WorldWideScience

Sample records for models atmospheric transport

  1. A Mercury Model of Atmospheric Transport

    Energy Technology Data Exchange (ETDEWEB)

    Christensen, Alex B. [Oregon State Univ., Corvallis, OR (United States); Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Chodash, Perry A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Procassini, R. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2018-01-19

    Using the particle transport code Mercury, accurate models were built of the two sources used in Operation BREN, a series of radiation experiments performed by the United States during the 1960s. In the future, these models will be used to validate Mercury’s ability to simulate atmospheric transport.

  2. Regional transport model of atmospheric sulfates

    International Nuclear Information System (INIS)

    Rao, K.S.; Thomson, I.; Egan, B.A.

    1977-01-01

    As part of the Sulfate Regional Experiment (SURE) Design Project, a regional transport model of atmospheric sulfates has been developed. This quasi-Lagrangian three-dimensional grid numerical model uses a detailed SO 2 emission inventory of major anthropogenic sources in the Eastern U.S. region, and observed meteorological data during an episode as inputs. The model accounts for advective transport and turbulent diffusion of the pollutants. The chemical transformation of SO 2 and SO 4 /sup =/ and the deposition of the species at the earth's surface are assumed to be linear processes at specified constant rates. The numerical model can predict the daily average concentrations of SO 2 and SO 4 /sup =/ at all receptor locations in the grid region during the episode. Because of the spatial resolution of the grid, this model is particularly suited to investigate the effect of tall stacks in reducing the ambient concentration levels of sulfur pollutants. This paper presents the formulations and assumptions of the regional sulfate transport model. The model inputs and results are discussed. Isopleths of predicted SO 2 and SO 4 /sup =/ concentrations are compared with the observed ground level values. The bulk of the information in this paper is directed to air pollution meteorologists and environmental engineers interested in the atmospheric transport modeling studies of sulfur oxide pollutants

  3. Modeling emissions for three-dimensional atmospheric chemistry transport models.

    Science.gov (United States)

    Matthias, Volker; Arndt, Jan A; Aulinger, Armin; Bieser, Johannes; Denier Van Der Gon, Hugo; Kranenburg, Richard; Kuenen, Jeroen; Neumann, Daniel; Pouliot, George; Quante, Markus

    2018-01-24

    Poor air quality is still a threat for human health in many parts of the world. In order to assess measures for emission reductions and improved air quality, three-dimensional atmospheric chemistry transport modeling systems are used in numerous research institutions and public authorities. These models need accurate emission data in appropriate spatial and temporal resolution as input. This paper reviews the most widely used emission inventories on global and regional scale and looks into the methods used to make the inventory data model ready. Shortcomings of using standard temporal profiles for each emission sector are discussed and new methods to improve the spatio-temporal distribution of the emissions are presented. These methods are often neither top-down nor bottom-up approaches but can be seen as hybrid methods that use detailed information about the emission process to derive spatially varying temporal emission profiles. These profiles are subsequently used to distribute bulk emissions like national totals on appropriate grids. The wide area of natural emissions is also summarized and the calculation methods are described. Almost all types of natural emissions depend on meteorological information, which is why they are highly variable in time and space and frequently calculated within the chemistry transport models themselves. The paper closes with an outlook for new ways to improve model ready emission data, for example by using external databases about road traffic flow or satellite data to determine actual land use or leaf area. In a world where emission patterns change rapidly, it seems appropriate to use new types of statistical and observational data to create detailed emission data sets and keep emission inventories up-to-date. Emission data is probably the most important input for chemistry transport model (CTM) systems. It needs to be provided in high temporal and spatial resolution and on a grid that is in agreement with the CTM grid. Simple

  4. ATTILA - Atmospheric Tracer Transport In a Langrangian Model

    Energy Technology Data Exchange (ETDEWEB)

    Reithmeier, C.; Sausen, R.

    2000-07-01

    The Lagrangian model ATTILA (atmospheric tracer transport in a Lagrangian model) has been developed to treat the global-scale transport of passive trace species in the atmosphere within the framework of a general circulation model (GCM). ATTILA runs online within the GCM ECHAM4 and uses the GCM produced wind field to advect the centrois of 80.000 to 180.000 constant mass air parcels into which the model atmosphere is divided. Each trace constituent is thereby represented by a mass mixing ratio in each parcel. ATTILA contains state-of-the-art parameterizations of convection, turbulent boundary layer mixing, and interparcel transport and provides an algorithm to map the tracer concentrations from the trajectories to the ECHAM model grid. We use two experiments to evaluate the transport characteristics of ATTILA against observations and the standard semiLagrangian transport scheme of ECHAM. In the first experiment we simulate the distribution of the short-lived tracer Radon ({sup 222}Rn) in order to examine fast vertical transport over continents, and long-range transport from the continents to remote areas. In the second experiment, we simulate the distribution of radiocarbon ({sup 14}C) that was injected into the northern stratosphere during the nuclear weapon tests in the early 60ties, in order to examine upper tropospheric and stratospheric transport characteristics. ATTILA compares well to the observations and in many respects to the semiLagrangian scheme. However, contrary to the semiLagrangian scheme, ATTILA shows a greatly reduced meridional transport in the upper troposphere and lower stratosphere, and a reduced downward flux from the stratosphere to the troposphere, especially in midlatitudes. Since both transport schemes use the same model meteorology, we conclude that the often cited enhanced meridional transport and overestimated downward flux in ECHAM as described above is rather due to the numerical properties of the semiLagrangian scheme than due to an

  5. Systematic evaluation of atmospheric chemistry-transport model CHIMERE

    Science.gov (United States)

    Khvorostyanov, Dmitry; Menut, Laurent; Mailler, Sylvain; Siour, Guillaume; Couvidat, Florian; Bessagnet, Bertrand; Turquety, Solene

    2017-04-01

    Regional-scale atmospheric chemistry-transport models (CTM) are used to develop air quality regulatory measures, to support environmentally sensitive decisions in the industry, and to address variety of scientific questions involving the atmospheric composition. Model performance evaluation with measurement data is critical to understand their limits and the degree of confidence in model results. CHIMERE CTM (http://www.lmd.polytechnique.fr/chimere/) is a French national tool for operational forecast and decision support and is widely used in the international research community in various areas of atmospheric chemistry and physics, climate, and environment (http://www.lmd.polytechnique.fr/chimere/CW-articles.php). This work presents the model evaluation framework applied systematically to the new CHIMERE CTM versions in the course of the continuous model development. The framework uses three of the four CTM evaluation types identified by the Environmental Protection Agency (EPA) and the American Meteorological Society (AMS): operational, diagnostic, and dynamic. It allows to compare the overall model performance in subsequent model versions (operational evaluation), identify specific processes and/or model inputs that could be improved (diagnostic evaluation), and test the model sensitivity to the changes in air quality, such as emission reductions and meteorological events (dynamic evaluation). The observation datasets currently used for the evaluation are: EMEP (surface concentrations), AERONET (optical depths), and WOUDC (ozone sounding profiles). The framework is implemented as an automated processing chain and allows interactive exploration of the results via a web interface.

  6. Integrating wildfire plume rises within atmospheric transport models

    Science.gov (United States)

    Mallia, D. V.; Kochanski, A.; Wu, D.; Urbanski, S. P.; Krueger, S. K.; Lin, J. C.

    2016-12-01

    Wildfires can generate significant pyro-convection that is responsible for releasing pollutants, greenhouse gases, and trace species into the free troposphere, which are then transported a significant distance downwind from the fire. Oftentimes, atmospheric transport and chemistry models have a difficult time resolving the transport of smoke from these wildfires, primarily due to deficiencies in estimating the plume injection height, which has been highlighted in previous work as the most important aspect of simulating wildfire plume transport. As a result of the uncertainties associated with modeled wildfire plume rise, researchers face difficulties modeling the impacts of wildfire smoke on air quality and constraining fire emissions using inverse modeling techniques. Currently, several plume rise parameterizations exist that are able to determine the injection height of fire emissions; however, the success of these parameterizations has been mixed. With the advent of WRF-SFIRE, the wildfire plume rise and injection height can now be explicitly calculated using a fire spread model (SFIRE) that is dynamically linked with the atmosphere simulated by WRF. However, this model has only been tested on a limited basis due to computational costs. Here, we will test the performance of WRF-SFIRE in addition to several commonly adopted plume parameterizations (Freitas, Sofiev, and Briggs) for the 2013 Patch Springs (Utah) and 2012 Baker Canyon (Washington) fires, for both of which observations of plume rise heights are available. These plume rise techniques will then be incorporated within a Lagrangian atmospheric transport model (STILT) in order to simulate CO and CO2 concentrations during NASA's CARVE Earth Science Airborne Program over Alaska during the summer of 2012. Initial model results showed that STILT model simulations were unable to reproduce enhanced CO concentrations produced by Alaskan fires observed during 2012. Near-surface concentrations were drastically

  7. Modeling the atmospheric transport of radioactive contamination using the ETA model

    International Nuclear Information System (INIS)

    Telenta, B.; Antic, D.

    1996-01-01

    The atmosphere is the main medium that transports and disperses the radioactive and/or chemical contaminants in operational use and in accidents. Atmospheric models can be used to simulate the transport of contaminants in typical accidents and for realistic meteorological conditions. This paper describes an approach to simulating the Chernobyl accident and similar hypothetical cases. The study is based on an atmospheric model extended by an additional equation that models the transport of a certain radioactive concentration. A step mountain synoptic model, called the ETA model (well-known model for weather forecasting), is used to investigate the transport and deposition of radioactive material in the Chernobyl accident zone

  8. PCBs in the Arctic atmosphere: determining important driving forces using a global atmospheric transport model

    Directory of Open Access Journals (Sweden)

    C. L. Friedman

    2016-03-01

    Full Text Available We present a spatially and temporally resolved global atmospheric polychlorinated biphenyl (PCB model, driven by meteorological data, that is skilled at simulating mean atmospheric PCB concentrations and seasonal cycles in the Northern Hemisphere midlatitudes and mean Arctic concentrations. However, the model does not capture the observed Arctic summer maximum in atmospheric PCBs. We use the model to estimate global budgets for seven PCB congeners, and we demonstrate that congeners that deposit more readily show lower potential for long-range transport, consistent with a recently described "differential removal hypothesis" regarding the hemispheric transport of PCBs. Using sensitivity simulations to assess processes within, outside, or transport to the Arctic, we examine the influence of climate- and emissions-driven processes on Arctic concentrations and their effect on improving the simulated Arctic seasonal cycle. We find evidence that processes occurring outside the Arctic have a greater influence on Arctic atmospheric PCB levels than processes that occur within the Arctic. Our simulations suggest that re-emissions from sea ice melting or from the Arctic Ocean during summer would have to be unrealistically high in order to capture observed temporal trends of PCBs in the Arctic atmosphere. We conclude that midlatitude processes are likely to have a greater effect on the Arctic under global change scenarios than re-emissions within the Arctic.

  9. PCBs in the Arctic atmosphere: determining important driving forces using a global atmospheric transport model

    Science.gov (United States)

    Friedman, Carey L.; Selin, Noelle E.

    2016-03-01

    We present a spatially and temporally resolved global atmospheric polychlorinated biphenyl (PCB) model, driven by meteorological data, that is skilled at simulating mean atmospheric PCB concentrations and seasonal cycles in the Northern Hemisphere midlatitudes and mean Arctic concentrations. However, the model does not capture the observed Arctic summer maximum in atmospheric PCBs. We use the model to estimate global budgets for seven PCB congeners, and we demonstrate that congeners that deposit more readily show lower potential for long-range transport, consistent with a recently described "differential removal hypothesis" regarding the hemispheric transport of PCBs. Using sensitivity simulations to assess processes within, outside, or transport to the Arctic, we examine the influence of climate- and emissions-driven processes on Arctic concentrations and their effect on improving the simulated Arctic seasonal cycle. We find evidence that processes occurring outside the Arctic have a greater influence on Arctic atmospheric PCB levels than processes that occur within the Arctic. Our simulations suggest that re-emissions from sea ice melting or from the Arctic Ocean during summer would have to be unrealistically high in order to capture observed temporal trends of PCBs in the Arctic atmosphere. We conclude that midlatitude processes are likely to have a greater effect on the Arctic under global change scenarios than re-emissions within the Arctic.

  10. ATR, Radiation Transport Models in Atmosphere at Various Altitudes

    International Nuclear Information System (INIS)

    1981-01-01

    1 - Description of problem or function: ATR is a user-oriented code for calculating quickly and simply radiation environment problems at all altitudes in the atmosphere. The code is based on parametric models of a comprehensive data base of air transport results which were generated using discrete ordinates transport techniques for infinite homogeneous air. The effects of air-ground interface and non-uniform air density are treated as perturbation corrections on homogeneous air results. ATR includes parametric models for neutrons and secondary gamma rays as a function of space, energy and source- target angle out to angles of 550 g/cm 2 of air. ATR contains parameterizations of infinite medium air transport of neutrons and secondary gamma rays and correction factors for the air-ground interface and high altitude exponential air. It responds to a series of user-oriented commands which specify the source, geometry and print options to output a variety of useful air transport information, including energy-angle dependent fluence, dose, current, and isodose ranges. 2 - Method of solution: The version 3 differs from earlier versions in that version 3 contains the parameterization of the new neutron and secondary gamma rays data base that was calculated using the latest DNA approved cross sections for air. Other improvements to the ATR code include: parameterization and inclusion into ATR of new air- over-ground correction factors, low energy x-rays calculations, new fission source, and new convenience options. 3 - Restrictions on the complexity of the problem: ATR takes approximately 36,000 decimal words of storage. This can be lessened by overlaying different parts of the code

  11. Regional atmospheric budgets of reduced nitrogen over the British isles assessed using a multi-layer atmospheric transport model

    NARCIS (Netherlands)

    Fournier, N.; Tang, Y.S.; Dragosits, U.; Kluizenaar, Y.de; Sutton, M.A.

    2005-01-01

    Atmospheric budgets of reduced nitrogen for the major political regions of the British Isles are investigated with a multi-layer atmospheric transport model. The model is validated against measurements of NH3 concentration and is developed to provide atmospheric budgets for defined subdomains of the

  12. Application of atmospheric transport models for complex terrain

    International Nuclear Information System (INIS)

    King, D.S.; Bunker, S.S.

    1984-01-01

    Numerical modeling techniques are applied to several diverse situations to study mesoscale transport of effluents in the earth's atmosphere. Simulations of a tracer release in complex terrain are compared with experiments carried out in the Northern California Geysers area during a period when nighttime drainage flow was the dominant feature. In addition, we study two situations, the Idaho National Engineering Laboratory and the Savannah River Laboratory, for which the terrain is assumed to not be a factor. These involve large modeling areas and in one case, time periods extending over more than two diurnal cycles. These model simulations indicate that a diagnostic wind model utilizing terrain-following coordinates gives reasonable agreement with observations obtained over simple as well as complex terrain. In order to increase the accuracy in simulations of pollutant concentration distribution, much more refinement in wind measurements in space and time is needed since small differences in wind direction, for example, can produce a large difference in computed and measured concentration sufficiently downwind of a source

  13. Modeling of uncertainty in atmospheric transport system using hybrid method

    International Nuclear Information System (INIS)

    Pandey, M.; Ranade, Ashok; Brij Kumar; Datta, D.

    2012-01-01

    Atmospheric dispersion models are routinely used at nuclear and chemical plants to estimate exposure to the members of the public and occupational workers due to release of hazardous contaminants into the atmosphere. Atmospheric dispersion is a stochastic phenomenon and in general, the concentration of the contaminant estimated at a given time and at a predetermined location downwind of a source cannot be predicted precisely. Uncertainty in atmospheric dispersion model predictions is associated with: 'data' or 'parameter' uncertainty resulting from errors in the data used to execute and evaluate the model, uncertainties in empirical model parameters, and initial and boundary conditions; 'model' or 'structural' uncertainty arising from inaccurate treatment of dynamical and chemical processes, approximate numerical solutions, and internal model errors; and 'stochastic' uncertainty, which results from the turbulent nature of the atmosphere as well as from unpredictability of human activities related to emissions, The possibility theory based on fuzzy measure has been proposed in recent years as an alternative approach to address knowledge uncertainty of a model in situations where available information is too vague to represent the parameters statistically. The paper presents a novel approach (called Hybrid Method) to model knowledge uncertainty in a physical system by a combination of probabilistic and possibilistic representation of parametric uncertainties. As a case study, the proposed approach is applied for estimating the ground level concentration of hazardous contaminant in air due to atmospheric releases through the stack (chimney) of a nuclear plant. The application illustrates the potential of the proposed approach. (author)

  14. RETADDII: modeling long-range atmospheric transport of radionuclides

    International Nuclear Information System (INIS)

    Murphy, B.D.

    1982-01-01

    A versatile model is described which estimates atmospheric dispersion based on plume trajectories calculated for the mixed layer. This model allows the treatment of the dispersal from a source at an arbitrary height while taking account of plume depletion by dry and wet deposition together with the decay of material to successor species. The plume depletion, decay and growth equations are solved in an efficient manner which can accommodate up to eight pollutants (i.e. a parent and seven serial decay products). The code is particularly suitable for applications involving radioactive chain decay or for cases involving chemical species with successor decay products. Arbitrary emission rates can be specified for the members of the chain or, as is commonly the case, a sole emission rate can be specified for the first member. The code, in its current configuration, uses readily available upper-air wind data for the North American continent

  15. Atmospheric transport and dispersion modeling for the Hanford Environmental Dose Reconstruction Project

    International Nuclear Information System (INIS)

    Ramsdell, J.V.

    1991-07-01

    Radiation doses that may have resulted from operations at the Hanford Site are being estimated in the Hanford Environmental Dose Reconstruction (HEDR) Project. One of the project subtasks, atmospheric transport, is responsible for estimating the transport, diffusion and deposition of radionuclides released to the atmosphere. This report discusses modeling transport and diffusion in the atmospheric pathway. It is divided into three major sections. The first section of the report presents the atmospheric modeling approach selected following discussion with the Technical Steering Panel that directs the HEDR Project. In addition, the section discusses the selection of the MESOI/MESORAD suite of atmospheric dispersion models that form the basis for initial calculations and future model development. The second section of the report describes alternative modeling approaches that were considered. Emphasis is placed on the family of plume and puff models that are based on Gaussian solution to the diffusion equations. The final portion of the section describes the performance of various models. The third section of the report discusses factors that bear on the selection of an atmospheric transport modeling approach for HEDR. These factors, which include the physical setting of the Hanford Site and the available meteorological data, serve as constraints on model selection. Five appendices are included in the report. 39 refs., 4 figs., 2 tabs

  16. Interface modeling for predicting atmospheric transport of biota

    Science.gov (United States)

    Gary L. Achtemeier

    2002-01-01

    The influx of foreign organisms and the growing resistance of resident organisms to chemical controls are coming at a time of increasing world population and need for greater efficiency in food production in the face of changing world climate. Rapid transportation and increased world trade have introduced foreign pests into American agricultural areas. Pesticides are...

  17. Development of an advanced atmospheric/transport model for emergency response purposes

    International Nuclear Information System (INIS)

    Fast, J.D.; O'Steen, B.L.; Addis, R.P.

    1991-01-01

    Atmospheric transport and diffusion models have been developed for real-time calculations of the location and concentration of toxic or radioactive materials during an accidental release at the Savannah River Site (SRS). These models are based Gaussian distributions and have been incorporated into an automated menu-driven program called the WIND (Weather INformation and Display) system. The WIND system atmospheric models employ certain assumptions that allow the computations of the ground-level concentration of toxic or radioactive materials to be made quickly. Gaussian models, such as PF/PL and 2DPUF, suffer from serious limitations including the inability to represent recirculation of pollutants in complex terrain, the use of one stability class at a given time to represent turbulent mixing over heterogeneous terrain, and the use of a wind field computed at only one height in the atmosphere. These limitations arise because the fundamental conservation relations of the atmosphere have been grossly simplified. Three-dimensional coupled atmospheric-dispersion models are not limited by the over-simplifications of the Gaussian assumption and have been used in the past to predict the transport of pollutants in a variety of atmospheric circulations. The disadvantage of these models is that they require large amounts of computational time; however, technology has progressed enough so that real-time simulations of dispersion may be made. These complex models can be run in an operational mode so that routine forecasts of the wind field and particulate concentration can be made

  18. Application of Radioxenon Stack Emission Data in High-Resolution Atmospheric Transport Modelling

    Science.gov (United States)

    Kusmierczyk-Michulec, J.; Schoeppner, M.; Kalinowski, M.; Bourgouin, P.; Kushida, N.; Barè, J.

    2017-12-01

    The Comprehensive Nuclear-Test-Ban Treaty Organisation (CTBTO) has developed the capability to run high-resolution atmospheric transport modelling by employing WRF and Flexpart-WRF. This new capability is applied to simulate the impact of stack emission data on simulated concentrations and how the availability of such data improves the overall accuracy of atmospheric transport modelling. The presented case study focuses on xenon-133 emissions from IRE, a medical isotope production facility in Belgium, and air concentrations detected at DEX33, a monitoring station close to Freiburg, Germany. The CTBTO is currently monitoring the atmospheric concentration of xenon-133 at 25 stations and will further expand the monitoring efforts to 40 stations worldwide. The incentive is the ability to detect xenon-133 that has been produced and released from a nuclear explosion. A successful detection can be used to prove the nuclear nature of an explosion and even support localization efforts. However, xenon-133 is also released from nuclear power plants and to a larger degree from medical isotope production facilities. The availability of stack emission data in combination with atmospheric transport modelling can greatly facilitate the understanding of xenon-133 concentrations detected at monitoring stations to distinguish between xenon-133 that has been emitted from a nuclear explosion and from civilian sources. Newly available stack emission data is used with a high-resolution version of the Flexpart atmospheric transport model, namely Flexpart-WRF, to assess the impact of the emissions on the detected concentrations and the advantage gained from the availability of such stack emission data. The results are analyzed with regard to spatial and time resolution of the high-resolution model and in comparison to conventional atmospheric transport models with and without stack emission data.

  19. Cloud-radiative effects on implied oceanic energy transport as simulated by atmospheric general circulation models

    Science.gov (United States)

    Gleckler, P. J.; Randall, D. A.; Boer, G.; Colman, R.; Dix, M.; Galin, V.; Helfand, M.; Kiehl, J.; Kitoh, A.; Lau, W.

    1995-01-01

    This paper summarizes the ocean surface net energy flux simulated by fifteen atmospheric general circulation models constrained by realistically-varying sea surface temperatures and sea ice as part of the Atmospheric Model Intercomparison Project. In general, the simulated energy fluxes are within the very large observational uncertainties. However, the annual mean oceanic meridional heat transport that would be required to balance the simulated surface fluxes is shown to be critically sensitive to the radiative effects of clouds, to the extent that even the sign of the Southern Hemisphere ocean heat transport can be affected by the errors in simulated cloud-radiation interactions. It is suggested that improved treatment of cloud radiative effects should help in the development of coupled atmosphere-ocean general circulation models.

  20. Modelling atmospheric transport of α-hexachlorocyclohexane in the Northern Hemispherewith a 3-D dynamical model: DEHM-POP

    Directory of Open Access Journals (Sweden)

    K. M. Hansen

    2004-01-01

    Full Text Available The Danish Eulerian Hemispheric Model (DEHM is a 3-D dynamical atmospheric transport model originally developed to describe the atmospheric transport of sulphur into the Arctic. A new version of the model, DEHM-POP, developed to study the atmospheric transport and environmental fate of persistent organic pollutants (POPs is presented. During environmental cycling, POPs can be deposited and re-emitted several times before reaching a final destination. A description of the exchange processes between the land/ocean surfaces and the atmosphere is included in the model to account for this multi-hop transport. The α-isomer of the pesticide hexachlorocyclohexane (α-HCH is used as tracer in the model development. The structure of the model and processes included are described in detail. The results from a model simulation showing the atmospheric transport for the years 1991 to 1998 are presented and evaluated against measurements. The annual averaged atmospheric concentration of α-HCH for the 1990s is well described by the model; however, the shorter-term average concentration for most of the stations is not well captured. This indicates that the present simple surface description needs to be refined to get a better description of the air-surface exchange processes of POPs.

  1. An evaluation of the Cray T3D programming paradigms in atmospheric chemistry/transport models

    NARCIS (Netherlands)

    J.G. Blom (Joke); C. Keßler (Carsten); J.G. Verwer (Jan)

    1996-01-01

    textabstractIn this paper we compare the different programming paradigms available on the Cray T3D for the implementation of a 3D prototype of an Atmospheric Chemistry/Transport Model. We discuss the amount of work needed to convert existing codes to the T3D and the portability of the resulting

  2. Modeling the atmospheric transport and outflow of polycyclic aromatic hydrocarbons emitted from China

    Science.gov (United States)

    Zhang, Yanxu; Shen, Huizhong; Tao, Shu; Ma, Jianmin

    2011-06-01

    An Euler atmospheric transport model CanMETOP (Canadian Model for Environmental Transport of Organochlorine Pesticides) was applied to the atmospheric transport and outflow of polycyclic aromatic hydrocarbons (PAHs) in China in 2003 based on a square kilometer resolution emission inventory. The reaction with OH radical, gas/particle partition by considering the adsorption onto total aerosol surface area, and dynamic soil/ocean-air exchange of PAHs were also considered. The results show that the spatial distribution of PAH concentration levels in the atmosphere is greatly controlled by emission and meteorological conditions. Elevated concentration levels are predicted in Shanxi, Guizhou, North China Plain, Sichuan Basin and Chongqing metropolitan areas due to the high emission densities at those locations. High concentrations are also modeled in environments offshore of China and in the western Pacific Ocean. The model also predicts a slightly decreasing vertical profile in the planetary boundary layer (lower than ˜1 km), but concentration decreases ˜2 orders of magnitude in the free atmosphere. The Westerlies as well as the East Asian Monsoon and local topographical forcings are identified as key factors influencing the transport pattern of PAHs in China. In 2003, ˜3800°tons of the sixteen parent PAHs listed on USEPA priority control list were transported out of China with about 80% transported through the eastern boundary. The outflow concentrates near 30°N, signifying a slight discrepancy from the position of emission density peaks. The center of the outflow plume is located at a height of ˜1 km at 120°E, and climbs to 3.5 km and 5 km at 130°E and 140°E, respectively. A seasonal variation of 5-6 fold is also found for the outflow flux with greatly elevated transport flux in spring and winter.

  3. Effective pollutant emission heights for atmospheric transport modelling based on real-world information.

    Science.gov (United States)

    Pregger, Thomas; Friedrich, Rainer

    2009-02-01

    Emission data needed as input for the operation of atmospheric models should not only be spatially and temporally resolved. Another important feature is the effective emission height which significantly influences modelled concentration values. Unfortunately this information, which is especially relevant for large point sources, is usually not available and simple assumptions are often used in atmospheric models. As a contribution to improve knowledge on emission heights this paper provides typical default values for the driving parameters stack height and flue gas temperature, velocity and flow rate for different industrial sources. The results were derived from an analysis of the probably most comprehensive database of real-world stack information existing in Europe based on German industrial data. A bottom-up calculation of effective emission heights applying equations used for Gaussian dispersion models shows significant differences depending on source and air pollutant and compared to approaches currently used for atmospheric transport modelling.

  4. Comparing Global Atmospheric CO2 Flux and Transport Models with Remote Sensing (and Other) Observations

    Science.gov (United States)

    Kawa, S. R.; Collatz, G. J.; Pawson, S.; Wennberg, P. O.; Wofsy, S. C.; Andrews, A. E.

    2010-01-01

    We report recent progress derived from comparison of global CO2 flux and transport models with new remote sensing and other sources of CO2 data including those from satellite. The overall objective of this activity is to improve the process models that represent our understanding of the workings of the atmospheric carbon cycle. Model estimates of CO2 surface flux and atmospheric transport processes are required for initial constraints on inverse analyses, to connect atmospheric observations to the location of surface sources and sinks, to provide the basic framework for carbon data assimilation, and ultimately for future projections of carbon-climate interactions. Models can also be used to test consistency within and between CO2 data sets under varying geophysical states. Here we focus on simulated CO2 fluxes from terrestrial vegetation and atmospheric transport mutually constrained by analyzed meteorological fields from the Goddard Modeling and Assimilation Office for the period 2000 through 2009. Use of assimilated meteorological data enables direct model comparison to observations across a wide range of scales of variability. The biospheric fluxes are produced by the CASA model at 1x1 degrees on a monthly mean basis, modulated hourly with analyzed temperature and sunlight. Both physiological and biomass burning fluxes are derived using satellite observations of vegetation, burned area (as in GFED-3), and analyzed meteorology. For the purposes of comparison to CO2 data, fossil fuel and ocean fluxes are also included in the transport simulations. In this presentation we evaluate the model's ability to simulate CO2 flux and mixing ratio variability in comparison to remote sensing observations from TCCON, GOSAT, and AIRS as well as relevant in situ observations. Examples of the influence of key process representations are shown from both forward and inverse model comparisons. We find that the model can resolve much of the synoptic, seasonal, and interannual

  5. Development of atmosphere-soil-vegetation model for investigation of radioactive materials transport in terrestrial biosphere

    International Nuclear Information System (INIS)

    Katata, Genki; Nagai, Haruyasu; Zhang, Leiming; Held, Andreas; Serca, Dominique; Klemm, Otto

    2010-01-01

    In order to investigate the transport of radionuclides in the terrestrial biosphere we have developed a one-dimensional numerical model named SOLVEG that predicts the transfer of water, heat, and gaseous and particulate matters in atmosphere-soil-vegetation system. The SOLVEG represents atmosphere, soil, and vegetation as an aggregation of several layers. Basic equations used in the model are solved using the finite difference method. Most of predicted variables are interrelated with the source/sink terms of momentum, water, heat, gases, and particles based on mathematically described biophysical processes in atmosphere, soil and vegetation. The SOLVEG can estimate dry, wet and fog deposition of gaseous and particulate matters at each canopy layer. Performance tests of the SOLVEG with several observational sites were carried out. The SOLVEG predicted the observed temporal changes in water vapor, CO 2 , and ozone fluxes over vegetated surfaces. The SOLVEG also reproduced measured fluxes of fog droplets and of fine aerosols over the forest. (author)

  6. Effective pollutant emission heights for atmospheric transport modelling based on real-world information

    International Nuclear Information System (INIS)

    Pregger, Thomas; Friedrich, Rainer

    2009-01-01

    Emission data needed as input for the operation of atmospheric models should not only be spatially and temporally resolved. Another important feature is the effective emission height which significantly influences modelled concentration values. Unfortunately this information, which is especially relevant for large point sources, is usually not available and simple assumptions are often used in atmospheric models. As a contribution to improve knowledge on emission heights this paper provides typical default values for the driving parameters stack height and flue gas temperature, velocity and flow rate for different industrial sources. The results were derived from an analysis of the probably most comprehensive database of real-world stack information existing in Europe based on German industrial data. A bottom-up calculation of effective emission heights applying equations used for Gaussian dispersion models shows significant differences depending on source and air pollutant and compared to approaches currently used for atmospheric transport modelling. - The comprehensive analysis of real-world stack data provides detailed default parameter values for improving vertical emission distribution in atmospheric modelling

  7. Real Time Radioactivity Monitoring and its Interface with predictive atmospheric transport modelling

    International Nuclear Information System (INIS)

    Raes, F.

    1990-01-01

    After the Chernobyl accident, a programme was initiated at the Joint Research Centre of the Commission of the European Communities named 'Radioactivity Environmental Monitoring' (REM). The main aspects considered in REM are: data handling, atmospheric modelling and data quality control related to radioactivity in the environment. The first REM workshop was held in December 1987: 'Aerosol Measurements and Nuclear Accidents: A Reconsideration'. (CEC EUR 11755 EN). These are the proceedings of the second REM workshop, held in December 1989, dealing with real-time radioactivity monitoring and its interface with predictive atmospheric models. Atmospheric transport models, in applications extending over time scales of the order of a day or more become progressively less reliable to the extent that an interface with real-time radiological field data becomes highly desirable. Through international arrangements for early exchange of information in the event of a nuclear accident (European Community, IAEA) such data might become available on a quasi real-time basis. The question is how best to use such information to improve our predictive capabilities. During the workshop the present status of on-line monitoring networks for airborne radioactivity in the EC Member States has been reviewed. Possibilities were discussed to use data from such networks as soon as they become available, in order to update predictions made with long range transport models. This publication gives the full text of 13 presentations and a report of the Round Table Discussion held afterwards

  8. Error characterization of CO2 vertical mixing in the atmospheric transport model WRF-VPRM

    Directory of Open Access Journals (Sweden)

    U. Karstens

    2012-03-01

    Full Text Available One of the dominant uncertainties in inverse estimates of regional CO2 surface-atmosphere fluxes is related to model errors in vertical transport within the planetary boundary layer (PBL. In this study we present the results from a synthetic experiment using the atmospheric model WRF-VPRM to realistically simulate transport of CO2 for large parts of the European continent at 10 km spatial resolution. To elucidate the impact of vertical mixing error on modeled CO2 mixing ratios we simulated a month during the growing season (August 2006 with different commonly used parameterizations of the PBL (Mellor-Yamada-Janjić (MYJ and Yonsei-University (YSU scheme. To isolate the effect of transport errors we prescribed the same CO2 surface fluxes for both simulations. Differences in simulated CO2 mixing ratios (model bias were on the order of 3 ppm during daytime with larger values at night. We present a simple method to reduce this bias by 70–80% when the true height of the mixed layer is known.

  9. Aerosol Sources, Absorption, and Intercontinental Transport: Synergies among Models, Remote Sensing, and Atmospheric Measurements

    Science.gov (United States)

    Chin, Mian; Ginoux, Paul; Dubovik, Oleg; Holben, Brent; Kaufman, Yoram; chu, Allen; Anderson, Tad; Quinn, Patricia

    2003-01-01

    Aerosol climate forcing is one of the largest uncertainties in assessing the anthropogenic impact on the global climate system. This uncertainty arises from the poorly quantified aerosol sources, especially black carbon emissions, our limited knowledge of aerosol mixing state and optical properties, and the consequences of intercontinental transport of aerosols and their precursors. Here we use a global model GOCART to simulate atmospheric aerosols, including sulfate, black carbon, organic carbon, dust, and sea salt, from anthropogenic, biomass burning, and natural sources. We compare the model calculated aerosol extinction and absorption with those quantities from the ground-based sun photometer measurements from AERONET at several different wavelengths and the field observations from ACE-Asia, and model calculated total aerosol optical depth and fine mode fractions with the MODIS satellite retrieval. We will also estimate the intercontinental transport of pollution and dust aerosols from their source regions to other areas in different seasons.

  10. Model study of atmospheric transport using carbon 14 and strontium 90 as inert tracers

    Science.gov (United States)

    Kinnison, D. E.; Johnston, H. S.; Wuebbles, D. J.

    1994-10-01

    The observed excess carbon 14 in the atmosphere from 1963 to 1970 provides unique, but limited, data up to an altitude of about 35 km for testing the air motions calculated by 11 multidimensional atmospheric models. Strontium 90 measurements in the atmosphere from 1964 to mid-1967 provide data that have more latitude coverage than those of carbon 14 and are useful for testing combined models of air motions and aerosol settling. Model calculations for carbon 14 begin at October 1963, 9 months after the conclusion of the nuclear bomb tests; the initial conditions for the calculations are derived by three methods, each of which agrees fairly well with measured carbon 14 in October 1963 and each of which has widely different values in regions of the stratosphere where there were no carbon 14 measurements. The model results are compared to the stratospheric measurements, not as if the observed data were absolute standards, but in an effort to obtain new insight about the models and about the atmosphere. The measured carbon 14 vertical profiles at 31°N are qualitatively different from all of the models; the measured vertical profiles show a maximum mixing ratio in the altitude range of 20 to 25 km from October 1963 through July 1966, but all modeled profiles show mixing ratio maxima that increase in altitude from 20 km in October 1963 to greater than 40 km by April 1966. Both carbon 14 and strontium 90 data indicate that the models differ substantially among themselves with respect to stratosphere-troposphere exchange rate, but the modeled carbon 14 stratospheric residence times indicate that differences among the models are small with respect to transport rate between the middle stratosphere and the lower stratosphere. Strontium 90 data indicate that aerosol settling is important up to at least 35 km altitude. Relative to the measurements, about three quarters of the models transport carbon 14 from the lower stratosphere to the troposphere too rapidly, and all models

  11. Comparison of TCCON and GOSAT Column Averaged CO2 to Global Atmospheric Transport Modeling

    Science.gov (United States)

    Liu, Y.; Kawa, S. R.; Collatz, G. J.; Wang, J. S.

    2012-12-01

    The measurements of column averaged CO2 contain ground surface CO2 flux signals. Comparing these observations to modeling results helps us to better understand the distributions and variations of CO2 sources and sinks and to evaluate the model transport. In this study, we ran a global atmospheric transport model (PCTM) from 2003 to 2011, using a near-balanced bottom up CASA/GSFC-GFED2 CO2 emissions and uptake as the biospheric part of total CO2 flux. All the transport modeling and biospheric CO2 fluxes are forced or driven by NASA MERRA reanalysis data. The PCTM model captures the observed CO2 seasonal cycles and inter-hemispheric gradients at TCCON sites well, within about a ppmv in most instances. The model also agrees very well with observations in the phase and amplitude of synoptic variations, showing high spatial and temporal correlations. These results suggest that the PCTM model has a good skill in capturing variable processes at different atmospheric levels, including the surface level CO2 signals. This study also shows that the CO2 fluxes used in the modeling (primarily the biospheric ones) provide a reasonably good prior representation of the CO2 flux distribution globally. Comparison analysis of GOSAT XCO2 data to PCTM modeling is mainly done on the monthly basis. The GOSAT XCO2 data used are from the JPL ACOS team's version 2.9. We co-sampled the modeling results with GOSAT XCO2 measurements spatially and temporally. Results show the GOSAT retrievals have the ability to capture the seasonal cycles globally, generally presenting reasonable positive correlations with modeling, with some persistent negative biases. On the synoptic scale, GOSAT XCO2 shows obvious discrepancies with modeling in some areas, suggesting possible large uncertainties in the XCO2 retrievals. We also compared the column CO2 data to output from a perturbed CO2 flux model to test the sensitivity of the observations in detecting small flux changes. These sensitivity experiments will

  12. Use of MODIS Satellite Images and an Atmospheric Dust Transport Model to Evaluate Juniperus spp. Pollen Phenology and Transport

    Science.gov (United States)

    Luvall, J. C.; Sprigg, W. A.; Levetin, E.; Huete, A.; Nickovic, S.; Pejanovic, G. A.; Vukovic, A.; Van de Water, P. K.; Myers, O. B.; Budge, A. M.; hide

    2011-01-01

    Pollen can be transported great distances. Van de Water et al., 2003 reported Juniperus spp. pollen, a significant aeroallergen was transported 200-600 km. Hence local observations of plant phenology may not be consistent with the timing and source of pollen collected by pollen sampling instruments. Direct detection of pollen via satellite is not practical. A practical alternative combines modeling and phenological observations using ground based sampling and satellite data. The DREAM (Dust REgional Atmospheric Model) is a verified model for atmospheric dust transport modeling using MODIS data products to identify source regions and quantities of dust (Nickovic et al. 2001). The use of satellite data products for studying phenology is well documented (White and Nemani 2006). In the current project MODIS data will provide critical input to the PREAM model providing pollen source location, timing of pollen release, and vegetation type. We are modifying the DREAM model (PREAM - Pollen REgional Atmospheric Model) to incorporate pollen transport. The linkages already exist with DREAM through PHAiRS (Public Health Applications in Remote Sensing) to the public health community. This linkage has the potential to fill this data gap so that the potential association of health effects of pollen can better be tracked for possible linkage with health outcome data which may be associated with asthma, respiratory effects, myocardial infarction, and lost workdays. Juniperus spp. pollen phenology may respond to a wide range of environmental factors such as day length, growing degree-days, precipitation patterns and soil moisture. Species differences are also important. These environmental factors vary over both time and spatial scales. Ground based networks such as the USA National Phenology Network have been established to provide national wide observations of vegetation phenology. However, the density of observers is not adequate to sufficiently document the phenology variability

  13. Estimating overall persistence and long-range transport potential of persistent organic pollutants: a comparison of seven multimedia mass balance models and atmospheric transport models.

    Science.gov (United States)

    Hollander, A; Scheringer, M; Shatalov, V; Mantseva, E; Sweetman, A; Roemer, M; Baart, A; Suzuki, N; Wegmann, F; van de Meent, D

    2008-10-01

    Two different approaches to modeling the environmental fate of organic chemicals have been developed in recent years. The first approach is applied in multimedia box models, calculating average concentrations in homogeneous boxes which represent the different environmental media, based on intermedia partitioning, transport, and degradation processes. In the second approach, used in atmospheric transport models, the spatially and temporally variable atmospheric dynamics form the basis for calculating the environmental distribution of chemicals, from which also exchange processes to other environmental media are modeled. The main goal of the present study was to investigate if the multimedia mass balance models CliMoChem, SimpleBox, EVn-BETR, G-CIEMS, OECD Tool and the atmospheric transport models MSCE-POP and ADEPT predict the same rankings of the overall persistence (P(ov)) and long-range transport potential (LRTP) of POPs, and to explain differences and similarities between the rankings by the mass distributions and inter-compartment mass flows. The study was performed for a group of 14 reference chemicals. For P(ov), the models yield consistent results, owing to the large influence of phase partitioning parameters and degradation rate constants, which are used similarly by all models. Concerning LRTP, there are larger differences between the models than for P(ov), due to different LRTP calculation methods and spatial model resolutions. Between atmospheric transport models and multimedia fate models, no large differences in mass distributions and inter-compartment flows can be recognized. Deviations in mass flows are mainly caused by the geometrical design of the models.

  14. Modelling of atmospheric transport of heavy metals emitted from Polish power sector

    International Nuclear Information System (INIS)

    Zysk, Janusz

    2016-01-01

    Modelling of atmospheric transport of heavy metals emitted from Polish power sector. Many studies have been conducted to investigate the atmospheric heavy metals contamination and its deposition to ecosystems. The increasing attention to mercury pollution has been mainly driven by the growing evidence of its negative impacts on wildlife, ecosystems and particularly human health. Lead and cadmium are also toxics which are being emitted into the atmosphere by anthropogenic as well as natural sources. The harmful influence of these three heavy metals was underlined in the Aarhus Protocol on Heavy Metals of 1998. The Parties of this protocol (including Poland) are obligated to reduce emissions, observe the transport and the amounts of lead, mercury and cadmium in the environment. Poland is one of the biggest emitter of mercury, lead and cadmium in Europe mainly due to emission from coal combustion processes. Therefore in Poland, research efforts to study the heavy metals emission, atmospheric transport, concentration and deposition are extremely important. The objectives of this work were twofold: - The practical objective was to develop and run a model to represent the atmospheric dispersion of mercury and to implement it in the air quality modelling platform Polyphemus.- The scientific objective was to perform heavy metals dispersion studies over Europe and detailed studies of the impact of the polish power sector on the air quality regarding mercury, cadmium and lead. To meet the declared aim, a new mercury chemical model was implemented into the Polyphemus air quality system. The scientific literature was reviewed regarding mercury chemistry and mercury chemical models. It can be concluded that the chemistry of mercury is still not well known. The models also differ in the way of calculating the dry and wet deposition of mercury. The elemental gaseous mercury ambient concentrations are evenly distributed, on the contrary, high variations in the spatial gradients of

  15. Introductory lecture: atmospheric organic aerosols: insights from the combination of measurements and chemical transport models.

    Science.gov (United States)

    Pandis, Spyros N; Donahue, Neil M; Murphy, Benjamin N; Riipinen, Ilona; Fountoukis, Christos; Karnezi, Eleni; Patoulias, David; Skyllakou, Ksakousti

    2013-01-01

    The formation, atmospheric evolution, properties, and removal of organic particulate matter remain some of the least understood aspects of atmospheric chemistry despite the importance of organic aerosol (OA) for both human health and climate change. Here, we summarize our recent efforts to deal with the chemical complexity of the tens of thousands of organic compounds in the atmosphere using the volatility-oxygen content framework (often called the 2D-Volatility Basis Set, 2D-VBS). Our current ability to measure the ambient OA concentration as a function of its volatility and oxygen to carbon (O:C) ratio is evaluated. The combination of a thermodenuder, isothermal dilution and Aerosol Mass Spectrometry (AMS) together with a mathematical aerosol dynamics model is a promising approach. The development of computational modules based on the 2D-VBS that can be used in chemical transport models (CTMs) is described. Approaches of different complexity are tested against ambient observations, showing the challenge of simulating the complex chemical evolution of atmospheric OA. The results of the simplest approach describing the net change due to functionalization and fragmentation are quite encouraging, reproducing both the observed OA levels and O : C in a variety of conditions. The same CTM coupled with source-apportionment algorithms can be used to gain insights into the travel distances and age of atmospheric OA. We estimate that the average age of OA near the ground in continental locations is 1-2 days and most of it was emitted (either as precursor vapors or particles) hundreds of kilometers away. Condensation of organic vapors on fresh particles is critical for the growth of these new particles to larger sizes and eventually to cloud condensation nuclei (CCN) sizes. The semivolatile organics currently simulated by CTMs are too volatile to condense on these tiny particles with high curvature. We show that chemical aging reactions converting these semivolatile

  16. Progress in Modeling Global Atmospheric CO2 Fluxes and Transport: Results from Simulations with Diurnal Fluxes

    Science.gov (United States)

    Collatz, G. James; Kawa, R.

    2007-01-01

    Progress in better determining CO2 sources and sinks will almost certainly rely on utilization of more extensive and intensive CO2 and related observations including those from satellite remote sensing. Use of advanced data requires improved modeling and analysis capability. Under NASA Carbon Cycle Science support we seek to develop and integrate improved formulations for 1) atmospheric transport, 2) terrestrial uptake and release, 3) biomass and 4) fossil fuel burning, and 5) observational data analysis including inverse calculations. The transport modeling is based on meteorological data assimilation analysis from the Goddard Modeling and Assimilation Office. Use of assimilated met data enables model comparison to CO2 and other observations across a wide range of scales of variability. In this presentation we focus on the short end of the temporal variability spectrum: hourly to synoptic to seasonal. Using CO2 fluxes at varying temporal resolution from the SIB 2 and CASA biosphere models, we examine the model's ability to simulate CO2 variability in comparison to observations at different times, locations, and altitudes. We find that the model can resolve much of the variability in the observations, although there are limits imposed by vertical resolution of boundary layer processes. The influence of key process representations is inferred. The high degree of fidelity in these simulations leads us to anticipate incorporation of realtime, highly resolved observations into a multiscale carbon cycle analysis system that will begin to bridge the gap between top-down and bottom-up flux estimation, which is a primary focus of NACP.

  17. Atmospheric transport modelling related to radionuclide monitoring in support of the comprehensive nuclear-test-ban treaty verification

    International Nuclear Information System (INIS)

    Kalinowski, M.B.

    2001-01-01

    Global monitoring for relevant radionuclides in the atmosphere serves as part of the International Monitoring System to verify compliance with the Comprehensive Nuclear-Test-Ban-Treaty (CTBT). Atmospheric transport modelling can be applied to support these measurements and to get indications for possible source locations of detected relevant anthropogenic nuclides. This paper puts a focus on those issues that are of relevance to the International Data Centre (IDC). Possible methods of atmospheric transport modelling are outlined. The current tentative implementation at the IDC is described here. (orig.) [de

  18. Machine learning of atmospheric chemistry. Applications to a global chemistry transport model.

    Science.gov (United States)

    Evans, M. J.; Keller, C. A.

    2017-12-01

    Atmospheric chemistry is central to many environmental issues such as air pollution, climate change, and stratospheric ozone loss. Chemistry Transport Models (CTM) are a central tool for understanding these issues, whether for research or for forecasting. These models split the atmosphere in a large number of grid-boxes and consider the emission of compounds into these boxes and their subsequent transport, deposition, and chemical processing. The chemistry is represented through a series of simultaneous ordinary differential equations, one for each compound. Given the difference in life-times between the chemical compounds (mili-seconds for O(1D) to years for CH4) these equations are numerically stiff and solving them consists of a significant fraction of the computational burden of a CTM.We have investigated a machine learning approach to solving the differential equations instead of solving them numerically. From an annual simulation of the GEOS-Chem model we have produced a training dataset consisting of the concentration of compounds before and after the differential equations are solved, together with some key physical parameters for every grid-box and time-step. From this dataset we have trained a machine learning algorithm (random regression forest) to be able to predict the concentration of the compounds after the integration step based on the concentrations and physical state at the beginning of the time step. We have then included this algorithm back into the GEOS-Chem model, bypassing the need to integrate the chemistry.This machine learning approach shows many of the characteristics of the full simulation and has the potential to be substantially faster. There are a wide range of application for such an approach - generating boundary conditions, for use in air quality forecasts, chemical data assimilation systems, centennial scale climate simulations etc. We discuss our approches' speed and accuracy, and highlight some potential future directions for

  19. Atmospheric transport modelling for the CTBT radionuclide network in routine operation and after the Fukushima releases

    International Nuclear Information System (INIS)

    Ross, J.O.; Ceranna, L.; Boennemann, C.; Schlosser, C.

    2014-01-01

    The Comprehensive Nuclear-Test-Ban Treaty (CTBT) bans all types of nuclear explosions. For verification of compliance with Treaty the International Monitoring System (IMS) is being built up by the Provisional Technical Secretariat (PTS) of the CTBT-Organisation in Vienna. The IMS observes waveform signals (seismic, infrasound, hydroacoustic) of explosions and traces of radionuclides in the atmosphere to proof the nuclear character of an event. The International Data Centre (IDC) provides analysis products for the IMS data such as various event bulletins, radionuclide reports, and atmospheric transport modeling (ATM) results confining the possible source region of detected radionuclides. The judgment on the character of a suspicious event remains with the member states. The German National Data Centre for verification of CTBT is hosted by the Federal Institute for Geosciences and Natural Resources (BGR) in Hannover. The BGR operates four IMS stations (IS26, IS27, PS19, and AS35) and cooperates closely with the Federal Office for Radiation Protection (BfS) who operates the radionuclide station RN33 at mount Schauinsland and supports the NDC with radionuclide expertise. In response to the Fukushima accident caused by the large magnitude 9.0 Tohuku Earthquake and Tsunami the HSYSPLIT model driven by 0.5 degree NCEP data was used at the German NDC to simulate the primary transport pathways of potentially emitted radioisotopes. The analysis focuses on arrival times and dilution ratios at the radionuclide stations of the IMS. The arrival times were predicted correctly at most stations for ten days after the accident. Traces of the Fukushima emissions were detected at all IMS radionuclide stations on the Northern Hemisphere end of March. In April also some stations on the Southern Hemisphere detected some traces which passed the ITCZ. In respect to the CTBT context the influence of the Tohoku earthquake and the Fukushima emissions on the network capability to detect a

  20. Atmospheric Transport Modelling and Radionuclide Analysis for the NPE 2015 scenario

    Science.gov (United States)

    Ross, J. Ole; Bollhöfer, Andreas; Heidmann, Verena; Krais, Roman; Schlosser, Clemens; Gestermann, Nicolai; Ceranna, Lars

    2017-04-01

    The Comprehensive Nuclear-Test-Ban Treaty (CTBT) prohibits all kinds of nuclear explosions. The International Monitoring System (IMS) is in place and at about 90% complete to verify compliance with the CTBT. The stations of the waveform technologies are capable to detect seismic, hydro-acoustic and infrasonic signals for detection, localization, and characterization of explosions. For practicing Comprehensive Nuclear-Test-Ban Treaty (CTBT) verification procedures and interplay between the International Data Centre (IDC) and National Data Centres (NDC), prepardness exercises (NPE) are regularly performed with selected events of fictitious CTBT-violation. The German NDC's expertise for radionuclide analyses and operation of station RN33 is provided by the Federal Office for Radiation Protection (BfS) while Atmospheric Transport Modelling (ATM) for CTBT purposes is performed at the Federal Institute for Geosciences and Natural Resources (BGR) for the combination of the radionuclide findings with waveform evidence. The radionuclide part of the NPE 2015 scenario is tackled in a joint effort by BfS and BGR. First, the NPE 2015 spectra are analysed, fission products are identified, and respective activity concentrations are derived. Special focus is on isotopic ratios which allow for source characterization and event timing. For atmospheric backtracking the binary coincidence method is applied for both, SRS fields from IDC and WMO-RSMC, and for in-house backward simulations in higher resolution for the first affected samples. Results are compared with the WebGrape PSR and the spatio-temporal domain with high atmospheric release probability is determined. The ATM results together with the radionuclide fingerprint are used for identification of waveform candidate events. Comparative forward simulations of atmospheric dispersion for candidate events are performed. Finally the overall consistency of various source scenarios is assessed and a fictitious government briefing on

  1. Two dimensional model study of atmospheric transport using carbon-14 and strontium-90 as inert tracers

    International Nuclear Information System (INIS)

    Kinnison, D.E.; Wuebbles, D.J.; Johnston, H.S.

    1992-02-01

    This study tests the transport processes in the LLNL two-dimensional chemical-radiative-transport model using recently reanalyzed carbon-14 and strontium-90 data. These radioactive tracers were produced bythe atmospheric nuclear bomb tests of 1952--58 and 1961--62, and they were measured at a few latitudes up to 35 kilometers over the period 1955--1970. Selected horizontal and vertical eddy diffusion coefficients were varied in the model to test their sensitivity to short and long term transpose of carbon-14. A sharp transition of K zz and K yy through the tropopause, as opposed to a slow transition between the same limiting values, shows a distinct improvement in the calculated carbon-14 distributions, a distinct improvement in the calculated seasonal and latitudinal distribution of ozone columns (relative to TOMS observations), and a very large difference in the calculated ozone reduction by a possible fleet of High Speed Civil Transports. Calculated northern hemisphere carbon-14 is more sensitive to variation of K yy than are global ozone columns. Strontium-90 was used to test the LLNL tropopause height at four different latitudes. Starting with the 1960 background distribution of carbon-14, we calculate the input of carbon-14 as the sum of each nuclear test of the 1961--62 series, using two bomb-cloud rise models. With the Seitz bomb-rise formulation in the LLNL model, we find good agreement between calculated and observedcarbon-14 (with noticeable exceptions at the north polar tropopause and the short-term mid-latitude mid-stratosphere) between 1963 and 1970

  2. Reference dataset of volcanic ash physicochemical and optical properties for atmospheric measurement retrievals and transport modelling

    Science.gov (United States)

    Vogel, Andreas; Durant, Adam; Sytchkova, Anna; Diplas, Spyros; Bonadonna, Costanza; Scarnato, Barbara; Krüger, Kirstin; Kylling, Arve; Kristiansen, Nina; Stohl, Andreas

    2016-04-01

    Explosive volcanic eruptions emit up to 50 wt.% (total erupted mass) of fine ash particles (forecast information on the spatial extent and absolute quantity of airborne volcanic ash. Such forecasts are constrained by empirically-derived estimates of the volcanic source term and the nature of the constituent volcanic ash properties. Consequently, it is important to include a quantitative assessment of measurement uncertainties of ash properties to provide realistic ash forecast uncertainty. Currently, information on volcanic ash physicochemical and optical properties is derived from a small number of somewhat dated publications. In this study, we provide a reference dataset for physical (size distribution and shape), chemical (bulk vs. surface chemistry) and optical properties (complex refractive index in the UV-vis-NIR range) of a representative selection of volcanic ash samples from 10 different volcanic eruptions covering the full variability in silica content (40-75 wt.% SiO2). Through the combination of empirical analytical methods (e.g., image analysis, Energy Dispersive Spectroscopy, X-ray Photoelectron Spectroscopy, Transmission Electron Microscopy and UV/Vis/NIR/FTIR Spectroscopy) and theoretical models (e.g., Bruggeman effective medium approach), it was possible to fully capture the natural variability of ash physicochemical and optical characteristics. The dataset will be applied in atmospheric measurement retrievals and atmospheric transport modelling to determine the sensitivity to uncertainty in ash particle characteristics.

