WorldWideScience

Sample records for models based engineering

  1. Introducing Model-Based System Engineering Transforming System Engineering through Model-Based Systems Engineering

    Science.gov (United States)

    2014-03-31

    Web  Presentation...Software  .....................................................  20   Figure  6.  Published   Web  Page  from  Data  Collection...the  term  Model  Based  Engineering  (MBE),  Model  Driven  Engineering  ( MDE ),  or  Model-­‐Based  Systems  

  2. Principles of models based engineering

    Energy Technology Data Exchange (ETDEWEB)

    Dolin, R.M.; Hefele, J.

    1996-11-01

    This report describes a Models Based Engineering (MBE) philosophy and implementation strategy that has been developed at Los Alamos National Laboratory`s Center for Advanced Engineering Technology. A major theme in this discussion is that models based engineering is an information management technology enabling the development of information driven engineering. Unlike other information management technologies, models based engineering encompasses the breadth of engineering information, from design intent through product definition to consumer application.

  3. Model-based Software Engineering

    DEFF Research Database (Denmark)

    Kindler, Ekkart

    2010-01-01

    The vision of model-based software engineering is to make models the main focus of software development and to automatically generate software from these models. Part of that idea works already today. But, there are still difficulties when it comes to behaviour. Actually, there is no lack in models...

  4. Model-Based Systems Engineering in Concurrent Engineering Centers

    Science.gov (United States)

    Iwata, Curtis; Infeld, Samantha; Bracken, Jennifer Medlin; McGuire, Melissa; McQuirk, Christina; Kisdi, Aron; Murphy, Jonathan; Cole, Bjorn; Zarifian, Pezhman

    2015-01-01

    Concurrent Engineering Centers (CECs) are specialized facilities with a goal of generating and maturing engineering designs by enabling rapid design iterations. This is accomplished by co-locating a team of experts (either physically or virtually) in a room with a narrow design goal and a limited timeline of a week or less. The systems engineer uses a model of the system to capture the relevant interfaces and manage the overall architecture. A single model that integrates other design information and modeling allows the entire team to visualize the concurrent activity and identify conflicts more efficiently, potentially resulting in a systems model that will continue to be used throughout the project lifecycle. Performing systems engineering using such a system model is the definition of model-based systems engineering (MBSE); therefore, CECs evolving their approach to incorporate advances in MBSE are more successful in reducing time and cost needed to meet study goals. This paper surveys space mission CECs that are in the middle of this evolution, and the authors share their experiences in order to promote discussion within the community.

  5. Model based development of engine control algorithms

    NARCIS (Netherlands)

    Dekker, H.J.; Sturm, W.L.

    1996-01-01

    Model based development of engine control systems has several advantages. The development time and costs are strongly reduced because much of the development and optimization work is carried out by simulating both engine and control system. After optimizing the control algorithm it can be executed

  6. Research on Turbofan Engine Model above Idle State Based on NARX Modeling Approach

    Science.gov (United States)

    Yu, Bing; Shu, Wenjun

    2017-03-01

    The nonlinear model for turbofan engine above idle state based on NARX is studied. Above all, the data sets for the JT9D engine from existing model are obtained via simulation. Then, a nonlinear modeling scheme based on NARX is proposed and several models with different parameters are built according to the former data sets. Finally, the simulations have been taken to verify the precise and dynamic performance the models, the results show that the NARX model can well reflect the dynamics characteristic of the turbofan engine with high accuracy.

  7. Integration of supervisory control synthesis in model-based systems engineering

    NARCIS (Netherlands)

    Baeten, J.C.M.; van de Mortel - Fronczak, J.M.; Rooda, J.E.

    2016-01-01

    Increasing system complexity, time to market and development costs reduction place higher demands on engineering processes. Formal models play an important role here because they enable the use of various model-based analyses and early integration techniques and tools. Engineering processes based on

  8. Integration of supervisory control synthesis in model-based systems engineering

    NARCIS (Netherlands)

    Baeten, J.C.M.; Mortel - Fronczak, van de J.M.; Rooda, J.E.

    2011-01-01

    Due to increasing system complexity, time-to-market and development costs reduction, there are higher demands on engineering processes. Model-based engineering can play a role here because it supports system development by enabling the use of various model-based analysis techniques and tools. As a

  9. Test-Driven, Model-Based Systems Engineering

    DEFF Research Database (Denmark)

    Munck, Allan

    Hearing systems have evolved over many years from simple mechanical devices (horns) to electronic units consisting of microphones, amplifiers, analog filters, loudspeakers, batteries, etc. Digital signal processors replaced analog filters to provide better performance end new features. Central....... This thesis concerns methods for identifying, selecting and implementing tools for various aspects of model-based systems engineering. A comprehensive method was proposed that include several novel steps such as techniques for analyzing the gap between requirements and tool capabilities. The method...... was verified with good results in two case studies for selection of a traceability tool (single-tool scenario) and a set of modeling tools (multi-tool scenarios). Models must be subjected to testing to allow engineers to predict functionality and performance of systems. Test-first strategies are known...

  10. Applying Model Based Systems Engineering to NASA's Space Communications Networks

    Science.gov (United States)

    Bhasin, Kul; Barnes, Patrick; Reinert, Jessica; Golden, Bert

    2013-01-01

    System engineering practices for complex systems and networks now require that requirement, architecture, and concept of operations product development teams, simultaneously harmonize their activities to provide timely, useful and cost-effective products. When dealing with complex systems of systems, traditional systems engineering methodology quickly falls short of achieving project objectives. This approach is encumbered by the use of a number of disparate hardware and software tools, spreadsheets and documents to grasp the concept of the network design and operation. In case of NASA's space communication networks, since the networks are geographically distributed, and so are its subject matter experts, the team is challenged to create a common language and tools to produce its products. Using Model Based Systems Engineering methods and tools allows for a unified representation of the system in a model that enables a highly related level of detail. To date, Program System Engineering (PSE) team has been able to model each network from their top-level operational activities and system functions down to the atomic level through relational modeling decomposition. These models allow for a better understanding of the relationships between NASA's stakeholders, internal organizations, and impacts to all related entities due to integration and sustainment of existing systems. Understanding the existing systems is essential to accurate and detailed study of integration options being considered. In this paper, we identify the challenges the PSE team faced in its quest to unify complex legacy space communications networks and their operational processes. We describe the initial approaches undertaken and the evolution toward model based system engineering applied to produce Space Communication and Navigation (SCaN) PSE products. We will demonstrate the practice of Model Based System Engineering applied to integrating space communication networks and the summary of its

  11. Fusing Quantitative Requirements Analysis with Model-based Systems Engineering

    Science.gov (United States)

    Cornford, Steven L.; Feather, Martin S.; Heron, Vance A.; Jenkins, J. Steven

    2006-01-01

    A vision is presented for fusing quantitative requirements analysis with model-based systems engineering. This vision draws upon and combines emergent themes in the engineering milieu. "Requirements engineering" provides means to explicitly represent requirements (both functional and non-functional) as constraints and preferences on acceptable solutions, and emphasizes early-lifecycle review, analysis and verification of design and development plans. "Design by shopping" emphasizes revealing the space of options available from which to choose (without presuming that all selection criteria have previously been elicited), and provides means to make understandable the range of choices and their ramifications. "Model-based engineering" emphasizes the goal of utilizing a formal representation of all aspects of system design, from development through operations, and provides powerful tool suites that support the practical application of these principles. A first step prototype towards this vision is described, embodying the key capabilities. Illustrations, implications, further challenges and opportunities are outlined.

  12. Model-Based Engineering of Supervisory Controllers using CIF

    NARCIS (Netherlands)

    Schiffelers, R.R.H.; Theunissen, R.J.M.; Beek, van D.A.; Rooda, J.E.; Levendovsky, T.; Lengyel, L.

    2009-01-01

    In the Model-Based Engineering (MBE) paradigm, models are the core elements in the design process of a system from its requirements to the actual implementation of the system. By means of Supervisory Control Theory (SCT), supervisory controllers (supervisors) can be synthesized instead of

  13. Reliability Estimation of Aero-engine Based on Mixed Weibull Distribution Model

    Science.gov (United States)

    Yuan, Zhongda; Deng, Junxiang; Wang, Dawei

    2018-02-01

    Aero-engine is a complex mechanical electronic system, based on analysis of reliability of mechanical electronic system, Weibull distribution model has an irreplaceable role. Till now, only two-parameter Weibull distribution model and three-parameter Weibull distribution are widely used. Due to diversity of engine failure modes, there is a big error with single Weibull distribution model. By contrast, a variety of engine failure modes can be taken into account with mixed Weibull distribution model, so it is a good statistical analysis model. Except the concept of dynamic weight coefficient, in order to make reliability estimation result more accurately, three-parameter correlation coefficient optimization method is applied to enhance Weibull distribution model, thus precision of mixed distribution reliability model is improved greatly. All of these are advantageous to popularize Weibull distribution model in engineering applications.

  14. A Novel Modeling Method for Aircraft Engine Using Nonlinear Autoregressive Exogenous (NARX) Models Based on Wavelet Neural Networks

    Science.gov (United States)

    Yu, Bing; Shu, Wenjun; Cao, Can

    2018-05-01

    A novel modeling method for aircraft engine using nonlinear autoregressive exogenous (NARX) models based on wavelet neural networks is proposed. The identification principle and process based on wavelet neural networks are studied, and the modeling scheme based on NARX is proposed. Then, the time series data sets from three types of aircraft engines are utilized to build the corresponding NARX models, and these NARX models are validated by the simulation. The results show that all the best NARX models can capture the original aircraft engine's dynamic characteristic well with the high accuracy. For every type of engine, the relative identification errors of its best NARX model and the component level model are no more than 3.5 % and most of them are within 1 %.

  15. A Model-Based Anomaly Detection Approach for Analyzing Streaming Aircraft Engine Measurement Data

    Science.gov (United States)

    Simon, Donald L.; Rinehart, Aidan Walker

    2015-01-01

    This paper presents a model-based anomaly detection architecture designed for analyzing streaming transient aircraft engine measurement data. The technique calculates and monitors residuals between sensed engine outputs and model predicted outputs for anomaly detection purposes. Pivotal to the performance of this technique is the ability to construct a model that accurately reflects the nominal operating performance of the engine. The dynamic model applied in the architecture is a piecewise linear design comprising steady-state trim points and dynamic state space matrices. A simple curve-fitting technique for updating the model trim point information based on steadystate information extracted from available nominal engine measurement data is presented. Results from the application of the model-based approach for processing actual engine test data are shown. These include both nominal fault-free test case data and seeded fault test case data. The results indicate that the updates applied to improve the model trim point information also improve anomaly detection performance. Recommendations for follow-on enhancements to the technique are also presented and discussed.

  16. A quantum heat engine based on Tavis-Cummings model

    Science.gov (United States)

    Sun, Kai-Wei; Li, Ran; Zhang, Guo-Feng

    2017-09-01

    This paper will investigate a four-stroke quantum heat engine based on the Tavis-Cummings model. The cycle of the heat engine is similar to the Otto cycle in classical thermodynamics. The relationship between output power as well as cycle efficiency and external physical system parameters are given. Under this condition, the entanglement behavior of the system will be studied. The system can show considerable entanglement by strictly controlling relevant parameters. Unlike common two-level quantum heat engines, efficiency is a function of temperature, showing interesting and unexpected phenomena. Several ways to adjust engine properties by external parameters are proposed, with which the output power and efficiency can be optimized. The heat engine model exhibits high efficiency and output power with the participation of a small number of photons, and decay rapidly as the number of photons increases in entangled area but shows interesting behaviors in non-entangled area of photon numbers.

  17. Enhanced Engine Performance During Emergency Operation Using a Model-Based Engine Control Architecture

    Science.gov (United States)

    Csank, Jeffrey T.; Connolly, Joseph W.

    2016-01-01

    This paper discusses the design and application of model-based engine control (MBEC) for use during emergency operation of the aircraft. The MBEC methodology is applied to the Commercial Modular Aero-Propulsion System Simulation 40k (CMAPSS40k) and features an optimal tuner Kalman Filter (OTKF) to estimate unmeasured engine parameters, which can then be used for control. During an emergency scenario, normally-conservative engine operating limits may be relaxed to increase the performance of the engine and overall survivability of the aircraft; this comes at the cost of additional risk of an engine failure. The MBEC architecture offers the advantage of estimating key engine parameters that are not directly measureable. Estimating the unknown parameters allows for tighter control over these parameters, and on the level of risk the engine will operate at. This will allow the engine to achieve better performance than possible when operating to more conservative limits on a related, measurable parameter.

  18. Model-based Acceleration Control of Turbofan Engines with a Hammerstein-Wiener Representation

    Science.gov (United States)

    Wang, Jiqiang; Ye, Zhifeng; Hu, Zhongzhi; Wu, Xin; Dimirovsky, Georgi; Yue, Hong

    2017-05-01

    Acceleration control of turbofan engines is conventionally designed through either schedule-based or acceleration-based approach. With the widespread acceptance of model-based design in aviation industry, it becomes necessary to investigate the issues associated with model-based design for acceleration control. In this paper, the challenges for implementing model-based acceleration control are explained; a novel Hammerstein-Wiener representation of engine models is introduced; based on the Hammerstein-Wiener model, a nonlinear generalized minimum variance type of optimal control law is derived; the feature of the proposed approach is that it does not require the inversion operation that usually upsets those nonlinear control techniques. The effectiveness of the proposed control design method is validated through a detailed numerical study.

  19. Graph-based modelling in engineering

    CERN Document Server

    Rysiński, Jacek

    2017-01-01

    This book presents versatile, modern and creative applications of graph theory in mechanical engineering, robotics and computer networks. Topics related to mechanical engineering include e.g. machine and mechanism science, mechatronics, robotics, gearing and transmissions, design theory and production processes. The graphs treated are simple graphs, weighted and mixed graphs, bond graphs, Petri nets, logical trees etc. The authors represent several countries in Europe and America, and their contributions show how different, elegant, useful and fruitful the utilization of graphs in modelling of engineering systems can be. .

  20. Model-Based Engine Control Architecture with an Extended Kalman Filter

    Science.gov (United States)

    Csank, Jeffrey T.; Connolly, Joseph W.

    2016-01-01

    This paper discusses the design and implementation of an extended Kalman filter (EKF) for model-based engine control (MBEC). Previously proposed MBEC architectures feature an optimal tuner Kalman Filter (OTKF) to produce estimates of both unmeasured engine parameters and estimates for the health of the engine. The success of this approach relies on the accuracy of the linear model and the ability of the optimal tuner to update its tuner estimates based on only a few sensors. Advances in computer processing are making it possible to replace the piece-wise linear model, developed off-line, with an on-board nonlinear model running in real-time. This will reduce the estimation errors associated with the linearization process, and is typically referred to as an extended Kalman filter. The nonlinear extended Kalman filter approach is applied to the Commercial Modular Aero-Propulsion System Simulation 40,000 (C-MAPSS40k) and compared to the previously proposed MBEC architecture. The results show that the EKF reduces the estimation error, especially during transient operation.

  1. Combustion engine diagnosis model-based condition monitoring of gasoline and diesel engines and their components

    CERN Document Server

    Isermann, Rolf

    2017-01-01

    This book offers first a short introduction to advanced supervision, fault detection and diagnosis methods. It then describes model-based methods of fault detection and diagnosis for the main components of gasoline and diesel engines, such as the intake system, fuel supply, fuel injection, combustion process, turbocharger, exhaust system and exhaust gas aftertreatment. Additionally, model-based fault diagnosis of electrical motors, electric, pneumatic and hydraulic actuators and fault-tolerant systems is treated. In general series production sensors are used. It includes abundant experimental results showing the detection and diagnosis quality of implemented faults. Written for automotive engineers in practice, it is also of interest to graduate students of mechanical and electrical engineering and computer science. The Content Introduction.- I SUPERVISION, FAULT DETECTION AND DIAGNOSIS METHODS.- Supervision, Fault-Detection and Fault-Diagnosis Methods - a short Introduction.- II DIAGNOSIS OF INTERNAL COMBUST...

  2. Engine Modelling for Control Applications

    DEFF Research Database (Denmark)

    Hendricks, Elbert

    1997-01-01

    In earlier work published by the author and co-authors, a dynamic engine model called a Mean Value Engine Model (MVEM) was developed. This model is physically based and is intended mainly for control applications. In its newer form, it is easy to fit to many different engines and requires little...... engine data for this purpose. It is especially well suited to embedded model applications in engine controllers, such as nonlinear observer based air/fuel ratio and advanced idle speed control. After a brief review of this model, it will be compared with other similar models which can be found...

  3. Engine modeling and control modeling and electronic management of internal combustion engines

    CERN Document Server

    Isermann, Rolf

    2014-01-01

    The increasing demands for internal combustion engines with regard to fuel consumption, emissions and driveability lead to more actuators, sensors and complex control functions. A systematic implementation of the electronic control systems requires mathematical models from basic design through simulation to calibration. The book treats physically-based as well as models based experimentally on test benches for gasoline (spark ignition) and diesel (compression ignition) engines and uses them for the design of the different control functions. The main topics are: - Development steps for engine control - Stationary and dynamic experimental modeling - Physical models of intake, combustion, mechanical system, turbocharger, exhaust, cooling, lubrication, drive train - Engine control structures, hardware, software, actuators, sensors, fuel supply, injection system, camshaft - Engine control methods, static and dynamic feedforward and feedback control, calibration and optimization, HiL, RCP, control software developm...

  4. Parametric study of a turbocompound diesel engine based on an analytical model

    International Nuclear Information System (INIS)

    Zhao, Rongchao; Zhuge, Weilin; Zhang, Yangjun; Yin, Yong; Zhao, Yanting; Chen, Zhen

    2016-01-01

    Turbocompounding is an important technique to recover waste heat from engine exhaust and reduce CO_2 emission. This paper presents a parametric study of turbocompound diesel engine based on analytical model. An analytical model was developed to investigate the influence of system parameters on the engine fuel consumption. The model is based on thermodynamics knowledge and empirical models, which can consider the impacts of each parameter independently. The effects of turbine efficiency, back pressure, exhaust temperature, pressure ratio and engine speed on the recovery energy, pumping loss and engine fuel reductions were studied. Results show that turbine efficiency, exhaust temperature and back pressure has great influence on the fuel reduction and optimal power turbine (PT) expansion ratio. However, engine operation speed has little impact on the fuel savings obtained by turbocompounding. The interaction mechanism between the PT recovery power and engine pumping loss is presented in the paper. Due to the nonlinear characteristic of turbine power, there is an optimum value of PT expansion ratio to achieve largest power gain. At the end, the fuel saving potential of high performance turbocompound engine and the requirements for it are proposed in the paper. - Highlights: • An analytical model for turbocompound engine is developed and validated. • Parametric study is performed to obtain lowest BSFC and optimal expansion ratio. • The influences of each parameter on the fuel saving potentials are presented. • The impact mechanisms of each parameter on the energy tradeoff are disclosed. • It provides an effective tool to guide the preliminary design of turbocompounding.

  5. Model-Based Control of an Aircraft Engine using an Optimal Tuner Approach

    Science.gov (United States)

    Connolly, Joseph W.; Chicatelli, Amy; Garg, Sanjay

    2012-01-01

    This paper covers the development of a model-based engine control (MBEC) method- ology applied to an aircraft turbofan engine. Here, a linear model extracted from the Commercial Modular Aero-Propulsion System Simulation 40,000 (CMAPSS40k) at a cruise operating point serves as the engine and the on-board model. The on-board model is up- dated using an optimal tuner Kalman Filter (OTKF) estimation routine, which enables the on-board model to self-tune to account for engine performance variations. The focus here is on developing a methodology for MBEC with direct control of estimated parameters of interest such as thrust and stall margins. MBEC provides the ability for a tighter control bound of thrust over the entire life cycle of the engine that is not achievable using traditional control feedback, which uses engine pressure ratio or fan speed. CMAPSS40k is capable of modeling realistic engine performance, allowing for a verification of the MBEC tighter thrust control. In addition, investigations of using the MBEC to provide a surge limit for the controller limit logic are presented that could provide benefits over a simple acceleration schedule that is currently used in engine control architectures.

  6. Model-based engineering for medical-device software.

    Science.gov (United States)

    Ray, Arnab; Jetley, Raoul; Jones, Paul L; Zhang, Yi

    2010-01-01

    This paper demonstrates the benefits of adopting model-based design techniques for engineering medical device software. By using a patient-controlled analgesic (PCA) infusion pump as a candidate medical device, the authors show how using models to capture design information allows for i) fast and efficient construction of executable device prototypes ii) creation of a standard, reusable baseline software architecture for a particular device family, iii) formal verification of the design against safety requirements, and iv) creation of a safety framework that reduces verification costs for future versions of the device software. 1.

  7. Model-based security engineering for the internet of things

    OpenAIRE

    NEISSE RICARDO; STERI GARY; NAI FOVINO Igor; BALDINI Gianmarco; VAN HOESEL Lodewijk

    2015-01-01

    We propose in this chapter a Model-based Security Toolkit (SecKit) and methodology to address the control and protection of user data in the deployment of the Internet of Things (IoT). This toolkit takes a more general approach for security engineering including risk analysis, establishment of aspect-specific trust relationships, and enforceable security policies. We describe the integrated metamodels used in the toolkit and the accompanying security engineering methodology for IoT systems...

  8. Mechanics and model-based control of advanced engineering systems

    CERN Document Server

    Irschik, Hans; Krommer, Michael

    2014-01-01

    Mechanics and Model-Based Control of Advanced Engineering Systems collects 32 contributions presented at the International Workshop on Advanced Dynamics and Model Based Control of Structures and Machines, which took place in St. Petersburg, Russia in July 2012. The workshop continued a series of international workshops, which started with a Japan-Austria Joint Workshop on Mechanics and Model Based Control of Smart Materials and Structures and a Russia-Austria Joint Workshop on Advanced Dynamics and Model Based Control of Structures and Machines. In the present volume, 10 full-length papers based on presentations from Russia, 9 from Austria, 8 from Japan, 3 from Italy, one from Germany and one from Taiwan are included, which represent the state of the art in the field of mechanics and model based control, with particular emphasis on the application of advanced structures and machines.

  9. Mean Value Engine Modelling of an SI Engine with EGR

    DEFF Research Database (Denmark)

    Føns, Michael; Müller, Martin; Chevalier, Alain

    1999-01-01

    Mean Value Engine Models (MVEMs) are simplified, dynamic engine models what are physically based. Such models are useful for control studies, for engine control system analysis and for model based engine control systems. Very few published MVEMs have included the effects of Exhaust Gas...... Recirculation (EGR). The purpose of this paper is to present a modified MVEM which includes EGR in a physical way. It has been tested using newly developed, very fast manifold pressure, manifold temperature, port and EGR mass flow sensors. Reasonable agreement has been obtained on an experimental engine...

  10. Comparisons between physics-based, engineering, and statistical learning models for outdoor sound propagation.

    Science.gov (United States)

    Hart, Carl R; Reznicek, Nathan J; Wilson, D Keith; Pettit, Chris L; Nykaza, Edward T

    2016-05-01

    Many outdoor sound propagation models exist, ranging from highly complex physics-based simulations to simplified engineering calculations, and more recently, highly flexible statistical learning methods. Several engineering and statistical learning models are evaluated by using a particular physics-based model, namely, a Crank-Nicholson parabolic equation (CNPE), as a benchmark. Narrowband transmission loss values predicted with the CNPE, based upon a simulated data set of meteorological, boundary, and source conditions, act as simulated observations. In the simulated data set sound propagation conditions span from downward refracting to upward refracting, for acoustically hard and soft boundaries, and low frequencies. Engineering models used in the comparisons include the ISO 9613-2 method, Harmonoise, and Nord2000 propagation models. Statistical learning methods used in the comparisons include bagged decision tree regression, random forest regression, boosting regression, and artificial neural network models. Computed skill scores are relative to sound propagation in a homogeneous atmosphere over a rigid ground. Overall skill scores for the engineering noise models are 0.6%, -7.1%, and 83.8% for the ISO 9613-2, Harmonoise, and Nord2000 models, respectively. Overall skill scores for the statistical learning models are 99.5%, 99.5%, 99.6%, and 99.6% for bagged decision tree, random forest, boosting, and artificial neural network regression models, respectively.

  11. Cylinder pressure sensing and model-based control in engine management systems

    Energy Technology Data Exchange (ETDEWEB)

    Truscott, A.; Noble, A.; Akoachere, A.; Beaumont, A. [Ricardo Consulting Engineers Ltd., Bridge Works (United Kingdom); Mueller, R.; Hart, M. [FT2/EA, HPC T721, DaimlerChrysler AG, Stuttgart (Germany); Kroetz, G. [FT2/M, DaimlerChrysler AG, Muenchen (Germany); Cavalloni, C.; Gnielka, M. [Kistler Instrumente AG, Winterthur (Switzerland)

    2000-07-01

    Global demands on fuel economy and lower emissions from automotive vehicles have had a large impact on the development of engine management systems (EMS) in recent years. However, despite the advances in system hardware, the software programmed into these systems has yet to utilise the full potential of modern control methodologies. Model based control and diagnostics is the next step forward in the development of EMS software with the potential of providing improvements in cost, efficiency, emissions and comfort. However, the full utilisation of such techniques requires very close monitoring of engine conditions. This is made possible with the advent of new inexpensive sensor technology that can withstand the harsh environment of the combustion chamber. To exploit the above advances, the AENEAS collaborative project is being carried out by Ricardo, DaimlerChrysler and Kistler, with financial support from the European Commission and Swiss government, and has the objective of realising the benefits of cylinder pressure based engine management system (CPEMS) technology. This paper describes the application of CPEMS technology to a spark ignition (SI) engine. It describes how the combination of model based algorithms, incorporating physical principles, and cylinder pressure sensing can provide an effective means of engine control and diagnostics. (orig.)

  12. Modeling to Mars: a NASA Model Based Systems Engineering Pathfinder Effort

    Science.gov (United States)

    Phojanamongkolkij, Nipa; Lee, Kristopher A.; Miller, Scott T.; Vorndran, Kenneth A.; Vaden, Karl R.; Ross, Eric P.; Powell, Bobby C.; Moses, Robert W.

    2017-01-01

    The NASA Engineering Safety Center (NESC) Systems Engineering (SE) Technical Discipline Team (TDT) initiated the Model Based Systems Engineering (MBSE) Pathfinder effort in FY16. The goals and objectives of the MBSE Pathfinder include developing and advancing MBSE capability across NASA, applying MBSE to real NASA issues, and capturing issues and opportunities surrounding MBSE. The Pathfinder effort consisted of four teams, with each team addressing a particular focus area. This paper focuses on Pathfinder team 1 with the focus area of architectures and mission campaigns. These efforts covered the timeframe of February 2016 through September 2016. The team was comprised of eight team members from seven NASA Centers (Glenn Research Center, Langley Research Center, Ames Research Center, Goddard Space Flight Center IV&V Facility, Johnson Space Center, Marshall Space Flight Center, and Stennis Space Center). Collectively, the team had varying levels of knowledge, skills and expertise in systems engineering and MBSE. The team applied their existing and newly acquired system modeling knowledge and expertise to develop modeling products for a campaign (Program) of crew and cargo missions (Projects) to establish a human presence on Mars utilizing In-Situ Resource Utilization (ISRU). Pathfinder team 1 developed a subset of modeling products that are required for a Program System Requirement Review (SRR)/System Design Review (SDR) and Project Mission Concept Review (MCR)/SRR as defined in NASA Procedural Requirements. Additionally, Team 1 was able to perform and demonstrate some trades and constraint analyses. At the end of these efforts, over twenty lessons learned and recommended next steps have been identified.

  13. Development Of Entrepreneur Learning Model Based On Problem Based Learning To Increase Competency Independence And Creativity Students Of Industrial Engineering

    Directory of Open Access Journals (Sweden)

    Leola Dewiyani

    2017-10-01

    Full Text Available Currently it is undeniable that the competition to get a job is very tight and of course universities have an important role in printing human resources that can compete globally not least with the Department of Industrial Engineering Faculty of Engineering Muhammadiyah University of Jakarta FT UMJ. Problems that occur is based on the analysis obtained from the track record of graduates researchers found that 60 percent of students of Industrial Engineering FT UMJ work not in accordance with the level of education owned so financially their income is still below the standard. This study aims to improve the competence of students of Industrial Engineering Department FT UMJ in entrepreneurship courses especially through the development of Problem Based Learning based learning model. Specific targets of this research were conducted with the aim to identify and analyze the need to implement learning model based on Problem Based Learning Entrepreneurship and to design and develop the model of entrepreneurship based on Problem Based Learning to improve the competence independence and creativity of Industrial Engineering students of FT UMJ in Entrepreneurship course. To achieve the above objectives this research uses research and development R amp D method. The product produced in this research is the detail of learning model of entrepreneurial model based on Problem Based Learning entrepreneurship model based on Problem Based Learning and international journals

  14. Development of Demonstrably Predictive Models for Emissions from Alternative Fuels Based Aircraft Engines

    Science.gov (United States)

    2017-05-01

    Engineering Chemistry Fundamentals, Vol. 5, No. 3, 1966, pp. 356–363. [14] Burns, R. A., Development of scalar and velocity imaging diagnostics...in an Aero- Engine Model Combustor at Elevated Pressure Using URANS and Finite- Rate Chemistry ,” 50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference...FINAL REPORT Development of Demonstrably Predictive Models for Emissions from Alternative Fuels Based Aircraft Engines SERDP Project WP-2151

  15. Industrial Adoption of Model-Based Systems Engineering: Challenges and Strategies

    Science.gov (United States)

    Maheshwari, Apoorv

    As design teams are becoming more globally integrated, one of the biggest challenges is to efficiently communicate across the team. The increasing complexity and multi-disciplinary nature of the products are also making it difficult to keep track of all the information generated during the design process by these global team members. System engineers have identified Model-based Systems Engineering (MBSE) as a possible solution where the emphasis is placed on the application of visual modeling methods and best practices to systems engineering (SE) activities right from the beginning of the conceptual design phases through to the end of the product lifecycle. Despite several advantages, there are multiple challenges restricting the adoption of MBSE by industry. We mainly consider the following two challenges: a) Industry perceives MBSE just as a diagramming tool and does not see too much value in MBSE; b) Industrial adopters are skeptical if the products developed using MBSE approach will be accepted by the regulatory bodies. To provide counter evidence to the former challenge, we developed a generic framework for translation from an MBSE tool (Systems Modeling Language, SysML) to an analysis tool (Agent-Based Modeling, ABM). The translation is demonstrated using a simplified air traffic management problem and provides an example of a potential quite significant value: the ability to use MBSE representations directly in an analysis setting. For the latter challenge, we are developing a reference model that uses SysML to represent a generic infusion pump and SE process for planning, developing, and obtaining regulatory approval of a medical device. This reference model demonstrates how regulatory requirements can be captured effectively through model-based representations. We will present another case study at the end where we will apply the knowledge gained from both case studies to a UAV design problem.

  16. State of the Art : Integrated Management of Requirements in Model-Based Software Engineering

    OpenAIRE

    Thörn, Christer

    2006-01-01

    This report describes the background and future of research concerning integrated management of requirements in model-based software engineering. The focus is on describing the relevant topics and existing theoretical backgrounds that form the basis for the research. The report describes the fundamental difficulties of requirements engineering for software projects, and proposes that the results and methods of models in software engineering can help leverage those problems. Taking inspiration...

  17. Improved Traceability of Mission Concept to Requirements Using Model Based Systems Engineering

    Science.gov (United States)

    Reil, Robin

    2014-01-01

    Model Based Systems Engineering (MBSE) has recently been gaining significant support as a means to improve the traditional document-based systems engineering (DBSE) approach to engineering complex systems. In the spacecraft design domain, there are many perceived and propose benefits of an MBSE approach, but little analysis has been presented to determine the tangible benefits of such an approach (e.g. time and cost saved, increased product quality). This thesis presents direct examples of how developing a small satellite system model can improve traceability of the mission concept to its requirements. A comparison of the processes and approaches for MBSE and DBSE is made using the NASA Ames Research Center SporeSat CubeSat mission as a case study. A model of the SporeSat mission is built using the Systems Modeling Language standard and No Magics MagicDraw modeling tool. The model incorporates mission concept and requirement information from the missions original DBSE design efforts. Active dependency relationships are modeled to analyze the completeness and consistency of the requirements to the mission concept. Overall experience and methodology are presented for both the MBSE and original DBSE design efforts of SporeSat.

  18. A kernel principal component analysis–based degradation model and remaining useful life estimation for the turbofan engine

    Directory of Open Access Journals (Sweden)

    Delong Feng

    2016-05-01

    Full Text Available Remaining useful life estimation of the prognostics and health management technique is a complicated and difficult research question for maintenance. In this article, we consider the problem of prognostics modeling and estimation of the turbofan engine under complicated circumstances and propose a kernel principal component analysis–based degradation model and remaining useful life estimation method for such aircraft engine. We first analyze the output data created by the turbofan engine thermodynamic simulation that is based on the kernel principal component analysis method and then distinguish the qualitative and quantitative relationships between the key factors. Next, we build a degradation model for the engine fault based on the following assumptions: the engine has only had constant failure (i.e. no sudden failure is included, and the engine has a Wiener process, which is a covariate stand for the engine system drift. To predict the remaining useful life of the turbofan engine, we built a health index based on the degradation model and used the method of maximum likelihood and the data from the thermodynamic simulation model to estimate the parameters of this degradation model. Through the data analysis, we obtained a trend model of the regression curve line that fits with the actual statistical data. Based on the predicted health index model and the data trend model, we estimate the remaining useful life of the aircraft engine as the index reaches zero. At last, a case study involving engine simulation data demonstrates the precision and performance advantages of this prediction method that we propose. At last, a case study involving engine simulation data demonstrates the precision and performance advantages of this proposed method, the precision of the method can reach to 98.9% and the average precision is 95.8%.

  19. Digital Model-Based Engineering: Expectations, Prerequisites, and Challenges of Infusion

    Science.gov (United States)

    Hale, J. P.; Zimmerman, P.; Kukkala, G.; Guerrero, J.; Kobryn, P.; Puchek, B.; Bisconti, M.; Baldwin, C.; Mulpuri, M.

    2017-01-01

    Digital model-based engineering (DMbE) is the use of digital artifacts, digital environments, and digital tools in the performance of engineering functions. DMbE is intended to allow an organization to progress from documentation-based engineering methods to digital methods that may provide greater flexibility, agility, and efficiency. The term 'DMbE' was developed as part of an effort by the Model-Based Systems Engineering (MBSE) Infusion Task team to identify what government organizations might expect in the course of moving to or infusing MBSE into their organizations. The Task team was established by the Interagency Working Group on Engineering Complex Systems, an informal collaboration among government systems engineering organizations. This Technical Memorandum (TM) discusses the work of the MBSE Infusion Task team to date. The Task team identified prerequisites, expectations, initial challenges, and recommendations for areas of study to pursue, as well as examples of efforts already in progress. The team identified the following five expectations associated with DMbE infusion, discussed further in this TM: (1) Informed decision making through increased transparency, and greater insight. (2) Enhanced communication. (3) Increased understanding for greater flexibility/adaptability in design. (4) Increased confidence that the capability will perform as expected. (5) Increased efficiency. The team identified the following seven challenges an organization might encounter when looking to infuse DMbE: (1) Assessing value added to the organization. Not all DMbE practices will be applicable to every situation in every organization, and not all implementations will have positive results. (2) Overcoming organizational and cultural hurdles. (3) Adopting contractual practices and technical data management. (4) Redefining configuration management. The DMbE environment changes the range of configuration information to be managed to include performance and design models

  20. Model-Based Engineering Design for Trade Space Exploration throughout the Design Cycle

    Science.gov (United States)

    Lamassoure, Elisabeth S.; Wall, Stephen D.; Easter, Robert W.

    2004-01-01

    This paper presents ongoing work to standardize model-based system engineering as a complement to point design development in the conceptual design phase of deep space missions. It summarizes two first steps towards practical application of this capability within the framework of concurrent engineering design teams and their customers. The first step is standard generation of system sensitivities models as the output of concurrent engineering design sessions, representing the local trade space around a point design. A review of the chosen model development process, and the results of three case study examples, demonstrate that a simple update to the concurrent engineering design process can easily capture sensitivities to key requirements. It can serve as a valuable tool to analyze design drivers and uncover breakpoints in the design. The second step is development of rough-order- of-magnitude, broad-range-of-validity design models for rapid exploration of the trade space, before selection of a point design. At least one case study demonstrated the feasibility to generate such models in a concurrent engineering session. The experiment indicated that such a capability could yield valid system-level conclusions for a trade space composed of understood elements. Ongoing efforts are assessing the practicality of developing end-to-end system-level design models for use before even convening the first concurrent engineering session, starting with modeling an end-to-end Mars architecture.

  1. A Dynamic Model for the Evaluation of Aircraft Engine Icing Detection and Control-Based Mitigation Strategies

    Science.gov (United States)

    Simon, Donald L.; Rinehart, Aidan W.; Jones, Scott M.

    2017-01-01

    Aircraft flying in regions of high ice crystal concentrations are susceptible to the buildup of ice within the compression system of their gas turbine engines. This ice buildup can restrict engine airflow and cause an uncommanded loss of thrust, also known as engine rollback, which poses a potential safety hazard. The aviation community is conducting research to understand this phenomena, and to identify avoidance and mitigation strategies to address the concern. To support this research, a dynamic turbofan engine model has been created to enable the development and evaluation of engine icing detection and control-based mitigation strategies. This model captures the dynamic engine response due to high ice water ingestion and the buildup of ice blockage in the engines low pressure compressor. It includes a fuel control system allowing engine closed-loop control effects during engine icing events to be emulated. The model also includes bleed air valve and horsepower extraction actuators that, when modulated, change overall engine operating performance. This system-level model has been developed and compared against test data acquired from an aircraft turbofan engine undergoing engine icing studies in an altitude test facility and also against outputs from the manufacturers customer deck. This paper will describe the model and show results of its dynamic response under open-loop and closed-loop control operating scenarios in the presence of ice blockage buildup compared against engine test cell data. Planned follow-on use of the model for the development and evaluation of icing detection and control-based mitigation strategies will also be discussed. The intent is to combine the model and control mitigation logic with an engine icing risk calculation tool capable of predicting the risk of engine icing based on current operating conditions. Upon detection of an operating region of risk for engine icing events, the control mitigation logic will seek to change the

  2. Model-Based Engineering and Manufacturing CAD/CAM Benchmark.; FINAL

    International Nuclear Information System (INIS)

    Domm, T.C.; Underwood, R.S.

    1999-01-01

    The Benchmark Project was created from a desire to identify best practices and improve the overall efficiency and performance of the Y-12 Plant's systems and personnel supporting the manufacturing mission. The mission of the benchmark team was to search out industry leaders in manufacturing and evaluate their engineering practices and processes to determine direction and focus for Y-12 modernization efforts. The companies visited included several large established companies and a new, small, high-tech machining firm. As a result of this effort, changes are recommended that will enable Y-12 to become a more modern, responsive, cost-effective manufacturing facility capable of supporting the needs of the Nuclear Weapons Complex (NWC) into the 21st century. The benchmark team identified key areas of interest, both focused and general. The focus areas included Human Resources, Information Management, Manufacturing Software Tools, and Standards/Policies and Practices. Areas of general interest included Infrastructure, Computer Platforms and Networking, and Organizational Structure. The results of this benchmark showed that all companies are moving in the direction of model-based engineering and manufacturing. There was evidence that many companies are trying to grasp how to manage current and legacy data. In terms of engineering design software tools, the companies contacted were somewhere between 3-D solid modeling and surfaced wire-frame models. The manufacturing computer tools were varied, with most companies using more than one software product to generate machining data and none currently performing model-based manufacturing (MBM) from a common model. The majority of companies were closer to identifying or using a single computer-aided design (CAD) system than a single computer-aided manufacturing (CAM) system. The Internet was a technology that all companies were looking to either transport information more easily throughout the corporation or as a conduit for

  3. An assessment of CFD-based wall heat transfer models in piston engines

    Energy Technology Data Exchange (ETDEWEB)

    Sircar, Arpan [Pennsylvania State Univ., University Park, PA (United States); Paul, Chandan [Pennsylvania State Univ., University Park, PA (United States); Ferreyro-Fernandez, Sebastian [Pennsylvania State Univ., University Park, PA (United States); Imren, Abdurrahman [Pennsylvania State Univ., University Park, PA (United States); Haworth, Daniel C [Pennsylvania State Univ., University Park, PA (United States)

    2017-04-26

    The lack of accurate submodels for in-cylinder heat transfer has been identified as a key shortcoming in developing truly predictive, physics-based computational fluid dynamics (CFD) models that can be used to develop combustion systems for advanced high-efficiency, low-emissions engines. Only recently have experimental methods become available that enable accurate near-wall measurements to enhance simulation capability via advancing models. Initial results show crank-angle dependent discrepancies with respect to previously used boundary-layer models of up to 100%. However, available experimental data is quite sparse (only few data points on engine walls) and limited (available measurements are those of heat flux only). Predictive submodels are needed for medium-resolution ("engineering") LES and for unsteady Reynolds-averaged simulations (URANS). Recently, some research groups have performed DNS studies on engine-relevant conditions using simple geometries. These provide very useful data for benchmarking wall heat transfer models under such conditions. Further, a number of new and more sophisticated models have also become available in the literature which account for these engine-like conditions. Some of these have been incorporated while others of a more complex nature, which include solving additional partial differential equations (PDEs) within the thin boundary layer near the wall, are underway. These models will then be tested against the available DNS/experimental data in both SI (spark-ignition) and CI (compression-ignition) engines.

  4. Model based methods and tools for process systems engineering

    DEFF Research Database (Denmark)

    Gani, Rafiqul

    need to be integrated with work-flows and data-flows for specific product-process synthesis-design problems within a computer-aided framework. The framework therefore should be able to manage knowledge-data, models and the associated methods and tools needed by specific synthesis-design work...... of model based methods and tools within a computer aided framework for product-process synthesis-design will be highlighted.......Process systems engineering (PSE) provides means to solve a wide range of problems in a systematic and efficient manner. This presentation will give a perspective on model based methods and tools needed to solve a wide range of problems in product-process synthesis-design. These methods and tools...

  5. Modeling, Design, and Implementation of a Cloud Workflow Engine Based on Aneka

    OpenAIRE

    Zhou, Jiantao; Sun, Chaoxin; Fu, Weina; Liu, Jing; Jia, Lei; Tan, Hongyan

    2014-01-01

    This paper presents a Petri net-based model for cloud workflow which plays a key role in industry. Three kinds of parallelisms in cloud workflow are characterized and modeled. Based on the analysis of the modeling, a cloud workflow engine is designed and implemented in Aneka cloud environment. The experimental results validate the effectiveness of our approach of modeling, design, and implementation of cloud workflow.

  6. AADL and Model-based Engineering

    Science.gov (United States)

    2014-10-20

    pictures – MDE and MDA with UML – Automatically generated documents We need language for architecture modeling • Strongly typed • Well-defined...Mail Software Engineering Institute Customer Relations 4500 Fifth Avenue Pittsburgh, PA 15213-2612 USA Web Wiki.sei.cmu.edu/aadl www.aadl.info

  7. A Physics-Based Starting Model for Gas Turbine Engines, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of this proposal is to demonstrate the feasibility of producing an integrated starting model for gas turbine engines using a new physics-based...

  8. Model-Based Systems Engineering Approach to Managing Mass Margin

    Science.gov (United States)

    Chung, Seung H.; Bayer, Todd J.; Cole, Bjorn; Cooke, Brian; Dekens, Frank; Delp, Christopher; Lam, Doris

    2012-01-01

    When designing a flight system from concept through implementation, one of the fundamental systems engineering tasks ismanaging the mass margin and a mass equipment list (MEL) of the flight system. While generating a MEL and computing a mass margin is conceptually a trivial task, maintaining consistent and correct MELs and mass margins can be challenging due to the current practices of maintaining duplicate information in various forms, such as diagrams and tables, and in various media, such as files and emails. We have overcome this challenge through a model-based systems engineering (MBSE) approach within which we allow only a single-source-of-truth. In this paper we describe the modeling patternsused to capture the single-source-of-truth and the views that have been developed for the Europa Habitability Mission (EHM) project, a mission concept study, at the Jet Propulsion Laboratory (JPL).

  9. MODELS OF PROJECT REVERSE ENGINEERING

    Directory of Open Access Journals (Sweden)

    Віктор Володимирович ІВАНОВ

    2017-03-01

    Full Text Available Reverse engineering decided important scientific and technical problems of increasing the cost of the existing technical product by transforming it into a product with other features or design. Search ideas of the new application of existing products on the base of heuristic analysis were created. The concept of reverse engineering and its division into three types: conceptual, aggregate and complete was expanded. The use of heuristic methods for reverse engineering concept was showed. The modification model of Reverse engineering based on the model of РМВОК was developed. Our model includes two new phases: identification and transformation. At the identification phase, technical control is made. At the transformation phase, search heuristic idea of the new applied existing technical product was made. The model of execution phase that included heuristic methods, metrological equipment, and CAD/CAM/CAE program complex was created. The model that connected economic indicators of reverse engineering project was developed.

  10. An Open-Source Simulation Environment for Model-Based Engineering, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed work is a new spacecraft simulation environment for model-based engineering of flight algorithms and software. The goal is to provide a much faster way...

  11. Engineering model for body armor

    NARCIS (Netherlands)

    Roebroeks, G.H.J.J.; Carton, E.P.

    2014-01-01

    TNO has developed an engineering model for flexible body armor, as one of their energy based engineering models that describe the physics of projectile to target interactions (weaves, metals, ceramics). These models form the basis for exploring the possibilities for protection improvement. This

  12. A probabilistic maintenance model for diesel engines

    Science.gov (United States)

    Pathirana, Shan; Abeygunawardane, Saranga Kumudu

    2018-02-01

    In this paper, a probabilistic maintenance model is developed for inspection based preventive maintenance of diesel engines based on the practical model concepts discussed in the literature. Developed model is solved using real data obtained from inspection and maintenance histories of diesel engines and experts' views. Reliability indices and costs were calculated for the present maintenance policy of diesel engines. A sensitivity analysis is conducted to observe the effect of inspection based preventive maintenance on the life cycle cost of diesel engines.

  13. Mars 2020 Model Based Systems Engineering Pilot

    Science.gov (United States)

    Dukes, Alexandra Marie

    2017-01-01

    The pilot study is led by the Integration Engineering group in NASA's Launch Services Program (LSP). The Integration Engineering (IE) group is responsible for managing the interfaces between the spacecraft and launch vehicle. This pilot investigates the utility of Model-Based Systems Engineering (MBSE) with respect to managing and verifying interface requirements. The main objectives of the pilot are to model several key aspects of the Mars 2020 integrated operations and interface requirements based on the design and verification artifacts from Mars Science Laboratory (MSL) and to demonstrate how MBSE could be used by LSP to gain further insight on the interface between the spacecraft and launch vehicle as well as to enhance how LSP manages the launch service. The method used to accomplish this pilot started through familiarization of SysML, MagicDraw, and the Mars 2020 and MSL systems through books, tutorials, and NASA documentation. MSL was chosen as the focus of the model since its processes and verifications translate easily to the Mars 2020 mission. The study was further focused by modeling specialized systems and processes within MSL in order to demonstrate the utility of MBSE for the rest of the mission. The systems chosen were the In-Flight Disconnect (IFD) system and the Mass Properties process. The IFD was chosen as a system of focus since it is an interface between the spacecraft and launch vehicle which can demonstrate the usefulness of MBSE from a system perspective. The Mass Properties process was chosen as a process of focus since the verifications for mass properties occur throughout the lifecycle and can demonstrate the usefulness of MBSE from a multi-discipline perspective. Several iterations of both perspectives have been modeled and evaluated. While the pilot study will continue for another 2 weeks, pros and cons of using MBSE for LSP IE have been identified. A pro of using MBSE includes an integrated view of the disciplines, requirements, and

  14. Designing the database for a reliability aware Model-Based System Engineering process

    International Nuclear Information System (INIS)

    Cressent, Robin; David, Pierre; Idasiak, Vincent; Kratz, Frederic

    2013-01-01

    This article outlines the need for a reliability database to implement model-based description of components failure modes and dysfunctional behaviors. We detail the requirements such a database should honor and describe our own solution: the Dysfunctional Behavior Database (DBD). Through the description of its meta-model, the benefits of integrating the DBD in the system design process is highlighted. The main advantages depicted are the possibility to manage feedback knowledge at various granularity and semantic levels and to ease drastically the interactions between system engineering activities and reliability studies. The compliance of the DBD with other reliability database such as FIDES is presented and illustrated. - Highlights: ► Model-Based System Engineering is more and more used in the industry. ► It results in a need for a reliability database able to deal with model-based description of dysfunctional behavior. ► The Dysfunctional Behavior Database aims to fulfill that need. ► It helps dealing with feedback management thanks to its structured meta-model. ► The DBD can profit from other reliability database such as FIDES.

  15. Category Theory as a Formal Mathematical Foundation for Model-Based Systems Engineering

    KAUST Repository

    Mabrok, Mohamed; Ryan, Michael J.

    2017-01-01

    In this paper, we introduce Category Theory as a formal foundation for model-based systems engineering. A generalised view of the system based on category theory is presented, where any system can be considered as a category. The objects

  16. Transforming Systems Engineering through Model-Centric Engineering

    Science.gov (United States)

    2018-02-28

    Contract No. HQ0034-13-D-0004 Research Tasks: 48, 118, 141, 157, 170 Report No. SERC-2018-TR-103 Transforming Systems Engineering through...Model-Centric Engineering Technical Report SERC-2018-TR-103 February 28, 2018 Principal Investigator Dr. Mark Blackburn, Stevens Institute of...Systems Engineering Research Center This material is based upon work supported, in whole or in part, by the U.S. Department of Defense through the

  17. Model-based diagnosis of large diesel engines based on angular speed variations of the crankshaft

    Science.gov (United States)

    Desbazeille, M.; Randall, R. B.; Guillet, F.; El Badaoui, M.; Hoisnard, C.

    2010-07-01

    This work aims at monitoring large diesel engines by analyzing the crankshaft angular speed variations. It focuses on a powerful 20-cylinder diesel engine with crankshaft natural frequencies within the operating speed range. First, the angular speed variations are modeled at the crankshaft free end. This includes modeling both the crankshaft dynamical behavior and the excitation torques. As the engine is very large, the first crankshaft torsional modes are in the low frequency range. A model with the assumption of a flexible crankshaft is required. The excitation torques depend on the in-cylinder pressure curve. The latter is modeled with a phenomenological model. Mechanical and combustion parameters of the model are optimized with the help of actual data. Then, an automated diagnosis based on an artificially intelligent system is proposed. Neural networks are used for pattern recognition of the angular speed waveforms in normal and faulty conditions. Reference patterns required in the training phase are computed with the model, calibrated using a small number of actual measurements. Promising results are obtained. An experimental fuel leakage fault is successfully diagnosed, including detection and localization of the faulty cylinder, as well as the approximation of the fault severity.

  18. A Model for Freshman Engineering Retention

    Science.gov (United States)

    Veenstra, Cindy P.; Dey, Eric L.; Herrin, Gary D.

    2009-01-01

    With the current concern over the growing need for more engineers, there is an immediate need to improve freshman engineering retention. A working model for freshman engineering retention is needed. This paper proposes such a model based on Tinto's Interactionalist Theory. Emphasis in this model is placed on pre-college characteristics as…

  19. A Co-modeling Method Based on Component Features for Mechatronic Devices in Aero-engines

    Science.gov (United States)

    Wang, Bin; Zhao, Haocen; Ye, Zhifeng

    2017-08-01

    Data-fused and user-friendly design of aero-engine accessories is required because of their structural complexity and stringent reliability. This paper gives an overview of a typical aero-engine control system and the development process of key mechatronic devices used. Several essential aspects of modeling and simulation in the process are investigated. Considering the limitations of a single theoretic model, feature-based co-modeling methodology is suggested to satisfy the design requirements and compensate for diversity of component sub-models for these devices. As an example, a stepper motor controlled Fuel Metering Unit (FMU) is modeled in view of the component physical features using two different software tools. An interface is suggested to integrate the single discipline models into the synthesized one. Performance simulation of this device using the co-model and parameter optimization for its key components are discussed. Comparison between delivery testing and the simulation shows that the co-model for the FMU has a high accuracy and the absolute superiority over a single model. Together with its compatible interface with the engine mathematical model, the feature-based co-modeling methodology is proven to be an effective technical measure in the development process of the device.

  20. Particulate matter emission modelling based on soot and SOF from direct injection diesel engines

    International Nuclear Information System (INIS)

    Tan, P.Q.; Hu, Z.Y.; Deng, K.Y.; Lu, J.X.; Lou, D.M.; Wan, G.

    2007-01-01

    Particulate matter (PM) emission is one of the major pollutants from diesel engines, and it is harmful for human health and influences the atmospheric visibility. In investigations for reducing PM emission, a simulation model for PM emission is a useful tool. In this paper, a phenomenological, composition based PM model of direct injection (DI) diesel engines has been proposed and formulated to simulate PM emission. The PM emission model is based on a quasi-dimensional multi-zone combustion model using the formation mechanisms of the two main compositions of PM: soot and soluble organic fraction (SOF). First, the quasi-dimensional multi-zone combustion model is given. Then, two models for soot and SOF emissions are established, respectively, and after that, the two models are integrated into a single PM emission model. The soot emission model is given by the difference between a primary formation model and an oxidation model of soot. The soot primary formation model is the Hiroyasu soot formation model, and the Nagle and Strickland-Constable model is adopted for soot oxidation. The SOF emission model is based on an unburned hydrocarbons (HC) emission model, and the HC emission model is given by the difference between a HC primary formation model and a HC oxidation model. The HC primary formation model considers fuel injected and mixed beyond the lean combustion limit during ignition delay and fuel effusing from the nozzle sac volume at low pressure and low velocity. In order to validate the PM emission model, experiments were performed on a six cylinder, turbocharged and intercooled DI diesel engine. The simulation results show good agreement with the experimental data, which indicates the validity of the PM emission model. The calculation results show that the distinctions between PM and soot formation rates are mainly in the early combustion stage. The SOF formation has an important influence on the PM formation at lower loads, and soot formation dominates the

  1. Using Model-Based Systems Engineering To Provide Artifacts for NASA Project Life-Cycle and Technical Reviews

    Science.gov (United States)

    Parrott, Edith L.; Weiland, Karen J.

    2017-01-01

    The ability of systems engineers to use model-based systems engineering (MBSE) to generate self-consistent, up-to-date systems engineering products for project life-cycle and technical reviews is an important aspect for the continued and accelerated acceptance of MBSE. Currently, many review products are generated using labor-intensive, error-prone approaches based on documents, spreadsheets, and chart sets; a promised benefit of MBSE is that users will experience reductions in inconsistencies and errors. This work examines features of SysML that can be used to generate systems engineering products. Model elements, relationships, tables, and diagrams are identified for a large number of the typical systems engineering artifacts. A SysML system model can contain and generate most systems engineering products to a significant extent and this paper provides a guide on how to use MBSE to generate products for project life-cycle and technical reviews. The use of MBSE can reduce the schedule impact usually experienced for review preparation, as in many cases the review products can be auto-generated directly from the system model. These approaches are useful to systems engineers, project managers, review board members, and other key project stakeholders.

  2. 3D modeling based on CityEngine

    Science.gov (United States)

    Jia, Guangyin; Liao, Kaiju

    2017-03-01

    Currently, there are many 3D modeling softwares, like 3DMAX, AUTOCAD, and more populous BIM softwares represented by REVIT. CityEngine modeling software introduced in this paper can fully utilize the existing GIS data and combine other built models to make 3D modeling on internal and external part of buildings in a rapid and batch manner, so as to improve the 3D modeling efficiency.

  3. Agent-based re-engineering of ErbB signaling: a modeling pipeline for integrative systems biology.

    Science.gov (United States)

    Das, Arya A; Ajayakumar Darsana, T; Jacob, Elizabeth

    2017-03-01

    Experiments in systems biology are generally supported by a computational model which quantitatively estimates the parameters of the system by finding the best fit to the experiment. Mathematical models have proved to be successful in reverse engineering the system. The data generated is interpreted to understand the dynamics of the underlying phenomena. The question we have sought to answer is that - is it possible to use an agent-based approach to re-engineer a biological process, making use of the available knowledge from experimental and modelling efforts? Can the bottom-up approach benefit from the top-down exercise so as to create an integrated modelling formalism for systems biology? We propose a modelling pipeline that learns from the data given by reverse engineering, and uses it for re-engineering the system, to carry out in-silico experiments. A mathematical model that quantitatively predicts co-expression of EGFR-HER2 receptors in activation and trafficking has been taken for this study. The pipeline architecture takes cues from the population model that gives the rates of biochemical reactions, to formulate knowledge-based rules for the particle model. Agent-based simulations using these rules, support the existing facts on EGFR-HER2 dynamics. We conclude that, re-engineering models, built using the results of reverse engineering, opens up the possibility of harnessing the power pack of data which now lies scattered in literature. Virtual experiments could then become more realistic when empowered with the findings of empirical cell biology and modelling studies. Implemented on the Agent Modelling Framework developed in-house. C ++ code templates available in Supplementary material . liz.csir@gmail.com. Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

  4. Model-Based Systems Engineering Pilot Program at NASA Langley

    Science.gov (United States)

    Vipavetz, Kevin G.; Murphy, Douglas G.; Infeld, Samatha I.

    2012-01-01

    NASA Langley Research Center conducted a pilot program to evaluate the benefits of using a Model-Based Systems Engineering (MBSE) approach during the early phase of the Materials International Space Station Experiment-X (MISSE-X) project. The goal of the pilot was to leverage MBSE tools and methods, including the Systems Modeling Language (SysML), to understand the net gain of utilizing this approach on a moderate size flight project. The System Requirements Review (SRR) success criteria were used to guide the work products desired from the pilot. This paper discusses the pilot project implementation, provides SysML model examples, identifies lessons learned, and describes plans for further use on MBSE on MISSE-X.

  5. A Model-Based Approach to Engineering Behavior of Complex Aerospace Systems

    Science.gov (United States)

    Ingham, Michel; Day, John; Donahue, Kenneth; Kadesch, Alex; Kennedy, Andrew; Khan, Mohammed Omair; Post, Ethan; Standley, Shaun

    2012-01-01

    One of the most challenging yet poorly defined aspects of engineering a complex aerospace system is behavior engineering, including definition, specification, design, implementation, and verification and validation of the system's behaviors. This is especially true for behaviors of highly autonomous and intelligent systems. Behavior engineering is more of an art than a science. As a process it is generally ad-hoc, poorly specified, and inconsistently applied from one project to the next. It uses largely informal representations, and results in system behavior being documented in a wide variety of disparate documents. To address this problem, JPL has undertaken a pilot project to apply its institutional capabilities in Model-Based Systems Engineering to the challenge of specifying complex spacecraft system behavior. This paper describes the results of the work in progress on this project. In particular, we discuss our approach to modeling spacecraft behavior including 1) requirements and design flowdown from system-level to subsystem-level, 2) patterns for behavior decomposition, 3) allocation of behaviors to physical elements in the system, and 4) patterns for capturing V&V activities associated with behavioral requirements. We provide examples of interesting behavior specification patterns, and discuss findings from the pilot project.

  6. Mathematical Modelling of a Hybrid Micro-Cogeneration Group Based on a Four Stroke Diesel Engine

    Directory of Open Access Journals (Sweden)

    Apostol Valentin

    2014-06-01

    Full Text Available The paper presents a part of the work conducted in the first stage of a Research Grant called ”Hybrid micro-cogeneration group of high efficiency equipped with an electronically assisted ORC” acronym GRUCOHYB. The hybrid micro-cogeneration group is equipped with a four stroke Diesel engine having a maximum power of 40 kW. A mathematical model of the internal combustion engine is presented. The mathematical model is developed based on the Laws of Thermodynamics and takes into account the real, irreversible processes. Based on the mathematical model a computation program was developed. The results obtained were compared with those provided by the Diesel engine manufacturer. Results show a very high correlation between the manufacturer’s data and the simulation results for an engine running at 100% load. Future developments could involve using an exergetic analysis to show the ability of the ORC to generate electricity from recovered heat

  7. Product Lifecycle Management Architecture: A Model Based Systems Engineering Analysis.

    Energy Technology Data Exchange (ETDEWEB)

    Noonan, Nicholas James [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-07-01

    This report is an analysis of the Product Lifecycle Management (PLM) program. The analysis is centered on a need statement generated by a Nuclear Weapons (NW) customer. The need statement captured in this report creates an opportunity for the PLM to provide a robust service as a solution. Lifecycles for both the NW and PLM are analyzed using Model Based System Engineering (MBSE).

