM2.5 or 9ppm for CO were also reported. An algorithm was developed to differentiate stove-influenced (SI periods from non-stove-influenced (non-SI periods in monitoring data. Average stove-influenced concentrations were 3,469 (3,350-3,588 μg/m3 for PM2.5 and 21.8 (21.1-22.6 ppm for CO. Dry season significantly increased PM2.5 concentration in all metrics; wood was the cleanest fuel for PM2.5 and CO, while adding dung into the fuel increased concentrations of both pollutants. For studies in rural southern Nepal, CO concentration is not a viable surrogate for PM2.5 concentrations based on the low correlation between these measures. In sum, this study filled a gap in knowledge on HAP in rural Nepal using traditional cookstoves and revealed very high concentrations in these households.

  9. Dynamics of Soil CO2 Profiles of Pinus sylvestris var. sylvestriformis Seedlings Under CO2 Concentration Doubled%CO2倍增条件下长白赤松幼苗土壤CO2廓线的动态

    Institute of Scientific and Technical Information of China (English)

    韩士杰; 张军辉; 周玉梅; 邹春静

    2002-01-01

    The gas-well system permanently installed in the soil was adopted for studying the dynamic relationship between CO2 profiles and seedling root growth of Pinus sylvestris var. sylvestriformis (Takenouchi) Cheng et C. D. Chu. The study was conducted in the Open Research Station of Changbai Mountain Forest Ecological System, The Chinese Academy of Sciences from 1999 to 2001. Four treatments were arranged in the rectangular open-top chambers (OTCs): ambient CO2+no-seedling, 700 μmol/mol CO2+no-seedling, ambient CO2 +seedlings, 700 μmol/mol CO2+seedlings. By collecting and analyzing soil gas synchronously, it was found that the dynamics of CO2 profiles were related to the biological activity of seedlings. There were more roots distributed in the top soil and the boundary layer across soil and sand, which made more contributions to the CO2 profiles due to respiration root. Compared with the ambient CO2, elevated CO2 led to the peak of CO2 concentration distribution shifted from soil surface layer to the boundary layer as seasonally growing of seedling roots. It is suggested the gas-well system is an inexpensive, non-destructive and relatively sensitive method for study of soil CO2 concentration profiles.%采用固定在土壤中的气井系统,监测土壤剖面的CO2动态及其与长白赤松 (Pinus sylvestris var. sylvestriformis (Takenouchi) Cheng et C. D. Chu) 幼苗根系发展之间的关系.实验研究共设4种CO2处理,分别是环境CO2浓度,无苗;CO2为700 μmol/mol,无苗;环境CO2浓度,有苗;CO2为700 μmol/mol,有苗.通过对土壤剖面CO2气体的同步采集与分析表明:土壤CO2廓线与幼苗根系的生物活性密切相关.在土壤表面及壤土和沙土的边界层中,根系分布密集,根系的呼吸作用对那两个土层CO2贡献大;随着幼苗的季节生长,与环境CO2浓度比较,CO2倍增将导致土壤剖面上CO2

  10. Numerical modeling of pore-scale phenomena during CO2 sequestration in oceanic sediments

    International Nuclear Information System (INIS)

    Kang, Qinjun; Tsimpanogiannis, Ioannis N.; Zhang, Dongxiao; Lichtner, Peter C.

    2005-01-01

    Direct disposal of liquid CO 2 on the ocean floor is one of the approaches considered for sequestering CO 2 in order to reduce its concentration in the atmosphere. At oceanic depths deeper than approximately 3000 m, liquid CO 2 density is higher than the density of seawater and CO 2 is expected to sink and form a pool at the ocean floor. In addition to chemical reactions between CO 2 and seawater to form hydrate, fluid displacement is also expected to occur within the ocean floor sediments. In this work, we consider two different numerical models for hydrate formation at the pore scale. The first model consists of the Lattice Boltzmann (LB) method applied to a single-phase supersaturated solution in a constructed porous medium. The second model is based on the Invasion Percolation (IP) in pore networks, applied to two-phase immiscible displacement of seawater by liquid CO 2 . The pore-scale results are upscaled to obtain constitutive relations for porosity, both transverse and for the entire domain, and for permeability. We examine deposition and displacement patterns, and changes in porosity and permeability due to hydrate formation, and how these properties depend on various parameters including a parametric study of the effect of hydrate formation kinetics. According to the simulations, the depth of CO 2 invasion in the sediments is controlled by changes in the pore-scale porosity close to the hydrate formation front. (author)

  11. Mathematical model of CO2 release during milk fermentation using natural kefir grains.

    Science.gov (United States)

    Goršek, Andreja; Ritonja, Jožef; Pečar, Darja

    2018-03-12

    Milk fermentation takes place in the presence of various micro-organisms, producing a variety of dairy products. The oldest of them is kefir, which is usually produced by the fermentation of milk with kefir grains. Carbon dioxide (CO 2 ), as one of the process products, also contributes to the characteristic flavor of kefir. The amount of CO 2 generated during fermentation depends on bioprocessing conditions and may change, which is not desirable at the industrial level. In this study we developed a simplified mathematical model of CO 2 release in the milk-fermentation process. An intuitive approach based on superposition and experimental analysis was used for the modeling. The chemical system studied was considered as a two-input (temperature, rotational frequency of the stirrer) one-output (CO 2 concentration) dynamic system. Based on an analysis of CO 2 release transients in the case of non-simultaneous stepwise changed input quantities, two differential equations were defined that describe the influence of the two input quantities on the output quantity. The simulation results were verified by experiments. The proposed model can be used for a comprehensive analysis of the process that is being studied and for the design and synthesis of advanced control systems, which will ensure a controlled CO 2 release at the industrial level. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.

  12. Transported PDF Modeling of Nonpremixed Turbulent CO/H-2/N-2 Jet Flames

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, xinyu; Haworth, D. C.; Huckaby, E. David

    2012-01-01

    Turbulent CO/H{sub 2}/N{sub 2} (“syngas”) flames are simulated using a transported composition probability density function (PDF) method. A consistent hybrid Lagrangian particle/Eulerian mesh algorithm is used to solve the modeled PDF transport equation. The model includes standard k–ϵ turbulence, gradient transport for scalars, and Euclidean minimum spanning tree (EMST) mixing. Sensitivities of model results to variations in the turbulence model, the treatment of radiation heat transfer, the choice of chemical mechanism, and the PDF mixing model are explored. A baseline model reproduces the measured mean and rms temperature, major species, and minor species profiles reasonably well, and captures the scaling that is observed in the experiments. Both our results and the literature suggest that further improvements can be realized with adjustments in the turbulence model, the radiation heat transfer model, and the chemical mechanism. Although radiation effects are relatively small in these flames, consideration of radiation is important for accurate NO prediction. Chemical mechanisms that have been developed specifically for fuels with high concentrations of CO and H{sub 2} perform better than a methane mechanism that was not designed for this purpose. It is important to account explicitly for turbulence–chemistry interactions, although the details of the mixing model do not make a large difference in the results, within reasonable limits.

  13. Experimental Ion Mobility measurements in Ne-CO$_2$ and CO$_2$-N$_2$ mixtures

    CERN Document Server

    Encarnação, P.M.C.C.; Veenhof, R.; Neves, P.N.B.; Santos, F.P.; Trindade, A.M.F.; Borges, F.I.G.M.; Conde, C.A.N.

    2016-01-01

    In this paper we present the experimental results for the mobility, K0, of ions in neon-carbon dioxide (Ne-CO2) and carbon dioxide-nitrogen (CO2-N2) gaseous mixtures for total pressures ranging from 8–12 Torr, reduced electric fields in the 10–25 Td range, at room temperature. Regarding the Ne-CO2 mixture only one peak was observed for CO2 concentrations above 25%, which has been identified as an ion originated in CO2, while below 25% of CO2 a second-small peak appears at the left side of the main peak, which has been attributed to impurities. The mobility values for the main peak range between 3.51 ± 0.05 and 1.07 ± 0.01 cm2V−1s−1 in the 10%-99% interval of CO2, and from 4.61 ± 0.19 to 3.00 ± 0.09 cm2V−1s−1 for the second peak observed (10%–25% of CO2). For the CO2-N2, the time-of-arrival spectra displayed only one peak for CO2 concentrations above 10%, which was attributed to ions originated in CO2, namely CO2+(CO2), with a second peak appearing for CO2 concentrations below 10%. This secon...

  14. Modeling Silicate Weathering for Elevated CO2 and Temperature

    Science.gov (United States)

    Bolton, E. W.

    2016-12-01

    A reactive transport model (RTM) is used to assess CO2 drawdown by silicate weathering over a wide range of temperature, pCO2, and infiltration rates for basalts and granites. Although RTM's have been used extensively to model weathering of basalts and granites for present-day conditions, we extend such modeling to higher CO2 that could have existed during the Archean and Proterozoic. We also consider a wide range of surface temperatures and infiltration rates. We consider several model basalt and granite compositions. We normally impose CO2 in equilibrium with the various atmospheric ranges modeled and CO2 is delivered to the weathering zone by aqueous transport. We also consider models with fixed CO2 (aq) throughout the weathering zone as could occur in soils with partial water saturation or with plant respiration, which can strongly influence pH and mineral dissolution rates. For the modeling, we use Kinflow: a model developed at Yale that includes mineral dissolution and precipitation under kinetic control, aqueous speciation, surface erosion, dynamic porosity, permeability, and mineral surface areas via sub-grid-scale grain models, and exchange of volatiles at the surface. Most of the modeling is done in 1D, but some comparisons to 2D domains with heterogeneous permeability are made. We find that when CO2 is fixed only at the surface, the pH tends toward higher values for basalts than granites, in large part due to the presence of more divalent than monovalent cations in the primary minerals, tending to decrease rates of mineral dissolution. Weathering rates increase (as expected) with increasing CO2 and temperature. This modeling is done with the support of the Virtual Planetary Laboratory.

  15. Effect of elevated atmospheric CO2 concentration on growth and leaf litter decomposition of Quercus acutissima and Fraxinus rhynchophylla.

    Directory of Open Access Journals (Sweden)

    Sangsub Cha

    Full Text Available The atmospheric carbon dioxide (CO2 level is expected to increase substantially, which may change the global climate and carbon dynamics in ecosystems. We examined the effects of an elevated atmospheric CO2 level on the growth of Quercus acutissima and Fraxinus rhynchophylla seedlings. We investigated changes in the chemical composition of leaf litter, as well as litter decomposition. Q. acutissima and F. rhynchophylla did not show differences in dry weight between ambient CO2 and enriched CO2 treatments, but they exhibited different patterns of carbon allocation, namely, lower shoot/root ratio (S/R and decreased specific leaf area (SLA under CO2-enriched conditions. The elevated CO2 concentration significantly reduced the nitrogen concentration in leaf litter while increasing lignin concentrations and carbon/nitrogen (C/N and lignin/N ratios. The microbial biomass associated with decomposing Q. acutissima leaf litter was suppressed in CO2 enrichment chambers, while that of F. rhynchophylla was not. The leaf litter of Q. acutissima from the CO2-enriched chambers, in contrast with F. rhynchophylla, contained much lower nutrient concentrations than that of the litter in the ambient air chambers. Consequently, poorer litter quality suppressed decomposition.

  16. Effect of elevated atmospheric CO2 concentration on growth and leaf litter decomposition of Quercus acutissima and Fraxinus rhynchophylla.

    Science.gov (United States)

    Cha, Sangsub; Chae, Hee-Myung; Lee, Sang-Hoon; Shim, Jae-Kuk

    2017-01-01

    The atmospheric carbon dioxide (CO2) level is expected to increase substantially, which may change the global climate and carbon dynamics in ecosystems. We examined the effects of an elevated atmospheric CO2 level on the growth of Quercus acutissima and Fraxinus rhynchophylla seedlings. We investigated changes in the chemical composition of leaf litter, as well as litter decomposition. Q. acutissima and F. rhynchophylla did not show differences in dry weight between ambient CO2 and enriched CO2 treatments, but they exhibited different patterns of carbon allocation, namely, lower shoot/root ratio (S/R) and decreased specific leaf area (SLA) under CO2-enriched conditions. The elevated CO2 concentration significantly reduced the nitrogen concentration in leaf litter while increasing lignin concentrations and carbon/nitrogen (C/N) and lignin/N ratios. The microbial biomass associated with decomposing Q. acutissima leaf litter was suppressed in CO2 enrichment chambers, while that of F. rhynchophylla was not. The leaf litter of Q. acutissima from the CO2-enriched chambers, in contrast with F. rhynchophylla, contained much lower nutrient concentrations than that of the litter in the ambient air chambers. Consequently, poorer litter quality suppressed decomposition.

  17. Elevated CO2 response of photosynthesis depends on ozone concentration in aspen

    International Nuclear Information System (INIS)

    Noormets, Asko; Kull, Olevi; Sober, Anu; Kubiske, Mark E.; Karnosky, David F.

    2010-01-01

    The effect of elevated CO 2 and O 3 on apparent quantum yield (φ), maximum photosynthesis (P max ), carboxylation efficiency (V cmax ) and electron transport capacity (J max ) at different canopy locations was studied in two aspen (Populus tremuloides) clones of contrasting O 3 tolerance. Local light climate at every leaf was characterized as fraction of above-canopy photosynthetic photon flux density (%PPFD). Elevated CO 2 alone did not affect φ or P max , and increased J max in the O 3 -sensitive, but not in the O 3 -tolerant clone. Elevated O 3 decreased leaf chlorophyll content and all photosynthetic parameters, particularly in the lower canopy, and the negative impact of O 3 increased through time. Significant interaction effect, whereby the negative impact of elevated O 3 was exaggerated by elevated CO 2 was seen in Chl, N and J max , and occurred in both O 3 -tolerant and O 3 -sensitive clones. The clonal differences in the level of CO 2 x O 3 interaction suggest a relationship between photosynthetic acclimation and background O 3 concentration. - Photosynthetic acclimation to elevated CO 2 depends on the background oxidant levels.

  18. Hydrogen purification by selective methanation of CO in CO/CO2/H2

    DEFF Research Database (Denmark)

    Andersen, Anne Mette; Johannessen, Tue; Livbjerg, Hans

    down through the reactor and inside the catalyst pellets/particles. The small particles, which have a rather high effectiveness factor with respect to methanation of CO, have a high CO selectivity, whereas the larger pellets have very low selectivity even at high CO inlet concentrations. Negative...... of reaction kinetics and pore diffusion is crucial for interpreting the experimental data. We have found that the selectivity decreases by increasing the reactor temperature or catalyst particle size and when the CO inlet concentration is reduced. As a result, the selectivity drops significantly...... in an integral reactor operating at high CO-conversion. The lower limit of CO concentration in the outlet is determined by the quasi-equilibrium between CO removal and CO production from CO2....

  19. More on the losses of dissolved CO(2) during champagne serving: toward a multiparameter modeling.

    Science.gov (United States)

    Liger-Belair, Gérard; Parmentier, Maryline; Cilindre, Clara

    2012-11-28

    Pouring champagne into a glass is far from being inconsequential with regard to the dissolved CO(2) concentration found in champagne. Three distinct bottle types, namely, a magnum bottle, a standard bottle, and a half bottle, were examined with regard to their loss of dissolved CO(2) during the service of successively poured flutes. Whatever the bottle size, a decreasing trend is clearly observed with regard to the concentration of dissolved CO(2) found within a flute (from the first to the last one of a whole service). Moreover, when it comes to champagne serving, the bottle size definitely does matter. The higher the bottle volume, the better its buffering capacity with regard to dissolved CO(2) found within champagne during the pouring process. Actually, for a given flute number in a pouring data series, the concentration of dissolved CO(2) found within the flute was found to decrease as the bottle size decreases. The impact of champagne temperature (at 4, 12, and 20 °C) on the losses of dissolved CO(2) found in successively poured flutes for a given standard 75 cL bottle was also examined. Cold temperatures were found to limit the decreasing trend of dissolved CO(2) found within the successively poured flutes (from the first to the last one of a whole service). Our experimental results were discussed on the basis of a multiparameter model that accounts for the major physical parameters that influence the loss of dissolved CO(2) during the service of a whole bottle type.

  20. Modeling and Simulation of Nanoparticle Transport in Multiphase Flows in Porous Media: CO2 Sequestration

    KAUST Repository

    El-Amin, Mohamed

    2012-09-03

    Geological storage of anthropogenic CO2 emissions in deep saline aquifers has recently received tremendous attention in the scientific literature. Injected CO2 plume buoyantly accumulates at the top part of the deep aquifer under a sealing cap rock, and some concern that the high-pressure CO2 could breach the seal rock. However, CO2 will diffuse into the brine underneath and generate a slightly denser fluid that may induce instability and convective mixing. Onset times of instability and convective mixing performance depend on the physical properties of the rock and fluids, such as permeability and density contrast. The novel idea is to adding nanoparticles to the injected CO2 to increase density contrast between the CO2-rich brine and the underlying resident brine and, consequently, decrease onset time of instability and increase convective mixing. As far as it goes, only few works address the issues related to mathematical and numerical modeling aspects of the nanoparticles transport phenomena in CO2 storages. In the current work, we will present mathematical models to describe the nanoparticles transport carried by injected CO2 in porous media. Buoyancy and capillary forces as well as Brownian diffusion are important to be considered in the model. IMplicit Pressure Explicit Saturation-Concentration (IMPESC) scheme is used and a numerical simulator is developed to simulate the nanoparticles transport in CO2 storages.

  1. Characterisation, quantification and modelling of CO2 transport and interactions in a carbonate vadose zone: application to a CO2 diffusive leakage in a geological sequestration context

    International Nuclear Information System (INIS)

    Cohen, Gregory

    2013-01-01

    Global warming is related to atmospheric greenhouse gas concentration increase and especially anthropogenic CO 2 emissions. Geologic sequestration has the potential capacity and the longevity to significantly diminish anthropogenic CO 2 emissions. This sequestration in deep geological formation induces leakage risks from the geological reservoir. Several leakage scenarios have been imagined. Since it could continue for a long period, inducing environmental issues and risks for human, the scenario of a diffusive leakage is the most worrying. Thus, monitoring tools and protocols are needed to set up a near-surface monitoring plan. The present thesis deals with this problematic. The aims are the characterisation, the quantification and the modelling of transport and interactions of CO 2 in a carbonate unsaturated zone. This was achieved following an experimental approach on a natural pilot site in Saint-Emilion (Gironde, France), where diffusive gas leakage experiments were set up in a carbonate unsaturated zone. Different aspects were investigated during the study: natural pilot site description and instrumentation; the physical and chemical characterisation of carbonate reservoir heterogeneity; the natural functioning of the carbonate unsaturated zone and especially the set-up of a CO 2 concentrations baseline; the characterisation of gas plume extension following induced diffusive leakage in the carbonate unsaturated zone and the study of gas-water-rock interactions during a CO 2 diffusive leakage in a carbonate unsaturated zone through numerical simulations. The results show the importance of the carbonate reservoir heterogeneity characterisation as well as the sampling and analysing methods for the different phases. The baseline set-up is of main interest since it allows discrimination between the induced and the natural CO 2 concentrations variations. The transfer of CO 2 in a carbonate unsaturated zone is varying in function of physical and chemical properties

  2. Productive and morphogenetic responses of buffel grass at different air temperatures and CO2 concentrations

    OpenAIRE

    Santos, Roberta Machado; Voltolini, Tadeu Vinhas; Angelotti, Francislene; Aidar, Saulo de Tarso; Chaves, Agnaldo Rodrigues de Melo

    2014-01-01

    The objective of the present trial was to evaluate the productive and morphogenetic characteristics of buffel grass subjected to different air temperatures and CO2 concentrations. Three cultivars of buffel grass (Biloela, Aridus and West Australian) were compared. Cultivars were grown in growth chambers at three temperatures (day/night): 26/20, 29/23, and 32/26 °C, combined with two concentrations of CO2: 370 and 550 µmol mol-1. The experimental design was completely randomized, in a 3 × 3 × ...

  3. Effects of elevated CO2 concentrations on photosynthesis, dark res-piration and RuBPcase activity of three species seedlings in Changbai Mountain

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Two-year-old seedlings of Pinus koraiensis, Pinus sylvestriformis and Fraxinus mandshurica were treated in open-top chambers with elevated CO2 concentrations (700 μL·L-1, 500 μL·L-1) and ambient CO2 concentrations (350 μL·L-1) in Changbai Mountain from June to Sept. in 1999 and 2001. The net photosynthetic rate, dark respiration rate, ribulose-1,5-bisphosphate carboxlase (RuBPcase) activity, and chlorophyll content were analyzed. The results indicated the RuBPcase activity of the three species seedlings increased at elevated CO2 concentrations. The elevated CO2 concentrations stimulated the net photosynthetic rates of three tree species except P. sylvestriformis grown under 500 μL·L-1 CO2 concentration. The dark respiration rates of P. koraiensis and P. sylvestriformis increased under concentration of 700 μL·L-1 CO2, but that of F. mandshurica decreased under both concentrations 700 μL·L-1 and 500 μL·L-1 CO2. The seedlings of F. mandshurica decreased in chlorophyll contents at elevat-ed CO2 concentrations.

  4. Application of a two-pool model to soil carbon dynamics under elevated CO2.

    Science.gov (United States)

    van Groenigen, Kees Jan; Xia, Jianyang; Osenberg, Craig W; Luo, Yiqi; Hungate, Bruce A

    2015-12-01

    Elevated atmospheric CO2 concentrations increase plant productivity and affect soil microbial communities, with possible consequences for the turnover rate of soil carbon (C) pools and feedbacks to the atmosphere. In a previous analysis (Van Groenigen et al., 2014), we used experimental data to inform a one-pool model and showed that elevated CO2 increases the decomposition rate of soil organic C, negating the storage potential of soil. However, a two-pool soil model can potentially explain patterns of soil C dynamics without invoking effects of CO2 on decomposition rates. To address this issue, we refit our data to a two-pool soil C model. We found that CO2 enrichment increases decomposition rates of both fast and slow C pools. In addition, elevated CO2 decreased the carbon use efficiency of soil microbes (CUE), thereby further reducing soil C storage. These findings are consistent with numerous empirical studies and corroborate the results from our previous analysis. To facilitate understanding of C dynamics, we suggest that empirical and theoretical studies incorporate multiple soil C pools with potentially variable decomposition rates. © 2015 John Wiley & Sons Ltd.

  5. Soil CO2 concentrations and efflux dynamics of a tree island in the Pantanal wetland

    Science.gov (United States)

    Lathuillière, Michael J.; Pinto, Osvaldo B.; Johnson, Mark S.; Jassal, Rachhpal S.; Dalmagro, Higo J.; Leite, Nei K.; Speratti, Alicia B.; Krampe, Daniela; Couto, Eduardo G.

    2017-08-01

    The Pantanal is the largest tropical wetland on the planet, and yet little information is available on the biome's carbon cycle. We used an automatic station to measure soil CO2 concentrations and oxidation-reduction potential over the 2014 and 2015 flood cycles of a tree island in the Pantanal that is immune to inundation during the wetland's annual flooding. The soil CO2 concentration profile was then used to estimate soil CO2 efflux over the two periods. In 2014, subsurface soil saturation at 0.30 m depth created conditions in that layer that led to CO2 buildup close to 200,000 ppm and soil oxidation-reduction potential below -300 mV, conditions that were not repeated in 2015 due to annual variability in soil saturation at the site. Mean CO2 efflux over the 2015 flood cycle was 0.023 ± 0.103 mg CO2-C m-2 s-1 representing a total annual efflux of 593 ± 2690 mg CO2-C m-2 y-1. Unlike a nearby tree island site that experiences full inundation during the wet season, here the soil dried quickly following repeated rain events throughout the year, which led to the release of CO2 pulses from the soil. This study highlights not only the complexity and heterogeneity in the Pantanal's carbon balance based on differences in topography, flood cycles, and vegetation but also the challenges of applying the gradient method in the Pantanal due to deviations from steady state conditions.

  6. Effect of phase interaction on catalytic CO oxidation over the SnO_2/Al_2O_3 model catalyst

    International Nuclear Information System (INIS)

    Chai, Shujing; Bai, Xueqin; Li, Jing; Liu, Cheng; Ding, Tong; Tian, Ye; Liu, Chang; Xian, Hui; Mi, Wenbo; Li, Xingang

    2017-01-01

    Highlights: • Activity for CO oxidation is greatly enhanced by interaction between SnO_2 and Al_2O_3. • Interaction between SnO_2 and Al_2O_3 phases can generate oxygen vacancies. • Oxygen vacancies play an import role for catalytic CO oxidation. • Sn"4"+ cations are the effective sites for catalytic CO oxidation. • Langmuir-Hinshelwood model is preferred for catalytic CO oxidation. - Abstract: We investigated the catalytic CO oxidation over the SnO_2/Al_2O_3 model catalysts. Our results show that interaction between the Al_2O_3 and SnO_2 phases results in the significantly improved catalytic activity because of the formation of the oxygen vacancies. The oxygen storage capacity of the SnO_2/Al_2O_3 catalyst prepared by the physically mixed method is nearly two times higher than that of the SnO_2, which probably results from the change of electron concentration on the interface of the SnO_2 and Al_2O_3 phases. Introducing water vapor to the feeding gas would a little decrease the activity of the catalysts, but the reaction rate could completely recover after removal of water vapor. The kinetics results suggest that the surface Sn"4"+ cations are effective CO adsorptive sites, and the surface adsorbed oxygen plays an important role upon CO oxidation. The reaction pathways upon the SnO_2-based catalysts for CO oxidation follow the Langmuir-Hinshelwood model.

  7. Modelling daily PM2.5 concentrations at high spatio-temporal resolution across Switzerland.

    Science.gov (United States)

    de Hoogh, Kees; Héritier, Harris; Stafoggia, Massimo; Künzli, Nino; Kloog, Itai

    2018-02-01

    Spatiotemporal resolved models were developed predicting daily fine particulate matter (PM 2.5 ) concentrations across Switzerland from 2003 to 2013. Relatively sparse PM 2.5 monitoring data was supplemented by imputing PM 2.5 concentrations at PM 10 sites, using PM 2.5 /PM 10 ratios at co-located sites. Daily PM 2.5 concentrations were first estimated at a 1 × 1km resolution across Switzerland, using Multiangle Implementation of Atmospheric Correction (MAIAC) spectral aerosol optical depth (AOD) data in combination with spatiotemporal predictor data in a four stage approach. Mixed effect models (1) were used to predict PM 2.5 in cells with AOD but without PM 2.5 measurements (2). A generalized additive mixed model with spatial smoothing was applied to generate grid cell predictions for those grid cells where AOD was missing (3). Finally, local PM 2.5 predictions were estimated at each monitoring site by regressing the residuals from the 1 × 1km estimate against local spatial and temporal variables using machine learning techniques (4) and adding them to the stage 3 global estimates. The global (1 km) and local (100 m) models explained on average 73% of the total,71% of the spatial and 75% of the temporal variation (all cross validated) globally and on average 89% (total) 95% (spatial) and 88% (temporal) of the variation locally in measured PM 2.5 concentrations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Modeling of CO2 absorber using an AMP solution

    DEFF Research Database (Denmark)

    Gabrielsen, Jostein; Michelsen, Michael Locht; Stenby, Erling Halfdan

    2006-01-01

    Abstract: An explicit model for carbon dioxide (CO2) solubility in an aqueous solution of 2-amino-2-methyl-1-propanol (AMP) has been proposed and an expression for the heat of absorption of CO2 has been developed as a function of loading and temperature. A rate-based steady-state model for CO2...... to absorption of CO2 into an AMP solution in a packed tower and validated against pilot-plant data from the literature. (c) 2006 American Institute of Chemical Engineers....... absorption into an AMP solution has been proposed, using both the proposed expression for the CO2 solubility and the expression for the heat of absorption along with an expression for the enhancement factor and physicochemical data from the literature. The proposed model has successfully been applied...

  9. Measurements of the total CO2 concentration and partial pressure of CO2 in seawater during WOCE expeditions in the South Pacific Ocean

    International Nuclear Information System (INIS)

    Takahashi, T.; Goddard, J.G.; Chipman, D.W.; Rubin, S.I.

    1993-01-01

    During the first year of the grant, we participated in three WOCE expeditions (a total of 152 days at sea) in the South Pacific Ocean, and the field phase of the proposed investigation has been successfully completed. The total CO 2 concentration and pCO 2 were determined at sea in 4419 water samples collected at 422 stations. On the basis of the shipboard analyses of SIO Reference Solutions for CO, and a comparison with the results of previous expeditions, the overall precision of our total CO 2 determinations is estimated to be about ±2 uM/kg. The deep water data indicate that there is a CO 2 maximum centered about 2600 meters deep. This appears to represent a southward return flow from the North Pacific. The magnitude and distribution of the CO, maximum observed along the 135.0 degrees W meridian differ from those observed along the 150.5 degrees W meridian due to Tuamotu Archipelago, a topographic high which interferes with the southward return flow. The surface water pCO 2 data indicate that the South Pacific sub-tropical gyre water located between about 15 degrees S and 50 degrees S is a sink for atmospheric CO 2

  10. Effects of elevated CO2 concentration on growth and water usage of tomato seedlings under different ammonium/nitrate ratios

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Increasing atmospheric CO2 concentration is generally expected to enhance photosynthesis and growth of agricultural C3 vegetable crops,and therefore results in an increase in crop yield.However,little is known about the combined effect of elevated CO2 and N species on plant growth and development.Two growth-chamber experiments were conducted to determine the effects of NH4+/NO3- ratio and elevated CO2 concentration on the physiological development and water use of tomato seedlings.Tomato was grown for 45 d in containers with nutrient solutions varying in NH4+/NO3- ratios and CO2 concentrations in growth chambers.Results showed that plant height,stem thickness,total dry weight,dry weight of the leaves,stems and roots,G value (total plant dry weight/seedling days),chlorophyll content,photosynthetic rate,leaf-level and whole plant-level water use efficiency and cumulative water consumption of tomato seedlings were increased with increasing proportion of NO3- in nutrient solutions in the elevated CO2 treatment.Plant biomass,plant height,stem thickness and photosynthetic rate were 67%,22%,24% and 55% higher at elevated CO2 concentration than at ambient CO2 concentration,depending on the values of NH4+/NO3- ratio.These results indicated that elevating CO2 concentration did not mitigate the adverse effects of 100% NH4+-N (in nutrient solution) on the tomato seedlings.At both CO2 levels,NH4+/NO3- ratios of nutrient solutions strongly influenced almost every measure of plant performance,and nitrate-fed plants attained a greater biomass production,as compared to ammonium-fed plants.These phenomena seem to be related to the coordinated regulation of photosynthetic rate and cumulative water consumption of tomato seedlings.

  11. Reactive transport modeling to study changes in water chemistry induced by CO2 injection at the Frio-I brine pilot

    Energy Technology Data Exchange (ETDEWEB)

    Kharaka, Y.K; Doughty, C.; Freifeld, B.M.; Daley, T.M.; Xu, T.

    2009-11-01

    To demonstrate the potential for geologic storage of CO{sub 2} in saline aquifers, the Frio-I Brine Pilot was conducted, during which 1600 tons of CO{sub 2} were injected into a high-permeability sandstone and the resulting subsurface plume of CO{sub 2} was monitored using a variety of hydrogeological, geophysical, and geochemical techniques. Fluid samples were obtained before CO{sub 2} injection for baseline geochemical characterization, during the CO{sub 2} injection to track its breakthrough at a nearby observation well, and after injection to investigate changes in fluid composition and potential leakage into an overlying zone. Following CO{sub 2} breakthrough at the observation well, brine samples showed sharp drops in pH, pronounced increases in HCO{sub 3}{sup -} and aqueous Fe, and significant shifts in the isotopic compositions of H{sub 2}O and dissolved inorganic carbon. Based on a calibrated 1-D radial flow model, reactive transport modeling was performed for the Frio-I Brine Pilot. A simple kinetic model of Fe release from the solid to aqueous phase was developed, which can reproduce the observed increases in aqueous Fe concentration. Brine samples collected after half a year had lower Fe concentrations due to carbonate precipitation, and this trend can be also captured by our modeling. The paper provides a method for estimating potential mobile Fe inventory, and its bounding concentration in the storage formation from limited observation data. Long-term simulations show that the CO{sub 2} plume gradually spreads outward due to capillary forces, and the gas saturation gradually decreases due to its dissolution and precipitation of carbonates. The gas phase is predicted to disappear after 500 years. Elevated aqueous CO{sub 2} concentrations remain for a longer time, but eventually decrease due to carbonate precipitation. For the Frio-I Brine Pilot, all injected CO{sub 2} could ultimately be sequestered as carbonate minerals.

  12. Mass transport modelling for the electroreduction of CO2 on Cu nanowires

    Science.gov (United States)

    Raciti, David; Mao, Mark; Wang, Chao

    2018-01-01

    Mass transport plays an important role in CO2 reduction electrocatalysis. Albeit being more pronounced on nanostructured electrodes, the studies of mass transport for CO2 reduction have yet been limited to planar electrodes. We report here the development of a mass transport model for the electroreduction of CO2 on Cu nanowire electrodes. Fed with the experimental data from electrocatalytic studies, the local concentrations of CO2, {{{{HCO}}}3}-,{{{{CO}}}3}2- and OH- on the nanostructured electrodes are calculated by solving the diffusion equations with spatially distributed electrochemical reaction terms incorporated. The mass transport effects on the catalytic activity and selectivity of the Cu nanowire electrocatalysts are thus discussed by using the local pH as the descriptor. The established correlations between the electrocatalytic performance and the local pH shows that, the latter does not only determine the acid-base reaction equilibrium, but also regulates the mass transport and reaction kinetics. Based on these findings, the optimal range of local pH for CO2 reduction is discussed in terms of a fine balance among the suppression of hydrogen evolution, improvement of C2 product selectivity and limitation of CO2 supply. Our work highlights the importance of understanding the mass transport effects in interpretation of CO2 reduction electrocatalysis on high-surface-area catalysts.

  13. Decadal trends in the seasonal-cycle amplitude of terrestrial CO2 exchange resulting from the ensemble of terrestrial biosphere models

    Directory of Open Access Journals (Sweden)

    Akihiko Ito

    2016-05-01

    Full Text Available The seasonal-cycle amplitude (SCA of the atmosphere–ecosystem carbon dioxide (CO2 exchange rate is a useful metric of the responsiveness of the terrestrial biosphere to environmental variations. It is unclear, however, what underlying mechanisms are responsible for the observed increasing trend of SCA in atmospheric CO2 concentration. Using output data from the Multi-scale Terrestrial Model Intercomparison Project (MsTMIP, we investigated how well the SCA of atmosphere–ecosystem CO2 exchange was simulated with 15 contemporary terrestrial ecosystem models during the period 1901–2010. Also, we made attempt to evaluate the contributions of potential mechanisms such as atmospheric CO2, climate, land-use, and nitrogen deposition, through factorial experiments using different combinations of forcing data. Under contemporary conditions, the simulated global-scale SCA of the cumulative net ecosystem carbon flux of most models was comparable in magnitude with the SCA of atmospheric CO2 concentrations. Results from factorial simulation experiments showed that elevated atmospheric CO2 exerted a strong influence on the seasonality amplification. When the model considered not only climate change but also land-use and atmospheric CO2 changes, the majority of the models showed amplification trends of the SCAs of photosynthesis, respiration, and net ecosystem production (+0.19 % to +0.50 % yr−1. In the case of land-use change, it was difficult to separate the contribution of agricultural management to SCA because of inadequacies in both the data and models. The simulated amplification of SCA was approximately consistent with the observational evidence of the SCA in atmospheric CO2 concentrations. Large inter-model differences remained, however, in the simulated global tendencies and spatial patterns of CO2 exchanges. Further studies are required to identify a consistent explanation for the simulated and observed amplification trends, including their

  14. Implications for carbon processing beneath the Greenland Ice Sheet from dissolved CO2 and CH4 concentrations of subglacial discharge

    Science.gov (United States)

    Pain, A.; Martin, J.; Martin, E. E.

    2017-12-01

    Subglacial carbon processes are of increasing interest as warming induces ice melting and increases fluxes of glacial meltwater into proglacial rivers and the coastal ocean. Meltwater may serve as an atmospheric source or sink of carbon dioxide (CO2) or methane (CH4), depending on the magnitudes of subglacial organic carbon (OC) remineralization, which produces CO2 and CH4, and mineral weathering reactions, which consume CO2 but not CH4. We report wide variability in dissolved CO2 and CH4 concentrations at the beginning of the melt season (May-June 2017) between three sites draining land-terminating glaciers of the Greenland Ice Sheet. Two sites, located along the Watson River in western Greenland, drain the Isunnguata and Russell Glaciers and contained 1060 and 400 ppm CO2, respectively. In-situ CO2 flux measurements indicated that the Isunnguata was a source of atmospheric CO2, while the Russell was a sink. Both sites had elevated CH4 concentrations, at 325 and 25 ppm CH4, respectively, suggesting active anaerobic OC remineralization beneath the ice sheet. Dissolved CO2 and CH4 reached atmospheric equilibrium within 2.6 and 8.6 km downstream of Isunnguata and Russell discharge sites, respectively. These changes reflect rapid gas exchange with the atmosphere and/or CO2 consumption via instream mineral weathering. The third site, draining the Kiagtut Sermiat in southern Greenland, had about half atmospheric CO2 concentrations (250 ppm), but approximately atmospheric CH4 concentrations (2.1 ppm). Downstream CO2 flux measurements indicated ingassing of CO2 over the entire 10-km length of the proglacial river. CO2 undersaturation may be due to more readily weathered lithologies underlying the Kiagtut Sermiat compared to Watson River sites, but low CH4 concentrations also suggest limited contributions of CO2 and CH4 from OC remineralization. These results suggest that carbon processing beneath the Greenland Ice Sheet may be more variable than previously recognized

  15. Comparing atmospheric transport models for future regional inversions over Europe - Part 1: mapping the atmospheric CO2 signals

    International Nuclear Information System (INIS)

    Geels, C.; Brandt, J.; Christensen, J.H.; Frohn, L.M.; Gloor, M.; Ciais, P.; Bousquet, P.; Peylin, P.; Dargaville, R.; Ramonet, M.; Vermeulen, A.T.; Aalto, T.; Haszpra, L.; Karstens, U.; Rodenbeck, C.; Carboni, G.; Santaguida, R.

    2007-01-01

    The CO 2 source and sink distribution across Europe can be estimated in principle through inverse methods by combining CO 2 observations and atmospheric transport models. Uncertainties of such estimates are mainly due to insufficient spatio-temporal coverage of CO 2 observations and biases of the models. In order to assess the biases related to the use of different models the CO 2 concentration field over Europe has been simulated with five different Eulerian atmospheric transport models as part of the EU-funded AEROCARB project, which has the main goal to estimate the carbon balance of Europe. In contrast to previous comparisons, here both global coarse-resolution and regional higher-resolution models are included. Continuous CO 2 observations from continental, coastal and mountain sites as well as flasks sampled on aircraft are used to evaluate the models ability to capture the spatio-temporal variability and distribution of lower troposphere CO 2 across Europe. 14 CO 2 is used in addition to evaluate separately fossil fuel signal predictions. The simulated concentrations show a large range of variation, with up to similar to 10 ppm higher surface concentrations over Western and Central Europe in the regional models with highest (mesoscale) spatial resolution. The simulation-data comparison reveals that generally high-resolution models are more successful than coarse models in capturing the amplitude and phasing of the observed short-term variability. At high-altitude stations the magnitude of the differences between observations and models and in between models is less pronounced, but the timing of the diurnal cycle is not well captured by the models. The data comparisons show also that the timing of the observed variability on hourly to daily time scales at low-altitude stations is generally well captured by all models. However, the amplitude of the variability tends to be underestimated. While daytime values are quite well predicted, nighttime values are

  16. Enhanced growth of the red alga Porphyra-Yezoensis Ueda in high CO sub 2 concentrations

    Energy Technology Data Exchange (ETDEWEB)

    Gao, K.; Aruga, Y.; Asada, K.; Ishihara, T.; Akano, T.; Kiyohara, M. (Kansai Environmental Engineering Centre, Osaka (Japan))

    1991-12-01

    Leafy thalli of the red alga Porphyra yezoensis Ueda, initiated from conchospores released from free-living conchocelis, were cultured using aeration with high CO{sub 2}. It was found that the higher the CO{sub 2} concentration, the faster the growth of the thalli. Aeration with elevated CO{sub 2} lowered pH in dark, but raised pH remarkably in light with the thalli, because the photosynthetic conversion of HCO{sub 3} {sup -} to OH{sup -} and CO{sub 2} proceeded much faster than the dissociation of hydrated CO{sub 2} releasing H{sup +}. Photosynthesis of the alga was found to be enhanced in the seawater of elevated dissolved inorganic carbon DIC, CO{sub 2} + HCO{sub 3}{sup -} + CO{sub 3}{sup -}. It is concluded that the increased pH in the light resulted in the increase of DIC in the culture media, thus enhancing photosynthesis and growth. The relevance of the results to removal of atmospheric CO{sub 2} by marine algae is discussed.

  17. Response of needle dark respiration of Pinus koraiensis and Pinus sylvestriformis to elevated CO2 concentrations for four growing seasons' exposure

    Institute of Scientific and Technical Information of China (English)

    ZHOU YuMei; HAN ShiJie; ZHANG HaiSen; XIN LiHua; ZHENG JunQiang

    2007-01-01

    The long-term effect of elevated CO2 concentrations on needle dark respiration of two coniferous species-Pinus koraiensis and Pinus sylvestriformis on the Changbai Mountain was investigated using open-top chambers. P. Koraiensis and P. Sylvestriformis were exposed to 700,500μmol·mol-1 CO2 and ambient CO2(approx.350 μmol·mol-1)for four growing seasons. Needle dark respiration was measurd during the second, third and fourth growing seasons' exposure to elevated CO2.The results showed that needle dark respiration rate increased for P. Koraiensis and P. Sylvestriformis grown at elevated CO2 concentrations during the second growing season, could be attributed to the change of carbohydrate and/or nitrogen content of needles. Needle dark respiration of P. Koraiensis was stimulated and that of P. Sylvestriformis was inhibited by elevated CO2 concentrations during the third growing season. Different response of the two tree species to elevated CO2 mainly resulted from the difference in the growth rate. Elevated CO2 concentrations inhibited needle dark respiration of both P. Koraiensis and P. Sylvestriformis during the fourth growing season. There was consistent trend between the short-term effect and the long-term effect of elevated CO2 on needle dark respiration in P. Sylvestriformis during the third growing season by changing measurement CO2 concentrations. However, the short-term effect was different from the long-term effect for P. Koraiensis. Response of dark respiration of P. Koraiensis and P. Sylvestriformis to elevated CO2 concentrations was related to the treatment time of CO2 and the stage of growth and development of plant. The change of dark respiration for the two tree species was determined by the direct effect of CO2 and long-term acclimation. The prediction of the long-term response of needle dark respiration to elevated CO2 concentration based on the short-term response is in dispute.

  18. Assessing the Suitability and Limitations of Satellite-based Measurements for Estimating CO, CO2, NO2 and O3 Concentrations over the Niger Delta

    Science.gov (United States)

    Fagbeja, M. A.; Hill, J. L.; Chatterton, T. J.; Longhurst, J. W.; Akinyede, J. O.

    2011-12-01

    Space-based satellite sensor technology may provide important tools in the study and assessment of national, regional and local air pollution. However, the application of optical satellite sensor observation of atmospheric trace gases, including those considered to be 'air pollutants', within the lower latitudes is limited due to prevailing climatic conditions. The lack of appropriate air pollution ground monitoring stations within the tropical belt reduces the ability to verify and calibrate space-based measurements. This paper considers the suitability of satellite remotely sensed data in estimating concentrations of atmospheric trace gases in view of the prevailing climate over the Niger Delta region. The methodological approach involved identifying suitable satellite data products and using the ArcGIS Geostatistical Analyst kriging interpolation technique to generate surface concentrations from satellite column measurements. The observed results are considered in the context of the climate of the study area. Using data from January 2001 to December 2005, an assessment of the suitability of satellite sensor data to interpolate column concentrations of trace gases over the Niger Delta has been undertaken and indicates varying degrees of reliability. The level of reliability of the interpolated surfaces is predicated on the number and spatial distributions of column measurements. Accounting for the two climatic seasons in the region, the interpolation of total column concentrations of CO and CO2 from SCIAMACHY produced both reliable and unreliable results over inland parts of the region during the dry season, while mainly unreliable results are observed over the coastal parts especially during the rainy season due to inadequate column measurements. The interpolation of tropospheric measurements of NO2 and O3 from GOME and OMI respectively produced reliable results all year. This is thought to be due to the spatial distribution of available column measurements

  19. A thermodynamic model for the solubility of HfO{sub 2}(am) in the aqueous K{sup +} - HCO{sub 3}{sup -} - CO{sub 3}{sup 2-} - OH{sup -} - H{sub 2}O system

    Energy Technology Data Exchange (ETDEWEB)

    Rai, Dhanpat [Rai Enviro-Chem, LLC, Yachats, OR (United States); Kitamura, Akira [Japan Atomic Energy Agency, Tokai (Japan); Rosso, Kevin M. [Pacific National Laboratory, Richland, WA (United States)

    2017-10-01

    Solubility of HfO{sub 2}(am) was determined as a function of KHCO{sub 3} concentrations ranging from 0.001 mol.kg{sup -1} to 0.1 mol.kg{sup -1}. The solubility of HfO{sub 2}(am) increased dramatically with the increase in KHCO{sub 3} concentrations, indicating that Hf(IV) makes strong complexes with carbonate. Thermodynamic equilibrium constants for the formation of Hf-carbonate complexes were determined using both the Pitzer and SIT models. The dramatic increase in Hf concentrations with the increase in KHCO{sub 3} concentrations can best be described by the formation of Hf(OH{sup -}){sub 2}(CO{sub 3}){sub 2}{sup 2-} and Hf(CO{sub 3}){sub 5}{sup 6-}. The log{sub 10} K{sup 0} values for the reactions [Hf{sup 4+}+2CO{sub 3}{sup 2-}+2OH{sup -}↔Hf(OH){sub 2}(CO{sub 3}){sub 2}{sup 2-}] and [Hf{sup 4+}+5CO{sub 3}{sup 2-}↔Hf(CO{sub 3}){sub 5}{sup 6-}], based on the SIT model, were determined to be 44.53±0.46 and 41.53±0.46, respectively, and based on the Pitzer model they were 44.56±0.48 and 40.20±0.48, respectively.

  20. CO{sub 2}MPARE. CO2 Model for Operational Programme Assessment in EU Regions. User Tutorial

    Energy Technology Data Exchange (ETDEWEB)

    Hekkenberg, M. [ECN Policy Studies, Amsterdam (Netherlands); Vincent-Genod, C. [Energies Demain, Montreuil Sous Bois (France); Regina, P. [Italian National Agency for New Technologies, Energy and Sustainable Economic Development ENEA, Rome (Italy); Keppo, I. [University College London UCL, London (United Kingdom); Papagianni, S. [Centre for Renewable Energy Sources and Saving CRES, Pikermi Attiki (Greece); Harnych, J. [ENVIROS, Prague (Czech Republic)

    2013-03-15

    The CO2MPARE model supports national and regional authorities in making balanced decisions for their investment portfolio under their regional development programmes, in particular under their Operational Programmes of EU Regional Policy. This document is a tutorial for users of the CO2MPARE model and provides step by step guidance on the different functionalities of the model for both basic and expert users.

  1. Synthesis and Evaluation of CO2 Thickeners Designed with Molecular Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Robert Enick; Erick Beckman; J. Karl Johnson

    2009-08-31

    The objective of this research was to use molecular modeling techniques, coupled with our prior experimental results, to design, synthesize and evaluate inexpensive, non-fluorous carbon dioxide thickening agents. The first type of thickener that was considered was associating polymers. Typically, these thickeners are copolymers that contain a highly CO{sub 2}-philic monomer, and a small concentration of a CO{sub 2}-phobic associating monomer. Yale University was solely responsible for the synthesis of a second type of thickener; small, hydrogen bonding compounds. These molecules have a core that contains one or more hydrogen-bonding groups, such as urea or amide groups. Non-fluorous, CO{sub 2}-philic functional groups were attached to the hydrogen bonding core of the compound to impart CO{sub 2} stability and macromolecular stability to the linear 'stack' of these compounds. The third type of compound initially considered for this investigation was CO{sub 2}-soluble surfactants. These surfactants contain conventional ionic head groups and composed of CO{sub 2}-philic oligomers (short polymers) or small compounds (sugar acetates) previously identified by our research team. Mobility reduction could occur as these surfactant solutions contacted reservoir brine and formed mobility control foams in-situ. The vast majority of the work conducted in this study was devoted to the copolymeric thickeners and the small hydrogen-bonding thickeners; these thickeners were intended to dissolve completely in CO{sub 2} and increase the fluid viscosity. A small but important amount of work was done establishing the groundwork for CO{sub 2}-soluble surfactants that reduced mobility by generating foams in-situ as the CO{sub 2}+surfactant solution mixed with in-situ brine.

  2. A shallow subsurface controlled release facility in Bozeman, Montana, USA, for testing near surface CO2 detection techniques and transport models

    Energy Technology Data Exchange (ETDEWEB)

    Spangler, Lee H.; Dobeck, Laura M.; Repasky, Kevin S.; Nehrir, Amin R.; Humphries, Seth D.; Barr, Jamie L.; Keith, Charlie J.; Shaw, Joseph A.; Rouse, Joshua H.; Cunningham, Alfred B.; Benson, Sally M.; Oldenburg, Curtis M.; Lewicki, Jennifer L.; Wells, Arthur W.; Diehl, J. R.; Strazisar, Brian; Fessenden, Julianna; Rahn, Thom A.; Amonette, James E.; Barr, Jonathan L.; Pickles, William L.; Jacobson, James D.; Silver, Eli A.; Male, Erin J.; Rauch, Henry W.; Gullickson, Kadie; Trautz, Robert; Kharaka, Yousif; Birkholzer, Jens; Wielopolski, Lucien

    2010-03-01

    A facility has been constructed to perform controlled shallow releases of CO2 at flow rates that challenge near surface detection techniques and can be scalable to desired retention rates of large scale CO2 storage projects. Preinjection measurements were made to determine background conditions and characterize natural variability at the site. Modeling of CO2 transport and concentration in saturated soil and the vadose zone was also performed to inform decisions about CO2 release rates and sampling strategies. Four releases of CO2 were carried out over the summer field seasons of 2007 and 2008. Transport of CO2 through soil, water, plants, and air was studied using near surface detection techniques. Soil CO2 flux, soil gas concentration, total carbon in soil, water chemistry, plant health, net CO2 flux, atmospheric CO2 concentration, movement of tracers, and stable isotope ratios were among the quantities measured. Even at relatively low fluxes, most techniques were able to detect elevated levels of CO2 in the soil, atmosphere, or water. Plant stress induced by CO2 was detectable above natural seasonal variations.

  3. Elevated CO2 concentration affects vertical distribution of photosynthetic activity in Calamagrostis arundinacea (L.) Roth

    Czech Academy of Sciences Publication Activity Database

    Klem, Karel; Holub, Petr; Urban, Otmar

    2017-01-01

    Roč. 10, 1-2 (2017), s. 67-74 ISSN 1803-2451 R&D Projects: GA MŠk(CZ) LO1415 Institutional support: RVO:86652079 Keywords : chlorophyll * CO2 assimilation * elevated CO2 * concentration * transpiration * vertical gradient * water-use efficiency Subject RIV: EH - Ecology, Behaviour OBOR OECD: Environmental sciences (social aspects to be 5.7) https://beskydy.mendelu.cz/10/1/0067/

  4. Temporal variations of atmospheric CO2 concentration in a temperate deciduous forest in central Japan

    International Nuclear Information System (INIS)

    Murayama, Shohei; Saigusa, Nobuko; Yamamoto, Susumu; Kondo, Hiroaki; Eguchi, Yozo; Chan, Douglas

    2003-01-01

    In order to examine the temporal variation of the atmospheric CO 2 concentration in a temperate deciduous forest, and its relationship with meteorological conditions, continuous measurements of CO 2 and meteorological parameters have been made since 1993 on a tower at Takayama in the central part of Japan. In addition to an average secular increase in atmospheric CO 2 of 1.8 ppm/yr, diurnal variation with a maximum during the night-time to early morning and a minimum in the afternoon is observed from late spring to early fall; the diurnal cycle is not so clearly observed in the remaining seasons of the year. A concentration difference between above and below the canopy, and its diurnal variation, can also be seen clearly in summer. Daily mean concentration data show a prominent seasonal cycle. The maximum and the minimum of the seasonal cycle occur in April and from mid August to mid September, respectively. Day-to-day changes in the diurnal cycle of CO 2 are highly dependent on the day-to-day variations in meteorological conditions. However, CO 2 variations on longer time scales (>10 d) appear to be linearly related to changes in respiration. At Takayama, variations in the 10-d standard deviation of daily mean CO 2 data and 10-d averaged respiration show distinct relationships with soil temperature during spring and fall seasons. In spring, respiration has a stronger exponential dependence on soil temperature than in fall. Interestingly, in summer when soil temperature becomes greater than about 15 deg C, biological respiration becomes more variable and independent of the soil temperature. Thus, at the Takayama site, the Q10 relationship is seasonally dependent, and does not represent well the biological respiration process when the soil temperature rises above 15 deg C

  5. CO/sub 2/ carbon cycle and climate interactions

    Energy Technology Data Exchange (ETDEWEB)

    Grassl, H; Maier-Reimer, E; Degens, E T; Kempe, S; Spitzy, A

    1984-03-01

    Past and expected emissions of anthropogenic CO/sub 2/ stimulate carbon cycle and climate research. Prognoses of future CO/sub 2/ levels depend on energy scenarios and on the reaction of the biosphere and hydrosphere to elevated atmospheric CO/sub 2/ concentrations. The reaction of the reservoirs vegetation, freshwater and oceans to disturbances of the carbon cycle is reviewed. For the oceans first results of a simple carbon cycle model implanted in a three-dimensional general circulation model are presented. This model allows experiments not possible with previous box models.

  6. Amazon rainforest responses to elevated CO2: Deriving model-based hypotheses for the AmazonFACE experiment

    Science.gov (United States)

    Rammig, A.; Fleischer, K.; Lapola, D.; Holm, J.; Hoosbeek, M.

    2017-12-01

    Increasing atmospheric CO2 concentration is assumed to have a stimulating effect ("CO2 fertilization effect") on forest growth and resilience. Empirical evidence, however, for the existence and strength of such a tropical CO2 fertilization effect is scarce and thus a major impediment for constraining the uncertainties in Earth System Model projections. The implications of the tropical CO2 effect are far-reaching, as it strongly influences the global carbon and water cycle, and hence future global climate. In the scope of the Amazon Free Air CO2 Enrichment (FACE) experiment, we addressed these uncertainties by assessing the CO2 fertilization effect at ecosystem scale. AmazonFACE is the first FACE experiment in an old-growth, highly diverse tropical rainforest. Here, we present a priori model-based hypotheses for the experiment derived from a set of 12 ecosystem models. Model simulations identified key uncertainties in our understanding of limiting processes and derived model-based hypotheses of expected ecosystem responses to elevated CO2 that can directly be tested during the experiment. Ambient model simulations compared satisfactorily with in-situ measurements of ecosystem carbon fluxes, as well as carbon, nitrogen, and phosphorus stocks. Models consistently predicted an increase in photosynthesis with elevated CO2, which declined over time due to developing limitations. The conversion of enhanced photosynthesis into biomass, and hence ecosystem carbon sequestration, varied strongly among the models due to different assumptions on nutrient limitation. Models with flexible allocation schemes consistently predicted an increased investment in belowground structures to alleviate nutrient limitation, in turn accelerating turnover rates of soil organic matter. The models diverged on the prediction for carbon accumulation after 10 years of elevated CO2, mainly due to contrasting assumptions in their phosphorus cycle representation. These differences define the expected

  7. Impact of elevated CO_2 concentrations on carbonate mineral precipitation ability of sulfate-reducing bacteria and implications for CO_2 sequestration

    International Nuclear Information System (INIS)

    Paul, Varun G.; Wronkiewicz, David J.; Mormile, Melanie R.

    2017-01-01

    Interest in anthropogenic CO_2 release and associated global climatic change has prompted numerous laboratory-scale and commercial efforts focused on capturing, sequestering or utilizing CO_2 in the subsurface. Known carbonate mineral precipitating microorganisms, such as the anaerobic sulfate-reducing bacteria (SRB), could enhance the rate of conversion of CO_2 into solid minerals and thereby improve long-term storage of captured gasses. The ability of SRB to induce carbonate mineral precipitation, when exposed to atmospheric and elevated pCO_2, was investigated in laboratory scale tests with bacteria from organic-rich sediments collected from hypersaline Lake Estancia, New Mexico. The enriched SRB culture was inoculated in continuous gas flow and batch reactors under variable headspace pCO_2 (0.0059 psi to 20 psi). Solution pH, redox conditions, sulfide, calcium and magnesium concentrations were monitored in the reactors. Those reactors containing SRB that were exposed to pCO_2 of 14.7 psi or less showed Mg-calcite precipitation. Reactors exposed to 20 psi pCO_2 did not exhibit any carbonate mineralization, likely due to the inhibition of bacterial metabolism caused by the high levels of CO_2. Hydrogen, lactate and formate served as suitable electron donors for the SRB metabolism and related carbonate mineralization. Carbon isotopic studies confirmed that ∼53% of carbon in the precipitated carbonate minerals was derived from the CO_2 headspace, with the remaining carbon being derived from the organic electron donors, and the bicarbonate ions available in the liquid medium. The ability of halotolerant SRB to induce the precipitation of carbonate minerals can potentially be applied to the long-term storage of anthropogenic CO_2 in saline aquifers and other ideal subsurface rock units by converting the gas into solid immobile phases. - Highlights: • SRB under study are capable of precipitating calcite up to 14.7 psi pCO_2. • At 20 psi pCO_2, bacterial activity

  8. Effects of CO 2 concentration and moisture content of sugar-free media on the tissue-cultured plantlets in a large growth chamber

    Science.gov (United States)

    Qu, Y. H.; Lin, C.; Zhou, W.; Li, Y.; Chen, B.; Chen, G. Q.

    2009-01-01

    The dynamic fluctuations of CO 2 concentration in the tissue culture growth chamber after transplantation of petunia, chrysanthemum and tomato plantlets were recorded with a real-time control system to determine the critical CO 2 concentration levels of 35 μl l -1 at which CO 2 enrichment is needed. The experimental data showed that the tissue-cultured plantlets of petunia, chrysanthemum and tomato had the same CO 2 concentration dynamics. The results indicated that CO 2 enrichment was proper on the second day after transplantation. Petunia plantlets were used to conduct experiments under PPFD of 80 μmol m -2 s -1, and CO 2 concentrations of 350 ± 50 μl l -1, 650 ± 50 μl l -1 and 950 ± 50 μl l -1 as well as medium moisture contents of 60%, 70% and 80%, with the result that plantlets grew better under CO 2 concentration of 650 ± 50 μl l -1 than under the other two concentrations with all the different media water contents. Three media water contents under the same CO 2 concentration produced plantlets with the same quality. The impacts of CO 2 concentrations on plantlets are more important than those of the media water contents. Sugar-free tissue culture, as compared with the conventional culture, showed that CO 2 enrichment to 350 ± 50 μl l -1 can promote the growth of the cultured plantlets. Sugar-free tissue culture produced healthy plantlets with thick roots, almost equivalent to the common plantlets.