  3. Use of MODIS Satellite Images and an Atmospheric Dust Transport Model To Evaluate Juniperus spp. Pollen Phenology and Dispersal

    Science.gov (United States)

    Luvall, J. C.; Sprigg, W. A.; Levetin, Estelle; Huete, Alfredo; Nickovic, S.; Pejanovic, G. A.; Vukovic, A.; VandeWater, P. K.; Myers, O. B.; Budge, A. M.; hide

    2011-01-01

    Pollen can be transported great distances. Van de Water et. al., 2003 reported Juniperus spp. pollen was transported 200-600 km. Hence local observations of plant phenology may not be consistent with the timing and source of pollen collected by pollen sampling instruments. The DREAM (Dust REgional Atmospheric Model, Nickovic et al. 2001) is a verified model for atmospheric dust transport modeling using MODIS data products to identify source regions and quantities of dust. We are modifying the DREAM model to incorporate pollen transport. Pollen release will be estimated based on MODIS derived phenology of Juniperus spp. communities. Ground based observational records of pollen release timing and quantities will be used as verification. This information will be used to support the Centers for Disease Control and Prevention's National Environmental Public Health Tracking Program and the State of New Mexico environmental public health decision support for asthma and allergies alerts.

  4. Hybrid advection scheme for 3-dimensional atmospheric models. Testing and application for a study of NO{sub x} transport

    Energy Technology Data Exchange (ETDEWEB)

    Zubov, V.A.; Rozanov, E.V. [Main Geophysical Observatory, St.Petersburg (Russian Federation); Schlesinger, M.E.; Andronova, N.G. [Illinois Univ., Urbana-Champaign, IL (United States). Dept. of Atmospheric Sciences

    1997-12-31

    The problems of ozone depletion, climate change and atmospheric pollution strongly depend on the processes of production, destruction and transport of chemical species. A hybrid transport scheme was developed, consisting of the semi-Lagrangian scheme for horizontal advection and the Prather scheme for vertical transport, which have been used for the Atmospheric Chemical Transport model to calculate the distributions of different chemical species. The performance of the new hybrid scheme has been evaluated in comparison with other transport schemes on the basis of specially designed tests. The seasonal cycle of the distribution of N{sub 2}O simulated by the model, as well as the dispersion of NO{sub x} exhausted from subsonic aircraft, are in a good agreement with published data. (author) 8 refs.

  5. A simplified model for calculating atmospheric radionuclide transport and early health effects from nuclear reactor accidents

    International Nuclear Information System (INIS)

    Madni, I.K.; Cazzoli, E.G.; Khatib-Rahbar, M.

    1995-01-01

    During certain hypothetical severe accidents in a nuclear power plant, radionuclides could be released to the environment as a plume. Prediction of the atmospheric dispersion and transport of these radionuclides is important for assessment of the risk to the public from such accidents. A simplified PC-based model was developed that predicts time-integrated air concentration of each radionuclide at any location from release as a function of time integrated source strength using the Gaussian plume model. The solution procedure involves direct analytic integration of air concentration equations over time and position, using simplified meteorology. The formulation allows for dry and wet deposition, radioactive decay and daughter buildup, reactor building wake effects, the inversion lid effect, plume rise due to buoyancy or momentum, release duration, and grass height. Based on air and ground concentrations of the radionuclides, the early dose to an individual is calculated via cloudshine, groundshine, and inhalation. The model also calculates early health effects based on the doses. This paper presents aspects of the model that would be of interest to the prediction of environmental flows and their public consequences

  6. Use of radon for evaluation of atmospheric transport models: sensitivity to emissions

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Mohan L. [GEST/GSFC NASA, Greenbelt, MD (United States); Douglass, Anne R.; Kawa, S. Randolph [NASA GSFC, Greenbelt, MD (United States); Pawson, Steven [GEST/GSFC NASA, GMAO, Greenbelt, MD (United States)

    2004-11-01

    We present comparative analyses of atmospheric radon (Rn) distributions simulated using different emission scenarios and the observations. Results indicate that the model generally reproduces observed distributions of Rn but there are some biases in the model related to differences in large-scale and convective transport. Simulations presented here use an off-line three-dimensional chemical transport model driven by assimilated winds and two scenarios of Rn fluxes (atom/cm{sup 2}/s) from ice-free land surfaces: (A) globally uniform flux of 1.0 within {+-}60 deg and 0.5 within 60 deg N - 70 deg N and (B) uniform flux of 1.0 between 60 deg S and 30 deg N followed by a sharp linear decrease to 0.2 at 70 deg N. We considered an additional scenario (C) where Rn emissions for case A were uniformly reduced by 28%. Results show that case A overpredicts observed Rn distributions in both hemispheres. Simulated Northern Hemisphere Rn distributions from cases B and C compare better with the observations, but are not discernible from each other. In the Southern Hemisphere, surface Rn distributions from case C compare better with the observations. We performed a synoptic-scale source-receptor analysis for surface Rn to locate regions with ratios B/A and B/C less than 0.5. Considering the maximum uncertainty in regional Rn emissions of a factor of 2, our analysis indicates that additional measurements of surface Rn, particularly during April-October and north of 50 deg N over the Pacific as well as Atlantic regions, would make it possible to determine if the proposed latitude gradient in Rn emissions is superior to a uniform flux scenario.

  7. Use of Radon for Evaluation of Atmospheric Transport Models: Sensitivity to Emissions

    Science.gov (United States)

    Gupta, Mohan L.; Douglass, Anne R.; Kawa, S. Randolph; Pawson, Steven

    2004-01-01

    This paper presents comparative analyses of atmospheric radon (Rn) distributions simulated using different emission scenarios and the observations. Results indicate that the model generally reproduces observed distributions of Rn but there are some biases in the model related to differences in large-scale and convective transport. Simulations presented here use an off-line three-dimensional chemical transport model driven by assimilated winds and two scenarios of Rn fluxes (atom/cm s) from ice-free land surfaces: (A) globally uniform flux of 1.0, and (B) uniform flux of 1.0 between 60 deg. S and 30 deg. N followed by a sharp linear decrease to 0.2 at 70 deg. N. We considered an additional scenario (C) where Rn emissions for case A were uniformly reduced by 28%. Results show that case A overpredicts observed Rn distributions in both hemispheres. Simulated northern hemispheric (NH) Rn distributions from cases B and C compare better with the observations, but are not discernible from each other. In the southern hemisphere, surface Rn distributions from case C compare better with the observations. We performed a synoptic scale source-receptor analysis for surface Rn to locate regions with ratios B/A and B/C less than 0.5. Considering an uncertainty in regional Rn emissions of a factor of two, our analysis indicates that additional measurements of surface Rn particularly during April-October and north of 50 deg. N over the Pacific as well as Atlantic regions would make it possible to determine if the proposed latitude gradient in Rn emissions is superior to a uniform flux scenario.

  8. Asian dust outflow in the PBL and free atmosphere retrieved by NASA CALIPSO and an assimilated dust transport model

    OpenAIRE

    Y. Hara; K. Yumimoto; I. Uno; A. Shimizu; N. Sugimoto; Z. Liu; D. M. Winker

    2009-01-01

    International audience; Three-dimensional structures of Asian dust transport in the planetary boundary layer (PBL) and free atmosphere occurring successively during the end of May 2007 were clarified using results of space-borne backscatter lidar, Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP), and results simulated using a data-assimilated version of a dust transport model (RC4) based on a ground-based NIES lidar network. Assimilated results mitigated overestimation of dust concen...

  9. Three-dimensional Wavelet-based Adaptive Mesh Refinement for Global Atmospheric Chemical Transport Modeling

    Science.gov (United States)

    Rastigejev, Y.; Semakin, A. N.

    2013-12-01

    Accurate numerical simulations of global scale three-dimensional atmospheric chemical transport models (CTMs) are essential for studies of many important atmospheric chemistry problems such as adverse effect of air pollutants on human health, ecosystems and the Earth's climate. These simulations usually require large CPU time due to numerical difficulties associated with a wide range of spatial and temporal scales, nonlinearity and large number of reacting species. In our previous work we have shown that in order to achieve adequate convergence rate and accuracy, the mesh spacing in numerical simulation of global synoptic-scale pollution plume transport must be decreased to a few kilometers. This resolution is difficult to achieve for global CTMs on uniform or quasi-uniform grids. To address the described above difficulty we developed a three-dimensional Wavelet-based Adaptive Mesh Refinement (WAMR) algorithm. The method employs a highly non-uniform adaptive grid with fine resolution over the areas of interest without requiring small grid-spacing throughout the entire domain. The method uses multi-grid iterative solver that naturally takes advantage of a multilevel structure of the adaptive grid. In order to represent the multilevel adaptive grid efficiently, a dynamic data structure based on indirect memory addressing has been developed. The data structure allows rapid access to individual points, fast inter-grid operations and re-gridding. The WAMR method has been implemented on parallel computer architectures. The parallel algorithm is based on run-time partitioning and load-balancing scheme for the adaptive grid. The partitioning scheme maintains locality to reduce communications between computing nodes. The parallel scheme was found to be cost-effective. Specifically we obtained an order of magnitude increase in computational speed for numerical simulations performed on a twelve-core single processor workstation. We have applied the WAMR method for numerical

  10. Comparison of CH4 emission inventory data and emission estimates from atmospheric transport models and concentration measurements

    NARCIS (Netherlands)

    Janssen, L.H.J.M.; Olivier, J.G.J.; Amstel, van A.R.

    1999-01-01

    CH4 emissions from two sources of emission inventory data i.e. the National Communications and the EDGAR/GEIA database, are compared with emission estimates from six global and two regional atmospheric transport models. The emission inventories were compiled using emission process parameters to

  11. Representation of tropical deep convection in atmospheric models – Part 2: Tracer transport

    Directory of Open Access Journals (Sweden)

    C. R. Hoyle

    2011-08-01

    Full Text Available The tropical transport processes of 14 different models or model versions were compared, within the framework of the SCOUT-O3 (Stratospheric-Climate Links with Emphasis on the Upper Troposphere and Lower Stratosphere project. The tested models range from the regional to the global scale, and include numerical weather prediction (NWP, chemical transport, and chemistry-climate models. Idealised tracers were used in order to prevent the model's chemistry schemes from influencing the results substantially, so that the effects of modelled transport could be isolated. We find large differences in the vertical transport of very short-lived tracers (with a lifetime of 6 h within the tropical troposphere. Peak convective outflow altitudes range from around 300 hPa to almost 100 hPa among the different models, and the upper tropospheric tracer mixing ratios differ by up to an order of magnitude. The timing of convective events is found to be different between the models, even among those which source their forcing data from the same NWP model (ECMWF. The differences are less pronounced for longer lived tracers, however they could have implications for modelling the halogen burden of the lowermost stratosphere through transport of species such as bromoform, or short-lived hydrocarbons into the lowermost stratosphere. The modelled tracer profiles are strongly influenced by the convective transport parameterisations, and different boundary layer mixing parameterisations also have a large impact on the modelled tracer profiles. Preferential locations for rapid transport from the surface into the upper troposphere are similar in all models, and are mostly concentrated over the western Pacific, the Maritime Continent and the Indian Ocean. In contrast, models do not indicate that upward transport is highest over western Africa.

  12. The Coupled Aerosol and Tracer Transport model to the Brazilian developments on the Regional Atmospheric Modeling System (CATT-BRAMS – Part 1: Model description and evaluation

    Directory of Open Access Journals (Sweden)

    S. R. Freitas

    2009-04-01

    Full Text Available We introduce the Coupled Aerosol and Tracer Transport model to the Brazilian developments on the Regional Atmospheric Modeling System (CATT-BRAMS. CATT-BRAMS is an on-line transport model fully consistent with the simulated atmospheric dynamics. Emission sources from biomass burning and urban-industrial-vehicular activities for trace gases and from biomass burning aerosol particles are obtained from several published datasets and remote sensing information. The tracer and aerosol mass concentration prognostics include the effects of sub-grid scale turbulence in the planetary boundary layer, convective transport by shallow and deep moist convection, wet and dry deposition, and plume rise associated with vegetation fires in addition to the grid scale transport. The radiation parameterization takes into account the interaction between the simulated biomass burning aerosol particles and short and long wave radiation. The atmospheric model BRAMS is based on the Regional Atmospheric Modeling System (RAMS, with several improvements associated with cumulus convection representation, soil moisture initialization and surface scheme tuned for the tropics, among others. In this paper the CATT-BRAMS model is used to simulate carbon monoxide and particulate material (PM2.5 surface fluxes and atmospheric transport during the 2002 LBA field campaigns, conducted during the transition from the dry to wet season in the southwest Amazon Basin. Model evaluation is addressed with comparisons between model results and near surface, radiosondes and airborne measurements performed during the field campaign, as well as remote sensing derived products. We show the matching of emissions strengths to observed carbon monoxide in the LBA campaign. A relatively good comparison to the MOPITT data, in spite of the fact that MOPITT a priori assumptions imply several difficulties, is also obtained.

  13. Atmospheric transport of radionuclides

    International Nuclear Information System (INIS)

    Crawford, T.V.

    1978-01-01

    The chairman and contributors are members of the Working Group on Atmospheric Dispersion, Deposition, and Resuspension. This group examined the mathematical approaches for determining the direct and indirect pathways to man of releases of pollutants to the atmosphere. The dose-to-man limitations promulgated by the Nuclear Regulatory Commission, the Environmental Protection Agency, and the Energy Research and Development Administration were presented. The present status of research was discussed, and recommendations for future work were made. Particular emphasis was placed on the need for additional experimental work to develop confidence limits leading to acceptable probability statements of critical pathways for determining the dose-to-man

  14. Modeling atmospheric nitrogen deposition and transport in the Chesapeake Bay watershed.

    Science.gov (United States)

    Sheeder, Scott A; Lynch, James A; Grimm, Jeffrey

    2002-01-01

    Atmospheric deposition of nitrate nitrogen and ammonium nitrogen has been identified as a major factor in the decline of water quality in the Chesapeake Bay. Reports have indicated that atmospheric deposition may account for 25 to 80% of the total nitrogen load entering the bay. However, uncertainties exist regarding the accuracy of the atmospheric deposition inputs, nitrogen retention coefficients, and in-stream nutrient uptake rates used in these studies. This project was designed to reassess the potential inputs of atmospheric nitrogen deposition to the bay through the use of a high-resolution wet deposition model, improved wet and dry deposition and nutrient retention estimates, existing soils and land use data, and geographic information systems software. Model results indicate that the methods used in previous studies may overestimate the contribution of atmospheric nitrate and ammonium deposition to the Chesapeake Bay watershed (CBW). Wet and dry atmospheric nitrate and ammonium nitrogen deposition estimates to the CBW ranged from 52.7 to 141.9 and 41.9 to 60.1 million kg/yr, respectively, between 1984 and 1996. Dry and total atmospheric deposition loads to the watershed are substantially less than previous estimates. Estimates of the percent contribution of atmospherically deposited nitrogen to the Chesapeake Bay represent between 20 and 32% of the total nitrate and ammonium nitrogen load to the watershed from all nitrogen sources. While these estimates are lower than many other published estimates, regression analysis of model parameters, nitrogen retention coefficients, output, and measured in-stream nitrogen loads indicate that the calculated nitrogen loads may still be too high.

  15. Simulation of wind-induced snow transport and sublimation in alpine terrain using a fully coupled snowpack/atmosphere model

    Science.gov (United States)

    Vionnet, V.; Martin, E.; Masson, V.; Guyomarc'h, G.; Naaim-Bouvet, F.; Prokop, A.; Durand, Y.; Lac, C.

    2014-03-01

    In alpine regions, wind-induced snow transport strongly influences the spatio-temporal evolution of the snow cover throughout the winter season. To gain understanding on the complex processes that drive the redistribution of snow, a new numerical model is developed. It directly couples the detailed snowpack model Crocus with the atmospheric model Meso-NH. Meso-NH/Crocus simulates snow transport in saltation and in turbulent suspension and includes the sublimation of suspended snow particles. The coupled model is evaluated against data collected around the experimental site of Col du Lac Blanc (2720 m a.s.l., French Alps). First, 1-D simulations show that a detailed representation of the first metres of the atmosphere is required to reproduce strong gradients of blowing snow concentration and compute mass exchange between the snowpack and the atmosphere. Secondly, 3-D simulations of a blowing snow event without concurrent snowfall have been carried out. Results show that the model captures the main structures of atmospheric flow in alpine terrain. However, at 50 m grid spacing, the model reproduces only the patterns of snow erosion and deposition at the ridge scale and misses smaller scale patterns observed by terrestrial laser scanning. When activated, the sublimation of suspended snow particles causes a reduction of deposited snow mass of 5.3% over the calculation domain. Total sublimation (surface + blowing snow) is three times higher than surface sublimation in a simulation neglecting blowing snow sublimation.

  16. Seasonal Water Transport in the Atmosphere of Mars: Applications of a Mars General Circulation Model Using Mars Global Surveyor Data

    Science.gov (United States)

    Hollingsworth, Jeffery L.; Bridger, Alison F. C.; Haberle, Robert M.

    1999-01-01

    This is a Final Report for a Joint Research Interchange (JRI) between NASA Ames Research Center and San Jose State University, Department of Meteorology. We present below a summary of progress made during the duration of this JRI. The focus of this JRI has been to investigate seasonal water vapor transport in the atmosphere of Mars and its effects on the planet's present climate. To this end, the primary task has been to adapt a new dynamical processor for the adiabatic tendencies of the atmospheric circulation into the NASA Ames Mars general circulation model (MGCM). Using identical boundary and initial conditions, several comparative tests between the new and old MGCMs have been performed and the nature of the simulated circulations have been diagnosed. With confidence that the updated version of the Ames MGCM produces quite similar mean and eddy circulation statistics, the new climate model is well poised as a tool to pursue fundamental questions related to the spatial and seasonal variations of atmospheric water vapor on Mars, and to explore exchanges of water with non-atmospheric reservoirs and transport within its atmosphere. In particular, the role of surface sources and sinks can be explored, the range of water-vapor saturation altitudes can be investigated, and plausible precipitation mechanisms can be studied, for a range of atmospheric dust loadings. Such future investigations can contribute to a comprehensive study of surface inventories, exchange mechanisms, and the relative importance of atmospheric transport Mars' water cycle. A listing of presentations made and manuscripts submitted during the course of this project is provided.

  17. Atmospheric Models/Global Atmospheric Modeling

    Science.gov (United States)

    1998-09-30

    Atmospheric Models /Global Atmospheric Modeling Timothy F. Hogan Naval Research Laboratory Monterey, CA 93943-5502 phone: (831) 656-4705 fax: (831...to 00-00-1998 4. TITLE AND SUBTITLE Atmospheric Models /Global Atmospheric Modeling 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT...initialization of increments, improved cloud prediction, and improved surface fluxes) have been transition to 6.4 (Global Atmospheric Models , PE 0603207N, X-0513

  18. Parameterization of ice- and water clouds and their radiation-transport properties for large-scale atmospheric models

    International Nuclear Information System (INIS)

    Rockel, B.

    1988-01-01

    A model of cloud and radiation transport for large-scale atmospheric models is introduced, which besides the water phase also takes the ice phase into account. The cloud model can diagnostically determine the degree of cloud cover, liquid water and ice content by the parameters of state given by the atmospheric model. It consists of four submodels for non-convective and convective cloudiness, boundary layer clouds and ice clouds. An existing radiation model was extended for the parametrization of the radiation transport in ice clouds. Now this model allows to calculate the radiation transport in water clouds as well as in ice clouds. Liquid and solid water phases can coexist according to a simple mixture statement. The results of a sensitivity study show a strong reaction of the cloud cover degree to changes in the relative humidity. Compared with this, variations of temperature and vertical wind velocity are of minor importance. The model of radiation transport reacts most sensitively to variations of the cloud cover degree and ice content. Changes of these two factors by about 20% lead to changes in the average warming rates in the order of magnitude of 0.1 K. (orig./KW) [de

  19. Temporal characteristics of atmospheric ammonia and nitrogen dioxide over China based on emission data, satellite observations and atmospheric transport modeling since 1980

    Directory of Open Access Journals (Sweden)

    L. Liu

    2017-08-01

    Full Text Available China is experiencing intense air pollution caused in large part by anthropogenic emissions of reactive nitrogen (Nr. Atmospheric ammonia (NH3 and nitrogen dioxide (NO2 are the most important precursors for Nr compounds (including N2O5, HNO3, HONO and particulate NO3− and NH4+ in the atmosphere. Understanding the changes in NH3 and NO2 has important implications for the regulation of anthropogenic Nr emissions and is a requirement for assessing the consequence of environmental impacts. We conducted the temporal trend analysis of atmospheric NH3 and NO2 on a national scale since 1980 based on emission data (during 1980–2010, satellite observation (for NH3 since 2008 and for NO2 since 2005 and atmospheric chemistry transport modeling (during 2008–2015.Based on the emission data, during 1980–2010, significant continuous increasing trends in both NH3 and NOx were observed in REAS (Regional Emission inventory in Asia, for NH3 0.17 and for NOx 0.16 kg N ha−1 yr−2 and EDGAR (Emissions Database for Global Atmospheric Research, for NH3 0.24 and for NOx 0.17 kg N ha−1 yr−2 over China. Based on the satellite data and atmospheric chemistry transport model (CTM MOZART-4 (Model for Ozone and Related chemical Tracers, version 4, the NO2 columns over China increased significantly from 2005 to 2011 and then decreased significantly from 2011 to 2015; the satellite-retrieved NH3 columns from 2008 to 2014 increased at a rate of 2.37 % yr−1. The decrease in NO2 columns since 2011 may result from more stringent strategies taken to control NOx emissions during the 12th Five Year Plan, while no control policy has focused on NH3 emissions. Our findings provided an overall insight into the temporal trends of both NO2 and NH3 since 1980 based on emission data, satellite observations and atmospheric transport modeling. These findings can provide a scientific background for policy makers that are attempting to control atmospheric

  20. Temporal characteristics of atmospheric ammonia and nitrogen dioxide over China based on emission data, satellite observations and atmospheric transport modeling since 1980

    Science.gov (United States)

    Liu, Lei; Zhang, Xiuying; Xu, Wen; Liu, Xuejun; Li, Yi; Lu, Xuehe; Zhang, Yuehan; Zhang, Wuting

    2017-08-01

    China is experiencing intense air pollution caused in large part by anthropogenic emissions of reactive nitrogen (Nr). Atmospheric ammonia (NH3) and nitrogen dioxide (NO2) are the most important precursors for Nr compounds (including N2O5, HNO3, HONO and particulate NO3- and NH4+) in the atmosphere. Understanding the changes in NH3 and NO2 has important implications for the regulation of anthropogenic Nr emissions and is a requirement for assessing the consequence of environmental impacts. We conducted the temporal trend analysis of atmospheric NH3 and NO2 on a national scale since 1980 based on emission data (during 1980-2010), satellite observation (for NH3 since 2008 and for NO2 since 2005) and atmospheric chemistry transport modeling (during 2008-2015).Based on the emission data, during 1980-2010, significant continuous increasing trends in both NH3 and NOx were observed in REAS (Regional Emission inventory in Asia, for NH3 0.17 and for NOx 0.16 kg N ha-1 yr-2) and EDGAR (Emissions Database for Global Atmospheric Research, for NH3 0.24 and for NOx 0.17 kg N ha-1 yr-2) over China. Based on the satellite data and atmospheric chemistry transport model (CTM) MOZART-4 (Model for Ozone and Related chemical Tracers, version 4), the NO2 columns over China increased significantly from 2005 to 2011 and then decreased significantly from 2011 to 2015; the satellite-retrieved NH3 columns from 2008 to 2014 increased at a rate of 2.37 % yr-1. The decrease in NO2 columns since 2011 may result from more stringent strategies taken to control NOx emissions during the 12th Five Year Plan, while no control policy has focused on NH3 emissions. Our findings provided an overall insight into the temporal trends of both NO2 and NH3 since 1980 based on emission data, satellite observations and atmospheric transport modeling. These findings can provide a scientific background for policy makers that are attempting to control atmospheric pollution in China. Moreover, the multiple datasets

  1. Reconstruction of 131I radioactive contamination in Ukraine caused by the Chernobyl accident using atmospheric transport modelling

    International Nuclear Information System (INIS)

    Talerko, Nikolai

    2005-01-01

    The evaluation of 131 I air and ground contamination field formation in the territory of Ukraine was made using the model of atmospheric transport LEDI (Lagrangian-Eulerian DIffusion model). The 131 I atmospheric transport over the territory of Ukraine was simulated during the first 12 days after the accident (from 26 April to 7 May 1986) using real aerological information and rain measurement network data. The airborne 131 I concentration and ground deposition fields were calculated as the database for subsequent thyroid dose reconstruction for inhabitants of radioactive contaminated regions. The small-scale deposition field variability is assessed using data of 137 Cs detailed measurements in the territory of Ukraine. The obtained results are compared with available data of radioiodine daily deposition measurements made at the network of meteorological stations in Ukraine and data of the assessments of 131 I soil contamination obtained from the 129 I measurements

  2. Error apportionment for atmospheric chemistry-transport models – a new approach to model evaluation

    Directory of Open Access Journals (Sweden)

    E. Solazzo

    2016-05-01

    Full Text Available In this study, methods are proposed to diagnose the causes of errors in air quality (AQ modelling systems. We investigate the deviation between modelled and observed time series of surface ozone through a revised formulation for breaking down the mean square error (MSE into bias, variance and the minimum achievable MSE (mMSE. The bias measures the accuracy and implies the existence of systematic errors and poor representation of data complexity, the variance measures the precision and provides an estimate of the variability of the modelling results in relation to the observed data, and the mMSE reflects unsystematic errors and provides a measure of the associativity between the modelled and the observed fields through the correlation coefficient. Each of the error components is analysed independently and apportioned to resolved processes based on the corresponding timescale (long scale, synoptic, diurnal, and intra-day and as a function of model complexity.The apportionment of the error is applied to the AQMEII (Air Quality Model Evaluation International Initiative group of models, which embrace the majority of regional AQ modelling systems currently used in Europe and North America.The proposed technique has proven to be a compact estimator of the operational metrics commonly used for model evaluation (bias, variance, and correlation coefficient, and has the further benefit of apportioning the error to the originating timescale, thus allowing for a clearer diagnosis of the processes that caused the error.

  3. Simulation of wind-induced snow transport in alpine terrain using a fully coupled snowpack/atmosphere model

    Science.gov (United States)

    Vionnet, V.; Martin, E.; Masson, V.; Guyomarc'h, G.; Naaim-Bouvet, F.; Prokop, A.; Durand, Y.; Lac, C.

    2013-06-01

    In alpine regions, wind-induced snow transport strongly influences the spatio-temporal evolution of the snow cover throughout the winter season. To gain understanding on the complex processes that drive the redistribution of snow, a new numerical model is developed. It couples directly the detailed snowpack model Crocus with the atmospheric model Meso-NH. Meso-NH/Crocus simulates snow transport in saltation and in turbulent suspension and includes the sublimation of suspended snow particles. A detailed representation of the first meters of the atmosphere allows a fine reproduction of the erosion and deposition process. The coupled model is evaluated against data collected around the experimental site of Col du Lac Blanc (2720 m a.s.l., French Alps). For this purpose, a blowing snow event without concurrent snowfall has been selected and simulated. Results show that the model captures the main structures of atmospheric flow in alpine terrain, the vertical profile of wind speed and the snow particles fluxes near the surface. However, the horizontal resolution of 50 m is found to be insufficient to simulate the location of areas of snow erosion and deposition observed by terrestrial laser scanning. When activated, the sublimation of suspended snow particles causes a reduction in deposition of 5.3%. Total sublimation (surface + blowing snow) is three times higher than surface sublimation in a simulation neglecting blowing snow sublimation.

  4. Supplementary investigations on the validation of the atmospheric radionuclide transport model (ARTM); Ergaenzende Untersuchungen zur Validierung des Atmosphaerischen Radionuklid-Transport-Modells (ARTM)

    Energy Technology Data Exchange (ETDEWEB)

    Richter, Cornelia; Thielen, Harald; Sogalla, Martin

    2015-09-15

    In the medium-term time scale the Gaussian plume model used so far for atmospheric dispersion calculations in the General Administrative Provision (AVV) relating to Section 47 of the Radiation Protection Ordinance (StrISchV) as well as in the Incident Calculation Bases (SBG) relating to Section 49 StrISchV is to be replaced by a Lagrangian particle model. Meanwhile the Atmospheric Radionuclide Transportation Model (ARTM) is available, which allows the simulation of the atmospheric dispersion of operational releases from nuclear installations. ARTM is based on the program package AUSTAL2000 which is designed for the simulation of atmospheric dispersion of non-radioactive operational releases from industrial plants and was adapted to the application of airborne radioactive releases. The research project 3612S50007 serves, on the one hand, to validate ARTM systematically. On the other hand, the development of science and technology were investigated and, if reasonable and possible, were implemented to the program system. The dispersion model and the user interface were advanced and optimized. The program package was provided to the users as a free download. Notably t he work program comprises the validation of the approach used in ARTM to model short emission periods, which are of interest in view of the SBG. The simulation results of the diagnostic wind and turbulence model TALdia, which is part of the GO-ARTM program package, were evaluated with focus on the influence of buildings on the flow field. The user interface was upgraded with a wind field viewer. To simplify the comparison with the model still in use, a Gaussian plum e model was implemented into the graphical user interface. The ARTM web page was maintained, user questions and feedback were answered and analysed concerning possible improvements and further developments of the program package. Numerous improvements were implemented. An ARTM user workshop was hosted by the Federal Office for Radiation

  5. Modelling the global atmospheric transport and deposition of radionuclides from the Fukushima Dai-ichi nuclear accident

    International Nuclear Information System (INIS)

    Christoudias, T.; Lelieveld, J.

    2013-01-01

    We modeled the global atmospheric dispersion and deposition of radionuclides released from the Fukushima Dai-ichi nuclear power plant accident. The EMAC atmospheric chemistry - general circulation model was used, with circulation dynamics nudged towards ERA-Interim reanalysis data. We applied a resolution of approximately 0.5 degrees in latitude and longitude (T255). The model accounts for emissions and transport of the radioactive isotopes 131 I and 137 Cs, and removal processes through precipitation, particle sedimentation and dry deposition. In addition, we simulated the release of 133 Xe, a noble gas that can be regarded as a passive transport tracer of contaminated air. The source terms are based on Chino et al. (2011) and Stohl et al. (2012); especially the emission estimates of 131 I are associated with a high degree of uncertainty. The calculated concentrations have been compared to station observations by the Comprehensive Nuclear-Test-Ban Treaty Organisation (CTBTO). We calculated that about 80% of the radioactivity from Fukushima which was released to the atmosphere deposited into the Pacific Ocean. In Japan a large inhabited land area was contaminated by more than 40 kBq m -2 . We also estimated the inhalation and 50-year dose by 137 Cs, 134 Cs and 131 I to which the people in Japan are exposed.

  6. Modelling the global atmospheric transport and deposition of radionuclides from the Fukushima Dai-ichi nuclear accident

    Directory of Open Access Journals (Sweden)

    T. Christoudias

    2013-02-01

    Full Text Available We modeled the global atmospheric dispersion and deposition of radionuclides released from the Fukushima Dai-ichi nuclear power plant accident. The EMAC atmospheric chemistry – general circulation model was used, with circulation dynamics nudged towards ERA-Interim reanalysis data. We applied a resolution of approximately 0.5 degrees in latitude and longitude (T255. The model accounts for emissions and transport of the radioactive isotopes 131I and 137Cs, and removal processes through precipitation, particle sedimentation and dry deposition. In addition, we simulated the release of 133Xe, a noble gas that can be regarded as a passive transport tracer of contaminated air. The source terms are based on Chino et al. (2011 and Stohl et al. (2012; especially the emission estimates of 131I are associated with a high degree of uncertainty. The calculated concentrations have been compared to station observations by the Comprehensive Nuclear-Test-Ban Treaty Organisation (CTBTO. We calculated that about 80% of the radioactivity from Fukushima which was released to the atmosphere deposited into the Pacific Ocean. In Japan a large inhabited land area was contaminated by more than 40 kBq m-2. We also estimated the inhalation and 50-year dose by 137Cs, 134Cs and 131I to which the people in Japan are exposed.

  7. Atmospheric Nitrogen Trifluoride: Optimized emission estimates using 2-D and 3-D Chemical Transport Models from 1973-2008

    Science.gov (United States)

    Ivy, D. J.; Rigby, M. L.; Prinn, R. G.; Muhle, J.; Weiss, R. F.

    2009-12-01

    We present optimized annual global emissions from 1973-2008 of nitrogen trifluoride (NF3), a powerful greenhouse gas which is not currently regulated by the Kyoto Protocol. In the past few decades, NF3 production has dramatically increased due to its usage in the semiconductor industry. Emissions were estimated through the 'pulse-method' discrete Kalman filter using both a simple, flexible 2-D 12-box model used in the Advanced Global Atmospheric Gases Experiment (AGAGE) network and the Model for Ozone and Related Tracers (MOZART v4.5), a full 3-D atmospheric chemistry model. No official audited reports of industrial NF3 emissions are available, and with limited information on production, a priori emissions were estimated using both a bottom-up and top-down approach with two different spatial patterns based on semiconductor perfluorocarbon (PFC) emissions from the Emission Database for Global Atmospheric Research (EDGAR v3.2) and Semiconductor Industry Association sales information. Both spatial patterns used in the models gave consistent results, showing the robustness of the estimated global emissions. Differences between estimates using the 2-D and 3-D models can be attributed to transport rates and resolution differences. Additionally, new NF3 industry production and market information is presented. Emission estimates from both the 2-D and 3-D models suggest that either the assumed industry release rate of NF3 or industry production information is still underestimated.

  8. Asian dust outflow in the PBL and free atmosphere retrieved by NASA CALIPSO and an assimilated dust transport model

    Directory of Open Access Journals (Sweden)

    Y. Hara

    2009-02-01

    Full Text Available Three-dimensional structures of Asian dust transport in the planetary boundary layer (PBL and free atmosphere occurring successively during the end of May 2007 were clarified using results of space-borne backscatter lidar, Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP, and results obtained using a data-assimilated version of a dust transport model (RC4 based on a ground-based NIES lidar network. The dust layer depths and the vertical and horizontal structure simulated by RC4 agreed with those of CALIOP observations from the dust source region to the far-downstream region. Two important transport mechanisms of Asian dust in the PBL and free atmosphere were clarified: a low-level dust outbreak within the dry slot region of a well-developed low-pressure system, and formation of an elevated dust layer within the warm sector of a low-pressure system. We also represent the aging of pure dust particles using the particle depolarization ratio (PDR at 532 nm and the color ratio (CR at 1064 nm and 532 nm. Aerosols with high PDR were observed uniformly over the dust source region. While the dust cloud was transported to the eastern downwind regions, aerosols with low PDR and high CR occur in the layer of less than 1 km height, suggesting a mixing state of spherical aerosols and dust in the surface layer.

  9. Model analyses of atmospheric mercury: present air quality and effects of transpacific transport on the United States

    Science.gov (United States)

    Lei, H.; Liang, X.-Z.; Wuebbles, D. J.; Tao, Z.

    2013-11-01

    Atmospheric mercury is a toxic air and water pollutant that is of significant concern because of its effects on human health and ecosystems. A mechanistic representation of the atmospheric mercury cycle is developed for the state-of-the-art global climate-chemistry model, CAM-Chem (Community Atmospheric Model with Chemistry). The model simulates the emission, transport, transformation and deposition of atmospheric mercury (Hg) in three forms: elemental mercury (Hg(0)), reactive mercury (Hg(II)), and particulate mercury (PHg). Emissions of mercury include those from human, land, ocean, biomass burning and volcano related sources. Land emissions are calculated based on surface solar radiation flux and skin temperature. A simplified air-sea mercury exchange scheme is used to calculate emissions from the oceans. The chemistry mechanism includes the oxidation of Hg(0) in gaseous phase by ozone with temperature dependence, OH, H2O2 and chlorine. Aqueous chemistry includes both oxidation and reduction of Hg(0). Transport and deposition of mercury species are calculated through adapting the original formulations in CAM-Chem. The CAM-Chem model with mercury is driven by present meteorology to simulate the present mercury air quality during the 1999-2001 period. The resulting surface concentrations of total gaseous mercury (TGM) are then compared with the observations from worldwide sites. Simulated wet depositions of mercury over the continental United States are compared to the observations from 26 Mercury Deposition Network stations to test the wet deposition simulations. The evaluations of gaseous concentrations and wet deposition confirm a strong capability for the CAM-Chem mercury mechanism to simulate the atmospheric mercury cycle. The general reproduction of global TGM concentrations and the overestimation on South Africa indicate that model simulations of TGM are seriously affected by emissions. The comparison to wet deposition indicates that wet deposition patterns

  10. Dispersion and transport of atmospheric pollutants

    International Nuclear Information System (INIS)

    Cieslik, S.

    1991-01-01

    This paper presents the physical mechanisms that govern the dispersion and transport of air pollutant; the influence of the state of the 'carrying fluid', i.e. the role of meteorology; and finally, outlines the different techniques of assessing the process. Aspects of physical mechanisms and meteorology covered include: fate of an air pollutant; turbulence and dispersion; transport; wind speed and direction; atmospheric stability; and the role of atmospheric water. Assessment techniques covered are: concentrations measurements; modelling meteorological observations; and tracer releases. It is concluded that the only way to reduce air pollution is to pollute less. 10 refs., 12 figs., 2 tabs

  11. Evaluating the Capacity of Global CO2 Flux and Atmospheric Transport Models to Incorporate New Satellite Observations

    Science.gov (United States)

    Kawa, S. R.; Collatz, G. J.; Erickson, D. J.; Denning, A. S.; Wofsy, S. C.; Andrews, A. E.

    2007-01-01

    As we enter the new era of satellite remote sensing for CO2 and other carbon cyclerelated quantities, advanced modeling and analysis capabilities are required to fully capitalize on the new observations. Model estimates of CO2 surface flux and atmospheric transport are required for initial constraints on inverse analyses, to connect atmospheric observations to the location of surface sources and sinks, and ultimately for future projections of carbon-climate interactions. For application to current, planned, and future remotely sensed CO2 data, it is desirable that these models are accurate and unbiased at time scales from less than daily to multi-annual and at spatial scales from several kilometers or finer to global. Here we focus on simulated CO2 fluxes from terrestrial vegetation and atmospheric transport mutually constrained by analyzed meteorological fields from the Goddard Modeling and Assimilation Office for the period 1998 through 2006. Use of assimilated meteorological data enables direct model comparison to observations across a wide range of scales of variability. The biospheric fluxes are produced by the CASA model at lxi degrees on a monthly mean basis, modulated hourly with analyzed temperature and sunlight. Both physiological and biomass burning fluxes are derived using satellite observations of vegetation, burned area (as in GFED-2), and analyzed meteorology. For the purposes of comparison to CO2 data, fossil fuel and ocean fluxes are also included in the transport simulations. In this presentation we evaluate the model's ability to simulate CO2 flux and mixing ratio variability in comparison to in situ observations at sites in Northern mid latitudes and the continental tropics. The influence of key process representations is inferred. We find that the model can resolve much of the hourly to synoptic variability in the observations, although there are limits imposed by vertical resolution of boundary layer processes. The seasonal cycle and its

  12. Multicompartmental fate of persistent substances. Comparison of predictions from multi-media box models and a multicompartment chemistry-atmospheric transport model.

    Science.gov (United States)

    Lammel, Gerhard; Klöpffer, Walter; Semeena, V S; Schmidt, Elisabeth; Leip, Adrian

    2007-05-01

    Modelling of the fate of environmental chemicals can be done by relatively simple multi-media box models or using complex atmospheric transport models. It was the aim of this work to compare the results obtained for both types of models using a small set of non-ionic and non-polar or moderately polar organic chemicals, known to be distributed over long distances. Predictions of multimedia exposure models of different types, namely three multimedia mass-balance box models (MBMs), two in the steady state and one in the non-steady state mode, and one non-steady state multicompartment chemistry-atmospheric transport model (MCTM), are compared for the first time. The models used are SimpleBox, Chemrange, the MPI-MBM and the MPI-MCTM. The target parameters addressed are compartmental distributions (i.e. mass fractions in the compartments), overall environmental residence time (i.e. overall persistence and eventually including other final sinks, such as loss to the deep sea) and a measure for the long-range transport potential. These are derived for atrazine, benz-[a]-pyrene, DDT, alpha and gamma-hexachlorocyclohexane, methyl parathion and various modes of substance entry into the model world. Compartmental distributions in steady state were compared. Steady state needed 2-10 years to be established in the MCTM. The highest fraction of the substances in air is predicted by the MCTM. Accordingly, the other models predict longer substance persistence in most cases. The results suggest that temperature affects the compartmental distribution more in the box models, while it is only one among many climate factors acting in the transport model. The representation of final sinks in the models, e.g. burial in the sediment, is key for model-based compartmental distribution and persistence predictions. There is a tendency of MBMs to overestimate substance sinks in air and to underestimate atmospheric transport velocity as a consequence of the neglection of the temporal and spatial

  13. Estimates of radioxenon released from Southern Hemisphere medical isotope production facilities using measured air concentrations and atmospheric transport modeling.

    Science.gov (United States)

    Eslinger, Paul W; Friese, Judah I; Lowrey, Justin D; McIntyre, Justin I; Miley, Harry S; Schrom, Brian T

    2014-09-01

    The International Monitoring System (IMS) of the Comprehensive-Nuclear-Test-Ban-Treaty monitors the atmosphere for radioactive xenon leaking from underground nuclear explosions. Emissions from medical isotope production represent a challenging background signal when determining whether measured radioxenon in the atmosphere is associated with a nuclear explosion prohibited by the treaty. The Australian Nuclear Science and Technology Organisation (ANSTO) operates a reactor and medical isotope production facility in Lucas Heights, Australia. This study uses two years of release data from the ANSTO medical isotope production facility and (133)Xe data from three IMS sampling locations to estimate the annual releases of (133)Xe from medical isotope production facilities in Argentina, South Africa, and Indonesia. Atmospheric dilution factors derived from a global atmospheric transport model were used in an optimization scheme to estimate annual release values by facility. The annual releases of about 6.8 × 10(14) Bq from the ANSTO medical isotope production facility are in good agreement with the sampled concentrations at these three IMS sampling locations. Annual release estimates for the facility in South Africa vary from 2.2 × 10(16) to 2.4 × 10(16) Bq, estimates for the facility in Indonesia vary from 9.2 × 10(13) to 3.7 × 10(14) Bq and estimates for the facility in Argentina range from 4.5 × 10(12) to 9.5 × 10(12) Bq. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Ocean-atmosphere dynamics during Hurricane Ida and Nor'Ida: An application of the coupled ocean-atmosphere-wave-sediment transport (COAWST) modeling system

    Science.gov (United States)

    Olabarrieta, Maitane; Warner, John C.; Armstrong, Brandy N.; Zambon, Joseph B.; He, Ruoying

    2012-01-01

    The coupled ocean–atmosphere–wave–sediment transport (COAWST) modeling system was used to investigate atmosphere–ocean–wave interactions in November 2009 during Hurricane Ida and its subsequent evolution to Nor’Ida, which was one of the most costly storm systems of the past two decades. One interesting aspect of this event is that it included two unique atmospheric extreme conditions, a hurricane and a nor’easter storm, which developed in regions with different oceanographic characteristics. Our modeled results were compared with several data sources, including GOES satellite infrared data, JASON-1 and JASON-2 altimeter data, CODAR measurements, and wave and tidal information from the National Data Buoy Center (NDBC) and the National Tidal Database. By performing a series of numerical runs, we were able to isolate the effect of the interaction terms between the atmosphere (modeled with Weather Research and Forecasting, the WRF model), the ocean (modeled with Regional Ocean Modeling System (ROMS)), and the wave propagation and generation model (modeled with Simulating Waves Nearshore (SWAN)). Special attention was given to the role of the ocean surface roughness. Three different ocean roughness closure models were analyzed: DGHQ (which is based on wave age), TY2001 (which is based on wave steepness), and OOST (which considers both the effects of wave age and steepness). Including the ocean roughness in the atmospheric module improved the wind intensity estimation and therefore also the wind waves, surface currents, and storm surge amplitude. For example, during the passage of Hurricane Ida through the Gulf of Mexico, the wind speeds were reduced due to wave-induced ocean roughness, resulting in better agreement with the measured winds. During Nor’Ida, including the wave-induced surface roughness changed the form and dimension of the main low pressure cell, affecting the intensity and direction of the winds. The combined wave age- and wave steepness

  15. The effect on Arctic climate of atmospheric meridional energy-transport changes studied based on the CESM climate model

    Science.gov (United States)

    Grand Graversen, Rune

    2017-04-01

    The Arctic amplification of global warming, and the pronounced Arctic sea-ice retreat constitute some of the most alarming signs of global climate change. These Arctic changes are likely a consequence of a combination of several processes, for instance enhanced uptake of solar radiation in the Arctic due to a decrease of sea ice (the ice-albedo feedback), and increase in the local Arctic greenhouse effect due to enhanced moister flux from lower latitudes. Many of the proposed processes appear to be dependent on each other, for instance an increase in water-vapour advection to the Arctic enhances the greenhouse effect in the Arctic and the longwave radiation to the surface, leading to sea-ice melt and enhancement of the ice-albedo feedback. The effects of albedo changes and other radiative feedbacks have been investigated in earlier studies based on model experiments designed to examine these effects specifically. Here we instead focus on the effects of meridional transport changes into the Arctic, both of moister and dry-static energy. Hence we here present results of model experiments with the CESM climate model designed specifically to extract the effects of the changes of the two transport components. In the CESM model the moister transport to the Arctic increases, whereas the dry-static transport decreases in response to a doubling of CO2. This is in agreement with other model results. The model is now forced with these transport changes of water-vapour and dry-static energy associated with a CO2 doubling. The results show that changes of the water-vapour transport lead to Arctic warming. This is partly a consequence of the ice-albedo feedback due to sea-ice melt caused by the change of the water-vapour advection. The changes of the dry-static transport lead to Arctic cooling, which however is smaller than the warming induced by the water-vapour component. Hence this study support the hypothesis that changes in the atmospheric circulation contribute to the

  16. Atmospheric radionuclide transport model with radon postprocessor and SBG module. Model description version 2.8.0; ARTM. Atmosphaerisches Radionuklid-Transport-Modell mit Radon Postprozessor und SBG-Modul. Modellbeschreibung zu Version 2.8.0

    Energy Technology Data Exchange (ETDEWEB)

    Richter, Cornelia; Sogalla, Martin; Thielen, Harald; Martens, Reinhard

    2015-04-20

    The study on the atmospheric radionuclide transport model with radon postprocessor and SBG module (model description version 2.8.0) covers the following issues: determination of emissions, radioactive decay, atmospheric dispersion calculation for radioactive gases, atmospheric dispersion calculation for radioactive dusts, determination of the gamma cloud radiation (gamma submersion), terrain roughness, effective source height, calculation area and model points, geographic reference systems and coordinate transformations, meteorological data, use of invalid meteorological data sets, consideration of statistical uncertainties, consideration of housings, consideration of bumpiness, consideration of terrain roughness, use of frequency distributions of the hourly dispersion situation, consideration of the vegetation period (summer), the radon post processor radon.exe, the SBG module, modeling of wind fields, shading settings.

  17. Atmospheric methane and carbon dioxide from SCIAMACHY satellite data: initial comparison with chemistry and transport models

    Directory of Open Access Journals (Sweden)

    M. Buchwitz

    2005-01-01

    Full Text Available The remote sensing of the atmospheric greenhouse gases methane (CH4 and carbon dioxide (CO2 in the troposphere from instrumentation aboard satellites is a new area of research. In this manuscript, results obtained from observations of the up-welling radiation in the near-infrared by SCIAMACHY on board ENVISAT are presented. Vertical columns of CH4, CO2 and oxygen (O2 have been retrieved and the (air or O2-normalised CH4 and CO2 column amounts, the dry air column averaged mixing ratios XCH4 and XCO2 derived. In this manuscript the first results, obtained by using the version 0.4 of the Weighting Function Modified (WFM DOAS retrieval algorithm applied to SCIAMACHY data, are described and compared with global models. For the set of individual cloud free measurements over land the standard deviation of the difference with respect to the models is in the range ~100–200 ppbv (5–10% for XCH4 and ~14–32 ppmv (4–9% for XCO2. The inter-hemispheric difference of the methane mixing ratio, as determined from single day data, is in the range 30–110 ppbv and in reasonable agreement with the corresponding model data (48–71 ppbv. The weak inter-hemispheric difference of the CO2 mixing ratio can also be detected with single day data. The spatiotemporal pattern of the measured and the modelled XCO2 are in reasonable agreement. However, the amplitude of the difference between the maximum and the minimum for SCIAMACHY XCO2 is about ±20 ppmv which is about a factor of four larger than the variability of the model data which is about ±5 ppmv. More studies are needed to explain the observed differences. The XCO2 model field shows low CO2 concentrations beginning of January 2003 over a spatially extended CO2 sink region located in southern tropical/sub-tropical Africa. The SCIAMACHY data also show low CO2 mixing ratios over this area. According to the model the sink region becomes a source region about six months later and exhibits higher mixing ratios

  18. Statistical atmospheric inversion of local gas emissions by coupling the tracer release technique and local-scale transport modelling: a test case with controlled methane emissions

    Science.gov (United States)

    Ars, Sébastien; Broquet, Grégoire; Yver Kwok, Camille; Roustan, Yelva; Wu, Lin; Arzoumanian, Emmanuel; Bousquet, Philippe

    2017-12-01

    This study presents a new concept for estimating the pollutant emission rates of a site and its main facilities using a series of atmospheric measurements across the pollutant plumes. This concept combines the tracer release method, local-scale atmospheric transport modelling and a statistical atmospheric inversion approach. The conversion between the controlled emission and the measured atmospheric concentrations of the released tracer across the plume places valuable constraints on the atmospheric transport. This is used to optimise the configuration of the transport model parameters and the model uncertainty statistics in the inversion system. The emission rates of all sources are then inverted to optimise the match between the concentrations simulated with the transport model and the pollutants' measured atmospheric concentrations, accounting for the transport model uncertainty. In principle, by using atmospheric transport modelling, this concept does not strongly rely on the good colocation between the tracer and pollutant sources and can be used to monitor multiple sources within a single site, unlike the classical tracer release technique. The statistical inversion framework and the use of the tracer data for the configuration of the transport and inversion modelling systems should ensure that the transport modelling errors are correctly handled in the source estimation. The potential of this new concept is evaluated with a relatively simple practical implementation based on a Gaussian plume model and a series of inversions of controlled methane point sources using acetylene as a tracer gas. The experimental conditions are chosen so that they are suitable for the use of a Gaussian plume model to simulate the atmospheric transport. In these experiments, different configurations of methane and acetylene point source locations are tested to assess the efficiency of the method in comparison to the classic tracer release technique in coping with the distances

  19. Statistical atmospheric inversion of local gas emissions by coupling the tracer release technique and local-scale transport modelling: a test case with controlled methane emissions

    Directory of Open Access Journals (Sweden)

    S. Ars

    2017-12-01

    Full Text Available This study presents a new concept for estimating the pollutant emission rates of a site and its main facilities using a series of atmospheric measurements across the pollutant plumes. This concept combines the tracer release method, local-scale atmospheric transport modelling and a statistical atmospheric inversion approach. The conversion between the controlled emission and the measured atmospheric concentrations of the released tracer across the plume places valuable constraints on the atmospheric transport. This is used to optimise the configuration of the transport model parameters and the model uncertainty statistics in the inversion system. The emission rates of all sources are then inverted to optimise the match between the concentrations simulated with the transport model and the pollutants' measured atmospheric concentrations, accounting for the transport model uncertainty. In principle, by using atmospheric transport modelling, this concept does not strongly rely on the good colocation between the tracer and pollutant sources and can be used to monitor multiple sources within a single site, unlike the classical tracer release technique. The statistical inversion framework and the use of the tracer data for the configuration of the transport and inversion modelling systems should ensure that the transport modelling errors are correctly handled in the source estimation. The potential of this new concept is evaluated with a relatively simple practical implementation based on a Gaussian plume model and a series of inversions of controlled methane point sources using acetylene as a tracer gas. The experimental conditions are chosen so that they are suitable for the use of a Gaussian plume model to simulate the atmospheric transport. In these experiments, different configurations of methane and acetylene point source locations are tested to assess the efficiency of the method in comparison to the classic tracer release technique in coping

  20. Polycyclic aromatic hydrocarbons - fate and long-range atmospheric transport studied using a global model, EMAC-SVOC

    Science.gov (United States)

    Octaviani, Mega; Tost, Holger; Lammel, Gerhard

    2017-04-01

    Polycyclic aromatic hydrocarbons (PAHs) are emitted by incomplete combustion from fossil fuel, vehicles, and biomass burning. They may persist in environmental compartments, pose a health hazard and may bio accumulate along food chains. The ECHAM/MESSy Atmospheric Chemistry (EMAC) model had been used to simulate global tropospheric, stratospheric chemistry and climate. In this study, we improve the model to include simulations of the transport and fate of semi-volatile organic compounds (SVOC). The EMAC-SVOC model takes into account essential environmental processes including gas-particle partitioning, dry and wet deposition, chemical and bio-degradation, and volatilization from sea surface, soils, vegetation, and snow. The model was evaluated against observational data in the Arctic, mid-latitudes, and tropics, and further applied to study total environmental lifetime and long-range transport potential (LRTP) of PAHs. We selected four compounds for study, spanning a wide range of volatility, i.e., phenanthrene, fluoranthene, pyrene, and benzo[a]pyrene. Several LRTP indicators were investigated, including the Arctic contamination potential, meridional spreading, and zonal and meridional fluxes to remote regions.

  1. Integrating atmospheric deposition, soil erosion and sewer transport models to assess the transfer of traffic-related pollutants in urban areas

    NARCIS (Netherlands)

    Hong, Yi; Bonhomme, Celine; Bout, Bastian Van den; Jetten, V.G.; Chebbo, Ghassan

    2017-01-01

    For the first time, this paper develops an integrated and spatially-distributed modelling approach, linking atmospheric deposition, soil erosion and sewer transport models, to assess the transfer of traffic-related pollutants in urban areas. The modelling system is applied to a small urban catchment

  2. Long-range atmospheric transport of three toxaphene congeners across Europe. Modeling by chained single-box FATEMOD program.