  8. A Model-Driven Visualization Tool for Use with Model-Based Systems Engineering Projects

    Science.gov (United States)

    Trase, Kathryn; Fink, Eric

    2014-01-01

    Model-Based Systems Engineering (MBSE) promotes increased consistency between a system's design and its design documentation through the use of an object-oriented system model. The creation of this system model facilitates data presentation by providing a mechanism from which information can be extracted by automated manipulation of model content. Existing MBSE tools enable model creation, but are often too complex for the unfamiliar model viewer to easily use. These tools do not yet provide many opportunities for easing into the development and use of a system model when system design documentation already exists. This study creates a Systems Modeling Language (SysML) Document Traceability Framework (SDTF) for integrating design documentation with a system model, and develops an Interactive Visualization Engine for SysML Tools (InVEST), that exports consistent, clear, and concise views of SysML model data. These exported views are each meaningful to a variety of project stakeholders with differing subjects of concern and depth of technical involvement. InVEST allows a model user to generate multiple views and reports from a MBSE model, including wiki pages and interactive visualizations of data. System data can also be filtered to present only the information relevant to the particular stakeholder, resulting in a view that is both consistent with the larger system model and other model views. Viewing the relationships between system artifacts and documentation, and filtering through data to see specialized views improves the value of the system as a whole, as data becomes information

  9. Vibration-based health monitoring and model refinement of civil engineering structures

    Energy Technology Data Exchange (ETDEWEB)

    Farrar, C.R.; Doebling, S.W.

    1997-10-01

    Damage or fault detection, as determined by changes in the dynamic properties of structures, is a subject that has received considerable attention in the technical literature beginning approximately 30 years ago. The basic idea is that changes in the structure`s properties, primarily stiffness, will alter the dynamic properties of the structure such as resonant frequencies and mode shapes, and properties derived from these quantities such as modal-based flexibility. Recently, this technology has been investigated for applications to health monitoring of large civil engineering structures. This presentation will discuss such a study undertaken by engineers from New Mexico Sate University, Sandia National Laboratory and Los Alamos National Laboratory. Experimental modal analyses were performed in an undamaged interstate highway bridge and immediately after four successively more severe damage cases were inflicted in the main girder of the structure. Results of these tests provide insight into the abilities of modal-based damage ID methods to identify damage and the current limitations of this technology. Closely related topics that will be discussed are the use of modal properties to validate computer models of the structure, the use of these computer models in the damage detection process, and the general lack of experimental investigation of large civil engineering structures.

  10. Incorporating Solid Modeling and Team-Based Design into Freshman Engineering Graphics.

    Science.gov (United States)

    Buchal, Ralph O.

    2001-01-01

    Describes the integration of these topics through a major team-based design and computer aided design (CAD) modeling project in freshman engineering graphics at the University of Western Ontario. Involves n=250 students working in teams of four to design and document an original Lego toy. Includes 12 references. (Author/YDS)

  11. Model-Based Engineering and Manufacturing CAD/CAM Benchmark

    International Nuclear Information System (INIS)

    Domm, T.D.; Underwood, R.S.

    1999-01-01

    The Benehmark Project was created from a desire to identify best practices and improve the overall efficiency and performance of the Y-12 Plant's systems and personnel supporting the manufacturing mission. The mission of the benchmark team was to search out industry leaders in manufacturing and evaluate their engineering practices and processes to determine direction and focus fm Y-12 modmizadon efforts. The companies visited included several large established companies and anew, small, high-tech machining firm. As a result of this effort changes are recommended that will enable Y-12 to become a more responsive cost-effective manufacturing facility capable of suppording the needs of the Nuclear Weapons Complex (NW at sign) and Work Fw Others into the 21' century. The benchmark team identified key areas of interest, both focused and gencml. The focus arm included Human Resources, Information Management, Manufacturing Software Tools, and Standarda/ Policies and Practices. Areas of general interest included Inhstructure, Computer Platforms and Networking, and Organizational Structure. The method for obtaining the desired information in these areas centered on the creation of a benchmark questionnaire. The questionnaire was used throughout each of the visits as the basis for information gathering. The results of this benchmark showed that all companies are moving in the direction of model-based engineering and manufacturing. There was evidence that many companies are trying to grasp how to manage current and legacy data. In terms of engineering design software tools, the companies contacted were using both 3-D solid modeling and surfaced Wire-frame models. The manufacturing computer tools were varie4 with most companies using more than one software product to generate machining data and none currently performing model-based manufacturing (MBM) ftom a common medel. The majority of companies were closer to identifying or using a single computer-aided design (CAD) system

  12. Model-Based Control of a Nonlinear Aircraft Engine Simulation using an Optimal Tuner Kalman Filter Approach

    Science.gov (United States)

    Connolly, Joseph W.; Csank, Jeffrey Thomas; Chicatelli, Amy; Kilver, Jacob

    2013-01-01

    This paper covers the development of a model-based engine control (MBEC) methodology featuring a self tuning on-board model applied to an aircraft turbofan engine simulation. Here, the Commercial Modular Aero-Propulsion System Simulation 40,000 (CMAPSS40k) serves as the MBEC application engine. CMAPSS40k is capable of modeling realistic engine performance, allowing for a verification of the MBEC over a wide range of operating points. The on-board model is a piece-wise linear model derived from CMAPSS40k and updated using an optimal tuner Kalman Filter (OTKF) estimation routine, which enables the on-board model to self-tune to account for engine performance variations. The focus here is on developing a methodology for MBEC with direct control of estimated parameters of interest such as thrust and stall margins. Investigations using the MBEC to provide a stall margin limit for the controller protection logic are presented that could provide benefits over a simple acceleration schedule that is currently used in traditional engine control architectures.

  13. Model Based Mission Assurance in a Model Based Systems Engineering (MBSE) Framework: State-of-the-Art Assessment

    Science.gov (United States)

    Cornford, Steven L.; Feather, Martin S.

    2016-01-01

    This report explores the current state of the art of Safety and Mission Assurance (S&MA) in projects that have shifted towards Model Based Systems Engineering (MBSE). Its goal is to provide insight into how NASA's Office of Safety and Mission Assurance (OSMA) should respond to this shift. In MBSE, systems engineering information is organized and represented in models: rigorous computer-based representations, which collectively make many activities easier to perform, less error prone, and scalable. S&MA practices must shift accordingly. The "Objective Structure Hierarchies" recently developed by OSMA provide the framework for understanding this shift. Although the objectives themselves will remain constant, S&MA practices (activities, processes, tools) to achieve them are subject to change. This report presents insights derived from literature studies and interviews. The literature studies gleaned assurance implications from reports of space-related applications of MBSE. The interviews with knowledgeable S&MA and MBSE personnel discovered concerns and ideas for how assurance may adapt. Preliminary findings and observations are presented on the state of practice of S&MA with respect to MBSE, how it is already changing, and how it is likely to change further. Finally, recommendations are provided on how to foster the evolution of S&MA to best fit with MBSE.

  14. Improved Traceability of a Small Satellite Mission Concept to Requirements Using Model Based System Engineering

    Science.gov (United States)

    Reil, Robin L.

    2014-01-01

    Model Based Systems Engineering (MBSE) has recently been gaining significant support as a means to improve the "traditional" document-based systems engineering (DBSE) approach to engineering complex systems. In the spacecraft design domain, there are many perceived and propose benefits of an MBSE approach, but little analysis has been presented to determine the tangible benefits of such an approach (e.g. time and cost saved, increased product quality). This paper presents direct examples of how developing a small satellite system model can improve traceability of the mission concept to its requirements. A comparison of the processes and approaches for MBSE and DBSE is made using the NASA Ames Research Center SporeSat CubeSat mission as a case study. A model of the SporeSat mission is built using the Systems Modeling Language standard and No Magic's MagicDraw modeling tool. The model incorporates mission concept and requirement information from the mission's original DBSE design efforts. Active dependency relationships are modeled to demonstrate the completeness and consistency of the requirements to the mission concept. Anecdotal information and process-duration metrics are presented for both the MBSE and original DBSE design efforts of SporeSat.

  15. Risk Assessment of Engineering Project Financing Based on PPP Model

    Directory of Open Access Journals (Sweden)

    Ma Qiuli

    2017-01-01

    Full Text Available At present, the project financing channel is single, and the urban facilities are in short supply, and the risk assessment and prevention mechanism of financing should be further improved to reduce the risk of project financing. In view of this, the fuzzy comprehensive evaluation model of project financing risk which combined the method of fuzzy comprehensive evaluation and analytic hierarchy process is established. The scientificalness and effectiveness of the model are verified by the example of the world port project in Luohe city, and it provides basis and reference for engineering project financing based on PPP mode.

  16. An Arts-Based Instructional Model for Student Creativity in Engineering Design

    Directory of Open Access Journals (Sweden)

    Brian Laduca

    2017-02-01

    Full Text Available Over the past twenty years, nearly all job growth in the United States has emerged from new companies and organizations with assumedly innovative products, services, and practices. Yet, the nurturing of student creative thinking and problem solving is infrequent in engineering education. Inherent to developing these creativity skills and attributes is the need to be exposed to difference — in people and environment. Engineering education rarely offers such opportunities. Additionally, engineering students are rarely presented opportunities to develop designs responding to real human problems. This paper puts forth a new instructional model to address these needs by utilizing arts processes and practices as catalysts for both creativity development in students and transdisciplinary collaboration on problems addressing deep human needs. This model is premised on the substantiated role of the arts in developing creativity and growing understanding of the human condition. This art-based instructional model was piloted as exploratory pedagogical research during the summers of 2015 and 2016 as a partnership between the Arts Nexus (IAN and the School of Engineering at the University of Dayton. In each year, this program supported twelve student interns from engineering, business, science, the arts, and the humanities to develop innovative technologies and services meeting client needs. Student growth in creative problem-solving and transdisciplinary collaboration, as well as the success of the completed innovation technology prototype were assessed by the project mentors and participating students via survey evaluations and narrative responses. The assessment results revealed substantial student growth in student creativity and transdisciplinary collaboration and a remarkably strong evaluation of the success of the students’ innovations. Also realized for all students was a transformation in their perception of their place in the world as

  17. Support vector machine-based exergetic modelling of a DI diesel engine running on biodiesel–diesel blends containing expanded polystyrene

    International Nuclear Information System (INIS)

    Shamshirband, Shahaboddin; Tabatabaei, Meisam; Aghbashlo, Mortaza; Yee, Por Lip; Petković, Dalibor

    2016-01-01

    Highlights: • SVM-based thermodynamic modelling of a DI diesel engine working with diesel/biodiesel blends containing EPS. • Comparison of SVM-WT, SVM-FFA, SVM-RBF, SVM-QPSO, and ANN approaches for exergetic modelling of the engine. • Satisfactory performance of the SVM-WT for performance modelling of the engine over the other approaches. - Abstract: In the present study, four Support Vector Machine-based (SVM-based) approaches and the standard artificial neural network (ANN) model were designed and compared in modelling the exergetic parameters of a DI diesel engine running on diesel/biodiesel blends containing expanded polystyrene (EPS) wastes. For this aim, the SVM was coupled with discrete wavelet transform (SVM-WT), firefly algorithm (SVM-FFA), radial basis function (SVM-RBF) and quantum particle swarm optimization (SVM-QPSO). The exergetic data were computed using mass, energy, and exergy balance equations for the engine at different speeds and loads as well as various biodiesel and EPS wastes quantities. Three statistical indicators namely root means square error, coefficient of determination and Pearson coefficient were used to access the capability of the developed approaches for exergetic performance modelling of the DI diesel engine. The modelling results indicated that the SVM-WT approach was more efficient in exergetic modelling of the engine than the other three approaches. Moreover, the results obtained confirmed the effectiveness of the SVM-WT model in identifying the most exergy-efficient combustion conditions and the best fuel composition for achieving the most cost-effective and eco-friendly combustion process.

  18. Precipitation in Powder Metallurgy, Nickel Base Superalloys: Review of Modeling Approach and Formulation of Engineering (Postprint)

    Science.gov (United States)

    2016-12-01

    AFRL-RX-WP-JA-2016-0333 PRECIPITATION IN POWDER- METALLURGY , NICKEL-BASE SUPERALLOYS: REVIEW OF MODELING APPROACH AND FORMULATION OF...PRECIPITATION IN POWDER- METALLURGY , NICKEL- BASE SUPERALLOYS: REVIEW OF MODELING APPROACH AND FORMULATION OF ENGINEERING (POSTPRINT) 5a...and kinetic parameters required for the modeling of γ′ precipitation in powder- metallurgy (PM), nickel-base superalloys are summarized. These

  19. Mean Value Modelling of an SI Engine with EGR

    DEFF Research Database (Denmark)

    Føns, Michael; Muller, Martin; Chevalier, Alain

    1999-01-01

    Mean Value Engine Models (MVEMs) are simplified, dynamic engine models which are physically based. Such models are useful for control studies, for engine control system analysis and for model based control systems. Very few published MVEMs have included the effects of Exhaust Gas Recirculation (EGR......). The purpose of this paper is to present a modified MVEM which includes EGR in a physical way. It has been tested using newly developed, ver fast manifold pressure, manifold temperature, port and EGR mass flow sensores. Reasonable agreement has been obtained on an experimental engine, mounted on a dynamometer....

  20. Vibration modelling and verifications for whole aero-engine

    Science.gov (United States)

    Chen, G.

    2015-08-01

    In this study, a new rotor-ball-bearing-casing coupling dynamic model for a practical aero-engine is established. In the coupling system, the rotor and casing systems are modelled using the finite element method, support systems are modelled as lumped parameter models, nonlinear factors of ball bearings and faults are included, and four types of supports and connection models are defined to model the complex rotor-support-casing coupling system of the aero-engine. A new numerical integral method that combines the Newmark-β method and the improved Newmark-β method (Zhai method) is used to obtain the system responses. Finally, the new model is verified in three ways: (1) modal experiment based on rotor-ball bearing rig, (2) modal experiment based on rotor-ball-bearing-casing rig, and (3) fault simulations for a certain type of missile turbofan aero-engine vibration. The results show that the proposed model can not only simulate the natural vibration characteristics of the whole aero-engine but also effectively perform nonlinear dynamic simulations of a whole aero-engine with faults.

  1. Collaborative Model-based Systems Engineering for Cyber-Physical Systems, with a Building Automation Case Study

    DEFF Research Database (Denmark)

    Fitzgerald, John; Gamble, Carl; Payne, Richard

    2016-01-01

    We describe an approach to the model-based engineering of cyber-physical systems that permits the coupling of diverse discrete-event and continuous-time models and their simulators. A case study in the building automation domain demonstrates how such co-models and co-simulation can promote early...

  2. A dislocation-based crystal viscoplasticity model with application to micro-engineered plasma-facing materials

    Energy Technology Data Exchange (ETDEWEB)

    Rivera, David; Huang, Yue; Po, Giacomo; Ghoniem, Nasr M., E-mail: ghoniem@ucla.edu

    2017-03-15

    Materials developed with special surface architecture are shown here to be more resilient to the transient thermomechanical environments imposed by intermittent exposures to high heat flux thermal loading typical of long-pulse plasma transients. In an accompanying article, we present experimental results that show the relaxation of residual thermal stresses in micro-engineered W surfaces. A dislocation-based model is extended here within the framework of large deformation crystal plasticity. The model is applied to the deformation of single crystals, polycrystals, and micro-engineered surfaces composed of a uniform density of micro-pillars. The model is utilized to design tapered surface micro-pillar architecture, composed of a Re core and W coatings. Residual stresses generated by cyclic thermomechanical loading of these architectures show that the surface can be in a compressive stress state, following a short shakedown plasma exposure, thus mitigating surface fracture. - • Materials developed with special surface architecture are shown to be more resilient to the transient thermomechanical plasma transients. • A dislocation-based model is extended within the framework of large deformation crystal plasticity. • The model is applied to the deformation of single crystals, polycrystals, and micro-engineered surfaces. • The model is utilized to design tapered surface micro-pillar architecture, composed of a Re core and W coatings. • Residual stresses generated by cyclic thermomechanical loading show that the surface can be in a compressive stress state, thus mitigating surface fracture.

  3. A dislocation-based crystal viscoplasticity model with application to micro-engineered plasma-facing materials

    International Nuclear Information System (INIS)

    Rivera, David; Huang, Yue; Po, Giacomo; Ghoniem, Nasr M.

    2017-01-01

    Materials developed with special surface architecture are shown here to be more resilient to the transient thermomechanical environments imposed by intermittent exposures to high heat flux thermal loading typical of long-pulse plasma transients. In an accompanying article, we present experimental results that show the relaxation of residual thermal stresses in micro-engineered W surfaces. A dislocation-based model is extended here within the framework of large deformation crystal plasticity. The model is applied to the deformation of single crystals, polycrystals, and micro-engineered surfaces composed of a uniform density of micro-pillars. The model is utilized to design tapered surface micro-pillar architecture, composed of a Re core and W coatings. Residual stresses generated by cyclic thermomechanical loading of these architectures show that the surface can be in a compressive stress state, following a short shakedown plasma exposure, thus mitigating surface fracture. - • Materials developed with special surface architecture are shown to be more resilient to the transient thermomechanical plasma transients. • A dislocation-based model is extended within the framework of large deformation crystal plasticity. • The model is applied to the deformation of single crystals, polycrystals, and micro-engineered surfaces. • The model is utilized to design tapered surface micro-pillar architecture, composed of a Re core and W coatings. • Residual stresses generated by cyclic thermomechanical loading show that the surface can be in a compressive stress state, thus mitigating surface fracture.

  4. Using A Model-Based Systems Engineering Approach For Exploration Medical System Development

    Science.gov (United States)

    Hanson, A.; Mindock, J.; McGuire, K.; Reilly, J.; Cerro, J.; Othon, W.; Rubin, D.; Urbina, M.; Canga, M.

    2017-01-01

    NASA's Human Research Program's Exploration Medical Capabilities (ExMC) element is defining the medical system needs for exploration class missions. ExMC's Systems Engineering (SE) team will play a critical role in successful design and implementation of the medical system into exploration vehicles. The team's mission is to "Define, develop, validate, and manage the technical system design needed to implement exploration medical capabilities for Mars and test the design in a progression of proving grounds." Development of the medical system is being conducted in parallel with exploration mission architecture and vehicle design development. Successful implementation of the medical system in this environment will require a robust systems engineering approach to enable technical communication across communities to create a common mental model of the emergent engineering and medical systems. Model-Based Systems Engineering (MBSE) improves shared understanding of system needs and constraints between stakeholders and offers a common language for analysis. The ExMC SE team is using MBSE techniques to define operational needs, decompose requirements and architecture, and identify medical capabilities needed to support human exploration. Systems Modeling Language (SysML) is the specific language the SE team is utilizing, within an MBSE approach, to model the medical system functional needs, requirements, and architecture. Modeling methods are being developed through the practice of MBSE within the team, and tools are being selected to support meta-data exchange as integration points to other system models are identified. Use of MBSE is supporting the development of relationships across disciplines and NASA Centers to build trust and enable teamwork, enhance visibility of team goals, foster a culture of unbiased learning and serving, and be responsive to customer needs. The MBSE approach to medical system design offers a paradigm shift toward greater integration between

  5. Model-based system engineering approach for the Euclid mission to manage scientific and technical complexity

    Science.gov (United States)

    Lorenzo Alvarez, Jose; Metselaar, Harold; Amiaux, Jerome; Saavedra Criado, Gonzalo; Gaspar Venancio, Luis M.; Salvignol, Jean-Christophe; Laureijs, René J.; Vavrek, Roland

    2016-08-01

    In the last years, the system engineering field is coming to terms with a paradigm change in the approach for complexity management. Different strategies have been proposed to cope with highly interrelated systems, system of systems and collaborative system engineering have been proposed and a significant effort is being invested into standardization and ontology definition. In particular, Model Based System Engineering (MBSE) intends to introduce methodologies for a systematic system definition, development, validation, deployment, operation and decommission, based on logical and visual relationship mapping, rather than traditional 'document based' information management. The practical implementation in real large-scale projects is not uniform across fields. In space science missions, the usage has been limited to subsystems or sample projects with modeling being performed 'a-posteriori' in many instances. The main hurdle for the introduction of MBSE practices in new projects is still the difficulty to demonstrate their added value to a project and whether their benefit is commensurate with the level of effort required to put them in place. In this paper we present the implemented Euclid system modeling activities, and an analysis of the benefits and limitations identified to support in particular requirement break-down and allocation, and verification planning at mission level.

  6. Toward design-based engineering of industrial microbes.

    Science.gov (United States)

    Tyo, Keith E J; Kocharin, Kanokarn; Nielsen, Jens

    2010-06-01

    Engineering industrial microbes has been hampered by incomplete knowledge of cell biology. Thus an iterative engineering cycle of modeling, implementation, and analysis has been used to increase knowledge of the underlying biology while achieving engineering goals. Recent advances in Systems Biology technologies have drastically improved the amount of information that can be collected in each iteration. As well, Synthetic Biology tools are melding modeling and molecular implementation. These advances promise to move microbial engineering from the iterative approach to a design-oriented paradigm, similar to electrical circuits and architectural design. Genome-scale metabolic models, new tools for controlling expression, and integrated -omics analysis are described as key contributors in moving the field toward Design-based Engineering. Copyright 2010 Elsevier Ltd. All rights reserved.

  7. Mean Value Modelling of a Turbocharged SI Engine

    DEFF Research Database (Denmark)

    Müller, Martin; Hendricks, Elbert; Sorenson, Spencer C.

    1998-01-01

    An important paradigm for the modelling of naturallly aspirated (NA) spark ignition (SI) engines for control purposes is the Mean Value Engine Model (MVEM). Such models have a time resolution which is just sufficient to capture the main details of the dynamic performance of NA SI engines...... but not the cycle-by-cycle behavior. In principle such models are also physically based,are very compact in a mathematical sense but nevertheless can have reasonable prediction accuracy. Presently no MVEMs have been constructed for intercooled turbocharged SI engines because their complexity confounds the simple...... physical understanding and description of such engines. This paper presents a newly constructed MVEM for a turbocharged SI engine which contains the details of the compressor and turbine characteristics in a compact way. The model has been tested against the responses of an experimental engine and has...

  8. Implementation of a Goal-Based Systems Engineering Process Using the Systems Modeling Language (SysML)

    Science.gov (United States)

    Breckenridge, Jonathan T.; Johnson, Stephen B.

    2013-01-01

    Building upon the purpose, theoretical approach, and use of a Goal-Function Tree (GFT) being presented by Dr. Stephen B. Johnson, described in a related Infotech 2013 ISHM abstract titled "Goal-Function Tree Modeling for Systems Engineering and Fault Management", this paper will describe the core framework used to implement the GFTbased systems engineering process using the Systems Modeling Language (SysML). These two papers are ideally accepted and presented together in the same Infotech session. Statement of problem: SysML, as a tool, is currently not capable of implementing the theoretical approach described within the "Goal-Function Tree Modeling for Systems Engineering and Fault Management" paper cited above. More generally, SysML's current capabilities to model functional decompositions in the rigorous manner required in the GFT approach are limited. The GFT is a new Model-Based Systems Engineering (MBSE) approach to the development of goals and requirements, functions, and its linkage to design. As a growing standard for systems engineering, it is important to develop methods to implement GFT in SysML. Proposed Method of Solution: Many of the central concepts of the SysML language are needed to implement a GFT for large complex systems. In the implementation of those central concepts, the following will be described in detail: changes to the nominal SysML process, model view definitions and examples, diagram definitions and examples, and detailed SysML construct and stereotype definitions.

  9. A cylinder pressure based engine management system

    Energy Technology Data Exchange (ETDEWEB)

    Truscott, A.; Noble, A. [Ricardo Consulting Engineers Ltd. (United Kingdom); Mueller, R.; Hart, M.; Kroetz, G.; Eickhoff, M. [DaimlerChrysler AG (Germany); Cavalloni, C.; Gnielka, M. [Kistler Instrumente AG (Switzerland)

    2000-07-01

    Worldwide demands on fuel economy and lower emissions from automotive vehicles have led to stringent requirements in the development of Engine Management Systems (EMS). Cylinder Pressure based Engine Management Systems (CPEMS) provide a way forward in EMS technology by combining intelligent control algorithms with innovative sensing techniques. The full utilisation of model-based control and diagnostics to provide improvements in cost, efficiency, emissions and comfort requires the close monitoring of engine conditions. This is made possible with the advent of new inexpensive sensor materials that can withstand the harsh environment of the combustion chamber. AENEAS is a collaborative project undertaken by Ricardo, DaimlerChrysler and Kistler, with financial support from the European Commission and the Swiss Government, aimed at demonstrating the major benefits of CPEMS technology. This paper describes the application of CPEMS technology to a spark ignition (SI) engine. It describes how the combination of model based algorithms, incorporating physical principles, and cylinder pressure sensing can provide an effective means of engine control and diagnostics. Results are presented to demonstrate the benefits of this new technology. (author)

  10. Engineering spinal fusion: evaluating ceramic materials for cell based tissue engineered approaches

    NARCIS (Netherlands)

    Wilson, C.E.

    2011-01-01

    The principal aim of this thesis was to advance the development of tissue engineered posterolateral spinal fusion by investigating the potential of calcium phosphate ceramic materials to support cell based tissue engineered bone formation. This was accomplished by developing several novel model

  11. Performance analysis and dynamic modeling of a single-spool turbojet engine

    Science.gov (United States)

    Andrei, Irina-Carmen; Toader, Adrian; Stroe, Gabriela; Frunzulica, Florin

    2017-01-01

    The purposes of modeling and simulation of a turbojet engine are the steady state analysis and transient analysis. From the steady state analysis, which consists in the investigation of the operating, equilibrium regimes and it is based on appropriate modeling describing the operation of a turbojet engine at design and off-design regimes, results the performance analysis, concluded by the engine's operational maps (i.e. the altitude map, velocity map and speed map) and the engine's universal map. The mathematical model that allows the calculation of the design and off-design performances, in case of a single spool turbojet is detailed. An in house code was developed, its calibration was done for the J85 turbojet engine as the test case. The dynamic modeling of the turbojet engine is obtained from the energy balance equations for compressor, combustor and turbine, as the engine's main parts. The transient analysis, which is based on appropriate modeling of engine and its main parts, expresses the dynamic behavior of the turbojet engine, and further, provides details regarding the engine's control. The aim of the dynamic analysis is to determine a control program for the turbojet, based on the results provided by performance analysis. In case of the single-spool turbojet engine, with fixed nozzle geometry, the thrust is controlled by one parameter, which is the fuel flow rate. The design and management of the aircraft engine controls are based on the results of the transient analysis. The construction of the design model is complex, since it is based on both steady-state and transient analysis, further allowing the flight path cycle analysis and optimizations. This paper presents numerical simulations for a single-spool turbojet engine (J85 as test case), with appropriate modeling for steady-state and dynamic analysis.

  12. Engineering design of systems models and methods

    CERN Document Server

    Buede, Dennis M

    2009-01-01

    The ideal introduction to the engineering design of systems-now in a new edition. The Engineering Design of Systems, Second Edition compiles a wealth of information from diverse sources to provide a unique, one-stop reference to current methods for systems engineering. It takes a model-based approach to key systems engineering design activities and introduces methods and models used in the real world. Features new to this edition include: * The addition of Systems Modeling Language (SysML) to several of the chapters, as well as the introduction of new terminology * Additional material on partitioning functions and components * More descriptive material on usage scenarios based on literature from use case development * Updated homework assignments * The software product CORE (from Vitech Corporation) is used to generate the traditional SE figures and the software product MagicDraw UML with SysML plugins (from No Magic, Inc.) is used for the SysML figures This book is designed to be an introductory reference ...

  13. Supervisor synthesis in model-based automotive systems engineering

    NARCIS (Netherlands)

    van de Mortel - Fronczak, J.M.; van der Heijden, M.H.R.; Huisman, R.G.M.; Reniers, M.A.

    2014-01-01

    It is recognized by various engineering disciplines that models support and speed up the development of systems consisting of numerous closely related computational and physical elements, since they enable extensive and early functional and performance analysis of the designs and allow for control

  14. A new solar power output prediction based on hybrid forecast engine and decomposition model.

    Science.gov (United States)

    Zhang, Weijiang; Dang, Hongshe; Simoes, Rolando

    2018-06-12

    Regarding to the growing trend of photovoltaic (PV) energy as a clean energy source in electrical networks and its uncertain nature, PV energy prediction has been proposed by researchers in recent decades. This problem is directly effects on operation in power network while, due to high volatility of this signal, an accurate prediction model is demanded. A new prediction model based on Hilbert Huang transform (HHT) and integration of improved empirical mode decomposition (IEMD) with feature selection and forecast engine is presented in this paper. The proposed approach is divided into three main sections. In the first section, the signal is decomposed by the proposed IEMD as an accurate decomposition tool. To increase the accuracy of the proposed method, a new interpolation method has been used instead of cubic spline curve (CSC) fitting in EMD. Then the obtained output is entered into the new feature selection procedure to choose the best candidate inputs. Finally, the signal is predicted by a hybrid forecast engine composed of support vector regression (SVR) based on an intelligent algorithm. The effectiveness of the proposed approach has been verified over a number of real-world engineering test cases in comparison with other well-known models. The obtained results prove the validity of the proposed method. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  15. Fault diagnostics for turbo-shaft engine sensors based on a simplified on-board model.

    Science.gov (United States)

    Lu, Feng; Huang, Jinquan; Xing, Yaodong

    2012-01-01

    Combining a simplified on-board turbo-shaft model with sensor fault diagnostic logic, a model-based sensor fault diagnosis method is proposed. The existing fault diagnosis method for turbo-shaft engine key sensors is mainly based on a double redundancies technique, and this can't be satisfied in some occasions as lack of judgment. The simplified on-board model provides the analytical third channel against which the dual channel measurements are compared, while the hardware redundancy will increase the structure complexity and weight. The simplified turbo-shaft model contains the gas generator model and the power turbine model with loads, this is built up via dynamic parameters method. Sensor fault detection, diagnosis (FDD) logic is designed, and two types of sensor failures, such as the step faults and the drift faults, are simulated. When the discrepancy among the triplex channels exceeds a tolerance level, the fault diagnosis logic determines the cause of the difference. Through this approach, the sensor fault diagnosis system achieves the objectives of anomaly detection, sensor fault diagnosis and redundancy recovery. Finally, experiments on this method are carried out on a turbo-shaft engine, and two types of faults under different channel combinations are presented. The experimental results show that the proposed method for sensor fault diagnostics is efficient.

  16. Fault Diagnostics for Turbo-Shaft Engine Sensors Based on a Simplified On-Board Model

    Directory of Open Access Journals (Sweden)

    Yaodong Xing

    2012-08-01

    Full Text Available Combining a simplified on-board turbo-shaft model with sensor fault diagnostic logic, a model-based sensor fault diagnosis method is proposed. The existing fault diagnosis method for turbo-shaft engine key sensors is mainly based on a double redundancies technique, and this can’t be satisfied in some occasions as lack of judgment. The simplified on-board model provides the analytical third channel against which the dual channel measurements are compared, while the hardware redundancy will increase the structure complexity and weight. The simplified turbo-shaft model contains the gas generator model and the power turbine model with loads, this is built up via dynamic parameters method. Sensor fault detection, diagnosis (FDD logic is designed, and two types of sensor failures, such as the step faults and the drift faults, are simulated. When the discrepancy among the triplex channels exceeds a tolerance level, the fault diagnosis logic determines the cause of the difference. Through this approach, the sensor fault diagnosis system achieves the objectives of anomaly detection, sensor fault diagnosis and redundancy recovery. Finally, experiments on this method are carried out on a turbo-shaft engine, and two types of faults under different channel combinations are presented. The experimental results show that the proposed method for sensor fault diagnostics is efficient.

  17. Animal models for bone tissue engineering and modelling disease

    Science.gov (United States)

    Griffin, Michelle

    2018-01-01

    ABSTRACT Tissue engineering and its clinical application, regenerative medicine, are instructing multiple approaches to aid in replacing bone loss after defects caused by trauma or cancer. In such cases, bone formation can be guided by engineered biodegradable and nonbiodegradable scaffolds with clearly defined architectural and mechanical properties informed by evidence-based research. With the ever-increasing expansion of bone tissue engineering and the pioneering research conducted to date, preclinical models are becoming a necessity to allow the engineered products to be translated to the clinic. In addition to creating smart bone scaffolds to mitigate bone loss, the field of tissue engineering and regenerative medicine is exploring methods to treat primary and secondary bone malignancies by creating models that mimic the clinical disease manifestation. This Review gives an overview of the preclinical testing in animal models used to evaluate bone regeneration concepts. Immunosuppressed rodent models have shown to be successful in mimicking bone malignancy via the implantation of human-derived cancer cells, whereas large animal models, including pigs, sheep and goats, are being used to provide an insight into bone formation and the effectiveness of scaffolds in induced tibial or femoral defects, providing clinically relevant similarity to human cases. Despite the recent progress, the successful translation of bone regeneration concepts from the bench to the bedside is rooted in the efforts of different research groups to standardise and validate the preclinical models for bone tissue engineering approaches. PMID:29685995

  18. Design of personalized search engine based on user-webpage dynamic model

    Science.gov (United States)

    Li, Jihan; Li, Shanglin; Zhu, Yingke; Xiao, Bo

    2013-12-01

    Personalized search engine focuses on establishing a user-webpage dynamic model. In this model, users' personalized factors are introduced so that the search engine is better able to provide the user with targeted feedback. This paper constructs user and webpage dynamic vector tables, introduces singular value decomposition analysis in the processes of topic categorization, and extends the traditional PageRank algorithm.

  19. Model-Based State Feedback Controller Design for a Turbocharged Diesel Engine with an EGR System

    Directory of Open Access Journals (Sweden)

    Tianpu Dong

    2015-05-01

    Full Text Available This paper describes a method for the control of transient exhaust gas recirculation (EGR systems. Firstly, a state space model of the air system is developed by simplifying a mean value model. The state space model is linearized by using linearization theory and validated by the GT-Power data with an operating point of the diesel engine. Secondly, a state feedback controller based on the intake oxygen mass fraction is designed for EGR control. Since direct measurement of the intake oxygen mass fraction is unavailable on the engine, the estimation method for intake oxygen mass fraction has been proposed in this paper. The control strategy is analyzed by using co-simulation with the Matlab/Simulink and GT-Powers software. Finally, the whole control system is experimentally validated against experimental data of a turbocharged diesel engine. The control effect of the state feedback controller compared with PID controller proved to be further verify the feasibility and advantages of the proposed state feedback controller.

  20. Software-engineering-based model for mitigating Repetitive Strain ...

    African Journals Online (AJOL)

    The incorporation of Information and Communication Technology (ICT) in virtually all facets of human endeavours has fostered the use of computers. This has induced Repetitive Stress Injury (RSI) for continuous and persistent computer users. Proposing a software engineering model capable of enacted RSI force break ...

  1. Efficient expression of SRK intracellular domain by a modeling-based protein engineering.

    Science.gov (United States)

    Murase, Kohji; Hirano, Yoshinori; Takayama, Seiji; Hakoshima, Toshio

    2017-03-01

    S-locus protein kinase (SRK) is a receptor kinase that plays a critical role in self-recognition in the Brassicaceae self-incompatibility (SI) response. SRK is activated by binding of its ligand S-locus protein 11 (SP11) and subsequently induced phosphorylation of the intracellular kinase domain. However, a detailed activation mechanism of SRK is still largely unknown because of the difficulty in stably expressing SRK recombinant proteins. Here, we performed modeling-based protein engineering of the SRK kinase domain for stable expression in Escherichia coli. The engineered SRK intracellular domain was expressed about 54-fold higher production than wild type SRK, without loss of the kinase activity, suggesting it could be useful for further biochemical and structural studies. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Decision-Based Design Integrating Consumer Preferences into Engineering Design

    CERN Document Server

    Chen, Wei; Wassenaar, Henk Jan

    2013-01-01

    Building upon the fundamental principles of decision theory, Decision-Based Design: Integrating Consumer Preferences into Engineering Design presents an analytical approach to enterprise-driven Decision-Based Design (DBD) as a rigorous framework for decision making in engineering design.  Once the related fundamentals of decision theory, economic analysis, and econometrics modelling are established, the remaining chapters describe the entire process, the associated analytical techniques, and the design case studies for integrating consumer preference modeling into the enterprise-driven DBD framework. Methods for identifying key attributes, optimal design of human appraisal experiments, data collection, data analysis, and demand model estimation are presented and illustrated using engineering design case studies. The scope of the chapters also provides: •A rigorous framework of integrating the interests from both producer and consumers in engineering design, •Analytical techniques of consumer choice model...

  3. Model Driven Engineering

    Science.gov (United States)

    Gaševic, Dragan; Djuric, Dragan; Devedžic, Vladan

    A relevant initiative from the software engineering community called Model Driven Engineering (MDE) is being developed in parallel with the Semantic Web (Mellor et al. 2003a). The MDE approach to software development suggests that one should first develop a model of the system under study, which is then transformed into the real thing (i.e., an executable software entity). The most important research initiative in this area is the Model Driven Architecture (MDA), which is Model Driven Architecture being developed under the umbrella of the Object Management Group (OMG). This chapter describes the basic concepts of this software engineering effort.

  4. Propulsion Controls Modeling for a Small Turbofan Engine

    Science.gov (United States)

    Connolly, Joseph W.; Csank, Jeffrey T.; Chicatelli, Amy; Franco, Kevin

    2017-01-01

    A nonlinear dynamic model and propulsion controller are developed for a small-scale turbofan engine. The small-scale turbofan engine is based on the Price Induction company's DGEN 380, one of the few turbofan engines targeted for the personal light jet category. Comparisons of the nonlinear dynamic turbofan engine model to actual DGEN 380 engine test data and a Price Induction simulation are provided. During engine transients, the nonlinear model typically agrees within 10 percent error, even though the nonlinear model was developed from limited available engine data. A gain scheduled proportional integral low speed shaft controller with limiter safety logic is created to replicate the baseline DGEN 380 controller. The new controller provides desired gain and phase margins and is verified to meet Federal Aviation Administration transient propulsion system requirements. In understanding benefits, there is a need to move beyond simulation for the demonstration of advanced control architectures and technologies by using real-time systems and hardware. The small-scale DGEN 380 provides a cost effective means to accomplish advanced controls testing on a relevant turbofan engine platform.

  5. Internal combustion engines - Modelling, estimation and control issues

    Energy Technology Data Exchange (ETDEWEB)

    Vigild, C.W.

    2001-12-01

    Alternative power-trains have become buzz words in the automotive industry in the recent past. New technologies like Lithium-Ion batteries or fuel cells combined with high efficient electrical motors show promising results. However both technologies are extremely expensive and important questions like 'How are we going to supply fuel-cells with hydrogen in an environmentally friendly way?', 'How are we going to improve the range - and recharging speed - of electrical vehicles?' and 'How will our existing infrastructure cope with such changes?' are still left unanswered. Hence, the internal combustion engine with all its shortcomings is to stay with us for the next many years. What the future will really bring in this area is uncertain, but one thing can be said for sure; the time of the pipe in - pipe out engine concept is over. Modem engines, Diesel or gasoline, have in the recent past been provided with many new technologies to improve both performance and handling and to cope with the tightening emission legislations. However, as new devices are included, the number of control inputs is also gradually increased. Hence, the control matrix dimension has grown to a considerably size, and the typical table and regression based engine calibration procedures currently in use today contain both challenging and time-consuming tasks. One way to improve understanding of engines and provide a more comprehensive picture of the control problem is by use of simplified physical modelling - one of the main thrusts of this dissertation. The application of simplified physical modelling as a foundation for engine estimation and control design is first motivated by two control applications. The control problem concerns Air/Fuel ratio control of Spark Ignition engines. Two different ways of control are presented; one based on. a model based Extended Kalman Filter updated predictor, and one based on robust H {infinity} techniques. Both controllers are

  6. Model-based Systems Engineering: Creation and Implementation of Model Validation Rules for MOS 2.0

    Science.gov (United States)

    Schmidt, Conrad K.

    2013-01-01

    Model-based Systems Engineering (MBSE) is an emerging modeling application that is used to enhance the system development process. MBSE allows for the centralization of project and system information that would otherwise be stored in extraneous locations, yielding better communication, expedited document generation and increased knowledge capture. Based on MBSE concepts and the employment of the Systems Modeling Language (SysML), extremely large and complex systems can be modeled from conceptual design through all system lifecycles. The Operations Revitalization Initiative (OpsRev) seeks to leverage MBSE to modernize the aging Advanced Multi-Mission Operations Systems (AMMOS) into the Mission Operations System 2.0 (MOS 2.0). The MOS 2.0 will be delivered in a series of conceptual and design models and documents built using the modeling tool MagicDraw. To ensure model completeness and cohesiveness, it is imperative that the MOS 2.0 models adhere to the specifications, patterns and profiles of the Mission Service Architecture Framework, thus leading to the use of validation rules. This paper outlines the process by which validation rules are identified, designed, implemented and tested. Ultimately, these rules provide the ability to maintain model correctness and synchronization in a simple, quick and effective manner, thus allowing the continuation of project and system progress.

  7. Implementing model-based system engineering for the whole lifecycle of a spacecraft

    Science.gov (United States)

    Fischer, P. M.; Lüdtke, D.; Lange, C.; Roshani, F.-C.; Dannemann, F.; Gerndt, A.

    2017-09-01

    Design information of a spacecraft is collected over all phases in the lifecycle of a project. A lot of this information is exchanged between different engineering tasks and business processes. In some lifecycle phases, model-based system engineering (MBSE) has introduced system models and databases that help to organize such information and to keep it consistent for everyone. Nevertheless, none of the existing databases approached the whole lifecycle yet. Virtual Satellite is the MBSE database developed at DLR. It has been used for quite some time in Phase A studies and is currently extended for implementing it in the whole lifecycle of spacecraft projects. Since it is unforeseeable which future use cases such a database needs to support in all these different projects, the underlying data model has to provide tailoring and extension mechanisms to its conceptual data model (CDM). This paper explains the mechanisms as they are implemented in Virtual Satellite, which enables extending the CDM along the project without corrupting already stored information. As an upcoming major use case, Virtual Satellite will be implemented as MBSE tool in the S2TEP project. This project provides a new satellite bus for internal research and several different payload missions in the future. This paper explains how Virtual Satellite will be used to manage configuration control problems associated with such a multi-mission platform. It discusses how the S2TEP project starts using the software for collecting the first design information from concurrent engineering studies, then making use of the extension mechanisms of the CDM to introduce further information artefacts such as functional electrical architecture, thus linking more and more processes into an integrated MBSE approach.

  8. Aircraft Engine Thrust Estimator Design Based on GSA-LSSVM

    Science.gov (United States)

    Sheng, Hanlin; Zhang, Tianhong

    2017-08-01

    In view of the necessity of highly precise and reliable thrust estimator to achieve direct thrust control of aircraft engine, based on support vector regression (SVR), as well as least square support vector machine (LSSVM) and a new optimization algorithm - gravitational search algorithm (GSA), by performing integrated modelling and parameter optimization, a GSA-LSSVM-based thrust estimator design solution is proposed. The results show that compared to particle swarm optimization (PSO) algorithm, GSA can find unknown optimization parameter better and enables the model developed with better prediction and generalization ability. The model can better predict aircraft engine thrust and thus fulfills the need of direct thrust control of aircraft engine.

  9. Category Theory as a Formal Mathematical Foundation for Model-Based Systems Engineering

    KAUST Repository

    Mabrok, Mohamed

    2017-01-09

    In this paper, we introduce Category Theory as a formal foundation for model-based systems engineering. A generalised view of the system based on category theory is presented, where any system can be considered as a category. The objects of the category represent all the elements and components of the system and the arrows represent the relations between these components (objects). The relationship between these objects are the arrows or the morphisms in the category. The Olog is introduced as a formal language to describe a given real-world situation description and requirement writing. A simple example is provided.

  10. Goal-Based Domain Modeling as a Basis for Cross-Disciplinary Systems Engineering

    Science.gov (United States)

    Jarke, Matthias; Nissen, Hans W.; Rose, Thomas; Schmitz, Dominik

    Small and medium-sized enterprises (SMEs) are important drivers for innovation. In particular, project-driven SMEs that closely cooperate with their customers have specific needs in regard to information engineering of their development process. They need a fast requirements capture since this is most often included in the (unpaid) offer development phase. At the same time, they need to maintain and reuse the knowledge and experiences they have gathered in previous projects extensively as it is their core asset. The situation is complicated further if the application field crosses disciplinary boundaries. To bridge the gaps and perspectives, we focus on shared goals and dependencies captured in models at a conceptual level. Such a model-based approach also offers a smarter connection to subsequent development stages, including a high share of automated code generation. In the approach presented here, the agent- and goal-oriented formalism i * is therefore extended by domain models to facilitate information organization. This extension permits a domain model-based similarity search, and a model-based transformation towards subsequent development stages. Our approach also addresses the evolution of domain models reflecting the experiences from completed projects. The approach is illustrated with a case study on software-intensive control systems in an SME of the automotive domain.

  11. Sliding Mode Control of Diesel Engine Air-path System With Dual-loop EGR and VGT Based on the Reduced-order Model

    Directory of Open Access Journals (Sweden)

    Kim Sooyoung

    2016-01-01

    Full Text Available This paper presents the design of a model-based controller for the diesel engine air-path system. The controller is implemented based on a reduced order model consisting of only pressure and power dynamics with practical concerns. To deal with the model uncertainties effectively, a sliding mode controller, which is robust to model uncertainties, is proposed for the air-path system. The control performance of the proposed control scheme is verified through simulation with the valid plant model of a 6,000cc heavy duty diesel engine.

  12. A Model for the Development of a CDIO Based Curriculum in Electrical Engineering

    DEFF Research Database (Denmark)

    Bruun, Erik; Kjærgaard, Claus

    2011-01-01

    This paper deals with a model providing a structured method for engineering curriculum design. The model is developed to show the major influencers on the curriculum design and the relations between the influencers. These influencers are identified as the engineering science, the business...... environment, the university environment, and the teachers and students. Each of them and their influence on the curriculum is described and the sources of information about the influencers are discussed. The CDIO syllabus has been defined as part of the basis for the Bachelor of Engineering programs...... at the Technical University of Denmark and this gives a strong direct impact of the university environment on the resulting curriculum in electrical engineering. The resulting Bachelor of Engineering curriculum is presented and it is discussed how it complies with the model for curriculum development. The main...

  13. Modeling bidding decision in engineering field with incomplete information: A static game–based approach

    Directory of Open Access Journals (Sweden)

    Zhi-xing Huang

    2016-01-01

    Full Text Available Corporate investment decision about engineering projects is a key issue for project management. This article aims to study the process of bidding decision-making in engineering field under the condition of incomplete information and investigating the influence of bidders’ game behaviors on investment decision. With reasonable assumed scenes, this article uses an approach to describe the decision process for bidding. The approach is based on the static game theory. With the proposed model, the effectiveness of game participants and the objective function are put forward, and the characteristics of price quotation and the best strategies of bidders under the equilibrium condition are discussed. The results can give a better understanding of investment decision in engineering management and are helpful for tenderees to avoid excessive competition among bidders.

  14. Combustion Model and Control Parameter Optimization Methods for Single Cylinder Diesel Engine

    Directory of Open Access Journals (Sweden)

    Bambang Wahono

    2014-01-01

    Full Text Available This research presents a method to construct a combustion model and a method to optimize some control parameters of diesel engine in order to develop a model-based control system. The construction purpose of the model is to appropriately manage some control parameters to obtain the values of fuel consumption and emission as the engine output objectives. Stepwise method considering multicollinearity was applied to construct combustion model with the polynomial model. Using the experimental data of a single cylinder diesel engine, the model of power, BSFC, NOx, and soot on multiple injection diesel engines was built. The proposed method succesfully developed the model that describes control parameters in relation to the engine outputs. Although many control devices can be mounted to diesel engine, optimization technique is required to utilize this method in finding optimal engine operating conditions efficiently beside the existing development of individual emission control methods. Particle swarm optimization (PSO was used to calculate control parameters to optimize fuel consumption and emission based on the model. The proposed method is able to calculate control parameters efficiently to optimize evaluation item based on the model. Finally, the model which added PSO then was compiled in a microcontroller.

  15. Integrating Surface Modeling into the Engineering Design Graphics Curriculum

    Science.gov (United States)

    Hartman, Nathan W.

    2006-01-01

    It has been suggested there is a knowledge base that surrounds the use of 3D modeling within the engineering design process and correspondingly within engineering design graphics education. While solid modeling receives a great deal of attention and discussion relative to curriculum efforts, and rightly so, surface modeling is an equally viable 3D…

  16. External Economies Evaluation of Wind Power Engineering Project Based on Analytic Hierarchy Process and Matter-Element Extension Model

    Directory of Open Access Journals (Sweden)

    Hong-ze Li

    2013-01-01

    Full Text Available The external economies of wind power engineering project may affect the operational efficiency of wind power enterprises and sustainable development of wind power industry. In order to ensure that the wind power engineering project is constructed and developed in a scientific manner, a reasonable external economies evaluation needs to be performed. Considering the interaction relationship of the evaluation indices and the ambiguity and uncertainty inherent, a hybrid model of external economies evaluation designed to be applied to wind power engineering project was put forward based on the analytic hierarchy process (AHP and matter-element extension model in this paper. The AHP was used to determine the weights of indices, and the matter-element extension model was used to deduce final ranking. Taking a wind power engineering project in Inner Mongolia city as an example, the external economies evaluation is performed by employing this hybrid model. The result shows that the external economies of this wind power engineering project are belonged to the “strongest” level, and “the degree of increasing region GDP,” “the degree of reducing pollution gas emissions,” and “the degree of energy conservation” are the sensitive indices.

  17. Engineering graphic modelling a workbook for design engineers

    CERN Document Server

    Tjalve, E; Frackmann Schmidt, F

    2013-01-01

    Engineering Graphic Modelling: A Practical Guide to Drawing and Design covers how engineering drawing relates to the design activity. The book describes modeled properties, such as the function, structure, form, material, dimension, and surface, as well as the coordinates, symbols, and types of projection of the drawing code. The text provides drawing techniques, such as freehand sketching, bold freehand drawing, drawing with a straightedge, a draughting machine or a plotter, and use of templates, and then describes the types of drawing. Graphic designers, design engineers, mechanical engine

  18. Cycle Engine Modelling Of Spark Ignition Engine Processes during Wide-Open Throttle (WOT) Engine Operation Running By Gasoline Fuel

    International Nuclear Information System (INIS)

    Rahim, M F Abdul; Rahman, M M; Bakar, R A

    2012-01-01

    One-dimensional engine model is developed to simulate spark ignition engine processes in a 4-stroke, 4 cylinders gasoline engine. Physically, the baseline engine is inline cylinder engine with 3-valves per cylinder. Currently, the engine's mixture is formed by external mixture formation using piston-type carburettor. The model of the engine is based on one-dimensional equation of the gas exchange process, isentropic compression and expansion, progressive engine combustion process, and accounting for the heat transfer and frictional losses as well as the effect of valves overlapping. The model is tested for 2000, 3000 and 4000 rpm of engine speed and validated using experimental engine data. Results showed that the engine is able to simulate engine's combustion process and produce reasonable prediction. However, by comparing with experimental data, major discrepancy is noticeable especially on the 2000 and 4000 rpm prediction. At low and high engine speed, simulated cylinder pressures tend to under predict the measured data. Whereas the cylinder temperatures always tend to over predict the measured data at all engine speed. The most accurate prediction is obtained at medium engine speed of 3000 rpm. Appropriate wall heat transfer setup is vital for more precise calculation of cylinder pressure and temperature. More heat loss to the wall can lower cylinder temperature. On the hand, more heat converted to the useful work mean an increase in cylinder pressure. Thus, instead of wall heat transfer setup, the Wiebe combustion parameters are needed to be carefully evaluated for better results.

  19. Proceedings of the 2012 Model-Based Systems Engineering Symposium, 27 - 28 November 2012, DSTO Edinburgh, South Australia

    Science.gov (United States)

    2013-02-01

    particular interest in Model-Based Systems Engineering. He holds a bachelor degree and a doctorate, both in the field of mechatronics . He currently...exploration is examined, along with the key lessons learned from embedding MBSE into the system development process. Finally, with the increasing use...PLM 2.0 concepts have been embedded in engineering software applications such as CAD and PLM systems as well as in Microsoft Office documents. However

  20. Maintenance Decision Based on Data Fusion of Aero Engines

    Directory of Open Access Journals (Sweden)

    Huawei Wang

    2013-01-01

    Full Text Available Maintenance has gained a great importance as a support function for ensuring aero engine reliability and availability. Cost-effectiveness and risk control are two basic criteria for accurate maintenance. Given that aero engines have much condition monitoring data, this paper presents a new condition-based maintenance decision system that employs data fusion for improving accuracy of reliability evaluation. Bayesian linear model has been applied, so that the performance degradation evaluation of aero engines could be realized. A reliability evaluation model has been presented based on gamma process, which achieves the accurate evaluation by information fusion. In reliability evaluation model, the shape parameter is estimated by the performance degradation evaluation result, and the scale parameter is estimated by failure, inspection, and repair information. What is more, with such reliability evaluation as input variables and by using particle swarm optimization (PSO, a stochastic optimization of maintenance decision for aircraft engines has been presented, in which the effectiveness and the accuracy are demonstrated by a numerical example.

  1. Semantic modeling and interoperability in product and process engineering a technology for engineering informatics

    CERN Document Server

    2013-01-01

    In the past decade, feature-based design and manufacturing has gained some momentum in various engineering domains to represent and reuse semantic patterns with effective applicability. However, the actual scope of feature application is still very limited. Semantic Modeling and Interoperability in Product and Process Engineering provides a systematic solution for the challenging engineering informatics field aiming at the enhancement of sustainable knowledge representation, implementation and reuse in an open and yet practically manageable scale.   This semantic modeling technology supports uniform, multi-facet and multi-level collaborative system engineering with heterogeneous computer-aided tools, such as CADCAM, CAE, and ERP.  This presented unified feature model can be applied to product and process representation, development, implementation and management. Practical case studies and test samples are provided to illustrate applications which can be implemented by the readers in real-world scenarios. �...

  2. Predictive modeling and reducing cyclic variability in autoignition engines

    Science.gov (United States)

    Hellstrom, Erik; Stefanopoulou, Anna; Jiang, Li; Larimore, Jacob

    2016-08-30

    Methods and systems are provided for controlling a vehicle engine to reduce cycle-to-cycle combustion variation. A predictive model is applied to predict cycle-to-cycle combustion behavior of an engine based on observed engine performance variables. Conditions are identified, based on the predicted cycle-to-cycle combustion behavior, that indicate high cycle-to-cycle combustion variation. Corrective measures are then applied to prevent the predicted high cycle-to-cycle combustion variation.

  3. Review of the Space Mapping Approach to Engineering Optimization and Modeling

    DEFF Research Database (Denmark)

    Bakr, M. H.; Bandler, J. W.; Madsen, Kaj

    2000-01-01

    We review the Space Mapping (SM) concept and its applications in engineering optimization and modeling. The aim of SM is to avoid computationally expensive calculations encountered in simulating an engineering system. The existence of less accurate but fast physically-based models is exploited. S......-based Modeling (SMM). These include Space Derivative Mapping (SDM), Generalized Space Mapping (GSM) and Space Mapping-based Neuromodeling (SMN). Finally, we address open points for research and future development....

  4. Using Model-Based System Engineering to Provide Artifacts for NASA Project Life-Cycle and Technical Reviews Presentation

    Science.gov (United States)

    Parrott, Edith L.; Weiland, Karen J.

    2017-01-01

    This is the presentation for the AIAA Space conference in September 2017. It highlights key information from Using Model-Based Systems Engineering to Provide Artifacts for NASA Project Life-cycle and Technical Reviews paper.

  5. Identifying potential misfit items in cognitive process of learning engineering mathematics based on Rasch model

    International Nuclear Information System (INIS)

    Ataei, Sh; Mahmud, Z; Khalid, M N

    2014-01-01

    The students learning outcomes clarify what students should know and be able to demonstrate after completing their course. So, one of the issues on the process of teaching and learning is how to assess students' learning. This paper describes an application of the dichotomous Rasch measurement model in measuring the cognitive process of engineering students' learning of mathematics. This study provides insights into the perspective of 54 engineering students' cognitive ability in learning Calculus III based on Bloom's Taxonomy on 31 items. The results denote that some of the examination questions are either too difficult or too easy for the majority of the students. This analysis yields FIT statistics which are able to identify if there is data departure from the Rasch theoretical model. The study has identified some potential misfit items based on the measurement of ZSTD where the removal misfit item was accomplished based on the MNSQ outfit of above 1.3 or less than 0.7 logit. Therefore, it is recommended that these items be reviewed or revised to better match the range of students' ability in the respective course.

  6. Combustion pressure-based engine management system

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, R.; Hart, M. [DaimlerChrysler, Stuttart (Germany); Truscott, A.; Noble, A. [Ricardo, Shoreham-by-Sea (United Kingdom); Kroetz, G.; Richter, C. [DaimlerChrysler, Munchen (Germany); Cavalloni, C. [Kistler Instruments AG, Winterthur (Switzerland)

    2000-07-01

    In order to fulfill future emissions and OBD regulations, whilst meeting increasing demands for driveability and refinement, new technologies for SI engines have to be found in terms of sensors and algorithms for engine control units. One promising way, explored in the AENEAS collaborative project between DaimlerChrysler, Kistler, Ricardo and the European Commission, is to optimize the behavior of the system by using in-cylinder measurements and analysing them with modern control algorithms. In this paper a new engine management system based on combustion pressure sensing is presented. The pressure sensor is designed to give a reliable and accurate signal of the full pressure trace during a working cycle. With the application of new technologies low cost manufacturing appears to be achievable, so that an application in mass production can be considered. Furthermore, model-based algorithms were developed to allow optimal control of the engine based on the in-cylinder measurements. The algorithms incorporate physical principles to improve efficiency, emissions and to reduce the parameterisation effort. In the paper, applications of the combustion pressure signal for air mass estimation, knock detection, ignition control cam phase detection and diagnosis are discussed. (author)

  7. Basic science through engineering? Synthetic modeling and the idea of biology-inspired engineering.

    Science.gov (United States)

    Knuuttila, Tarja; Loettgers, Andrea

    2013-06-01

    Synthetic biology is often understood in terms of the pursuit for well-characterized biological parts to create synthetic wholes. Accordingly, it has typically been conceived of as an engineering dominated and application oriented field. We argue that the relationship of synthetic biology to engineering is far more nuanced than that and involves a sophisticated epistemic dimension, as shown by the recent practice of synthetic modeling. Synthetic models are engineered genetic networks that are implanted in a natural cell environment. Their construction is typically combined with experiments on model organisms as well as mathematical modeling and simulation. What is especially interesting about this combinational modeling practice is that, apart from greater integration between these different epistemic activities, it has also led to the questioning of some central assumptions and notions on which synthetic biology is based. As a result synthetic biology is in the process of becoming more "biology inspired." Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Constitutive Relation of Engineering Material Based on SIR Model and HAM

    Directory of Open Access Journals (Sweden)

    Haoxiang He

    2014-01-01

    Full Text Available As an epidemic mathematical model, the SIR model represents the transition of the Susceptible, Infected, and Recovered. The profound implication of the SIR model is viewed as the propagation and dynamic evolutionary process of the different internal components and the characteristics in a complex system subject to external effect. The uniaxial stress-strain curve of engineering material represents the basic constitutive relation, which also represents the damage propagation in the units of the damaged member. Hence, a novel dynamic stress-strain model is established based on the SIR model. The analytical solution and the approximate solution for the proposed model are represented according to the homotopy analysis method (HAM, and the relationship of the solution and the size effect and the strain rate is discussed. In addition, an experiment on the size effect of confined concrete is carried out and the solution of SIR model is suitable for simulation. The results show that the mechanical mechanism of the parameters of the uniaxial stress-strain model proposed in this paper reflects the actual characteristics of the materials. The solution of the SIR model can fully and accurately show the change of the mechanical performance and the influence of the size effect and the strain rate.