  9. Impact of elevated CO2 concentration on dynamics of leaf photosynthesis in Fagus sylvatica is modulated by sky conditions

    International Nuclear Information System (INIS)

    Urban, Otmar; Klem, Karel; Holišová, Petra; Šigut, Ladislav; Šprtová, Mirka; Teslová-Navrátilová, Petra; Zitová, Martina; Špunda, Vladimír; Marek, Michal V.; Grace, John

    2014-01-01

    It has been suggested that atmospheric CO 2 concentration and frequency of cloud cover will increase in future. It remains unclear, however, how elevated CO 2 influences photosynthesis under complex clear versus cloudy sky conditions. Accordingly, diurnal changes in photosynthetic responses among beech trees grown at ambient (AC) and doubled (EC) CO 2 concentrations were studied under contrasting sky conditions. EC stimulated the daily sum of fixed CO 2 and light use efficiency under clear sky. Meanwhile, both these parameters were reduced under cloudy sky as compared with AC treatment. Reduction in photosynthesis rate under cloudy sky was particularly associated with EC-stimulated, xanthophyll-dependent thermal dissipation of absorbed light energy. Under clear sky, a pronounced afternoon depression of CO 2 assimilation rate was found in sun-adapted leaves under EC compared with AC conditions. This was caused in particular by stomata closure mediated by vapour pressure deficit. -- Highlights: • Sky conditions affect the relative impact of elevated CO 2 on photosynthesis. • Cloudy skies reduce light use efficiency and carbon gain when CO 2 is elevated. • Stimulation of photosynthesis by high CO 2 may decline with increasing cloud cover. • High CO 2 leads to marked afternoon photosynthesis depression in sun-adapted leaves. -- The stimulatory effect of elevated CO 2 concentration on photosynthetic carbon assimilation can be expected to diminish as cloud cover increases

  10. Utilization of Integrated Assessment Modeling for determining geologic CO2 storage security

    Science.gov (United States)

    Pawar, R.

    2017-12-01

    Geologic storage of carbon dioxide (CO2) has been extensively studied as a potential technology to mitigate atmospheric concentration of CO2. Multiple international research & development efforts, large-scale demonstration and commercial projects are helping advance the technology. One of the critical areas of active investigation is prediction of long-term CO2 storage security and risks. A quantitative methodology for predicting a storage site's long-term performance is critical for making key decisions necessary for successful deployment of commercial scale projects where projects will require quantitative assessments of potential long-term liabilities. These predictions are challenging given that they require simulating CO2 and in-situ fluid movements as well as interactions through the primary storage reservoir, potential leakage pathways (such as wellbores, faults, etc.) and shallow resources such as groundwater aquifers. They need to take into account the inherent variability and uncertainties at geologic sites. This talk will provide an overview of an approach based on integrated assessment modeling (IAM) to predict long-term performance of a geologic storage site including, storage reservoir, potential leakage pathways and shallow groundwater aquifers. The approach utilizes reduced order models (ROMs) to capture the complex physical/chemical interactions resulting due to CO2 movement and interactions but are computationally extremely efficient. Applicability of the approach will be demonstrated through examples that are focused on key storage security questions such as what is the probability of leakage of CO2 from a storage reservoir? how does storage security vary for different geologic environments and operational conditions? how site parameter variability and uncertainties affect storage security, etc.

  11. Estimating PM2.5 Concentrations in Xi'an City Using a Generalized Additive Model with Multi-Source Monitoring Data.

    Directory of Open Access Journals (Sweden)

    Yong-Ze Song

    Full Text Available Particulate matter with an aerodynamic diameter <2.5 μm (PM2.5 represents a severe environmental problem and is of negative impact on human health. Xi'an City, with a population of 6.5 million, is among the highest concentrations of PM2.5 in China. In 2013, in total, there were 191 days in Xi'an City on which PM2.5 concentrations were greater than 100 μg/m3. Recently, a few studies have explored the potential causes of high PM2.5 concentration using remote sensing data such as the MODIS aerosol optical thickness (AOT product. Linear regression is a commonly used method to find statistical relationships among PM2.5 concentrations and other pollutants, including CO, NO2, SO2, and O3, which can be indicative of emission sources. The relationships of these variables, however, are usually complicated and non-linear. Therefore, a generalized additive model (GAM is used to estimate the statistical relationships between potential variables and PM2.5 concentrations. This model contains linear functions of SO2 and CO, univariate smoothing non-linear functions of NO2, O3, AOT and temperature, and bivariate smoothing non-linear functions of location and wind variables. The model can explain 69.50% of PM2.5 concentrations, with R2 = 0.691, which improves the result of a stepwise linear regression (R2 = 0.582 by 18.73%. The two most significant variables, CO concentration and AOT, represent 20.65% and 19.54% of the deviance, respectively, while the three other gas-phase concentrations, SO2, NO2, and O3 account for 10.88% of the total deviance. These results show that in Xi'an City, the traffic and other industrial emissions are the primary source of PM2.5. Temperature, location, and wind variables also non-linearly related with PM2.5.

  12. Temporal variations of atmospheric CO2 and CO at Ahmedabad in western India

    Science.gov (United States)

    Chandra, Naveen; Lal, Shyam; Venkataramani, S.; Patra, Prabir K.; Sheel, Varun

    2016-05-01

    About 70 % of the anthropogenic carbon dioxide (CO2) is emitted from the megacities and urban areas of the world. In order to draw effective emission mitigation policies for combating future climate change as well as independently validating the emission inventories for constraining their large range of uncertainties, especially over major metropolitan areas of developing countries, there is an urgent need for greenhouse gas measurements over representative urban regions. India is a fast developing country, where fossil fuel emissions have increased dramatically in the last three decades and are predicted to continue to grow further by at least 6 % per year through to 2025. The CO2 measurements over urban regions in India are lacking. To overcome this limitation, simultaneous measurements of CO2 and carbon monoxide (CO) have been made at Ahmedabad, a major urban site in western India, using a state-of-the-art laser-based cavity ring down spectroscopy technique from November 2013 to May 2015. These measurements enable us to understand the diurnal and seasonal variations in atmospheric CO2 with respect to its sources (both anthropogenic and biospheric) and biospheric sinks. The observed annual average concentrations of CO2 and CO are 413.0 ± 13.7 and 0.50 ± 0.37 ppm respectively. Both CO2 and CO show strong seasonality with lower concentrations (400.3 ± 6.8 and 0.19 ± 0.13 ppm) during the south-west monsoon and higher concentrations (419.6 ± 22.8 and 0.72 ± 0.68 ppm) during the autumn (SON) season. Strong diurnal variations are also observed for both the species. The common factors for the diurnal cycles of CO2 and CO are vertical mixing and rush hour traffic, while the influence of biospheric fluxes is also seen in the CO2 diurnal cycle. Using CO and CO2 covariation, we differentiate the anthropogenic and biospheric components of CO2 and found significant contributions of biospheric respiration and anthropogenic emissions in the late night (00:00-05:00 h, IST

  13. Modelling regional trade of CO{sub 2} certificates

    Energy Technology Data Exchange (ETDEWEB)

    Bueeler, B.; Bahn, O.; Kypreos, S. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-06-01

    Many countries have developed energy models (such as MARKAL-MACRO---MM) to assess their energy policies, in particular concerning the curbing of their carbon dioxide (CO{sub 2}) emissions. To integrate national MM models, we propose a multi-regional MARKAL-MACRO (3M) model. It enables one to study an international co-operation to curb jointly CO{sub 2} emissions through a market of emission permits. Furthermore, from a decision support perspective, the 3M model can be used to integrate aspects of ecological sustainability (in relation to global climate change issue), economic welfare, efficient resource use and technological innovation. To solve 3M, we follow two alternative mathematical methods. (author) 4 refs.

  14. Development and modelling of a steel slag filter effluent neutralization process with CO2-enriched air from an upstream bioprocess.

    Science.gov (United States)

    Bove, Patricia; Claveau-Mallet, Dominique; Boutet, Étienne; Lida, Félix; Comeau, Yves

    2018-02-01

    The main objective of this project was to develop a steel slag filter effluent neutralization process by acidification with CO 2 -enriched air coming from a bioprocess. Sub-objectives were to evaluate the neutralization capacity of different configurations of neutralization units in lab-scale conditions and to propose a design model of steel slag effluent neutralization. Two lab-scale column neutralization units fed with two different types of influent were operated at hydraulic retention time of 10 h. Tested variables were mode of flow (saturated or percolating), type of media (none, gravel, Bionest and AnoxKaldnes K3), type of air (ambient or CO 2 -enriched) and airflow rate. One neutralization field test (saturated and no media, 2000-5000 ppm CO 2 , sequential feeding, hydraulic retention time of 7.8 h) was conducted for 7 days. Lab-scale and field-scale tests resulted in effluent pH of 7.5-9.5 when the aeration rate was sufficiently high. A model was implemented in the PHREEQC software and was based on the carbonate system, CO 2 transfer and calcite precipitation; and was calibrated on ambient air lab tests. The model was validated with CO 2 -enriched air lab and field tests, providing satisfactory validation results over a wide range of CO 2 concentrations. The flow mode had a major impact on CO 2 transfer and hydraulic efficiency, while the type of media had little influence. The flow mode also had a major impact on the calcite surface concentration in the reactor: it was constant in saturated mode and was increasing in percolating mode. Predictions could be made for different steel slag effluent pH and different operation conditions (hydraulic retention time, CO 2 concentration, media and mode of flow). The pH of the steel slag filter effluent and the CO 2 concentration of the enriched air were factors that influenced most the effluent pH of the neutralization process. An increased concentration in CO 2 in the enriched air reduced calcite precipitation

  15. Physiological acclimation dampens initial effects of elevated temperature and atmospheric CO2 concentration in mature boreal Norway spruce.

    Science.gov (United States)

    Lamba, Shubhangi; Hall, Marianne; Räntfors, Mats; Chaudhary, Nitin; Linder, Sune; Way, Danielle; Uddling, Johan; Wallin, Göran

    2018-02-01

    Physiological processes of terrestrial plants regulate the land-atmosphere exchange of carbon, water, and energy, yet few studies have explored the acclimation responses of mature boreal conifer trees to climate change. Here we explored the acclimation responses of photosynthesis, respiration, and stomatal conductance to elevated temperature and/or CO 2 concentration ([CO 2 ]) in a 3-year field experiment with mature boreal Norway spruce. We found that elevated [CO 2 ] decreased photosynthetic carboxylation capacity (-23% at 25 °C) and increased shoot respiration (+64% at 15 °C), while warming had no significant effects. Shoot respiration, but not photosynthetic capacity, exhibited seasonal acclimation. Stomatal conductance at light saturation and a vapour pressure deficit of 1 kPa was unaffected by elevated [CO 2 ] but significantly decreased (-27%) by warming, and the ratio of intercellular to ambient [CO 2 ] was enhanced (+17%) by elevated [CO 2 ] and decreased (-12%) by warming. Many of these responses differ from those typically observed in temperate tree species. Our results show that long-term physiological acclimation dampens the initial stimulation of plant net carbon assimilation to elevated [CO 2 ], and of plant water use to warming. Models that do not account for these responses may thus overestimate the impacts of climate change on future boreal vegetation-atmosphere interactions. © 2017 John Wiley & Sons Ltd.

  16. Assessing systematic errors in GOSAT CO2 retrievals by comparing assimilated fields to independent CO2 data

    Science.gov (United States)

    Baker, D. F.; Oda, T.; O'Dell, C.; Wunch, D.; Jacobson, A. R.; Yoshida, Y.; Partners, T.

    2012-12-01

    Measurements of column CO2 concentration from space are now being taken at a spatial and temporal density that permits regional CO2 sources and sinks to be estimated. Systematic errors in the satellite retrievals must be minimized for these estimates to be useful, however. CO2 retrievals from the TANSO instrument aboard the GOSAT satellite are compared to similar column retrievals from the Total Carbon Column Observing Network (TCCON) as the primary method of validation; while this is a powerful approach, it can only be done for overflights of 10-20 locations and has not, for example, permitted validation of GOSAT data over the oceans or deserts. Here we present a complementary approach that uses a global atmospheric transport model and flux inversion method to compare different types of CO2 measurements (GOSAT, TCCON, surface in situ, and aircraft) at different locations, at the cost of added transport error. The measurements from any single type of data are used in a variational carbon data assimilation method to optimize surface CO2 fluxes (with a CarbonTracker prior), then the corresponding optimized CO2 concentration fields are compared to those data types not inverted, using the appropriate vertical weighting. With this approach, we find that GOSAT column CO2 retrievals from the ACOS project (version 2.9 and 2.10) contain systematic errors that make the modeled fit to the independent data worse. However, we find that the differences between the GOSAT data and our prior model are correlated with certain physical variables (aerosol amount, surface albedo, correction to total column mass) that are likely driving errors in the retrievals, independent of CO2 concentration. If we correct the GOSAT data using a fit to these variables, then we find the GOSAT data to improve the fit to independent CO2 data, which suggests that the useful information in the measurements outweighs the negative impact of the remaining systematic errors. With this assurance, we compare

  17. 14C concentration of liberated CO2 in the free fermentation process of Japanese SAKE brewing

    International Nuclear Information System (INIS)

    Yamada, Y.; Kaji, A.; Kiriyama, N.; Itoh, M.; Komura, K.; Ueno, K.

    1989-01-01

    The daily variation of 14 C concentrations of liberated CO 2 in the free fermentation process of Japanese SAKE brewing was studied. Each of the concentrations measured in the initial and final stages of the fermentation process correlated with levels of koji rice and steamed rice, obtained from different areas and used for SAKE production. This shows that analysis of fermenting CO 2 of SAKE could be used to estimate the 14 C level in a local environment. (author) 4 refs.; 1 tab

  18. Estimation of long-term trends in the tropospheric 14CO2 activity concentration

    Czech Academy of Sciences Publication Activity Database

    Světlík, Ivo; Povinec, P. P.; Molnár, M.; Meinhardt, F.; Michálek, V.; Simon, J.; Svingor, E.

    2010-01-01

    Roč. 52, č. 2-3 (2010), s. 815-822 ISSN 0033-8222. [International Radiocarbon Conference /20./. Big Island, Hawai, 31.05.2009-05.06.2009] Institutional research plan: CEZ:AV0Z10480505 Keywords : 14CO2 * activity concentration * greenhouse gasses * fossil fuel combustion Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 2.703, year: 2010

  19. Effect of breathing fluctuations on cerebral blood flow in demented patients and its correction method using end-tidal CO/sub 2/ concentration

    Energy Technology Data Exchange (ETDEWEB)

    Komatani, Akio; Yamaguchi, Koichi; Kera, Masahiro; Takanashi, Toshiyasu; Shinohara, Masao; Kawakatsu, Shinobu; Yazaki, Mitsuyasu

    1989-02-01

    During mouthpiece respiration of Xe-133 for a measurement of regional cerebral blood flow (rCBF), the breathing pattern of patients fluctuated and it caused a change of end-tidal CO/sub 2/ concentration that had an excellent correlation with PaCO/sub 2/ in patients without respiratory disease. The end-tidal CO/sub 2/ concentration of demented patients varied within lower ranges than senile control group. The range of fluctuation on the end-tidal CO/sub 2/ concentration was dependent on the type and the degree of dementia, and it fluctuated most widely at the middle stage of Alzheimer disease. Mean cerebral blood flow increased by 13.9% for each l% increase in end-tidal CO/sub 2/ concentration (3.6%/mmHg PaCO/sub 2/) in the case of demented patients without cerebrovascular disease. To improve the reliability of rCBF in demented patients, especially in Alzheimer disease, the correction of rCBF data for end-tidal CO/sub 2/ concentration should be performed.

  20. Thermodynamic Data for Geochemical Modeling of Carbonate Reactions Associated with CO2 Sequestration - Literature Review

    International Nuclear Information System (INIS)

    Krupka, Kenneth M.; Cantrell, Kirk J.; McGrail, B. Peter

    2010-01-01

    Permanent storage of anthropogenic CO 2 in deep geologic formations is being considered as a means to reduce the concentration of atmospheric CO 2 and thus its contribution to global climate change. To ensure safe and effective geologic sequestration, numerous studies have been completed of the extent to which the CO 2 migrates within geologic formations and what physical and geochemical changes occur in these formations when CO 2 is injected. Sophisticated, computerized reservoir simulations are used as part of field site and laboratory CO 2 sequestration studies. These simulations use coupled multiphase flow-reactive chemical transport models and/or standalone (i.e., no coupled fluid transport) geochemical models to calculate gas solubility, aqueous complexation, reduction/oxidation (redox), and/or mineral solubility reactions related to CO 2 injection and sequestration. Thermodynamic data are critical inputs to modeling geochemical processes. The adequacy of thermodynamic data for carbonate compounds has been identified as an important data requirement for the successful application of these geochemical reaction models to CO 2 sequestration. A review of thermodynamic data for CO 2 gas and carbonate aqueous species and minerals present in published data compilations and databases used in geochemical reaction models was therefore completed. Published studies that describe mineralogical analyses from CO 2 sequestration field and natural analogue sites and laboratory studies were also reviewed to identify specific carbonate minerals that are important to CO 2 sequestration reactions and therefore require thermodynamic data. The results of the literature review indicated that an extensive thermodynamic database exists for CO 2 and CH 4 gases, carbonate aqueous species, and carbonate minerals. Values of Δ f G 298 o and/or log K r,298 o are available for essentially all of these compounds. However, log K r,T o or heat capacity values at temperatures above 298 K exist

  1. Structure Manipulation of Carbon Aerogels by Managing Solution Concentration of Precursor and Its Application for CO2 Capture

    Directory of Open Access Journals (Sweden)

    Pingping He

    2018-04-01

    Full Text Available A series of carbon aerogels were synthesized by polycondensation of resorcinol and formaldehyde, and their structure was adjusted by managing solution concentration of precursors. Carbon aerogels were characterized by X-ray diffraction (XRD, Raman, Fourier transform infrared spectroscopy (FTIR, N2 adsorption/desorption and scanning electron microscope (SEM technologies. It was found that the pore structure and morphology of carbon aerogels can be efficiently manipulated by managing solution concentration. The relative micropore volume of carbon aerogels, defined by Vmicro/Vtol, first increased and then decreased with the increase of solution concentration, leading to the same trend of CO2 adsorption capacity. Specifically, the CA-45 (the solution concentration of precursors is 45 wt% sample had the highest CO2 adsorption capacity (83.71 cm3/g and the highest selectivity of CO2/N2 (53 at 1 bar and 0 °C.

  2. Comparing atmospheric transport models for future regional inversions over Europe - Part 1: mapping the atmospheric CO{sub 2} signals

    Energy Technology Data Exchange (ETDEWEB)

    Geels, C.; Brandt, J.; Christensen, J.H.; Frohn, L.M. [Univ Aarhus, Natl Environm Res Inst, DK-4000 Roskilde, (Denmark); Gloor, M. [Univ Leeds, Leeds, W Yorkshire, (United Kingdom); Ciais, P.; Bousquet, P.; Peylin, P.; Dargaville, R.; Ramonet, M. [CEA, CNRS, UMR 1572, Lab Sci Climat and Environm, F-91191 Gif Sur Yvette, (France); Vermeulen, A.T. [ECN, NL-1755 ZG Petten, (Netherlands); Aalto, T. [Finnish Meteorol Inst Air Qual Res, Helsinki 00810, (Finland); Haszpra, L. [Hungarian Meteorol Serv, H-1675 Budapest, (Hungary); Karstens, U.; Rodenbeck, C. [Max Planck Inst Biogeochem, D-07701 Jena, (Germany); Carboni, G. [CESI ApA, I-20134 Milan, (Italy); Santaguida, R. [Italian AF Meteorol Serv, I-41029 Sestola, MO, (Italy)

    2007-07-01

    The CO{sub 2} source and sink distribution across Europe can be estimated in principle through inverse methods by combining CO{sub 2} observations and atmospheric transport models. Uncertainties of such estimates are mainly due to insufficient spatio-temporal coverage of CO{sub 2} observations and biases of the models. In order to assess the biases related to the use of different models the CO{sub 2} concentration field over Europe has been simulated with five different Eulerian atmospheric transport models as part of the EU-funded AEROCARB project, which has the main goal to estimate the carbon balance of Europe. In contrast to previous comparisons, here both global coarse-resolution and regional higher-resolution models are included. Continuous CO{sub 2} observations from continental, coastal and mountain sites as well as flasks sampled on aircraft are used to evaluate the models ability to capture the spatio-temporal variability and distribution of lower troposphere CO{sub 2} across Europe. {sup 14}CO{sub 2} is used in addition to evaluate separately fossil fuel signal predictions. The simulated concentrations show a large range of variation, with up to similar to 10 ppm higher surface concentrations over Western and Central Europe in the regional models with highest (mesoscale) spatial resolution. The simulation-data comparison reveals that generally high-resolution models are more successful than coarse models in capturing the amplitude and phasing of the observed short-term variability. At high-altitude stations the magnitude of the differences between observations and models and in between models is less pronounced, but the timing of the diurnal cycle is not well captured by the models. The data comparisons show also that the timing of the observed variability on hourly to daily time scales at low-altitude stations is generally well captured by all models. However, the amplitude of the variability tends to be underestimated. While daytime values are quite

  3. Comparing atmospheric transport models for future regional inversions over Europe ─ Part 1: mapping the atmospheric CO2 signals

    Directory of Open Access Journals (Sweden)

    M. Ramonet

    2007-07-01

    Full Text Available The CO2 source and sink distribution across Europe can be estimated in principle through inverse methods by combining CO2 observations and atmospheric transport models. Uncertainties of such estimates are mainly due to insufficient spatiotemporal coverage of CO2 observations and biases of the models. In order to assess the biases related to the use of different models the CO2 concentration field over Europe has been simulated with five different Eulerian atmospheric transport models as part of the EU-funded AEROCARB project, which has the main goal to estimate the carbon balance of Europe. In contrast to previous comparisons, here both global coarse-resolution and regional higher-resolution models are included. Continuous CO2 observations from continental, coastal and mountain sites as well as flasks sampled on aircrafts are used to evaluate the models' ability to capture the spatiotemporal variability and distribution of lower troposphere CO2 across Europe. 14CO2 is used in addition to evaluate separately fossil fuel signal predictions. The simulated concentrations show a large range of variation, with up to ~10 ppm higher surface concentrations over Western and Central Europe in the regional models with highest (mesoscale spatial resolution. The simulation – data comparison reveals that generally high-resolution models are more successful than coarse models in capturing the amplitude and phasing of the observed short-term variability. At high-altitude stations the magnitude of the differences between observations and models and in between models is less pronounced, but the timing of the diurnal cycle is not well captured by the models. The data comparisons show also that the timing of the observed variability on hourly to daily time scales at low-altitude stations is generally well captured by all models. However, the amplitude of the variability tends to be underestimated. While daytime values are quite well predicted, nighttime values are

  4. Progress and challenges of engineering a biophysical CO2-concentrating mechanism into higher plants.

    Science.gov (United States)

    Rae, Benjamin D; Long, Benedict M; Förster, Britta; Nguyen, Nghiem D; Velanis, Christos N; Atkinson, Nicky; Hee, Wei Yih; Mukherjee, Bratati; Price, G Dean; McCormick, Alistair J

    2017-06-01

    Growth and productivity in important crop plants is limited by the inefficiencies of the C3 photosynthetic pathway. Introducing CO2-concentrating mechanisms (CCMs) into C3 plants could overcome these limitations and lead to increased yields. Many unicellular microautotrophs, such as cyanobacteria and green algae, possess highly efficient biophysical CCMs that increase CO2 concentrations around the primary carboxylase enzyme, Rubisco, to enhance CO2 assimilation rates. Algal and cyanobacterial CCMs utilize distinct molecular components, but share several functional commonalities. Here we outline the recent progress and current challenges of engineering biophysical CCMs into C3 plants. We review the predicted requirements for a functional biophysical CCM based on current knowledge of cyanobacterial and algal CCMs, the molecular engineering tools and research pipelines required to translate our theoretical knowledge into practice, and the current challenges to achieving these goals. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  5. Effects of soil water content and elevated CO2 concentration on the monoterpene emission rate of Cryptomeria japonica.

    Science.gov (United States)

    Mochizuki, Tomoki; Amagai, Takashi; Tani, Akira

    2018-04-11

    Monoterpenes emitted from plants contribute to the formation of secondary pollution and affect the climate system. Monoterpene emission rates may be affected by environmental changes such as increasing CO 2 concentration caused by fossil fuel burning and drought stress induced by climate change. We measured monoterpene emissions from Cryptomeria japonica clone saplings grown under different CO 2 concentrations (control: ambient CO 2 level, elevated CO 2 : 1000μmolmol -1 ). The saplings were planted in the ground and we did not artificially control the SWC. The relationship between the monoterpene emissions and naturally varying SWC was investigated. The dominant monoterpene was α-pinene, followed by sabinene. The monoterpene emission rates were exponentially correlated with temperature for all measurements and normalized (35°C) for each measurement day. The daily normalized monoterpene emission rates (E s0.10 ) were positively and linearly correlated with SWC under both control and elevated CO 2 conditions (control: r 2 =0.55, elevated CO 2 : r 2 =0.89). The slope of the regression line of E s0.10 against SWC was significantly higher under elevated CO 2 than under control conditions (ANCOVA: P<0.01), indicating that the effect of CO 2 concentration on monoterpene emission rates differed by soil water status. The monoterpene emission rates estimated by considering temperature and SWC (Improved G93 algorithm) better agreed with the measured monoterpene emission rates, when compared with the emission rates estimated by considering temperature alone (G93 algorithm). Our results demonstrated that the combined effects of SWC and CO 2 concentration are important for controlling the monoterpene emissions from C. japonica clone saplings. If these relationships can be applied to the other coniferous tree species, our results may be useful to improve accuracy of monoterpene emission estimates from the coniferous forests as affected by climate change in the present and

  6. Mathematical modeling of synthesis gas fueled electrochemistry and transport including H2/CO co-oxidation and surface diffusion in solid oxide fuel cell

    Science.gov (United States)

    Bao, Cheng; Jiang, Zeyi; Zhang, Xinxin

    2015-10-01

    Fuel flexibility is a significant advantage of solid oxide fuel cell (SOFC). A comprehensive macroscopic framework is proposed for synthesis gas (syngas) fueled electrochemistry and transport in SOFC anode with two main novelties, i.e. analytical H2/CO electrochemical co-oxidation, and correction of gas species concentration at triple phase boundary considering competitive absorption and surface diffusion. Staring from analytical approximation of the decoupled charge and mass transfer, we present analytical solutions of two defined variables, i.e. hydrogen current fraction and enhancement factor. Giving explicit answer (rather than case-by-case numerical calculation) on how many percent of the current output contributed by H2 or CO and on how great the water gas shift reaction plays role on, this approach establishes at the first time an adaptive superposition mechanism of H2-fuel and CO-fuel electrochemistry for syngas fuel. Based on the diffusion equivalent circuit model, assuming series-connected resistances of surface diffusion and bulk diffusion, the model predicts well at high fuel utilization by keeping fixed porosity/tortuosity ratio. The model has been validated by experimental polarization behaviors in a wide range of operation on a button cell for H2-H2O-CO-CO2-N2 fuel systems. The framework could be helpful to narrow the gap between macro-scale and meso-scale SOFC modeling.

  7. Changes in the salinity tolerance of sweet pepper plants as affected by nitrogen form and high CO2 concentration.

    Science.gov (United States)

    Piñero, María C; Pérez-Jiménez, Margarita; López-Marín, Josefa; Del Amor, Francisco M

    2016-08-01

    The assimilation and availability of nitrogen in its different forms can significantly affect the response of primary productivity under the current atmospheric alteration and soil degradation. An elevated CO2 concentration (e[CO2]) triggers changes in the efficiency and efficacy of photosynthetic processes, water use and product yield, the plant response to stress being altered with respect to ambient CO2 conditions (a[CO2]). Additionally, NH4(+) has been related to improved plant responses to stress, considering both energy efficiency in N-assimilation and the overcoming of the inhibition of photorespiration at e[CO2]. Therefore, the aim of this work was to determine the response of sweet pepper plants (Capsicum annuum L.) receiving an additional supply of NH4(+) (90/10 NO3(-)/NH4(+)) to salinity stress (60mM NaCl) under a[CO2] (400μmolmol(-1)) or e[CO2] (800μmolmol(-1)). Salt-stressed plants grown at e[CO2] showed DW accumulation similar to that of the non-stressed plants at a[CO2]. The supply of NH4(+) reduced growth at e[CO2] when salinity was imposed. Moreover, NH4(+) differentially affected the stomatal conductance and water use efficiency and the leaf Cl(-), K(+), and Na(+) concentrations, but the extent of the effects was influenced by the [CO2]. An antioxidant-related response was prompted by salinity, the total phenolics and proline concentrations being reduced by NH4(+) at e[CO2]. Our results show that the effect of NH4(+) on plant salinity tolerance should be globally re-evaluated as e[CO2] can significantly alter the response, when compared with previous studies at a[CO2]. Copyright © 2016 Elsevier GmbH. All rights reserved.

  8. Response of needle dark respiration of Pinus koraiensis and Pinus sylvestriformis to elevated CO2 concentra-tions for four growing seasons’ exposure

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The long-term effect of elevated CO2 concentrations on needle dark respiration of two coniferous spe- cies—Pinus koraiensis and Pinus sylvestriformis on the Changbai Mountain was investigated using open-top chambers. P. koraiensis and P. sylvestriformis were exposed to 700, 500 μmol·mol-1 CO2 and ambient CO2 (approx. 350 μmol·mol-1) for four growing seasons. Needle dark respiration was meas- ured during the second, third and fourth growing seasons’ exposure to elevated CO2. The results showed that needle dark respiration rate increased for P. koraiensis and P. sylvestriformis grown at elevated CO2 concentrations during the second growing season, could be attributed to the change of carbohydrate and/or nitrogen content of needles. Needle dark respiration of P. koraiensis was stimu- lated and that of P. sylvestriformis was inhibited by elevated CO2 concentrations during the third growing season. Different response of the two tree species to elevated CO2 mainly resulted from the difference in the growth rate. Elevated CO2 concentrations inhibited needle dark respiration of both P. koraiensis and P. sylvestriformis during the fourth growing season. There was consistent trend be- tween the short-term effect and the long-term effect of elevated CO2 on needle dark respiration in P. sylvestriformis during the third growing season by changing measurement CO2 concentrations. How- ever, the short-term effect was different from the long-term effect for P. koraiensis. Response of dark respiration of P. koraiensis and P. sylvestriformis to elevated CO2 concentrations was related to the treatment time of CO2 and the stage of growth and development of plant. The change of dark respiration for the two tree species was determined by the direct effect of CO2 and long-term acclimation. The prediction of the long-term response of needle dark respiration to elevated CO2 concentration based on the short-term response is in dispute.

  9. Verification of a One-Dimensional Model of CO2 Atmospheric Transport Inside and Above a Forest Canopy Using Observations at the Norunda Research Station

    Science.gov (United States)

    Kovalets, Ivan; Avila, Rodolfo; Mölder, Meelis; Kovalets, Sophia; Lindroth, Anders

    2018-07-01

    A model of CO2 atmospheric transport in vegetated canopies is tested against measurements of the flow, as well as CO2 concentrations at the Norunda research station located inside a mixed pine-spruce forest. We present the results of simulations of wind-speed profiles and CO2 concentrations inside and above the forest canopy with a one-dimensional model of profiles of the turbulent diffusion coefficient above the canopy accounting for the influence of the roughness sub-layer on turbulent mixing according to Harman and Finnigan (Boundary-Layer Meteorol 129:323-351, 2008; hereafter HF08). Different modelling approaches are used to define the turbulent exchange coefficients for momentum and concentration inside the canopy: (1) the modified HF08 theory—numerical solution of the momentum and concentration equations with a non-constant distribution of leaf area per unit volume; (2) empirical parametrization of the turbulent diffusion coefficient using empirical data concerning the vertical profiles of the Lagrangian time scale and root-mean-square deviation of the vertical velocity component. For neutral, daytime conditions, the second-order turbulence model is also used. The flexibility of the empirical model enables the best fit of the simulated CO2 concentrations inside the canopy to the observations, with the results of simulations for daytime conditions inside the canopy layer only successful provided the respiration fluxes are properly considered. The application of the developed model for radiocarbon atmospheric transport released in the form of ^{14}CO2 is presented and discussed.

  10. Sensitivity study of land biosphere CO2 exchange through an atmospheric tracer transport model using satellite-derived vegetation index data

    International Nuclear Information System (INIS)

    Knorr, W.; Heimann, M.

    1994-01-01

    We develop a simple, globally uniform model of CO 2 exchange between the atmosphere and the terrestrial biosphere by coupling the model with a three-dimensional atmospheric tracer transport model using observed winds, and checking results against observed concentrations of CO 2 at various monitoring sites. CO 2 fluxes are derived from observed greenness using satellite-derived Global Vegetation Index data, combined with observations of temperature, radiation, and precipitation. We explore a range of CO 2 flux formulations together with some modifications of the modelled atmospheric transport. We find that while some formulations can be excluded, it cannot be decided whether or not to make CO 2 uptake and release dependent on water stress. It appears that the seasonality of net CO 2 fluxes in the tropics, which would be expected to be driven by water availability, is small and is therefore not visible in the seasonal cycle of atmospheric CO 2 . The latter is dominated largely by northern temperate and boreal vegetation, where seasonality is mostly temperature determined. We find some evidence that there is still considerable CO 2 release from soils during northern-hemisphere winter. An exponential air temperature dependence of soil release with a Q 10 of 1.5 is found to be most appropriate, with no cutoff at low freezing temperatures. This result is independent of the year from which observed winds were taken. This is remarkable insofar as year-to-year changes in modelled CO 2 concentrations caused by changes in the wind data clearly outweigh those caused by year-to-year variability in the climate and vegetation index data. (orig.)

  11. SOIL 222Rn CONCENTRATION, CO2 AND CH4 FLUX MEASUREMENTS AROUND THE JWALAMUKHI AREA OF NORTH-WEST HIMALAYAS, INDIA.

    Science.gov (United States)

    Kumar, Arvind; Walia, Vivek; Yang, Tsanyao Frank; Fu, Ching-Chou; Singh, Surinder; Bajwa, Bikramjit Singh; Arora, Vishal

    2016-10-01

    Soil 222 Rn concentration, CO 2 and CH 4 flux measurements were conducted around the Jwalamukhi area of North-West Himalayas, India. During this study, around 37 soil gas points and flux measurements were taken with the aim to assure the suitability of this method in the study of fault zones. For this purpose, RAD 7 (Durridge, USA) was used to monitor radon concentrations, whereas portable diffuse flux meter (West Systems, Italy) was used for the CO 2 and CH 4 flux measurements. The recorded radon concentration varies from 6.1 to 34.5 kBq m -3 with an average value of 16.5 kBq m -3 The anomalous value of radon concentrations was recorded between Jwalamukhi thrust and Barsar thrust. The recorded average of CO 2 and CH 4 flux were 11.8 and 2.7 g m -2 day -1 , respectively. The good correlation between anomalous CO 2 flux and radon concentrations has been observed along the fault zone in the study area, suggesting that radon migration is dependent on CO 2 . © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  12. A model for estimating CO2 solubility in aqueous alkanolamines

    DEFF Research Database (Denmark)

    Gabrielsen, Jostein; Michelsen, Michael Locht; Stenby, Erling Halfdan

    2005-01-01

    of CO2 over an aqueous alkanolamine solution. Accurate values for the partial pressure of CO2 are obtained for a limited loading, temperature, and pressure range that is useful in modeling CO2 capture from coal-fired power plants. Heat of absorption values derived from the model agree with experimental...

  13. Improved quantification of CO2 emission at Campi Flegrei by combined Lagrangian Stochastic and Eulerian dispersion modelling

    Science.gov (United States)

    Pedone, Maria; Granieri, Domenico; Moretti, Roberto; Fedele, Alessandro; Troise, Claudia; Somma, Renato; De Natale, Giuseppe

    2017-12-01

    This study investigates fumarolic CO2 emissions at Campi Flegrei (Southern Italy) and their dispersion in the lowest atmospheric boundary layer. We innovatively utilize a Lagrangian Stochastic dispersion model (WindTrax) combined with an Eulerian model (DISGAS) to diagnose the dispersion of diluted gas plumes over large and complex topographic domains. New measurements of CO2 concentrations acquired in February and October 2014 in the area of Pisciarelli and Solfatara, the two major fumarolic fields of Campi Flegrei caldera, and simultaneous measurements of meteorological parameters are used to: 1) test the ability of WindTrax to calculate the fumarolic CO2 flux from the investigated sources, and 2) perform predictive numerical simulations to resolve the mutual interference between the CO2 emissions of the two adjacent areas. This novel approach allows us to a) better quantify the CO2 emission of the fumarolic source, b) discriminate ;true; CO2 contributions for each source, and c) understand the potential impact of the composite CO2 plume (Pisciarelli ;plus; Solfatara) on the highly populated areas inside the Campi Flegrei caldera.

  14. Elevated CO2 and O3t concentrations differentially affect selected groups of the fauna in temperate forest soils

    Science.gov (United States)

    Gladys I. Loranger; Kurt S. Pregitzer; John S. King

    2004-01-01

    Rising atmospheric CO2 concentrations may change soil fauna abundance. How increase of tropospheric ozone (O3t) concentration will modify these responses is still unknown. We have assessed independent and interactive effects of elevated [CO2] and [O3t] on selected groups of soil...

  15. Mass Transport Modeling for The Electroreduction of CO2 on Cu Nanowires.

    Science.gov (United States)

    Raciti, David; Mao, Mark; Wang, Chao

    2017-11-20

    Mass transport plays an important role in the CO2 reduction electrocatalysis. Albeit being more pronounced on nanostructured electrodes, the studies of mass transport for CO2 reduction have yet been limited to planar electrodes. We report here the development of a mass transport model for the electroreduction of CO2 on Cu nanowire electrodes. Fed with the experimental data from electrocatalytic studies, the local concentrations of CO2, HCO3-, CO32- and OH- on the nanostructured electrodes are calculated by solving the diffusion equations with spatially distributed electrochemical reaction terms incorporated. The mass transport effects on the catalytic activity and selectivity of the Cu nanowire electrocatalysts are thus discussed by using the local pH as the descriptor. The established correlations between the electrocatalytic performance and the local pH shows that, the latter does not only determine the acid-base reaction equilibrium, but also regulates the mass transport and reaction kinetics. Based on these findings, the optimal range of local pH for the CO2 reduction is discussed in terms of a fine balance of the suppression of hydrogen evolution, improvement of C2 product selectivity and limitation of CO2 supply. Our work highlights the importance of understanding the mass transport effects in interpretation of the CO2 reduction electrocatalysis on high-surface-area catalysts. © 2017 IOP Publishing Ltd.

  16. Modeling climatic effects of anthropogenic CO2 emissions: Unknowns and uncertainties

    Science.gov (United States)

    Soon, W.; Baliunas, S.; Idso, S.; Kondratyev, K. Ya.; Posmentier, E. S.

    2001-12-01

    A likelihood of disastrous global environmental consequences has been surmised as a result of projected increases in anthropogenic greenhouse gas emissions. These estimates are based on computer climate modeling, a branch of science still in its infancy despite recent, substantial strides in knowledge. Because the expected anthropogenic climate forcings are relatively small compared to other background and forcing factors (internal and external), the credibility of the modeled global and regional responses rests on the validity of the models. We focus on this important question of climate model validation. Specifically, we review common deficiencies in general circulation model calculations of atmospheric temperature, surface temperature, precipitation and their spatial and temporal variability. These deficiencies arise from complex problems associated with parameterization of multiply-interacting climate components, forcings and feedbacks, involving especially clouds and oceans. We also review examples of expected climatic impacts from anthropogenic CO2 forcing. Given the host of uncertainties and unknowns in the difficult but important task of climate modeling, the unique attribution of observed current climate change to increased atmospheric CO2 concentration, including the relatively well-observed latest 20 years, is not possible. We further conclude that the incautious use of GCMs to make future climate projections from incomplete or unknown forcing scenarios is antithetical to the intrinsically heuristic value of models. Such uncritical application of climate models has led to the commonly-held but erroneous impression that modeling has proven or substantiated the hypothesis that CO2 added to the air has caused or will cause significant global warming. An assessment of the positive skills of GCMs and their use in suggesting a discernible human influence on global climate can be found in the joint World Meteorological Organisation and United Nations

  17. Temporal variations of atmospheric CO2 and CO at Ahmedabad in western India

    Directory of Open Access Journals (Sweden)

    N. Chandra

    2016-05-01

    Full Text Available About 70 % of the anthropogenic carbon dioxide (CO2 is emitted from the megacities and urban areas of the world. In order to draw effective emission mitigation policies for combating future climate change as well as independently validating the emission inventories for constraining their large range of uncertainties, especially over major metropolitan areas of developing countries, there is an urgent need for greenhouse gas measurements over representative urban regions. India is a fast developing country, where fossil fuel emissions have increased dramatically in the last three decades and are predicted to continue to grow further by at least 6 % per year through to 2025. The CO2 measurements over urban regions in India are lacking. To overcome this limitation, simultaneous measurements of CO2 and carbon monoxide (CO have been made at Ahmedabad, a major urban site in western India, using a state-of-the-art laser-based cavity ring down spectroscopy technique from November 2013 to May 2015. These measurements enable us to understand the diurnal and seasonal variations in atmospheric CO2 with respect to its sources (both anthropogenic and biospheric and biospheric sinks. The observed annual average concentrations of CO2 and CO are 413.0 ± 13.7 and 0.50 ± 0.37 ppm respectively. Both CO2 and CO show strong seasonality with lower concentrations (400.3 ± 6.8 and 0.19 ± 0.13 ppm during the south-west monsoon and higher concentrations (419.6 ± 22.8 and 0.72 ± 0.68 ppm during the autumn (SON season. Strong diurnal variations are also observed for both the species. The common factors for the diurnal cycles of CO2 and CO are vertical mixing and rush hour traffic, while the influence of biospheric fluxes is also seen in the CO2 diurnal cycle. Using CO and CO2 covariation, we differentiate the anthropogenic and biospheric components of CO2 and found significant contributions of biospheric respiration and anthropogenic

  18. Armazenamento refrigerado de morango submetido a altas concentrações de CO2 Cold storage of strawberries under high CO2 concentrations

    Directory of Open Access Journals (Sweden)

    Luis C Cunha Junior

    2012-12-01

    strawberries. However, fruits and vegetables are not currently handled under cold chain in Brazil and, when it happens, it used to be at 10 to 15ºC. The goal of this work was to evaluate the quality and the shelf life of 'Oso Grande' strawberry at 10ºC associated to high carbon dioxide concentrations. Strawberries were randomized, chilled and stored at 10ºC in hermetic mini-chambers to apply the CO2 concentrations (0.03, 10, 20, 40 and 80% plus 20% O2. Strawberries were analyzed every two days while they were proper to consumption. The shelf life for strawberries at 20 and 40% CO2 was 8 days, while those at 0.03% CO2 lasted only two days. Strawberries at 80% CO2 maintained good appearance for 6 days, but they were considered unsuitable for consumption due to high levels of acetaldehyde (40.92 µg g-1 and ethanol (1,053 µg g-1 that gave evidence of fermentation process. The weight loss was less than 2% showing how efficient was the method used to control the relative humidity during the storage. Strawberries at 0.03 and 80% CO2 levels showed higher firmness loss. Those fruits lost 40% of the initial firmness. Strawberries at 20 and 40% CO2 lost only 28% of initial firmness. Despite of the statistical effect of the treatments in the external color it was not visually perceptible. Strawberries stored at 10ºC and 40% CO2 plus 20% O2 kept the marketable quality during 8 days.

  19. Mesoscale modelling of atmospheric CO2 across Denmark

    DEFF Research Database (Denmark)

    Lansø, Anne Sofie

    2016-01-01

    of the simulated atmospheric CO2 across Denmark was, in particular, affected by the Danish terrestrial surface exchanges and its temporal variability. This study urges all future modelling studies of air–sea CO2 to include short-term variability in pCO2. To capture the full heterogeneity of the surface exchanges......It is scientifically well-established that the increase of atmospheric CO2 affects the entire globe and will lead to higher surface temperatures. Although anthropogenic CO2is emitted straight into the atmosphere, it does not all contribute to the existing atmospheric CO2 reservoir. Approximately 29......% is taken up by the global oceans, due to under-saturation of CO2 in the surface waters, while another 33 % is taken up by the terrestrial biosphere, via photosynthesis. In order to estimate the effects of increasing anthropogenic emissions of CO2 more accurately in the future, it is essential to understand...

  20. Increasing CO2 differentially affects essential and non-essential amino acid concentration of rice grains grown in cadmium-contaminated soils.

    Science.gov (United States)

    Wu, Huibin; Song, Zhengguo; Wang, Xiao; Liu, Zhongqi; Tang, Shirong

    2016-09-01

    Environmental pollution by both ambient CO2 and heavy metals has been steadily increasing, but we do not know how fluctuating CO2 concentrations influence plant nutrients under high Cd pollution, especially in crops. Here, we studied the effects of elevated CO2 and Cd accumulation on proteins and amino acids in rice under Cd stress. In this pot experiment, we analyzed the amino-acid profile of 20 rice cultivars that accumulate Cd differently; the plants were grown in Cd-containing soils under ambient conditions and elevated CO2 levels. We found that although Cd concentrations appeared to be higher in most cultivars under elevated CO2 than under ambient CO2, the effect was significant only in seven cultivars. Combined exposure to Cd and elevated CO2 strongly decreased rice protein and amino acid profiles, including essential and non-essential amino acids. Under elevated CO2, the ratios of specific amino acids were either higher or lower than the optimal ratios provided by FAO/WHO, suggesting that CO2 may flatten the overall amino-acid profile, leading to an excess in some amino acids and deficiencies in others when the rice is consumed. Thus, Cd-tainted rice limits the concentration of essential amino acids in rice-based diets, and the combination with elevated CO2 further exacerbates the problem. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Characteristics of PM10 and CO2 concentrations on 100 underground subway station platforms in 2014 and 2015

    Science.gov (United States)

    Hwang, Sung Ho; Park, Wha Me; Park, Jae Bum; Nam, Taegyun

    2017-10-01

    In this study, the concentrations of particulate matter 10 μm or less in diameter (PM10) and carbon dioxide (CO2) were measured in 100 underground subway stations, and the potential health risks of PM10, and environmental factors affecting these concentrations were analyzed. The concentrations were measured from May 2014 to September 2015 in stations along Seoul Metro lines 1-4. There were significantly different PM10 concentrations among the underground subway stations along lines 1, 2, 3, and 4. The PM10 concentrations were associated with the CO2 concentrations, construction years, station depths, and numbers of passengers. The underground PM10 concentrations were significantly higher than the outdoor PM10 concentrations. In addition, the PM10 concentrations were higher in the stations that were constructed in the 1970s than in those constructed after the 1970s. The PM10 and CO2 concentrations varied significantly, depending on the construction year and number of passengers. The hazard quotient is higher than the acceptable level of 1.0 μg kg-1 day for children, indicating that they are at risk of exposure to unsafe PM10 levels when travelling by the metro. Therefore, stricter management may be necessary for the stations constructed in the 1970s as well as those with higher numbers of passengers.

  2. Modelling of accidental releases from a high pressure CO2 pipelines

    NARCIS (Netherlands)

    Molag, M.; Dam, C.

    2011-01-01

    In the near future large quantities of CO2 will be transported over a large distance from Carbon dioxide Capture plants to onshore and off-shore underground Storage (CCS) sites. The risk assessments for the existing CO2 pipelines show distances to harmful threshold concentrations from 1 to 7.2 km.

  3. Atmosphere-soil-vegetation model including CO2 exchange processes: SOLVEG2

    International Nuclear Information System (INIS)

    Nagai, Haruyasu

    2004-11-01

    A new atmosphere-soil-vegetation model named SOLVEG2 (SOLVEG version 2) was developed to study the heat, water, and CO 2 exchanges between the atmosphere and land-surface. The model consists of one-dimensional multilayer sub-models for the atmosphere, soil, and vegetation. It also includes sophisticated processes for solar and long-wave radiation transmission in vegetation canopy and CO 2 exchanges among the atmosphere, soil, and vegetation. Although the model usually simulates only vertical variation of variables in the surface-layer atmosphere, soil, and vegetation canopy by using meteorological data as top boundary conditions, it can be used by coupling with a three-dimensional atmosphere model. In this paper, details of SOLVEG2, which includes the function of coupling with atmosphere model MM5, are described. (author)

  4. Evidence for a Role for NAD(P)H Dehydrogenase in Concentration of CO2 in the Bundle Sheath Cell of Zea mays.

    Science.gov (United States)

    Peterson, Richard B; Schultes, Neil P; McHale, Neil A; Zelitch, Israel

    2016-05-01

    Prior studies with Nicotiana and Arabidopsis described failed assembly of the chloroplastic NDH [NAD(P)H dehydrogenase] supercomplex by serial mutation of several subunit genes. We examined the properties of Zea mays leaves containing Mu and Ds insertions into nuclear gene exons encoding the critical o- and n-subunits of NDH, respectively. In vivo reduction of plastoquinone in the dark was sharply diminished in maize homozygous mutant compared to normal leaves but not to the extreme degree observed for the corresponding lesions in Arabidopsis. The net carbon assimilation rate (A) at high irradiance and saturating CO2 levels was reduced by one-half due to NDH mutation in maize although no genotypic effect was evident at very low CO2 levels. Simultaneous assessment of chlorophyll fluorescence and A in maize at low (2% by volume) and high (21%) O2 levels indicated the presence of a small, yet detectable, O2-dependent component of total linear photosynthetic electron transport in 21% O2 This O2-dependent component decreased with increasing CO2 level indicative of photorespiration. Photorespiration was generally elevated in maize mutant compared to normal leaves. Quantification of the proportion of total electron transport supporting photorespiration enabled estimation of the bundle sheath cell CO2 concentration (Cb) using a simple kinetic model of ribulose bisphosphate carboxylase/oxygenase function. The A versus Cb relationships overlapped for normal and mutant lines consistent with occurrence of strictly CO2-limited photosynthesis in the mutant bundle sheath cell. The results are discussed in terms of a previously reported CO2 concentration model [Laisk A, Edwards GE (2000) Photosynth Res 66: 199-224]. © 2016 American Society of Plant Biologists. All Rights Reserved.

  5. Analysis of a New Liquefaction Combined with Desublimation System for CO2 Separation Based on N2/CO2 Phase Equilibrium

    Directory of Open Access Journals (Sweden)

    Wenchao Yang

    2015-09-01

    Full Text Available Cryogenic CO2 capture is considered as a promising CO2 capture method due to its energy saving and environmental friendliness. The phase equilibrium analysis of CO2-mixtures at low temperature is crucial for the design and operation of a cryogenic system because it plays an important role in analysis of recovery and purity of the captured CO2. After removal of water and toxic gas, the main components in typical boiler gases are N2/CO2. Therefore, this paper evaluates the reliabilities of different cubic equations of state (EOS and mixing rules for N2/CO2. The results show that Peng-Robinson (PR and Soave-Redlich-Kwong (SRK fit the experimental data well, PR combined with the van der Waals (vdW mixing rule is more accurate than the other models. With temperature decrease, the accuracy of the model improves and the deviation of the N2 vapor fraction is 0.43% at 220 K. Based on the selected calculation model, the thermodynamic properties of N2/CO2 at low temperature are analyzed. According to the results, a new liquefaction combined with a desublimation system is proposed. The total recovery and purity of CO2 production of the new system are satisfactory enough for engineering applications. Additionally, the total energy required by the new system to capture the CO2 is about 3.108 MJ·kg−1 CO2, which appears to be at least 9% lower than desublimation separation when the initial concentration of CO2 is 40%.

  6. Simulation of Stomatal Conductance and Water Use Efficiency of Tomato Leaves Exposed to Different Irrigation Regimes and Air CO2 Concentrations by a Modified "Ball-Berry" Model.

    Science.gov (United States)

    Wei, Zhenhua; Du, Taisheng; Li, Xiangnan; Fang, Liang; Liu, Fulai

    2018-01-01

    Stomatal conductance ( g s ) and water use efficiency ( WUE ) of tomato leaves exposed to different irrigation regimes and at ambient CO 2 ( a [CO 2 ], 400 ppm) and elevated CO 2 ( e [CO 2 ], 800 ppm) environments were simulated using the "Ball-Berry" model (BB-model). Data obtained from a preliminary experiment (Exp. I) was used for model parameterization, where measurements of leaf gas exchange of potted tomatoes were done during progressive soil drying for 5 days. The measured photosynthetic rate ( P n ) was used as an input for the model. Considering the effect of soil water deficits on g s , an equation modifying the slope ( m ) based on the mean soil water potential (Ψ s ) in the whole root zone was introduced. Compared to the original BB-model, the modified model showed greater predictability for both g s and WUE of tomato leaves at each [CO 2 ] growth environment. The models were further validated with data obtained from an independent experiment (Exp. II) where plants were subjected to three irrigation regimes: full irrigation (FI), deficit irrigation (DI), and alternative partial root-zone irrigation (PRI) for 40 days at both a [CO 2 ] and e [CO 2 ] environment. The simulation results indicated that g s was independently acclimated to e [CO 2 ] from P n . The modified BB-model performed better in estimating g s and WUE , especially for PRI strategy at both [CO 2 ] environments. A greater WUE could be seen in plants grown under e [CO 2 ] associated with PRI regime. Conclusively, the modified BB-model was capable of predicting g s and WUE of tomato leaves in various irrigation regimes at both a [CO 2 ] and e [CO 2 ] environments. This study could provide valuable information for better predicting plant WUE adapted to the future water-limited and CO 2 enriched environment.

  7. Late Cretaceous climate simulations with different CO2 levels and subarctic gateway configurations: A model-data comparison

    Science.gov (United States)

    Niezgodzki, Igor; Knorr, Gregor; Lohmann, Gerrit; Tyszka, Jarosław; Markwick, Paul J.

    2017-09-01

    We investigate the impact of different CO2 levels and different subarctic gateway configurations on the surface temperatures during the latest Cretaceous using the Earth System Model COSMOS. The simulated temperatures are compared with the surface temperature reconstructions based on a recent compilation of the latest Cretaceous proxies. In our numerical experiments, the CO2 level ranges from 1 to 6 times the preindustrial (PI) CO2 level of 280 ppm. On a global scale, the most reasonable match between modeling and proxy data is obtained for the experiments with 3 to 5 × PI CO2 concentrations. However, the simulated low- (high-) latitude temperatures are too high (low) as compared to the proxy data. The moderate CO2 levels scenarios might be more realistic, if we take into account proxy data and the dead zone effect criterion. Furthermore, we test if the model-data discrepancies can be caused by too simplistic proxy-data interpretations. This is distinctly seen at high latitudes, where most proxies are biased toward summer temperatures. Additional sensitivity experiments with different ocean gateway configurations and constant CO2 level indicate only minor surface temperatures changes (greenhouse worlds is best constrained by temperatures in the midlatitudes.

  8. Variability and budget of CO2 in Europe: analysis of the CAATER airborne campaigns - Part 2: Comparison of CO2 vertical variability and fluxes between observations and a modeling framework

    International Nuclear Information System (INIS)

    Xueref-Remy, I.; Bousquet, P.; Rivier, L.; Ciais, P.; Carouge, C.

    2011-01-01

    information on the space-time distribution of fluxes. This modeling method is compared to a dual tracer method (the so-called Radon method) for a case study on 25 May 2001 during which simultaneous well-correlated in situ CO 2 and Radon 222 measurements have been collected. Both methods give a similar result: a flux within the Radon 222 method uncertainty (35%), that is an atmospheric CO 2 sink of -4.2 to -4.4 gCm -2 day -1 . We have estimated the uncertainty of the modeling method to be at least 33% on average, and even more for specific individual events. This method allows the determination of the area that contributed to the CO 2 observed concentration. In our case, the observation point located at 1700 ma.s.l. in the north of France, is influenced by an area of 1500*700 km 2 that covers the Benelux region, part of Germany and western Poland. Furthermore, this method allows deconvolution between the different contributing fluxes. In this case study, the biospheric sink contributes 73% of the total flux, fossil fuel emissions for 27%, the oceanic flux being negligible. However, the uncertainties of the influence function method need to be better assessed. This could be possible by applying it to other cases where the calculated fluxes can be checked independently, for example at tall towers where simultaneous CO 2 and Radon 222 measurements can be conducted. The use of optimized fluxes (from atmospheric inversions) and of mesoscale models for atmospheric transport may also significantly reduce the uncertainties. (authors)

  9. Modelling CO2-Brine Interfacial Tension using Density Gradient Theory

    KAUST Repository

    Ruslan, Mohd Fuad Anwari Che

    2018-03-01

    Knowledge regarding carbon dioxide (CO2)-brine interfacial tension (IFT) is important for petroleum industry and Carbon Capture and Storage (CCS) strategies. In petroleum industry, CO2-brine IFT is especially importance for CO2 – based enhanced oil recovery strategy as it affects phase behavior and fluid transport in porous media. CCS which involves storing CO2 in geological storage sites also requires understanding regarding CO2-brine IFT as this parameter affects CO2 quantity that could be securely stored in the storage site. Several methods have been used to compute CO2-brine interfacial tension. One of the methods employed is by using Density Gradient Theory (DGT) approach. In DGT model, IFT is computed based on the component density distribution across the interface. However, current model is only applicable for modelling low to medium ionic strength solution. This limitation is due to the model only considers the increase of IFT due to the changes of bulk phases properties and does not account for ion distribution at interface. In this study, a new modelling strategy to compute CO2-brine IFT based on DGT was proposed. In the proposed model, ion distribution across interface was accounted for by separating the interface to two sections. The saddle point of tangent plane distance where ( ) was defined as the boundary separating the two sections of the interface. Electrolyte is assumed to be present only in the second section which is connected to the bulk liquid phase side. Numerical simulations were performed using the proposed approach for single and mixed salt solutions for three salts (NaCl, KCl, and CaCl2), for temperature (298 K to 443 K), pressure (2 MPa to 70 MPa), and ionic strength (0.085 mol·kg-1 to 15 mol·kg-1). The simulation result shows that the tuned model was able to predict with good accuracy CO2-brine IFT for all studied cases. Comparison with current DGT model showed that the proposed approach yields better match with the experiment data

  10. Biomass Energy for Transport and Electricity: Large scale utilization under low CO2 concentration scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Luckow, Patrick; Wise, Marshall A.; Dooley, James J.; Kim, Son H.

    2010-01-25

    This paper examines the potential role of large scale, dedicated commercial biomass energy systems under global climate policies designed to stabilize atmospheric concentrations of CO2 at 400ppm and 450ppm. We use an integrated assessment model of energy and agriculture systems to show that, given a climate policy in which terrestrial carbon is appropriately valued equally with carbon emitted from the energy system, biomass energy has the potential to be a major component of achieving these low concentration targets. The costs of processing and transporting biomass energy at much larger scales than current experience are also incorporated into the modeling. From the scenario results, 120-160 EJ/year of biomass energy is produced by midcentury and 200-250 EJ/year by the end of this century. In the first half of the century, much of this biomass is from agricultural and forest residues, but after 2050 dedicated cellulosic biomass crops become the dominant source. A key finding of this paper is the role that carbon dioxide capture and storage (CCS) technologies coupled with commercial biomass energy can play in meeting stringent emissions targets. Despite the higher technology costs of CCS, the resulting negative emissions used in combination with biomass are a very important tool in controlling the cost of meeting a target, offsetting the venting of CO2 from sectors of the energy system that may be more expensive to mitigate, such as oil use in transportation. The paper also discusses the role of cellulosic ethanol and Fischer-Tropsch biomass derived transportation fuels and shows that both technologies are important contributors to liquid fuels production, with unique costs and emissions characteristics. Through application of the GCAM integrated assessment model, it becomes clear that, given CCS availability, bioenergy will be used both in electricity and transportation.