    Science.gov (United States)

    Paasivirta, Jaakko; Sinkkonen, Seija; Nikiforov, Vladimir; Kryuchkov, Fedor; Kolehmainen, Erkki; Laihia, Katri; Valkonen, Arto; Lahtinen, Manu

    2009-03-01

    Since toxaphene (polychlorocamphene, polychloropinene, or strobane) mixtures were applied for massive insecticide use in the 1960s to replace the use of DDT, some of their congeners have been found at high latitudes far away from the usage areas. Especially polychlorinated bornanes have demonstrated dominating congeners transported by air up to the Arctic areas. Environmental fate modeling has been applied to monitor this phenomenon using parallel zones of atmosphere around the globe as interconnected environments. These zones, shown in many meteorological maps, however, may not be the best way to configure atmospheric transport in air trajectories. The latter could also be covered by connecting a chain of simple model boxes. We aim to study this alternative approach by modeling the trajectory chain using catchment boxes of our FATEMOD model. Polychlorobornanes analyzed in biota of the Barents Sea offered one case to study this modeling alternative, while toxaphene has been and partly still is used massively at southern East Europe and around rivers flowing to the Aral Sea. Pure model substances of three polychlorobornanes (toxaphene congeners P26, P50, and P62) were synthesized, their environmentally important thermal properties measured by differential scanning calorimetry, as evaluated from literature data, and their temperature dependences estimated by the QSPR programs VPLEST, WATSOLU, and TDLKOW. The evaluated property parameters were used to model their atmospheric long-range transport from toxaphene heavy usage areas in Ukraine and Aral/SyrDarja/AmuDarja region areas, through East Europe and Northern Norway (Finnmarken) to the Barents Sea. The time period used for the emission model was June 1997. Usual weather conditions in June were applied in the model, which was constructed by chaining FATEMOD model boxes of the catchment's areas along assumed maximal air flow trajectories. Analysis of the three chlorobornanes in toxaphene mixtures function as a basis

  3. Quantitative Evaluation of an Air-monitoring Network Using Atmospheric Transport Modeling and Frequency of Detection Methods.

    Science.gov (United States)

    Rood, Arthur S; Sondrup, A Jeffrey; Ritter, Paul D

    2016-04-01

    A methodology has been developed to quantify the performance of an air-monitoring network in terms of frequency of detection. Frequency of detection is defined as the fraction of "events" that result in a detection at either a single sampler or network of samplers. An "event" is defined as a release to the atmosphere of a specified amount of activity over a finite duration that begins on a given day and hour of the year. The methodology uses an atmospheric transport model to predict air concentrations of radionuclides at the samplers for a given release time and duration. Another metric of interest determined by the methodology is called the network intensity, which is defined as the fraction of samplers in the network that have a positive detection for a given event. The frequency of detection methodology allows for evaluation of short-term releases that include effects of short-term variability in meteorological conditions. The methodology was tested using the U.S. Department of Energy Idaho National Laboratory Site ambient air-monitoring network consisting of 37 low-volume air samplers in 31 different locations covering a 17,630 km region. Releases from six major facilities distributed over an area of 1,435 km were modeled and included three stack sources and eight ground-level sources. A Lagrangian Puff air dispersion model (CALPUFF) was used to model atmospheric transport. The model was validated using historical Sb releases and measurements. Relevant 1-wk release quantities from each emission source were calculated based on a dose of 1.9×10 mSv at a public receptor (0.01 mSv assuming release persists over a year). Important radionuclides were Am, Cs, Pu, Pu, Sr, and tritium. Results show the detection frequency was over 97.5% for the entire network considering all sources and radionuclides. Network intensity results ranged from 3.75% to 62.7%. Evaluation of individual samplers indicated some samplers were poorly located and added little to the overall

  4. A global wetland methane emissions and uncertainty dataset for atmospheric chemical transport models (WetCHARTs version 1.0

    Directory of Open Access Journals (Sweden)

    A. A. Bloom

    2017-06-01

    Full Text Available Wetland emissions remain one of the principal sources of uncertainty in the global atmospheric methane (CH4 budget, largely due to poorly constrained process controls on CH4 production in waterlogged soils. Process-based estimates of global wetland CH4 emissions and their associated uncertainties can provide crucial prior information for model-based top-down CH4 emission estimates. Here we construct a global wetland CH4 emission model ensemble for use in atmospheric chemical transport models (WetCHARTs version 1.0. Our 0.5°  ×  0.5° resolution model ensemble is based on satellite-derived surface water extent and precipitation reanalyses, nine heterotrophic respiration simulations (eight carbon cycle models and a data-constrained terrestrial carbon cycle analysis and three temperature dependence parameterizations for the period 2009–2010; an extended ensemble subset based solely on precipitation and the data-constrained terrestrial carbon cycle analysis is derived for the period 2001–2015. We incorporate the mean of the full and extended model ensembles into GEOS-Chem and compare the model against surface measurements of atmospheric CH4; the model performance (site-level and zonal mean anomaly residuals compares favourably against published wetland CH4 emissions scenarios. We find that uncertainties in carbon decomposition rates and the wetland extent together account for more than 80 % of the dominant uncertainty in the timing, magnitude and seasonal variability in wetland CH4 emissions, although uncertainty in the temperature CH4 : C dependence is a significant contributor to seasonal variations in mid-latitude wetland CH4 emissions. The combination of satellite, carbon cycle models and temperature dependence parameterizations provides a physically informed structural a priori uncertainty that is critical for top-down estimates of wetland CH4 fluxes. Specifically, our ensemble can provide enhanced information on the prior

  5. flexCloud: Deployment of the FLEXPART Atmospheric Transport Model as a Cloud SaaS Environment

    Science.gov (United States)

    Morton, Don; Arnold, Dèlia

    2014-05-01

    FLEXPART (FLEXible PARTicle dispersion model) is a Lagrangian transport and dispersion model used by a growing international community. We have used it to simulate and forecast the atmospheric transport of wildfire smoke, volcanic ash and radionuclides. Additionally, FLEXPART may be run in backwards mode to provide information for the determination of emission sources such as nuclear emissions and greenhouse gases. This open source software is distributed in source code form, and has several compiler and library dependencies that users need to address. Although well-documented, getting it compiled, set up, running, and post-processed is often tedious, making it difficult for the inexperienced user. Our interest is in moving scientific modeling and simulation activities from site-specific clusters and supercomputers to a cloud model as a service paradigm. Choosing FLEXPART for our prototyping, our vision is to construct customised IaaS images containing fully-compiled and configured FLEXPART codes, including pre-processing, execution and postprocessing components. In addition, with the inclusion of a small web server in the image, we introduce a web-accessible graphical user interface that drives the system. A further initiative being pursued is the deployment of multiple, simultaneous FLEXPART ensembles in the cloud. A single front-end web interface is used to define the ensemble members, and separate cloud instances are launched, on-demand, to run the individual models and to conglomerate the outputs into a unified display. The outcome of this work is a Software as a Service (Saas) deployment whereby the details of the underlying modeling systems are hidden, allowing modelers to perform their science activities without the burden of considering implementation details.

  6. Can the confidence in long range atmospheric transport models be increased? The pan European experience of ensemble

    International Nuclear Information System (INIS)

    Galmarini, S.; Bianconi, R.; Mikkelsen, T.

    2003-01-01

    Full text: In the unfortunate event of an accidental release of radioactive material to the environment, the first concern for early-phase emergency response is atmospheric dispersion. For this purpose, several countries worldwide use operational Long Range Atmospheric Transport (LRAT) models to produce predictions of the event evolution over the continental scale to determine whether, when and how the radioactive cloud is going to hit their country. While presenting the multi-model ensemble dispersion forecast system (ENSEMBLE), the paper seeks to answer the following questions: is atmospheric dispersion forecasting an important asset of the early-phase emergency response management?; Is there a 'Perfect Atmospheric Dispersion Model'?; Is there a way to make the results of dispersion models more reliable and trustworthy? Several activities conducted during the 1990's, sought to estimate quantitatively the capability of LRAT models to forecast the atmospheric dispersion of radionuclides in the atmosphere. The results obtained clearly demonstrated that: the predictions of the various operational LRAT models used worldwide do not systematically agree (mainly due to conceptual differences in model structure and differences in the meteorological forecasts used to simulate the dispersion); none of the models used in the various countries is better than others under all circumstances and therefore there is no objective indication that shows one or few models to be the 'perfect model/s'. Given the realistic scenario that an accident can take place any time, any national authority is however faced with the practical need of managing the emergency and therefore with the dilemma: 'shall one rely an a LRAT model or only an the now cast provided by a monitoring network?' and 'to what extent are a model predictions going to be deceptive in the decision making process?' Since it goes without saying that even a vague idea an the future evolution of a dispersion process is better

  7. Modelling impact of climate change on atmospheric transport and fate of persistent organic pollutants in the Arctic

    Science.gov (United States)

    Hansen, K. M.; Christensen, J. H.; Geels, C.; Silver, J. D.; Brandt, J.

    2015-03-01

    The Danish Eulerian Hemispheric Model (DEHM) was applied to investigate how projected climate changes will affect the atmospheric transport of 13 persistent organic pollutants (POPs) to the Artic and their environmental fate within the Arctic. Two sets of simulations were performed, one with initial environmental concentrations from a 20 year spin-up simulation and one with initial environmental concentrations set to zero. Each set of simulations consisted of two ten-year time slices representing the present (1990-2000) and future (2090-2100) climate conditions. The same POP emissions were applied in all simulations to ensure that the difference in predicted concentrations for each set of simulations only arises from the difference in climate input. DEHM was driven using meteorological input from the global circulation model, ECHAM/MPI-OM, simulating the SRES A1B climate scenario. Under the applied climate and emission scenarios, the total mass of all compounds was predicted to be up to 20% higher across the Northern Hemisphere. The mass of HCHs within the Arctic was predicted to be up to 39% higher, whereas the change in mass of the PCBs was predicted to range from 14% lower to 17% higher depending on the congener and the applied initial environmental concentrations. The results of this study also indicate that contaminants with no or a short emission history will be more rapidly transported to and build up in the arctic environment in a future warmer climate. The process that dominates the environmental behaviour of POPs in the Arctic under a future warmer climate scenario is the shift in mass of POPs from the surface media to the atmosphere induced by the higher mean temperature. This is to some degree counteracted by higher degradation rates also following the higher mean temperature. The more dominant of these two processes depend on the physical-chemical properties of the compounds. Previous model studies have predicted that the effect of a changed climate on

  8. Modelling the impact of climate change on the atmospheric transport and the fate of persistent organic pollutants in the Arctic

    Science.gov (United States)

    Hansen, K. M.; Christensen, J. H.; Geels, C.; Silver, J. D.; Brandt, J.

    2015-06-01

    The Danish Eulerian Hemispheric Model (DEHM) was applied to investigate how projected climate changes will affect the atmospheric transport of 13 persistent organic pollutants (POPs) to the Arctic and their environmental fate within the Arctic. Three sets of simulations were performed, one with present day emissions and initial environmental concentrations from a 20-year spin-up simulation, one with present day emissions and with initial environmental concentrations set to zero and one without emissions but with initial environmental concentrations from the 20-year spin-up simulation. Each set of simulations consisted of two 10-year time slices representing the present (1990-2000) and future (2090-2100) climate conditions. DEHM was driven using meteorological input from the global circulation model, ECHAM/MPI-OM, simulating the SRES (Special Report on Emissions Scenarios) A1B climate scenario. Under the applied climate and emission scenarios, the total mass of all compounds was predicted to be up to 55 % lower across the Northern Hemisphere at the end of the 2090s than in the 1990s. The mass of HCHs within the Arctic was predicted to be up to 38 % higher, whereas the change in mass of the PCBs was predicted to range from 38 % lower to 17 % higher depending on the congener and the applied initial environmental concentrations. The results of this study also indicate that contaminants with no or a short emission history will be more rapidly transported to and build up in the arctic environment in a future warmer climate. The process that dominates the environmental behaviour of POPs in the Arctic under a future warmer climate scenario is the shift in mass of POPs from the surface media to the atmosphere induced by the higher mean temperature. This is to some degree counteracted by higher degradation rates also following the higher mean temperature. The more dominant of these two processes depends on the physical-chemical properties of the compounds. Previous model

  9. A robust method for inverse transport modeling of atmospheric emissions using blind outlier detection

    OpenAIRE

    Martinez-Camara, Marta; Bejar Haro, B.; Stohl, Andreas; Vetterli, M.

    2014-01-01

    Emissions of harmful substances into the atmosphere are a serious environmental concern. In order to understand and predict their effects, it is necessary to estimate the exact quantity and timing of the emissions, from sensor measurements taken at different locations. There exists a number of methods for solving this problem. However, these existing methods assume Gaussian additive errors, making them extremely sensitive to outlier measurements. We first show that the err...

  10. Assessing the Tangent Linear Behaviour of Common Tracer Transport Schemes and Their Use in a Linearised Atmospheric General Circulation Model

    Science.gov (United States)

    Holdaway, Daniel; Kent, James

    2015-01-01

    The linearity of a selection of common advection schemes is tested and examined with a view to their use in the tangent linear and adjoint versions of an atmospheric general circulation model. The schemes are tested within a simple offline one-dimensional periodic domain as well as using a simplified and complete configuration of the linearised version of NASA's Goddard Earth Observing System version 5 (GEOS-5). All schemes which prevent the development of negative values and preserve the shape of the solution are confirmed to have nonlinear behaviour. The piecewise parabolic method (PPM) with certain flux limiters, including that used by default in GEOS-5, is found to support linear growth near the shocks. This property can cause the rapid development of unrealistically large perturbations within the tangent linear and adjoint models. It is shown that these schemes with flux limiters should not be used within the linearised version of a transport scheme. The results from tests using GEOS-5 show that the current default scheme (a version of PPM) is not suitable for the tangent linear and adjoint model, and that using a linear third-order scheme for the linearised model produces better behaviour. Using the third-order scheme for the linearised model improves the correlations between the linear and non-linear perturbation trajectories for cloud liquid water and cloud liquid ice in GEOS-5.

  11. Can the confidence in long range atmospheric transport models be increased? The Pan-European experience of ENSEMBLE

    DEFF Research Database (Denmark)

    Galmarini, S.; Bianconi, R.; Klug, W.

    2004-01-01

    Is atmospheric dispersion forecasting an important asset of the early-phase nuclear emergency response management? Is there a 'perfect atmospheric dispersion model'? Is there a way to make the results of dispersion models more reliable and trustworthy? While seeking to answer these questions the ...

  12. A Simple Model for the Vertical Transport of Reactive Species in the Convective Atmospheric Boundary Layer

    DEFF Research Database (Denmark)

    Kristensen, Leif; Lenschow, Donald H.; Gurarie, David

    2010-01-01

    We have developed a simple, steady-state, one-dimensional second-order closure model to obtain continuous profiles of turbulent fluxes and mean concentrations of non-conserved scalars in a convective boundary layer without shear. As a basic tool we first set up a model for conserved species with ...

  13. Development of an aerosol-chemistry transport model coupled to non-hydrostatic icosahedral atmospheric model (NICAM) through applying a stretched grid system to regional simulations around Japan

    Science.gov (United States)

    Goto, D.; Nakajima, T.; Masaki, S.

    2014-12-01

    Air pollution has a great impact on both climate change and human health. One effective way to tackle with these issues is a use of atmospheric aerosol-chemistry models with high-resolution in a global scale. For this purpose, we have developed an aerosol-chemistry model based on a global cloud-resolving model (GCRM), Nonhydrostatic Icosahedral Atmospheric Model (NICAM; Tomita and Satoh, Fluid. Dyn. Res. 2004; Satoh et al., J. Comput. Phys. 2008, PEPS, 2014) under MEXT/RECCA/SALSA project. In the present study, we have simulated aerosols and tropospheric ozone over Japan by our aerosol-chemistry model "NICAM-Chem" with a stretched-grid system of approximately 10 km resolution, for saving the computer resources. The aerosol and chemistry modules are based on Spectral Radiation-Transport Model for Aerosol Species (SPRINTARS; Takemura et al., J. Geophys. Res., 2005) and Chemical AGCM for Study of Atmospheric Environment and Radiative Forcing (CHASER; Sudo et al., J. Geophys. Res., 2002). We found that our model can generally reproduce both aerosols and ozone, in terms of temporal variations (daily variations of aerosols and diurnal variations of ozone). Under MEXT/RECCA/SALSA project, we also have used these results obtained by NICAM-Chem for the assessment of their impact on human health.

  14. Description and evaluation of a six-moment aerosol microphysical module for use in atmospheric chemical transport models

    Science.gov (United States)

    Wright, D. L.; Kasibhatla, P. S.; McGraw, R.; Schwartz, S. E.

    2001-01-01

    We describe and evaluate a six-moment aerosol microphysical module, 6M, designed for implementation in atmospheric chemical transport models (CTMs). The module 6M is based upon the quadrature method of moments (QMOM) [McGraw, 1997] and the multiple isomomental distribution aerosol surrogate (MIDAS) method [Wright, 2000]. The module 6M evolves the lowest six radial moments of H2SO4-H2O aerosols for a comprehensive set of dynamical processes including the formation of new particles via binary H2SO4-H2O nucleation, condensational growth, coagulation, evolution due to cloud processing, size-resolved dry deposition, and water uptake and release with changing relative humidity. Performance of the moment-based aerosol evolution is examined and evaluated by comparison with results obtained using a high-resolution discrete model of the particle dynamics for a range of conditions representative of the boundary layer and lower troposphere. Overall, the performance of 6M is good relative to uncertainties associated with other processes represented in CTMs for the 30 test cases evaluated. Differences between 6M and the discrete model in the mass/volume moment and in the partitioning of sulfur (VI) between the gas and aerosol phases remain under 1% whenever significant aerosol is present, and differences in particle number rarely exceed 15%. Estimates of cloud droplet number from 6M are on average within 16% of those of the discrete model, with a significant part of these differences attributable to limitations of the discrete dynamics. Multimodal lognormal (MIDAS) surrogates to the underlying size distributions derived from the 6M moments are in good agreement with the benchmark size distributions.

  15. GPU-based parallel computing in real-time modeling of atmospheric transport and diffusion of radioactive material

    International Nuclear Information System (INIS)

    Santos, Marcelo C. dos; Pereira, Claudio M.N.A.; Schirru, Roberto; Pinheiro, André Coordenacao de Pos-Graduacao e Pesquisa de Engenharia

    2017-01-01

    Atmospheric radionuclide dispersion systems (ARDS) are essential mechanisms to predict the consequences of unexpected radioactive releases from nuclear power plants. Considering, that during an eventuality of an accident with a radioactive material release, an accurate forecast is vital to guide the evacuation plan of the possible affected areas. However, in order to predict the dispersion of the radioactive material and its impact on the environment, the model must process information about source term (radioactive materials released, activities and location), weather condition (wind, humidity and precipitation) and geographical characteristics (topography). Furthermore, ARDS is basically composed of 4 main modules: Source Term, Wind Field, Plume Dispersion and Doses Calculations. The Wind Field and Plume Dispersion modules are the ones that require a high computational performance to achieve accurate results within an acceptable time. Taking this into account, this work focuses on the development of a GPU-based parallel Plume Dispersion module, focusing on the radionuclide transport and diffusion calculations, which use a given wind field and a released source term as parameters. The program is being developed using the C ++ programming language, allied with CUDA libraries. In comparative case study between a parallel and sequential version of the slower function of the Plume Dispersion module, a speedup of 11.63 times could be observed. (author)

  16. GPU-based parallel computing in real-time modeling of atmospheric transport and diffusion of radioactive material

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Marcelo C. dos; Pereira, Claudio M.N.A.; Schirru, Roberto; Pinheiro, André, E-mail: jovitamarcelo@gmail.com, E-mail: cmnap@ien.gov.br, E-mail: schirru@lmp.ufrj.br, E-mail: apinheiro99@gmail.com [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil); Coordenacao de Pos-Graduacao e Pesquisa de Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Nuclear

    2017-07-01

    Atmospheric radionuclide dispersion systems (ARDS) are essential mechanisms to predict the consequences of unexpected radioactive releases from nuclear power plants. Considering, that during an eventuality of an accident with a radioactive material release, an accurate forecast is vital to guide the evacuation plan of the possible affected areas. However, in order to predict the dispersion of the radioactive material and its impact on the environment, the model must process information about source term (radioactive materials released, activities and location), weather condition (wind, humidity and precipitation) and geographical characteristics (topography). Furthermore, ARDS is basically composed of 4 main modules: Source Term, Wind Field, Plume Dispersion and Doses Calculations. The Wind Field and Plume Dispersion modules are the ones that require a high computational performance to achieve accurate results within an acceptable time. Taking this into account, this work focuses on the development of a GPU-based parallel Plume Dispersion module, focusing on the radionuclide transport and diffusion calculations, which use a given wind field and a released source term as parameters. The program is being developed using the C ++ programming language, allied with CUDA libraries. In comparative case study between a parallel and sequential version of the slower function of the Plume Dispersion module, a speedup of 11.63 times could be observed. (author)

  17. A Review of Methodology for Evaluating the Performance of Atmospheric Transport and Dispersion Models and Suggested Protocol for Providing More Informative Results

    Directory of Open Access Journals (Sweden)

    Steven Herring

    2018-03-01

    Full Text Available Many models exist for predicting the atmospheric transport and dispersion of material following its release into the atmosphere. The purpose of these models may be to support air quality assessments and/or to predict the hazard resulting from releases of harmful materials to inform emergency response actions. In either case it is essential that the user understands the level of predictive accuracy that might be expected. However, contrary to expectation, this is not easily determined from published comparisons of model predictions against data from dispersion experiments. The paper presents and reviews the methods adopted and issues involved in comparing the predictive performance of atmospheric transport and dispersion models to experimental data, by reference to a number of experimental data sets and comparison results. It then presents an approach which is designed to make the performance of atmospheric dispersion models more transparent, through clearly defining the basis on which the comparison is made, and comparing the performance of the chosen model to that of a reference model. Such an approach establishes a clear baseline against which the accuracy of models can be evaluated and the performance benefits of more sophisticated approaches quantified. The use of a simple analytic reference model applicable to continuous ground level releases in open terrain and urban areas is shown as a proof-of-principle.

  18. Atmospheric transport of radioiodine and radiocesium released in the early phase by the Fukushima Daiichi Nuclear Power Plant accident from field measurements and a simulation model

    International Nuclear Information System (INIS)

    Tsuruta, Haruo; Nakajima, Teruyuki; Takigawa, Masayuki

    2013-01-01

    The continuous measurements of atmospheric concentration of 131 I and 137 Cs at ten stations in the Kanto area located 120km south from Fukushima, showed that 131I/137 Cs and the ratio of particulate 131 I to the sum of particulate 131 I and gaseous 131 I significantly changed in the periods when the polluted air masses were transported, compared with those in the other periods. A numerical model well simulated the transport of the polluted air masses to the Kanto and Fukushima area, while any field data did not suggest the transport to Fukushima on March 20-21 due to no precipitation. (author)

  19. Comparison of the MACCS2 atmospheric transport model with Lagrangian puff models as applied to deterministic and probabilistic safety analysis.

    Science.gov (United States)

    Till, John E; Rood, Arthur S; Garzon, Caroline D; Lagdon, Richard H

    2014-09-01

    The suitability of a new facility in terms of potential impacts from routine and accidental releases is typically evaluated using conservative models and assumptions to assure dose standards are not exceeded. However, overly conservative dose estimates that exceed target doses can result in unnecessary and costly facility design changes. This paper examines one such case involving the U.S. Department of Energy's pretreatment facility of the Waste Treatment and Immobilization Plant (WTP). The MELCOR Accident Consequence Code System Version 2 (MACCS2) was run using conservative parameter values in prescribed guidance to demonstrate that the dose from a postulated airborne release would not exceed the guideline dose of 0.25 Sv. External review of default model parameters identified the deposition velocity of 1.0 cm s as being non-conservative. The deposition velocity calculated using resistance models was in the range of 0.1 to 0.3 cm s-1. A value of 0.1 cm s-1 would result in the dose guideline being exceeded. To test the overall conservatism of the MACCS2 transport model, the 95th percentile hourly average dispersion factor based on one year of meteorological data was compared to dispersion factors generated from two state-of-the-art Lagrangian puff models. The 95th percentile dispersion factor from MACCS2 was a factor of 3 to 6 higher compared to those of the Lagrangian puff models at a distance of 9.3 km and a deposition velocity of 0.1 cm s-1. Thus, the inherent conservatism in MACCS2 more than compensated for the high deposition velocity used in the assessment. Applications of models like MACCS2 with a conservative set of parameters are essentially screening calculations, and failure to meet dose criteria should not trigger facility design changes but prompt a more in-depth analysis using probabilistic methods with a defined margin of safety in the target dose. A sample application of the probabilistic approach is provided.

  20. Atmospheric transport of persistent semi-volatile organic chemicals to the Arctic and cold condensation in the mid-troposphere – Part 1: 2-D modeling in mean atmosphere

    Directory of Open Access Journals (Sweden)

    J. Ma

    2010-08-01

    Full Text Available In the first part of this study for revisiting the cold condensation effect on global distribution of semi-volatile organic chemicals (SVOCs, the atmospheric transport of SVOCs to the Arctic in the mid-troposphere in a mean meridional atmospheric circulation over the Northern Hemisphere was simulated by a two-dimensional (2-D atmospheric transport model. Results show that under the mean meridional atmospheric circulation the long-range atmospheric transport of SVOCs from warm latitudes to the Arctic occurs primarily in the mid-troposphere. Although major sources are in low and mid-latitude soils, the modeled air concentration of SVOCs in the mid-troposphere is of the same order as or higher than that near the surface, demonstrating that the mid-troposphere is an important pathway and reservoir of SVOCs. The cold condensation of the chemicals is also likely to take place in the mid-troposphere over a source region of SVOCs in warm low latitudes through interacting with clouds. We demonstrate that the temperature dependent vapour pressure and atmospheric degradation rate of SVOCs exhibit similarities between lower atmosphere over the Arctic and the mid-troposphere over a tropical region. Frequent occurrence of atmospheric ascending motion and convection over warm latitudes carry the chemicals to a higher altitude where some of these chemicals may partition onto solid or aqueous phase through interaction with atmospheric aerosols, cloud water droplets and ice particles, and become more persistent at lower temperatures. Stronger winds in the mid-troposphere then convey solid and aqueous phase chemicals to the Arctic where they sink by large-scale descending motion and wet deposition. Using calculated water droplet-air partitioning coefficient of several persistent organic semi-volatile chemicals under a mean air temperature profile from the equator to the North Pole we propose that clouds are likely important sorbing media for SVOCs and pathway of

  1. Atmospheric Models for Aerocapture

    Science.gov (United States)

    Justus, C. G.; Duvall, Aleta L.; Keller, Vernon W.

    2004-01-01

    There are eight destinations in the solar System with sufficient atmosphere for aerocapture to be a viable aeroassist option - Venus, Earth, Mars, Jupiter, Saturn and its moon Titan, Uranus, and Neptune. Engineering-level atmospheric models for four of these targets (Earth, Mars, Titan, and Neptune) have been developed for NASA to support systems analysis studies of potential future aerocapture missions. Development of a similar atmospheric model for Venus has recently commenced. An important capability of all of these models is their ability to simulate quasi-random density perturbations for Monte Carlo analyses in developing guidance, navigation and control algorithm, and for thermal systems design. Similarities and differences among these atmospheric models are presented, with emphasis on the recently developed Neptune model and on planned characteristics of the Venus model. Example applications for aerocapture are also presented and illustrated. Recent updates to the Titan atmospheric model are discussed, in anticipation of applications for trajectory and atmospheric reconstruct of Huygens Probe entry at Titan.

  2. Effects of orbital forcing on atmosphere and ocean heat transports in Holocene and Eemian climate simulations with a comprehensive Earth system model

    Directory of Open Access Journals (Sweden)

    N. Fischer

    2010-03-01

    Full Text Available Orbital forcing does not only exert direct insolation effects, but also alters climate indirectly through feedback mechanisms that modify atmosphere and ocean dynamics and meridional heat and moisture transfers. We investigate the regional effects of these changes by detailed analysis of atmosphere and ocean circulation and heat transports in a coupled atmosphere-ocean-sea ice-biosphere general circulation model (ECHAM5/JSBACH/MPI-OM. We perform long term quasi equilibrium simulations under pre-industrial, mid-Holocene (6000 years before present – yBP, and Eemian (125 000 yBP orbital boundary conditions. Compared to pre-industrial climate, Eemian and Holocene temperatures show generally warmer conditions at higher and cooler conditions at lower latitudes. Changes in sea-ice cover, ocean heat transports, and atmospheric circulation patterns lead to pronounced regional heterogeneity. Over Europe, the warming is most pronounced over the north-eastern part in accordance with recent reconstructions for the Holocene. We attribute this warming to enhanced ocean circulation in the Nordic Seas and enhanced ocean-atmosphere heat flux over the Barents Shelf in conduction with retreat of sea ice and intensified winter storm tracks over northern Europe.

  3. Spatiotemporal patterns of the fossil-fuel CO2 signal in central Europe: results from a high-resolution atmospheric transport model

    Science.gov (United States)

    Liu, Yu; Gruber, Nicolas; Brunner, Dominik

    2017-11-01

    The emission of CO2 from the burning of fossil fuel is a prime determinant of variations in atmospheric CO2. Here, we simulate this fossil-fuel signal together with the natural and background components with a regional high-resolution atmospheric transport model for central and southern Europe considering separately the emissions from different sectors and countries on the basis of emission inventories and hourly emission time functions. The simulated variations in atmospheric CO2 agree very well with observation-based estimates, although the observed variance is slightly underestimated, particularly for the fossil-fuel component. Despite relatively rapid atmospheric mixing, the simulated fossil-fuel signal reveals distinct annual mean structures deep into the troposphere, reflecting the spatially dense aggregation of most emissions. The fossil-fuel signal accounts for more than half of the total (fossil fuel + biospheric + background) temporal variations in atmospheric CO2 in most areas of northern and western central Europe, with the largest variations occurring on diurnal timescales owing to the combination of diurnal variations in emissions and atmospheric mixing and transport out of the surface layer. The covariance of the fossil-fuel emissions and atmospheric transport on diurnal timescales leads to a diurnal fossil-fuel rectifier effect of up to 9 ppm compared to a case with time-constant emissions. The spatial pattern of CO2 from the different sectors largely reflects the distribution and relative magnitude of the corresponding emissions, with power plant emissions leaving the most distinguished mark. An exception is southern and western Europe, where the emissions from the transportation sector dominate the fossil-fuel signal. Most of the fossil-fuel CO2 remains within the country responsible for the emission, although in smaller countries up to 80 % of the fossil-fuel signal can come from abroad. A fossil-fuel emission reduction of 30 % is clearly

  4. Evaluating a 3-D transport model of atmospheric CO2 using ground-based, aircraft, and space-borne data

    Directory of Open Access Journals (Sweden)

    J.-D. Paris

    2011-03-01

    Full Text Available We evaluate the GEOS-Chem atmospheric transport model (v8-02-01 of CO2 over 2003–2006, driven by GEOS-4 and GEOS-5 meteorology from the NASA Goddard Global Modeling and Assimilation Office, using surface, aircraft and space-borne concentration measurements of CO2. We use an established ensemble Kalman Filter to estimate a posteriori biospheric+biomass burning (BS + BB and oceanic (OC CO2 fluxes from 22 geographical regions, following the TransCom-3 protocol, using boundary layer CO2 data from a subset of GLOBALVIEW surface sites. Global annual net BS + BB + OC CO2 fluxes over 2004–2006 for GEOS-4 (GEOS-5 meteorology are −4.4 ± 0.9 (−4.2 ± 0.9, −3.9 ± 0.9 (−4.5 ± 0.9, and −5.2 ± 0.9 (−4.9 ± 0.9 PgC yr−1, respectively. After taking into account anthropogenic fossil fuel and bio-fuel emissions, the global annual net CO2 emissions for 2004–2006 are estimated to be 4.0 ± 0.9 (4.2 ± 0.9, 4.8 ± 0.9 (4.2 ± 0.9, and 3.8 ± 0.9 (4.1 ± 0.9 PgC yr−1, respectively. The estimated 3-yr total net emission for GEOS-4 (GEOS-5 meteorology is equal to 12.5 (12.4 PgC, agreeing with other recent top-down estimates (12–13 PgC. The regional a posteriori fluxes are broadly consistent in the sign and magnitude of the TransCom-3 study for 1992–1996, but we find larger net sinks over northern and southern continents. We find large departures from our a priori over Europe during summer 2003, over temperate Eurasia during 2004, and over North America during 2005, reflecting an incomplete description of terrestrial carbon dynamics. We find GEOS-4 (GEOS-5 a posteriori CO2 concentrations reproduce the observed surface trend of 1.91–2.43 ppm yr−1 (parts per million per year, depending on latitude, within 0.15 ppm yr−1 (0.2 ppm yr−1 and the seasonal cycle within 0.2 ppm (0.2 ppm at all latitudes. We find the a posteriori model reproduces the aircraft vertical profile measurements of CO2 over North America and Siberia generally within 1

  5. Transport impacts on atmosphere and climate: Metrics

    Science.gov (United States)

    Fuglestvedt, J. S.; Shine, K. P.; Berntsen, T.; Cook, J.; Lee, D. S.; Stenke, A.; Skeie, R. B.; Velders, G. J. M.; Waitz, I. A.

    2010-12-01

    The transport sector emits a wide variety of gases and aerosols, with distinctly different characteristics which influence climate directly and indirectly via chemical and physical processes. Tools that allow these emissions to be placed on some kind of common scale in terms of their impact on climate have a number of possible uses such as: in agreements and emission trading schemes; when considering potential trade-offs between changes in emissions resulting from technological or operational developments; and/or for comparing the impact of different environmental impacts of transport activities. Many of the non-CO 2 emissions from the transport sector are short-lived substances, not currently covered by the Kyoto Protocol. There are formidable difficulties in developing metrics and these are particularly acute for such short-lived species. One difficulty concerns the choice of an appropriate structure for the metric (which may depend on, for example, the design of any climate policy it is intended to serve) and the associated value judgements on the appropriate time periods to consider; these choices affect the perception of the relative importance of short- and long-lived species. A second difficulty is the quantification of input parameters (due to underlying uncertainty in atmospheric processes). In addition, for some transport-related emissions, the values of metrics (unlike the gases included in the Kyoto Protocol) depend on where and when the emissions are introduced into the atmosphere - both the regional distribution and, for aircraft, the distribution as a function of altitude, are important. In this assessment of such metrics, we present Global Warming Potentials (GWPs) as these have traditionally been used in the implementation of climate policy. We also present Global Temperature Change Potentials (GTPs) as an alternative metric, as this, or a similar metric may be more appropriate for use in some circumstances. We use radiative forcings and lifetimes

  6. Heat and Water Transport in Soils and Across the Soil-Atmosphere Interface: Comparison of Model Concepts

    DEFF Research Database (Denmark)

    Vanderborght, Jan; Smits, Kathleen; Mosthaf, Klaus

    models were found. The effect of vapor flow in the porous medium on cumulative evaporation could be evaluated using the desorptivity, Sevap, which represents a weighted average of liquid and vapor diffusivity over the range of soil water contents between the soil surface water content and the initial......Evaporation from the soil surface represents a water flow and transport process in a porous medium that is coupled with free air flow and with heat fluxes in the system. We give an overview of different model concepts that are used to describe this process. These range from non-isothermal two......-phase flow two-component transport in the porous medium that is coupled with one-phase flow two-component transport in the free air to isothermal water flow in the porous with upper boundary conditions defined by a potential evaporation flux when available energy and transfer to the free air flow...

  7. The transport of atmospheric sulfur over Cape Town

    Science.gov (United States)

    Jenner, Samantha L.; Abiodun, Babatunde J.

    2013-11-01

    Cape Town, renowned for its natural beauty, is troubled by an unpleasant brown haze pollution, in which atmospheric sulfur plays a major role. This study investigates whether Cape Town is a net producer or recipient of anthropogenic sulfur pollution. In the study, two atmospheric chemistry-transport models (RegCM and WRF) are used to simulate atmospheric flow and chemistry transport over South Africa for two years (2001 and 2002). Both models reproduce the observed seasonal variability in the atmospheric flow and SO2 concentration over Cape Town. The models simulations agree on the seasonal pattern of SO2 over South Africa but disagree on that of SO4. The simulations show that ambient sulfur in Cape Town may be linked with pollutant emissions from the Mpumalanga Highveld, South Africa's most industrialized region. While part of atmospheric SO2 from the Highveld is transported at 700 hPa level toward the Indian Ocean (confirming previous studies), part is transported at low level from the Highveld toward Cape Town. In April, a band of high concentration SO2 extends between the Highveld and Cape Town, following the south coast. Extreme sulfur pollution events in Cape Town are associated with weak flow convergence or stagnant conditions over the city, both of which encourage the accumulation of pollution. However the study suggests that atmospheric sulfur is being advected from Mpumalanga Highveld to Cape Town and this may contribute to atmospheric pollution problems in Cape Town.

  8. The computation of isentropic atmospheric trajectories using a 'discrete model' formulation. [extratropical disturbance transport and exchange processes

    Science.gov (United States)

    Petersen, R. A.; Uccellini, L. W.

    1979-01-01

    An explicit technique for calculating atmospheric trajectories is presented as an alternative method to the standard implicit scheme of Danielsen (1961). The technique uses the inviscid equations of motion and the discrete model formulation derived by Greenspan (1972, 1973) to compute trajectories on isentropic surfaces, assuming adiabatic flow. The discrete model formulation is designed specifically for a Lagrangian system and objectively accounts for the geostrophic departures, local psi-tendencies, and the subsequent accelerations along the entire length of the trajectory. Application of the discrete formulation to a diagnostic case study yielded favorable results.

  9. Heat and water transport in soils and across the soil-atmosphere interface: 1. Theory and different model concepts

    DEFF Research Database (Denmark)

    Vanderborght, Jan; Fetzer, Thomas; Mosthaf, Klaus

    2017-01-01

    Evaporation is an important component of the soil water balance. It is composed of water flow and transport processes in a porous medium that are coupled with heat fluxes and free air flow. This work provides a comprehensive review of model concepts used in different research fields to describe...... evaporation. Concepts range from nonisothermal two-phase flow, two-component transport in the porous medium that is coupled with one-phase flow, two-component transport in the free air flow to isothermal liquid water flow in the porous medium with upper boundary conditions defined by a potential evaporation...... flux when available energy and transfer to the free airflow are limiting or by a critical threshold water pressure when soil water availability is limiting. The latter approach corresponds with the classical Richards equation with mixed boundary conditions. We compare the different approaches...

  10. Advanced Atmospheric Ensemble Modeling Techniques

    Energy Technology Data Exchange (ETDEWEB)

    Buckley, R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Chiswell, S. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Kurzeja, R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Maze, G. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Viner, B. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Werth, D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-09-29

    Ensemble modeling (EM), the creation of multiple atmospheric simulations for a given time period, has become an essential tool for characterizing uncertainties in model predictions. We explore two novel ensemble modeling techniques: (1) perturbation of model parameters (Adaptive Programming, AP), and (2) data assimilation (Ensemble Kalman Filter, EnKF). The current research is an extension to work from last year and examines transport on a small spatial scale (<100 km) in complex terrain, for more rigorous testing of the ensemble technique. Two different release cases were studied, a coastal release (SF6) and an inland release (Freon) which consisted of two release times. Observations of tracer concentration and meteorology are used to judge the ensemble results. In addition, adaptive grid techniques have been developed to reduce required computing resources for transport calculations. Using a 20- member ensemble, the standard approach generated downwind transport that was quantitatively good for both releases; however, the EnKF method produced additional improvement for the coastal release where the spatial and temporal differences due to interior valley heating lead to the inland movement of the plume. The AP technique showed improvements for both release cases, with more improvement shown in the inland release. This research demonstrated that transport accuracy can be improved when models are adapted to a particular location/time or when important local data is assimilated into the simulation and enhances SRNL’s capability in atmospheric transport modeling in support of its current customer base and local site missions, as well as our ability to attract new customers within the intelligence community.

  11. Evaluation of the atmospheric transport model MEDIA using ECMWF data and using ARPEGE data during the Atmes like experiment of ETEX

    International Nuclear Information System (INIS)

    Bompay, F.

    1997-01-01

    During the differed time experiment of ETEX Meteo-France performed its atmospheric transport model MEDIA using both ECMWF data and a new data set provided by the french numerical weather prediction model ARPEGE. The specifications of the two meteorological data sets are strictly the same. The difference with the the real time response is that a six hours step re-analysis of the weather conditions was performed by ARPEGE to build the new data set. The results with ARPEGE data are better than during the real time response but the best simulation of the cloud displacement is obtained when we use ECMWF data. (author)

  12. Atmospheric Transport Modeling with 3D Lagrangian Dispersion Codes Compared with SF6 Tracer Experiments at Regional Scale

    Directory of Open Access Journals (Sweden)

    François Van Dorpe

    2007-01-01

    Full Text Available The results of four gas tracer experiments of atmospheric dispersion on a regional scale are used for the benchmarking of two atmospheric dispersion modeling codes, MINERVE-SPRAY (CEA, and NOSTRADAMUS (IBRAE. The main topic of this comparison is to estimate the Lagrangian code capability to predict the radionuclide atmospheric transfer on a large field, in the case of risk assessment of nuclear power plant for example. For the four experiments, the results of calculations show a rather good agreement between the two codes, and the order of magnitude of the concentrations measured on the soil is predicted. Simulation is best for sampling points located ten kilometers from the source, while we note a divergence for more distant points results (difference in concentrations by a factor 2 to 5. This divergence may be explained by the fact that, for these four experiments, only one weather station (near the point source was used on a field of 10 000 km2, generating the simulation of a uniform wind field throughout the calculation domain.

  13. Sensitivity study of land biosphere CO2 exchange through an atmospheric tracer transport model using satellite-derived vegetation index data

    International Nuclear Information System (INIS)

    Knorr, W.; Heimann, M.

    1994-01-01

    We develop a simple, globally uniform model of CO 2 exchange between the atmosphere and the terrestrial biosphere by coupling the model with a three-dimensional atmospheric tracer transport model using observed winds, and checking results against observed concentrations of CO 2 at various monitoring sites. CO 2 fluxes are derived from observed greenness using satellite-derived Global Vegetation Index data, combined with observations of temperature, radiation, and precipitation. We explore a range of CO 2 flux formulations together with some modifications of the modelled atmospheric transport. We find that while some formulations can be excluded, it cannot be decided whether or not to make CO 2 uptake and release dependent on water stress. It appears that the seasonality of net CO 2 fluxes in the tropics, which would be expected to be driven by water availability, is small and is therefore not visible in the seasonal cycle of atmospheric CO 2 . The latter is dominated largely by northern temperate and boreal vegetation, where seasonality is mostly temperature determined. We find some evidence that there is still considerable CO 2 release from soils during northern-hemisphere winter. An exponential air temperature dependence of soil release with a Q 10 of 1.5 is found to be most appropriate, with no cutoff at low freezing temperatures. This result is independent of the year from which observed winds were taken. This is remarkable insofar as year-to-year changes in modelled CO 2 concentrations caused by changes in the wind data clearly outweigh those caused by year-to-year variability in the climate and vegetation index data. (orig.)

  14. Constraints on oceanic methane emissions west of Svalbard from atmospheric in situ measurements and Lagrangian transport modeling

    Science.gov (United States)

    Myhre, C. Lund; Platt, S. M.; Eckhardt, S.; Hermansen, O.; Schmidbauer, N.; Mienert, J.; Vadakkepuliyambatta, S.; Bauguitte, S.; Pitt, J.; Allen, G.; Bower, K. N.; O'Shea, S.; Gallagher, M. W.; Percival, C. J.; Pyle, J.; Cain, M.; Stohl, A.

    2016-01-01

    Abstract Methane stored in seabed reservoirs such as methane hydrates can reach the atmosphere in the form of bubbles or dissolved in water. Hydrates could destabilize with rising temperature further increasing greenhouse gas emissions in a warming climate. To assess the impact of oceanic emissions from the area west of Svalbard, where methane hydrates are abundant, we used measurements collected with a research aircraft (Facility for Airborne Atmospheric Measurements) and a ship (Helmer Hansen) during the Summer 2014 and for Zeppelin Observatory for the full year. We present a model‐supported analysis of the atmospheric CH4 mixing ratios measured by the different platforms. To address uncertainty about where CH4 emissions actually occur, we explored three scenarios: areas with known seeps, a hydrate stability model, and an ocean depth criterion. We then used a budget analysis and a Lagrangian particle dispersion model to compare measurements taken upwind and downwind of the potential CH4 emission areas. We found small differences between the CH4 mixing ratios measured upwind and downwind of the potential emission areas during the campaign. By taking into account measurement and sampling uncertainties and by determining the sensitivity of the measured mixing ratios to potential oceanic emissions, we provide upper limits for the CH4 fluxes. The CH4 flux during the campaign was small, with an upper limit of 2.5 nmol m−2 s−1 in the stability model scenario. The Zeppelin Observatory data for 2014 suggest CH4 fluxes from the Svalbard continental platform below 0.2 Tg yr−1. All estimates are in the lower range of values previously reported. PMID:28261536

  15. Source Term Estimation of Radioxenon Released from the Fukushima Dai-ichi Nuclear Reactors Using Measured Air Concentrations and Atmospheric Transport Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Eslinger, Paul W. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Biegalski, S. [Univ. of Texas at Austin, TX (United States); Bowyer, Ted W. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Cooper, Matthew W. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Haas, Derek A. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Hayes, James C. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Hoffman, Ian [Radiation Protection Bureau, Health Canada, Ottawa, ON (Canada); Korpach, E. [Radiation Protection Bureau, Health Canada, Ottawa, ON (Canada); Yi, Jing [Radiation Protection Bureau, Health Canada, Ottawa, ON (Canada); Miley, Harry S. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Rishel, Jeremy P. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Ungar, R. Kurt [Radiation Protection Bureau, Health Canada, Ottawa, ON (Canada); White, Brian [Radiation Protection Bureau, Health Canada, Ottawa, ON (Canada); Woods, Vincent T. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)

    2014-01-01

    Systems designed to monitor airborne radionuclides released from underground nuclear explosions detected radioactive fallout from the Fukushima Daiichi nuclear accident in March 2011. Atmospheric transport modeling (ATM) of plumes of noble gases and particulates were performed soon after the accident to determine plausible detection locations of any radioactive releases to the atmosphere. We combine sampling data from multiple International Modeling System (IMS) locations in a new way to estimate the magnitude and time sequence of the releases. Dilution factors from the modeled plume at five different detection locations were combined with 57 atmospheric concentration measurements of 133-Xe taken from March 18 to March 23 to estimate the source term. This approach estimates that 59% of the 1.24×1019 Bq of 133-Xe present in the reactors at the time of the earthquake was released to the atmosphere over a three day period. Source term estimates from combinations of detection sites have lower spread than estimates based on measurements at single detection sites. Sensitivity cases based on data from four or more detection locations bound the source term between 35% and 255% of available xenon inventory.

  16. A logical source localization approach evaluating SRS-fields from backward atmospheric transport modeling for multiple detections

    Science.gov (United States)

    Ross, Ole; Ceranna, Lars

    2013-04-01

    In the framework of Comprehensive Nuclear-Test-Ban Treaty (CTBT) verification the use of atmospheric Lagrangian Particle Dispersion Models is well established to confine possible source regions of radionuclide detections. For that Source Receptor Sensitivity (SRS) fields are calculated in backward mode. At the German National Data Center (NDC) the NOAA model HYSPLIT is operational using as well NCEP as ECMWF meteorological data in up to 0.2 degree horizontal resolution. For additional comparisons and tests FLEXPART is also available. Various localization approaches for atmospheric backtracking are introduced. Especially a logical approach for combining SRS fields for multiple detections and non-detections is presented and compared with the correlation based PSR given by the CTBT-Organization software tool Webgrape. Our logical method is based on an additive coincidence score value combining binary sensitivities of detecting and non-detecting samples pointing to areas of high source location probability. Additionally, weight-functions and variable threshold values are introduced accounting for radioactive decay and for detectable release terms, respectively. The presented test cases comprise detections related to the Fukushima release 2011, scenarios of the NDC Preparedness Exercises NPE2012 and NP2010, and recent radioxenon occurrences at Schauinsland, Germany (DEX 33). Furthermore, the differences in sensitivity results between simulations in backward and forward mode are discussed. Although the standard backward simulations have huge operational and political advantages in the CTBT context, additional forward simulations for specific cases are essential to provide the most consitent picture of a potential release scenario.

  17. Atmospheric Models for Engineering Applications

    Science.gov (United States)

    Johnson, Dale L.; Roberts, Barry C.; Vaughan, William W.; Justus, C. G.

    2002-01-01

    This paper will review the historical development of reference and standard atmosphere models and their applications. The evolution of the U.S. Standard Atmosphere will be addressed, along with the Range Reference Atmospheres and, in particular, the NASA Global Reference Atmospheric Model (GRAM). The extensive scope and content of the GRAM will be addressed since it represents the most extensive and complete 'Reference' atmosphere model in use today. Its origin was for engineering applications and that remains today as its principal use.

  18. On the comparison of numerical methods for the integration of kinetic equations in atmospheric chemistry and transport models

    Science.gov (United States)

    Saylor, Rick D.; Ford, Gregory D.

    The integration of systems of ordinary differential equations (ODEs) that arise in atmospheric photochemistry is of significant concern to tropospheric and stratospheric chemistry modelers. As a consequence of the stiff nature of these ODE systems, their solution requires a large fraction of the total computational effort in three-dimensional chemical model simulations. Several integration techniques have been proposed and utilized over the years in an attempt to provide computationally efficient, yet accurate, solutions to chemical kinetics ODES. In this work, we present a comparison of some of these techniques and argue that valid comparisons of ODE solvers must take into account the trade-off between solution accuracy and computational efficiency. Misleading comparison results can be obtained by neglecting the fact that any ODE solution method can be made faster or slower by manipulation of the appropriate error tolerances or time steps. Comparisons among ODE solution techniques should therefore attempt to identify which technique can provide the most accurate solution with the least computational effort over the entire range of behavior of each technique. We present here a procedure by which ODE solver comparisons can achieve this goal. Using this methodology, we compare a variety of integration techniques, including methods proposed by Hesstvedt et al. (1978, Int. J. Chem. Kinet.10, 971-994), Gong and Cho (1993, Atmospheric Environment27A, 2147-2160), Young and Boris (1977, J. phys. Chem.81, 2424-2427) and Hindmarsh (1983, In Scientific Computing (edited by Stepleman R. S. et al.), pp. 55-64. North-Holland, Amsterdam). We find that Gear-type solvers such as the Livermore Solver for ordinary differential equations (LSODE) and the sparse-matrix version of LSODE (LSODES) provide the most accurate solution of our test problems with the least computational effort.

  19. Atmospheric emissions from road transportation in India

    International Nuclear Information System (INIS)

    Baidya, S.; Borken-Kleefeld, J.

    2009-01-01

    India has become one of the biggest emitters of atmospheric pollutants from the road transportation sector globally. Here we present an up-to-date inventory of the exhaust emissions of ten species. This inventory has been calculated bottom-up from the vehicle mileage, differentiating by seven vehicle categories, four age/technology layers and three fuel types each, for the seven biggest cities as well as for the whole nation. The age composition of the rolling fleet has been carefully modelled, deducting about one quarter of vehicles still registered but actually out-of-service. The vehicle mileage is calibrated to the national fuel consumption which is essential to limit uncertainties. Sensitivity analyses reveal the primary impact of the emission factors and the secondary influence of vehicle mileage and stock composition on total emissions. Emission estimates since 1980 are reviewed and qualified. A more comprehensive inspection and maintenance is essential to limit pollutant emissions; this must properly include commercial vehicles. They are also the most important vehicle category to address when fuel consumption and CO 2 emissions shall be contained. (author)

  20. Model atmospheres for Betelgeuse.

    Science.gov (United States)

    Fay, T. D.; Johnson, H. R.

    1973-01-01

    Detailed comparison of a series of stellar atmospheric models at effective temperatures of 3800 and 3500 K with scanner observations of Betelgeuse (alpha Ori, M2 Iab). The atmospheres are hydrostatic, flux-constant, LTE atmospheres which include the opacity of H2O, CO, CN, and atomic line blanketing. To reduce the flux shortward of 6000 A enough to agree with observations requires either strong atomic line blanketing (or a similar opacity source) or significant reddening, or (likely) both. The visual extinction (an estimate of which depends strongly on the line blanketing, especially in the 1- to 2-micron region) lies between 0.4 and 2.0 mag. Comparison of predicted strengths of observed CO and CN features with observations and of predicted column densities of CO, OH, NH, and H2O with published column densities suggests that C/H may be less than its solar value by about a factor of 10 and C/O may be less than 0.6 in Betelgeuse.

  1. Evaluation of atmospheric transport models for use in Phase II of the historical public exposures studies at the Rocky Flats Plant

    Energy Technology Data Exchange (ETDEWEB)

    Rood, A.S.; Killough, G.G.; Till, J.E.

    1999-08-01

    Five atmospheric transport models were evaluated for use in Phase II of the Historical Public Exposures Studies at the Rocky Flats Plant. Models included a simple straight-line Gaussian plume model (ISCST2), several integrated puff models (RATCHET, TRIAD, and INPUFF2), and a complex terrain model (TRAC). Evaluations were based on how well model predictions compared with sulfur hexafluoride tracer measurements taken in the vicinity of Rocky Flats in February 1991. Twelve separate tracer experiments were conducted, each lasting 9 hr and measured at 140 samplers in arcs 8 and 16 km from the release point at Rocky Flats. Four modeling objectives were defined based on the endpoints of the overall study: (1) the unpaired maximum hourly average concentration, (2) paired time-averaged concentration, (3) unpaired time-averaged concentration, and (4) arc-integrated concentration. Performance measures were used to evaluate models and focused on the geometric mean and standard deviation of the predicted-to-observed ratio and the correlation coefficient between predicted and observed concentrations. No one model consistently outperformed the others in all modeling objectives and performance measures. The overall performance of the RATCHET model was somewhat better than the other models.

  2. Verification of a One-Dimensional Model of CO2 Atmospheric Transport Inside and Above a Forest Canopy Using Observations at the Norunda Research Station

    Science.gov (United States)

    Kovalets, Ivan; Avila, Rodolfo; Mölder, Meelis; Kovalets, Sophia; Lindroth, Anders

    2018-02-01

    A model of CO2 atmospheric transport in vegetated canopies is tested against measurements of the flow, as well as CO2 concentrations at the Norunda research station located inside a mixed pine-spruce forest. We present the results of simulations of wind-speed profiles and CO2 concentrations inside and above the forest canopy with a one-dimensional model of profiles of the turbulent diffusion coefficient above the canopy accounting for the influence of the roughness sub-layer on turbulent mixing according to Harman and Finnigan (Boundary-Layer Meteorol 129:323-351, 2008; hereafter HF08). Different modelling approaches are used to define the turbulent exchange coefficients for momentum and concentration inside the canopy: (1) the modified HF08 theory—numerical solution of the momentum and concentration equations with a non-constant distribution of leaf area per unit volume; (2) empirical parametrization of the turbulent diffusion coefficient using empirical data concerning the vertical profiles of the Lagrangian time scale and root-mean-square deviation of the vertical velocity component. For neutral, daytime conditions, the second-order turbulence model is also used. The flexibility of the empirical model enables the best fit of the simulated CO2 concentrations inside the canopy to the observations, with the results of simulations for daytime conditions inside the canopy layer only successful provided the respiration fluxes are properly considered. The application of the developed model for radiocarbon atmospheric transport released in the form of ^{14}CO2 is presented and discussed.