  9. Surface modeling method for aircraft engine blades by using speckle patterns based on the virtual stereo vision system

    Science.gov (United States)

    Yu, Zhijing; Ma, Kai; Wang, Zhijun; Wu, Jun; Wang, Tao; Zhuge, Jingchang

    2018-03-01

    A blade is one of the most important components of an aircraft engine. Due to its high manufacturing costs, it is indispensable to come up with methods for repairing damaged blades. In order to obtain a surface model of the blades, this paper proposes a modeling method by using speckle patterns based on the virtual stereo vision system. Firstly, blades are sprayed evenly creating random speckle patterns and point clouds from blade surfaces can be calculated by using speckle patterns based on the virtual stereo vision system. Secondly, boundary points are obtained in the way of varied step lengths according to curvature and are fitted to get a blade surface envelope with a cubic B-spline curve. Finally, the surface model of blades is established with the envelope curves and the point clouds. Experimental results show that the surface model of aircraft engine blades is fair and accurate.

  10. Development of Web-Based Learning Environment Model to Enhance Cognitive Skills for Undergraduate Students in the Field of Electrical Engineering

    Science.gov (United States)

    Lakonpol, Thongmee; Ruangsuwan, Chaiyot; Terdtoon, Pradit

    2015-01-01

    This research aimed to develop a web-based learning environment model for enhancing cognitive skills of undergraduate students in the field of electrical engineering. The research is divided into 4 phases: 1) investigating the current status and requirements of web-based learning environment models. 2) developing a web-based learning environment…

  11. Performing Verification and Validation in Reuse-Based Software Engineering

    Science.gov (United States)

    Addy, Edward A.

    1999-01-01

    The implementation of reuse-based software engineering not only introduces new activities to the software development process, such as domain analysis and domain modeling, it also impacts other aspects of software engineering. Other areas of software engineering that are affected include Configuration Management, Testing, Quality Control, and Verification and Validation (V&V). Activities in each of these areas must be adapted to address the entire domain or product line rather than a specific application system. This paper discusses changes and enhancements to the V&V process, in order to adapt V&V to reuse-based software engineering.

  12. Development of concept-based physiology lessons for biomedical engineering undergraduate students.

    Science.gov (United States)

    Nelson, Regina K; Chesler, Naomi C; Strang, Kevin T

    2013-06-01

    Physiology is a core requirement in the undergraduate biomedical engineering curriculum. In one or two introductory physiology courses, engineering students must learn physiology sufficiently to support learning in their subsequent engineering courses and careers. As preparation for future learning, physiology instruction centered on concepts may help engineering students to further develop their physiology and biomedical engineering knowledge. Following the Backward Design instructional model, a series of seven concept-based lessons was developed for undergraduate engineering students. These online lessons were created as prerequisite physiology training to prepare students to engage in a collaborative engineering challenge activity. This work is presented as an example of how to convert standard, organ system-based physiology content into concept-based content lessons.

  13. Modeling and Detection of Ice Particle Accretion in Aircraft Engine Compression Systems

    Science.gov (United States)

    May, Ryan D.; Simon, Donald L.; Guo, Ten-Huei

    2012-01-01

    The accretion of ice particles in the core of commercial aircraft engines has been an ongoing aviation safety challenge. While no accidents have resulted from this phenomenon to date, numerous engine power loss events ranging from uneventful recoveries to forced landings have been recorded. As a first step to enabling mitigation strategies during ice accretion, a detection scheme must be developed that is capable of being implemented on board modern engines. In this paper, a simple detection scheme is developed and tested using a realistic engine simulation with approximate ice accretion models based on data from a compressor design tool. These accretion models are implemented as modified Low Pressure Compressor maps and have the capability to shift engine performance based on a specified level of ice blockage. Based on results from this model, it is possible to detect the accretion of ice in the engine core by observing shifts in the typical sensed engine outputs. Results are presented in which, for a 0.1 percent false positive rate, a true positive detection rate of 98 percent is achieved.

  14. Mathematical modeling and computational intelligence in engineering applications

    CERN Document Server

    Silva Neto, Antônio José da; Silva, Geraldo Nunes

    2016-01-01

    This book brings together a rich selection of studies in mathematical modeling and computational intelligence, with application in several fields of engineering, like automation, biomedical, chemical, civil, electrical, electronic, geophysical and mechanical engineering, on a multidisciplinary approach. Authors from five countries and 16 different research centers contribute with their expertise in both the fundamentals and real problems applications based upon their strong background on modeling and computational intelligence. The reader will find a wide variety of applications, mathematical and computational tools and original results, all presented with rigorous mathematical procedures. This work is intended for use in graduate courses of engineering, applied mathematics and applied computation where tools as mathematical and computational modeling, numerical methods and computational intelligence are applied to the solution of real problems.

  15. The Genome-Based Metabolic Systems Engineering to Boost Levan Production in a Halophilic Bacterial Model.

    Science.gov (United States)

    Aydin, Busra; Ozer, Tugba; Oner, Ebru Toksoy; Arga, Kazim Yalcin

    2018-03-01

    Metabolic systems engineering is being used to redirect microbial metabolism for the overproduction of chemicals of interest with the aim of transforming microbial hosts into cellular factories. In this study, a genome-based metabolic systems engineering approach was designed and performed to improve biopolymer biosynthesis capability of a moderately halophilic bacterium Halomonas smyrnensis AAD6 T producing levan, which is a fructose homopolymer with many potential uses in various industries and medicine. For this purpose, the genome-scale metabolic model for AAD6 T was used to characterize the metabolic resource allocation, specifically to design metabolic engineering strategies for engineered bacteria with enhanced levan production capability. Simulations were performed in silico to determine optimal gene knockout strategies to develop new strains with enhanced levan production capability. The majority of the gene knockout strategies emphasized the vital role of the fructose uptake mechanism, and pointed out the fructose-specific phosphotransferase system (PTS fru ) as the most promising target for further metabolic engineering studies. Therefore, the PTS fru of AAD6 T was restructured with insertional mutagenesis and triparental mating techniques to construct a novel, engineered H. smyrnensis strain, BMA14. Fermentation experiments were carried out to demonstrate the high efficiency of the mutant strain BMA14 in terms of final levan concentration, sucrose consumption rate, and sucrose conversion efficiency, when compared to the AAD6 T . The genome-based metabolic systems engineering approach presented in this study might be considered an efficient framework to redirect microbial metabolism for the overproduction of chemicals of interest, and the novel strain BMA14 might be considered a potential microbial cell factory for further studies aimed to design levan production processes with lower production costs.

  16. Transforming Systems Engineering through Model Centric Engineering

    Science.gov (United States)

    2017-08-08

    Contract No. HQ0034-13-D-0004 Report No. SERC-2017-TR-110 Date: August 8, 2017 Transforming Systems Engineering through Model-Centric... Engineering Technical Report SERC-2017-TR-110 Update: August 8, 2017 Principal Investigator: Mark Blackburn, Stevens Institute of Technology Co...Evangelista Sponsor: U.S. Army Armament Research, Development and Engineering Center (ARDEC), Office of the Deputy Assistant Secretary of Defense for

  17. Analyzing Cyber Security Threats on Cyber-Physical Systems Using Model-Based Systems Engineering

    Science.gov (United States)

    Kerzhner, Aleksandr; Pomerantz, Marc; Tan, Kymie; Campuzano, Brian; Dinkel, Kevin; Pecharich, Jeremy; Nguyen, Viet; Steele, Robert; Johnson, Bryan

    2015-01-01

    The spectre of cyber attacks on aerospace systems can no longer be ignored given that many of the components and vulnerabilities that have been successfully exploited by the adversary on other infrastructures are the same as those deployed and used within the aerospace environment. An important consideration with respect to the mission/safety critical infrastructure supporting space operations is that an appropriate defensive response to an attack invariably involves the need for high precision and accuracy, because an incorrect response can trigger unacceptable losses involving lives and/or significant financial damage. A highly precise defensive response, considering the typical complexity of aerospace environments, requires a detailed and well-founded understanding of the underlying system where the goal of the defensive response is to preserve critical mission objectives in the presence of adversarial activity. In this paper, a structured approach for modeling aerospace systems is described. The approach includes physical elements, network topology, software applications, system functions, and usage scenarios. We leverage Model-Based Systems Engineering methodology by utilizing the Object Management Group's Systems Modeling Language to represent the system being analyzed and also utilize model transformations to change relevant aspects of the model into specialized analyses. A novel visualization approach is utilized to visualize the entire model as a three-dimensional graph, allowing easier interaction with subject matter experts. The model provides a unifying structure for analyzing the impact of a particular attack or a particular type of attack. Two different example analysis types are demonstrated in this paper: a graph-based propagation analysis based on edge labels, and a graph-based propagation analysis based on node labels.

  18. Deployment of e-health services - a business model engineering strategy.

    Science.gov (United States)

    Kijl, Björn; Nieuwenhuis, Lambert J M; Huis in 't Veld, Rianne M H A; Hermens, Hermie J; Vollenbroek-Hutten, Miriam M R

    2010-01-01

    We designed a business model for deploying a myofeedback-based teletreatment service. An iterative and combined qualitative and quantitative action design approach was used for developing the business model and the related value network. Insights from surveys, desk research, expert interviews, workshops and quantitative modelling were combined to produce the first business model and then to refine it in three design cycles. The business model engineering strategy provided important insights which led to an improved, more viable and feasible business model and related value network design. Based on this experience, we conclude that the process of early stage business model engineering reduces risk and produces substantial savings in costs and resources related to service deployment.

  19. Engineering modelling. A contribution to the CommonKADS library

    Energy Technology Data Exchange (ETDEWEB)

    Top, J.L.; Akkermans, J.M.

    1993-12-01

    Generic knowledge components and models for the task of in particular engineering modelling are presented.It is intended as a contribution to the CommonKADS library. In the first chapter an executive summary is provided. Next, the Conceptual Modelling Language (CML) definitions of the various generic library components are given. In the following two chapters the underlying theory is developed. First, a task-oriented analysis is made, based upon the similarities between modelling and design tasks. Second, an ontological analysis is given, which shows that ontology differentiation constitutes an important problem-solving method (PSM) for engineering modelling, on a par with task-decomposition PSMs. Finally, three different modelling applications, based on existing knowledgeable systems, are analyzed, which analysis illustrates and provides data points for the discussed generic components and models for modelling. 50 figs., 77 refs.

  20. Computer-aided modeling for efficient and innovative product-process engineering

    DEFF Research Database (Denmark)

    Heitzig, Martina

    Model-based computer aided product-process engineering has attained increased importance in a number of industries, including pharmaceuticals, petrochemicals, fine chemicals, polymers, biotechnology, food, energy and water. This trend is set to continue due to the substantial benefits computer...... in chemical and biochemical engineering have been solved to illustrate the application of the generic modelling methodology, the computeraided modelling framework and the developed software tool.......-aided methods provide. The key prerequisite of computer-aided productprocess engineering is however the availability of models of different types, forms and application modes. The development of the models required for the systems under investigation tends to be a challenging, time-consuming and therefore cost...

  1. Story telling engine based on agent interaction

    OpenAIRE

    Porcel, Juan Carlos

    2008-01-01

    Comics have been used as a programming tool for agents, giving them instructions on how to act. In this thesis I do this in reverse, I use comics to describe the actions of agents already interacting with each other to create a storytelling engine that dynamically generate stories, based on the interaction of said agents. The model for the agent behaviours is based on the improvisational puppets model of Barbara Hayes-Roth. This model is chosen due to the nature of comics themselves. Comics ...

  2. Requirements for High Level Models Supporting Design Space Exploration in Model-based Systems Engineering

    OpenAIRE

    Haveman, Steven P.; Bonnema, G. Maarten

    2013-01-01

    Most formal models are used in detailed design and focus on a single domain. Few effective approaches exist that can effectively tie these lower level models to a high level system model during design space exploration. This complicates the validation of high level system requirements during detailed design. In this paper, we define requirements for a high level model that is firstly driven by key systems engineering challenges present in industry and secondly connects to several formal and d...

  3. Final Report for NFE-07-00912: Development of Model Fuels Experimental Engine Data Base & Kinetic Modeling Parameter Sets

    Energy Technology Data Exchange (ETDEWEB)

    Bunting, Bruce G [ORNL

    2012-10-01

    The automotive and engine industries are in a period of very rapid change being driven by new emission standards, new types of after treatment, new combustion strategies, the introduction of new fuels, and drive for increased fuel economy and efficiency. The rapid pace of these changes has put more pressure on the need for modeling of engine combustion and performance, in order to shorten product design and introduction cycles. New combustion strategies include homogeneous charge compression ignition (HCCI), partial-premixed combustion compression ignition (PCCI), and dilute low temperature combustion which are being developed for lower emissions and improved fuel economy. New fuels include bio-fuels such as ethanol or bio-diesel, drop-in bio-derived fuels and those derived from new crude oil sources such as gas-to-liquids, coal-to-liquids, oil sands, oil shale, and wet natural gas. Kinetic modeling of the combustion process for these new combustion regimes and fuels is necessary in order to allow modeling and performance assessment for engine design purposes. In this research covered by this CRADA, ORNL developed and supplied experimental data related to engine performance with new fuels and new combustion strategies along with interpretation and analysis of such data and consulting to Reaction Design, Inc. (RD). RD performed additional analysis of this data in order to extract important parameters and to confirm engine and kinetic models. The data generated was generally published to make it available to the engine and automotive design communities and also to the Reaction Design Model Fuels Consortium (MFC).

  4. Model engineering in a modular PSA

    International Nuclear Information System (INIS)

    Friedlhuber, Thomas

    2014-01-01

    For the purpose of PSA (Probabilistic Safety Analysis) for complex industrial systems, often PSA models in the form of fault and event trees are developed to model the risk of unwanted situations (hazards). While the recent decades, PSA models have gained high acceptance and have been developed massively. This lead to an increase in model sizes and complexity. Today, PSA models are often difficult to understand and maintain. This manuscript presents the concept of a modular PSA. A modular PSA tries to cope with the increased complexity by the techniques of modularization and instantiation. Modularization targets to treat a model by smaller pieces (the 'modules') to regain control over models. Instantiation aims to configure a generic model to different contexts. Both try to reduce model complexity. A modular PSA proposes new functionality to manage PSA models. Current model management is rather limited and not efficient. This manuscript shows new methods to manage the evolutions (versions) and deviations (variants) of PSA models in a modular PSA. The concepts of version and variant management are presented in this thesis. In this context, a model comparison and fusion of PSA models is precised. Model comparison provides important feedback to model engineers and model fusion kind of combines the work from different model engineers (concurrent model engineering). Apart from model management, methods to understand the content of PSA models are presented. The methods focus to highlight the dependencies between modules rather than their contents. Dependencies are automatically derived from a model structure. They express relations between model objects (for example a fault tree may have dependencies to basic events). To visualize those dependencies (for example in form of a model cartography) can constitute a crucial aid to model engineers for understanding complex interrelations in PSA models. Within the scope of this thesis, a software named 'Andromeda' has been

  5. Sensor fault diagnosis of aero-engine based on divided flight status

    Science.gov (United States)

    Zhao, Zhen; Zhang, Jun; Sun, Yigang; Liu, Zhexu

    2017-11-01

    Fault diagnosis and safety analysis of an aero-engine have attracted more and more attention in modern society, whose safety directly affects the flight safety of an aircraft. In this paper, the problem concerning sensor fault diagnosis is investigated for an aero-engine during the whole flight process. Considering that the aero-engine is always working in different status through the whole flight process, a flight status division-based sensor fault diagnosis method is presented to improve fault diagnosis precision for the aero-engine. First, aero-engine status is partitioned according to normal sensor data during the whole flight process through the clustering algorithm. Based on that, a diagnosis model is built for each status using the principal component analysis algorithm. Finally, the sensors are monitored using the built diagnosis models by identifying the aero-engine status. The simulation result illustrates the effectiveness of the proposed method.

  6. Sensor fault diagnosis of aero-engine based on divided flight status.

    Science.gov (United States)

    Zhao, Zhen; Zhang, Jun; Sun, Yigang; Liu, Zhexu

    2017-11-01

    Fault diagnosis and safety analysis of an aero-engine have attracted more and more attention in modern society, whose safety directly affects the flight safety of an aircraft. In this paper, the problem concerning sensor fault diagnosis is investigated for an aero-engine during the whole flight process. Considering that the aero-engine is always working in different status through the whole flight process, a flight status division-based sensor fault diagnosis method is presented to improve fault diagnosis precision for the aero-engine. First, aero-engine status is partitioned according to normal sensor data during the whole flight process through the clustering algorithm. Based on that, a diagnosis model is built for each status using the principal component analysis algorithm. Finally, the sensors are monitored using the built diagnosis models by identifying the aero-engine status. The simulation result illustrates the effectiveness of the proposed method.

  7. Automated Model Fit Method for Diesel Engine Control Development

    NARCIS (Netherlands)

    Seykens, X.; Willems, F.P.T.; Kuijpers, B.; Rietjens, C.

    2014-01-01

    This paper presents an automated fit for a control-oriented physics-based diesel engine combustion model. This method is based on the combination of a dedicated measurement procedure and structured approach to fit the required combustion model parameters. Only a data set is required that is

  8. Automated model fit method for diesel engine control development

    NARCIS (Netherlands)

    Seykens, X.L.J.; Willems, F.P.T.; Kuijpers, B.; Rietjens, C.J.H.

    2014-01-01

    This paper presents an automated fit for a control-oriented physics-based diesel engine combustion model. This method is based on the combination of a dedicated measurement procedure and structured approach to fit the required combustion model parameters. Only a data set is required that is

  9. Space engineering modeling and optimization with case studies

    CERN Document Server

    Pintér, János

    2016-01-01

    This book presents a selection of advanced case studies that cover a substantial range of issues and real-world challenges and applications in space engineering. Vital mathematical modeling, optimization methodologies and numerical solution aspects of each application case study are presented in detail, with discussions of a range of advanced model development and solution techniques and tools. Space engineering challenges are discussed in the following contexts: •Advanced Space Vehicle Design •Computation of Optimal Low Thrust Transfers •Indirect Optimization of Spacecraft Trajectories •Resource-Constrained Scheduling, •Packing Problems in Space •Design of Complex Interplanetary Trajectories •Satellite Constellation Image Acquisition •Re-entry Test Vehicle Configuration Selection •Collision Risk Assessment on Perturbed Orbits •Optimal Robust Design of Hybrid Rocket Engines •Nonlinear Regression Analysis in Space Engineering< •Regression-Based Sensitivity Analysis and Robust Design ...

  10. A Plastic Damage Mechanics Model for Engineered Cementitious Composites

    DEFF Research Database (Denmark)

    Dick-Nielsen, Lars; Stang, Henrik; Poulsen, Peter Noe

    2007-01-01

    This paper discusses the establishment of a plasticity-based damage mechanics model for Engineered Cementitious Composites (ECC). The present model differs from existing models by combining a matrix and fiber description in order to describe the behavior of the ECC material. The model provides...

  11. A RANS knock model to predict the statistical occurrence of engine knock

    International Nuclear Information System (INIS)

    D'Adamo, Alessandro; Breda, Sebastiano; Fontanesi, Stefano; Irimescu, Adrian; Merola, Simona Silvia; Tornatore, Cinzia

    2017-01-01

    Highlights: • Development of a new RANS model for SI engine knock probability. • Turbulence-derived transport equations for variances of mixture fraction and enthalpy. • Gasoline autoignition delay times calculated from detailed chemical kinetics. • Knock probability validated against experiments on optically accessible GDI unit. • PDF-based knock model accounting for the random nature of SI engine knock in RANS simulations. - Abstract: In the recent past engine knock emerged as one of the main limiting aspects for the achievement of higher efficiency targets in modern spark-ignition (SI) engines. To attain these requirements, engine operating points must be moved as close as possible to the onset of abnormal combustions, although the turbulent nature of flow field and SI combustion leads to possibly ample fluctuations between consecutive engine cycles. This forces engine designers to distance the target condition from its theoretical optimum in order to prevent abnormal combustion, which can potentially damage engine components because of few individual heavy-knocking cycles. A statistically based RANS knock model is presented in this study, whose aim is the prediction not only of the ensemble average knock occurrence, poorly meaningful in such a stochastic event, but also of a knock probability. The model is based on look-up tables of autoignition times from detailed chemistry, coupled with transport equations for the variance of mixture fraction and enthalpy. The transported perturbations around the ensemble average value are based on variable gradients and on a local turbulent time scale. A multi-variate cell-based Gaussian-PDF model is proposed for the unburnt mixture, resulting in a statistical distribution for the in-cell reaction rate. An average knock precursor and its variance are independently calculated and transported; this results in the prediction of an earliest knock probability preceding the ensemble average knock onset, as confirmed by

  12. The Advanced Modeling, Simulation and Analysis Capability Roadmap Vision for Engineering

    Science.gov (United States)

    Zang, Thomas; Lieber, Mike; Norton, Charles; Fucik, Karen

    2006-01-01

    This paper summarizes a subset of the Advanced Modeling Simulation and Analysis (AMSA) Capability Roadmap that was developed for NASA in 2005. The AMSA Capability Roadmap Team was chartered to "To identify what is needed to enhance NASA's capabilities to produce leading-edge exploration and science missions by improving engineering system development, operations, and science understanding through broad application of advanced modeling, simulation and analysis techniques." The AMSA roadmap stressed the need for integration, not just within the science, engineering and operations domains themselves, but also across these domains. Here we discuss the roadmap element pertaining to integration within the engineering domain, with a particular focus on implications for future observatory missions. The AMSA products supporting the system engineering function are mission information, bounds on information quality, and system validation guidance. The Engineering roadmap element contains 5 sub-elements: (1) Large-Scale Systems Models, (2) Anomalous Behavior Models, (3) advanced Uncertainty Models, (4) Virtual Testing Models, and (5) space-based Robotics Manufacture and Servicing Models.

  13. Engineering uses of physics-based ground motion simulations

    Science.gov (United States)

    Baker, Jack W.; Luco, Nicolas; Abrahamson, Norman A.; Graves, Robert W.; Maechling, Phillip J.; Olsen, Kim B.

    2014-01-01

    This paper summarizes validation methodologies focused on enabling ground motion simulations to be used with confidence in engineering applications such as seismic hazard analysis and dynmaic analysis of structural and geotechnical systems. Numberical simullation of ground motion from large erthquakes, utilizing physics-based models of earthquake rupture and wave propagation, is an area of active research in the earth science community. Refinement and validatoin of these models require collaboration between earthquake scientists and engineering users, and testing/rating methodolgies for simulated ground motions to be used with confidence in engineering applications. This paper provides an introduction to this field and an overview of current research activities being coordinated by the Souther California Earthquake Center (SCEC). These activities are related both to advancing the science and computational infrastructure needed to produce ground motion simulations, as well as to engineering validation procedures. Current research areas and anticipated future achievements are also discussed.

  14. Protein engineering and the use of molecular modeling and simulation: the case of heterodimeric Fc engineering.

    Science.gov (United States)

    Spreter Von Kreudenstein, Thomas; Lario, Paula I; Dixit, Surjit B

    2014-01-01

    Computational and structure guided methods can make significant contributions to the development of solutions for difficult protein engineering problems, including the optimization of next generation of engineered antibodies. In this paper, we describe a contemporary industrial antibody engineering program, based on hypothesis-driven in silico protein optimization method. The foundational concepts and methods of computational protein engineering are discussed, and an example of a computational modeling and structure-guided protein engineering workflow is provided for the design of best-in-class heterodimeric Fc with high purity and favorable biophysical properties. We present the engineering rationale as well as structural and functional characterization data on these engineered designs. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. Rotary engine performance limits predicted by a zero-dimensional model

    Science.gov (United States)

    Bartrand, Timothy A.; Willis, Edward A.

    1992-01-01

    A parametric study was performed to determine the performance limits of a rotary combustion engine. This study shows how well increasing the combustion rate, insulating, and turbocharging increase brake power and decrease fuel consumption. Several generalizations can be made from the findings. First, it was shown that the fastest combustion rate is not necessarily the best combustion rate. Second, several engine insulation schemes were employed for a turbocharged engine. Performance improved only for a highly insulated engine. Finally, the variability of turbocompounding and the influence of exhaust port shape were calculated. Rotary engines performance was predicted by an improved zero-dimensional computer model based on a model developed at the Massachusetts Institute of Technology in the 1980's. Independent variables in the study include turbocharging, manifold pressures, wall thermal properties, leakage area, and exhaust port geometry. Additions to the computer programs since its results were last published include turbocharging, manifold modeling, and improved friction power loss calculation. The baseline engine for this study is a single rotor 650 cc direct-injection stratified-charge engine with aluminum housings and a stainless steel rotor. Engine maps are provided for the baseline and turbocharged versions of the engine.

  16. Multifunctional Collaborative Modeling and Analysis Methods in Engineering Science

    Science.gov (United States)

    Ransom, Jonathan B.; Broduer, Steve (Technical Monitor)

    2001-01-01

    Engineers are challenged to produce better designs in less time and for less cost. Hence, to investigate novel and revolutionary design concepts, accurate, high-fidelity results must be assimilated rapidly into the design, analysis, and simulation process. This assimilation should consider diverse mathematical modeling and multi-discipline interactions necessitated by concepts exploiting advanced materials and structures. Integrated high-fidelity methods with diverse engineering applications provide the enabling technologies to assimilate these high-fidelity, multi-disciplinary results rapidly at an early stage in the design. These integrated methods must be multifunctional, collaborative, and applicable to the general field of engineering science and mechanics. Multifunctional methodologies and analysis procedures are formulated for interfacing diverse subdomain idealizations including multi-fidelity modeling methods and multi-discipline analysis methods. These methods, based on the method of weighted residuals, ensure accurate compatibility of primary and secondary variables across the subdomain interfaces. Methods are developed using diverse mathematical modeling (i.e., finite difference and finite element methods) and multi-fidelity modeling among the subdomains. Several benchmark scalar-field and vector-field problems in engineering science are presented with extensions to multidisciplinary problems. Results for all problems presented are in overall good agreement with the exact analytical solution or the reference numerical solution. Based on the results, the integrated modeling approach using the finite element method for multi-fidelity discretization among the subdomains is identified as most robust. The multiple-method approach is advantageous when interfacing diverse disciplines in which each of the method's strengths are utilized. The multifunctional methodology presented provides an effective mechanism by which domains with diverse idealizations are

  17. Workshop on Engineering Turbulence Modeling

    Science.gov (United States)

    Povinelli, Louis A. (Editor); Liou, W. W. (Editor); Shabbir, A. (Editor); Shih, T.-H. (Editor)

    1992-01-01

    Discussed here is the future direction of various levels of engineering turbulence modeling related to computational fluid dynamics (CFD) computations for propulsion. For each level of computation, there are a few turbulence models which represent the state-of-the-art for that level. However, it is important to know their capabilities as well as their deficiencies in order to help engineers select and implement the appropriate models in their real world engineering calculations. This will also help turbulence modelers perceive the future directions for improving turbulence models. The focus is on one-point closure models (i.e., from algebraic models to higher order moment closure schemes and partial differential equation methods) which can be applied to CFD computations. However, other schemes helpful in developing one-point closure models, are also discussed.

  18. Designing a Pedagogical Model for Web Engineering Education: An Evolutionary Perspective

    Science.gov (United States)

    Hadjerrouit, Said

    2005-01-01

    In contrast to software engineering, which relies on relatively well established development approaches, there is a lack of a proven methodology that guides Web engineers in building reliable and effective Web-based systems. Currently, Web engineering lacks process models, architectures, suitable techniques and methods, quality assurance, and a…

  19. Usage of Parameterized Fatigue Spectra and Physics-Based Systems Engineering Models for Wind Turbine Component Sizing: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Parsons, Taylor; Guo, Yi; Veers, Paul; Dykes, Katherine; Damiani, Rick

    2016-01-26

    Software models that use design-level input variables and physics-based engineering analysis for estimating the mass and geometrical properties of components in large-scale machinery can be very useful for analyzing design trade-offs in complex systems. This study uses DriveSE, an OpenMDAO-based drivetrain model that uses stress and deflection criteria to size drivetrain components within a geared, upwind wind turbine. Because a full lifetime fatigue load spectrum can only be defined using computationally-expensive simulations in programs such as FAST, a parameterized fatigue loads spectrum that depends on wind conditions, rotor diameter, and turbine design life has been implemented. The parameterized fatigue spectrum is only used in this paper to demonstrate the proposed fatigue analysis approach. This paper details a three-part investigation of the parameterized approach and a comparison of the DriveSE model with and without fatigue analysis on the main shaft system. It compares loads from three turbines of varying size and determines if and when fatigue governs drivetrain sizing compared to extreme load-driven design. It also investigates the model's sensitivity to shaft material parameters. The intent of this paper is to demonstrate how fatigue considerations in addition to extreme loads can be brought into a system engineering optimization.

  20. Model-based control and application of a thermomanagement engine cooling system; Modellbasierte Regelung und Applikation eines Thermomanagement-Motorkuehlsystems

    Energy Technology Data Exchange (ETDEWEB)

    Mann, K.; Zeitz, M. [Robert Bosch GmbH, Stuttgart (Germany); Schmitt, M.

    2002-07-01

    Efficient heat management is a central development goal today. So-called thermomanagement systems cool the engine as required, ensuring energy-efficient control of a given engine temperature. The contribution presents a model-based process guidance structure and an application concept which can be adapted to various thermomanagement systems, ensureing high control quality and low application expenditure. Application requirements are minimized by model-based generation of the greater part of the application data. [German] Im Bereich der Fahrzeugentwicklung wird derzeit intensiv an Konzepten fuer ein effizienteres Waermemanagement gearbeitet. Mit einem sogenannten Thermomanagement-System wird der Motor bedarfsgerecht gekuehlt. Hierfuer wird eine vorgegebene Motortemperatur moeglichst energieeffizient geregelt. In dem Beitrag werden eine modellbasierte Prozessfuehrungsstruktur und ein Applikationskonzept vorgestellt, die flexibel fuer verschiedene Thermomanagement-Systeme angepasst werden koennen und bei geringem Applikationsaufwand eine hohe Regelguete gewaehrleisten. Der Applikationsaufwand wird minimiert, indem ein Grossteil der Applikationsdaten modellbasiert generiert wird. (orig.)

  1. Modeling of hybrid vehicle fuel economy and fuel engine efficiency

    Science.gov (United States)

    Wu, Wei

    "Near-CV" (i.e., near-conventional vehicle) hybrid vehicles, with an internal combustion engine, and a supplementary storage with low-weight, low-energy but high-power capacity, are analyzed. This design avoids the shortcoming of the "near-EV" and the "dual-mode" hybrid vehicles that need a large energy storage system (in terms of energy capacity and weight). The small storage is used to optimize engine energy management and can provide power when needed. The energy advantage of the "near-CV" design is to reduce reliance on the engine at low power, to enable regenerative braking, and to provide good performance with a small engine. The fuel consumption of internal combustion engines, which might be applied to hybrid vehicles, is analyzed by building simple analytical models that reflect the engines' energy loss characteristics. Both diesel and gasoline engines are modeled. The simple analytical models describe engine fuel consumption at any speed and load point by describing the engine's indicated efficiency and friction. The engine's indicated efficiency and heat loss are described in terms of several easy-to-obtain engine parameters, e.g., compression ratio, displacement, bore and stroke. Engine friction is described in terms of parameters obtained by fitting available fuel measurements on several diesel and spark-ignition engines. The engine models developed are shown to conform closely to experimental fuel consumption and motored friction data. A model of the energy use of "near-CV" hybrid vehicles with different storage mechanism is created, based on simple algebraic description of the components. With powertrain downsizing and hybridization, a "near-CV" hybrid vehicle can obtain a factor of approximately two in overall fuel efficiency (mpg) improvement, without considering reductions in the vehicle load.

  2. Model-Based Systems Engineering for Capturing Mission Architecture System Processes with an Application Case Study - Orion Flight Test 1

    Science.gov (United States)

    Bonanne, Kevin H.

    2011-01-01

    Model-based Systems Engineering (MBSE) is an emerging methodology that can be leveraged to enhance many system development processes. MBSE allows for the centralization of an architecture description that would otherwise be stored in various locations and formats, thus simplifying communication among the project stakeholders, inducing commonality in representation, and expediting report generation. This paper outlines the MBSE approach taken to capture the processes of two different, but related, architectures by employing the Systems Modeling Language (SysML) as a standard for architecture description and the modeling tool MagicDraw. The overarching goal of this study was to demonstrate the effectiveness of MBSE as a means of capturing and designing a mission systems architecture. The first portion of the project focused on capturing the necessary system engineering activities that occur when designing, developing, and deploying a mission systems architecture for a space mission. The second part applies activities from the first to an application problem - the system engineering of the Orion Flight Test 1 (OFT-1) End-to-End Information System (EEIS). By modeling the activities required to create a space mission architecture and then implementing those activities in an application problem, the utility of MBSE as an approach to systems engineering can be demonstrated.

  3. Career Persistence Model for Female Engineers in the Indonesian Context

    OpenAIRE

    Lies Dahlia; Lenny Sunaryo

    2017-01-01

    Extant studies about female engineers have suggested their career persistency in the engineering career is influenced by the workplace, which is characterized by male dominated culture making them feel marginalized. In Indonesia, similar studies for reference are limited. This paper is based on an exploratory quantitative study using a questionnaire developed based on the Career Persistence Model. This paper is based on an empirical exploratory quantitative study by adopting Buse’s et al. Car...

  4. Genome-scale modeling for metabolic engineering.

    Science.gov (United States)

    Simeonidis, Evangelos; Price, Nathan D

    2015-03-01

    We focus on the application of constraint-based methodologies and, more specifically, flux balance analysis in the field of metabolic engineering, and enumerate recent developments and successes of the field. We also review computational frameworks that have been developed with the express purpose of automatically selecting optimal gene deletions for achieving improved production of a chemical of interest. The application of flux balance analysis methods in rational metabolic engineering requires a metabolic network reconstruction and a corresponding in silico metabolic model for the microorganism in question. For this reason, we additionally present a brief overview of automated reconstruction techniques. Finally, we emphasize the importance of integrating metabolic networks with regulatory information-an area which we expect will become increasingly important for metabolic engineering-and present recent developments in the field of metabolic and regulatory integration.

  5. Four-Stroke, Internal Combustion Engine Performance Modeling

    Science.gov (United States)

    Wagner, Richard C.

    In this thesis, two models of four-stroke, internal combustion engines are created and compared. The first model predicts the intake and exhaust processes using isentropic flow equations augmented by discharge coefficients. The second model predicts the intake and exhaust processes using a compressible, time-accurate, Quasi-One-Dimensional (Q1D) approach. Both models employ the same heat release and reduced-order modeling of the cylinder charge. Both include friction and cylinder loss models so that the predicted performance values can be compared to measurements. The results indicate that the isentropic-based model neglects important fluid mechanics and returns inaccurate results. The Q1D flow model, combined with the reduced-order model of the cylinder charge, is able to capture the dominant intake and exhaust fluid mechanics and produces results that compare well with measurement. Fluid friction, convective heat transfer, piston ring and skirt friction and temperature-varying specific heats in the working fluids are all shown to be significant factors in engine performance predictions. Charge blowby is shown to play a lesser role.

  6. Two-vehicle injury severity models based on integration of pavement management and traffic engineering factors.

    Science.gov (United States)

    Jiang, Ximiao; Huang, Baoshan; Yan, Xuedong; Zaretzki, Russell L; Richards, Stephen

    2013-01-01

    The severity of traffic-related injuries has been studied by many researchers in recent decades. However, the evaluation of many factors is still in dispute and, until this point, few studies have taken into account pavement management factors as points of interest. The objective of this article is to evaluate the combined influences of pavement management factors and traditional traffic engineering factors on the injury severity of 2-vehicle crashes. This study examines 2-vehicle rear-end, sideswipe, and angle collisions that occurred on Tennessee state routes from 2004 to 2008. Both the traditional ordered probit (OP) model and Bayesian ordered probit (BOP) model with weak informative prior were fitted for each collision type. The performances of these models were evaluated based on the parameter estimates and deviances. The results indicated that pavement management factors played identical roles in all 3 collision types. Pavement serviceability produces significant positive effects on the severity of injuries. The pavement distress index (PDI), rutting depth (RD), and rutting depth difference between right and left wheels (RD_df) were not significant in any of these 3 collision types. The effects of traffic engineering factors varied across collision types, except that a few were consistently significant in all 3 collision types, such as annual average daily traffic (AADT), rural-urban location, speed limit, peaking hour, and light condition. The findings of this study indicated that improved pavement quality does not necessarily lessen the severity of injuries when a 2-vehicle crash occurs. The effects of traffic engineering factors are not universal but vary by the type of crash. The study also found that the BOP model with a weak informative prior can be used as an alternative but was not superior to the traditional OP model in terms of overall performance.

  7. Optimal Tuner Selection for Kalman-Filter-Based Aircraft Engine Performance Estimation

    Science.gov (United States)

    Simon, Donald L.; Garg, Sanjay

    2011-01-01

    An emerging approach in the field of aircraft engine controls and system health management is the inclusion of real-time, onboard models for the inflight estimation of engine performance variations. This technology, typically based on Kalman-filter concepts, enables the estimation of unmeasured engine performance parameters that can be directly utilized by controls, prognostics, and health-management applications. A challenge that complicates this practice is the fact that an aircraft engine s performance is affected by its level of degradation, generally described in terms of unmeasurable health parameters such as efficiencies and flow capacities related to each major engine module. Through Kalman-filter-based estimation techniques, the level of engine performance degradation can be estimated, given that there are at least as many sensors as health parameters to be estimated. However, in an aircraft engine, the number of sensors available is typically less than the number of health parameters, presenting an under-determined estimation problem. A common approach to address this shortcoming is to estimate a subset of the health parameters, referred to as model tuning parameters. The problem/objective is to optimally select the model tuning parameters to minimize Kalman-filterbased estimation error. A tuner selection technique has been developed that specifically addresses the under-determined estimation problem, where there are more unknown parameters than available sensor measurements. A systematic approach is applied to produce a model tuning parameter vector of appropriate dimension to enable estimation by a Kalman filter, while minimizing the estimation error in the parameters of interest. Tuning parameter selection is performed using a multi-variable iterative search routine that seeks to minimize the theoretical mean-squared estimation error of the Kalman filter. This approach can significantly reduce the error in onboard aircraft engine parameter estimation

  8. Experiment-Based Teaching in Advanced Control Engineering

    Science.gov (United States)

    Precup, R.-E.; Preitl, S.; Radac, M.-B.; Petriu, E. M.; Dragos, C.-A.; Tar, J. K.

    2011-01-01

    This paper discusses an experiment-based approach to teaching an advanced control engineering syllabus involving controlled plant analysis and modeling, control structures and algorithms, real-time laboratory experiments, and their assessment. These experiments are structured around the representative case of the longitudinal slip control of an…

  9. Model-based Engineering for the Integration of Manufacturing Systems with Advanced Analytics

    OpenAIRE

    Lechevalier , David; Narayanan , Anantha; Rachuri , Sudarsan; Foufou , Sebti; Lee , Y Tina

    2016-01-01

    Part 3: Interoperability and Systems Integration; International audience; To employ data analytics effectively and efficiently on manufacturing systems, engineers and data scientists need to collaborate closely to bring their domain knowledge together. In this paper, we introduce a domain-specific modeling approach to integrate a manufacturing system model with advanced analytics, in particular neural networks, to model predictions. Our approach combines a set of meta-models and transformatio...

  10. Study on Fault Diagnostics of a Turboprop Engine Using Inverse Performance Model and Artificial Intelligent Methods

    Science.gov (United States)

    Kong, Changduk; Lim, Semyeong

    2011-12-01

    Recently, the health monitoring system of major gas path components of gas turbine uses mostly the model based method like the Gas Path Analysis (GPA). This method is to find quantity changes of component performance characteristic parameters such as isentropic efficiency and mass flow parameter by comparing between measured engine performance parameters such as temperatures, pressures, rotational speeds, fuel consumption, etc. and clean engine performance parameters without any engine faults which are calculated by the base engine performance model. Currently, the expert engine diagnostic systems using the artificial intelligent methods such as Neural Networks (NNs), Fuzzy Logic and Genetic Algorithms (GAs) have been studied to improve the model based method. Among them the NNs are mostly used to the engine fault diagnostic system due to its good learning performance, but it has a drawback due to low accuracy and long learning time to build learning data base if there are large amount of learning data. In addition, it has a very complex structure for finding effectively single type faults or multiple type faults of gas path components. This work builds inversely a base performance model of a turboprop engine to be used for a high altitude operation UAV using measured performance data, and proposes a fault diagnostic system using the base engine performance model and the artificial intelligent methods such as Fuzzy logic and Neural Network. The proposed diagnostic system isolates firstly the faulted components using Fuzzy Logic, then quantifies faults of the identified components using the NN leaned by fault learning data base, which are obtained from the developed base performance model. In leaning the NN, the Feed Forward Back Propagation (FFBP) method is used. Finally, it is verified through several test examples that the component faults implanted arbitrarily in the engine are well isolated and quantified by the proposed diagnostic system.

  11. Comparison of Engine Cycle Codes for Rocket-Based Combined Cycle Engines

    Science.gov (United States)

    Waltrup, Paul J.; Auslender, Aaron H.; Bradford, John E.; Carreiro, Louis R.; Gettinger, Christopher; Komar, D. R.; McDonald, J.; Snyder, Christopher A.

    2002-01-01

    This paper summarizes the results from a one day workshop on Rocket-Based Combined Cycle (RBCC) Engine Cycle Codes held in Monterey CA in November of 2000 at the 2000 JANNAF JPM with the authors as primary participants. The objectives of the workshop were to discuss and compare the merits of existing Rocket-Based Combined Cycle (RBCC) engine cycle codes being used by government and industry to predict RBCC engine performance and interpret experimental results. These merits included physical and chemical modeling, accuracy and user friendliness. The ultimate purpose of the workshop was to identify the best codes for analyzing RBCC engines and to document any potential shortcomings, not to demonstrate the merits or deficiencies of any particular engine design. Five cases representative of the operating regimes of typical RBCC engines were used as the basis of these comparisons. These included Mach 0 sea level static and Mach 1.0 and Mach 2.5 Air-Augmented-Rocket (AAR), Mach 4 subsonic combustion ramjet or dual-mode scramjet, and Mach 8 scramjet operating modes. Specification of a generic RBCC engine geometry and concomitant component operating efficiencies, bypass ratios, fuel/oxidizer/air equivalence ratios and flight dynamic pressures were provided. The engine included an air inlet, isolator duct, axial rocket motor/injector, axial wall fuel injectors, diverging combustor, and exit nozzle. Gaseous hydrogen was used as the fuel with the rocket portion of the system using a gaseous H2/O2 propellant system to avoid cryogenic issues. The results of the workshop, even after post-workshop adjudication of differences, were surprising. They showed that the codes predicted essentially the same performance at the Mach 0 and I conditions, but progressively diverged from a common value (for example, for fuel specific impulse, Isp) as the flight Mach number increased, with the largest differences at Mach 8. The example cases and results are compared and discussed in this paper.

  12. Gas Turbine Engine Behavioral Modeling

    OpenAIRE

    Meyer, Richard T; DeCarlo, Raymond A.; Pekarek, Steve; Doktorcik, Chris

    2014-01-01

    This paper develops and validates a power flow behavioral model of a gas tur- bine engine with a gas generator and free power turbine. “Simple” mathematical expressions to describe the engine’s power flow are derived from an understand- ing of basic thermodynamic and mechanical interactions taking place within the engine. The engine behavioral model presented is suitable for developing a supervisory level controller of an electrical power system that contains the en- gine connected to a gener...

  13. Modeling student success in engineering education

    Science.gov (United States)

    Jin, Qu

    In order for the United States to maintain its global competitiveness, the long-term success of our engineering students in specific courses, programs, and colleges is now, more than ever, an extremely high priority. Numerous studies have focused on factors that impact student success, namely academic performance, retention, and/or graduation. However, there are only a limited number of works that have systematically developed models to investigate important factors and to predict student success in engineering. Therefore, this research presents three separate but highly connected investigations to address this gap. The first investigation involves explaining and predicting engineering students' success in Calculus I courses using statistical models. The participants were more than 4000 first-year engineering students (cohort years 2004 - 2008) who enrolled in Calculus I courses during the first semester in a large Midwestern university. Predictions from statistical models were proposed to be used to place engineering students into calculus courses. The success rates were improved by 12% in Calculus IA using predictions from models developed over traditional placement method. The results showed that these statistical models provided a more accurate calculus placement method than traditional placement methods and help improve success rates in those courses. In the second investigation, multi-outcome and single-outcome neural network models were designed to understand and to predict first-year retention and first-year GPA of engineering students. The participants were more than 3000 first year engineering students (cohort years 2004 - 2005) enrolled in a large Midwestern university. The independent variables include both high school academic performance factors and affective factors measured prior to entry. The prediction performances of the multi-outcome and single-outcome models were comparable. The ability to predict cumulative GPA at the end of an engineering

  14. Modeling Radiative Heat Transfer and Turbulence-Radiation Interactions in Engines

    Energy Technology Data Exchange (ETDEWEB)

    Paul, Chandan [Pennsylvania State Univ., University Park, PA (United States); Sircar, Arpan [Pennsylvania State Univ., University Park, PA (United States); Ferreyro-Fernandez, Sebastian [Pennsylvania State Univ., University Park, PA (United States); Imren, Abdurrahman [Pennsylvania State Univ., University Park, PA (United States); Haworth, Daniel C [Pennsylvania State Univ., University Park, PA (United States); Roy, Somesh P [Marquette University (United States); Ge, Wenjun [University of California Merced (United States); Modest, Michael F [University of California Merced (United States)

    2017-04-26

    Detailed radiation modelling in piston engines has received relatively little attention to date. Recently, it is being revisited in light of current trends towards higher operating pressures and higher levels of exhaust-gas recirculation, both of which enhance molecular gas radiation. Advanced high-efficiency engines also are expected to function closer to the limits of stable operation, where even small perturbations to the energy balance can have a large influence on system behavior. Here several different spectral radiation property models and radiative transfer equation (RTE) solvers have been implemented in an OpenFOAM-based engine CFD code, and simulations have been performed for a full-load (peak pressure ~200 bar) heavy-duty diesel engine. Differences in computed temperature fields, NO and soot levels, and wall heat transfer rates are shown for different combinations of spectral models and RTE solvers. The relative importance of molecular gas radiation versus soot radiation is examined. And the influence of turbulence-radiation interactions is determined by comparing results obtained using local mean values of composition and temperature to compute radiative emission and absorption with those obtained using a particle-based transported probability density function method.

  15. Adaptation Method for Overall and Local Performances of Gas Turbine Engine Model

    Science.gov (United States)

    Kim, Sangjo; Kim, Kuisoon; Son, Changmin

    2018-04-01

    An adaptation method was proposed to improve the modeling accuracy of overall and local performances of gas turbine engine. The adaptation method was divided into two steps. First, the overall performance parameters such as engine thrust, thermal efficiency, and pressure ratio were adapted by calibrating compressor maps, and second, the local performance parameters such as temperature of component intersection and shaft speed were adjusted by additional adaptation factors. An optimization technique was used to find the correlation equation of adaptation factors for compressor performance maps. The multi-island genetic algorithm (MIGA) was employed in the present optimization. The correlations of local adaptation factors were generated based on the difference between the first adapted engine model and performance test data. The proposed adaptation method applied to a low-bypass ratio turbofan engine of 12,000 lb thrust. The gas turbine engine model was generated and validated based on the performance test data in the sea-level static condition. In flight condition at 20,000 ft and 0.9 Mach number, the result of adapted engine model showed improved prediction in engine thrust (overall performance parameter) by reducing the difference from 14.5 to 3.3%. Moreover, there was further improvement in the comparison of low-pressure turbine exit temperature (local performance parameter) as the difference is reduced from 3.2 to 0.4%.

  16. Developing Project Duration Models in Software Engineering

    Institute of Scientific and Technical Information of China (English)

    Pierre Bourque; Serge Oligny; Alain Abran; Bertrand Fournier

    2007-01-01

    Based on the empirical analysis of data contained in the International Software Benchmarking Standards Group(ISBSG) repository, this paper presents software engineering project duration models based on project effort. Duration models are built for the entire dataset and for subsets of projects developed for personal computer, mid-range and mainframeplatforms. Duration models are also constructed for projects requiring fewer than 400 person-hours of effort and for projectsre quiring more than 400 person-hours of effort. The usefulness of adding the maximum number of assigned resources as asecond independent variable to explain duration is also analyzed. The opportunity to build duration models directly fromproject functional size in function points is investigated as well.

  17. D Modelling and Visualization Based on the Unity Game Engine - Advantages and Challenges

    Science.gov (United States)

    Buyuksalih, I.; Bayburt, S.; Buyuksalih, G.; Baskaraca, A. P.; Karim, H.; Rahman, A. A.

    2017-11-01

    3D City modelling is increasingly popular and becoming valuable tools in managing big cities. Urban and energy planning, landscape, noise-sewage modelling, underground mapping and navigation are among the applications/fields which really depend on 3D modelling for their effectiveness operations. Several research areas and implementation projects had been carried out to provide the most reliable 3D data format for sharing and functionalities as well as visualization platform and analysis. For instance, BIMTAS company has recently completed a project to estimate potential solar energy on 3D buildings for the whole Istanbul and now focussing on 3D utility underground mapping for a pilot case study. The research and implementation standard on 3D City Model domain (3D data sharing and visualization schema) is based on CityGML schema version 2.0. However, there are some limitations and issues in implementation phase for large dataset. Most of the limitations were due to the visualization, database integration and analysis platform (Unity3D game engine) as highlighted in this paper.

  18. Computational modeling for eco engineering: Making the connections between engineering and ecology (Invited)

    Science.gov (United States)

    Bowles, C.

    2013-12-01

    Ecological engineering, or eco engineering, is an emerging field in the study of integrating ecology and engineering, concerned with the design, monitoring, and construction of ecosystems. According to Mitsch (1996) 'the design of sustainable ecosystems intends to integrate human society with its natural environment for the benefit of both'. Eco engineering emerged as a new idea in the early 1960s, and the concept has seen refinement since then. As a commonly practiced field of engineering it is relatively novel. Howard Odum (1963) and others first introduced it as 'utilizing natural energy sources as the predominant input to manipulate and control environmental systems'. Mtisch and Jorgensen (1989) were the first to define eco engineering, to provide eco engineering principles and conceptual eco engineering models. Later they refined the definition and increased the number of principles. They suggested that the goals of eco engineering are: a) the restoration of ecosystems that have been substantially disturbed by human activities such as environmental pollution or land disturbance, and b) the development of new sustainable ecosystems that have both human and ecological values. Here a more detailed overview of eco engineering is provided, particularly with regard to how engineers and ecologists are utilizing multi-dimensional computational models to link ecology and engineering, resulting in increasingly successful project implementation. Descriptions are provided pertaining to 1-, 2- and 3-dimensional hydrodynamic models and their use at small- and large-scale applications. A range of conceptual models that have been developed to aid the in the creation of linkages between ecology and engineering are discussed. Finally, several case studies that link ecology and engineering via computational modeling are provided. These studies include localized stream rehabilitation, spawning gravel enhancement on a large river system, and watershed-wide floodplain modeling of

  19. Optimization in engineering models and algorithms

    CERN Document Server

    Sioshansi, Ramteen

    2017-01-01

    This textbook covers the fundamentals of optimization, including linear, mixed-integer linear, nonlinear, and dynamic optimization techniques, with a clear engineering focus. It carefully describes classical optimization models and algorithms using an engineering problem-solving perspective, and emphasizes modeling issues using many real-world examples related to a variety of application areas. Providing an appropriate blend of practical applications and optimization theory makes the text useful to both practitioners and students, and gives the reader a good sense of the power of optimization and the potential difficulties in applying optimization to modeling real-world systems. The book is intended for undergraduate and graduate-level teaching in industrial engineering and other engineering specialties. It is also of use to industry practitioners, due to the inclusion of real-world applications, opening the door to advanced courses on both modeling and algorithm development within the industrial engineering ...

  20. Studies on combined model based on functional objectives of large scale complex engineering

    Science.gov (United States)

    Yuting, Wang; Jingchun, Feng; Jiabao, Sun

    2018-03-01

    As various functions were included in large scale complex engineering, and each function would be conducted with completion of one or more projects, combined projects affecting their functions should be located. Based on the types of project portfolio, the relationship of projects and their functional objectives were analyzed. On that premise, portfolio projects-technics based on their functional objectives were introduced, then we studied and raised the principles of portfolio projects-technics based on the functional objectives of projects. In addition, The processes of combined projects were also constructed. With the help of portfolio projects-technics based on the functional objectives of projects, our research findings laid a good foundation for management of large scale complex engineering portfolio management.

  1. Using model based systems engineering for the development of the Large Synoptic Survey Telescope's operational plan

    Science.gov (United States)

    Selvy, Brian M.; Claver, Charles; Willman, Beth; Petravick, Don; Johnson, Margaret; Reil, Kevin; Marshall, Stuart; Thomas, Sandrine; Lotz, Paul; Schumacher, German; Lim, Kian-Tat; Jenness, Tim; Jacoby, Suzanne; Emmons, Ben; Axelrod, Tim

    2016-08-01

    We† provide an overview of the Model Based Systems Engineering (MBSE) language, tool, and methodology being used in our development of the Operational Plan for Large Synoptic Survey Telescope (LSST) operations. LSST's Systems Engineering (SE) team is using a model-based approach to operational plan development to: 1) capture the topdown stakeholders' needs and functional allocations defining the scope, required tasks, and personnel needed for operations, and 2) capture the bottom-up operations and maintenance activities required to conduct the LSST survey across its distributed operations sites for the full ten year survey duration. To accomplish these complimentary goals and ensure that they result in self-consistent results, we have developed a holistic approach using the Sparx Enterprise Architect modeling tool and Systems Modeling Language (SysML). This approach utilizes SysML Use Cases, Actors, associated relationships, and Activity Diagrams to document and refine all of the major operations and maintenance activities that will be required to successfully operate the observatory and meet stakeholder expectations. We have developed several customized extensions of the SysML language including the creation of a custom stereotyped Use Case element with unique tagged values, as well as unique association connectors and Actor stereotypes. We demonstrate this customized MBSE methodology enables us to define: 1) the rolls each human Actor must take on to successfully carry out the activities associated with the Use Cases; 2) the skills each Actor must possess; 3) the functional allocation of all required stakeholder activities and Use Cases to organizational entities tasked with carrying them out; and 4) the organization structure required to successfully execute the operational survey. Our approach allows for continual refinement utilizing the systems engineering spiral method to expose finer levels of detail as necessary. For example, the bottom-up, Use Case

  2. Volterra-series-based nonlinear system modeling and its engineering applications: A state-of-the-art review

    Science.gov (United States)

    Cheng, C. M.; Peng, Z. K.; Zhang, W. M.; Meng, G.

    2017-03-01

    Nonlinear problems have drawn great interest and extensive attention from engineers, physicists and mathematicians and many other scientists because most real systems are inherently nonlinear in nature. To model and analyze nonlinear systems, many mathematical theories and methods have been developed, including Volterra series. In this paper, the basic definition of the Volterra series is recapitulated, together with some frequency domain concepts which are derived from the Volterra series, including the general frequency response function (GFRF), the nonlinear output frequency response function (NOFRF), output frequency response function (OFRF) and associated frequency response function (AFRF). The relationship between the Volterra series and other nonlinear system models and nonlinear problem solving methods are discussed, including the Taylor series, Wiener series, NARMAX model, Hammerstein model, Wiener model, Wiener-Hammerstein model, harmonic balance method, perturbation method and Adomian decomposition. The challenging problems and their state of arts in the series convergence study and the kernel identification study are comprehensively introduced. In addition, a detailed review is then given on the applications of Volterra series in mechanical engineering, aeroelasticity problem, control engineering, electronic and electrical engineering.

  3. Cranioplasty prosthesis manufacturing based on reverse engineering technology

    Science.gov (United States)

    Chrzan, Robert; Urbanik, Andrzej; Karbowski, Krzysztof; Moskała, Marek; Polak, Jarosław; Pyrich, Marek

    2012-01-01

    Summary Background Most patients with large focal skull bone loss after craniectomy are referred for cranioplasty. Reverse engineering is a technology which creates a computer-aided design (CAD) model of a real structure. Rapid prototyping is a technology which produces physical objects from virtual CAD models. The aim of this study was to assess the clinical usefulness of these technologies in cranioplasty prosthesis manufacturing. Material/Methods CT was performed on 19 patients with focal skull bone loss after craniectomy, using a dedicated protocol. A material model of skull deficit was produced using computer numerical control (CNC) milling, and individually pre-operatively adjusted polypropylene-polyester prosthesis was prepared. In a control group of 20 patients a prosthesis was manually adjusted to each patient by a neurosurgeon during surgery, without using CT-based reverse engineering/rapid prototyping. In each case, the prosthesis was implanted into the patient. The mean operating times in both groups were compared. Results In the group of patients with reverse engineering/rapid prototyping-based cranioplasty, the mean operating time was shorter (120.3 min) compared to that in the control group (136.5 min). The neurosurgeons found the new technology particularly useful in more complicated bone deficits with different curvatures in various planes. Conclusions Reverse engineering and rapid prototyping may reduce the time needed for cranioplasty neurosurgery and improve the prosthesis fitting. Such technologies may utilize data obtained by commonly used spiral CT scanners. The manufacturing of individually adjusted prostheses should be commonly used in patients planned for cranioplasty with synthetic material. PMID:22207125

  4. Complete modeling for systems of a marine diesel engine

    Science.gov (United States)

    Nahim, Hassan Moussa; Younes, Rafic; Nohra, Chadi; Ouladsine, Mustapha

    2015-03-01

    This paper presents a simulator model of a marine diesel engine based on physical, semi-physical, mathematical and thermodynamic equations, which allows fast predictive simulations. The whole engine system is divided into several functional blocks: cooling, lubrication, air, injection, combustion and emissions. The sub-models and dynamic characteristics of individual blocks are established according to engine working principles equations and experimental data collected from a marine diesel engine test bench for SIMB Company under the reference 6M26SRP1. The overall engine system dynamics is expressed as a set of simultaneous algebraic and differential equations using sub-blocks and S-Functions of Matlab/Simulink. The simulation of this model, implemented on Matlab/Simulink has been validated and can be used to obtain engine performance, pressure, temperature, efficiency, heat release, crank angle, fuel rate, emissions at different sub-blocks. The simulator will be used, in future work, to study the engine performance in faulty conditions, and can be used to assist marine engineers in fault diagnosis and estimation (FDI) as well as designers to predict the behavior of the cooling system, lubrication system, injection system, combustion, emissions, in order to optimize the dimensions of different components. This program is a platform for fault simulator, to investigate the impact on sub-blocks engine's output of changing values for faults parameters such as: faulty fuel injector, leaky cylinder, worn fuel pump, broken piston rings, a dirty turbocharger, dirty air filter, dirty air cooler, air leakage, water leakage, oil leakage and contamination, fouling of heat exchanger, pumps wear, failure of injectors (and many others).

  5. Modeling and Simulation of Truck Engine Cooling System for Onboard Diagnosis

    Institute of Scientific and Technical Information of China (English)

    朱正礼; 张建武; 包继华

    2004-01-01

    A cooling system model of a selected internal combustion engine has been built for onboard diagnosis. The model uses driving cycle data available within the production Engine Control Module (ECM): vehicle speed, engine speed, and fuel flow rate for the given ambient temperature and pressure, etc. Based on the conservation laws for heat transfer and mass flow process, the mathematical descriptions for the components involved in the cooling circuit are obtained and all the components are integrated into a model on Matlab/Simulink platform. The model can simulate the characteristics of thermostat (e.g. time-lag, hysteresis effect).The changes of coolant temperature, heat transfer flow rate, and pressure at individual component site are also shown.

  6. Mathematical Model of the Jet Engine Fuel System

    Directory of Open Access Journals (Sweden)

    Klimko Marek

    2015-01-01

    Full Text Available The paper discusses the design of a simplified mathematical model of the jet (turbo-compressor engine fuel system. The solution will be based on the regulation law, where the control parameter is a fuel mass flow rate and the regulated parameter is the rotational speed. A differential equation of the jet engine and also differential equations of other fuel system components (fuel pump, throttle valve, pressure regulator will be described, with respect to advanced predetermined simplifications.