  11. Thermodynamic Data for Geochemical Modeling of Carbonate Reactions Associated with CO2 Sequestration – Literature Review

    Energy Technology Data Exchange (ETDEWEB)

    Krupka, Kenneth M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Cantrell, Kirk J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); McGrail, B. Peter [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2010-09-01

    Permanent storage of anthropogenic CO2 in deep geologic formations is being considered as a means to reduce the concentration of atmospheric CO2 and thus its contribution to global climate change. To ensure safe and effective geologic sequestration, numerous studies have been completed of the extent to which the CO2 migrates within geologic formations and what physical and geochemical changes occur in these formations when CO2 is injected. Sophisticated, computerized reservoir simulations are used as part of field site and laboratory CO2 sequestration studies. These simulations use coupled multiphase flow-reactive chemical transport models and/or standalone (i.e., no coupled fluid transport) geochemical models to calculate gas solubility, aqueous complexation, reduction/oxidation (redox), and/or mineral solubility reactions related to CO2 injection and sequestration. Thermodynamic data are critical inputs to modeling geochemical processes. The adequacy of thermodynamic data for carbonate compounds has been identified as an important data requirement for the successful application of these geochemical reaction models to CO2 sequestration. A review of thermodynamic data for CO2 gas and carbonate aqueous species and minerals present in published data compilations and databases used in geochemical reaction models was therefore completed. Published studies that describe mineralogical analyses from CO2 sequestration field and natural analogue sites and laboratory studies were also reviewed to identify specific carbonate minerals that are important to CO2 sequestration reactions and therefore require thermodynamic data. The results of the literature review indicated that an extensive thermodynamic database exists for CO2 and CH4 gases, carbonate aqueous species, and carbonate minerals. Values of ΔfG298° and/or log Kr,298° are available for essentially all of these compounds. However, log Kr,T° or heat capacity values at temperatures above 298 K exist for less than

  12. Defect equilibrium in PrBaCo2O5+δ at elevated temperatures

    International Nuclear Information System (INIS)

    Suntsov, A.Yu.; Leonidov, I.A.; Patrakeev, M.V.; Kozhevnikov, V.L.

    2013-01-01

    A defect equilibrium model for PrBaCo 2 O 5+δ is suggested based on oxygen non-stoichiometry data. The model includes reactions of oxygen exchange and charge disproportionation of Co 3+ cations. The respective equilibrium constants, enthalpies and entropies for the reactions entering the model are obtained from the fitting of the experimental data for oxygen non-stoichiometry. The enthalpies of oxidation Co 2+ →Co 3+ and Co 3+ →Co 4+ are found to be equal to 115±9 kJ mol –1 and 45±4 kJ mol –1 , respectively. The obtained equilibrium constants were used in order to calculate variations in concentration of cobalt species with non-stoichiometry, temperature and oxygen pressure. - Graphical abstract: Variations in concentration of cobalt species with oxygen content in PrBaCo n 2+ Co z 3+ Co p 4+ O 5+δ at 650 °S. Display Omitted - Highlights: • The defect equilibrium model based on oxygen non-stoichiometry data is suggested. • Disproportionation of Co 3+ cations gives significant contribution to defect equilibrium. • The hole concentration obtained from the model is in accord with electrical properties

  13. A Review of Hazardous Chemical Species Associated with CO2 Capturefrom Coal-Fired Power Plants and Their Potential Fate in CO2 GeologicStorage

    Energy Technology Data Exchange (ETDEWEB)

    Apps, J.A.

    2006-02-23

    environmental pollutants in the gaseous state and co-inject them with the CO2, in order to mitigate problems associated with solid waste disposal in surface impoundments. Under such conditions, the injected pollutant concentrations could be roughly equivalent to their concentrations in the coal feed. The fate of the injected contaminants can only be determined through further testing and geochemical modeling. However, the concentrations of inadvertent contaminants in the injected CO2 would probably be comparable to their ambient concentrations in confining shales of the injection zone. In general, the aqueous concentrations of hazardous constituents in distal parts of the injection zone, regardless of source, are likely to be limited by equilibrium with respect to coexisting solid phases under the acid conditions induced by the dissolved high pressure CO2, rather than by the initial concentrations of injected contaminants. Therefore, even if a deliberate policy of contaminant recovery and injection were to be pursued, water quality in USDWs would more likely depend on thermodynamic controls governing aqueous contaminant concentrations in the presence of high pressure CO2 rather than in the injected CO2. The conclusions reached in this report are preliminary, and should be confirmed through more comprehensive data evaluation and supporting geochemical modeling.

  14. The Influence of Climate Change on CO2 and CH4 Concentration Near Closed Shaft - Numerical Simulations

    Science.gov (United States)

    Wrona, Paweł

    2017-09-01

    Given the scientific consensus pointing to climate change, the more extreme weather events associated with this will lead to deeper pressure drops. As has already been stated, pressure drops are the main cause of gas flow from underground sites to the surface. This article presents the results of numerical simulations of the change in distribution of CO2 and CH4 near a closed mining shaft under the predicted baric tendency. Simulations have been undertaken by means of the FDS software package with the Pyrosim graphical interface - a CFD tool for fire and ventilation analysis. Assumptions have been based on previous results of in-situ measurements. The results (determined for a height of 1m above the ground) were compared to the following levels (later in the text comparison levels): for CO2 0.1%vol. according to Pettenkoffer's scale and 2.5%vol. for CH4 as the half of Lower Explosive Limit (LEL). The results show that the deeper baric drops anticipated could lead to a wider spread of both greenhouse gases in the vicinity of the shaft, especially along the prevailing wind direction. According to the results obtained, CO2 and CH4 with concentrations above their comparison levels are expected at a distance greater than 50m from the shaft when wind is present for CO2 and at a distance of 4.5m for CH4. Subsequent analysis of the results enabled the determination of functions for describing the concentration of gases along the wind direction line under the projected pressure drop. The results relate to a particular case, although the model could easily be modified to any other example of gas emissions from underground sites.

  15. Seasonal and diel variation in xylem CO2 concentration and sap pH in sub-Mediterranean oak stems.

    Science.gov (United States)

    Salomón, Roberto; Valbuena-Carabaña, María; Teskey, Robert; McGuire, Mary Anne; Aubrey, Doug; González-Doncel, Inés; Gil, Luis; Rodríguez-Calcerrada, Jesús

    2016-04-01

    Since a substantial portion of respired CO2 remains within the stem, diel and seasonal trends in stem CO2 concentration ([CO2]) are of major interest in plant respiration and carbon budget research. However, continuous long-term stem [CO2] studies are scarce, and generally absent in Mediterranean climates. In this study, stem [CO2] was monitored every 15min together with stem and air temperature, sap flow, and soil water storage during a growing season in 16 stems of Quercus pyrenaica to elucidate the main drivers of stem [CO2] at different temporal scales. Fluctuations in sap pH were also assessed during two growing seasons to evaluate potential errors in estimates of the concentration of CO2 dissolved in xylem sap ([CO2*]) calculated using Henry's law. Stem temperature was the best predictor of stem [CO2] and explained more than 90% and 50% of the variability in stem [CO2] at diel and seasonal scales, respectively. Under dry conditions, soil water storage was the main driver of stem [CO2]. Likewise, the first rains after summer drought caused intense stem [CO2] pulses, suggesting enhanced stem and root respiration and increased resistance to radial CO2 diffusion. Sap flow played a secondary role in controlling stem [CO2] variations. We observed night-time sap pH acidification and progressive seasonal alkalinization. Thus, if the annual mean value of sap pH (measured at midday) was assumed to be constant, night-time sap [CO2*] was substantially overestimated (40%), and spring and autumn sap [CO2*] were misestimated by 25%. This work highlights that diel and seasonal variations in temperature, tree water availability, and sap pH substantially affect xylem [CO2] and sap [CO2*]. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  16. MODEL SIMULASI EMISI DAN PENYERAPAN CO2 DI KOTA BOGOR

    Directory of Open Access Journals (Sweden)

    Rizka Permatayakti Rasyidta Nur

    2015-04-01

    Full Text Available Most of the urban pollution is the result of carbon dioxide (CO2 emission from human activities. This research identified CO2 emission and absorption in Bogor, and also the alternatives to solve the emission problem by system model and simulation. CO2 emission and absorption system model was created using software Stella 9.0.2 based on loss-gain emission concept for 30 years prediction. Human activities that contribute to CO2 emission are transportation, industries, energy consumption such as fuel or electricity, house hold waste, and farms, while the decrease factor is green open spaces as CO2 sequester. The alternatives to solve emission problem in Bogor is created based on green city concept by including the environmental aspects in every urban activity. The result of this research, the CO2 emission of Bogor reached 20.027.878 tons and the absorption reached 93.843 tons in 2042. Combined mitigation alternatives in several sectors could reduce CO2 emission by 2.797.667 tons in 2042 and CO2 emission could be neutralized by reforestation in 2036.

  17. Causes of variation among rice models in yield response to CO2 examined with Free-Air CO2 Enrichment and growth chamber experiments.

    Science.gov (United States)

    Hasegawa, Toshihiro; Li, Tao; Yin, Xinyou; Zhu, Yan; Boote, Kenneth; Baker, Jeffrey; Bregaglio, Simone; Buis, Samuel; Confalonieri, Roberto; Fugice, Job; Fumoto, Tamon; Gaydon, Donald; Kumar, Soora Naresh; Lafarge, Tanguy; Marcaida Iii, Manuel; Masutomi, Yuji; Nakagawa, Hiroshi; Oriol, Philippe; Ruget, Françoise; Singh, Upendra; Tang, Liang; Tao, Fulu; Wakatsuki, Hitomi; Wallach, Daniel; Wang, Yulong; Wilson, Lloyd Ted; Yang, Lianxin; Yang, Yubin; Yoshida, Hiroe; Zhang, Zhao; Zhu, Jianguo

    2017-11-01

    The CO 2 fertilization effect is a major source of uncertainty in crop models for future yield forecasts, but coordinated efforts to determine the mechanisms of this uncertainty have been lacking. Here, we studied causes of uncertainty among 16 crop models in predicting rice yield in response to elevated [CO 2 ] (E-[CO 2 ]) by comparison to free-air CO 2 enrichment (FACE) and chamber experiments. The model ensemble reproduced the experimental results well. However, yield prediction in response to E-[CO 2 ] varied significantly among the rice models. The variation was not random: models that overestimated at one experiment simulated greater yield enhancements at the others. The variation was not associated with model structure or magnitude of photosynthetic response to E-[CO 2 ] but was significantly associated with the predictions of leaf area. This suggests that modelled secondary effects of E-[CO 2 ] on morphological development, primarily leaf area, are the sources of model uncertainty. Rice morphological development is conservative to carbon acquisition. Uncertainty will be reduced by incorporating this conservative nature of the morphological response to E-[CO 2 ] into the models. Nitrogen levels, particularly under limited situations, make the prediction more uncertain. Improving models to account for [CO 2 ] × N interactions is necessary to better evaluate management practices under climate change.

  18. Modelling Energy Systems and International Trade in CO2 Emission Quotas - The Kyoto Protocol and Beyond

    International Nuclear Information System (INIS)

    Persson, Tobias A.

    2002-01-01

    A transformation of the energy system in the 21st century is required if the CO 2 concentration in the atmosphere should be stabilized at a level that would prevent dangerous anthropogenic interference with the climate system. The industrialized countries have emitted most of the anthropogenic CO 2 released to the atmosphere since the beginning of the industrial era and still account for roughly two thirds of global fossil fuel related CO 2 emissions. Industrial country CO 2 emissions on a per capita basis are roughly five to ten times higher than those of developing countries. However, a global atmospheric CO 2 concentration target of 450 ppm, if adopted would require that global average per capita CO 2 emissions by the end of this century have to be comparable to those of developing countries today. The industrialized countries would have to reduce their emissions substantially and the emissions in developing countries could not follow a business-as-usual scenario. The transformation of the energy system and abatement of CO 2 emissions would need to occur in industrialized and developing countries. Energy-economy models have been developed to analyze of international trading in CO 2 emission permits. The thesis consists of three papers. The cost of meeting the Kyoto Protocol is estimated in the first paper. The Kyoto Protocol, which defines quantitative greenhouse gas emission commitments for industrialized countries over the period 2008-2012, is the first international agreement setting quantitative goals for abatement of CO 2 emissions from energy systems. The Protocol allows the creation of systems for trade in emission permits whereby countries exceeding their target levels can remain in compliance by purchasing surplus permits from other developed countries. However, a huge carbon surplus, which has been christened hot air, has been created in Russia and Ukraine since 1990 primarily because of the contraction of their economies. The current Unites States

  19. Soil CO2, CH4 and N2O effluxes and concentrations in soil profiles down to 15.5m depth in eucalypt plantations under contrasted rainfall regimes

    Science.gov (United States)

    Germon, A.; Nouvellon, Y.; Christophe, J.; Chapuis-Lardy, L.; Robin, A.; Rosolem, C. A.; Gonçalves, J. L. D. M.; Guerrini, I. A.; Laclau, J. P.

    2017-12-01

    Silvicultural practices in planted forests affect the fluxes of greenhouse gases at the soil surface and the major factors driving greenhouse gas production in forest soils (substrate supply, temperature, water content,…) vary with soil depth. Our study aimed to assess the consequences of drought on the temporal variability of CO2, CH4 and N2O fluxes throughout very deep soil profiles in Eucalyptus grandis plantations 3 months before the harvest then in coppice, the first 18 months after clear-cutting. Two treatments were compared: one with 37% of throughfall excluded by plastic sheets (TE), and one without rainfall exclusion (WE). Measurements of soil CO2 efflux were made every two weeks for 30 months using a closed-path Li8100 system in both treatment. Every two weeks for 21 months, CO2, CH4 and N2O surface effluxes were measured using the closed-chamber method and concentrations in the soil were measured at 7 depths down to 15.5 m in both TE and WE. At most measurement dates, soil CO2 efflux were significantly higher in TE than in WE. Across the two treatments and the measurement dates, CO2 concentrations increased from 4446 ± 2188 ppm at 10 cm deep to 15622 ± 3523 ppm at 15.5 m, CH4 concentrations increased from 0.41 ± 0.17 ppm at 10 cm deep to 0.77 ± 0.24 ppm at 15.5 m and N2O concentrations remained roughly constant and were on average 478 ± 55 ppb between soil surface and 15.5 m deep. CO2 and N2O concentrations were on average 20.7 and 7.6% lower in TE than in WE, respectively, across the sampling depths. However, CH4 concentrations in TE were on average 44.4% higher than in WE, throughout the soil profile. Those results suggest that extended drought periods might reduce the production of CO2 and N2O but increase the accumulation of CH4 in eucalypt plantations established in deep tropical soils. Very deep tropical soils cover huge areas worldwide and improving our understanding of the spatiotemporal dynamics of gas concentrations in deep soil layers

  20. Effect of carbonic anhydrase on silicate weathering and carbonate formation at present day CO2 concentrations compared to primordial values

    Science.gov (United States)

    Xiao, Leilei; Lian, Bin; Hao, Jianchao; Liu, Congqiang; Wang, Shijie

    2015-01-01

    It is widely recognized that carbonic anhydrase (CA) participates in silicate weathering and carbonate formation. Nevertheless, it is still not known if the magnitude of the effect produced by CA on surface rock evolution changes or not. In this work, CA gene expression from Bacillus mucilaginosus and the effects of recombination protein on wollastonite dissolution and carbonate formation under different conditions are explored. Real-time fluorescent quantitative PCR was used to explore the correlation between CA gene expression and sufficiency or deficiency in calcium and CO2 concentration. The results show that the expression of CA genes is negatively correlated with both CO2 concentration and ease of obtaining soluble calcium. A pure form of the protein of interest (CA) is obtained by cloning, heterologous expression, and purification. The results from tests of the recombination protein on wollastonite dissolution and carbonate formation at different levels of CO2 concentration show that the magnitudes of the effects of CA and CO2 concentration are negatively correlated. These results suggest that the effects of microbial CA in relation to silicate weathering and carbonate formation may have increased importance at the modern atmospheric CO2 concentration compared to 3 billion years ago. PMID:25583135

  1. Kinetic characteristics and modeling of microalgae Chlorella vulgaris growth and CO2 biofixation considering the coupled effects of light intensity and dissolved inorganic carbon.

    Science.gov (United States)

    Chang, Hai-Xing; Huang, Yun; Fu, Qian; Liao, Qiang; Zhu, Xun

    2016-04-01

    Understanding and optimizing the microalgae growth process is an essential prerequisite for effective CO2 capture using microalgae in photobioreactors. In this study, the kinetic characteristics of microalgae Chlorella vulgaris growth in response to light intensity and dissolved inorganic carbon (DIC) concentration were investigated. The greatest values of maximum biomass concentration (Xmax) and maximum specific growth rate (μmax) were obtained as 2.303 g L(-1) and 0.078 h(-1), respectively, at a light intensity of 120 μmol m(-2) s(-1) and DIC concentration of 17 mM. Based on the results, mathematical models describing the coupled effects of light intensity and DIC concentration on microalgae growth and CO2 biofixation are proposed. The models are able to predict the temporal evolution of C. vulgaris growth and CO2 biofixation rates from lag to stationary phases. Verification experiments confirmed that the model predictions agreed well with the experimental results. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Data and modelling requirements for CO2 inversions using high-frequency data

    International Nuclear Information System (INIS)

    Law, R.M.; Rayner, P.J.; Steele, L.P.; Enting, I.G.

    2003-01-01

    We explore the future possibilities for CO 2 source estimation from atmospheric concentration data by performing synthetic data experiments. Synthetic data are used to test seasonal CO 2 inversions using high-frequency data. Monthly CO 2 sources over the Australian region are calculated for inversions with data at 4-hourly frequency and averaged over 1 d, 2.5 d, 5 d, 12.17 d and 1 month. The inversion quality, as determined by bias and uncertainty, is degraded when averaging over longer periods. This shows the value of the strong but relatively short-lived signals present in high-frequency records that are removed in averaged and particularly filtered records. Sensitivity tests are performed in which the synthetic data are 'corrupted' to simulate systematic measurement errors such as intercalibration differences or to simulate transport modelling errors. The inversion is also used to estimate the effect of calibration offsets between sites. We find that at short data-averaging periods the inversion is reasonably robust to measurement-type errors. For transport-type errors, the best results are achieved for synoptic (2-5 d) timescales. Overall the tests indicate that improved source estimates should be possible by incorporating continuous measurements into CO 2 inversions

  3. Root colonization with arbuscular mycorrhizal fungi and glomalin-related soil protein (GRSP concentration in hypoxic soils in natural CO2 springs

    Directory of Open Access Journals (Sweden)

    Irena Maček

    2012-03-01

    Full Text Available Changed ratios of soil gases that lead to hypoxia are most often present in waterlogged soils, but can also appear in soils not saturated with water. In natural CO2 springs (mofettes, gases in soil air differ from those in typical soils. In this study, plant roots from the mofette area Stavešinci (Slovenia were sampled in a spatial scale and investigated for AM fungal colonization. AM fungi were found in roots from areas with high geological CO2 concentration, however mycorrhizal intensity was relatively low and no correlation between AM fungal colonization and soil pattern of CO2/O2 concentrations (up to 37% CO2 was found. The relatively high abundance of arbuscules in root cortex indicated existence of functional symbiosis at much higher CO2 concentrations than normally found in soils. In addition, concentration of two different glomalin-related soil protein fractions – EE-GRSP and TG-GRSP – was measured. No significant correlation between any of the fractions and soil gases was found, however the concentration of both fractions was significantly higher in the upper 0–5 cm, compared to the 5–10 cm layer of the soil.

  4. Variability and budget of CO2 in Europe: analysis of the CAATER airborne campaigns – Part 2: Comparison of CO2 vertical variability and fluxes between observations and a modeling framework

    Directory of Open Access Journals (Sweden)

    P. Ciais

    2011-06-01

    scale with information on the space-time distribution of fluxes. This modeling method is compared to a dual tracer method (the so-called Radon method for a case study on 25 May 2001 during which simultaneous well-correlated in situ CO2 and Radon 222 measurements have been collected. Both methods give a similar result: a flux within the Radon 222 method uncertainty (35%, that is an atmospheric CO2 sink of −4.2 to −4.4 gC m−2 day−1. We have estimated the uncertainty of the modeling method to be at least 33% on average, and even more for specific individual events. This method allows the determination of the area that contributed to the CO2 observed concentration. In our case, the observation point located at 1700 m a.s.l. in the north of France, is influenced by an area of 1500×700 km2 that covers the Benelux region, part of Germany and western Poland. Furthermore, this method allows deconvolution between the different contributing fluxes. In this case study, the biospheric sink contributes 73% of the total flux, fossil fuel emissions for 27%, the oceanic flux being negligible. However, the uncertainties of the influence function method need to be better assessed. This could be possible by applying it to other cases where the calculated fluxes can be checked independently, for example at tall towers where simultaneous CO2 and Radon 222 measurements can be conducted. The use of optimized fluxes (from atmospheric inversions and of mesoscale models for atmospheric transport may also significantly reduce the uncertainties.

  5. Effects of increased atmospheric CO{sub 2} concentrations on transpiration of a wheat field in consideration of water and nitrogen limitation; Die Wirkung von erhoehten atmosphaerischen CO{sub 2}-Konzentrationen auf die Transpiration eines Weizenbestandes unter Beruecksichtigung von Wasser- und Stickstofflimitierung

    Energy Technology Data Exchange (ETDEWEB)

    Grossman-Clarke, S

    2000-09-01

    Primary responses of C{sub 3}-plants to elevated atmospheric CO{sub 2} concentrations are an increase in the net assimilation rate, leading to greater biomass, and an associated decrease in the transpiration rate per unit leaf area due to CO{sub 2}-induced stomatal closure. The question has therefore arisen: does canopy transpiration increase because of the greater biomass, or decrease because of the stomatal closure? The direct impact of an elevated atmospheric CO{sub 2} concentration of 550 {mu}mol mol{sup -1} on the seasonal course of canopy transpiration of a spring wheat crop was investigated by means of the simulation model DEMETER for production under unlimited water and nutrient supply, production under limited water but unlimited nutrient supply and the production under unlimited water but limited nitrogen supply. Independent data of the free-air carbon dioxide enrichment wheat experiments in Arizona, USA (1993-96) were used to test if the model is able to make reasonable predictions of water use and productivity of the spring wheat crop using only parameters derived from the literature. A model integrating leaf photosynthesis, stomatal conductance and energy fluxes between the plant and the atmosphere was scaled to a canopy level in order to be used in the wheat crop growth model. Temporal changes of the model parameters were considered by describing them as dependent on the changing leaf nitrogen content. Comparison of the simulation and experimental results showed that the applicability of the model approach was limited after anthesis by asynchronous changes in mesophyll and stomatal conductance. Therefore a new model approach was developed describing the interaction between assimilation rate and stomatal conductance during grain filling. The simulation results revealed only small differences in the cumulative sum of canopy transpiration and soil evaporation between elevated CO{sub 2} and control conditions. For potential growth conditions the model

  6. Carbon dioxide assimilation in Danish crops (wheat and maize) and its dependency on increasing temperature and elevated atmospheric CO2 concentration

    International Nuclear Information System (INIS)

    Soegaard, H.; Boegh, E.

    2001-01-01

    Eddy correlation measurements of atmospheric CO 2 fluxes have been recorded over a number of crops throughout the growing season. These data have been used for validating a mechanistic photosynthesis model, which is used together with one of the most wide spread soil respiration equations. The combined model, is applied for analysing the temperature- and CO 2 -dependency of field crops. To get an idea of the potential range in the sensitivity of agricultural crops to atmospheric change, two crops with contrasting biochemical and physiological properties were selected for the present analysis: winter wheat (Triticum aestivum cv. Hereward) and maize (Zea mayz cv. Loft). While wheat, which is a C 3 -species, is the most common Danish crop (covering 25% of the Danish agricultural area), maize is interesting because it is a C 4 -plant which uses another CO 2 pathway in the dry matter production. The photosynthetic process of C 4 -plants has a higher temperature optimum compared to C 3 -plants. This could give C 4 plants more favourable conditions in the future. The model applied in this paper is utilized to evaluate whether increasing atmospheric CO 2 concentrations have contributed to the general increase in grain yield observed in Denmark since the late sixties. (LN)

  7. Modeling of the Mixed Solvent Electrolyte System CO2-Na2CO3-NaHCO3-Monoethylene Glycol-Water

    DEFF Research Database (Denmark)

    Fosbøl, Philip Loldrup; Thomsen, Kaj; Stenby, Erling Halfdan

    2009-01-01

    The extended UNIQUAC electrolyte activity coefficient model has been correlated to 751 experimental solid−liquid equilibrium (SLE), vapor−liquid equilibrium (VLE), and excess enthalpy data for the mixed solvent CO2−NaHCO3−Na2CO3−monoethylene glycol(MEG)−H2O electrolyte system. The model...

  8. The fate of pelagic CaCO3 production in a high CO2 ocean: a model study

    Directory of Open Access Journals (Sweden)

    C. Ethe

    2007-07-01

    Full Text Available This model study addresses the change in pelagic calcium carbonate production (CaCO3, as calcite in the model and dissolution in response to rising atmospheric CO2. The parameterization of CaCO3 production includes a dependency on the saturation state of seawater with respect to calcite. It was derived from laboratory and mesocosm studies on particulate organic and inorganic carbon production in Emiliania huxleyi as a function of pCO2. The model predicts values of CaCO3 production and dissolution in line with recent estimates. The effect of rising pCO2 on CaCO3 production and dissolution was quantified by means of model simulations forced with atmospheric CO2 increasing at a rate of 1% per year from 286 ppm to 1144 ppm over a 140 year time-period. The simulation predicts a decrease of CaCO3 production by 27%. The combined change in production and dissolution of CaCO3 yields an excess uptake of CO2 from the atmosphere by the ocean of 5.9 GtC over the period of 140 years.

  9. Simulation of Stomatal Conductance and Water Use Efficiency of Tomato Leaves Exposed to Different Irrigation Regimes and Air CO2 Concentrations by a Modified “Ball-Berry” Model

    Directory of Open Access Journals (Sweden)

    Zhenhua Wei

    2018-04-01

    Full Text Available Stomatal conductance (gs and water use efficiency (WUE of tomato leaves exposed to different irrigation regimes and at ambient CO2 (a[CO2], 400 ppm and elevated CO2 (e[CO2], 800 ppm environments were simulated using the “Ball-Berry” model (BB-model. Data obtained from a preliminary experiment (Exp. I was used for model parameterization, where measurements of leaf gas exchange of potted tomatoes were done during progressive soil drying for 5 days. The measured photosynthetic rate (Pn was used as an input for the model. Considering the effect of soil water deficits on gs, an equation modifying the slope (m based on the mean soil water potential (Ψs in the whole root zone was introduced. Compared to the original BB-model, the modified model showed greater predictability for both gs and WUE of tomato leaves at each [CO2] growth environment. The models were further validated with data obtained from an independent experiment (Exp. II where plants were subjected to three irrigation regimes: full irrigation (FI, deficit irrigation (DI, and alternative partial root-zone irrigation (PRI for 40 days at both a[CO2] and e[CO2] environment. The simulation results indicated that gs was independently acclimated to e[CO2] from Pn. The modified BB-model performed better in estimating gs and WUE, especially for PRI strategy at both [CO2] environments. A greater WUE could be seen in plants grown under e[CO2] associated with PRI regime. Conclusively, the modified BB-model was capable of predicting gs and WUE of tomato leaves in various irrigation regimes at both a[CO2] and e[CO2] environments. This study could provide valuable information for better predicting plant WUE adapted to the future water-limited and CO2 enriched environment.

  10. Non-Volcanic release of CO2 in Italy: quantification, conceptual models and gas hazard

    Science.gov (United States)

    Chiodini, G.; Cardellini, C.; Caliro, S.; Avino, R.

    2011-12-01

    Central and South Italy are characterized by the presence of many reservoirs naturally recharged by CO2 of deep provenance. In the western sector, the reservoirs feed hundreds of gas emissions at the surface. Many studies in the last years were devoted to (i) elaborating a map of CO2 Earth degassing of the region; (ii) to asses the gas hazard; (iii) to develop methods suitable for the measurement of the gas fluxes from different types of emissions; (iv) to elaborate the conceptual model of Earth degassing and its relation with the seismic activity of the region and (v) to develop physical numerical models of CO2 air dispersion. The main results obtained are: 1) A general, regional map of CO2 Earth degassing in Central Italy has been elaborated. The total flux of CO2 in the area has been estimated in ~ 10 Mt/a which are released to the atmosphere trough numerous dangerous gas emissions or by degassing spring waters (~ 10 % of the CO2 globally estimated to be released by the Earth trough volcanic activity). 2) An on line, open access, georeferenced database of the main CO2 emissions (~ 250) was settled up (http://googas.ov.ingv.it). CO2 flux > 100 t/d characterise 14% of the degassing sites while CO2 fluxes from 100 t/d to 10 t/d have been estimated for about 35% of the gas emissions. 3) The sites of the gas emissions are not suitable for life: the gas causes many accidents to animals and people. In order to mitigate the gas hazard a specific model of CO2 air dispersion has been developed and applied to the main degassing sites. A relevant application regarded Mefite d'Ansanto, southern Apennines, which is the largest natural emission of low temperature CO2 rich gases, from non-volcanic environment, ever measured in the Earth (˜2000 t/d). Under low wind conditions, the gas flows along a narrow natural channel producing a persistent gas river which has killed over a period of time many people and animals. The application of the physical numerical model allowed us to

  11. The Performance of CO2 Laser Photoacoustic Spectrometer In Concentration Acetone Detection As Biomarker For Diabetes Mellitus Type 2

    Science.gov (United States)

    Tyas, F. H.; Nikita, J. G.; Apriyanto, D. K.; Mitrayana; Amin, M. N.

    2018-04-01

    Breath analysis is useful for the diagnosis of human diseases and monitoring of metabolic status. However, because of the low concentrations and the large numbers of compounds in the breath, the breath analysis requires highly sensitive and highly selective instruments to identify and determine the concentrations of certain biomarkers [1]. Various methods developed over the past 20 years to detect biomarker gases [2]. CO2 laser photoacoustic spectroscopy offers a sensitive technique for the detection and monitoring of gas footprints at low concentrations [3]. The performance of photoacoustic spectrometer (PAS) examined with intracavity configuration. In this research, the highest observed intracavity power was (49,96 ± 0,02) W for active medium gas composition He: N2: CO2 at 30:50:50. The highest laser absorption line for standard acetone gas set at 10P20, and the lowest detection limit set at (30 ± 4) ppb. For application purposes, the photoacoustic spectrometer was used to measure the concentration of acetone gas in exhaled gases from a group of patients with type 2 diabetes mellitus and a group of healthy volunteers. Exhaled gas sampling method took manually, and the measurement result was examined using multicomponent analysis. The measurement showed that the highest acetone gas concentration for type 2 diabetes mellitus patients was (162 ± 3) × 10 ppb and the lowest one was (101 ± 3) × 10 ppb. Furthermore, for healthy volunteers, the highest acetone gas concentration was (85 ± 3) × 10 ppb and the lowest one was (15 ± 3) × 10 ppb.

  12. Membrane-assisted CO2 liquefaction: performance modelling of CO2 capture from flue gas in cement production

    NARCIS (Netherlands)

    Bouma, R.H.B.; Vercauteren, F.F.; Os, P.J. van; Goetheer, E.L.V.; Berstad, D.; Anantharaman, R.

    2017-01-01

    CEMCAP is an international R&D project under the Horizon 2020 Programme preparing the ground for the large-scale implementation of CO2 capture in the European cement industry. This paper concerns the performance modeling of membraneassisted CO2 liquefaction as a possible retrofit application for

  13. Dependence of the up-conversion emission of Li+ co-doped Y2O3:Er3+ films with dopant concentration

    International Nuclear Information System (INIS)

    Meza-Rocha, A.N.; Huerta, E.F.; Caldiño, U.; Carmona-Téllez, S.; Bettinelli, M.; Speghini, A.; Pelli, S.; Righini, G.C.

    2015-01-01

    The effect of dopant concentration on the up-conversion emission, and in particular on the Er 3+ related green and red emissions of spray pyrolysis deposited films of Y 2 O 3 :Er 3+ co-doped with Li + , is reported. Er 3+ concentrations in the films in the range of 1.1–5.6 at% (1.5–14 at% Er 3+ in the spraying solution) were studied, as well as the effect of co-doping them with Li + . Large concentrations of Er 3+ favor the red emission, especially for contents higher than 10 at% in the spraying solution. Li + co-doping improves the green and red emissions up to 365 and 171 times, respectively, depending on the Er 3+ and Li + concentrations. - Highlights: Up-converting Y 2 O 3 :Er 3+ and Y 2 O 3 :Er 3+ , Li + films were deposited by spray pyrolysis. The effect of Li + co-doping on the green and red UC Er 3+ emission is reported. Li + co-doping improves the green and red emission up to 365 and 171 times

  14. Does an elevated CO2 concentration decrease dark respiration in trees? Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Long, Stephen [Univ. of Illinois, Urbana-Champaign, IL (United States)

    2003-12-31

    Averaged across many previous investigations, doubling the CO2 concentration ([CO2]) has frequently been reported to cause an instantaneous reduction of leaf dark respiration measured as CO2 efflux. No known mechanism accounts for this effect. While four recent studies have shown that the measurement of respiratory CO2 efflux is prone to experimental artifacts that could account for the reported response, papers published since the start of the current research continue to report an instantaneous depression of respiratory CO2 efflux by elevation of [CO2]. Here, these artifacts are avoided by use of a high-resolution dual channel oxygen analyzer within an open gas exchange system to measure respiratory 02 uptake in normal air. Leaf 02 uptake was determined in response to instantaneous elevation of [CO2] in nine contrasting species and to long-term elevation in seven species from four of the DOE-sponsored long-term elevated [CO2] field experiments. Over one thousand separate measurements of respiration failed to reveal any decrease in respiratory 02 uptake with an instantaneous increase in [CO2]. Respiration was found insensitive not only to doubling [CO2], but also to a five-fold increase and to decrease to zero.

  15. Uncertainty in geochemical modelling of CO2 and calcite dissolution in NaCl solutions due to different modelling codes and thermodynamic databases

    International Nuclear Information System (INIS)

    Haase, Christoph; Dethlefsen, Frank; Ebert, Markus; Dahmke, Andreas

    2013-01-01

    Highlights: • CO 2 and calcite dissolution is calculated. • The codes PHREEQC, Geochemist’s Workbench, EQ3/6, and FactSage are used. • Comparison with Duan and Li (2008) shows lowest deviation using phreeqc.dat and wateq4f.dat. • Using Pitzer databases does not improve accurate calculations. • Uncertainty in dissolved CO 2 is largest using the geochemical models. - Abstract: A prognosis of the geochemical effects of CO 2 storage induced by the injection of CO 2 into geologic reservoirs or by CO 2 leakage into the overlaying formations can be performed by numerical modelling (non-invasive) and field experiments. Until now the research has been focused on the geochemical processes of the CO 2 reacting with the minerals of the storage formation, which mostly consists of quartzitic sandstones. Regarding the safety assessment the reactions between the CO 2 and the overlaying formations in the case of a CO 2 leakage are of equal importance as the reactions in the storage formation. In particular, limestone formations can react very sensitively to CO 2 intrusion. The thermodynamic parameters necessary to model these reactions are not determined explicitly through experiments at the total range of temperature and pressure conditions and are thus extrapolated by the simulation code. The differences in the calculated results lead to different calcite and CO 2 solubilities and can influence the safety issues. This uncertainty study is performed by comparing the computed results, applying the geochemical modelling software codes The Geochemist’s Workbench, EQ3/6, PHREEQC and FactSage/ChemApp and their thermodynamic databases. The input parameters (1) total concentration of the solution, (2) temperature and (3) fugacity are varied within typical values for CO 2 reservoirs, overlaying formations and close-to-surface aquifers. The most sensitive input parameter in the system H 2 O–CO 2 –NaCl–CaCO 3 for the calculated range of dissolved calcite and CO 2 is the

  16. Carbon allocation and element composition in four Chlamydomonas mutants defective in genes related to the CO2 concentrating mechanism.

    Science.gov (United States)

    Memmola, Francesco; Mukherjee, Bratati; Moroney, James V; Giordano, Mario

    2014-09-01

    Four mutants of Chlamydomonas reinhardtii with defects in different components of the CO2 concentrating mechanism (CCM) or in Rubisco activase were grown autotrophically at high pCO2 and then transferred to low pCO2, in order to study the role of different components of the CCM on carbon allocation and elemental composition. To study carbon allocation, we measured the relative size of the main organic pools by Fourier Transform Infrared spectroscopy. Total reflection X-ray fluorescence was used to analyze the elemental composition of algal cells. Our data show that although the organic pools increased their size at high CO2 in all strains, their stoichiometry was highly homeostatic, i.e., the ratios between carbohydrates and proteins, lipid and proteins, and carbohydrates and lipids, did not change significantly. The only exception was the wild-type 137c, in which proteins decreased relative to carbohydrates and lipids, when the cells were transferred to low CO2. It is noticeable that the two wild types used in this study responded differently to the transition from high to low CO2. Malfunctions of the CCM influenced the concentration of several elements, somewhat altering cell elemental stoichiometry: especially the C/P and N/P ratios changed appreciably in almost all strains as a function of the growth CO2 concentration, except in 137c and the Rubisco activase mutant rca1. In strain cia3, defective in the lumenal carbonic anhydrase (CA), the cell quotas of P, S, Ca, Mn, Fe, and Zn were about 5-fold higher at low CO2 than at high CO2. A Principle Components Analysis showed that, mostly because of its elemental composition, cia3 behaved in a substantially different way from all other strains, at low CO2. The lumenal CA thus plays a crucial role, not only for the correct functioning of the CCM, but also for element utilization. Not surprisingly, growth at high CO2 attenuated differences among strains.

  17. Vegetative biomass predicts inflorescence production along a CO2 concentration gradient in mesic grassland

    Science.gov (United States)

    Atmospheric CO2 concentration will likely exceed 500 uL L-1 by 2050, often increasing plant community productivity in part by increasing abundance of species favored by increased CA. Whether increased abundance translates to increased inflorescence production is poorly understood, and is important ...

  18. REDUCING UNCERTAINTIES IN MODEL PREDICTIONS VIA HISTORY MATCHING OF CO2 MIGRATION AND REACTIVE TRANSPORT MODELING OF CO2 FATE AT THE SLEIPNER PROJECT

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Chen

    2015-03-31

    An important question for the Carbon Capture, Storage, and Utility program is “can we adequately predict the CO2 plume migration?” For tracking CO2 plume development, the Sleipner project in the Norwegian North Sea provides more time-lapse seismic monitoring data than any other sites, but significant uncertainties still exist for some of the reservoir parameters. In Part I, we assessed model uncertainties by applying two multi-phase compositional simulators to the Sleipner Benchmark model for the uppermost layer (Layer 9) of the Utsira Sand and calibrated our model against the time-lapsed seismic monitoring data for the site from 1999 to 2010. Approximate match with the observed plume was achieved by introducing lateral permeability anisotropy, adding CH4 into the CO2 stream, and adjusting the reservoir temperatures. Model-predicted gas saturation, CO2 accumulation thickness, and CO2 solubility in brine—none were used as calibration metrics—were all comparable with the interpretations of the seismic data in the literature. In Part II & III, we evaluated the uncertainties of predicted long-term CO2 fate up to 10,000 years, due to uncertain reaction kinetics. Under four scenarios of the kinetic rate laws, the temporal and spatial evolution of CO2 partitioning into the four trapping mechanisms (hydrodynamic/structural, solubility, residual/capillary, and mineral) was simulated with ToughReact, taking into account the CO2-brine-rock reactions and the multi-phase reactive flow and mass transport. Modeling results show that different rate laws for mineral dissolution and precipitation reactions resulted in different predicted amounts of trapped CO2 by carbonate minerals, with scenarios of the conventional linear rate law for feldspar dissolution having twice as much mineral trapping (21% of the injected CO2) as scenarios with a Burch-type or Alekseyev et al.–type rate law for feldspar dissolution (11%). So far, most reactive transport modeling (RTM) studies for

  19. Processes regulating pCO2 in the surface waters of the central eastern Gotland Sea: a model study

    Directory of Open Access Journals (Sweden)

    Bernd Schneider

    2011-09-01

    Full Text Available This work presents a one-dimensional simulation of the seasonal changes in CO2 partial pressure (pCO2. The results of the model were constrained using data from observations, which improved the model's ability to estimate nitrogen fixation in the central Baltic Sea and allowed the impact of nitrogen fixation on the ecological state of the Baltic Sea to be studied. The model used here is the public domain water-column model GOTM (General Ocean Turbulence Model, which in this study was coupled with a modifed Baltic Sea ecosystem model, ERGOM (The Baltic Sea Research Institute's ecosystem model. To estimate nitrogen fixation rates in the Gotland Sea, the ERGOM model was modified by including an additional cyanobacteria group able to fix nitrogen from March to June. Furthermore, the model was extended by a simple CO2 cycle. Variable C:P and N:P ratios, controlled by phosphate concentrations in ambient water, were used to represent cyanobacteria, detritus and sediment detritus. This approach improved the model's ability to reproduce sea-surface phosphate and pCO2 dynamics. The resulting nitrogen fixation rates in 2005 for the two simulations, with and without the additional cyanobacteria group, were 259 and 278 mmol N m-2 year-1respectively.

  20. Three dimensional global modeling of atmospheric CO2. Final technical report

    International Nuclear Information System (INIS)

    Fung, I.; Hansen, J.; Rind, D.

    1983-01-01

    A modeling effort has been initiated to study the prospects of extracting information on carbon dioxide sources and sinks from observed CO 2 variations. The approach uses a three-dimensional global transport model, based on winds from a 3-D general circulation model (GCM), to advect CO 2 noninteractively, i.e., as a tracer, with specified sources and sinks of CO 2 at the surface. This report identifies the 3-D model employed in this study and discusses biosphere, ocean and fossil fuel sources and sinks. Some preliminary model results are presented. 14 figures

  1. Effect of the temperature and the CO2 concentration on the behaviour of the citric acid as a scale inhibitor of CaCO3

    Science.gov (United States)

    Blanco, K.; Aponte, H.; Vera, E.

    2017-12-01

    For all Industrial sector is important to extend the useful life of the materials that they use in their process, the scales of CaCO3 are common in situation where fluids are handled with high concentration of ions and besides this temperatures and CO2 concentration dissolved, that scale generates large annual losses because there is a reduction in the process efficiency or corrosion damage under deposit, among other. In order to find new alternatives to this problem, the citric acid was evaluated as scale of calcium carbonate inhibition in critical condition of temperature and concentration of CO2 dissolved. Once the results are obtained it was carried out the statistical evaluation in order to generate an equation that allow to see that behaviour, giving as result, a good efficiency of inhibition to the conditions evaluated the scales of products obtained were characterized through scanning electron microscopy.

  2. A model-based understanding of solid-oxide electrolysis cells (SOECs) for syngas production by H2O/CO2 co-electrolysis

    Science.gov (United States)

    Menon, Vikram; Fu, Qingxi; Janardhanan, Vinod M.; Deutschmann, Olaf

    2015-01-01

    High temperature co-electrolysis of H2O and CO2 offers a promising route for syngas (H2, CO) production via efficient use of heat and electricity. The performance of a SOEC during co-electrolysis is investigated by focusing on the interactions between transport processes and electrochemical parameters. Electrochemistry at the three-phase boundary is modeled by a modified Butler-Volmer approach that considers H2O electrolysis and CO2 electrolysis, individually, as electrochemically active charge transfer pathways. The model is independent of the geometrical structure. A 42-step elementary heterogeneous reaction mechanism for the thermo-catalytic chemistry in the fuel electrode, the dusty gas model (DGM) to account for multi-component diffusion through porous media, and a plug flow model for flow through the channels are used in the model. Two sets of experimental data are reproduced by the simulations, in order to deduce parameters of the electrochemical model. The influence of micro-structural properties, inlet cathode gas velocity, and temperature are discussed. Reaction flow analysis is performed, at OCV, to study methane production characteristics and kinetics during co-electrolysis. Simulations are carried out for configurations ranging from simple one-dimensional electrochemical button cells to quasi-two-dimensional co-flow planar cells, to demonstrate the effectiveness of the computational tool for performance and design optimization.

  3. Interfacing a one-dimensional lake model with a single-column atmospheric model: 2. Thermal response of the deep Lake Geneva, Switzerland under a 2 × CO2 global climate change

    Science.gov (United States)

    Perroud, Marjorie; Goyette, StéPhane

    2012-06-01

    In the companion to the present paper, the one-dimensional k-ɛ lake model SIMSTRAT is coupled to a single-column atmospheric model, nicknamed FIZC, and an application of the coupled model to the deep Lake Geneva, Switzerland, is described. In this paper, the response of Lake Geneva to global warming caused by an increase in atmospheric carbon dioxide concentration (i.e., 2 × CO2) is investigated. Coupling the models allowed for feedbacks between the lake surface and the atmosphere and produced changes in atmospheric moisture and cloud cover that further modified the downward radiation fluxes. The time evolution of atmospheric variables as well as those of the lake's thermal profile could be reproduced realistically by devising a set of adjustable parameters. In a "control" 1 × CO2 climate experiment, the coupled FIZC-SIMSTRAT model demonstrated genuine skills in reproducing epilimnetic and hypolimnetic temperatures, with annual mean errors and standard deviations of 0.25°C ± 0.25°C and 0.3°C ± 0.15°C, respectively. Doubling the CO2 concentration induced an atmospheric warming that impacted the lake's thermal structure, increasing the stability of the water column and extending the stratified period by 3 weeks. Epilimnetic temperatures were seen to increase by 2.6°C to 4.2°C, while hypolimnion temperatures increased by 2.2°C. Climate change modified components of the surface energy budget through changes mainly in air temperature, moisture, and cloud cover. During summer, reduced cloud cover resulted in an increase in the annual net solar radiation budget. A larger water vapor deficit at the air-water interface induced a cooling effect in the lake.

  4. Impact of elevated CO2 concentration on dynamics of leaf photosynthesis in Fagus sylvatica is modulated by sky conditions.

    Science.gov (United States)

    Urban, Otmar; Klem, Karel; Holišová, Petra; Šigut, Ladislav; Šprtová, Mirka; Teslová-Navrátilová, Petra; Zitová, Martina; Špunda, Vladimír; Marek, Michal V; Grace, John

    2014-02-01

    It has been suggested that atmospheric CO2 concentration and frequency of cloud cover will increase in future. It remains unclear, however, how elevated CO2 influences photosynthesis under complex clear versus cloudy sky conditions. Accordingly, diurnal changes in photosynthetic responses among beech trees grown at ambient (AC) and doubled (EC) CO2 concentrations were studied under contrasting sky conditions. EC stimulated the daily sum of fixed CO2 and light use efficiency under clear sky. Meanwhile, both these parameters were reduced under cloudy sky as compared with AC treatment. Reduction in photosynthesis rate under cloudy sky was particularly associated with EC-stimulated, xanthophyll-dependent thermal dissipation of absorbed light energy. Under clear sky, a pronounced afternoon depression of CO2 assimilation rate was found in sun-adapted leaves under EC compared with AC conditions. This was caused in particular by stomata closure mediated by vapour pressure deficit. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  5. Interactive Effects of CO2 Concentration and Water Regime on Stable Isotope Signatures, Nitrogen Assimilation and Growth in Sweet Pepper

    Directory of Open Access Journals (Sweden)

    María D. Serret

    2018-01-01

    Full Text Available Sweet pepper is among the most widely cultivated horticultural crops in the Mediterranean basin, being frequently grown hydroponically under cover in combination with CO2 fertilization and water conditions ranging from optimal to suboptimal. The aim of this study is to develop a simple model, based on the analysis of plant stable isotopes in their natural abundance, gas exchange traits and N concentration, to assess sweet pepper growth. Plants were grown in a growth chamber for near 6 weeks. Two [CO2] (400 and 800 μmol mol−1, three water regimes (control and mild and moderate water stress and four genotypes were assayed. For each combination of genotype, [CO2] and water regime five plants were evaluated. Water stress applied caused significant decreases in water potential, net assimilation, stomatal conductance, intercellular to atmospheric [CO2], and significant increases in water use efficiency, leaf chlorophyll content and carbon isotope composition, while the relative water content, the osmotic potential and the content of anthocyanins did change not under stress compared to control conditions support this statement. Nevertheless, water regime affects plant growth via nitrogen assimilation, which is associated with the transpiration stream, particularly at high [CO2], while the lower N concentration caused by rising [CO2] is not associated with stomatal closure. The stable isotope composition of carbon, oxygen, and nitrogen (δ13C, δ18O, and δ15N in plant matter are affected not only by water regime but also by rising [CO2]. Thus, δ18O increased probably as response to decreases in transpiration, while the increase in δ15N may reflect not only a lower stomatal conductance but a higher nitrogen demand in leaves or shifts in nitrogen metabolism associated with decreases in photorespiration. The way that δ13C explains differences in plant growth across water regimes within a given [CO2], seems to be mediated through its direct

  6. Stomatal and pavement cell density linked to leaf internal CO2 concentration.

    Science.gov (United States)

    Santrůček, Jiří; Vráblová, Martina; Simková, Marie; Hronková, Marie; Drtinová, Martina; Květoň, Jiří; Vrábl, Daniel; Kubásek, Jiří; Macková, Jana; Wiesnerová, Dana; Neuwithová, Jitka; Schreiber, Lukas

    2014-08-01

    Stomatal density (SD) generally decreases with rising atmospheric CO2 concentration, Ca. However, SD is also affected by light, air humidity and drought, all under systemic signalling from older leaves. This makes our understanding of how Ca controls SD incomplete. This study tested the hypotheses that SD is affected by the internal CO2 concentration of the leaf, Ci, rather than Ca, and that cotyledons, as the first plant assimilation organs, lack the systemic signal. Sunflower (Helianthus annuus), beech (Fagus sylvatica), arabidopsis (Arabidopsis thaliana) and garden cress (Lepidium sativum) were grown under contrasting environmental conditions that affected Ci while Ca was kept constant. The SD, pavement cell density (PCD) and stomatal index (SI) responses to Ci in cotyledons and the first leaves of garden cress were compared. (13)C abundance (δ(13)C) in leaf dry matter was used to estimate the effective Ci during leaf development. The SD was estimated from leaf imprints. SD correlated negatively with Ci in leaves of all four species and under three different treatments (irradiance, abscisic acid and osmotic stress). PCD in arabidopsis and garden cress responded similarly, so that SI was largely unaffected. However, SD and PCD of cotyledons were insensitive to Ci, indicating an essential role for systemic signalling. It is proposed that Ci or a Ci-linked factor plays an important role in modulating SD and PCD during epidermis development and leaf expansion. The absence of a Ci-SD relationship in the cotyledons of garden cress indicates the key role of lower-insertion CO2 assimilation organs in signal perception and its long-distance transport. © The Author 2014. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  7. Detailed H2 and CO Electrochemistry for a MEA Model Fueled by Syngas

    KAUST Repository

    Lee, W. Y.

    2015-07-17

    © The Electrochemical Society. SOFCs can directly oxidize CO in addition to H2, which allows them to be coupled to a gasifier. Many membrane-electrode-assembly (MEA) models neglect CO electrochemistry due to sluggish kinetics and the water-gas-shift reaction, but CO oxidation may be important for high CO-content syngas. The 1D-MEA model presented here incorporates detailed mechanisms for both H2 and CO oxidation, individually fitted to experimental data. These mechanisms are then combined into a single model, which provides a good fit to experimental data for H2/CO mixtures. Furthermore, the model fits H2/CO data best when a single chargetransfer step in the H2 mechanism is assumed to be rate-limiting for all current densities. This differs from the result for H2/H2O mixtures, where H2 adsorption becomes rate-limiting at high current densities. These results indicate that CO oxidation cannot be neglected in MEA models running on CO-rich syngas, and that CO oxidation can alter the H2 oxidation mechanism.

  8. CO2 sensing and CO2 regulation of stomatal conductance: advances and open questions

    Science.gov (United States)

    Engineer, Cawas; Hashimoto-Sugimoto, Mimi; Negi, Juntaro; Israelsson-Nordstrom, Maria; Azoulay-Shemer, Tamar; Rappel, Wouter-Jan; Iba, Koh; Schroeder, Julian

    2015-01-01

    Guard cells form epidermal stomatal gas exchange valves in plants and regulate the aperture of stomatal pores in response to changes in the carbon dioxide (CO2) concentration in leaves. Moreover, the development of stomata is repressed by elevated CO2 in diverse plant species. Evidence suggests that plants can sense CO2 concentration changes via guard cells and via mesophyll tissues in mediating stomatal movements. We review new discoveries and open questions on mechanisms mediating CO2-regulated stomatal movements and CO2 modulation of stomatal development, which together function in CO2-regulation of stomatal conductance and gas exchange in plants. Research in this area is timely in light of the necessity of selecting and developing crop cultivars which perform better in a shifting climate. PMID:26482956

  9. Modeling of CO2 migration injected in Weyburn oil reservoir

    International Nuclear Information System (INIS)

    Zhou Wei; Stenhouse, M.J.; Arthur, R.

    2008-01-01

    Injecting CO 2 into oil and gas field is a way to enhance oil recovery (EOR) as well as mitigate global warming effect by permanently storing the greenhouse gas into underground. This paper details the models and results of simulating the long-term migration of CO 2 injected into the Weyburn field for both Enhanced Oil Recovery operations and CO 2 sequestration. A System Model was established to define the spatial and temporal extents of the analysis. The Base Scenario was developed to identify key processes, features, and events (FEPs) for the expected evolution of the storage system. A compositional reservoir simulator with equations-of-states (EOS) was used as the modeling tool in order to simulate multiphase, multi-component flow and transport coupled with CO 2 mass partitioning into oil, gas, and water phases. We apply a deterministic treatment to CO 2 migration in the geosphere (natural pathways), whereas the variability of abandoned wells (man-made pathways) necessitates a stochastic treatment. The simulation result was then used to carry out consequence analysis to the local environment. (authors)

  10. Increasing pCO2 correlates with low concentrations of intracellular dimethylsulfoniopropionate in the sea anemone Anemonia viridis.

    Science.gov (United States)

    Borell, Esther M; Steinke, Michael; Horwitz, Rael; Fine, Maoz

    2014-02-01

    Marine anthozoans maintain a mutualistic symbiosis with dinoflagellates that are prolific producers of the algal secondary metabolite dimethylsulfoniopropionate (DMSP), the precursor of the climate-cooling trace gas dimethyl sulfide (DMS). Surprisingly, little is known about the physiological role of DMSP in anthozoans and the environmental factors that regulate its production. Here, we assessed the potential functional role of DMSP as an antioxidant and determined how future increases in seawater pCO2 may affect DMSP concentrations in the anemone Anemonia viridis along a natural pCO2 gradient at the island of Vulcano, Italy. There was no significant difference in zooxanthellae genotype and characteristics (density of zooxanthellae, and chlorophyll a) as well as protein concentrations between anemones from three stations along the gradient, V1 (3232 μatm CO2), V2 (682 μatm) and control (463 μatm), which indicated that A. viridis can acclimate to various seawater pCO2. In contrast, DMSP concentrations in anemones from stations V1 (33.23 ± 8.30 fmol cell(-1)) and V2 (34.78 ± 8.69 fmol cell(-1)) were about 35% lower than concentrations in tentacles from the control station (51.85 ± 12.96 fmol cell(-1)). Furthermore, low tissue concentrations of DMSP coincided with low activities of the antioxidant enzyme superoxide dismutase (SOD). Superoxide dismutase activity for both host (7.84 ± 1.37 U·mg(-1) protein) and zooxanthellae (2.84 ± 0.41 U·mg(-1) protein) at V1 was 40% lower than at the control station (host: 13.19 ± 1.42; zooxanthellae: 4.72 ± 0.57 U·mg(-1) protein). Our results provide insight into coastal DMSP production under predicted environmental change and support the function of DMSP as an antioxidant in symbiotic anthozoans.

  11. Carbon balance of China constrained by CONTRAIL aircraft CO2 measurements

    Science.gov (United States)

    Jiang, F.; Wang, H. M.; Chen, J. M.; Machida, T.; Zhou, L. X.; Ju, W. M.; Matsueda, H.; Sawa, Y.

    2014-09-01

    Terrestrial carbon dioxide (CO2) flux estimates in China using atmospheric inversion method are beset with considerable uncertainties because very few atmospheric CO2 concentration measurements are available. In order to improve these estimates, nested atmospheric CO2 inversion during 2002-2008 is performed in this study using passenger aircraft-based CO2 measurements over Eurasia from the Comprehensive Observation Network for Trace gases by Airliner (CONTRAIL) project. The inversion system includes 43 regions with a focus on China, and is based on the Bayesian synthesis approach and the TM5 transport model. The terrestrial ecosystem carbon flux modeled by the Boreal Ecosystems Productivity Simulator (BEPS) model and the ocean exchange simulated by the OPA-PISCES-T model are considered as the prior fluxes. The impacts of CONTRAIL CO2 data on inverted China terrestrial carbon fluxes are quantified, the improvement of the inverted fluxes after adding CONTRAIL CO2 data are rationed against climate factors and evaluated by comparing the simulated atmospheric CO2 concentrations with three independent surface CO2 measurements in China. Results show that with the addition of CONTRAIL CO2 data, the inverted carbon sink in China increases while those in South and Southeast Asia decrease. Meanwhile, the posterior uncertainties over these regions are all reduced (2-12%). CONTRAIL CO2 data also have a large effect on the inter-annual variation of carbon sinks in China, leading to a better correlation between the carbon sink and the annual mean climate factors. Evaluations against the CO2 measurements at three sites in China also show that the CONTRAIL CO2 measurements may have improved the inversion results.

  12. Prediction of heat capacity of amine solutions using artificial neural network and thermodynamic models for CO2 capture processes

    Science.gov (United States)

    Afkhamipour, Morteza; Mofarahi, Masoud; Borhani, Tohid Nejad Ghaffar; Zanganeh, Masoud

    2018-03-01

    In this study, artificial neural network (ANN) and thermodynamic models were developed for prediction of the heat capacity ( C P ) of amine-based solvents. For ANN model, independent variables such as concentration, temperature, molecular weight and CO2 loading of amine were selected as the inputs of the model. The significance of the input variables of the ANN model on the C P values was investigated statistically by analyzing of correlation matrix. A thermodynamic model based on the Redlich-Kister equation was used to correlate the excess molar heat capacity ({C}_P^E) data as function of temperature. In addition, the effects of temperature and CO2 loading at different concentrations of conventional amines on the C P values were investigated. Both models were validated against experimental data and very good results were obtained between two mentioned models and experimental data of C P collected from various literatures. The AARD between ANN model results and experimental data of C P for 47 systems of amine-based solvents studied was 4.3%. For conventional amines, the AARD for ANN model and thermodynamic model in comparison with experimental data were 0.59% and 0.57%, respectively. The results showed that both ANN and Redlich-Kister models can be used as a practical tool for simulation and designing of CO2 removal processes by using amine solutions.

  13. Fluidized-Bed Heat Transfer Modeling for the Development of Particle/Supercritical-CO2 Heat Exchanger

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Zhiwen [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Martinek, Janna G [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-06-03

    Concentrating solar power (CSP) technology is moving toward high-temperature and high-performance design. One technology approach is to explore high-temperature heat-transfer fluids and storage, integrated with a high-efficiency power cycle such as the supercritical carbon dioxide (s-CO2) Brayton power cycle. The s-CO2 Brayton power system has great potential to enable the future CSP system to achieve high solar-to-electricity conversion efficiency and to reduce the cost of power generation. Solid particles have been proposed as a possible high-temperature heat-transfer medium that is inexpensive and stable at high temperatures above 1,000 degrees C. The particle/heat exchanger provides a connection between the particles and s-CO2 fluid in the emerging s-CO2 power cycles in order to meet CSP power-cycle performance targets of 50% thermal-to-electric efficiency, and dry cooling at an ambient temperature of 40 degrees C. The development goals for a particle/s-CO2 heat exchanger are to heat s-CO2 to =720 degrees C and to use direct thermal storage with low-cost, stable solid particles. This paper presents heat-transfer modeling to inform the particle/s-CO2 heat-exchanger design and assess design tradeoffs. The heat-transfer process was modeled based on a particle/s-CO2 counterflow configuration. Empirical heat-transfer correlations for the fluidized bed and s-CO2 were used in calculating the heat-transfer area and optimizing the tube layout. A 2-D computational fluid-dynamics simulation was applied for particle distribution and fluidization characterization. The operating conditions were studied from the heat-transfer analysis, and cost was estimated from the sizing of the heat exchanger. The paper shows the path in achieving the cost and performance objectives for a heat-exchanger design.