  3. The Effect of Anisotropic Scatter on Atmospheric Neutron Transport

    Science.gov (United States)

    2015-03-26

    THE EFFECT OF ANISOTROPIC SCATTER ON ATMOSPHERIC NEUTRON TRANSPORT THESIS MARCH 2015 Nicholas J...iii AFIT-ENP-MS-15-M-085 THE EFFECT OF ANISOTROPIC SCATTER ON ATMOSPHERIC NEUTRON TRANSPORT THESIS Presented to the...EFFECT OF ANISOTROPIC SCATTER ON ATMOSPHERIC NEUTRON TRANSPORT Nicholas J. McIntee, BSE Major, USA Committee Membership: Dr. Kirk A. Mathews

  4. Implementation of the vortex force formalism in the coupled ocean-atmosphere-wave-sediment transport (COAWST) modeling system for inner shelf and surf zone applications

    Science.gov (United States)

    Kumar, Nirnimesh; Voulgaris, George; Warner, John C.; Olabarrieta, Maitane

    2012-01-01

    The coupled ocean-atmosphere-wave-sediment transport modeling system (COAWST) enables simulations that integrate oceanic, atmospheric, wave and morphological processes in the coastal ocean. Within the modeling system, the three-dimensional ocean circulation module (ROMS) is coupled with the wave generation and propagation model (SWAN) to allow full integration of the effect of waves on circulation and vice versa. The existing wave-current coupling component utilizes a depth dependent radiation stress approach. In here we present a new approach that uses the vortex force formalism. The formulation adopted and the various parameterizations used in the model as well as their numerical implementation are presented in detail. The performance of the new system is examined through the presentation of four test cases. These include obliquely incident waves on a synthetic planar beach and a natural barred beach (DUCK' 94); normal incident waves on a nearshore barred morphology with rip channels; and wave-induced mean flows outside the surf zone at the Martha's Vineyard Coastal Observatory (MVCO).

  5. Ocean-atmosphere dynamics during Hurricane Ida and Nor'Ida: An application of the coupled ocean-;atmosphere–wave–sediment transport (COAWST) modeling system

    Science.gov (United States)

    Olabarrieta, Maitane; Warner, John C.; Armstrong, Brandy N.; Zambon, Joseph B.; He, Ruoying

    2012-01-01

    The coupled ocean–atmosphere–wave–sediment transport (COAWST) modeling system was used to investigate atmosphere–ocean–wave interactions in November 2009 during Hurricane Ida and its subsequent evolution to Nor'Ida, which was one of the most costly storm systems of the past two decades. One interesting aspect of this event is that it included two unique atmospheric extreme conditions, a hurricane and a nor'easter storm, which developed in regions with different oceanographic characteristics. Our modeled results were compared with several data sources, including GOES satellite infrared data, JASON-1 and JASON-2 altimeter data, CODAR measurements, and wave and tidal information from the National Data Buoy Center (NDBC) and the National Tidal Database. By performing a series of numerical runs, we were able to isolate the effect of the interaction terms between the atmosphere (modeled with Weather Research and Forecasting, the WRF model), the ocean (modeled with Regional Ocean Modeling System (ROMS)), and the wave propagation and generation model (modeled with Simulating Waves Nearshore (SWAN)). Special attention was given to the role of the ocean surface roughness. Three different ocean roughness closure models were analyzed: DGHQ (which is based on wave age), TY2001 (which is based on wave steepness), and OOST (which considers both the effects of wave age and steepness). Including the ocean roughness in the atmospheric module improved the wind intensity estimation and therefore also the wind waves, surface currents, and storm surge amplitude. For example, during the passage of Hurricane Ida through the Gulf of Mexico, the wind speeds were reduced due to wave-induced ocean roughness, resulting in better agreement with the measured winds. During Nor'Ida, including the wave-induced surface roughness changed the form and dimension of the main low pressure cell, affecting the intensity and direction of the winds. The combined wave age- and wave steepness

  6. Scanning Imaging Absorption Spectrometer for Atmospheric Chartography carbon monoxide total columns: Statistical evaluation and comparison with chemistry transport model results

    NARCIS (Netherlands)

    Laat, de A.T.J.; Gloudemans, A.M.S.; Aben, I.; Krol, M.C.; Meirink, J.F.; Werf, van der G.R.; Schrijver, H.

    2007-01-01

    This paper presents a detailed statistical analysis of one year (September 2003 to August 2004) of global Scanning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY) carbon monoxide (CO) total column retrievals from the Iterative Maximum Likelihood Method (IMLM) algorithm,

  7. Contribution of JMA to the WMO Technical Task Team on meteorological analyses for Fukushima Daiichi Nuclear Power Plant accident and relevant atmospheric transport modeling at MRI

    International Nuclear Information System (INIS)

    Saito, Kazuo; Shimbori, Toshiki; Kato, Teruyuki; Kajino, Mizuo; Sekiyama, Tsuyoshi T.; Tanaka, Taichu Y.; Maki, Takashi; Draxler, Roland; Hara, Tabito; Toyoda, Eizi; Honda, Yuki; Nagata, Kazuhiko; Fujita, Tsukasa; Sakamoto, Masami; Terada, Hiroaki; Chino, Masamichi

    2015-01-01

    The United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) was asked to produce a scientific report for the General Assembly on the levels and effects of radiation exposure caused by the accident at the Fukushima Daiichi Nuclear Power Plant, and UNSCEAR requested the World Meteorological Organization (WMO) to develop a set of meteorological analyses for assessing the atmospheric transport, dispersion, and deposition of radioactive materials. In response to UNSCEAR's request, the WMO's Commission for Basic Systems convened a technical task team of experts from five countries (Austria, Canada, Japan, United Kingdom, and the United States) in November 2011. The primary aim of this team was to examine how the use of meteorological analyses could improve atmospheric transport, dispersion, and deposition model (ATDM) calculations. As the Regional Specialized Meteorological Center of the country in which the accident occurred, the Japan Meteorological Agency (JMA) collaborated with the WMO Task Team by providing its mesoscale analysis based on operational four-dimensional variational data assimilation and radar/rain gauge-analyzed precipitation (RAP) data in the standard WMO format (GRIB2). To evaluate the quality of the meteorological analyses, the WMO Task Team conducted test simulations with their regional ATDMs and different meteorological analyses. JMA developed a regional ATDM for radionuclides by modifying its operational regional atmospheric transport model, which had been previously used for photochemical oxidant predictions and volcanic ashfall forecasts. The modified model (hereafter referred to as JMA-RATM) newly implemented dry deposition, wet scavenging, and gravitational settling of radionuclide aerosol particles. The preliminary and revised calculations of JMA-RATM were conducted with a horizontal concentration and deposition grid resolution of 5 km and a unit source emission rate, in accordance with the Task Team

  8. Where do fossil fuel carbon dioxide emissions from California go? An analysis based on radiocarbon observations and an atmospheric transport model

    Energy Technology Data Exchange (ETDEWEB)

    Riley, W.J.; Hsueh, D.Y.; Randerson, J.T.; Fischer, M.L.; Hatch, J.G.; Pataki, D.E.; Wang, W.; Goulden, M.L.

    2008-05-01

    Characterizing flow patterns and mixing of fossil fuel-derived CO{sub 2} is important for effectively using atmospheric measurements to constrain emissions inventories. Here we used measurements and a model of atmospheric radiocarbon ({sup 14}C) to investigate the distribution and fluxes of atmospheric fossil fuel CO{sub 2} across the state of California. We sampled {sup 14}C in annual C{sub 3} grasses at 128 sites and used these measurements to test a regional model that simulated anthropogenic and ecosystem CO{sub 2} fluxes, transport in the atmosphere, and the resulting {sup 14}C of annual grasses ({Delta}{sub g}). Average measured {Delta}{sub g} in Los Angeles, San Francisco, the Central Valley, and the North Coast were 27.7 {+-} 20.0, 44.0 {+-} 10.9, 48.7 {+-} 1.9, and 59.9 {+-} 2.5{per_thousand}, respectively, during the 2004-2005 growing season. Model predictions reproduced regional patterns reasonably well, with estimates of 27.6 {+-} 2.4, 39.4 {+-} 3.9, 46.8 {+-} 3.0, and 59.3 {+-} 0.2{per_thousand} for these same regions and corresponding to fossil fuel CO{sub 2} mixing ratios (Cf) of 13.7, 6.1, 4.8, and 0.3 ppm. {Delta}{sub g} spatial heterogeneity in Los Angeles and San Francisco was higher in the measurements than in the predictions, probably from insufficient spatial resolution in the fossil fuel inventories (e.g., freeways are not explicitly included) and transport (e.g., within valleys). We used the model to predict monthly and annual transport patterns of fossil fuel-derived CO{sub 2} within and out of California. Fossil fuel CO{sub 2} emitted in Los Angeles and San Francisco was predicted to move into the Central Valley, raising Cf above that expected from local emissions alone. Annually, about 21, 39, 35, and 5% of fossil fuel emissions leave the California airspace to the north, east, south, and west, respectively, with large seasonal variations in the proportions. Positive correlations between westward fluxes and Santa Ana wind conditions were

  9. Regional transport and dilution during high-pollution episodes in southern France: Summary of findings from the Field Experiment to Constraint Models of Atmospheric Pollution and Emissions Transport (ESCOMPTE)

    Energy Technology Data Exchange (ETDEWEB)

    Drobinski, P.; Menut, L. [Ecole Polytechnique, Inst Pierre Simon Laplace, Laboratoire de Meteorologie Dynamique, F-91128 Palaiseau (France); Ancellet, G.; Bastin, S.; Colette, A. [Universite Pierre et Marie Curie, Institut Pierre Simon Laplace, Service d' aeronomie, 4 place Jussieu, F-75252 Paris, (France); Said, F.; Brut, A.; Campistron, B.; Cros, B.; Durand, P.; Lohou, F.; Moppert, C.; Puygrenier, V. [Univ Toulouse, Lab Aerol, F-31400 Toulouse, (France); Arteta, J.; Cautenet, S. [Univ Clermont Ferrand, Lab Meteorol Phys, F-63174 Aubiere, (France); Augustin, P.; Delbarre, H. [Univ Littoral Cote d' Opale, Lab Physicochim Atmosphere, F-59140 Dunkerque, (France); Caccia, J.L.; Guenard, V. [Univ Toulon and Var, Lab Sondages Electromagnet Environm Terr, F-83957 La Garde, (France); Coll, I.; Lasry, F. [Fac Sci and Technol, Lab Interuniv Syst Atmospher, F-94010 Creteil, (France); Corsmeier, U.; Hasel, M.; Kalthoff, N.; Kottmeier, C. [Univ Karlsruhe, Inst Meteorol and Klimaforsch, Forschungszentrum, D-76133 Karlsruhe, (Germany); Dabas, A.; Dufour, A.; Lemonsu, A.; Masson, V.; Peuch, V.H. [Ctr Natl Rech Meteorol, F-31057 Toulouse, (France); Reitebuch, O. [Deutsch Zentrum Luft and Raumfahrt, Inst Atmospher Phys, D-82234 Wessling, (Germany); Vautard, R. [Inst Pierre Simon Laplace, CEA Saclay, Lab Sci Climat and Environm, F-91191 Gif Sur Yvette, (France)

    2007-07-01

    In the French Mediterranean basin the large city of Marseille and its industrialized suburbs (oil plants in the Fos-Berre area) are major pollutant sources that cause frequent and hazardous pollution episodes, especially in summer when intense solar heating enhances the photochemical activity and when the sea breeze circulation redistributes pollutants farther north in the countryside. This paper summarizes the findings of 5 years of research on the sea breeze in southern France and related mesoscale transport and dilution of pollutants within the Field Experiment to Constraint Models of Atmospheric Pollution and Emissions Transport (ESCOMPTE) program held in June and July 2001. This paper provides an overview of the experimental and numerical challenges identified before the ESCOMPTE field experiment and summarizes the key findings made in observation, simulation, and theory. We specifically address the role of large-scale atmospheric circulation to local ozone vertical distribution and the mesoscale processes driving horizontal advection of pollutants and vertical transport and mixing via entrainment at the top of the sea breeze or at the front and venting along the sloped terrain. The crucial importance of the interactions between processes of various spatial and temporal scales is thus highlighted. The advances in numerical modeling and forecasting of sea breeze events and ozone pollution episodes in southern France are also underlined. Finally, we conclude and point out some open research questions needing further investigation. (authors)

  10. Regional transport and dilution during high-pollution episodes in southern France: Summary of findings from the Field Experiment to Constraint Models of Atmospheric Pollution and Emissions Transport (ESCOMPTE)

    International Nuclear Information System (INIS)

    Drobinski, P.; Menut, L.; Ancellet, G.; Bastin, S.; Colette, A.; Said, F.; Brut, A.; Campistron, B.; Cros, B.; Durand, P.; Lohou, F.; Moppert, C.; Puygrenier, V.; Arteta, J.; Cautenet, S.; Augustin, P.; Delbarre, H.; Caccia, J.L.; Guenard, V.; Coll, I.; Lasry, F.; Corsmeier, U.; Hasel, M.; Kalthoff, N.; Kottmeier, C.; Dabas, A.; Dufour, A.; Lemonsu, A.; Masson, V.; Peuch, V.H.; Reitebuch, O.; Vautard, R.

    2007-01-01

    In the French Mediterranean basin the large city of Marseille and its industrialized suburbs (oil plants in the Fos-Berre area) are major pollutant sources that cause frequent and hazardous pollution episodes, especially in summer when intense solar heating enhances the photochemical activity and when the sea breeze circulation redistributes pollutants farther north in the countryside. This paper summarizes the findings of 5 years of research on the sea breeze in southern France and related mesoscale transport and dilution of pollutants within the Field Experiment to Constraint Models of Atmospheric Pollution and Emissions Transport (ESCOMPTE) program held in June and July 2001. This paper provides an overview of the experimental and numerical challenges identified before the ESCOMPTE field experiment and summarizes the key findings made in observation, simulation, and theory. We specifically address the role of large-scale atmospheric circulation to local ozone vertical distribution and the mesoscale processes driving horizontal advection of pollutants and vertical transport and mixing via entrainment at the top of the sea breeze or at the front and venting along the sloped terrain. The crucial importance of the interactions between processes of various spatial and temporal scales is thus highlighted. The advances in numerical modeling and forecasting of sea breeze events and ozone pollution episodes in southern France are also underlined. Finally, we conclude and point out some open research questions needing further investigation. (authors)

  11. Atmospheric transport of pollution to the Arctic

    International Nuclear Information System (INIS)

    Iversen, T.

    1984-01-01

    If the atmospheric processes are assumed to be nearly adiabatic, the conclusion is that the possible source areas of Arctic air pollution detected at ground level have to be situated in areas with almost the same temperature as observed in the Arctic itself. Sources south of the polar front system can only contribute to high-altitude (or upper level) Arctic pollution. The amplitude and phase of long, planetary waves are important since they determine the position of the polar front, and provide conditions for meridional transport of air at certain longitudes

  12. A-TOUGH: A multimedia fluid-flow/energy-transport model for fully- coupled atmospheric-subsurface interactions

    International Nuclear Information System (INIS)

    Montazer, P.; Hammermeister, D.; Ginanni, J.

    1994-01-01

    The long-term effect of changes in atmospheric climatological conditions on subsurface hydrological conditions in the unsaturated zone in and environments is an important factor in defining the performance of a high-level and low-level radioactive waste repositories in geological environment. Computer simulation coupled with paleohydrological studies can be used to understand and quantify the potential impact of future climatological conditions on repository performance. A-TOUGH efficiently simulates (given current state-of-the-art technology) the physical processes involved in the near-surface atmosphere and its effect on subsurface conditions. This efficiency is due to the numerical techniques used in TOUGH and the efficient computational techniques used in V-TOUGH to solve non-linear thermodynamic equations that govern the flux of vapor and energy within subsurface porous and fractured media and between these media and the atmosphere

  13. Regional Atmospheric Transport Code for Hanford Emission Tracking (RATCHET)

    International Nuclear Information System (INIS)

    Ramsdell, J.V. Jr.; Simonen, C.A.; Burk, K.W.

    1994-02-01

    The purpose of the Hanford Environmental Dose Reconstruction (HEDR) Project is to estimate radiation doses that individuals may have received from operations at the Hanford Site since 1944. This report deals specifically with the atmospheric transport model, Regional Atmospheric Transport Code for Hanford Emission Tracking (RATCHET). RATCHET is a major rework of the MESOILT2 model used in the first phase of the HEDR Project; only the bookkeeping framework escaped major changes. Changes to the code include (1) significant changes in the representation of atmospheric processes and (2) incorporation of Monte Carlo methods for representing uncertainty in input data, model parameters, and coefficients. To a large extent, the revisions to the model are based on recommendations of a peer working group that met in March 1991. Technical bases for other portions of the atmospheric transport model are addressed in two other documents. This report has three major sections: a description of the model, a user's guide, and a programmer's guide. These sections discuss RATCHET from three different perspectives. The first provides a technical description of the code with emphasis on details such as the representation of the model domain, the data required by the model, and the equations used to make the model calculations. The technical description is followed by a user's guide to the model with emphasis on running the code. The user's guide contains information about the model input and output. The third section is a programmer's guide to the code. It discusses the hardware and software required to run the code. The programmer's guide also discusses program structure and each of the program elements

  14. MARCS model atmospheres

    Energy Technology Data Exchange (ETDEWEB)

    Plez, B [GRAAL, CNRS, UMR5024, Universite Montpellier 2, F-34095 Montpellier, Cedex 5 (France) and Department of Physics and Astronomy, Uppsala University, SE-75120 Uppsala (Sweden)], E-mail: bertrand.plez@graal.univ-montp2.fr

    2008-12-15

    In this review presented at the Symposium A Stellar Journey in Uppsala, June 2008, I give an account of the historical development of the MARCS code, and its premises from the first version published in 1975 to the 2008 grid. The primary driver for the development team who constantly strive to include the best possible physical data, is the science that can be done with the models. A few preliminary comparisons of M star model spectra to spectrophotometric observations are presented. Particular results related to opacity effects are discussed. The size of errors in spectral energy distribution (SED) and model thermal stratification is estimated for different densities of wavelength sampling. The number of points used in the MARCS 2008 grid (108 000) is large enough to ensure errors of only a few K in all models of the grid, except the optically very thin layers of metal-poor stars. Errors in SEDs may reach about 10% locally in the UV. The published sampled SEDs are thus adequate to compute synthetic broadband photometry, but higher resolution spectra will be computed in the near future and published as well on the MARCS site (marcs.astro.uu.se). Test model calculations with TiO line opacity accounted for in scattering show significant cooling of the upper atmospheric layers of red giants. Rough estimates of radiative and collisional time scales for electronic transitions of TiO indicate that scattering may well be the dominant mechanism in these lines. However, models constructed with this hypothesis are incompatible with optical observations of TiO (Arcturus) or IR observations of OH (Betelgeuse), although they may succeed in explaining H{sub 2}O line observations. More work is needed in that direction.

  15. Advective transport of CO2 in permeable media induced by atmospheric pressure fluctuations: 1. An analytical model

    Science.gov (United States)

    W. J. Massman

    2006-01-01

    Advective flows within soils and snowpacks caused by pressure fluctuations at the upper surface of either medium can significantly influence the exchange rate of many trace gases from the underlying substrate to the atmosphere. Given the importance of many of these trace gases in understanding biogeochemical cycling and global change, it is crucial to quantify (as much...

  16. Atmospheric pollution. From processes to modelling

    International Nuclear Information System (INIS)

    Sportisse, B.

    2008-01-01

    Air quality, greenhouse effect, ozone hole, chemical or nuclear accidents.. All these phenomena are tightly linked to the chemical composition of atmosphere and to the atmospheric dispersion of pollutants. This book aims at supplying the main elements of understanding of 'atmospheric pollutions': stakes, physical processes involved, role of scientific expertise in decision making. Content: 1 - classifications and scales: chemical composition of the atmosphere, vertical structure, time scales (transport, residence); 2 - matter/light interaction: notions of radiative transfer, application to the Earth's atmosphere; 3 - some elements about the atmospheric boundary layer: notion of scales in meteorology, atmospheric boundary layer (ABL), thermal stratification and stability, description of ABL turbulence, elements of atmospheric dynamics, some elements about the urban climate; 4 - notions of atmospheric chemistry: characteristics, ozone stratospheric chemistry, ozone tropospheric chemistry, brief introduction to indoor air quality; 5 - aerosols, clouds and rains: aerosols and particulates, aerosols and clouds, acid rains and leaching; 6 - towards numerical simulation: equation of reactive dispersion, numerical methods for chemistry-transport models, numerical resolution of the general equation of aerosols dynamics (GDE), modern simulation chains, perspectives. (J.S.)

  17. GLOBAL REFERENCE ATMOSPHERIC MODELS FOR AEROASSIST APPLICATIONS

    Science.gov (United States)

    Duvall, Aleta; Justus, C. G.; Keller, Vernon W.

    2005-01-01

    Aeroassist is a broad category of advanced transportation technology encompassing aerocapture, aerobraking, aeroentry, precision landing, hazard detection and avoidance, and aerogravity assist. The eight destinations in the Solar System with sufficient atmosphere to enable aeroassist technology are Venus, Earth, Mars, Jupiter, Saturn, Uranus, Neptune, and Saturn's moon Titan. Engineering-level atmospheric models for five of these targets - Earth, Mars, Titan, Neptune, and Venus - have been developed at NASA's Marshall Space Flight Center. These models are useful as tools in mission planning and systems analysis studies associated with aeroassist applications. The series of models is collectively named the Global Reference Atmospheric Model or GRAM series. An important capability of all the models in the GRAM series is their ability to simulate quasi-random perturbations for Monte Carlo analysis in developing guidance, navigation and control algorithms, for aerothermal design, and for other applications sensitive to atmospheric variability. Recent example applications are discussed.

  18. Testing the importance of accurate meteorological input fields and parameterizations in atmospheric transport modelling using DREAM - Validation against ETEX-1

    DEFF Research Database (Denmark)

    Brandt, J.; Bastrup-Birk, A.; Christensen, J.H.

    1998-01-01

    A tracer model, the DREAM, which is based on a combination of a near-range Lagrangian model and a long-range Eulerian model, has been developed. The meteorological meso-scale model, MM5V1, is implemented as a meteorological driver for the tracer model. The model system is used for studying...

  19. Frontiers in Atmospheric Chemistry Modelling

    Science.gov (United States)

    Colette, Augustin; Bessagnet, Bertrand; Meleux, Frederik; Rouïl, Laurence

    2013-04-01

    The first pan-European kilometre-scale atmospheric chemistry simulation is introduced. The continental-scale air pollution episode of January 2009 is modelled with the CHIMERE offline chemistry-transport model with a massive grid of 2 million horizontal points, performed on 2000 CPU of a high performance computing system hosted by the Research and Technology Computing Center at the French Alternative Energies and Atomic Energy Commission (CCRT/CEA). Besides the technical challenge, which demonstrated the robustness of the selected air quality model, we discuss the added value in terms of air pollution modelling and decision support. The comparison with in-situ observations shows that model biases are significantly improved despite some spurious added spatial variability attributed to shortcomings in the emission downscaling process and coarse resolution of the meteorological fields. The increased spatial resolution is clearly beneficial for the detection of exceedances and exposure modelling. We reveal small scale air pollution patterns that highlight the contribution of city plumes to background air pollution levels. Up to a factor 5 underestimation of the fraction of population exposed to detrimental levels of pollution can be obtained with a coarse simulation if subgrid scale correction such as urban increments are ignored. This experiment opens new perspectives for environmental decision making. After two decades of efforts to reduce air pollutant emissions across Europe, the challenge is now to find the optimal trade-off between national and local air quality management strategies. While the first approach is based on sectoral strategies and energy policies, the later builds upon new alternatives such as urban development. The strategies, the decision pathways and the involvement of individual citizen differ, and a compromise based on cost and efficiency must be found. We illustrated how high performance computing in atmospheric science can contribute to this

  20. Modeling the atmospheric chemistry of TICs

    Science.gov (United States)

    Henley, Michael V.; Burns, Douglas S.; Chynwat, Veeradej; Moore, William; Plitz, Angela; Rottmann, Shawn; Hearn, John

    2009-05-01

    An atmospheric chemistry model that describes the behavior and disposition of environmentally hazardous compounds discharged into the atmosphere was coupled with the transport and diffusion model, SCIPUFF. The atmospheric chemistry model was developed by reducing a detailed atmospheric chemistry mechanism to a simple empirical effective degradation rate term (keff) that is a function of important meteorological parameters such as solar flux, temperature, and cloud cover. Empirically derived keff functions that describe the degradation of target toxic industrial chemicals (TICs) were derived by statistically analyzing data generated from the detailed chemistry mechanism run over a wide range of (typical) atmospheric conditions. To assess and identify areas to improve the developed atmospheric chemistry model, sensitivity and uncertainty analyses were performed to (1) quantify the sensitivity of the model output (TIC concentrations) with respect to changes in the input parameters and (2) improve, where necessary, the quality of the input data based on sensitivity results. The model predictions were evaluated against experimental data. Chamber data were used to remove the complexities of dispersion in the atmosphere.

  1. Atmospheric transport, diffusion, and deposition of radioactivity

    International Nuclear Information System (INIS)

    Crawford, T.V.

    1969-01-01

    From a meteorological standpoint there are two types of initial sources for atmospheric diffusion from Plowshare applications. One is the continuous point-source plume - a slow, small leak from an underground engineering application. The other is the large cloud produced almost instantaneously from a cratering application. For the purposes of this paper the effluent from neither type has significant fall speed. Both are carried by the prevailing wind, but the statistics of diffusion for each type are different. The use of constant altitude, isobaric and isentropic techniques for predicting the mean path of the effluent is briefly discussed. Limited data are used to assess the accuracy of current trajectory forecast techniques. Diffusion of continuous point-source plumes has been widely studied; only a brief review is given of the technique used and the variability of their results with wind speed and atmospheric stability. A numerical model is presented for computing the diffusion of the 'instantaneously-produced' large clouds. This model accounts for vertical and diurnal changes in atmospheric turbulence, wet and dry deposition, and radioactivity decay. Airborne concentrations, cloud size, and deposition on the ground are calculated. Pre- and post-shot calculations of cloud center, ground level concentration of gross radioactivity, and dry and wet deposition of iodine-131 are compared with measurements on Cabriolet and Buggy. (author)

  2. Next Generation Transport Phenomenology Model

    Science.gov (United States)

    Strickland, Douglas J.; Knight, Harold; Evans, J. Scott

    2004-01-01

    This report describes the progress made in Quarter 3 of Contract Year 3 on the development of Aeronomy Phenomenology Modeling Tool (APMT), an open-source, component-based, client-server architecture for distributed modeling, analysis, and simulation activities focused on electron and photon transport for general atmospheres. In the past quarter, column emission rate computations were implemented in Java, preexisting Fortran programs for computing synthetic spectra were embedded into APMT through Java wrappers, and work began on a web-based user interface for setting input parameters and running the photoelectron and auroral electron transport models.

  3. Turbulent transport of large particles in the atmospheric boundary layer

    Science.gov (United States)

    Richter, D. H.; Chamecki, M.

    2017-12-01

    To describe the transport of heavy dust particles in the atmosphere, assumptions must typically be made in order to connect the micro-scale emission processes with the larger-scale atmospheric motions. In the context of numerical models, this can be thought of as the transport process which occurs between the domain bottom and the first vertical grid point. For example, in the limit of small particles (both low inertia and low settling velocity), theory built upon Monin-Obukhov similarity has proven effective in relating mean dust concentration profiles to surface emission fluxes. For increasing particle mass, however, it becomes more difficult to represent dust transport as a simple extension of the transport of a passive scalar due to issues such as the crossing trajectories effect. This study focuses specifically on the problem of large particle transport and dispersion in the turbulent boundary layer by utilizing direct numerical simulations with Lagrangian point-particle tracking to determine under what, if any, conditions the large dust particles (larger than 10 micron in diameter) can be accurately described in a simplified Eulerian framework. In particular, results will be presented detailing the independent contributions of both particle inertia and particle settling velocity relative to the strength of the surrounding turbulent flow, and consequences of overestimating surface fluxes via traditional parameterizations will be demonstrated.

  4. Modelling of Transport Phenomena

    OpenAIRE

    K., Itoh; S.-I., Itoh; A., Fukuyama

    1993-01-01

    In this review article, we discuss key features of the transport phenomena and theoretical modelling to understand them. Experimental observations have revealed the nature of anomalous transport, i.e., the enhancement of the transport coefficients by the gradients of the plasma profiles, the pinch phenomena, the radial profile of the apomalous transport coefficients, the variation of the transport among the Bohm diffusion, Pseudo-classical confinement, L-mode and variety of improved confineme...

  5. A Model of the Primordial Lunar Atmosphere

    Science.gov (United States)

    Saxena, Prabal; Elkins-Tanton, Lindy; Petro, Noah; Mandell, Avi

    2017-01-01

    We create the first quantitative model for the early lunar atmosphere, coupled with a magma ocean crystallization model. Immediately after formation, the moon's surface was subject to a radiative environment that included contributions from the early Sun, a post-impact Earth that radiated like a mid-type M dwarf star, and a cooling global magma ocean. This radiative environment resulted in a largely Earth-side atmosphere on the Moon, ranging from approximately 10(exp 4) to approximately 10(exp 2) pascals, composed of heavy volatiles (Na and SiO). This atmosphere persisted through lid formation and was additionally characterized by supersonic winds that transported significant quantities of moderate volatiles and likely generated magma ocean waves. The existence of this atmosphere may have influenced the distribution of some moderate volatiles and created temperature asymmetries which influenced ocean flow and cooling. Such asymmetries may characterize young, tidally locked rocky bodies with global magma oceans and subject to intense irradiation.

  6. Atmospheric Transport of Nutrient Matter during a Red Tide Event

    Science.gov (United States)

    Tian, R.; Weng, H.; Lin, Q.

    2017-12-01

    Harmful algal blooms (HABs) resulting from an explosive increase in algae population have become a global problem in coastal marine environment. During 3rd -8th, May of 2006, large-scale, mixed prorocentrum dentatum stein and skeletonema costatum bloom developed in those water off the coast of Zhejiang province (Zhoushan city and Liuheng Island) of China. Using Global Nested Air Quality Prediction Modeling System (GNAQPMS), we find an atmospheric transport of considerable nutrient matter (nitrate, ammonium, Fe (Ⅱ)) to East China Sea (ECS) before the red tide event. It be inferred that the atmospheric transport of nutrient matter is a significant source of nutrient matter in the water of East China Sea whose hydrological setting is dominated by oligotrophic Taiwan Warm Current in spring. Such atmospheric transport of nutrient matter is likely a cause factor of red tide in the coast of East China Sea, especially during dust event. The study provides new information for discovering the occurring mechanism of the red tides in ECS and the essential parameters for the red tide research.

  7. Tagging Water Sources in Atmospheric Models

    Science.gov (United States)

    Bosilovich, M.

    2003-01-01

    Tagging of water sources in atmospheric models allows for quantitative diagnostics of how water is transported from its source region to its sink region. In this presentation, we review how this methodology is applied to global atmospheric models. We will present several applications of the methodology. In one example, the regional sources of water for the North American Monsoon system are evaluated by tagging the surface evaporation. In another example, the tagged water is used to quantify the global water cycling rate and residence time. We will also discuss the need for more research and the importance of these diagnostics in water cycle studies.

  8. Modelling land surface - atmosphere interactions

    DEFF Research Database (Denmark)

    Rasmussen, Søren Højmark

    The study is investigates modelling of land surface – atmosphere interactions in context of fully coupled climatehydrological model. With a special focus of under what condition a fully coupled model system is needed. Regional climate model inter-comparison projects as ENSEMBLES have shown bias...

  9. UZ Colloid Transport Model

    International Nuclear Information System (INIS)

    McGraw, M.

    2000-01-01

    The UZ Colloid Transport model development plan states that the objective of this Analysis/Model Report (AMR) is to document the development of a model for simulating unsaturated colloid transport. This objective includes the following: (1) use of a process level model to evaluate the potential mechanisms for colloid transport at Yucca Mountain; (2) Provide ranges of parameters for significant colloid transport processes to Performance Assessment (PA) for the unsaturated zone (UZ); (3) Provide a basis for development of an abstracted model for use in PA calculations

  10. The Initial Atmospheric Transport (IAT) Code: Description and Validation

    Energy Technology Data Exchange (ETDEWEB)

    Morrow, Charles W. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bartel, Timothy James [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-10-01

    The Initial Atmospheric Transport (IAT) computer code was developed at Sandia National Laboratories as part of their nuclear launch accident consequences analysis suite of computer codes. The purpose of IAT is to predict the initial puff/plume rise resulting from either a solid rocket propellant or liquid rocket fuel fire. The code generates initial conditions for subsequent atmospheric transport calculations. The Initial Atmospheric Transfer (IAT) code has been compared to two data sets which are appropriate to the design space of space launch accident analyses. The primary model uncertainties are the entrainment coefficients for the extended Taylor model. The Titan 34D accident (1986) was used to calibrate these entrainment settings for a prototypic liquid propellant accident while the recent Johns Hopkins University Applied Physics Laboratory (JHU/APL, or simply APL) large propellant block tests (2012) were used to calibrate the entrainment settings for prototypic solid propellant accidents. North American Meteorology (NAM )formatted weather data profiles are used by IAT to determine the local buoyancy force balance. The IAT comparisons for the APL solid propellant tests illustrate the sensitivity of the plume elevation to the weather profiles; that is, the weather profile is a dominant factor in determining the plume elevation. The IAT code performed remarkably well and is considered validated for neutral weather conditions.

  11. Atmospheric Deposition Modeling Results

    Data.gov (United States)

    U.S. Environmental Protection Agency — This asset provides data on model results for dry and total deposition of sulfur, nitrogen and base cation species. Components include deposition velocities, dry...

  12. Extension and validation of ARTM (atmospheric radionuclide transportation model) for the application as dispersion calculation model in AVV (general administrative provision) and SBG (incident calculation bases); Erweiterung und Validierung von ARTM fuer den Einsatz als Ausbreitungsmodell in AVV und SBG

    Energy Technology Data Exchange (ETDEWEB)

    Martens, Reinhard; Bruecher, Wenzel; Richter, Cornelia; Sentuc, Florence; Sogalla, Martin; Thielen, Harald

    2012-02-15

    In the medium-term time scale the Gaussian plume model used so far for atmospheric dispersion calculations in the General Administrative Provision (AVV) relating to Section 47 of the Radiation Protection Ordinance (StrISchV) as well as in the Incident Calculation Bases (SGB) relating to Section 49 StrISchV is to be replaced by a Lagrangian particle model. Meanwhile the Atmospheric Radionuclide Transportation Model (ARTM) is available, which allows the simulation of the atmospheric dispersion of operational releases from nuclear installations. ARTM is based on the program package AUSTAL2000 which is designed for the simulation of atmospheric dispersion of nonradioactive operational releases from industrial plants and was adapted to the application of airborne radioactive releases. In the context of the research project 3608S05005 possibilities for an upgrade of ARTM were investigated and implemented as far as possible to the program system. The work program comprises the validation and evaluation of ARTM, the implementation of technical-scientific extensions of the model system and the continuation of experience exchange between developers and users. In particular, the suitability of the model approach for simulations of radiological consequences according to the German SBG and the representation of the influence of buildings typical for nuclear power stations have been validated and further evaluated. Moreover, post-processing modules for calculation of dose-relevant decay products and for dose calculations have been developed and implemented. In order to continue the experience feedback and exchange, a web page has been established and maintained. Questions by users and other feedback have been dealt with and a common workshop has been held. The continued development and validation of ARTM has strengthened the basis for applications of this model system in line with the German regulations AVV and SBG. Further activity in this field can contribute to maintain and

  13. Venus Global Reference Atmospheric Model

    Science.gov (United States)

    Justh, Hilary L.

    2017-01-01

    Venus Global Reference Atmospheric Model (Venus-GRAM) is an engineering-level atmospheric model developed by MSFC that is widely used for diverse mission applications including: Systems design; Performance analysis; Operations planning for aerobraking, Entry, Descent and Landing, and aerocapture; Is not a forecast model; Outputs include density, temperature, pressure, wind components, and chemical composition; Provides dispersions of thermodynamic parameters, winds, and density; Optional trajectory and auxiliary profile input files Has been used in multiple studies and proposals including NASA Engineering and Safety Center (NESC) Autonomous Aerobraking and various Discovery proposals; Released in 2005; Available at: https://software.nasa.gov/software/MFS-32314-1.

  14. Parameterized isoprene and monoterpene emissions from the boreal forest floor: Implementation into a 1D chemistry-transport model and investigation of the influence on atmospheric chemistry

    Science.gov (United States)

    Mogensen, Ditte; Aaltonen, Hermanni; Aalto, Juho; Bäck, Jaana; Kieloaho, Antti-Jussi; Gierens, Rosa; Smolander, Sampo; Kulmala, Markku; Boy, Michael

    2015-04-01

    Volatile organic compounds (VOCs) are emitted from the biosphere and can work as precursor gases for aerosol particles that can affect the climate (e.g. Makkonen et al., ACP, 2012). VOC emissions from needles and leaves have gained the most attention, however other parts of the ecosystem also have the ability to emit a vast amount of VOCs. This, often neglected, source can be important e.g. at periods where leaves are absent. Both sources and drivers related to forest floor emission of VOCs are currently limited. It is thought that the sources are mainly due to degradation of organic matter (Isidorov and Jdanova, Chemosphere, 2002), living roots (Asensio et al., Soil Biol. Biochem., 2008) and ground vegetation. The drivers are biotic (e.g. microbes) and abiotic (e.g. temperature and moisture). However, the relative importance of the sources and the drivers individually are currently poorly understood. Further, the relative importance of these factors is highly dependent on the tree species occupying the area of interest. The emission of isoprene and monoterpenes where measured from the boreal forest floor at the SMEAR II station in Southern Finland (Hari and Kulmala, Boreal Env. Res., 2005) during the snow-free period in 2010-2012. We used a dynamic method with 3 automated chambers analyzed by Proton Transfer Reaction - Mass Spectrometer (Aaltonen et al., Plant Soil, 2013). Using this data, we have developed empirical parameterizations for the emission of isoprene and monoterpenes from the forest floor. These parameterizations depends on abiotic factors, however, since the parameterizations are based on field measurements, biotic features are captured. Further, we have used the 1D chemistry-transport model SOSAA (Boy et al., ACP, 2011) to test the seasonal relative importance of inclusion of these parameterizations of the forest floor compared to the canopy crown emissions, on the atmospheric reactivity throughout the canopy.

  15. Modeling the effects of atmospheric emissions on groundwater composition

    International Nuclear Information System (INIS)

    Brown, T.J.

    1994-01-01

    A composite model of atmospheric, unsaturated and groundwater transport is developed to evaluate the processes determining the distribution of atmospherically derived contaminants in groundwater systems and to test the sensitivity of simulated contaminant concentrations to input parameters and model linkages. One application is to screen specific atmospheric emissions for their potential in determining groundwater age. Temporal changes in atmospheric emissions could provide a recognizable pattern in the groundwater system. The model also provides a way for quantifying the significance of uncertainties in the tracer source term and transport parameters on the contaminant distribution in the groundwater system, an essential step in using the distribution of contaminants from local, point source atmospheric emissions to examine conceptual models of groundwater flow and transport

  16. Modelling land surface - atmosphere interactions

    DEFF Research Database (Denmark)

    Rasmussen, Søren Højmark

    related to inaccurate land surface modelling, e.g. enhanced warm bias in warm dry summer months. Coupling the regional climate model to a hydrological model shows the potential of improving the surface flux simulations in dry periods and the 2 m air temperature in general. In the dry periods......The study is investigates modelling of land surface – atmosphere interactions in context of fully coupled climatehydrological model. With a special focus of under what condition a fully coupled model system is needed. Regional climate model inter-comparison projects as ENSEMBLES have shown bias...

  17. Regional Atmospheric Transport Code for Hanford Emission Tracking, Version 2(RATCHET2)

    Energy Technology Data Exchange (ETDEWEB)

    Ramsdell, James V.; Rishel, Jeremy P.

    2006-07-01

    This manual describes the atmospheric model and computer code for the Atmospheric Transport Module within SAC. The Atmospheric Transport Module, called RATCHET2, calculates the time-integrated air concentration and surface deposition of airborne contaminants to the soil. The RATCHET2 code is an adaptation of the Regional Atmospheric Transport Code for Hanford Emissions Tracking (RATCHET). The original RATCHET code was developed to perform the atmospheric transport for the Hanford Environmental Dose Reconstruction Project. Fundamentally, the two sets of codes are identical; no capabilities have been deleted from the original version of RATCHET. Most modifications are generally limited to revision of the run-specification file to streamline the simulation process for SAC.

  18. Mesoscale modeling of the atmosphere

    Science.gov (United States)

    Pearce, R. P.

    1993-03-01

    The Naval Research Laboratory (NRL) is presently developing a non-hydrostatic mesoscale model which is suitable for forecasting meso-Beta and gamma scale phenomena over complex terrain. The model will be delivered to the Army in 1997. However, until the non-hydrostatic model becomes operational, HOTMAC (Higher Order Turbulence Model for Atmospheric Circulation) will be used as an operational model in the U.S. Army's IMETS (Integrated METeorological System) to make a short-range (up to 24 hours) forecast of battlescale atmospheric phenomena. The U.S. Army is mainly concerned with meteorological conditions spatially within the area of 500 km x 500 km x 10 km or less and temporally within the period of 24 hours or less. The Army Research Laboratory's (ARL) prototype IMETS is currently receiving the forecast and analysis fields of meteorological variables produced from the U.S. Air Force Global Spectral Model (GSM) through the Automated Weather Distribution System (AWDS). In the near future, the Relocatable Window Model (RWM) output is expected to become available. The RWM is the Air Force's regional meso-alpha model similar to the Navy Operational Regional Atmospheric Prediction System (NORAPS). The U.S. Army is planning to use the output of GSM (or RWM) to initialize and assimilate into HOTMAC. HOTMAC has been used extensively at the ARL (formerly Atmospheric Sciences Laboratory), and simulate the evolution of locally forced circulations due to surface heating and cooling over meso-Beta and gamma scale areas. HOTMAC is numerically stable and easy to use and thus, suitable for operational use.

  19. Modeling of atmospheric pollutant transfers

    International Nuclear Information System (INIS)

    Jourdain, F.

    2007-01-01

    Modeling is today a common tool for the evaluation of the environmental impact of atmospheric pollution events, for the design of air monitoring networks or for the calculation of pollutant concentrations in the ambient air. It is even necessary for the a priori evaluation of the consequences of a pollution plume. A large choice of atmospheric transfer codes exist but no ideal tool is available which allows to model all kinds of situations. The present day approach consists in combining different types of modeling according to the requested results and simulations. The CEA has a solid experience in this domain and has developed independent tools for the impact and safety studies relative to industrial facilities and to the management of crisis situations. (J.S.)

  20. Coupled atmosphere-biophysics-hydrology models for environmental modeling

    Science.gov (United States)

    Walko, R.L.; Band, L.E.; Baron, Jill S.; Kittel, T.G.F.; Lammers, R.; Lee, T.J.; Ojima, D.; Pielke, R.A.; Taylor, C.; Tague, C.; Tremback, C.J.; Vidale, P.L.

    2000-01-01

    The formulation and implementation of LEAF-2, the Land Ecosystem–Atmosphere Feedback model, which comprises the representation of land–surface processes in the Regional Atmospheric Modeling System (RAMS), is described. LEAF-2 is a prognostic model for the temperature and water content of soil, snow cover, vegetation, and canopy air, and includes turbulent and radiative exchanges between these components and with the atmosphere. Subdivision of a RAMS surface grid cell into multiple areas of distinct land-use types is allowed, with each subgrid area, or patch, containing its own LEAF-2 model, and each patch interacts with the overlying atmospheric column with a weight proportional to its fractional area in the grid cell. A description is also given of TOPMODEL, a land hydrology model that represents surface and subsurface downslope lateral transport of groundwater. Details of the incorporation of a modified form of TOPMODEL into LEAF-2 are presented. Sensitivity tests of the coupled system are presented that demonstrate the potential importance of the patch representation and of lateral water transport in idealized model simulations. Independent studies that have applied LEAF-2 and verified its performance against observational data are cited. Linkage of RAMS and TOPMODEL through LEAF-2 creates a modeling system that can be used to explore the coupled atmosphere–biophysical–hydrologic response to altered climate forcing at local watershed and regional basin scales.

  1. Model for Simulation Atmospheric Turbulence

    DEFF Research Database (Denmark)

    Lundtang Petersen, Erik

    1976-01-01

    A method that produces realistic simulations of atmospheric turbulence is developed and analyzed. The procedure makes use of a generalized spectral analysis, often called a proper orthogonal decomposition or the Karhunen-Loève expansion. A set of criteria, emphasizing a realistic appearance...... eigenfunctions and estimates of the distributions of the corresponding expansion coefficients. The simulation method utilizes the eigenfunction expansion procedure to produce preliminary time histories of the three velocity components simultaneously. As a final step, a spectral shaping procedure is then applied....... The method is unique in modeling the three velocity components simultaneously, and it is found that important cross-statistical features are reasonably well-behaved. It is concluded that the model provides a practical, operational simulator of atmospheric turbulence....

  2. Identifying the European fossil fuel plumes in the atmosphere over the Northeast Atlantic Region through isotopic observations and numerical modelling

    DEFF Research Database (Denmark)

    Geels, C.; Christensen, J.H.; Hansen, A.W.

    2006-01-01

    Atmospheric transport, C-14. fossil fuel CO_2, numerical modeling, the north East Atlantic Region Udgivelsesdato: 18 August......Atmospheric transport, C-14. fossil fuel CO_2, numerical modeling, the north East Atlantic Region Udgivelsesdato: 18 August...

  3. Modelling the long-range transport. Atmospheric model from the Oslo EMEP-W center; Modelisation du transfert a longue distance modele atmospherique du centre Emep-W- a Oslo

    Energy Technology Data Exchange (ETDEWEB)

    Joffre, S. [Institut Meteorolique de Finlande Geographical Research Vuorikatu, Helsinki (Finland)

    1997-12-31

    In the framework of the European Monitoring and Evaluation Program (EMEP) concerning transfrontier air pollution in Europe, a model has been developed which gives, based on pollution emission and meteorological data, monthly and annual values for the atmospheric content of ten major pollutants, the deposited dry and wet compounds, and the source allocations. Physical principles of the model and its validation are described

  4. Verification of atmospheric diffusion models using data of long term atmospheric diffusion experiments

    International Nuclear Information System (INIS)

    Tamura, Junji; Kido, Hiroko; Hato, Shinji; Homma, Toshimitsu

    2009-03-01

    Straight-line or segmented plume models as atmospheric diffusion models are commonly used in probabilistic accident consequence assessment (PCA) codes due to cost and time savings. The PCA code, OSCAAR developed by Japan Atomic Energy Research Institute (Present; Japan Atomic Energy Agency) uses the variable puff trajectory model to calculate atmospheric transport and dispersion of released radionuclides. In order to investigate uncertainties involved with the structure of the atmospheric dispersion/deposition model in OSCAAR, we have introduced the more sophisticated computer codes that included regional meteorological models RAMS and atmospheric transport model HYPACT, which were developed by Colorado State University, and comparative analyses between OSCAAR and RAMS/HYPACT have been performed. In this study, model verification of OSCAAR and RAMS/HYPACT was conducted using data of long term atmospheric diffusion experiments, which were carried out in Tokai-mura, Ibaraki-ken. The predictions by models and the results of the atmospheric diffusion experiments indicated relatively good agreements. And it was shown that model performance of OSCAAR was the same degree as it of RAMS/HYPACT. (author)

  5. Improving practical atmospheric dispersion models

    International Nuclear Information System (INIS)

    Hunt, J.C.R.; Hudson, B.; Thomson, D.J.

    1992-01-01

    The new generation of practical atmospheric dispersion model (for short range ≤ 30 km) are based on dispersion science and boundary layer meteorology which have widespread international acceptance. In addition, recent improvements in computer skills and the widespread availability of small powerful computers make it possible to have new regulatory models which are more complex than the previous generation which were based on charts and simple formulae. This paper describes the basis of these models and how they have developed. Such models are needed to satisfy the urgent public demand for sound, justifiable and consistent environmental decisions. For example, it is preferable that the same models are used to simulate dispersion in different industries; in many countries at present different models are used for emissions from nuclear and fossil fuel power stations. The models should not be so simple as to be suspect but neither should they be too complex for widespread use; for example, at public inquiries in Germany, where simple models are mandatory, it is becoming usual to cite the results from highly complex computational models because the simple models are not credible. This paper is written in a schematic style with an emphasis on tables and diagrams. (au) (22 refs.)

  6. A Global Atmospheric Model of Meteoric Iron

    Science.gov (United States)

    Feng, Wuhu; Marsh, Daniel R.; Chipperfield, Martyn P.; Janches, Diego; Hoffner, Josef; Yi, Fan; Plane, John M. C.

    2013-01-01

    The first global model of meteoric iron in the atmosphere (WACCM-Fe) has been developed by combining three components: the Whole Atmosphere Community Climate Model (WACCM), a description of the neutral and ion-molecule chemistry of iron in the mesosphere and lower thermosphere (MLT), and a treatment of the injection of meteoric constituents into the atmosphere. The iron chemistry treats seven neutral and four ionized iron containing species with 30 neutral and ion-molecule reactions. The meteoric input function (MIF), which describes the injection of Fe as a function of height, latitude, and day, is precalculated from an astronomical model coupled to a chemical meteoric ablation model (CABMOD). This newly developed WACCM-Fe model has been evaluated against a number of available ground-based lidar observations and performs well in simulating the mesospheric atomic Fe layer. The model reproduces the strong positive correlation of temperature and Fe density around the Fe layer peak and the large anticorrelation around 100 km. The diurnal tide has a significant effect in the middle of the layer, and the model also captures well the observed seasonal variations. However, the model overestimates the peak Fe+ concentration compared with the limited rocket-borne mass spectrometer data available, although good agreement on the ion layer underside can be obtained by adjusting the rate coefficients for dissociative recombination of Fe-molecular ions with electrons. Sensitivity experiments with the same chemistry in a 1-D model are used to highlight significant remaining uncertainties in reaction rate coefficients, and to explore the dependence of the total Fe abundance on the MIF and rate of vertical transport.

  7. The Issue of transporting pollutants with atmospheric precipitation

    Science.gov (United States)

    Madibekov, A.; Kogutenko, L.

    2018-01-01

    A research of the pollution of atmospheric precipitation was conducted. The database of the chemical composition of atmospheric precipitation made by National Monitoring Network of the Republic of Kazakhstan for the period from 2000s to 2011 was generalized and analyzed. The research area covers the big territory of Ile-Balkhash river basin in the South-East Kazakhstan. The research shows that pollutants can be transported over long distances with atmospheric precipitation. Based on the results of the air masses tracking we identified that the main sources of emissions is located in the city of Balkhash.

  8. Stochastic models for atmospheric dispersion

    DEFF Research Database (Denmark)

    Ditlevsen, Ove Dalager

    2003-01-01

    Simple stochastic differential equation models have been applied by several researchers to describe the dispersion of tracer particles in the planetary atmospheric boundary layer and to form the basis for computer simulations of particle paths. To obtain the drift coefficient, empirical vertical...... positions close to the boundaries. Different rules have been suggested in the literature with justifications based on simulation studies. Herein the relevant stochastic differential equation model is formulated in a particular way. The formulation is based on the marginal transformation of the position...... dependent particle velocity into a position independent Gaussian velocity. Boundary conditions are obtained from Itos rule of stochastic differentiation. The model directly point at a canonical rule of reflection for the approximating random walk with finite time step. This reflection rule is different from...

  9. Modeling stomatal conductance in the earth system: linking leaf water-use efficiency and water transport along the soil-plant-atmosphere continuum

    Science.gov (United States)

    Bonan, G. B.; Williams, M.; Fisher, R. A.; Oleson, K. W.

    2014-09-01

    The Ball-Berry stomatal conductance model is commonly used in earth system models to simulate biotic regulation of evapotranspiration. However, the dependence of stomatal conductance (gs) on vapor pressure deficit (Ds) and soil moisture must be empirically parameterized. We evaluated the Ball-Berry model used in the Community Land Model version 4.5 (CLM4.5) and an alternative stomatal conductance model that links leaf gas exchange, plant hydraulic constraints, and the soil-plant-atmosphere continuum (SPA). The SPA model simulates stomatal conductance numerically by (1) optimizing photosynthetic carbon gain per unit water loss while (2) constraining stomatal opening to prevent leaf water potential from dropping below a critical minimum. We evaluated two optimization algorithms: intrinsic water-use efficiency (ΔAn /Δgs, the marginal carbon gain of stomatal opening) and water-use efficiency (ΔAn /ΔEl, the marginal carbon gain of transpiration water loss). We implemented the stomatal models in a multi-layer plant canopy model to resolve profiles of gas exchange, leaf water potential, and plant hydraulics within the canopy, and evaluated the simulations using leaf analyses, eddy covariance fluxes at six forest sites, and parameter sensitivity analyses. The primary differences among stomatal models relate to soil moisture stress and vapor pressure deficit responses. Without soil moisture stress, the performance of the SPA stomatal model was comparable to or slightly better than the CLM Ball-Berry model in flux tower simulations, but was significantly better than the CLM Ball-Berry model when there was soil moisture stress. Functional dependence of gs on soil moisture emerged from water flow along the soil-to-leaf pathway rather than being imposed a priori, as in the CLM Ball-Berry model. Similar functional dependence of gs on Ds emerged from the ΔAn/ΔEl optimization, but not the ΔAn /gs optimization. Two parameters (stomatal efficiency and root hydraulic

  10. Observations and Modeling of Atmospheric Radiance Structure

    National Research Council Canada - National Science Library

    Wintersteiner, Peter

    2001-01-01

    The overall purpose of the work that we have undertaken is to provide new capabilities for observing and modeling structured radiance in the atmosphere, particularly the non-LTE regions of the atmosphere...

  11. Atmospheric Models for Mars Aerocapture

    Science.gov (United States)

    Justus, C. G.; Duvall, Aleta; Keller, Vernon W.

    2005-01-01

    level Mars atmospheric model. Applications include systems design, performance analysis, and operations planning for aerobraking, entry descent and landing, and aerocapture. Typical Mars aerocapture periapsis altitudes (for systems with rigid- aeroshell heat shields) are about 50 km. This altitude is above the 0-40 km height range covered by Mars Global Surveyor Thermal Emission Spectrometer (TES) nadir observations. Recently, TES limb sounding data have been made available, spanning more than two Mars years (more than 200,000 data profiles) with altitude coverage up to about 60 km, well within the height range of interest for aerocapture. Results are presented comparing Mars-GRAM atmospheric density with densities from TES nadir and limb sounding observations. A new Mars-GRAM feature is described which allows individual TES nadir or limb profiles to be extracted from the large TES databases, and to be used as an optional replacement for standard Mars-GRAM background (climatology) conditions. For Monte-Carlo applications such as aerocapture guidance and control studies, Mars-GRAM perturbations are available using these TES profile background conditions.

  12. Atmospheric Models for Aeroentry and Aeroassist

    Science.gov (United States)

    Justus, C. G.; Duvall, Aleta; Keller, Vernon W.

    2005-01-01

    Eight destinations in the Solar System have sufficient atmosphere for aeroentry, aeroassist, or aerobraking/aerocapture: Venus, Earth, Mars, Jupiter, Saturn, Uranus, and Neptune, plus Saturn's moon Titan. Engineering-level atmospheric models for Earth, Mars, Titan, and Neptune have been developed for use in NASA's systems analysis studies of aerocapture applications. Development has begun on a similar atmospheric model for Venus. An important capability of these models is simulation of quasi-random perturbations for Monte Carlo analyses in developing guidance, navigation and control algorithms, and for thermal systems design. Characteristics of these atmospheric models are compared, and example applications for aerocapture are presented. Recent Titan atmospheric model updates are discussed, in anticipation of applications for trajectory and atmospheric reconstruct of Huygens Probe entry at Titan. Recent and planned updates to the Mars atmospheric model, in support of future Mars aerocapture systems analysis studies, are also presented.