  7. Mathematical Model of the Jet Engine Fuel System

    Science.gov (United States)

    Klimko, Marek

    2015-05-01

    The paper discusses the design of a simplified mathematical model of the jet (turbo-compressor) engine fuel system. The solution will be based on the regulation law, where the control parameter is a fuel mass flow rate and the regulated parameter is the rotational speed. A differential equation of the jet engine and also differential equations of other fuel system components (fuel pump, throttle valve, pressure regulator) will be described, with respect to advanced predetermined simplifications.

  8. Spent fuel reprocessing system security engineering capability maturity model

    International Nuclear Information System (INIS)

    Liu Yachun; Zou Shuliang; Yang Xiaohua; Ouyang Zigen; Dai Jianyong

    2011-01-01

    In the field of nuclear safety, traditional work places extra emphasis on risk assessment related to technical skills, production operations, accident consequences through deterministic or probabilistic analysis, and on the basis of which risk management and control are implemented. However, high quality of product does not necessarily mean good safety quality, which implies a predictable degree of uniformity and dependability suited to the specific security needs. In this paper, we make use of the system security engineering - capability maturity model (SSE-CMM) in the field of spent fuel reprocessing, establish a spent fuel reprocessing systems security engineering capability maturity model (SFR-SSE-CMM). The base practices in the model are collected from the materials of the practice of the nuclear safety engineering, which represent the best security implementation activities, reflect the regular and basic work of the implementation of the security engineering in the spent fuel reprocessing plant, the general practices reveal the management, measurement and institutional characteristics of all process activities. The basic principles that should be followed in the course of implementation of safety engineering activities are indicated from 'what' and 'how' aspects. The model provides a standardized framework and evaluation system for the safety engineering of the spent fuel reprocessing system. As a supplement to traditional methods, this new assessment technique with property of repeatability and predictability with respect to cost, procedure and quality control, can make or improve the activities of security engineering to become a serial of mature, measurable and standard activities. (author)

  9. Modelling a variable valve timing spark ignition engine using different neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Beham, M. [BMW AG, Munich (Germany); Yu, D.L. [John Moores University, Liverpool (United Kingdom). Control Systems Research Group

    2004-10-01

    In this paper different neural networks (NN) are compared for modelling a variable valve timing spark-ignition (VVT SI) engine. The overall system is divided for each output into five neural multi-input single output (MISO) subsystems. Three kinds of NN, multilayer Perceptron (MLP), pseudo-linear radial basis function (PLRBF), and local linear model tree (LOLIMOT) networks, are used to model each subsystem. Real data were collected when the engine was under different operating conditions and these data are used in training and validation of the developed neural models. The obtained models are finally tested in a real-time online model configuration on the test bench. The neural models run independently of the engine in parallel mode. The model outputs are compared with process output and compared among different models. These models performed well and can be used in the model-based engine control and optimization, and for hardware in the loop systems. (author)

  10. How Model Can Help Inquiry--A Qualitative Study of Model Based Inquiry Learning (Mobile) in Engineering Education

    Science.gov (United States)

    Gong, Yu

    2017-01-01

    This study investigates how students can use "interactive example models" in inquiry activities to develop their conceptual knowledge about an engineering phenomenon like electromagnetic fields and waves. An interactive model, for example a computational model, could be used to develop and teach principles of dynamic complex systems, and…

  11. RELAP5 based engineering simulator

    International Nuclear Information System (INIS)

    Charlton, T.R.; Laats, E.T.; Burtt, J.D.

    1990-01-01

    The INEL Engineering Simulation Center was established in 1988 to provide a modern, flexible, state-of-the-art simulation facility. This facility and two of the major projects which are part of the simulation center, the Advance Test Reactor (ATR) engineering simulator project and the Experimental Breeder Reactor (EBR-II) advanced reactor control system, have been the subject of several papers in the past few years. Two components of the ATR engineering simulator project, RELAP5 and the Nuclear Plant Analyzer (NPA), have recently been improved significantly. This paper presents an overview of the INEL Engineering Simulation Center, and discusses the RELAP5/MOD3 and NPA/MOD1 codes, specifically how they are being used at the INEL Engineering Simulation Center. It provides an update on the modifications to these two codes and their application to the ATR engineering simulator project, as well as, a discussion on the reactor system representation, control system modeling, two phase flow and heat transfer modeling. It will also discuss how these two codes are providing desktop, stand-alone reactor simulation

  12. Development of field programmable gate array-based reactor trip functions using systems engineering approach

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Jae Cheon; Ahmed, Ibrahim [Nuclear Power Plant Engineering, KEPCO International Nuclear Graduate School, Ulsan (Korea, Republic of)

    2016-08-15

    Design engineering process for field programmable gate array (FPGA)-based reactor trip functions are developed in this work. The process discussed in this work is based on the systems engineering approach. The overall design process is effectively implemented by combining with design and implementation processes. It transforms its overall development process from traditional V-model to Y-model. This approach gives the benefit of concurrent engineering of design work with software implementation. As a result, it reduces development time and effort. The design engineering process consisted of five activities, which are performed and discussed: needs/systems analysis; requirement analysis; functional analysis; design synthesis; and design verification and validation. Those activities are used to develop FPGA-based reactor bistable trip functions that trigger reactor trip when the process input value exceeds the setpoint. To implement design synthesis effectively, a model-based design technique is implied. The finite-state machine with data path structural modeling technique together with very high speed integrated circuit hardware description language and the Aldec Active-HDL tool are used to design, model, and verify the reactor bistable trip functions for nuclear power plants.

  13. A New Predictive Model Based on the ABC Optimized Multivariate Adaptive Regression Splines Approach for Predicting the Remaining Useful Life in Aircraft Engines

    Directory of Open Access Journals (Sweden)

    Paulino José García Nieto

    2016-05-01

    Full Text Available Remaining useful life (RUL estimation is considered as one of the most central points in the prognostics and health management (PHM. The present paper describes a nonlinear hybrid ABC–MARS-based model for the prediction of the remaining useful life of aircraft engines. Indeed, it is well-known that an accurate RUL estimation allows failure prevention in a more controllable way so that the effective maintenance can be carried out in appropriate time to correct impending faults. The proposed hybrid model combines multivariate adaptive regression splines (MARS, which have been successfully adopted for regression problems, with the artificial bee colony (ABC technique. This optimization technique involves parameter setting in the MARS training procedure, which significantly influences the regression accuracy. However, its use in reliability applications has not yet been widely explored. Bearing this in mind, remaining useful life values have been predicted here by using the hybrid ABC–MARS-based model from the remaining measured parameters (input variables for aircraft engines with success. A correlation coefficient equal to 0.92 was obtained when this hybrid ABC–MARS-based model was applied to experimental data. The agreement of this model with experimental data confirmed its good performance. The main advantage of this predictive model is that it does not require information about the previous operation states of the aircraft engine.

  14. Applications and issues of GIS as tool for civil engineering modeling

    Science.gov (United States)

    Miles, S.B.; Ho, C.L.

    1999-01-01

    A tool that has proliferated within civil engineering in recent years is geographic information systems (GIS). The goal of a tool is to supplement ability and knowledge that already exists, not to serve as a replacement for that which is lacking. To secure the benefits and avoid misuse of a burgeoning tool, engineers must understand the limitations, alternatives, and context of the tool. The common benefits of using GIS as a supplement to engineering modeling are summarized. Several brief case studies of GIS modeling applications are taken from popular civil engineering literature to demonstrate the wide use and varied implementation of GIS across the discipline. Drawing from the case studies, limitations regarding traditional GIS data models find the implementation of civil engineering models within current GIS are identified and countered by discussing the direction of the next generation of GIS. The paper concludes by highlighting the potential for the misuse of GIS in the context of engineering modeling and suggests that this potential can be reduced through education and awareness. The goal of this paper is to promote awareness of the issues related to GIS-based modeling and to assist in the formulation of questions regarding the application of current GIS. The technology has experienced much publicity of late, with many engineers being perhaps too excited about the usefulness of current GIS. An undoubtedly beneficial side effect of this, however, is that engineers are becoming more aware of GIS and, hopefully, the associated subtleties. Civil engineers must stay informed of GIS issues and progress, but more importantly, civil engineers must inform the GIS community to direct the technology development optimally.

  15. The construction of life prediction models for the design of Stirling engine heater components

    Science.gov (United States)

    Petrovich, A.; Bright, A.; Cronin, M.; Arnold, S.

    1983-01-01

    The service life of Stirling-engine heater structures of Fe-based high-temperature alloys is predicted using a numerical model based on a linear-damage approach and published test data (engine test data for a Co-based alloy and tensile-test results for both the Co-based and the Fe-based alloys). The operating principle of the automotive Stirling engine is reviewed; the economic and technical factors affecting the choice of heater material are surveyed; the test results are summarized in tables and graphs; the engine environment and automotive duty cycle are characterized; and the modeling procedure is explained. It is found that the statistical scatter of the fatigue properties of the heater components needs to be reduced (by decreasing the porosity of the cast material or employing wrought material in fatigue-prone locations) before the accuracy of life predictions can be improved.

  16. Next-generation genome-scale models for metabolic engineering

    DEFF Research Database (Denmark)

    King, Zachary A.; Lloyd, Colton J.; Feist, Adam M.

    2015-01-01

    Constraint-based reconstruction and analysis (COBRA) methods have become widely used tools for metabolic engineering in both academic and industrial laboratories. By employing a genome-scale in silico representation of the metabolic network of a host organism, COBRA methods can be used to predict...... examples of applying COBRA methods to strain optimization are presented and discussed. Then, an outlook is provided on the next generation of COBRA models and the new types of predictions they will enable for systems metabolic engineering....

  17. Capability maturity models in engineering companies: case study analysis

    Directory of Open Access Journals (Sweden)

    Titov Sergei

    2016-01-01

    Full Text Available In the conditions of the current economic downturn engineering companies in Russia and worldwide are searching for new approaches and frameworks to improve their strategic position, increase the efficiency of the internal business processes and enhance the quality of the final products. Capability maturity models are well-known tools used by many foreign engineering companies to assess the productivity of the processes, to elaborate the program of business process improvement and to prioritize the efforts to optimize the whole company performance. The impact of capability maturity model implementation on cost and time are documented and analyzed in the existing research. However, the potential of maturity models as tools of quality management is less known. The article attempts to analyze the impact of CMM implementation on the quality issues. The research is based on a case study methodology and investigates the real life situation in a Russian engineering company.

  18. Computational Fluid Dynamic Modeling of Rocket Based Combined Cycle Engine Flowfields

    Science.gov (United States)

    Daines, Russell L.; Merkle, Charles L.

    1994-01-01

    Computational Fluid Dynamic techniques are used to study the flowfield of a fixed geometry Rocket Based Combined Cycle engine operating in rocket ejector mode. Heat addition resulting from the combustion of injected fuel causes the subsonic engine flow to choke and go supersonic in the slightly divergent combustor-mixer section. Reacting flow computations are undertaken to predict the characteristics of solutions where the heat addition is determined by the flowfield. Here, adaptive gridding is used to improve resolution in the shear layers. Results show that the sonic speed is reached in the unheated portions of the flow first, while the heated portions become supersonic later. Comparison with results from another code show reasonable agreement. The coupled solutions show that the character of the combustion-based thermal choking phenomenon can be controlled reasonably well such that there is opportunity to optimize the length and expansion ratio of the combustor-mixer.

  19. Modeling the internal combustion engine

    Science.gov (United States)

    Zeleznik, F. J.; Mcbride, B. J.

    1985-01-01

    A flexible and computationally economical model of the internal combustion engine was developed for use on large digital computer systems. It is based on a system of ordinary differential equations for cylinder-averaged properties. The computer program is capable of multicycle calculations, with some parameters varying from cycle to cycle, and has restart capabilities. It can accommodate a broad spectrum of reactants, permits changes in physical properties, and offers a wide selection of alternative modeling functions without any reprogramming. It readily adapts to the amount of information available in a particular case because the model is in fact a hierarchy of five models. The models range from a simple model requiring only thermodynamic properties to a complex model demanding full combustion kinetics, transport properties, and poppet valve flow characteristics. Among its many features the model includes heat transfer, valve timing, supercharging, motoring, finite burning rates, cycle-to-cycle variations in air-fuel ratio, humid air, residual and recirculated exhaust gas, and full combustion kinetics.

  20. Validation of a zero-dimensional model for prediction of NOx and engine performance for electronically controlled marine two-stroke diesel engines

    International Nuclear Information System (INIS)

    Scappin, Fabio; Stefansson, Sigurður H.; Haglind, Fredrik; Andreasen, Anders; Larsen, Ulrik

    2012-01-01

    The aim of this paper is to derive a methodology suitable for energy system analysis for predicting the performance and NO x emissions of marine low speed diesel engines. The paper describes a zero-dimensional model, evaluating the engine performance by means of an energy balance and a two zone combustion model using ideal gas law equations over a complete crank cycle. The combustion process is divided into intervals, and the product composition and flame temperature are calculated in each interval. The NO x emissions are predicted using the extended Zeldovich mechanism. The model is validated using experimental data from two MAN B and W engines; one case being data subject to engine parameter changes corresponding to simulating an electronically controlled engine; the second case providing data covering almost all model input and output parameters. The first case of validation suggests that the model can predict specific fuel oil consumption and NO x emissions within the 95% confidence intervals given by the experimental measurements. The second validation confirms the capability of the model to match measured engine output parameters based on measured engine input parameters with a maximum 5% deviation. - Highlights: ► A fast realistic model of a marine two-stroke low speed diesel engine was derived. ► The model is fast and accurate enough for future complex energy systems analysis. ► The effects of engine tuning were validated with experimental tests. ► The model was validated while constrained by experimental input and output data.

  1. Development and validation of a new turbocharger simulation methodology for marine two stroke diesel engine modelling and diagnostic applications

    International Nuclear Information System (INIS)

    Sakellaridis, Nikolaos F.; Raptotasios, Spyridon I.; Antonopoulos, Antonis K.; Mavropoulos, Georgios C.; Hountalas, Dimitrios T.

    2015-01-01

    Engine cycle simulation models are increasingly used in diesel engine simulation and diagnostic applications, reducing experimental effort. Turbocharger simulation plays an important role in model's ability to accurately predict engine performance and emissions. The present work describes the development of a complete engine simulation model for marine Diesel engines based on a new methodology for turbocharger modelling utilizing physically based meanline models for compressor and turbine. Simulation accuracy is evaluated against engine bench measurements. The methodology was developed to overcome the problem of limited experimental maps availability for compressor and turbine, often encountered in large marine diesel engine simulation and diagnostic studies. Data from the engine bench are used to calibrate the models, as well as to estimate turbocharger shaft mechanical efficiency. Closed cycle and gas exchange are modelled using an existing multizone thermodynamic model. The proposed methodology is applied on a 2-stroke marine diesel engine and its evaluation is based on the comparison of predictions against measured engine data. It is demonstrated model's ability to predict engine response with load variation regarding both turbocharger performance and closed cycle parameters, as well as NOx emission trends, making it an effective tool for both engine diagnostic and optimization studies. - Highlights: • Marine two stroke diesel engine simulation model. • Turbine and compressor simulation using physical meanline models. • Methodology to derive T/C component efficiency and T/C shaft mechanical efficiency. • Extensive validation of predictions against experimental data.

  2. Zero-dimensional mathematical model of the torch ignited engine

    International Nuclear Information System (INIS)

    Cruz, Igor William Santos Leal; Alvarez, Carlos Eduardo Castilla; Teixeira, Alysson Fernandes; Valle, Ramon Molina

    2016-01-01

    Highlights: • Publications about the torch ignition system are mostly CFD or experimental research. • A zero-dimensional mathematical model is presented. • The model is based on classical thermodynamic equations. • Approximations are based on empirical functions. • The model is applied to a prototype by means of a computer code. - Abstract: Often employed in the analysis of conventional SI and CI engines, mathematical models can also be applied to engines with torch ignition, which have been researched almost exclusively by CFD or experimentally. The objective of this work is to describe the development and application of a zero-dimensional model of the compression and power strokes of a torch ignited engine. It is an initial analysis that can be used as a basis for future models. The processes of compression, combustion and expansion were described mathematically and applied to an existing prototype by means of a computer code written in MATLAB language. Conservation of energy and mass and the ideal gas law were used in determining gas temperature, pressure, and mass flow rate within the cylinder. Gas motion through the orifice was modelled as an isentropic compressible flow. The thermodynamic properties of the mixture were found by a weighted arithmetic mean of the data for each component, computed by polynomial functions of temperature. Combustion was modelled by the Wiebe function. Heat transfer to the cylinder walls was estimated by Annand’s correlations. Results revealed the behaviour of pressure, temperature, jet velocity, energy transfer, thermodynamic properties, among other variables, and how some of these are influenced by others.

  3. A Model for Implementing Practical Design in the Education of Mechanical Engineers

    DEFF Research Database (Denmark)

    Hansen, Michael Rygaard; Mouritsen, Ole Ø.; Andersen, Torben Ole

    2006-01-01

    In this paper the PBL model used at Aalborg University in the mechanical engineering is shortly presented. A specific semester with a both theoretical and practical content that allow the students to is presented in detail. It is then used as a reference project for a subsequent discussion on three...... potential concerns with respect to the continued succes of problem and project based learning in mechanical and mechatronics engineering namely: individual assessment, bologna (student exchange) model and research based teaching....

  4. Mathematical model of the Amazon Stirling engine

    Energy Technology Data Exchange (ETDEWEB)

    Vidal Medina, Juan Ricardo [Universidad Autonoma de Occidente (Colombia)], e-mail: jrvidal@uao.edu.co; Cobasa, Vladimir Melian; Silva, Electo [Universidade Federal de Itajuba, MG (Brazil)], e-mail: vlad@unifei.edu.br

    2010-07-01

    The Excellency Group in Thermoelectric and Distributed Generation (NEST, for its acronym in Portuguese) at the Federal University of Itajuba, has designed a Stirling engine prototype to provide electricity to isolated regions of Brazil. The engine was designed to operate with residual biomass from timber process. This paper presents mathematical models of heat exchangers (hot, cold and regenerator) integrated into second order adiabatic models. The general model takes into account the pressure drop losses, hysteresis and internal losses. The results of power output, engine efficiency, optimal velocity of the exhaust gases and the influence of dead volume in engine efficiency are presented in this paper. The objective of this modeling is to propose improvements to the manufactured engine design. (author)

  5. Computational Fluid Dynamics Modeling of a Supersonic Nozzle and Integration into a Variable Cycle Engine Model

    Science.gov (United States)

    Connolly, Joseph W.; Friedlander, David; Kopasakis, George

    2015-01-01

    This paper covers the development of an integrated nonlinear dynamic simulation for a variable cycle turbofan engine and nozzle that can be integrated with an overall vehicle Aero-Propulso-Servo-Elastic (APSE) model. A previously developed variable cycle turbofan engine model is used for this study and is enhanced here to include variable guide vanes allowing for operation across the supersonic flight regime. The primary focus of this study is to improve the fidelity of the model's thrust response by replacing the simple choked flow equation convergent-divergent nozzle model with a MacCormack method based quasi-1D model. The dynamic response of the nozzle model using the MacCormack method is verified by comparing it against a model of the nozzle using the conservation element/solution element method. A methodology is also presented for the integration of the MacCormack nozzle model with the variable cycle engine.

  6. Model engineering : balancing between virtuality and reality

    NARCIS (Netherlands)

    Hee, van K.M.

    2011-01-01

    Model engineering concerns the development of models of complex systems. This modeling is performed for a variety of reasons, such as system behavior prediction, system optimization or system construction. Model engineering requires a modeling framework that includes a language to represent the

  7. RELAP5 based engineering simulator

    International Nuclear Information System (INIS)

    Charlton, T.R.; Laats, E.T.; Burtt, J.D.

    1990-01-01

    The INEL Engineering Simulation Center was established in 1988 to provide a modern, flexible, state-of-the-art simulation facility. This facility and two of the major projects which are part of the simulation center, the Advance Test Reactor (ATR) engineering simulator project and the Experimental Breeder Reactor II (EBR-II) advanced reactor control system, have been the subject of several papers in the past few years. Two components of the ATR engineering simulator project, RELAP5 and the Nuclear Plant Analyzer (NPA), have recently been improved significantly. This paper will present an overview of the INEL Engineering Simulation Center, and discuss the RELAP5/MOD3 and NPA/MOD1 codes, specifically how they are being used at the INEL Engineering Simulation Center. It will provide an update on the modifications to these two codes and their application to the ATR engineering simulator project, as well as, a discussion on the reactor system representation, control system modeling, two phase flow and heat transfer modeling. It will also discuss how these two codes are providing desktop, stand-alone reactor simulation. 12 refs., 2 figs

  8. Mathematical modelling in engineering: A proposal to introduce linear algebra concepts

    Directory of Open Access Journals (Sweden)

    Andrea Dorila Cárcamo

    2016-03-01

    Full Text Available The modern dynamic world requires that basic science courses for engineering, including linear algebra, emphasize the development of mathematical abilities primarily associated with modelling and interpreting, which aren´t limited only to calculus abilities. Considering this, an instructional design was elaborated based on mathematic modelling and emerging heuristic models for the construction of specific linear algebra concepts:  span and spanning set. This was applied to first year engineering students. Results suggest that this type of instructional design contributes to the construction of these mathematical concepts and can also favour first year engineering students understanding of key linear algebra concepts and potentiate the development of higher order skills.

  9. Loss terms in free-piston Stirling engine models

    Science.gov (United States)

    Gordon, Lloyd B.

    1992-01-01

    Various models for free piston Stirling engines are reviewed. Initial models were developed primarily for design purposes and to predict operating parameters, especially efficiency. More recently, however, such models have been used to predict engine stability. Free piston Stirling engines have no kinematic constraints and stability may not only be sensitive to the load, but also to various nonlinear loss and spring constraints. The present understanding is reviewed of various loss mechanisms for free piston Stirling engines and how they have been incorporated into engine models is discussed.

  10. Development and validation of a free-piston engine generator numerical model

    International Nuclear Information System (INIS)

    Jia, Boru; Zuo, Zhengxing; Tian, Guohong; Feng, Huihua; Roskilly, A.P.

    2015-01-01

    Highlights: • Detailed numerical model of free-piston engine generator is presented. • Sub models for both starting process and steady operation are derived. • Simulation results show good agreement with prototype test data. • Engine performance with different starting motor force and varied loads are simulated. • The efficiency of the prototype is estimated to be 31.5% at a power output of 4 kW under full load. - Abstract: This paper focuses on the numerical modelling of a spark ignited free-piston engine generator and the model validation with test results. Detailed sub-models for both starting process and steady operation were derived. The compression and expansion processes were not regarded as ideal gas isentropic processes; both heat transfer and air leakage were taken into consideration. The simulation results show good agreement with the prototype test data for both the starting process and steady operation. During the starting process, the difference of the in-cylinder gas pressure can be controlled within 1 bar for every running cycle. For the steady operation process, the difference was less than 5% and the areas enclosed on the pressure–volume diagram were similar, indicating that the power produced by the engine and the engine efficiency could be predicted by this model. Based on this model, the starting process with different starting motor forces and the combustion process with various throttle openings were simulated. The engine performance during stable operation at 100% engine load was predicted, and the efficiency of the prototype was estimated to be 31.5% at power output of 4 kW

  11. A new closed-form thermodynamic model for thermal simulation of spark ignition internal combustion engines

    International Nuclear Information System (INIS)

    Barjaneh, Afshin; Sayyaadi, Hoseyn

    2015-01-01

    Highlights: • A new closed-form thermal model was developed for SI engines. • Various irreversibilities of real engines were integrated into the model. • The accuracy of the model was examined on two real SI engines. • The superiority of the model to previous closed-form models was shown. • Accuracy and losses were studied over the operating range of engines. - Abstract: A closed form model based on finite speed thermodynamics, FST, modified to consider various losses was developed on Otto cycle. In this regard, the governing equations of the finite speed thermodynamics were developed for expansion/compression processes while heat absorption/rejection of the Otto cycle was determined based on finite time thermodynamics, FTT. In addition, other irreversibility including power loss caused by heat transfer through the cylinder walls and irreversibility due to throttling process was integrated into the model. The developed model was verified by implementing on two different spark ignition internal combustion engines and the results of modeling were compared with experimental results as well as FTT model. It was found that the developed model was not only very simple in use like a closed form thermodynamic model, but also it models a real spark ignition engine with reasonable accuracy. The error in predicting the output power at rated operating range of the engine was 39%, while in the case of the FTT model, this figure was 167.5%. This comparison for predicting thermal efficiency was +7% error (as difference) for the developed model compared to +39.4% error of FTT model.

  12. Studies and analyses of the space shuttle main engine. Failure information propagation model data base and software

    Science.gov (United States)

    Tischer, A. E.

    1987-01-01

    The failure information propagation model (FIPM) data base was developed to store and manipulate the large amount of information anticipated for the various Space Shuttle Main Engine (SSME) FIPMs. The organization and structure of the FIPM data base is described, including a summary of the data fields and key attributes associated with each FIPM data file. The menu-driven software developed to facilitate and control the entry, modification, and listing of data base records is also discussed. The transfer of the FIPM data base and software to the NASA Marshall Space Flight Center is described. Complete listings of all of the data base definition commands and software procedures are included in the appendixes.

  13. Thermodynamic control-oriented modeling of cycle-to-cycle exhaust gas temperature in an HCCI engine

    International Nuclear Information System (INIS)

    Dehghani Firoozabadi, M.; Shahbakhti, M.; Koch, C.R.; Jazayeri, S.A.

    2013-01-01

    Highlights: • First thermodynamic model in the literature to predict exhaust temperature in HCCI engines. • The model can be used for integrated control of HCCI combustion and exhaust temperature. • The model is experimentally validated at over 300 steady state and transient conditions. • Results show a good agreement between predicted and measured exhaust temperatures. • Sensitivity of exhaust gas temperature to variation of engine variables is shown. - Abstract: Model-based control of Homogenous Charge Compression Ignition (HCCI) engine exhaust temperature is a viable solution to optimize efficiency of both engine and the exhaust aftertreatment system. Low exhaust temperature in HCCI engines can limit the abatement of hydrocarbon (HC) and carbon monoxide (CO) emissions in an exhaust aftertreatment system. A physical–empirical model is described for control of exhaust temperature in HCCI engines. This model captures cycle-to-cycle dynamics affecting exhaust temperature and is based on thermodynamic relations and semi-empirical correlations. It incorporates intake and exhaust gas flow dynamics, residual gas mixing, and fuel burn rate and is validated with experimental data from a single cylinder engine at over 300 steady state and transient conditions. The validation results indicate a good agreement between predicted and measured exhaust gas temperature

  14. Constructing an Efficient Self-Tuning Aircraft Engine Model for Control and Health Management Applications

    Science.gov (United States)

    Armstrong, Jeffrey B.; Simon, Donald L.

    2012-01-01

    Self-tuning aircraft engine models can be applied for control and health management applications. The self-tuning feature of these models minimizes the mismatch between any given engine and the underlying engineering model describing an engine family. This paper provides details of the construction of a self-tuning engine model centered on a piecewise linear Kalman filter design. Starting from a nonlinear transient aerothermal model, a piecewise linear representation is first extracted. The linearization procedure creates a database of trim vectors and state-space matrices that are subsequently scheduled for interpolation based on engine operating point. A series of steady-state Kalman gains can next be constructed from a reduced-order form of the piecewise linear model. Reduction of the piecewise linear model to an observable dimension with respect to available sensed engine measurements can be achieved using either a subset or an optimal linear combination of "health" parameters, which describe engine performance. The resulting piecewise linear Kalman filter is then implemented for faster-than-real-time processing of sensed engine measurements, generating outputs appropriate for trending engine performance, estimating both measured and unmeasured parameters for control purposes, and performing on-board gas-path fault diagnostics. Computational efficiency is achieved by designing multidimensional interpolation algorithms that exploit the shared scheduling of multiple trim vectors and system matrices. An example application illustrates the accuracy of a self-tuning piecewise linear Kalman filter model when applied to a nonlinear turbofan engine simulation. Additional discussions focus on the issue of transient response accuracy and the advantages of a piecewise linear Kalman filter in the context of validation and verification. The techniques described provide a framework for constructing efficient self-tuning aircraft engine models from complex nonlinear

  15. Stirling Engine Dynamic System Modeling

    Science.gov (United States)

    Nakis, Christopher G.

    2004-01-01

    The Thermo-Mechanical systems branch at the Glenn Research Center focuses a large amount time on Stirling engines. These engines will be used on missions where solar power is inefficient, especially in deep space. I work with Tim Regan and Ed Lewandowski who are currently developing and validating a mathematical model for the Stirling engines. This model incorporates all aspects of the system including, mechanical, electrical and thermodynamic components. Modeling is done through Simplorer, a program capable of running simulations of the model. Once created and then proven to be accurate, a model is used for developing new ideas for engine design. My largest specific project involves varying key parameters in the model and quantifying the results. This can all be done relatively trouble-free with the help of Simplorer. Once the model is complete, Simplorer will do all the necessary calculations. The more complicated part of this project is determining which parameters to vary. Finding key parameters depends on the potential for a value to be independently altered in the design. For example, a change in one dimension may lead to a proportional change to the rest of the model, and no real progress is made. Also, the ability for a changed value to have a substantial impact on the outputs of the system is important. Results will be condensed into graphs and tables with the purpose of better communication and understanding of the data. With the changing of these parameters, a more optimal design can be created without having to purchase or build any models. Also, hours and hours of results can be simulated in minutes. In the long run, using mathematical models can save time and money. Along with this project, I have many other smaller assignments throughout the summer. My main goal is to assist in the processes of model development, validation and testing.

  16. Computer-Aided Design Methods for Model-Based Nonlinear Engine Control Systems, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Traditional design methods for aircraft turbine engine control systems have relied on the use of linearized models and linear control theory. While these controllers...

  17. Comparing in Cylinder Pressure Modelling of a DI Diesel Engine Fuelled on Alternative Fuel Using Two Tabulated Chemistry Approaches.

    Science.gov (United States)

    Ngayihi Abbe, Claude Valery; Nzengwa, Robert; Danwe, Raidandi

    2014-01-01

    The present work presents the comparative simulation of a diesel engine fuelled on diesel fuel and biodiesel fuel. Two models, based on tabulated chemistry, were implemented for the simulation purpose and results were compared with experimental data obtained from a single cylinder diesel engine. The first model is a single zone model based on the Krieger and Bormann combustion model while the second model is a two-zone model based on Olikara and Bormann combustion model. It was shown that both models can predict well the engine's in-cylinder pressure as well as its overall performances. The second model showed a better accuracy than the first, while the first model was easier to implement and faster to compute. It was found that the first method was better suited for real time engine control and monitoring while the second one was better suited for engine design and emission prediction.

  18. An algebraic approach to modeling in software engineering

    International Nuclear Information System (INIS)

    Loegel, C.J.; Ravishankar, C.V.

    1993-09-01

    Our work couples the formalism of universal algebras with the engineering techniques of mathematical modeling to develop a new approach to the software engineering process. Our purpose in using this combination is twofold. First, abstract data types and their specification using universal algebras can be considered a common point between the practical requirements of software engineering and the formal specification of software systems. Second, mathematical modeling principles provide us with a means for effectively analyzing real-world systems. We first use modeling techniques to analyze a system and then represent the analysis using universal algebras. The rest of the software engineering process exploits properties of universal algebras that preserve the structure of our original model. This paper describes our software engineering process and our experience using it on both research and commercial systems. We need a new approach because current software engineering practices often deliver software that is difficult to develop and maintain. Formal software engineering approaches use universal algebras to describe ''computer science'' objects like abstract data types, but in practice software errors are often caused because ''real-world'' objects are improperly modeled. There is a large semantic gap between the customer's objects and abstract data types. In contrast, mathematical modeling uses engineering techniques to construct valid models for real-world systems, but these models are often implemented in an ad hoc manner. A combination of the best features of both approaches would enable software engineering to formally specify and develop software systems that better model real systems. Software engineering, like mathematical modeling, should concern itself first and foremost with understanding a real system and its behavior under given circumstances, and then with expressing this knowledge in an executable form

  19. Dynamic material characterization by combining ballistic testing and an engineering model

    NARCIS (Netherlands)

    Carton, E.P.; Roebroeks, G.H.J.J.; Wal, R. van der

    2013-01-01

    At TNO several energy-based engineering models have been created for various failure mechanism occurring in ballistic testing of materials, like ductile hole growth, denting, plugging, etc. Such models are also under development for ceramic and fiberbased materials (fabrics). As the models are

  20. Proposed improvements to a model for characterizing the electrical and thermal energy performance of stirling engine micro-cogeneration devices based upon experimental observations

    Energy Technology Data Exchange (ETDEWEB)

    Lombardi, K. [CanmetENERGY, 1 Haanel Drive, Ottawa, Ont. (Canada); Ugursal, V.I. [Dalhousie University, Halifax, NS (Canada); Beausoleil-Morrison, I. [Carleton University, 1125 Colonel By Drive, Ottawa, Ont. (Canada)

    2010-10-15

    Stirling engines (SE) are a market-ready technology suitable for residential cogeneration of heat and electricity to alleviate the increasing demand on central power grids. Advantages of this external combustion engine include high cogeneration efficiency, fuel flexibility, low noise and vibration, and low emissions. To explore and assess the feasibility of using SE based cogeneration systems in the residential sector, there is a need for an accurate and practical simulation model that can be used to conduct sensitivity and what-if analyses. A simulation model for SE based residential scale micro-cogeneration systems was recently developed; however the model is impractical due to its functional form and data requirements. Furthermore, the available experimental data lack adequate diversity to assess the model's suitability. In this paper, first the existing model is briefly presented, followed by a review of the design and implementation of a series of experiments conducted to study the performance and behaviour of the SE system and to develop extensive, and hitherto unavailable, operational data. The empirical observations are contrasted with the functional form of the existing simulation model, and improvements to the structure of the model are proposed based upon these observations. (author)

  1. Numerical methods and modelling for engineering

    CERN Document Server

    Khoury, Richard

    2016-01-01

    This textbook provides a step-by-step approach to numerical methods in engineering modelling. The authors provide a consistent treatment of the topic, from the ground up, to reinforce for students that numerical methods are a set of mathematical modelling tools which allow engineers to represent real-world systems and compute features of these systems with a predictable error rate. Each method presented addresses a specific type of problem, namely root-finding, optimization, integral, derivative, initial value problem, or boundary value problem, and each one encompasses a set of algorithms to solve the problem given some information and to a known error bound. The authors demonstrate that after developing a proper model and understanding of the engineering situation they are working on, engineers can break down a model into a set of specific mathematical problems, and then implement the appropriate numerical methods to solve these problems. Uses a “building-block” approach, starting with simpler mathemati...

  2. Educating the engineers of 2020: An outcomes-based typology of engineering undergraduates

    Science.gov (United States)

    Knight, David B.

    of five engineering disciplines in the data set (biomedical/bioengineering, chemical, civil, electrical, and mechanical engineering). First, cluster analyses produced typologies (or groupings) of engineering seniors (one for each of five engineering disciplines studied and an "all engineering" analysis) based on nine self-reported learning outcomes, including fundamental skills, design skills, contextual awareness, interdisciplinary competence, and professional skills. Second, profiles of pre-college characteristics as well as student experiences in college were developed for each discipline and the five disciplines combined. Using analyses of variance, Chi-square analyses, and multinomial logistic regression, this phase also identified differences in student characteristics and college experiences between clusters of students reporting high proficiencies on the array of outcomes and students in other clusters. This second phase informed the third phase, which produced parsimonious models that used pre-college characteristics and student experience variables to predict cluster membership. As a whole, the findings demonstrate that analyses that include the full array of E2020 learning outcomes produce meaningful typologies that distinguish between groupings of students in different engineering fields. Findings demonstrate that a subset of students - the engineers of 2020 - report high skills and abilities on the full array of learning outcomes. These are the graduates sought by both the federal government and industry who most closely resemble the engineers of 2020. In addition, distinctive curricular and co-curricular experiences distinguish this E2020 group of students in each engineering discipline from other groupings of students in that same discipline. These findings have valuable implications for practice because they identify an array of discipline-specific, in- and out-of-class learning experiences that appear to promote the development of this multi

  3. Problems in event based engine control

    DEFF Research Database (Denmark)

    Hendricks, Elbert; Jensen, Michael; Chevalier, Alain Marie Roger

    1994-01-01

    Physically a four cycle spark ignition engine operates on the basis of four engine processes or events: intake, compression, ignition (or expansion) and exhaust. These events each occupy approximately 180° of crank angle. In conventional engine controllers, it is an accepted practice to sample...... the engine variables synchronously with these events (or submultiples of them). Such engine controllers are often called event-based systems. Unfortunately the main system noise (or disturbance) is also synchronous with the engine events: the engine pumping fluctuations. Since many electronic engine...... problems on accurate air/fuel ratio control of a spark ignition (SI) engine....

  4. The Implementation and Evaluation of a Project-Oriented Problem-Based Learning Module in a First Year Engineering Programme

    Science.gov (United States)

    McLoone, Seamus C.; Lawlor, Bob J.; Meehan, Andrew R.

    2016-01-01

    This paper describes how a circuits-based project-oriented problem-based learning educational model was integrated into the first year of a Bachelor of Engineering in Electronic Engineering programme at Maynooth University, Ireland. While many variations of problem based learning exist, the presented model is closely aligned with the model used in…

  5. An engineering based on love: responding to climate change

    Energy Technology Data Exchange (ETDEWEB)

    Catalano, G.D. [State Univ. of New York at Binghamton (United States)

    2009-07-01

    'Full text:' Recent death of a beloved member of my family has served as a catalyst for my reflection on not only the nature of my work but also upon my approach to the issue of reforms in engineering and engineering education which are desperately needed. In engineering we often speak of development. Far too often it seems that the model used in engineering education is education for profit making. The ultimate goal is economic growth with no interest in peace, social or environmental justice or wealth distribution. Such a model ignores inequalities, has contempt for the arts and literature, promotes group think, needs docile students and de-emphasizes critical thinking. I would like to offer a different paradigm for engineering education, one which has as its priority the development of not only the human spirit but also the rest of the natural world. Using such a paradigm, each and every being matters, groups are disaggregated into individuals and equal respect exists for each individual. Ultimately the goal of such an education would be to enable each of us to transcend our own particular situations and imagine a global society which is based upon equality and on love. Key elements of an education based upon love would include the capacity for true, rigorous critical thought, the development of a culture in which individual dissent is honored and revered and in which each of us considers our self a citizen of the Earth. Lastly an education based upon love would enable each of us to develop our own individual narrative of moral imagination, that is, to develop the ability to be in another's shoes, to cultivate our inner eye of seeing and knowing and to overcome the blindness that we have all become far too accustomed. (author)

  6. An engineering based on love: responding to climate change

    International Nuclear Information System (INIS)

    Catalano, G.D.

    2009-01-01

    'Full text:' Recent death of a beloved member of my family has served as a catalyst for my reflection on not only the nature of my work but also upon my approach to the issue of reforms in engineering and engineering education which are desperately needed. In engineering we often speak of development. Far too often it seems that the model used in engineering education is education for profit making. The ultimate goal is economic growth with no interest in peace, social or environmental justice or wealth distribution. Such a model ignores inequalities, has contempt for the arts and literature, promotes group think, needs docile students and de-emphasizes critical thinking. I would like to offer a different paradigm for engineering education, one which has as its priority the development of not only the human spirit but also the rest of the natural world. Using such a paradigm, each and every being matters, groups are disaggregated into individuals and equal respect exists for each individual. Ultimately the goal of such an education would be to enable each of us to transcend our own particular situations and imagine a global society which is based upon equality and on love. Key elements of an education based upon love would include the capacity for true, rigorous critical thought, the development of a culture in which individual dissent is honored and revered and in which each of us considers our self a citizen of the Earth. Lastly an education based upon love would enable each of us to develop our own individual narrative of moral imagination, that is, to develop the ability to be in another's shoes, to cultivate our inner eye of seeing and knowing and to overcome the blindness that we have all become far too accustomed. (author)

  7. Integration of Simulink Models with Component-based Software Models

    Directory of Open Access Journals (Sweden)

    MARIAN, N.

    2008-06-01

    Full Text Available Model based development aims to facilitate the development of embedded control systems by emphasizing the separation of the design level from the implementation level. Model based design involves the use of multiple models that represent different views of a system, having different semantics of abstract system descriptions. Usually, in mechatronics systems, design proceeds by iterating model construction, model analysis, and model transformation. Constructing a MATLAB/Simulink model, a plant and controller behavior is simulated using graphical blocks to represent mathematical and logical constructs and process flow, then software code is generated. A Simulink model is a representation of the design or implementation of a physical system that satisfies a set of requirements. A software component-based system aims to organize system architecture and behavior as a means of computation, communication and constraints, using computational blocks and aggregates for both discrete and continuous behavior, different interconnection and execution disciplines for event-based and time-based controllers, and so on, to encompass the demands to more functionality, at even lower prices, and with opposite constraints. COMDES (Component-based Design of Software for Distributed Embedded Systems is such a component-based system framework developed by the software engineering group of Mads Clausen Institute for Product Innovation (MCI, University of Southern Denmark. Once specified, the software model has to be analyzed. One way of doing that is to integrate in wrapper files the model back into Simulink S-functions, and use its extensive simulation features, thus allowing an early exploration of the possible design choices over multiple disciplines. The paper describes a safe translation of a restricted set of MATLAB/Simulink blocks to COMDES software components, both for continuous and discrete behavior, and the transformation of the software system into the S

  8. Engineering models and methods for industrial cell control

    DEFF Research Database (Denmark)

    Lynggaard, Hans Jørgen Birk; Alting, Leo

    1997-01-01

    This paper is concerned with the engineering, i.e. the designing and making, of industrial cell control systems. The focus is on automated robot welding cells in the shipbuilding industry. The industrial research project defines models and methods for design and implemen-tation of computer based...... SHIPYARD.It is concluded that cell control technology provides for increased performance in production systems, and that the Cell Control Engineering concept reduces the effort for providing and operating high quality and high functionality cell control solutions for the industry....... control and monitor-ing systems for production cells. The project participants are The Danish Academy of Technical Sciences, the Institute of Manufacturing Engineering at the Technical University of Denmark and ODENSE STEEL SHIPYARD Ltd.The manufacturing environment and the current practice...

  9. A numerical model on thermodynamic analysis of free piston Stirling engines

    Science.gov (United States)

    Mou, Jian; Hong, Guotong

    2017-02-01

    In this paper, a new numerical thermodynamic model which bases on the energy conservation law has been used to analyze the free piston Stirling engine. In the model all data was taken from a real free piston Stirling engine which has been built in our laboratory. The energy conservation equations have been applied to expansion space and compression space of the engine. The equation includes internal energy, input power, output power, enthalpy and the heat losses. The heat losses include regenerative heat conduction loss, shuttle heat loss, seal leakage loss and the cavity wall heat conduction loss. The numerical results show that the temperature of expansion space and the temperature of compression space vary with the time. The higher regeneration effectiveness, the higher efficiency and bigger output work. It is also found that under different initial pressures, the heat source temperature, phase angle and engine work frequency pose different effects on the engine’s efficiency and power. As a result, the model is expected to be a useful tool for simulation, design and optimization of Stirling engines.

  10. Model Predictive Engine Air-Ratio Control Using Online Sequential Relevance Vector Machine

    Directory of Open Access Journals (Sweden)

    Hang-cheong Wong

    2012-01-01

    Full Text Available Engine power, brake-specific fuel consumption, and emissions relate closely to air ratio (i.e., lambda among all the engine variables. An accurate and adaptive model for lambda prediction is essential to effective lambda control for long term. This paper utilizes an emerging technique, relevance vector machine (RVM, to build a reliable time-dependent lambda model which can be continually updated whenever a sample is added to, or removed from, the estimated lambda model. The paper also presents a new model predictive control (MPC algorithm for air-ratio regulation based on RVM. This study shows that the accuracy, training, and updating time of the RVM model are superior to the latest modelling methods, such as diagonal recurrent neural network (DRNN and decremental least-squares support vector machine (DLSSVM. Moreover, the control algorithm has been implemented on a real car to test. Experimental results reveal that the control performance of the proposed relevance vector machine model predictive controller (RVMMPC is also superior to DRNNMPC, support vector machine-based MPC, and conventional proportional-integral (PI controller in production cars. Therefore, the proposed RVMMPC is a promising scheme to replace conventional PI controller for engine air-ratio control.

  11. Thermodynamic Modeling of a Solid Oxide Fuel Cell to Couple with an Existing Gas Turbine Engine Model

    Science.gov (United States)

    Brinson, Thomas E.; Kopasakis, George

    2004-01-01

    The Controls and Dynamics Technology Branch at NASA Glenn Research Center are interested in combining a solid oxide fuel cell (SOFC) to operate in conjunction with a gas turbine engine. A detailed engine model currently exists in the Matlab/Simulink environment. The idea is to incorporate a SOFC model within the turbine engine simulation and observe the hybrid system's performance. The fuel cell will be heated to its appropriate operating condition by the engine s combustor. Once the fuel cell is operating at its steady-state temperature, the gas burner will back down slowly until the engine is fully operating on the hot gases exhausted from the SOFC. The SOFC code is based on a steady-state model developed by The U.S. Department of Energy (DOE). In its current form, the DOE SOFC model exists in Microsoft Excel and uses Visual Basics to create an I-V (current-voltage) profile. For the project's application, the main issue with this model is that the gas path flow and fuel flow temperatures are used as input parameters instead of outputs. The objective is to create a SOFC model based on the DOE model that inputs the fuel cells flow rates and outputs temperature of the flow streams; therefore, creating a temperature profile as a function of fuel flow rate. This will be done by applying the First Law of Thermodynamics for a flow system to the fuel cell. Validation of this model will be done in two procedures. First, for a given flow rate the exit stream temperature will be calculated and compared to DOE SOFC temperature as a point comparison. Next, an I-V curve and temperature curve will be generated where the I-V curve will be compared with the DOE SOFC I-V curve. Matching I-V curves will suggest validation of the temperature curve because voltage is a function of temperature. Once the temperature profile is created and validated, the model will then be placed into the turbine engine simulation for system analysis.

  12. Re-engineering pre-employment check-up systems: a model for improving health services.

    Science.gov (United States)

    Rateb, Said Abdel Hakim; El Nouman, Azza Abdel Razek; Rateb, Moshira Abdel Hakim; Asar, Mohamed Naguib; El Amin, Ayman Mohammed; Gad, Saad abdel Aziz; Mohamed, Mohamed Salah Eldin

    2011-01-01

    The purpose of this paper is to develop a model for improving health services provided by the pre-employment medical fitness check-up system affiliated to Egypt's Health Insurance Organization (HIO). Operations research, notably system re-engineering, is used in six randomly selected centers and findings before and after re-engineering are compared. The re-engineering model follows a systems approach, focusing on three areas: structure, process and outcome. The model is based on six main components: electronic booking, standardized check-up processes, protected medical documents, advanced archiving through an electronic content management (ECM) system, infrastructure development, and capacity building. The model originates mainly from customer needs and expectations. The centers' monthly customer flow increased significantly after re-engineering. The mean time spent per customer cycle improved after re-engineering--18.3 +/- 5.5 minutes as compared to 48.8 +/- 14.5 minutes before. Appointment delay was also significantly decreased from an average 18 to 6.2 days. Both beneficiaries and service providers were significantly more satisfied with the services after re-engineering. The model proves that re-engineering program costs are exceeded by increased revenue. Re-engineering in this study involved multiple structure and process elements. The literature review did not reveal similar re-engineering healthcare packages. Therefore, each element was compared separately. This model is highly recommended for improving service effectiveness and efficiency. This research is the first in Egypt to apply the re-engineering approach to public health systems. Developing user-friendly models for service improvement is an added value.

  13. Career Persistence Model for Female Engineers in the Indonesian Context

    Directory of Open Access Journals (Sweden)

    Lies Dahlia

    2017-08-01

    Full Text Available Extant studies about female engineers have suggested their career persistency in the engineering career is influenced by the workplace, which is characterized by male dominated culture making them feel marginalized. In Indonesia, similar studies for reference are limited. This paper is based on an exploratory quantitative study using a questionnaire developed based on the Career Persistence Model. This paper is based on an empirical exploratory quantitative study by adopting Buse’s et al. Career Persistence Model (2013. The intention is to contribute to the literature in the context of Indonesia. It explores the Indonesian cultural dimensions and investigates their relationship to the roles of women in family, society and the workplace, and how women manage to navigate barriers to avoid taking alternative career paths. Contrary to extant studies, findings show women feel equally treated to men in the workplace, however some work demands may hinder. The strong acknowledgement of one’s roles in this collective society outdoes the opinions that the Islamic jurisprudence (fiqh has marginalized empowerment of women, resulting in gender-based injustices and discrimination. Future studies should look into social supports at the workplace in an attempt to retain and increase the share of women in the engineering career in Indonesia.

  14. Classification and moral evaluation of uncertainties in engineering modeling.

    Science.gov (United States)

    Murphy, Colleen; Gardoni, Paolo; Harris, Charles E

    2011-09-01

    Engineers must deal with risks and uncertainties as a part of their professional work and, in particular, uncertainties are inherent to engineering models. Models play a central role in engineering. Models often represent an abstract and idealized version of the mathematical properties of a target. Using models, engineers can investigate and acquire understanding of how an object or phenomenon will perform under specified conditions. This paper defines the different stages of the modeling process in engineering, classifies the various sources of uncertainty that arise in each stage, and discusses the categories into which these uncertainties fall. The paper then considers the way uncertainty and modeling are approached in science and the criteria for evaluating scientific hypotheses, in order to highlight the very different criteria appropriate for the development of models and the treatment of the inherent uncertainties in engineering. Finally, the paper puts forward nine guidelines for the treatment of uncertainty in engineering modeling.

  15. The Little Engines That Could: Modeling the Performance of World Wide Web Search Engines

    OpenAIRE

    Eric T. Bradlow; David C. Schmittlein

    2000-01-01

    This research examines the ability of six popular Web search engines, individually and collectively, to locate Web pages containing common marketing/management phrases. We propose and validate a model for search engine performance that is able to represent key patterns of coverage and overlap among the engines. The model enables us to estimate the typical additional benefit of using multiple search engines, depending on the particular set of engines being considered. It also provides an estim...

  16. Computer Modeling of a Rotating Detonation Engine in a Rocket Configuration

    Science.gov (United States)

    2015-03-01

    detonation engine ( RDE ) has one or more shock waves rotating around an annulus. The RDE can theoretically be 20% more thermally efficient than a traditional...deflagration- based cycle. An RDE was modeled in Numerical Propulsion System Simulation (NPSS) based on a model developed in Microsoft Excel. The...thermodynamic analysis of the RDE in these models is broken into four streams. Empirical models were used to find the per- centage of the total flow in each

  17. Mathematical modeling of a four-stroke resonant engine for micro and mesoscale applications

    Science.gov (United States)

    Preetham, B. S.; Anderson, M.; Richards, C.

    2014-12-01

    In order to mitigate frictional and leakage losses in small scale engines, a compliant engine design is proposed in which the piston in cylinder arrangement is replaced by a flexible cavity. A physics-based nonlinear lumped-parameter model is derived to predict the performance of a prototype engine. The model showed that the engine performance depends on input parameters, such as heat input, heat loss, and load on the engine. A sample simulation for a reference engine with octane fuel/air ratio of 0.043 resulted in an indicated thermal efficiency of 41.2%. For a fixed fuel/air ratio, higher output power is obtained for smaller loads and vice-versa. The heat loss from the engine and the work done on the engine during the intake stroke are found to decrease the indicated thermal efficiency. The ratio of friction work to indicated work in the prototype engine is about 8%, which is smaller in comparison to the traditional reciprocating engines.

  18. Towards artificial intelligence based diesel engine performance control under varying operating conditions using support vector regression

    Directory of Open Access Journals (Sweden)

    Naradasu Kumar Ravi

    2013-01-01

    Full Text Available Diesel engine designers are constantly on the look-out for performance enhancement through efficient control of operating parameters. In this paper, the concept of an intelligent engine control system is proposed that seeks to ensure optimized performance under varying operating conditions. The concept is based on arriving at the optimum engine operating parameters to ensure the desired output in terms of efficiency. In addition, a Support Vector Machines based prediction model has been developed to predict the engine performance under varying operating conditions. Experiments were carried out at varying loads, compression ratios and amounts of exhaust gas recirculation using a variable compression ratio diesel engine for data acquisition. It was observed that the SVM model was able to predict the engine performance accurately.

  19. Estimation of some stochastic models used in reliability engineering

    International Nuclear Information System (INIS)

    Huovinen, T.

    1989-04-01

    The work aims to study the estimation of some stochastic models used in reliability engineering. In reliability engineering continuous probability distributions have been used as models for the lifetime of technical components. We consider here the following distributions: exponential, 2-mixture exponential, conditional exponential, Weibull, lognormal and gamma. Maximum likelihood method is used to estimate distributions from observed data which may be either complete or censored. We consider models based on homogeneous Poisson processes such as gamma-poisson and lognormal-poisson models for analysis of failure intensity. We study also a beta-binomial model for analysis of failure probability. The estimators of the parameters for three models are estimated by the matching moments method and in the case of gamma-poisson and beta-binomial models also by maximum likelihood method. A great deal of mathematical or statistical problems that arise in reliability engineering can be solved by utilizing point processes. Here we consider the statistical analysis of non-homogeneous Poisson processes to describe the failing phenomena of a set of components with a Weibull intensity function. We use the method of maximum likelihood to estimate the parameters of the Weibull model. A common cause failure can seriously reduce the reliability of a system. We consider a binomial failure rate (BFR) model as an application of the marked point processes for modelling common cause failure in a system. The parameters of the binomial failure rate model are estimated with the maximum likelihood method

  20. Image based 3D city modeling : Comparative study

    Directory of Open Access Journals (Sweden)

    S. P. Singh

    2014-06-01

    Full Text Available 3D city model is a digital representation of the Earth’s surface and it’s related objects such as building, tree, vegetation, and some manmade feature belonging to urban area. The demand of 3D city modeling is increasing rapidly for various engineering and non-engineering applications. Generally four main image based approaches were used for virtual 3D city models generation. In first approach, researchers were used Sketch based modeling, second method is Procedural grammar based modeling, third approach is Close range photogrammetry based modeling and fourth approach is mainly based on Computer Vision techniques. SketchUp, CityEngine, Photomodeler and Agisoft Photoscan are the main softwares to represent these approaches respectively. These softwares have different approaches & methods suitable for image based 3D city modeling. Literature study shows that till date, there is no complete such type of comparative study available to create complete 3D city model by using images. This paper gives a comparative assessment of these four image based 3D modeling approaches. This comparative study is mainly based on data acquisition methods, data processing techniques and output 3D model products. For this research work, study area is the campus of civil engineering department, Indian Institute of Technology, Roorkee (India. This 3D campus acts as a prototype for city. This study also explains various governing parameters, factors and work experiences. This research work also gives a brief introduction, strengths and weakness of these four image based techniques. Some personal comment is also given as what can do or what can’t do from these softwares. At the last, this study shows; it concluded that, each and every software has some advantages and limitations. Choice of software depends on user requirements of 3D project. For normal visualization project, SketchUp software is a good option. For 3D documentation record, Photomodeler gives good

  1. A unified architecture for biomedical search engines based on semantic web technologies.

    Science.gov (United States)

    Jalali, Vahid; Matash Borujerdi, Mohammad Reza

    2011-04-01

    There is a huge growth in the volume of published biomedical research in recent years. Many medical search engines are designed and developed to address the over growing information needs of biomedical experts and curators. Significant progress has been made in utilizing the knowledge embedded in medical ontologies and controlled vocabularies to assist these engines. However, the lack of common architecture for utilized ontologies and overall retrieval process, hampers evaluating different search engines and interoperability between them under unified conditions. In this paper, a unified architecture for medical search engines is introduced. Proposed model contains standard schemas declared in semantic web languages for ontologies and documents used by search engines. Unified models for annotation and retrieval processes are other parts of introduced architecture. A sample search engine is also designed and implemented based on the proposed architecture in this paper. The search engine is evaluated using two test collections and results are reported in terms of precision vs. recall and mean average precision for different approaches used by this search engine.

  2. Coupled dynamic-multidimensional modelling of free-piston engine combustion

    International Nuclear Information System (INIS)

    Mikalsen, R.; Roskilly, A.P.

    2009-01-01

    Free-piston engines are under investigation by a number of research groups worldwide, as an alternative to conventional technology in applications such as electric and hydraulic power generation. The piston dynamics of the free-piston engine differ significantly from those of conventional engines, and this may influence in-cylinder gas motion, combustion and emissions formation. Due to the complex interaction between mechanics and thermodynamics, the modelling of free-piston engines is not straight-forward. This paper presents a novel approach to the modelling of free-piston engines through the introduction of solution-dependent mesh motion in an engine CFD code. The particular features of free-piston engines are discussed, and the model for engine dynamics implemented in the CFD code is described. Finally, the coupled solver is demonstrated through the modelling of a spark ignited free-piston engine generator

  3. Coupled dynamic-multidimensional modelling of free-piston engine combustion

    Energy Technology Data Exchange (ETDEWEB)

    Mikalsen, R. [Sir Joseph Swan Institute for Energy Research, Newcastle University, Newcastle upon Tyne NE1 7RU (United Kingdom); Roskilly, A.P. [Sir Joseph Swan Institute for Energy Research, Newcastle University, Newcastle upon Tyne NE1 7RU (United Kingdom)], E-mail: tony.roskilly@ncl.ac.uk

    2009-01-15

    Free-piston engines are under investigation by a number of research groups worldwide, as an alternative to conventional technology in applications such as electric and hydraulic power generation. The piston dynamics of the free-piston engine differ significantly from those of conventional engines, and this may influence in-cylinder gas motion, combustion and emissions formation. Due to the complex interaction between mechanics and thermodynamics, the modelling of free-piston engines is not straight-forward. This paper presents a novel approach to the modelling of free-piston engines through the introduction of solution-dependent mesh motion in an engine CFD code. The particular features of free-piston engines are discussed, and the model for engine dynamics implemented in the CFD code is described. Finally, the coupled solver is demonstrated through the modelling of a spark ignited free-piston engine generator.

  4. Development of health information search engine based on metadata and ontology.

    Science.gov (United States)

    Song, Tae-Min; Park, Hyeoun-Ae; Jin, Dal-Lae

    2014-04-01

    The aim of the study was to develop a metadata and ontology-based health information search engine ensuring semantic interoperability to collect and provide health information using different application programs. Health information metadata ontology was developed using a distributed semantic Web content publishing model based on vocabularies used to index the contents generated by the information producers as well as those used to search the contents by the users. Vocabulary for health information ontology was mapped to the Systematized Nomenclature of Medicine Clinical Terms (SNOMED CT), and a list of about 1,500 terms was proposed. The metadata schema used in this study was developed by adding an element describing the target audience to the Dublin Core Metadata Element Set. A metadata schema and an ontology ensuring interoperability of health information available on the internet were developed. The metadata and ontology-based health information search engine developed in this study produced a better search result compared to existing search engines. Health information search engine based on metadata and ontology will provide reliable health information to both information producer and information consumers.

  5. Analysis of appraisal tool of system security engineering capability maturity based on component

    International Nuclear Information System (INIS)

    Liu Zhenghai; Yang Xiaohua; Zou Shuliang; Liu Yachun; Xiao Jiantian; Liu Zhiming

    2012-01-01

    Spent Fuel Reprocessing is a part of nuclear fuel cycle and is the inevitably choice of nuclear power sustainable development. Reprocessing needs to face with radiological, criticality, chemical hazards. Besides using the tradition appraisal methods based on the security goals, it is a beneficial supplement that using the appraisal method of system security engineering capability maturity model based on the process. Experts should check and approve large numbers of documents during the appraisal based on system security engineering capability maturity model, so it is necessary that developing a tool to assist the expert to complete the appraisal. The method of developing software based on component is highly effective, nimble and reliable. Component technology is analyzed, the methods of extraction model domain components and general components is introduced, and the appraisal system is developed based on component technology. (authors)

  6. A Framework for Modular Modeling of the Diesel Engine Exhaust Gas Cleaning System

    DEFF Research Database (Denmark)

    Åberg, Andreas; Hansen, Thomas Klint; Linde, Kasper

    2015-01-01

    Pollutants from diesel engines have a negative effect on urban air quality. Because of this and new legislation restricting the emission level, it is necessary to develop exhaust gas treatment systems for diesel engines that can reduce the amount of pollutants. A modular model capable of simulating...... model. Four different models in the automotive diesel exhaust gas cleaning system are presented briefly. Based on the presented methodology, it is discussed which changes are needed to the models to create a modular model of the whole catalytic system....