  14. PVTx properties of the CO2-H2O and CO2-H2O-NaCl systems below 647 K: assessment of experimental data and thermodynamic models

    Science.gov (United States)

    Hu, Jiawen; Duan, Zhenhao; Zhu, Chen; Chou, I.-Ming

    2007-01-01

    Evaluation of CO2 sequestration in formation brine or in seawater needs highly accurate experimental data or models of pressure–volume–temperature-composition (PVTx) properties for the CO2–H2O and CO2–H2O–NaCl systems. This paper presents a comprehensive review of the experimental PVTx properties and the thermodynamic models of these two systems. The following conclusions are drawn from the review: (1) About two-thirds of experimental data are consistent with each other, where the uncertainty in liquid volumes is within 0.5%, and that in gas volumes within 2%. However, this accuracy is not sufficient for assessing CO2 sequestration. Among the data sets for liquids, only a few are available for accurate modeling of CO2 sequestration. These data have an error of about 0.1% on average, roughly covering from 273 to 642 K and from 1 to 35 MPa; (2) There is a shortage of volumetric data of saturated vapor phase. (3) There are only a few data sets for the ternary liquids, and they are inconsistent with each other, where only a couple of data sets can be used to test a predictive density model for CO2 sequestration; (4) Although there are a few models with accuracy close to that of experiments, none of them is accurate enough for CO2 sequestration modeling, which normally needs an accuracy of density better than 0.1%. Some calculations are made available on www.geochem-model.org.

  15. Hydrogen constituents of the mesosphere inferred from positive ions - H2O, CH4, H2CO, H2O2, and HCN

    Science.gov (United States)

    Kopp, E.

    1990-01-01

    The concentrations in the mesosphere of H2O, CH4, H2CO, H2O2, and HCN were inferred from data on positive ion compositions, obtained from one mid-latitude and four high-latitude rocket flights. The inferred concentrations were found to agree only partially with the ground-based microwave measurements and/or model prediction by Garcia and Solomon (1985). The CH4 concentration was found to vary between 70 and 4 ppb in daytime and 900 and 100 ppbv at night, respectively. Unexpectedly high H2CO concentrations were obtained, with H2CO/H2O ratios between 0.0006 and 0.1, and a mean HCN volume mixing ratio of 6 x 10 to the -10th was inferred.

  16. Sensitivity of terrestrial ecosystems to elevated atmospheric CO{sub 2}: Comparisons of model simulation studies to CO{sub 2} effect

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Y. [Marine Biological Lab., Woods Hole, MA (United States)

    1995-06-01

    In the context of a project to compare terrestrial ecosystem models, the Vegetation/Ecosystem Modeling and Analysis Project (VEMAP), we have analyzed how three biogeochemistry models link plant growth to doubled atmospheric CO{sub 2}. A common set of input data was used to drive three biogeochemistry models, BIOME-BGC, CENTURY and TEM. For the continental United States the simulation results show that with doubled CO{sub 2}, NPP increased by 8.7%, 5.0% and 10.8% for TEM, CENTURY and BIOME-BGC, respectively. At the biome level the range of NPP estimates varied considerably among models. TEM-simulated enhancement of NPP ranged from 2% to 28%; CENTURY, from 2% to 9%; and BIOME-BGC, from 4% to 27%. A transect analysis across several biomes along a latitude at 41.5 N shows that the TEM-simulated CO{sub 2} enhancement of NPP ranged from 0% to 22%; CENTURY, from 1% to 10% and BIOME-BGC, from 1% to 63%. In this study, we have investigated the underlying mechanisms of the three models to reveal how increased CO{sub 2} affects photosynthesis rate, water using efficiency and nutrient cycles. The relative importance of these mechanisms in each of the three biogeochemistry models will be discussed.

  17. 40 CFR 93.123 - Procedures for determining localized CO, PM10, and PM2.5 concentrations (hot-spot analysis).

    Science.gov (United States)

    2010-07-01

    ... CO, PM10, and PM2.5 concentrations (hot-spot analysis). 93.123 Section 93.123 Protection of... concentrations (hot-spot analysis). (a) CO hot-spot analysis. (1) The demonstrations required by § 93.116... make a categorical hot-spot finding that (93.116(a) is met without further hot-spot analysis for any...

  18. Effect of phase interaction on catalytic CO oxidation over the SnO{sub 2}/Al{sub 2}O{sub 3} model catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Chai, Shujing [Collaborative Innovation Center of Chemical Science & Engineering (Tianjin), Tianjin Key Laboratory of Applied Catalysis Science & Technology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300354 (China); The Institute of Seawater Desalination and Miltipurpose Utilization, State Oceanic Administration, Tianjin 300192 (China); Bai, Xueqin; Li, Jing; Liu, Cheng; Ding, Tong; Tian, Ye; Liu, Chang [Collaborative Innovation Center of Chemical Science & Engineering (Tianjin), Tianjin Key Laboratory of Applied Catalysis Science & Technology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300354 (China); Xian, Hui [Tianjin Polytechnic University, School of Computer Science & Software Engineering, Tianjin 300387 (China); Mi, Wenbo [Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparation Technology, Faculty of Science, Tianjin University, Tianjin 300354 (China); Li, Xingang, E-mail: xingang_li@tju.edu.cn [Collaborative Innovation Center of Chemical Science & Engineering (Tianjin), Tianjin Key Laboratory of Applied Catalysis Science & Technology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300354 (China)

    2017-04-30

    Highlights: • Activity for CO oxidation is greatly enhanced by interaction between SnO{sub 2} and Al{sub 2}O{sub 3}. • Interaction between SnO{sub 2} and Al{sub 2}O{sub 3} phases can generate oxygen vacancies. • Oxygen vacancies play an import role for catalytic CO oxidation. • Sn{sup 4+} cations are the effective sites for catalytic CO oxidation. • Langmuir-Hinshelwood model is preferred for catalytic CO oxidation. - Abstract: We investigated the catalytic CO oxidation over the SnO{sub 2}/Al{sub 2}O{sub 3} model catalysts. Our results show that interaction between the Al{sub 2}O{sub 3} and SnO{sub 2} phases results in the significantly improved catalytic activity because of the formation of the oxygen vacancies. The oxygen storage capacity of the SnO{sub 2}/Al{sub 2}O{sub 3} catalyst prepared by the physically mixed method is nearly two times higher than that of the SnO{sub 2}, which probably results from the change of electron concentration on the interface of the SnO{sub 2} and Al{sub 2}O{sub 3} phases. Introducing water vapor to the feeding gas would a little decrease the activity of the catalysts, but the reaction rate could completely recover after removal of water vapor. The kinetics results suggest that the surface Sn{sup 4+} cations are effective CO adsorptive sites, and the surface adsorbed oxygen plays an important role upon CO oxidation. The reaction pathways upon the SnO{sub 2}-based catalysts for CO oxidation follow the Langmuir-Hinshelwood model.

  19. Stable isotope and modelling evidence for CO2 as a driver of glacial–interglacial vegetation shifts in southern Africa

    Directory of Open Access Journals (Sweden)

    F. J. Bragg

    2013-03-01

    Full Text Available Atmospheric CO2 concentration is hypothesized to influence vegetation distribution via tree–grass competition, with higher CO2 concentrations favouring trees. The stable carbon isotope (δ13C signature of vegetation is influenced by the relative importance of C4 plants (including most tropical grasses and C3 plants (including nearly all trees, and the degree of stomatal closure – a response to aridity – in C3 plants. Compound-specific δ13C analyses of leaf-wax biomarkers in sediment cores of an offshore South Atlantic transect are used here as a record of vegetation changes in subequatorial Africa. These data suggest a large increase in C3 relative to C4 plant dominance after the Last Glacial Maximum. Using a process-based biogeography model that explicitly simulates 13C discrimination, it is shown that precipitation and temperature changes cannot explain the observed shift in δ13C values. The physiological effect of increasing CO2 concentration is decisive, altering the C3/C4 balance and bringing the simulated and observed δ13C values into line. It is concluded that CO2 concentration itself was a key agent of vegetation change in tropical southern Africa during the last glacial–interglacial transition. Two additional inferences follow. First, long-term variations in terrestrial δ13Cvalues are not simply a proxy for regional rainfall, as has sometimes been assumed. Although precipitation and temperature changes have had major effects on vegetation in many regions of the world during the period between the Last Glacial Maximum and recent times, CO2 effects must also be taken into account, especially when reconstructing changes in climate between glacial and interglacial states. Second, rising CO2 concentration today is likely to be influencing tree–grass competition in a similar way, and thus contributing to the "woody thickening" observed in savannas worldwide. This second inference points to the importance of experiments to

  20. Regional impacts of climate change and atmospheric CO2 on future ocean carbon uptake: a multi model linear feedback analysis

    International Nuclear Information System (INIS)

    Roy, Tilla; Bopp, Laurent; Gehlen, Marion; Cadule, Patricia; Schneider, Birgit; Frolicher, Thomas L.; Segschneider, Joachim; Tjiputra, Jerry; Heinze, Christoph; Joos, Fortunat

    2011-01-01

    The increase in atmospheric CO 2 over this century depends on the evolution of the oceanic air-sea CO 2 uptake, which will be driven by the combined response to rising atmospheric CO 2 itself and climate change. Here, the future oceanic CO 2 uptake is simulated using an ensemble of coupled climate-carbon cycle models. The models are driven by CO 2 emissions from historical data and the Special Report on Emissions Scenarios (SRES) A2 high-emission scenario. A linear feedback analysis successfully separates the regional future (2010-2100) oceanic CO 2 uptake into a CO 2 -induced component, due to rising atmospheric CO 2 concentrations, and a climate-induced component, due to global warming. The models capture the observation based magnitude and distribution of anthropogenic CO 2 uptake. The distributions of the climate-induced component are broadly consistent between the models, with reduced CO 2 uptake in the sub polar Southern Ocean and the equatorial regions, owing to decreased CO 2 solubility; and reduced CO 2 uptake in the mid-latitudes, owing to decreased CO 2 solubility and increased vertical stratification. The magnitude of the climate-induced component is sensitive to local warming in the southern extra-tropics, to large freshwater fluxes in the extra-tropical North Atlantic Ocean, and to small changes in the CO 2 solubility in the equatorial regions. In key anthropogenic CO 2 uptake regions, the climate-induced component offsets the CO 2 - induced component at a constant proportion up until the end of this century. This amounts to approximately 50% in the northern extra-tropics and 25% in the southern extra-tropics and equatorial regions. Consequently, the detection of climate change impacts on anthropogenic CO 2 uptake may be difficult without monitoring additional tracers, such as oxygen. (authors)

  1. Regional impacts of climate change and atmospheric CO2 on future ocean carbon uptake: a multi model linear feedback analysis

    International Nuclear Information System (INIS)

    Roy, Tilla; Bopp, Laurent; Gehlen, Marion; Cadule, Patricia

    2011-01-01

    The increase in atmospheric CO 2 over this century depends on the evolution of the oceanic air-sea CO 2 uptake, which will be driven by the combined response to rising atmospheric CO 2 itself and climate change. Here, the future oceanic CO 2 uptake is simulated using an ensemble of coupled climate-carbon cycle models. The models are driven by CO 2 emissions from historical data and the Special Report on Emissions Scenarios (SRES) A2 high-emission scenario. A linear feedback analysis successfully separates the regional future (2010-2100) oceanic CO 2 uptake into a CO 2 -induced component, due to rising atmospheric CO 2 concentrations, and a climate-induced component, due to global warming. The models capture the observation based magnitude and distribution of anthropogenic CO 2 uptake. The distributions of the climate-induced component are broadly consistent between the models, with reduced CO 2 uptake in the sub-polar Southern Ocean and the equatorial regions, owing to decreased CO 2 solubility; and reduced CO 2 uptake in the mid latitudes, owing to decreased CO 2 solubility and increased vertical stratification. The magnitude of the climate-induced component is sensitive to local warming in the southern extra tropics, to large freshwater fluxes in the extra tropical North Atlantic Ocean, and to small changes in the CO 2 solubility in the equatorial regions. In key anthropogenic CO 2 uptake regions, the climate-induced component offsets the CO 2 - induced component at a constant proportion up until the end of this century. This amounts to approximately 50% in the northern extra tropics and 25% in the southern extra tropics and equatorial regions. Consequently, the detection of climate change impacts on anthropogenic CO 2 uptake may be difficult without monitoring additional tracers, such as oxygen. (authors)

  2. Impact of elevated CO2 concentrations on the growth and ultrastructure of non-calcifying marine diatom (Chaetoceros gracilis F.Schütt

    Directory of Open Access Journals (Sweden)

    Hanan M. Khairy

    2014-01-01

    Full Text Available The impacts of different CO2 concentrations on the growth, physiology and ultrastructure of noncalcifying microalga Chaetoceros gracilis F.Schütt (Diatom were studied. We incubated Ch. gracilis under different CO2 concentrations, preindustrial and current ambient atmospheric concentrations (285 and 385 μatm, respectively or predicted year-2100 CO2 levels (550, 750 and 1050 μatm in continuous culture conditions. The growth of Ch. gracilis measured as cell number was decreased by increasing the pCO2 concentration from nowadays concentration (385 μatm to 1050 μatm. The lowest percentage changes of oxidizable organic matter, nitrite, nitrate, phosphate and silicate were recorded at a higher pCO2 (1050 μatm, and this is in consistence with the lowest recorded cell number indicating unsuitable conditions for the growth of Ch. gracilis. The minimum cell numbers obtained at higher levels of CO2 clearly demonstrate that, low improvement occurred when the carbon level was raised. This was confirmed by a highly negative correlation between cell number and carbon dioxide partial pressure (r = −0.742, p ⩽ 0.05. On the other hand, highest growth rate at pCO2 = 385 μatm was also confirmed by the maximum uptake of nutrient salts (NO3 = 68.96 μmol.l−1, PO4 = 29.75 μmol.l−1, Si2O3 = 36.99 μmol.l−1. Total protein, carbohydrate and lipid composition showed significant differences (p ⩽ 0.05 at different carbon dioxide concentrations during the exponential growth phase (day 8. Transmission Electron Microscopy of Ch. gracilis showed enlargement of the cell, chloroplast damage, disorganization and disintegration of thylakoid membranes; cell lysis occurs at a higher CO2 concentration (1050 μatm. It is concluded from this regression equation and from the results that the growth of Ch. gracilis is expected to decrease by increasing pCO2 and increasing ocean acidification.

  3. Surface energy balances of three general circulation models: Current climate and response to increasing atmospheric CO2

    International Nuclear Information System (INIS)

    Gutowski, W.J.; Gutzler, D.S.; Portman, D.; Wang, W.C.

    1988-04-01

    The surface energy balance simulated by state-of-the-art general circulation models at GFDL, GISS and NCAR for climates with current levels of atmospheric CO 2 concentration (control climate) and with twice the current levels. The work is part of an effort sponsored by the US Department of Energy to assess climate simulations produced by these models. The surface energy balance enables us to diagnose differences between models in surface temperature climatology and sensitivity to doubling CO 2 in terms of the processes that control surface temperature. Our analysis compares the simulated balances by averaging the fields of interest over a hierarchy of spatial domains ranging from the entire globe down to regions a few hundred kilometers across

  4. Mineral composition of durum wheat grain and pasta under increasing atmospheric CO2 concentrations.

    Science.gov (United States)

    Beleggia, Romina; Fragasso, Mariagiovanna; Miglietta, Franco; Cattivelli, Luigi; Menga, Valeria; Nigro, Franca; Pecchioni, Nicola; Fares, Clara

    2018-03-01

    The concentrations of 10 minerals were investigated in the grain of 12 durum wheat genotypes grown under free air CO 2 enrichment conditions, and in four of their derived pasta samples, using inductively coupled plasma mass spectrometry. Compared to ambient CO 2 (400ppm; AMB), under elevated CO 2 (570ppm; ELE), the micro-element and macro-element contents showed strong and significant decreases in the grain: Mn, -28.3%; Fe, -26.7%; Zn, -21.9%; Mg, -22.7%; Mo, -40.4%; K, -22.4%; and Ca, -19.5%. These variations defined the 12 genotypes as sensitive or non-sensitive to ELE. The pasta samples under AMB and ELE showed decreased mineral contents compared to the grain. Nevertheless, the contributions of the pasta to the recommended daily allowances remained relevant, also for the micro-elements under ELE conditions (range, from 18% of the recommended daily allowance for Zn, to 70% for Mn and Mo). Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Climate change and the CO2 myth

    International Nuclear Information System (INIS)

    Boettcher, C.J.F.

    1994-01-01

    Further increase of the CO 2 concentration in the atmosphere has little effect on the greenhouse effect contrary to the effect of the increase of other greenhouse gases. However, politicians are using targets for the reduction of CO 2 emissions that are unrealistic, taking into account the scientific uncertainties of the applied models, the doubts about the feasibility of quantitative targets and the economic consequences of such drastic measures. Some recommendations are given for a more realistic CO 2 policy. Also attention is paid to the important role that coal will play in the future of the energy supply. 5 figs., 3 ills

  6. CO{sub 2} solubility in brines of sedimentary basins. Application to CO{sub 2} sequestration (greenhouse gas); Solubilite de CO{sub 2} dans les saumures des bassins sedimentaires. Application au stockage de CO{sub 2} (gaz a effet de serre)

    Energy Technology Data Exchange (ETDEWEB)

    Portier, S.

    2005-04-01

    Large scale combustion of fossil energy leads today to a production of 20 billions tons of CO{sub 2} annually. This increases continuously the CO{sub 2} concentration in the atmosphere, responsible of the observed climatic increase of the temperature since one century. One of the most acceptable solutions consists in the so called CO{sub 2} sequestration in natural geological formations. The control of the process and the prediction of the final quantity of CO{sub 2} trapped in the deep saline aquifers depend on the knowledge of the solubility of acid gas in natural brines in the in situ temperature and pressure conditions. The possible dissolution of acid gases in aqueous phases brings a new complexity, owing to the fact that they behave like electrolytes in aqueous mediums A thermodynamic model for CO{sub 2} solubility is presented. The vapour phase is described by a cubic state equation. The aqueous phase is described by apparent constants of CO{sub 2} dissolution and dissociation, adjusted on literature data. This model is validated by measurements of the British Geological Survey (CO{sub 2} sequestration at Sleipner oil field, North Sea). The results of this study made it possible to calculate the impact of a CO{sub 2} injection on the solubility of calcite by acidification of formation water. The consequences in terms of CO{sub 2} storage capacity of deep saline aquifers are estimated. (author)

  7. Geomechanical Modeling for Improved CO2 Storage Security

    Science.gov (United States)

    Rutqvist, J.; Rinaldi, A. P.; Cappa, F.; Jeanne, P.; Mazzoldi, A.; Urpi, L.; Vilarrasa, V.; Guglielmi, Y.

    2017-12-01

    This presentation summarizes recent modeling studies on geomechanical aspects related to Geologic Carbon Sequestration (GCS,) including modeling potential fault reactivation, seismicity and CO2 leakage. The model simulations demonstrates that the potential for fault reactivation and the resulting seismic magnitude as well as the potential for creating a leakage path through overburden sealing layers (caprock) depends on a number of parameters such as fault orientation, stress field, and rock properties. The model simulations further demonstrate that seismic events large enough to be felt by humans requires brittle fault properties as well as continuous fault permeability allowing for the pressure to be distributed over a large fault patch to be ruptured at once. Heterogeneous fault properties, which are commonly encountered in faults intersecting multilayered shale/sandstone sequences, effectively reduce the likelihood of inducing felt seismicity and also effectively impede upward CO2 leakage. Site specific model simulations of the In Salah CO2 storage site showed that deep fractured zone responses and associated seismicity occurred in the brittle fractured sandstone reservoir, but at a very substantial reservoir overpressure close to the magnitude of the least principal stress. It is suggested that coupled geomechanical modeling be used to guide the site selection and assisting in identification of locations most prone to unwanted and damaging geomechanical changes, and to evaluate potential consequence of such unwanted geomechanical changes. The geomechanical modeling can be used to better estimate the maximum sustainable injection rate or reservoir pressure and thereby provide for improved CO2 storage security. Whether damaging geomechanical changes could actually occur very much depends on the local stress field and local reservoir properties such the presence of ductile rock and faults (which can aseismically accommodate for the stress and strain induced by

  8. Does the increase in ambient CO2 concentration elevate allergy risks posed by oak pollen?

    Science.gov (United States)

    Kim, Kyu Rang; Oh, Jae-Won; Woo, Su-Young; Seo, Yun Am; Choi, Young-Jin; Kim, Hyun Seok; Lee, Wi Young; Kim, Baek-Jo

    2018-05-01

    Oak pollen is a major respiratory allergen in Korea, and the distribution of oak trees is expected to increase by ecological succession and climate change. One of the drivers of climate change is increasing CO2, which is also known to amplify the allergy risk of weed pollen by inducing elevated allergenic protein content. However, the impact of CO2 concentration on tree pollen is not clearly understood due to the experimental difficulties in carrying out extended CO2 treatment. To study the response of pollen production of sawtooth oak trees (Quercus acutissima) to elevated levels of ambient CO2, three open-top chambers at the National Institute of Forest Science in Suwon, Korea were utilized with daytime (8 am-6 pm) CO2 concentrations of ambient (× 1.0, 400 ppm), × 1.4 ( 560 ppm), and × 1.8 ( 720 ppm) treatments. Each chamber had three sawtooth oak trees planted in September 2009. One or two trees per chamber matured to bloom in 2016. Five to six catkins were selected per tree and polyethylene bags were attached to collect pollen grains. The total number of catkins per tree was counted and the number and weight of pollen grains per catkin were measured. Oak allergen—Que a 1 (Allergon Co., Uppsala, Sweden)—was extracted and purified to make an ELISA kit by which the antigen levels in the pollen samples were quantified. Total pollen counts per tree of the × 1.4 and × 1.8 treatments showed significant increase of 353 and 1299%, respectively, from the × 1.0 treatment (p < 0.001). Allergenic protein contents at the × 1.4 and × 1.8 treatments also showed significant increase of 12 and 11%, respectively (p = 0.011). The × 1.8 treatment induced significant difference from the × 1.0 treatment in terms of pollen production and allergenic protein content, whereas the × 1.4 treatment showed mixed significance. In summary, the oak trees under the elevated CO2 levels, which are expected in the changing climate, produced significantly higher amount of pollen and

  9. High-frequency productivity estimates for a lake from free-water CO2 concentration measurements

    Science.gov (United States)

    Provenzale, Maria; Ojala, Anne; Heiskanen, Jouni; Erkkilä, Kukka-Maaria; Mammarella, Ivan; Hari, Pertti; Vesala, Timo

    2018-04-01

    Lakes are important actors in biogeochemical cycles and a powerful natural source of CO2. However, they are not yet fully integrated in carbon global budgets, and the carbon cycle in the water is still poorly understood. In freshwater ecosystems, productivity studies have usually been carried out with traditional methods (bottle incubations, 14C technique), which are imprecise and have a poor temporal resolution. Consequently, our ability to quantify and predict the net ecosystem productivity (NEP) is limited: the estimates are prone to errors and the NEP cannot be parameterised from environmental variables. Here we expand the testing of a free-water method based on the direct measurement of the CO2 concentration in the water. The approach was first proposed in 2008, but was tested on a very short data set (3 days) under specific conditions (autumn turnover); despite showing promising results, this method has been neglected by the scientific community. We tested the method under different conditions (summer stratification, typical summer conditions for boreal dark-water lakes) and on a much longer data set (40 days), and quantitatively validated it comparing our data and productivity models. We were able to evaluate the NEP with a high temporal resolution (minutes) and found a very good agreement (R2 ≥ 0.71) with the models. We also estimated the parameters of the productivity-irradiance (PI) curves that allow the calculation of the NEP from irradiance and water temperature. Overall, our work shows that the approach is suitable for productivity studies under a wider range of conditions, and is an important step towards developing this method so that it becomes more widely used.

  10. Empirical model for calculating vapor-liquid equilibrium and associated phase enthalpy for the CO2--O2--Kr--Xe system for application to the KALC process

    International Nuclear Information System (INIS)

    Glass, R.W.; Gilliam, T.M.; Fowler, V.L.

    1976-01-01

    An empirical model is presented for vapor-liquid equilibria and enthalpy for the CO 2 -O 2 system. In the model, krypton and xenon in very low concentrations are combined with the CO 2 -O 2 system, thereby representing the total system of primary interest in the High-Temperature Gas-Cooled Reactor program for removing krypton from off-gas generated during the reprocessing of spent fuel. Selected properties of the individual and combined components being considered are presented in the form of tables and empirical equations

  11. Seasonal & Daily Amazon Column CO2 & CO Observations from Ground & Space Used to Evaluate Tropical Ecosystem Models

    Science.gov (United States)

    Dubey, M. K.; Parker, H. A.; Wennberg, P. O.; Wunch, D.; Jacobson, A. R.; Kawa, S. R.; Keppel-Aleks, G.; Basu, S.; O'Dell, C.; Frankenberg, C.; Michalak, A. M.; Baker, D. F.; Christofferson, B.; Restrepo-Coupe, N.; Saleska, S. R.; De Araujo, A. C.; Miller, J. B.

    2016-12-01

    The Amazon basin stores 150-200 PgC, exchanges 18 PgC with the atmosphere every year and has taken up 0.42-0.65 PgC/y over the past two decades. Despite its global significance, the response of the tropical carbon cycle to climate variability and change is ill constrained as evidenced by the large negative and positive feedbacks in future climate simulations. The complex interplay of radiation, water and ecosystem phenology remains unresolved in current tropical ecosystem models. We use high frequency regional scale TCCON observations of column CO2, CO and CH4 near Manaus, Brazil that began in October 2014 to understand the aforementioned interplay of processes in regulating biosphere-atmosphere exchange. We observe a robust daily column CO2 uptake of about 2 ppm (4 ppm to 0.5 ppm) over 8 hours and evaluate how it changes as we transition to the dry season. Back-trajectory calculations show that the daily CO2 uptake footprint is terrestrial and influenced by the heterogeneity of the Amazon rain forests. The column CO falls from above 120 ppb to below 80 ppb as we transition from the biomass burning to wet seasons. The daily mean column CO2 rises by 3 ppm from October through June. Removal of biomass burning, secular CO2 increase and variations from transport (by Carbon tracker simulations) implies an increase of 2.3 ppm results from tropical biospheric processes (respiration and photosynthesis). This is consistent with ground-based remote sensing and eddy flux observations that indicate that leaf development and demography drives the tropical carbon cycle in regions that are not water limited and is not considered in current models. We compare our observations with output from 7 CO2 inversion transport models with assimilated meteorology and find that while 5 models reproduce the CO2 seasonal cycle all of them under predict the daily drawdown of CO2 by a factor of 3. This indicates that the CO2 flux partitioning between photosynthesis and respiration is incorrect

  12. Relating Nimbus-7 37 GHz data to global land-surface evaporation, primary productivity and the atmospheric CO2 concentration

    Science.gov (United States)

    Choudhury, B. J.

    1988-01-01

    Global observations at 37 GHz by the Nimbus-7 SMMR are related to zonal variations of land surface evaporation and primary productivity, as well as to temporal variations of atmospheric CO2 concentration. The temporal variation of CO2 concentration and the zonal variations of evaporation and primary productivity are shown to be highly correlated with the satellite sensor data. The potential usefulness of the 37-GHz data for global biospheric and climate studies is noted.

  13. Modeling CO2 Laser Ablative Impulse with Polymers

    International Nuclear Information System (INIS)

    Sinko, John E.; Phipps, Claude R.; Sasoh, Akihiro

    2010-01-01

    Laser ablation vaporization models have usually ignored the spatial dependence of the laser beam. Here, we consider effects from modeling using a Gaussian beam for both photochemical and photothermal conditions. The modeling results are compared to experimental and literature data for CO 2 laser ablation of the polymer polyoxymethylene under vacuum, and discussed in terms of the ablated mass areal density and momentum coupling coefficient. Extending the scope of discussion, laser ablative impulse generation research has lacked a cohesive strategy for linking the vaporization and plasma regimes. Existing models, mostly formulated for ultraviolet laser systems or metal targets, appear to be inappropriate or impractical for applications requiring CO 2 laser ablation of polymers. A recently proposed method for linking the vaporization and plasma regimes for analytical modeling is addressed here along with the implications of its use. Key control parameters are considered, along with the major propulsion parameters needed for laser ablation propulsion modeling.

  14. The optimal CO2 concentrations for the growth of three perennial grass species

    OpenAIRE

    Zheng, Yunpu; Li, Fei; Hao, Lihua; Shedayi, Arshad Ali; Guo, Lili; Ma, Chao; Huang, Bingru; Xu, Ming

    2018-01-01

    Background Grasslands are one of the most representative vegetation types accounting for about 20% of the global land area and thus the response of grasslands to climate change plays a pivotal role in terrestrial carbon balance. However, many current climate change models, based on earlier results of the doubling-CO2 experiments, may overestimate the CO2 fertilization effect, and as a result underestimate the potentially effects of future climate change on global grasslands when the atmospher...

  15. Concentration and stable carbon isotopic composition of CO2 in cave air of Postojnska jama, Slovenia

    Directory of Open Access Journals (Sweden)

    Magda Mandic

    2013-09-01

    Full Text Available Partial pressure of CO2 (pCO2 and its isotopic composition (δ13CairCO2 were measured in Postojnska jama, Slovenia, at 10 locations inside the cave and outside the cave during a one-year period. At all interior locations the pCO2 was higher and δ13CairCO2 lower than in the outside atmosphere. Strong seasonal fluctuations in both parameters were observed at locations deeper in the cave, which are isolated from the cave air circulation. By using a binary mixing model of two sources of CO2, one of them being the atmospheric CO2, we show that the excess of CO2 in the cave air has a δ13C value of -23.3 ± 0.7 ‰, in reasonable agreement with the previously measured soil-CO2 δ13C values. The stable isotope data suggest that soil CO2 is brought to the cave by drip water.

  16. Modeling the transformation of atmospheric CO2 into microalgal biomass.

    Science.gov (United States)

    Hasan, Mohammed Fahad; Vogt, Frank

    2017-10-23

    Marine phytoplankton acts as a considerable sink of atmospheric CO 2 as it sequesters large quantities of this greenhouse gas for biomass production. To assess microalgae's counterbalancing of global warming, the quantities of CO 2 they fix need to be determined. For this task, it is mandatory to understand which environmental and physiological parameters govern this transformation from atmospheric CO 2 to microalgal biomass. However, experimental analyses are challenging as it has been found that the chemical environment has a major impact on the physiological properties of the microalgae cells (diameter typ. 5-20 μm). Moreover, the cells can only chemically interact with their immediate vicinity and thus compound sequestration needs to be studied on a microscopic spatial scale. Due to these reasons, computer simulations are a more promising approach than the experimental studies. Modeling software has been developed that describes the dissolution of atmospheric CO 2 into oceans followed by the formation of HCO 3 - which is then transported to individual microalgae cells. The second portion of this model describes the competition of different cell species for this HCO 3 - , a nutrient, as well as its uptake and utilization for cell production. Two microalgae species, i.e. Dunaliella salina and Nannochloropsis oculata, were cultured individually and in a competition situation under different atmospheric CO 2 conditions. It is shown that this novel model's predictions of biomass production are in very good agreement with the experimental flow cytometry results. After model validation, it has been applied to long-term prediction of phytoplankton generation. These investigations were motivated by the question whether or not cell production slows down as cultures grow. This is of relevance as a reduced cell production rate means that the increase in a culture's CO 2 -sinking capacity slows down as well. One implication resulting from this is that an increase in

  17. Genetic variation and control of chloroplast pigment concentrations in Picea rubens, Picea mariana and their hybrids. I. Ambient and elevated [CO2] environments

    International Nuclear Information System (INIS)

    Major, J.E.; Barsi, D.C.; Mosseler, A.; Campbell, M.

    2007-01-01

    A significant decline has been noted in the red spruce component of the Acadian forest region in eastern Canada and the northeastern United States as a result of excessive harvesting, acid rain, and global warming. Two experiments were performed to acquire benchmark adaptive traits for information from a red spruce (RS) (Picea rubens Sargand) and black spruce (BS) (P. mariana (Mill.) B.S.P.) genetic complex grown in ambient carbon dioxide concentration ([CO 2 ]). The first experiment involved RS-BS seed sources from across the RS geographical range, while the second experiment involved an intra- and interspecific controlled-cross experiment to determine if RS and BS have unique chloroplast pigment concentrations and traits that reflect adaptations to different ecological niches. The objective was to determine species origin and hybrid variations in chloroplast pigment concentrations; examine the effect of elevated [CO 2 ] on chloroplast pigments; determine the inheritance of chloroplast pigments and examine the relationship of chloroplast pigment concentrations of trees grown at ambient [CO 2 ] with productivity traits and nitrogen concentrations. The traits related to light-energy processing have pronounced ecological implications for plant health. Results from the species origin experiment showed that total chlorophyll concentration was about 15 per cent higher in ambient [CO 2 ] than in elevated [CO 2 ]. In ambient [CO 2 ], BS populations had 11 per cent higher total chlorophyll and carotenoid concentrations than RS populations. Results from the controlled-cross experiment showed that families with a hybrid index of 25 per cent RS had the highest total chlorophyll concentrations, and families with hybrid indices of 75 and 100 had the lowest amounts. A predominant male effect for chlorophyll concentration was noted. In ambient and elevated [CO 2 ] environments, crosses with BS males had 10.6 and 17.6 per cent higher total chlorophyll concentrations than crosses

  18. Simulation of spring wheat responses to elevated CO2 and temperature by using CERES-wheat crop model

    Directory of Open Access Journals (Sweden)

    H. LAURILA

    2008-12-01

    Full Text Available The CERES-wheat crop simulation model was used to estimate the changes in phenological development and yield production of spring wheat (Triticum aestivum L., cv. Polkka under different temperature and CO2 growing conditions. The effects of elevated temperature (3-4°C and CO2 concentration (700 ppm as expected for Finland in 2100 were simulated. The model was calibrated for long-day growing conditions in Finland. The CERES-wheat genetic coefficients for cv. Polkka were calibrated by using the MTT Agrifood Research Finland (MTT official variety trial data (1985-1990. Crop phenological development and yield measurements from open-top chamber experiments with ambient and elevated temperature and CO2 treatments were used to validate the model. Simulated mean grain yield under ambient temperature and CO2 conditions was 6.16 t ha-1 for potential growth (4.49 t ha-1 non-potential and 5.47 t ha-1 for the observed average yield (1992-1994 in ambient open-top chamber conditions. The simulated potential grain yield increased under elevated CO2 (700 ppm to 142% (167% non-potential from the simulated reference yield (100%, ambient temperature and CO2 350 ppm. Simulations for current sowing date and elevated temperature (3°C indicate accelerated anthesis and full maturity. According to the model estimations, potential yield decreased on average to 80.4% (76.8% non-potential due to temperature increase from the simulated reference. When modelling the concurrent elevated temperature and CO2 interaction, the increase in grain yield due to elevated CO2 was reduced by the elevated temperature. The combined CO2 and temperature effect increased the grain yield to 106% for potential growth (122% non-potential compared to the reference. Simulating the effects of earlier sowing, the potential grain yield increased under elevated temperature and CO2 conditions to 178% (15 days earlier sowing from 15 May, 700 ppm CO2, 3°C from the reference. Simulation results suggest

  19. Allowable CO2 concentrations under the United Nations Framework Convention on Climate Change as a function of the climate sensitivity probability distribution function

    International Nuclear Information System (INIS)

    Harvey, L D Danny

    2007-01-01

    Article 2 of the United Nations Framework Convention on Climate Change (UNFCCC) calls for stabilization of greenhouse gas (GHG) concentrations at levels that prevent dangerous anthropogenic interference (DAI) in the climate system. Until recently, the consensus viewpoint was that the climate sensitivity (the global mean equilibrium warming for a doubling of atmospheric CO 2 concentration) was 'likely' to fall between 1.5 and 4.5 K. However, a number of recent studies have generated probability distribution functions (pdfs) for climate sensitivity with the 95th percentile of the expected climate sensitivity as large as 10 K, while some studies suggest that the climate sensitivity is likely to fall in the lower half of the long-standing 1.5-4.5 K range. This paper examines the allowable CO 2 concentration as a function of the 95th percentile of the climate sensitivity pdf (ranging from 2 to 8 K) and for the following additional assumptions: (i) the 50th percentile for the pdf of the minimum sustained global mean warming that causes unacceptable harm equal to 1.5 or 2.5 K; and (ii) 1%, 5% or 10% allowable risks of unacceptable harm. For a 1% risk tolerance and the more stringent harm-threshold pdf, the allowable CO 2 concentration ranges from 323 to 268 ppmv as the 95th percentile of the climate sensitivity pdf increases from 2 to 8 K, while for a 10% risk tolerance and the less stringent harm-threshold pdf, the allowable CO 2 concentration ranges from 531 to 305 ppmv. In both cases it is assumed that non-CO 2 GHG radiative forcing can be reduced to half of its present value, otherwise; the allowable CO 2 concentration is even smaller. Accounting for the fact that the CO 2 concentration will gradually fall if emissions are reduced to zero, and that peak realized warming will then be less than the peak equilibrium warming (related to peak radiative forcing) allows the CO 2 concentration to peak at 10-40 ppmv higher than the limiting values given above for a climate

  20. Future ocean hypercapnia driven by anthropogenic amplification of the natural CO2 cycle

    Science.gov (United States)

    McNeil, Ben I.; Sasse, Tristan P.

    2016-01-01

    High carbon dioxide (CO2) concentrations in sea-water (ocean hypercapnia) can induce neurological, physiological and behavioural deficiencies in marine animals. Prediction of the onset and evolution of hypercapnia in the ocean requires a good understanding of annual variations in oceanic CO2 concentration, but there is a lack of relevant global observational data. Here we identify global ocean patterns of monthly variability in carbon concentration using observations that allow us to examine the evolution of surface-ocean CO2 levels over the entire annual cycle under increasing atmospheric CO2 concentrations. We predict that the present-day amplitude of the natural oscillations in oceanic CO2 concentration will be amplified by up to tenfold in some regions by 2100, if atmospheric CO2 concentrations continue to rise throughout this century (according to the RCP8.5 scenario of the Intergovernmental Panel on Climate Change). The findings from our data are broadly consistent with projections from Earth system climate models. Our predicted amplification of the annual CO2 cycle displays distinct global patterns that may expose major fisheries in the Southern, Pacific and North Atlantic oceans to hypercapnia many decades earlier than is expected from average atmospheric CO2 concentrations. We suggest that these ocean ‘CO2 hotspots’ evolve as a combination of the strong seasonal dynamics of CO2 concentration and the long-term effective storage of anthropogenic CO2 in the oceans that lowers the buffer capacity in these regions, causing a nonlinear amplification of CO2 concentration over the annual cycle. The onset of ocean hypercapnia (when the partial pressure of CO2 in sea-water exceeds 1,000 micro-atmospheres) is forecast for atmospheric CO2 concentrations that exceed 650 parts per million, with hypercapnia expected in up to half the surface ocean by 2100, assuming a high-emissions scenario (RCP8.5). Such extensive ocean hypercapnia has detrimental implications for

  1. Continuous CO2 gas monitoring to clarify natural pattern and artificial leakage signals

    Science.gov (United States)

    Joun, W.; Ha, S. W.; Joo, Y. J.; Lee, S. S.; Lee, K. K.

    2017-12-01

    Continuous CO2 gas monitoring at shallow aquifer is significant for early detection and immediate handling of an aquifer impacted by leaking CO2 gas from the sequestration reservoir. However, it is difficult to decide the origin of CO2 gas because detected CO2 includes not only leaked CO2 but also naturally emitted CO2. We performed CO2 injection and monitoring tests in a shallow aquifer. Before the injection of CO2 infused water, we have conducted continuous monitoring of multi-level soil CO2 gas concentration and physical parameters such as temperature, humidity, pressure, wind speed and direction, and precipitation. The monitoring data represented that CO2 gas concentrations in unsaturated soil zone borehole showed differences at depths and daily variation (360 to 6980 ppm volume). Based on the observed data at 5 m and 8 m depths, vertical flux of gas was calculated as 0.471 L/min (LPM) for inflow from 5 m to 8 m and 9.42E-2 LPM for outflow from 8 m to 5 m. The numerical and analytical models were used to calculate the vertical flux of gas and to compare with observations. The results showed that pressure-based modeling could not explain the rapid change of CO2 gas concentration in borehole. Acknowledgement Financial support was provided by the "R&D Project on Environmental Management of Geologic CO2 Storage" from the KEITI (Project Number: 2014001810003)

  2. Effects of elevated CO2 and drought on wheat : testing crop simulation models for different experimental and climatic conditions

    NARCIS (Netherlands)

    Ewert, F.; Rodriguez, D.; Jamieson, P.; Semenov, M.A.; Mitchell, R.A.C.; Goudriaan, J.; Porter, J.R.; Kimball, B.A.; Pinter, P.J.; Manderscheid, R.; Weigel, H.J.; Fangmeier, A.; Fereres, E.; Villalobos, F.

    2002-01-01

    Effects of increasing carbon dioxide concentration [CO2] on wheat vary depending on water supply and climatic conditions, which are difficult to estimate. Crop simulation models are often used to predict the impact of global atmospheric changes on food production. However, models have rarely been

  3. Measurement and modeling of CO2 solubility in NaCl brine and CO2–saturated NaCl brine density

    DEFF Research Database (Denmark)

    Yan, Wei; Huang, Shengli; Stenby, Erling Halfdan

    2011-01-01

    over climate change and energy security. This work is an experimental and modeling study of two fundamental properties in high pressure CO2–NaCl brine equilibrium, i.e., CO2 solubility in NaCl brine and CO2–saturated NaCl brine density. A literature review of the available data was presented first...

  4. Performance of solid-state sensors for continuous, real-time measurement of soil CO2 concentrations

    Science.gov (United States)

    Recent advances in sensor technology provide a robust capability for continuous measurement of soil gases. The performance of solid-state CO2 sensors (Model GMM220 series, Vaisala, Finland) was evaluated in laboratory, greenhouse, and irrigated wheat (Triticum aestivum L.). In ambient CO2 concentrat...

  5. Experimental and modeling results on geochemical impacts of leaking CO2 from subsurface storage reservoirs to an unconfined oxidizing carbonate aquifer

    Science.gov (United States)

    Qafoku, N. P.; Bacon, D. H.; Shao, H.; Lawter, A.; Wang, G.; Brown, C. F.

    2013-12-01

    Deep subsurface storage and sequestration of CO2 has been identified as a potential mitigation technique for rising atmospheric CO2 concentrations. Sequestered CO2 represents a potential risk to overlying aquifers if the CO2 leaks from the deep storage reservoir. Experimental and modeling work is required to evaluate risks to groundwater quality and develop a systematic understanding on how CO2 leakage may cause important changes in aquifer chemistry and mineralogy by promoting dissolution/precipitation, adsorption/desorption, and redox reactions. Solid materials (rocks and slightly weathered rocks) from an unconfined aquifer, i.e., the Edwards Aquifer in Texas, were used in this investigation. The experimental part consisted of: 1) wet chemical acid extractions (8M HNO3 solution at 90 0C); 2) batch experiments conducted at low solid to solution ratios to study time-dependent releases of major, minor and trace elements during periodic or continuous exposure to CO2 gas; 3) hydraulically saturated column experiments conducted under continuous and stop-flow conditions using a CO2 gas saturated synthetic groundwater; 4) pre- and post-treatment solid phase characterization studies. Major variables tested included reaction time (0-336 hours), CO2 flow rate (50 to 350 ml/min), brine concentration (0.1 and 1 M NaCl), rock type and particle size fraction. We are currently investigating the solution composition effects (i.e., presence of contaminants in the initial solution) on the fate and behavior of potential contaminants (As, Pb and Cd) in these systems. Results from the solid phase characterization studies showed that the mineralogy of the Edwards aquifer materials was dominated by calcite. Quartz and montmorillonite were also present in some samples. Acid extractions confirmed that the solid phase had appreciable amounts of potential contaminants (As, Cd, Cr, Cu, Pb and Zn). However, the results from the batch and column experiments demonstrated that these contaminants

  6. Fast Atmosphere-Ocean Model Runs with Large Changes in CO2

    Science.gov (United States)

    Russell, Gary L.; Lacis, Andrew A.; Rind, David H.; Colose, Christopher; Opstbaum, Roger F.

    2013-01-01

    How does climate sensitivity vary with the magnitude of climate forcing? This question was investigated with the use of a modified coupled atmosphere-ocean model, whose stability was improved so that the model would accommodate large radiative forcings yet be fast enough to reach rapid equilibrium. Experiments were performed in which atmospheric CO2 was multiplied by powers of 2, from 1/64 to 256 times the 1950 value. From 8 to 32 times, the 1950 CO2, climate sensitivity for doubling CO2 reaches 8 C due to increases in water vapor absorption and cloud top height and to reductions in low level cloud cover. As CO2 amount increases further, sensitivity drops as cloud cover and planetary albedo stabilize. No water vapor-induced runaway greenhouse caused by increased CO2 was found for the range of CO2 examined. With CO2 at or below 1/8 of the 1950 value, runaway sea ice does occur as the planet cascades to a snowball Earth climate with fully ice covered oceans and global mean surface temperatures near 30 C.

  7. Recovery Act: Web-based CO{sub 2} Subsurface Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Paolini, Christopher; Castillo, Jose

    2012-11-30

    The Web-based CO{sub 2} Subsurface Modeling project focused primarily on extending an existing text-only, command-line driven, isothermal and isobaric, geochemical reaction-transport simulation code, developed and donated by Sienna Geodynamics, into an easier-to-use Web-based application for simulating long-term storage of CO{sub 2} in geologic reservoirs. The Web-based interface developed through this project, publically accessible via URL http://symc.sdsu.edu/, enables rapid prototyping of CO{sub 2} injection scenarios and allows students without advanced knowledge of geochemistry to setup a typical sequestration scenario, invoke a simulation, analyze results, and then vary one or more problem parameters and quickly re-run a simulation to answer what-if questions. symc.sdsu.edu has 2x12 core AMD Opteron™ 6174 2.20GHz processors and 16GB RAM. The Web-based application was used to develop a new computational science course at San Diego State University, COMP 670: Numerical Simulation of CO{sub 2} Sequestration, which was taught during the fall semester of 2012. The purpose of the class was to introduce graduate students to Carbon Capture, Use and Storage (CCUS) through numerical modeling and simulation, and to teach students how to interpret simulation results to make predictions about long-term CO{sub 2} storage capacity in deep brine reservoirs. In addition to the training and education component of the project, significant software development efforts took place. Two computational science doctoral and one geological science masters student, under the direction of the PIs, extended the original code developed by Sienna Geodynamics, named Sym.8. New capabilities were added to Sym.8 to simulate non-isothermal and non-isobaric flows of charged aqueous solutes in porous media, in addition to incorporating HPC support into the code for execution on many-core XSEDE clusters. A successful outcome of this project was the funding and training of three new computational

  8. Interannual Variability In the Atmospheric CO2 Rectification Over Boreal Forests Based On A Coupled Ecosystem-Atmosphere Model

    Science.gov (United States)

    Chen, B.; Chen, J. M.; Worthy, D.

    2004-05-01

    Ecosystem CO2 exchange and the planetary boundary layer (PBL) are correlated diurnally and seasonally. The simulation of this atmospheric rectifier effect is important in understanding the global CO2 distribution pattern. A 12-year (1990-1996, 1999-2003), continuous CO2 measurement record from Fraserdale, Ontario (located ~150 km north of Timmons), along with a coupled Vertical Diffusion Scheme (VDS) and ecosystem model (Boreal Ecosystem Productivity Simulator, BEPS), is used to investigate the interannual variability in this effect over a boreal forest region. The coupled model performed well in simulating CO2 vertical diffusion processes. Simulated annual atmospheric rectifier effects, (including seasonal and diurnal), quantified as the variation in the mean CO2 concentration from the surface to the top of the PBL, varied from 2.8 to 4.1 ppm, even though the modeled seasonal variations in the PBL depth were similar throughout the 12-year period. The differences in the interannual rectifier effect primarily resulted from changes in the biospheric CO2 uptake and heterotrophic respiration. Correlations in the year-to year variations of the CO2 rectification were found with mean annual air temperatures, simulated gross primary productivity (GPP) and heterotrophic respiration (Rh) (r2=0.5, 0.46, 0.42, respectively). A small increasing trend in the CO2 rectification was also observed. The year-to-year variation in the vertical distribution of the monthly mean CO2 mixing ratios (reflecting differences in the diurnal rectifier effect) was related to interannual climate variability, however, the seasonal rectifier effects were found to be more sensitive to climate variability than the diurnal rectifier effects.

  9. Effect of oxygen vacancy and dopant concentration on the magnetic properties of high spin Co2+ doped TiO2 nanoparticles

    International Nuclear Information System (INIS)

    Choudhury, B.; Choudhury, A.; Maidul Islam, A.K.M.; Alagarsamy, P.; Mukherjee, M.

    2011-01-01

    Co doped TiO 2 nanoparticles have been synthesized by a simple sol-gel route taking 7.5, 9.5 and 10.5 mol% of cobalt concentration. Formation of nanoparticles is confirmed by XRD and TEM. Increase in d-spacing occurs for (0 0 4) and (2 0 0) peak with increase in impurity content. Valence states of Co and its presence in the doped material is confirmed by XPS and EDX. The entire vacuum annealed samples show weak ferromagnetism. Increased magnetization is found for 9.5 mol% but this value again decreases for 10.5 mol% due to antiferromagnetic interactions. A blocking temperature of 37.9 K is obtained, which shows shifting to high temperature as the dopant concentration is increased. The air annealed sample shows only paramagnetic behavior. Temperature dependent magnetic measurements for the air annealed sample shows antiferromagnetic behavior with a Curie-Weiss temperature of -16 K. Here we report that oxygen vacancy and cobalt aggregates are a key factor for inducing ferromagnetism-superparamagnetism in the vacuum annealed sample. Appearance of negative Curie-Weiss temperature reveals the presence of antiferromagnetic Co 3 O 4 , which is the oxidation result of metallic Co or cobalt clusters present on the host TiO 2 . - Research highlights: → Oxygen vacancy induces ferromagnetism in cobalt doped anatase TiO2 nanoparticles. → On air annealing the sample loses ferromagnetism giving rise to paramagnetism. → Saturation magnetization decreases at higher doping concentration. → Blocking of magnetic moment occurs due to the presence of cobalt clusters.

  10. CO{sub 2} CAPTURE BY ABSORPTION WITH POTASSIUM CARBONATE

    Energy Technology Data Exchange (ETDEWEB)

    Gary T. Rochelle; J.Tim Cullinane; Marcus Hilliard; Eric Chen; Babatunde Oyenekan; Ross Dugas

    2005-01-31

    The objective of this work is to improve the process for CO{sub 2} capture by alkanolamine absorption/stripping by developing an alternative solvent, aqueous K{sub 2}CO{sub 3} promoted by piperazine. Thermodynamic modeling predicts that the heat of desorption of CO{sub 2} from 5m K+/2.5 PZ from 85 kJ/mole at 40 C to 30 kJ/mole at 120 C. Mass transfer modeling of this solvent suggests that carbonate and general salt concentration play a major role in catalyzing the rate of reaction of CO{sub 2} with piperazine. Stripper modeling suggests that with the multipressure stripper, the energy consumption with a generic solvent decreases by 15% as the heat of desorption is decreased from 23.8 to 18.5 kcal/gmol. A second pilot plant campaign with 5m K+/2.5 PZ was successfully completed.

  11. Effects of CO[sub 2] concentration on photosynthesis, transpiration and production of greenhouse fruit vegetable crops

    Energy Technology Data Exchange (ETDEWEB)

    Nederhoff, E.M.

    1994-10-25

    The effect of the CO[sub 2] concentration of the greenhouse air (C) in the range 200 to 1100 [mu]mol mol[sup -1] was investigated in tomato (Lycopersicon esculentum Mill.), cucumber (Cucumis sativus L.), sweet pepper (Capsicum annuum L.) and eggplant (Solanum melongena L.), grown in greenhouses. The effect of C on canopy net photosynthetic CO[sub 2] assimilation rate (or photosynthesis, P) was expressed by a set of regression equations, relating P to PAR, C and LAI. A rule of thumb ('CO[sub 2]-rule') was derived, approximating the relative increase of P caused by additional CO[sub 2] at a certain C. This CO[sub 2]-rule is: X = (1000/C)[sup 2] * 1.5 (X in % per 100 [mu]mol[sup -1], and C in [mu]mol mol[sup -1]). Two models for canopy photosynthesis were examined by comparing them with the experimental photosynthesis data. No 'midday depression' in P was observed. The effects of C on leaf conductance (g) and on rate of crop transpiration (E) were investigated. An increase of 100 I[mu]mol mol[sup -1] ' in C reduced g by about 3-4% in sweet pepper, tomato and cucumber and by about 11% in eggplant. The effect of C on E was analyzed by combining the regression equation for g with the Penman-Monteith equation for E. C had only a relatively small effect on E, owing to thermal and hydrological feedback effects. The decoupling of g and E was quantified. No time-dependent variation or 'midday depression' in E was observed, and no significant effect of C on average leaf temperature was established. In five experiments, the effect of C on growth and production and on specific features were analyzed; fruit production (dry weight) was most affected by C in sweet pepper; fresh weight fruit production per unit CO[sub 2] was highest in cucumber; fruit quality was not influenced by C. High C promoted the 'short leaves syndrome' in tomato and 'leaf tip chlorosis' in eggplant, probably related to calcium and boron translocation

  12. CO2 CAPTURE BY ABSORPTION WITH POTASSIUM CARBONATE

    Energy Technology Data Exchange (ETDEWEB)

    Gary T. Rochelle; Eric Chen; J.Tim Cullinane; Marcus Hilliard; Jennifer Lu; Babatunde Oyenekan; Ross Dugas

    2004-07-29

    The objective of this work is to improve the process for CO{sub 2} capture by alkanolamine absorption/stripping by developing an alternative solvent, aqueous K{sub 2}CO{sub 3} promoted by piperazine. CO{sub 2} mass transfer rates are second order in piperazine concentration and increase with ionic strength. Modeling of stripper performance suggests that 5 m K{sup +}/2.5 m PZ will require 25 to 46% less heat than 7 m MEA. The first pilot plant campaign was completed on June 24. The CO{sub 2} penetration through the absorber with 20 feet of Flexipac{trademark} 1Y varied from 0.6 to 16% as the inlet CO{sub 2} varied from 3 to 12% CO{sub 2} and the gas rate varied from 0.5 to 3 kg/m{sup 2}-s.

  13. Soil and Root Respiration Under Elevated CO2 Concentrations During Seedling Growth of Pinus sylvestris var. sylvestriformis

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The objectives of this study were to investigate the effect of higher CO2 concentrations (500 and 700 μmol mol-1) in atmosphere on total soil respiration and the contribution of root respiration to total soil respiration during seedling growth of Pinus sylvestris var. sylvestriformis. During the four growing seasons (May-October) from 1999 to 2003, the seedlings were exposed to elevated concentrations of CO2 in open-top chambers. The total soil respiration and contribution of root respiration were measured using an LI-6400-09 soil CO2 flux chamber on June 15 and October 8, 2003. To separate root respiration from total soil respiration, three PVC cylinders were inserted approximately 30 cm deep into the soil in each chamber. There were marked diurnal changes in air and soil temperatures on June 15. Both the total soil respiration and the soil respiration without roots showed a strong diurnal pattern, increasing from before sunrise to about 14:00in the afternoon and then decreasing before the next sunrise. No increase in the mean total soil respiration and mean soil respiration with roots severed was observed under the elevated CO2 treatments on June 15, 2003, as compared to the open field and control chamber with ambient CO2. However, on October 8, 2003, the total soil respiration and soil respiration with roots severed in the open field were lower than those in the control and elevated CO2 chambers. The mean contribution of root respiration measured on June 15, 2003, ranged from 8.3% to 30.5% and on October 8, 2003,from 20.6% to 48.6%.

  14. Spectroscopy, modeling and computation of metal chelate solubility in supercritical CO2

    International Nuclear Information System (INIS)

    Brennecke, J.F.; Stadtherr, M.A.

    1999-01-01

    The overall objectives of this project were to gain a fundamental understanding of the solubility and phase behavior of metal chelates in supercritical CO 2 . Extraction with CO 2 is an excellent way to remove organic compounds from soils, sludges and aqueous solutions, and recent research has demonstrated that, together with chelating agents, it is a viable way to remove metals, as well. In this project the authors sought to gain fundamental knowledge that is vital to computing phase behavior, and modeling and designing processes using CO 2 to separate organics and metal compounds from DOE mixed wastes. The overall program was a comprehensive one to measure, model and compute the solubility of metal chelate complexes in supercritical CO 2 and CO 2 /cosolvent mixtures. Through a combination of phase behavior measurements, spectroscopy and the development of a new computational technique, the authors have achieved a completely reliable way to model metal chelate solubility in supercritical CO 2 and CO 2 /co-contaminant mixtures. Thus, they can now design and optimize processes to extract metals from solid matrices using supercritical CO 2 , as an alternative to hazardous organic solvents that create their own environmental problems, even while helping in metals decontamination

  15. Extended UNIQUAC model for thermodynamic modeling of CO2 absorption in aqueous alkanolamine solutions

    DEFF Research Database (Denmark)

    Faramarzi, Leila; Kontogeorgis, Georgios; Thomsen, Kaj

    2009-01-01

    The extended UNIQUAC model [K. Thomsen, R Rasmussen, Chem. Eng. Sci. 54 (1999) 1787-1802] was applied to the thermodynamic representation of carbon dioxide absorption in aqueous monoethanolamine (MEA), methyldiethanolamine (MDEA) and varied strength mixtures of the two alkanolamines (MEA-MDEA). F......The extended UNIQUAC model [K. Thomsen, R Rasmussen, Chem. Eng. Sci. 54 (1999) 1787-1802] was applied to the thermodynamic representation of carbon dioxide absorption in aqueous monoethanolamine (MEA), methyldiethanolamine (MDEA) and varied strength mixtures of the two alkanolamines (MEA......) are included in the parameter estimation process. The previously unavailable standard state properties of the alkanolamine ions appearing in this work, i.e. MEA protonate, MEA carbamate and MDEA protonate are determined. The concentration of the species in both MEA and MDEA solutions containing CO2...

  16. Estimating surface pCO2 in the northern Gulf of Mexico: Which remote sensing model to use?

    Science.gov (United States)

    Chen, Shuangling; Hu, Chuanmin; Cai, Wei-Jun; Yang, Bo

    2017-12-01

    Various approaches and models have been proposed to remotely estimate surface pCO2 in the ocean, with variable performance as they were designed for different environments. Among these, a recently developed mechanistic semi-analytical approach (MeSAA) has shown its advantage for its explicit inclusion of physical and biological forcing in the model, yet its general applicability is unknown. Here, with extensive in situ measurements of surface pCO2, the MeSAA, originally developed for the summertime East China Sea, was tested in the northern Gulf of Mexico (GOM) where river plumes dominate water's biogeochemical properties during summer. Specifically, the MeSAA-predicted surface pCO2 was estimated by combining the dominating effects of thermodynamics, river-ocean mixing and biological activities on surface pCO2. Firstly, effects of thermodynamics and river-ocean mixing (pCO2@Hmixing) were estimated with a two-endmember mixing model, assuming conservative mixing. Secondly, pCO2 variations caused by biological activities (ΔpCO2@bio) was determined through an empirical relationship between sea surface temperature (SST)-normalized pCO2 and MODIS (Moderate Resolution Imaging Spectroradiometer) 8-day composite chlorophyll concentration (CHL). The MeSAA-modeled pCO2 (sum of pCO2@Hmixing and ΔpCO2@bio) was compared with the field-measured pCO2. The Root Mean Square Error (RMSE) was 22.94 μatm (5.91%), with coefficient of determination (R2) of 0.25, mean bias (MB) of - 0.23 μatm and mean ratio (MR) of 1.001, for pCO2 ranging between 316 and 452 μatm. To improve the model performance, a locally tuned MeSAA was developed through the use of a locally tuned ΔpCO2@bio term. A multi-variate empirical regression model was also developed using the same dataset. Both the locally tuned MeSAA and the regression models showed improved performance comparing to the original MeSAA, with R2 of 0.78 and 0.84, RMSE of 12.36 μatm (3.14%) and 10.66 μatm (2.68%), MB of 0.00 μatm and - 0

  17. CO2 emission calculations and trends

    International Nuclear Information System (INIS)

    Boden, T.A.; Marland, G.; Andres, R.J.