  13. Study of the effect of soil disturbance on vapor transport through integrated modeling of the atmospheric boundary layer and shallow subsurface

    Science.gov (United States)

    Trautz, A.; Smits, K. M.; Cihan, A.; Wallen, B.

    2014-12-01

    Soil-water evaporation is one of the governing processes responsible for controlling water and energy exchanges between the land and atmosphere. Despite its wide relevance and application in many natural and manmade environments (e.g. soil tillage practices, wheel-track compaction, fire burn environments, textural layering and buried ordinances), there are very few studies of evaporation from disturbed soil profiles. The purpose of this study was to explore the effect of soil disturbance and capillary coupling on water distribution and fluxes. We modified a theory previously developed by the authors that allows for coupling single-phase (gas), two-component (air and water vapor) transfer in the atmosphere and two-phase (gas, liquid), two-component (air and water vapor) flow in porous media at the REV scale under non-isothermal, non-equilibrium conditions to better account for the hydraulic and thermal interactions within the media. Modeling results were validated and compared using precision data generated in a two-dimensional soil tank consisting of a loosely packed soil surrounded by a tightly packed soil. The soil tank was outfitted with an array of sensors for the measurement of wind velocity, soil and air temperature, relative humidity, soil moisture, and weight. Results demonstrated that, by using this coupling approach, it is possible to predict the different stages of the drying process in heterogeneous soils with good accuracy. Evaporation from a heterogeneous soil consisting of a loose and tight packing condition is larger than the homogeneous equivalent systems. Liquid water is supplied from the loosely packed soil region to the tightly packed soil regions, sustaining a longer Stage I evaporation in the tightly packed regions with overall greater evaporation rate than uniform homogeneous packing. In contrast, lower evaporation rates from the loosely packed regions are observed due to a limited liquid water supply resulting from capillary flow to the

  14. Joint analysis of deposition fluxes and atmospheric concentrations of inorganic nitrogen and sulphur compounds predicted by six chemistry transport models in the frame of the EURODELTAIII project

    Science.gov (United States)

    Vivanco, M. G.; Bessagnet, B.; Cuvelier, C.; Theobald, M. R.; Tsyro, S.; Pirovano, G.; Aulinger, A.; Bieser, J.; Calori, G.; Ciarelli, G.; Manders, A.; Mircea, M.; Aksoyoglu, S.; Briganti, G.; Cappelletti, A.; Colette, A.; Couvidat, F.; D'Isidoro, M.; Kranenburg, R.; Meleux, F.; Menut, L.; Pay, M. T.; Rouïl, L.; Silibello, C.; Thunis, P.; Ung, A.

    2017-02-01

    all the campaigns, except for the 2006 campaign. This points to a low efficiency in the wet deposition of oxidized nitrogen for these models, especially with regards to the scavenging of nitric acid, which is the main driver of oxidized N deposition for all the models. CHIMERE, LOTOS-EUROS and EMEP agree better with the observations for both wet deposition and air concentration of oxidized nitrogen, although CHIMERE seems to overestimate wet deposition in the summer period. This requires further investigation, as the gas-particle equilibrium seems to be biased towards the gas phase (nitric acid) for this model. In the case of MINNI, the frequent underestimation of wet deposition combined with an overestimation of atmospheric concentrations for the three pollutants indicates a low efficiency of the wet deposition processes. This can be due to several reasons, such as an underestimation of scavenging ratios, large vertical concentration gradients (resulting in small concentrations at cloud height) or a poor parameterization of clouds. Large differences between models were also found for the estimates of dry deposition. However, the lack of suitable measurements makes it impossible to assess model performance for this process. These uncertainties should be addressed in future research, since dry deposition contributes significantly to the total deposition for the three deposited species, with values in the same range as wet deposition for most of the models, and with even higher values for some of them, especially for reduced nitrogen.

  15. Global Atmosphere Watch Workshop on Measurement-Model ...

    Science.gov (United States)

    The World Meteorological Organization’s (WMO) Global Atmosphere Watch (GAW) Programme coordinates high-quality observations of atmospheric composition from global to local scales with the aim to drive high-quality and high-impact science while co-producing a new generation of products and services. In line with this vision, GAW’s Scientific Advisory Group for Total Atmospheric Deposition (SAG-TAD) has a mandate to produce global maps of wet, dry and total atmospheric deposition for important atmospheric chemicals to enable research into biogeochemical cycles and assessments of ecosystem and human health effects. The most suitable scientific approach for this activity is the emerging technique of measurement-model fusion for total atmospheric deposition. This technique requires global-scale measurements of atmospheric trace gases, particles, precipitation composition and precipitation depth, as well as predictions of the same from global/regional chemical transport models. The fusion of measurement and model results requires data assimilation and mapping techniques. The objective of the GAW Workshop on Measurement-Model Fusion for Global Total Atmospheric Deposition (MMF-GTAD), an initiative of the SAG-TAD, was to review the state-of-the-science and explore the feasibility and methodology of producing, on a routine retrospective basis, global maps of atmospheric gas and aerosol concentrations as well as wet, dry and total deposition via measurement-model

  16. Uncertainty associated with selected environmental transport models

    International Nuclear Information System (INIS)

    Little, C.A.; Miller, C.W.

    1979-11-01

    A description is given of the capabilities of several models to predict accurately either pollutant concentrations in environmental media or radiological dose to human organs. The models are discussed in three sections: aquatic or surface water transport models, atmospheric transport models, and terrestrial and aquatic food chain models. Using data published primarily by model users, model predictions are compared to observations. This procedure is infeasible for food chain models and, therefore, the uncertainty embodied in the models input parameters, rather than the model output, is estimated. Aquatic transport models are divided into one-dimensional, longitudinal-vertical, and longitudinal-horizontal models. Several conclusions were made about the ability of the Gaussian plume atmospheric dispersion model to predict accurately downwind air concentrations from releases under several sets of conditions. It is concluded that no validation study has been conducted to test the predictions of either aquatic or terrestrial food chain models. Using the aquatic pathway from water to fish to an adult for 137 Cs as an example, a 95% one-tailed confidence limit interval for the predicted exposure is calculated by examining the distributions of the input parameters. Such an interval is found to be 16 times the value of the median exposure. A similar one-tailed limit for the air-grass-cow-milk-thyroid for 131 I and infants was 5.6 times the median dose. Of the three model types discussed in this report,the aquatic transport models appear to do the best job of predicting observed concentrations. However, this conclusion is based on many fewer aquatic validation data than were availaable for atmospheric model validation

  17. An atmospheric transport mechanism of Australia-originated radon to Syowa station, Antarctica

    Directory of Open Access Journals (Sweden)

    Naohiko Hirasawa

    2010-12-01

    Full Text Available Atmospheric radon (Rn and thoron (Tn measurement was carried out at Syowa station, Antarctica in the 2005 wintering season by JARE-46. The half life of Rn is 3.8 days and that of Tn is 55 seconds. This paper attempts to extract some cases in which the atmosphere contains a distant place originated Rn, based upon the vertical distribution of Rn and Tn. The origins of Rn in the extracted cases were specified by comparison with a global atmospheric radon transport model. While South America was the most common and frequent contributor among continents over all, the Australian continent was the major contributor in one case. The latter half of this paper examines the transport route and the effective atmospheric circulation of the Australian Rn to Syowa Station.

  18. Symposium on intermediate-range atmospheric-transport processes and technology assessment. [Lead Abstract

    Energy Technology Data Exchange (ETDEWEB)

    1981-10-01

    Separate abstracts were prepared for the 47 papers in this proceedings. The purpose of this meeting was to assess the state of the art of modeling atmospheric transport processes 10 to 100 km downwind of point and area sources of pollution. (KRM)

  19. Symposium on intermediate-range atmospheric-transport processes and technology assessment

    International Nuclear Information System (INIS)

    1981-10-01

    Separate abstracts were prepared for the 47 papers in this proceedings. The purpose of this meeting was to assess the state of the art of modeling atmospheric transport processes 10 to 100 km downwind of point and area sources of pollution

  20. Effects of atmospheric transport on temporal variations of 222Rn and its progeny concentration in the atmosphere

    International Nuclear Information System (INIS)

    Sakashita, Tetsuya; Suzuki, Akihiko; Iida, Takao; Ikebe, Yukimasa; Chino, Masamichi.

    1997-01-01

    The purpose of this study was to estimate the effects of atmospheric transport on temporal variations in the concentration of 222 Rn and its progeny in the air by using a three dimensional atmospheric dispersion model. The objective region for this study was the Chubu district in Japan and the objective period was from November 1 to 20, 1991. It is well known that the diurnal variation of concentration is due to the diurnal cycle of the growth and decay of the mixed layer. In addition, this study led to the following conclusions: (1) Comparing the observed results with one- and three-dimensional models showed that the atmospheric transport of 222 Rn and its progeny affects the temporal variation of concentrations for limited area sources like the islands of Japan. (2) Time series analyses of observed and calculated results revealed that a periodicity of several days was included in the variation of the concentration of 222 Rn from a remote source. Moreover, it suggested that it is dependant on the long-range transport of 222 Rn by the air-flow caused by the changing high and low pressure systems. (author)

  1. EPA Contribution to Manuscript "Evaluation and Error Apportionment of an Ensemble of Atmospheric Chemistry Transport Modelling Systems: Multi-variable Temporal and Spatial Breakdown"

    Data.gov (United States)

    U.S. Environmental Protection Agency — This dataset contains the data contributed by EPA/ORD/NERL/CED researchers to the manuscript "Evaluation and Error Apportionment of an Ensemble of Atmospheric...

  2. Assessing the impact of atmospheric chemistry on the fate, transport, and transformation of adulticides in an urban atmosphere

    Science.gov (United States)

    Guberman, S.; Yoon, S.; Guagenti, M. C.; Sheesley, R. J.; Usenko, S.

    2017-12-01

    Urban areas are literal hot spots of mosquito-borne disease transmission and air pollution during the summer months. Public health authorities release aerosolized adulticides to target adult mosquitoes directly in to the atmosphere to control mosquito populations and reduce the threat of diseases (e.g. Zika). Permethrin and malathion are the primary adulticides for controlling adult mosquito populations in Houston, TX and are typically sprayed at night. After being released into the atmosphere adulticides are subject to atmospheric oxidation initiated by atmospheric oxidants (e.g. O3 and NO3) which are driven by anthropogenic air pollutants (e.g. NOx; NO and NO2). Particulate matter (PM) samples were measured at both application and downwind locations. Sampling sites were determined using the combination of atmospheric plume transport models and adulticide application data provided by Harris County Public Health Mosquito Division. Atmospheric PM samples were taken using a Mobile Laboratory, equipped with total suspended PM and PM2.5 (PM with diameter health consequences.

  3. Modelling of pollution dispersion in atmosphere

    International Nuclear Information System (INIS)

    Borysiewicz, M.; Stankiewicz, R.

    1994-01-01

    The paper contains the review of the mathematical foundation of atmospheric dispersion models. The atmospheric phenomena relevant to atmospheric dispersion model are discussed. In particular the parametrization of processes with time and space scales smaller than numerical grid size, limited by available computer power, is presented. The special attention was devoted to similarity theory and parametrization of boundary layer. The numerical methods are analysed and the drawbacks of the method are presented. (author). 99 refs, 15 figs, 3 tabs

  4. Atmospheric Compensation of Variations in Tropical Ocean Heat Transport: Understanding Mechanisms and Implications on Tectonic Timescales

    Science.gov (United States)

    Rencurrel, M. C.; Rose, B. E. J.

    2015-12-01

    The poleward transport of energy is a key aspect of the climate system, with surface ocean currents presently dominating the transport out of deep tropics. A classic study by Stone (1978) proposed that the total heat transport is determined by astronomical parameters and is highly insensitive to the detailed atmosphere-ocean dynamics. On the other hand, previous modeling work has shown that past continental configurations could have produced substantially different tropical ocean heat transport (OHT). How thoroughly does the atmosphere compensate for changes in ocean transport in terms of the top-of-atmosphere (TOA) radiative budget, what are the relevant mechanisms, and what are the consequences for surface temperature and climate on tectonic timescales? We examine these issues in a suite of aquaplanet GCM simulations subject to large prescribed variations in OHT. We find substantial but incomplete compensation, in which adjustment of the atmospheric Hadley circulation plays a key role. We then separate out the dynamical and thermodynamical components of the adjustment mechanism. Increased OHT tends to warm the mid- to high latitudes without cooling the tropics due asymmetries in radiative feedback processes. The warming is accompanied by hydrological cycle changes that are completely different from those driven by greenhouse gases, suggesting that drivers of past global change might be detectable from combinations of hydroclimate and temperature proxies.

  5. Intermediate range atmospheric transport and technology assessments: nuclear pollutants

    International Nuclear Information System (INIS)

    Rohwer, P.S.; Hoffman, F.O.; Miller, C.W.

    1981-01-01

    Mathematical models have been used to assess potential impacts of radioactivity releases during all phases of our country's development of nuclear power. Experience to date has shown that in terms of potential dose to man, the most significant releases of radioactivity from nuclear fuel cycle facilities are those to the atmosphere. Our ability to predict atmospheric dispersion will, therefore, ultimately affect our capability to understand and assess the significance of both routine and accidental discharges of radionuclides. Assessment of potential radiological exposures from postulated routine and accidental releases of radionuclides from the fast-breeder reactor will require the use of atmospheric dispersion models, and the design, siting, and licensing of breeder reactor fuel cycle facilities will be influenced by the predictions made by these models

  6. Ship-based Observations of Atmospheric Black Carbon Particles over the Arctic Ocean, Bering Sea, and North Western Pacific Ocean on 2016: Comparisons with Regional Chemical Transport Model simulations

    Science.gov (United States)

    Taketani, F.; Miyakawa, T.; Takigawa, M.; Yamaguchi, M.; Kanaya, Y.; Komazaki, Y.; Takashima, H.; Mordovskoi, P.; Tohjima, Y.

    2017-12-01

    Black carbon (BC), formed through the incomplete combustion of fossil fuels, biofuels, and biomass, is a major component of light-absorbing particulate matter in the atmosphere, causing positive radiative forcing. Also, BC deposition on the surface reduces the Earth's albedo and accelerates snow/ice melting by absorbing the sunlight. Therefore, the impact of BC on the Arctic climate needs to be assessed; however, observational information has been still insufficient. Over the Arctic Ocean, we have been conducting ship-based BC observations using a single particle soot photometer (SP2) on R/V Mirai every summer since 2014. To estimate the transport pathways of BC, we have also conducted model simulations during the period of cruise using a regional transport model (WRF-Chem 3.8.1). Here we focus on observations conducted on-board the R/V Mirai from 22 August to 5 October 2016 in a round trip to the Arctic Ocean through the Bering Strait from a port of Hachinohe (40.52N, 141.51E), Japan. We captured relatively high BC mass concentration events in this observation. The observed average BC mass concentration during 2016 was 0.8 ± 1.4 ng/m3 in >70N, similar to the levels ( 1.0ng/m3) recorded during our previous observations in the Arctic during 2014 and 2015. The variations in the observed concentrations in 2016 were qualitatively well reproduced by the regional chemical transport model. Quantitatively, however, the model tended to overestimate the BC levels, suggesting the possibilities that the emission rates were overestimated and/or the removal rates were underestimated. We will present further analysis on the size distribution, coating, and possible sources.

  7. Mesoscale covariance of transport and CO2 fluxes: Evidence from observations and simulations using the WRF-VPRM coupled atmosphere-biosphere model

    NARCIS (Netherlands)

    Ahmadov, R.; Gerbig, C.; Kretschmer, R.; Koerner, S.; Neininger, B.; Dolman, A.J.; Sarrat, C.

    2007-01-01

    We developed a modeling system which combines a mesoscale meteorological model, the Weather Research and Forecasting (WRF) model, with a diagnostic biospheric model, the Vegetation Photosynthesis and Respiration (VPRM). The WRF-VPRM modeling system was designed to realistically simulate

  8. Modeling tritium transport in the environment

    International Nuclear Information System (INIS)

    Murphy, C.E. Jr.

    1986-01-01

    A model of tritium transport in the environment near an atmospheric source of tritium is presented in the general context of modeling material cycling in ecosystems. The model was developed to test hypotheses about the process involved in tritium cycling. The temporal and spatial scales of the model were picked to allow comparison to environmental monitoring data collected in the vicinity of the Savannah River Plant. Initial simulations with the model showed good agreement with monitoring data, including atmospheric and vegetation tritium concentrations. The model can also simulate values of tritium in vegetation organic matter if the key parameter distributing the source of organic hydrogen is varied to fit the data. However, because of the lack of independent conformation of the distribution parameter, there is still uncertainty about the role of organic movement of tritium in the food chain, and its effect on the dose to man

  9. Aerosols in the Atmosphere: Sources, Transport, and Multi-decadal Trends

    Science.gov (United States)

    Chin, M.; Diehl, T.; Bian, H.; Kucsera, T.

    2016-01-01

    We present our recent studies with global modeling and analysis of atmospheric aerosols. We have used the Goddard Chemistry Aerosol Radiation and Transport (GOCART) model and satellite and in situ data to investigate (1) long-term variations of aerosols over polluted and dust source regions and downwind ocean areas in the past three decades and the cause of the changes and (2) anthropogenic and volcanic contributions to the sulfate aerosol in the upper tropospherelower stratosphere.

  10. CFD Modeling of Non-Neutral Atmospheric Boundary Layer Conditions

    DEFF Research Database (Denmark)

    Koblitz, Tilman

    . All implementations in the ABL model are tuning free, and except for standard site specific input parameters, no additional model coefficients need to be specified before the simulation. In summary the results show that the implemented modifications are applicable and reproduce the main flow......For wind resource assessment, the wind industry is increasingly relying on Computational Fluid Dynamics models that focus on modeling the airflow in a neutrally stratified surface-layer. Physical processes like the Coriolis force, buoyancy forces and heat transport, that are important...... to the atmospheric boundary-layer, are mostly ignored so far. In order to decrease the uncertainty of wind resource assessment, the present work focuses on atmospheric flows that include atmospheric stability and the Coriolis effect. Within the present work a RANS model framework is developed and implemented...

  11. The role of individual cyclones for atmospheric latent and sensible heat transport into the European Arctic

    Science.gov (United States)

    Sodemann, H.; Stohl, A.

    2010-12-01

    The bulk of the atmospheric latent heat transport induced by extratropical cyclones is organized in the warm conveyor belt, also known as atmospheric rivers. In order to enhance the process understanding of atmospheric sensible and latent heat transport with these structures into the European Arctic, the magnitude and variability of the energy flux from individual cyclones in this region was studied. We applied a moisture source tracking algorithm embedded in the limited-area numerical weather prediction model (NWP) Climate High-Resolution Model (CHRM) to trace the evaporation sources and transport of water vapour from different latitude bands of the North Atlantic Ocean. September 2002 and December 2006 were chosen as initial analysis periods, since a particularly large number of cyclones (including former hurricanes) traveled within the North Atlantic storm track during these months. The main findings are that latent heat (LH) from more southerly source regions is transported at higher altitudes. Stronger storms draw latent heat from a larger area (further south), and the ensuing precipitation will hence on average originate from further south as well. Most long-range transport of LH occurs in the cold frontal bands. Individual cyclones are the main source of sub-monthly LH flux variability, and can cause up to 4-sigma variation of the mean flux. LH flux is almost permanently net positive (northward), unlike for sensible heat (SH) and other energy fluxes. Most LH that is "permanently" transferred to north of 60°N in the Atlantic storm track originates from directly south of that latitude, implying on average short atmospheric moisture lifetimes, and hence a fast energy turnover. We compare these findings to results from a Lagrangian moisture tracking method based on the FLEXPART model. Remarks with regard to differences in the transport conditions of latent head in such structures along the North American West Coast and the Norwegian West Coast will be made.

  12. Regional Atmospheric Transport Code for Hanford Emission Tracking (RATCHET). Hanford Environmental Dose Reconstruction Project

    Energy Technology Data Exchange (ETDEWEB)

    Ramsdell, J.V. Jr.; Simonen, C.A.; Burk, K.W.

    1994-02-01

    The purpose of the Hanford Environmental Dose Reconstruction (HEDR) Project is to estimate radiation doses that individuals may have received from operations at the Hanford Site since 1944. This report deals specifically with the atmospheric transport model, Regional Atmospheric Transport Code for Hanford Emission Tracking (RATCHET). RATCHET is a major rework of the MESOILT2 model used in the first phase of the HEDR Project; only the bookkeeping framework escaped major changes. Changes to the code include (1) significant changes in the representation of atmospheric processes and (2) incorporation of Monte Carlo methods for representing uncertainty in input data, model parameters, and coefficients. To a large extent, the revisions to the model are based on recommendations of a peer working group that met in March 1991. Technical bases for other portions of the atmospheric transport model are addressed in two other documents. This report has three major sections: a description of the model, a user`s guide, and a programmer`s guide. These sections discuss RATCHET from three different perspectives. The first provides a technical description of the code with emphasis on details such as the representation of the model domain, the data required by the model, and the equations used to make the model calculations. The technical description is followed by a user`s guide to the model with emphasis on running the code. The user`s guide contains information about the model input and output. The third section is a programmer`s guide to the code. It discusses the hardware and software required to run the code. The programmer`s guide also discusses program structure and each of the program elements.

  13. The Role of Ocean and Atmospheric Heat Transport in the Arctic Amplification

    Science.gov (United States)

    Vargas Martes, R. M.; Kwon, Y. O.; Furey, H. H.

    2017-12-01

    Observational data and climate model projections have suggested that the Arctic region is warming around twice faster than the rest of the globe, which has been referred as the Arctic Amplification (AA). While the local feedbacks, e.g. sea ice-albedo feedback, are often suggested as the primary driver of AA by previous studies, the role of meridional heat transport by ocean and atmosphere is less clear. This study uses the Community Earth System Model version 1 Large Ensemble simulation (CESM1-LE) to seek deeper understanding of the role meridional oceanic and atmospheric heat transports play in AA. The simulation consists of 40 ensemble members with the same physics and external forcing using a single fully coupled climate model. Each ensemble member spans two time periods; the historical period from 1920 to 2005 using the Coupled Model Intercomparison Project Phase 5 (CMIP5) historical forcing and the future period from 2006 to 2100 using the CMIP5 Representative Concentration Pathways 8.5 (RCP8.5) scenario. Each of the ensemble members are initialized with slightly different air temperatures. As the CESM1-LE uses a single model unlike the CMIP5 multi-model ensemble, the internal variability and the externally forced components can be separated more clearly. The projections are calculated by comparing the period 2081-2100 relative to the time period 2001-2020. The CESM1-LE projects an AA of 2.5-2.8 times faster than the global average, which is within the range of those from the CMIP5 multi-model ensemble. However, the spread of AA from the CESM1-LE, which is attributed to the internal variability, is 2-3 times smaller than that of the CMIP5 ensemble, which may also include the inter-model differences. CESM1LE projects a decrease in the atmospheric heat transport into the Arctic and an increase in the oceanic heat transport. The atmospheric heat transport is further decomposed into moisture transport and dry static energy transport. Also, the oceanic heat

  14. Modeling of atmospheric dispersion of radionuclides

    International Nuclear Information System (INIS)

    Baklouti, Nada

    2010-01-01

    This work is a prediction of atmospheric dispersion of radionuclide from a chronic rejection of the nuclear power generating plant that can be located in one of the Tunisian sites: Skhira or Bizerte. Also it contains a study of acute rejection 'Chernobyl accident' which was the reference for the validation of GENII the code of modeling of atmospheric dispersion.

  15. Local and distant residence times of contaminants in multi-compartment models. Part II: application to assessing environmental mobility and long-range atmospheric transport.

    Science.gov (United States)

    Reid, Liisa; Mackay, Don

    2008-12-01

    In Part I, the concepts of inherent, local and distant residence times (DRTs) were reviewed as metrics of the extent to which chemical discharges or emissions in one region or box are transported to distant regions. In this second part, the concepts are applied to geographically relevant systems to illustrate their applicability to the assessment of chemicals for long-range transport potential (LRTP). It is shown that the relative ranking of chemicals as characterized by the DRT method is similar to that of the characteristic travel distance concept. A DRT source-receptor matrix is developed that can express the chemical-specific potential of source regions to contaminate a specific receptor region of concern such as the Arctic. The matrix can be modified to identify for a specific source region the likely destinations of emissions as well as to assess the relative vulnerability of regions in the global environment to contaminants of concern.

  16. Sensitivity of inter-annual variation of CO2 seasonal cycle at Mauna Loa to atmospheric transport

    International Nuclear Information System (INIS)

    Taguchi, Shoichi; Murayama, Shohei; Higuchi, Kaz

    2003-01-01

    Origins of the inter-annual variations of the Mauna Loa atmospheric CO 2 seasonal cycle related to atmospheric transport were examined using a global atmospheric transport model with prescribed land biota CO 2 source functions at 11 land sections. On average, the seasonal variation of atmospheric CO 2 at Mauna Loa is influenced mostly by the Siberian CO 2 flux, followed by temperate Asia and North America. The inter-annual variability of the seasonal cycle is caused mainly by the inter-annual variation in the transport of the Siberian signal to Mauna Loa. The characteristics of the simulated seasonal cycle and its inter-annual variability at Mauna Loa are found to be sensitive to the quality of the wind data used to drive the transport model. Implication of this result is that for studying a long-term variations of atmospheric transport a meteorological data set for driving an atmospheric transport model should be obtained from the same production procedure

  17. Carbon Monoxide Distributions and Atmosphere Transports over Southern Africa. Pt-2

    Science.gov (United States)

    Garstang, Michael; Swap, Robert J.; Piketh, Stuart; Mason, Simon; Connors, Vickie

    1999-01-01

    Sources and transports of CO as measured by the Measurement of Air Pollution from Space (MAPS) over a substantial sector of the southern hemisphere between South America and southern Africa are described by air parcel trajectories based upon European Center for Medium Range Weather Forecasts (ECMWF) model data fields. Observations, made by NASA Shuttle astronauts during the October 1994 mission, of vegetation fires suggest a direct relationship between in situ biomass burning, at least over South America and southern Africa, and coincident tropospheric measurements of CO. Results of this paper indicate that the transport of CO from the surface to the levels of maximum MAPS sensitivity (about 450 hPa) over these regions is not of a direct nature due largely to the well stratified atmospheric environment. The atmospheric transport of CO from biomass burning within this region is found to occur over intercontinental scales over numbers of days to more than a week. Three distinct synoptic circulation and transport classes are found to have occurred over southern Africa during the October 1994 MAPS experiment: (1) transport from South America and Africa to southern Africa associated with elevated MAPS measured CO (> 150 ppbv); (2) weakening anticyclonic transport from South America associated with moderate CO ( 105 ppbv); and (3) transport from the high southern latitudes associated with low CO (<105 ppbv).

  18. Stochastic models of intracellular transport

    KAUST Repository

    Bressloff, Paul C.

    2013-01-09

    The interior of a living cell is a crowded, heterogenuous, fluctuating environment. Hence, a major challenge in modeling intracellular transport is to analyze stochastic processes within complex environments. Broadly speaking, there are two basic mechanisms for intracellular transport: passive diffusion and motor-driven active transport. Diffusive transport can be formulated in terms of the motion of an overdamped Brownian particle. On the other hand, active transport requires chemical energy, usually in the form of adenosine triphosphate hydrolysis, and can be direction specific, allowing biomolecules to be transported long distances; this is particularly important in neurons due to their complex geometry. In this review a wide range of analytical methods and models of intracellular transport is presented. In the case of diffusive transport, narrow escape problems, diffusion to a small target, confined and single-file diffusion, homogenization theory, and fractional diffusion are considered. In the case of active transport, Brownian ratchets, random walk models, exclusion processes, random intermittent search processes, quasi-steady-state reduction methods, and mean-field approximations are considered. Applications include receptor trafficking, axonal transport, membrane diffusion, nuclear transport, protein-DNA interactions, virus trafficking, and the self-organization of subcellular structures. © 2013 American Physical Society.

  19. Goods Transport Modelling, Vol 1

    DEFF Research Database (Denmark)

    Petersen, Morten Steen (red.); Kristiansen, Jørgen

    The report is a study of data requirements and methodologies for goods transport. The study is intended to provide the basis for general discussion about the application of goods transport models in Denmark. The report provides an overview of different types of models and data availability....

  20. MODEL FOR UNSTEADY OF DIFFUSION –ADVECTION OF RADON IN SOIL – ATMOSPHERE

    Directory of Open Access Journals (Sweden)

    Parovik R.I.

    2010-04-01

    Full Text Available We consider a mathematical model for unsteady transport of radon from the constant coefficients in the soil – atmosphere. An explicit analytical solution for this model and built at different times of his profiles.

  1. Modeling Present and Future River Runoff Using Global Atmospheric Models

    Science.gov (United States)

    1992-10-01

    AD-A265 274 October 1992 TBESIS Modeling Present and Future River Runoff Using Global Atmospheric Models Captain Scott C. Van Blarcum AFIT Student... ATMOSPHERIC MODELS BY SCOTT C. VAN BLARCUM A thesis submitted to the Graduate School-New Brunswick Rutgers, The State University of New Jersey in...03 020 I1UIlU1ll ABSTRACT OF THE THESIS Modeling Present and Future River Runoff Using Global Atmospheric Models by SCOTT C. VAN BLARCUM Thesis

  2. Soil-vegetation-atmosphere transfer modeling

    Energy Technology Data Exchange (ETDEWEB)

    Ikonen, J.P.; Sucksdorff, Y. [Finnish Environment Agency, Helsinki (Finland)

    1996-12-31

    In this study the soil/vegetation/atmosphere-model based on the formulation of Deardorff was refined to hour basis and applied to a field in Vihti. The effect of model parameters on model results (energy fluxes, temperatures) was also studied as well as the effect of atmospheric conditions. The estimation of atmospheric conditions on the soil-vegetation system as well as an estimation of the effect of vegetation parameters on the atmospheric climate was estimated. Areal surface fluxes, temperatures and moistures were also modelled for some river basins in southern Finland. Land-use and soil parameterisation was developed to include properties and yearly variation of all vegetation and soil types. One classification was selected to describe the hydrothermal properties of the soils. Evapotranspiration was verified against the water balance method

  3. Combined eye-atmosphere visibility model

    Science.gov (United States)

    Kaufman, Y. J.

    1981-01-01

    Existing models of the optical characteristics of the eye are combined with a recent model of optical characteristics of the atmosphere given by its modulation transfer function. This combination results in the combined eye-atmosphere performance given by the product of their modulation transfer functions. An application for the calculation of visibility thresholds in the case of a two-halves field is given.

  4. System Convergence in Transport Modelling

    DEFF Research Database (Denmark)

    Rich, Jeppe; Nielsen, Otto Anker; Cantarella, Guilio E.

    2010-01-01

    A fundamental premise of most applied transport models is the existence and uniqueness of an equilibrium solution that balances demand x(t) and supply t(x). The demand consists of the people that travel in the transport system and on the defined network, whereas the supply consists of the resulting...... level-of-service attributes (e.g., travel time and cost) offered to travellers. An important source of complexity is the congestion, which causes increasing demand to affect travel time in a non-linear way. Transport models most often involve separate models for traffic assignment and demand modelling...

  5. Modelization and numerical simulation of atmospheric aerosols dynamics

    International Nuclear Information System (INIS)

    Debry, Edouard

    2004-01-01

    Chemical-transport models are now able to describe in a realistic way gaseous pollutants behavior in the atmosphere. Nevertheless atmospheric pollution also exists as a fine suspended particles, called aerosols which interact with gaseous phase, solar radiation, and have their own dynamic behavior. The goal of this thesis is the modelization and numerical simulation of the General Dynamic Equation of aerosols (GDE). Part I deals with some theoretical aspects of aerosol modelization. Part II is dedicated to the building of one size resolved aerosol model (SIREAM). In part III we perform the reduction of this model in order to use it in dispersion models as POLAIR3D. Several modelization issues are still opened: organic aerosol matter, externally mixed aerosols, coupling with turbulent mixing, and nano-particles. (author) [fr

  6. Uranium Transport Modeling

    International Nuclear Information System (INIS)

    Bostick, William D.

    2008-01-01

    Uranium contamination is prevalent at many of the U.S. DOE facilities and at several civilian sites that have supported the nuclear fuel cycle. The potential off-site mobility of uranium depends on the partitioning of uranium between aqueous and solid (soil and sediment) phases. Hexavalent U (as uranyl, UO 2 2+ ) is relatively mobile, forming strong complexes with ubiquitous carbonate ion which renders it appreciably soluble even under mild reducing conditions. In the presence of carbonate, partition of uranyl to ferri-hydrate and select other mineral phases is usually maximum in the near-neutral pH range ∼ 5-8. The surface complexation reaction of uranyl with iron-containing minerals has been used as one means to model subsurface migration, used in conjunction with information on the site water chemistry and hydrology. Partitioning of uranium is often studied by short-term batch 'equilibrium' or long-term soil column testing ; MCLinc has performed both of these methodologies, with selection of method depending upon the requirements of the client or regulatory authority. Speciation of uranium in soil may be determined directly by instrumental techniques (e.g., x-ray photoelectron spectroscopy, XPS; x-ray diffraction, XRD; etc.) or by inference drawn from operational estimates. Often, the technique of choice for evaluating low-level radionuclide partitioning in soils and sediments is the sequential extraction approach. This methodology applies operationally-defined chemical treatments to selectively dissolve specific classes of macro-scale soil or sediment components. These methods recognize that total soil metal inventory is of limited use in understanding bioavailability or metal mobility, and that it is useful to estimate the amount of metal present in different solid-phase forms. Despite some drawbacks, the sequential extraction method can provide a valuable tool to distinguish among trace element fractions of different solubility related to mineral phases

  7. Contaminant transport during atmospheric pumping of a nuclear chimney: Progress report

    International Nuclear Information System (INIS)

    Nilson, R.H.; Peterson, E.W.

    1986-01-01

    Cyclical variations in barometric pressure cause an oscillatory up-and-down motion of gases within the chimney produced by an underground nuclear test. Analytical and experimental modeling of this atmospheric pumping mechanism has been undertaken to better understand and to quantify the associated rates of cavity gas migration toward the earth's surface and the probable rate of release to the atmosphere. Three different types of models are being investigated: (1) homogeneous porous medium; (2) fractured medium with impermeable matrix blocks; and (3) double-porosity media consisting of fracture networks among porous matrix blocks. A primary purpose is to understand how the oscillatory character of the atmospheric pumping process might significantly enhance the contaminant transport in any or all of the three classes of media. This preliminary report describes some of the analytical, numerical, and experimental work which have been completed

  8. Joint analysis of deposition fluxes and atmospheric concentrations of inorganic nitrogen and sulphur compounds predicted by six chemistry transport models in the frame of the EURODELTAIII project

    NARCIS (Netherlands)

    Vivanco, M.G.; Bessagnet, B.; Cuvelier, C.; Theobald, M.R.; Tsyro, S.; Pirovano, G.; Aulinger, A.; Bieser, J.; Calori, G.; Ciarelli, G.; Manders, A.; Mircea, M.; Aksoyoglu, S.; Briganti, G.; Cappelletti, A.; Colette, A.; Couvidat, F.; D'Isidoro, M.; Kranenburg, R.; Meleux, F.; Menut, L.; Pay, M.T.; Rouïl, L.; Silibello, C.; Thunis, P.; Ung, A.

    2017-01-01

    In the framework of the UNECE Task Force on Measurement and Modelling (TFMM) under the Convention on Long-range Transboundary Air Pollution (LRTAP), the EURODELTAIII project is evaluating how well air quality models are able to reproduce observed pollutant air concentrations and deposition fluxes in

  9. Atmospheric dispersion models of radioactivity releases

    International Nuclear Information System (INIS)

    Oza, R.B.

    2016-01-01

    In view of the rapid industrialization in recent time, atmospheric dispersion models have become indispensible 'tools' to ensure that the effects of releases are well within the acceptable limits set by the regulatory authority. In the case of radioactive releases from the nuclear facility, though negligible in quantity and many a times not even measurable, it is required to demonstrate the compliance of these releases to the regulatory limits set by the regulatory authority by carrying out radiological impact assessment. During routine operations of nuclear facility, the releases are so low that environmental impact is usually assessed with the help of atmospheric dispersion models as it is difficult to distinguish negligible contribution of nuclear facility to relatively high natural background radiation. The accidental releases from nuclear facility, though with negligible probability of occurrence, cannot be ruled out. In such cases, the atmospheric dispersion models are of great help to emergency planners for deciding the intervention actions to minimize the consequences in public domain and also to workout strategies for the management of situation. In case of accidental conditions, the atmospheric dispersion models are also utilized for the estimation of probable quantities of radionuclides which might have got released to the atmosphere. Thus, atmospheric dispersion models are an essential tool for nuclear facility during routine operation as well as in the case of accidental conditions

  10. Relationships between Atmospheric Transport Regimes and PCB Concentrations in the Air at Zeppelin, Spitsbergen.

    Science.gov (United States)

    Ubl, Sandy; Scheringer, Martin; Hungerbühler, Konrad

    2017-09-05

    Polychlorinated biphenyls (PCBs) are persistent hazardous chemicals that are still detected in the atmosphere and other environmental media, although their production has been banned for several decades. At the long-term monitoring site, Zeppelin at Spitsbergen, different PCB congeners have been continuously measured for more than a decade. However, it is not clear what factors determine the seasonal and interannual variability of different (lighter versus heavier) PCB congeners. To investigate the influence of atmospheric transport patterns on PCB-28 and PCB-101 concentrations at Zeppelin, we applied the Lagrangian Particle Dispersion Model FLEXPART and calculated "footprints" that indicate the potential source regions of air arriving at Zeppelin. By means of a cluster analysis, we assigned groups of similar footprints to different transport regimes and analyzed the PCB concentrations according to the transport regimes. The concentrations of both PCB congeners are affected by the different transport regimes. For PCB-101, the origin of air masses from the European continent is primarily related to high concentrations; elevated PCB-101 concentrations in winter can be explained by the high frequency of this transport regime in winter, whereas PCB-101 concentrations are low when air is arriving from the oceans. For PCB-28, in contrast, concentrations are high during summer when air is mainly arriving from the oceans but low when air is arriving from the continents. The most likely explanation of this finding is that local emissions of PCB-28 mask the effect of long-range transport and determine the concentrations measured at Zeppelin.

  11. The climatological mean atmospheric transport under weakened Atlantic thermohaline circulation climate scenario

    Energy Technology Data Exchange (ETDEWEB)

    Erukhimova, T. [Texas A and M University, Department of Physics, College Station, TX (United States); Zhang, R. [GFDL/NOAA, Princeton, NJ (United States); Bowman, K.P. [Texas A and M University, Department of Atmospheric Sciences, College Station, TX (United States)

    2009-02-15

    Global atmospheric transport in a climate subject to a substantial weakening of the Atlantic thermohaline circulation (THC) is studied by using climatological Green's functions of the mass conservation equation for a conserved, passive tracer. Two sets of Green's functions for the perturbed climate and for the present climate are evaluated from 11-year atmospheric trajectory calculations, based on 3-D winds simulated by GFDL's newly developed global coupled ocean-atmosphere model (CM2.1). The Green's function analysis reveals pronounced effects of the climate change on the atmospheric transport, including seasonally modified Hadley circulation with a stronger Northern Hemisphere cell in DJF and a weaker Southern Hemisphere cell in JJA. A weakened THC is also found to enhance mass exchange rates through mixing barriers between the tropics and the two extratropical zones. The response in the tropics is not zonally symmetric. The 3-D Green's function analysis of the effect of THC weakening on transport in the tropical Pacific shows a modified Hadley cell in the eastern Pacific, confirming the results of our previous studies, and a weakening (strengthening) of the upward and eastward motion to the south (north) of the Equator in the western Pacific in the perturbed climate as compared to the present climate. (orig.)

  12. Impact of a future H2 transportation on atmospheric pollution in Europe

    OpenAIRE

    Popa, M. E.; Segers, A. J.; Denier van der Gon, H. A C; Krol, M. C.; Visschedijk, A. J H; Schaap, M.; Röckmann, T.

    2015-01-01

    Hydrogen (H2) is being explored as a fuel for passenger vehicles; it can be used in fuel cells to power electric motors or burned in internal combustion engines. In order to evaluate the potential influence of a future H2-based road transportation on the regional air quality in Europe, we implemented H2 in the atmospheric transport and chemistry model LOTOS-EUROS. We simulated the present and future (2020) air quality, using emission scenarios with different proportions of H2 vehicles and dif...

  13. Impact of a future H2 transportation on atmospheric pollution in Europe

    OpenAIRE

    Popa, M.E.; Segers, A.J.; Denier van der Gon, H.A.C.; Krol, M.C.; Visschedijk, A.J.H.; Schaap, M.; Röckmann, T.

    2015-01-01

    Hydrogen (H2) is being explored as a fuel for passenger vehicles; it can be used in fuel cells to power electric motors or burned in internal combustion engines. In order to evaluate the potential influence of a future H2-based road transportation on the regional air quality in Europe, we implemented H2 in the atmospheric transport and chemistry model LOTOS-EUROS. We simulated the present and future (2020) air quality, using emission scenarios with different proportions of H2 vehicles and dif...

  14. Heat Transport Compensation in Atmosphere and Ocean over the Past 22,000 Years

    Science.gov (United States)

    Yang, Haijun; Zhao, Yingying; Liu, Zhengyu; Li, Qing; He, Feng; Zhang, Qiong

    2015-01-01

    The Earth’s climate has experienced dramatic changes over the past 22,000 years; however, the total meridional heat transport (MHT) of the climate system remains stable. A 22,000-year-long simulation using an ocean-atmosphere coupled model shows that the changes in atmosphere and ocean MHT are significant but tend to be out of phase in most regions, mitigating the total MHT change, which helps to maintain the stability of the Earth’s overall climate. A simple conceptual model is used to understand the compensation mechanism. The simple model can reproduce qualitatively the evolution and compensation features of the MHT over the past 22,000 years. We find that the global energy conservation requires the compensation changes in the atmosphere and ocean heat transports. The degree of compensation is mainly determined by the local climate feedback between surface temperature and net radiation flux at the top of the atmosphere. This study suggests that an internal mechanism may exist in the climate system, which might have played a role in constraining the global climate change over the past 22,000 years. PMID:26567710

  15. A performance comparison of atmospheric dispersion models over complex topography

    International Nuclear Information System (INIS)

    Kido, Hiroko; Oishi, Ryoko; Hayashi, Keisuke; Kanno, Mitsuhiro; Kurosawa, Naohiro

    2007-01-01

    A code system using mass-consistent and Gaussian puff model was improved for a new option of atmospheric dispersion research. There are several atmospheric dispersion models for radionuclides. Because different models have both merits and disadvantages, it is necessary to choose the model that is most suitable for the surface conditions of the estimated region while regarding the calculation time, accuracy, and purpose of the calculations being performed. Some models are less accurate when the topography is complex. It is important to understand the differences between the models for smooth and complex surfaces. In this study, the performances of the following four models were compared: (1) Gaussian plume model (2) Gaussian puff model (3) Mass-consistent wind fields and Gaussian puff model that was improved in this study from one presented in Aomori Energy Society of Japan, 2005 Fall Meeting, D21. (4) Meso-scale meteorological model (RAMS: The Regional Atmospheric Modeling System) and particle-type model (HYPACT: The RAMS Hybrid Particle and Concentration Transport Model) (Reference: ATMET). (author)

  16. Probabilistic transport models for fusion

    International Nuclear Information System (INIS)

    Milligen, B.Ph. van; Carreras, B.A.; Lynch, V.E.; Sanchez, R.

    2005-01-01

    A generalization of diffusive (Fickian) transport is considered, in which particle motion is described by probability distributions. We design a simple model that includes a critical mechanism to switch between two transport channels, and show that it exhibits various interesting characteristics, suggesting that the ideas of probabilistic transport might provide a framework for the description of a range of unusual transport phenomena observed in fusion plasmas. The model produces power degradation and profile consistency, as well as a scaling of the confinement time with system size reminiscent of the gyro-Bohm/Bohm scalings observed in fusion plasmas, and rapid propagation of disturbances. In the present work we show how this model may also produce on-axis peaking of the profiles with off-axis fuelling. It is important to note that the fluid limit of a simple model like this, characterized by two transport channels, does not correspond to the usual (Fickian) transport models commonly used for modelling transport in fusion plasmas, and behaves in a fundamentally different way. (author)

  17. Regional forecasting with global atmospheric models

    International Nuclear Information System (INIS)

    Crowley, T.J.; North, G.R.; Smith, N.R.

    1994-05-01

    The scope of the report is to present the results of the fourth year's work on the atmospheric modeling part of the global climate studies task. The development testing of computer models and initial results are discussed. The appendices contain studies that provide supporting information and guidance to the modeling work and further details on computer model development. Complete documentation of the models, including user information, will be prepared under separate reports and manuals

  18. Analysis of the potential of near-ground measurements of CO2 and CH4 in London, UK, for the monitoring of city-scale emissions using an atmospheric transport model

    Directory of Open Access Journals (Sweden)

    A. Boon

    2016-06-01

    Full Text Available Carbon dioxide (CO2 and methane (CH4 mole fractions were measured at four near-ground sites located in and around London during the summer of 2012 with a view to investigating the potential of assimilating such measurements in an atmospheric inversion system for the monitoring of the CO2 and CH4 emissions in the London area. These data were analysed and compared with simulations using a modelling framework suited to building an inversion system: a 2 km horizontal resolution south of England configuration of the transport model CHIMERE driven by European Centre for Medium-Range Weather Forecasts (ECMWF meteorological forcing, coupled to a 1 km horizontal resolution emission inventory (the UK National Atmospheric Emission Inventory. First comparisons reveal that local sources, which cannot be represented in the model at a 2 km resolution, have a large impact on measurements. We evaluate methods to filter out the impact of some of the other critical sources of discrepancies between the measurements and the model simulation except that of the errors in the emission inventory, which we attempt to isolate. Such a separation of the impact of errors in the emission inventory should make it easier to identify the corrections that should be applied to the inventory. Analysis is supported by observations from meteorological sites around the city and a 3-week period of atmospheric mixing layer height estimations from lidar measurements. The difficulties of modelling the mixing layer depth and thus CO2 and CH4 concentrations during the night, morning and late afternoon lead to focusing on the afternoon period for all further analyses. The discrepancies between observations and model simulations are high for both CO2 and CH4 (i.e. their root mean square (RMS is between 8 and 12 parts per million (ppm for CO2 and between 30 and 55 parts per billion (ppb for CH4 at a given site. By analysing the gradients between the urban sites and a suburban or rural

  19. The global impact of the transport sectors on atmospheric aerosol in 2030 – Part 1: Land transport and shipping

    Directory of Open Access Journals (Sweden)

    M. Righi

    2015-01-01

    Full Text Available Using the EMAC (ECHAM/MESSy Atmospheric Chemistry global climate-chemistry model coupled to the aerosol module MADE (Modal Aerosol Dynamics model for Europe, adapted for global applications, we simulate the impact of land transport and shipping emissions on global atmospheric aerosol and climate in 2030. Future emissions of short-lived gas and aerosol species follow the four Representative Concentration Pathways (RCPs designed in support of the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. We compare the resulting 2030 land-transport- and shipping-induced aerosol concentrations to the ones obtained for the year 2000 in a previous study with the same model configuration. The simulations suggest that black carbon and aerosol nitrate are the most relevant pollutants from land transport in 2000 and 2030 and their impacts are characterized by very strong regional variations during this time period. Europe and North America experience a decrease in the land-transport-induced particle pollution, although in these regions this sector remains a major source of surface-level pollution in 2030 under all RCPs. In Southeast Asia, however, a significant increase is simulated, but in this region the surface-level pollution is still controlled by other sources than land transport. Shipping-induced air pollution is mostly due to aerosol sulfate and nitrate, which show opposite trends towards 2030. Sulfate is strongly reduced as a consequence of sulfur reduction policies in ship fuels in force since 2010, while nitrate tends to increase due to the excess of ammonia following the reduction in ammonium sulfate. The aerosol-induced climate impact of both sectors is dominated by aerosol-cloud effects and is projected to decrease between 2000 and 2030, nevertheless still contributing a significant radiative forcing to Earth's radiation budget.

  20. Atmospheric dispersion modeling: Challenges of the Fukushima Daiichi response

    Energy Technology Data Exchange (ETDEWEB)

    Sugiyama, Gayle [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Nasstrom, John [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Pobanz, Brenda [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Foster, Kevin [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Simpson, Matthew [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Vogt, Phil [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Aluzzi, Fernando [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Homann, Steve [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2012-05-01

    In this research, the U.S. Department of Energy’s (DOE) National Atmospheric Release Advisory Center (NARAC) provided a wide range of predictions and analyses as part of the response to the Fukushima Daiichi Nuclear Power Plant accident including: daily Japanese weather forecasts and atmospheric transport predictions to inform planning for field monitoring operations and to provide U.S. government agencies with ongoing situational awareness of meteorological conditions; estimates of possible dose in Japan based on hypothetical U.S. Nuclear Regulatory Commission scenarios of potential radionuclide releases to support protective action planning for U.S. citizens; predictions of possible plume arrival times and dose levels at U.S. locations; and source estimation and plume model refinement based on atmospheric dispersion modeling and available monitoring data.

  1. Key features of the IPSL ocean atmosphere model and its sensitivity to atmospheric resolution

    Energy Technology Data Exchange (ETDEWEB)

    Marti, Olivier; Braconnot, P.; Bellier, J.; Brockmann, P.; Caubel, A.; Noblet, N. de; Friedlingstein, P.; Idelkadi, A.; Kageyama, M. [Unite Mixte CEA-CNRS-UVSQ, IPSL/LSCE, Gif-sur-Yvette Cedex (France); Dufresne, J.L.; Bony, S.; Codron, F.; Fairhead, L.; Grandpeix, J.Y.; Hourdin, F.; Musat, I. [Unite Mixte CNRS-Ecole Polytechnique-ENS-UPCM, IPSL/LMD, Paris Cedex 05 (France); Benshila, R.; Guilyardi, E.; Levy, C.; Madec, G.; Mignot, J.; Talandier, C. [unite mixte CNRS-IRD-UPMC, IPLS/LOCEAN, Paris Cedex 05 (France); Cadule, P.; Denvil, S.; Foujols, M.A. [Institut Pierre Simon Laplace des Sciences de l' Environnement (IPSL), Paris Cedex 05 (France); Fichefet, T.; Goosse, H. [Universite Catholique de Louvain, Institut d' Astronomie et de Geophysique Georges Lemaitre, Louvain-la-Neuve (Belgium); Krinner, G. [Unite mixte CNRS-UJF Grenoble, LGGE, BP96, Saint-Martin-d' Heres (France); Swingedouw, D. [CNRS/CERFACS, Toulouse (France)

    2010-01-15

    This paper presents the major characteristics of the Institut Pierre Simon Laplace (IPSL) coupled ocean-atmosphere general circulation model. The model components and the coupling methodology are described, as well as the main characteristics of the climatology and interannual variability. The model results of the standard version used for IPCC climate projections, and for intercomparison projects like the Paleoclimate Modeling Intercomparison Project (PMIP 2) are compared to those with a higher resolution in the atmosphere. A focus on the North Atlantic and on the tropics is used to address the impact of the atmosphere resolution on processes and feedbacks. In the North Atlantic, the resolution change leads to an improved representation of the storm-tracks and the North Atlantic oscillation. The better representation of the wind structure increases the northward salt transports, the deep-water formation and the Atlantic meridional overturning circulation. In the tropics, the ocean-atmosphere dynamical coupling, or Bjerknes feedback, improves with the resolution. The amplitude of ENSO (El Nino-Southern oscillation) consequently increases, as the damping processes are left unchanged. (orig.)

  2. Atmospheric Modelling of Tritium forms transport: review of capabilities and R and D needs for the assessment of fusion facilities environmental impact

    International Nuclear Information System (INIS)

    Castro, P.; Velarde, M.; Ardao, J.; Perlado, J. M.; Sedano, L.

    2012-01-01

    The work model in detail the tritium forms dispersion and dosimetric impact of selected environmental patterns both inland and in-sea using real topography and forecast meteo data (ECMWF/FLEXPART). We explore specific values of this ratio in different levels and we examine the influence of meteorological conditions in the HTO behavior for 24 hours. For this purpose we have used a tool which consists on a coupled Lagrangian.

  3. ATMOSPHERE PROTECTION IN CASE OF EMERGENCY DURING TRANSPORTATION OF DANGEROUS CARGO

    Directory of Open Access Journals (Sweden)

    O. V. Berlov

    2016-02-01

    Full Text Available Purpose. The paper highlights the development of numerical models for prediction of atmospheric pollution in case of burning of the solid rocket propellant in a railway car, situated near the building on railway territory. These models can be used in predicting the effectiveness of neutralization upon the atmosphere protection for this type of accidents. Methodology.To solve this problem the numerical models based on the use of Navier-Stokes equations, to determine the velocity field of the wind flow near cars and buildings, and contaminants-transfer equations in the atmosphere were developed. For the numerical integration of pollutant transport equation was used implicit «change – triangle» difference scheme. When constructing a difference scheme physical and geometric cleavage of the transfer equation is carried out in four steps. Unknown value of pollutant concentration at each step of cleavage is determined by the explicit scheme – the method of «point-to-point computation». For the numerical integration of the Navier-Stokes equations are used implicit difference schemes. When carrying out computing experiment also takes into account: the velocity profile of wind flow; interaction between the building and the wind flow and flame jet of solid rocket propellant; the presence of a railroad car; inside which there is a source of pollution; instability of pollutant emissions. On the basis of constructed numerical models was performed the computer experiment for assessing the level of air pollution at dangerous cargo rail transportation in case of emergency at railway territory.The application calculations for the timely combustion products neutralization of solid rocket propellant were carried out. Findings. The numerical models that let promptly calculate air contamination in case of emergency during solid rocket propellant transportation, as well as calculate the rational parameters of pollutant neutralization process were developed by

  4. North African dust transport toward the western Mediterranean basin: atmospheric controls on dust source activation and transport pathways during June-July 2013

    Science.gov (United States)

    Schepanski, Kerstin; Mallet, Marc; Heinold, Bernd; Ulrich, Max

    2016-11-01

    Dust transported from north African source region toward the Mediterranean basin and Europe is a ubiquitous phenomenon in the Mediterranean region. Winds formed by large-scale pressure gradients foster dust entrainment into the atmosphere over north African dust source regions and advection of dust downwind. The constellation of centers of high and low pressure determines wind speed and direction, and thus the chance for dust emission over northern Africa and transport toward the Mediterranean. We present characteristics of the atmospheric dust life cycle determining dust transport toward the Mediterranean basin with focus on the ChArMEx (Chemistry-Aerosol Mediterranean Experiment) special observation period in June and July 2013 using the atmosphere-dust model COSMO-MUSCAT (COSMO: COnsortium for Small-scale MOdeling; MUSCAT: MUltiScale Chemistry Aerosol Transport Model). Modes of atmospheric circulation are identified from empirical orthogonal function (EOF) analysis of the geopotential height at 850 hPa and compared to EOFs calculated from 1979-2015 ERA-Interim reanalysis. Two different phases are identified from the first EOF, which in total explain 45 % of the variance. They are characterized by the propagation of the subtropical ridge into the Mediterranean basin, the position of the Saharan heat low and the predominant Iberian heat low, and discussed illustrating a dipole pattern for enhanced (reduced) dust emission fluxes, stronger (weaker) meridional dust transport, and consequent increased (decreased) atmospheric dust concentrations and deposition fluxes. In the event of a predominant high-pressure zone over the western and central Mediterranean (positive phase), a hot spot in dust emission flux is evident over the Grand Erg Occidental, and a reduced level of atmospheric dust loading occurs over the western Mediterranean basin. The meridional transport in northward direction is reduced due to prevailing northerly winds. In case of a predominant heat low

  5. Development of moist atmospheric dynamic model

    International Nuclear Information System (INIS)

    Furuno, Akiko; Yamazawa, Hiromi

    1998-12-01

    WSPEEDI (Worldwide version of System for Prediction of Environmental Emergency Dose Information) is a system for rapid prediction of long-range atmospheric dispersion and radiological impact due to a nuclear accident. At present, the atmospheric dispersion model GEARN in WSPEEDI simply parameterizes the turbulence diffusion and precipitation scavenging, i.e. rain-out and washout, because information on the boundary layer, cloud and precipitation is insufficient in global forecasts from Japan Meteorological Agency which are input data for WSPEEDI. Thus, to provide GEARN with such information, this study aims to introduce a hydrodynamic model into WSPEEDI, which can predict boundary layer processes and moist processes. As the first step, prognostic equations for hydrometeors, cloud formation and precipitation processes are added to the mesoscale atmospheric dynamic model PHYSIC. This report describes the detail of the modified model code and the results of test calculation. (author)

  6. SPRAYTRAN USER'S GUIDE: A GIS-BASED ATMOSPHERIC SPRAY DROPLET DISPERSION MODELING SYSTEM

    Science.gov (United States)

    The offsite drift of pesticide from spray operations is an ongoing source of concern. The SPRAY TRANsport (SPRAYTRAN) system, documented in this report, incorporates the near-field spray application model, AGDISP, into a meso-scale atmospheric transport model. The AGDISP model ...