  7. Modeling the dynamic and thermodynamic operation of Stirling engines by means of an equivalent electrical circuit

    International Nuclear Information System (INIS)

    Cascella, Franco; Sorin, Mikhail; Formosa, Fabien; Teyssedou, Alberto

    2017-01-01

    Highlights: • A model based on the electrical analogy theory has been developed to predict the operation of a Stirling engine. • The models takes into account the continuity, the momentum and the energy conservation equations. • The model predicts the operating conditions of the RE100 Free piston Stirling engine. • The model is sensible to the modeling of the effects of the machine load. - Abstract: The Stirling engines are inherently efficient; their thermodynamic cycles reach the Carnot efficiency. These technologies are suitable to operate under any low temperature difference between the hot and the cold sources. For these reasons, these engines can be considered as reliable power conversion systems to promote the conversion of low-grade waste heat generated by industrial plants. The need of a model to predict the behavior of these engines is of primary importance. Nevertheless, a great difficulty is encountered in developing such a model since it is not simple to take into account coupled thermodynamic and dynamic effects. This is the main reason why several models make use of electrical analogies to describe Stirling engines (in particular, free-piston machines): by assuming the pressure equivalent to a voltage and the flow rate to an electrical current, a coupled dynamic-thermodynamic analysis of the engine can be performed. In this paper, an electrical circuit whose behavior is equivalent to that of the engine is derived from the electrical analogy theory. To this aim, we propose an electrical analogy model based on the three conservation laws (mass, momentum and energy). Since limited experimental information is available in the open literature, the results obtained with the proposed model are compared with the experimental data collected at the NASA Lewis Research center for a free-piston Stirling engine i.e., the RE-1000 engine.

  8. Engineering models for catastrophe risk and their application to insurance

    Science.gov (United States)

    Dong, Weimin

    2002-06-01

    Internationally earthquake insurance, like all other insurance (fire, auto), adopted actuarial approach in the past, which is, based on historical loss experience to determine insurance rate. Due to the fact that earthquake is a rare event with severe consequence, irrational determination of premium rate and lack of understanding scale of potential loss led to many insurance companies insolvent after Northridge earthquake in 1994. Along with recent advances in earth science, computer science and engineering, computerized loss estimation methodologies based on first principles have been developed to the point that losses from destructive earthquakes can be quantified with reasonable accuracy using scientific modeling techniques. This paper intends to introduce how engineering models can assist to quantify earthquake risk and how insurance industry can use this information to manage their risk in the United States and abroad.

  9. Modeling the Human Scarred Heart In Vitro: Toward New Tissue Engineered Models.

    Science.gov (United States)

    Deddens, Janine C; Sadeghi, Amir Hossein; Hjortnaes, Jesper; van Laake, Linda W; Buijsrogge, Marc; Doevendans, Pieter A; Khademhosseini, Ali; Sluijter, Joost P G

    2017-02-01

    Cardiac remodeling is critical for effective tissue healing, however, excessive production and deposition of extracellular matrix components contribute to scarring and failing of the heart. Despite the fact that novel therapies have emerged, there are still no lifelong solutions for this problem. An urgent need exists to improve the understanding of adverse cardiac remodeling in order to develop new therapeutic interventions that will prevent, reverse, or regenerate the fibrotic changes in the failing heart. With recent advances in both disease biology and cardiac tissue engineering, the translation of fundamental laboratory research toward the treatment of chronic heart failure patients becomes a more realistic option. Here, the current understanding of cardiac fibrosis and the great potential of tissue engineering are presented. Approaches using hydrogel-based tissue engineered heart constructs are discussed to contemplate key challenges for modeling tissue engineered cardiac fibrosis and to provide a future outlook for preclinical and clinical applications. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Systems Security Engineering Capability Maturity Model SSE-CMM Model Description Document

    National Research Council Canada - National Science Library

    1999-01-01

    The Systems Security Engineering Capability Maturity Model (SSE-CMM) describes the essential characteristics of an organization's security engineering process that must exist to ensure good security engineering...

  11. LOGISTICS RISK RESEARCH OF PREFABRICATED HOUSE CONSTRUCTION ENGINEERING BASED ON CREDIBILITY METHOD

    Directory of Open Access Journals (Sweden)

    Xiaoping Bai

    2017-07-01

    Full Text Available In recent years, the prefabricated house industry has rapid development,.Because of fewer suppliers, higher demand transport scheme and complex quality test, the risks of construction engineering logistics links are relatively high. Studying how to effectively evaluate the risks of construction engineering logistics links is significant. According to the characteristics of the prefabricated house construction engineering, we analyse the construction engineering logistics risks and use the combined weights method to determine the weight of indexes which contains both subjective and objective factors, to improve the scientific value and the validity of the assessment. Based on credibility measure method, a new logistics risk evaluation model in prefabricated housing is established to estimate the risk during making prefabricated house construction engineering. The presented model can avoid the subjectivity of selecting the membership function and solve the problem of how to comprehensively assess the construction engineering logistics risk in a certain extent.

  12. Qualitative models for space system engineering

    Science.gov (United States)

    Forbus, Kenneth D.

    1990-01-01

    The objectives of this project were: (1) to investigate the implications of qualitative modeling techniques for problems arising in the monitoring, diagnosis, and design of Space Station subsystems and procedures; (2) to identify the issues involved in using qualitative models to enhance and automate engineering functions. These issues include representing operational criteria, fault models, alternate ontologies, and modeling continuous signals at a functional level of description; and (3) to develop a prototype collection of qualitative models for fluid and thermal systems commonly found in Space Station subsystems. Potential applications of qualitative modeling to space-systems engineering, including the notion of intelligent computer-aided engineering are summarized. Emphasis is given to determining which systems of the proposed Space Station provide the most leverage for study, given the current state of the art. Progress on using qualitative models, including development of the molecular collection ontology for reasoning about fluids, the interaction of qualitative and quantitative knowledge in analyzing thermodynamic cycles, and an experiment on building a natural language interface to qualitative reasoning is reported. Finally, some recommendations are made for future research.

  13. Introduction to modeling and control of internal combustion engine systems

    Energy Technology Data Exchange (ETDEWEB)

    Guzzella, Lino; Onder, Christopher H. [ETH Zuerich (Switzerland). Institute for Dynamic Systems and Control

    2010-07-01

    Internal combustion engines (ICE) still have potential for substantial improvements, particularly with regard to fuel efficiency and environmental compatibility. In order to fully exploit the remaining margins, increasingly sophisticated control systems have to be applied. This book offers an introduction to cost-effective model-based control-system design for ICE. The primary emphasis is put on the ICE and its auxiliary devices. Mathematical models for these processes are developed and solutions for selected feedforward and feedback control-problems are presented. The discussions concerning pollutant emissions and fuel economy of ICE in automotive applications constantly intensified since the first edition of this book was published. Concerns about the air quality, the limited resources of fossil fuels and the detrimental effects of greenhouse gases exceedingly spurred the interest of both the industry and academia in further improvements. The most important changes and additions included in this second edition are: - restructured and slightly extended section on superchargers; - short subsection on rotational oscillations and their treatment on engine test-benches; - complete section on modeling, detection, and control of engine knock; - improved physical and chemical model for the three-way catalytic converter; - new methodology for the design of an air-to-fuel ratio controller; - short introduction to thermodynamic engine-cycle calculation and corresponding control-oriented aspects. (orig.)

  14. Refinement and verification in component-based model-driven design

    DEFF Research Database (Denmark)

    Chen, Zhenbang; Liu, Zhiming; Ravn, Anders Peter

    2009-01-01

    Modern software development is complex as it has to deal with many different and yet related aspects of applications. In practical software engineering this is now handled by a UML-like modelling approach in which different aspects are modelled by different notations. Component-based and object-o...... be integrated in computer-aided software engineering (CASE) tools for adding formally supported checking, transformation and generation facilities.......Modern software development is complex as it has to deal with many different and yet related aspects of applications. In practical software engineering this is now handled by a UML-like modelling approach in which different aspects are modelled by different notations. Component-based and object...

  15. Engineering the future of military tactical vehicles and systems with modeling and simulation

    Science.gov (United States)

    Loew, Matthew; Watters, Brock

    2005-05-01

    Stewart & Stevenson has developed a Modeling and Simulation approach based on Systems Engineering principles for the development of future military vehicles and systems. This approach starts with a requirements analysis phase that captures and distills the design requirements into a list of parameterized values. A series of executable engineering models are constructed to allow the requirements to be transformed into systems with definable architectures with increasing levels of fidelity. Required performance parameters are available for importation into a variety of modeling and simulation tools including PTC Pro/ENGINEER (for initial engineering models, mechanisms, packaging, and detailed 3-Dimensional solid models), LMS International Virtual.Lab Motion (for vehicle dynamics and ride analysis) and AVL Cruise (Powertrain simulations). Structural analysis and optimization (performed in ANSYS, Pro/MECHANICA, and Altair OptiStruct) is based on the initial geometry from Pro/ENGINEER. Spreadsheets are used for requirements analysis, design documentation and first-order studies. Collectively, these models serve as templates for all design activities. Design variables initially studied within a simplified system model can be cascaded down as the new requirements for a sub-system model. By utilizing this approach premature decisions on systems architectures can be avoided. Ultimately, the systems that are developed are optimally able to meet the requirements by utilizing this top-down approach. Additionally, this M&S approach is seen as a life-cycle tool useful in initially assisting with project management activities through the initial and detail design phases and serves as a template for testing and validation/verification activities. Furthermore, because of the multi-tiered approach, there is natural re-use possible with the models as well.

  16. PBL and CDIO: complementary models for engineering education development

    Science.gov (United States)

    Edström, Kristina; Kolmos, Anette

    2014-09-01

    This paper compares two models for reforming engineering education, problem/project-based learning (PBL), and conceive-design-implement-operate (CDIO), identifying and explaining similarities and differences. PBL and CDIO are defined and contrasted in terms of their history, community, definitions, curriculum design, relation to disciplines, engineering projects, and change strategy. The structured comparison is intended as an introduction for learning about any of these models. It also invites reflection to support the understanding and evolution of PBL and CDIO, and indicates specifically what the communities can learn from each other. It is noted that while the two approaches share many underlying values, they only partially overlap as strategies for educational reform. The conclusions are that practitioners have much to learn from each other's experiences through a dialogue between the communities, and that PBL and CDIO can play compatible and mutually reinforcing roles, and thus can be fruitfully combined to reform engineering education.

  17. Structure-Based Turbulence Model

    National Research Council Canada - National Science Library

    Reynolds, W

    2000-01-01

    .... Maire carried out this work as part of his Phi) research. During the award period we began to explore ways to simplify the structure-based modeling so that it could be used in repetitive engineering calculations...

  18. Computational Modeling in Tissue Engineering

    CERN Document Server

    2013-01-01

    One of the major challenges in tissue engineering is the translation of biological knowledge on complex cell and tissue behavior into a predictive and robust engineering process. Mastering this complexity is an essential step towards clinical applications of tissue engineering. This volume discusses computational modeling tools that allow studying the biological complexity in a more quantitative way. More specifically, computational tools can help in:  (i) quantifying and optimizing the tissue engineering product, e.g. by adapting scaffold design to optimize micro-environmental signals or by adapting selection criteria to improve homogeneity of the selected cell population; (ii) quantifying and optimizing the tissue engineering process, e.g. by adapting bioreactor design to improve quality and quantity of the final product; and (iii) assessing the influence of the in vivo environment on the behavior of the tissue engineering product, e.g. by investigating vascular ingrowth. The book presents examples of each...

  19. The software-cycle model for re-engineering and reuse

    Science.gov (United States)

    Bailey, John W.; Basili, Victor R.

    1992-01-01

    This paper reports on the progress of a study which will contribute to our ability to perform high-level, component-based programming by describing means to obtain useful components, methods for the configuration and integration of those components, and an underlying economic model of the costs and benefits associated with this approach to reuse. One goal of the study is to develop and demonstrate methods to recover reusable components from domain-specific software through a combination of tools, to perform the identification, extraction, and re-engineering of components, and domain experts, to direct the applications of those tools. A second goal of the study is to enable the reuse of those components by identifying techniques for configuring and recombining the re-engineered software. This component-recovery or software-cycle model addresses not only the selection and re-engineering of components, but also their recombination into new programs. Once a model of reuse activities has been developed, the quantification of the costs and benefits of various reuse options will enable the development of an adaptable economic model of reuse, which is the principal goal of the overall study. This paper reports on the conception of the software-cycle model and on several supporting techniques of software recovery, measurement, and reuse which will lead to the development of the desired economic model.

  20. Mathematical Modelling in Engineering: A Proposal to Introduce Linear Algebra Concepts

    Science.gov (United States)

    Cárcamo Bahamonde, Andrea; Gómez Urgelles, Joan; Fortuny Aymemí, Josep

    2016-01-01

    The modern dynamic world requires that basic science courses for engineering, including linear algebra, emphasise the development of mathematical abilities primarily associated with modelling and interpreting, which are not exclusively calculus abilities. Considering this, an instructional design was created based on mathematical modelling and…

  1. Computational Fluid Dynamics Analysis Method Developed for Rocket-Based Combined Cycle Engine Inlet

    Science.gov (United States)

    1997-01-01

    Renewed interest in hypersonic propulsion systems has led to research programs investigating combined cycle engines that are designed to operate efficiently across the flight regime. The Rocket-Based Combined Cycle Engine is a propulsion system under development at the NASA Lewis Research Center. This engine integrates a high specific impulse, low thrust-to-weight, airbreathing engine with a low-impulse, high thrust-to-weight rocket. From takeoff to Mach 2.5, the engine operates as an air-augmented rocket. At Mach 2.5, the engine becomes a dual-mode ramjet; and beyond Mach 8, the rocket is turned back on. One Rocket-Based Combined Cycle Engine variation known as the "Strut-Jet" concept is being investigated jointly by NASA Lewis, the U.S. Air Force, Gencorp Aerojet, General Applied Science Labs (GASL), and Lockheed Martin Corporation. Work thus far has included wind tunnel experiments and computational fluid dynamics (CFD) investigations with the NPARC code. The CFD method was initiated by modeling the geometry of the Strut-Jet with the GRIDGEN structured grid generator. Grids representing a subscale inlet model and the full-scale demonstrator geometry were constructed. These grids modeled one-half of the symmetric inlet flow path, including the precompression plate, diverter, center duct, side duct, and combustor. After the grid generation, full Navier-Stokes flow simulations were conducted with the NPARC Navier-Stokes code. The Chien low-Reynolds-number k-e turbulence model was employed to simulate the high-speed turbulent flow. Finally, the CFD solutions were postprocessed with a Fortran code. This code provided wall static pressure distributions, pitot pressure distributions, mass flow rates, and internal drag. These results were compared with experimental data from a subscale inlet test for code validation; then they were used to help evaluate the demonstrator engine net thrust.

  2. Developing engineering processes through integrated modelling of product and process

    DEFF Research Database (Denmark)

    Nielsen, Jeppe Bjerrum; Hvam, Lars

    2012-01-01

    This article aims at developing an operational tool for integrated modelling of product assortments and engineering processes in companies making customer specific products. Integrating a product model in the design of engineering processes will provide a deeper understanding of the engineering...... activities as well as insight into how product features affect the engineering processes. The article suggests possible ways of integrating models of products with models of engineering processes. The models have been tested and further developed in an action research study carried out in collaboration...... with a major international engineering company....

  3. PBL and CDIO: Complementary Models for Engineering Education Development

    Science.gov (United States)

    Edström, Kristina; Kolmos, Anette

    2014-01-01

    This paper compares two models for reforming engineering education, problem/project-based learning (PBL), and conceive-design-implement-operate (CDIO), identifying and explaining similarities and differences. PBL and CDIO are defined and contrasted in terms of their history, community, definitions, curriculum design, relation to disciplines,…

  4. A development process meta-model for Web based expert systems: The Web engineering point of view

    DEFF Research Database (Denmark)

    Dokas, I.M.; Alapetite, Alexandre

    2006-01-01

    raised their complexity. Unfortunately, there is so far no clear answer to the question: How may the methods and experience of Web engineering and expert systems be combined and applied in order todevelop effective and successful Web based expert systems? In an attempt to answer this question...... on Web based expert systems – will be presented. The idea behind the presentation of theaccessibility evaluation and its conclusions is to show to Web based expert system developers, who typically have little Web engineering background, that Web engineering issues must be considered when developing Web......Similar to many legacy computer systems, expert systems can be accessed via the Web, forming a set of Web applications known as Web based expert systems. The tough Web competition, the way people and organizations rely on Web applications and theincreasing user requirements for better services have...

  5. A concise wall temperature model for DI Diesel engines

    Energy Technology Data Exchange (ETDEWEB)

    Torregrosa, A.; Olmeda, P.; Degraeuwe, B. [CMT-Motores Termicos, Universidad Politecnica de Valencia (Spain); Reyes, M. [Centro de Mecanica de Fluidos y Aplicaciones, Universidad Simon Bolivar (Venezuela)

    2006-08-15

    A concise resistor model for wall temperature prediction in diesel engines with piston cooling is presented here. The model uses the instantaneous in-cylinder pressure and some usually measured operational parameters to predict the temperature of the structural elements of the engine. The resistor model was adjusted by means of temperature measurements in the cylinder head, the liner and the piston. For each model parameter, an expression as a function of the engine geometry, operational parameters and material properties was derived to make the model applicable to other similar engines. The model predicts well the cylinder head, liner and piston temperature and is sensitive to variations of operational parameters such as the start of injection, coolant and oil temperature and engine speed and load. (author)

  6. Modeling Techniques for a Computational Efficient Dynamic Turbofan Engine Model

    Directory of Open Access Journals (Sweden)

    Rory A. Roberts

    2014-01-01

    Full Text Available A transient two-stream engine model has been developed. Individual component models developed exclusively in MATLAB/Simulink including the fan, high pressure compressor, combustor, high pressure turbine, low pressure turbine, plenum volumes, and exit nozzle have been combined to investigate the behavior of a turbofan two-stream engine. Special attention has been paid to the development of transient capabilities throughout the model, increasing physics model, eliminating algebraic constraints, and reducing simulation time through enabling the use of advanced numerical solvers. The lessening of computation time is paramount for conducting future aircraft system-level design trade studies and optimization. The new engine model is simulated for a fuel perturbation and a specified mission while tracking critical parameters. These results, as well as the simulation times, are presented. The new approach significantly reduces the simulation time.

  7. 3D MODELLING AND VISUALIZATION BASED ON THE UNITY GAME ENGINE – ADVANTAGES AND CHALLENGES

    Directory of Open Access Journals (Sweden)

    I. Buyuksalih

    2017-11-01

    Full Text Available 3D City modelling is increasingly popular and becoming valuable tools in managing big cities. Urban and energy planning, landscape, noise-sewage modelling, underground mapping and navigation are among the applications/fields which really depend on 3D modelling for their effectiveness operations. Several research areas and implementation projects had been carried out to provide the most reliable 3D data format for sharing and functionalities as well as visualization platform and analysis. For instance, BIMTAS company has recently completed a project to estimate potential solar energy on 3D buildings for the whole Istanbul and now focussing on 3D utility underground mapping for a pilot case study. The research and implementation standard on 3D City Model domain (3D data sharing and visualization schema is based on CityGML schema version 2.0. However, there are some limitations and issues in implementation phase for large dataset. Most of the limitations were due to the visualization, database integration and analysis platform (Unity3D game engine as highlighted in this paper.

  8. Systems Engineering and Application of System Performance Modeling in SIM Lite Mission

    Science.gov (United States)

    Moshir, Mehrdad; Murphy, David W.; Milman, Mark H.; Meier, David L.

    2010-01-01

    The SIM Lite Astrometric Observatory will be the first space-based Michelson interferometer operating in the visible wavelength, with the ability to perform ultra-high precision astrometric measurements on distant celestial objects. SIM Lite data will address in a fundamental way questions such as characterization of Earth-mass planets around nearby stars. To accomplish these goals it is necessary to rely on a model-based systems engineering approach - much more so than most other space missions. This paper will describe in further detail the components of this end-to-end performance model, called "SIM-sim", and show how it has helped the systems engineering process.

  9. THE EFFECTIVENESS OF WEB-BASED INTERACTIVE BLENDED LEARNING MODEL IN ELECTRICAL ENGINEERING COURSES

    Directory of Open Access Journals (Sweden)

    Hansi Effendi

    2015-12-01

    Full Text Available The study was to test the effectiveness of the Web-Based Interactive Blended Learning Model (BLIBW for subjects in the Department of Electrical Engineering, Padang State University. The design that the researcher employed was a quasi-experimental design with one group pretest-posttest, which was conducted on a group of students consisting of 30 people and the test was conducted for two times. The effectiveness of BLIBW Model was tested by comparing the average pretest scores and the average posttest scores both in the first trial and the second trial. The average prestest and posttest scores in the first trial were 14.13 and 33.80. The increase in the average score was significant at alpha 0.05. Then, the average pretest and posttest scores in the second trial were 18.67 and 47.03. The result was also significant at alpha 0.05. The effectiveness of BLIBW Model in the second trial was higher than in the first test. Those result were not entirely satisfactory and it might be caused several weaknesses in both tests such as: the number of sessions were limited, there was only one subject, and the number of students who were subjected too limited. However, the researcher would like to conclude that the BLIBW Model might be implemented as a replacement alternative for the face-to-face instruction.

  10. Analysis on the heating performance of a gas engine driven air to water heat pump based on a steady-state model

    International Nuclear Information System (INIS)

    Zhang, R.R.; Lu, X.S.; Li, S.Z.; Lin, W.S.; Gu, A.Z.

    2005-01-01

    In this study, the heating performance of a gas engine driven air to water heat pump was analyzed using a steady state model. The thermodynamic model of a natural gas engine is identified by the experimental data and the compressor model is created by several empirical equations. The heat exchanger models are developed by the theory of heat balance. The system model is validated by comparing the experimental and simulation data, which shows good agreement. To understand the heating characteristic in detail, the performance of the system is analyzed in a wide range of operating conditions, and especially the effect of engine waste heat on the heating performance is discussed. The results show that engine waste heat can provide about 1/3 of the total heating capacity in this gas engine driven air to water heat pump. The performance of the engine, heat pump and integral system are analyzed under variations of engine speed and ambient temperature. It shows that engine speed has remarkable effects on both the engine and heat pump, but ambient temperature has little influence on the engine's performance. The system and component performances in variable speed operating conditions is also discussed at the end of the paper

  11. Connecting Requirements to Architecture and Analysis via Model-Based Systems Engineering

    Science.gov (United States)

    Cole, Bjorn F.; Jenkins, J. Steven

    2015-01-01

    In traditional systems engineering practice, architecture, concept development, and requirements development are related but still separate activities. Concepts for operation, key technical approaches, and related proofs of concept are developed. These inform the formulation of an architecture at multiple levels, starting with the overall system composition and functionality and progressing into more detail. As this formulation is done, a parallel activity develops a set of English statements that constrain solutions. These requirements are often called "shall statements" since they are formulated to use "shall." The separation of requirements from design is exacerbated by well-meaning tools like the Dynamic Object-Oriented Requirements System (DOORS) that remained separated from engineering design tools. With the Europa Clipper project, efforts are being taken to change the requirements development approach from a separate activity to one intimately embedded in formulation effort. This paper presents a modeling approach and related tooling to generate English requirement statements from constraints embedded in architecture definition.

  12. Chemical Kinetic Models for Advanced Engine Combustion

    Energy Technology Data Exchange (ETDEWEB)

    Pitz, William J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Mehl, Marco [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Westbrook, Charles K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2014-10-22

    The objectives for this project are as follows: Develop detailed chemical kinetic models for fuel components used in surrogate fuels for compression ignition (CI), homogeneous charge compression ignition (HCCI) and reactivity-controlled compression-ignition (RCCI) engines; and Combine component models into surrogate fuel models to represent real transportation fuels. Use them to model low-temperature combustion strategies in HCCI, RCCI, and CI engines that lead to low emissions and high efficiency.

  13. Data engineering systems: Computerized modeling and data bank capabilities for engineering analysis

    Science.gov (United States)

    Kopp, H.; Trettau, R.; Zolotar, B.

    1984-01-01

    The Data Engineering System (DES) is a computer-based system that organizes technical data and provides automated mechanisms for storage, retrieval, and engineering analysis. The DES combines the benefits of a structured data base system with automated links to large-scale analysis codes. While the DES provides the user with many of the capabilities of a computer-aided design (CAD) system, the systems are actually quite different in several respects. A typical CAD system emphasizes interactive graphics capabilities and organizes data in a manner that optimizes these graphics. On the other hand, the DES is a computer-aided engineering system intended for the engineer who must operationally understand an existing or planned design or who desires to carry out additional technical analysis based on a particular design. The DES emphasizes data retrieval in a form that not only provides the engineer access to search and display the data but also links the data automatically with the computer analysis codes.

  14. Underwater striling engine design with modified one-dimensional model

    Directory of Open Access Journals (Sweden)

    Daijin Li

    2015-05-01

    Full Text Available Stirling engines are regarded as an efficient and promising power system for underwater devices. Currently, many researches on one-dimensional model is used to evaluate thermodynamic performance of Stirling engine, but in which there are still some aspects which cannot be modeled with proper mathematical models such as mechanical loss or auxiliary power. In this paper, a four-cylinder double-acting Stirling engine for Unmanned Underwater Vehicles (UUVs is discussed. And a one-dimensional model incorporated with empirical equations of mechanical loss and auxiliary power obtained from experiments is derived while referring to the Stirling engine computer model of National Aeronautics and Space Administration (NASA. The P-40 Stirling engine with sufficient testing results from NASA is utilized to validate the accuracy of this one-dimensional model. It shows that the maximum error of output power of theoretical analysis results is less than 18% over testing results, and the maximum error of input power is no more than 9%. Finally, a Stirling engine for UUVs is designed with Schmidt analysis method and the modified one-dimensional model, and the results indicate this designed engine is capable of showing desired output power.

  15. Experimental study on distributed optical fiber-based approach monitoring saturation line in levee engineering

    Science.gov (United States)

    Su, Huaizhi; Li, Hao; Kang, Yeyuan; Wen, Zhiping

    2018-02-01

    Seepage is one of key factors which affect the levee engineering safety. The seepage danger without timely detection and rapid response may likely lead to severe accidents such as seepage failure, slope instability, and even levee break. More than 90 percent of levee break events are caused by the seepage. It is very important for seepage behavior identification to determine accurately saturation line in levee engineering. Furthermore, the location of saturation line has a major impact on slope stability in levee engineering. Considering the structure characteristics and service condition of levee engineering, the distributed optical fiber sensing technology is introduced to implement the real-time observation of saturation line in levee engineering. The distributed optical fiber temperature sensor system (DTS)-based monitoring principle of saturation line in levee engineering is investigated. An experimental platform, which consists of DTS, heating system, water-supply system, auxiliary analysis system and levee model, is designed and constructed. The monitoring experiment of saturation line in levee model is implemented on this platform. According to the experimental results, the numerical relationship between moisture content and thermal conductivity in porous medium is identified. A line heat source-based distributed optical fiber method obtaining the thermal conductivity in porous medium is developed. A DTS-based approach is proposed to monitor the saturation line in levee engineering. The embedment pattern of optical fiber for monitoring saturation line is presented.

  16. PBL-SEE: An Authentic Assessment Model for PBL-Based Software Engineering Education

    Science.gov (United States)

    dos Santos, Simone C.

    2017-01-01

    The problem-based learning (PBL) approach has been successfully applied to teaching software engineering thanks to its principles of group work, learning by solving real problems, and learning environments that match the market realities. However, the lack of well-defined methodologies and processes for implementing the PBL approach represents a…

  17. A Hybrid PCA-CART-MARS-Based Prognostic Approach of the Remaining Useful Life for Aircraft Engines

    Directory of Open Access Journals (Sweden)

    Fernando Sánchez Lasheras

    2015-03-01

    Full Text Available Prognostics is an engineering discipline that predicts the future health of a system. In this research work, a data-driven approach for prognostics is proposed. Indeed, the present paper describes a data-driven hybrid model for the successful prediction of the remaining useful life of aircraft engines. The approach combines the multivariate adaptive regression splines (MARS technique with the principal component analysis (PCA, dendrograms and classification and regression trees (CARTs. Elements extracted from sensor signals are used to train this hybrid model, representing different levels of health for aircraft engines. In this way, this hybrid algorithm is used to predict the trends of these elements. Based on this fitting, one can determine the future health state of a system and estimate its remaining useful life (RUL with accuracy. To evaluate the proposed approach, a test was carried out using aircraft engine signals collected from physical sensors (temperature, pressure, speed, fuel flow, etc.. Simulation results show that the PCA-CART-MARS-based approach can forecast faults long before they occur and can predict the RUL. The proposed hybrid model presents as its main advantage the fact that it does not require information about the previous operation states of the input variables of the engine. The performance of this model was compared with those obtained by other benchmark models (multivariate linear regression and artificial neural networks also applied in recent years for the modeling of remaining useful life. Therefore, the PCA-CART-MARS-based approach is very promising in the field of prognostics of the RUL for aircraft engines.

  18. Statistical models of petrol engines vehicles dynamics

    Science.gov (United States)

    Ilie, C. O.; Marinescu, M.; Alexa, O.; Vilău, R.; Grosu, D.

    2017-10-01

    This paper focuses on studying statistical models of vehicles dynamics. It was design and perform a one year testing program. There were used many same type cars with gasoline engines and different mileage. Experimental data were collected of onboard sensors and those on the engine test stand. A database containing data of 64th tests was created. Several mathematical modelling were developed using database and the system identification method. Each modelling is a SISO or a MISO linear predictive ARMAX (AutoRegressive-Moving-Average with eXogenous inputs) model. It represents a differential equation with constant coefficients. It were made 64th equations for each dependency like engine torque as output and engine’s load and intake manifold pressure, as inputs. There were obtained strings with 64 values for each type of model. The final models were obtained using average values of the coefficients. The accuracy of models was assessed.

  19. Mathematical Modelling in Engineering: An Alternative Way to Teach Linear Algebra

    Science.gov (United States)

    Domínguez-García, S.; García-Planas, M. I.; Taberna, J.

    2016-01-01

    Technological advances require that basic science courses for engineering, including Linear Algebra, emphasize the development of mathematical strengths associated with modelling and interpretation of results, which are not limited only to calculus abilities. Based on this consideration, we have proposed a project-based learning, giving a dynamic…

  20. Energy transfer modelling of active thermoacoustic engines via Lagrangian thermoacoustic dynamics

    International Nuclear Information System (INIS)

    Hong, Boe-Shong; Chou, Chia-Yu

    2014-01-01

    Highlights: • Resonant control on thermoacoustic engines to amplify power rating. • Least-action principle of thermoacoustic dynamics to shape engine chamber. • Spatiotemporal transfer function into feedback systems. • Conservation law of thermoacoustic storage to figure out engine cycles. • Robin boundary condition to identify flow leakage. - Abstract: This paper develops energy-transfer modelling of active thermoacoustic engines resonantly controlled on boundary for amplification of power rating toward satisfaction of renewable industry. Therein the wave equation of thermoacoustic dynamics in resonators with non-uniform media and boundary actuations is derived and then turned into a least-action principle. With this least-action principle, we obtain the governing equation of longitudinal resonators with spatially variant cross-section areas to investigate how to shape the resonator for boosting piston stroke and power-transmission efficiency. It is followed by spatiotemporal transfer-function modelling that functionally represents the dynamics and interprets the boundary actuations into internal inputs. This helps formulate the overall dynamics into feedback-interconnection between the thermoacoustic dynamics in the resonator and the mechatronic dynamics of the alternative current generator, so that synthesis of feedback systems can be applied to design the entire engine. Transfer-function modelling following least-action principle leads to the conservation law of thermoacoustic storage, which figures out engine cycles, the most fundamental principle in designing active thermoacoustic engines. Based on such feedback realization, digital signal processing is programmed to numerically assess power ratings of active designs

  1. Journal of Modeling, Design and Management of Engineering ...

    African Journals Online (AJOL)

    The Journal of Modeling, Design & Management of Engineering Systems publishes original ... systems Electronic/Electrical systems Engineering management systems Fuel and Energy systems Information Technology ... systems Pubic Health systems Software Engineering systems Systems and Industrial Engineering ...

  2. Function-centered modeling of engineering systems using the goal tree-success tree technique and functional primitives

    International Nuclear Information System (INIS)

    Modarres, Mohammad; Cheon, Se Woo

    1999-01-01

    Most of the complex systems are formed through some hierarchical evolution. Therefore, those systems can be best described through hierarchical frameworks. This paper describes some fundamental attributes of complex physical systems and several hierarchies such as functional, behavioral, goal/condition, and event hierarchies, then presents a function-centered approach to system modeling. Based on the function-centered concept, this paper describes the joint goal tree-success tree (GTST) and the master logic diagram (MLD) as a framework for developing models of complex physical systems. A function-based lexicon for classifying the most common elements of engineering systems for use in the GTST-MLD framework has been proposed. The classification is based on the physical conservation laws that govern the engineering systems. Functional descriptions based on conservation laws provide a simple and rich vocabulary for modeling complex engineering systems

  3. Cell-Based Strategies for Meniscus Tissue Engineering

    Science.gov (United States)

    Niu, Wei; Guo, Weimin; Han, Shufeng; Zhu, Yun; Liu, Shuyun; Guo, Quanyi

    2016-01-01

    Meniscus injuries remain a significant challenge due to the poor healing potential of the inner avascular zone. Following a series of studies and clinical trials, tissue engineering is considered a promising prospect for meniscus repair and regeneration. As one of the key factors in tissue engineering, cells are believed to be highly beneficial in generating bionic meniscus structures to replace injured ones in patients. Therefore, cell-based strategies for meniscus tissue engineering play a fundamental role in meniscal regeneration. According to current studies, the main cell-based strategies for meniscus tissue engineering are single cell type strategies; cell coculture strategies also were applied to meniscus tissue engineering. Likewise, on the one side, the zonal recapitulation strategies based on mimicking meniscal differing cells and internal architectures have received wide attentions. On the other side, cell self-assembling strategies without any scaffolds may be a better way to build a bionic meniscus. In this review, we primarily discuss cell seeds for meniscus tissue engineering and their application strategies. We also discuss recent advances and achievements in meniscus repair experiments that further improve our understanding of meniscus tissue engineering. PMID:27274735

  4. Mathematical modeling a chemical engineer's perspective

    CERN Document Server

    Rutherford, Aris

    1999-01-01

    Mathematical modeling is the art and craft of building a system of equations that is both sufficiently complex to do justice to physical reality and sufficiently simple to give real insight into the situation. Mathematical Modeling: A Chemical Engineer's Perspective provides an elementary introduction to the craft by one of the century's most distinguished practitioners.Though the book is written from a chemical engineering viewpoint, the principles and pitfalls are common to all mathematical modeling of physical systems. Seventeen of the author's frequently cited papers are reprinted to illus

  5. Modeling and dynamic control simulation of unitary gas engine heat pump

    International Nuclear Information System (INIS)

    Zhao Yang; Haibo Zhao; Zheng Fang

    2007-01-01

    Based on the dynamic model of the gas engine heat pump (GEHP) system, an intelligent control simulation is presented to research the dynamic characteristics of the system in the heating operation. The GEHP system simulation model consists of eight models for its components including a natural gas engine, a compressor, a condenser, an expansion valve, an evaporator, a cylinder jacket heat exchanger, an exhaust gas heat exchanger and an auxiliary heater. The intelligent control model is composed of the prediction controller model and the combined controller model. The Runge-Kutta Fehlberg fourth-fifth order algorithms are used to solve the differential equations. The results show that the model is very effective in analyzing the effects of the control system, and the steady state accuracy of the intelligent control scheme is higher than that of the fuzzy controller

  6. Mathematical model of an indirect action fuel flow controller for aircraft jet engines

    Science.gov (United States)

    Tudosie, Alexandru-Nicolae

    2017-06-01

    The paper deals with a fuel mass flow rate controller with indirect action for aircraft jet engines. The author has identified fuel controller's main parts and its operation mode, then, based on these observations, one has determined motion equations of each main part, which have built system's non-linear mathematical model. In order to realize a better study this model was linearised (using the finite differences method) and then adimensionalized. Based on this new form of the mathematical model, after applying Laplace transformation, the embedded system (controller+engine) was described by the block diagram with transfer functions. Some Simulink-Matlab simulations were performed, concerning system's time behavior for step input, which lead to some useful conclusions and extension possibilities.

  7. Integration of Simulink Models with Component-based Software Models

    DEFF Research Database (Denmark)

    Marian, Nicolae

    2008-01-01

    Model based development aims to facilitate the development of embedded control systems by emphasizing the separation of the design level from the implementation level. Model based design involves the use of multiple models that represent different views of a system, having different semantics...... of abstract system descriptions. Usually, in mechatronics systems, design proceeds by iterating model construction, model analysis, and model transformation. Constructing a MATLAB/Simulink model, a plant and controller behavior is simulated using graphical blocks to represent mathematical and logical...... constraints. COMDES (Component-based Design of Software for Distributed Embedded Systems) is such a component-based system framework developed by the software engineering group of Mads Clausen Institute for Product Innovation (MCI), University of Southern Denmark. Once specified, the software model has...

  8. Bone Marrow Mesenchymal Stem Cell-Based Engineered Cartilage Ameliorates Polyglycolic Acid/Polylactic Acid Scaffold-Induced Inflammation Through M2 Polarization of Macrophages in a Pig Model.

    Science.gov (United States)

    Ding, Jinping; Chen, Bo; Lv, Tao; Liu, Xia; Fu, Xin; Wang, Qian; Yan, Li; Kang, Ning; Cao, Yilin; Xiao, Ran

    2016-08-01

    in better tissue survival in a pig model. Additionally, the effect of BMSC-based cartilage on the phenotype conversion of macrophages was further studied through an in vitro coculture system. This study could provide further support for the regeneration of cartilage engineering in immunocompetent animal models and provide new insight into the interaction of tissue-engineered cartilage and macrophages. ©AlphaMed Press.

  9. A transient one-dimensional numerical model for kinetic Stirling engine

    International Nuclear Information System (INIS)

    Wang, Kai; Dubey, Swapnil; Choo, Fook Hoong; Duan, Fei

    2016-01-01

    Highlights: • A non-equilibrium thermal mode with considering loses is adopted in Stirling engine. • Good agreements are achieved for predicting various critical system parameters. • Differences between helium and hydrogen systems are highlighted and analyzed. • Pressure drop of helium system is much larger and more sensitive to frequency. - Abstract: A third-order numerical model based on one-dimensional computational fluid dynamics is developed for kinetic Stirling engines. Various loss mechanisms in Stirling engines, including gas spring hysteresis loss, shuttle loss, appendix displacer gap loss, gas leakage loss, finite speed loss, piston friction loss, pressure drop loss, heat conduction loss, mechanical loss and imperfect heat transfer, are considered and embedded into the basic control equations. The non-equilibrium thermal model is adopted for the regenerator to capture the oscillating features of the gas and solid temperatures. To improve the numerical stability and accuracy, the implicit second-order time difference scheme and the second-order upwind scheme are adopted for discretizing the time differential terms and convective terms, respectively. Experimental validations are then conducted on a beta-type Stirling engine with the extensive experimental data for diverse working conditions. The results show that the developed model has better accuracies than the previous second-order models. Good agreements are achieved for predicting various critical system parameters, including pressure-volume diagram, indicated power, brake power, indicated efficiency, brake efficiency and mechanical efficiency. In particular, both the experiments and simulations show that the Stirling engine charged with helium tends to have much lower optimal working frequencies and poorer performances compared to the hydrogen system. Based on the analyses of the losses, it reveals that the pressure drop in the flow channels plays a critical role in shaping the different

  10. Journal of Modeling, Design and Management of Engineering ...

    African Journals Online (AJOL)

    Journal of Modeling, Design and Management of Engineering Systems. ... Journal Home > Vol 5, No 1 (2007) ... or mathematical modeling, computing, simulation, design and/or operations research tools for solving engineering problems.

  11. A proposal of ecologic taxes based on thermo-economic performance of heat engine models

    International Nuclear Information System (INIS)

    Barranco-Jimenez, M. A.; Ramos-Gayosso, I.; Rosales, M. A.; Angulo-Brown, F.

    2009-01-01

    Within the context of Finite-Time Thermodynamics (FTT) a simplified thermal power plant model (the so-called Novikov engine) is analyzed under economical criteria by means of the concepts of profit function and the costs involved in the performance of the power plant. In this study, two different heat transfer laws are used, the so called Newton's law of cooling and the Dulong-Petit's law of cooling. Two FTT optimization criteria for the performance analysis are used: the maximum power regime (MP) and the so-called ecological criterion. This last criterion leads the engine model towards a mode of performance that appreciably diminishes the engine's wasted energy. In this work, it is shown that the energy-unit price produced under maximum power conditions is cheaper than that produced under maximum ecological (ME) conditions. This was accomplished by using a typical definition of profits function stemming from economics. The MP-regime produces considerably more wasted energy toward the environment, thus the MP energy-unit price is subsidized by nature. Due to this fact, an ecological tax is proposed, which could be a certain function of the price difference between the MP and ME modes of power production. (author)

  12. Concurrent engineering and product models in seafood companies

    DEFF Research Database (Denmark)

    Jonsdottir, Stella; Vesterager, Johan; Børresen, Torger

    1998-01-01

    Concurrent Engineering (CE) can provide an improved approach to product development for extending the lines of seafood products. Information technology (IT) support tools based on product models can provide an integrated and simultaneous approach for specifying new recipes. The seafood industry can...... benefit from the CE approach which can support product developers to provide concurrent specifications for raw materials, ingredients, packaging, and production methods. The approach involves the use of product models from which line extensions are more easily generated than by use of customary stepwise...

  13. An overview of game-based learning in building services engineering education

    Science.gov (United States)

    Alanne, Kari

    2016-03-01

    To ensure proper competence development and short graduation times for engineering students, it is essential that the study motivation is encouraged by new learning methods. In game-based learning, the learner's engagement is increased and learning is made meaningful by applying game-like features such as competition and rewarding through virtual promotions or achievement badges. In this paper, the state of the art of game-based learning in building services engineering education at university level is reviewed and discussed. A systematic literature review indicates that educational games have been reported in the field of related disciplines, such as mechanical and civil engineering. The development of system-level educational games that realistically simulate work life in building services engineering is still in its infancy. Novel rewarding practices and more comprehensive approaches entailing the state-of-the-art information tools such as building information modelling, geographic information systems, building management systems and augmented reality are needed in the future.

  14. Model Based Mission Assurance: Emerging Opportunities for Robotic Systems

    Science.gov (United States)

    Evans, John W.; DiVenti, Tony

    2016-01-01

    The emergence of Model Based Systems Engineering (MBSE) in a Model Based Engineering framework has created new opportunities to improve effectiveness and efficiencies across the assurance functions. The MBSE environment supports not only system architecture development, but provides for support of Systems Safety, Reliability and Risk Analysis concurrently in the same framework. Linking to detailed design will further improve assurance capabilities to support failures avoidance and mitigation in flight systems. This also is leading new assurance functions including model assurance and management of uncertainty in the modeling environment. Further, the assurance cases, a structured hierarchal argument or model, are emerging as a basis for supporting a comprehensive viewpoint in which to support Model Based Mission Assurance (MBMA).

  15. Statistical Validation of Engineering and Scientific Models: Background

    International Nuclear Information System (INIS)

    Hills, Richard G.; Trucano, Timothy G.

    1999-01-01

    A tutorial is presented discussing the basic issues associated with propagation of uncertainty analysis and statistical validation of engineering and scientific models. The propagation of uncertainty tutorial illustrates the use of the sensitivity method and the Monte Carlo method to evaluate the uncertainty in predictions for linear and nonlinear models. Four example applications are presented; a linear model, a model for the behavior of a damped spring-mass system, a transient thermal conduction model, and a nonlinear transient convective-diffusive model based on Burger's equation. Correlated and uncorrelated model input parameters are considered. The model validation tutorial builds on the material presented in the propagation of uncertainty tutoriaI and uses the damp spring-mass system as the example application. The validation tutorial illustrates several concepts associated with the application of statistical inference to test model predictions against experimental observations. Several validation methods are presented including error band based, multivariate, sum of squares of residuals, and optimization methods. After completion of the tutorial, a survey of statistical model validation literature is presented and recommendations for future work are made

  16. Introducing Model Based Systems Engineering Transforming System Engineering through Model-Based Systems Engineering

    Science.gov (United States)

    2014-03-31

    BPMN ).  This  is  when  the...to  a  model-­‐centric   approach.     The   AGM   was   developed   using   the   iGrafx6   tool   with   BPMN   [12... BPMN  notation  as  shown  in  Figure  14.  It   provides  a  time-­‐sequenced  perspective  on  the  process

  17. Engine control system having fuel-based adjustment

    Science.gov (United States)

    Willi, Martin L [Dunlap, IL; Fiveland, Scott B [Metamora, IL; Montgomery, David T [Edelstein, IL; Gong, Weidong [Dunlap, IL

    2011-03-15

    A control system for an engine having a cylinder is disclosed having an engine valve configured to affect a fluid flow of the cylinder, an actuator configured to move the engine valve, and an in-cylinder sensor configured to generate a signal indicative of a characteristic of fuel entering the cylinder. The control system also has a controller in communication with the actuator and the sensor. The controller is configured to determine the characteristic of the fuel based on the signal and selectively regulate the actuator to adjust a timing of the engine valve based on the characteristic of the fuel.

  18. The Development and Evaluation of a Time Based Network Model of the Industrial Engineering Technology Curriculum at the Southern Technical Institute.

    Science.gov (United States)

    Bannerman, James W.

    A practicum was conducted to develop a scientific management tool that would assist students in obtaining a systems view of their college curriculum and to coordinate planning with curriculum requirements. A modification of the critical path method was employed and the result was a time-based network model of the Industrial Engineering Technology…

  19. Enhanced Core Noise Modeling for Turbofan Engines

    Science.gov (United States)

    Stone, James R.; Krejsa, Eugene A.; Clark, Bruce J.

    2011-01-01

    This report describes work performed by MTC Technologies (MTCT) for NASA Glenn Research Center (GRC) under Contract NAS3-00178, Task Order No. 15. MTCT previously developed a first-generation empirical model that correlates the core/combustion noise of four GE engines, the CF6, CF34, CFM56, and GE90 for General Electric (GE) under Contract No. 200-1X-14W53048, in support of GRC Contract NAS3-01135. MTCT has demonstrated in earlier noise modeling efforts that the improvement of predictive modeling is greatly enhanced by an iterative approach, so in support of NASA's Quiet Aircraft Technology Project, GRC sponsored this effort to improve the model. Since the noise data available for correlation are total engine noise spectra, it is total engine noise that must be predicted. Since the scope of this effort was not sufficient to explore fan and turbine noise, the most meaningful comparisons must be restricted to frequencies below the blade passage frequency. Below the blade passage frequency and at relatively high power settings jet noise is expected to be the dominant source, and comparisons are shown that demonstrate the accuracy of the jet noise model recently developed by MTCT for NASA under Contract NAS3-00178, Task Order No. 10. At lower power settings the core noise became most apparent, and these data corrected for the contribution of jet noise were then used to establish the characteristics of core noise. There is clearly more than one spectral range where core noise is evident, so the spectral approach developed by von Glahn and Krejsa in 1982 wherein four spectral regions overlap, was used in the GE effort. Further analysis indicates that the two higher frequency components, which are often somewhat masked by turbomachinery noise, can be treated as one component, and it is on that basis that the current model is formulated. The frequency scaling relationships are improved and are now based on combustor and core nozzle geometries. In conjunction with the Task

  20. Mean Value Modelling of Turbocharged SI Engines

    DEFF Research Database (Denmark)

    Müller, Martin; Hendricks, Elbert; Sorenson, Spencer C.

    1998-01-01

    The development of a computer simulation to predict the performance of a turbocharged spark ignition engine during transient operation. New models have been developed for the turbocharged and the intercooling system. An adiabatic model for the intake manifold is presented.......The development of a computer simulation to predict the performance of a turbocharged spark ignition engine during transient operation. New models have been developed for the turbocharged and the intercooling system. An adiabatic model for the intake manifold is presented....

  1. Modelling and Inverse-Modelling: Experiences with O.D.E. Linear Systems in Engineering Courses

    Science.gov (United States)

    Martinez-Luaces, Victor

    2009-01-01

    In engineering careers courses, differential equations are widely used to solve problems concerned with modelling. In particular, ordinary differential equations (O.D.E.) linear systems appear regularly in Chemical Engineering, Food Technology Engineering and Environmental Engineering courses, due to the usefulness in modelling chemical kinetics,…

  2. Systems Engineering Model for ART Energy Conversion

    Energy Technology Data Exchange (ETDEWEB)

    Mendez Cruz, Carmen Margarita [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Rochau, Gary E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Wilson, Mollye C. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-02-01

    The near-term objective of the EC team is to establish an operating, commercially scalable Recompression Closed Brayton Cycle (RCBC) to be constructed for the NE - STEP demonstration system (demo) with the lowest risk possible. A systems engineering approach is recommended to ensure adequate requirements gathering, documentation, and mode ling that supports technology development relevant to advanced reactors while supporting crosscut interests in potential applications. A holistic systems engineering model was designed for the ART Energy Conversion program by leveraging Concurrent Engineering, Balance Model, Simplified V Model, and Project Management principles. The resulting model supports the identification and validation of lifecycle Brayton systems requirements, and allows designers to detail system-specific components relevant to the current stage in the lifecycle, while maintaining a holistic view of all system elements.

  3. Multi-objective optimization of Stirling engine systems using Front-based Yin-Yang-Pair Optimization

    International Nuclear Information System (INIS)

    Punnathanam, Varun; Kotecha, Prakash

    2017-01-01

    Highlights: • Efficient multi-objective optimization algorithm F-YYPO demonstrated. • Three Stirling engine applications with a total of eight cases. • Improvements in the objective function values of up to 30%. • Superior to the popularly used gamultiobj of MATLAB. • F-YYPO has extremely low time complexity. - Abstract: In this work, we demonstrate the performance of Front-based Yin-Yang-Pair Optimization (F-YYPO) to solve multi-objective problems related to Stirling engine systems. The performance of F-YYPO is compared with that of (i) a recently proposed multi-objective optimization algorithm (Multi-Objective Grey Wolf Optimizer) and (ii) an algorithm popularly employed in literature due to its easy accessibility (MATLAB’s inbuilt multi-objective Genetic Algorithm function: gamultiobj). We consider three Stirling engine based optimization problems: (i) the solar-dish Stirling engine system which considers objectives of output power, thermal efficiency and rate of entropy generation; (ii) Stirling engine thermal model which considers the associated irreversibility of the cycle with objectives of output power, thermal efficiency and pressure drop; and finally (iii) an experimentally validated polytropic finite speed thermodynamics based Stirling engine model also with objectives of output power and pressure drop. We observe F-YYPO to be significantly more effective as compared to its competitors in solving the problems, while requiring only a fraction of the computational time required by the other algorithms.

  4. Case-based Reasoning in Conflict Negotiation in Concurrent Engineering

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    Case-based reasoning (CBR) is a kind of analogous reasoning that is widely used in artificial intelligence. Conflicts are pervasive in Concurrent Engineering design environment. Conflict negotiation is necessary when conflicts occur. It is difficult to resolve conflicts due to several reasons. An approach to resolving conflicts by case-based reasoning is proposed in this paper. The knowledge representation of conflict negotiation cases, the judgment of case similarity, the retrieval model of cases, the management of case bases, and the process of case-based conflict negotiation are studied. The implementation structure of the Case-based Conflict Solving System (CCSS) is also given.

  5. Plant metabolic modeling: achieving new insight into metabolism and metabolic engineering.

    Science.gov (United States)

    Baghalian, Kambiz; Hajirezaei, Mohammad-Reza; Schreiber, Falk

    2014-10-01

    Models are used to represent aspects of the real world for specific purposes, and mathematical models have opened up new approaches in studying the behavior and complexity of biological systems. However, modeling is often time-consuming and requires significant computational resources for data development, data analysis, and simulation. Computational modeling has been successfully applied as an aid for metabolic engineering in microorganisms. But such model-based approaches have only recently been extended to plant metabolic engineering, mainly due to greater pathway complexity in plants and their highly compartmentalized cellular structure. Recent progress in plant systems biology and bioinformatics has begun to disentangle this complexity and facilitate the creation of efficient plant metabolic models. This review highlights several aspects of plant metabolic modeling in the context of understanding, predicting and modifying complex plant metabolism. We discuss opportunities for engineering photosynthetic carbon metabolism, sucrose synthesis, and the tricarboxylic acid cycle in leaves and oil synthesis in seeds and the application of metabolic modeling to the study of plant acclimation to the environment. The aim of the review is to offer a current perspective for plant biologists without requiring specialized knowledge of bioinformatics or systems biology. © 2014 American Society of Plant Biologists. All rights reserved.

  6. Altering Height Data by Using Natural Logarithm as 3D Modelling Function for Reverse Engineering Application

    Science.gov (United States)

    Ilham Aminullah Abdulqawi, Nur; Salman Abu Mansor, Mohd

    2018-01-01

    The raw data extracted from reverse engineering based on vision mostly do not resemble the actual geometrical representation yet. Even though the higher object surface reflected the most visible light towards the camera and yield higher number of value based on Lambertian illumination model, this does not mean the curvature profile are always accurate. After all, there are many mathematical models to shape curvature profiles into the correct representation. However, one of the most appropriate models found is the natural logarithm function. The function itself has alteration properties towards the raw data generated from reverse engineering based on vision.

  7. Determination of performance degradation of a marine diesel engine by using curve based approach

    International Nuclear Information System (INIS)

    Kökkülünk, Görkem; Parlak, Adnan; Erdem, Hasan Hüseyin

    2016-01-01

    Highlights: • Mathematical model was developed for a marine diesel engine. • Measurements were taken from Main Engine of M/V Ince Inebolu. • The model was validated for the marine diesel engine. • Curve Based Method was performed to evaluate the performance. • Degradation values of a marine diesel engine were found for power and SFC. - Abstract: Nowadays, energy efficiency measures on ships are the top priority topic for the maritime sector. One of the important key parameters of energy efficiency is to find the useful tool to improve the energy efficiency. There are two steps to improve the energy efficiency on ships: Measurement and Evaluation of performance of main fuel consumers. Performance evaluation is the method that evaluates how much the performance changes owing to engine component degradation which cause to reduce the performance due to wear, fouling, mechanical problems, etc. In this study, zero dimensional two zone combustion model is developed and validated for two stroke marine diesel engine (MITSUI MAN B&W 6S50MC). The measurements are taken from a real ship named M/V Ince Inebolu by the research team during the normal operation of the main engine in the region of the Marmara Sea. To evaluate the performance, “Curve based method” is used to calculate the total performance degradation. This total degradation is classified as parameters of compression pressure, injection timing, injection pressure, scavenge air temperature and scavenge air pressure by means of developed mathematical model. In conclusion, the total degradation of the applied ship is found as 620 kW by power and 26.74 g/kW h by specific fuel consumption.

  8. Implementation of a Project-Based Engineering School: Increasing Student Motivation and Relevant Learning

    Science.gov (United States)

    Terrón-López, María-José; García-García, María-José; Velasco-Quintana, Paloma-Julia; Ocampo, Jared; Vigil Montaño, María-Reyes; Gaya-López, María-Cruz

    2017-01-01

    The School of Engineering at Universidad Europea de Madrid (UEM) implemented, starting in the 2012-2013 period, a unified academic model based on project-based learning as the methodology used throughout the entire School. This model expects that every year, in each grade, all the students should participate in a capstone project integrating the…

  9. Calibration and validation of a model for simulating thermal and electric performance of an internal combustion engine-based micro-cogeneration device

    International Nuclear Information System (INIS)

    Rosato, A.; Sibilio, S.

    2012-01-01

    The growing worldwide demand for more efficient and less polluting forms of energy production has led to a renewed interest in the use of micro-cogeneration technologies in the residential. Among the others technologies, internal combustion engine-based micro-cogeneration devices are a market-ready technology gaining an increasing appeal thanks to their high efficiency, fuel flexibility, low emissions, low noise and vibration. In order to explore and assess the feasibility of using internal combustion engine-based cogeneration systems in the residential sector, an accurate and practical simulation model that can be used to conduct sensitivity and what-if analyses is needed. A residential cogeneration device model has been developed within IEA/ECBCS Annex 42 and implemented into a number of building simulation programs. This model is potentially able to accurately predict the thermal and electrical outputs of the residential cogeneration devices, but it relies almost entirely on empirical data because the model specification uses experimental measurements contained within a performance map to represent the device specific performance characteristics coupled with thermally massive elements to characterize the device's dynamic thermal performance. At the Built Environment Control Laboratory of Seconda Università degli studi di Napoli, an AISIN SEIKI micro-cogeneration device based on natural gas fuelled reciprocating internal combustion engine is available. This unit has been intensively tested in order to calibrate and validate the Annex 42 model. This paper shows in detail the series of experiments conducted for the calibration activity and examines the validity of this model by contrasting simulation predictions to measurements derived by operating the system in electric load following control strategy. The statistical comparison was made both for the whole database and the segregated data by system mode operation. The good agreement found in the predictions of

  10. Model Validation in Ontology Based Transformations

    Directory of Open Access Journals (Sweden)

    Jesús M. Almendros-Jiménez

    2012-10-01

    Full Text Available Model Driven Engineering (MDE is an emerging approach of software engineering. MDE emphasizes the construction of models from which the implementation should be derived by applying model transformations. The Ontology Definition Meta-model (ODM has been proposed as a profile for UML models of the Web Ontology Language (OWL. In this context, transformations of UML models can be mapped into ODM/OWL transformations. On the other hand, model validation is a crucial task in model transformation. Meta-modeling permits to give a syntactic structure to source and target models. However, semantic requirements have to be imposed on source and target models. A given transformation will be sound when source and target models fulfill the syntactic and semantic requirements. In this paper, we present an approach for model validation in ODM based transformations. Adopting a logic programming based transformational approach we will show how it is possible to transform and validate models. Properties to be validated range from structural and semantic requirements of models (pre and post conditions to properties of the transformation (invariants. The approach has been applied to a well-known example of model transformation: the Entity-Relationship (ER to Relational Model (RM transformation.

  11. Model-driven software engineering

    NARCIS (Netherlands)

    Amstel, van M.F.; Brand, van den M.G.J.; Protic, Z.; Verhoeff, T.; Hamberg, R.; Verriet, J.

    2014-01-01

    Software plays an important role in designing and operating warehouses. However, traditional software engineering methods for designing warehouse software are not able to cope with the complexity, size, and increase of automation in modern warehouses. This chapter describes Model-Driven Software

  12. Academic program models for undergraduate biomedical engineering.

    Science.gov (United States)

    Krishnan, Shankar M

    2014-01-01

    There is a proliferation of medical devices across the globe for the diagnosis and therapy of diseases. Biomedical engineering (BME) plays a significant role in healthcare and advancing medical technologies thus creating a substantial demand for biomedical engineers at undergraduate and graduate levels. There has been a surge in undergraduate programs due to increasing demands from the biomedical industries to cover many of their segments from bench to bedside. With the requirement of multidisciplinary training within allottable duration, it is indeed a challenge to design a comprehensive standardized undergraduate BME program to suit the needs of educators across the globe. This paper's objective is to describe three major models of undergraduate BME programs and their curricular requirements, with relevant recommendations to be applicable in institutions of higher education located in varied resource settings. Model 1 is based on programs to be offered in large research-intensive universities with multiple focus areas. The focus areas depend on the institution's research expertise and training mission. Model 2 has basic segments similar to those of Model 1, but the focus areas are limited due to resource constraints. In this model, co-op/internship in hospitals or medical companies is included which prepares the graduates for the work place. In Model 3, students are trained to earn an Associate Degree in the initial two years and they are trained for two more years to be BME's or BME Technologists. This model is well suited for the resource-poor countries. All three models must be designed to meet applicable accreditation requirements. The challenges in designing undergraduate BME programs include manpower, facility and funding resource requirements and time constraints. Each academic institution has to carefully analyze its short term and long term requirements. In conclusion, three models for BME programs are described based on large universities, colleges, and

  13. Non-ideal Stirling engine thermodynamic model suitable for the integration into overall energy systems

    International Nuclear Information System (INIS)

    Araoz, Joseph A.; Salomon, Marianne; Alejo, Lucio; Fransson, Torsten H.