    1995-01-01

    Evidence that the atmospheric CO 2 concentration has risen during the past several decades is irrefutable. Most of the observed increase in atmospheric CO 2 is believed to result from CO 2 releases from fossil-fuel burning. The United Nations (UN) Framework Convention on Climate Change (FCCC), signed in Rio de Janeiro in June 1992, reflects global concern over the increasing CO 2 concentration and its potential impact on climate. One of the convention's stated objectives was the ''stabilization of greenhouse gas concentrations in the atmosphere at a level that would prevent dangerous anthropogenic interference with the climate system. '' Specifically, the FCCC asked all 154 signing countries to conduct an inventory of their current greenhouse gas emissions, and it set nonbinding targets for some countries to control emissions by stabilizing them at 1990 levels by the year 2000. Given the importance of CO 2 as a greenhouse gas, the relationship between CO 2 emissions and increases in atmospheric CO 2 levels, and the potential impacts of a greenhouse gas-induced climate change; it is important that comprehensive CO 2 emissions records be compiled, maintained, updated, and documented

  18. Concentrations and (delta)13C values of atmospheric CO2 from oceanic atmosphere through time: polluted and non-polluted areas

    International Nuclear Information System (INIS)

    Longinelli, Antonio; Selmo, Enrico; Lenaz, Renzo; Ori, Carlo

    2005-01-01

    CO 2 is one of the primary agents of global climate changes. The increase of atmospheric CO 2 concentration is essentially related to human-induced emissions and, particularly, to the burning of fossil fuel whose (delta) 13 C values are quite negative. Consequently, an increase of the CO 2 concentration in the atmosphere should be paralleled by a decrease of its (delta) 13 C. Continuous and/or spot measurements of CO 2 concentrations were repeatedly carried out during the last decade and in the same period of the year along hemispheric courses from Italy to Antarctica on a vessel of the Italian National Research Program in Antarctica. During these expeditions, discrete air samples were also collected in 4-l Pyrex flasks in order to carry out precise carbon isotope analyses on atmospheric CO 2 from different areas, including theoretically 'clean' open ocean areas, with the main purpose of comparing these open ocean results with the results obtained by the National Oceanic and Atmospheric Administration/World Meteorological Organization (NOAA/WMO) at land-based stations. According to the data obtained for these two variables, a relatively large atmospheric pollution is apparent in the Mediterranean area where the CO 2 concentration has reached the value of 384 ppmv while quite negative (delta) 13 C values have been measured only occasionally. In this area, southerly winds probably help to reduce the effect of atmospheric pollution even though, despite a large variability of CO 2 concentrations, these values are consistently higher than those measured in open ocean areas by a few ppmv to about 10 ppmv. A marked, though non-continuous, pollution is apparent in the area of the Bab-el-Mandeb strait where (delta) 13 C values considerably more negative than in the Central and Southern Red Sea were measured. The concentration of atmospheric CO 2 over the Central Indian Ocean increased from about 361 ppmv at the end of 1996 to about 373 ppmv at the end of 2003 (mean growth

  19. The sensitivity of stand-scale photosynthesis and transpiration to changes in atmospheric CO2 concentration and climate

    Science.gov (United States)

    Kruijt, B.; Barton, C.; Rey, A.; Jarvis, P. G.

    The 3-dimensional forest model MAESTRO was used to simulate daily and annual photosynthesis and transpiration fluxes of forest stands and the sensitivity of these fluxes to potential changes in atmospheric CO2 concentration ([CO2]), temperature, water stress and phenology. The effects of possible feed-backs from increased leaf area and limitations to leaf nutrition were simulated by imposing changes in leaf area and nitrogen content. Two different tree species were considered: Picea sitchensis (Bong.) Carr., a conifer with long needle longevity and large leaf area, and Betula pendula Roth., a broad-leaved deciduous species with an open canopy and small leaf area. Canopy photosynthetic production in trees was predicted to increase with atmospheric [CO2] and length of the growing season and to decrease with increased water stress. Associated increases in leaf area increased production further only in the B. pendula canopy, where the original leaf area was relatively small. Assumed limitations in N uptake affected B. pendula more than P. sitchensis. The effect of increased temperature was shown to depend on leaf area and nitrogen content. The different sensitivities of the two species were related to their very different canopy structure. Increased [CO2] reduced transpiration, but larger leaf area, early leaf growth, and higher temperature all led to increased water use. These effects were limited by feedbacks from soil water stress. The simulations suggest that, with the projected climate change, there is some increase in stand annual `water use efficiency', but the actual water losses to the atmosphere may not always decrease.

  20. Evolution and challenges of dynamic global vegetation models for some aspects of plant physiology and elevated atmospheric CO2.

    Science.gov (United States)

    Rezende, L F C; Arenque, B C; Aidar, S T; Moura, M S B; Von Randow, C; Tourigny, E; Menezes, R S C; Ometto, J P H B

    2016-07-01

    Dynamic global vegetation models (DGVMs) simulate surface processes such as the transfer of energy, water, CO2, and momentum between the terrestrial surface and the atmosphere, biogeochemical cycles, carbon assimilation by vegetation, phenology, and land use change in scenarios of varying atmospheric CO2 concentrations. DGVMs increase the complexity and the Earth system representation when they are coupled with atmospheric global circulation models (AGCMs) or climate models. However, plant physiological processes are still a major source of uncertainty in DGVMs. The maximum velocity of carboxylation (Vcmax), for example, has a direct impact over productivity in the models. This parameter is often underestimated or imprecisely defined for the various plant functional types (PFTs) and ecosystems. Vcmax is directly related to photosynthesis acclimation (loss of response to elevated CO2), a widely known phenomenon that usually occurs when plants are subjected to elevated atmospheric CO2 and might affect productivity estimation in DGVMs. Despite this, current models have improved substantially, compared to earlier models which had a rudimentary and very simple representation of vegetation-atmosphere interactions. In this paper, we describe this evolution through generations of models and the main events that contributed to their improvements until the current state-of-the-art class of models. Also, we describe some main challenges for further improvements to DGVMs.

  1. Fast Cloud Adjustment to Increasing CO2 in a Superparameterized Climate Model

    Directory of Open Access Journals (Sweden)

    Marat Khairoutdinov

    2012-05-01

    Full Text Available Two-year simulation experiments with a superparameterized climate model, SP-CAM, are performed to understand the fast tropical (30S-30N cloud response to an instantaneous quadrupling of CO2 concentration with SST held fixed at present-day values.The greenhouse effect of the CO2 perturbation quickly warms the tropical land surfaces by an average of 0.5 K. This shifts rising motion, surface precipitation, and cloud cover at all levels from the ocean to the land, with only small net tropical-mean cloud changes. There is a widespread average reduction of about 80 m in the depth of the trade inversion capping the marine boundary layer (MBL over the cooler subtropical oceans.One apparent contributing factor is CO2-enhanced downwelling longwave radiation, which reduces boundary-layer radiative cooling, a primary driver of turbulent entrainment through the trade inversion. A second contributor is a slight CO2-induced heating of the free troposphere above the MBL, which strengthens the trade inversion and also inhibits entrainment. There is a corresponding downward displacement of MBL clouds with a very slight decrease in mean cloud cover and albedo.Two-dimensional cloud-resolving model (CRM simulations of this MBL response are run to steady state using composite SP-CAM simulated thermodynamic and wind profiles from a representative cool subtropical ocean regime, for the control and 4xCO2 cases. Simulations with a CRM grid resolution equal to that of SP-CAM are compared with much finer resolution simulations. The coarse-resolution simulations maintain a cloud fraction and albedo comparable to SP-CAM, but the fine-resolution simulations have a much smaller cloud fraction. Nevertheless, both CRM configurations simulate a reduction in inversion height comparable to SP-CAM. The changes in low cloud cover and albedo in the CRM simulations are small, but both simulations predict a slight reduction in low cloud albedo as in SP-CAM.

  2. High-frequency productivity estimates for a lake from free-water CO2 concentration measurements

    Directory of Open Access Journals (Sweden)

    M. Provenzale

    2018-04-01

    Full Text Available Lakes are important actors in biogeochemical cycles and a powerful natural source of CO2. However, they are not yet fully integrated in carbon global budgets, and the carbon cycle in the water is still poorly understood. In freshwater ecosystems, productivity studies have usually been carried out with traditional methods (bottle incubations, 14C technique, which are imprecise and have a poor temporal resolution. Consequently, our ability to quantify and predict the net ecosystem productivity (NEP is limited: the estimates are prone to errors and the NEP cannot be parameterised from environmental variables. Here we expand the testing of a free-water method based on the direct measurement of the CO2 concentration in the water. The approach was first proposed in 2008, but was tested on a very short data set (3 days under specific conditions (autumn turnover; despite showing promising results, this method has been neglected by the scientific community. We tested the method under different conditions (summer stratification, typical summer conditions for boreal dark-water lakes and on a much longer data set (40 days, and quantitatively validated it comparing our data and productivity models. We were able to evaluate the NEP with a high temporal resolution (minutes and found a very good agreement (R2 ≥ 0.71 with the models. We also estimated the parameters of the productivity–irradiance (PI curves that allow the calculation of the NEP from irradiance and water temperature. Overall, our work shows that the approach is suitable for productivity studies under a wider range of conditions, and is an important step towards developing this method so that it becomes more widely used.

  3. Variability in soil CO2 production and surface CO2 efflux across riparian-hillslope transitions

    Science.gov (United States)

    Vincent Jerald. Pacific

    2007-01-01

    The spatial and temporal controls on soil CO2 production and surface CO2 efflux have been identified as an outstanding gap in our understanding of carbon cycling. I investigated both the spatial and temporal variability of soil CO2 concentrations and surface CO2 efflux across eight topographically distinct riparian-hillslope transitions in the ~300 ha subalpine upper-...

  4. Contribution of various carbon sources toward isoprene biosynthesis in poplar leaves mediated by altered atmospheric CO2 concentrations.

    Directory of Open Access Journals (Sweden)

    Amy M Trowbridge

    Full Text Available Biogenically released isoprene plays important roles in both tropospheric photochemistry and plant metabolism. We performed a (13CO(2-labeling study using proton-transfer-reaction mass spectrometry (PTR-MS to examine the kinetics of recently assimilated photosynthate into isoprene emitted from poplar (Populus × canescens trees grown and measured at different atmospheric CO(2 concentrations. This is the first study to explicitly consider the effects of altered atmospheric CO(2 concentration on carbon partitioning to isoprene biosynthesis. We studied changes in the proportion of labeled carbon as a function of time in two mass fragments, M41(+, which represents, in part, substrate derived from pyruvate, and M69(+, which represents the whole unlabeled isoprene molecule. We observed a trend of slower (13C incorporation into isoprene carbon derived from pyruvate, consistent with the previously hypothesized origin of chloroplastic pyruvate from cytosolic phosphenolpyruvate (PEP. Trees grown under sub-ambient CO(2 (190 ppmv had rates of isoprene emission and rates of labeling of M41(+ and M69(+ that were nearly twice those observed in trees grown under elevated CO(2 (590 ppmv. However, they also demonstrated the lowest proportion of completely labeled isoprene molecules. These results suggest that under reduced atmospheric CO(2 availability, more carbon from stored/older carbon sources is involved in isoprene biosynthesis, and this carbon most likely enters the isoprene biosynthesis pathway through the pyruvate substrate. We offer direct evidence that extra-chloroplastic rather than chloroplastic carbon sources are mobilized to increase the availability of pyruvate required to up-regulate the isoprene biosynthesis pathway when trees are grown under sub-ambient CO(2.

  5. Wine ethanol 14C as a tracer for fossil fuel CO2 emissions in Europe: Measurements and model comparison

    Science.gov (United States)

    Palstra, Sanne W. L.; Karstens, Ute; Streurman, Harm-Jan; Meijer, Harro A. J.

    2008-11-01

    14C (radiocarbon) in atmospheric CO2 is the most direct tracer for the presence of fossil-fuel-derived CO2 (CO2-ff). We demonstrate the 14C measurement of wine ethanol as a way to determine the relative regional atmospheric CO2-ff concentration compared to a background site ("regional CO2-ff excess") for specific harvest years. The carbon in wine ethanol is directly back traceable to the atmospheric CO2 that the plants assimilate. An important advantage of using wine is that the atmosphere can be monitored annually back in time. We have analyzed a total of 165 wines, mainly from harvest years 1990-1993 and 2003-2004, among which is a semicontinuous series (1973-2004) of wines from one vineyard in southwest Germany. The results show clear spatial and temporal variations in the regional CO2-ff excess values. We have compared our measured regional CO2-ff excess values of 2003 and 2004 with those simulated by the REgional MOdel (REMO). The model results show a bias of almost +3 parts per million (ppm) CO2-ff compared with those of the observations. The modeled differences between 2003 and 2004, however, which can be used as a measure for the variability in atmospheric mixing and transport processes, show good agreement with those of the observations all over Europe. Correcting for interannual variations using modeled data produces a regional CO2-ff excess signal that is potentially useful for the verification of trends in regional fossil fuel consumption. In this fashion, analyzing 14C from wine ethanol offers the possibility to observe fossil fuel emissions back in time on many places in Europe and elsewhere.

  6. Use of periodic variations of reactant concentrations in time resolved ftir studies of CO oxidation on Pd/ZrO{sub 2} catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Ortelli, E; Wokaun, A [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    Sine wave modulation of feed concentrations was used to induce dynamic variations in the concentrations of products, intermediates and reactants, which were monitored in a diffuse reflectance FTIR (DRIFT) cell. The phase shift {Delta}{phi} between the external perturbation of the feed and the signals of products, intermediates and reactants was examined in dependence on the modulation frequency {omega}. Reaction constants of a simplified model mechanism were estimated for a Pd{sub 25}Zr{sub 75} based catalyst for CO oxidation. (author) 1 fig., 2 refs.

  7. Modeling CO, CO2, and H2O Ice Abundances in the Envelopes of Young Stellar Objects in the Magellanic Clouds

    Science.gov (United States)

    Pauly, Tyler; Garrod, Robin T.

    2018-02-01

    Massive young stellar objects (MYSOs) in the Magellanic Clouds show infrared absorption features corresponding to significant abundances of CO, CO2, and H2O ice along the line of sight, with the relative abundances of these ices differing between the Magellanic Clouds and the Milky Way. CO ice is not detected toward sources in the Small Magellanic Cloud, and upper limits put its relative abundance well below sources in the Large Magellanic Cloud and the Milky Way. We use our gas-grain chemical code MAGICKAL, with multiple grain sizes and grain temperatures, and further expand it with a treatment for increased interstellar radiation field intensity to model the elevated dust temperatures observed in the MCs. We also adjust the elemental abundances used in the chemical models, guided by observations of H II regions in these metal-poor satellite galaxies. With a grid of models, we are able to reproduce the relative ice fractions observed in MC MYSOs, indicating that metal depletion and elevated grain temperature are important drivers of the MYSO envelope ice composition. Magellanic Cloud elemental abundances have a subgalactic C/O ratio, increasing H2O ice abundances relative to the other ices; elevated grain temperatures favor CO2 production over H2O and CO. The observed shortfall in CO in the Small Magellanic Cloud can be explained by a combination of reduced carbon abundance and increased grain temperatures. The models indicate that a large variation in radiation field strength is required to match the range of observed LMC abundances. CH3OH abundance is found to be enhanced in low-metallicity models, providing seed material for complex organic molecule formation in the Magellanic Clouds.

  8. Rising atmospheric CO2 concentration may imply higher risk of Fusarium mycotoxin contamination of wheat grains.

    Science.gov (United States)

    Bencze, Szilvia; Puskás, Katalin; Vida, Gyula; Karsai, Ildikó; Balla, Krisztina; Komáromi, Judit; Veisz, Ottó

    2017-08-01

    Increasing atmospheric CO 2 concentration not only has a direct impact on plants but also affects plant-pathogen interactions. Due to economic and health-related problems, special concern was given thus in the present work to the effect of elevated CO 2 (750 μmol mol -1 ) level on the Fusarium culmorum infection and mycotoxin contamination of wheat. Despite the fact that disease severity was found to be not or little affected by elevated CO 2 in most varieties, as the spread of Fusarium increased only in one variety, spike grain number and/or grain weight decreased significantly at elevated CO 2 in all the varieties, indicating that Fusarium infection generally had a more dramatic impact on the grain yield at elevated CO 2 than at the ambient level. Likewise, grain deoxynivalenol (DON) content was usually considerably higher at elevated CO 2 than at the ambient level in the single-floret inoculation treatment, suggesting that the toxin content is not in direct relation to the level of Fusarium infection. In the whole-spike inoculation, DON production did not change, decreased or increased depending on the variety × experiment interaction. Cooler (18 °C) conditions delayed rachis penetration while 20 °C maximum temperature caused striking increases in the mycotoxin contents, resulting in extremely high DON values and also in a dramatic triggering of the grain zearalenone contamination at elevated CO 2 . The results indicate that future environmental conditions, such as rising CO 2 levels, may increase the threat of grain mycotoxin contamination.

  9. GROWTH KINETIC STUDY OF CHLORELLA VULGARIS USING LAB-SCALE AND PILOT-SCALE PHOTOBIOREACTOR: EFFECT OF CO2 CONCENTRATION

    Directory of Open Access Journals (Sweden)

    MAN KEE LAM

    2016-07-01

    Full Text Available In the present study, growth kinetic of Chlorella vulgaris was performed when the microalgae was cultivated with different concentrations of CO2 . The experiments were carried out using lab-scale and pilot-scale photobioreactors, and the growth results were analyzed using POLYMATH 6.0 with different growth kinetic models. The growth of the microalgae was found fitted well to the Richards growth model with attainable high R2 values as demonstrated in all studied cases, in concert with low values of root mean squares deviation (RMSD and variance. In addition, the output from the plots of experimental values versus predicted values and residual plots further confirmed the good fit of Richards model. The predicted specific growth rate from Richards model was similar to the experimental specific growth rate with deviation lesser than 5%. The attained results paved a preliminary prediction of microalgae growth characteristic when the cultivation is scaled-up to commercial scale.

  10. Experimental Investigation and Simplistic Geochemical Modeling of CO2 Mineral Carbonation Using the Mount Tawai Peridotite

    Directory of Open Access Journals (Sweden)

    Omeid Rahmani

    2016-03-01

    Full Text Available In this work, the potential of CO2 mineral carbonation of brucite (Mg(OH2 derived from the Mount Tawai peridotite (forsterite based (Mg2SiO4 to produce thermodynamically stable magnesium carbonate (MgCO3 was evaluated. The effect of three main factors (reaction temperature, particle size, and water vapor were investigated in a sequence of experiments consisting of aqueous acid leaching, evaporation to dryness of the slurry mass, and then gas-solid carbonation under pressurized CO2. The maximum amount of Mg converted to MgCO3 is ~99%, which occurred at temperatures between 150 and 175 °C. It was also found that the reduction of particle size range from >200 to <75 µm enhanced the leaching rate significantly. In addition, the results showed the essential role of water vapor in promoting effective carbonation. By increasing water vapor concentration from 5 to 10 vol %, the mineral carbonation rate increased by 30%. This work has also numerically modeled the process by which CO2 gas may be sequestered, by reaction with forsterite in the presence of moisture. In both experimental analysis and geochemical modeling, the results showed that the reaction is favored and of high yield; going almost to completion (within about one year with the bulk of the carbon partitioning into magnesite and that very little remains in solution.

  11. The Density and Compressibility of BaCO3-SrCO3-CaCO3-K2CO3-Na2CO3-Li2CO3 Liquids: New Measurements and a Systematic Trend with Cation Field Strength

    Science.gov (United States)

    Hurt, S. M.; Lange, R. A.; Ai, Y.

    2015-12-01

    The volumetric properties of multi-component carbonate liquids are required to extend thermodynamic models that describe partial melting of the deep mantle (e.g. pMELTS; Ghiorso et al., 2003) to carbonate-bearing lithologies. Carbonate in the mantle is an important reservoir of carbon, which is released to the atmosphere as CO2 through volcanism, and thus contributes to the carbon cycle. Although MgCO3 is the most important carbonate component in the mantle, it is not possible to directly measure the 1-bar density and compressibility of MgCO3 liquid because, like other alkaline-earth carbonates, it decomposes at a temperature lower than its melting temperature. Despite this challenge, Liu and Lange (2003) and O'Leary et al. (2015) showed that the one bar molar volume, thermal expansion and compressibility of the CaCO3 liquid component could be obtained by measuring the density and sound speeds of stable liquids in the CaCO3-Li2CO3-Na2CO3-K2CO3 quaternary system at one bar. In this study, this same strategy is employed on SrCO3- and BaCO3-bearing alkali carbonate liquids. The density and sound speed of seven liquids in the SrCO3-Li2CO3-Na2CO3-K2CO3 quaternary and three liquids in the BaCO3-Li2CO3-Na2CO3-K2CO3 quaternary were measured from 739-1367K, with SrCO3 and BaCO3 concentrations ranging from 10-50 mol%. The density measurements were made using the double-bob Archimedean method and sound speeds were obtained with a frequency-sweep acoustic interferometer. The molar volume and sound speed measurements were used to calculate the isothermal compressibility of each liquid, and the results show the volumetric properties mix ideally with composition. The partial molar volume and compressibility of the SrCO3 and BaCO3 components are compared to those obtained for the CaCO3 component as a function of cation field strength. The results reveal a systematic trend that allows the partial molar volume and compressibility of the MgCO3 liquid component to be estimated.

  12. Thermodynamic modeling of CO2 absorption in aqueous N-Methyldiethanolamine using Extended UNIQUAC model

    DEFF Research Database (Denmark)

    Sadegh, Negar; Stenby, Erling Halfdan; Thomsen, Kaj

    2015-01-01

    A Thermodynamic model that can predict the behavior of the gas sweetening process over the applicable conditions is of vital importance in industry. In this work, Extended UNIQUAC model parameters optimized for the CO2-MDEA-H2O system are presented. Different types of experimental data consisting...... model accurately represents thermodynamic and thermal properties of the studied systems. The model parameters are valid in the temperature range from -15 to 200 °C, MDEA mass% of 5-75 and CO2 partial pressure of 0-6161.5 kPa....

  13. 222Rn and 14CO2 concentrations in the surface layer of the atmosphere

    International Nuclear Information System (INIS)

    Holy, K.; Chudy, M.; Sivo, A.; Richtarikova, M.; Boehm, R.; Polaskova, A.; Vojtyla, P.; Bosa, I.; Hola, O.

    2002-01-01

    Long-term monitoring of the Δ 14 C in the atmospheric near-ground CO 2 has been realized in Bratislava and Zlkovce, situated near the nuclear power plant Jaslovske Bohunice. Until 1993, the monthly mean Δ 14 C values showed a high variability. The annual means of Δ 14 C were about 30 per mille higher at Zlkovce than in highly industrialised Bratislava. An important change in the behaviour of the 14 C data has occurred since 1993. The records from both stations show the similar course, mainly due to the fact that there do not occur deep winter minima in Bratislava. This behaviour corresponds to the lower values of the total fossil fuel CO 2 emissions in the years after 1993 when compared to the previous years. At present, both sets of data show that the 14 C concentration is about 10% above the natural level. Since 1987 also the 222 Rn concentration in the surface layer of the atmosphere has been measured in Bratislava. These measurements provided an extensive set of the 222 Rn data characteristic for the inland environment with high level of atmospheric pollution. The seasonal and daily variations of the 222 Rn concentration were observed. The investigation of the relation between the monthly mean diurnal courses of the 222 Rn concentration and the atmospheric stability proved a high correlation between them. The 222 Rn data were used to interpret the anomalous Δ 14 C values in the surface layer of the atmosphere. (author)

  14. Modeling carbon sequestration in afforestation, agroforestry and forest management projects: the CO2FIX V.2 approach

    NARCIS (Netherlands)

    Masera, O.R.; Garza-Caligaris, J.F.; Kanninen, M.; Karjalainen, T.; Liski, J.; Nabuurs, G.J.; Pussinen, A.; Jong de, B.H.J.; Mohren, G.M.J.

    2003-01-01

    The paper describes the Version 2 of the CO2FIX (CO2FIX V.2) model, a user-friendly tool for dynamically estimating the carbon sequestration potential of forest management, agroforesty and afforestation projects. CO2FIX V.2 is a multi-cohort ecosystem-level model based on carbon accounting of forest

  15. Effect of thermal treatments and Co concentration on the structural and luminescent properties of sputtered TiO{sub 2}:Co films

    Energy Technology Data Exchange (ETDEWEB)

    Carmona-Rodriguez, J. [Instituto Tecnologico Superior de Poza Rica, Luis Donaldo Colosio, S/N Col. Arroyo del Maiz, 93230 Poza Rica, Veracruz (Mexico); Rodriguez-Melgarejo, F.; Hernandez-Landaverde, M.A.; Urbina-Alvarez, J.E.; Marquez-Marin, J.; Zuniga-Romero, C.; Jimenez-Sandoval, S. [Centro de Investigacion y de Estudios Avanzados del IPN, Unidad Queretaro, A.P. 1-798, 76001 Queretaro, Qro. (Mexico); Vargas, S.; Estevez, M. [Centro de Fisica Aplicada y Tecnologia Avanzada, UNAM, Campus Juriquilla, 76230 Queretaro, Qro. (Mexico); Rodriguez, R. [Centro de Fisica Aplicada y Tecnologia Avanzada, UNAM, Campus Juriquilla, 76230 Queretaro, Qro. (Mexico); Division de Ciencias de la Salud, UVM, Campus Queretaro, Juriquilla, Queretaro, Qro. (Mexico)

    2012-11-15

    Thin films of Co-doped titania were grown at room temperature by rf reactive co-sputtering. A post-growth annealing procedure was carried out at 300, 450, and 750 C in an inert argon atmosphere. The samples were studied using X-ray diffraction, micro Raman, UV-Vis, and photoluminescence (PL) spectroscopies. The properties of the films were analyzed as a function of the Co concentration and the annealing temperature. The as-grown films were amorphous; however, after a thermal annealing procedure the samples presented a Co-concentration-dependent transition to the anatase phase. In particular, the samples annealed at 300 C showed a strong and broad PL signal that was quenched after exposure to an Ar{sup +} laser beam ({lambda} = 488.0 nm) focused through a microscope objective. The emission properties of the films have been ascribed to defects arising during the amorphous-anatase structural phase transition. It was also shown that the intensity and quenching rate of the PL depended upon the Co concentration and the annealing temperature. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  16. INTERSPECIFIC VARIATION IN THE GROWTH-RESPONSE OF PLANTS TO AN ELEVATED AMBIENT CO2 CONCENTRATION

    NARCIS (Netherlands)

    POORTER, H

    The effect of a doubling in the atmospheric CO2 concentration on the growth of vegetative whole plants was investigated. In a compilation of literature sources, the growth stimulation of 156 plant species was found to be on average 37%. This enhancement is small compared to what could be expected on

  17. Stratospheric mean ages and transport rates from observations of CO{sub 2} and N{sub 2}O

    Energy Technology Data Exchange (ETDEWEB)

    Boering, K A; Wofsy, S C; Daube, B C; Schneider, H R [Harvard Univ., Cambridge, MA (United States). Div. of Engineering and Applied Sciences; Loewenstein, M; Podolske, J R [NASA Ames Research Center, Moffett Field, CA (United States); Conway, T J [National Oceanic and Atmospheric Administration, Boulder, CO (United States)

    1998-12-31

    Measurements of CO{sub 2} and N{sub 2}O concentrations are reported and analyzed to investigate stratospheric transport rates. Temporal variations in tropospheric CO{sub 2} are observed to propagate into the stratosphere, showing that tropospheric air enters the lower tropical stratosphere continuously, ascends, and is transported rapidly (in less than 1 month) to both hemispheres. The mean age of stratospheric air determined from CO{sub 2} data is approximately 5 years in the mid-stratosphere. It is shown that the mean age is mathematically equivalent to a conserved tracer analogous to exhaust from stratospheric aircraft. Comparison of the mean age from models and observations indicates that current model simulations likely underestimate pollutant concentrations from proposed stratospheric aircraft by 25-100%. (author) 36 refs.

  18. Stratospheric mean ages and transport rates from observations of CO{sub 2} and N{sub 2}O

    Energy Technology Data Exchange (ETDEWEB)

    Boering, K.A.; Wofsy, S.C.; Daube, B.C.; Schneider, H.R. [Harvard Univ., Cambridge, MA (United States). Div. of Engineering and Applied Sciences; Loewenstein, M.; Podolske, J.R. [NASA Ames Research Center, Moffett Field, CA (United States); Conway, T.J. [National Oceanic and Atmospheric Administration, Boulder, CO (United States)

    1997-12-31

    Measurements of CO{sub 2} and N{sub 2}O concentrations are reported and analyzed to investigate stratospheric transport rates. Temporal variations in tropospheric CO{sub 2} are observed to propagate into the stratosphere, showing that tropospheric air enters the lower tropical stratosphere continuously, ascends, and is transported rapidly (in less than 1 month) to both hemispheres. The mean age of stratospheric air determined from CO{sub 2} data is approximately 5 years in the mid-stratosphere. It is shown that the mean age is mathematically equivalent to a conserved tracer analogous to exhaust from stratospheric aircraft. Comparison of the mean age from models and observations indicates that current model simulations likely underestimate pollutant concentrations from proposed stratospheric aircraft by 25-100%. (author) 36 refs.

  19. Aridity under conditions of increased CO2

    Science.gov (United States)

    Greve, Peter; Roderick, Micheal L.; Seneviratne, Sonia I.

    2016-04-01

    A string of recent of studies led to the wide-held assumption that aridity will increase under conditions of increasing atmospheric CO2 concentrations and associated global warming. Such results generally build upon analyses of changes in the 'aridity index' (the ratio of potential evaporation to precipitation) and can be described as a direct thermodynamic effect on atmospheric water demand due to increasing temperatures. However, there is widespread evidence that contradicts the 'warmer is more arid' interpretation, leading to the 'global aridity paradox' (Roderick et al. 2015, WRR). Here we provide a comprehensive assessment of modeled changes in a broad set of dryness metrics (primarily based on a range of measures of water availability) over a large range of realistic atmospheric CO2 concentrations. We use an ensemble of simulations from of state-of-the-art climate models to analyse both equilibrium climate experiments and transient historical simulations and future projections. Our results show that dryness is, under conditions of increasing atmospheric CO2 concentrations and related global warming, generally decreasing at global scales. At regional scales we do, however, identify areas that undergo changes towards drier conditions, located primarily in subtropical climate regions and the Amazon Basin. Nonetheless, the majority of regions, especially in tropical and mid- to northern high latitudes areas, display wetting conditions in a warming world. Our results contradict previous findings and highlight the need to comprehensively assess all aspects of changes in hydroclimatological conditions at the land surface. Roderick, M. L., P. Greve, and G. D. Farquhar (2015), On the assessment of aridity with changes in atmospheric CO2, Water Resour. Res., 51, 5450-5463

  20. Interactive effects of elevated CO2 concentration and irrigation on photosynthetic parameters and yield of maize in Northeast China.

    Directory of Open Access Journals (Sweden)

    Fanchao Meng

    Full Text Available Maize is one of the major cultivated crops of China, having a central role in ensuring the food security of the country. There has been a significant increase in studies of maize under interactive effects of elevated CO2 concentration ([CO2] and other factors, yet the interactive effects of elevated [CO2] and increasing precipitation on maize has remained unclear. In this study, a manipulative experiment in Jinzhou, Liaoning province, Northeast China was performed so as to obtain reliable results concerning the later effects. The Open Top Chambers (OTCs experiment was designed to control contrasting [CO2] i.e., 390, 450 and 550 µmol·mol(-1, and the experiment with 15% increasing precipitation levels was also set based on the average monthly precipitation of 5-9 month from 1981 to 2010 and controlled by irrigation. Thus, six treatments, i.e. C550W+15%, C550W0, C450W+15%, C450W0, C390W+15% and C390W0 were included in this study. The results showed that the irrigation under elevated [CO2] levels increased the leaf net photosynthetic rate (Pn and intercellular CO2 concentration (Ci of maize. Similarly, the stomatal conductance (Gs and transpiration rate (Tr decreased with elevated [CO2], but irrigation have a positive effect on increased of them at each [CO2] level, resulting in the water use efficiency (WUE higher in natural precipitation treatment than irrigation treatment at elevated [CO2] levels. Irradiance-response parameters, e.g., maximum net photosynthetic rate (Pnmax and light saturation points (LSP were increased under elevated [CO2] and irrigation, and dark respiration (Rd was increased as well. The growth characteristics, e.g., plant height, leaf area and aboveground biomass were enhanced, resulting in an improved of yield and ear characteristics except axle diameter. The study concluded by reporting that, future elevated [CO2] may favor to maize when coupled with increasing amount of precipitation in Northeast China.

  1. Carbon Monoxide Emission and Concentration Models for Chiang Mai Urban Area

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    An emission inventory containing emissions from traffic and other sources was complied. Based on the analysis, Carbon Monoxide (CO) emissions from traffic play a very important role in CO levels in Chiang Mai area. Analysis showed that CO emissions from traffic during rush hours contributed approximately 90% of total CO emissions. Regional Atmospheric Modeling System (RAMS) was applied to simulate wind fields and temperatures in the Chiang Mai area, and eight cases were selected to study annual variations in wind fields and temperatures. Model results can reflect major features of wind fields and diurnal variations in temperatures. For evaluating the model performance, model results were compared with observed wind speed, wind direction and temperature, which were monitored at a meteorological tower. Comparison showed that model results are in good agreement with observations, and the model captured many of the observed features. HYbrid Particle And Concentration Transport model (HYPACT) was used to simulate CO concentration in the Chiang Mai area. Model results generally agree well with observed CO concentrations at the air quality monitoring stations, and can explain observed CO diurnal variations.

  2. Photosynthesis of C3 and C4 Species in Response to Increased CO2 Concentration and Drought Stress

    Directory of Open Access Journals (Sweden)

    HAMIM

    2005-12-01

    Full Text Available Photosynthetic gas exchange in response to increased carbon dioxide concentration ([CO2] and drought stress of two C3 (wheat and kale and two C4 species (Echinochloa crusgallii and Amaranthus caudatus were analysed. Plants were grown in controlled growth chambers with ambient (350 μmol mol−1 and doubled ambient [CO2]. Drought was given by withholding water until the plants severely wilted, whereas the control plants were watered daily. Even though stomatal conductance (Gs of C4 species either under ambient or double [CO2] was lower than those in C3, doubled [CO2] decreased Gs of all species under well watered conditions. As a result, the plants grown under doubled [CO2] transpired less water than those grown under ambient [CO2]. Photosynthesis (Pn of the C4 species was sustained during moderate drought when those of the C3 species decreased significantly. Doubled [CO2] increased photosynthesis of C3 but not of C4 species. Increased [CO2] was only able to delay Pn reduction of all species due to the drought, but not remove it completely. The positive effects of increased [CO2] during moderate drought and the disappearance of it under severe drought suggesting that metabolic effect may limit photosynthesis under severe drought.

  3. Photosynthesis of C3 and C4 Species in Response to Increased CO2 Concentration and Drought Stress

    Directory of Open Access Journals (Sweden)

    HAMIM

    2005-12-01

    Full Text Available Photosynthetic gas exchange in response to increased carbon dioxide concentration ([CO2] and drought stress of two C3 (wheat and kale and two C4 species (Echinochloa crusgallii and Amaranthus caudatus were analysed. Plants were grown in controlled growth chambers with ambient (350 mol mol-1 and doubled ambient [CO2]. Drought was given by withholding water until the plants severely wilted, whereas the control plants were watered daily. Even though stomatal conductance (Gs of C4 species either under ambient or double [CO2] was lower than those in C3, doubled [CO2] decreased Gs of all species under well watered conditions. As a result, the plants grown under doubled [CO2] transpired less water than those grown under ambient [CO2]. Photosynthesis (Pn of the C4 species was sustained during moderate drought when those of the C3 species decreased significantly. Doubled [CO2] increased photosynthesis of C3 but not of C4 species. Increased [CO2] was only able to delay Pn reduction of all species due to the drought, but not remove it completely. The positive effects of increased [CO2] during moderate drought and the disappearance of it under severe drought suggesting that metabolic effect may limit photosynthesis under severe drought.

  4. Inverse Modeling of Water-Rock-CO2 Batch Experiments: Potential Impacts on Groundwater Resources at Carbon Sequestration Sites.

    Science.gov (United States)

    Yang, Changbing; Dai, Zhenxue; Romanak, Katherine D; Hovorka, Susan D; Treviño, Ramón H

    2014-01-01

    This study developed a multicomponent geochemical model to interpret responses of water chemistry to introduction of CO2 into six water-rock batches with sedimentary samples collected from representative potable aquifers in the Gulf Coast area. The model simulated CO2 dissolution in groundwater, aqueous complexation, mineral reactions (dissolution/precipitation), and surface complexation on clay mineral surfaces. An inverse method was used to estimate mineral surface area, the key parameter for describing kinetic mineral reactions. Modeling results suggested that reductions in groundwater pH were more significant in the carbonate-poor aquifers than in the carbonate-rich aquifers, resulting in potential groundwater acidification. Modeled concentrations of major ions showed overall increasing trends, depending on mineralogy of the sediments, especially carbonate content. The geochemical model confirmed that mobilization of trace metals was caused likely by mineral dissolution and surface complexation on clay mineral surfaces. Although dissolved inorganic carbon and pH may be used as indicative parameters in potable aquifers, selection of geochemical parameters for CO2 leakage detection is site-specific and a stepwise procedure may be followed. A combined study of the geochemical models with the laboratory batch experiments improves our understanding of the mechanisms that dominate responses of water chemistry to CO2 leakage and also provides a frame of reference for designing monitoring strategy in potable aquifers.

  5. Measurement of atmospheric CO2 column concentrations to cloud tops with a pulsed multi-wavelength airborne lidar

    Science.gov (United States)

    Mao, Jianping; Ramanathan, Anand; Abshire, James B.; Kawa, Stephan R.; Riris, Haris; Allan, Graham R.; Rodriguez, Michael; Hasselbrack, William E.; Sun, Xiaoli; Numata, Kenji; Chen, Jeff; Choi, Yonghoon; Yang, Mei Ying Melissa

    2018-01-01

    We have measured the column-averaged atmospheric CO2 mixing ratio to a variety of cloud tops by using an airborne pulsed multi-wavelength integrated-path differential absorption (IPDA) lidar. Airborne measurements were made at altitudes up to 13 km during the 2011, 2013 and 2014 NASA Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) science campaigns flown in the United States West and Midwest and were compared to those from an in situ sensor. Analysis of the lidar backscatter profiles shows the average cloud top reflectance was ˜ 5 % for the CO2 measurement at 1572.335 nm except to cirrus clouds, which had lower reflectance. The energies for 1 µs wide laser pulses reflected from cloud tops were sufficient to allow clear identification of CO2 absorption line shape and then to allow retrievals of atmospheric column CO2 from the aircraft to cloud tops more than 90 % of the time. Retrievals from the CO2 measurements to cloud tops had minimal bias but larger standard deviations when compared to those made to the ground, depending on cloud top roughness and reflectance. The measurements show this new capability helps resolve CO2 horizontal and vertical gradients in the atmosphere. When used with nearby full-column measurements to ground, the CO2 measurements to cloud tops can be used to estimate the partial-column CO2 concentration below clouds, which should lead to better estimates of surface carbon sources and sinks. This additional capability of the range-resolved CO2 IPDA lidar technique provides a new benefit for studying the carbon cycle in future airborne and space-based CO2 missions.

  6. Measurement of Atmospheric CO2 Column Concentrations to Cloud Tops With a Pulsed Multi-Wavelength Airborne Lidar

    Science.gov (United States)

    Mao, Jianping; Ramanathan, Anand; Abshire, James B.; Kawa, Stephan R.; Riris, Haris; Allan, Graham R.; Rodriguez, Michael R.; Hasselbrack, William E.; Sun, Xiaoli; Numata, Kenji; hide

    2018-01-01

    We have measured the column-averaged atmospheric CO2 mixing ratio to a variety of cloud tops by using an airborne pulsed multi-wavelength integrated-path differential absorption (IPDA) lidar. Airborne measurements were made at altitudes up to 13 km during the 2011, 2013 and 2014 NASA Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) science campaigns flown in the United States West and Midwest and were compared to those from an in situ sensor. Analysis of the lidar backscatter profiles shows the average cloud top reflectance was approx. 5% for the CO2 measurement at 1572.335 nm except to cirrus clouds, which had lower reflectance. The energies for 1 micro-s wide laser pulses reflected from cloud tops were sufficient to allow clear identification of CO2 absorption line shape and then to allow retrievals of atmospheric column CO2 from the aircraft to cloud tops more than 90% of the time. Retrievals from the CO2 measurements to cloud tops had minimal bias but larger standard deviations when compared to those made to the ground, depending on cloud top roughness and reflectance. The measurements show this new capability helps resolve CO2 horizontal and vertical gradients in the atmosphere. When used with nearby full-column measurements to ground, the CO2 measurements to cloud tops can be used to estimate the partial-column CO2 concentration below clouds, which should lead to better estimates of surface carbon sources and sinks. This additional capability of the range-resolved CO2 IPDA lidar technique provides a new benefit for studying the carbon cycle in future airborne and space-based CO2 missions.

  7. Computational fluid dynamics modeling and analysis of Pd-based membrane module for CO{sub 2} capture from H{sub 2}/CO{sub 2} binary gas mixture

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Dong-Yoon; Park, Myung-June [Ajou University, Suwon (Korea, Republic of); Hwang, Kyung-Ran; Park, Jong-Soo [Korea Institute of Energy Research, Daejeon (Korea, Republic of)

    2015-07-15

    A Pd-based membrane module for the capture of CO{sub 2} from a H{sub 2}/CO{sub 2} binary gas mixture was considered, and computational fluid dynamics modeling was used to predict the module performance. Detailed models of momentum and mass balances, including local flux as a function of local linear velocity, satisfactorily described CO{sub 2} fraction in a retentate tube when compared to the experimental data under various feed flow rates. By using the model, several cases having different geometries, including the location and diameter of feed tube and the number and location of the feed and retentate tubes, were considered. Among tested geometries, the case of two feed tubes with each offset by an angle, θ, of 45° from the center line, and a feed tube diameter of 2.45mm showed the increase of the feed flow rate up to 11.80% compared to the reference case while a CO{sub 2} fraction of 90% in the retentate, which was the criterion for effective CO{sub 2} capture in the present study, was guaranteed. This would result in a plausible reduction in capital expenditures for the CO{sub 2} capture process.

  8. Mixed microalgae consortia growth under higher concentration of CO2 from unfiltered coal fired flue gas: Fatty acid profiling and biodiesel production.

    Science.gov (United States)

    Aslam, Ambreen; Thomas-Hall, Skye R; Manzoor, Maleeha; Jabeen, Faiza; Iqbal, Munawar; Uz Zaman, Qamar; Schenk, Peer M; Asif Tahir, M

    2018-02-01

    Biodiesel is produced by transesterification of fatty acid methyl esters (FAME) from oleaginous microalgae feedstock. Biodiesel fuel properties were studied and compared with biodiesel standards. Qualitative analysis of FAME was done while cultivating mixed microalgae consortia under three concentrations of coal fired flue gas (1%, 3.0% and 5.5% CO 2 ). Under 1% CO 2 concentration (flue gas), the FAME content was 280.3 μg/mL, whereas the lipid content was 14.03 μg/mL/D (day). Both FAMEs and lipid contents were low at other CO 2 concentrations (3.0 and 5.5%). However, mixed consortia in the presence of phosphate buffer and flue gas (PB + FG) showed higher saturated fatty acids (SFA) (36.28%) and unsaturated fatty acids (UFA) (63.72%) versus 5.5% CO 2 concentration, which might be responsible for oxidative stability of biodiesel. Subsequently, higher cetane number (52) and low iodine value (136.3 gI 2 /100 g) biodiesel produced from mixed consortia (PB + FG) under 5.5% CO 2 along with 50 mM phosphate buffer were found in accordance with European (EN 14214) standard. Results revealed that phosphate buffer significantly enhanced the biodiesel quality, but reduced the FAME yield. This study intended to develop an integrated approach for significant improvement in biodiesel quality under surplus phosphorus by utilizing waste flue gas (as CO 2 source) using microalgae. The CO 2 sequestration from industrial flue gas not only reduced greenhouse gases, but may also ensure the sustainable and eco-benign production of biodiesel. Copyright © 2018. Published by Elsevier B.V.

  9. Evaluating Potential for Large Releases from CO2 Storage Reservoirs: Analogs, Scenarios, and Modeling Needs

    International Nuclear Information System (INIS)

    Birkholzer, Jens; Pruess, Karsten; Lewicki, Jennifer; Tsang, Chin-Fu; Karimjee, Anhar

    2005-01-01

    While the purpose of geologic storage of CO 2 in deep saline formations is to trap greenhouse gases underground, the potential exists for CO 2 to escape from the target reservoir, migrate upward along permeable pathways, and discharge at the land surface. Such discharge is not necessarily a serious concern, as CO 2 is a naturally abundant and relatively benign gas in low concentrations. However, there is a potential risk to health, safety and environment (HSE) in the event that large localized fluxes of CO 2 were to occur at the land surface, especially where CO 2 could accumulate. In this paper, we develop possible scenarios for large CO 2 fluxes based on the analysis of natural analogues, where large releases of gas have been observed. We are particularly interested in scenarios which could generate sudden, possibly self-enhancing, or even eruptive release events. The probability for such events may be low, but the circumstances under which they might occur and potential consequences need to be evaluated in order to design appropriate site selection and risk management strategies. Numerical modeling of hypothetical test cases is needed to determine critical conditions for such events, to evaluate whether such conditions may be possible at designated storage sites, and, if applicable, to evaluate the potential HSE impacts of such events and design appropriate mitigation strategies

  10. Atmospheric CO2 fertilization effects on biomass yields of 10 crops in northern Germany

    Directory of Open Access Journals (Sweden)

    Jan F. Degener

    2015-07-01

    Full Text Available The quality and quantity of the influence that atmospheric CO2 has on cropgrowth is still a matter of debate. This study's aim is to estimate if CO2 will have an effect on biomass yields at all, to quantify and spatially locate the effects and to explore if an elevated photosynthesis rate or water-use-efficiency is predominantly responsible. This study uses a numerical carbon based crop model (BioSTAR to estimate biomass yields within theadministrative boundaries of Niedersachsen in Northern Germany. 10 crops are included (winter grains: wheat, barley,rye, triticale - early, medium, late maize variety - sunflower, sorghum, spring wheat, modeled annuallyfor the entire 21st century on 91,014 separate sites. Modeling was conducted twice, once with an annually adaptedCO2 concentration according to the SRES-A1B scenario and once with a fixed concentration of 390 ppm to separate the influence of CO2 from that of the other input variables.Rising CO2 concentrations will play a central role in keeping future yields of all crops above or aroundtoday's level. Differences in yields between modeling with fixed or adapted CO2 can be as high as60 % towards the century's end. Generally yields will increase when CO2 rises and decline whenit is kept constant. As C4-crops are equivalently affected it is presumed that anelevated efficiency in water use is the main responsible factor for all plants.

  11. CO2 and the hydrologic cycle: Simulation of two Texas river basins

    International Nuclear Information System (INIS)

    King, K.W.; Srinivasan, R.; Arnold, J.G.; Williams, J.R.

    1994-01-01

    Increasing concentrations of CO 2 , in the atmosphere have been speculated to have a major effect on water supplies as well as other ecological characteristics. SWAT (Soil Water Assessment Tool) is a river basin scale hydrologic model that was modified to simulate the impact of CO 2 concentration on ET and biomass production. The model was utilized to analyze the impact of global climate change on two contrasting Texas basins. Climatic changes included doubling of CO 2 concentration from 330 ppm to 660 ppm and varying temperatures 0, ±2, and ±4 C from present values. Potential impacts of six hydrologic parameters including ET, potential ET, water yield, water stress, soil water, and biomass were simulated. CO 2 doubling had a more pronounced effect than did temperature variances. When temperature alone was varied, water yield at the outlet of the basins ranged from -4.4% to 6.5% for basin 1202 and from 2.9% to 26.7% for basin 1208. But, when coupled with an elevated CO 2 concentration, water yields increased in the range of 13.1% to 24.5% for basin 1202 and 5.6% to 33.7% for basin 1208. Rising CO 2 levels reduced ET for both basins, representing an enhanced water use efficiency. Seasonal fluctuations of soil water were a result of different growing periods and are evident from water stress encountered by the plant. With enriched CO 2 levels, increases in biomass production ranged from 6.9% to 47.4% and from 14.5 % to 31.4% for basins 1202 and 1208, respectively. 42 refs., 10 figs., 2 tabs

  12. Low Concentration of Exogenous Carbon Monoxide Modulates Radiation-Induced Bystander Effect in Mammalian Cell Cluster Model

    Directory of Open Access Journals (Sweden)

    Wenqing Wu

    2016-12-01

    Full Text Available During radiotherapy procedures, radiation-induced bystander effect (RIBE can potentially lead to genetic hazards to normal tissues surrounding the targeted regions. Previous studies showed that RIBE intensities in cell cluster models were much higher than those in monolayer cultured cell models. On the other hand, low-concentration carbon monoxide (CO was previously shown to exert biological functions via binding to the heme domain of proteins and then modulating various signaling pathways. In relation, our previous studies showed that exogenous CO generated by the CO releasing molecule, tricarbonyldichlororuthenium (CORM-2, at a relatively low concentration (20 µM, effectively attenuated the formation of RIBE-induced DNA double-strand breaks (DSB and micronucleus (MN. In the present work, we further investigated the capability of a low concentration of exogenous CO (CORM-2 of attenuating or inhibiting RIBE in a mixed-cell cluster model. Our results showed that CO (CORM-2 with a low concentration of 30 µM could effectively suppress RIBE-induced DSB (p53 binding protein 1, p53BP1, MN formation and cell proliferation in bystander cells but not irradiated cells via modulating the inducible nitric oxide synthase (iNOS andcyclooxygenase-2 (COX-2. The results can help mitigate RIBE-induced hazards during radiotherapy procedures.

  13. Sequential Measurement of Intermodal Variability in Public Transportation PM2.5 and CO Exposure Concentrations.

    Science.gov (United States)

    Che, W W; Frey, H Christopher; Lau, Alexis K H

    2016-08-16

    A sequential measurement method is demonstrated for quantifying the variability in exposure concentration during public transportation. This method was applied in Hong Kong by measuring PM2.5 and CO concentrations along a route connecting 13 transportation-related microenvironments within 3-4 h. The study design takes into account ventilation, proximity to local sources, area-wide air quality, and meteorological conditions. Portable instruments were compacted into a backpack to facilitate measurement under crowded transportation conditions and to quantify personal exposure by sampling at nose level. The route included stops next to three roadside monitors to enable comparison of fixed site and exposure concentrations. PM2.5 exposure concentrations were correlated with the roadside monitors, despite differences in averaging time, detection method, and sampling location. Although highly correlated in temporal trend, PM2.5 concentrations varied significantly among microenvironments, with mean concentration ratios versus roadside monitor ranging from 0.5 for MTR train to 1.3 for bus terminal. Measured inter-run variability provides insight regarding the sample size needed to discriminate between microenvironments with increased statistical significance. The study results illustrate the utility of sequential measurement of microenvironments and policy-relevant insights for exposure mitigation and management.

  14. PVTxy properties of CO2 mixtures relevant for CO2 capture, transport and storage: Review of available experimental data and theoretical models

    International Nuclear Information System (INIS)

    Li, Hailong; Jakobsen, Jana P.; Wilhelmsen, Oivind; Yan, Jinyue

    2011-01-01

    Highlights: → Accurate knowledge about the thermodynamic properties of CO 2 is essential in the design and operation of CCS systems. → Experimental data about the phase equilibrium and density of CO 2 -mixtures have been reviewed. → Equations of state have been reviewed too regarding CO 2 -mixtures. None has shown any clear advantage in CCS applications. → Identified knowledge gaps suggest to conducting more experiments and developing novel models. -- Abstract: The knowledge about pressure-volume-temperature-composition (PVTxy) properties plays an important role in the design and operation of many processes involved in CO 2 capture and storage (CCS) systems. A literature survey was conducted on both the available experimental data and the theoretical models associated with the thermodynamic properties of CO 2 mixtures within the operation window of CCS. Some gaps were identified between available experimental data and requirements of the system design and operation. The major concerns are: for the vapour-liquid equilibrium, there are no data about CO 2 /COS and few data about the CO 2 /N 2 O 4 mixture. For the volume property, there are no published experimental data for CO 2 /O 2 , CO 2 /CO, CO 2 /N 2 O 4 , CO 2 /COS and CO 2 /NH 3 and the liquid volume of CO 2 /H 2 . The experimental data available for multi-component CO 2 mixtures are also scarce. Many equations of state are available for thermodynamic calculations of CO 2 mixtures. The cubic equations of state have the simplest structure and are capable of giving reasonable results for the PVTxy properties. More complex equations of state such as Lee-Kesler, SAFT and GERG typically give better results for the volume property, but not necessarily for the vapour-liquid equilibrium. None of the equations of state evaluated in the literature show any clear advantage in CCS applications for the calculation of all PVTxy properties. A reference equation of state for CCS should, thus, be a future goal.

  15. Assessing the Importance of Prior Biospheric Fluxes on Inverse Model Estimates of CO2

    Science.gov (United States)

    Philip, S.; Johnson, M. S.; Potter, C. S.; Genovese, V. B.

    2017-12-01

    Atmospheric mixing ratios of carbon dioxide (CO2) are largely controlled by anthropogenic emissions and biospheric sources/sinks. The processes controlling terrestrial biosphere-atmosphere carbon exchange are currently not fully understood, resulting in models having significant differences in the quantification of biospheric CO2 fluxes. Currently, atmospheric chemical transport models (CTM) and global climate models (GCM) use multiple different biospheric CO2 flux models resulting in large differences in simulating the global carbon cycle. The Orbiting Carbon Observatory 2 (OCO-2) satellite mission was designed to allow for the improved understanding of the processes involved in the exchange of carbon between terrestrial ecosystems and the atmosphere, and therefore allowing for more accurate assessment of the seasonal/inter-annual variability of CO2. OCO-2 provides much-needed CO2 observations in data-limited regions allowing for the evaluation of model simulations of greenhouse gases (GHG) and facilitating global/regional estimates of "top-down" CO2 fluxes. We conduct a 4-D Variation (4D-Var) data assimilation with the GEOS-Chem (Goddard Earth Observation System-Chemistry) CTM using 1) OCO-2 land nadir and land glint retrievals and 2) global in situ surface flask observations to constrain biospheric CO2 fluxes. We apply different state-of-the-science year-specific CO2 flux models (e.g., NASA-CASA (NASA-Carnegie Ames Stanford Approach), CASA-GFED (Global Fire Emissions Database), Simple Biosphere Model version 4 (SiB-4), and LPJ (Lund-Postdam-Jena)) to assess the impact of "a priori" flux predictions to "a posteriori" estimates. We will present the "top-down" CO2 flux estimates for the year 2015 using OCO-2 and in situ observations, and a complete indirect evaluation of the a priori and a posteriori flux estimates using independent in situ observations. We will also present our assessment of the variability of "top-down" CO2 flux estimates when using different

  16. Effects of elevated atmospheric CO2 concentration and temperature on the soil profile methane distribution and diffusion in rice-wheat rotation system.

    Science.gov (United States)

    Yang, Bo; Chen, Zhaozhi; Zhang, Man; Zhang, Heng; Zhang, Xuhui; Pan, Genxing; Zou, Jianwen; Xiong, Zhengqin

    2015-06-01

    The aim of this experiment was to determine the impacts of climate change on soil profile concentrations and diffusion effluxes of methane in a rice-wheat annual rotation ecosystem in Southeastern China. We initiated a field experiment with four treatments: ambient conditions (CKs), CO2 concentration elevated to ~500 μmol/mol (FACE), temperature elevated by ca. 2°C (T) and combined elevation of CO2 concentration and temperature (FACE+T). A multilevel sampling probe was designed to collect the soil gas at four different depths, namely, 7 cm, 15 cm, 30 cm and 50 cm. Methane concentrations were higher during the rice season and decreased with depth, while lower during the wheat season and increased with depth. Compared to CK, mean methane concentration was increased by 42%, 57% and 71% under the FACE, FACE+T and T treatments, respectively, at the 7 cm depth during the rice season (pCO2 concentration and temperature could significantly increase soil profile methane concentrations and their effluxes from a rice-wheat field annual rotation ecosystem (p<0.05). Copyright © 2015. Published by Elsevier B.V.

  17. CO2 Capture by Absorption with Potassium Carbonate

    Energy Technology Data Exchange (ETDEWEB)

    Gary T. Rochelle; Eric Chen; Babatunde Oyenekan; Andrew Sexton; Jason Davis; Marcus Hilliard; Amorvadee Veawab

    2006-07-28

    The objective of this work is to improve the process for CO{sub 2} capture by alkanolamine absorption/stripping by developing an alternative solvent, aqueous K{sub 2}CO{sub 3} promoted by piperazine. The pilot plant data have been reconciled using 17% inlet CO{sub 2}. A rate-based model demonstrates that the stripper is primarily controlled by liquid film mast transfer resistance, with kinetics at vacuum and diffusion of reactants and products at normal pressure. An additional major unknown ion, probably glyoxylate, has been observed in MEA degradation. Precipitation of gypsum may be a feasible approach to removing sulphate from amine solutions and providing for simultaneous removal of CO{sub 2} and SO{sub 2}. Corrosion of carbon steel in uninhibited MEA solution is increased by increased amine concentration, by addition of piperazine, and by greater CO{sub 2} loading.

  18. The effect of temperature and concentration on the corrosion inhibition mechanism of an amphiphilic amido-amine in CO2 saturated solution

    International Nuclear Information System (INIS)

    Desimone, M.P.; Gordillo, G.; Simison, S.N.

    2011-01-01

    Highlights: → Behaviour of N-[2-[(2-aminoethyl)amino]ethyl]-9-octadecenamide (AAOA) as CO 2 corrosion inhibitor. → The adsorption of the AAOA corrosion inhibitor obeys a Frumkin adsorption isotherm. → The inhibition efficiency of the AAOA depends on temperature and concentration. → There is a change in the adsorption mode of the inhibitor with concentration. → AAOA is mainly physi- or chemisorbed for low or high concentrations, respectively. - Abstract: The corrosion inhibition mechanism of the N-[2-[(2-aminoethyl)amino]ethyl]-9-octadecenamide on mild steel surface in CO 2 -saturated 5% NaCl solution has been studied. The inhibition efficiency decreases with increasing temperature. Adsorption of the inhibitor studied is found to follow the Frumkin adsorption isotherm. EIS results show that the mechanism of its corrosion inhibition at concentrations higher than critical micelle concentration is by forming a protective porous bi-layer. The activation energy, thermodynamic parameters and electrochemical results reveal a change in the adsorption mode of the inhibitor studied: the inhibitor could primarily be physically adsorbed at low concentrations, while chemisorption is favoured as concentration increases.

  19. Modelling distribution of evaporating CO2 in parallel minichannels

    DEFF Research Database (Denmark)

    Brix, Wiebke; Kærn, Martin Ryhl; Elmegaard, Brian

    2010-01-01

    The effects of airflow non-uniformity and uneven inlet qualities on the performance of a minichannel evaporator with parallel channels, using CO2 as refrigerant, are investigated numerically. For this purpose a one-dimensional discretised steady-state model was developed, applying well-known empi......The effects of airflow non-uniformity and uneven inlet qualities on the performance of a minichannel evaporator with parallel channels, using CO2 as refrigerant, are investigated numerically. For this purpose a one-dimensional discretised steady-state model was developed, applying well...... to maldistribution of the refrigerant and considerable capacity reduction of the evaporator. Uneven inlet ualities to the different channels show only minor effects on the refrigerant distribution and evaporator capacity as long as the channels are vertically oriented with CO2 flowing upwards. For horizontal...... channels capacity reductions are found for both non-uniform airflow and uneven inlet qualities. For horizontal minichannels the results are very similar to those obtained using R134a as refrigerant....