  7. An Overview of Atmospheric Chemistry and Air Quality Modeling

    Science.gov (United States)

    Johnson, Matthew S.

    2017-01-01

    This presentation will include my personal research experience and an overview of atmospheric chemistry and air quality modeling to the participants of the NASA Student Airborne Research Program (SARP 2017). The presentation will also provide examples on ways to apply airborne observations for chemical transport (CTM) and air quality (AQ) model evaluation. CTM and AQ models are important tools in understanding tropospheric-stratospheric composition, atmospheric chemistry processes, meteorology, and air quality. This presentation will focus on how NASA scientist currently apply CTM and AQ models to better understand these topics. Finally, the importance of airborne observation in evaluating these topics and how in situ and remote sensing observations can be used to evaluate and improve CTM and AQ model predictions will be highlighted.

  8. Chemical kinetics and modeling of planetary atmospheres

    Science.gov (United States)

    Yung, Yuk L.

    1990-01-01

    A unified overview is presented for chemical kinetics and chemical modeling in planetary atmospheres. The recent major advances in the understanding of the chemistry of the terrestrial atmosphere make the study of planets more interesting and relevant. A deeper understanding suggests that the important chemical cycles have a universal character that connects the different planets and ultimately link together the origin and evolution of the solar system. The completeness (or incompleteness) of the data base for chemical kinetics in planetary atmospheres will always be judged by comparison with that for the terrestrial atmosphere. In the latter case, the chemistry of H, O, N, and Cl species is well understood. S chemistry is poorly understood. In the atmospheres of Jovian planets and Titan, the C-H chemistry of simple species (containing 2 or less C atoms) is fairly well understood. The chemistry of higher hydrocarbons and the C-N, P-N chemistry is much less understood. In the atmosphere of Venus, the dominant chemistry is that of chlorine and sulfur, and very little is known about C1-S coupled chemistry. A new frontier for chemical kinetics both in the Earth and planetary atmospheres is the study of heterogeneous reactions. The formation of the ozone hole on Earth, the ubiquitous photochemical haze on Venus and in the Jovian planets and Titan all testify to the importance of heterogeneous reactions. It remains a challenge to connect the gas phase chemistry to the production of aerosols.

  9. Modeling Atmospheric CO2 Processes to Constrain the Missing Sink

    Science.gov (United States)

    Kawa, S. R.; Denning, A. S.; Erickson, D. J.; Collatz, J. C.; Pawson, S.

    2005-01-01

    We report on a NASA supported modeling effort to reduce uncertainty in carbon cycle processes that create the so-called missing sink of atmospheric CO2. Our overall objective is to improve characterization of CO2 source/sink processes globally with improved formulations for atmospheric transport, terrestrial uptake and release, biomass and fossil fuel burning, and observational data analysis. The motivation for this study follows from the perspective that progress in determining CO2 sources and sinks beyond the current state of the art will rely on utilization of more extensive and intensive CO2 and related observations including those from satellite remote sensing. The major components of this effort are: 1) Continued development of the chemistry and transport model using analyzed meteorological fields from the Goddard Global Modeling and Assimilation Office, with comparison to real time data in both forward and inverse modes; 2) An advanced biosphere model, constrained by remote sensing data, coupled to the global transport model to produce distributions of CO2 fluxes and concentrations that are consistent with actual meteorological variability; 3) Improved remote sensing estimates for biomass burning emission fluxes to better characterize interannual variability in the atmospheric CO2 budget and to better constrain the land use change source; 4) Evaluating the impact of temporally resolved fossil fuel emission distributions on atmospheric CO2 gradients and variability. 5) Testing the impact of existing and planned remote sensing data sources (e.g., AIRS, MODIS, OCO) on inference of CO2 sources and sinks, and use the model to help establish measurement requirements for future remote sensing instruments. The results will help to prepare for the use of OCO and other satellite data in a multi-disciplinary carbon data assimilation system for analysis and prediction of carbon cycle changes and carbodclimate interactions.

  10. Noble Gas Surface Flux Simulations And Atmospheric Transport

    Energy Technology Data Exchange (ETDEWEB)

    Carrigan, Charles R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Sun, Yunwei [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Simpson, Matthew D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-09-30

    Signatures from underground nuclear explosions or UNEs are strongly influenced by the containment regime surrounding them. The degree of gas leakage from the detonation cavity to the surface obviously affects the magnitude of surface fluxes of radioxenon that might be detected during the course of a Comprehensive Test Ban Treaty On-Site Inspection. In turn, the magnitude of surface fluxes will influence the downwind detectability of the radioxenon atmospheric signature from the event. Less obvious is the influence that leakage rates have on the evolution of radioxenon isotopes in the cavity or the downwind radioisotopic measurements that might be made. The objective of this letter report is to summarize our attempt to better understand how containment conditions affect both the detection and interpretation of radioxenon signatures obtained from sampling at the ground surface near an event as well as at greater distances in the atmosphere. In the discussion that follows, we make no attempt to consider other sources of radioactive noble gases such as natural backgrounds or atmospheric contamination and, for simplicity, only focus on detonation-produced radioxenon gases. Summarizing our simulations, they show that the decay of radioxenon isotopes (e.g., Xe-133, Xe-131m, Xe-133m and Xe-135) and their migration to the surface following a UNE means that the possibility of detecting these gases exists within a window of opportunity. In some cases, seeps or venting of detonation gases may allow significant quantities to reach the surface and be released into the atmosphere immediately following a UNE. In other release scenarios – the ones we consider here – hours to days may be required for gases to reach the surface at detectable levels. These release models are most likely more characteristic of “fully contained” events that lack prompt venting, but which still leak gas slowly across the surface for periods of months.

  11. Atmospheric transport of persistent organic pollutants to the Arctic, today and in a future climate

    Science.gov (United States)

    Octaviani, Mega; Stemmler, Irene; Lammel, Gerhard

    2013-04-01

    Persistent organic pollutants are of great concern because of their long residence time and long-range transport potential in the environment and because they are readily bioaccumulated along food chains and toxic for wildlife and humans. A multicompartment model is used to study global-scale and long term chemodynamics of anthropogenic organic substances in the Earth system. Model components are the atmosphere (ECHAM5) and ocean general circulation models (MPIOM), which include dynamic sub-models for atmospheric aerosols and the marine biogeochemistry, two-dimensional surface compartments (topsoil, vegetation surfaces, ice, and temporal snow cover) and intercompartmental mass exchange process parameterisations [1-3]. The transports into and out of the Arctic (66° N) are characterized for 1950-2000 under one realisation of present-day climate [4-5] and for 2001-2100 under one realisation of future climate (greenhouse gas emission scenario A1B of IPCC-AR4). Despite decaying primary emissions (since decades) polychlorinated biphenyls (PCB) and dichlorodimephenyltrichloromethane (DDT) are continuing to accumulate in the Arctic, which is fed by atmospheric transports. The main regions of import (and export) are identified and the vertical distribution and seasonalities are characterized. Changes by the end of the 21st century are discussed in the context of a major teleconnection, i.e. the Arctic Oscillation. References [1] Guglielmo F, Lammel G, Maier-Reimer E: Global environmental cycling of DDT and ?-HCH in the 1980s - a study using a coupled atmosphere and ocean general circulation model. Chemosphere 76 (2009) 1509-1517 [2] Stemmler I, Lammel G: Cycling of DDT in the global oceans 1950-2002: World ocean returns the pollutant. Geophys. Res. Lett. 36 (2009) L24602 [3] Hofmann L, Stemmler I, Lammel G: The impact of organochlorines cycling in the cryosphere on their global distributions and fate - 2. Land ice and temporary snow cover. Environ. Pollut. 162 (2012) 482

  12. Coupled atmosphere-wildland fire modelling

    Directory of Open Access Journals (Sweden)

    Jacques Henri Balbi

    2009-10-01

    Full Text Available Simulating the interaction between fire and atmosphere is critical to the estimation of the rate of spread of the fire. Wildfire’s convection (i.e., entire plume can modify the local meteorology throughout the atmospheric boundary layer and consequently affect the fire propagation speed and behaviour. In this study, we use for the first time the Méso-NH meso-scale numerical model coupled to the point functional ForeFire simplified physical front-tracking wildfire model to investigate the differences introduced by the atmospheric feedback in propagation speed and behaviour. Both numerical models have been developed as research tools for operational models and are currently used to forecast localized extreme events. These models have been selected because they can be run coupled and support decisions in wildfire management in France and Europe. The main originalities of this combination reside in the fact that Méso-NH is run in a Large Eddy Simulation (LES configuration and that the rate of spread model used in ForeFire provides a physical formulation to take into account the effect of wind and slope. Simulations of typical experimental configurations show that the numerical atmospheric model is able to reproduce plausible convective effects of the heat produced by the fire. Numerical results are comparable to estimated values for fire-induced winds and present behaviour similar to other existing numerical approaches.

  13. A Test of Sensitivity to Convective Transport in a Global Atmospheric CO2 Simulation

    Science.gov (United States)

    Bian, H.; Kawa, S. R.; Chin, M.; Pawson, S.; Zhu, Z.; Rasch, P.; Wu, S.

    2006-01-01

    Two approximations to convective transport have been implemented in an offline chemistry transport model (CTM) to explore the impact on calculated atmospheric CO2 distributions. GlobalCO2 in the year 2000 is simulated using theCTM driven by assimilated meteorological fields from the NASA s Goddard Earth Observation System Data Assimilation System, Version 4 (GEOS-4). The model simulates atmospheric CO2 by adopting the same CO2 emission inventory and dynamical modules as described in Kawa et al. (convective transport scheme denoted as Conv1). Conv1 approximates the convective transport by using the bulk convective mass fluxes to redistribute trace gases. The alternate approximation, Conv2, partitions fluxes into updraft and downdraft, as well as into entrainment and detrainment, and has potential to yield a more realistic simulation of vertical redistribution through deep convection. Replacing Conv1 by Conv2 results in an overestimate of CO2 over biospheric sink regions. The largest discrepancies result in a CO2 difference of about 7.8 ppm in the July NH boreal forest, which is about 30% of the CO2 seasonality for that area. These differences are compared to those produced by emission scenario variations constrained by the framework of Intergovernmental Panel on Climate Change (IPCC) to account for possible land use change and residual terrestrial CO2 sink. It is shown that the overestimated CO2 driven by Conv2 can be offset by introducing these supplemental emissions.

  14. North African dust transport toward the western Mediterranean basin: atmospheric controls on dust source activation and transport pathways during June–July 2013

    Directory of Open Access Journals (Sweden)

    K. Schepanski

    2016-11-01

    Full Text Available Dust transported from north African source region toward the Mediterranean basin and Europe is a ubiquitous phenomenon in the Mediterranean region. Winds formed by large-scale pressure gradients foster dust entrainment into the atmosphere over north African dust source regions and advection of dust downwind. The constellation of centers of high and low pressure determines wind speed and direction, and thus the chance for dust emission over northern Africa and transport toward the Mediterranean. We present characteristics of the atmospheric dust life cycle determining dust transport toward the Mediterranean basin with focus on the ChArMEx (Chemistry-Aerosol Mediterranean Experiment special observation period in June and July 2013 using the atmosphere–dust model COSMO-MUSCAT (COSMO: COnsortium for Small-scale MOdeling; MUSCAT: MUltiScale Chemistry Aerosol Transport Model. Modes of atmospheric circulation are identified from empirical orthogonal function (EOF analysis of the geopotential height at 850 hPa and compared to EOFs calculated from 1979–2015 ERA-Interim reanalysis. Two different phases are identified from the first EOF, which in total explain 45 % of the variance. They are characterized by the propagation of the subtropical ridge into the Mediterranean basin, the position of the Saharan heat low and the predominant Iberian heat low, and discussed illustrating a dipole pattern for enhanced (reduced dust emission fluxes, stronger (weaker meridional dust transport, and consequent increased (decreased atmospheric dust concentrations and deposition fluxes. In the event of a predominant high-pressure zone over the western and central Mediterranean (positive phase, a hot spot in dust emission flux is evident over the Grand Erg Occidental, and a reduced level of atmospheric dust loading occurs over the western Mediterranean basin. The meridional transport in northward direction is reduced due to prevailing northerly winds. In case of a

  15. ATMOS: a model of radionuclide migration in the atmosphere

    International Nuclear Information System (INIS)

    Wilkinson, S.R.

    1987-10-01

    For use with scenarios involving airborne contamination, an atmospheric transport model called ATMOS has been developed for the safety assessment code COSMOS-S/D. It is a one-wind Gaussian plume model, made more general using wind-rose information that calculates ground-level air concentration factors at a common receptor point for each of a number of sources. These multiply a source strength, calculated elsewhere, to obtain the actual airborne radionuclide concentrations. The model presented in this report is an improved version of the original. Accounting is now made of area of the source region, and plume depletion by both wet and dry deposition mechanisms

  16. Atmospheric transport of ozone between Southern and Eastern Asia.

    Science.gov (United States)

    Chakraborty, T; Beig, G; Dentener, F J; Wild, O

    2015-08-01

    This study describes the effect of pollution transport between East Asia and South Asia on tropospheric ozone (O3) using model results from the Task Force on Hemispheric Transport of Air Pollution (TF HTAP). Ensemble mean O3 concentrations are evaluated against satellite-data and ground observations of surface O3 at four stations in India. Although modeled surface O3 concentrations are 1020ppb higher than those observed, the relative magnitude of the seasonal cycle of O3 is reproduced well. Using 20% reductions in regional anthropogenic emissions, we quantify the seasonal variations in pollution transport between East Asia and South Asia. While there is only a difference of 0.05 to 0.1ppb in the magnitudes of the regional contributions from one region to the other, O3 from East Asian sources affects the most densely populated parts of South Asia while Southern Asian sources only partly affect the populated parts of East Asia. We show that emission changes over East Asia between 2000 and 2010 had a larger impact on populated parts of South Asia than vice versa. This study will help inform future decisions on emission control policy over these regions. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Quantifying the imprint of mesoscale and synoptic-scale atmospheric transport on total column carbon dioxide measurements

    Science.gov (United States)

    Torres, A. D.; Keppel-Aleks, G.; Doney, S. C.; Feng, S.; Lauvaux, T.; Fendrock, M. A.; Rheuben, J.

    2017-12-01

    Remote sensing instruments provide an unprecedented density of observations of the atmospheric CO2 column average mole fraction (denoted as XCO2), which can be used to constrain regional scale carbon fluxes. Inferring fluxes from XCO2 observations is challenging, as measurements and inversion methods are sensitive to not only the imprint local and large-scale fluxes, but also mesoscale and synoptic-scale atmospheric transport. Quantifying the fine-scale variability in XCO2 from mesoscale and synoptic-scale atmospheric transport will likely improve overall error estimates from flux inversions by improving estimates of representation errors that occur when XCO2 observations are compared to modeled XCO2 in relatively coarse transport models. Here, we utilize various statistical methods to quantify the imprint of atmospheric transport on XCO2 observations. We compare spatial variations along Orbiting Carbon Observatory (OCO-2) satellite tracks to temporal variations observed by the Total Column Carbon Observing Network (TCCON). We observe a coherent seasonal cycle of both within-day temporal and fine-scale spatial variability (of order 10 km) of XCO2 from these two datasets, suggestive of the imprint of mesoscale systems. To account for other potential sources of error in XCO2 retrieval, we compare observed temporal and spatial variations of XCO2 to high-resolution output from the Weather Research and Forecasting (WRF) model run at 9 km resolution. In both simulations and observations, the Northern hemisphere mid-latitude XCO2 showed peak variability during the growing season when atmospheric gradients are largest. These results are qualitatively consistent with our expectations of seasonal variations of the imprint of synoptic and mesoscale atmospheric transport on XCO2 observations; suggesting that these statistical methods could be sensitive to the imprint of atmospheric transport on XCO2 observations.

  18. Evaluation of local versus remote areas of CH4 sources at IC3 stations using a combined analysis of 222Rn tracer and Atmospheric Particles Transport Model (APTM) results. Application at the Gredos and Iruelas station (GIC3), Spain.

    Science.gov (United States)

    Grossi, Claudia; Morguí, Josep Anton; Curcoll, Roger; Àgueda, Alba; Arnold, Delia; Batet, Oscar; Cañas, Lidia; Nofuentes, Manel; Occhipinti, Paola; Vogel, Felix; Vargas, Arturo; Rodó, Xavier

    2014-05-01

    The Gredos and Iruelas station (GIC3) is part of the IC3 (Institut Català de Ciències del Clima) atmospheric monitoring network. This station is located in the Gredos Natural Park (40.22º N; -5.14º E) in the Spanish central plateau. The IC3 network consists of 8 stations distributed across Spain. It has been developed with the aim of studying climatic processes and the responses of impacted systems at different temporal and spatial scales. Since 2012, CO2, CH4, 222Rn (a natural radioactive gas) and meteorological variables are continuously measured at GIC3 at 20 m a.g.l. (1100 m a.s.l.). Furthermore, 4-days backward simulations are run daily for each IC3 station using the FLEXPART model. Simulations use ECMWF meteorological data as input and a horizontal spatial resolution of 0.2 degrees. The Laboratory of the Atmosphere and the Oceans (LAO) of the IC3 has elaborated a new approach to evaluate the local or remote greenhouse gases emissions using the radon gas as tracer and the atmospheric particles transport model FLEXPART under nocturnal and winter conditions. The ratios between the normalized and rescaled measured concentrations of CH4 and 222Rn during nocturnal hours (21h, 00h, 03h and 06h) and in the winter season, in order to reduce local radon flux and methane source due to seasonal livestock migration and to get stable atmospheric conditions, have been analyzed in relation to the influence of the local area (set to an initial dimension of 20x20 km2). The influence area (IA) has been defined as the percentage of the ratio between the residence time of the fictitious particles released in FLEXPART simulations over the area of interest (TLocal Area) and the residence time of these fictitious particles over the total area included in the simulation (TTotal Area ), i.e. IA = (TLocal Area/TTotal Area * 100). First results considering an area of interest of 20x20 km2 show a linear increase of the radon concentration with IA until reaching a maximum when IA is

  19. Methods for testing transport models

    International Nuclear Information System (INIS)

    Singer, C.; Cox, D.

    1991-01-01

    Substantial progress has been made over the past year on six aspects of the work supported by this grant. As a result, we have in hand for the first time a fairly complete set of transport models and improved statistical methods for testing them against large databases. We also have initial results of such tests. These results indicate that careful application of presently available transport theories can reasonably well produce a remarkably wide variety of tokamak data

  20. Atmospheric fate and transport of fine volcanic ash: Does particle shape matter?

    Science.gov (United States)

    White, C. M.; Allard, M. P.; Klewicki, J.; Proussevitch, A. A.; Mulukutla, G.; Genareau, K.; Sahagian, D. L.

    2013-12-01

    Volcanic ash presents hazards to infrastructure, agriculture, and human and animal health. In particular, given the economic importance of intercontinental aviation, understanding how long ash is suspended in the atmosphere, and how far it is transported has taken on greater importance. Airborne ash abrades the exteriors of aircraft, enters modern jet engines and melts while coating interior engine parts causing damage and potential failure. The time fine ash stays in the atmosphere depends on its terminal velocity. Existing models of ash terminal velocities are based on smooth, quasi-spherical particles characterized by Stokes velocity. Ash particles, however, violate the various assumptions upon which Stokes flow and associated models are based. Ash particles are non-spherical and can have complex surface and internal structure. This suggests that particle shape may be one reason that models fail to accurately predict removal rates of fine particles from volcanic ash clouds. The present research seeks to better parameterize predictive models for ash particle terminal velocities, diffusivity, and dispersion in the atmospheric boundary layer. The fundamental hypothesis being tested is that particle shape irreducibly impacts the fate and transport properties of fine volcanic ash. Pilot studies, incorporating modeling and experiments, are being conducted to test this hypothesis. Specifically, a statistical model has been developed that can account for actual volcanic ash size distributions, complex ash particle geometry, and geometry variability. Experimental results are used to systematically validate and improve the model. The experiments are being conducted at the Flow Physics Facility (FPF) at UNH. Terminal velocities and dispersion properties of fine ash are characterized using still air drop experiments in an unconstrained open space using a homogenized mix of source particles. Dispersion and sedimentation dynamics are quantified using particle image

  1. Global Solution of Atmospheric Circulation Models with Humidity Effect

    OpenAIRE

    Luo, Hong

    2014-01-01

    The atmospheric circulation models are deduced from the very complex atmospheric circulation models based on the actual background and meteorological data. The models are able to show features of atmospheric circulation and are easy to be studied. It is proved that existence of global solutions to atmospheric circulation models with the use of the $T$-weakly continuous operator.

  2. Modelling pollutant transport

    International Nuclear Information System (INIS)

    Gopinath, D.V.

    1994-01-01

    An attempt has been made here to present a brief outline of the major processes and problems in the environmental modelling with special reference to radionuclide migration in surface waters. The intention has been only to provide a bird's eye view of this fertile and socially relevant area of scientific pursuit. (author). 2 figs., 4 tabs

  3. Global transport of thermophilic bacteria in atmospheric dust.

    Science.gov (United States)

    Perfumo, Amedea; Marchant, Roger

    2010-04-01

    Aerosols from dust storms generated in the Sahara-Sahel desert area of Africa are transported north over Europe and periodically result in dry dust precipitation in the Mediterranean region. Samples of dust collected in Turkey and Greece following two distinct desert storm events contained viable thermophilic organisms of the genus Geobacillus, namely G. thermoglucosidasius and G. thermodenitrificans, and the recently reclassified Aeribacillus pallidus (formerly Geobacillus pallidus). We present here evidence that African dust storms create an atmospheric bridge between distant geographical regions and that they are also probably the source of thermophilic geobacilli later deposited over northern Europe by rainfall or dust plumes themselves. The same organisms (99% similarity in the 16S rDNA sequence) were found in dust collected in the Mediterranean region and inhabiting cool soils in Northern Ireland. This study also contributes new insights to the taxonomic identification of Geobacillus sp. Attempts to identify these organisms using 16S rRNA gene sequences have revealed that they contain multiple and diverse copies of the ribosomal RNA operon (up to 10 copies with nine different sequences), which dictates care in interpreting data about the systematics of this genus. © 2010 Society for Applied Microbiology and Blackwell Publishing Ltd.

  4. Atmospheric characteristics essential for health effects modeling

    International Nuclear Information System (INIS)

    Nelson, N.S.

    1977-01-01

    Factors to be considered in evaluating the possible consequences of exposure of human populations to radioactive aerosols are reviewed. Mathematical models of the mechanisms of radioinduced carcinogenesis, tissue deposition and lung clearance of radioactive aerosols, and meteorological parameters affecting the diffusion of radioactive aerosols in the atmosphere are discussed

  5. Modelling stable atmospheric boundary layers over snow

    NARCIS (Netherlands)

    Sterk, H.A.M.

    2015-01-01

    Thesis entitled:

    Modelling Stable Atmospheric Boundary Layers over Snow

    H.A.M. Sterk

    Wageningen, 29th of April, 2015

    Summary

    The emphasis of this thesis is on the understanding and forecasting of the Stable Boundary Layer (SBL) over snow-covered surfaces. SBLs

  6. Modelling stable atmospheric boundary layers over snow

    NARCIS (Netherlands)

    Sterk, H.A.M.

    2015-01-01

    Thesis entitled: Modelling Stable Atmospheric Boundary Layers over Snow H.A.M. Sterk Wageningen, 29th of April, 2015 Summary The emphasis of this thesis is on the understanding and forecasting of the Stable Boundary Layer (SBL) over snow-covered surfaces. SBLs typically form at night and in polar

  7. Model sensitivity studies of the decrease in atmospheric carbon tetrachloride

    Directory of Open Access Journals (Sweden)

    M. P. Chipperfield

    2016-12-01

    Full Text Available Carbon tetrachloride (CCl4 is an ozone-depleting substance, which is controlled by the Montreal Protocol and for which the atmospheric abundance is decreasing. However, the current observed rate of this decrease is known to be slower than expected based on reported CCl4 emissions and its estimated overall atmospheric lifetime. Here we use a three-dimensional (3-D chemical transport model to investigate the impact on its predicted decay of uncertainties in the rates at which CCl4 is removed from the atmosphere by photolysis, by ocean uptake and by degradation in soils. The largest sink is atmospheric photolysis (74 % of total, but a reported 10 % uncertainty in its combined photolysis cross section and quantum yield has only a modest impact on the modelled rate of CCl4 decay. This is partly due to the limiting effect of the rate of transport of CCl4 from the main tropospheric reservoir to the stratosphere, where photolytic loss occurs. The model suggests large interannual variability in the magnitude of this stratospheric photolysis sink caused by variations in transport. The impact of uncertainty in the minor soil sink (9 % of total is also relatively small. In contrast, the model shows that uncertainty in ocean loss (17 % of total has the largest impact on modelled CCl4 decay due to its sizeable contribution to CCl4 loss and large lifetime uncertainty range (147 to 241 years. With an assumed CCl4 emission rate of 39 Gg year−1, the reference simulation with the best estimate of loss processes still underestimates the observed CCl4 (overestimates the decay over the past 2 decades but to a smaller extent than previous studies. Changes to the rate of CCl4 loss processes, in line with known uncertainties, could bring the model into agreement with in situ surface and remote-sensing measurements, as could an increase in emissions to around 47 Gg year−1. Further progress in constraining the CCl4 budget is partly limited by

  8. Global Reference Atmospheric Model and Trace Constituents

    Science.gov (United States)

    Justus, C.; Johnson, D.; Parker, Nelson C. (Technical Monitor)

    2002-01-01

    Global Reference Atmospheric Model (GRAM-99) is an engineering-level model of the Earth's atmosphere. It provides both mean values and perturbations for density, temperature, pressure, and winds, as well as monthly- and geographically-varying trace constituent concentrations. From 0-27 km, thermodynamics and winds are based on National Oceanic and Atmospheric Administration Global Upper Air Climatic Atlas (GUACA) climatology. Above 120 km, GRAM is based on the NASA Marshall Engineering Thermosphere (MET) model. In the intervening altitude region, GRAM is based on Middle Atmosphere Program (MAP) climatology that also forms the basis of the 1986 COSPAR Intemationa1 Reference Atmosphere (CIRA). MAP data in GRAM are augmented by a specially-derived longitude variation climatology. Atmospheric composition is represented in GRAM by concentrations of both major and minor species. Above 120 km, MET provides concentration values for N2, O2, Ar, O, He, and H. Below 120 km, species represented also include H2O, O3, N2O, CO, CH, and CO2. Water vapor in GRAM is based on a combination of GUACA, Air Force Geophysics Laboratory (AFGL), and NASA Langley Research Center climatologies. Other constituents below 120 km are based on a combination of AFGL and h4AP/CIRA climatologies. This report presents results of comparisons between GRAM Constituent concentrations and those provided by the Naval Research Laboratory (NRL) climatology of Summers (NRL,/MR/7641-93-7416, 1993). GRAM and NRL concentrations were compared for seven species (CH4, CO, CO2, H2O, N2O, O2, and O3) for months January, April, July, and October, over height range 0-115 km, and latitudes -90deg to + 90deg at 10deg increments. Average GRAM-NRL correlations range from 0.878 (for CO) to 0.975 (for O3), with an average over all seven species of 0.936 (standard deviation 0.049).

  9. Improved reference models for middle atmosphere ozone

    Science.gov (United States)

    Keating, G. M.; Pitts, M. C.; Chen, C.

    This paper describes the improvements introduced into the original version of ozone reference model of Keating and Young (1985, 1987) which is to be incorporated in the next COSPAR International Reference Atmosphere (CIRA). The ozone reference model will provide information on the global ozone distribution (including the ozone vertical structure as a function of month and latitude from 25 to 90 km) combining data from five recent satellite experiments: the Nimbus 7 LIMS, Nimbus 7 SBUV, AE-2 Stratospheric Aerosol Gas Experiment (SAGE), Solar Mesosphere Explorer (SME) UV Spectrometer, and SME 1.27 Micron Airglow. The improved version of the reference model uses reprocessed AE-2 SAGE data (sunset) and extends the use of SAGE data from 1981 to the 1981-1983 time period. Comparisons are presented between the results of this ozone model and various nonsatellite measurements at different levels in the middle atmosphere.

  10. Arctic atmospheric contaminants in NE Greenland: levels, variations, origins, transport, transformations and trends 1990-2001.

    Science.gov (United States)

    Heidam, Niels Z; Christensen, Jesper; Wåhlin, Peter; Skov, Henrik

    2004-09-20

    This review is based on the results obtained from the Danish AMAP programme for the Arctic atmosphere during the 1990s. The purpose of the programme is to quantify the pollution, apportion source contributions, follow the trends, and identify midlatitude source areas and transport pathways. The project has been carried out in North Greenland as integrated monitoring, which is an interacting combination of field measurements and model calculations of atmospheric transport and transformation in the Northern Hemisphere. At the monitoring site at Station Nord the large and seasonally recurrent variations in the pollutant concentrations are testimony to the influence in this region of the phenomenon of Arctic Haze. These results can only be understood in terms of long range transport from distant pollution sources. The measurements also comprise a large number of particle-born elements. These results are used to build receptor models, which show that the ambient concentrations and their variations to a high degree can be explained by the influence of only four source types of both natural and anthropogenic nature. The challenging phenomena of atmospheric ozone and mercury depletion around Polar sunrise have been studied at Station Nord over several years. The results show that these two phenomena are closely connected, presumably through photochemical reactions with atmospheric halogens released from sea ice. A large-scale Eulerian model system for the Northern Hemisphere has been developed in this AMAP project. The validity of the model is illustrated by comparisons between measured and calculated air concentrations. The model has been used to calculate both the vertical distribution and the atmospheric depositions for several pollutants at various locations in Greenland and split into quantified contributions from different and geographically distant source areas. Mercury deposition estimates for the Northern Hemisphere are also presented. They show that the mercury

  11. The Whole Atmosphere Community Climate Model

    Science.gov (United States)

    Boville, B. A.; Garcia, R. R.; Sassi, F.; Kinnison, D.; Roble, R. G.

    The Whole Atmosphere Community Climate Model (WACCM) is an upward exten- sion of the National Center for Atmospheric Research Community Climate System Model. WACCM simulates the atmosphere from the surface to the lower thermosphere (140 km) and includes both dynamical and chemical components. The salient points of the model formulation will be summarized and several aspects of its performance will be discussed. Comparison with observations indicates that WACCM produces re- alistic temperature and zonal wind distributions. Both the mean state and interannual variability will be summarized. Temperature inversions in the midlatitude mesosphere have been reported by several authors and are also found in WACCM. These inver- sions are formed primarily by planetary wave forcing, but the background state on which they form also requires gravity wave forcing. The response to sea surface temperature (SST) anomalies will be examined by com- paring simulations with observed SSTs for 1950-1998 to a simulation with clima- tological annual cycle of SSTs. The response to ENSO events is found to extend though the winter stratosphere and mesosphere and a signal is also found at the sum- mer mesopause. The experimental framework allows the ENSO signal to be isolated, because no other forcings are included (e.g. solar variability and volcanic eruptions) which complicate the observational record. The temperature and wind variations asso- ciated with ENSO are large enough to generate significant perturbations in the chem- ical composition of the middle atmosphere, which will also be discussed.

  12. Stellar Atmospheric Modelling for the ACCESS Program

    Science.gov (United States)

    Morris, Matthew; Kaiser, Mary Elizabeth; Bohlin, Ralph; Kurucz, Robert; ACCESS Team

    2018-01-01

    A goal of the ACCESS program (Absolute Color Calibration Experiment for Standard Stars) is to enable greater discrimination between theoretical astrophysical models and observations, where the comparison is limited by systematic errors associated with the relative flux calibration of the targets. To achieve these goals, ACCESS has been designed as a sub-orbital rocket borne payload and ground calibration program, to establish absolute flux calibration of stellar targets at high resolution spectra in addition to the HST/CALSPEC data, we have generated stellar atmosphere models for ACCESS flight candidates, as well as a selection of A and G stars from the CALSPEC database. Stellar atmosphere models were generated using Atlas 9 and Atlas 12 Kurucz stellar atmosphere software. The effective temperature, log(g), metallicity, and redenning were varied and the chi-squared statistic was minimized to obtain a best-fit model. A comparison of these models and the results from interpolation between grids of existing models will be presented. The impact of the flexibility of the Atlas 12 input parameters (e.g. solar metallicity fraction, abundances, microturbulent velocity) is being explored.

  13. Atmospheric inverse modeling via sparse reconstruction

    Directory of Open Access Journals (Sweden)

    N. Hase

    2017-10-01

    Full Text Available Many applications in atmospheric science involve ill-posed inverse problems. A crucial component of many inverse problems is the proper formulation of a priori knowledge about the unknown parameters. In most cases, this knowledge is expressed as a Gaussian prior. This formulation often performs well at capturing smoothed, large-scale processes but is often ill equipped to capture localized structures like large point sources or localized hot spots. Over the last decade, scientists from a diverse array of applied mathematics and engineering fields have developed sparse reconstruction techniques to identify localized structures. In this study, we present a new regularization approach for ill-posed inverse problems in atmospheric science. It is based on Tikhonov regularization with sparsity constraint and allows bounds on the parameters. We enforce sparsity using a dictionary representation system. We analyze its performance in an atmospheric inverse modeling scenario by estimating anthropogenic US methane (CH4 emissions from simulated atmospheric measurements. Different measures indicate that our sparse reconstruction approach is better able to capture large point sources or localized hot spots than other methods commonly used in atmospheric inversions. It captures the overall signal equally well but adds details on the grid scale. This feature can be of value for any inverse problem with point or spatially discrete sources. We show an example for source estimation of synthetic methane emissions from the Barnett shale formation.

  14. Atmospheric inverse modeling via sparse reconstruction

    Science.gov (United States)

    Hase, Nils; Miller, Scot M.; Maaß, Peter; Notholt, Justus; Palm, Mathias; Warneke, Thorsten

    2017-10-01

    Many applications in atmospheric science involve ill-posed inverse problems. A crucial component of many inverse problems is the proper formulation of a priori knowledge about the unknown parameters. In most cases, this knowledge is expressed as a Gaussian prior. This formulation often performs well at capturing smoothed, large-scale processes but is often ill equipped to capture localized structures like large point sources or localized hot spots. Over the last decade, scientists from a diverse array of applied mathematics and engineering fields have developed sparse reconstruction techniques to identify localized structures. In this study, we present a new regularization approach for ill-posed inverse problems in atmospheric science. It is based on Tikhonov regularization with sparsity constraint and allows bounds on the parameters. We enforce sparsity using a dictionary representation system. We analyze its performance in an atmospheric inverse modeling scenario by estimating anthropogenic US methane (CH4) emissions from simulated atmospheric measurements. Different measures indicate that our sparse reconstruction approach is better able to capture large point sources or localized hot spots than other methods commonly used in atmospheric inversions. It captures the overall signal equally well but adds details on the grid scale. This feature can be of value for any inverse problem with point or spatially discrete sources. We show an example for source estimation of synthetic methane emissions from the Barnett shale formation.

  15. An Overview of Modeling Middle Atmospheric Odd Nitrogen

    Science.gov (United States)

    Jackman, Charles H.; Kawa, S. Randolph; Einaudi, Franco (Technical Monitor)

    2001-01-01

    Odd nitrogen (N, NO, NO2, NO3, N2O5, HNO3, HO2NO2, ClONO2, and BrONO2) constituents are important components in the control of middle atmospheric ozone. Several processes lead to the production of odd nitrogen (NO(sub y)) in the middle atmosphere (stratosphere and mesosphere) including the oxidation of nitrous oxide (N2O), lightning, downflux from the thermosphere, and energetic charged particles (e.g., galactic cosmic rays, solar proton events, and energetic electron precipitation). The dominant production mechanism of NO(sub y) in the stratosphere is N2O oxidation, although other processes contribute. Mesospheric NO(sub y) is influenced by N2O oxidation, downflux from the thermosphere, and energetic charged particles. NO(sub y) is destroyed in the middle atmosphere primarily via two processes: 1) dissociation of NO to form N and O followed by N + NO yielding N2 + O to reform even nitrogen; and 2) transport to the troposphere where HNO3 can be rapidly scavenged in water droplets and rained out of the atmosphere. There are fairly significant differences among global models that predict NO(sub y). NO(sub y) has a fairly long lifetime in the stratosphere (months to years), thus disparate transport in the models probably contributes to many of these differences. Satellite and aircraft measurement provide modeling tests of the various components of NO(sub y). Although some recent reaction rate measurements have led to improvements in model/measurement agreement, significant differences do remain. This presentation will provide an overview of several proposed sources and sinks of NO(sub y) and their regions of importance. Multi-dimensional modeling results for NO(sub y) and its components with comparisons to observations will also be presented.

  16. Numerical model simulation of atmospheric coolant plumes

    International Nuclear Information System (INIS)

    Gaillard, P.

    1980-01-01

    The effect of humid atmospheric coolants on the atmosphere is simulated by means of a three-dimensional numerical model. The atmosphere is defined by its natural vertical profiles of horizontal velocity, temperature, pressure and relative humidity. Effluent discharge is characterised by its vertical velocity and the temperature of air satured with water vapour. The subject of investigation is the area in the vicinity of the point of discharge, with due allowance for the wake effect of the tower and buildings and, where application, wind veer with altitude. The model equations express the conservation relationships for mometum, energy, total mass and water mass, for an incompressible fluid behaving in accordance with the Boussinesq assumptions. Condensation is represented by a simple thermodynamic model, and turbulent fluxes are simulated by introduction of turbulent viscosity and diffusivity data based on in-situ and experimental water model measurements. The three-dimensional problem expressed in terms of the primitive variables (u, v, w, p) is governed by an elliptic equation system which is solved numerically by application of an explicit time-marching algorithm in order to predict the steady-flow velocity distribution, temperature, water vapour concentration and the liquid-water concentration defining the visible plume. Windstill conditions are simulated by a program processing the elliptic equations in an axisymmetrical revolution coordinate system. The calculated visible plumes are compared with plumes observed on site with a view to validate the models [fr

  17. Review: Model particles in atmospheric optics

    International Nuclear Information System (INIS)

    Kahnert, Michael; Nousiainen, Timo; Lindqvist, Hannakaisa

    2014-01-01

    This review paper provides an overview over model geometries for computing light scattering by small particles. The emphasis is on atmospheric optics, although much of this review will also be relevant to neighbouring fields, in particular to astronomy. Various morphological particle properties are discussed, such as overall nonsphericity, pristine shapes, aggregation, and different forms of inhomogeneity, e.g. porous and compact inhomogeneous morphologies, as well as encapsulated aggregates. Models employed to reproduce the optical properties of complex particles range from strongly simplified to highly realistic and morphologically sophisticated model geometries. Besides reviewing the most recent literature, we discuss the idea behind models of varying degree of complexity with regard to the intended use of the models. Applications range from fundamental studies of light scattering processes to routine applications of particle optics look-up tables in operational modelling systems. - Highlights: • Particle models in atmospheric optics are reviewed. • Review of recent literature on nonspherical particles. • Applications of particle models are discussed

  18. Reactive species in non-equilibrium atmospheric-pressure plasmas: Generation, transport, and biological effects

    Energy Technology Data Exchange (ETDEWEB)

    Lu, X., E-mail: luxinpei@hotmail.com [State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China); IFSA Collaborative Innovation Center, Shanghai Jiao Tong University, Shanghai 200240 (China); Naidis, G.V. [Joint Institute for High Temperatures, Russian Academy of Sciences, Moscow 125412 (Russian Federation); Laroussi, M. [Plasma Engineering & Medicine Institute, Old Dominion University, Norfolk, VA 23529 (United States); Reuter, S. [Leibniz Institute for Plasma Science and Technology, Felix-Hausdorff-Strasse 2, 17489 Greifswald (Germany); Graves, D.B. [Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720 (United States); Ostrikov, K. [Institute for Future Environments, Queensland University of Technology, Brisbane, QLD 4000 (Australia); School of Physics, Chemistry, and Mechanical Engineering, Queensland University of Technology, Brisbane, QLD 4000 (Australia); Commonwealth Scientific and Industrial Research Organization, P.O.Box 218, Lindfield, NSW 2070 (Australia); School of Physics, The University of Sydney, Sydney, NSW 2006 (Australia)

    2016-05-04

    Non-equilibrium atmospheric-pressure plasmas have recently become a topical area of research owing to their diverse applications in health care and medicine, environmental remediation and pollution control, materials processing, electrochemistry, nanotechnology and other fields. This review focuses on the reactive electrons and ionic, atomic, molecular, and radical species that are produced in these plasmas and then transported from the point of generation to the point of interaction with the material, medium, living cells or tissues being processed. The most important mechanisms of generation and transport of the key species in the plasmas of atmospheric-pressure plasma jets and other non-equilibrium atmospheric-pressure plasmas are introduced and examined from the viewpoint of their applications in plasma hygiene and medicine and other relevant fields. Sophisticated high-precision, time-resolved plasma diagnostics approaches and techniques are presented and their applications to monitor the reactive species and plasma dynamics in the plasma jets and other discharges, both in the gas phase and during the plasma interaction with liquid media, are critically reviewed. The large amount of experimental data is supported by the theoretical models of reactive species generation and transport in the plasmas, surrounding gaseous environments, and plasma interaction with liquid media. These models are presented and their limitations are discussed. Special attention is paid to biological effects of the plasma-generated reactive oxygen and nitrogen (and some other) species in basic biological processes such as cell metabolism, proliferation, survival, etc. as well as plasma applications in bacterial inactivation, wound healing, cancer treatment and some others. Challenges and opportunities for theoretical and experimental research are discussed and the authors’ vision for the emerging convergence trends across several disciplines and application domains is presented to

  19. Relay transport of aerosols to Beijing-Tianjin-Hebei region by multi-scale atmospheric circulations

    Science.gov (United States)

    Miao, Yucong; Guo, Jianping; Liu, Shuhua; Liu, Huan; Zhang, Gen; Yan, Yan; He, Jing

    2017-09-01

    The Beijing-Tianjin-Hebei (BTH) region experiences heavy aerosol pollution, which is found to have close relationships with the synoptic- and local-scale atmospheric circulations. However, how and to what extent these multi-scale circulations interplay to modulate aerosol transport have not been fully understood. To this end, this study comprehensively investigated the impacts of these circulations on aerosol transport in BTH by focusing on an episode occurred on 1 June 2013 through combining both observations and three-dimensional simulations. It was found that during this episode, the Bohai Sea acted as a transfer station, and the high-pressure system over the Yellow Sea and sea-breeze in BTH took turns to affect the transport of aerosols. In the morning, influenced by the high-pressure system, lots of aerosols emitted from Shandong and Jiangsu provinces were first transported to the Bohai Sea. After then, these aerosols were brought to the BTH region in the afternoon through the inland penetration of sea-breeze, significantly exacerbating the air quality in BTH. The inland penetration of sea-breeze could be identified by the sharp changes in ground-based observed temperature, humidity, and wind when the sea-breeze front (SBF) passed by. Combining observations with model outputs, the SBF was found to be able to advance inland more than ∼150 km till reaching Beijing. This study has important implications for better understanding the aerosol transport in BTH, and improving the forecast of such aerosol pollution.

  20. Atmospheric transport of persistent organic pollutants to aquatic ecosystems

    Energy Technology Data Exchange (ETDEWEB)

    Agrell, Cecilia

    1999-04-01

    The load of persistent organic pollutants (POPs) is considered high in the Baltic ecosystem. The Baltic Sea spans over 12 latitudes and the regional differences in climate affect the behavior of POPs. Therefore spatial and temporal variability of the concentrations of POPs in air and precipitation within this area has been investigated at 16 (mostly rural) stations around the Baltic Sea between 1990-1993. In addition, the deposition of gaseous and particulate associated POPs to the Baltic Sea is estimated from empirical data. This atmospheric input of POPs is compared with the input from rivers. Additionally, data from Ross Island, Antarctica and Lake Kariba, Zimbabve, Africa is presented, and all results are discussed and explained using the `global fractionation hypothesis` as a framework. In the Baltic Sea, concentration of individual POPs in air were found to be influenced by their physical-chemical properties, ambient air temperature and location. A latitudinal gradient, with higher levels in the south was found for PCBs and the gradient was more pronounced for the low volatility congeners. As a result, the high volatility congeners in air increased in relative importance with latitude. Generally, PCB concentration increased with temperature, but slopes of the partial pressure in air versus reciprocal temperature were different between congeners and between stations. In general, the low volatility congeners were more temperature dependent than the high volatility PCB congeners. Steep slopes at a sampling location indicate that the concentration in air is largely determined by diffusive exchange with soils. Lack of a temperature dependence may be due to the influence of long-range transported air masses at remote sites and due to the episodic, or random nature of PCB sources at urban sites. The concentrations of individual congeners in precipitation were found to be influenced by atmospheric concentrations of PCBs, ambient temperature, precipitation volume and

  1. Modeling axisymmetric flow and transport

    Science.gov (United States)

    Langevin, C.D.

    2008-01-01

    Unmodified versions of common computer programs such as MODFLOW, MT3DMS, and SEAWAT that use Cartesian geometry can accurately simulate axially symmetric ground water flow and solute transport. Axisymmetric flow and transport are simulated by adjusting several input parameters to account for the increase in flow area with radial distance from the injection or extraction well. Logarithmic weighting of interblock transmissivity, a standard option in MODFLOW, can be used for axisymmetric models to represent the linear change in hydraulic conductance within a single finite-difference cell. Results from three test problems (ground water extraction, an aquifer push-pull test, and upconing of saline water into an extraction well) show good agreement with analytical solutions or with results from other numerical models designed specifically to simulate the axisymmetric geometry. Axisymmetric models are not commonly used but can offer an efficient alternative to full three-dimensional models, provided the assumption of axial symmetry can be justified. For the upconing problem, the axisymmetric model was more than 1000 times faster than an equivalent three-dimensional model. Computational gains with the axisymmetric models may be useful for quickly determining appropriate levels of grid resolution for three-dimensional models and for estimating aquifer parameters from field tests.

  2. Organic chemistry in the atmosphere. [laboratory modeling of Titan atmosphere

    Science.gov (United States)

    Sagan, C.

    1974-01-01

    The existence of an at least moderately complex organic chemistry on Titan is stipulated based on clear evidence of methane, and at least presumptive evidence of hydrogen in its atmosphere. The ratio of methane to hydrogen is the highest of any atmosphere in the solar system. Irradiation of hydrogen/methane mixtures produces aromatic and aliphatic hydrocarbons. A very reasonable hypothesis assumes that the red cloud cover of Titan is made of organic chemicals. Two-carbon hydrocarbons experimentally produced from irradiated mixtures of methane, ammonia, water, and hydrogen bear out the possible organic chemistry of the Titanian environment.

  3. Modeling Radionuclide Transport in Clays

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Liange [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Li, Lianchong [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Rutqvist, Jonny [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Liu, Hui -Hai [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Birkholzer, Jens [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2012-05-01

    tests (e.g. Garcia-Gutierrez et al. 2006, Soler et al. 2008, van Loon et al. 2004, Wu et al. 2009) and numerical modeling (de Windt et al. 2003; 2006), the effects of THMC processes on radionuclide transport are not fully investigated. The objectives of the research activity documented in this report are to improve a modeling capability for coupled THMC processes and to use it to evaluate the THMC impacts on radionuclide transport. This research activity addresses several key Features, Events and Processes (FEPs), including FEP 2.2.08, Hydrologic Processes, FEP 2.2.07, Mechanical Processes and FEP 2.2.09, Chemical Process— Transport, by studying near-field coupled THMC processes in clay/shale repositories and their impacts on radionuclide transport. This report documents the progress that has been made in FY12. Section 2 discusses the development of THMC modeling capability. Section 3 reports modeling results of THMC impacts on radionuclide transport. Planned work for the remaining months of FY12 and proposed work for FY13 are presented in Section 4.

  4. Developing of a New Atmospheric Ionizing Radiation (AIR) Model

    Science.gov (United States)

    Clem, John M.; deAngelis, Giovanni; Goldhagen, Paul; Wilson, John W.

    2003-01-01

    As a result of the research leading to the 1998 AIR workshop and the subsequent analysis, the neutron issues posed by Foelsche et al. and further analyzed by Hajnal have been adequately resolved. We are now engaged in developing a new atmospheric ionizing radiation (AIR) model for use in epidemiological studies and air transportation safety assessment. A team was formed to examine a promising code using the basic FLUKA software but with modifications to allow multiple charged ion breakup effects. A limited dataset of the ER-2 measurements and other cosmic ray data will be used to evaluate the use of this code.

  5. Modeling of Revitalization of Atmospheric Water

    Science.gov (United States)

    Coker, Robert; Knox, Jim

    2014-01-01

    The Atmosphere Revitalization Recovery and Environmental Monitoring (ARREM) project was initiated in September of 2011 as part of the Advanced Exploration Systems (AES) program. Under the ARREM project, testing of sub-scale and full-scale systems has been combined with multiphysics computer simulations for evaluation and optimization of subsystem approaches. In particular, this paper describes the testing and modeling of the water desiccant subsystem of the carbon dioxide removal assembly (CDRA). The goal is a full system predictive model of CDRA to guide system optimization and development.

  6. Regional forecasting with global atmospheric models

    International Nuclear Information System (INIS)

    Crowley, T.J.; North, G.R.; Smith, N.R.

    1994-05-01

    This report was prepared by the Applied Research Corporation (ARC), College Station, Texas, under subcontract to Pacific Northwest Laboratory (PNL) as part of a global climate studies task. The task supports site characterization work required for the selection of a potential high-level nuclear waste repository and is part of the Performance Assessment Scientific Support (PASS) Program at PNL. The work is under the overall direction of the Office of Civilian Radioactive Waste Management (OCRWM), US Department of Energy Headquarters, Washington, DC. The scope of the report is to present the results of the third year's work on the atmospheric modeling part of the global climate studies task. The development testing of computer models and initial results are discussed. The appendices contain several studies that provide supporting information and guidance to the modeling work and further details on computer model development. Complete documentation of the models, including user information, will be prepared under separate reports and manuals

  7. Modeling of atmospheric disturbances in meteorological pictures.

    Science.gov (United States)

    Bouthemy, P; Benveniste, A

    1984-05-01

    This paper describes a model-based approach to perform tracking of extratropical atmospheric disturbances from a sequence of satellite cloud-cover images. More precisely, it deals with the estimation of motion of these spiral-shaped cloud systems (both translational and rotational motion), and the measurement of the evolution of their shape. Tracking is achieved by recording from one image to the next the changes of the model parameter values. A maximum likelihood criterion is used in the process of fitting model to sensed data. The defined model takes into account geometric and intensity aspects. Such an approach readily yields global information on the disturbance cloud system of interest. As a requirement in such an application is robustness to noise, to this end two versions of the modeling have been considered.

  8. Atmospheric dispersion modeling of radioactive effluents

    International Nuclear Information System (INIS)

    Margeanu, Sorin; Oprea, Ion; Margeanu, Cristina; Angelescu, Tatiana

    1999-01-01

    In case of a nuclear accident, which could lead to release of radioactive contaminants, fastest countermeasures are needed, relating to sheltering, iodine distribution, evacuation and interdiction of food and water consumption. All these decisions should be based either on estimation of inhaled dose and the dose due to external exposure for public or on the estimation of radioactive concentration in food (which will depend on the radioactive concentration in air and ground deposition). In order to perform any of these calculations of consequences in case of nuclear accident, which leads to release of radioactive contaminants in the atmosphere, we must start with atmospheric dispersion calculations. In the last few years, considerable efforts have been devoted in order to improve computer codes for dispersion in the atmosphere of the radioactive contaminants released in a nuclear accident. The paper presents the model used in computer codes for assessment of nuclear accident consequences and a special attention was paid to the dispersion model used in the Institute for Nuclear Research Pitesti. The values for the used parameters and the results for air and ground concentration are also presented. (authors)

  9. mathematical modelling of atmospheric dispersion of pollutants

    International Nuclear Information System (INIS)

    Mohamed, M.E.

    2002-01-01

    the main objectives of this thesis are dealing with environmental problems adopting mathematical techniques. in this respect, atmospheric dispersion processes have been investigated by improving the analytical models to realize the realistic physical phenomena. to achieve these aims, the skeleton of this work contained both mathematical and environmental topics,performed in six chapters. in chapter one we presented a comprehensive review study of most important informations related to our work such as thermal stability , plume rise, inversion, advection , dispersion of pollutants, gaussian plume models dealing with both radioactive and industrial contaminants. chapter two deals with estimating the decay distance as well as the decay time of either industrial or radioactive airborne pollutant. further, highly turbulent atmosphere has been investigated as a special case in the three main thermal stability classes namely, neutral, stable, and unstable atmosphere. chapter three is concerned with obtaining maximum ground level concentration of air pollutant. the variable effective height of pollutants has been considered throughout the mathematical treatment. as a special case the constancy of effective height has been derived mathematically and the maximum ground level concentration as well as its location have been established

  10. A test of sensitivity to convective transport in a global atmospheric CO{sub 2} simulation

    Energy Technology Data Exchange (ETDEWEB)

    Bian, H. [NASA Goddard Space Flight Center, Greenbelt, MD (United States). UMBC Goddard Earth Science and Technology Center; Kawa, S.R.; Chin, M.; Pawson, S.; Zhu, Z. [NASA Goddard Space Flight Center, Greenbelt, MD (United States); Rasch, P. [National Center for Atmospheric Research, Boulder, CO (United States); Wu, S. [Harvard Univ., Cambridge, MA (United States)

    2006-11-15

    Two approximations to convective transport have been implemented in an offline chemistry transport model (CTM) to explore the impact on calculated atmospheric CO{sub 2} distributions. Global CO{sub 2} in the year 2000 is simulated using the CTM driven by assimilated meteorological fields from the NASA's Goddard Earth Observation System Data Assimilation System, Version 4 (GEOS-4). The model simulates atmospheric CO{sub 2} by adopting the same CO{sub 2} emission inventory and dynamical modules as described in Kawa et al. (convective transport scheme denoted as Conv1). Conv1 approximates the convective transport by using the bulk convective mass fluxes to redistribute trace gases. The alternate approximation, Conv2, partitions fluxes into updraft and downdraft, as well as into entrainment and detrainment, and has potential to yield a more realistic simulation of vertical redistribution through deep convection.Replacing Conv1 by Conv2 results in an overestimate of CO{sub 2} over biospheric sink regions. The largest discrepancies result in a CO{sub 2} difference of about 7.8 ppm in the July NH boreal forest, which is about 30% of the CO{sub 2} seasonality for that area. These differences are compared to those produced by emission scenario variations constrained by the framework of Intergovernmental Panel on Climate Change (IPCC) to account for possible land use change and residual terrestrial CO{sub 2} sink. It is shown that the overestimated CO{sub 2} driven by Conv2 can be offset by introducing these supplemental emissions.