    2014-01-01

    The reliability of modelling and simulation of energy systems strongly depends on the prediction accuracy of each system component. This is the case of Stirling engine-based systems, where an accurate modelling of the engine performance is very important to understand the overall system behaviour. In this sense, many Stirling engine analyses with different approaches have been already developed. However, there is a lack of Stirling engine models suitable for the integration into overall system simulations. In this context, this paper aims to develop a rigorous Stirling engine model that could be easily integrated into combined heat and power schemes for the overall techno-economic analysis of these systems. The model developed considers a Stirling engine with adiabatic working spaces, isothermal heat exchangers, dead volumes, and imperfect regeneration. Additionally, it considers mechanical pumping losses due to friction, limited heat transfer and thermal losses on the heat exchangers. The model is suitable for different engine configurations (alpha beta and gamma engines). It was developed using Aspen Custom Modeller ® (ACM®) as modelling software. The set of equations were solved using ACM ® equation solver for steady-state operation. However, due to the dynamic behaviour of the cycle, a C++ code was integrated to solve iteratively a set of differential equations. This resulted in a cyclic steady-state model that calculates the power output and thermal requirements of the system. The predicted efficiency and power output were compared with the numerical model and the experimental work reported by the NASA Lewis Research Centre for the GPU-3 Stirling engine. This showed average absolute errors around ±4% for the brake power, and ±5% for the brake efficiency at different frequencies. However, the model also showed large errors (±15%) for these calculations at higher frequencies and low pressures. Additional results include the calculation of the cyclic

  14. Engine control system having speed-based timing

    Science.gov (United States)

    Willi, Martin L [Dunlap, IL; Fiveland, Scott B [Metamora, IL; Montgomery, David T [Edelstein, IL; Gong, Weidong [Dunlap, IL

    2012-02-14

    A control system for an engine having a cylinder is disclosed having an engine valve movable to regulate a fluid flow of the cylinder and an actuator associated with the engine valve. The control system also has a controller in communication with the actuator. The controller is configured to receive a signal indicative of engine speed and compare the engine speed signal with a desired engine speed. The controller is also configured to selectively regulate the actuator to adjust a timing of the engine valve to control an amount of air/fuel mixture delivered to the cylinder based on the comparison.

  15. Application of Intuitionistic Fuzzy Topsis Model for Troubleshooting an Offshore Patrol Boat Engine

    Directory of Open Access Journals (Sweden)

    Aikhuele Daniel Osezua

    2017-06-01

    Full Text Available In this paper, an Intuitionistic Fuzzy TOPSIS model which is based on a score function is proposed for detecting the root cause of failure in an Offshore Boat engine, using groups of expert’s opinions. The study which has provided an alternative approach for failure mode identification and analysis in machines, addresses the machine component interaction failures which is a limitation in existing methods. The results from the study show that although early detection of failures in engines is quite difficult to identify due to the dependency of their systems from each other. However, with the Intuitionistic Fuzzy TOPSIS model which is based on an improved score function such faults/failures are easily detected using expert’s based opinions.

  16. Software engineering processes principles and applications

    CERN Document Server

    Wang, Yingxu

    2000-01-01

    Fundamentals of the Software Engineering ProcessIntroductionA Unified Framework of the Software Engineering ProcessProcess AlgebraProcess-Based Software EngineeringSoftware Engineering Process System ModelingThe CMM ModelThe ISO 9001 ModelThe BOOTSTRAP ModelThe ISO/IEC 15504 (SPICE) ModelThe Software Engineering Process Reference Model: SEPRMSoftware Engineering Process System AnalysisBenchmarking the SEPRM ProcessesComparative Analysis of Current Process ModelsTransformation of Capability Levels Between Current Process ModelsSoftware Engineering Process EstablishmentSoftware Process Establish

  17. Proposal of thinking process model based on putting a question to oneself for problem solving by skilled engineers

    International Nuclear Information System (INIS)

    Fukumoto, Toshihiko; Kishi, Yoshiki

    2007-01-01

    The retirement of the skilled engineers and researchers, who have been working in the field of water chemistry of BWRs since the establishment of Japanese BWRs, has been accelerating so that it is necessary to preserve and share the knowledge and know-how of these skilled engineers and to effectively and securely inherit them to the following generations. Moreover, in order for other engineers to share knowledge, including the tacit knowledge of a skilled engineer, it is necessary not only to understand the knowledge obtained as the results of the thinking of the skilled engineers but also to externalize and experience their thinking processes as the processes of problem solving that produced the results. The target of this research is to build a new thinking process model that can externalize thinking processes effectively by analyzing the knowledge and thinking contents of the skilled engineers for investigating causes of changes in the quality of reactor water in boiling water reactor type power plants. As part of this research, we found out a new metacognitive activity, Putting a Question to Oneself, which plays a large role in the thinking process structure. In addition, we developed a new fundamental thinking process model, which can externalize thinking processes effectively by integrating the concept of Putting a Question to Oneself into the thinking process model. (author)

  18. GEO-ENGINEERING MODELING THROUGH INTERNET INFORMATICS (GEMINI)

    Energy Technology Data Exchange (ETDEWEB)

    W. Lynn Watney; John H. Doveton

    2004-05-13

    GEMINI (Geo-Engineering Modeling through Internet Informatics) is a public-domain web application focused on analysis and modeling of petroleum reservoirs and plays (http://www.kgs.ukans.edu/Gemini/index.html). GEMINI creates a virtual project by ''on-the-fly'' assembly and analysis of on-line data either from the Kansas Geological Survey or uploaded from the user. GEMINI's suite of geological and engineering web applications for reservoir analysis include: (1) petrofacies-based core and log modeling using an interactive relational rock catalog and log analysis modules; (2) a well profile module; (3) interactive cross sections to display ''marked'' wireline logs; (4) deterministic gridding and mapping of petrophysical data; (5) calculation and mapping of layer volumetrics; (6) material balance calculations; (7) PVT calculator; (8) DST analyst, (9) automated hydrocarbon association navigator (KHAN) for database mining, and (10) tutorial and help functions. The Kansas Hydrocarbon Association Navigator (KHAN) utilizes petrophysical databases to estimate hydrocarbon pay or other constituent at a play- or field-scale. Databases analyzed and displayed include digital logs, core analysis and photos, DST, and production data. GEMINI accommodates distant collaborations using secure password protection and authorized access. Assembled data, analyses, charts, and maps can readily be moved to other applications. GEMINI's target audience includes small independents and consultants seeking to find, quantitatively characterize, and develop subtle and bypassed pays by leveraging the growing base of digital data resources. Participating companies involved in the testing and evaluation of GEMINI included Anadarko, BP, Conoco-Phillips, Lario, Mull, Murfin, and Pioneer Resources.

  19. Adaptive Engine Torque Compensation with Driveline Model

    Directory of Open Access Journals (Sweden)

    Park Jinrak

    2018-01-01

    Full Text Available Engine net torque is the total torque generated by the engine side, and includes the fuel combustion torque, the friction torque, and additionally the starter motor torque in case of hybrid vehicles. The engine net torque is utilized to control powertrain items such as the engine itself, the transmission clutch, also the engine clutch, and it must be accurate for the precise powertrain control. However, this net torque can vary with the engine operating conditions like the engine wear, the changes of the atmospheric pressure and the friction torque. Thus, this paper proposes the adaptive engine net torque compensator using driveline model which can cope with the net torque change according to engine operating conditions. The adaptive compensator was applied on the parallel hybrid vehicle and investigated via MATLAB Simcape Driveline simulation.

  20. Modeling approaches for characterizing and evaluating environmental exposure to engineered nanomaterials in support of risk-based decision making.

    Science.gov (United States)

    Hendren, Christine Ogilvie; Lowry, Michael; Grieger, Khara D; Money, Eric S; Johnston, John M; Wiesner, Mark R; Beaulieu, Stephen M

    2013-02-05

    As the use of engineered nanomaterials becomes more prevalent, the likelihood of unintended exposure to these materials also increases. Given the current scarcity of experimental data regarding fate, transport, and bioavailability, determining potential environmental exposure to these materials requires an in depth analysis of modeling techniques that can be used in both the near- and long-term. Here, we provide a critical review of traditional and emerging exposure modeling approaches to highlight the challenges that scientists and decision-makers face when developing environmental exposure and risk assessments for nanomaterials. We find that accounting for nanospecific properties, overcoming data gaps, realizing model limitations, and handling uncertainty are key to developing informative and reliable environmental exposure and risk assessments for engineered nanomaterials. We find methods suited to recognizing and addressing significant uncertainty to be most appropriate for near-term environmental exposure modeling, given the current state of information and the current insufficiency of established deterministic models to address environmental exposure to engineered nanomaterials.

  1. Modeling of Combined Heat and Power Plant Based on a Multi-Stage Gasifier and Internal Combustion Engines of Various Power Outputs

    Science.gov (United States)

    Khudyakova, G. I.; Kozlov, A. N.; Svishchev, D. A.

    2017-11-01

    The paper is concerned with an integrated system of internal combustion engine and mini combined heat and power plant (ICE-CHP). The system is based on multi-stage wood biomass gasification. The use of producer gas in the system affects negatively the internal combustion engine performance and, therefore, reduces the efficiency of the ICE-CHP plant. A mathematical model of an internal combustion engine running on low-calorie producer gas was developed using an overview of Russian and foreign manufacturers of reciprocating units, that was made in the research. A thermal calculation was done for four-stroke gas engines of different rated power outputs (30, 100 and 250 kW), running on producer gas (CO2 - 10.2, CO - 45.8, N2 - 38.8%). Thermal calculation demonstrates that the engine exhaust gas temperature reaches 500 - 600°C at the rated power level and with the lower engine power, the temperature gets higher. For example, for an internal combustion engine power of 1000 kW the temperature of exhaust gases equals 400°C. A comparison of the efficiency of engine operation on natural gas and producer gas shows that with the use of producer gas the power output declines from 300 to 250 kWe. The reduction in the effective efficiency in this case makes up 2%. The measures are proposed to upgrade the internal combustion engine to enable it to run on low-calorie producer gas.

  2. A proposal of ecologic taxes based on thermo-economic performance of heat engine models

    Energy Technology Data Exchange (ETDEWEB)

    Barranco-Jimenez, M. A. [Departamento de Ciencias Basicas, Escuela Superior de Computo del IPN, Av. Miguel Bernal Esq. Juan de Dios Batiz U.P. Zacatenco CP 07738, D.F. (Mexico); Ramos-Gayosso, I. [Unidad de Administracion de Riesgos, Banco de Mexico, 5 de Mayo, Centro, D.F. (Mexico); Rosales, M. A. [Departamento de Fisica y Matematicas, Universidad de las Americas, Puebla Exhacienda Sta. Catarina Martir, Cholula 72820, Puebla (Mexico); Angulo-Brown, F. [Departamento de Fisica, Escuela Superior de Fisica y Matematicas del IPN, Edif. 9 U.P. Zacatenco CP 07738, D.F. (Mexico)

    2009-07-01

    Within the context of Finite-Time Thermodynamics (FTT) a simplified thermal power plant model (the so-called Novikov engine) is analyzed under economical criteria by means of the concepts of profit function and the costs involved in the performance of the power plant. In this study, two different heat transfer laws are used, the so called Newton's law of cooling and the Dulong-Petit's law of cooling. Two FTT optimization criteria for the performance analysis are used: the maximum power regime (MP) and the so-called ecological criterion. This last criterion leads the engine model towards a mode of performance that appreciably diminishes the engine's wasted energy. In this work, it is shown that the energy-unit price produced under maximum power conditions is cheaper than that produced under maximum ecological (ME) conditions. This was accomplished by using a typical definition of profits function stemming from economics. The MP-regime produces considerably more wasted energy toward the environment, thus the MP energy-unit price is subsidized by nature. Due to this fact, an ecological tax is proposed, which could be a certain function of the price difference between the MP and ME modes of power production. (author)

  3. Interface Management for a NASA Flight Project Using Model-Based Systems Engineering (MBSE)

    Science.gov (United States)

    Vipavetz, Kevin; Shull, Thomas A.; Infeld, Samatha; Price, Jim

    2016-01-01

    The goal of interface management is to identify, define, control, and verify interfaces; ensure compatibility; provide an efficient system development; be on time and within budget; while meeting stakeholder requirements. This paper will present a successful seven-step approach to interface management used in several NASA flight projects. The seven-step approach using Model Based Systems Engineering will be illustrated by interface examples from the Materials International Space Station Experiment-X (MISSE-X) project. The MISSE-X was being developed as an International Space Station (ISS) external platform for space environmental studies, designed to advance the technology readiness of materials and devices critical for future space exploration. Emphasis will be given to best practices covering key areas such as interface definition, writing good interface requirements, utilizing interface working groups, developing and controlling interface documents, handling interface agreements, the use of shadow documents, the importance of interface requirement ownership, interface verification, and product transition.

  4. Logical diagnosis model turbojet engine including double-circuit intermittent flow of his injuries

    Directory of Open Access Journals (Sweden)

    О.П. Стьопушкіна

    2007-01-01

    Full Text Available  In this article is considered question of the change quantitative and qualitative factors of the technical condition constructive element running part of jet engine. As a result called on experimental studies diagnostic sign were definite sign with provision for intermittent damages and on base this is built expert model of the turbojet double-circuit engine.

  5. Analysis of the relation between knowledge engineering and knowledge management based on the Nonaka and Takeuchi models

    Directory of Open Access Journals (Sweden)

    Christian Reyes

    2007-07-01

    Full Text Available The use of the Knowledge Management is fundamental in the creation of value within the companies, being at the present time a new form to obtain competitive advantages in specific market. Also, for the process of value creation is necessary to use specifics Information Technologies that they allow to reach the objectives drawn up when implementing a Knowledge Management project. In this sense, one of the more complete and efficient Information Technologies is the Knowledge Based System that as well comprises of the Knowledge Engineering. This article tries to analyze the existing relation between Knowledge Management, a specific model of knowledge creation, the Knowledge Based System and how this Information Technologies play a very important role in the creation, codification and transference of knowledge.

  6. Computational modeling, optimization and manufacturing simulation of advanced engineering materials

    CERN Document Server

    2016-01-01

    This volume presents recent research work focused in the development of adequate theoretical and numerical formulations to describe the behavior of advanced engineering materials.  Particular emphasis is devoted to applications in the fields of biological tissues, phase changing and porous materials, polymers and to micro/nano scale modeling. Sensitivity analysis, gradient and non-gradient based optimization procedures are involved in many of the chapters, aiming at the solution of constitutive inverse problems and parameter identification. All these relevant topics are exposed by experienced international and inter institutional research teams resulting in a high level compilation. The book is a valuable research reference for scientists, senior undergraduate and graduate students, as well as for engineers acting in the area of computational material modeling.

  7. Working towards a scalable model of problem-based learning instruction in undergraduate engineering education

    Science.gov (United States)

    Mantri, Archana

    2014-05-01

    The intent of the study presented in this paper is to show that the model of problem-based learning (PBL) can be made scalable by designing curriculum around a set of open-ended problems (OEPs). The detailed statistical analysis of the data collected to measure the effects of traditional and PBL instructions for three courses in Electronics and Communication Engineering, namely Analog Electronics, Digital Electronics and Pulse, Digital & Switching Circuits is presented here. It measures the effects of pedagogy, gender and cognitive styles on the knowledge, skill and attitude of the students. The study was conducted two times with content designed around same set of OEPs but with two different trained facilitators for all the three courses. The repeatability of results for effects of the independent parameters on dependent parameters is studied and inferences are drawn.

  8. Reducing the number of laboratory animals used in tissue engineering research by restricting the variety of animal models. Articular cartilage tissue engineering as a case study.

    Science.gov (United States)

    de Vries, Rob B M; Buma, Pieter; Leenaars, Marlies; Ritskes-Hoitinga, Merel; Gordijn, Bert

    2012-12-01

    The use of laboratory animals in tissue engineering research is an important underexposed ethical issue. Several ethical questions may be raised about this use of animals. This article focuses on the possibilities of reducing the number of animals used. Given that there is considerable debate about the adequacy of the current animal models in tissue engineering research, we investigate whether it is possible to reduce the number of laboratory animals by selecting and using only those models that have greatest predictive value for future clinical application of the tissue engineered product. The field of articular cartilage tissue engineering is used as a case study. Based on a study of the scientific literature and interviews with leading experts in the field, an overview is provided of the animal models used and the advantages and disadvantages of each model, particularly in terms of extrapolation to the human situation. Starting from this overview, it is shown that, by skipping the small models and using only one large preclinical model, it is indeed possible to restrict the number of animal models, thereby reducing the number of laboratory animals used. Moreover, it is argued that the selection of animal models should become more evidence based and that researchers should seize more opportunities to choose or create characteristics in the animal models that increase their predictive value.

  9. The development of performance-based practical assessment model at civil engineering workshop in state polytechnic

    Science.gov (United States)

    Kristinayanti, W. S.; Mas Pertiwi, I. G. A. I.; Evin Yudhi, S.; Lokantara, W. D.

    2018-01-01

    Assessment is an important element in education that shall oversees students’ competence not only in terms of cognitive aspect, but alsothe students’ psychomotorin a comprehensive way. Civil Engineering Department at Bali State Polytechnic,as a vocational education institution, emphasizes on not only the theoretical foundation of the study, but also the application throughpracticum in workshop-based learning. We are aware of a need for performance-based assessment for these students, which would be essential for the student’s all-round performance in their studies.We try to develop a performance-based practicum assessment model that is needed to assess student’s ability in workshop-based learning. This research was conducted in three stages, 1) learning needs analysis, 2) instruments development, and 3) testing of instruments. The study uses rubrics set-up to test students’ competence in the workshop and test the validity. We obtained 34-point valid statement out of 35, and resulted in value of Cronbach’s alpha equal to 0.977. In expert test we obtained a value of CVI = 0.75 which means that the drafted assessment is empirically valid within thetrial group.

  10. Takagi-Sugeno fuzzy model identification for turbofan aero-engines with guaranteed stability

    Directory of Open Access Journals (Sweden)

    Ruichao LI

    2018-06-01

    Full Text Available This paper is concerned with identifying a Takagi-Sugeno (TS fuzzy model for turbofan aero-engines working under the maximum power status (non-afterburning. To establish the fuzzy system, theoretical contributions are made as follows. First, by fixing antecedent parameters, the estimation of consequent parameters in state-space representations is formulated as minimizing a quadratic cost function. Second, to avoid obtaining unstable identified models, a new theorem is proposed to transform the prior-knowledge of stability into constraints. Then based on the aforementioned work, the identification problem is synthesized as a constrained quadratic optimization. By solving the constrained optimization, a TS fuzzy system is identified with guaranteed stability. Finally, the proposed method is applied to the turbofan aero-engine using simulation data generated from an aerothermodynamics component-level model. Results show the identified fuzzy model achieves a high fitting accuracy while stabilities of the overall fuzzy system and all its local models are also guaranteed. Keywords: Constrained optimization, Fuzzy system, Stability, System identification, Turbofan engine

  11. Rule-based decision making model

    International Nuclear Information System (INIS)

    Sirola, Miki

    1998-01-01

    A rule-based decision making model is designed in G2 environment. A theoretical and methodological frame for the model is composed and motivated. The rule-based decision making model is based on object-oriented modelling, knowledge engineering and decision theory. The idea of safety objective tree is utilized. Advanced rule-based methodologies are applied. A general decision making model 'decision element' is constructed. The strategy planning of the decision element is based on e.g. value theory and utility theory. A hypothetical process model is built to give input data for the decision element. The basic principle of the object model in decision making is division in tasks. Probability models are used in characterizing component availabilities. Bayes' theorem is used to recalculate the probability figures when new information is got. The model includes simple learning features to save the solution path. A decision analytic interpretation is given to the decision making process. (author)

  12. Implementation of a project-based engineering school: increasing student motivation and relevant learning

    Science.gov (United States)

    Terrón-López, María-José; García-García, María-José; Velasco-Quintana, Paloma-Julia; Ocampo, Jared; Vigil Montaño, María-Reyes; Gaya-López, María-Cruz

    2017-11-01

    The School of Engineering at Universidad Europea de Madrid (UEM) implemented, starting in the 2012-2013 period, a unified academic model based on project-based learning as the methodology used throughout the entire School. This model expects that every year, in each grade, all the students should participate in a capstone project integrating the contents and competencies of several courses. This paper presents the academic context under which this experience has been implemented, and a summary of the work done to design and implement the Project-Based Engineering School at the UEM. The steps followed, the structure used, some sample projects, as well as the difficulties and benefits of implementing the programme are discussed in this paper. The results are encouraging as students are more motivated and the initial set objectives were accomplished.

  13. Modeling and fuzzy control of the engine coolant conditioning system in an IC engine test bed

    International Nuclear Information System (INIS)

    Mohtasebi, Seyed Saeid; Shirazi, Farzad A.; Javaheri, Ahmad; Nava, Ghodrat Hamze

    2010-01-01

    Mechanical and thermodynamical performance of internal combustion engines is significantly affected by the engine working temperature. In an engine test bed, the internal combustion engines are tested in different operating conditions using a dynamometer. It is required that the engine temperature be controlled precisely, particularly in transient states. This precise control can be achieved by an engine coolant conditioning system mainly consisting of a heat exchanger, a control valve, and a controller. In this study, constitutive equations of the system are derived first. These differential equations show the second- order nonlinear time-varying dynamics of the system. The model is validated with the experimental data providing satisfactory results. After presenting the dynamic equations of the system, a fuzzy controller is designed based on our prior knowledge of the system. The fuzzy rules and the membership functions are derived by a trial and error and heuristic method. Because of the nonlinear nature of the system the fuzzy rules are set to satisfy the requirements of the temperature control for different operating conditions of the engine. The performance of the fuzzy controller is compared with a PI one for different transient conditions. The results of the simulation show the better performance of the fuzzy controller. The main advantages of the fuzzy controller are the shorter settling time, smaller overshoot, and improved performance especially in the transient states of the system

  14. Modeling for Friction of Four Stroke Four Cylinder In-Line Petrol Engine

    Directory of Open Access Journals (Sweden)

    P.C. Mishra

    2013-09-01

    Full Text Available A four stroke four cylinder in-line petrol engine is modeled to estimate various performance parameters. The solution is based on tribology and dynamics principle. The detailed parameters relating to engine friction and lubrication are computed numerically for the engine firing order 1-3-4-2. The numerical method is based on finite difference method that solves coupled Reynolds Equation and Energy Equation. Output includes the movie thickness, friction force, friction power loss and temperature rise in the ring liner conjunction in all four cylinders. Transient regime of ring liner lubrication isaddressed while the same changes from hydrodynamic to mixed in an engine cycle. Momentary cessation near the top and bottom dead center that causes boundary interaction is analyzed through asperity contact. The non - Newtonian behavior of lubricant film due to pressure and temperature is addresses using viscosity -pressure- temperature inter relationship.

  15. The Effect on Pupils' Science Performance and Problem-Solving Ability through Lego: An Engineering Design-Based Modeling Approach

    Science.gov (United States)

    Li, Yanyan; Huang, Zhinan; Jiang, Menglu; Chang, Ting-Wen

    2016-01-01

    Incorporating scientific fundamentals via engineering through a design-based methodology has proven to be highly effective for STEM education. Engineering design can be instantiated for learning as they involve mental and physical stimulation and develop practical skills especially in solving problems. Lego bricks, as a set of toys based on design…

  16. Multi-zone thermodynamic modelling of spark-ignition engine combustion - An overview

    International Nuclear Information System (INIS)

    Verhelst, S.; Sheppard, C.G.W.

    2009-01-01

    'Multi-zone thermodynamic engine model' is a generic term adopted here for the type of model also referred to as quasi-dimensional, two-zone, three-zone, etc.; based on the laws of mass and energy conservation and using a mass burning rate sub-model (as opposed to a prescribed mass burning rate) to predict the in-cylinder pressure and temperature throughout the power cycle. Such models have been used for about three decades and provide valuable tools for rapid evaluation of the influence of key engine parameters. Numerous papers have been published on the development of models of varying complexity and their application. The current work is not intended as a comprehensive review of all these works, but presents an overview of multi-zone thermodynamic models for spark-ignition engines, their pros and cons, the model equations and sub-models used to account for various processes such as turbulent wrinkling, flame development, flame geometry, heat transfer, etc. It is suggested that some past terminology adopted to distinguish combustion models (e.g. 'entrainment' versus 'flamelet') is artificial and confusing; it can also be difficult to compare the different models used. Naturally, different models use varying underlying assumptions; however, the influence of several physical processes has frequently been incorporated into one term, not always well documented or clearly described. The authors propose a unified framework that can be used to compare different sub-models on the same basis, with particular focus on turbulent combustion models.

  17. FPGA implementation of predictive degradation model for engine oil lifetime

    Science.gov (United States)

    Idros, M. F. M.; Razak, A. H. A.; Junid, S. A. M. Al; Suliman, S. I.; Halim, A. K.

    2018-03-01

    This paper presents the implementation of linear regression model for degradation prediction on Register Transfer Logic (RTL) using QuartusII. A stationary model had been identified in the degradation trend for the engine oil in a vehicle in time series method. As for RTL implementation, the degradation model is written in Verilog HDL and the data input are taken at a certain time. Clock divider had been designed to support the timing sequence of input data. At every five data, a regression analysis is adapted for slope variation determination and prediction calculation. Here, only the negative value are taken as the consideration for the prediction purposes for less number of logic gate. Least Square Method is adapted to get the best linear model based on the mean values of time series data. The coded algorithm has been implemented on FPGA for validation purposes. The result shows the prediction time to change the engine oil.

  18. Rate-Based Model Predictive Control of Turbofan Engine Clearance

    Science.gov (United States)

    DeCastro, Jonathan A.

    2006-01-01

    An innovative model predictive control strategy is developed for control of nonlinear aircraft propulsion systems and sub-systems. At the heart of the controller is a rate-based linear parameter-varying model that propagates the state derivatives across the prediction horizon, extending prediction fidelity to transient regimes where conventional models begin to lose validity. The new control law is applied to a demanding active clearance control application, where the objectives are to tightly regulate blade tip clearances and also anticipate and avoid detrimental blade-shroud rub occurrences by optimally maintaining a predefined minimum clearance. Simulation results verify that the rate-based controller is capable of satisfying the objectives during realistic flight scenarios where both a conventional Jacobian-based model predictive control law and an unconstrained linear-quadratic optimal controller are incapable of doing so. The controller is evaluated using a variety of different actuators, illustrating the efficacy and versatility of the control approach. It is concluded that the new strategy has promise for this and other nonlinear aerospace applications that place high importance on the attainment of control objectives during transient regimes.

  19. Activity-based DEVS modeling

    DEFF Research Database (Denmark)

    Alshareef, Abdurrahman; Sarjoughian, Hessam S.; Zarrin, Bahram

    2018-01-01

    architecture and the UML concepts. In this paper, we further this work by grounding Activity-based DEVS modeling and developing a fully-fledged modeling engine to demonstrate applicability. We also detail the relevant aspects of the created metamodel in terms of modeling and simulation. A significant number......Use of model-driven approaches has been increasing to significantly benefit the process of building complex systems. Recently, an approach for specifying model behavior using UML activities has been devised to support the creation of DEVS models in a disciplined manner based on the model driven...... of the artifacts of the UML 2.5 activities and actions, from the vantage point of DEVS behavioral modeling, is covered in details. Their semantics are discussed to the extent of time-accurate requirements for simulation. We characterize them in correspondence with the specification of the atomic model behavior. We...

  20. Pen-based Interfaces for Engineering and Education

    Science.gov (United States)

    Stahovich, Thomas F.

    Sketches are an important problem-solving tool in many fields. This is particularly true of engineering design, where sketches facilitate creativity by providing an efficient medium for expressing ideas. However, despite the importance of sketches in engineering practice, current engineering software still relies on traditional mouse and keyboard interfaces, with little or no capabilities to handle free-form sketch input. With recent advances in machine-interpretation techniques, it is now becoming possible to create practical interpretation-based interfaces for such software. In this chapter, we report on our efforts to create interpretation techniques to enable pen-based engineering applications. We describe work on two fundamental sketch understanding problems. The first is sketch parsing, the task of clustering pen strokes or geometric primitives into individual symbols. The second is symbol recognition, the task of classifying symbols once they have been located by a parser. We have used the techniques that we have developed to construct several pen-based engineering analysis tools. These are used here as examples to illustrate our methods. We have also begun to use our techniques to create pen-based tutoring systems that scaffold students in solving problems in the same way they would ordinarily solve them with paper and pencil. The chapter concludes with a brief discussion of these systems.

  1. Engine Performance Test of the 1975 Chrysler - Nissan Model CN633 Diesel Engine

    Science.gov (United States)

    1975-09-01

    An engine test of the Chrysler-Nissan Model CN633 diesel engine was performed to determine its steady-state fuel consumption and emissions (HC, CO, NOx) maps. The data acquired are summarized in this report.

  2. Model Wind Turbine Design in a Project-Based Middle School Engineering Curriculum Built on State Frameworks

    Science.gov (United States)

    Cogger, Steven D.; Miley, Daniel H.

    2012-01-01

    This paper proposes that project-based active learning is a key part of engineering education at the middle school level. One project from a comprehensive middle school engineering curriculum developed by the authors is described to show how active learning and state frameworks can coexist. The theoretical basis for learning and assessment in a…

  3. Strategies for the Curation of CAD Engineering Models

    Directory of Open Access Journals (Sweden)

    Manjula Patel

    2009-06-01

    Full Text Available Normal 0 Product Lifecycle Management (PLM has become increasingly important in the engineering community over the last decade or so, due to the globalisation of markets and the rising popularity of products provided as services. It demands the efficient capture, representation, organisation, retrieval and reuse of product data over its entire life. Simultaneously, there is now a much greater reliance on CAD models for communicating designs to manufacturers, builders, maintenance crews and regulators, and for definitively expressing designs. Creating the engineering record digitally, however, presents problems not only for its long-term maintenance and accessibility - due in part to the rapid obsolescence of the hardware, software and file formats involved - but also for recording the evolution of designs, artefacts and products. We examine the curation and preservation requirements in PLM and suggest ways of alleviating the problems of sustaining CAD engineering models through the use of lightweight formats, layered annotation and the collection of Representation Information as defined in the Open Archival Information System (OAIS Reference Model.  We describe two tools which have been specifically developed to aid in the curation of CAD engineering models in the context of PLM: Lightweight Models with Multilayered Annotation (LiMMA and a Registry/Repository of Representation Information for Engineering (RRoRIfE.

  4. Human iPSC-derived cardiomyocytes and tissue engineering strategies for disease modeling and drug screening.

    Science.gov (United States)

    Smith, Alec S T; Macadangdang, Jesse; Leung, Winnie; Laflamme, Michael A; Kim, Deok-Ho

    Improved methodologies for modeling cardiac disease phenotypes and accurately screening the efficacy and toxicity of potential therapeutic compounds are actively being sought to advance drug development and improve disease modeling capabilities. To that end, much recent effort has been devoted to the development of novel engineered biomimetic cardiac tissue platforms that accurately recapitulate the structure and function of the human myocardium. Within the field of cardiac engineering, induced pluripotent stem cells (iPSCs) are an exciting tool that offer the potential to advance the current state of the art, as they are derived from somatic cells, enabling the development of personalized medical strategies and patient specific disease models. Here we review different aspects of iPSC-based cardiac engineering technologies. We highlight methods for producing iPSC-derived cardiomyocytes (iPSC-CMs) and discuss their application to compound efficacy/toxicity screening and in vitro modeling of prevalent cardiac diseases. Special attention is paid to the application of micro- and nano-engineering techniques for the development of novel iPSC-CM based platforms and their potential to advance current preclinical screening modalities. Published by Elsevier Inc.

  5. Thermodynamic modeling of direct injection methanol fueled engines

    International Nuclear Information System (INIS)

    Shen Yuan; Bedford, Joshua; Wichman, Indrek S.

    2009-01-01

    In-cylinder pressure is an important parameter that is used to investigate the combustion process in internal combustion (IC) engines. In this paper, a thermodynamic model of IC engine combustion is presented and examined. A heat release function and an empirical conversion efficiency factor are introduced to solve the model. The pressure traces obtained by solving the thermodynamic model are compared with measured pressure data for a fully instrumented laboratory IC spark ignition (SI) engine. Derived scaling parameters for time to peak pressure, peak pressure, and maximum rate of pressure rise (among others) are developed and compared with the numerical simulations. The models examined here may serve as pedagogic tools and, when suitably refined, as preliminary design tools.

  6. Applied data analysis and modeling for energy engineers and scientists

    CERN Document Server

    Reddy, T Agami

    2011-01-01

    ""Applied Data Analysis and Modeling for Energy Engineers and Scientists"" discusses mathematical models, data analysis, and decision analysis in modeling. The approach taken in this volume focuses on the modeling and analysis of thermal systems in an engineering environment, while also covering a number of other critical areas. Other material covered includes the tools that researchers and engineering professionals will need in order to explore different analysis methods, use critical assessment skills and reach sound engineering conclusions. The book also covers process and system design and

  7. Mathematical Modeling of Hybrid Electrical Engineering Systems

    Directory of Open Access Journals (Sweden)

    A. A. Lobaty

    2016-01-01

    Full Text Available A large class of systems that have found application in various industries and households, electrified transportation facilities and energy sector has been classified as electrical engineering systems. Their characteristic feature is a combination of continuous and discontinuous modes of operation, which is reflected in the appearance of a relatively new term “hybrid systems”. A wide class of hybrid systems is pulsed DC converters operating in a pulse width modulation, which are non-linear systems with variable structure. Using various methods for linearization it is possible to obtain linear mathematical models that rather accurately simulate behavior of such systems. However, the presence in the mathematical models of exponential nonlinearities creates considerable difficulties in the implementation of digital hardware. The solution can be found while using an approximation of exponential functions by polynomials of the first order, that, however, violates the rigor accordance of the analytical model with characteristics of a real object. There are two practical approaches to synthesize algorithms for control of hybrid systems. The first approach is based on the representation of the whole system by a discrete model which is described by difference equations that makes it possible to synthesize discrete algorithms. The second approach is based on description of the system by differential equations. The equations describe synthesis of continuous algorithms and their further implementation in a digital computer included in the control loop system. The paper considers modeling of a hybrid electrical engineering system using differential equations. Neglecting the pulse duration, it has been proposed to describe behavior of vector components in phase coordinates of the hybrid system by stochastic differential equations containing generally non-linear differentiable random functions. A stochastic vector-matrix equation describing dynamics of the

  8. A Comparison of Different Engineering Models for Computation of Lightning Magnetic Field of Negative First Strokes

    Directory of Open Access Journals (Sweden)

    V. Javor

    2012-11-01

    Full Text Available A comparison of different engineering models results for a lightning magnetic field of negative first strokes is presented in this paper. A new function for representing double-peaked channel-base current is used for lightning stroke modeling. This function includes the initial and subsidiary peak in a current waveform. For experimentally measured currents, a magnetic field is calculated for the three engineering models: transmission line (TL model, TL model with linear decay (MTLL, and TL model with exponential decay (MTLE.

  9. True Concurrent Thermal Engineering Integrating CAD Model Building with Finite Element and Finite Difference Methods

    Science.gov (United States)

    Panczak, Tim; Ring, Steve; Welch, Mark

    1999-01-01

    Thermal engineering has long been left out of the concurrent engineering environment dominated by CAD (computer aided design) and FEM (finite element method) software. Current tools attempt to force the thermal design process into an environment primarily created to support structural analysis, which results in inappropriate thermal models. As a result, many thermal engineers either build models "by hand" or use geometric user interfaces that are separate from and have little useful connection, if any, to CAD and FEM systems. This paper describes the development of a new thermal design environment called the Thermal Desktop. This system, while fully integrated into a neutral, low cost CAD system, and which utilizes both FEM and FD methods, does not compromise the needs of the thermal engineer. Rather, the features needed for concurrent thermal analysis are specifically addressed by combining traditional parametric surface based radiation and FD based conduction modeling with CAD and FEM methods. The use of flexible and familiar temperature solvers such as SINDA/FLUINT (Systems Improved Numerical Differencing Analyzer/Fluid Integrator) is retained.

  10. Engineered Barrier System: Physical and Chemical Environment Model

    International Nuclear Information System (INIS)

    Jolley, D. M.; Jarek, R.; Mariner, P.

    2004-01-01

    The conceptual and predictive models documented in this Engineered Barrier System: Physical and Chemical Environment Model report describe the evolution of the physical and chemical conditions within the waste emplacement drifts of the repository. The modeling approaches and model output data will be used in the total system performance assessment (TSPA-LA) to assess the performance of the engineered barrier system and the waste form. These models evaluate the range of potential water compositions within the emplacement drifts, resulting from the interaction of introduced materials and minerals in dust with water seeping into the drifts and with aqueous solutions forming by deliquescence of dust (as influenced by atmospheric conditions), and from thermal-hydrological-chemical (THC) processes in the drift. These models also consider the uncertainty and variability in water chemistry inside the drift and the compositions of introduced materials within the drift. This report develops and documents a set of process- and abstraction-level models that constitute the engineered barrier system: physical and chemical environment model. Where possible, these models use information directly from other process model reports as input, which promotes integration among process models used for total system performance assessment. Specific tasks and activities of modeling the physical and chemical environment are included in the technical work plan ''Technical Work Plan for: In-Drift Geochemistry Modeling'' (BSC 2004 [DIRS 166519]). As described in the technical work plan, the development of this report is coordinated with the development of other engineered barrier system analysis model reports

  11. The Use of a Parametric Feature Based CAD System to Teach Introductory Engineering Graphics.

    Science.gov (United States)

    Howell, Steven K.

    1995-01-01

    Describes the use of a parametric-feature-based computer-aided design (CAD) System, AutoCAD Designer, in teaching concepts of three dimensional geometrical modeling and design. Allows engineering graphics to go beyond the role of documentation and communication and allows an engineer to actually build a virtual prototype of a design idea and…

  12. Efficient Proof Engines for Bounded Model Checking of Hybrid Systems

    DEFF Research Database (Denmark)

    Fränzle, Martin; Herde, Christian

    2005-01-01

    In this paper we present HySat, a new bounded model checker for linear hybrid systems, incorporating a tight integration of a DPLL-based pseudo-Boolean SAT solver and a linear programming routine as core engine. In contrast to related tools like MathSAT, ICS, or CVC, our tool exploits all...

  13. A control-oriented real-time semi-empirical model for the prediction of NOx emissions in diesel engines

    International Nuclear Information System (INIS)

    D’Ambrosio, Stefano; Finesso, Roberto; Fu, Lezhong; Mittica, Antonio; Spessa, Ezio

    2014-01-01

    Highlights: • New semi-empirical correlation to predict NOx emissions in diesel engines. • Based on a real-time three-zone diagnostic combustion model. • The model is of fast application, and is therefore suitable for control-oriented applications. - Abstract: The present work describes the development of a fast control-oriented semi-empirical model that is capable of predicting NOx emissions in diesel engines under steady state and transient conditions. The model takes into account the maximum in-cylinder burned gas temperature of the main injection, the ambient gas-to-fuel ratio, the mass of injected fuel, the engine speed and the injection pressure. The evaluation of the temperature of the burned gas is based on a three-zone real-time diagnostic thermodynamic model that has recently been developed by the authors. Two correlations have also been developed in the present study, in order to evaluate the maximum burned gas temperature during the main combustion phase (derived from the three-zone diagnostic model) on the basis of significant engine parameters. The model has been tuned and applied to two diesel engines that feature different injection systems of the indirect acting piezoelectric, direct acting piezoelectric and solenoid type, respectively, over a wide range of steady-state operating conditions. The model has also been validated in transient operation conditions, over the urban and extra-urban phases of an NEDC. It has been shown that the proposed approach is capable of improving the predictive capability of NOx emissions, compared to previous approaches, and is characterized by a very low computational effort, as it is based on a single-equation correlation. It is therefore suitable for real-time applications, and could also be integrated in the engine control unit for closed-loop or feed-forward control tasks

  14. Engineering and technology talent for innovation and knowledge-based economies competencies, leadership, and a roadmap for implementation

    CERN Document Server

    Abdulwahed, Mahmoud

    2017-01-01

    This book introduces and analyzes the models for engineering leadership and competency skills, as well as frameworks for industry-academia collaboration and is appropriate for students, researchers, and professionals interested in continuous professional development. The authors look at the organizational structures of engineering education in knowledge-based economies and examine the role of innovation and how it is encouraged in schools. It also provides a methodological framework and toolkit for investigating the needs of engineering and technology skills in national contexts. A detailed empirical case study is included that examines the leadership competencies that are needed in knowledge-based economies and how one university encourages these in their program. The book concludes with conceptual modeling and proposals of specific organizational structures for implementation in engineering schools, in order to enable the development of necessary skills for future engineering graduates.

  15. Validation of GPU based TomoTherapy dose calculation engine.

    Science.gov (United States)

    Chen, Quan; Lu, Weiguo; Chen, Yu; Chen, Mingli; Henderson, Douglas; Sterpin, Edmond

    2012-04-01

    The graphic processing unit (GPU) based TomoTherapy convolution/superposition(C/S) dose engine (GPU dose engine) achieves a dramatic performance improvement over the traditional CPU-cluster based TomoTherapy dose engine (CPU dose engine). Besides the architecture difference between the GPU and CPU, there are several algorithm changes from the CPU dose engine to the GPU dose engine. These changes made the GPU dose slightly different from the CPU-cluster dose. In order for the commercial release of the GPU dose engine, its accuracy has to be validated. Thirty eight TomoTherapy phantom plans and 19 patient plans were calculated with both dose engines to evaluate the equivalency between the two dose engines. Gamma indices (Γ) were used for the equivalency evaluation. The GPU dose was further verified with the absolute point dose measurement with ion chamber and film measurements for phantom plans. Monte Carlo calculation was used as a reference for both dose engines in the accuracy evaluation in heterogeneous phantom and actual patients. The GPU dose engine showed excellent agreement with the current CPU dose engine. The majority of cases had over 99.99% of voxels with Γ(1%, 1 mm) engine also showed similar degree of accuracy in heterogeneous media as the current TomoTherapy dose engine. It is verified and validated that the ultrafast TomoTherapy GPU dose engine can safely replace the existing TomoTherapy cluster based dose engine without degradation in dose accuracy.

  16. Mean Value SI Engine Model for Control Studies

    DEFF Research Database (Denmark)

    Hendricks, Elbert; Sorenson, Spencer C

    1990-01-01

    This paper presents a mathematically simple nonlinear three state (three differential equation) dynamic model of an SI engine which has the same steady state accuracy as a typical dynamometer measurement of the engine over its entire speed/load operating range (± 2.0%). The model's accuracy...... for large, fast transients is of the same order in the same operating region. Because the model is mathematically compact, it has few adjustable parameters and is thus simple to fit to a given engine either on the basis of measurements or given the steady state results of a larger cycle simulation package....... The model can easily be run on a Personal Computer (PC) using a ordinary differential equation (ODE) integrating routine or package. This makes the model is useful for control system design and evaluation....

  17. Proposing an Evidence-Based Strategy for Software Requirements Engineering.

    Science.gov (United States)

    Lindoerfer, Doris; Mansmann, Ulrich

    2016-01-01

    This paper discusses an evidence-based approach to software requirements engineering. The approach is called evidence-based, since it uses publications on the specific problem as a surrogate for stakeholder interests, to formulate risks and testing experiences. This complements the idea that agile software development models are more relevant, in which requirements and solutions evolve through collaboration between self-organizing cross-functional teams. The strategy is exemplified and applied to the development of a Software Requirements list used to develop software systems for patient registries.

  18. Model-based system-of-systems engineering for space-based command, control, communication, and information architecture design

    Science.gov (United States)

    Sindiy, Oleg V.

    This dissertation presents a model-based system-of-systems engineering (SoSE) approach as a design philosophy for architecting in system-of-systems (SoS) problems. SoS refers to a special class of systems in which numerous systems with operational and managerial independence interact to generate new capabilities that satisfy societal needs. Design decisions are more complicated in a SoS setting. A revised Process Model for SoSE is presented to support three phases in SoS architecting: defining the scope of the design problem, abstracting key descriptors and their interrelations in a conceptual model, and implementing computer-based simulations for architectural analyses. The Process Model enables improved decision support considering multiple SoS features and develops computational models capable of highlighting configurations of organizational, policy, financial, operational, and/or technical features. Further, processes for verification and validation of SoS models and simulations are also important due to potential impact on critical decision-making and, thus, are addressed. Two research questions frame the research efforts described in this dissertation. The first concerns how the four key sources of SoS complexity---heterogeneity of systems, connectivity structure, multi-layer interactions, and the evolutionary nature---influence the formulation of SoS models and simulations, trade space, and solution performance and structure evaluation metrics. The second question pertains to the implementation of SoSE architecting processes to inform decision-making for a subset of SoS problems concerning the design of information exchange services in space-based operations domain. These questions motivate and guide the dissertation's contributions. A formal methodology for drawing relationships within a multi-dimensional trade space, forming simulation case studies from applications of candidate architecture solutions to a campaign of notional mission use cases, and

  19. Service Modeling for Service Engineering

    Science.gov (United States)

    Shimomura, Yoshiki; Tomiyama, Tetsuo

    Intensification of service and knowledge contents within product life cycles is considered crucial for dematerialization, in particular, to design optimal product-service systems from the viewpoint of environmentally conscious design and manufacturing in advanced post industrial societies. In addition to the environmental limitations, we are facing social limitations which include limitations of markets to accept increasing numbers of mass-produced artifacts and such environmental and social limitations are restraining economic growth. To attack and remove these problems, we need to reconsider the current mass production paradigm and to make products have more added values largely from knowledge and service contents to compensate volume reduction under the concept of dematerialization. Namely, dematerialization of products needs to enrich service contents. However, service was mainly discussed within marketing and has been mostly neglected within traditional engineering. Therefore, we need new engineering methods to look at services, rather than just functions, called "Service Engineering." To establish service engineering, this paper proposes a modeling technique of service.

  20. Development and application of theoretical models for Rotating Detonation Engine flowfields

    Science.gov (United States)

    Fievisohn, Robert

    As turbine and rocket engine technology matures, performance increases between successive generations of engine development are becoming smaller. One means of accomplishing significant gains in thermodynamic performance and power density is to use detonation-based heat release instead of deflagration. This work is focused on developing and applying theoretical models to aid in the design and understanding of Rotating Detonation Engines (RDEs). In an RDE, a detonation wave travels circumferentially along the bottom of an annular chamber where continuous injection of fresh reactants sustains the detonation wave. RDEs are currently being designed, tested, and studied as a viable option for developing a new generation of turbine and rocket engines that make use of detonation heat release. One of the main challenges in the development of RDEs is to understand the complex flowfield inside the annular chamber. While simplified models are desirable for obtaining timely performance estimates for design analysis, one-dimensional models may not be adequate as they do not provide flow structure information. In this work, a two-dimensional physics-based model is developed, which is capable of modeling the curved oblique shock wave, exit swirl, counter-flow, detonation inclination, and varying pressure along the inflow boundary. This is accomplished by using a combination of shock-expansion theory, Chapman-Jouguet detonation theory, the Method of Characteristics (MOC), and other compressible flow equations to create a shock-fitted numerical algorithm and generate an RDE flowfield. This novel approach provides a numerically efficient model that can provide performance estimates as well as details of the large-scale flow structures in seconds on a personal computer. Results from this model are validated against high-fidelity numerical simulations that may require a high-performance computing framework to provide similar performance estimates. This work provides a designer a new

  1. Measuring Model Rocket Engine Thrust Curves

    Science.gov (United States)

    Penn, Kim; Slaton, William V.

    2010-01-01

    This paper describes a method and setup to quickly and easily measure a model rocket engine's thrust curve using a computer data logger and force probe. Horst describes using Vernier's LabPro and force probe to measure the rocket engine's thrust curve; however, the method of attaching the rocket to the force probe is not discussed. We show how a…

  2. Modeling as an Engineering Habit of Mind and Practice

    Science.gov (United States)

    Lammi, Matthew D.; Denson, Cameron D.

    2017-01-01

    In this paper we examine a case study of a pedagogical strategy that focuses on the teaching of modeling as a habit of mind and practice for novice designers engaged in engineering design challenges. In an engineering design course, pre-service teachers created modeling artifacts in the form of conceptual models, graphical models, mathematical…

  3. Thermodynamic analysis of an HCCI engine based system running on natural gas

    International Nuclear Information System (INIS)

    Djermouni, Mohamed; Ouadha, Ahmed

    2014-01-01

    Highlights: • A thermodynamic analysis of an HCCI based system has been carried out. • A thermodynamic model has been developed taking into account the gas composition resulting from the combustion process. • The specific heat of the working fluid is temperature dependent. - Abstract: This paper attempts to carry out a thermodynamic analysis of a system composed of a turbocharged HCCI engine, a mixer, a regenerator and a catalytic converter within the meaning of the first and the second law of thermodynamics. For this purpose, a thermodynamic model has been developed taking into account the gas composition resulting from the combustion process and the specific heat temperature dependency of the working fluid. The analysis aims in particular to examine the influence of the compressor pressure ratio, ambient temperature, equivalence ratio, engine speed and the compressor isentropic efficiency on the performance of the HCCI engine. Results show that thermal and exergetic efficiencies increase with increasing the compressor pressure ratio. However, the increase of the ambient temperature involves a decrease of the engine efficiencies. Furthermore, the variation of the equivalence ratio improves considerably both thermal and exergetic efficiencies. As expected, the increase of the engine speed enhances the engine performances. Finally, an exergy losses mapping of the system show that the maximum exergy losses occurs in the HCCI engine

  4. Gasdynamic modeling and parametric study of mesoscale internal combustion swing engine/generator systems

    Science.gov (United States)

    Gu, Yongxian

    The demand of portable power generation systems for both domestic and military applications has driven the advances of mesoscale internal combustion engine systems. This dissertation was devoted to the gasdynamic modeling and parametric study of the mesoscale internal combustion swing engine/generator systems. First, the system-level thermodynamic modeling for the swing engine/generator systems has been developed. The system performance as well as the potentials of both two- and four-stroke swing engine systems has been investigated based on this model. Then through parameterc studies, the parameters that have significant impacts on the system performance have been identified, among which, the burn time and spark advance time are the critical factors related to combustion process. It is found that the shorter burn time leads to higher system efficiency and power output and the optimal spark advance time is about half of the burn time. Secondly, the turbulent combustion modeling based on levelset method (G-equation) has been implemented into the commercial software FLUENT. Thereafter, the turbulent flame propagation in a generic mesoscale combustion chamber and realistic swing engine chambers has been studied. It is found that, in mesoscale combustion engines, the burn time is dominated by the mean turbulent kinetic energy in the chamber. It is also shown that in a generic mesoscale combustion chamber, the burn time depends on the longest distance between the initial ignition kernel to its walls and by changing the ignition and injection locations, the burn time can be reduced by a factor of two. Furthermore, the studies of turbulent flame propagation in real swing engine chambers show that the combustion can be enhanced through in-chamber turbulence augmentation and with higher engine frequency, the burn time is shorter, which indicates that the in-chamber turbulence can be induced by the motion of moving components as well as the intake gas jet flow. The burn time

  5. Engineered Barrier System: Physical and Chemical Environment Model

    Energy Technology Data Exchange (ETDEWEB)

    D. M. Jolley; R. Jarek; P. Mariner

    2004-02-09

    The conceptual and predictive models documented in this Engineered Barrier System: Physical and Chemical Environment Model report describe the evolution of the physical and chemical conditions within the waste emplacement drifts of the repository. The modeling approaches and model output data will be used in the total system performance assessment (TSPA-LA) to assess the performance of the engineered barrier system and the waste form. These models evaluate the range of potential water compositions within the emplacement drifts, resulting from the interaction of introduced materials and minerals in dust with water seeping into the drifts and with aqueous solutions forming by deliquescence of dust (as influenced by atmospheric conditions), and from thermal-hydrological-chemical (THC) processes in the drift. These models also consider the uncertainty and variability in water chemistry inside the drift and the compositions of introduced materials within the drift. This report develops and documents a set of process- and abstraction-level models that constitute the engineered barrier system: physical and chemical environment model. Where possible, these models use information directly from other process model reports as input, which promotes integration among process models used for total system performance assessment. Specific tasks and activities of modeling the physical and chemical environment are included in the technical work plan ''Technical Work Plan for: In-Drift Geochemistry Modeling'' (BSC 2004 [DIRS 166519]). As described in the technical work plan, the development of this report is coordinated with the development of other engineered barrier system analysis model reports.

  6. Control of Stirling engine. Simplified, compressible model

    Science.gov (United States)

    Plotnikov, P. I.; Sokołowski, J.; Żochowski, A.

    2016-06-01

    A one-dimensional free boundary problem on a motion of a heavy piston in a tube filled with viscous gas is considered. The system of governing equations and boundary conditions is derived. The obtained system of differential equations can be regarded as a mathematical model of an exterior combustion engine. The existence of a weak solution to this model is proved. The problem of maximization of the total work of the engine is considered.

  7. Compact and Accurate Turbocharger Modelling for Engine Control

    DEFF Research Database (Denmark)

    Sorenson, Spencer C; Hendricks, Elbert; Magnússon, Sigurjón

    2005-01-01

    With the current trend towards engine downsizing, the use of turbochargers to obtain extra engine power has become common. A great díffuculty in the use of turbochargers is in the modelling of the compressor map. In general this is done by inserting the compressor map directly into the engine ECU...... turbocharges with radial compressors for either Spark Ignition (SI) or diesel engines...

  8. Engineering Abstractions in Model Checking and Testing

    DEFF Research Database (Denmark)

    Achenbach, Michael; Ostermann, Klaus

    2009-01-01

    Abstractions are used in model checking to tackle problems like state space explosion or modeling of IO. The application of these abstractions in real software development processes, however, lacks engineering support. This is one reason why model checking is not widely used in practice yet...... and testing is still state of the art in falsification. We show how user-defined abstractions can be integrated into a Java PathFinder setting with tools like AspectJ or Javassist and discuss implications of remaining weaknesses of these tools. We believe that a principled engineering approach to designing...... and implementing abstractions will improve the applicability of model checking in practice....

  9. Dynamic model of Stirling engine crank mechanism with connected electric generator

    Directory of Open Access Journals (Sweden)

    Vlach R.

    2009-06-01

    Full Text Available This paper treats of a numerical dynamic model of Stirling engine crank mechanism. The model is included in the complex model of combined heat and power unit. The unit is composed of the Stirling engine and of attached three-phase synchronous generator. This generator should start the Stirling engine in motor mode as well. It is necessary to combine the crank shaft dynamic model and the complete thermal model of Stirling engine for simulations and analyses of engine run. Our aim is to create a dynamics model which takes into account the parameters of crankshaft, piston rods, pistons, and attached generator. For unit working, the electro-mechanical behaviour of generator is also important. That is why we experimentally verified the parameters of generator. The measured characteristics are used in a complex model of heat and power unit. Moreover, it is also possible to determine the Stirling engine torque by the help of these electro-mechanical characteristics. These values can be used e. g. for determination of optimal engine working point or for unit control.

  10. Ground-Based Telescope Parametric Cost Model

    Science.gov (United States)

    Stahl, H. Philip; Rowell, Ginger Holmes

    2004-01-01

    A parametric cost model for ground-based telescopes is developed using multi-variable statistical analysis, The model includes both engineering and performance parameters. While diameter continues to be the dominant cost driver, other significant factors include primary mirror radius of curvature and diffraction limited wavelength. The model includes an explicit factor for primary mirror segmentation and/or duplication (i.e.. multi-telescope phased-array systems). Additionally, single variable models based on aperture diameter are derived. This analysis indicates that recent mirror technology advances have indeed reduced the historical telescope cost curve.

  11. A WEAR MODEL FOR DIESEL ENGINE EXHAUST VALVES

    Energy Technology Data Exchange (ETDEWEB)

    Blau, Peter Julian [ORNL

    2009-11-01

    The work summarized here comprises the concluding effort of a multi-year project, funded by the U.S. Department of Energy, Office of Vehicle Technologies. It supports the development of a better understanding of advanced diesel engine designs in which enhanced power density, energy efficiency, and emissions control place increasing demands upon the durability of engine materials. Many kinds of metallic alloys are used in engines depending on the operating stresses, temperatures, and chemical environments. Exhaust valves, for example, are subjected to high temperatures and repetitive surface contacts that place demands on durability and frictional characteristics of the materials. Valves must continue to seal the combustion chamber properly for thousands of hours of cyclic engine operation and under varying operating conditions. It was the focus of this effort to understand the wear processes in the valve-seat area and to develop a model for the surface deformation and wear of that important interface. An annotated bibliography is provided to illustrate efforts to understand valve wear and to investigate the factors of engine operation that affect its severity and physical manifestation. The project for which this modeling effort was the final task, involved construction of a high-temperature repetitive impact test system as well as basic tribology studies of the combined processes of mechanical wear plus oxidation at elevated temperatures. Several publications resulted from this work, and are cited in this report. The materials selected for the experimental work were high-performance alloys based on nickel and cobalt. In some cases, engine-tested exhaust valves were made available for wear analysis and to ensure that the modes of surface damage produced in experiments were simulative of service. New, production-grade exhaust valves were also used to prepare test specimens for experimental work along with the other alloy samples. Wear analysis of valves and seats

  12. Post-Synapse Model Cell for Synaptic Glutamate Receptor (GluR-Based Biosensing: Strategy and Engineering to Maximize Ligand-Gated Ion-Flux Achieving High Signal-to-Noise Ratio

    Directory of Open Access Journals (Sweden)

    Tetsuya Haruyama

    2012-01-01

    Full Text Available Cell-based biosensing is a “smart” way to obtain efficacy-information on the effect of applied chemical on cellular biological cascade. We have proposed an engineered post-synapse model cell-based biosensors to investigate the effects of chemicals on ionotropic glutamate receptor (GluR, which is a focus of attention as a molecular target for clinical neural drug discovery. The engineered model cell has several advantages over native cells, including improved ease of handling and better reproducibility in the application of cell-based biosensors. However, in general, cell-based biosensors often have low signal-to-noise (S/N ratios due to the low level of cellular responses. In order to obtain a higher S/N ratio in model cells, we have attempted to design a tactic model cell with elevated cellular response. We have revealed that the increase GluR expression level is not directly connected to the amplification of cellular responses because the saturation of surface expression of GluR, leading to a limit on the total ion influx. Furthermore, coexpression of GluR with a voltage-gated potassium channel increased Ca2+ ion influx beyond levels obtained with saturating amounts of GluR alone. The construction of model cells based on strategy of amplifying ion flux per individual receptors can be used to perform smart cell-based biosensing with an improved S/N ratio.

  13. 76 FR 44245 - Special Conditions: Gulfstream Model GVI Airplane; Limit Engine Torque Loads for Sudden Engine...

    Science.gov (United States)

    2011-07-25

    ... Conditions No. 25-441-SC] Special Conditions: Gulfstream Model GVI Airplane; Limit Engine Torque Loads for... for transport category airplanes. These design features include engine size and the potential torque... engine mounts and the supporting structures must be designed to withstand a ``limit engine torque load...