  20. Salt concentrations during water production resulting from CO2 storage

    DEFF Research Database (Denmark)

    Walter, Lena; Class, Holger; Binning, Philip John

    2014-01-01

    present in the saline aquifer. The brine can be displaced over large areas and can reach shallower groundwater resources. High salt concentrations could lead to a degradation of groundwater quality. For water suppliers the most important information is whether and how much salt is produced at a water...... displacement and infiltration could result in hazards for human health and the environment and therefore have to be investigated in detail. In this work numerical simulations are performed to estimate the risk related to the displacement of brine. The injected CO2 will displace the brine that is initially...

  1. Detecting annual and seasonal variations of CO2, CO and N2O from a multi-year collocated satellite-radiosonde data-set using the new Rapid Radiance Reconstruction (3R-N) model

    International Nuclear Information System (INIS)

    Chedin, A.; Serrar, S.; Hollingsworth, A.; Armante, R.; Scott, N.A.

    2003-01-01

    The NOAA polar meteorological satellites have embarked the TIROS-N operational vertical sounder (TOVS) since 1979. Using radiosondes and NOAA-10 TOVS measurements which are collocated within a narrow space and time window, we have studied the differences between the TOVS measurements and simulated measurements from a new fast, Rapid Radiance Reconstruction Network (3R-N), non-linear radiative transfer model with up to date spectroscopy. Simulations use radiosonde temperature and humidity measurements as the prime input. The radiative transfer model also uses fixed greenhouse gas absorber amounts (CO 2 ,CO,N 2 O) and reasonable estimates of O 3 and of surface temperature. The 3R-N model is first presented and validated. Then, a study of the differences between the simulated and measured radiances shows annual trends and seasonal variations consistent with independent measurements of variations in CO 2 and other greenhouse gases atmospheric concentrations. The improved accuracy of 3R-N and a better handling of its deviations with respect to observations allow most of difficulties met in a previous study (J. Climate 15 (2002) 95) to be resolved

  2. CO2-Induced Changes in Wheat Grain Composition: Meta-Analysis and Response Functions

    Directory of Open Access Journals (Sweden)

    Malin C. Broberg

    2017-04-01

    Full Text Available Elevated carbon dioxide (eCO2 stimulates wheat grain yield, but simultaneously reduces protein/nitrogen (N concentration. Also, other essential nutrients are subject to change. This study is a synthesis of wheat experiments with eCO2, estimating the effects on N, minerals (B, Ca, Cd, Fe, K, Mg, Mn, Na, P, S, Zn, and starch. The analysis was performed by (i deriving response functions to assess the gradual change in element concentration with increasing CO2 concentration, (ii meta-analysis to test the average magnitude and significance of observed effects, and (iii relating CO2 effects on minerals to effects on N and grain yield. Responses ranged from zero to strong negative effects of eCO2 on mineral concentration, with the largest reductions for the nutritionally important elements of N, Fe, S, Zn, and Mg. Together with the positive but small and non-significant effect on starch concentration, the large variation in effects suggests that CO2-induced responses cannot be explained only by a simple dilution model. To explain the observed pattern, uptake and transport mechanisms may have to be considered, along with the link of different elements to N uptake. Our study shows that eCO2 has a significant effect on wheat grain stoichiometry, with implications for human nutrition in a world of rising CO2.

  3. Mass transfer of ammonia escape and CO2 absorption in CO2 capture using ammonia solution in bubbling reactor

    International Nuclear Information System (INIS)

    Ma, Shuangchen; Chen, Gongda; Zhu, Sijie; Han, Tingting; Yu, Weijing

    2016-01-01

    Highlights: • Mass transfer coefficient models of ammonia escape were built. • Influences of temperature, inlet CO 2 and ammonia concentration were studied. • Mass transfer coefficients of ammonia escape and CO 2 absorption were obtained. • Studies can provide the basic data as a reference guideline for process application. - Abstract: The mass transfer of CO 2 capture using ammonia solution in the bubbling reactor was studied; according to double film theory, the mass transfer coefficient models and interface area model were built. Through our experiments, the overall volumetric mass transfer coefficients were obtained, while the interface areas in unit volume were estimated. The volumetric mass transfer coefficients of ammonia escaping during the experiment were 1.39 × 10 −5 –4.34 × 10 −5 mol/(m 3 s Pa), and the volumetric mass transfer coefficients of CO 2 absorption were 2.86 × 10 −5 –17.9 × 10 −5 mol/(m 3 s Pa). The estimated interface area of unit volume in the bubbling reactor ranged from 75.19 to 256.41 m 2 /m 3 , making the bubbling reactor a viable choice to obtain higher mass transfer performance than the packed tower or spraying tower.

  4. Simplified predictive models for CO2 sequestration performance assessment

    Energy Technology Data Exchange (ETDEWEB)

    Mishra, Srikanta [Battelle Memorial Inst., Columbus, OH (United States); Ganesh, Priya [Battelle Memorial Inst., Columbus, OH (United States); Schuetter, Jared [Battelle Memorial Inst., Columbus, OH (United States); He, Jincong [Battelle Memorial Inst., Columbus, OH (United States); Jin, Zhaoyang [Battelle Memorial Inst., Columbus, OH (United States); Durlofsky, Louis J. [Battelle Memorial Inst., Columbus, OH (United States)

    2015-09-30

    CO2 sequestration in deep saline formations is increasingly being considered as a viable strategy for the mitigation of greenhouse gas emissions from anthropogenic sources. In this context, detailed numerical simulation based models are routinely used to understand key processes and parameters affecting pressure propagation and buoyant plume migration following CO2 injection into the subsurface. As these models are data and computation intensive, the development of computationally-efficient alternatives to conventional numerical simulators has become an active area of research. Such simplified models can be valuable assets during preliminary CO2 injection project screening, serve as a key element of probabilistic system assessment modeling tools, and assist regulators in quickly evaluating geological storage projects. We present three strategies for the development and validation of simplified modeling approaches for CO2 sequestration in deep saline formations: (1) simplified physics-based modeling, (2) statisticallearning based modeling, and (3) reduced-order method based modeling. In the first category, a set of full-physics compositional simulations is used to develop correlations for dimensionless injectivity as a function of the slope of the CO2 fractional-flow curve, variance of layer permeability values, and the nature of vertical permeability arrangement. The same variables, along with a modified gravity number, can be used to develop a correlation for the total storage efficiency within the CO2 plume footprint. Furthermore, the dimensionless average pressure buildup after the onset of boundary effects can be correlated to dimensionless time, CO2 plume footprint, and storativity contrast between the reservoir and caprock. In the second category, statistical “proxy models” are developed using the simulation domain described previously with two approaches: (a) classical Box-Behnken experimental design with a quadratic response surface, and (b) maximin

  5. Elevated CO2 levels affects the concentrations of copper and cadmium in crops grown in soil contaminated with heavy metals under fully open-air field conditions.

    Science.gov (United States)

    Guo, Hongyan; Zhu, Jianguo; Zhou, Hui; Sun, Yuanyuan; Yin, Ying; Pei, Daping; Ji, Rong; Wu, Jichun; Wang, Xiaorong

    2011-08-15

    Elevated CO(2) levels and the increase in heavy metals in soils through pollution are serious problems worldwide. Whether elevated CO(2) levels will affect plants grown in heavy-metal-polluted soil and thereby influence food quality and safety is not clear. Using a free-air CO(2) enrichment (FACE) system, we investigated the impacts of elevated atmospheric CO(2) on the concentrations of copper (Cu) or cadmium (Cd) in rice and wheat grown in soil with different concentrations of the metals in the soil. In the two-year study, elevated CO(2) levels led to lower Cu concentrations and higher Cd concentrations in shoots and grain of both rice and wheat grown in the respective contaminated soil. Elevated CO(2) levels slightly but significantly lowered the pH of the soil and led to changes in Cu and Cd fractionation in the soil. Our study indicates that elevated CO(2) alters the distribution of contaminant elements in soil and plants, thereby probably affecting food quality and safety.

  6. Measurement of atmospheric CO2 column concentrations to cloud tops with a pulsed multi-wavelength airborne lidar

    Directory of Open Access Journals (Sweden)

    J. Mao

    2018-01-01

    Full Text Available We have measured the column-averaged atmospheric CO2 mixing ratio to a variety of cloud tops by using an airborne pulsed multi-wavelength integrated-path differential absorption (IPDA lidar. Airborne measurements were made at altitudes up to 13 km during the 2011, 2013 and 2014 NASA Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS science campaigns flown in the United States West and Midwest and were compared to those from an in situ sensor. Analysis of the lidar backscatter profiles shows the average cloud top reflectance was ∼ 5 % for the CO2 measurement at 1572.335 nm except to cirrus clouds, which had lower reflectance. The energies for 1 µs wide laser pulses reflected from cloud tops were sufficient to allow clear identification of CO2 absorption line shape and then to allow retrievals of atmospheric column CO2 from the aircraft to cloud tops more than 90 % of the time. Retrievals from the CO2 measurements to cloud tops had minimal bias but larger standard deviations when compared to those made to the ground, depending on cloud top roughness and reflectance. The measurements show this new capability helps resolve CO2 horizontal and vertical gradients in the atmosphere. When used with nearby full-column measurements to ground, the CO2 measurements to cloud tops can be used to estimate the partial-column CO2 concentration below clouds, which should lead to better estimates of surface carbon sources and sinks. This additional capability of the range-resolved CO2 IPDA lidar technique provides a new benefit for studying the carbon cycle in future airborne and space-based CO2 missions.

  7. Measurements of CO2 Column Abundance in the Low Atmosphere Using Ground Based 1.6 μm CO2 DIAL

    Science.gov (United States)

    Abo, M.; Shibata, Y.; Nagasawa, C.

    2017-12-01

    Changes in atmospheric carbon dioxide (CO2) concentration are believed to produce the largest radiative forcing for the current climate system. Accurate predictions of atmospheric CO2 concentration rely on the knowledge of its sinks and sources, transports, and its variability with time. Although this knowledge is currently unsatisfactory, numerical models use it as a way in simulating CO2 fluxes. Validating and improving the global atmospheric transport model, therefore, requires precise measurement of the CO2 concentration profile. There are two further variations on Lidar: the differential absorption Lidar (DIAL) and the integrated path differential absorption (IPDA) Lidar. DIAL/IPDA are basically for profile/total column measurement, respectively. IPDA is a special case of DIAL and can measure the total column-averaged mixing ratio of trace gases using return signals from the Earth's surface or from thick clouds based on an airborne or a satellite. We have developed a ground based 1.6 μm DIAL to measure vertical CO2 mixing ratio profiles from 0.4 to 2.5 km altitude. The goals of the CO2 DIAL are to produce atmospheric CO2 mixing ratio measurements with much smaller seasonal and diurnal biases from the ground surface. But, in the ground based lidar, return signals from around ground surface are usually suppressed in order to handle the large dynamic range. To receive the return signals as near as possible from ground surface, namely, the field of view (FOV) of the telescope must be wide enough to reduce the blind range of the lidar. While the return signals from the far distance are very weak, to enhance the sensitivity and heighten the detecting distance, the FOV must be narrow enough to suppress the sky background light, especially during the daytime measurements. To solve this problem, we propose a total column measurement method from the ground surface to 0.4 km altitude. Instead of strong signals from thick clouds such as the IPDA, the proposed method uses

  8. Responses of Picea mariana to elevated CO2 concentration during growth, cold hardening and dehardening : phenology, cold tolerance, photosynthesis and growth

    International Nuclear Information System (INIS)

    Bigras, F.J.

    2006-01-01

    Although elevated carbon dioxide (CO 2 ) can promote growth in seedlings, CO 2 may adversely affect bud phenology and cold tolerance. In this study, seedlings from a northern and southern provenance of black spruce were exposed to 37 and 71 Pa of CO 2 during growth, cold hardening and dehardening in a greenhouse. The aim of the study was to assess the photosynthetic response and its impact on growth of black spruce during fall, winter and spring in the context of anticipated climate change. The effects of elevated CO 2 on nonstructural sugars, chlorophyll and nitrogen (N) concentrations were also investigated. Bud set occurred earlier in seedlings with elevated CO 2 than in ambient CO 2 . An increase in seedling cold tolerance in early fall was related to early bud set in elevated CO 2 . Photochemical efficiency, effective quantum yield, photochemical quenching, light-saturated rate of carboxylation, and electron transport decreased during hardening and recovered during dehardening. Elevated CO 2 reduced gene expression of the small subunit of Rubisco and decreased chlorophyll a/chlorophyll b ratio and N concentration in needles, confirming down-regulation of photosynthesis. Total seedling dry mass was higher in elevated CO 2 than in ambient CO 2 at the end of the growing season. Results suggested that differences in photosynthetic rate observed during fall, winter and spring accounted for the inter-annual variations in carbon assimilation of the seedlings. It was concluded that the variations need to be considered in carbon budget studies. It was concluded that total dry mass was 38 per cent higher in seedlings growing in elevated CO 2 at the end of the growing season. 84 refs., 2 tabs., 9 figs

  9. The relationship between termite mound CH4/CO2 emissions and internal concentration ratios are species specific

    OpenAIRE

    B. Fest; S. K. Arndt; L. B. Hutley; S. J. Livesley; H. Jamali

    2012-01-01

    We investigated the relative importance of CH4 and CO2 fluxes from soil and termite mounds at four different sites in the tropical savannas of northern Australia near Darwin and assessed different methods to indirectly predict CH4 fluxes based on CO2 fluxes and internal gas concentrations. The annual flux from termite mounds and surrounding soil was dominated by CO2 with large variations among sites. On a carbon dioxide equivalent (CO2-e) basis, annual CH4 flux estimate...

  10. A locational gaming model with CO2 emission tax and limits

    International Nuclear Information System (INIS)

    Yu, Z.; Preckel, P.V.; Nderitu, G.; Sparrow, F.T.

    2001-01-01

    This paper presents a locational (spatial) gaming model with CO 2 emission and transmission capacity limits. It is developed for simulating strategic behavior of electricity producers in deregulated electricity markets. The model has multiple players, each maximizing their individual profit with a CO 2 emission tax included to reflect the societal cost of environment damages caused by CO 2 emission from different locations. In the paper, the multiple-producer profits are converted into a set of Lagrangian functions with power production and supply as the primary control variables, resulting in a set of unconstrained, individual profit maximization equations. The Karush-Kuhn-Tucker necessary conditions are then derived and solved simultaneously incorporating Cournot gaming strategy. Case studies show the successful application of the model. (author)

  11. A model analysis of climate and CO2 controls on tree growth in a semi-arid woodland

    Science.gov (United States)

    Li, G.; Harrison, S. P.; Prentice, I. C.

    2015-03-01

    We used a light-use efficiency model of photosynthesis coupled with a dynamic carbon allocation and tree-growth model to simulate annual growth of the gymnosperm Callitris columellaris in the semi-arid Great Western Woodlands, Western Australia, over the past 100 years. Parameter values were derived from independent observations except for sapwood specific respiration rate, fine-root turnover time, fine-root specific respiration rate and the ratio of fine-root mass to foliage area, which were estimated by Bayesian optimization. The model reproduced the general pattern of interannual variability in radial growth (tree-ring width), including the response to the shift in precipitation regimes that occurred in the 1960s. Simulated and observed responses to climate were consistent. Both showed a significant positive response of tree-ring width to total photosynthetically active radiation received and to the ratio of modeled actual to equilibrium evapotranspiration, and a significant negative response to vapour pressure deficit. However, the simulations showed an enhancement of radial growth in response to increasing atmospheric CO2 concentration (ppm) ([CO2]) during recent decades that is not present in the observations. The discrepancy disappeared when the model was recalibrated on successive 30-year windows. Then the ratio of fine-root mass to foliage area increases by 14% (from 0.127 to 0.144 kg C m-2) as [CO2] increased while the other three estimated parameters remained constant. The absence of a signal of increasing [CO2] has been noted in many tree-ring records, despite the enhancement of photosynthetic rates and water-use efficiency resulting from increasing [CO2]. Our simulations suggest that this behaviour could be explained as a consequence of a shift towards below-ground carbon allocation.

  12. A Thermodynamic Approach for Modeling H2O-CO2 Solubility in Alkali-rich Mafic Magmas at Mid-crustal Pressures

    Science.gov (United States)

    Allison, C. M.; Roggensack, K.; Clarke, A. B.

    2017-12-01

    Volatile solubility in magmas is dependent on several factors, including composition and pressure. Mafic (basaltic) magmas with high concentrations of alkali elements (Na and K) are capable of dissolving larger quantities of H2O and CO2 than low-alkali basalt. The exsolution of abundant gases dissolved in alkali-rich mafic magmas can contribute to large explosive eruptions. Existing volatile solubility models for alkali-rich mafic magmas are well calibrated below 200 MPa, but at greater pressures the experimental data is sparse. To allow for accurate interpretation of mafic magmatic systems at higher pressures, we conducted a set of mixed H2O-CO2 volatile solubility experiments between 400 and 600 MPa at 1200 °C in six mafic compositions with variable alkali contents. Compositions include magmas from volcanoes in Italy, Antarctica, and Arizona. Results from our experiments indicate that existing volatile solubility models for alkali-rich mafic magmas, if extrapolated beyond their calibrated range, over-predict CO2 solubility at mid-crustal pressures. Physically, these results suggest that volatile exsolution can occur at deeper levels than what can be resolved from the lower-pressure experimental data. Existing thermodynamic models used to calculate volatile solubility at different pressures require two experimentally derived parameters. These parameters represent the partial molar volume of the condensed volatile species in the melt and its equilibrium constant, both calculated at a standard temperature and pressure. We derived these parameters for each studied composition and the corresponding thermodynamic model shows good agreement with the CO2 solubility data of the experiments. A general alkali basalt solubility model was also constructed by establishing a relationship between magma composition and the thermodynamic parameters. We utilize cation fractions from our six compositions along with four compositions from the experimental literature in a linear

  13. Quantitative analysis of an engineered CO2-fixing Escherichia coli reveals great potential of heterotrophic CO2 fixation.

    Science.gov (United States)

    Gong, Fuyu; Liu, Guoxia; Zhai, Xiaoyun; Zhou, Jie; Cai, Zhen; Li, Yin

    2015-01-01

    Production of fuels from the abundant and wasteful CO2 is a promising approach to reduce carbon emission and consumption of fossil fuels. Autotrophic microbes naturally assimilate CO2 using energy from light, hydrogen, and/or sulfur. However, their slow growth rates call for investigation of the possibility of heterotrophic CO2 fixation. Although preliminary research has suggested that CO2 fixation in heterotrophic microbes is feasible after incorporation of a CO2-fixing bypass into the central carbon metabolic pathway, it remains unclear how much and how efficient that CO2 can be fixed by a heterotrophic microbe. A simple metabolic flux index was developed to indicate the relative strength of the CO2-fixation flux. When two sequential enzymes of the cyanobacterial Calvin cycle were incorporated into an E. coli strain, the flux of the CO2-fixing bypass pathway accounts for 13 % of that of the central carbon metabolic pathway. The value was increased to 17 % when the carbonic anhydrase involved in the cyanobacterial carbon concentrating mechanism was introduced, indicating that low intracellular CO2 concentration is one limiting factor for CO2 fixation in E. coli. The engineered CO2-fixing E. coli with carbonic anhydrase was able to fix CO2 at a rate of 19.6 mg CO2 L(-1) h(-1) or the specific rate of 22.5 mg CO2 g DCW(-1) h(-1). This CO2-fixation rate is comparable with the reported rates of 14 autotrophic cyanobacteria and algae (10.5-147.0 mg CO2 L(-1) h(-1) or the specific rates of 3.5-23.7 mg CO2 g DCW(-1) h(-1)). The ability of CO2 fixation was created and improved in E. coli by incorporating partial cyanobacterial Calvin cycle and carbon concentrating mechanism, respectively. Quantitative analysis revealed that the CO2-fixation rate of this strain is comparable with that of the autotrophic cyanobacteria and algae, demonstrating great potential of heterotrophic CO2 fixation.

  14. A thermodynamic model for the solubility of NpO2(am) in the aqueous K+-HCO3--CO32--OH--H2O system

    International Nuclear Information System (INIS)

    Rai, D.; Hess, N.J.; Felmy, A.R.; Moore, D.A.; Yui, M.

    1999-01-01

    Solubility of NpO 2 (am) was determined in the aqueous K + -HCO 3 - -CO 3 2- -OH - -H 2 O system extending to high concentrations of carbonate, bicarbonate, and mixed carbonate-hydroxide. Several reducing agents (Fe powder, Na 2 S 2 O 4 , NH 2 . NH 2 , and NH 2 OH . HCl) were tested for their effectiveness to maintain neptunium in the tetravalent state. Of these reducing agents, Na 2 S 2 O 4 was found to be the most effective. Even in the presence of Na 2 S 2 O 4 , significant oxidation of Np(IV) to Np(V) occurred in samples containing relatively low concentrations of carbonate/bicarbonate, relatively high concentrations of hydroxide, and samples equilibrated for relatively long periods. X-ray absorption spectroscopy (XAS) and solvent extraction were used to identify aqueous species and oxidation states and to help select appropriate data sets for thermodynamic interpretations. The dominant aqueous species in CO 3 2- and relatively concentrated HCO 3 - solutions was found by XAS to be Np(CO 3 ) 5 6- . Solubility of NpO 2 (am) in carbonate and bicarbonate solutions increased dramatically with increasing molal concentrations (carbonate >0.1 moles per kg H 2 O (m) and bicarbonate >0.01 m), indicating that carbonate makes strong complexes with Np(IV). The dominant Np(IV)-carbonate species that reasonably described all of the experimental data were Np(CO 3 ) 5 6- in low to high concentrations of carbonate and hydroxide and in high concentrations of bicarbonate, and Np(OH) 2 (CO 3 ) 2 2- in low concentrations of bicarbonate. The logarithm of the thermodynamic equilibrium constants for the NpO 2 (am) dissolution reactions involving these species [(NpO 2 (am) + 5 CO 3 2- + 4 H + Np(CO 3 ) 3 6- + 2 H 2 O) and (NpO 2 (am) + 2 HCO 3 - Np(OH) 2 (CO 3 ) 2 2- )] were found to be 34.85 and -4.44, respectively. These values, when combined with the solubility product of NpO 2 (am) [log K Sp = -54.9 [1, and recent unpublished data from Rai et al.

  15. System-level modeling for economic evaluation of geological CO2 storage in gas reservoirs

    International Nuclear Information System (INIS)

    Zhang, Yingqi; Oldenburg, Curtis M.; Finsterle, Stefan; Bodvarsson, Gudmundur S.

    2007-01-01

    One way to reduce the effects of anthropogenic greenhouse gases on climate is to inject carbon dioxide (CO 2 ) from industrial sources into deep geological formations such as brine aquifers or depleted oil or gas reservoirs. Research is being conducted to improve understanding of factors affecting particular aspects of geological CO 2 storage (such as storage performance, storage capacity, and health, safety and environmental (HSE) issues) as well as to lower the cost of CO 2 capture and related processes. However, there has been less emphasis to date on system-level analyses of geological CO 2 storage that consider geological, economic, and environmental issues by linking detailed process models to representations of engineering components and associated economic models. The objective of this study is to develop a system-level model for geological CO 2 storage, including CO 2 capture and separation, compression, pipeline transportation to the storage site, and CO 2 injection. Within our system model we are incorporating detailed reservoir simulations of CO 2 injection into a gas reservoir and related enhanced production of methane. Potential leakage and associated environmental impacts are also considered. The platform for the system-level model is GoldSim [GoldSim User's Guide. GoldSim Technology Group; 2006, http://www.goldsim.com]. The application of the system model focuses on evaluating the feasibility of carbon sequestration with enhanced gas recovery (CSEGR) in the Rio Vista region of California. The reservoir simulations are performed using a special module of the TOUGH2 simulator, EOS7C, for multicomponent gas mixtures of methane and CO 2 . Using a system-level modeling approach, the economic benefits of enhanced gas recovery can be directly weighed against the costs and benefits of CO 2 injection

  16. CO{sub 2} emission calculations and trends

    Energy Technology Data Exchange (ETDEWEB)

    Boden, T.A.; Marland, G. [Oak Ridge National Lab., TN (United States); Andres, R.J. [Alaska Univ., Fairbanks, AK (United States). Inst. of Northern Engineering

    1995-12-31

    Evidence that the atmospheric CO{sub 2} concentration has risen during the past several decades is irrefutable. Most of the observed increase in atmospheric CO{sub 2} is believed to result from CO{sub 2} releases from fossil-fuel burning. The United Nations (UN) Framework Convention on Climate Change (FCCC), signed in Rio de Janeiro in June 1992, reflects global concern over the increasing CO{sub 2} concentration and its potential impact on climate. One of the convention`s stated objectives was the ``stabilization of greenhouse gas concentrations in the atmosphere at a level that would prevent dangerous anthropogenic interference with the climate system. `` Specifically, the FCCC asked all 154 signing countries to conduct an inventory of their current greenhouse gas emissions, and it set nonbinding targets for some countries to control emissions by stabilizing them at 1990 levels by the year 2000. Given the importance of CO{sub 2} as a greenhouse gas, the relationship between CO{sub 2} emissions and increases in atmospheric CO{sub 2} levels, and the potential impacts of a greenhouse gas-induced climate change; it is important that comprehensive CO{sub 2} emissions records be compiled, maintained, updated, and documented.

  17. CO{sub 2} Emission Calculations and Trends

    Science.gov (United States)

    Boden, T. A.; Marland, G.; Andres, R. J.

    1995-06-01

    Evidence that the atmospheric CO{sub 2}concentration has risen during the past several decades is irrefutable. Most of the observed increase in atmospheric CO{sub 2} is believed to result from CO{sub 2} releases from fossil-fuel burning. The United Nations (UN) Framework Convention on Climate Change (FCCC), signed in Rio de Janeiro in June 1992, reflects global concern over the increasing CO{sub 2} concentration and its potential impact on climate. One of the convention`s stated objectives was the stabilization of greenhouse gas concentrations in the atmosphere at a level that would prevent dangerous anthropogenic interference with the climate system. Specifically, the FCCC asked all 154 signing countries to conduct an inventory of their current greenhouse gas emissions, and it set nonbinding targets for some countries to control emissions by stabilizing them at 1990 levels by the year 2000. Given the importance of CO{sub 2} as a greenhouse gas, the relationship between CO{sub 2} emissions and increases in atmospheric CO{sub 2} levels, and the potential impacts of a greenhouse gas-induced climate change; it is important that comprehensive CO{sub 2} emissions records be compiled, maintained, updated, and documented.

  18. Dielectric and magnetic properties of (Zn, Co) co-doped SnO2 nanoparticles

    International Nuclear Information System (INIS)

    Rajwali, Khan; Fang Ming-Hu

    2015-01-01

    Polycrystalline samples of (Zn, Co) co-doped SnO 2 nanoparticles were prepared using a co-precipitation method. The influence of (Zn, Co) co-doping on electrical, dielectric, and magnetic properties was studied. All of the (Zn, Co) co-doped SnO 2 powder samples have the same tetragonal structure of SnO 2 . A decrease in the dielectric constant was observed with the increase of Co doping concentration. It was found that the dielectric constant and dielectric loss values decrease, while AC electrical conductivity increases with doping concentration and frequency. Magnetization measurements revealed that the Co doping SnO 2 samples exhibits room temperature ferromagnetism. Our results illustrate that (Zn, Co) co-doped SnO 2 nanoparticles have an excellent dielectric, magnetic properties, and high electrical conductivity than those reported previously, indicating that these (Zn, Co) co-doped SnO 2 materials can be used in the field of the ultrahigh dielectric material, high frequency device, and spintronics. (paper)

  19. CO2 point sources and subsurface storage capacities for CO2 in aquifers in Norway

    International Nuclear Information System (INIS)

    Boee, Reidulv; Magnus, Christian; Osmundsen, Per Terje; Rindstad, Bjoern Ivar

    2002-01-01

    The GESTCO project comprises a study of the distribution and coincidence of thermal CO 2 emission sources and location/quality of geological storage capacity in Europe. Four of the most promising types of geological storage are being studied. 1. Onshore/offshore saline aquifers with or without lateral seal. 2. Low entalpy geothermal reservoirs. 3. Deep methane-bearing coal beds and abandoned coal and salt mines. 4. Exhausted or near exhausted hydrocarbon structures. In this report we present an inventory of CO 2 point sources in Norway (1999) and the results of the work within Study Area C: Deep saline aquifers offshore/near shore Northern and Central Norway. Also offshore/near shore Southern Norway has been included while the Barents Sea is not described in any detail. The most detailed studies are on the Tilje and Aare Formations on the Troendelag Platform off Mid-Norway and on the Sognefjord, Fensfjord and Krossfjord Formations, southeast of the Troll Field off Western Norway. The Tilje Formation has been chosen as one of the cases to be studied in greater detail (numerical modelling) in the project. This report shows that offshore Norway, there are concentrations of large CO 2 point sources in the Haltenbanken, the Viking Graben/Tampen Spur area, the Southern Viking Graben and the central Trough, while onshore Norway there are concentrations of point sources in the Oslofjord/Porsgrund area, along the coast of western Norway and in the Troendelag. A number of aquifers with large theoretical CO 2 storage potential are pointed out in the North Sea, the Norwegian Sea and in the Southern Barents Sea. The storage capacity in the depth interval 0.8 - 4 km below sea level is estimated to be ca. 13 Gt (13000000000 tonnes) CO 2 in geological traps (outside hydrocarbon fields), while the storage capacity in aquifers not confined to traps is estimated to be at least 280 Gt CO 2 . (Author)

  20. Simplified Predictive Models for CO2 Sequestration Performance Assessment

    Science.gov (United States)

    Mishra, Srikanta; RaviGanesh, Priya; Schuetter, Jared; Mooney, Douglas; He, Jincong; Durlofsky, Louis

    2014-05-01

    We present results from an ongoing research project that seeks to develop and validate a portfolio of simplified modeling approaches that will enable rapid feasibility and risk assessment for CO2 sequestration in deep saline formation. The overall research goal is to provide tools for predicting: (a) injection well and formation pressure buildup, and (b) lateral and vertical CO2 plume migration. Simplified modeling approaches that are being developed in this research fall under three categories: (1) Simplified physics-based modeling (SPM), where only the most relevant physical processes are modeled, (2) Statistical-learning based modeling (SLM), where the simulator is replaced with a "response surface", and (3) Reduced-order method based modeling (RMM), where mathematical approximations reduce the computational burden. The system of interest is a single vertical well injecting supercritical CO2 into a 2-D layered reservoir-caprock system with variable layer permeabilities. In the first category (SPM), we use a set of well-designed full-physics compositional simulations to understand key processes and parameters affecting pressure propagation and buoyant plume migration. Based on these simulations, we have developed correlations for dimensionless injectivity as a function of the slope of fractional-flow curve, variance of layer permeability values, and the nature of vertical permeability arrangement. The same variables, along with a modified gravity number, can be used to develop a correlation for the total storage efficiency within the CO2 plume footprint. In the second category (SLM), we develop statistical "proxy models" using the simulation domain described previously with two different approaches: (a) classical Box-Behnken experimental design with a quadratic response surface fit, and (b) maximin Latin Hypercube sampling (LHS) based design with a Kriging metamodel fit using a quadratic trend and Gaussian correlation structure. For roughly the same number of

  1. Towards Interpreting the Signal of CO2 Emissions from Megacities by Applying a Lagrangian Receptor-oriented Model to OCO-2 XCO2 data

    Science.gov (United States)

    Wu, D.; Lin, J. C.; Oda, T.; Ye, X.; Lauvaux, T.; Yang, E. G.; Kort, E. A.

    2017-12-01

    Urban regions are large emitters of CO2 whose emission inventories are still associated with large uncertainties. Therefore, a strong need exists to better quantify emissions from megacities using a top-down approach. Satellites — e.g., the Orbiting Carbon Observatory 2 (OCO-2), provide a platform for monitoring spatiotemporal column CO2 concentrations (XCO2). In this study, we present a Lagrangian receptor-oriented model framework and evaluate "model-retrieved" XCO2 by comparing against OCO-2-retrieved XCO2, for three megacities/regions (Riyadh, Cairo and Pearl River Delta). OCO-2 soundings indicate pronounced XCO2 enhancements (dXCO2) when crossing Riyadh, which are successfully captured by our model with a slight latitude shift. From this model framework, we can identify and compare the relative contributions of dXCO2 resulted from anthropogenic emission versus biospheric fluxes. In addition, to impose constraints on emissions for Riyadh through inversion methods, three uncertainties sources are addressed in this study, including 1) transport errors, 2) receptor and model setups in atmospheric models, and 3) urban emission uncertainties. For 1), we calculate transport errors by adding a wind error component to randomize particle distributions. For 2), a set of sensitivity tests using bootstrap method is performed to describe proper ways to setup receptors in Lagrangian models. For 3), both emission uncertainties from the Fossil Fuel Data Assimilation System (FFDAS) and the spread among three emission inventories are used to approximate an overall fractional uncertainty in modeled anthropogenic signal (dXCO2.anthro). Lastly, we investigate the definition of background (clean) XCO2 for megacities from retrieved XCO2 by means of statistical tools and our model framework.

  2. Modeling of under-expanded reactive CO2-into-sodium jets, in the frame of sodium fast reactors

    International Nuclear Information System (INIS)

    Vivaldi, D.

    2013-01-01

    , and reaction products concentration profiles. The goal of this PhD work is the development of a numerical model of the two-phase reactive CO 2 -into-sodium jet. As a first step, experimental and bibliographic studies on under-expanded nonreactive gas-into-liquid jets have been investigated, in order to understand what types of two-phase patterns characterise the jet: a first region has been identified, close to gas injection, featuring a mist flow of liquid droplets inside continuous gas, whereas a region further downstream the gas injection is characterised by bubbly flow. The information obtained have been employed for the development of a numerical model of an under-expanded non-reactive gas-into-liquid jet, adopting a 3D unsteady multi-fluid CFD approach. An experimental facility, employing optical probe technique, was developed for the void fraction measurement inside the two-phase jet, in order to perform a comparison with the numerical results. It is found that numerical results well agree with the experimental ones. Once the under-expanded non-reactive jet numerical model was validated, the following step was the development of a numerical model for the chemical reaction between sodium and CO 2 . The approach takes into consideration the specific contact mechanism between the CO 2 and the sodium: one model for the reaction of a liquid sodium droplet with the surrounding CO 2 and one model for the reaction of a CO 2 bubble with the surrounding liquid sodium were separately developed. These models allow to determine the depletion rate of droplets and bubbles, as a function of the main influencing parameters, such as temperature and reaction kinetics parameters. The results obtained through the chemical reaction models have been used for building correlations describing the sodium (or CO 2 ) reaction rate, as a function od the influencing parameters. These correlations have been implemented inside the non-reactive jet model, in order to add the chemical reaction

  3. Assessment of CO2 Storage Potential in Naturally Fractured Reservoirs With Dual-Porosity Models

    Science.gov (United States)

    March, Rafael; Doster, Florian; Geiger, Sebastian

    2018-03-01

    Naturally Fractured Reservoirs (NFR's) have received little attention as potential CO2 storage sites. Two main facts deter from storage projects in fractured reservoirs: (1) CO2 tends to be nonwetting in target formations and capillary forces will keep CO2 in the fractures, which typically have low pore volume; and (2) the high conductivity of the fractures may lead to increased spatial spreading of the CO2 plume. Numerical simulations are a powerful tool to understand the physics behind brine-CO2 flow in NFR's. Dual-porosity models are typically used to simulate multiphase flow in fractured formations. However, existing dual-porosity models are based on crude approximations of the matrix-fracture fluid transfer processes and often fail to capture the dynamics of fluid exchange accurately. Therefore, more accurate transfer functions are needed in order to evaluate the CO2 transfer to the matrix. This work presents an assessment of CO2 storage potential in NFR's using dual-porosity models. We investigate the impact of a system of fractures on storage in a saline aquifer, by analyzing the time scales of brine drainage by CO2 in the matrix blocks and the maximum CO2 that can be stored in the rock matrix. A new model to estimate drainage time scales is developed and used in a transfer function for dual-porosity simulations. We then analyze how injection rates should be limited in order to avoid early spill of CO2 (lost control of the plume) on a conceptual anticline model. Numerical simulations on the anticline show that naturally fractured reservoirs may be used to store CO2.

  4. Numerical modeling of injection and mineral trapping of CO2 withH2S and SO2 in a Sandstone Formation

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Tianfu; Apps, John A.; Pruess, Karsten; Yamamoto, Hajime

    2004-09-07

    Carbon dioxide (CO{sub 2}) injection into deep geologic formations could decrease the atmospheric accumulation of this gas from anthropogenic sources. Furthermore, by co-injecting H{sub 2}S or SO{sub 2}, the products respectively of coal gasification or combustion, with captured CO{sub 2}, problems associated with surface disposal would be mitigated. We developed models that simulate the co-injection of H{sub 2}S or SO{sub 2} with CO{sub 2} into an arkose formation at a depth of about 2 km and 75 C. The hydrogeology and mineralogy of the injected formation are typical of those encountered in Gulf Coast aquifers of the United States. Six numerical simulations of a simplified 1-D radial region surrounding the injection well were performed. The injection of CO{sub 2} alone or co-injection with SO{sub 2} or H{sub 2}S results in a concentrically zoned distribution of secondary minerals surrounding a leached and acidified region adjacent to the injection well. Co-injection of SO{sub 2} with CO{sub 2} results in a larger and more strongly acidified zone, and alteration differs substantially from that caused by the co-injection of H{sub 2}S or injection of CO{sub 2} alone. Precipitation of carbonates occurs within a higher pH (pH > 5) peripheral zone. Significant quantities of CO{sub 2} are sequestered by ankerite, dawsonite, and lesser siderite. The CO{sub 2} mineral-trapping capacity of the formation can attain 40-50 kg/m{sup 3} medium for the selected arkose. In contrast, secondary sulfates precipitate at lower pH (pH < 5) within the acidified zone. Most of the injected SO{sub 2} is transformed and immobilized through alunite precipitation with lesser amounts of anhydrite and minor quantities of pyrite. The dissolved CO{sub 2} increases with time (enhanced solubility trapping). The mineral alteration induced by injection of CO{sub 2} with either SO{sub 2} or H{sub 2}S leads to corresponding changes in porosity. Significant increases in porosity occur in the acidified

  5. Diurnal dynamics of the CO2 concentration in water of the coastal zone of lake Baikal in the ice period (testing of the DIEL - CO2 method for assessment of lake metabolic rate)

    Science.gov (United States)

    Panchenko, M. V.; Domysheva, V. M.; Pestunov, D. A.; Sakirko, M. V.; Ivanov, V. G.; Shamrin, A. M.

    2017-11-01

    Results of three long cycles of 24-hour measurements of the carbon dioxide content in the surface and bottom water in the ice period of 2014-2016 in the Baikal coastal zone are analyzed. The diurnal dynamics of the CO2 concentration in the subglacial water, in which photosynthesis plays the leading role, is described. It is found that, in comparison with the surface subglacial water (that is, directly adjacent to the ice bottom), the more pronounced diurnal rhythm of CO2 is observed in the bottom layer in all realizations. This rhythm is well correlated with pyranometer readings. The data on the diurnal dynamics of CO2 are used to estimate the gross primary production in the bottom water with the DIEL method based on the analysis of temporal variability of the carbon dioxide concentration in water in situ.

  6. Detection of CO2 leaks from carbon capture and storage sites with combined atmospheric CO2 and O-2 measurements

    NARCIS (Netherlands)

    van Leeuwen, Charlotte; Meijer, Harro A. J.

    2015-01-01

    This paper presents a transportable instrument that simultaneously measures the CO2 and (relative) O-2 concentration of the atmosphere with the purpose to aid in the detection of CO2 leaks from CCS sites. CO2 and O-2 are coupled in most processes on earth (e.g., photosynthesis, respiration and

  7. Bundle-sheath leakiness in C4 photosynthesis: a careful balancing act between CO2 concentration and assimilation.

    Science.gov (United States)

    Kromdijk, Johannes; Ubierna, Nerea; Cousins, Asaph B; Griffiths, Howard

    2014-07-01

    Crop species with the C4 photosynthetic pathway are generally characterized by high productivity, especially in environmental conditions favouring photorespiration. In comparison with the ancestral C3 pathway, the biochemical and anatomical modifications of the C4 pathway allow spatial separation of primary carbon acquisition in mesophyll cells and subsequent assimilation in bundle-sheath cells. The CO2-concentrating C4 cycle has to operate in close coordination with CO2 reduction via the Calvin-Benson-Bassham (CBB) cycle in order to keep the C4 pathway energetically efficient. The gradient in CO2 concentration between bundle-sheath and mesophyll cells facilitates diffusive leakage of CO2. This rate of bundle-sheath CO2 leakage relative to the rate of phosphoenolpyruvate carboxylation (termed leakiness) has been used to probe the balance between C4 carbon acquisition and subsequent reduction as a result of environmental perturbations. When doing so, the correct choice of equations to derive leakiness from stable carbon isotope discrimination (Δ(13)C) during gas exchange is critical to avoid biased results. Leakiness responses to photon flux density, either short-term (during measurements) or long-term (during growth and development), can have important implications for C4 performance in understorey light conditions. However, recent reports show leakiness to be subject to considerable acclimation. Additionally, the recent discovery of two decarboxylating C4 cycles operating in parallel in Zea mays suggests that flexibility in the transported C4 acid and associated decarboxylase could also aid in maintaining C4/CBB balance in a changing environment. In this paper, we review improvements in methodology to estimate leakiness, synthesize reports on bundle-sheath leakiness, discuss different interpretations, and highlight areas where future research is necessary. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology

  8. Model-dependence of the CO2 threshold for melting the hard Snowball Earth

    Directory of Open Access Journals (Sweden)

    W. R. Peltier

    2011-01-01

    Full Text Available One of the critical issues of the Snowball Earth hypothesis is the CO2 threshold for triggering the deglaciation. Using Community Atmospheric Model version 3.0 (CAM3, we study the problem for the CO2 threshold. Our simulations show large differences from previous results (e.g. Pierrehumbert, 2004, 2005; Le Hir et al., 2007. At 0.2 bars of CO2, the January maximum near-surface temperature is about 268 K, about 13 K higher than that in Pierrehumbert (2004, 2005, but lower than the value of 270 K for 0.1 bar of CO2 in Le Hir et al. (2007. It is found that the difference of simulation results is mainly due to model sensitivity of greenhouse effect and longwave cloud forcing to increasing CO2. At 0.2 bars of CO2, CAM3 yields 117 Wm−2 of clear-sky greenhouse effect and 32 Wm−2 of longwave cloud forcing, versus only about 77 Wm−2 and 10.5 Wm−2 in Pierrehumbert (2004, 2005, respectively. CAM3 has comparable clear-sky greenhouse effect to that in Le Hir et al. (2007, but lower longwave cloud forcing. CAM3 also produces much stronger Hadley cells than that in Pierrehumbert (2005. Effects of pressure broadening and collision-induced absorption are also studied using a radiative-convective model and CAM3. Both effects substantially increase surface temperature and thus lower the CO2 threshold. The radiative-convective model yields a CO2 threshold of about 0.21 bars with surface albedo of 0.663. Without considering the effects of pressure broadening and collision-induced absorption, CAM3 yields an approximate CO2 threshold of about 1.0 bar for surface albedo of about 0.6. However, the threshold is lowered to 0.38 bars as both effects are considered.

  9. Cheminformatics Modeling of Amine Solutions for Assessing their CO2 Absorption Properties.

    Science.gov (United States)

    Kuenemann, Melaine A; Fourches, Denis

    2017-07-01

    As stricter regulations on CO 2 emissions are adopted worldwide, identifying efficient chemical processes to capture and recycle CO 2 is of critical importance for industry. The most common process known as amine scrubbing suffers from the lack of available amine solutions capable of capturing CO 2 efficiently. Tertiary amines characterized by low heats of reaction are considered good candidates but their absorption properties can significantly differ from one analogue to another despite high structural similarity. Herein, after collecting and curating experimental data from the literature, we have built a modeling set of 41 amine structures with their absorption properties. Then we analyzed their chemical composition using molecular descriptors and non-supervised clustering. Furthermore, we developed a series of quantitative structure-property relationships (QSPR) to assess amines' CO 2 absorption properties from their structural characteristics. These models afforded reasonable prediction performances (e. g., Q 2 LOO =0.63 for CO 2 absorption amount) even though they are solely based on 2D chemical descriptors and individual machine learning techniques (random forest and neural network). Overall, we believe the chemical analysis and the series of QSPR models presented in this proof-of-concept study represent new knowledge and innovative tools that could be very useful for screening and prioritizing hypothetical amines to be synthesized and tested experimentally for their CO 2 absorption properties. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. The Changes of Elements Composition in Aspergillus niger and Aspergillus terreus at Different Co2+, Cd2+ and Pb2+ Concentrations Using X-rays Microanalysis

    International Nuclear Information System (INIS)

    Ouda, S.M.

    2010-01-01

    X-ray microanalysis in electron microscope allows simultaneous detection and quantitative analysis of several elements so it contributes to understand the role of ions in physiological processes. Energy dispersive X-ray (EDX) analysis used to detect the changes in elements levels in Aspergillus niger and Aspergillus terreus when allowing to grow on Czapek's Dox liquid media amended with different Co 2+ , Cd 2+ and Pb 2+ concentrations and these changes may play a role in fungal uptake for these heavy metal ions. Results showed that Ca, Zn and Cu levels in both fungal isolates significantly decreased (P<0.05) when concentrations of used metal ions increased, also O, Na, Cl and K levels for A. niger and C and P for A. terreus recorded significant reduction (P<0.05) in their percentages. Also, the results revealed that, C and P for A. niger and O, Na, Mg, Cl and K levels for A. terreus significantly increased (P<0.05) as a result of increasing metal ions concentrations. Lack of Cd and Pb peaks in X-ray spectrum for A. terreus led this work to conclude that, A. niger was more effective than A. terreus in Co, Cd, Pb uptake into fungal biomass. The increase or decrease of levels of detected elements could be related to the difference between two fungal isolates in uptake certain heavy metal ion (Co, Cd, Pb)

  11. Rising CO2 levels will intensify phytoplankton blooms in eutrophic and hypertrophic lakes.

    Directory of Open Access Journals (Sweden)

    Jolanda M H Verspagen

    Full Text Available Harmful algal blooms threaten the water quality of many eutrophic and hypertrophic lakes and cause severe ecological and economic damage worldwide. Dense blooms often deplete the dissolved CO2 concentration and raise pH. Yet, quantitative prediction of the feedbacks between phytoplankton growth, CO2 drawdown and the inorganic carbon chemistry of aquatic ecosystems has received surprisingly little attention. Here, we develop a mathematical model to predict dynamic changes in dissolved inorganic carbon (DIC, pH and alkalinity during phytoplankton bloom development. We tested the model in chemostat experiments with the freshwater cyanobacterium Microcystis aeruginosa at different CO2 levels. The experiments showed that dense blooms sequestered large amounts of atmospheric CO2, not only by their own biomass production but also by inducing a high pH and alkalinity that enhanced the capacity for DIC storage in the system. We used the model to explore how phytoplankton blooms of eutrophic waters will respond to rising CO2 levels. The model predicts that (1 dense phytoplankton blooms in low- and moderately alkaline waters can deplete the dissolved CO2 concentration to limiting levels and raise the pH over a relatively wide range of atmospheric CO2 conditions, (2 rising atmospheric CO2 levels will enhance phytoplankton blooms in low- and moderately alkaline waters with high nutrient loads, and (3 above some threshold, rising atmospheric CO2 will alleviate phytoplankton blooms from carbon limitation, resulting in less intense CO2 depletion and a lesser increase in pH. Sensitivity analysis indicated that the model predictions were qualitatively robust. Quantitatively, the predictions were sensitive to variation in lake depth, DIC input and CO2 gas transfer across the air-water interface, but relatively robust to variation in the carbon uptake mechanisms of phytoplankton. In total, these findings warn that rising CO2 levels may result in a marked

  12. Rising CO2 Levels Will Intensify Phytoplankton Blooms in Eutrophic and Hypertrophic Lakes

    Science.gov (United States)

    Verspagen, Jolanda M. H.; Van de Waal, Dedmer B.; Finke, Jan F.; Visser, Petra M.; Van Donk, Ellen; Huisman, Jef

    2014-01-01

    Harmful algal blooms threaten the water quality of many eutrophic and hypertrophic lakes and cause severe ecological and economic damage worldwide. Dense blooms often deplete the dissolved CO2 concentration and raise pH. Yet, quantitative prediction of the feedbacks between phytoplankton growth, CO2 drawdown and the inorganic carbon chemistry of aquatic ecosystems has received surprisingly little attention. Here, we develop a mathematical model to predict dynamic changes in dissolved inorganic carbon (DIC), pH and alkalinity during phytoplankton bloom development. We tested the model in chemostat experiments with the freshwater cyanobacterium Microcystis aeruginosa at different CO2 levels. The experiments showed that dense blooms sequestered large amounts of atmospheric CO2, not only by their own biomass production but also by inducing a high pH and alkalinity that enhanced the capacity for DIC storage in the system. We used the model to explore how phytoplankton blooms of eutrophic waters will respond to rising CO2 levels. The model predicts that (1) dense phytoplankton blooms in low- and moderately alkaline waters can deplete the dissolved CO2 concentration to limiting levels and raise the pH over a relatively wide range of atmospheric CO2 conditions, (2) rising atmospheric CO2 levels will enhance phytoplankton blooms in low- and moderately alkaline waters with high nutrient loads, and (3) above some threshold, rising atmospheric CO2 will alleviate phytoplankton blooms from carbon limitation, resulting in less intense CO2 depletion and a lesser increase in pH. Sensitivity analysis indicated that the model predictions were qualitatively robust. Quantitatively, the predictions were sensitive to variation in lake depth, DIC input and CO2 gas transfer across the air-water interface, but relatively robust to variation in the carbon uptake mechanisms of phytoplankton. In total, these findings warn that rising CO2 levels may result in a marked intensification of

  13. The seasonal cycle of pCO2 and CO2 fluxes in the Southern Ocean: diagnosing anomalies in CMIP5 Earth system models

    Science.gov (United States)

    Precious Mongwe, N.; Vichi, Marcello; Monteiro, Pedro M. S.

    2018-05-01

    The Southern Ocean forms an important component of the Earth system as a major sink of CO2 and heat. Recent studies based on the Coupled Model Intercomparison Project version 5 (CMIP5) Earth system models (ESMs) show that CMIP5 models disagree on the phasing of the seasonal cycle of the CO2 flux (FCO2) and compare poorly with available observation products for the Southern Ocean. Because the seasonal cycle is the dominant mode of CO2 variability in the Southern Ocean, its simulation is a rigorous test for models and their long-term projections. Here we examine the competing roles of temperature and dissolved inorganic carbon (DIC) as drivers of the seasonal cycle of pCO2 in the Southern Ocean to explain the mechanistic basis for the seasonal biases in CMIP5 models. We find that despite significant differences in the spatial characteristics of the mean annual fluxes, the intra-model homogeneity in the seasonal cycle of FCO2 is greater than observational products. FCO2 biases in CMIP5 models can be grouped into two main categories, i.e., group-SST and group-DIC. Group-SST models show an exaggeration of the seasonal rates of change of sea surface temperature (SST) in autumn and spring during the cooling and warming peaks. These higher-than-observed rates of change of SST tip the control of the seasonal cycle of pCO2 and FCO2 towards SST and result in a divergence between the observed and modeled seasonal cycles, particularly in the Sub-Antarctic Zone. While almost all analyzed models (9 out of 10) show these SST-driven biases, 3 out of 10 (namely NorESM1-ME, HadGEM-ES and MPI-ESM, collectively the group-DIC models) compensate for the solubility bias because of their overly exaggerated primary production, such that biologically driven DIC changes mainly regulate the seasonal cycle of FCO2.

  14. Co-location synergies : specialized versus diverse logistics concentration areas

    OpenAIRE

    Heuvel, van den, F.P.; Langen, de, P.W.; Donselaar, van, K.H.; Fransoo, J.C.

    2012-01-01

    Purpose: The purpose of this paper is to contribute to the understanding of spatial concentration of logistics firms by empirically analyzing synergies through co-location and investigating whether co-location of logistics establishments in specialized logistics concentration areas results in benefits compared to co-location in diverse logistics concentration areas. Methodology: A survey among managers of 128 logistics establishments located in logistics concentration areas was used to test f...

  15. Towards CO2 sequestration and applications of CO2 hydrates: the effects of tetrahydrofuran on the phase equilibria of CO2 hydrates

    International Nuclear Information System (INIS)

    Khalik, M.S.; Peters, C.J.

    2006-01-01

    The increasing quantity of carbon dioxide (CO 2 ) in the atmosphere has caused widespread global concerns. Capturing CO 2 from its sources and stored it in the form of gas hydrates and application of CO 2 hydrates are among the proposed methods to overcome this problem. In order to make hydrate-based process more attractive, the use of cyclic ethers as promoters is suggested to reduce the required hydrate formation pressure and enhancing the corresponding kinetic rate. In the present work, tetrahydrofuran (THF) is chosen as a hydrate promoter, participating in forming hydrates and produces mixed hydrate together with CO 2 . The pressure and temperature ranges of hydrate stability region are carefully determined through phase equilibrium measurement of the ternary CO 2 , tetrahydrofuran (THF) and water systems. From the experimental results, it is confirmed that the presence of THF in CO 2 + water systems will extend the hydrate formation region to higher temperature at a constant pressure. The extension of the hydrate stability region is depended on the overall concentration of the ternary system. Moreover, four-phase equilibrium of H-Lw-Lv-V is observed in the system, which may be due to a liquid phase split. In the region where the four-phase equilibrium exists, the ternary system loses its concentration dependency of the hydrate equilibrium conditions. (Author)

  16. The ignition delay, laminar flame speed and adiabatic temperature characteristics of n-pentane, n-hexane and n-heptane under O{sub 2}/CO{sub 2} atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Ran [Huazhong Univ. of Science and Technology, Wuhan (China). State Key Lab. of Coal Combustion; Wuhan Textile Univ. (China). School of Environment and Urban Construction; Liu, Hao; Zhong, Xiaojiao; Wang, Zijian; Jin, Ziqin; Qiu, Jianrong [Huazhong Univ. of Science and Technology, Wuhan (China). State Key Lab. of Coal Combustion; Chen, Yingming [Wuhan Textile Univ. (China). School of Environment and Urban Construction

    2013-07-01

    Oxy-fuel (O{sub 2}/CO{sub 2}) combustion is one of the several promising new technologies which can realize the integrated control of CO{sub 2}, SO{sub 2}, NO{sub X} and other pollutants. However, when fuels are burned in the high CO{sub 2} concentration environment, the combustion characteristics can be very different from conventional air-fired combustion. Such changes imply that the high CO{sub 2} concentration atmosphere has impacts on the combustion processes. In this paper, the ignition time, laminar flame speed and adiabatic temperature property of C{sub 5} {proportional_to} C{sub 7} n-alkane fuels were studied under both ordinary air atmosphere and O{sub 2}/CO{sub 2} atmospheres over a wide range of CO{sub 2} concentration in the combustion systems. A new unified detailed chemical kinetic model was validated and used to simulate the three liquid hydrocarbon fuel's flame characteristics. Based on the verified model, the influences of various parameters (atmosphere, excess oxygen ratio, O{sub 2} concentration, CO{sub 2} concentration, and alkane type) on the C{sub 5} {proportional_to} C{sub 7} n-alkane's flame characteristics were systematically investigated. It can be concluded that high CO{sub 2} concentration atmosphere has negative effect on n-pentane, n-hexane and n-heptane flame's ignition, laminar flame speed and adiabatic temperature. Besides, this work confirms that high CO{sub 2} concentration atmosphere's chemical effects play a pronounced role on the flame characteristics, especially for the ignition time property.

  17. CO2 gasification of microalgae (N. Oculata – A thermodynamic study

    Directory of Open Access Journals (Sweden)

    Adnan Muflih Arisa

    2018-01-01

    Full Text Available A new model of CO2 gasification has been developed in the Aspen Plus. The potential of microalgae (N. oculata for CO2 gasification also has been investigated. The present gasification process utilizes the CO2 at atmospheric pressure as the gasifying agent. The steam is also injected to the gasification to enhance the H2 production. The composition of the producer gas and gasification system efficiency (GSE are used for performance evaluation. It is found that the CO2 gasification of microalgae produces a producer gas with a high concentration of CO and H2. The GSE indicates that the process works at high performance.

  18. Weekly variability of surface CO concentrations in Moscow

    Science.gov (United States)

    Sitnov, S. A.; Adiks, T. G.

    2014-03-01

    Based on observations of carbon monoxide (CO) concentrations at three Mosekomonitoring stations, we have analyzed the weekly cycle of CO in the surface air of Moscow in 2004-2007. At all stations the minimum long-term mean daily CO values are observed on Sunday. The weekly cycle of CO more clearly manifests itself at the center of Moscow and becomes less clear closer to the outskirts. We have analyzed the reproducibility of the weekly cycle of CO from one year to another, the seasonal dependence, its specific features at different times of day, and the changes in the diurnal cycle of CO during the week. The factors responsible for specific features of the evolution of surface CO concentrations at different observation stations have been analyzed. The empirical probability density functions of CO concentrations on weekdays and at week- end are presented. The regularity of the occurrence of the weekend effect in CO has been investigated and the possible reasons for breaks in weekly cycles have been analyzed. The Kruskal-Wallis test was used to study the statistical significance of intraweek differences in surface CO contents.

  19. In-depth numerical analysis on the determination of amount of CO2 recirculation in LNG/O2/CO2 combustion

    International Nuclear Information System (INIS)

    Kim, Hey-Suk; Shin, Mi-Soo; Jang, Dong-Soon; Lee, Dae Keun

    2010-01-01

    The determination of proper amount of CO 2 recirculation is one of the critical issues in oxy-fuel combustion technology for the reduction of CO 2 emissions by the capture and sequestration of CO 2 species in flue gas. The objective of this study is to determine the optimum value of O 2 fraction in O 2 /CO 2 mixture to obtain similar flame characteristics with LNG-air combustion. To this end, a systematic numerical investigation has been made in order to resolve the physical feature of LNG/O 2 /CO 2 combustion. For this, SIMPLEC algorithm is used for the resolution of pressure velocity coupling. And for the Reynolds stresses and turbulent reaction the popular two-equation (k-ε) model by Launder and Spalding and eddy breakup model by Magnussen and Hjertager were incorporated, respectively. The radiative heat transfer is calculated from the volumetric energy loss rate from flame, considering absorption coefficient of H 2 O, CO 2 and CO gases. A series of parametric investigation has been made as function of oxidizer type, O 2 fraction and fuel type for the resolution of combustion characteristics such as flame temperature, turbulent mixing and species concentration. Further the increased effect of CO 2 species on the flame temperature is carefully examined by the consideration of change of specific heat and radiation effect. Based on this study, it was observed that the same mass flow rate of CO 2 with N 2 appears as the most adequate value for the amount of CO 2 recirculation for LNG fuel since the lower C p value for the CO 2 relative to N 2 species at lower temperatures cancels the effect of the higher C p value at higher temperatures over the range of flame temperatures present in this study. However, for the fuel with high C/H ratio, for example of coal, the reduced amount of CO 2 recirculation is recommended in order to compensate the increased radiation heat loss. In general, the calculation results were physically acceptable and consistent with reported data

  20. Forecasting global atmospheric CO2

    International Nuclear Information System (INIS)

    Agusti-Panareda, A.; Massart, S.; Boussetta, S.; Balsamo, G.; Beljaars, A.; Engelen, R.; Jones, L.; Peuch, V.H.; Chevallier, F.; Ciais, P.; Paris, J.D.; Sherlock, V.