  11. Computer models track atmospheric radionuclides worldwide

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    The big sponge is what initiates call ARAC-the Atmospheric Release Advisory Capability-and it is vital to the clean-up after a nuclear accident. But this sobriquet doesn't refer to a propensity for mopping up radiation. It alludes to ARAC's ability to soak up data on weather conditions, regional geography, and the release of radionuclides into the atmosphere at thousands of sites around the globe. ARAC is a contingent of about 30 physicists, meteorologists, electronic engineers, computer scientists, and technicians who work at the Department of Energy's (DOE) Lawrence Livermore National Laboratory across the bay from San Francisco. The ARAC staff employs computer models to estimate the extent of surface contamination as well as radiation doses to population centers after hypothetical or real nuclear accidents. ARAC works fast. Within 15 minutes of an accident, it can produce a contour map estimating levels of radiation exposure within a 20-km radius of the accident site

  12. Atmospheric corrosion: statistical validation of models

    International Nuclear Information System (INIS)

    Diaz, V.; Martinez-Luaces, V.; Guineo-Cobs, G.

    2003-01-01

    In this paper we discuss two different methods for validation of regression models, applied to corrosion data. One of them is based on the correlation coefficient and the other one is the statistical test of lack of fit. Both methods are used here to analyse fitting of bi logarithmic model in order to predict corrosion for very low carbon steel substrates in rural and urban-industrial atmospheres in Uruguay. Results for parameters A and n of the bi logarithmic model are reported here. For this purpose, all repeated values were used instead of using average values as usual. Modelling is carried out using experimental data corresponding to steel substrates under the same initial meteorological conditions ( in fact, they are put in the rack at the same time). Results of correlation coefficient are compared with the lack of it tested at two different signification levels (α=0.01 and α=0.05). Unexpected differences between them are explained and finally, it is possible to conclude, at least in the studied atmospheres, that the bi logarithmic model does not fit properly the experimental data. (Author) 18 refs

  13. A review of toxicity models for realistic atmospheric applications

    Science.gov (United States)

    Gunatilaka, Ajith; Skvortsov, Alex; Gailis, Ralph

    2014-02-01

    There are many applications that need to study human health effects caused by exposure to toxic chemicals. Risk analysis for industrial sites, study of population health impacts of atmospheric pollutants, and operations research for assessing the potential impacts of chemical releases in military contexts are some examples. Because of safety risks and the high cost of field trials involving hazardous chemical releases, computer simulations are widely used for such studies. Modelling of atmospheric transport and dispersion of chemicals released into the atmosphere to determine the toxic chemical concentrations to which individuals will be exposed is one main component of these simulations, and there are well established atmospheric dispersion models for this purpose. Estimating the human health effects caused by the exposure to these predicted toxic chemical concentrations is the other main component. A number of different toxicity models for assessing the health effects of toxic chemical exposure are found in the literature. Because these different models have been developed based on different assumptions about the plume characteristics, chemical properties, and physiological response, there is a need to review and compare these models to understand their applicability. This paper reviews several toxicity models described in the literature. The paper also presents results of applying different toxicity models to simulated concentration time series data. These results show that the use of ensemble mean concentrations, which are what atmospheric dispersion models typically provide, to estimate human health effects of exposure to hazardous chemical releases may underestimate their impact when toxic exponent, n, of the chemical is greater than one; the opposite phenomenon appears to hold when n biological recovery processes may predict greater toxicity than the explicitly parameterised models. Despite the wide variety of models of varying degrees of complexity that is

  14. Pollutants transport and atmospheric variability of CO2 over Siberia: contribution of airborne measurements

    International Nuclear Information System (INIS)

    Paris, J.D.

    2008-12-01

    The work presented here intends to characterize the variations of atmospheric concentrations of CO 2 , CO, O 3 and ultrafine particles, over a large scale aircraft transect above Siberia, during three intensive YAK-AEROSIB campaigns in April 2006, September 2006 and August 2007, respectively. Pollutant and greenhouse gases distribution in this poorly studied region is needed to model atmospheric long range transport. I show here that CO concentrations at the time of the campaigns is broadly affected by (1) advection of Chinese pollutants through baro-clinic perturbations, (2) advection (diffuse or not) of European pollutants at various altitudes, (3) and of biomass burning from Central Asia. This set of factors is analyzed through a novel statistical technique based on clustering of backward transport simulated by the FLEXPART Lagrangian model. Large observed CO 2 gradients in summer are matched against vertical mixing in GCM simulated CO 2 . At last I present ultrafine particle measurements, and a possible nucleation summer maximum in the clean, continental mid-troposphere. (author)

  15. Atmospheric Mercury Transport Across Southern Lake Michigan: Influence from the Chicago/Gary Urban Area

    Science.gov (United States)

    Gratz, L. E.; Keeler, G. J.; Dvonch, J. T.

    2008-12-01

    The local and regional impacts of mercury emissions from major urban and industrial areas are critical to quantify in order to further understand mercury cycling in the environment. The Chicago/Gary urban area is one such location in which mercury emissions from industrial sources are significant and regional mercury transport needs to be further examined. Speciated atmospheric mercury was measured in Chicago, IL and Holland, MI from July to November 2007 to better characterize the impact of Chicago/Gary on southwest Michigan. Previous work under the 1994-1995 Lake Michigan Mass Balance Study (LMMBS) indicated that the highest levels of mercury deposition in southwest Michigan occurred with transport from the Chicago/Gary area, particularly with rapid transport where less mercury was deposited close to sources(1). However, at that time it was not possible to measure reactive gas phase mercury (RGM), a highly-soluble form of mercury in industrial emissions that is readily removed from the atmosphere. Since the LMMBS, the development of speciated mercury systems has made it possible to continuously monitor gaseous elemental mercury (Hg0), particulate mercury (HgP), and RGM. These measurements are useful for understanding atmospheric mercury chemistry and differentiating between local and regional source impacts due to the different behaviors of reactive and elemental mercury. Results from 2007 show that, on average, Hg0 and HgP were 1.5 times higher and RGM was 2 times higher in Chicago than in Holland. Mean mercury wet deposition was nearly 3 times higher in Chicago than in Holland. Meteorological analysis indicates that transport across the lake from Chicago/Gary occurred frequently during the study. Additional measurements of O3, SO2, meteorological parameters, event mercury and trace element precipitation samples, and modeled back-trajectories are used to discern regional transport events from local deposition and characterize the impact of the Chicago/Gary urban

  16. Rapid atmospheric transport and large-scale deposition of recently synthesized plant waxes

    Science.gov (United States)

    Nelson, Daniel B.; Ladd, S. Nemiah; Schubert, Carsten J.; Kahmen, Ansgar

    2018-02-01

    Sedimentary plant wax 2H/1H ratios are important tools for understanding hydroclimate and environmental changes, but large spatial and temporal uncertainties exist about transport mechanisms from ecosystem to sediments. To assess atmospheric pathways, we collected aerosol samples for two years at four locations within a ∼60 km radius in northern Switzerland. We measured n-alkane distributions and 2H/1H ratios in these samples, and from local plants, leaf litter, and soil, as well as surface sediment from six nearby lakes. Increased concentrations and 2H depletion of long odd chain n-alkanes in early summer aerosols indicate that most wax aerosol production occurred shortly after leaf unfolding, when plants synthesize waxes in large quantities. During autumn and winter, aerosols were characterized by degraded n-alkanes lacking chain length preferences diagnostic of recent biosynthesis, and 2H/1H values that were in some cases more than 100‰ higher than growing season values. Despite these seasonal shifts, modeled deposition-weighted average 2H/1H values of long odd chain n-alkanes primarily reflected summer values. This was corroborated by n-alkane 2H/1H values in lake sediments, which were similar to deposition-weighted aerosol values at five of six sites. Atmospheric deposition rates for plant n-alkanes on land were ∼20% of accumulation rates in lakes, suggesting a role for direct deposition to lakes or coastal oceans near similar production sources, and likely a larger role for deposition on land and transport in river systems. This mechanism allows mobilization and transport of large quantities of recently produced waxes as fine-grained material to low energy sedimentation sites over short timescales, even in areas with limited topography. Widespread atmospheric transfer well before leaf senescence also highlights the importance of the isotopic composition of early season source water used to synthesize waxes for the geologic record.

  17. Impact of transport model errors on the global and regional methane emissions estimated by inverse modelling

    NARCIS (Netherlands)

    Locatelli, R.; Bousquet, P.; Chevallier, F.; Fortems-Cheney, A.; Szopa, S.; Saunois, M.; Agusti-Panareda, A.; Bergmann, D.; Bian, H.; Cameron-Smith, P.; Chipperfield, M.P.; Gloor, E.; Houweling, S.; Kawa, S.R.; Krol, M.C.; Patra, P.K.; Prinn, R.G.; Rigby, M.; Saito, R.; Wilson, C.

    2013-01-01

    A modelling experiment has been conceived to assess the impact of transport model errors on methane emissions estimated in an atmospheric inversion system. Synthetic methane observations, obtained from 10 different model outputs from the international TransCom-CH4 model inter-comparison exercise,

  18. Transport in the atmosphere-vegetation-soil continuum

    NARCIS (Netherlands)

    Moene, A.F.; Dam, van J.C.

    2014-01-01

    Traditionally, soil science, atmospheric science, hydrology, plant science and agriculture have been studied largely as separate subjects. These systems are clearly interlinked, however, and in recent years a great deal of interdisciplinary research has been undertaken to better understand the

  19. Advanced transport modeling of toroidal plasmas with transport barriers

    International Nuclear Information System (INIS)

    Fukuyama, A.; Murakami, S.; Honda, M.; Izumi, Y.; Yagi, M.; Nakajima, N.; Nakamura, Y.; Ozeki, T.

    2005-01-01

    Transport modeling of toroidal plasmas is one of the most important issue to predict time evolution of burning plasmas and to develop control schemes in reactor plasmas. In order to describe the plasma rotation and rapid transition self-consistently, we have developed an advanced scheme of transport modeling based on dynamical transport equation and applied it to the analysis of transport barrier formation. First we propose a new transport model and examine its behavior by the use of conventional diffusive transport equation. This model includes the electrostatic toroidal ITG mode and the electromagnetic ballooning mode and successfully describes the formation of internal transport barriers. Then the dynamical transport equation is introduced to describe the plasma rotation and the radial electric field self-consistently. The formation of edge transport barriers is systematically studied and compared with experimental observations. The possibility of kinetic transport modeling in velocity space is also examined. Finally the modular structure of integrated modeling code for tokamaks and helical systems is discussed. (author)

  20. A Coupled Atmospheric and Wave Modeling System for Storm Simulations

    DEFF Research Database (Denmark)

    Du, Jianting; Larsén, Xiaoli Guo; Bolanos, R.

    2015-01-01

    This study aims at improving the simulation of wind and waves during storms in connection with wind turbine design and operations in coastal areas. For this particular purpose, we investigated the Coupled-Ocean-Atmosphere-Wave-Sediment Transport (COAWST) Modeling System which couples the Weather...... to parametrize z0. The results are validated through QuikScat data and point measurements from an open ocean site Ekosk and a coastal, relatively shallow water site Horns Rev. It is found that the modeling system captures in general better strong wind and strong wave characteristics for open ocean condition than...... Research and Forecasting (WRF) Model with the thirdgeneration ocean wave modelSWAN. This study investigates mainly two issues: spatial resolution and the wind-wave interface parameter roughness length(z0). To study the impact of resolution, the nesting function for both WRF and SWAN is used, with spatial...

  1. Numerical modeling of atmospheric washout processes

    International Nuclear Information System (INIS)

    Bayer, D.; Beheng, K.D.; Herbert, F.

    1987-01-01

    For the washout of particles from the atmosphere by clouds and rain one has to distinguish between processes which work in the first phase of cloud development, when condensation nuclei build up in saturated air (Nucleation Aerosol Scavenging, NAS) and those processes which work at the following cloud development. In the second case particles are taken off by cloud droplets or by falling rain drops via collision (Collision Aerosol Scavenging, CAS). The physics of both processes is described. For the CAS process a numerical model is presented. The report contains a documentation of the mathematical equations and the computer programs (FORTRAN). (KW) [de

  2. Using GEOS-5 Atmospheric Transport Simulations to Test the Consistency of Land- and Ocean- Carbon Fluxes with CO2 Observations

    Science.gov (United States)

    Ott, L. E.; Pawson, S.; Zhu, Z.; Brix, H.; Collatz, G. J.; Gregg, W. W.; Hill, C. N.; Menemenlis, D.; Potter, C. S.; Bowman, K. W.; Dutkiewicz, S.; Eldering, A.; Fisher, J. B.; Follows, M. J.; Gunson, M. R.; Jucks, K. W.; Kawa, S. R.; Liu, J.; Lee, M.

    2011-12-01

    Many components of the carbon cycle are constrained by a variety of remote sensing measurements. Observations of land surface parameters constrain estimates of carbon flux from terrestrial biosphere models while estimates of oceanic carbon fluxes are informed by satellite observations of ocean color and ocean properties. Atmospheric CO2 concentrations, which are governed by the balance of terrestrial, oceanic, and anthropogenic fluxes, are observed from space by an expanding suite of instruments (AIRS, TES, and GOSAT) in addition to being monitored by an extensive global network of surface stations. Additionally, atmospheric transport patterns simulated by NASA's GEOS-5 data analysis system are strongly influenced by observations of atmospheric state variables. NASA's Carbon Monitoring System Flux Pilot Project was created to quantify the constraints placed on carbon flux estimates by the current observing system and to assess what additional observational needs are required for future monitoring and attribution efforts. To this end, we have conducted an ensemble of GEOS-5 modeling studies using different combinations of two sets of land (NASA-CASA, CASA-GFED) and two sets of ocean (NOBM, ECCO2/Darwin) fluxes. Results from this ensemble of simulations are sampled at locations consistent with NOAA GMD and TCCON surface networks as well as locations of AIRS, TES, and GOSAT overpasses to quantify how surface flux uncertainty may be observed by different observing systems. Additionally, an ensemble of GEOS-5 simulations with alterations to subgrid-scale transport parameterizations is analyzed to compare model transport uncertainty with flux uncertainty. Our results indicate that uncertainty in both land and ocean flux estimates can introduce a large degree of variability into atmospheric CO2 distributions and that the magnitude of these differences is observable by existing satellite and in situ platforms. In contrast, transport uncertainty introduced by subgrid

  3. Analysis of software for modeling atmospheric dispersion

    International Nuclear Information System (INIS)

    Grandamas, O.; Hubert, Ph.; Pages, P.

    1989-09-01

    During last few years, a number software packages for microcomputes have appeared with the aim to simulate diffusion of atmospheric pollutants. These codes, simplifying the models used for safety analyses of industrial plants are becoming more useful, and are even used for post-accidental conditions. The report presents for the first time in a critical manner, principal models available up to this date. The problem arises in adapting the models to the demanded post-accidental interventions. In parallel to this action an analysis of performance was performed. It means, identifying the need of forecasting the most appropriate actions to be performed having in mind short available time and lack of information. Because of these difficulties, it is possible to simplify the software, which will not include all the options but could deal with a specific situation. This would enable minimisation of data to be collected on the site [fr

  4. A comparison of models fos dispersion of atmospheric contaminants

    International Nuclear Information System (INIS)

    Caputo, Marcelo; Gimenez, Marcelo; Felicelli, Sergio; Schlamp, Miguel

    2001-01-01

    In this work a stack emission in actual atmospheric conditions was modeled with AERMOD, HPDM, PCCOSYMA and HYSPLIT codes. The first two have Gaussian stationary plume models and they were developed to calculate environmental impact produced by chemical contaminants. PCCOSYMA has a Gaussian-type segmented plume model, developed for assessing radiological impact of nuclear accidents. HYSPLIT has a hybrid code that uses a Lagrangian reference system to describe the transport of a puff mass center and an Eulerian system to describe the dispersion within the puff. The emission was fixed in 0.3 g.s -1 , 284 K and 0 m.s -1 , that is in equilibrium with the environment, in order to compare the different codes results. Flat terrain with fixed 0.1 m surface rough was considered. Meteorological and topographic data used were obtained from runs of the prognostic code RAMS, provided by NOAA. The main contribution of this work is to provide recommendations about the validity range of each code depending on the model used. For Gaussian models the distance in which the atmospheric condition can be considered homogeneous determines the validity range. On the other hand the validity range of HYSPLIT model is determined by the availability of the meteorological data spatial extension. There was a significant difference between the dispersion parameters used by the Gaussian codes. (author)

  5. A comparison of models fos dispersion of atmospheric contaminants

    Energy Technology Data Exchange (ETDEWEB)

    Caputo, Marcelo; Gimenez, Marcelo; Felicelli, Sergio; Schlamp, Miguel [Comision Nacional de Energia Atomica, San Carlos de Bariloche (Argentina). Centro Atomico

    2001-07-01

    In this work a stack emission in actual atmospheric conditions was modeled with AERMOD, HPDM, PCCOSYMA and HYSPLIT codes. The first two have Gaussian stationary plume models and they were developed to calculate environmental impact produced by chemical contaminants. PCCOSYMA has a Gaussian-type segmented plume model, developed for assessing radiological impact of nuclear accidents. HYSPLIT has a hybrid code that uses a Lagrangian reference system to describe the transport of a puff mass center and an Eulerian system to describe the dispersion within the puff. The emission was fixed in 0.3 g.s{sup -1}, 284 K and 0 m.s{sup -1}, that is in equilibrium with the environment, in order to compare the different codes results. Flat terrain with fixed 0.1 m surface rough was considered. Meteorological and topographic data used were obtained from runs of the prognostic code RAMS, provided by NOAA. The main contribution of this work is to provide recommendations about the validity range of each code depending on the model used. For Gaussian models the distance in which the atmospheric condition can be considered homogeneous determines the validity range. On the other hand the validity range of HYSPLIT model is determined by the availability of the meteorological data spatial extension. There was a significant difference between the dispersion parameters used by the Gaussian codes. (author)

  6. Atmospheric models in the numerical simulation system (SPEEDI-MP) for environmental studies

    International Nuclear Information System (INIS)

    Nagai, Haruyasu; Terada, Hiroaki

    2007-01-01

    As a nuclear emergency response system, numerical models to predict the atmospheric dispersion of radionuclides have been developed at Japan Atomic Energy Agency (JAEA). Evolving these models by incorporating new schemes for physical processes and up-to-date computational technologies, a numerical simulation system, which consists of dynamical models and material transport models for the atmospheric, terrestrial, and oceanic environments, has been constructed to apply for various environmental studies. In this system, the combination of a non-hydrostatic atmospheric dynamic model and Lagrangian particle dispersion model is used for the emergency response system. The utilization of detailed meteorological field by the atmospheric model improves the model performance for diffusion and deposition calculations. It also calculates a large area domain with coarse resolution and local area domain with high resolution simultaneously. The performance of new model system was evaluated using measurements of surface deposition of 137 Cs over Europe during the Chernobyl accident. (author)

  7. Effects of atmospheric transport and trade on air pollution mortality in China

    Science.gov (United States)

    Zhao, Hongyan; Li, Xin; Zhang, Qiang; Jiang, Xujia; Lin, Jintai; Peters, Glen P.; Li, Meng; Geng, Guannan; Zheng, Bo; Huo, Hong; Zhang, Lin; Wang, Haikun; Davis, Steven J.; He, Kebin

    2017-09-01

    Air quality is a major environmental concern in China, where premature deaths due to air pollution have exceeded 1 million people per year in recent years. Here, using a novel coupling of economic, physical and epidemiological models, we estimate the premature mortality related to anthropogenic outdoor PM2.5 air pollution in seven regions of China in 2010 and show for the first time how the distribution of these deaths in China is determined by a combination of economic activities and physical transport of pollution in the atmosphere. We find that 33 % (338 600 premature deaths) of China's PM2.5-related premature mortality in 2010 were caused by pollutants emitted in a different region of the country and transported in the atmosphere, especially from north to south and from east to west. Trade further extended the cross-regional impact; 56 % of (568 900 premature deaths) China's PM2.5-related premature mortality was related to consumption in another region, including 423 800 (42 % of total) and 145 100 (14 %) premature deaths from domestic consumption and international trade respectively. Our results indicate that multilateral and multi-stage cooperation under a regional sustainable development framework is in urgent need to mitigate air pollution and related health impacts, and efforts to reduce the health impacts of air pollution in China should be prioritized according to the source and location of emissions, the type and economic value of the emitting activities, and the related patterns of consumption.

  8. [Influence of atmospheric transport on air pollutant levels at a mountain background site of East China].

    Science.gov (United States)

    Su, Bin-Bin; Xu, Ju-Yang; Zhang, Ruo-Yu; Ji, Xian-Xin

    2014-08-01

    Transport characteristics of air pollutants transported to the background atmosphere of East China were investigated using HYSPLIT (Hybrid Single Particle Lagrangian Integrated Trajectory) 4.8 model driven by NCEP reanalysis data during June 2011 to May 2012. Based on the air pollutants monitoring data collected at the National atmospheric background monitoring station (Wuyishan station) in Fujian Province, characteristics of different clustered air masses as well as the origins of highly polluted air masses were further examined. The results showed that 65% of all the trajectories, in which air masses mainly passed over highly polluted area of East China, Jiangxi province and upper air in desert areas of Northwest China, carried polluted air to the station, while the rest of trajectories (35%) with air masses originated from ocean could effectively remove air pollutants at the Wuyishan station. However, the impact on the air pollutants for each air mass group varied with seasons. Elevated SO2 concentrations observed at the background station were mainly influenced by coal burning activities in Northern China during heating season. The high CO concentrations were likely associated with the pollutants emission in the process of coal production and consumption in Anhui province. The elevated NO(x), O3, PM10 and PM2.5 concentrations were mostly impacted by East China with high levels of air pollutants.

  9. Modelling of radon transport in porous media

    NARCIS (Netherlands)

    van der Graaf, E.R.; de Meijer, R.J.; Katase, A; Shimo, M

    1998-01-01

    This paper aims to describe the state of the art of modelling radon transport in soil on basis of multiphase radon transport equations. Emphasis is given to methods to obtain a consistent set of input parameters needed For such models. Model-measurement comparisons with the KVI radon transport

  10. Transport Properties for Combustion Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Brown, N.J.; Bastein, L.; Price, P.N.

    2010-02-19

    This review examines current approximations and approaches that underlie the evaluation of transport properties for combustion modeling applications. Discussed in the review are: the intermolecular potential and its descriptive molecular parameters; various approaches to evaluating collision integrals; supporting data required for the evaluation of transport properties; commonly used computer programs for predicting transport properties; the quality of experimental measurements and their importance for validating or rejecting approximations to property estimation; the interpretation of corresponding states; combination rules that yield pair molecular potential parameters for unlike species from like species parameters; and mixture approximations. The insensitivity of transport properties to intermolecular forces is noted, especially the non-uniqueness of the supporting potential parameters. Viscosity experiments of pure substances and binary mixtures measured post 1970 are used to evaluate a number of approximations; the intermediate temperature range 1 < T* < 10, where T* is kT/{var_epsilon}, is emphasized since this is where rich data sets are available. When suitable potential parameters are used, errors in transport property predictions for pure substances and binary mixtures are less than 5 %, when they are calculated using the approaches of Kee et al.; Mason, Kestin, and Uribe; Paul and Warnatz; or Ern and Giovangigli. Recommendations stemming from the review include (1) revisiting the supporting data required by the various computational approaches, and updating the data sets with accurate potential parameters, dipole moments, and polarizabilities; (2) characterizing the range of parameter space over which the fit to experimental data is good, rather than the current practice of reporting only the parameter set that best fits the data; (3) looking for improved combining rules, since existing rules were found to under-predict the viscosity in most cases; (4

  11. Directions in Radiation Transport Modelling

    Directory of Open Access Journals (Sweden)

    P Nicholas Smith

    2016-12-01

    More exciting advances are on the horizon to increase the power of simulation tools. The advent of high performance computers is allowing bigger, higher fidelity models to be created, if the challenges of parallelization and memory management can be met. 3D whole core transport modelling is becoming possible. Uncertainty quantification is improving with large benefits to be gained from more accurate, less pessimistic estimates of uncertainty. Advanced graphical displays allow the user to assimilate and make sense of the vast amounts of data produced by modern modelling tools. Numerical solvers are being developed that use goal-based adaptivity to adjust the nodalisation of the system to provide the optimum scheme to achieve the user requested accuracy on the results, thus removing the need to perform costly convergence studies in space and angle etc. More use is being made of multi-physics methods in which radiation transport is coupled with other phenomena, such as thermal-hydraulics, structural response, fuel performance and/or chemistry in order to better understand their interplay in reactor cores.

  12. Nuclear fuel particles in the environment - characteristics, atmospheric transport and skin doses

    International Nuclear Information System (INIS)

    Poellaenen, R.

    2002-05-01

    In the present thesis, nuclear fuel particles are studied from the perspective of their characteristics, atmospheric transport and possible skin doses. These particles, often referred to as 'hot' particles, can be released into the environment, as has happened in past years, through human activities, incidents and accidents, such as the Chernobyl nuclear power plant accident in 1986. Nuclear fuel particles with a diameter of tens of micrometers, referred to here as large particles, may be hundreds of kilobecquerels in activity and even an individual particle may present a quantifiable health hazard. The detection of individual nuclear fuel particles in the environment, their isolation for subsequent analysis and their characterisation are complicated and require well-designed sampling and tailored analytical methods. In the present study, the need to develop particle analysis methods is highlighted. It is shown that complementary analytical techniques are necessary for proper characterisation of the particles. Methods routinely used for homogeneous samples may produce erroneous results if they are carelessly applied to radioactive particles. Large nuclear fuel particles are transported differently in the atmosphere compared with small particles or gaseous species. Thus, the trajectories of gaseous species are not necessarily appropriate for calculating the areas that may receive large particle fallout. A simplified model and a more advanced model based on the data on real weather conditions were applied in the case of the Chernobyl accident to calculate the transport of the particles of different sizes. The models were appropriate in characterising general transport properties but were not able to properly predict the transport of the particles with an aerodynamic diameter of tens of micrometers, detected at distances of hundreds of kilometres from the source, using only the current knowledge of the source term. Either the effective release height has been higher

  13. Nuclear fuel particles in the environment - characteristics, atmospheric transport and skin doses

    Energy Technology Data Exchange (ETDEWEB)

    Poellaenen, R

    2002-05-01

    In the present thesis, nuclear fuel particles are studied from the perspective of their characteristics, atmospheric transport and possible skin doses. These particles, often referred to as 'hot' particles, can be released into the environment, as has happened in past years, through human activities, incidents and accidents, such as the Chernobyl nuclear power plant accident in 1986. Nuclear fuel particles with a diameter of tens of micrometers, referred to here as large particles, may be hundreds of kilobecquerels in activity and even an individual particle may present a quantifiable health hazard. The detection of individual nuclear fuel particles in the environment, their isolation for subsequent analysis and their characterisation are complicated and require well-designed sampling and tailored analytical methods. In the present study, the need to develop particle analysis methods is highlighted. It is shown that complementary analytical techniques are necessary for proper characterisation of the particles. Methods routinely used for homogeneous samples may produce erroneous results if they are carelessly applied to radioactive particles. Large nuclear fuel particles are transported differently in the atmosphere compared with small particles or gaseous species. Thus, the trajectories of gaseous species are not necessarily appropriate for calculating the areas that may receive large particle fallout. A simplified model and a more advanced model based on the data on real weather conditions were applied in the case of the Chernobyl accident to calculate the transport of the particles of different sizes. The models were appropriate in characterising general transport properties but were not able to properly predict the transport of the particles with an aerodynamic diameter of tens of micrometers, detected at distances of hundreds of kilometres from the source, using only the current knowledge of the source term. Either the effective release height has

  14. Atmospheric dispersion models for environmental pollution applications

    International Nuclear Information System (INIS)

    Gifford, F.A.

    1976-01-01

    Pollutants are introduced into the air by many of man's activities. The potentially harmful effects these can cause are, broadly speaking, of two kinds: long-term, possibly large-scale and wide-spread chronic effects, including long-term effects on the earth's climate; and acute, short-term effects such as those associated with urban air pollution. This section is concerned with mathematical cloud or plume models describing the role of the atmosphere, primarily in relation to the second of these, the acute effects of air pollution, i.e., those arising from comparatively high concentration levels. The need for such air pollution modeling studies has increased spectacularly as a result of the National Environmental Policy Act of 1968 and, especially, two key court decisions; the Calvert Cliffs decision, and the Sierra Club ruling on environmental non-degradation

  15. 3D modeling of GJ1214b's atmosphere: formation of inhomogeneous high clouds and observational implications

    OpenAIRE

    Charnay, Benjamin; Meadows, Victoria; Misra, Amit; Leconte, Jérémy; Arney, Giada

    2015-01-01

    The warm sub-Neptune GJ1214b has a featureless transit spectrum which may be due to the presence of high and thick clouds or haze. Here, we simulate the atmosphere of GJ1214b with a 3D General Circulation Model for cloudy hydrogen-dominated atmospheres, including cloud radiative effects. We show that the atmospheric circulation is strong enough to transport micrometric cloud particles to the upper atmosphere and generally leads to a minimum of cloud at the equator. By scattering stellar light...

  16. Atmospheric Model Evaluation Tool for meteorological and air quality simulations

    Science.gov (United States)

    The Atmospheric Model Evaluation Tool compares model predictions to observed data from various meteorological and air quality observation networks to help evaluate meteorological and air quality simulations.

  17. Modeling of particle mixing in the atmosphere

    International Nuclear Information System (INIS)

    Zhu, Shupeng

    2015-01-01

    This thesis presents a newly developed size-composition resolved aerosol model (SCRAM), which is able to simulate the dynamics of externally-mixed particles in the atmosphere, and evaluates its performance in three-dimensional air-quality simulations. The main work is split into four parts. First, the research context of external mixing and aerosol modelling is introduced. Secondly, the development of the SCRAM box model is presented along with validation tests. Each particle composition is defined by the combination of mass-fraction sections of its chemical components or aggregates of components. The three main processes involved in aerosol dynamic (nucleation, coagulation, condensation/ evaporation) are included in SCRAM. The model is first validated by comparisons with published reference solutions for coagulation and condensation/evaporation of internally-mixed particles. The particle mixing state is investigated in a 0-D simulation using data representative of air pollution at a traffic site in Paris. The relative influence on the mixing state of the different aerosol processes and of the algorithm used to model condensation/evaporation (dynamic evolution or bulk equilibrium between particles and gas) is studied. Then, SCRAM is integrated into the Polyphemus air quality platform and used to conduct simulations over Greater Paris during the summer period of 2009. This evaluation showed that SCRAM gives satisfactory results for both PM2.5/PM10 concentrations and aerosol optical depths, as assessed from comparisons to observations. Besides, the model allows us to analyze the particle mixing state, as well as the impact of the mixing state assumption made in the modelling on particle formation, aerosols optical properties, and cloud condensation nuclei activation. Finally, two simulations are conducted during the winter campaign of MEGAPOLI (Megacities: Emissions, urban, regional and Global Atmospheric Pollution and climate effects, and Integrated tools for

  18. NASA's Upper Atmosphere Research Program (UARP) and Atmospheric Chemistry Modeling and Analysis Program (ACMAP): Research Summaries 1997-1999

    Science.gov (United States)

    Kurylo, M. J.; DeCola, P. L.; Kaye, J. A.

    2000-01-01

    Under the mandate contained in the FY 1976 NASA Authorization Act, the National Aeronautics and Space Administration (NASA) has developed and is implementing a comprehensive program of research, technology development, and monitoring of the Earth's upper atmosphere, with emphasis on the upper troposphere and stratosphere. This program aims at expanding our chemical and physical understanding to permit both the quantitative analysis of current perturbations as well as the assessment of possible future changes in this important region of our environment. It is carried out jointly by the Upper Atmosphere Research Program (UARP) and the Atmospheric Chemistry Modeling and Analysis Program (ACMAP), both managed within the Research Division in the Office of Earth Science at NASA. Significant contributions to this effort have also been provided by the Atmospheric Effects of Aviation Project (AEAP) of NASA's Office of Aero-Space Technology. The long-term objectives of the present program are to perform research to: understand the physics, chemistry, and transport processes of the upper troposphere and the stratosphere and their control on the distribution of atmospheric chemical species such as ozone; assess possible perturbations to the composition of the atmosphere caused by human activities and natural phenomena (with a specific emphasis on trace gas geographical distributions, sources, and sinks and the role of trace gases in defining the chemical composition of the upper atmosphere); understand the processes affecting the distributions of radiatively active species in the atmosphere, and the importance of chemical-radiative-dynamical feedbacks on the meteorology and climatology of the stratosphere and troposphere; and understand ozone production, loss, and recovery in an atmosphere with increasing abundances of greenhouse gases. The current report is composed of two parts. Part 1 summarizes the objectives, status, and accomplishments of the research tasks supported

  19. Up-gradient transport in a probabilistic transport model

    DEFF Research Database (Denmark)

    Gavnholt, J.; Juul Rasmussen, J.; Garcia, O.E.

    2005-01-01

    The transport of particles or heat against the driving gradient is studied by employing a probabilistic transport model with a characteristic particle step length that depends on the local concentration or heat gradient. When this gradient is larger than a prescribed critical value, the standard....... These results supplement recent works by van Milligen [Phys. Plasmas 11, 3787 (2004)], which applied Levy distributed step sizes in the case of supercritical gradients to obtain the up-gradient transport. (c) 2005 American Institute of Physics....

  20. Hydrodynamic models of a Cepheid atmosphere

    International Nuclear Information System (INIS)

    Karp, A.H.

    1974-11-01

    A method for including the solution of the transfer equation in a standard Henyey type hydrodynamic code was developed. This modified Henyey method was used in an implicit hydrodynamic code to compute deep envelope models of a classical Cepheid with a period of 12(d) including radiative transfer effects in the optically thin zones. It was found that the velocity gradients in the atmosphere are not responsible for the large microturbulent velocities observed in Cepheids but may be responsible for the occurrence of supersonic microturbulence. It was found that the splitting of the cores of the strong lines is due to shock induced temperature inversions in the line forming region. The adopted light, color, and velocity curves were used to study three methods frequently used to determine the mean radii of Cepheids. It is concluded that an accuracy of 10 percent is possible only if high quality observations are used. (auth)

  1. Atmospheric mercury in the Southern Hemisphere tropics: seasonal and diurnal variations and influence of inter-hemispheric transport

    Directory of Open Access Journals (Sweden)

    D. Howard

    2017-09-01

    a multi-hop model of GEM cycling, characterised by multiple surface depositions and re-emissions, in addition to long-range transport through the atmosphere.

  2. Atmospheric mercury in the Southern Hemisphere tropics: seasonal and diurnal variations and influence of inter-hemispheric transport

    Science.gov (United States)

    Howard, Dean; Nelson, Peter F.; Edwards, Grant C.; Morrison, Anthony L.; Fisher, Jenny A.; Ward, Jason; Harnwell, James; van der Schoot, Marcel; Atkinson, Brad; Chambers, Scott D.; Griffiths, Alan D.; Werczynski, Sylvester; Williams, Alastair G.

    2017-09-01

    Mercury is a toxic element of serious concern for human and environmental health. Understanding its natural cycling in the environment is an important goal towards assessing its impacts and the effectiveness of mitigation strategies. Due to the unique chemical and physical properties of mercury, the atmosphere is the dominant transport pathway for this heavy metal, with the consequence that regions far removed from sources can be impacted. However, there exists a dearth of long-term monitoring of atmospheric mercury, particularly in the tropics and Southern Hemisphere. This paper presents the first 2 years of gaseous elemental mercury (GEM) measurements taken at the Australian Tropical Atmospheric Research Station (ATARS) in northern Australia, as part of the Global Mercury Observation System (GMOS). Annual mean GEM concentrations determined at ATARS (0.95 ± 0.12 ng m-3) are consistent with recent observations at other sites in the Southern Hemisphere. Comparison with GEM data from other Australian monitoring sites suggests a concentration gradient that decreases with increasing latitude. Seasonal analysis shows that GEM concentrations at ATARS are significantly lower in the distinct wet monsoon season than in the dry season. This result provides insight into alterations of natural mercury cycling processes as a result of changes in atmospheric humidity, oceanic/terrestrial fetch, and convective mixing, and invites future investigation using wet mercury deposition measurements. Due to its location relative to the atmospheric equator, ATARS intermittently samples air originating from the Northern Hemisphere, allowing an opportunity to gain greater understanding of inter-hemispheric transport of mercury and other atmospheric species. Diurnal cycles of GEM at ATARS show distinct nocturnal depletion events that are attributed to dry deposition under stable boundary layer conditions. These cycles provide strong further evidence supportive of a multi-hop model of GEM

  3. Business Models For Transport eBusiness

    OpenAIRE

    Dragan Cisic; Ivan Franciskovic; Ana Peric

    2003-01-01

    In this paper authors are presenting expectations from electronic commerce and its connotations on transport logistics. Based on trends, the relations between the companies in the international transport have to be strengthened using Internet business models. In the paper authors are investigating e-business information models for usage in transport

  4. The Middle Miocene climate as modelled in an atmosphere-ocean-biosphere model

    Science.gov (United States)

    Krapp, M.; Jungclaus, J. H.

    2011-11-01

    We present simulations with a coupled atmosphere-ocean-biosphere model for the Middle Miocene 15 million years ago. The model is insofar more consistent than previous models because it captures the essential interactions between ocean and atmosphere and between atmosphere and vegetation. The Middle Miocene topography, which alters both large-scale ocean and atmospheric circulations, causes a global warming of 0.7 K compared to present day. Higher than present-day CO2 levels of 480 and 720 ppm cause a global warming of 2.8 and 4.9 K. The associated water vapour feedback enhances the greenhouse effect which leads to a polar amplification of the warming. These results suggest that higher than present-day CO2 levels are necessary to drive the warm Middle Miocene climate, also because the dynamic vegetation model simulates a denser vegetation which is in line with fossil records. However, we do not find a flatter than present-day equator-to-pole temperature gradient as has been suggested by marine and terrestrial proxies. Instead, a compensation between atmospheric and ocean heat transport counteracts the flattening of the temperature gradient. The acclaimed role of the large-scale ocean circulation in redistributing heat cannot be supported by our results. Including full ocean dynamics, therefore, does not solve the problem of the flat temperature gradient during the Middle Miocene.

  5. Variability of Atlantic Ocean heat transport and its effects on the atmosphere

    Directory of Open Access Journals (Sweden)

    R. T. Sutton

    2003-06-01

    Full Text Available The variability of the Atlantic meridional Ocean Heat Transport (OHT has been diagnosed from a simulation of a coupled ocean-atmosphere general circulation model, and the mechanisms responsible for this variability have been elucidated. It has been demonstrated that the interannual variability in Atlantic OHT is dominated by windstress-driven Ekman fluctuations. In contrast, the decadal and multidecadal variability is associated with the fluctuations of the Thermohaline Circulation (THC, driven by the fluctuations in deep convection over the Greenland-Iceland-Norwegian (GIN Sea. The fluctuations of OHT induce Ocean Heat Content (OHC, and Sea Surface Temperature (SST anomalies over the tropical and subtropical North Atlantic. The SST anomalies, in turn, have an impact on the atmosphere. The lead-lag relationships between the fluctuations of THC-related OHT and those of OHC and SST raise the possibility that a knowledge of OHT fluctuations could be used to predict variations in Atlantic Sea surface temperatures, and perhaps aspects of climate, several years in advance. A comparison of results from a second, independent, coupled model simulation is also presented, and similar conclusions reached.

  6. Use of Models in Urban Transportation Planning

    Science.gov (United States)

    1973-04-01

    The report describes the most commonly used models in urban transportation planning. A background on urban transportation planning is given including changes in planning objectives and the effects of Federal legislation. General concepts and problems...

  7. Extreme winds and waves for offshore turbines: Coupling atmosphere and wave modeling for design and operation in coastal zones

    DEFF Research Database (Denmark)

    Larsén, Xiaoli Guo; Bolanos, Rodolfo; Du, Jianting

    modeling for oshore wind farms. This modeling system consists of the atmospheric Weather Research and Forecasting (WRF) model, the wave model SWAN and an interface the Wave Boundary Layer Model WBLM, within the framework of coupled-ocean-atmosphere-wave-sediment transport modeling system COAWST...... (Hereinafter the WRF-WBLM-SWAN model). WBLM is implemented in SWAN, and it calculates stress and kinetic energy budgets in the lowest atmospheric layer where the wave-induced stress is introduced to the atmospheric modeling. WBLM ensures consistent calculation of stress for both the atmospheric and wave......, which can aect the choice of the off-shore wind turbine type. X-WiWa examined various methodologies for wave modeling. The offline coupling system using atmospheric data such as WRF or global reanalysis wind field to the MIKE 21 SW model has been improved with considerations of stability, air density...

  8. A mesoscale chemical transport model (MEDIUM) nested in a global chemical transport model (MEDIANTE)

    Energy Technology Data Exchange (ETDEWEB)

    Claveau, J.; Ramaroson, R. [Office National d`Etudes et de Recherches Aerospatiales (ONERA), 92 - Chatillon (France)

    1997-12-31

    The lower stratosphere and upper troposphere (UT-LS) are frequently subject to mesoscale or local scale exchange of air masses occurring along discontinuities. This exchange (e.g. downward) can constitute one of the most important source of ozone from the stratosphere down to the middle troposphere where strong mixing dilutes the air mass and competing the non-linear chemistry. The distribution of the chemical species in the troposphere and the lower stratosphere depends upon various source emissions, e.g. from polluted boundary layer or from aircraft emissions. Global models, as well as chemical transport models describe the climatological state of the atmosphere and are not able to describe correctly the stratosphere and troposphere exchange. Mesoscale models go further in the description of smaller scales and can reasonably include a rather detailed chemistry. They can be used to assess the budget of NO{sub x} from aircraft emissions in a mesoscale domain. (author) 4 refs.

  9. Modelling of Transport Projects Uncertainties

    DEFF Research Database (Denmark)

    Salling, Kim Bang; Leleur, Steen

    2009-01-01

    This paper proposes a new way of handling the uncertainties present in transport decision making based on infrastructure appraisals. The paper suggests to combine the principle of Optimism Bias, which depicts the historical tendency of overestimating transport related benefits and underestimating......-based graphs which function as risk-related decision support for the appraised transport infrastructure project....

  10. Evidence for the "grasshopper" effect and fractionation during long-range atmospheric transport of organic contaminants.

    Science.gov (United States)

    Gouin, T; Mackay, D; Jones, K C; Harner, T; Meijer, S N

    2004-01-01

    Although there is indisputable evidence that long-range atmospheric transport (LRAT) of organic contaminants occurs on a global scale, uncertainties remain about the detailed mechanism and extent of this phenomenon as well as the physical-chemical properties which facilitate LRAT. In this study, we discuss how mass balance models and monitoring data can contribute to a fuller understanding of the mechanism and extent of LRAT. Specifically we address the issues of "grasshopping" or "hopping" (the extent to which molecules are subject to multiple hops as distinct from a single emission-deposition event) and "global fractionation" (the differing behavior of chemicals as they are transported). It is shown that simple mass balance models can be used to assist the interpretation of monitoring data while also providing an instrument that can be used to assess the LRAT potential and the extent of hopping that organic substances may experience. The available evidence supports the notion that many persistent organic pollutants experience varying degrees of "hopping" during their environmental journey and as a consequence become fractionated with distance from source.

  11. Evidence for the 'grasshopper' effect and fractionation during long-range atmospheric transport of organic contaminants

    International Nuclear Information System (INIS)

    Gouin, T.; Mackay, D.; Jones, K.C.; Harner, T.; Meijer, S.N.

    2004-01-01

    Although there is indisputable evidence that long-range atmospheric transport (LRAT) of organic contaminants occurs on a global scale, uncertainties remain about the detailed mechanism and extent of this phenomenon as well as the physical-chemical properties which facilitate LRAT. In this study, we discuss how mass balance models and monitoring data can contribute to a fuller understanding of the mechanism and extent of LRAT. Specifically we address the issues of 'grasshopping' or 'hopping' (the extent to which molecules are subject to multiple hops as distinct from a single emission-deposition event) and 'global fractionation' (the differing behavior of chemicals as they are transported). It is shown that simple mass balance models can be used to assist the interpretation of monitoring data while also providing an instrument that can be used to assess the LRAT potential and the extent of hopping that organic substances may experience. The available evidence supports the notion that many persistent organic pollutants experience varying degrees of 'hopping' during their environmental journey and as a consequence become fractionated with distance from source. - Evidence for global scale fractionation and hopping of POPs is reviewed

  12. Inverse modeling of methane sources and sinks using the adjoint of a global transport model

    NARCIS (Netherlands)

    Houweling, S; Kaminski, T; Dentener, F; Lelieveld, J; Heimann, M

    1999-01-01

    An inverse modeling method is presented to evaluate the sources and sinks of atmospheric methane. An adjoint version of a global transport model has been used to estimate these fluxes at a relatively high spatial and temporal resolution. Measurements from 34 monitoring stations and 11 locations

  13. Simulation of atmospheric krypton-85 transport to assess the detectability of clandestine nuclear reprocessing

    Energy Technology Data Exchange (ETDEWEB)

    Ross, Jens Ole

    2010-02-02

    The radioactive noble gas krypton-85 is released into the atmosphere during reprocessing of spent nuclear fuel or irradiated breeding targets. This is a necessary step for plutonium separation. Therefore the {sup 85}Kr signature of reprocessing could possibly be used for the detection of undeclared nuclear facilities producing nuclear weaponusable material. The {sup 85}Kr content of the atmosphere has grown over the last decades as the emissions from military and civilian nuclear industry could not be compensated by the decay with a half-life of 10.76 years. In this study, the global {sup 85}Kr background distribution due to emissions of known reprocessing facilities for the period from 1971 until 2006 was simulated using the atmospheric general circulation model ECHAM5 applying the newest available annual emission data. The convective tracer transport scheme and the operator splitting for the physical calculations in the model were modified in order to guarantee physically correct results for tracer point sources, in particular non negative concentrations. An on-line routine controlling the {sup 85}Kr -budget in the model enforced exact mass conservation. The results of the simulation were evaluated by extensive comparison with measurements performed by the German Federal Office for Radiation Protection with very good agreement at most observation sites except those in the direct vicinity of {sup 85}Kr sources. Of particular interest for the {sup 85}Kr detection potential was the variability of {sup 85}Kr background concentrations which was evaluated for the first time in a global model. In addition, the interhemispheric transport as simulated by ECHAM5 was analyzed using a two-box model providing a mean exchange time of τ {sub ex} = 10.5 months. The analysis of τ{sub ex} over simulated 35 years indicates that in years with strong South Asian or African Monsoon the interhemispheric transport is faster during the monsoon season. A correlation analysis of

  14. Numerical simulations of atmospheric dispersion of iodine-131 by different models.

    Directory of Open Access Journals (Sweden)

    Ádám Leelőssy

    Full Text Available Nowadays, several dispersion models are available to simulate the transport processes of air pollutants and toxic substances including radionuclides in the atmosphere. Reliability of atmospheric transport models has been demonstrated in several recent cases from local to global scale; however, very few actual emission data are available to evaluate model results in real-life cases. In this study, the atmospheric dispersion of 131I emitted to the atmosphere during an industrial process was simulated with different models, namely the WRF-Chem Eulerian online coupled model and the HYSPLIT and the RAPTOR Lagrangian models. Although only limited data of 131I detections has been available, the accuracy of modeled plume direction could be evaluated in complex late autumn weather situations. For the studied cases, the general reliability of models has been demonstrated. However, serious uncertainties arise related to low level inversions, above all in case of an emission event on 4 November 2011, when an important wind shear caused a significant difference between simulated and real transport directions. Results underline the importance of prudent interpretation of dispersion model results and the identification of weather conditions with a potential to cause large model errors.

  15. Numerical simulations of atmospheric dispersion of iodine-131 by different models.

    Science.gov (United States)

    Leelőssy, Ádám; Mészáros, Róbert; Kovács, Attila; Lagzi, István; Kovács, Tibor

    2017-01-01

    Nowadays, several dispersion models are available to simulate the transport processes of air pollutants and toxic substances including radionuclides in the atmosphere. Reliability of atmospheric transport models has been demonstrated in several recent cases from local to global scale; however, very few actual emission data are available to evaluate model results in real-life cases. In this study, the atmospheric dispersion of 131I emitted to the atmosphere during an industrial process was simulated with different models, namely the WRF-Chem Eulerian online coupled model and the HYSPLIT and the RAPTOR Lagrangian models. Although only limited data of 131I detections has been available, the accuracy of modeled plume direction could be evaluated in complex late autumn weather situations. For the studied cases, the general reliability of models has been demonstrated. However, serious uncertainties arise related to low level inversions, above all in case of an emission event on 4 November 2011, when an important wind shear caused a significant difference between simulated and real transport directions. Results underline the importance of prudent interpretation of dispersion model results and the identification of weather conditions with a potential to cause large model errors.

  16. Connecting Atmospheric Science and Atmospheric Models for Aerocaptured Missions to Titan and the Outer Planets

    Science.gov (United States)

    Justus, C. G.; Duvall, Aleta; Keller, Vernon W.

    2003-01-01

    Many atmospheric measurement systems, such as the sounding instruments on Voyager, gather atmospheric information in the form of temperature versus pressure level. In these terms, there is considerable consistency among the mean atmospheric profiles of the outer planets Jupiter through Neptune, including Titan. On a given planet or on Titan, the range of variability of temperature versus pressure level due to seasonal, latitudinal, and diurnal variations is also not large. However, many engineering needs for atmospheric models relate not to temperature versus pressure level but atmospheric density versus geometric altitude. This need is especially true for design and analysis of aerocapture systems. Aerocapture drag force available for aerocapture is directly proportional to atmospheric density. Available aerocapture "corridor width" (allowable range of atmospheric entry angle) also depends on height rate of change of atmospheric density, as characterized by density scale height. Characteristics of hydrostatics and the gas law equation mean that relatively small systematic differences in temperature-versus-pressure profiles can integrate at high altitudes to very large differences in density-versus-altitude profiles. Thus a given periapsis density required to accomplish successful aerocapture can occur at substantially different altitudes (approx. 150 - 300 km) on the various outer planets, and significantly different density scale heights (approx. 20 - 50 km) can occur at these periapsis altitudes. This paper will illustrate these effects and discuss implications for improvements in atmospheric measurements to yield significant impact on design of aerocapture systems for future missions to Titan and the outer planets. Relatively small- scale atmospheric perturbations, such as gravity waves, tides, and other atmospheric variations can also have significant effect on design details for aerocapture guidance and control systems. This paper will also discuss benefits

  17. Atmospheric pollution. From processes to modelling; Pollution atmospherique. Des processus a la modelisation

    Energy Technology Data Exchange (ETDEWEB)

    Sportisse, B. [Ecole Nationale des Ponts et Chaussees (ENPC), Centre d' Enseignement et de Recherche en Environnement Atmospherique, Lab. Commun ENPC, 75 - Paris (France)

    2008-07-01

    Air quality, greenhouse effect, ozone hole, chemical or nuclear accidents.. All these phenomena are tightly linked to the chemical composition of atmosphere and to the atmospheric dispersion of pollutants. This book aims at supplying the main elements of understanding of 'atmospheric pollutions': stakes, physical processes involved, role of scientific expertise in decision making. Content: 1 - classifications and scales: chemical composition of the atmosphere, vertical structure, time scales (transport, residence); 2 - matter/light interaction: notions of radiative transfer, application to the Earth's atmosphere; 3 - some elements about the atmospheric boundary layer: notion of scales in meteorology, atmospheric boundary layer (ABL), thermal stratification and stability, description of ABL turbulence, elements of atmospheric dynamics, some elements about the urban climate; 4 - notions of atmospheric chemistry: characteristics, ozone stratospheric chemistry, ozone tropospheric chemistry, brief introduction to indoor air quality; 5 - aerosols, clouds and rains: aerosols and particulates, aerosols and clouds, acid rains and leaching; 6 - towards numerical simulation: equation of reactive dispersion, numerical methods for chemistry-transport models, numerical resolution of the general equation of aerosols dynamics (GDE), modern simulation chains, perspectives. (J.S.)

  18. Modelling organic particles in the atmosphere

    International Nuclear Information System (INIS)

    Couvidat, Florian

    2012-01-01

    Organic aerosol formation in the atmosphere is investigated via the development of a new model named H 2 O (Hydrophilic/Hydrophobic Organics). First, a parameterization is developed to take into account secondary organic aerosol formation from isoprene oxidation. It takes into account the effect of nitrogen oxides on organic aerosol formation and the hydrophilic properties of the aerosols. This parameterization is then implemented in H 2 O along with some other developments and the results of the model are compared to organic carbon measurements over Europe. Model performance is greatly improved by taking into account emissions of primary semi-volatile compounds, which can form secondary organic aerosols after oxidation or can condense when temperature decreases. If those emissions are not taken into account, a significant underestimation of organic aerosol concentrations occurs in winter. The formation of organic aerosols over an urban area was also studied by simulating organic aerosols concentration over the Paris area during the summer campaign of Megapoli (July 2009). H 2 O gives satisfactory results over the Paris area, although a peak of organic aerosol concentrations from traffic, which does not appear in the measurements, appears in the model simulation during rush hours. It could be due to an underestimation of the volatility of organic aerosols. It is also possible that primary and secondary organic compounds do not mix well together and that primary semi volatile compounds do not condense on an organic aerosol that is mostly secondary and highly oxidized. Finally, the impact of aqueous-phase chemistry was studied. The mechanism for the formation of secondary organic aerosol includes in-cloud oxidation of glyoxal, methylglyoxal, methacrolein and methylvinylketone, formation of methyltetrols in the aqueous phase of particles and cloud droplets, and the in-cloud aging of organic aerosols. The impact of wet deposition is also studied to better estimate the

  19. Global atmospheric cycle of mercury: a model study on the impact of oxidation mechanisms.

    Science.gov (United States)

    De Simone, F; Gencarelli, C N; Hedgecock, I M; Pirrone, N

    2014-03-01

    Mercury (Hg) is a global pollutant since its predominant atmospheric form, elemental Hg, reacts relatively slowly with the more abundant atmospheric oxidants. Comprehensive knowledge on the details of the atmospheric Hg cycle is still lacking, and in particular, there is some uncertainty regarding the atmospherically relevant reduction-oxidation reactions of mercury and its compounds. ECHMERIT is a global online chemical transport model, based on the ECHAM5 global circulation model, with a highly customisable chemistry mechanism designed to facilitate the investigation of both aqueous- and gas-phase atmospheric mercury chemistry. An improved version of the model which includes a new oceanic emission routine has been developed. Results of multiyear model simulations with full atmospheric chemistry have been used to examine the how changes to chemical mechanisms influence the model's ability to reproduce measured Hg concentrations and deposition flux patterns. The results have also been compared to simple fixed-lifetime tracer simulations to constrain the possible range of atmospheric mercury redox rates. The model provides a new and unique picture of the global cycle of mercury, in that it is online and includes a full atmospheric chemistry module.