  14. Interactive Model-Centric Systems Engineering (IMCSE) Phase 5

    Science.gov (United States)

    2018-02-28

    Interactive Model-Centric Systems Engineering (IMCSE) Phase 5 Technical Report SERC-2018-TR-104 Feb 28, 2018 Principal Investigator...Date February 28, 2018 Copyright © 2018 Stevens Institute of Technology, Systems Engineering ...Research Center The Systems Engineering Research Center (SERC) is a federally funded University Affiliated Research Center managed by Stevens

  15. Analyzing dynamic fault trees derived from model-based system architectures

    International Nuclear Information System (INIS)

    Dehlinger, Josh; Dugan, Joanne Bechta

    2008-01-01

    Dependability-critical systems, such as digital instrumentation and control systems in nuclear power plants, necessitate engineering techniques and tools to provide assurances of their safety and reliability. Determining system reliability at the architectural design phase is important since it may guide design decisions and provide crucial information for trade-off analysis and estimating system cost. Despite this, reliability and system engineering remain separate disciplines and engineering processes by which the dependability analysis results may not represent the designed system. In this article we provide an overview and application of our approach to build architecture-based, dynamic system models for dependability-critical systems and then automatically generate Dynamic Fault Trees (DFT) for comprehensive, toolsupported reliability analysis. Specifically, we use the Architectural Analysis and Design Language (AADL) to model the structural, behavioral and failure aspects of the system in a composite architecture model. From the AADL model, we seek to derive the DFT(s) and use Galileo's automated reliability analyses to estimate system reliability. This approach alleviates the dependability engineering - systems engineering knowledge expertise gap, integrates the dependability and system engineering design and development processes and enables a more formal, automated and consistent DFT construction. We illustrate this work using an example based on a dynamic digital feed-water control system for a nuclear reactor

  16. Problem Based Learning for engineering.

    Science.gov (United States)

    Kumar, Dinesh; Radcliffe, Pj

    2017-07-01

    the role of Problem Based Learning (PBL) is relative clear in domains such as medicine but its efficacy in engineering is as yet less certain. To clarify the role of PBL in engineering, a 3 day workshop was conducted for senior Brazilian engineering academics where they were given the theory and then an immersive PBL experience. One major purpose for running this workshop was for them to identify suitable courses where PBL could be considered. During this workshop, they were split in teams and given a diverse range of problems. At the conclusion of the workshop, a quantifiable survey was conducted and the results show that PBL can deliver superior educational outcomes providing the student group is drawn from the top 5% of the year 12 students, and that significantly higher resources are made available. Thus, any proposed PBL program in engineering must be able to demonstrate that it can meet these requirements before it can move forward to implementation.

  17. Problem-based learning biotechnology courses in chemical engineering.

    Science.gov (United States)

    Glatz, Charles E; Gonzalez, Ramon; Huba, Mary E; Mallapragada, Surya K; Narasimhan, Balaji; Reilly, Peter J; Saunders, Kevin P; Shanks, Jacqueline V

    2006-01-01

    We have developed a series of upper undergraduate/graduate lecture and laboratory courses on biotechnological topics to supplement existing biochemical engineering, bioseparations, and biomedical engineering lecture courses. The laboratory courses are based on problem-based learning techniques, featuring two- and three-person teams, journaling, and performance rubrics for guidance and assessment. Participants initially have found them to be difficult, since they had little experience with problem-based learning. To increase enrollment, we are combining the laboratory courses into 2-credit groupings and allowing students to substitute one of them for the second of our 2-credit chemical engineering unit operations laboratory courses.

  18. Inverse problems in the design, modeling and testing of engineering systems

    Science.gov (United States)

    Alifanov, Oleg M.

    1991-01-01

    Formulations, classification, areas of application, and approaches to solving different inverse problems are considered for the design of structures, modeling, and experimental data processing. Problems in the practical implementation of theoretical-experimental methods based on solving inverse problems are analyzed in order to identify mathematical models of physical processes, aid in input data preparation for design parameter optimization, help in design parameter optimization itself, and to model experiments, large-scale tests, and real tests of engineering systems.

  19. Design of nuclear power generation plants adopting model engineering method

    International Nuclear Information System (INIS)

    Waki, Masato

    1983-01-01

    The utilization of model engineering as the method of design has begun about ten years ago in nuclear power generation plants. By this method, the result of design can be confirmed three-dimensionally before actual production, and it is the quick and sure method to meet the various needs in design promptly. The adoption of models aims mainly at the improvement of the quality of design since the high safety is required for nuclear power plants in spite of the complex structure. The layout of nuclear power plants and piping design require the model engineering to arrange rationally enormous quantity of things in a limited period. As the method of model engineering, there are the use of check models and of design models, and recently, the latter method has been mainly taken. The procedure of manufacturing models and engineering is explained. After model engineering has been completed, the model information must be expressed in drawings, and the automation of this process has been attempted by various methods. The computer processing of design is in progress, and its role is explained (CAD system). (Kako, I.)

  20. Fire-safety engineering and performance-based codes

    DEFF Research Database (Denmark)

    Sørensen, Lars Schiøtt

    project administrators, etc. The book deals with the following topics: • Historical presentation on the subject of fire • Legislation and building project administration • European fire standardization • Passive and active fire protection • Performance-based Codes • Fire-safety Engineering • Fundamental......Fire-safety Engineering is written as a textbook for Engineering students at universities and other institutions of higher education that teach in the area of fire. The book can also be used as a work of reference for consulting engineers, Building product manufacturers, contractors, building...... thermodynamics • Heat exchange during the fire process • Skin burns • Burning rate, energy release rate and design fires • Proposal to Risk-based design fires • Proposal to a Fire scale • Material ignition and flame spread • Fire dynamics in buildings • Combustion products and toxic gases • Smoke inhalation...

  1. An Exploratory Study of Cost Engineering in Axiomatic Design: Creation of the Cost Model Based on an FR-DP Map

    Science.gov (United States)

    Lee, Taesik; Jeziorek, Peter

    2004-01-01

    Large complex projects cost large sums of money throughout their life cycle for a variety of reasons and causes. For such large programs, the credible estimation of the project cost, a quick assessment of the cost of making changes, and the management of the project budget with effective cost reduction determine the viability of the project. Cost engineering that deals with these issues requires a rigorous method and systematic processes. This paper introduces a logical framework to a&e effective cost engineering. The framework is built upon Axiomatic Design process. The structure in the Axiomatic Design process provides a good foundation to closely tie engineering design and cost information together. The cost framework presented in this paper is a systematic link between the functional domain (FRs), physical domain (DPs), cost domain (CUs), and a task/process-based model. The FR-DP map relates a system s functional requirements to design solutions across all levels and branches of the decomposition hierarchy. DPs are mapped into CUs, which provides a means to estimate the cost of design solutions - DPs - from the cost of the physical entities in the system - CUs. The task/process model describes the iterative process ot-developing each of the CUs, and is used to estimate the cost of CUs. By linking the four domains, this framework provides a superior traceability from requirements to cost information.

  2. Emerging Engine Control Technologies

    DEFF Research Database (Denmark)

    Hendricks, Elbert; Chevalier, Alain

    1996-01-01

    In earlier work published by the author and co-authors, a dynamic model called a Mean Value Engine Model (MVEM) was developed. This model is physically based and is intended mainly for control applications. It is especially well suited to embedded model applications in engine controllers, susch...

  3. Combining engineering and data-driven approaches: Development of a generic fire risk model facilitating calibration

    DEFF Research Database (Denmark)

    De Sanctis, G.; Fischer, K.; Kohler, J.

    2014-01-01

    Fire risk models support decision making for engineering problems under the consistent consideration of the associated uncertainties. Empirical approaches can be used for cost-benefit studies when enough data about the decision problem are available. But often the empirical approaches...... a generic risk model that is calibrated to observed fire loss data. Generic risk models assess the risk of buildings based on specific risk indicators and support risk assessment at a portfolio level. After an introduction to the principles of generic risk assessment, the focus of the present paper...... are not detailed enough. Engineering risk models, on the other hand, may be detailed but typically involve assumptions that may result in a biased risk assessment and make a cost-benefit study problematic. In two related papers it is shown how engineering and data-driven modeling can be combined by developing...

  4. Numerical modeling in materials science and engineering

    CERN Document Server

    Rappaz, Michel; Deville, Michel

    2003-01-01

    This book introduces the concepts and methodologies related to the modelling of the complex phenomena occurring in materials processing. After a short reminder of conservation laws and constitutive relationships, the authors introduce the main numerical methods: finite differences, finite volumes and finite elements. These techniques are developed in three main chapters of the book that tackle more specific problems: phase transformation, solid mechanics and fluid flow. The two last chapters treat inverse methods to obtain the boundary conditions or the material properties and stochastic methods for microstructural simulation. This book is intended for undergraduate and graduate students in materials science and engineering, mechanical engineering and physics and for engineering professionals or researchers who want to get acquainted with numerical simulation to model and compute materials processing.

  5. A model of turbocharger radial turbines appropriate to be used in zero- and one-dimensional gas dynamics codes for internal combustion engines modelling

    Energy Technology Data Exchange (ETDEWEB)

    Serrano, J.R.; Arnau, F.J.; Dolz, V.; Tiseira, A. [CMT-Motores Termicos, Universidad Politecnica de Valencia, Camino de Vera s/n, 46022 Valencia (Spain); Cervello, C. [Conselleria de Cultura, Educacion y Deporte, Generalitat Valenciana (Spain)

    2008-12-15

    The paper presents a model of fixed and variable geometry turbines. The aim of this model is to provide an efficient boundary condition to model turbocharged internal combustion engines with zero- and one-dimensional gas dynamic codes. The model is based from its very conception on the measured characteristics of the turbine. Nevertheless, it is capable of extrapolating operating conditions that differ from those included in the turbine maps, since the engines usually work within these zones. The presented model has been implemented in a one-dimensional gas dynamic code and has been used to calculate unsteady operating conditions for several turbines. The results obtained have been compared with success against pressure-time histories measured upstream and downstream of the turbine during on-engine operation. (author)

  6. A model of turbocharger radial turbines appropriate to be used in zero- and one-dimensional gas dynamics codes for internal combustion engines modelling

    International Nuclear Information System (INIS)

    Serrano, J.R.; Arnau, F.J.; Dolz, V.; Tiseira, A.; Cervello, C.

    2008-01-01

    The paper presents a model of fixed and variable geometry turbines. The aim of this model is to provide an efficient boundary condition to model turbocharged internal combustion engines with zero- and one-dimensional gas dynamic codes. The model is based from its very conception on the measured characteristics of the turbine. Nevertheless, it is capable of extrapolating operating conditions that differ from those included in the turbine maps, since the engines usually work within these zones. The presented model has been implemented in a one-dimensional gas dynamic code and has been used to calculate unsteady operating conditions for several turbines. The results obtained have been compared with success against pressure-time histories measured upstream and downstream of the turbine during on-engine operation

  7. Modeling of Engine Parameters for Condition-Based Maintenance of the MTU Series 2000 Diesel Engine

    Science.gov (United States)

    2016-09-01

    particles in the analysis of engine oil samples (Jiang and Yan 2008). Lee monitors the exhaust gas temperature of the diesel engine for a roll-on...roll-off-passenger commercial vessel (Lee 2013). Jardine, Lin and Banjevic note other monitoring parameters, such as acoustic, moisture , humidity...expressed in terms of a constant y- intercept , , a disturbance, , an independent variable, , their past, −

  8. Hybrid PSO–SVM-based method for forecasting of the remaining useful life for aircraft engines and evaluation of its reliability

    International Nuclear Information System (INIS)

    García Nieto, P.J.; García-Gonzalo, E.; Sánchez Lasheras, F.; Cos Juez, F.J. de

    2015-01-01

    The present paper describes a hybrid PSO–SVM-based model for the prediction of the remaining useful life of aircraft engines. The proposed hybrid model combines support vector machines (SVMs), which have been successfully adopted for regression problems, with the particle swarm optimization (PSO) technique. This optimization technique involves kernel parameter setting in the SVM training procedure, which significantly influences the regression accuracy. However, its use in reliability applications has not been yet widely explored. Bearing this in mind, remaining useful life values have been predicted here by using the hybrid PSO–SVM-based model from the remaining measured parameters (input variables) for aircraft engines with success. A coefficient of determination equal to 0.9034 was obtained when this hybrid PSO–RBF–SVM-based model was applied to experimental data. The agreement of this model with experimental data confirmed its good performance. One of the main advantages of this predictive model is that it does not require information about the previous operation states of the engine. Finally, the main conclusions of this study are exposed. - Highlights: • A hybrid PSO–SVM-based model is built as a predictive model of the RUL values for aircraft engines. • The remaining physical–chemical variables in this process are studied in depth. • The obtained regression accuracy of our method is about 95%. • The results show that PSO–SVM-based model can assist in the diagnosis of the RUL values with accuracy

  9. Modeling and simulation of complex systems a framework for efficient agent-based modeling and simulation

    CERN Document Server

    Siegfried, Robert

    2014-01-01

    Robert Siegfried presents a framework for efficient agent-based modeling and simulation of complex systems. He compares different approaches for describing structure and dynamics of agent-based models in detail. Based on this evaluation the author introduces the "General Reference Model for Agent-based Modeling and Simulation" (GRAMS). Furthermore he presents parallel and distributed simulation approaches for execution of agent-based models -from small scale to very large scale. The author shows how agent-based models may be executed by different simulation engines that utilize underlying hard

  10. 2D soil and engineering-seismic bedrock modeling of eastern part of Izmir inner bay/Turkey

    Science.gov (United States)

    Pamuk, Eren; Akgün, Mustafa; Özdağ, Özkan Cevdet; Gönenç, Tolga

    2017-02-01

    Soil-bedrock models are used as a base when the earthquake-soil common behaviour is defined. Moreover, the medium which is defined as bedrock is classified as engineering and seismic bedrock in itself. In these descriptions, S-wave velocity is (Vs) used as a base. The mediums are called soil where the Vs is bedrock as well. Additionally, the parts are called engineering bedrock where the Vs is between 3000 m/s and 760 m/s, the parts where are bigger than 3000 m/s called seismic bedrock. The interfacial's horizontal topography where is between engineering and seismic bedrock is effective on earthquake's effect changing on the soil surface. That's why, 2D soil-bedrock models must be used to estimate the earthquake effect that could occur on the soil surface. In this research, surface wave methods and microgravity method were used for occuring the 2D soil-bedrock models in the east of İzmir bay. In the first stage, velocity values were obtained by the studies using surface wave methods. Then, density values were calculated from these velocity values by the help of the empiric relations. 2D soil-bedrock models were occurred based upon both Vs and changing of density by using these density values in microgravity model. When evaluating the models, it was determined that the soil is 300-400 m thickness and composed of more than one layers in parts where are especially closer to the bay. Moreover, it was observed that the soil thickness changes in the direction of N-S. In the study area, geologically, it should be thought the engineering bedrock is composed of Bornova melange and seismic bedrock unit is composed of Menderes massif. Also, according to the geophysical results, Neogene limestone and andesite units at between 200 and 400 m depth show that engineering bedrock characteristic.

  11. Dynamic Feedforward Control of a Diesel Engine Based on Optimal Transient Compensation Maps

    Directory of Open Access Journals (Sweden)

    Giorgio Mancini

    2014-08-01

    Full Text Available To satisfy the increasingly stringent emission regulations and a demand for an ever lower fuel consumption, diesel engines have become complex systems with many interacting actuators. As a consequence, these requirements are pushing control and calibration to their limits. The calibration procedure nowadays is still based mainly on engineering experience, which results in a highly iterative process to derive a complete engine calibration. Moreover, automatic tools are available only for stationary operation, to obtain control maps that are optimal with respect to some predefined objective function. Therefore, the exploitation of any leftover potential during transient operation is crucial. This paper proposes an approach to derive a transient feedforward (FF control system in an automated way. It relies on optimal control theory to solve a dynamic optimization problem for fast transients. A partially physics-based model is thereby used to replace the engine. From the optimal solutions, the relevant information is extracted and stored in maps spanned by the engine speed and the torque gradient. These maps complement the static control maps by accounting for the dynamic behavior of the engine. The procedure is implemented on a real engine and experimental results are presented along with the development of the methodology.

  12. Oligoaniline-based conductive biomaterials for tissue engineering.

    Science.gov (United States)

    Zarrintaj, Payam; Bakhshandeh, Behnaz; Saeb, Mohammad Reza; Sefat, Farshid; Rezaeian, Iraj; Ganjali, Mohammad Reza; Ramakrishna, Seeram; Mozafari, Masoud

    2018-05-01

    The science and engineering of biomaterials have improved the human life expectancy. Tissue engineering is one of the nascent strategies with an aim to fulfill this target. Tissue engineering scaffolds are one of the most significant aspects of the recent tissue repair strategies; hence, it is imperative to design biomimetic substrates with suitable features. Conductive substrates can ameliorate the cellular activity through enhancement of cellular signaling. Biocompatible polymers with conductivity can mimic the cells' niche in an appropriate manner. Bioconductive polymers based on aniline oligomers can potentially actualize this purpose because of their unique and tailoring properties. The aniline oligomers can be positioned within the molecular structure of other polymers, thus painter acting with the side groups of the main polymer or acting as a comonomer in their backbone. The conductivity of oligoaniline-based conductive biomaterials can be tailored to mimic the electrical and mechanical properties of targeted tissues/organs. These bioconductive substrates can be designed with high mechanical strength for hard tissues such as the bone and with high elasticity to be used for the cardiac tissue or can be synthesized in the form of injectable hydrogels, particles, and nanofibers for noninvasive implantation; these structures can be used for applications such as drug/gene delivery and extracellular biomimetic structures. It is expected that with progress in the fields of biomaterials and tissue engineering, more innovative constructs will be proposed in the near future. This review discusses the recent advancements in the use of oligoaniline-based conductive biomaterials for tissue engineering and regenerative medicine applications. The tissue engineering applications of aniline oligomers and their derivatives have recently attracted an increasing interest due to their electroactive and biodegradable properties. However, no reports have systematically reviewed

  13. Students' perceptions of the flipped classroom model in an engineering course: a case study

    Science.gov (United States)

    Baytiyeh, Hoda; Naja, Mohamad K.

    2017-11-01

    The flipped classroom model is an innovative educational trend that has been widely adopted in the social sciences but not engineering education. In this model, an active instructional approach shifts the educational strategy from a teacher- to a student-centred approach. The purpose of this study is to compare the learning outcomes of engineering students attending a flipped-model section of the Dynamics of Structures course with students attending a traditional, lecture-based section of the same course taught by the same instructor. The results confirm previous research showing that test scores in the flipped course sections were slightly higher than traditional sections. Although the improvement in test scores was statistically insignificant, student statements indicated that the flipped model promoted a deeper, broader perspective on learning, facilitated problem-solving strategies and improved critical-thinking abilities, self-confidence and teamwork skills, which are needed for a successful engineering career.

  14. Knowledge-Based Environmental Context Modeling

    Science.gov (United States)

    Pukite, P. R.; Challou, D. J.

    2017-12-01

    As we move from the oil-age to an energy infrastructure based on renewables, the need arises for new educational tools to support the analysis of geophysical phenomena and their behavior and properties. Our objective is to present models of these phenomena to make them amenable for incorporation into more comprehensive analysis contexts. Starting at the level of a college-level computer science course, the intent is to keep the models tractable and therefore practical for student use. Based on research performed via an open-source investigation managed by DARPA and funded by the Department of Interior [1], we have adapted a variety of physics-based environmental models for a computer-science curriculum. The original research described a semantic web architecture based on patterns and logical archetypal building-blocks (see figure) well suited for a comprehensive environmental modeling framework. The patterns span a range of features that cover specific land, atmospheric and aquatic domains intended for engineering modeling within a virtual environment. The modeling engine contained within the server relied on knowledge-based inferencing capable of supporting formal terminology (through NASA JPL's Semantic Web for Earth and Environmental Technology (SWEET) ontology and a domain-specific language) and levels of abstraction via integrated reasoning modules. One of the key goals of the research was to simplify models that were ordinarily computationally intensive to keep them lightweight enough for interactive or virtual environment contexts. The breadth of the elements incorporated is well-suited for learning as the trend toward ontologies and applying semantic information is vital for advancing an open knowledge infrastructure. As examples of modeling, we have covered such geophysics topics as fossil-fuel depletion, wind statistics, tidal analysis, and terrain modeling, among others. Techniques from the world of computer science will be necessary to promote efficient

  15. An introductory model of a one-piston engine

    International Nuclear Information System (INIS)

    GlarIa, Jaime; Wendler, Thomas; Goodwin, Graham

    2005-01-01

    Reciprocating internal combustion engine models have the antithetical goals of accurately describing complex nonlinear behaviour and being simple enough for such purposes as automatic control and online diagnosis. A one-piston four-stroke engine is modelled here by recursively stating simple physical equations. To do that, the domestic ideas of domination and dependence are called as methodological tools for modelling, since they hand out necessary and sufficient equations with few manoeuvres, allocate simulations with the same characteristic and, hopefully, provide a fine way to understanding. The resulting model reveals both steady cycles and transient behaviour

  16. Defining a region of optimization based on engine usage data

    Science.gov (United States)

    Jiang, Li; Lee, Donghoon; Yilmaz, Hakan; Stefanopoulou, Anna

    2015-08-04

    Methods and systems for engine control optimization are provided. One or more operating conditions of a vehicle engine are detected. A value for each of a plurality of engine control parameters is determined based on the detected one or more operating conditions of the vehicle engine. A range of the most commonly detected operating conditions of the vehicle engine is identified and a region of optimization is defined based on the range of the most commonly detected operating conditions of the vehicle engine. The engine control optimization routine is initiated when the one or more operating conditions of the vehicle engine are within the defined region of optimization.

  17. Effect of different heat transfer models on HCCI engine simulation

    International Nuclear Information System (INIS)

    Neshat, Elaheh; Saray, Rahim Khoshbakhti

    2014-01-01

    Highlights: • A new multi zone model is developed for HCCI combustion modeling. • New heat transfer model is used for prediction of heat transfer in HCCI engines. • Model can predict engine combustion, performance and emission characteristics well. • Appropriate mass and heat transfer models cause to accurate prediction of CO, UHC and NOx. - Abstract: Heat transfer from engine walls has an important role on engine combustion, performance and emission characteristics. The main focus of this study is offering a new relation for calculation of convective heat transfer from in-cylinder charge to combustion chamber walls of HCCI engines and providing the ability of new model in comparison with the previous models. Therefore, a multi zone model is developed for homogeneous charge compression ignition engine simulation. Model consists of four different types of zones including core zone, boundary layer zone, outer zones, which are between core and boundary layer, and crevice zone. Conductive heat transfer and mass transfer are considered between neighboring zones. For accurate calculation of initial conditions at inlet valve closing, multi zone model is coupled with a single zone model, which simulates gas exchange process. Various correlations are used as convective heat transfer correlations. Woschni, modified Woschni, Hohenberg and Annand correlations are used as convective heat transfer models. The new convection model, developed by authors, is used, too. Comparative analyses are done to recognize the accurate correlation for prediction of engine combustion, performance and emission characteristics in a wide range of operating conditions. The results indicate that utilization of various heat transfer models, except for new convective heat transfer model, leads to significant differences in prediction of in-cylinder pressure and exhaust emissions. Using Woschni, Chang and new model, convective heat transfer coefficient increases near top dead center, sharply

  18. Combustion modeling in internal combustion engines

    Science.gov (United States)

    Zeleznik, F. J.

    1976-01-01

    The fundamental assumptions of the Blizard and Keck combustion model for internal combustion engines are examined and a generalization of that model is derived. The most significant feature of the model is that it permits the occurrence of unburned hydrocarbons in the thermodynamic-kinetic modeling of exhaust gases. The general formulas are evaluated in two specific cases that are likely to be significant in the applications of the model.

  19. Impact of two-stage turbocharging architectures on pumping losses of automotive engines based on an analytical model

    International Nuclear Information System (INIS)

    Galindo, J.; Serrano, J.R.; Climent, H.; Varnier, O.

    2010-01-01

    Present work presents an analytical study of two-stage turbocharging configuration performance. The aim of this work is to understand the influence of different two-stage-architecture parameters to optimize the use of exhaust manifold gases energy and to aid decision making process. An analytical model giving the relationship between global compression ratio and global expansion ratio is developed as a function of basic engine and turbocharging system parameters. Having an analytical solution, the influence of different variables, such as expansion ratio between HP and LP turbine, intercooler efficiency, turbochargers efficiency, cooling fluid temperature and exhaust temperature are studied independently. Engine simulations with proposed analytical model have been performed to analyze the influence of these different parameters on brake thermal efficiency and pumping mean effective pressure. The results obtained show the overall performance of the two-stage system for the whole operative range and characterize the optimum control of the elements for each operative condition. The model was also used to compare single-stage and two-stage architectures performance for the same engine operative conditions. Benefits and limits in terms of breathing capabilities and brake thermal efficiency of each type of system have been presented and analyzed.

  20. 76 FR 54373 - Airworthiness Directives; Austro Engine GmbH Model E4 Diesel Piston Engines

    Science.gov (United States)

    2011-09-01

    ... diesel piston engines, with high-pressure (HP) fuel pump, part number (P/N) E4A- 30-100-000, installed... Airworthiness Directives; Austro Engine GmbH Model E4 Diesel Piston Engines AGENCY: Federal Aviation... pressure supply for excessive oscillations to determine if high-pressure (HP) fuel pumps have been exposed...

  1. The role of technology and engineering models in transforming healthcare.

    Science.gov (United States)

    Pavel, Misha; Jimison, Holly Brugge; Wactlar, Howard D; Hayes, Tamara L; Barkis, Will; Skapik, Julia; Kaye, Jeffrey

    2013-01-01

    The healthcare system is in crisis due to challenges including escalating costs, the inconsistent provision of care, an aging population, and high burden of chronic disease related to health behaviors. Mitigating this crisis will require a major transformation of healthcare to be proactive, preventive, patient-centered, and evidence-based with a focus on improving quality-of-life. Information technology, networking, and biomedical engineering are likely to be essential in making this transformation possible with the help of advances, such as sensor technology, mobile computing, machine learning, etc. This paper has three themes: 1) motivation for a transformation of healthcare; 2) description of how information technology and engineering can support this transformation with the help of computational models; and 3) a technical overview of several research areas that illustrate the need for mathematical modeling approaches, ranging from sparse sampling to behavioral phenotyping and early detection. A key tenet of this paper concerns complementing prior work on patient-specific modeling and simulation by modeling neuropsychological, behavioral, and social phenomena. The resulting models, in combination with frequent or continuous measurements, are likely to be key components of health interventions to enhance health and wellbeing and the provision of healthcare.

  2. Genetic-evolution-based optimization methods for engineering design

    Science.gov (United States)

    Rao, S. S.; Pan, T. S.; Dhingra, A. K.; Venkayya, V. B.; Kumar, V.

    1990-01-01

    This paper presents the applicability of a biological model, based on genetic evolution, for engineering design optimization. Algorithms embodying the ideas of reproduction, crossover, and mutation are developed and applied to solve different types of structural optimization problems. Both continuous and discrete variable optimization problems are solved. A two-bay truss for maximum fundamental frequency is considered to demonstrate the continuous variable case. The selection of locations of actuators in an actively controlled structure, for minimum energy dissipation, is considered to illustrate the discrete variable case.

  3. Process-based Cost Estimation for Ramjet/Scramjet Engines

    Science.gov (United States)

    Singh, Brijendra; Torres, Felix; Nesman, Miles; Reynolds, John

    2003-01-01

    Process-based cost estimation plays a key role in effecting cultural change that integrates distributed science, technology and engineering teams to rapidly create innovative and affordable products. Working together, NASA Glenn Research Center and Boeing Canoga Park have developed a methodology of process-based cost estimation bridging the methodologies of high-level parametric models and detailed bottoms-up estimation. The NASA GRC/Boeing CP process-based cost model provides a probabilistic structure of layered cost drivers. High-level inputs characterize mission requirements, system performance, and relevant economic factors. Design alternatives are extracted from a standard, product-specific work breakdown structure to pre-load lower-level cost driver inputs and generate the cost-risk analysis. As product design progresses and matures the lower level more detailed cost drivers can be re-accessed and the projected variation of input values narrowed, thereby generating a progressively more accurate estimate of cost-risk. Incorporated into the process-based cost model are techniques for decision analysis, specifically, the analytic hierarchy process (AHP) and functional utility analysis. Design alternatives may then be evaluated not just on cost-risk, but also user defined performance and schedule criteria. This implementation of full-trade study support contributes significantly to the realization of the integrated development environment. The process-based cost estimation model generates development and manufacturing cost estimates. The development team plans to expand the manufacturing process base from approximately 80 manufacturing processes to over 250 processes. Operation and support cost modeling is also envisioned. Process-based estimation considers the materials, resources, and processes in establishing cost-risk and rather depending on weight as an input, actually estimates weight along with cost and schedule.

  4. Human performance models for computer-aided engineering

    Science.gov (United States)

    Elkind, Jerome I. (Editor); Card, Stuart K. (Editor); Hochberg, Julian (Editor); Huey, Beverly Messick (Editor)

    1989-01-01

    This report discusses a topic important to the field of computational human factors: models of human performance and their use in computer-based engineering facilities for the design of complex systems. It focuses on a particular human factors design problem -- the design of cockpit systems for advanced helicopters -- and on a particular aspect of human performance -- vision and related cognitive functions. By focusing in this way, the authors were able to address the selected topics in some depth and develop findings and recommendations that they believe have application to many other aspects of human performance and to other design domains.

  5. Incorporation of stochastic engineering models as prior information in Bayesian medical device trials.

    Science.gov (United States)

    Haddad, Tarek; Himes, Adam; Thompson, Laura; Irony, Telba; Nair, Rajesh

    2017-01-01

    Evaluation of medical devices via clinical trial is often a necessary step in the process of bringing a new product to market. In recent years, device manufacturers are increasingly using stochastic engineering models during the product development process. These models have the capability to simulate virtual patient outcomes. This article presents a novel method based on the power prior for augmenting a clinical trial using virtual patient data. To properly inform clinical evaluation, the virtual patient model must simulate the clinical outcome of interest, incorporating patient variability, as well as the uncertainty in the engineering model and in its input parameters. The number of virtual patients is controlled by a discount function which uses the similarity between modeled and observed data. This method is illustrated by a case study of cardiac lead fracture. Different discount functions are used to cover a wide range of scenarios in which the type I error rates and power vary for the same number of enrolled patients. Incorporation of engineering models as prior knowledge in a Bayesian clinical trial design can provide benefits of decreased sample size and trial length while still controlling type I error rate and power.

  6. Two Models of Engineering Education for the Professional Practice

    NARCIS (Netherlands)

    Ir. Dick van Schenk Brill; Ir Peter Boots; Ir. Peter van Kollenburg

    2002-01-01

    Two models for engineering education that may answer the needs for "Renaissance Engineers" are described in this paper. They were the outcome of an educational renewal project, funded by the Dutch Ministry of Education and industrial companies. The first model (Corporate Curriculum) aims to bring

  7. ZMOTTO- MODELING THE INTERNAL COMBUSTION ENGINE

    Science.gov (United States)

    Zeleznik, F. J.

    1994-01-01

    The ZMOTTO program was developed to model mathematically a spark-ignited internal combustion engine. ZMOTTO is a large, general purpose program whose calculations can be established at five levels of sophistication. These five models range from an ideal cycle requiring only thermodynamic properties, to a very complex representation demanding full combustion kinetics, transport properties, and poppet valve flow characteristics. ZMOTTO is a flexible and computationally economical program based on a system of ordinary differential equations for cylinder-averaged properties. The calculations assume that heat transfer is expressed in terms of a heat transfer coefficient and that the cylinder average of kinetic plus potential energies remains constant. During combustion, the pressures of burned and unburned gases are assumed equal and their heat transfer areas are assumed proportional to their respective mass fractions. Even the simplest ZMOTTO model provides for residual gas effects, spark advance, exhaust gas recirculation, supercharging, and throttling. In the more complex models, 1) finite rate chemistry replaces equilibrium chemistry in descriptions of both the flame and the burned gases, 2) poppet valve formulas represent fluid flow instead of a zero pressure drop flow, and 3) flame propagation is modeled by mass burning equations instead of as an instantaneous process. Input to ZMOTTO is determined by the model chosen. Thermodynamic data is required for all models. Transport properties and chemical kinetics data are required only as the model complexity grows. Other input includes engine geometry, working fluid composition, operating characteristics, and intake/exhaust data. ZMOTTO accommodates a broad spectrum of reactants. The program will calculate many Otto cycle performance parameters for a number of consecutive cycles (a cycle being an interval of 720 crankangle degrees). A typical case will have a number of initial ideal cycles and progress through levels

  8. Intelligent wear mode identification system for marine diesel engines based on multi-level belief rule base methodology

    Science.gov (United States)

    Yan, Xinping; Xu, Xiaojian; Sheng, Chenxing; Yuan, Chengqing; Li, Zhixiong

    2018-01-01

    Wear faults are among the chief causes of main-engine damage, significantly influencing the secure and economical operation of ships. It is difficult for engineers to utilize multi-source information to identify wear modes, so an intelligent wear mode identification model needs to be developed to assist engineers in diagnosing wear faults in diesel engines. For this purpose, a multi-level belief rule base (BBRB) system is proposed in this paper. The BBRB system consists of two-level belief rule bases, and the 2D and 3D characteristics of wear particles are used as antecedent attributes on each level. Quantitative and qualitative wear information with uncertainties can be processed simultaneously by the BBRB system. In order to enhance the efficiency of the BBRB, the silhouette value is adopted to determine referential points and the fuzzy c-means clustering algorithm is used to transform input wear information into belief degrees. In addition, the initial parameters of the BBRB system are constructed on the basis of expert-domain knowledge and then optimized by the genetic algorithm to ensure the robustness of the system. To verify the validity of the BBRB system, experimental data acquired from real-world diesel engines are analyzed. Five-fold cross-validation is conducted on the experimental data and the BBRB is compared with the other four models in the cross-validation. In addition, a verification dataset containing different wear particles is used to highlight the effectiveness of the BBRB system in wear mode identification. The verification results demonstrate that the proposed BBRB is effective and efficient for wear mode identification with better performance and stability than competing systems.

  9. Engineering Seismic Base Layer for Defining Design Earthquake Motion

    International Nuclear Information System (INIS)

    Yoshida, Nozomu

    2008-01-01

    Engineer's common sense that incident wave is common in a widespread area at the engineering seismic base layer is shown not to be correct. An exhibiting example is first shown, which indicates that earthquake motion at the ground surface evaluated by the analysis considering the ground from a seismic bedrock to a ground surface simultaneously (continuous analysis) is different from the one by the analysis in which the ground is separated at the engineering seismic base layer and analyzed separately (separate analysis). The reason is investigated by several approaches. Investigation based on eigen value problem indicates that the first predominant period in the continuous analysis cannot be found in the separate analysis, and predominant period at higher order does not match in the upper and lower ground in the separate analysis. The earthquake response analysis indicates that reflected wave at the engineering seismic base layer is not zero, which indicates that conventional engineering seismic base layer does not work as expected by the term ''base''. All these results indicate that wave that goes down to the deep depths after reflecting in the surface layer and again reflects at the seismic bedrock cannot be neglected in evaluating the response at the ground surface. In other words, interaction between the surface layer and/or layers between seismic bedrock and engineering seismic base layer cannot be neglected in evaluating the earthquake motion at the ground surface

  10. Investigating and developing engineering students' mathematical modelling and problem-solving skills

    Science.gov (United States)

    Wedelin, Dag; Adawi, Tom; Jahan, Tabassum; Andersson, Sven

    2015-09-01

    How do engineering students approach mathematical modelling problems and how can they learn to deal with such problems? In the context of a course in mathematical modelling and problem solving, and using a qualitative case study approach, we found that the students had little prior experience of mathematical modelling. They were also inexperienced problem solvers, unaware of the importance of understanding the problem and exploring alternatives, and impeded by inappropriate beliefs, attitudes and expectations. Important impacts of the course belong to the metacognitive domain. The nature of the problems, the supervision and the follow-up lectures were emphasised as contributing to the impacts of the course, where students show major development. We discuss these empirical results in relation to a framework for mathematical thinking and the notion of cognitive apprenticeship. Based on the results, we argue that this kind of teaching should be considered in the education of all engineers.

  11. Deriving metabolic engineering strategies from genome-scale modeling with flux ratio constraints.

    Science.gov (United States)

    Yen, Jiun Y; Nazem-Bokaee, Hadi; Freedman, Benjamin G; Athamneh, Ahmad I M; Senger, Ryan S

    2013-05-01

    Optimized production of bio-based fuels and chemicals from microbial cell factories is a central goal of systems metabolic engineering. To achieve this goal, a new computational method of using flux balance analysis with flux ratios (FBrAtio) was further developed in this research and applied to five case studies to evaluate and design metabolic engineering strategies. The approach was implemented using publicly available genome-scale metabolic flux models. Synthetic pathways were added to these models along with flux ratio constraints by FBrAtio to achieve increased (i) cellulose production from Arabidopsis thaliana; (ii) isobutanol production from Saccharomyces cerevisiae; (iii) acetone production from Synechocystis sp. PCC6803; (iv) H2 production from Escherichia coli MG1655; and (v) isopropanol, butanol, and ethanol (IBE) production from engineered Clostridium acetobutylicum. The FBrAtio approach was applied to each case to simulate a metabolic engineering strategy already implemented experimentally, and flux ratios were continually adjusted to find (i) the end-limit of increased production using the existing strategy, (ii) new potential strategies to increase production, and (iii) the impact of these metabolic engineering strategies on product yield and culture growth. The FBrAtio approach has the potential to design "fine-tuned" metabolic engineering strategies in silico that can be implemented directly with available genomic tools. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Teaching Agile Software Engineering Using Problem-Based Learning

    Science.gov (United States)

    El-Khalili, Nuha H.

    2013-01-01

    Many studies have reported the utilization of Problem-Based Learning (PBL) in teaching Software Engineering courses. However, these studies have different views of the effectiveness of PBL. This paper presents the design of an Advanced Software Engineering course for undergraduate Software Engineering students that uses PBL to teach them Agile…

  13. Project-based learning with international collaboration for training biomedical engineers.

    Science.gov (United States)

    Krishnan, Shankar

    2011-01-01

    Training biomedical engineers while effectively keeping up with the fast paced scientific breakthroughs and the growth in technical innovations poses arduous challenges for educators. Traditional pedagogical methods are employed for coping with the increasing demands in biomedical engineering (BME) training and continuous improvements have been attempted with some success. Project-based learning (PBL) is an academic effort that challenges students by making them carry out interdisciplinary projects aimed at accomplishing a wide range of student learning outcomes. PBL has been shown to be effective in the medical field and has been adopted by other fields including engineering. The impact of globalization in healthcare appears to be steadily increasing which necessitates the inclusion of awareness of relevant international activities in the curriculum. Numerous difficulties are encountered when the formation of a collaborative team is tried, and additional difficulties occur as the collaboration team is extended to international partners. Understanding and agreement of responsibilities becomes somewhat complex and hence the collaborative project has to be planned and executed with clear understanding by all partners and participants. A model for training BME students by adopting PBL with international collaboration is proposed. The results of previous BME project work with international collaboration fit partially into the model. There were many logistic issues and constraints; however, the collaborative projects themselves greatly enhanced the student learning outcomes. This PBL type of learning experience tends to promote long term retention of multidisciplinary material and foster high-order cognitive activities such as analysis, synthesis and evaluation. In addition to introducing the students to experiences encountered in the real-life workforce, the proposed approach enhances developing professional contracts and global networking. In conclusion, despite

  14. Modeling of Thermoelectric Generator Power Characteristics for Motorcycle-Type Engines

    Science.gov (United States)

    Osipkov, Alexey; Poshekhonov, Roman; Arutyunyan, Georgy; Basov, Andrey; Safonov, Roman

    2017-10-01

    Thermoelectric generation in vehicles such as motorcycles, all-terrain vehicles, and snowmobiles opens the possibility of additional electrical energy generation by means of exhaust heat utilization. This is beneficial because replacing the mechanical generator used in such vehicles with a more powerful one in cases of electrical power deficiency is impossible. This paper proposes a calculation model for the thermoelectric generator (TEG) operational characteristics of the low-capacity internal combustion engines used in these vehicles. Two TEG structures are considered: (1) TEG with air cooling and (2) TEG with water cooling. Modeling consists of two calculation stages. In the first stage, the heat exchange coefficients of the hot and cold exchangers are determined using computational fluid dynamics. In the second stage, the TEG operational characteristics are modeled based on the nonlinear equations of the heat transfer and power balance. On the basis of the modeling results, the dependence of the TEG's major operating characteristics (such as the electrical power generated by the TEG and its efficiency and mass) on operating conditions or design parameters is determined. For example, the electrical power generated by a TEG for a Yamaha WR450F motorcycle engine with a volume of 0.449 × 10-3 m3 was calculated to be as much as 100 W. Use of the TEG arrangements proposed is justified by the additional electrical power generation for small capacity vehicles, without the need for internal combustion engine redesign.

  15. Exploration and practice for engineering innovative talents training based on project-driven

    Science.gov (United States)

    Xu, Yishen; Lv, Qingsong; Ye, Yan; Wu, Maocheng; Gu, Jihua

    2017-08-01

    As one of the "excellent engineer education program" of the Ministry of Education and one of the characteristic majors of Jiangsu Province, the major of optoelectronic information science and engineering in Soochow University has a long history and distinctive features. In recent years, aiming to the talents training objective of "broad foundation, practiceoriented, to be creative", education and teaching reforms have been carried out, which emphasize basis of theoretical teaching, carrier of practical training, promotion of projects and discussion, and development of second class. By optimizing the teaching contents and course system of the theoretical courses, the engineering innovative talents training mode based on the project-driven has been implemented with playing a practical training carrier role and overall managing the second class teaching for cultivating students' innovative spirit and practical ability. Meanwhile, the evaluation mechanism of the students' comprehensive performance mainly based on "scores of theory test" is being gradually changed, and the activities such as scientific research, discipline competitions and social practices are playing an increasing important role in the students' comprehensive assessment. The produced achievements show that the proposed training model based on project-driven could stimulate the students' enthusiasm and initiative to participate in research activities and promote the training of students' ability of engineering practice and consciousness of innovation.

  16. Present day engines pollutant emissions: proposed model for refinery bases impact; Emissions de polluants des moteurs actuels: modelisation de l'impact des bases de raffinage

    Energy Technology Data Exchange (ETDEWEB)

    Hochart, N.; Jeuland, N.; Montagne, X. [Institut Francais du Petrole (IFP), Div. Techniques d' Applications Energetiques, 92 - Rueil-Malmaison (France); Raux, S. [Institut Francais du Petrole (IFP), Div. Techniques d' Applications Energetiques, Centre d' Etudes et de Developpement Industriel, Rene Navarre, 69 - Vernaison (France); Belot, G.; Cahill, B. [PSA-Peugiot-Citroen, 92 - La Garenne-Colombes (France); Faucon, R.; Petit, A. [Renault, 91 - Lardy (France); Michon, S. [Renault Trucks Powertrain, 69 - Saint Priest (France)

    2003-07-01

    Air quality improvement, especially in urban areas, is one of the major concerns for the coming years. For this reason, car manufacturers, equipment manufacturers and refiners have explored development issues to comply with increasingly severe anti-pollution requirements. In such a context, the identification of the most promising improvement options is essential. A research program, carried out by IFP (Institut francais du petrole), and supported by the French Ministry of Industry, PSA-Peugeot-Citroen, Renault and RVI (Renault Vehicules Industriels), has been built to study this point. It is based on a 4-year program with different steps focused on new engine technologies which will be available in the next 20 years in order to answer to more and more severe pollutant and CO{sub 2} emissions regulations. This program is divided into three main parts: the first one for Diesel car engines, the second for Diesel truck engines and the third for spark ignition engines. The aim of the work reported here is to characterize the effect of fuel formulation on pollutant emissions and engine tuning for different engine technologies. The originality of this study is to use refinery bases as parameters and not conventional physical or chemical parameters. The tested fuels have been chosen in order to represent the major refinery bases expected to be produced in the near future. These results, expressed with linear correlations between fuel composition and pollutant emissions, will help to give a new orientation to refinery tool. The engines presented in this publication are, for spark ignition engines, an EuroII lean-burn engine (Honda VTEC which equips the Honda Civic) and an EuroIII 1.8 l stoichiometric-running Renault engine which equips the Laguna vehicles, and, for diesel engines, an EuroII Renault Laguna 2.2 l indirect injection diesel engine and an EuroII RVI truck engine. For the fuel formulation, an original approach is proposed: while the classical studies are based

  17. Reliability-Based Optimization in Structural Engineering

    DEFF Research Database (Denmark)

    Enevoldsen, I.; Sørensen, John Dalsgaard

    1994-01-01

    In this paper reliability-based optimization problems in structural engineering are formulated on the basis of the classical decision theory. Several formulations are presented: Reliability-based optimal design of structural systems with component or systems reliability constraints, reliability...

  18. Model-Based Fault Management Engineering Tool Suite, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA's successful development of next generation space vehicles, habitats, and robotic systems will rely on effective Fault Management Engineering. Our proposed...

  19. Rocket Based Combined Cycle (RBCC) engine inlet

    Science.gov (United States)

    2004-01-01

    Pictured is a component of the Rocket Based Combined Cycle (RBCC) engine. This engine was designed to ultimately serve as the near term basis for Two Stage to Orbit (TSTO) air breathing propulsion systems and ultimately a Single Stage to Orbit (SSTO) air breathing propulsion system.

  20. An Agent-Based Optimization Framework for Engineered Complex Adaptive Systems with Application to Demand Response in Electricity Markets

    Science.gov (United States)

    Haghnevis, Moeed

    The main objective of this research is to develop an integrated method to study emergent behavior and consequences of evolution and adaptation in engineered complex adaptive systems (ECASs). A multi-layer conceptual framework and modeling approach including behavioral and structural aspects is provided to describe the structure of a class of engineered complex systems and predict their future adaptive patterns. The approach allows the examination of complexity in the structure and the behavior of components as a result of their connections and in relation to their environment. This research describes and uses the major differences of natural complex adaptive systems (CASs) with artificial/engineered CASs to build a framework and platform for ECAS. While this framework focuses on the critical factors of an engineered system, it also enables one to synthetically employ engineering and mathematical models to analyze and measure complexity in such systems. In this way concepts of complex systems science are adapted to management science and system of systems engineering. In particular an integrated consumer-based optimization and agent-based modeling (ABM) platform is presented that enables managers to predict and partially control patterns of behaviors in ECASs. Demonstrated on the U.S. electricity markets, ABM is integrated with normative and subjective decision behavior recommended by the U.S. Department of Energy (DOE) and Federal Energy Regulatory Commission (FERC). The approach integrates social networks, social science, complexity theory, and diffusion theory. Furthermore, it has unique and significant contribution in exploring and representing concrete managerial insights for ECASs and offering new optimized actions and modeling paradigms in agent-based simulation.

  1. Streaming Model Based Volume Ray Casting Implementation for Cell Broadband Engine

    Directory of Open Access Journals (Sweden)

    Jusub Kim

    2009-01-01

    Full Text Available Interactive high quality volume rendering is becoming increasingly more important as the amount of more complex volumetric data steadily grows. While a number of volumetric rendering techniques have been widely used, ray casting has been recognized as an effective approach for generating high quality visualization. However, for most users, the use of ray casting has been limited to datasets that are very small because of its high demands on computational power and memory bandwidth. However the recent introduction of the Cell Broadband Engine (Cell B.E. processor, which consists of 9 heterogeneous cores designed to handle extremely demanding computations with large streams of data, provides an opportunity to put the ray casting into practical use. In this paper, we introduce an efficient parallel implementation of volume ray casting on the Cell B.E. The implementation is designed to take full advantage of the computational power and memory bandwidth of the Cell B.E. using an intricate orchestration of the ray casting computation on the available heterogeneous resources. Specifically, we introduce streaming model based schemes and techniques to efficiently implement acceleration techniques for ray casting on Cell B.E. In addition to ensuring effective SIMD utilization, our method provides two key benefits: there is no cost for empty space skipping and there is no memory bottleneck on moving volumetric data for processing. Our experimental results show that we can interactively render practical datasets on a single Cell B.E. processor.

  2. Engine control system having pressure-based timing

    Science.gov (United States)

    Willi, Martin L [Dunlap, IL; Fiveland, Scott B [Metamora, IL; Montgomery, David T [Edelstein, IL; Gong, Weidong [Dunlap, IL

    2011-10-04

    A control system for an engine having a first cylinder and a second cylinder is disclosed having a first engine valve movable to regulate a fluid flow of the first cylinder and a first actuator associated with the first engine valve. The control system also has a second engine valve movable to regulate a fluid flow of the second cylinder and a sensor configured to generate a signal indicative of a pressure within the first cylinder. The control system also has a controller that is in communication with the first actuator and the sensor. The controller is configured to compare the pressure within the first cylinder with a desired pressure and selectively regulate the first actuator to adjust a timing of the first engine valve independently of the timing of the second engine valve based on the comparison.

  3. Project based learning for reactor engineering education

    International Nuclear Information System (INIS)

    Narabayashi, Tadashi; Tsuji, Masashi; Shimazu, Yoichiro

    2009-01-01

    Trial in education of nuclear engineering in Hokkaido University has proved to be quite attractive for students. It is an education system called Project Based Learning (PBL), which is not based on education by lecture only but based mostly on practice of students in the classroom. The system was adopted four years ago. In the actual class, we separated the student into several groups of the size about 6 students. In the beginning of each class room time, a brief explanations of the related theory or technical bases. Then the students discuss in their own group how to precede their design calculations and do the required calculation and evaluation. The target reactor type of each group was selected by the group members for themselves at the beginning of the semester as the first step of the project. The reactor types range from a small in house type to that for a nuclear ship. At the end of the semester, each group presents the final design. The presentation experience gives students a kind of fresh sensation. Nowadays the evaluation results of the subject by the students rank in the highest in the faculty of engineering. Based on the considerations above, we designed the framework of our PBL for reactor engineering. In this paper, we will present some lessons learned in this PBL education system from the educational points of view. The PBL education program is supported by IAE/METI in Japan for Nuclear Engineering Education. (author)

  4. An Event-driven, Value-based, Pull Systems Engineering Scheduling Approach

    Science.gov (United States)

    2012-03-01

    combining a services approach to systems engineering with a kanban -based scheduling system. It provides the basis for validating the approach with...agent-based simulations. Keywords-systems engineering; systems engineering process; lean; kanban ; process simulation I. INTRODUCTION AND BACKGROUND...approaches [8], [9], we are investigating the use of flow-based pull scheduling techniques ( kanban systems) in a rapid response development

  5. Metabolic engineering tools in model cyanobacteria.

    Science.gov (United States)

    Carroll, Austin L; Case, Anna E; Zhang, Angela; Atsumi, Shota

    2018-03-26

    Developing sustainable routes for producing chemicals and fuels is one of the most important challenges in metabolic engineering. Photoautotrophic hosts are particularly attractive because of their potential to utilize light as an energy source and CO 2 as a carbon substrate through photosynthesis. Cyanobacteria are unicellular organisms capable of photosynthesis and CO 2 fixation. While engineering in heterotrophs, such as Escherichia coli, has result in a plethora of tools for strain development and hosts capable of producing valuable chemicals efficiently, these techniques are not always directly transferable to cyanobacteria. However, recent efforts have led to an increase in the scope and scale of chemicals that cyanobacteria can produce. Adaptations of important metabolic engineering tools have also been optimized to function in photoautotrophic hosts, which include Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-Cas9, 13 C Metabolic Flux Analysis (MFA), and Genome-Scale Modeling (GSM). This review explores innovations in cyanobacterial metabolic engineering, and highlights how photoautotrophic metabolism has shaped their development. Copyright © 2018 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  6. V&V Within Reuse-Based Software Engineering

    Science.gov (United States)

    Addy, Edward A.

    1996-01-01

    Verification and Validation (V&V) is used to increase the level of assurance of critical software, particularly that of safety-critical and mission-critical software. V&V is a systems engineering discipline that evaluates the software in a systems context, and is currently applied during the development of a specific application system. In order to bring the effectiveness of V&V to bear within reuse-based software engineering, V&V must be incorporated within the domain engineering process.

  7. Toward a Model-Based Approach for Flight System Fault Protection

    Science.gov (United States)

    Day, John; Meakin, Peter; Murray, Alex

    2012-01-01

    Use SysML/UML to describe the physical structure of the system This part of the model would be shared with other teams - FS Systems Engineering, Planning & Execution, V&V, Operations, etc., in an integrated model-based engineering environment Use the UML Profile mechanism, defining Stereotypes to precisely express the concepts of the FP domain This extends the UML/SysML languages to contain our FP concepts Use UML/SysML, along with our profile, to capture FP concepts and relationships in the model Generate typical FP engineering products (the FMECA, Fault Tree, MRD, V&V Matrices)

  8. Modeling a distributed environment for a petroleum reservoir engineering application with software product line

    International Nuclear Information System (INIS)

    Scheidt, Rafael de Faria; Vilain, Patrícia; Dantas, M A R

    2014-01-01

    Petroleum reservoir engineering is a complex and interesting field that requires large amount of computational facilities to achieve successful results. Usually, software environments for this field are developed without taking care out of possible interactions and extensibilities required by reservoir engineers. In this paper, we present a research work which it is characterized by the design and implementation based on a software product line model for a real distributed reservoir engineering environment. Experimental results indicate successfully the utilization of this approach for the design of distributed software architecture. In addition, all components from the proposal provided greater visibility of the organization and processes for the reservoir engineers

  9. Modeling a distributed environment for a petroleum reservoir engineering application with software product line

    Science.gov (United States)

    de Faria Scheidt, Rafael; Vilain, Patrícia; Dantas, M. A. R.

    2014-10-01

    Petroleum reservoir engineering is a complex and interesting field that requires large amount of computational facilities to achieve successful results. Usually, software environments for this field are developed without taking care out of possible interactions and extensibilities required by reservoir engineers. In this paper, we present a research work which it is characterized by the design and implementation based on a software product line model for a real distributed reservoir engineering environment. Experimental results indicate successfully the utilization of this approach for the design of distributed software architecture. In addition, all components from the proposal provided greater visibility of the organization and processes for the reservoir engineers.

  10. A Mathematical Model of Marine Diesel Engine Speed Control System

    Science.gov (United States)

    Sinha, Rajendra Prasad; Balaji, Rajoo

    2018-02-01

    Diesel engine is inherently an unstable machine and requires a reliable control system to regulate its speed for safe and efficient operation. Also, the diesel engine may operate at fixed or variable speeds depending upon user's needs and accordingly the speed control system should have essential features to fulfil these requirements. This paper proposes a mathematical model of a marine diesel engine speed control system with droop governing function. The mathematical model includes static and dynamic characteristics of the control loop components. Model of static characteristic of the rotating fly weights speed sensing element provides an insight into the speed droop features of the speed controller. Because of big size and large time delay, the turbo charged diesel engine is represented as a first order system or sometimes even simplified to a pure integrator with constant gain which is considered acceptable in control literature. The proposed model is mathematically less complex and quick to use for preliminary analysis of the diesel engine speed controller performance.

  11. A predictive model of natural gas mixture combustion in internal combustion engines

    Directory of Open Access Journals (Sweden)

    Henry Espinoza

    2007-05-01

    Full Text Available This study shows the development of a predictive natural gas mixture combustion model for conventional com-bustion (ignition engines. The model was based on resolving two areas; one having unburned combustion mixture and another having combustion products. Energy and matter conservation equations were solved for each crankshaft turn angle for each area. Nonlinear differential equations for each phase’s energy (considering compression, combustion and expansion were solved by applying the fourth-order Runge-Kutta method. The model also enabled studying different natural gas components’ composition and evaluating combustion in the presence of dry and humid air. Validation results are shown with experimental data, demonstrating the software’s precision and accuracy in the results so produced. The results showed cylinder pressure, unburned and burned mixture temperature, burned mass fraction and combustion reaction heat for the engine being modelled using a natural gas mixture.

  12. Laser Scanning in Engineering Surveying: Methods of Measurement and Modeling of Structures

    Directory of Open Access Journals (Sweden)

    Lenda Grzegorz

    2016-06-01

    Full Text Available The study is devoted to the uses of laser scanning in the field of engineering surveying. It is currently one of the main trends of research which is developed at the Department of Engineering Surveying and Civil Engineering at the Faculty of Mining Surveying and Environmental Engineering of AGH University of Science and Technology in Krakow. They mainly relate to the issues associated with tower and shell structures, infrastructure of rail routes, or development of digital elevation models for a wide range of applications. These issues often require the use of a variety of scanning techniques (stationary, mobile, but the differences also regard the planning of measurement stations and methods of merging point clouds. Significant differences appear during the analysis of point clouds, especially when modeling objects. Analysis of the selected parameters is already possible basing on ad hoc measurements carried out on a point cloud. However, only the construction of three-dimensional models provides complete information about the shape of structures, allows to perform the analysis in any place and reduces the amount of the stored data. Some structures can be modeled in the form of simple axes, sections, or solids, for others it becomes necessary to create sophisticated models of surfaces, depicting local deformations. The examples selected for the study allow to assess the scope of measurement and office work for a variety of uses related to the issue set forth in the title of this study. Additionally, the latest, forward-looking technology was presented - laser scanning performed from Unmanned Aerial Vehicles (drones. Currently, it is basically in the prototype phase, but it might be expected to make a significant progress in numerous applications in the field of engineering surveying.

  13. Optimization of rhombic drive mechanism used in beta-type Stirling engine based on dimensionless analysis

    International Nuclear Information System (INIS)

    Cheng, Chin-Hsiang; Yang, Hang-Suin

    2014-01-01

    In the present study, optimization of rhombic drive mechanism used in a beta-type Stirling engine is performed based on a dimensionless theoretical model toward maximization of shaft work output. Displacements of the piston and the displacer with the rhombic drive mechanism and variations of volumes and pressure in the chambers of the engine are firstly expressed in dimensionless form. Secondly, Schmidt analysis is incorporated with Senft's shaft work theory to build a dimensionless thermodynamic model, which is employed to yield the dimensionless shaft work. The dimensionless model is verified with experimental data. It is found that the relative error between the experimental and the theoretical data in dimensionless shaft work is lower than 5.2%. This model is also employed to investigate the effects of the influential geometric parameters on the shaft work, and the optimization of these parameters is attempted. Eventually, design charts that help design the optimal geometry of the rhombic drive mechanism are presented in this report. - Highlights: • Specifically dealing with optimization of rhombic-drive mechanism used in Stirling engine based on dimensionless model. • Propose design charts that help determine the optimal geometric parameters of the rhombic drive mechanism. • Complete study of influential factors affecting the shaft work output

  14. Engineering graphics data entry for space station data base

    Science.gov (United States)

    Lacovara, R. C.

    1986-01-01

    The entry of graphical engineering data into the Space Station Data Base was examined. Discussed were: representation of graphics objects; representation of connectivity data; graphics capture hardware; graphics display hardware; site-wide distribution of graphics, and consolidation of tools and hardware. A fundamental assumption was that existing equipment such as IBM based graphics capture software and VAX networked facilities would be exploited. Defensible conclusions reached after study and simulations of use of these systems at the engineering level are: (1) existing IBM based graphics capture software is an adequate and economical means of entry of schematic and block diagram data for present and anticipated electronic systems for Space Station; (2) connectivity data from the aforementioned system may be incorporated into the envisioned Space Station Data Base with modest effort; (3) graphics and connectivity data captured on the IBM based system may be exported to the VAX network in a simple and direct fashion; (4) graphics data may be displayed site-wide on VT-125 terminals and lookalikes; (5) graphics hard-copy may be produced site-wide on various dot-matrix printers; and (6) the system may provide integrated engineering services at both the engineering and engineering management level.

  15. Software Engineering Tools for Scientific Models

    Science.gov (United States)

    Abrams, Marc; Saboo, Pallabi; Sonsini, Mike

    2013-01-01

    Software tools were constructed to address issues the NASA Fortran development community faces, and they were tested on real models currently in use at NASA. These proof-of-concept tools address the High-End Computing Program and the Modeling, Analysis, and Prediction Program. Two examples are the NASA Goddard Earth Observing System Model, Version 5 (GEOS-5) atmospheric model in Cell Fortran on the Cell Broadband Engine, and the Goddard Institute for Space Studies (GISS) coupled atmosphere- ocean model called ModelE, written in fixed format Fortran.

  16. Comparison Based on Exergetic Analyses of Two Hot Air Engines: A Gamma Type Stirling Engine and an Open Joule Cycle Ericsson Engine

    Directory of Open Access Journals (Sweden)

    Houda Hachem

    2015-10-01

    Full Text Available In this paper, a comparison of exergetic models between two hot air engines (a Gamma type Stirling prototype having a maximum output mechanical power of 500 W and an Ericsson hot air engine with a maximum power of 300 W is made. Referring to previous energetic analyses, exergetic models are set up in order to quantify the exergy destruction and efficiencies in each type of engine. The repartition of the exergy fluxes in each part of the two engines are determined and represented in Sankey diagrams, using dimensionless exergy fluxes. The results show a similar proportion in both engines of destroyed exergy compared to the exergy flux from the hot source. The compression cylinders generate the highest exergy destruction, whereas the expansion cylinders generate the lowest one. The regenerator of the Stirling engine increases the exergy resource at the inlet of the expansion cylinder, which might be also set up in the Ericsson engine, using a preheater between the exhaust air and the compressed air transferred to the hot heat exchanger.