    2014-01-01

    A new global atmospheric carbon dioxide (CO 2 ) real-time forecast is now available as part of the preoperational Monitoring of Atmospheric Composition and Climate - Interim Implementation (MACC-II) service using the infrastructure of the European Centre for Medium-Range Weather Forecasts (ECMWF) Integrated Forecasting System (IFS). One of the strengths of the CO 2 forecasting system is that the land surface, including vegetation CO 2 fluxes, is modelled online within the IFS. Other CO 2 fluxes are prescribed from inventories and from off-line statistical and physical models. The CO 2 forecast also benefits from the transport modelling from a state-of-the-art numerical weather prediction (NWP) system initialized daily with a wealth of meteorological observations. This paper describes the capability of the forecast in modelling the variability of CO 2 on different temporal and spatial scales compared to observations. The modulation of the amplitude of the CO 2 diurnal cycle by near-surface winds and boundary layer height is generally well represented in the forecast. The CO 2 forecast also has high skill in simulating day-to-day synoptic variability. In the atmospheric boundary layer, this skill is significantly enhanced by modelling the day-to-day variability of the CO 2 fluxes from vegetation compared to using equivalent monthly mean fluxes with a diurnal cycle. However, biases in the modelled CO 2 fluxes also lead to accumulating errors in the CO 2 forecast. These biases vary with season with an underestimation of the amplitude of the seasonal cycle both for the CO 2 fluxes compared to total optimized fluxes and the atmospheric CO 2 compared to observations. The largest biases in the atmospheric CO 2 forecast are found in spring, corresponding to the onset of the growing season in the Northern Hemisphere. In the future, the forecast will be re-initialized regularly with atmospheric CO 2 analyses based on the assimilation of CO 2 products retrieved from satellite

  1. Synthesis of zeolites 'type A' for adsorption of CO{sub 2}; Sintese de zeolitas 'tipo A' para adsorcao de CO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Vieira, L.O.; Madeira, A.C.; Merlini, A.; Melo, C.R.; Mendes, E.; Santos, M.G.S.; Angioletto, E., E-mail: elidio@unesc.net [Universidade do Extremo Sul Catarinense (IPARQUE/UNESC), Criciuma, SC (Brazil). Parque Cientifico e Tecnologico

    2012-07-01

    The separation of gases is a very expensive step in the chemical industry and unquestionable relevance. In this work it was found the effectiveness of using zeolites of type A in the separation of CO{sub 2} in a gas mixture containing 25% CO{sub 2}, 4% O{sub 2} and 71% N{sub 2} concentrations similar to exhaust gases from combustion processes. To this end, was synthesized using zeolites type A commercial kaolin and mounted to an adsorption column to test the efficiency of zeolites in the adsorption of CO{sub 2}. The synthesized zeolites showed surface area of 66.22m{sup 2}/g. The CO{sub 2} concentration was determined by gas chromatography with TCD detector. Adjusting the data to the Langmuir model, there was obtained the kinetics of adsorption. From these, we found the ability of zeolite to adsorb CO{sub 2} used in the column of 0.461285mg/g. The results of adsorption proved promising and showed maximum adsorption of 78.4% at a time of 10 seconds. (author)

  2. Gasification under CO2–Steam Mixture: Kinetic Model Study Based on Shared Active Sites

    Directory of Open Access Journals (Sweden)

    Xia Liu

    2017-11-01

    Full Text Available In this work, char gasification of two coals (i.e., Shenfu bituminous coal and Zunyi anthracite and a petroleum coke under a steam and CO2 mixture (steam/CO2 partial pressures, 0.025–0.075 MPa; total pressures, 0.100 MPa and CO2/steam chemisorption of char samples were conducted in a Thermogravimetric Analyzer (TGA. Two conventional kinetic models exhibited difficulties in exactly fitting the experimental data of char–steam–CO2 gasification. Hence, a modified model based on Langmuir–Hinshelwood model and assuming that char–CO2 and char–steam reactions partially shared active sites was proposed and had indicated high accuracy for estimating the interactions in char–steam–CO2 reaction. Moreover, it was found that two new model parameters (respectively characterized as the amount ratio of shared active sites to total active sites in char–CO2 and char–steam reactions in the modified model hardly varied with gasification conditions, and the results of chemisorption indicate that these two new model parameters mainly depended on the carbon active sites in char samples.

  3. Evaluation of CO2-based cold sterilization of a model hydrogel.

    Science.gov (United States)

    Jiménez, A; Zhang, J; Matthews, M A

    2008-12-15

    The purpose of the present work is to evaluate a novel CO(2)-based cold sterilization process in terms of both its killing efficiency and its effects on the physical properties of a model hydrogel, poly(acrylic acid-co-acrylamide) potassium salt. Suspensions of Staphylococcus aureus and Escherichia coli were prepared for hydration and inoculation of the gel. The hydrogels were treated with supercritical CO(2) (40 degrees C, 27.6 MPa). The amount of bacteria was quantified before and after treatment. With pure CO(2), complete killing of S. aureus and E. coli was achieved for treatment times as low as 60 min. After treatment with CO(2) plus trace amounts of H(2)O(2) at the same experimental conditions, complete bacteria kill was also achieved. For times less than 30 min, incomplete kill was noted. Several physical properties of the gel were evaluated before and after SC-CO(2) treatment. These were largely unaffected by the CO(2) process. Drying curves showed no significant change between treated (pure CO(2) and CO(2) plus 30% H(2)O(2)) and untreated samples. The average equilibrium swelling ratios were also very similar. No changes in the dry hydrogel particle structure were evident from SEM micrographs.

  4. Measurements of CO2 Concentration and Wind Profiles with A Scanning 1.6μm DIAL

    Science.gov (United States)

    Abo, M.; Shibata, Y.; Nagasawa, C.; Nagai, T.; Sakai, T.; Tsukamoto, M.

    2012-12-01

    Horizontal carbon dioxide (CO2) distribution and wind profiles are important information for understanding of the regional sink and source of CO2. The differential absorption lidar (DIAL) and the Doppler lidar with the range resolution is expected to bring several advantages over passive measurements. We have developed a new scanning 1.6μm DIAL and incoherent Doppler lidar system to perform simultaniously measurements of CO2 concentration and wind speed profiles in the atmosphere. The 1.6μm DIAL and Doppler lidar system consists of the Optical Parametric Generator (OPG) transmitter that excited by the LD pumped Nd:YAG laser with high repetition rate (500 Hz). The receiving optics include the near-infrared photomultiplier tube with high quantum efficiency operating at the photon counting mode, a fiber Bragg grating (FBG) filter to detct Doppler shift, and a 25 cm telescope[1][2]. Laser beam is transmitted coaxially and motorized scanning mirror system can scan the laser beam and field of view 0-360deg horizontally and 0-52deg vertically. We report the results of vertical CO2 scanning measurenents and vertical wind profiles. The scanning elevation angles were from 12deg to 24deg with angular step of 4deg and CO2 concentration profiles were obtained up to 1 km altitude with 200 m altitude resolution. We also obtained vertical wind vector profiles by measuring line-of-sight wind profiles at two azimuth angles with a fixed elevation angle 52deg. Vertical wind vector profiles were obtained up to 5 km altitude with 1 km altitude rasolution. This work was financially supported by the System Development Program for Advanced Measurement and Analysis of the Japan Science and Technology Agency. References [1] L. B. Vann, et al., "Narrowband fiber-optic phase-shifted Fabry-Perot Bragg grating filters for atmospheric water vapor lidar measurements", Appl. Opt., 44, pp. 7371-7377 (2005). [2] Y. Shibata, et al., "1.5μm incoherent Doppler lidar using a FBG filter", Proceedings

  5. Volcanic CO2 Emissions and Glacial Cycles: Coupled Oscillations

    Science.gov (United States)

    Burley, J. M.; Huybers, P. J.; Katz, R. F.

    2016-12-01

    Following the mid-Pleistocene transition, the dominant period of glacial cycles changed from 40 ka to 100 ka. It is broadly accepted that the 40 ka glacial cycles were driven by cyclical changes in obliquity. However, this forcing does not explain the 100 ka glacial cycles. Mechanisms proposed for 100 ka cycles include isostatic bed depression and proglacial lakes destabilising the Laurentide ice sheet, non-linear responses to orbital eccentricity, and Antarctic ice sheets influencing deep-ocean stratification. None of these are universally accepted. Here we investigate the hypothesis that variations in volcanic CO2 emissions can cause 100 ka glacial cycles. Any proposed mechanism for 100 ka glacial cycles must give the Earth's climate system a memory of 10^4 - 10^5years. This timescale is difficult to achieve for surface processes, however it is possible for the solid Earth. Recent work suggests volcanic CO2 emissions change in response to glacial cycles [1] and that there could be a 50 ka delay in that response [2]. Such a lagged response could drive glacial cycles from 40 ka cycles to an integer multiple of the forcing period. Under what conditions could the climate system admit such a response? To address this, we use a simplified climate model modified from Huybers and Tziperman [3]. Our version comprises three component models for energy balance, ice sheet growth and atmospheric CO2 concentration. The model is driven by insolation alone with other components varying according to a system of coupled, differential equations. The model is run for 500 ka to produce several glacial cycles and the resulting changes in global ice volume and atmospheric CO2 concentration.We obtain a switch from 40 ka to 100 ka cycles as the volcanic CO2 response to glacial cycles is increased. These 100 ka cycles are phase-locked to obliquity, lasting 80 or 120 ka. Whilst the MOR response required (in this model) is larger than plausible estimates based on [2], it illustrates the

  6. Thermochemistry of a Biomimetic and Rubisco-Inspired CO2 Capture System from Air

    Directory of Open Access Journals (Sweden)

    Andrew Muelleman

    2016-07-01

    Full Text Available In theoretical studies of chemical reactions the reaction thermochemistry is usually reported for the stoichiometric reaction at standard conditions (ΔG°, ΔH°, ΔS°. We describe the computation of the equilibrium concentrations of the CO2-adducts for the general capture reaction CO2 + Capture System ⇆ CO2-adduct (GCR and the rubisco-type capture reaction CO2 + Capture System ⇆ CO2-adduct + H2O (RCR with consideration of the reaction CO2(g ⇆ CO2(aq via Henry’s law. The resulting equations are evaluated and graphically illustrated as a function of atmospheric CO2 concentration and as a function of temperature. The equations were applied to the thermochemistry of small molecule rubisco-model reactions and series of additional model reactions to illustrate the range of the Gibbs free enthalpy for the effective reversible capture and of the reaction entropy for economic CO2 release at elevated temperature. A favorable capture of free enthalpy is of course a design necessity, but not all exergonic reactions are suitable CO2 capture systems. Successful CO2 capture systems must allow for effective release as well, and this feature is controlled by the reaction entropy. The principle of using a two-pronged capture system to ensure a large negative capture entropy is explained and highlighted in the graphical abstract. It is hoped that the presentation of the numerical examples provides useful guidelines for the design of more efficient capture systems.

  7. [Effects of short-term elevated CO2 concentration and drought stress on the rhizosphere effects of soil carbon, nitrogen and microbes of Bothriochloa ischaemum.

    Science.gov (United States)

    Xiao, Lie; Liu, Guo Bin; Li, Peng; Xue, Sha

    2017-10-01

    A water control pot experiment was conducted in climate controlled chambers to study soil carbon, nitrogen and microbial community structure and their rhizosphere effects in the rhizosphere and non rhizosphere soil of Bothriochloa ischaemum at elevated CO2 concentrations (800 μmol·mol -1 ) under three water regimes, i.e., well watered (75%-80% of field capacity, FC), moderate drought stress (55%-60% of FC), and severe drought stress (35%-40% of FC). The results showed that elevated CO2 concentration and drought stress did not have significant impacts on the content of soil organic carbon, total nitrogen or dissolved organic carbon (DOC) in the rhizosphere and bulk soils or their rhizosphere effects. Elevated CO2 concentration significantly decreased dissolved organic nitrogen (DON) content in the rhizosphere soil under moderate drought stress, increased DOC/DON, and significantly increased the negative rhizosphere effect of DON and positive rhizosphere effect of DOC/DON. Drought stress and elevated CO2 concentration did not have significant impacts on the rhizosphere effect of total and bacterial phospholipid fatty acids (PLFA). Drought stress under elevated CO2 concentration significantly increased the G + /G - PLFA in the rhizosphere soil and decreased the G + /G - PLFA in the bulk soil, so its rhizosphere effect significantly increased, indicating that the soil microbial community changed from chemoautotroph microbes to heterotrophic microbes.

  8. Coalfire related CO2 emissions and remote sensing

    Energy Technology Data Exchange (ETDEWEB)

    Gangopadhyay, P.K.

    2008-06-11

    Subsurface and surface coalfires are a serious problem in many coal-producing countries. Combustion can occur within the coal seams (underground or surface), in piles of stored coal, or in spoil dumps at the surface. While consuming a non renewable energy source, coalfires promote several environmental problems. Among all GHGs that are emitted from coalfires, CO2 is the most significant because of its high quantity. In connection to this environmental problem, the core aim of the present research is to develop a hyperspectral remote sensing and radiative transfer based model that is able to estimate CO2 concentration (ppmv) from coalfires. Since 1960s remote sensing is being used as a tool to detect and monitoring coalfires. With time, remote sensing has proven a reliable tool to identify and monitor coalfires. In the present study multi-temporal, multi-sensor and multi-spectral thermal remote sensing data are being used to detect and monitor coalfires. Unlike the earlier studies, the present study explores the possibilities of satellite derived emissivity to detect and monitor coalfires. Two methods of emissivity extraction from satellite data were tested, namely NDVI (Normalized Difference Vegetation Index) derived and TES (Temperature emissivity separation) in two study areas situated in India and China and it was observed that the satellite derived emissivity offers a better kinetic surface temperature of the surface to understand the spread and extent of the coalfires more effectively. In order to reduce coalfire related GHG emissions and to achieve more effective fire fighting plans it is crucial to understand the dynamics of coalfire. Multitemporal spaceborne remote sensing data can be used to study the migration and expresses the results as vectors, indicating direction and speed of migration. The present study proposes a 2D model that recognizes an initiation point of coalfire from thermal remote sensing data and considers local geological settings to

  9. Coalfires related CO2 emissions and remote sensing

    Energy Technology Data Exchange (ETDEWEB)

    Gangopadhyay, P.K.

    2008-06-11

    Subsurface and surface coalfires are a serious problem in many coal-producing countries. Combustion can occur within the coal seams (underground or surface), in piles of stored coal, or in spoil dumps at the surface. While consuming a non renewable energy source, coalfires promote several environmental problems. Among all GHGs that are emitted from coalfires, CO2 is the most significant because of its high quantity. In connection to this environmental problem, the core aim of the present research is to develop a hyperspectral remote sensing and radiative transfer based model that is able to estimate CO2 concentration (ppmv) from coalfires. Since 1960s remote sensing is being used as a tool to detect and monitoring coalfires. With time, remote sensing has proven a reliable tool to identify and monitor coalfires. In the present study multi-temporal, multi-sensor and multi-spectral thermal remote sensing data are being used to detect and monitor coalfires. Unlike the earlier studies, the present study explores the possibilities of satellite derived emissivity to detect and monitor coalfires. Two methods of emissivity extraction from satellite data were tested, namely NDVI (Normalized Difference Vegetation Index) derived and TES (Temperature emissivity separation) in two study areas situated in India and China and it was observed that the satellite derived emissivity offers a better kinetic surface temperature of the surface to understand the spread and extent of the coalfires more effectively. In order to reduce coalfire related GHG emissions and to achieve more effective fire fighting plans it is crucial to understand the dynamics of coalfire. Multitemporal spaceborne remote sensing data can be used to study the migration and expresses the results as vectors, indicating direction and speed of migration. The present study proposes a 2D model that recognizes an initiation point of coalfire from thermal remote sensing data and considers local geological settings to

  10. Coalfire related CO2 emissions and remote sensing

    International Nuclear Information System (INIS)

    Gangopadhyay, P.K.

    2008-01-01

    Subsurface and surface coalfires are a serious problem in many coal-producing countries. Combustion can occur within the coal seams (underground or surface), in piles of stored coal, or in spoil dumps at the surface. While consuming a non renewable energy source, coalfires promote several environmental problems. Among all GHGs that are emitted from coalfires, CO2 is the most significant because of its high quantity. In connection to this environmental problem, the core aim of the present research is to develop a hyperspectral remote sensing and radiative transfer based model that is able to estimate CO2 concentration (ppmv) from coalfires. Since 1960s remote sensing is being used as a tool to detect and monitoring coalfires. With time, remote sensing has proven a reliable tool to identify and monitor coalfires. In the present study multi-temporal, multi-sensor and multi-spectral thermal remote sensing data are being used to detect and monitor coalfires. Unlike the earlier studies, the present study explores the possibilities of satellite derived emissivity to detect and monitor coalfires. Two methods of emissivity extraction from satellite data were tested, namely NDVI (Normalized Difference Vegetation Index) derived and TES (Temperature emissivity separation) in two study areas situated in India and China and it was observed that the satellite derived emissivity offers a better kinetic surface temperature of the surface to understand the spread and extent of the coalfires more effectively. In order to reduce coalfire related GHG emissions and to achieve more effective fire fighting plans it is crucial to understand the dynamics of coalfire. Multitemporal spaceborne remote sensing data can be used to study the migration and expresses the results as vectors, indicating direction and speed of migration. The present study proposes a 2D model that recognizes an initiation point of coalfire from thermal remote sensing data and considers local geological settings to

  11. Effect of different CO2 concentrations on biomass, pigment content, and lipid production of the marine diatom Thalassiosira pseudonana.

    Science.gov (United States)

    Sabia, Alessandra; Clavero, Esther; Pancaldi, Simonetta; Salvadó Rovira, Joan

    2018-02-01

    The marine diatom Thalassiosira pseudonana grown under air (0.04% CO 2 ) and 1 and 5% CO 2 concentrations was evaluated to determine its potential for CO 2 mitigation coupled with biodiesel production. Results indicated that the diatom cultures grown at 1 and 5% CO 2 showed higher growth rates (1.14 and 1.29 div day -1 , respectively) and biomass productivities (44 and 48 mg AFDW L -1  day -1 ) than air grown cultures (with 1.13 div day -1 and 26 mg AFDW L -1  day -1 ). The increase of CO 2 resulted in higher cell volume and pigment content per cell of T. pseudonana. Interestingly, lipid content doubled when air was enriched with 1-5% CO 2 . Moreover, the analysis of the fatty acid composition of T. pseudonana revealed the predominance of monounsaturated acids (palmitoleic-16:1 and oleic-18:1) and a decrease of the saturated myristic acid-14:0 and polyunsaturated fatty acids under high CO 2 levels. These results suggested that T. pseudonana seems to be an ideal candidate for biodiesel production using flue gases.

  12. The model for solubility of CO2 in saline groundwater with complex ions and the application on Erdos basin

    International Nuclear Information System (INIS)

    Wang Lu; Yu Qingchun

    2014-01-01

    To obtain accurate solubility of CO 2 is one of problems that need solutions urgently in CO 2 sequestration within saline groundwater. However, there are few data published for solubility of CO 2 under geological sequestration conditions. In order to fill the gap of the experimental study, the solubility of CO 2 in five formations of Erdos Basin was explored in this research. Groundwater samples in five reservoirs were carried out through an observation well in the Erdos Basin. The chemical composition was determined and experiments measuring CO 2 solubility were carried out in the synthetic water samples. Krichevsky-Kasarnovsky equation was established to analyze the experimental data. The relationship between concentration of K + , Na + , Ca 2+ , Mg 2+ and the solubility of CO 2 was analyzed and an excellent liner fit was found, which quantifies the impact of ions on the solubility of cO 2 . Solubility data were compared to the model prediction over the temperature and pressure ranges of 318 ∼ 348 K and 8 ∼ 11 MPa. The average absolute deviation is 2.11%. The results can be used as a parameter for the evaluation of the CO 2 storage capacity in deep saline aquifer of Erdos Basin. (authors)

  13. Progress Toward Measuring CO2 Isotopologue Fluxes in situ with the LLNL Miniature, Laser-based CO2 Sensor

    Science.gov (United States)

    Osuna, J. L.; Bora, M.; Bond, T.

    2015-12-01

    One method to constrain photosynthesis and respiration independently at the ecosystem scale is to measure the fluxes of CO2­ isotopologues. Instrumentation is currently available to makes these measurements but they are generally costly, large, bench-top instruments. Here, we present progress toward developing a laser-based sensor that can be deployed directly to a canopy to passively measure CO2 isotopologue fluxes. In this study, we perform initial proof-of-concept and sensor characterization tests in the laboratory and in the field to demonstrate performance of the Lawrence Livermore National Laboratory (LLNL) tunable diode laser flux sensor. The results shown herein demonstrate measurement of bulk CO2 as a first step toward achieving flux measurements of CO2 isotopologues. The sensor uses a Vertical Cavity Surface Emitting Laser (VCSEL) in the 2012 nm range. The laser is mounted in a multi-pass White Cell. In order to amplify the absorption signal of CO2 in this range we employ wave modulation spectroscopy, introducing an alternating current (AC) bias component where f is the frequency of modulation on the laser drive current in addition to the direct current (DC) emission scanning component. We observed a strong linear relationship (r2 = 0.998 and r2 = 0.978 at all and low CO2 concentrations, respectively) between the 2f signal and the CO2 concentration in the cell across the range of CO2 concentrations relevant for flux measurements. We use this calibration to interpret CO2 concentration of a gas flowing through the White cell in the laboratory and deployed over a grassy field. We will discuss sensor performance in the lab and in situ as well as address steps toward achieving canopy-deployed, passive measurements of CO2 isotopologue fluxes. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-ABS-675788

  14. Performance analysis of photocatalytic CO2 reduction in optical fiber monolith reactor with multiple inverse lights

    International Nuclear Information System (INIS)

    Yuan, Kai; Yang, Lijun; Du, Xiaoze; Yang, Yongping

    2014-01-01

    Highlights: • A new optical fiber monolith reactor model for CO 2 reduction was developed. • Methanol concentration versus fiber location and operation parameters was obtained. • Reaction efficiency increases by 31.1% due to the four fibers and inverse layout. • With increasing space of fiber and channel center, methanol concentration increases. • Methanol concentration increases as the vapor ratio and light intensity increase. - Abstract: Photocatalytic CO 2 reduction seems potential to mitigate greenhouse gas emissions and produce renewable energy. A new model of photocatalytic CO 2 reduction in optical fiber monolith reactor with multiple inverse lights was developed in this study to improve the conversion of CO 2 to CH 3 OH. The new light distribution equation was derived, by which the light distribution was modeled and analyzed. The variations of CH 3 OH concentration with the fiber location and operation parameters were obtained by means of numerical simulation. The results show that the outlet CH 3 OH concentration is 31.1% higher than the previous model, which is attributed to the four fibers and inverse layout. With the increase of the distance between the fiber and the monolith center, the average CH 3 OH concentration increases. The average CH 3 OH concentration also rises as the light input and water vapor percentage increase, but declines with increasing the inlet velocity. The maximum conversion rate and quantum efficiency in the model are 0.235 μmol g −1 h −1 and 0.0177% respectively, both higher than previous internally illuminated monolith reactor (0.16 μmol g −1 h −1 and 0.012%). The optical fiber monolith reactor layout with multiple inverse lights is recommended in the design of photocatalytic reactor of CO 2 reduction

  15. Extended probit mortality model for zooplankton against transient change of PCO(2).

    Science.gov (United States)

    Sato, Toru; Watanabe, Yuji; Toyota, Koji; Ishizaka, Joji

    2005-09-01

    The direct injection of CO(2) in the deep ocean is a promising way to mitigate global warming. One of the uncertainties in this method, however, is its impact on marine organisms in the near field. Since the concentration of CO(2), which organisms experience in the ocean, changes with time, it is required to develop a biological impact model for the organisms against the unsteady change of CO(2) concentration. In general, the LC(50) concept is widely applied for testing a toxic agent for the acute mortality. Here, we regard the probit-transformed mortality as a linear function not only of the concentration of CO(2) but also of exposure time. A simple mathematical transform of the function gives a damage-accumulation mortality model for zooplankton. In this article, this model was validated by the mortality test of Metamphiascopsis hirsutus against the transient change of CO(2) concentration.

  16. Modeling and Evaluation of Geophysical Methods for Monitoring and Tracking CO2 Migration

    Energy Technology Data Exchange (ETDEWEB)

    Daniels, Jeff

    2012-11-30

    Geological sequestration has been proposed as a viable option for mitigating the vast amount of CO{sub 2} being released into the atmosphere daily. Test sites for CO{sub 2} injection have been appearing across the world to ascertain the feasibility of capturing and sequestering carbon dioxide. A major concern with full scale implementation is monitoring and verifying the permanence of injected CO{sub 2}. Geophysical methods, an exploration industry standard, are non-invasive imaging techniques that can be implemented to address that concern. Geophysical methods, seismic and electromagnetic, play a crucial role in monitoring the subsurface pre- and post-injection. Seismic techniques have been the most popular but electromagnetic methods are gaining interest. The primary goal of this project was to develop a new geophysical tool, a software program called GphyzCO2, to investigate the implementation of geophysical monitoring for detecting injected CO{sub 2} at test sites. The GphyzCO2 software consists of interconnected programs that encompass well logging, seismic, and electromagnetic methods. The software enables users to design and execute 3D surface-to-surface (conventional surface seismic) and borehole-to-borehole (cross-hole seismic and electromagnetic methods) numerical modeling surveys. The generalized flow of the program begins with building a complex 3D subsurface geological model, assigning properties to the models that mimic a potential CO{sub 2} injection site, numerically forward model a geophysical survey, and analyze the results. A test site located in Warren County, Ohio was selected as the test site for the full implementation of GphyzCO2. Specific interest was placed on a potential reservoir target, the Mount Simon Sandstone, and cap rock, the Eau Claire Formation. Analysis of the test site included well log data, physical property measurements (porosity), core sample resistivity measurements, calculating electrical permittivity values, seismic data

  17. Testing the early Mars H2-CO2 greenhouse hypothesis with a 1-D photochemical model

    Science.gov (United States)

    Batalha, Natasha; Domagal-Goldman, Shawn D.; Ramirez, Ramses; Kasting, James F.

    2015-09-01

    A recent study by Ramirez et al. (Ramirez, R.M. et al. [2014]. Nat. Geosci. 7(1), 59-63. http://www.nature.com/doifinder/10.1038/ngeo2000 (accessed 16.09.14)) demonstrated that an atmosphere with 1.3-4 bar of CO2 and H2O, in addition to 5-20% H2, could have raised the mean annual and global surface temperature of early Mars above the freezing point of water. Such warm temperatures appear necessary to generate the rainfall (or snowfall) amounts required to carve the ancient martian valleys. Here, we use our best estimates for early martian outgassing rates, along with a 1-D photochemical model, to assess the conversion efficiency of CO, CH4, and H2S to CO2, SO2, and H2. Our outgassing estimates assume that Mars was actively recycling volatiles between its crust and interior, as Earth does today. H2 production from serpentinization and deposition of banded iron-formations is also considered. Under these assumptions, maintaining an H2 concentration of ˜1-2% by volume is achievable, but reaching 5% H2 requires additional H2 sources or a slowing of the hydrogen escape rate below the diffusion limit. If the early martian atmosphere was indeed H2-rich, we might be able to see evidence of this in the rock record. The hypothesis proposed here is consistent with new data from the Curiosity Rover, which show evidence for a long-lived lake in Gale Crater near Mt. Sharp. It is also consistent with measured oxygen fugacities of martian meteorites, which show evidence for progressive mantle oxidation over time.

  18. Model analyses for sustainable energy supply under CO2 restrictions

    International Nuclear Information System (INIS)

    Matsuhashi, Ryuji; Ishitani, Hisashi.

    1995-01-01

    This paper aims at clarifying key points for realizing sustainable energy supply under restrictions on CO 2 emissions. For this purpose, possibility of solar breeding system is investigated as a key technology for the sustainable energy supply. The authors describe their mathematical model simulating global energy supply and demand in ultra-long term. Depletion of non-renewable resources and constraints on CO 2 emissions are taken into consideration in the model. Computed results have shown that present energy system based on non-renewable resources shifts to a system based on renewable resources in the ultra-long term with appropriate incentives

  19. Performance assessment of CO2 capture with calcination carbonation reaction process driven by coal and concentrated solar power

    International Nuclear Information System (INIS)

    Zhang, Xuelei; Liu, Yingguang

    2014-01-01

    Calcination carbonation reaction (CCR) process is regarded as a promising option for pulverized coal power plant to mitigate CO 2 emission. In this paper, concentrated solar power (CSP) substitutes for coal to supply part of the calcination energy in order to reduce the fossil fuel consumption associated with the calciner. A CCR process driven by coal and CSP is examined from the perspective of energy efficiency. This paper focuses on the parameters of heat recovery efficiency, CSP capacity, compression energy, air separation energy and recycled energy to determine the contribution of each to the overall energy penalty. In addition, the effects of heat recovery efficiency, CSP capacity, purge percentage and CO 2 capture efficiency on the co-driven case are analyzed through a sensitivity analysis. The results indicate that the thermal efficiency of integrating CCR co-driven process into an ultra-supercritical 1019 MW power plant is 35.37%, which means that the overall efficiency penalty is 9.63 percentage points. Moreover, the co-driven case reduces the fossil fuel consumption and the mass flow rate of fresh sorbent and circulation solids compared with coal-driven case. Increasing heat recovery efficiency and CSP efficiency can improve the co-driven case performance. - Highlights: • We examine a CCR process driven by coal and concentrated solar power simultaneously. • The contributors to the overall energy penalty are quantitatively identified. • Obvious coal-saving effect has been found in the co-driven system. • A sensitivity analysis is conducted to find the impact of key parameters

  20. VUV photoionization cross sections of HO2, H2O2, and H2CO.

    Science.gov (United States)

    Dodson, Leah G; Shen, Linhan; Savee, John D; Eddingsaas, Nathan C; Welz, Oliver; Taatjes, Craig A; Osborn, David L; Sander, Stanley P; Okumura, Mitchio

    2015-02-26

    The absolute vacuum ultraviolet (VUV) photoionization spectra of the hydroperoxyl radical (HO2), hydrogen peroxide (H2O2), and formaldehyde (H2CO) have been measured from their first ionization thresholds to 12.008 eV. HO2, H2O2, and H2CO were generated from the oxidation of methanol initiated by pulsed-laser-photolysis of Cl2 in a low-pressure slow flow reactor. Reactants, intermediates, and products were detected by time-resolved multiplexed synchrotron photoionization mass spectrometry. Absolute concentrations were obtained from the time-dependent photoion signals by modeling the kinetics of the methanol oxidation chemistry. Photoionization cross sections were determined at several photon energies relative to the cross section of methanol, which was in turn determined relative to that of propene. These measurements were used to place relative photoionization spectra of HO2, H2O2, and H2CO on an absolute scale, resulting in absolute photoionization spectra.

  1. Synthesis of zeolites 'type A' for adsorption of CO2

    International Nuclear Information System (INIS)

    Vieira, L.O.; Madeira, A.C.; Merlini, A.; Melo, C.R.; Mendes, E.; Santos, M.G.S.; Angioletto, E.

    2012-01-01

    The separation of gases is a very expensive step in the chemical industry and unquestionable relevance. In this work it was found the effectiveness of using zeolites of type A in the separation of CO 2 in a gas mixture containing 25% CO 2 , 4% O 2 and 71% N 2 concentrations similar to exhaust gases from combustion processes. To this end, was synthesized using zeolites type A commercial kaolin and mounted to an adsorption column to test the efficiency of zeolites in the adsorption of CO 2 . The synthesized zeolites showed surface area of 66.22m 2 /g. The CO 2 concentration was determined by gas chromatography with TCD detector. Adjusting the data to the Langmuir model, there was obtained the kinetics of adsorption. From these, we found the ability of zeolite to adsorb CO 2 used in the column of 0.461285mg/g. The results of adsorption proved promising and showed maximum adsorption of 78.4% at a time of 10 seconds. (author)

  2. Integrated Reflection Seismic Monitoring and Reservoir Modeling for Geologic CO2 Sequestration

    Energy Technology Data Exchange (ETDEWEB)

    John Rogers

    2011-12-31

    The US DOE/NETL CCS MVA program funded a project with Fusion Petroleum Technologies Inc. (now SIGMA) to model the proof of concept of using sparse seismic data in the monitoring of CO{sub 2} injected into saline aquifers. The goal of the project was to develop and demonstrate an active source reflection seismic imaging strategy based on deployment of spatially sparse surface seismic arrays. The primary objective was to test the feasibility of sparse seismic array systems to monitor the CO{sub 2} plume migration injected into deep saline aquifers. The USDOE/RMOTC Teapot Dome (Wyoming) 3D seismic and reservoir data targeting the Crow Mountain formation was used as a realistic proxy to evaluate the feasibility of the proposed methodology. Though the RMOTC field has been well studied, the Crow Mountain as a saline aquifer has not been studied previously as a CO{sub 2} sequestration (storage) candidate reservoir. A full reprocessing of the seismic data from field tapes that included prestack time migration (PSTM) followed by prestack depth migration (PSDM) was performed. A baseline reservoir model was generated from the new imaging results that characterized the faults and horizon surfaces of the Crow Mountain reservoir. The 3D interpretation was integrated with the petrophysical data from available wells and incorporated into a geocellular model. The reservoir structure used in the geocellular model was developed using advanced inversion technologies including Fusion's ThinMAN{trademark} broadband spectral inversion. Seal failure risk was assessed using Fusion's proprietary GEOPRESS{trademark} pore pressure and fracture pressure prediction technology. CO{sub 2} injection was simulated into the Crow Mountain with a commercial reservoir simulator. Approximately 1.2MM tons of CO{sub 2} was simulated to be injected into the Crow Mountain reservoir over 30 years and subsequently let 'soak' in the reservoir for 970 years. The relatively small plume

  3. Species-Specific Morphological and Physiological Responses of Four Korean Native Trees Species under Elevated CO2 Concentration using Open Top Chamber

    Science.gov (United States)

    Song, W.; Byeon, S.; Lee, H.; Lee, M.; Lim, H.; Kim, H. S.

    2017-12-01

    For the last three years, studies on the morphological and physiological characteristics were carried out for four tree species (Pinus densiflora, Quercus acutissima, Sorbus alnifolia and Fraxinus rhynchophylla) which are representative native species of Korea. We used a control site and three open top chambers (con, chamber 1, 2, and 3) which were exposed to ambient and two elevated CO2 concentration ([CO2]); the concentration were the ambient (400ppm) for control and chamber 1 and 1.4 times (560ppm) and 1.8 times (720 ppm) of the atmosphere for chamber 2 and 3, respectively. Leaf mass per area (LMA), stomatal size, density and area were examined to investigate the morphological changes of the trees. Among four species, F. rhynchophylla increased their LMA with increase of CO2 concentration. In addition, F. rhynchophylla showed the decrease of stomatal density significantly (p-value=0.02), while there was no difference in stoma size. These findings resulted in 25.5% and 38.7% decrease of stomata area per unit leaf area calculated by multiplying the size and density of the stomata. On the other hand, all 4 tree species were significantly increased in height and diameter growth with the elevated CO2. However, in the case of Q. acutissima, the increase in height growth was prominent. For physiological characteristics, the maximum photosynthetic rate was faster in the chambers exposed to high [CO2] than that in the control. However the rate of carboxylation and the electron transfer rate showed no particular tendency. The measurement of hydraulic conductivity (Ks, kg/m/s/Mpa) for Crataegus pinnatifida, increased as the [CO2] in the atmosphere increased, and the 50% Loss Conductance (Mpa) tended to increase slightly with the [CO2]. The correlation analysis between hydraulic conductivity and vulnerability to cavitation showed a strong negative correlation (P <0.05), which was unlike the general tendency.

  4. Carbon isotope exchange between gaseous CO2 and thin solution films: Artificial cave experiments and a complete diffusion-reaction model

    Science.gov (United States)

    Hansen, Maximilian; Scholz, Denis; Froeschmann, Marie-Louise; Schöne, Bernd R.; Spötl, Christoph

    2017-08-01

    Speleothem stable carbon isotope (δ13C) records provide important paleoclimate and paleo-environmental information. However, the interpretation of these records in terms of past climate or environmental change remains challenging because of various processes affecting the δ13C signals. A process that has only been sparsely discussed so far is carbon isotope exchange between the gaseous CO2 of the cave atmosphere and the dissolved inorganic carbon (DIC) contained in the thin solution film on the speleothem, which may be particularly important for strongly ventilated caves. Here we present a novel, complete reaction diffusion model describing carbon isotope exchange between gaseous CO2 and the DIC in thin solution films. The model considers all parameters affecting carbon isotope exchange, such as diffusion into, out of and within the film, the chemical reactions occurring within the film as well as the dependence of diffusion and the reaction rates on isotopic mass and temperature. To verify the model, we conducted laboratory experiments under completely controlled, cave-analogue conditions at three different temperatures (10, 20, 30 °C). We exposed thin (≈0.1 mm) films of a NaHCO3 solution with four different concentrations (1, 2, 5 and 10 mmol/l, respectively) to a nitrogen atmosphere containing a specific amount of CO2 (1000 and 3000 ppmV). The experimentally observed temporal evolution of the pH and δ13C values of the DIC is in good agreement with the model predictions. The carbon isotope exchange times in our experiments range from ca. 200 to ca. 16,000 s and strongly depend on temperature, film thickness, atmospheric pCO2 and the concentration of DIC. For low pCO2 (between 500 and 1000 ppmV, as for strongly ventilated caves), our time constants are substantially lower than those derived in a previous study, suggesting a potentially stronger influence of carbon isotope exchange on speleothem δ13C values. However, this process should only have an

  5. Thermodynamic and Kinetic Response of Microbial Reactions to High CO2.

    Science.gov (United States)

    Jin, Qusheng; Kirk, Matthew F

    2016-01-01

    Geological carbon sequestration captures CO 2 from industrial sources and stores the CO 2 in subsurface reservoirs, a viable strategy for mitigating global climate change. In assessing the environmental impact of the strategy, a key question is how microbial reactions respond to the elevated CO 2 concentration. This study uses biogeochemical modeling to explore the influence of CO 2 on the thermodynamics and kinetics of common microbial reactions in subsurface environments, including syntrophic oxidation, iron reduction, sulfate reduction, and methanogenesis. The results show that increasing CO 2 levels decreases groundwater pH and modulates chemical speciation of weak acids in groundwater, which in turn affect microbial reactions in different ways and to different extents. Specifically, a thermodynamic analysis shows that increasing CO 2 partial pressure lowers the energy available from syntrophic oxidation and acetoclastic methanogenesis, but raises the available energy of microbial iron reduction, hydrogenotrophic sulfate reduction and methanogenesis. Kinetic modeling suggests that high CO 2 has the potential of inhibiting microbial sulfate reduction while promoting iron reduction. These results are consistent with the observations of previous laboratory and field studies, and highlight the complexity in microbiological responses to elevated CO 2 abundance, and the potential power of biogeochemical modeling in evaluating and quantifying these responses.

  6. Thermodynamic and kinetic response of microbial reactions to high CO2

    Directory of Open Access Journals (Sweden)

    Qusheng Jin

    2016-11-01

    Full Text Available Geological carbon sequestration captures CO2 from industrial sources and stores the CO2 in subsurface reservoirs, a viable strategy for mitigating global climate change. In assessing the environmental impact of the strategy, a key question is how microbial reactions respond to the elevated CO2 concentration. This study uses biogeochemical modeling to explore the influence of CO2 on the thermodynamics and kinetics of common microbial reactions in subsurface environments, including syntrophic oxidation, iron reduction, sulfate reduction, and methanogenesis. The results show that increasing CO2 levels decreases groundwater pH and modulates chemical speciation of weak acids in groundwater, which in turn affect microbial reactions in different ways and to different extents. Specifically, a thermodynamic analysis shows that increasing CO2 partial pressure lowers the energy available from syntrophic oxidation and acetoclastic methanogenesis, but raises the available energy of microbial iron reduction, hydrogenotrophic sulfate reduction and methanogenesis. Kinetic modeling suggests that high CO2 has the potential of inhibiting microbial sulfate reduction while promoting iron reduction. These results are consistent with the observations of previous laboratory and field studies, and highlight the complexity in microbiological responses to elevated CO2 abundance, and the potential power of biogeochemical modeling in evaluating and quantifying these responses.

  7. Solubility of grape seed oil in supercritical CO2: Experiments and modeling

    International Nuclear Information System (INIS)

    Duba, Kurabachew Simon; Fiori, Luca

    2016-01-01

    Highlights: • Solubility of grape seed oil in SC-CO 2 for P: 20–50 MPa and T: 313–343 K. • Experimental procedure: dynamic method and oil dispersed on the surface of glass beads. • Eight density-based models and a thermodynamic model to fit the experimental data. • All the models predict the solubility of grape seed oil in SC-CO 2 to a reasonable degree. • Models by Chrastil, del Valle and Aguilera, Kumar and Johnston, and the thermodynamic model are preferable. - Abstract: The solubility of grape (Vitis vinifera L.) seed oil in supercritical CO 2 was measured in the temperature range 313–343 K and pressure range 20–50 MPa using the dynamic technique. Several data and global trends were reported. The results show that, at constant temperature, the solubility increases with the increase in pressure, while the effect of the temperature is different for low and high pressure. The experimental data were modeled by eight density-based models and a thermodynamic model based on the Peng-Robinson equation of state. By best fitting procedures, the “free parameters” of the various models were calculated: in general, all the tested models have proved to be able to predict the solubility of grape seed oil in supercritical CO 2 . Differences in model capabilities have been discussed based on the main characteristics of the various models, evidencing their distinct and common features. The predictive capability of the thermodynamic model was comparable to that of the density-based models.

  8. Grey forecasting model for CO2 emissions: A Taiwan study

    International Nuclear Information System (INIS)

    Lin, Chiun-Sin; Liou, Fen-May; Huang, Chih-Pin

    2011-01-01

    Highlights: → CO 2 is the most frequently implicated in global warming. → The CARMA indicates that the Taichung coal-fired power plants had the highest CO 2 emissions in the world. → GM(1,1) prediction accuracy is fairly high. → The results show that the average residual error of the GM(1,1) was below 10%. -- Abstract: Among the various greenhouse gases associated with climate change, CO 2 is the most frequently implicated in global warming. The latest data from Carbon Monitoring for Action (CARMA) shows that the coal-fired power plant in Taichung, Taiwan emitted 39.7 million tons of CO 2 in 2007 - the highest of any power plant in the world. Based on statistics from Energy International Administration, the annual CO 2 emissions in Taiwan have increased 42% from 1997 until 2006. Taiwan has limited natural resources and relies heavily on imports to meet its energy needs, and the government must take serious measures control energy consumption to reduce CO 2 emissions. Because the latest data was from 2009, this study applied the grey forecasting model to estimate future CO 2 emissions in Taiwan from 2010 until 2012. Forecasts of CO 2 emissions in this study show that the average residual error of the GM(1,1) was below 10%. Overall, the GM(1,1) predicted further increases in CO 2 emissions over the next 3 years. Although Taiwan is not a member of the United Nations and is not bound by the Kyoto Protocol, the findings of this study provide a valuable reference with which the Taiwanese government could formulate measures to reduce CO 2 emissions by curbing the unnecessary the consumption of energy.

  9. Reactivity of micas and cap-rock in wet supercritical CO_2 with SO_2 and O_2 at CO_2 storage conditions

    International Nuclear Information System (INIS)

    Pearce, Julie K.; Dawson, Grant K.W.; Law, Alison C.K.; Biddle, Dean; Golding, Suzanne D.

    2016-01-01

    Seal or cap-rock integrity is a safety issue during geological carbon dioxide capture and storage (CCS). Industrial impurities such as SO_2, O_2, and NOx, may be present in CO_2 streams from coal combustion sources. SO_2 and O_2 have been shown recently to influence rock reactivity when dissolved in formation water. Buoyant water-saturated supercritical CO_2 fluid may also come into contact with the base of cap-rock after CO_2 injection. Supercritical fluid-rock reactions have the potential to result in corrosion of reactive minerals in rock, with impurity gases additionally present there is the potential for enhanced reactivity but also favourable mineral precipitation. The first observation of mineral dissolution and precipitation on phyllosilicates and CO_2 storage cap-rock (siliciclastic reservoir) core during water-saturated supercritical CO_2 reactions with industrial impurities SO_2 and O_2 at simulated reservoir conditions is presented. Phyllosilicates (biotite, phlogopite and muscovite) were reacted in contact with a water-saturated supercritical CO_2 containing SO_2, or SO_2 and O_2, and were also immersed in the gas-saturated bulk water. Secondary precipitated sulfate minerals were formed on mineral surfaces concentrated at sheet edges. SO_2 dissolution and oxidation resulted in solution pH decreasing to 0.74 through sulfuric acid formation. Phyllosilicate dissolution released elements to solution with ∼50% Fe mobilized. Geochemical modelling was in good agreement with experimental water chemistry. New minerals nontronite (smectite), hematite, jarosite and goethite were saturated in models. A cap-rock core siltstone sample from the Surat Basin, Australia, was also reacted in water-saturated supercritical CO_2 containing SO_2 or in pure supercritical CO_2. In the presence of SO_2, siderite and ankerite were corroded, and Fe-chlorite altered by the leaching of mainly Fe and Al. Corrosion of micas in the cap-rock was however not observed as the pH was

  10. Doubling the CO{sub 2} concentration enhanced the activity of carbohydrate-metabolism enzymes, source carbohydrate production, photoassimilate transport, and sink strength for Opuntia ficus-indica

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ning; Nobel, P.S. [Univ. of California, Los Angeles, CA (United States)

    1996-03-01

    After exposure to a doubled CO{sub 2} concentration of 750 {mu}mol mol{sup -1} air for about 3 months, glucose and starch in the chlorenchyma of basal cladodes of Opuntia ficus-indica increased 175 and 57%, respectively, compared with the current CO{sub 2} concentration of 370 {mu}mol mol{sup -1}, but sucrose content was virtually unaffected. Doubling the CO{sub 2} concentration increased the noncturnal malate production in basal cladodes by 75%, inorganic phosphate (Pi) by 32% soluble starch synthase activity by 30%, and sucrose-Pi synthase activity by 146%, but did not affect the activity of hexokinase. Doubling CO{sub 2} accelerated phloem transport of sucrose out of the basal cladodes, resulting in a 73% higher dry weight for the daughter cladodes. Doubling CO{sub 2} increased the glucose content in 14-d-old daughter cladodes by 167%, increased nocturnal malate production by 22%, decreased total amino acid content by 61%, and increased soluble starch synthase activity by 30% and sucrose synthase activity by 62%. No downward acclimation of photosynthesis during long-term exposure to elevated CO{sub 2} concentrations occurs for O. ficus-indica, consistent with its higher source capacity and sink strength than under current CO{sub 2}. These changes apparently do not result in Pi limitation of photosynthesis or suppression of genes governing photosynthesis for this perennial Crassulacean acid metabolism species, as occur for some annual crops.

  11. Development of an Advanced Simulator to Model Mobility Control and Geomechanics during CO{sub 2} Floods

    Energy Technology Data Exchange (ETDEWEB)

    Delshad, Mojdeh; Wheeler, Mary; Sepehrnoori, Kamy; Pope, Gary

    2013-12-31

    The simulator is an isothermal, three-dimensional, four-phase, compositional, equation-of– state (EOS) simulator. We have named the simulator UTDOE-CO2 capable of simulating various recovery processes (i.e., primary, secondary waterflooding, and miscible and immiscible gas flooding). We include both the Peng-Robinson EOS and the Redlich-Kwong EOS models. A Gibbs stability test is also included in the model to perform a phase identification test to consistently label each phase for subsequent property calculations such as relative permeability, viscosity, density, interfacial tension, and capillary pressure. Our time step strategy is based on an IMPEC-type method (implicit pressure and explicit concentration). The gridblock pressure is solved first using the explicit dating of saturation-dependent terms. Subsequently, the material balance equations are solved explicitly for the total concentration of each component. The physical dispersion term is also included in the governing equations. The simulator includes (1) several foam model(s) for gas mobility control, (2) compositional relative permeability models with the hysteresis option, (3) corner point grid and several efficient solvers, (4) geomechanics module to compute stress field as the result of CO{sub 2} injection/production, (5) the format of commercial visualization software, S3graf from Science-soft Ltd., was implemented for user friendly visualization of the simulation results. All tasks are completed and the simulator was fully tested and delivered to the DOE office including a user’s guide and several input files and the executable for Windows Pcs. We have published several SPE papers, presented several posters, and one MS thesis is completed (V. Pudugramam, 2013) resulting from this DOE funded project.

  12. An inverse radiation model for optical determination of temperature and species concentration: Development and validation

    DEFF Research Database (Denmark)

    Ren, Tao; Modest, Michael F.; Fateev, Alexander

    2015-01-01

    2010 (Rothman et al. (2010) [1]), which contains line-by-line (LBL) information for several combustion gas species, such as CO2 and H2O, was used to predict gas spectral transmissivities. The model was validated by retrieving temperatures and species concentrations from experimental CO2 and H2O...

  13. Prediction and analysis of near-road concentrations using a reduced-form emission/dispersion model

    Directory of Open Access Journals (Sweden)

    Kononowech Robert

    2010-06-01

    Full Text Available Abstract Background Near-road exposures of traffic-related air pollutants have been receiving increased attention due to evidence linking emissions from high-traffic roadways to adverse health outcomes. To date, most epidemiological and risk analyses have utilized simple but crude exposure indicators, most typically proximity measures, such as the distance between freeways and residences, to represent air quality impacts from traffic. This paper derives and analyzes a simplified microscale simulation model designed to predict short- (hourly to long-term (annual average pollutant concentrations near roads. Sensitivity analyses and case studies are used to highlight issues in predicting near-road exposures. Methods Process-based simulation models using a computationally efficient reduced-form response surface structure and a minimum number of inputs integrate the major determinants of air pollution exposures: traffic volume and vehicle emissions, meteorology, and receptor location. We identify the most influential variables and then derive a set of multiplicative submodels that match predictions from "parent" models MOBILE6.2 and CALINE4. The assembled model is applied to two case studies in the Detroit, Michigan area. The first predicts carbon monoxide (CO concentrations at a monitoring site near a freeway. The second predicts CO and PM2.5 concentrations in a dense receptor grid over a 1 km2 area around the intersection of two major roads. We analyze the spatial and temporal patterns of pollutant concentration predictions. Results Predicted CO concentrations showed reasonable agreement with annual average and 24-hour measurements, e.g., 59% of the 24-hr predictions were within a factor of two of observations in the warmer months when CO emissions are more consistent. The highest concentrations of both CO and PM2.5 were predicted to occur near intersections and downwind of major roads during periods of unfavorable meteorology (e.g., low wind

  14. Enclathration of CO2 as a co-guest of structure H hydrates and its implications for CO2 capture and sequestration

    International Nuclear Information System (INIS)

    Lee, Yohan; Lee, Dongyoung; Lee, Jong-Won; Seo, Yongwon

    2016-01-01

    Highlights: • We examine sH hydrates with CO 2 + N 2 + neohexane for CO 2 capture and sequestration. • The structural transition occurs in the CO 2 (40%) + N 2 (60%) + neohexane system. • CO 2 molecules are enclathrated into sH hydrates in the N 2 -rich systems. • CO 2 selectivity in sH hydrates is slightly lower than that in sI hydrates. • ΔH d values provide information on the structural transition of sH to sI hydrates. - Abstract: In this study, the thermodynamic behaviors, cage-specific guest distributions, structural transition, and dissociation enthalpies of sH hydrates with CO 2 + N 2 gas mixtures were investigated for their potential applications to hydrate-based CO 2 capture and sequestration. The stability conditions of the CO 2 + N 2 + water systems and the CO 2 + N 2 + neohexane (2,2-dimethylbutane, NH) + water systems indicated that the gas mixtures in the range of flue gas compositions could form sH hydrates, thereby mitigating the pressure and temperature required for gas hydrate formation. Structure identification using powder X-ray diffraction (PXRD) revealed the coexistence of sI and sH hydrates in the CO 2 (40%) + N 2 (60%) + NH system and the hydrate structure transformed from sH into sI as the CO 2 concentration increased. In addition, the Raman analysis clearly demonstrated that CO 2 molecules were enclathrated into the cages of sH hydrates in the N 2 -rich systems. It was found from direct CO 2 composition measurements that CO 2 selectivity in the sH hydrate phase was slightly lower than that in the corresponding sI hydrate phase. Dissociation enthalpy (ΔH d ) measurements using a high-pressure micro-differential scanning calorimeter (HP μ-DSC) indicated that the ΔH d values could also provide valuable information on the structural transition of sH to sI hydrates with respect to the CO 2 concentration in the feed gas. This study provides a better understanding of the thermodynamic and physicochemical background for CO 2

  15. Modelling CO2-Brine Interfacial Tension using Density Gradient Theory

    KAUST Repository

    Ruslan, Mohd Fuad Anwari Che

    2018-01-01

    In this study, a new modelling strategy to compute CO2-brine IFT based on DGT was proposed. In the proposed model, ion distribution across interface was accounted for by separating the interface to two sections

  16. A multinational model for CO2 reduction: defining boundaries of future CO2 emissions in nine countries

    International Nuclear Information System (INIS)

    Kram, Tom; Hill, Douglas.

    1996-01-01

    A need to make substantial future reductions in greenhouse gas emissions would require major changes in national energy systems. Nine industrialized countries have explored the technical boundaries of CO 2 emission restrictions during the next 40 to 50 years using comparable scenario assumptions and a standard model, MARKAL. Quantitative results for the countries are shown side by side in a set of energy maps that compare the least-cost evolution of the national energy systems by the main factors that contribute to CO 2 emissions. The ability to restrict future CO 2 emissions and the most cost-effective measures for doing so differ among the countries; an international agreement that would mandate substantial emission restrictions among countries by an equal percentage reduction is clearly impossible. The results are a first step toward a basis for allocating such international reductions, and the multinational process by which they were produced provides an example for further international greenhouse gas abatement costing studies. (Author)

  17. Inter-annual variability of the atmospheric carbon dioxide concentrations as simulated with global terrestrial biosphere models and an atmospheric transport model

    Energy Technology Data Exchange (ETDEWEB)

    Fujita, Daisuke; Saeki, Tazu; Nakazawa, Takakiyo [Tohoku Univ., Sendai (Japan). Center for Atmospheric and Oceanic Studies; Ishizawa, Misa; Maksyutov, Shamil [Inst. for Global Change Research, Yokohama (Japan). Frontier Research System for Global Change; Thornton, Peter E. [National Center for Atmospheric Research, Boulder, CO (United States). Climate and Global Dynamics Div.

    2003-04-01

    Seasonal and inter-annual variations of atmospheric CO{sub 2} for the period from 1961 to 1997 have been simulated using a global tracer transport model driven by a new version of the Biome BioGeochemical Cycle model (Biome-BGC). Biome-BGC was forced by daily temperature and precipitation from the NCEP reanalysis dataset, and the calculated monthly-averaged CO{sub 2} fluxes were used as input to the global transport model. Results from an inter-comparison with the Carnegie-Ames-Stanford Approach model (CASA) and the Simulation model of Carbon CYCLE in Land Ecosystems (Sim-CYCLE) model are also reported. The phase of the seasonal cycle in the Northern Hemisphere was reproduced generally well by Biome-BGC, although the amplitude was smaller compared to the observations and to the other biosphere models. The CO{sub 2} time series simulated by Biome-BGC were compared to the global CO{sub 2} concentration anomalies from the observations at Mauna Loa and the South Pole. The modeled concentration anomalies matched the phase of the inter-annual variations in the atmospheric CO{sub 2} observations; however, the modeled amplitude was lower than the observed value in several cases. The result suggests that a significant part of the inter-annual variability in the global carbon cycle can be accounted for by the terrestrial biosphere models. Simulations performed with another climate-based model, Sim-CYCLE, produced a larger amplitude of inter-annual variability in atmospheric CO{sub 2}, making the amplitude closer to the observed range, but with a more visible phase mismatch in a number of time periods. This may indicate the need to increase the Biome-BGC model sensitivity to seasonal and inter-annual changes in temperature and precipitation.

  18. Inter-annual variability of the atmospheric carbon dioxide concentrations as simulated with global terrestrial biosphere models and an atmospheric transport model

    International Nuclear Information System (INIS)

    Fujita, Daisuke; Saeki, Tazu; Nakazawa, Takakiyo; Ishizawa, Misa; Maksyutov, Shamil; Thornton, Peter E.

    2003-01-01

    Seasonal and inter-annual variations of atmospheric CO 2 for the period from 1961 to 1997 have been simulated using a global tracer transport model driven by a new version of the Biome BioGeochemical Cycle model (Biome-BGC). Biome-BGC was forced by daily temperature and precipitation from the NCEP reanalysis dataset, and the calculated monthly-averaged CO 2 fluxes were used as input to the global transport model. Results from an inter-comparison with the Carnegie-Ames-Stanford Approach model (CASA) and the Simulation model of Carbon CYCLE in Land Ecosystems (Sim-CYCLE) model are also reported. The phase of the seasonal cycle in the Northern Hemisphere was reproduced generally well by Biome-BGC, although the amplitude was smaller compared to the observations and to the other biosphere models. The CO 2 time series simulated by Biome-BGC were compared to the global CO 2 concentration anomalies from the observations at Mauna Loa and the South Pole. The modeled concentration anomalies matched the phase of the inter-annual variations in the atmospheric CO 2 observations; however, the modeled amplitude was lower than the observed value in several cases. The result suggests that a significant part of the inter-annual variability in the global carbon cycle can be accounted for by the terrestrial biosphere models. Simulations performed with another climate-based model, Sim-CYCLE, produced a larger amplitude of inter-annual variability in atmospheric CO 2 , making the amplitude closer to the observed range, but with a more visible phase mismatch in a number of time periods. This may indicate the need to increase the Biome-BGC model sensitivity to seasonal and inter-annual changes in temperature and precipitation

  19. Mesospheric H2O Concentrations Retrieved from SABER/TIMED Measurements

    Science.gov (United States)

    Feofilov, A. G.; Marshall, B. T.; Garcia-Comas, M.; Kutepov, A. A.; Lopez-Puertas, M.; Manuilova, R. O.; Yankovsky, V.A.; Goldberg, R. A.; Gordley, L. L.; Petelin, S.; hide

    2008-01-01

    The SABER instrument on board the TIMED Satellite is a limb scanning infrared radiometer designed to measure temperature and minor constituent vertical profiles and energetics parameters in the mesosphere and lower thermosphere (MLT). The H2O concentrations are retrieved from 6.3 micron band radiances. The populations of H2O(v2) vibrational levels are in non-Local Thermodynamic Equilibrium (non-LTE) above approximately 55 km altitude and the interpretation of 6.3 micron radiance requires utilizing non-LTE H2O model that includes various energy exchange processes in the system of H2O vibrational levels coupled with O2, N2, and CO2 vibrational levels. We incorporated these processes including kinetics of O2/O3 photolysis products to our research non-LTE H2O model and applied it for the development and optimization of SABER operational model. The latter has been validated using simultaneous SCISAT1/ACE occultation measurements. This helped us to estimate CO2(020)-O2(X,v=I), O2(X,v=I)- H2O(010), and O2(X,v=1) O rates at mesopause temperatures that is critical for an adequate interpretation of non-LTE H2O radiances in the MLT. The first distributions of seasonal and meridional H2O concentrations retrieved from SABER 6.3 micron radiances applying an updated non-LTE H2O model are demonstrated and discussed.

  20. Using HABIT to Estimate the Concentration of CO2 and H2SO4 for Kuosheng Nuclear Power Plant

    OpenAIRE

    Y. Chiang; W. Y. Li; J. R. Wang; S. W. Chen; W. S. Hsu; J. H. Yang; Y. S. Tseng; C. Shih

    2017-01-01

    In this research, the HABIT code was used to estimate the concentration under the CO2 and H2SO4 storage burst conditions for Kuosheng nuclear power plant (NPP). The Final Safety Analysis Report (FSAR) and reports were used in this research. In addition, to evaluate the control room habitability for these cases, the HABIT analysis results were compared with the R.G. 1.78 failure criteria. The comparison results show that the HABIT results are below the criteria. Additionally, some sensitivity ...

  1. Transient changes in shallow groundwater chemistry during the MSU ZERT CO2 injection experiment

    Science.gov (United States)

    Apps, J.A.; Zheng, Lingyun; Spycher, N.; Birkholzer, J.T.; Kharaka, Y.; Thordsen, J.; Kakouros, E.; Trautz, R.

    2011-01-01

    Food-grade CO2 was injected into a shallow aquifer through a perforated pipe placed horizontally 1-2 m below the water table at the Montana State University Zero Emission Research and Technology (MSU-ZERT) field site at Bozeman, Montana. The possible impact of elevated CO2 levels on groundwater quality was investigated by analyzing 80 water samples taken before, during, and following CO2 injection. Field determinations and laboratory analyses showed rapid and systematic changes in pH, alkalinity, and conductance, as well as increases in the aqueous concentrations of trace element species. The geochemical data were first evaluated using principal component analysis (PCA) in order to identify correlations between aqueous species. The PCA findings were then used in formulating a geochemical model to simulate the processes likely to be responsible for the observed increases in the concentrations of dissolved constituents. Modeling was conducted taking into account aqueous and surface complexation, cation exchange, and mineral precipitation and dissolution. Reasonable matches between measured data and model results suggest that: (1) CO2 dissolution in the groundwater causes calcite to dissolve. (2) Observed increases in the concentration of dissolved trace metals result likely from Ca+2-driven ion exchange with clays (smectites) and sorption/desorption reactions likely involving Fe (hydr)oxides. (3) Bicarbonate from CO2 dissolution appears to compete for sorption with anionic species such as HAsO4-2, potentially increasing dissolved As levels in groundwater. ?? 2011 Published by Elsevier Ltd.

  2. CO{sub 2}MPARE. CO2 Model for Operational Programme Assessment in EU Regions. Technical background and guidance for deployment in EU regions

    Energy Technology Data Exchange (ETDEWEB)

    Hekkenberg, M. [ECN Policy Studies, Amsterdam (Netherlands); Le Pierres, S. [Energies Demain, Montreuil Sous Bois (France); Del Ciello, R. [Italian National Agency for New Technologies, Energy and Sustainable Economic Development ENEA, Rome (Italy); Keppo, I. [University College London UCL, London (United Kingdom); Papagianni, S. [Centre for Renewable Energy Sources and Saving CRES, Pikermi Attiki (Greece); Harnych, J. [ENVIROS, Prague (Czech Republic)

    2013-03-15

    The CO2MPARE model enables national and regional authorities to assess the carbon impacts of Operational Programmes co-financed through the European Regional Development Fund (ERDF). This document provides technical background information and guidance for deploying the model in additional EU regions.

  3. Mathematical Modelling of Arctic Polygonal Tundra with Ecosys: 2. Microtopography Determines How CO2 and CH4 Exchange Responds to Changes in Temperature and Precipitation

    Science.gov (United States)

    Grant, R. F.; Mekonnen, Z. A.; Riley, W. J.; Arora, B.; Torn, M. S.

    2017-12-01

    Differences of surface elevation in arctic polygonal landforms cause spatial variation in soil water contents (θ), active layer depths (ALD), and thereby in CO2 and CH4 exchange. Here we test hypotheses in ecosys for topographic controls on CO2 and CH4 exchange in trough, rim, and center features of low- and flat-centered polygons (LCP and FCP) against chamber and eddy covariance (EC) measurements during 2013 at Barrow, Alaska. Larger CO2 influxes and CH4 effluxes were measured with chambers and modeled with ecosys in LCPs than in FCPs and in lower features (troughs) than in higher (rims) within LCPs and FCPs. Spatially aggregated CO2 and CH4 fluxes from ecosys were significantly correlated with EC flux measurements. Lower features were modeled as C sinks (52-56 g C m-2 yr-1) and CH4 sources (4-6 g C m-2 yr-1), and higher features as near C neutral (-2-15 g C m-2 yr-1) and CH4 neutral (0.0-0.1 g C m-2 yr-1). Much of the spatial and temporal variations in CO2 and CH4 fluxes were modeled from topographic effects on water and snow movement and thereby on θ, ALD, and soil O2 concentrations. Model results forced with meteorological data from 1981 to 2015 indicated increasing net primary productivity in higher features and CH4 emissions in some lower and higher features since 2008, attributed mostly to recent rises in precipitation. Small-scale variation in surface elevation causes large spatial variation of greenhouse gas (GHG) exchanges and therefore should be considered in estimates of GHG exchange in polygonal landscapes.

  4. Effects of elevated atmospheric CO2 concentration on leaf dark respiration of Xanthium strumarium in light and in darkness.

    Science.gov (United States)

    Wang, X; Lewis, J D; Tissue, D T; Seemann, J R; Griffin, K L

    2001-02-27

    Leaf dark respiration (R) is an important component of plant carbon balance, but the effects of rising atmospheric CO(2) on leaf R during illumination are largely unknown. We studied the effects of elevated CO(2) on leaf R in light (R(L)) and in darkness (R(D)) in Xanthium strumarium at different developmental stages. Leaf R(L) was estimated by using the Kok method, whereas leaf R(D) was measured as the rate of CO(2) efflux at zero light. Leaf R(L) and R(D) were significantly higher at elevated than at ambient CO(2) throughout the growing period. Elevated CO(2) increased the ratio of leaf R(L) to net photosynthesis at saturated light (A(max)) when plants were young and also after flowering, but the ratio of leaf R(D) to A(max) was unaffected by CO(2) levels. Leaf R(N) was significantly higher at the beginning but significantly lower at the end of the growing period in elevated CO(2)-grown plants. The ratio of leaf R(L) to R(D) was used to estimate the effect of light on leaf R during the day. We found that light inhibited leaf R at both CO(2) concentrations but to a lesser degree for elevated (17-24%) than for ambient (29-35%) CO(2)-grown plants, presumably because elevated CO(2)-grown plants had a higher demand for energy and carbon skeletons than ambient CO(2)-grown plants in light. Our results suggest that using the CO(2) efflux rate, determined by shading leaves during the day, as a measure for leaf R is likely to underestimate carbon loss from elevated CO(2)-grown plants.

  5. Pollutants transport and atmospheric variability of CO2 over Siberia: contribution of airborne measurements

    International Nuclear Information System (INIS)

    Paris, J.D.

    2008-12-01

    The work presented here intends to characterize the variations of atmospheric concentrations of CO 2 , CO, O 3 and ultrafine particles, over a large scale aircraft transect above Siberia, during three intensive YAK-AEROSIB campaigns in April 2006, September 2006 and August 2007, respectively. Pollutant and greenhouse gases distribution in this poorly studied region is needed to model atmospheric long range transport. I show here that CO concentrations at the time of the campaigns is broadly affected by (1) advection of Chinese pollutants through baro-clinic perturbations, (2) advection (diffuse or not) of European pollutants at various altitudes, (3) and of biomass burning from Central Asia. This set of factors is analyzed through a novel statistical technique based on clustering of backward transport simulated by the FLEXPART Lagrangian model. Large observed CO 2 gradients in summer are matched against vertical mixing in GCM simulated CO 2 . At last I present ultrafine particle measurements, and a possible nucleation summer maximum in the clean, continental mid-troposphere. (author)

  6. Effect of Co doping concentration on structural properties and optical parameters of Co-doped ZnO thin films by sol-gel dip-coating method.

    Science.gov (United States)

    Nam, Giwoong; Yoon, Hyunsik; Kim, Byunggu; Lee, Dong-Yul; Kim, Jong Su; Leem, Jae-Young

    2014-11-01

    The structural and optical properties of Co-doped ZnO thin films prepared by a sol-gel dip-coating method were investigated. X-ray diffraction analysis showed that the thin films were grown with a c-axis preferred orientation. The position of the (002) peak was almost the same in all samples, irrespective of the Co concentration. It is thus clear that Co doping had little effect on the position of the (002) peak. To confirm that Co2+ was substituted for Zn2+ in the wurtzite structure, optical measurements were conducted at room temperature by a UV-visible spectrometer. Three absorption peaks are apparent in the Co-doped ZnO thin films that do not appear for the undoped ZnO thin film. As the Co concentration was increased, absorption related to characteristic Co2+ transitions increased because three absorption band intensities and the area underneath the absorption wells between 500 and 700 nm increased with increasing Co concentration. The optical band gap and static dielectric constant decreased and the Urbach energy and extinction coefficient increased with increasing Co concentration.

  7. Application of simplified models to CO2 migration and immobilization in large-scale geological systems

    KAUST Repository

    Gasda, Sarah E.

    2012-07-01

    Long-term stabilization of injected carbon dioxide (CO 2) is an essential component of risk management for geological carbon sequestration operations. However, migration and trapping phenomena are inherently complex, involving processes that act over multiple spatial and temporal scales. One example involves centimeter-scale density instabilities in the dissolved CO 2 region leading to large-scale convective mixing that can be a significant driver for CO 2 dissolution. Another example is the potentially important effect of capillary forces, in addition to buoyancy and viscous forces, on the evolution of mobile CO 2. Local capillary effects lead to a capillary transition zone, or capillary fringe, where both fluids are present in the mobile state. This small-scale effect may have a significant impact on large-scale plume migration as well as long-term residual and dissolution trapping. Computational models that can capture both large and small-scale effects are essential to predict the role of these processes on the long-term storage security of CO 2 sequestration operations. Conventional modeling tools are unable to resolve sufficiently all of these relevant processes when modeling CO 2 migration in large-scale geological systems. Herein, we present a vertically-integrated approach to CO 2 modeling that employs upscaled representations of these subgrid processes. We apply the model to the Johansen formation, a prospective site for sequestration of Norwegian CO 2 emissions, and explore the sensitivity of CO 2 migration and trapping to subscale physics. Model results show the relative importance of different physical processes in large-scale simulations. The ability of models such as this to capture the relevant physical processes at large spatial and temporal scales is important for prediction and analysis of CO 2 storage sites. © 2012 Elsevier Ltd.

  8. Impact of optimized mixing heights on simulated regional atmospheric transport of CO2

    International Nuclear Information System (INIS)

    Kretschmer, R.; Gerbig, C.; Karstens, U.; Biavati, G.; Vermeulen, A.; Vogel, E.; Hammer, S.; Totsche, K.U.

    2014-01-01

    The mixing height (MH) is a crucial parameter in commonly used transport models that proportionally affects air concentrations of trace gases with sources/sinks near the ground and on diurnal scales. Past synthetic data experiments indicated the possibility to improve tracer transport by minimizing errors of simulated MHs. In this paper we evaluate a method to constrain the Lagrangian particle dispersion model STILT (Stochastic Time-Inverted Lagrangian Transport) with MH diagnosed from radiosonde profiles using a bulk Richardson method. The same method was used to obtain hourly MHs for the period September/October 2009 from the Weather Research and Forecasting (WRF) model, which covers the European continent at 10 km horizontal resolution. Kriging with external drift (KED) was applied to estimate optimized MHs from observed and modelled MHs, which were used as input for STILT to assess the impact on CO 2 transport. Special care has been taken to account for uncertainty in MH retrieval in this estimation process.MHs and CO 2 concentrations were compared to vertical profiles from aircraft in situ data.We put an emphasis on testing the consistency of estimated MHs to observed vertical mixing of CO 2 . Modelled CO 2 was also compared with continuous measurements made at Cabauw and Heidelberg stations. WRF MHs were significantly biased by 10-20% during day and 40-60% during night. Optimized MHs reduced this bias to 5% with additional slight improvements in random errors. The KED MHs were generally more consistent with observed CO 2 mixing. The use of optimized MHs had in general a favourable impact on CO 2 transport, with bias reductions of 5-45% (day) and 60-90% (night). This indicates that a large part of the found CO 2 model-data mismatch was indeed due to MH errors. Other causes for CO 2 mismatch are discussed. Applicability of our method is discussed in the context of CO 2 inversions at regional scales. (authors)

  9. Measurements of soil, surface water, and groundwater CO2 concentration variability within Earth's critical zone: low-cost, long-term, high-temporal resolution monitoring

    Science.gov (United States)

    Blackstock, J. M.; Covington, M. D.; Williams, S. G. W.; Myre, J. M.; Rodriguez, J.

    2017-12-01

    Variability in CO2 fluxes within Earth's Critical zone occurs over a wide range of timescales. Resolving this and its drivers requires high-temporal resolution monitoring of CO2 both in the soil and aquatic environments. High-cost (> 1,000 USD) gas analyzers and data loggers present cost-barriers for investigations with limited budgets, particularly if high spatial resolution is desired. To overcome high-costs, we developed an Arduino based CO2 measuring platform (i.e. gas analyzer and data logger). The platform was deployed at multiple sites within the Critical Zone overlying the Springfield Plateau aquifer in Northwest Arkansas, USA. The CO2 gas analyzer used in this study was a relatively low-cost SenseAir K30. The analyzer's optical housing was covered by a PTFE semi-permeable membrane allowing for gas exchange between the analyzer and environment. Total approximate cost of the monitoring platform was 200 USD (2% detection limit) to 300 USD (10% detection limit) depending on the K30 model used. For testing purposes, we deployed the Arduino based platform alongside a commercial monitoring platform. CO2 concentration time series were nearly identical. Notably, CO2 cycles at the surface water site, which operated from January to April 2017, displayed a systematic increase in daily CO2 amplitude. Preliminary interpretation suggests key observation of seasonally increasing stream metabolic function. Other interpretations of observed cyclical and event-based behavior are out of the scope of the study; however, the presented method describes an accurate near-hourly characterization of CO2 variability. The new platform has been shown to be operational for several months, and we infer reliable operation for much longer deployments (> 1 year) given adequate environmental protection and power supply. Considering cost-savings, this platform is an attractive option for continuous, accurate, low-power, and low-cost CO2 monitoring for remote locations, globally.

  10. Impact of CO_2 on the Evolution of Microbial Communities Exposed to Carbon Storage Conditions, Enhanced Oil Recovery, and CO_2 Leakage

    International Nuclear Information System (INIS)

    Gulliver, Djuna M.; Gregory, Kelvin B.; Lowry, Gregory V.

    2016-01-01

    Geologic carbon storage (GCS) is a crucial part of a proposed mitigation strategy to reduce the anthropogenic carbon dioxide (CO_2) emissions to the atmosphere. During this process, CO_2 is injected as super critical carbon dioxide (SC-CO_2) in confined deep subsurface storage units, such as saline aquifers and depleted oil reservoirs. The deposition of vast amounts of CO_2 in subsurface geologic formations could unintentionally lead to CO_2 leakage into overlying freshwater aquifers. Introduction of CO_2 into these subsurface environments will greatly increase the CO_2 concentration and will create CO_2 concentration gradients that drive changes in the microbial communities present. While it is expected that altered microbial communities will impact the biogeochemistry of the subsurface, there is no information available on how CO_2 gradients will impact these communities. The overarching goal of this project is to understand how CO_2 exposure will impact subsurface microbial communities at temperatures and pressures that are relevant to GCS and CO_2 leakage scenarios. To meet this goal, unfiltered, aqueous samples from a deep saline aquifer, a depleted oil reservoir, and a fresh water aquifer were exposed to varied concentrations of CO_2 at reservoir pressure and temperature. The microbial ecology of the samples was examined using molecular, DNA-based techniques. The results from these studies were also compared across the sites to determine any existing trends. Results reveal that increasing CO_2 leads to decreased DNA concentrations regardless of the site, suggesting that microbial processes will be significantly hindered or absent nearest the CO_2 injection/leakage plume where CO_2 concentrations are highest. At CO_2 exposures expected downgradient from the CO_2 plume, selected microorganisms emerged as dominant in the CO_2 exposed conditions. Results suggest that the altered microbial community was site specific and highly dependent on pH. The site

  11. Pore scale study of multiphase multicomponent reactive transport during CO2 dissolution trapping

    Science.gov (United States)

    Chen, Li; Wang, Mengyi; Kang, Qinjun; Tao, Wenquan

    2018-06-01

    Solubility trapping is crucial for permanent CO2 sequestration in deep saline aquifers. For the first time, a pore-scale numerical method is developed to investigate coupled scCO2-water two-phase flow, multicomponent (CO2(aq), H+, HCO3-, CO32- and OH-) mass transport, heterogeneous interfacial dissolution reaction, and homogeneous dissociation reactions. Pore-scale details of evolutions of multiphase distributions and concentration fields are presented and discussed. Time evolutions of several variables including averaged CO2(aq) concentration, scCO2 saturation, and pH value are analyzed. Specific interfacial length, an important variable which cannot be determined but is required by continuum models, is investigated in detail. Mass transport coefficient or efficient dissolution rate is also evaluated. The pore-scale results show strong non-equilibrium characteristics during solubility trapping due to non-uniform distributions of multiphase as well as slow mass transport process. Complicated coupling mechanisms between multiphase flow, mass transport and chemical reactions are also revealed. Finally, effects of wettability are also studied. The pore-scale studies provide deep understanding of non-linear non-equilibrium multiple physicochemical processes during CO2 solubility trapping processes, and also allow to quantitatively predict some important empirical relationships, such as saturation-interfacial surface area, for continuum models.

  12. Modeling CO2-Water-Mineral Wettability and Mineralization for Carbon Geosequestration.

    Science.gov (United States)

    Liang, Yunfeng; Tsuji, Shinya; Jia, Jihui; Tsuji, Takeshi; Matsuoka, Toshifumi

    2017-07-18

    Carbon dioxide (CO 2 ) capture and storage (CCS) is an important climate change mitigation option along with improved energy efficiency, renewable energy, and nuclear energy. CO 2 geosequestration, that is, to store CO 2 under the subsurface of Earth, is feasible because the world's sedimentary basins have high capacity and are often located in the same region of the world as emission sources. How CO 2 interacts with the connate water and minerals is the focus of this Account. There are four trapping mechanisms that keep CO 2 in the pores of subsurface rocks: (1) structural trapping, (2) residual trapping, (3) dissolution trapping, and (4) mineral trapping. The first two are dominated by capillary action, where wettability controls CO 2 and water two-phase flow in porous media. We review state-of-the-art studies on CO 2 /water/mineral wettability, which was found to depend on pressure and temperature conditions, salt concentration in aqueous solutions, mineral surface chemistry, and geometry. We then review some recent advances in mineral trapping. First, we show that it is possible to reproduce the CO 2 /water/mineral wettability at a wide range of pressures using molecular dynamics (MD) simulations. As the pressure increases, CO 2 gas transforms into a supercritical fluid or liquid at ∼7.4 MPa depending on the environmental temperature. This transition leads to a substantial decrease of the interfacial tension between CO 2 and reservoir brine (or pure water). However, the wettability of CO 2 /water/rock systems depends on the type of rock surface. Recently, we investigated the contact angle of CO 2 /water/silica systems with two different silica surfaces using MD simulations. We found that contact angle increased with pressure for the hydrophobic (siloxane) surface while it was almost constant for the hydrophilic (silanol) surface, in excellent agreement with experimental observations. Furthermore, we found that the CO 2 thin films at the CO 2 -hydrophilic

  13. Stable isotope reactive transport modeling in water-rock interactions during CO2 injection

    Science.gov (United States)

    Hidalgo, Juan J.; Lagneau, Vincent; Agrinier, Pierre

    2010-05-01

    Stable isotopes can be of great usefulness in the characterization and monitoring of CO2 sequestration sites. Stable isotopes can be used to track the migration of the CO2 plume and identify leakage sources. Moreover, they provide unique information about the chemical reactions that take place on the CO2-water-rock system. However, there is a lack of appropriate tools that help modelers to incorporate stable isotope information into the flow and transport models used in CO2 sequestration problems. In this work, we present a numerical tool for modeling the transport of stable isotopes in groundwater reactive systems. The code is an extension of the groundwater single-phase flow and reactive transport code HYTEC [2]. HYTEC's transport module was modified to include element isotopes as separate species. This way, it is able to track isotope composition of the system by computing the mixing between the background water and the injected solution accounting for the dependency of diffusion on the isotope mass. The chemical module and database have been expanded to included isotopic exchange with minerals and the isotope fractionation associated with chemical reactions and mineral dissolution or precipitation. The performance of the code is illustrated through a series of column synthetic models. The code is also used to model the aqueous phase CO2 injection test carried out at the Lamont-Doherty Earth Observatory site (Palisades, New York, USA) [1]. References [1] N. Assayag, J. Matter, M. Ader, D. Goldberg, and P. Agrinier. Water-rock interactions during a CO2 injection field-test: Implications on host rock dissolution and alteration effects. Chemical Geology, 265(1-2):227-235, July 2009. [2] Jan van der Lee, Laurent De Windt, Vincent Lagneau, and Patrick Goblet. Module-oriented modeling of reactive transport with HYTEC. Computers & Geosciences, 29(3):265-275, April 2003.

  14. Influence of local emissions on concentration and isotopic composition of trace gases (CO2 and CH4) under strong anthropopression: A case study from Krakow, southern Poland

    International Nuclear Information System (INIS)

    Florkowski, T.; Korus, A.; Kuc, T.; Lasa, J.; Necki, J.M.; Zimnoch, M.

    2002-01-01

    fossil component coming from anthropogenic emissions of CO 2 . A three component mixing model was applied which allows to distinguish biospheric, and anthropogenic sources and their strength. In addition, the radiocarbon data were used. The analysed period extends from 1998 to 2000, presented in the context of the earlier obtained data. The carbon dioxide concentration together with its isotope composition at Kasprowy Wierch sampling point reveals well pronounced daily and seasonal oscillations, superimposed on the long-term trend. Much higher aplitudes are observed at Krakow. The increase of average CO 2 concentration as well as methane mixing ratio is observed since 1998. Linearisation of the radiocarbon record shows steep decrease of ca. 45 per mille per year for the discussed period. Similar trend is observed for δ 14 C in CO 2 collected in Krakow sampling point located in highly urbanised area. However, measurement values being in the same range for the both records, show fluctuations which are in counterphase. The average background methane concentration measured at Krakow reveals a systematic shift by a few percent towards higher values, when compared with the Kasprowy Wierch data. This is caused by persistent leakage of methane from the city gas network. (author)

  15. Characteristics of coupled atmosphere-ocean CO2 sensitivity experiments with different ocean formulations

    International Nuclear Information System (INIS)

    Washington, W.M.; Meehl, G.A.

    1990-01-01

    The Community Climate Model at the National Center for Atmospheric Research has been coupled to a simple mixed-layer ocean model and to a coarse-grid ocean general circulation model (OGCM). This paper compares the responses of simulated climate to increases of atmospheric carbon dioxide (CO 2 ) in these two coupled models. Three types of simulations were run: (1) control runs with both ocean models, with CO 2 held constant at present-day concentrations, (2) instantaneous doubling of atmospheric CO 2 (from 330 to 660 ppm) with both ocean models, and (3) a gradually increasing (transient) CO 2 concentration starting at 330 ppm and increasing linearly at 1% per year, with the OGCM. The mixed-layer and OGCM cases exhibit increases of 3.5 C and 1.6 C, respectively, in globally averaged surface air temperature for the instantaneous doubling cases. The transient-forcing case warms 0.7 C by the end of 30 years. The mixed-layer ocean yields warmer-than-observed tropical temperatures and colder-than-observed temperatures in the higher latitudes. The coarse-grid OGCM simulates lower-than-observed sea surface temperatures (SSTs) in the tropics and higher-than-observed SSTs and reduced sea-ice extent at higher latitudes. Sensitivity in the OGCM after 30 years is much lower than in simulations with the same atmosphere coupled to a 50-m slab-ocean mixed layer. The OGCM simulates a weaker thermohaline circulation with doubled CO 2 as the high-latitude ocean-surface layer warms and freshens and the westerly wind stress decreases. Convective overturning in the OGCM decreases substantially with CO 2 warming

  16. Characteristics of coupled atmosphere-ocean CO2 sensitivity experiments with different ocean formulations

    International Nuclear Information System (INIS)

    Washington, W.M.; Meehl, G.A.

    1991-01-01

    The Community Climate Model at the National Center for Atmospheric Research has been coupled to a simple mixed-layer ocean model and to a coarse-grid ocean general circulation model (OGCM). This paper compares the responses of simulated climate to increases of atmospheric carbon dioxide (CO 2 ) in these two coupled models. Three types of simulations were run: (1) control runs with both ocean models, with CO 2 held constant at present-day concentrations, (2) instantaneous doubling of atmospheric CO 2 (from 330 to 660 ppm) with both ocean models, and (3) a gradually increasing (transient) CO 2 concentration starting at 330 ppm and increasing linearly at 1% per year, with the OGCM. The mixed-layer and OGCM cases exhibit increases of 3.5 C and 1.6 C, respectively, in globally averaged surface air temperature for the instantaneous doubling cases. The transient-forcing case warms 0.7 C by the end of 30 years. The mixed-layer ocean yields warmer-than-observed tropical temperatures and colder-than-observed temperatures in the higher latitudes. The coarse-grid OGCM simulates lower-than-observed sea surface temperatures (SSTs) in the tropics and higher-than-observed SSTs and reduced sea-ice extent at higher latitudes. Sensitivity in the OGCM after 30 years is much lower than in simulations with the same atmosphere coupled to a 50-m slab-ocean mixed layer. The OGCM simulates a weaker thermohaline circulation with doubled CO 2 as the high-latitude ocean-surface layer warms and freshens and the westerly wind stress decreases. Convective overturning in the OGCM decreases substantially with CO 2 warming. 46 refs.; 20 figs.; 1 tab

  17. Phase equilibrium of (CO2 + 1-aminopropyl-3-methylimidazolium bromide + water) electrolyte system and effects of aqueous medium on CO2 solubility: Experiment and modeling

    International Nuclear Information System (INIS)

    Chen, Ying; Guo, Kaihua; Bi, Yin; Zhou, Lan

    2017-01-01

    Highlights: • Phase and chemical equilibrium data for (CO 2 + [APMIm]Br + H 2 O) electrolyte system. • A modified eNRTL model for CO 2 solubility in the amino-based IL aqueous solution. • Effects of aqueous medium on both chemical and physical dissolution of CO 2 . • The correlative coefficient, R s ∗ , for the Henry’s constant of the solution. • New parameters for the segments interaction and the chemical equilibrium constants. - Abstract: New experimental data for solubility of carbon dioxide (CO 2 ) in the aqueous solution of 1-aminopropyl-3-methylimidazolium bromide ([APMIm]Br) with four different water mass fractions (0.559, 0.645, 0.765 and 0.858) at T = (278.15–348.15) K with an interval of T = 10 K and p = (0.1237–6.9143) MPa were presented. The electrolyte nonrandom two-liquid (eNRTL) model was modified to be applicable for an ionic liquid (IL) aqueous solution system, by introducing an idle factor β to illustrate the association effect of IL molecules. A solution Henry’s constant for CO 2 solubility in the IL aqueous solution was defined by introducing a correlative coefficient R s ∗ . The vapor-liquid phase equilibrium of the [APMIm]Br-H 2 O-CO 2 ternary system was successfully calculated with the modified eNRTL model. The chemical and physical mechanisms for the ionized CO 2 formation and the molecular CO 2 dissolved in the solution were identified. The effects of aqueous medium on both chemical and physical dissolution of CO 2 in the [APMIm]Br aqueous solution were studied, and a considerable enhancement of the solubility of CO 2 with increase of the water content in the solution was observed.

  18. Atmospheric CO2 concentrations and (delta)13C values across the Antarctic Circumpolar Current between New Zealand and Antarctica

    International Nuclear Information System (INIS)

    Longinelli, Antonio; Selmo, Enricomaria; Giglio, Federico; Langone, Leonardo; Lenaz, Renzo; Ori, Carlo

    2007-01-01

    Measurements of atmospheric CO 2 concentrations were repeatedly carried out on the vessel 'Italica' of the Italian National Research Program in Antarctica, during cruises from Italy to Antarctica. Discrete air samples were also collected in 4-L Pyrex flasks during these cruises in order to carry out (delta) 13 C analyses on atmospheric CO 2 . The results acquired between New Zealand and Antarctica are reported here. The mean growth rate of the CO 2 concentration from 1996 to 2003 in this area of the Southern Oceans is of about 1.8 ppmv/yr, in good agreement with NOAA/CMDL measurements. The rates of increase from cruise to cruise are rather variable. From 1996-1997 to 1998-1999 cruise the yearly growth rate is 2.75 ppmv/yr, close to the large growth rates measured in several areas and mainly related to the most severe El Nino event of the last years. The other yearly growth rates are of about 1.3 and 2 ppmv for the periods 1998-1999 to 2001-2002 and 2001-2002 to 2003-2004, respectively. The large difference between these two values is probably related to the uncertainty on the only two 2001-2002 discrete measurements of CO 2 concentration in this area. The measured (delta) 13 C values show two completely different distributions and a large interannual variability. The 1998-1999, 2002-2003, and 2003-2004 results obtained between about 55 deg S and 65 deg S across the Antarctic Polar Front show a marked negativization of up to more than 0.2% when compared to the background values. The results are related to local source regions of CO 2 , as frequently found in the Southern Ocean by several authors; the negative (delta) 13 C values are tentatively related to the possible contribution of different causes. Among them, the southward negative gradient of (delta) 13 C of the dissolved inorganic carbon, the contribution from upwelling deep waters and from subsurface processes between the Northern SubAntarctic Front and the Polar Front, and, partly, the contribution of CO 2

  19. CO{sub 2} threshold for millennial-scale oscillations in the climate system: implications for global warming scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Meissner, Katrin J.; Eby, Michael; Weaver, Andrew J. [University of Victoria, School of Earth and Ocean Sciences, Victoria, BC (Canada); Saenko, Oleg A. [Canadian Centre for Climate Modelling and Analysis, Victoria (Canada)

    2008-02-15

    We present several equilibrium runs under varying atmospheric CO{sub 2} concentrations using the University of Victoria Earth System Climate Model (UVic ESCM). The model shows two very different responses: for CO{sub 2} concentrations of 400 ppm or lower, the system evolves into an equilibrium state. For CO{sub 2} concentrations of 440 ppm or higher, the system starts oscillating between a state with vigorous deep water formation in the Southern Ocean and a state with no deep water formation in the Southern Ocean. The flushing events result in a rapid increase in atmospheric temperatures, degassing of CO{sub 2} and therefore an increase in atmospheric CO{sub 2} concentrations, and a reduction of sea ice cover in the Southern Ocean. They also cool the deep ocean worldwide. After the flush, the deep ocean warms slowly again and CO{sub 2} is taken up by the ocean until the stratification becomes unstable again at high latitudes thousands of years later. The existence of a threshold in CO{sub 2} concentration which places the UVic ESCM in either an oscillating or non-oscillating state makes our results intriguing. If the UVic ESCM captures a mechanism that is present and important in the real climate system, the consequences would comprise a rapid increase in atmospheric carbon dioxide concentrations of several tens of ppm, an increase in global surface temperature of the order of 1-2 C, local temperature changes of the order of 6 C and a profound change in ocean stratification, deep water temperature and sea ice cover. (orig.)

  20. The response of vegetation to rising CO2 concentrations plays an important role in future changes in the hydrological cycle

    Science.gov (United States)

    Hong, Tao; Dong, Wenjie; Ji, Dong; Dai, Tanlong; Yang, Shili; Wei, Ting

    2018-04-01

    The effects of increasing CO2 concentrations on plant and carbon cycle have been extensively investigated; however, the effects of changes in plants on the hydrological cycle are still not fully understood. Increases in CO2 modify the stomatal conductance and water use of plants, which may have a considerable effect on the hydrological cycle. Using the carbon-climate feedback experiments from CMIP5, we estimated the responses of plants and hydrological cycle to rising CO2 concentrations to double of pre-industrial levels without climate change forcing. The mode results show that rising CO2 concentrations had a significant influence on the hydrological cycle by changing the evaporation and transpiration of plants and soils. The increases in the area covered by plant leaves result in the increases in vegetation evaporation. Besides, the physiological effects of stomatal closure were stronger than the opposite effects of changes in plant structure caused by the increases in LAI (leaf area index), which results in the decrease of transpiration. These two processes lead to overall decreases in evaporation, and then contribute to increases in soil moisture and total runoff. In the dry areas, the stronger increase in LAI caused the stronger increases in vegetation evaporation and then lead to the overall decreases in P - E (precipitation minus evaporation) and soil moisture. However, the soil moisture in sub-arid and wet areas would increase, and this may lead to the soil moisture deficit worse in the future in the dry areas. This study highlights the need to consider the different responses of plants and the hydrological cycle to rising CO2 in dry and wet areas in future water resources management, especially in water-limited areas.

  1. Thermodynamic modeling of CO2 mixtures

    DEFF Research Database (Denmark)

    Bjørner, Martin Gamel

    Knowledge of the thermodynamic properties and phase equilibria of mixtures containing carbon dioxide (CO2) is important in several industrial processes such as enhanced oil recovery, carbon capture and storage, and supercritical extractions, where CO2 is used as a solvent. Despite this importance...

  2. Wine ethanol C-14 as a tracer for fossil fuel CO2 emissions in Europe : Measurements and model comparison

    NARCIS (Netherlands)

    Palstra, Sanne W. L.; Karstens, Ute; Streurman, Harm-Jan; Meijer, Harro A. J.

    2008-01-01

    C-14 (radiocarbon) in atmospheric CO2 is the most direct tracer for the presence of fossil-fuel-derived CO2 (CO2-ff). We demonstrate the C-14 measurement of wine ethanol as a way to determine the relative regional atmospheric CO2-ff concentration compared to a background site ("regional CO2-ff

  3. Response of the rhizosphere prokaryotic community of barley (Hordeum vulgare L.) to elevated atmospheric CO2 concentration in open-top chambers.

    Science.gov (United States)

    Szoboszlay, Márton; Näther, Astrid; Mitterbauer, Esther; Bender, Jürgen; Weigel, Hans-Joachim; Tebbe, Christoph C

    2017-08-01

    The effect of elevated atmospheric CO 2 concentration [CO 2 ] on the diversity and composition of the prokaryotic community inhabiting the rhizosphere of winter barley (Hordeum vulgare L.) was investigated in a field experiment, using open-top chambers. Rhizosphere samples were collected at anthesis (flowering stage) from six chambers with ambient [CO 2 ] (approximately 400 ppm) and six chambers with elevated [CO 2 ] (700 ppm). The V4 region of the 16S rRNA gene was PCR-amplified from the extracted DNA and sequenced on an Illumina MiSeq instrument. Above-ground plant biomass was not affected by elevated [CO 2 ] at anthesis, but plants exposed to elevated [CO 2 ] had significantly higher grain yield. The composition of the rhizosphere prokaryotic communities was very similar under ambient and elevated [CO 2 ]. The dominant taxa were Bacteroidetes, Actinobacteria, Alpha-, Gamma-, and Betaproteobacteria. Elevated [CO 2 ] resulted in lower prokaryotic diversity in the rhizosphere, but did not cause a significant difference in community structure. © 2017 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  4. CO2 adsorption-assisted CH4 desorption on carbon models of coal surface: A DFT study

    Science.gov (United States)

    Xu, He; Chu, Wei; Huang, Xia; Sun, Wenjing; Jiang, Chengfa; Liu, Zhongqing

    2016-07-01

    Injection of CO2 into coal is known to improve the yields of coal-bed methane gas. However, the technology of CO2 injection-enhanced coal-bed methane (CO2-ECBM) recovery is still in its infancy with an unclear mechanism. Density functional theory (DFT) calculations were performed to elucidate the mechanism of CO2 adsorption-assisted CH4 desorption (AAD). To simulate coal surfaces, different six-ring aromatic clusters (2 × 2, 3 × 3, 4 × 4, 5 × 5, 6 × 6, and 7 × 7) were used as simplified graphene (Gr) carbon models. The adsorption and desorption of CH4 and/or CO2 on these carbon models were assessed. The results showed that a six-ring aromatic cluster model (4 × 4) can simulate the coal surface with limited approximation. The adsorption of CO2 onto these carbon models was more stable than that in the case of CH4. Further, the adsorption energies of single CH4 and CO2 in the more stable site were -15.58 and -18.16 kJ/mol, respectively. When two molecules (CO2 and CH4) interact with the surface, CO2 compels CH4 to adsorb onto the less stable site, with a resulting significant decrease in the adsorption energy of CH4 onto the surface of the carbon model with pre-adsorbed CO2. The Mulliken charges and electrostatic potentials of CH4 and CO2 adsorbed onto the surface of the carbon model were compared to determine their respective adsorption activities and changes. At the molecular level, our results showed that the adsorption of the injected CO2 promoted the desorption of CH4, the underlying mechanism of CO2-ECBM.

  5. Changing Amazon biomass and the role of atmospheric CO2 concentration, climate, and land use

    Science.gov (United States)

    de Almeida Castanho, Andrea D.; Galbraith, David; Zhang, Ke; Coe, Michael T.; Costa, Marcos H.; Moorcroft, Paul

    2016-01-01

    The Amazon tropical evergreen forest is an important component of the global carbon budget. Its forest floristic composition, structure, and function are sensitive to changes in climate, atmospheric composition, and land use. In this study biomass and productivity simulated by three dynamic global vegetation models (Integrated Biosphere Simulator, Ecosystem Demography Biosphere Model, and Joint UK Land Environment Simulator) for the period 1970-2008 are compared with observations from forest plots (Rede Amazónica de Inventarios Forestales). The spatial variability in biomass and productivity simulated by the DGVMs is low in comparison to the field observations in part because of poor representation of the heterogeneity of vegetation traits within the models. We find that over the last four decades the CO2 fertilization effect dominates a long-term increase in simulated biomass in undisturbed Amazonian forests, while land use change in the south and southeastern Amazonia dominates a reduction in Amazon aboveground biomass, of similar magnitude to the CO2 biomass gain. Climate extremes exert a strong effect on the observed biomass on short time scales, but the models are incapable of reproducing the observed impacts of extreme drought on forest biomass. We find that future improvements in the accuracy of DGVM predictions will require improved representation of four key elements: (1) spatially variable plant traits, (2) soil and nutrients mediated processes, (3) extreme event mortality, and (4) sensitivity to climatic variability. Finally, continued long-term observations and ecosystem-scale experiments (e.g. Free-Air CO2 Enrichment experiments) are essential for a better understanding of the changing dynamics of tropical forests.

  6. Estimates of CO2 fluxes over the city of Cape Town, South Africa, through Bayesian inverse modelling

    Science.gov (United States)

    Nickless, Alecia; Rayner, Peter J.; Engelbrecht, Francois; Brunke, Ernst-Günther; Erni, Birgit; Scholes, Robert J.

    2018-04-01

    We present a city-scale inversion over Cape Town, South Africa. Measurement sites for atmospheric CO2 concentrations were installed at Robben Island and Hangklip lighthouses, located downwind and upwind of the metropolis. Prior estimates of the fossil fuel fluxes were obtained from a bespoke inventory analysis where emissions were spatially and temporally disaggregated and uncertainty estimates determined by means of error propagation techniques. Net ecosystem exchange (NEE) fluxes from biogenic processes were obtained from the land atmosphere exchange model CABLE (Community Atmosphere Biosphere Land Exchange). Uncertainty estimates were based on the estimates of net primary productivity. CABLE was dynamically coupled to the regional climate model CCAM (Conformal Cubic Atmospheric Model), which provided the climate inputs required to drive the Lagrangian particle dispersion model. The Bayesian inversion framework included a control vector where fossil fuel and NEE fluxes were solved for separately.Due to the large prior uncertainty prescribed to the NEE fluxes, the current inversion framework was unable to adequately distinguish between the fossil fuel and NEE fluxes, but the inversion was able to obtain improved estimates of the total fluxes within pixels and across the domain. The median of the uncertainty reductions of the total weekly flux estimates for the inversion domain of Cape Town was 28 %, but reach as high as 50 %. At the pixel level, uncertainty reductions of the total weekly flux reached up to 98 %, but these large uncertainty reductions were for NEE-dominated pixels. Improved corrections to the fossil fuel fluxes would be possible if the uncertainty around the prior NEE fluxes could be reduced. In order for this inversion framework to be operationalised for monitoring, reporting, and verification (MRV) of emissions from Cape Town, the NEE component of the CO2 budget needs to be better understood. Additional measurements of Δ14C and δ13C isotope

  7. The Kok effect in Vicia faba cannot be explained solely by changes in chloroplastic CO2 concentration.

    Science.gov (United States)

    Buckley, Thomas N; Vice, Heather; Adams, Mark A

    2017-12-01

    The Kok effect - an abrupt decline in quantum yield (QY) of net CO 2 assimilation at low photosynthetic photon flux density (PPFD) - is widely used to estimate respiration in the light (R), which assumes the effect is caused by light suppression of R. A recent report suggested much of the Kok effect can be explained by declining chloroplastic CO 2 concentration (c c ) at low PPFD. Several predictions arise from the hypothesis that the Kok effect is caused by declining c c , and we tested these predictions in Vicia faba. We measured CO 2 exchange at low PPFD, in 2% and 21% oxygen, in developing and mature leaves, which differed greatly in R in darkness. Our results contradicted each of the predictions based on the c c effect: QY exceeded the theoretical maximum value for photosynthetic CO 2 uptake; QY was larger in 21% than 2% oxygen; and the change in QY at the Kok effect breakpoint was unaffected by oxygen. Our results strongly suggest the Kok effect arises largely from a progressive decline in R with PPFD that includes both oxygen-sensitive and -insensitive components. We suggest an improved Kok method that accounts for high c c at low PPFD. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  8. Does Elevated CO2 Alter Silica Uptake in Trees?

    Directory of Open Access Journals (Sweden)

    Robinson W. Fulweiler

    2015-01-01

    Full Text Available Human activities have greatly altered global carbon (C and N (N cycling. In fact, atmospheric concentrations of carbon dioxide (CO2 have increased 40% over the last century and the amount of N cycling in the biosphere has more than doubled. In an effort to understand how plants will respond to continued global carbon dioxide fertilization, long-term free-air CO2 enrichment (FACE experiments have been conducted at sites around the globe. Here we examine how atmospheric CO2 enrichment and N fertilization affects the uptake of silicon (Si in the Duke Forest, North Carolina, a stand dominated by Pinus taeda (loblolly pine, and five hardwood species. Specifically, we measured foliar biogenic silica (BSi concentrations in five deciduous and one coniferous species across three treatments: CO2 enrichment, N enrichment, and N and CO2 enrichment. We found no consistent trends in foliar Si concentration under elevated CO2, N fertilization, or combined elevated CO2 and N fertilization. However, two-thirds of the tree species studied here have Si foliar concentrations greater than well-known Si accumulators, such as grasses. Based on net primary production values and aboveground Si concentrations in these trees, we calculated forest Si uptake rates under control and elevated CO2 concentrations. Due largely to increased primary production, elevated CO2 enhanced the magnitude of Si uptake between 20% and 26%, likely intensifying the terrestrial silica pump. This uptake of Si by forests has important implications for Si export from terrestrial systems, with the potential to impact C sequestration and higher trophic levels in downstream ecosystems.

  9. Vertically-Integrated Dual-Continuum Models for CO2 Injection in Fractured Aquifers

    Science.gov (United States)

    Tao, Y.; Guo, B.; Bandilla, K.; Celia, M. A.

    2017-12-01

    Injection of CO2 into a saline aquifer leads to a two-phase flow system, with supercritical CO2 and brine being the two fluid phases. Various modeling approaches, including fully three-dimensional (3D) models and vertical-equilibrium (VE) models, have been used to study the system. Almost all of that work has focused on unfractured formations. 3D models solve the governing equations in three dimensions and are applicable to generic geological formations. VE models assume rapid and complete buoyant segregation of the two fluid phases, resulting in vertical pressure equilibrium and allowing integration of the governing equations in the vertical dimension. This reduction in dimensionality makes VE models computationally more efficient, but the associated assumptions restrict the applicability of VE model to formations with moderate to high permeability. In this presentation, we extend the VE and 3D models for CO2 injection in fractured aquifers. This is done in the context of dual-continuum modeling, where the fractured formation is modeled as an overlap of two continuous domains, one representing the fractures and the other representing the rock matrix. Both domains are treated as porous media continua and can be modeled by either a VE or a 3D formulation. The transfer of fluid mass between rock matrix and fractures is represented by a mass transfer function connecting the two domains. We have developed a computational model that combines the VE and 3D models, where we use the VE model in the fractures, which typically have high permeability, and the 3D model in the less permeable rock matrix. A new mass transfer function is derived, which couples the VE and 3D models. The coupled VE-3D model can simulate CO2 injection and migration in fractured aquifers. Results from this model compare well with a full-3D model in which both the fractures and rock matrix are modeled with 3D models, with the hybrid VE-3D model having significantly reduced computational cost. In

  10. Forecasting carbon budget under climate change and CO2 fertilization for subtropical region in China using integrated biosphere simulator (IBIS) model

    Science.gov (United States)

    Zhu, Q.; Jiang, H.; Liu, J.; Peng, C.; Fang, X.; Yu, S.; Zhou, G.; Wei, X.; Ju, W.

    2011-01-01

    The regional carbon budget of the climatic transition zone may be very sensitive to climate change and increasing atmospheric CO2 concentrations. This study simulated the carbon cycles under these changes using process-based ecosystem models. The Integrated Biosphere Simulator (IBIS), a Dynamic Global Vegetation Model (DGVM), was used to evaluate the impacts of climate change and CO2 fertilization on net primary production (NPP), net ecosystem production (NEP), and the vegetation structure of terrestrial ecosystems in Zhejiang province (area 101,800 km2, mainly covered by subtropical evergreen forest and warm-temperate evergreen broadleaf forest) which is located in the subtropical climate area of China. Two general circulation models (HADCM3 and CGCM3) representing four IPCC climate change scenarios (HC3AA, HC3GG, CGCM-sresa2, and CGCM-sresb1) were used as climate inputs for IBIS. Results show that simulated historical biomass and NPP are consistent with field and other modelled data, which makes the analysis of future carbon budget reliable. The results indicate that NPP over the entire Zhejiang province was about 55 Mt C yr-1 during the last half of the 21st century. An NPP increase of about 24 Mt C by the end of the 21st century was estimated with the combined effects of increasing CO2 and climate change. A slight NPP increase of about 5 Mt C was estimated under the climate change alone scenario. Forests in Zhejiang are currently acting as a carbon sink with an average NEP of about 2.5 Mt C yr-1. NEP will increase to about 5 Mt C yr-1 by the end of the 21st century with the increasing atmospheric CO2 concentration and climate change. However, climate change alone will reduce the forest carbon sequestration of Zhejiang's forests. Future climate warming will substantially change the vegetation cover types; warm-temperate evergreen broadleaf forest will be gradually substituted by subtropical evergreen forest. An increasing CO2 concentration will have little

  11. Diurnal changes in photosynthetic parameters of Populus tremuloides, modulated by elevated concentrations of CO2 and/or O3 and daily climatic variation

    International Nuclear Information System (INIS)

    Kets, Katre; Darbah, Joseph N.T.; Sober, Anu; Riikonen, Johanna; Sober, Jaak; Karnosky, David F.

    2010-01-01

    The diurnal changes in light-saturated photosynthesis (Pn) under elevated CO 2 and/or O 3 in relation to stomatal conductance (g s ), water potential, intercellular [CO 2 ], leaf temperature and vapour-pressure difference between leaf and air (VPD L ) were studied at the Aspen FACE site. Two aspen (Populus tremuloides Michx.) clones differing in their sensitivity to ozone were measured. The depression in Pn was found after 10:00 h. The midday decline in Pn corresponded with both decreased g s and decreased Rubisco carboxylation efficiency, Vc max . As a result of increasing VPD L , g s decreased. Elevated [CO 2 ] resulted in more pronounced midday decline in Pn compared to ambient concentrations. Moreover, this decline was more pronounced under combined treatment compared to elevated CO 2 treatment. The positive impact of CO 2 on Pn was relatively more pronounced in days with environmental stress but relatively less pronounced during midday depression. The negative impact of ozone tended to decrease in both cases. - Diurnal and seasonal patterns of environmental stress (drought, high air temperature) affects a relative impact of elevated concentrations of CO 2 and O 3 on trees.

  12. Predictive modeling of CO2 sequestration in deep saline sandstone reservoirs: Impacts of geochemical kinetics

    Energy Technology Data Exchange (ETDEWEB)

    Balashov, Victor N.; Guthrie, George D.; Hakala, J. Alexandra; Lopano, Christina L.; Rimstidt, J. Donald; Brantley, Susan L.

    2013-03-01

    One idea for mitigating the increase in fossil-fuel generated CO{sub 2} in the atmosphere is to inject CO{sub 2} into subsurface saline sandstone reservoirs. To decide whether to try such sequestration at a globally significant scale will require the ability to predict the fate of injected CO{sub 2}. Thus, models are needed to predict the rates and extents of subsurface rock-water-gas interactions. Several reactive transport models for CO{sub 2} sequestration created in the last decade predicted sequestration in sandstone reservoirs of ~17 to ~90 kg CO{sub 2} m{sup -3|. To build confidence in such models, a baseline problem including rock + water chemistry is proposed as the basis for future modeling so that both the models and the parameterizations can be compared systematically. In addition, a reactive diffusion model is used to investigate the fate of injected supercritical CO{sub 2} fluid in the proposed baseline reservoir + brine system. In the baseline problem, injected CO{sub 2} is redistributed from the supercritical (SC) free phase by dissolution into pore brine and by formation of carbonates in the sandstone. The numerical transport model incorporates a full kinetic description of mineral-water reactions under the assumption that transport is by diffusion only. Sensitivity tests were also run to understand which mineral kinetics reactions are important for CO{sub 2} trapping. The diffusion transport model shows that for the first ~20 years after CO{sub 2} diffusion initiates, CO{sub 2} is mostly consumed by dissolution into the brine to form CO{sub 2,aq} (solubility trapping). From 20-200 years, both solubility and mineral trapping are important as calcite precipitation is driven by dissolution of oligoclase. From 200 to 1000 years, mineral trapping is the most important sequestration mechanism, as smectite dissolves and calcite precipitates. Beyond 2000 years, most trapping is due to formation of aqueous HCO{sub 3}{sup -}. Ninety-seven percent of the

  13. A data-model synthesis to explain variability in calcification observed during a CO2 perturbation mesocosm experiment

    Science.gov (United States)

    Krishna, Shubham; Schartau, Markus

    2017-04-01

    The effect of ocean acidification on growth and calcification of the marine algae Emiliania huxleyi was investigated in a series of mesocosm experiments where enclosed water volumes that comprised a natural plankton community were exposed to different carbon dioxide (CO2) concentrations. Calcification rates observed during those experiments were found to be highly variable, even among replicate mesocosms that were subject to similar CO2 perturbations. Here, data from an ocean acidification mesocosm experiment are reanalysed with an optimality-based dynamical plankton model. According to our model approach, cellular calcite formation is sensitive to variations in CO2 at the organism level. We investigate the temporal changes and variability in observations, with a focus on resolving observed differences in total alkalinity and particulate inorganic carbon (PIC). We explore how much of the variability in the data can be explained by variations of the initial conditions and by the level of CO2 perturbation. Nine mesocosms of one experiment were sorted into three groups of high, medium, and low calcification rates and analysed separately. The spread of the three optimised ensemble model solutions captures most of the observed variability. Our results show that small variations in initial abundance of coccolithophores and the prevailing physiological acclimation states generate differences in calcification that are larger than those induced by ocean acidification. Accordingly, large deviations between optimal mass flux estimates of carbon and of nitrogen are identified even between mesocosms that were subject to similar ocean acidification conditions. With our model-based data analysis we document how an ocean acidification response signal in calcification can be disentangled from the observed variability in PIC.

  14. Supercritical CO2 extraction of oil and omega-3 concentrate from Sacha inchi (Plukenetia volubilis L. from Antioquia, Colombia

    Directory of Open Access Journals (Sweden)

    D. M. Triana-Maldonado

    2017-03-01

    Full Text Available Sacha inchi (Plukenetia volubilis L. seeds were employed for oil extraction with supercritical CO2 at laboratory scale. The supercritical extraction was carried out at a temperature of 60 °C, pressure range of 400–500 bars and CO2 flow of 40–80 g/min. The maximum recovery was 58% in 180 min, favored by increasing the residence time of CO2 in the extraction tank. Subsequently, the process was evaluated at pilot scale reaching a maximum recovery of 60% in 105 min, with a temperature of 60 °C, pressure of 450 bars and CO2 flow of 1270 g/min. The fatty acid composition of the oil was not affected for an extraction period of 30–120 min. The Sacha inchi oil was fractionated with supercritical CO2 to obtain an omega-3 concentrate oil without finding a considerable increase in the proportion of this compound, due to the narrow range in the carbon number of fatty acids present in the oil (16–18 carbons, making it difficult for selective separation.

  15. Supercritical CO2 extraction of oil and omega-3 concentrate from Sacha inchi (Plukenetia volubilis L.) from Antioquia, Colombia

    International Nuclear Information System (INIS)

    Torijano-Gutiérrez, S.A.; Triana-Maldonadoa, D.M.; Giraldo-Estradaa, C.

    2017-01-01

    Sacha inchi (Plukenetia volubilis L.) seeds were employed for oil extraction with supercritical CO2 at laboratory scale. The supercritical extraction was carried out at a temperature of 60 °C, pressure range of 400–500 bars and CO2 flow of 40–80 g/min. The maximum recovery was 58% in 180 min, favored by increasing the residence time of CO2 in the extraction tank. Subsequently, the process was evaluated at pilot scale reaching a maximum recovery of 60% in 105 min, with a temperature of 60 °C, pressure of 450 bars and CO2 flow of 1270 g/min. The fatty acid composition of the oil was not affected for an extraction period of 30–120 min. The Sacha inchi oil was fractionated with supercritical CO2 to obtain an omega-3 concentrate oil without finding a considerable increase in the proportion of this compound, due to the narrow range in the carbon number of fatty acids present in the oil (16–18 carbons), making it difficult for selective separation. [es

  16. Interpreting plant-sampled ¿14CO2 to study regional anthropogenic CO2 signals in Europe

    OpenAIRE

    Bozhinova, D.N.

    2015-01-01

    "Interpreting plant-sampled Δ14CO2 to study regional anthropogenic CO2 signals in Europe" Author: Denica Bozhinova This thesis investigates the quantitative interpretation of plant-sampled ∆14CO2 as an indicator of fossil fuel CO2 recently added to the atmosphere. We present a methodology to calculate the ∆14CO2 that has accumulated in a plant over its growing period, based on a modeling framework consisting of a plant growth model (SUCROS) and an atmospheric transport model (WRF-Chem). We ve...

  17. Can Increased CO2 Levels Trigger a Runaway Greenhouse on the Earth?

    Science.gov (United States)

    Ramirez, R.

    2014-04-01

    Recent one-dimensional (globally averaged) climate model calculations suggest that increased atmospheric CO2 could conceivably trigger a runaway greenhouse if CO2 concentrations were approximately 100 times higher than today. The new prediction runs contrary to previous calculations, which indicated that CO2 increases could not trigger a runaway, even at Venus-like CO2 concentrations. Goldblatt et al. argue that this different behavior is a consequence of updated absorption coefficients for H2O that make a runaway more likely. Here, we use a 1-D cloud-free climate model with similar, up-to-date absorption coefficients, but with a self-consistent methodology, to demonstrate that CO2 increases cannot induce a runaway greenhouse on the modern Earth. However, these initial calculations do not include cloud feedback, which may be positive at higher temperatures, destabilizing Earth's climate. We then show new calculations demonstrating that cirrus clouds cannot trigger a runaway, even in the complete absence of low clouds. Thus, the habitability of an Earth-like planet at Earth's distance appears to be ensured, irrespective of the sign of cloud feedback. Our results are of importance to Earth-like planets that receive similar insolation levels as does the Earth and to the ongoing question about cloud response at higher temperatures.

  18. Modeling for CO poisoning of a fuel cell anode

    Science.gov (United States)

    Dhar, H. P.; Kush, A. K.; Patel, D. N.; Christner, L. G.

    1986-01-01

    Poisoning losses in a half-cell in the 110-190 C temperature range have been measured in 100 wt pct H3PO4 for various mixtures of H2, CO, and CO2 gases in order to investigate the polarization loss due to poisoning by CO of a porous fuel cell Pt anode. At a fixed current density, the poisoning loss was found to vary linearly with ln of the CO/H2 concentration ratio, although deviations from linearity were noted at lower temperatures and higher current densities for high CO/H2 concentration ratios. The surface coverages of CO were also found to vary linearly with ln of the CO/H2 concentration ratio. A general adsorption relationship is derived. Standard free energies for CO adsorption were found to vary from -14.5 to -12.1 kcal/mol in the 130-190 C temperature range. The standard entropy for CO adsorption was found to be -39 cal/mol per deg K.

  19. The interaction of the flux errors and transport errors in modeled atmospheric carbon dioxide concentrations

    Science.gov (United States)

    Feng, S.; Lauvaux, T.; Butler, M. P.; Keller, K.; Davis, K. J.; Jacobson, A. R.; Schuh, A. E.; Basu, S.; Liu, J.; Baker, D.; Crowell, S.; Zhou, Y.; Williams, C. A.

    2017-12-01

    Regional estimates of biogenic carbon fluxes over North America from top-down atmospheric inversions and terrestrial biogeochemical (or bottom-up) models remain inconsistent at annual and sub-annual time scales. While top-down estimates are impacted by limited atmospheric data, uncertain prior flux estimates and errors in the atmospheric transport models, bottom-up fluxes are affected by uncertain driver data, uncertain model parameters and missing mechanisms across ecosystems. This study quantifies both flux errors and transport errors, and their interaction in the CO2 atmospheric simulation. These errors are assessed by an ensemble approach. The WRF-Chem model is set up with 17 biospheric fluxes from the Multiscale Synthesis and Terrestrial Model Intercomparison Project, CarbonTracker-Near Real Time, and the Simple Biosphere model. The spread of the flux ensemble members represents the flux uncertainty in the modeled CO2 concentrations. For the transport errors, WRF-Chem is run using three physical model configurations with three stochastic perturbations to sample the errors from both the physical parameterizations of the model and the initial conditions. Additionally, the uncertainties from boundary conditions are assessed using four CO2 global inversion models which have assimilated tower and satellite CO2 observations. The error structures are assessed in time and space. The flux ensemble members overall overestimate CO2 concentrations. They also show larger temporal variability than the observations. These results suggest that the flux ensemble is overdispersive. In contrast, the transport ensemble is underdispersive. The averaged spatial distribution of modeled CO2 shows strong positive biogenic signal in the southern US and strong negative signals along the eastern coast of Canada. We hypothesize that the former is caused by the 3-hourly downscaling algorithm from which the nighttime respiration dominates the daytime modeled CO2 signals and that the latter

  20. Detecting annual and seasonal variations of CO{sub 2}, CO and N{sub 2}O from a multi-year collocated satellite-radiosonde data-set using the new Rapid Radiance Reconstruction (3R-N) model

    Energy Technology Data Exchange (ETDEWEB)

    Chedin, A.; Serrar, S.; Hollingsworth, A.; Armante, R.; Scott, N.A

    2003-03-15

    The NOAA polar meteorological satellites have embarked the TIROS-N operational vertical sounder (TOVS) since 1979. Using radiosondes and NOAA-10 TOVS measurements which are collocated within a narrow space and time window, we have studied the differences between the TOVS measurements and simulated measurements from a new fast, Rapid Radiance Reconstruction Network (3R-N), non-linear radiative transfer model with up to date spectroscopy. Simulations use radiosonde temperature and humidity measurements as the prime input. The radiative transfer model also uses fixed greenhouse gas absorber amounts (CO{sub 2},CO,N{sub 2}O) and reasonable estimates of O{sub 3} and of surface temperature. The 3R-N model is first presented and validated. Then, a study of the differences between the simulated and measured radiances shows annual trends and seasonal variations consistent with independent measurements of variations in CO{sub 2} and other greenhouse gases atmospheric concentrations. The improved accuracy of 3R-N and a better handling of its deviations with respect to observations allow most of difficulties met in a previous study (J. Climate 15 (2002) 95) to be resolved.