  17. The Application of Problem-Based Learning in Mechanical Engineering

    Science.gov (United States)

    Putra, Z. A.; Dewi, M.

    2018-02-01

    The course of Technology and Material Testing prepare students with the ability to do a variety of material testing in the study of mechanical engineering. Students find it difficult to understand the materials to make them unable to carry out the material testing in accordance with the purpose of study. This happens because they knowledge is not adequately supported by the competence to find and construct learning experience. In this study, quasy experiment research method with pre-post-test with control group design was used. The subjects of the study were students divided in two groups; control and experiment with twenty-two students in each group. Study result: their grades showed no difference in between the pre-test or post-test in control group, but the difference in grade existed between the pre-test and post-test in experiment group. Yet, there is no significant difference in the study result on both groups. The researcher recommend that it is necessary to develop Problem-Based Learning that suits need analysis on D3 Program for Mechanical Engineering Department at the State University of Padang, to ensure the compatibility between Model of Study and problems and need. This study aims to analyze how Problem-Based Learning effects on the course of Technology and Material Testing for the students of D3 Program of Mechanical Engineering of the State University of Padang.

  18. One dimensional modeling of a diesel-CNG dual fuel engine

    Science.gov (United States)

    Azman, Putera Adam; Fawzi, Mas; Ismail, Muammar Mukhsin; Osman, Shahrul Azmir

    2017-04-01

    Some of the previous studies have shown that the use of compressed natural gas (CNG) in diesel engines potentially produce engine performance improvement and exhaust gas emission reduction, especially nitrogen oxides, unburned hydrocarbons, and carbon dioxide. On the other hand, there are other researchers who claimed that the use of CNG increases exhaust gas emissions, particularly nitrogen oxides. In this study, a one-dimensional model of a diesel-CNG dual fuel engine was made based on a 4-cylinder 2.5L common rail direct injection diesel engine. The software used is GT-Power, and it was used to analyze the engine performance and exhaust gas emissions of several diesel-CNG dual fuel blend ratios, i.e. 100:0, 90:10, 80:20, 70:30, 60:40 and 50:50. The effect of 100%, 75%, 50% engine loads on the exhaust gas emissions were also studied. The result shows that all diesel-CNG fuel blends produces higher brake torque and brake power at engine speed of 2000-3000 rpm compared with 100% diesel. The 50:50 diesel-CNG blend produces the highest brake torque and brake power, but also has the highest brake specific fuel consumption. As a higher percentage of CNG added to the dual fuel blend, unburned hydrocarbons and carbon monoxide emission increased while carbon dioxide emission decreased. The nitrogen oxides emission concentration is generally unaffected by any change of the dual fuel ratio.

  19. Model-Based Systems Engineering With the Architecture Analysis and Design Language (AADL) Applied to NASA Mission Operations

    Science.gov (United States)

    Munoz Fernandez, Michela Miche

    2014-01-01

    The potential of Model Model Systems Engineering (MBSE) using the Architecture Analysis and Design Language (AADL) applied to space systems will be described. AADL modeling is applicable to real-time embedded systems- the types of systems NASA builds. A case study with the Juno mission to Jupiter showcases how this work would enable future missions to benefit from using these models throughout their life cycle from design to flight operations.

  20. Energy, mass, model-based displays, and memory recall

    International Nuclear Information System (INIS)

    Beltracchi, L.

    1989-01-01

    The operation of a pressurized water reactor in the context of the conservation laws for energy and mass is discussed. These conservation laws are the basis of the Rankine heat engine cycle. Computer graphic implementation of the heat engine cycle, in terms of temperature-entropy coordinates for water, serves as a model-based display of the plant process. A human user of this display, trained in first principles of the process, may exercise a monitoring strategy based on the conservation laws

  1. Development of a Dynamic Engine Brake Model for Control Purposes

    NARCIS (Netherlands)

    Seykens, X.L.J.; Baert, R.S.G.; Willems, F.P.T.; Vink, W.; van den Heuvel, I.T.M.

    2006-01-01

    This paper presents the extension of an existing mean value dynamic engine model with new models for the combination of a compression release brake and an exhaust valve brake. The focus is on the prediction of engine brake torque, exhaust gas temperatures and mass flow rates. The implemented models

  2. Development of a dynamic engine brake model for control purposes

    NARCIS (Netherlands)

    Seykens, X.L.J.; Baert, R.S.G.; Willems, F.P.T.; Vink, W.; van den Heuvel, I.T.M.; Corde, G.

    2007-01-01

    This paper presents the extension of an existing mean value dynamic engine model with new models for the combination of a compression release brake and an exhaust valve brake. The focus is on the prediction of engine brake torque, exhaust gas temperatures and mass flow rates. The implemented models

  3. An ontological case base engineering methodology for diabetes management.

    Science.gov (United States)

    El-Sappagh, Shaker H; El-Masri, Samir; Elmogy, Mohammed; Riad, A M; Saddik, Basema

    2014-08-01

    Ontology engineering covers issues related to ontology development and use. In Case Based Reasoning (CBR) system, ontology plays two main roles; the first as case base and the second as domain ontology. However, the ontology engineering literature does not provide adequate guidance on how to build, evaluate, and maintain ontologies. This paper proposes an ontology engineering methodology to generate case bases in the medical domain. It mainly focuses on the research of case representation in the form of ontology to support the case semantic retrieval and enhance all knowledge intensive CBR processes. A case study on diabetes diagnosis case base will be provided to evaluate the proposed methodology.

  4. Solving bi-level optimization problems in engineering design using kriging models

    Science.gov (United States)

    Xia, Yi; Liu, Xiaojie; Du, Gang

    2018-05-01

    Stackelberg game-theoretic approaches are applied extensively in engineering design to handle distributed collaboration decisions. Bi-level genetic algorithms (BLGAs) and response surfaces have been used to solve the corresponding bi-level programming models. However, the computational costs for BLGAs often increase rapidly with the complexity of lower-level programs, and optimal solution functions sometimes cannot be approximated by response surfaces. This article proposes a new method, namely the optimal solution function approximation by kriging model (OSFAKM), in which kriging models are used to approximate the optimal solution functions. A detailed example demonstrates that OSFAKM can obtain better solutions than BLGAs and response surface-based methods, and at the same time reduce the workload of computation remarkably. Five benchmark problems and a case study of the optimal design of a thin-walled pressure vessel are also presented to illustrate the feasibility and potential of the proposed method for bi-level optimization in engineering design.

  5. Practice-based systems engineering programme

    CSIR Research Space (South Africa)

    Goncalves, D

    2010-08-01

    Full Text Available the required system engineering competencies is introduced. A practice-based approach is presented as part of the solution, including the roles of universities, students and industry within this approach. Finally we elaborate on a proposed curriculum for a...

  6. Digital design of scaffold for mandibular defect repair based on tissue engineering.

    Science.gov (United States)

    Liu, Yun-feng; Zhu, Fu-dong; Dong, Xing-tao; Peng, Wei

    2011-09-01

    Mandibular defect occurs more frequently in recent years, and clinical repair operations via bone transplantation are difficult to be further improved due to some intrinsic flaws. Tissue engineering, which is a hot research field of biomedical engineering, provides a new direction for mandibular defect repair. As the basis and key part of tissue engineering, scaffolds have been widely and deeply studied in regards to the basic theory, as well as the principle of biomaterial, structure, design, and fabrication method. However, little research is targeted at tissue regeneration for clinic repair operations. Since mandibular bone has a special structure, rather than uniform and regular structure in existing studies, a methodology based on tissue engineering is proposed for mandibular defect repair in this paper. Key steps regarding scaffold digital design, such as external shape design and internal microstructure design directly based on triangular meshes are discussed in detail. By analyzing the theoretical model and the measured data from the test parts fabricated by rapid prototyping, the feasibility and effectiveness of the proposed methodology are properly verified. More works about mechanical and biological improvements need to be done to promote its clinical application in future.

  7. Digital design of scaffold for mandibular defect repair based on tissue engineering

    Institute of Scientific and Technical Information of China (English)

    Yun-feng LIU; Fu-dong ZHU; Xing-tao DONG; Wei PENG

    2011-01-01

    Mandibular defect occurs more frequently in recent years,and clinical repair operations via bone transplantation are difficult to be further improved due to some intrinsic flaws.Tissue engineering,which is a hot research field of biomedical engineering,provides a new direction for mandibular defect repair.As the basis and key part of tissue engineering,scaffolds have been widely and deeply studied in regards to the basic theory,as well as the principle of biomaterial,structure,design,and fabrication method.However,little research is targeted at tissue regeneration for clinic repair operations.Since mandibular bone has a special structure,rather than uniform and regular structure in existing studies,a methodology based on tissue engineering is proposed for mandibular defect repair in this paper.Key steps regarding scaffold digital design,such as external shape design and internal microstructure design directly based on triangular meshes are discussed in detail.By analyzing the theoretical model and the measured data from the test parts fabricated by rapid prototyping,the feasibility and effectiveness of the proposed methodology are properly verified.More works about mechanical and biological improvements need to be done to promote its clinical application in future.

  8. The Influence of Engineers' Training Models on Ethics and Civic Education Component in Engineering Courses in Portugal

    Science.gov (United States)

    Monteiro, Fátima; Leite, Carlinda; Rocha, Cristina

    2017-01-01

    The recognition of the need and importance of including ethical and civic education in engineering courses, as well as the training profile on ethical issues, relies heavily on the engineer's concept and the perception of the engineering action. These views are strongly related to the different engineer education model conceptions and its…

  9. Global polar geospatial information service retrieval based on search engine and ontology reasoning

    Science.gov (United States)

    Chen, Nengcheng; E, Dongcheng; Di, Liping; Gong, Jianya; Chen, Zeqiang

    2007-01-01

    In order to improve the access precision of polar geospatial information service on web, a new methodology for retrieving global spatial information services based on geospatial service search and ontology reasoning is proposed, the geospatial service search is implemented to find the coarse service from web, the ontology reasoning is designed to find the refined service from the coarse service. The proposed framework includes standardized distributed geospatial web services, a geospatial service search engine, an extended UDDI registry, and a multi-protocol geospatial information service client. Some key technologies addressed include service discovery based on search engine and service ontology modeling and reasoning in the Antarctic geospatial context. Finally, an Antarctica multi protocol OWS portal prototype based on the proposed methodology is introduced.

  10. Yucca Mountain engineered barrier system corrosion model (EBSCOM)

    International Nuclear Information System (INIS)

    King, F.; Kolar, M.; Kessler, J.H.; Apted, M.

    2008-01-01

    A revised engineered barrier system model has been developed by the Electric Power Research Institute to predict the time dependence of the failure of the drip shields and waste packages in the proposed Yucca Mountain repository. The revised model is based on new information on various corrosion processes developed by the US Department of Energy and others and for a 20-mm-thick waste package design with a double closure lid system. As with earlier versions of the corrosion model, the new EBSCOM code produces a best-estimate of the failure times of the various barriers. The model predicts that only 15% of waste packages will fail within a period of 1 million years. The times for the first corrosion failures are 40,000 years, 336,000 years, and 375,000 years for the drip shield, waste package, and combination of drip shield and the associated waste package, respectively

  11. Study on the engine oil's wear based on the flash point

    Science.gov (United States)

    Niculescu, R.; Iorga-Simăn, V.; Trică, A.; Clenci, A.

    2016-08-01

    Increasing energy performance of internal combustion engines is largely influenced by frictional forces that arise between moving parts. Thus, in this respect, the nature and quality of the engine oil used is an important factor. Equally important is the effect of various engine injection strategies upon the oil quality. In other words, it's of utmost importance to maintain the quality of engine oil during engine's operation. Oil dilution is one of the most common causes that lead to its wear, creating lubrication problems. Moreover, at low temperatures operating conditions, the oil dilution with diesel fuel produces wax. When starting the engine, this may lead to lubrication deficiencies and even oil starvation with negative consequences on the engine mechanism parts wear (piston, rings and cylinders) but also crankcase bearings wear.Engine oil dilution with diesel fuel have several causes: wear of rings and/or injectors, late post-injection strategy for the sake of particulate filter regeneration, etc.This paper presents a study on the degree of deterioration of engine oils as a result of dilution with diesel fuel. The analysed oils used for this study were taken from various models of engines equipped with diesel particulate filter. The assessment is based on the determination of oil flash point and dilution degree using the apparatus Eraflash produced by Eralytics, Austria. Eraflash measurement is directly under the latest and safest standards ASTM D6450 & D7094), which are in excellent correlation with ASTM D93 Pensky - Martens ASTM D56 TAG methods; it uses the Continuous Closed Cup method for finding the Flash Point (CCCFP).

  12. MATLAB-Based Teaching Modules in Biochemical Engineering

    Science.gov (United States)

    Lee, Kilho; Comolli, Noelle K.; Kelly, William J.; Huang, Zuyi

    2015-01-01

    Mathematical models play an important role in biochemical engineering. For example, the models developed in the field of systems biology have been used to identify drug targets to treat pathogens such as Pseudomonas aeruginosa in biofilms. In addition, competitive binding models for chromatography processes have been developed to predict expanded…

  13. A community-based, interdisciplinary rehabilitation engineering course.

    Science.gov (United States)

    Lundy, Mary; Aceros, Juan

    2016-08-01

    A novel, community-based course was created through collaboration between the School of Engineering and the Physical Therapy program at the University of North Florida. This course offers a hands-on, interdisciplinary training experience for undergraduate engineering students through team-based design projects where engineering students are partnered with physical therapy students. Students learn the process of design, fabrication and testing of low-tech and high-tech rehabilitation technology for children with disabilities, and are exposed to a clinical experience under the guidance of licensed therapists. This course was taught in two consecutive years and pre-test/post-test data evaluating the impact of this interprofessional education experience on the students is presented using the Public Service Motivation Scale, Civic Actions Scale, Civic Attitudes Scale, and the Interprofessional Socialization and Valuing Scale.

  14. Management Model for Evaluation and Selection of Engineering Equipment Suppliers for Construction Projects in Iraq

    Directory of Open Access Journals (Sweden)

    Kadhim Raheem Erzaij

    2016-06-01

    Full Text Available Engineering equipment is essential part in the construction project and usually manufactured with long lead times, large costs and special engineering requirements. Construction manager targets that equipment to be delivered in the site need date with the right quantity, appropriate cost and required quality, and this entails an efficient supplier can satisfy these targets. Selection of engineering equipment supplier is a crucial managerial process .it requires evaluation of multiple suppliers according to multiple criteria. This process is usually performed manually and based on just limited evaluation criteria, so better alternatives may be neglected. Three stages of survey comprised number of public and private companies in Iraqi construction sector were employed to identify main criteria and sub criteria for supplier selection and their priorities.The main criteria identified were quality of product, commercial aspect, delivery, reputation and position, and system quality . An effective technique in multiple criteria decision making (MCDM as analytical hierarchy process (AHP have been used to get importance weights of criteria based on experts judgment. Thereafter, a management software system for Evaluation and Selection of Engineering Equipment Suppliers (ESEES has been developed based on the results obtained from AHP. This model was validated in a case study at municipality of Baghdad involved actual cases of selection pumps suppliers for infrastructure projects .According to experts, this model can improve the current process followed in the supplier selection and aid decision makers to adopt better choices in the domain of selection engineering equipment suppliers.

  15. An Example of Competence-Based Learning: Use of Maxima in Linear Algebra for Engineers

    Science.gov (United States)

    Diaz, Ana; Garcia, Alfonsa; de la Villa, Agustin

    2011-01-01

    This paper analyses the role of Computer Algebra Systems (CAS) in a model of learning based on competences. The proposal is an e-learning model Linear Algebra course for Engineering, which includes the use of a CAS (Maxima) and focuses on problem solving. A reference model has been taken from the Spanish Open University. The proper use of CAS is…

  16. Turbofan engine mathematic model for its static and dynamic characteristics research

    Directory of Open Access Journals (Sweden)

    О.Є. Карпов

    2004-01-01

    Full Text Available  Demands to mathematical model of the turbofan engine are determined in the article. The mathematical model is used for calculations static and dynamic parameters, which are required for estimation of engine technical state in operation. There are the mathematical model of the turbofan engine AИ-25 and the results of calculations static and dynamic parameters at initial condition in the article.

  17. Developing an Ontology-Based Rollover Monitoring and Decision Support System for Engineering Vehicles

    Directory of Open Access Journals (Sweden)

    Feixiang Xu

    2018-05-01

    Full Text Available The increasing number of rollover accidents of engineering vehicles has attracted close attention; however, most researchers focus on the analysis and monitoring of rollover stability indexes and seldom the assessment and decision support for the rollover risk of engineering vehicles. In this context, an ontology-based rollover monitoring and decision support system for engineering vehicles is proposed. The ontology model is built for representing monitored rollover stability data with semantic properties and for constructing semantic relevance among the various concepts involved in the rollover domain. On the basis of this, ontology querying and reasoning methods based on the Simple Protocol and RDF Query Language (SPARQL and Semantic Web Rule Language (SWRL rules are utilized to realize the rollover risk assessment and to obtain suggested measures. PC and mobile applications (APPs have also been developed to implement the above methods. In addition, five sets of rollover stability data for an articulated off-road engineering vehicle under different working conditions were analyzed to verify the accuracy and effectiveness of the proposed system.

  18. Implementing and Assessing a Flipped Classroom Model for First-Year Engineering Design

    Science.gov (United States)

    Saterbak, Ann; Volz, Tracy; Wettergreen, Matthew

    2016-01-01

    Faculty at Rice University are creating instructional resources to support teaching first-year engineering design using a flipped classroom model. This implementation of flipped pedagogy is unusual because content-driven, lecture courses are usually targeted for flipping, not project-based design courses that already incorporate an abundance of…

  19. Cloud-based Virtual Organization Engineering

    Directory of Open Access Journals (Sweden)

    Liviu Gabriel CRETU

    2012-01-01

    Full Text Available Nowadays we may notice that SOA arrived to its maturity stage and Cloud Computing brings the next paradigm-shift regarding the software delivery business model. In such a context, we consider that there is a need for frameworks to guide the creation, execution and management of virtual organizations (VO based on services from different Clouds. This paper will introduce the main components of such a framework that will innovatively combine the principles of event-driven SOA, REST and ISO/IEC 42010:2007 multiple views and viewpoints in order to provide the required methodology for Cloud-based virtual organization (Cloud-VO engi-neering. The framework will consider the resource concept found in software architectures like REST or RDF as the basic building block of Cloud-VO. and will make use of resources’ URIs to create the Cloud-VO’s resource allocation matrix. While the matrix is used to declare activity-resources relationships, the resource catalogue concept will be introduced as a way to describe the resource in one place, using as many viewpoints as needed, and then to reuse that description for the creation or simulation of different VOs.

  20. Expanding the Use of Solid Modeling throughout the Engineering Curriculum.

    Science.gov (United States)

    Baxter, Douglas H.

    2001-01-01

    Presents the initial work that Rensselaer Polytechnic Institute has done to integrate solid modeling throughout the engineering curriculum. Aims to provide students the opportunity to use their solid modeling skills in several courses and show students how solid modeling tools can be used to help solve a variety of engineering problems.…

  1. Benefits of Exergy-Based Analysis for Aerospace Engineering Applications—Part I

    Directory of Open Access Journals (Sweden)

    John H. Doty

    2009-01-01

    Full Text Available This paper compares the analysis of systems from two different perspectives: an energy-based focus and an exergy-based focus. A complex system was simply modeled as interacting thermodynamic systems to illustrate the differences in analysis methodologies and results. The energy-based analysis had combinations of calculated states that are infeasible. On the other hand, the exergy-based analyses only allow feasible states. More importantly, the exergy-based analyses provide clearer insight to the combination of operating conditions for optimum system-level performance. The results strongly suggest changing the analysis/design paradigm used in aerospace engineering from energy-based to exergy-based. This methodology shift is even more critical in exploratory research and development where previous experience may not be available to provide guidance. Although the models used herein may appear simplistic, the message is very powerful and extensible to higher-fidelity models: the 1st Law is only a necessary condition for design, whereas the 1st and 2nd Laws provide the sufficiency condition.

  2. The Effects Of Gender, Engineering Identification, and Engineering Program Expectancy On Engineering Career Intentions: Applying Hierarchical Linear Modeling (HLM) In Engineering Education Research

    Science.gov (United States)

    Tendhar, Chosang; Paretti, Marie C.; Jones, Brett D.

    2017-01-01

    This study had three purposes and four hypotheses were tested. Three purposes: (1) To use hierarchical linear modeling (HLM) to investigate whether students' perceptions of their engineering career intentions changed over time; (2) To use HLM to test the effects of gender, engineering identification (the degree to which an individual values a…

  3. In-cylinder pressure-based direct techniques and time frequency analysis for combustion diagnostics in IC engines

    International Nuclear Information System (INIS)

    D’Ambrosio, S.; Ferrari, A.; Galleani, L.

    2015-01-01

    Highlights: • Direct pressure-based techniques have been applied successfully to spark-ignition engines. • The burned mass fraction of pressure-based techniques has been compared with that of 2- and 3-zone combustion models. • The time frequency analysis has been employed to simulate complex diesel combustion events. - Abstract: In-cylinder pressure measurement and analysis has historically been a key tool for off-line combustion diagnosis in internal combustion engines, but online applications for real-time condition monitoring and combustion management have recently become popular. The present investigation presents and compares different low computing-cost in-cylinder pressure based methods for the analyses of the main features of combustion, that is, the start of combustion, the end of combustion and the crankshaft angle that responds to half of the overall burned mass. The instantaneous pressure in the combustion chamber has been used as an input datum for the described analytical procedures and it has been measured by means of a standard piezoelectric transducer. Traditional pressure-based techniques have been shown to be able to predict the burned mass fraction time history more accurately in spark ignition engines than in diesel engines. The most suitable pressure-based techniques for both spark ignition and compression ignition engines have been chosen on the basis of the available experimental data. Time–frequency analysis has also been applied to the analysis of diesel combustion, which is richer in events than spark ignited combustion. Time frequency algorithms for the calculation of the mean instantaneous frequency are computationally efficient, allow the main events of the diesel combustion to be identified and provide the greatest benefits in the presence of multiple injection events. These algorithms can be optimized and applied to onboard diagnostics tools designed for real control, but can also be used as an advanced validation tool for

  4. An introduction to network modeling and simulation for the practicing engineer

    CERN Document Server

    Burbank, Jack; Ward, Jon

    2011-01-01

    This book provides the practicing engineer with a concise listing of commercial and open-source modeling and simulation tools currently available including examples of implementing those tools for solving specific Modeling and Simulation examples. Instead of focusing on the underlying theory of Modeling and Simulation and fundamental building blocks for custom simulations, this book compares platforms used in practice, and gives rules enabling the practicing engineer to utilize available Modeling and Simulation tools. This book will contain insights regarding common pitfalls in network Modeling and Simulation and practical methods for working engineers.

  5. Engine control system having fuel-based timing

    Science.gov (United States)

    Willi, Martin L [Dunlap, IL; Fiveland, Scott B [Metamora, IL; Montgomery, David T [Edelstein, IL; Gong, Weidong [Dunlap, IL

    2012-04-03

    A control system for an engine having a cylinder is disclosed having an engine valve movable to regulate a fluid flow of the cylinder and an actuator associated with the engine valve. The control system also has a sensor configured to generate a signal indicative of an amount of an air/fuel mixture remaining within the cylinder after completion of a first combustion event and a controller in communication with the actuator and the sensor. The controller may be configured to compare the amount with a desired amount, and to selectively regulate the actuator to adjust a timing of the engine valve associated with a subsequent combustion event based on the comparison.

  6. Observing and modeling nonlinear dynamics in an internal combustion engine

    International Nuclear Information System (INIS)

    Daw, C.S.; Kennel, M.B.; Finney, C.E.; Connolly, F.T.

    1998-01-01

    We propose a low-dimensional, physically motivated, nonlinear map as a model for cyclic combustion variation in spark-ignited internal combustion engines. A key feature is the interaction between stochastic, small-scale fluctuations in engine parameters and nonlinear deterministic coupling between successive engine cycles. Residual cylinder gas from each cycle alters the in-cylinder fuel-air ratio and thus the combustion efficiency in succeeding cycles. The model close-quote s simplicity allows rapid simulation of thousands of engine cycles, permitting statistical studies of cyclic-variation patterns and providing physical insight into this technologically important phenomenon. Using symbol statistics to characterize the noisy dynamics, we find good quantitative matches between our model and experimental time-series measurements. copyright 1998 The American Physical Society

  7. Problem-Based Learning in Engineering Ethics Courses

    Science.gov (United States)

    Kirkman, Robert

    2016-01-01

    I describe the first stages of a process of design research in which I employ problem-based learning in a course in engineering ethics, which fulfills a requirement for students in engineering degree programs. The aim of the course is to foster development of particular cognitive skills contributing to moral imagination, a capacity to notice,…

  8. Uncertainty and sensitivity analysis of fission gas behavior in engineering-scale fuel modeling

    Energy Technology Data Exchange (ETDEWEB)

    Pastore, Giovanni, E-mail: Giovanni.Pastore@inl.gov [Fuel Modeling and Simulation, Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415-3840 (United States); Swiler, L.P., E-mail: LPSwile@sandia.gov [Optimization and Uncertainty Quantification, Sandia National Laboratories, P.O. Box 5800, Albuquerque, NM 87185-1318 (United States); Hales, J.D., E-mail: Jason.Hales@inl.gov [Fuel Modeling and Simulation, Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415-3840 (United States); Novascone, S.R., E-mail: Stephen.Novascone@inl.gov [Fuel Modeling and Simulation, Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415-3840 (United States); Perez, D.M., E-mail: Danielle.Perez@inl.gov [Fuel Modeling and Simulation, Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415-3840 (United States); Spencer, B.W., E-mail: Benjamin.Spencer@inl.gov [Fuel Modeling and Simulation, Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415-3840 (United States); Luzzi, L., E-mail: Lelio.Luzzi@polimi.it [Politecnico di Milano, Department of Energy, Nuclear Engineering Division, via La Masa 34, I-20156 Milano (Italy); Van Uffelen, P., E-mail: Paul.Van-Uffelen@ec.europa.eu [European Commission, Joint Research Centre, Institute for Transuranium Elements, Hermann-von-Helmholtz-Platz 1, D-76344 Karlsruhe (Germany); Williamson, R.L., E-mail: Richard.Williamson@inl.gov [Fuel Modeling and Simulation, Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415-3840 (United States)

    2015-01-15

    The role of uncertainties in fission gas behavior calculations as part of engineering-scale nuclear fuel modeling is investigated using the BISON fuel performance code with a recently implemented physics-based model for fission gas release and swelling. Through the integration of BISON with the DAKOTA software, a sensitivity analysis of the results to selected model parameters is carried out based on UO{sub 2} single-pellet simulations covering different power regimes. The parameters are varied within ranges representative of the relative uncertainties and consistent with the information in the open literature. The study leads to an initial quantitative assessment of the uncertainty in fission gas behavior predictions with the parameter characterization presently available. Also, the relative importance of the single parameters is evaluated. Moreover, a sensitivity analysis is carried out based on simulations of a fuel rod irradiation experiment, pointing out a significant impact of the considered uncertainties on the calculated fission gas release and cladding diametral strain. The results of the study indicate that the commonly accepted deviation between calculated and measured fission gas release by a factor of 2 approximately corresponds to the inherent modeling uncertainty at high fission gas release. Nevertheless, significantly higher deviations may be expected for values around 10% and lower. Implications are discussed in terms of directions of research for the improved modeling of fission gas behavior for engineering purposes.

  9. Knowledge-based personalized search engine for the Web-based Human Musculoskeletal System Resources (HMSR) in biomechanics.

    Science.gov (United States)

    Dao, Tien Tuan; Hoang, Tuan Nha; Ta, Xuan Hien; Tho, Marie Christine Ho Ba

    2013-02-01

    Human musculoskeletal system resources of the human body are valuable for the learning and medical purposes. Internet-based information from conventional search engines such as Google or Yahoo cannot response to the need of useful, accurate, reliable and good-quality human musculoskeletal resources related to medical processes, pathological knowledge and practical expertise. In this present work, an advanced knowledge-based personalized search engine was developed. Our search engine was based on a client-server multi-layer multi-agent architecture and the principle of semantic web services to acquire dynamically accurate and reliable HMSR information by a semantic processing and visualization approach. A security-enhanced mechanism was applied to protect the medical information. A multi-agent crawler was implemented to develop a content-based database of HMSR information. A new semantic-based PageRank score with related mathematical formulas were also defined and implemented. As the results, semantic web service descriptions were presented in OWL, WSDL and OWL-S formats. Operational scenarios with related web-based interfaces for personal computers and mobile devices were presented and analyzed. Functional comparison between our knowledge-based search engine, a conventional search engine and a semantic search engine showed the originality and the robustness of our knowledge-based personalized search engine. In fact, our knowledge-based personalized search engine allows different users such as orthopedic patient and experts or healthcare system managers or medical students to access remotely into useful, accurate, reliable and good-quality HMSR information for their learning and medical purposes. Copyright © 2012 Elsevier Inc. All rights reserved.

  10. Combining engineering and data-driven approaches

    DEFF Research Database (Denmark)

    Fischer, Katharina; De Sanctis, Gianluca; Kohler, Jochen

    2015-01-01

    Two general approaches may be followed for the development of a fire risk model: statistical models based on observed fire losses can support simple cost-benefit studies but are usually not detailed enough for engineering decision-making. Engineering models, on the other hand, require many assump...... to the calibration of a generic fire risk model for single family houses to Swiss insurance data. The example demonstrates that the bias in the risk estimation can be strongly reduced by model calibration.......Two general approaches may be followed for the development of a fire risk model: statistical models based on observed fire losses can support simple cost-benefit studies but are usually not detailed enough for engineering decision-making. Engineering models, on the other hand, require many...... assumptions that may result in a biased risk assessment. In two related papers we show how engineering and data-driven modelling can be combined by developing generic risk models that are calibrated to statistical data on observed fire events. The focus of the present paper is on the calibration procedure...

  11. Formal Model-Driven Engineering: Generating Data and Behavioural Components

    Directory of Open Access Journals (Sweden)

    Chen-Wei Wang

    2012-12-01

    Full Text Available Model-driven engineering is the automatic production of software artefacts from abstract models of structure and functionality. By targeting a specific class of system, it is possible to automate aspects of the development process, using model transformations and code generators that encode domain knowledge and implementation strategies. Using this approach, questions of correctness for a complex, software system may be answered through analysis of abstract models of lower complexity, under the assumption that the transformations and generators employed are themselves correct. This paper shows how formal techniques can be used to establish the correctness of model transformations used in the generation of software components from precise object models. The source language is based upon existing, formal techniques; the target language is the widely-used SQL notation for database programming. Correctness is established by giving comparable, relational semantics to both languages, and checking that the transformations are semantics-preserving.

  12. Modeling reacting gases and aftertreatment devices for internal combustion engines

    Science.gov (United States)

    Depcik, Christopher David

    As more emphasis is placed worldwide on reducing greenhouse gas emissions, automobile manufacturers have to create more efficient engines. Simultaneously, legislative agencies want these engines to produce fewer problematic emissions such as nitrogen oxides and particulate matter. In response, newer combustion methods, like homogeneous charge compression ignition and fuel cells, are being researched alongside the old standard of efficiency, the compression ignition or diesel engine. These newer technologies present a number of benefits but still have significant challenges to overcome. As a result, renewed interest has risen in making diesel engines cleaner. The key to cleaning up the diesel engine is the placement of aftertreatment devices in the exhaust. These devices have shown great potential in reducing emission levels below regulatory levels while still allowing for increased fuel economy versus a gasoline engine. However, these devices are subject to many flow control issues. While experimental evaluation of these devices helps to understand these issues better, it is impossible to solve the problem through experimentation alone because of time and cost constraints. Because of this, accurate models are needed in conjunction with the experimental work. In this dissertation, the author examines the entire exhaust system including reacting gas dynamics and aftertreatment devices, and develops a complete numerical model for it. The author begins by analyzing the current one-dimensional gas-dynamics simulation models used for internal combustion engine simulations. It appears that more accurate and faster numerical method is available, in particular, those developed in aeronautical engineering, and the author successfully implements one for the exhaust system. The author then develops a comprehensive literature search to better understand the aftertreatment devices. A number of these devices require a secondary injection of fuel or reductant in the exhaust stream

  13. Models for predicting the mass of lime fruits by some engineering properties.

    Science.gov (United States)

    Miraei Ashtiani, Seyed-Hassan; Baradaran Motie, Jalal; Emadi, Bagher; Aghkhani, Mohammad-Hosein

    2014-11-01

    Grading fruits based on mass is important in packaging and reduces the waste, also increases the marketing value of agricultural produce. The aim of this study was mass modeling of two major cultivars of Iranian limes based on engineering attributes. Models were classified into three: 1-Single and multiple variable regressions of lime mass and dimensional characteristics. 2-Single and multiple variable regressions of lime mass and projected areas. 3-Single regression of lime mass based on its actual volume and calculated volume assumed as ellipsoid and prolate spheroid shapes. All properties considered in the current study were found to be statistically significant (ρ lime based on minor diameter and first projected area are the most appropriate models in the first and the second classifications, respectively. In third classification, the best model was obtained on the basis of the prolate spheroid volume. It was finally concluded that the suitable grading system of lime mass is based on prolate spheroid volume.

  14. Preliminary Assessment of the Emporium Model in a Redesigned Engineering Mechanics Course

    Science.gov (United States)

    Rais-Rohani, Masoud; Walters, Andrew

    2014-01-01

    A lecture-based engineering mechanics course (Statics) is redesigned using the Emporium model. Whereas students study the material outside of class via asynchronous online delivery of the content and instructional videos, they do all the other activities (e.g., assignments, tests) either individually or in groups inside the classroom. Computer-…

  15. Computer aided system engineering and analysis (CASE/A) modeling package for ECLS systems - An overview

    Science.gov (United States)

    Dalee, Robert C.; Bacskay, Allen S.; Knox, James C.

    1990-01-01

    An overview of the CASE/A-ECLSS series modeling package is presented. CASE/A is an analytical tool that has supplied engineering productivity accomplishments during ECLSS design activities. A components verification program was performed to assure component modeling validity based on test data from the Phase II comparative test program completed at the Marshall Space Flight Center. An integrated plotting feature has been added to the program which allows the operator to analyze on-screen data trends or get hard copy plots from within the CASE/A operating environment. New command features in the areas of schematic, output, and model management, and component data editing have been incorporated to enhance the engineer's productivity during a modeling program.

  16. Game mechanics engine

    OpenAIRE

    Magnusson, Lars V

    2011-01-01

    Game logic and game rules exists in all computer games, but they are created di erently for all game engines. This game engine dependency exists because of how the internal object model is implemented in the engine, as a place where game logic data is intermingled with the data needed by the low- level subsystems. This thesis propose a game object model design, based on existing theory, that removes this dependency and establish a general game logic framework. The thesis the...

  17. Modeling material-degradation-induced elastic property of tissue engineering scaffolds.

    Science.gov (United States)

    Bawolin, N K; Li, M G; Chen, X B; Zhang, W J

    2010-11-01

    The mechanical properties of tissue engineering scaffolds play a critical role in the success of repairing damaged tissues/organs. Determining the mechanical properties has proven to be a challenging task as these properties are not constant but depend upon time as the scaffold degrades. In this study, the modeling of the time-dependent mechanical properties of a scaffold is performed based on the concept of finite element model updating. This modeling approach contains three steps: (1) development of a finite element model for the effective mechanical properties of the scaffold, (2) parametrizing the finite element model by selecting parameters associated with the scaffold microstructure and/or material properties, which vary with scaffold degradation, and (3) identifying selected parameters as functions of time based on measurements from the tests on the scaffold mechanical properties as they degrade. To validate the developed model, scaffolds were made from the biocompatible polymer polycaprolactone (PCL) mixed with hydroxylapatite (HA) nanoparticles and their mechanical properties were examined in terms of the Young modulus. Based on the bulk degradation exhibited by the PCL/HA scaffold, the molecular weight was selected for model updating. With the identified molecular weight, the finite element model developed was effective for predicting the time-dependent mechanical properties of PCL/HA scaffolds during degradation.

  18. Agent-based modelling in synthetic biology.

    Science.gov (United States)

    Gorochowski, Thomas E

    2016-11-30

    Biological systems exhibit complex behaviours that emerge at many different levels of organization. These span the regulation of gene expression within single cells to the use of quorum sensing to co-ordinate the action of entire bacterial colonies. Synthetic biology aims to make the engineering of biology easier, offering an opportunity to control natural systems and develop new synthetic systems with useful prescribed behaviours. However, in many cases, it is not understood how individual cells should be programmed to ensure the emergence of a required collective behaviour. Agent-based modelling aims to tackle this problem, offering a framework in which to simulate such systems and explore cellular design rules. In this article, I review the use of agent-based models in synthetic biology, outline the available computational tools, and provide details on recently engineered biological systems that are amenable to this approach. I further highlight the challenges facing this methodology and some of the potential future directions. © 2016 The Author(s).

  19. Alternative approaches to reliability modeling of a multiple engineered barrier system

    International Nuclear Information System (INIS)

    Ananda, M.M.A.; Singh, A.K.

    1994-01-01

    The lifetime of the engineered barrier system used for containment of high-level radioactive waste will significantly impact the total performance of a geological repository facility. Currently two types of designs are under consideration for an engineered barrier system, single engineered barrier system and multiple engineered barrier system. Multiple engineered barrier system consists of several metal barriers and the waste form (cladding). Some recent work show that a significant improvement of performance can be achieved by utilizing multiple engineered barrier systems. Considering sequential failures for each barrier, we model the reliability of the multiple engineered barrier system. Weibull and exponential lifetime distributions are used through out the analysis. Furthermore, the number of failed engineered barrier systems in a repository at a given time is modeled using a poisson approximation

  20. Software Engineering Laboratory (SEL) cleanroom process model

    Science.gov (United States)

    Green, Scott; Basili, Victor; Godfrey, Sally; Mcgarry, Frank; Pajerski, Rose; Waligora, Sharon

    1991-01-01

    The Software Engineering Laboratory (SEL) cleanroom process model is described. The term 'cleanroom' originates in the integrated circuit (IC) production process, where IC's are assembled in dust free 'clean rooms' to prevent the destructive effects of dust. When applying the clean room methodology to the development of software systems, the primary focus is on software defect prevention rather than defect removal. The model is based on data and analysis from previous cleanroom efforts within the SEL and is tailored to serve as a guideline in applying the methodology to future production software efforts. The phases that are part of the process model life cycle from the delivery of requirements to the start of acceptance testing are described. For each defined phase, a set of specific activities is discussed, and the appropriate data flow is described. Pertinent managerial issues, key similarities and differences between the SEL's cleanroom process model and the standard development approach used on SEL projects, and significant lessons learned from prior cleanroom projects are presented. It is intended that the process model described here will be further tailored as additional SEL cleanroom projects are analyzed.

  1. Effects of Engineering Design-Based Science on Elementary School Science Students' Engineering Identity Development across Gender and Grade

    Science.gov (United States)

    Capobianco, Brenda M.; Yu, Ji H.; French, Brian F.

    2015-04-01

    The integration of engineering concepts and practices into elementary science education has become an emerging concern for science educators and practitioners, alike. Moreover, how children, specifically preadolescents (grades 1-5), engage in engineering design-based learning activities may help science educators and researchers learn more about children's earliest identification with engineering. The purpose of this study was to examine the extent to which engineering identity differed among preadolescents across gender and grade, when exposing students to engineering design-based science learning activities. Five hundred fifty preadolescent participants completed the Engineering Identity Development Scale (EIDS), a recently developed measure with validity evidence that characterizes children's conceptions of engineering and potential career aspirations. Data analyses of variance among four factors (i.e., gender, grade, and group) indicated that elementary school students who engaged in the engineering design-based science learning activities demonstrated greater improvements on the EIDS subscales compared to those in the comparison group. Specifically, students in the lower grade levels showed substantial increases, while students in the higher grade levels showed decreases. Girls, regardless of grade level and participation in the engineering learning activities, showed higher scores in the academic subscale compared to boys. These findings suggest that the integration of engineering practices in the science classroom as early as grade one shows potential in fostering and sustaining student interest, participation, and self-concept in engineering and science.

  2. A Proposal of Ecologic Taxes Based on Thermo-Economic Performance of Heat Engine Models

    Directory of Open Access Journals (Sweden)

    Fernando Angulo-Brown

    2009-11-01

    Full Text Available Within the context of Finite-Time Thermodynamics (FTT a simplified thermal power plant model (the so-called Novikov engine is analyzed under economical criteria by means of the concepts of profit function and the costs involved in the performance of the power plant. In this study, two different heat transfer laws are used, the so called Newton’s law of cooling and the Dulong-Petit’s law of cooling. Two FTT optimization criteria for the performance analysis are used: the maximum power regime (MP and the so-called ecological criterion. This last criterion leads the engine model towards a mode of performance that appreciably diminishes the engine’s wasted energy. In this work, it is shown that the energy-unit price produced under maximum power conditions is cheaper than that produced under maximum ecological (ME conditions. This was accomplished by using a typical definition of profits function stemming from economics. The MP-regime produces considerably more wasted energy toward the environment, thus the MP energy-unit price is subsidized by nature. Due to this fact, an ecological tax is proposed, which could be a certain function of the price difference between the MP and ME modes of power production.

  3. Towards Internet QoS provisioning based on generic distributed QoS adaptive routing engine.

    Science.gov (United States)

    Haikal, Amira Y; Badawy, M; Ali, Hesham A

    2014-01-01

    Increasing efficiency and quality demands of modern Internet technologies drive today's network engineers to seek to provide quality of service (QoS). Internet QoS provisioning gives rise to several challenging issues. This paper introduces a generic distributed QoS adaptive routing engine (DQARE) architecture based on OSPFxQoS. The innovation of the proposed work in this paper is its undependability on the used QoS architectures and, moreover, splitting of the control strategy from data forwarding mechanisms, so we guarantee a set of absolute stable mechanisms on top of which Internet QoS can be built. DQARE architecture is furnished with three relevant traffic control schemes, namely, service differentiation, QoS routing, and traffic engineering. The main objective of this paper is to (i) provide a general configuration guideline for service differentiation, (ii) formalize the theoretical properties of different QoS routing algorithms and then introduce a QoS routing algorithm (QOPRA) based on dynamic programming technique, and (iii) propose QoS multipath forwarding (QMPF) model for paths diversity exploitation. NS2-based simulations proved the DQARE superiority in terms of delay, packet delivery ratio, throughput, and control overhead. Moreover, extensive simulations are used to compare the proposed QOPRA algorithm and QMPF model with their counterparts in the literature.

  4. Towards Internet QoS Provisioning Based on Generic Distributed QoS Adaptive Routing Engine

    Directory of Open Access Journals (Sweden)

    Amira Y. Haikal

    2014-01-01

    Full Text Available Increasing efficiency and quality demands of modern Internet technologies drive today’s network engineers to seek to provide quality of service (QoS. Internet QoS provisioning gives rise to several challenging issues. This paper introduces a generic distributed QoS adaptive routing engine (DQARE architecture based on OSPFxQoS. The innovation of the proposed work in this paper is its undependability on the used QoS architectures and, moreover, splitting of the control strategy from data forwarding mechanisms, so we guarantee a set of absolute stable mechanisms on top of which Internet QoS can be built. DQARE architecture is furnished with three relevant traffic control schemes, namely, service differentiation, QoS routing, and traffic engineering. The main objective of this paper is to (i provide a general configuration guideline for service differentiation, (ii formalize the theoretical properties of different QoS routing algorithms and then introduce a QoS routing algorithm (QOPRA based on dynamic programming technique, and (iii propose QoS multipath forwarding (QMPF model for paths diversity exploitation. NS2-based simulations proved the DQARE superiority in terms of delay, packet delivery ratio, throughput, and control overhead. Moreover, extensive simulations are used to compare the proposed QOPRA algorithm and QMPF model with their counterparts in the literature.

  5. Microfluidic systems for stem cell-based neural tissue engineering.

    Science.gov (United States)

    Karimi, Mahdi; Bahrami, Sajad; Mirshekari, Hamed; Basri, Seyed Masoud Moosavi; Nik, Amirala Bakhshian; Aref, Amir R; Akbari, Mohsen; Hamblin, Michael R

    2016-07-05

    Neural tissue engineering aims at developing novel approaches for the treatment of diseases of the nervous system, by providing a permissive environment for the growth and differentiation of neural cells. Three-dimensional (3D) cell culture systems provide a closer biomimetic environment, and promote better cell differentiation and improved cell function, than could be achieved by conventional two-dimensional (2D) culture systems. With the recent advances in the discovery and introduction of different types of stem cells for tissue engineering, microfluidic platforms have provided an improved microenvironment for the 3D-culture of stem cells. Microfluidic systems can provide more precise control over the spatiotemporal distribution of chemical and physical cues at the cellular level compared to traditional systems. Various microsystems have been designed and fabricated for the purpose of neural tissue engineering. Enhanced neural migration and differentiation, and monitoring of these processes, as well as understanding the behavior of stem cells and their microenvironment have been obtained through application of different microfluidic-based stem cell culture and tissue engineering techniques. As the technology advances it may be possible to construct a "brain-on-a-chip". In this review, we describe the basics of stem cells and tissue engineering as well as microfluidics-based tissue engineering approaches. We review recent testing of various microfluidic approaches for stem cell-based neural tissue engineering.

  6. Engineering Student's Ethical Awareness and Behavior: A New Motivational Model.

    Science.gov (United States)

    Bairaktarova, Diana; Woodcock, Anna

    2017-08-01

    Professional communities are experiencing scandals involving unethical and illegal practices daily. Yet it should not take a national major structure failure to highlight the importance of ethical awareness and behavior, or the need for the development and practice of ethical behavior in engineering students. Development of ethical behavior skills in future engineers is a key competency for engineering schools as ethical behavior is a part of the professional identity and practice of engineers. While engineering educators have somewhat established instructional methods to teach engineering ethics, they still rely heavily on teaching ethical awareness, and pay little attention to how well ethical awareness predicts ethical behavior. However the ability to exercise ethical judgement does not mean that students are ethically educated or likely to behave in an ethical manner. This paper argues measuring ethical judgment is insufficient for evaluating the teaching of engineering ethics, because ethical awareness has not been demonstrated to translate into ethical behavior. The focus of this paper is to propose a model that correlates with both, ethical awareness and ethical behavior. This model integrates the theory of planned behavior, person and thing orientation, and spheres of control. Applying this model will allow educators to build confidence and trust in their students' ability to build a professional identity and be prepared for the engineering profession and practice.

  7. Stem cell-derived vasculature: A potent and multidimensional technology for basic research, disease modeling, and tissue engineering.

    Science.gov (United States)

    Lowenthal, Justin; Gerecht, Sharon

    2016-05-06

    Proper blood vessel networks are necessary for constructing and re-constructing tissues, promoting wound healing, and delivering metabolic necessities throughout the body. Conversely, an understanding of vascular dysfunction has provided insight into the pathogenesis and progression of diseases both common and rare. Recent advances in stem cell-based regenerative medicine - including advances in stem cell technologies and related progress in bioscaffold design and complex tissue engineering - have allowed rapid advances in the field of vascular biology, leading in turn to more advanced modeling of vascular pathophysiology and improved engineering of vascularized tissue constructs. In this review we examine recent advances in the field of stem cell-derived vasculature, providing an overview of stem cell technologies as a source for vascular cell types and then focusing on their use in three primary areas: studies of vascular development and angiogenesis, improved disease modeling, and the engineering of vascularized constructs for tissue-level modeling and cell-based therapies. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Building international experiences into an engineering curriculum - a design project-based approach

    Science.gov (United States)

    Maldonado, Victor; Castillo, Luciano; Carbajal, Gerardo; Hajela, Prabhat

    2014-07-01

    This paper is a descriptive account of how short-term international and multicultural experiences can be integrated into early design experiences in an aerospace engineering curriculum. Such approaches are considered as important not only in fostering a student's interest in the engineering curriculum, but also exposing them to a multicultural setting that they are likely to encounter in their professional careers. In the broader sense, this programme is described as a model that can be duplicated in other engineering disciplines as a first-year experience. In this study, undergraduate students from Rensselaer Polytechnic Institute (RPI) and Universidad del Turabo (UT) in Puerto Rico collaborated on a substantial design project consisting of designing, fabricating, and flight-testing radio-controlled model aircraft as a capstone experience in a semester-long course on Fundamentals of Flight. The two-week long experience in Puerto Rico was organised into academic and cultural components designed with the following objectives: (i) to integrate students in a multicultural team-based academic and social environment, (ii) to practise team-building skills and develop students' critical thinking and analytical skills, and finally (iii) to excite students about their engineering major through practical applications of aeronautics and help them decide if it is a right fit for them.

  9. D Model Visualization Enhancements in Real-Time Game Engines

    Science.gov (United States)

    Merlo, A.; Sánchez Belenguer, C.; Vendrell Vidal, E.; Fantini, F.; Aliperta, A.

    2013-02-01

    This paper describes two procedures used to disseminate tangible cultural heritage through real-time 3D simulations providing accurate-scientific representations. The main idea is to create simple geometries (with low-poly count) and apply two different texture maps to them: a normal map and a displacement map. There are two ways to achieve models that fit with normal or displacement maps: with the former (normal maps), the number of polygons in the reality-based model may be dramatically reduced by decimation algorithms and then normals may be calculated by rendering them to texture solutions (baking). With the latter, a LOD model is needed; its topology has to be quad-dominant for it to be converted to a good quality subdivision surface (with consistent tangency and curvature all over). The subdivision surface is constructed using methodologies for the construction of assets borrowed from character animation: these techniques have been recently implemented in many entertainment applications known as "retopology". The normal map is used as usual, in order to shade the surface of the model in a realistic way. The displacement map is used to finish, in real-time, the flat faces of the object, by adding the geometric detail missing in the low-poly models. The accuracy of the resulting geometry is progressively refined based on the distance from the viewing point, so the result is like a continuous level of detail, the only difference being that there is no need to create different 3D models for one and the same object. All geometric detail is calculated in real-time according to the displacement map. This approach can be used in Unity, a real-time 3D engine originally designed for developing computer games. It provides a powerful rendering engine, fully integrated with a complete set of intuitive tools and rapid workflows that allow users to easily create interactive 3D contents. With the release of Unity 4.0, new rendering features have been added, including Direct

  10. IBRI-CASONTO: Ontology-based semantic search engine

    Directory of Open Access Journals (Sweden)

    Awny Sayed

    2017-11-01

    Full Text Available The vast availability of information, that added in a very fast pace, in the data repositories creates a challenge in extracting correct and accurate information. Which has increased the competition among developers in order to gain access to technology that seeks to understand the intent researcher and contextual meaning of terms. While the competition for developing an Arabic Semantic Search systems are still in their infancy, and the reason could be traced back to the complexity of Arabic Language. It has a complex morphological, grammatical and semantic aspects, as it is a highly inflectional and derivational language. In this paper, we try to highlight and present an Ontological Search Engine called IBRI-CASONTO for Colleges of Applied Sciences, Oman. Our proposed engine supports both Arabic and English language. It is also employed two types of search which are a keyword-based search and a semantics-based search. IBRI-CASONTO is based on different technologies such as Resource Description Framework (RDF data and Ontological graph. The experiments represent in two sections, first it shows a comparison among Entity-Search and the Classical-Search inside the IBRI-CASONTO itself, second it compares the Entity-Search of IBRI-CASONTO with currently used search engines, such as Kngine, Wolfram Alpha and the most popular engine nowadays Google, in order to measure their performance and efficiency.

  11. Multi dimentional modeling of a CI engine

    Energy Technology Data Exchange (ETDEWEB)

    Koten, Hasan; Yilmaz, Mustafa; Zafer Gul, M. [Marmara University Mechanical Engineering Department (Turkey)], E-mail: hasan.koten@marmara.edu.tr

    2011-07-01

    With the coming shortage of fossil fuels and rising concerns about the environment, it is important to develop new technologies that reduce both energy consumption and pollution at the same time. In the transportation sector, new combustion processes are under development to provide clean diesel combustion with no particulate and NOx emissions. However, these processes have issues such as limited power output, high levels of unburned hydrocarbons, and carbon monoxide emissions. The aim of this paper is to determine in-cylinder flow characteristics to improve combustion performance. Combustion modeling was performed using the ECFM-3Z combustion model and 1D dynamic model and calculations on the configuration of a direct injection diesel engine were made. This study showed that the new ECFM-3Z combustion model provides results in accordance with previous research but that further studies are needed to determine the optimum engine parameters.

  12. Optimization of Aero Engine Acceleration Control in Combat State Based on Genetic Algorithms

    Science.gov (United States)

    Li, Jie; Fan, Ding; Sreeram, Victor

    2012-03-01

    In order to drastically exploit the potential of the aero engine and improve acceleration performance in the combat state, an on-line optimized controller based on genetic algorithms is designed for an aero engine. For testing the validity of the presented control method, detailed joint simulation tests of the designed controller and the aero engine model are performed in the whole flight envelope. Simulation test results show that the presented control algorithm has characteristics of rapid convergence speed, high efficiency and can fully exploit the acceleration performance potential of the aero engine. Compared with the former controller, the designed on-line optimized controller (DOOC) can improve the security of the acceleration process and greatly enhance the aero engine thrust in the whole range of the flight envelope, the thrust increases an average of 8.1% in the randomly selected working states. The plane which adopts DOOC can acquire better fighting advantage in the combat state.

  13. Econophysics of agent-based models

    CERN Document Server

    Aoyama, Hideaki; Chakrabarti, Bikas; Chakraborti, Anirban; Ghosh, Asim

    2014-01-01

    The primary goal of this book is to present the research findings and conclusions of physicists, economists, mathematicians and financial engineers working in the field of "Econophysics" who have undertaken agent-based modelling, comparison with empirical studies and related investigations. Most standard economic models assume the existence of the representative agent, who is “perfectly rational” and applies the utility maximization principle when taking action. One reason for this is the desire to keep models mathematically tractable: no tools are available to economists for solving non-linear models of heterogeneous adaptive agents without explicit optimization. In contrast, multi-agent models, which originated from statistical physics considerations, allow us to go beyond the prototype theories of traditional economics involving the representative agent. This book is based on the Econophys-Kolkata VII Workshop, at which many such modelling efforts were presented. In the book, leading researchers in the...

  14. A stream-based mathematical model for distributed information processing systems - SysLab system model

    OpenAIRE

    Klein, Cornel; Rumpe, Bernhard; Broy, Manfred

    2014-01-01

    In the SysLab project we develop a software engineering method based on a mathematical foundation. The SysLab system model serves as an abstract mathematical model for information systems and their components. It is used to formalize the semantics of all used description techniques such as object diagrams state automata sequence charts or data-flow diagrams. Based on the requirements for such a reference model, we define the system model including its different views and their relationships.

  15. Engineering modeling of traffic noise in shielded areas in cities.

    Science.gov (United States)

    Salomons, Erik M; Polinder, Henk; Lohman, Walter J A; Zhou, Han; Borst, Hieronymous C; Miedema, Henk M E

    2009-11-01

    A computational study of road traffic noise in cities is presented. Based on numerical boundary-element calculations of canyon-to-canyon propagation, an efficient engineering algorithm is developed to calculate the effect of multiple reflections in street canyons. The algorithm is supported by a room-acoustical analysis of the reverberant sound fields in the source and receiver canyons. Using the algorithm, a simple model for traffic noise in cities is developed. Noise maps and exposure distributions of the city of Amsterdam are calculated with the model, and for comparison also with an engineering model that is currently used for traffic noise impact assessments in cities. Considerable differences between the two model predictions are found for shielded buildings with day-evening-night levels of 40-60 dB at the facades. Further, an analysis is presented of level differences between the most and the least exposed facades of buildings. Large level differences are found for buildings directly exposed to traffic noise from nearby roads. It is shown that by a redistribution of traffic flow around these buildings, one can achieve low sound levels at quiet sides and a corresponding reduction in the percentage of highly annoyed inhabitants from typically 23% to 18%.

  16. Variance-based sensitivity indices for models with dependent inputs

    International Nuclear Information System (INIS)

    Mara, Thierry A.; Tarantola, Stefano

    2012-01-01

    Computational models are intensively used in engineering for risk analysis or prediction of future outcomes. Uncertainty and sensitivity analyses are of great help in these purposes. Although several methods exist to perform variance-based sensitivity analysis of model output with independent inputs only a few are proposed in the literature in the case of dependent inputs. This is explained by the fact that the theoretical framework for the independent case is set and a univocal set of variance-based sensitivity indices is defined. In the present work, we propose a set of variance-based sensitivity indices to perform sensitivity analysis of models with dependent inputs. These measures allow us to distinguish between the mutual dependent contribution and the independent contribution of an input to the model response variance. Their definition relies on a specific orthogonalisation of the inputs and ANOVA-representations of the model output. In the applications, we show the interest of the new sensitivity indices for model simplification setting. - Highlights: ► Uncertainty and sensitivity analyses are of great help in engineering. ► Several methods exist to perform variance-based sensitivity analysis of model output with independent inputs. ► We define a set of variance-based sensitivity indices for models with dependent inputs. ► Inputs mutual contributions are distinguished from their independent contributions. ► Analytical and computational tests are performed and discussed.

  17. Computational model-informed design and bioprinting of cell-patterned constructs for bone tissue engineering.

    Science.gov (United States)

    Carlier, Aurélie; Skvortsov, Gözde Akdeniz; Hafezi, Forough; Ferraris, Eleonora; Patterson, Jennifer; Koç, Bahattin; Van Oosterwyck, Hans

    2016-05-17

    Three-dimensional (3D) bioprinting is a rapidly advancing tissue engineering technology that holds great promise for the regeneration of several tissues, including bone. However, to generate a successful 3D bone tissue engineering construct, additional complexities should be taken into account such as nutrient and oxygen delivery, which is often insufficient after implantation in large bone defects. We propose that a well-designed tissue engineering construct, that is, an implant with a specific spatial pattern of cells in a matrix, will improve the healing outcome. By using a computational model of bone regeneration we show that particular cell patterns in tissue engineering constructs are able to enhance bone regeneration compared to uniform ones. We successfully bioprinted one of the most promising cell-gradient patterns by using cell-laden hydrogels with varying cell densities and observed a high cell viability for three days following the bioprinting process. In summary, we present a novel strategy for the biofabrication of bone tissue engineering constructs by designing cell-gradient patterns based on a computational model of bone regeneration, and successfully bioprinting the chosen design. This integrated approach may increase the success rate of implanted tissue engineering constructs for critical size bone defects and also can find a wider application in the biofabrication of other types of tissue engineering constructs.

  18. A Mixing Based Model for DME Combustion in Diesel Engines

    DEFF Research Database (Denmark)

    Bek, Bjarne H.; Sorenson, Spencer C.

    1998-01-01

    A series of studies has been conducted investigating the behavior of di-methyl ether (DME) fuel jets injected into quiescent combus-tion chambers. These studies have shown that it is possible to make a good estimate of the penetration of the jet based on existing correlations for diesel fuel......, by using appropriate fuel properties. The results of the spray studies have been incorporated into a first generation model for DME combustion. The model is entirely based on physical mixing, where chemical processes have been assumed to be very fast in relation to mixing. The assumption was made...

  19. A mixing based model for DME combustion in diesel engines

    DEFF Research Database (Denmark)

    Bek, Bjarne Hjort; Sorenson, Spencer C

    2001-01-01

    A series of studies has been conducted investigating the behavior of di-methyl ether (DME) fuel jets injected into quiescent combustion chambers. These studies have shown that it is possible to make a good estimate of the penetration of the jet based on existing correlations for diesel fuel......, by using appropriate fuel properties. The results of the spray studies have been incorporated into a first generation model for DME combustion. The model is entirely based on physical mixing, where chemical processes have been assumed to be very fast in relation to mixing. The assumption was made...

  20. Design and implementation of an internet-based electrical engineering laboratory.

    Science.gov (United States)

    He, Zhenlei; Shen, Zhangbiao; Zhu, Shanan

    2014-09-01

    This paper describes an internet-based electrical engineering laboratory (IEE-Lab) with virtual and physical experiments at Zhejiang University. In order to synthesize the advantages of both experiment styles, the IEE-Lab is come up with Client/Server/Application framework and combines the virtual and physical experiments. The design and workflow of IEE-Lab are introduced. The analog electronic experiment is taken as an example to show Flex plug-in design, data communication based on XML (Extensible Markup Language), experiment simulation modeled by Modelica and control terminals' design. Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.