  20. Long Distance Pollen Transport to the Arctic: a Useful Proxy to Calibrate Atmospheric Circulation?

    Science.gov (United States)

    Rousseau, D.; Schevin, P.; Duzer, D.; Jolly, D.; Cambon, G.

    2004-12-01

    Tracing modern atmosphere dynamics is important to constrain models used for past climate reconstruction. The main types of tracers of arctic air masses are chemical and show different patterns. Dust in the ice at the summit of the Greenland ice cap has been shown, through isotope analyses, to have originated from Chinese deserts, mostly the Takla Makan and Gobi. Conversely, the chemical composition of the aerosols reaching the summit of the ice cap associated with backward air masses trajectories points to source areas in North America, Europe and Asia. A total of four pollen traps have been displayed on both western and eastern coasts of Greenland during the last four years in order to assess long distance transport in the Arctic domain and to identify potential vegetation source areas associated with air mass pathways. We are demonstrating the long distance transport of pollen originating from North America, Great Lakes area to southern Greenland at least during two consecutives years, 2002 and 2003. Thus a regular pattern of air masses responsible for the transport of pollen grains from North America to Greenland should be constant, as already described for anthropogenic pollutants. Another pollen trap was installed on the sea ice during the ice-sea drift expedition from North Pole of French explorer Dr. Jean-Louis Etienne in 2002. In that case we demonstrate two long distance transport to the North Pole from two different Eurasian regions during 2002: western Europe and eastern Siberia. Until now the use of pollen as an air mass tracer had not yet been investigated. Here we show that first evidence pollen represents a biological alternative to understand both present and past air mass dynamics in the Arctic and its associated relationship with biosphere changes.

  1. Improving measurements of SF6 for the study of atmospheric transport and emissions

    Directory of Open Access Journals (Sweden)

    D. F. Hurst

    2011-11-01

    Full Text Available Sulfur hexafluoride (SF6 is a potent greenhouse gas and useful atmospheric tracer. Measurements of SF6 on global and regional scales are necessary to estimate emissions and to verify or examine the performance of atmospheric transport models. Typical precision for common gas chromatographic methods with electron capture detection (GC-ECD is 1–2%. We have modified a common GC-ECD method to achieve measurement precision of 0.5% or better. Global mean SF6 measurements were used to examine changes in the growth rate of SF6 and corresponding SF6 emissions. Global emissions and mixing ratios from 2000–2008 are consistent with recently published work. More recent observations show a 10% decline in SF6 emissions in 2008–2009, which seems to coincide with a decrease in world economic output. This decline was short-lived, as the global SF6 growth rate has recently increased to near its 2007–2008 maximum value of 0.30±0.03 pmol mol−1 (ppt yr−1 (95% C.L..

  2. SATURATED ZONE FLOW AND TRANSPORT MODEL ABSTRACTION

    International Nuclear Information System (INIS)

    B.W. ARNOLD

    2004-01-01

    The purpose of the saturated zone (SZ) flow and transport model abstraction task is to provide radionuclide-transport simulation results for use in the total system performance assessment (TSPA) for license application (LA) calculations. This task includes assessment of uncertainty in parameters that pertain to both groundwater flow and radionuclide transport in the models used for this purpose. This model report documents the following: (1) The SZ transport abstraction model, which consists of a set of radionuclide breakthrough curves at the accessible environment for use in the TSPA-LA simulations of radionuclide releases into the biosphere. These radionuclide breakthrough curves contain information on radionuclide-transport times through the SZ. (2) The SZ one-dimensional (I-D) transport model, which is incorporated in the TSPA-LA model to simulate the transport, decay, and ingrowth of radionuclide decay chains in the SZ. (3) The analysis of uncertainty in groundwater-flow and radionuclide-transport input parameters for the SZ transport abstraction model and the SZ 1-D transport model. (4) The analysis of the background concentration of alpha-emitting species in the groundwater of the SZ

  3. Low cost transportable device for transference of atmosphere sensitive materials from glove box to SEM

    DEFF Research Database (Denmark)

    Bentzen, Janet Jonna; Saxild, Finn B.

    the field of high energy battery research involving highly reactive metals, e.g. lithium, we needed a means of transferring atmosphere sensitive materials from the protective atmosphere of a glove box, avoiding air exposure, to a sample chamber of a scanning electron microscope. Thus, we constructed a low...... cost transportable device. The transportable transfer device holding a small evacuable chamber was constructed from a valve fitted with adapters to a glove box and a scanning electron microscope (JEOL 840). Examples of the application to high energy battery research are illustrated....

  4. Atmospheric Renewable Energy Research, Volume 5 (Solar Radiation Flux Model)

    Science.gov (United States)

    2017-09-01

    ARL-TR-8155 ● SEP 2017 US Army Research Laboratory Atmospheric Renewable Energy Research, Volume 5 (Solar Radiation Flux Model... Energy Research, Volume 5 (Solar Radiation Flux Model) by Clayton Walker and Gail Vaucher Computational and Information Sciences Directorate, ARL...2017 June 28 4. TITLE AND SUBTITLE Atmospheric Renewable Energy Research, Volume 5 (Solar Radiation Flux Model) 5a. CONTRACT NUMBER ROTC Internship

  5. Effects of atmospheric transport and trade on air pollution mortality in China

    Directory of Open Access Journals (Sweden)

    H. Zhao

    2017-09-01

    Full Text Available Air quality is a major environmental concern in China, where premature deaths due to air pollution have exceeded 1 million people per year in recent years. Here, using a novel coupling of economic, physical and epidemiological models, we estimate the premature mortality related to anthropogenic outdoor PM2. 5 air pollution in seven regions of China in 2010 and show for the first time how the distribution of these deaths in China is determined by a combination of economic activities and physical transport of pollution in the atmosphere. We find that 33 % (338 600 premature deaths of China's PM2. 5-related premature mortality in 2010 were caused by pollutants emitted in a different region of the country and transported in the atmosphere, especially from north to south and from east to west. Trade further extended the cross-regional impact; 56 % of (568 900 premature deaths China's PM2. 5-related premature mortality was related to consumption in another region, including 423 800 (42 % of total and 145 100 (14 % premature deaths from domestic consumption and international trade respectively. Our results indicate that multilateral and multi-stage cooperation under a regional sustainable development framework is in urgent need to mitigate air pollution and related health impacts, and efforts to reduce the health impacts of air pollution in China should be prioritized according to the source and location of emissions, the type and economic value of the emitting activities, and the related patterns of consumption.

  6. Logistics and Transport - a conceptual model

    DEFF Research Database (Denmark)

    Jespersen, Per Homann; Drewes, Lise

    2004-01-01

    This paper describes how the freight transport sector is influenced by logistical principles of production and distribution. It introduces new ways of understanding freight transport as an integrated part of the changing trends of mobility. By introducing a conceptual model for understanding...... the interaction between logistics and transport, it points at ways to over-come inherent methodological difficulties when studying this relation...

  7. RADIONUCLIDE TRANSPORT MODELS UNDER AMBIENT CONDITIONS

    Energy Technology Data Exchange (ETDEWEB)

    S. Magnuson

    2004-11-01

    The purpose of this model report is to document the unsaturated zone (UZ) radionuclide transport model, which evaluates, by means of three-dimensional numerical models, the transport of radioactive solutes and colloids in the UZ, under ambient conditions, from the repository horizon to the water table at Yucca Mountain, Nevada.

  8. Impact of a future H2 transportation on atmospheric pollution in Europe

    Science.gov (United States)

    Popa, M. E.; Segers, A. J.; Denier van der Gon, H. A. C.; Krol, M. C.; Visschedijk, A. J. H.; Schaap, M.; Röckmann, T.

    2015-07-01

    Hydrogen (H2) is being explored as a fuel for passenger vehicles; it can be used in fuel cells to power electric motors or burned in internal combustion engines. In order to evaluate the potential influence of a future H2-based road transportation on the regional air quality in Europe, we implemented H2 in the atmospheric transport and chemistry model LOTOS-EUROS. We simulated the present and future (2020) air quality, using emission scenarios with different proportions of H2 vehicles and different H2 leakage rates. The reference future scenario does not include H2 vehicles, and assumes that all present and planned European regulations for emissions are fully implemented. We find that, in general, the air quality in 2020 is significantly improved compared to the current situation in all scenarios, with and without H2 cars. In the future scenario without H2 cars, the pollution is reduced due to the strict European regulations: annually averaged CO, NOx and PM2.5 over the model domain decrease by 15%, 30% and 20% respectively. The additional improvement brought by replacing 50% or 100% of traditionally-fueled vehicles by H2 vehicles is smaller in absolute terms. If 50% of vehicles are using H2, the CO, NOx and PM2.5 decrease by 1%, 10% and 1% respectively, compared to the future scenario without H2 cars. When all vehicles run on H2, then additional decreases in CO, NOx and PM2.5 are 5%, 40%, and 5% relative to the no-H2 cars future scenario. Our study shows that H2 vehicles may be an effective pathway to fulfill the strict future EU air quality regulations. O3 has a more complicated behavior - its annual average decreases in background areas, but increases in the high-NOx area in western Europe, with the decrease in NOx. A more detailed analysis shows that the population exposure to high O3 levels decreases nevertheless. In all future scenarios, traffic emissions account for only a small proportion of the total anthropogenic emissions, thus it becomes more important

  9. Modelling of Transport Projects Uncertainties

    DEFF Research Database (Denmark)

    Salling, Kim Bang; Leleur, Steen

    2012-01-01

    This paper proposes a new way of handling the uncertainties present in transport decision making based on infrastructure appraisals. The paper suggests to combine the principle of Optimism Bias, which depicts the historical tendency of overestimating transport related benefits and underestimating......-based graphs which functions as risk-related decision support for the appraised transport infrastructure project. The presentation of RSF is demonstrated by using an appraisal case concerning a new airfield in the capital of Greenland, Nuuk....

  10. Transport of tritium contamination to the atmosphere in an arid environment

    Science.gov (United States)

    Garcia, C. Amanda; Andraski, Brian J.; Johnson, Michael J.; Stonestrom, David A.; Michel, Robert L.; Cooper, C.A.; Wheatcraft, S.W.

    2009-01-01

    Soil–plant–atmosphere interactions strongly influence water movement in desert unsaturated zones, but little is known about how such interactions affect atmospheric release of subsurface water-borne contaminants. This 2-yr study, performed at the U.S. Geological Survey's Amargosa Desert Research Site in southern Nevada, quantified the magnitude and spatiotemporal variability of tritium (3H) transport from the shallow unsaturated zone to the atmosphere adjacent to a low-level radioactive waste (LLRW) facility. Tritium fluxes were calculated as the product of 3H concentrations in water vapor and respective evaporation and transpiration water-vapor fluxes. Quarterly measured 3H concentrations in soil water vapor and in leaf water of the dominant creosote-bush [Larrea tridentata (DC.) Coville] were spatially extrapolated and temporally interpolated to develop daily maps of contamination across the 0.76-km2 study area. Maximum plant and root-zone soil concentrations (4200 and 8700 Bq L−1, respectively) were measured 25 m from the LLRW facility boundary. Continuous evaporation was estimated using a Priestley–Taylor model and transpiration was computed as the difference between measured eddy-covariance evapotranspiration and estimated evaporation. The mean evaporation/transpiration ratio was 3:1. Tritium released from the study area ranged from 0.12 to 12 μg d−1 and totaled 1.5 mg (8.2 × 1010 Bq) over 2 yr. Tritium flux variability was driven spatially by proximity to 3H source areas and temporally by changes in 3H concentrations and in the partitioning between evaporation and transpiration. Evapotranspiration removed and limited penetration of precipitation beneath native vegetation and fostered upward movement and release of 3H from below the root zone.

  11. Monte Carlo simulation of turbulent atmospheric transport and comparisons with experimental data. [/sup 41/Ar continuously emitted from BNL reactor to atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Alsmiller, F. S.; Alsmiller, Jr., R. G.; Bertini, H. W.; Begovich, C. L.

    1978-03-01

    In a previous paper Peterson presented measurements on the /sup 41/Ar emitted continuously into the atmosphere from a reactor at the Brookhaven National Laboratory. Here, calculated results obtained with the Monte Carlo atmospheric transport model of Watson and Barr are presented and compared with the experimental data. The measured quantities with which comparisons are made are: the position north of Brookhaven where the maximum /sup 41/Ar concentration occurred for specific values of x (east of Brookhaven) and t, time; the standard deviation, sigma/sub y/, of the /sup 41/Ar concentration about the position of maximum concentration for specific values of x and t; and a quantity that is proportional to the maximum /sup 41/Ar concentration for specific values of x and t. The calculated results are in moderately good agreement with the experimental data at most distances (less than or equal to 300 km) and most times for which data are available.

  12. Biological transportation networks: Modeling and simulation

    KAUST Repository

    Albi, Giacomo

    2015-09-15

    We present a model for biological network formation originally introduced by Cai and Hu [Adaptation and optimization of biological transport networks, Phys. Rev. Lett. 111 (2013) 138701]. The modeling of fluid transportation (e.g., leaf venation and angiogenesis) and ion transportation networks (e.g., neural networks) is explained in detail and basic analytical features like the gradient flow structure of the fluid transportation network model and the impact of the model parameters on the geometry and topology of network formation are analyzed. We also present a numerical finite-element based discretization scheme and discuss sample cases of network formation simulations.

  13. A Sediment Transport Model for Sewers

    DEFF Research Database (Denmark)

    Mark, Ole; Larsson, Johan; Larsen, Torben

    1993-01-01

    This paper describes a mathematical model for transport processes in sewers. The model consists of three sub models, a surface model for the description of the buildup and the washoff of sediment particles from the surface area, a morphological model and an advection-dispersion model. The model...

  14. A study on the estimation atmospheric transport and diffusion of radionuclide in simple terrain

    International Nuclear Information System (INIS)

    Hong, Heui Goan

    1995-02-01

    The Gaussian plume model is widely used to calculate the concentration of radionuclide release to flat terrain in the nuclear power plant. This model assumes that the terrain is flat. So, predicting the dispersion of radionuclide releases to region of complex terrain is difficult. Because plume patterns are changeable by terrain-induced processes the plume behavior must be modified by terrain effects. In this study, modified Gaussian plume model used for estimation of concentrations of plume near an isolated hill or well-defined segment of hills. In addition, a computer code for an atmospheric transport and diffusion model (KTDM) considering terrain effect are developed. To verify the code results, KTDM has been compared with an EPA officially certified code, CTDMplus for a typical isolated hill. The results show that terrain factors at various isolated hills are derived from the meteorological conditions(wind speed, ambient temperature) and terrain features(hill top elevation, major axis length of hill, minor axis length of hill). The distributions of the concentration at the ground-level and terrain surface show the increasing peak concentrations expected over terrain beyond those concentrations that would have been expected for the same meteorological conditions over flat terrain

  15. Satellite Sounder Observations of Contrasting Tropospheric Moisture Transport Regimes: Saharan Air Layers, Hadley Cells, and Atmospheric Rivers

    Energy Technology Data Exchange (ETDEWEB)

    Nalli, Nicholas R.; Barnet, Christopher D.; Reale, Tony; Liu, Quanhua; Morris, Vernon R.; Spackman, J. Ryan; Joseph, Everette; Tan, Changyi; Sun, Bomin; Tilley, Frank; Leung, L. Ruby; Wolfe, Daniel

    2016-12-01

    This paper examines the performance of satellite sounder atmospheric vertical moisture proles (AVMP) under tropospheric conditions encompassing moisture contrasts driven by convection and advection transport mechanisms, specifically Atlantic Ocean Saharan air layers (SALs) and Pacific Ocean moisture conveyer belts (MCBs) commonly referred to as atmospheric rivers (ARs), both of these being mesoscale to synoptic meteorological phenomena within the vicinity of subtropical Hadley subsidence zones. Operational AVMP environmental data records retrieved from the Suomi National Polar-orbiting Partnership (SNPP) NOAA-Unique Combined Atmospheric Processing System (NUCAPS) are collocated with dedicated radiosonde observations (RAOBs) obtained from ocean-based intensive field campaigns; these RAOBs provide uniquely independent correlative truth data not assimilated into numerical weather prediction models for satellite sounder validation over open ocean. Using these marine-based data, we empirically assess the performance of the operational NUCAPS AVMP product for detecting and resolving these tropospheric moisture features over otherwise RAOB-sparse regions.

  16. The high life: Transport of microbes in the atmosphere

    Science.gov (United States)

    Smith, David J.; Griffin, Dale W.; Jaffe, Daniel A.

    2011-07-01

    Microbes (bacteria, fungi, algae, and viruses) are the most successful types of life on Earth because of their ability to adapt to new environments, reproduce quickly, and disperse globally. Dispersal occurs through a number of vectors, such as migrating animals or the hydrological cycle, but transport by wind may be the most common way microbes spread. General awareness of airborne microbes predates the science of microbiology. People took advantage of wild airborne yeasts to cultivate lighter, more desirable bread as far back as ancient Egypt by simply leaving a mixture of grain and liquids near an open window. In 1862, Louis Pasteur's quest to disprove spontaneous generation resulted in the discovery that microbes were actually single-celled, living creatures, prevalent in the environment and easily killed with heat (pasteurization). His rudimentary experiments determined that any nutrient medium left open to the air would eventually teem with microbial life because of free-floating, colonizing cells. The same can happen in a kitchen: Opportunistic fungal and bacterial cells cause food items exposed to the air to eventually spoil.

  17. Evaluating transport in the WRF model along the California coast

    OpenAIRE

    C. E. Yver; H. D. Graven; D. D. Lucas; P. J. Cameron-Smith; R. F. Keeling; R. F. Weiss

    2013-01-01

    This paper presents a step in the development of a top-down method to complement the bottom-up inventories of halocarbon emissions in California using high frequency observations, forward simulations and inverse methods. The Scripps Institution of Oceanography high-frequency atmospheric halocarbons measurement sites are located along the California coast and therefore the evaluation of transport in the chosen Weather Research Forecast (WRF) model at these sites is crucial fo...

  18. Evaluating transport in the WRF model along the California coast

    OpenAIRE

    C. Yver; H. Graven; D. D. Lucas; P. Cameron-Smith; R. Keeling; R. Weiss

    2012-01-01

    This paper presents a step in the development of a top-down method to complement the bottom-up inventories of halocarbon emissions in California using high frequency observations, forward simulations and inverse methods. The Scripps Institution of Oceanography high-frequency atmospheric halocarbon measurement sites are located along the California coast and therefore the evaluation of transport in the chosen Weather Research Forecast (WRF) model at these sites is crucial for inverse mo...

  19. Computational Fluid Dynamics model of stratified atmospheric boundary-layer flow

    DEFF Research Database (Denmark)

    Koblitz, Tilman; Bechmann, Andreas; Sogachev, Andrey

    2015-01-01

    For wind resource assessment, the wind industry is increasingly relying on computational fluid dynamics models of the neutrally stratified surface-layer. So far, physical processes that are important to the whole atmospheric boundary-layer, such as the Coriolis effect, buoyancy forces and heat...... transport, are mostly ignored. In order to decrease the uncertainty of wind resource assessment, the present work focuses on atmospheric flows that include stability and Coriolis effects. The influence of these effects on the whole atmospheric boundary-layer are examined using a Reynolds-averaged Navier...

  20. Atmospheric transport and radioactive contamination of the atmosphere and of the ground

    International Nuclear Information System (INIS)

    1986-01-01

    The basic contamination source as a result of the accident at the Chernobyl Atomic Power Plant was the radioactive cloud and the gas stream. Based on the analyses of atmospheric aerosol samples collected in the immediate vicinity of the reactor an enrichment in iodine and cesium radionuclides was found. The meteorological conditions which governed the dispersion of air masses in the area around the Station determined the basic zone of close-in radioactive fallout to the north-west and the north-east of the Station. The distribution of radiation levels on the ground, the change in the concentrations of source radionuclides, data concerning the radioactive contamination of rivers and water reservoirs and values for the plutonium contamination of soil and grass are presented in tables, graphs and maps

  1. Using High Spatial-resolution Regional Atmospheric Data for Computation of GRACE Atmospheric De-aliasing Models

    OpenAIRE

    YOU Wei

    2017-01-01

    Focusing on the problem that the spatial horizontal resolution of ECMWFop or ERA-Interim atmospheric data is not enough for the computation of atmospheric de-aliasing models in GRACE gravity recovery, a method of suitable fusion of local high spatial horizontal resolution atmospheric data and global atmospheric data is proposed. A set of improved atmospheric de-aliasing models is calculated by using the atmospheric data from the local area of Europe and ERA-Interim. The quality of the modifie...

  2. Atomic hydrogen distribution. [in Titan atmospheric model

    Science.gov (United States)

    Tabarie, N.

    1974-01-01

    Several possible H2 vertical distributions in Titan's atmosphere are considered with the constraint of 5 km-A a total quantity. Approximative calculations show that hydrogen distribution is quite sensitive to two other parameters of Titan's atmosphere: the temperature and the presence of other constituents. The escape fluxes of H and H2 are also estimated as well as the consequent distributions trapped in the Saturnian system.

  3. Atmospheric disturbance model for aircraft and space capable vehicles

    Science.gov (United States)

    Chimene, Beau C.; Park, Young W.; Bielski, W. P.; Shaughnessy, John D.; Mcminn, John D.

    1992-01-01

    An atmospheric disturbance model (ADM) is developed that considers the requirements of advanced aerospace vehicles and balances algorithmic assumptions with computational constraints. The requirements for an ADM include a realistic power spectrum, inhomogeneity, and the cross-correlation of atmospheric effects. The baseline models examined include the Global Reference Atmospheric Model Perturbation-Modeling Technique, the Dryden Small-Scale Turbulence Description, and the Patchiness Model. The Program to Enhance Random Turbulence (PERT) is developed based on the previous models but includes a revised formulation of large-scale atmospheric disturbance, an inhomogeneous Dryden filter, turbulence statistics, and the cross-correlation between Dryden Turbulence Filters and small-scale thermodynamics. Verification with the Monte Carlo approach demonstrates that the PERT software provides effective simulations of inhomogeneous atmospheric parameters.

  4. Formation of sulfuric and nitric acid in the atmosphere during long-rate transport

    Energy Technology Data Exchange (ETDEWEB)

    Rodhe, H. (University of Stockholm (Sweden)); Crutzen, P. (Max-Plank Institut fuer Chemie, Mainz (Germany, F.R.)); Vanderpol, A. (Metereology Research Inc., Atladena, CA (USA))

    1981-04-01

    A simple photochemical model has been used to simulate the formation of sulfuric acid and nitric acid during long-range transport through the atmosphere. Comparisons have been made with observations of sulfate and nitrate in precipitation at various distances from the source areas in northern Europe. Both observations and model calculations indicate that HNO/sub 3/ is formed at a faster rate than H/sub 2/SO/sub 4/ and that the long-range transport of HNO/sub 3/ is thus somewhat less than that of H/sub 2/SO/sub 4/. Mainly because of the common dependence of the oxidation of SO/sub 2/ and NO/sub x/ on the concentration of the OH radical, the concentration of NO/sub x/ has a significant influence on the rate of formation of H/sub 2/SO/sub 4/: A higher emission of NO/sub x/ tends to reduce the levels of OH and H/sub 2/O/sub 2/ close to the source area thereby delaying and decreasing the transformation of SO/sub 2/ to H/sub 2/SO/sub 4/. Because of the interactions of the chemical species, the dependence of the concentrations on emission rates is not linear. Our model suggests that the concentrations of H/sub 2/SO/sub 4/ at travel distances up to a few tens of hours should have increased significantly less over the last 20 years then the rates of emissions of SO/sub 2/. This also seems to be brought out by observations of sulfate in precipitation.

  5. Mesoscale, Sources and Models: Sources for Nitrogen in the Atmosphere

    DEFF Research Database (Denmark)

    Hertel, O.

    1994-01-01

    Projektet Mesoscales, Sources and Models: Sources for Nitrogen in the Atmosphere er opdelt i 3 delprojekter: Sources - farmland, Sources - sea og Sources - biogenic nitrogen.......Projektet Mesoscales, Sources and Models: Sources for Nitrogen in the Atmosphere er opdelt i 3 delprojekter: Sources - farmland, Sources - sea og Sources - biogenic nitrogen....

  6. ARTEAM - Advanced ray tracing with earth atmospheric models

    NARCIS (Netherlands)

    Kunz, G.J.; Moerman, M.M.; Eijk, A.M.J. van

    2002-01-01

    The Advanced Ray Tracing with Earth Atmospheric Models (ARTEAM) aims at a description of the electro-optical propagation environment in the marine atmospheric surface layer. For given meteorological conditions, the model evaluates height- and range-resolved transmission losses, refraction and

  7. TransCom N2O model inter-comparison, Part II : Atmospheric inversion estimates of N2O emissions

    NARCIS (Netherlands)

    Thompson, R. L.; Ishijima, K.; Saikawa, E.; Corazza, M.; Karstens, U.; Patra, P. K.; Bergamaschi, P.; Chevallier, F.; Dlugokencky, E.; Prinn, R. G.; Weiss, R. F.; O'Doherty, S.; Fraser, P. J.; Steele, L. P.; Krummel, P. B.; Vermeulen, A.; Tohjima, Y.; Jordan, A.; Haszpra, L.; Steinbacher, M.; Van Der Laan, S.; Aalto, T.; Meinhardt, F.; Popa, Maria Elena; Moncrieff, J.; Bousquet, P.

    2014-01-01

    This study examines N2O emission estimates from 5 different atmospheric inversion frameworks. The 5 frameworks differ in the choice of atmospheric transport model, meteorological data, prior uncertainties and inversion method but use the same prior emissions and observation dataset. The mean

  8. The european Trans-Tools transport model

    NARCIS (Netherlands)

    Rooijen, T. van; Burgess, A.

    2008-01-01

    The paper presents the use of ArcGIS in the Transtools Transport Model, TRANS-TOOLS, created by an international consortium for the European Commission. The model describe passenger as well as freight transport in Europe with all medium and long distance modes (cars, vans, trucks, train, inland

  9. Dileptons from transport and hydrodynamical models

    International Nuclear Information System (INIS)

    Huovinen, P.; Koch, V.

    2000-01-01

    Transport and hydrodynamical models used to describe the expansion stage of a heavy-ion collision at the CERN SPS give different dilepton spectrum even if they are tuned to reproduce the observed hadron spectra. To understand the origin of this difference we compare the dilepton emission from transport and hydrodynamical models using similar initial states in both models. We find that the requirement of pion number conservation in a hydrodynamical model does not change the dilepton emission. Also the mass distribution from the transport model indicates faster cooling and longer lifetime of the fireball

  10. NV&EOL G/AP Aerosol Atmospheric Models

    Science.gov (United States)

    1978-09-07

    Aerosol Atmospheric Models o TO Director, Visionics PROm BSIT, VISD (Wt)l7 Sep 78 t CMTI I. In order to adequately model performance of E-0 sensors for...11 2𔃽 073 DELNV-VI SUBJECT: NV&EOL G/AP Aerosol Atmospheric Models 4. The models and fit data for the 3-5 vs. visible curves are the following: r2...corresponding to this fit is shown in Figure 6..... 2 DELNV-VI SUBJECT: NV&EOL G/AP Aerosol Atmospheric Models 9. The following expressions have been

  11. Atmospheric dispersion models help to improve air quality; Los modelos de dispersion atmosferica ayudan a mejorar la calidad del aire

    Energy Technology Data Exchange (ETDEWEB)

    Martin, F.

    2013-07-01

    One of the main challenges of the atmospheric sciences is to reproduce as well as possible the phenomena and processes of pollutants in the atmosphere. To do it, mathematical models based in this case on fluid dynamics and mass and energy conservation equations, equations that govern the atmospheric chemistry, etc., adapted to the spatial scales to be simulated, are developed. The dispersion models simulate the processes of transport, dispersion, chemical transformation and elimination by deposition that air pollutants undergo once they are emitted. Atmospheric dispersion models with their multiple applications have become essential tools for the air quality management. (Author)

  12. Optimal transportation networks models and theory

    CERN Document Server

    Bernot, Marc; Morel, Jean-Michel

    2009-01-01

    The transportation problem can be formalized as the problem of finding the optimal way to transport a given measure into another with the same mass. In contrast to the Monge-Kantorovitch problem, recent approaches model the branched structure of such supply networks as minima of an energy functional whose essential feature is to favour wide roads. Such a branched structure is observable in ground transportation networks, in draining and irrigation systems, in electrical power supply systems and in natural counterparts such as blood vessels or the branches of trees. These lectures provide mathematical proof of several existence, structure and regularity properties empirically observed in transportation networks. The link with previous discrete physical models of irrigation and erosion models in geomorphology and with discrete telecommunication and transportation models is discussed. It will be mathematically proven that the majority fit in the simple model sketched in this volume.

  13. Two-point model for divertor transport

    International Nuclear Information System (INIS)

    Galambos, J.D.; Peng, Y.K.M.

    1984-04-01

    Plasma transport along divertor field lines was investigated using a two-point model. This treatment requires considerably less effort to find solutions to the transport equations than previously used one-dimensional (1-D) models and is useful for studying general trends. It also can be a valuable tool for benchmarking more sophisticated models. The model was used to investigate the possibility of operating in the so-called high density, low temperature regime

  14. Proposed reference models for atomic oxygen in the terrestrial atmosphere

    Science.gov (United States)

    Llewellyn, E. J.; Mcdade, I. C.; Lockerbie, M. D.

    1989-01-01

    A provisional Atomic Oxygen Reference model was derived from average monthly ozone profiles and the MSIS-86 reference model atmosphere. The concentrations are presented in tabular form for the altitude range 40 to 130 km.

  15. Organochlorine pesticides in the atmosphere of Guangzhou and Hong Kong: Regional sources and long-range atmospheric transport

    Science.gov (United States)

    Li, Jun; Zhang, Gan; Guo, Lingli; Xu, Weihai; Li, Xiangdong; Lee, Celine S. L.; Ding, Aijun; Wang, Tao

    Organochlorine pesticides (OCPs) were measured in the atmosphere over the period of December 2003-December 2004 at four sampling sites in Guangzhou and Hong Kong. Gas phase and particle phase concentrations of 8 OCP species, including trans-chlordane ( t-CHL), cis-chlordane ( c-CHL), p, p'-DDT, p, p'-DDE, o, p'-DDT, α-endosulfan, α- and γ-hexachlorocyclohexane (HCH), were studied. OCPs were found predominantly in the gas phase in all seasons. t-CHL, c-CHL, o, p'-DDT, p, p'-DDT and α-endosulfan had significantly ( pGuangzhou could be attributed to the present usage of lindane and dicofol in the Pearl River Delta (PRD) region. The very high concentrations of p, p'-DDT and α-endosulfan were observed at all sampling sites. The results of 7 days air back trajectory analysis indicated that the unusual high p, p'-DDT levels in summer in both cities could be related to the seasonal usage of DDT containing antifouling paints for fishing ships in the upwind seaports of the region. The high concentrations of α-endosulfan in winter in the study area suggested an atmospheric transport by the winter monsoon from the East China, where endosulfan is being used as insecticide in cotton fields. The consistency of the seasonal variation of concentrations and isomeric ratios of DDTs and α-endosulfan with the alternation of winter monsoon and summer monsoon suggested that the Asian monsoon plays an important role in the long-range atmospheric transport of OCPs.

  16. Atmospheric boundary layers in storms: advanced theory and modelling applications

    Science.gov (United States)

    Zilitinkevich, S. S.; Esau, I. N.; Baklanov, A.

    2005-03-01

    Turbulent planetary boundary layers (PBLs) control the exchange processes between the atmosphere and the ocean/land. The key problems of PBL physics are to determine the PBL height, the momentum, energy and matter fluxes at the surface and the mean wind and scalar profiles throughout the layer in a range of regimes from stable and neutral to convective. Until present, the PBLs typical of stormy weather were always considered as neutrally stratified. Recent works have disclosed that such PBLs are in fact very strongly affected by the static stability of the free atmosphere and must be treated as factually stable (we call this type of the PBL "conventionally neutral" in contract to the "truly neutral" PBLs developed against the neutrally stratified free flow). It is common knowledge that basic features of PBLs exhibit a noticeable dependence on the free-flow static stability and baroclinicity. However, the concern of the traditional theory of neural and stable PBLs was almost without exception the barotropic nocturnal PBL, which develops at mid latitudes during a few hours in the night, on the background of a neutral or slightly stable residual layer. The latter separates this type of the PBL from the free atmosphere. It is not surprising that the nature of turbulence in such regimes is basically local and does not depend on the properties of the free atmosphere. Alternatively, long-lived neutral (in fact only conditionally neutral) or stable PBLs, which have much more time to grow up, are placed immediately below the stably stratified free flow. Under these conditions, the turbulent transports of momentum and scalars even in the surface layer - far away from the PBL outer boundary - depend on the free-flow Brunt-Väisälä frequency, N. Furthermore, integral measures of the long-lived PBLs (their depths and the resistance law functions) depend on N and also on the baroclinic shear, S. In the traditional PBL models both non-local parameters N and S were overlooked

  17. Atmospheric boundary layers in storms: advanced theory and modelling applications

    Directory of Open Access Journals (Sweden)

    S. S. Zilitinkevich

    2005-01-01

    Full Text Available Turbulent planetary boundary layers (PBLs control the exchange processes between the atmosphere and the ocean/land. The key problems of PBL physics are to determine the PBL height, the momentum, energy and matter fluxes at the surface and the mean wind and scalar profiles throughout the layer in a range of regimes from stable and neutral to convective. Until present, the PBLs typical of stormy weather were always considered as neutrally stratified. Recent works have disclosed that such PBLs are in fact very strongly affected by the static stability of the free atmosphere and must be treated as factually stable (we call this type of the PBL "conventionally neutral" in contract to the "truly neutral" PBLs developed against the neutrally stratified free flow. It is common knowledge that basic features of PBLs exhibit a noticeable dependence on the free-flow static stability and baroclinicity. However, the concern of the traditional theory of neural and stable PBLs was almost without exception the barotropic nocturnal PBL, which develops at mid latitudes during a few hours in the night, on the background of a neutral or slightly stable residual layer. The latter separates this type of the PBL from the free atmosphere. It is not surprising that the nature of turbulence in such regimes is basically local and does not depend on the properties of the free atmosphere. Alternatively, long-lived neutral (in fact only conditionally neutral or stable PBLs, which have much more time to grow up, are placed immediately below the stably stratified free flow. Under these conditions, the turbulent transports of momentum and scalars even in the surface layer - far away from the PBL outer boundary - depend on the free-flow Brunt-Väisälä frequency, N. Furthermore, integral measures of the long-lived PBLs (their depths and the resistance law functions depend on N and also on the baroclinic shear, S. In the traditional PBL models both non-local parameters N and S

  18. Calculation of atmospheric neutrino flux using the interaction model calibrated with atmospheric muon data

    International Nuclear Information System (INIS)

    Honda, M.; Kajita, T.; Kasahara, K.; Midorikawa, S.; Sanuki, T.

    2007-01-01

    Using the 'modified DPMJET-III' model explained in the previous paper [T. Sanuki et al., preceding Article, Phys. Rev. D 75, 043005 (2007).], we calculate the atmospheric neutrino flux. The calculation scheme is almost the same as HKKM04 [M. Honda, T. Kajita, K. Kasahara, and S. Midorikawa, Phys. Rev. D 70, 043008 (2004).], but the usage of the 'virtual detector' is improved to reduce the error due to it. Then we study the uncertainty of the calculated atmospheric neutrino flux summarizing the uncertainties of individual components of the simulation. The uncertainty of K-production in the interaction model is estimated using other interaction models: FLUKA'97 and FRITIOF 7.02, and modifying them so that they also reproduce the atmospheric muon flux data correctly. The uncertainties of the flux ratio and zenith angle dependence of the atmospheric neutrino flux are also studied

  19. Toward an estimation of daily european CO2 fluxes at high spatial resolution by inversion of atmospheric transport

    International Nuclear Information System (INIS)

    Carouge, C.

    2006-04-01

    Since the end of the 1980's, measurements of atmospheric carbon dioxide have been used to estimate global and regional fluxes of CO 2 . This is possible because CO 2 concentration variation is directly linked to flux variation by atmospheric transport. We can find the spatial and temporal distribution of fluxes from concentration measurements by 'inverting' the atmospheric transport. Until recently, most CO 2 inversions have used monthly mean CO 2 atmospheric concentration measurements to infer monthly fluxes. Considering the sparseness of the global CO 2 measurement network, fluxes were a priori aggregated on sub-continental regions and distributed on a fixed spatial pattern within these regions. Only one flux coefficient per month for each region was optimized. With this strong constraint, estimated fluxes can be biased by non-perfect distribution of fluxes within each region (aggregation error). Therefore, flux estimation at model resolution is being developed where the hard constraint of a fixed distribution within a region is replaced by a soft constraint of covariances between flux uncertainties. The use of continuous observations from an increasing number of measurement sites offers a new challenge for inverse modelers. We investigate the use of daily averaged observations to infer daily CO 2 fluxes at model resolution over Europe. We have developed a global synthesis Bayesian inversion to invert daily fluxes at model resolution (50 x 50 km over Europe) from daily averaged CO 2 concentrations. We have obtained estimated fluxes for the year 2001 over Europe using the 10 European continuous sites from the AEROCARB network. The global atmospheric model LMDZt is used with a nested grid over Europe. It is necessary to add a priori spatial and temporal correlations between flux errors to constrain the Bayesian inversion. We present the impact on estimated fluxes of three different spatial correlations based on distance between pixels, climate and vegetation

  20. Uncertainty modelling of atmospheric dispersion by stochastic ...

    Indian Academy of Sciences (India)

    sensitivity and uncertainty of atmospheric dispersion using fuzzy set theory can be found in. Chutia et al (2013). ..... tainties have been presented, will facilitate the decision makers in the said field to take a decision on the quality of the air if ..... Annals of Fuzzy Mathematics and Informatics 5(1): 213–22. Chutia R, Mahanta S ...

  1. A review of numerical models to predict the atmospheric dispersion of radionuclides.

    Science.gov (United States)

    Leelőssy, Ádám; Lagzi, István; Kovács, Attila; Mészáros, Róbert

    2018-02-01

    The field of atmospheric dispersion modeling has evolved together with nuclear risk assessment and emergency response systems. Atmospheric concentration and deposition of radionuclides originating from an unintended release provide the basis of dose estimations and countermeasure strategies. To predict the atmospheric dispersion and deposition of radionuclides several numerical models are available coupled with numerical weather prediction (NWP) systems. This work provides a review of the main concepts and different approaches of atmospheric dispersion modeling. Key processes of the atmospheric transport of radionuclides are emission, advection, turbulent diffusion, dry and wet deposition, radioactive decay and other physical and chemical transformations. A wide range of modeling software are available to simulate these processes with different physical assumptions, numerical approaches and implementation. The most appropriate modeling tool for a specific purpose can be selected based on the spatial scale, the complexity of meteorology, land surface and physical and chemical transformations, also considering the available data and computational resource. For most regulatory and operational applications, offline coupled NWP-dispersion systems are used, either with a local scale Gaussian, or a regional to global scale Eulerian or Lagrangian approach. The dispersion model results show large sensitivity on the accuracy of the coupled NWP model, especially through the description of planetary boundary layer turbulence, deep convection and wet deposition. Improvement of dispersion predictions can be achieved by online coupling of mesoscale meteorology and atmospheric transport models. The 2011 Fukushima event was the first large-scale nuclear accident where real-time prognostic dispersion modeling provided decision support. Dozens of dispersion models with different approaches were used for prognostic and retrospective simulations of the Fukushima release. An unknown

  2. Improved Meteorological Input for Atmospheric Release Decision support Systems and an Integrated LES Modeling System for Atmospheric Dispersion of Toxic Agents: Homeland Security Applications

    Energy Technology Data Exchange (ETDEWEB)

    Arnold, E; Simpson, M; Larsen, S; Gash, J; Aluzzi, F; Lundquist, J; Sugiyama, G

    2010-04-26

    When hazardous material is accidently or intentionally released into the atmosphere, emergency response organizations look to decision support systems (DSSs) to translate contaminant information provided by atmospheric models into effective decisions to protect the public and emergency responders and to mitigate subsequent consequences. The Department of Homeland Security (DHS)-led Interagency Modeling and Atmospheric Assessment Center (IMAAC) is one of the primary DSSs utilized by emergency management organizations. IMAAC is responsible for providing 'a single piont for the coordination and dissemination of Federal dispersion modeling and hazard prediction products that represent the Federal position' during actual or potential incidents under the National Response Plan. The Department of Energy's (DOE) National Atmospheric Release Advisory Center (NARAC), locatec at the Lawrence Livermore National Laboratory (LLNL), serves as the primary operations center of the IMAAC. A key component of atmospheric release decision support systems is meteorological information - models and data of winds, turbulence, and other atmospheric boundary-layer parameters. The accuracy of contaminant predictions is strongly dependent on the quality of this information. Therefore, the effectiveness of DSSs can be enhanced by improving the meteorological options available to drive atmospheric transport and fate models. The overall goal of this project was to develop and evaluate new meteorological modeling capabilities for DSSs based on the use of NASA Earth-science data sets in order to enhance the atmospheric-hazard information provided to emergency managers and responders. The final report describes the LLNL contributions to this multi-institutional effort. LLNL developed an approach to utilize NCAR meteorological predictions using NASA MODIS data for the New York City (NYC) region and demonstrated the potential impact of the use of different data sources and data

  3. TransCom model simulations of hourly atmospheric CO2: Experimental overview and diurnal cycle results for 2002

    NARCIS (Netherlands)

    Law, R. M.; Peters, W.; Roedenbeck, C.; Aulagnier, C.; Baker, I.; Bergmann, D. J.; Bousquet, P.; Brandt, J.; Bruhwiler, L.; Cameron-Smith, P. J.; Christensen, J. H.; Delage, F.; Denning, A. S.; Fan, S.; Geels, C.; Houweling, S.; Imasu, R.; Karstens, U.; Kawa, S. R.; Kleist, J.; Krol, M. C.; Lin, S. -J.; Lokupitiya, R.; Maki, T.; Maksyutov, S.; Niwa, Y.; Onishi, R.; Parazoo, N.; Patra, P. K.; Pieterse, G.; Rivier, L.; Satoh, M.; Serrar, S.; Taguchi, S.; Takigawa, M.; Vautard, R.; Vermeulen, A. T.; Zhu, Z.

    2008-01-01

    [1] A forward atmospheric transport modeling experiment has been coordinated by the TransCom group to investigate synoptic and diurnal variations in CO2. Model simulations were run for biospheric, fossil, and air-sea exchange of CO2 and for SF6 and radon for 2000-2003. Twenty-five models or model

  4. TransCom model simulations of hourly atmospheric CO2: Experimental overview and diurnal cycle results for 2002

    NARCIS (Netherlands)

    Law, R. M.; Peters, W.; RöDenbeck, C.; Aulagnier, C.; Baker, I.; Bergmann, D. J.; Bousquet, P.; Brandt, J.; Bruhwiler, L.; Cameron-Smith, P. J.; Christensen, J. H.; Delage, F.; Denning, A. S.; Fan, S.; Geels, C.; Houweling, S.; Imasu, R.; Karstens, U.; Kawa, S. R.; Kleist, J.; Krol, M. C.; Lin, S.-J.; Lokupitiya, R.; Maki, T.; Maksyutov, S.; Niwa, Y.; Onishi, R.; Parazoo, N.; Patra, P. K.; Pieterse, G.; Rivier, L.; Satoh, M.; Serrar, S.; Taguchi, S.; Takigawa, M.; Vautard, R.; Vermeulen, A. T.; Zhu, Z.

    2008-01-01

    A forward atmospheric transport modeling experiment has been coordinated by the TransCom group to investigate synoptic and diurnal variations in CO2. Model simulations were run for biospheric, fossil, and air-sea exchange of CO2 and for SF6 and radon for 2000-2003. Twenty-five models or model

  5. Process analysis of the modelled 3-D mesoscale impact of aircraft emissions on the atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Hendricks, J.; Ebel, A.; Lippert, E.; Petry, H. [Koeln Univ. (Germany). Inst. fuer Geophysik und Meterorologie

    1997-12-31

    A mesoscale chemistry transport model is applied to study the impact of aircraft emissions on the atmospheric trace gas composition. A special analysis of the simulations is conducted to separate the effects of chemistry, transport, diffusion and cloud processes on the transformation of the exhausts of a subsonic fleet cruising over the North Atlantic. The aircraft induced ozone production strongly depends on the tropopause height and the cruise altitude. Aircraft emissions may undergo an effective downward transport under the influence of stratosphere-troposphere exchange activity. (author) 12 refs.

  6. MAP3S: studying the transport, transformation, and fate of atmospheric energy-related pollutants

    Energy Technology Data Exchange (ETDEWEB)

    MacCracken, M C

    1977-10-01

    The MAP3S research program combines the existing capabilities of DOE national laboratories, sponsored university groups, and contractor organizations to develop, demonstrate, and verify numerical models that will make it possible to accurately simulate the atmospheric transformation of atmospheric energy related (AER) pollutants for use in assessing the various strategies for generating power. Programs aimed at gaining better understanding of the role of fossil fuel combustion in affecting the atmosphere are discussed. These include measurements of chemical and meteorological variables that determine the distribution of pollutant species from fossil-fuel electric power production; to design and execute atmospheric research experiments necessary to understand the mechanisms and related processes that must be included in simulation models; and to develop, demonstrate, and verify the capability to simulate the atmospheric behavior, pollutant concentrations, and precipitation chemistry effects of emissions from fossil-fuel power plants that are relevant to human health and welfare.

  7. Toxicity of a complex mixture of atmospherically transported pesticides to Ceriodaphnia dubia.

    Science.gov (United States)

    George, Tara K; Waite, Don; Liber, Karsten; Sproull, Jim

    2003-07-01

    The presence of several anthropogenic chemicals has been documented in the atmosphere of the Canadian prairies. The deposition of these chemicals as a mixture is of importance since little is known of the combined effects of these chemicals on aquatic organisms. This study was designed to evaluate the acute and chronic toxicity of a complex mixture of nine atmospherically transported pesticides to Ceriodaphnia dubia. The nine selected pesticides (bromoxynil, dicamba, 2,4-D, MCPA, triallate, trifluralin, pentachlorophenol, lindane, and 4,4'-DDT) were detected in appreciable quantities in dry atmospheric deposits. The concentration of each pesticide in the mixture was based on maximum measured daily dry deposition rates for central Canada, except for pentachlorophenol, which was estimated based on atmospheric concentrations. The 48-h LC50 estimate for C. dubia exposed to the pesticide mixture was 174.60 microg L(-1) (340 times the measured total dry deposition concentration). The estimated NOEC and LOEC for both survival and reproduction, as determined in the 7-d chronic toxicity test, were 51.3 (100 times) and 154 microg/L(-1) (300 times), respectively. A basic risk assessment, using the toxic unit approach, suggested that the toxicity of the pesticide mixture was mainly due to 4,4'-DDT. Overall, this atmospherically transported complex mixture of pesticides appears to pose a negligible toxicological risk to non-target aquatic invertebrates such as zooplankton.

  8. Preliminary results from the Los Alamos TA54 complex terrain Atmospheric Transport Study (ATS)

    International Nuclear Information System (INIS)

    Vold, E.; Chan, M.; Sanders, L.

    1995-01-01

    The Los Alamos National Laboratory (LANL) Low-Level Radioactive Waste (LLRW) disposal site at TA54, Area G la located on a mesa top amidst a complex terrain of finger like mesas typically 30 motors or more In height above canyons of widths varying from 100 to 300 motors. Atmospheric dispersion from this site is of concern for routine operations and for potential Incidents during waste retrieval operations. Indian lands are located In the dominant downwind direction within 500 m from the site and provide further incentive to understand the potential and actual impacts of waste disposal operations. The permanent network of meteorological towers at LANL have been located primarily at mesa-top locations to coincide with most laboratory facilities and as such do not resolve the effects of channeling in the canyons and the influence this has on potential surface releases. An Atmospheric Transport Study (ATS) was initiated to better understand the wind flow fields and dispersion from the LANL Waste Storage and Disposal facilities at TA-54, Area G. As part of this effort, a series of six portable meteorological towers were sited in the vicinity of Area G, two at mesa top locations, one just east of the site where the mesas have dissipated to mild ridges, and three in the canyons adjacent to the disposal site mesa as indicated on the topographic representation of the local terrain. Since 1994, the towers have collected horizontal wind velocities, pressure, temperature, relative humidity and a radiation gamma reading every fifteen minutes. The data bass is being analyzed for trends and to provide a basis for comparison to computational modeling efforts to predict the flow fields

  9. Multiple mode model of tokamak transport

    International Nuclear Information System (INIS)

    Singer, C.E.; Ghanem, E.S.; Bateman, G.; Stotler, D.P.

    1989-07-01

    Theoretical models for radical transport of energy and particles in tokamaks due to drift waves, rippling modes, and resistive ballooning modes have been combined in a predictive transport code. The resulting unified model has been used to simulate low confinement mode (L-mode) energy confinement scalings. Dependence of global energy confinement on electron density for the resulting model is also described. 26 refs., 1 fig., 2 tabs

  10. Multiple mode model of tokamak transport

    Energy Technology Data Exchange (ETDEWEB)

    Singer, C.E.; Ghanem, E.S.; Bateman, G.; Stotler, D.P.

    1989-07-01

    Theoretical models for radical transport of energy and particles in tokamaks due to drift waves, rippling modes, and resistive ballooning modes have been combined in a predictive transport code. The resulting unified model has been used to simulate low confinement mode (L-mode) energy confinement scalings. Dependence of global energy confinement on electron density for the resulting model is also described. 26 refs., 1 fig., 2 tabs.

  11. Development of one-dimensional atmosphere-bare soil model

    Energy Technology Data Exchange (ETDEWEB)

    Yamazawa, Hiromi; Nagai, Haruyasu [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1997-10-01

    As the first step of modeling of dynamical behaviors of air and water as media of radionuclide migration in the atmosphere-vegetation-soil system, a one-dimensional numerical model of atmosphere-bare soil system was developed. The atmospheric part, which is based on the existing one-dimensional meteorological model PHYD1V3, consists of prognostic equations for horizontal wind components, potential temperature, specific humidity, fog water, turbulence kinetic energy and turbulence length scale. This part also consists of a second-order turbulence closure model and solar-atmospheric radiation model. The soil part consists of prognostic equations for soil temperature, volumetric water content and specific humidity in soil air. Both parts are interfaced to each other with the ground surface water and heat budget equations. This model employs a finite difference scheme with multi-layer description for the both part. (author)

  12. Why Modelling on Different Scales is Necessary to Understand the Balance of Mercury in the Atmosphere

    Science.gov (United States)

    Pirrone, N.; Hedgecock, I. M.; Jung, G.

    2007-05-01

    Two apparently conflicting facts concerning atmospheric mercury have prompted debate and an intensification of research activity over the last five years. The first is that global background atmospheric mercury concentrations are extremely uniform, with a slightly lower in the southern hemisphere compared to the northern hemisphere. This indicates that the atmospheric residence time pf mercury is long enough for it to be transported from its main emission source areas. The second is the by now well established presence of oxidised mercury compounds in the marine BL, far from anthropogenic sources. Oxidised mercury compounds make up a fairly small component of anthropogenic emissions, but are much more readily scavenged or deposited than elemental mercury and therefore not expected to be transported over any great distance. The presence of these compounds in the MBL therefore suggests that in-situ production occurs, which would also infer in-situ deposition thereby reducing the local concentration of mercury. However, as stated previously background concentrations are hemisperically extremely uniform. In order to investigate the atmospheric transport and transformation of mercury, modelling studies at different scales are required. Complex photochemical box models are used to study chemical processes in detail. Regional transport models with less complex chemistry but including anthropogenic and natural emission sources and a parameterised description of deposition processes are used to study source receptor relationships and estimate Hg exchange budgets between the atmosphere and terrestrial and marine receptors. Global transport models (with simplified chemistry) are used to investigate long-distance (intercontinental) transport pathways and the uniformity of hemispherical background concentrations. Results from the photochemical box model studies indicate that the atmospheric lifetime of mercury due to reactions with Br and OH may be shorter than previously

  13. A multimedia fate and chemical transport modeling system for pesticides: I. Model development and implementation

    Science.gov (United States)

    Li, Rong; Scholtz, M. Trevor; Yang, Fuquan; Sloan, James J.

    2011-07-01

    We have combined the US EPA MM5/MCIP/SMOKE/CMAQ modeling system with a dynamic soil model, the pesticide emission model (PEM), to create a multimedia chemical transport model capable of describing the important physical and chemical processes involving pesticides in the soil, in the atmosphere, and on the surface of vegetation. These processes include: agricultural practices (e.g. soil tilling and pesticide application mode); advection and diffusion of pesticides, moisture, and heat in the soil; partitioning of pesticides between soil organic carbon and interstitial water and air; emissions from the soil to the atmosphere; gas-particle partitioning and transport in the atmosphere; and atmospheric chemistry and dry and wet deposition of pesticides to terrestrial and water surfaces. The modeling system was tested by simulating toxaphene in a domain that covers most of North America for the period from 1 January 2000 to 31 December 2000. The results show obvious transport of the pesticide from the heavily contaminated soils in the southern United States and Mexico to water bodies including the Atlantic Ocean, the Gulf of Mexico and the Great Lakes, leading to significant dry and wet deposition into these ecosystems. The spatial distributions of dry and wet depositions differ because of their different physical mechanisms; the former follows the distribution of air concentrations whereas the latter is more biased to the North East due to the effect of precipitation.

  14. A multimedia fate and chemical transport modeling system for pesticides: I. Model development and implementation

    International Nuclear Information System (INIS)

    Li Rong; Yang Fuquan; Sloan, James J; Scholtz, M Trevor

    2011-01-01

    We have combined the US EPA MM5/MCIP/SMOKE/CMAQ modeling system with a dynamic soil model, the pesticide emission model (PEM), to create a multimedia chemical transport model capable of describing the important physical and chemical processes involving pesticides in the soil, in the atmosphere, and on the surface of vegetation. These processes include: agricultural practices (e.g. soil tilling and pesticide application mode); advection and diffusion of pesticides, moisture, and heat in the soil; partitioning of pesticides between soil organic carbon and interstitial water and air; emissions from the soil to the atmosphere; gas-particle partitioning and transport in the atmosphere; and atmospheric chemistry and dry and wet deposition of pesticides to terrestrial and water surfaces. The modeling system was tested by simulating toxaphene in a domain that covers most of North America for the period from 1 January 2000 to 31 December 2000. The results show obvious transport of the pesticide from the heavily contaminated soils in the southern United States and Mexico to water bodies including the Atlantic Ocean, the Gulf of Mexico and the Great Lakes, leading to significant dry and wet deposition into these ecosystems. The spatial distributions of dry and wet depositions differ because of their different physical mechanisms; the former follows the distribution of air concentrations whereas the latter is more biased to the North East due to the effect of precipitation.

  15. Ozone transmittance in a model atmosphere at Ikeja, Lagos state ...

    African Journals Online (AJOL)

    Variation of ozone transmittance with height in the atmosphere for radiation in the 9.6m absorption band was studied using Goody's model atmosphere, with cubic spline interpolation technique to improve the quality of the curve. The data comprising of pressure and temperature at different altitudes (0-22 km) for the month of ...

  16. UV- Radiation Absorption by Ozone in a Model Atmosphere using ...

    African Journals Online (AJOL)

    UV- radiation absorption is studied through variation of ozone transmittance with altitude in the atmosphere for radiation in the 9.6μm absorption band using Goody's model atmosphere with cubic spline interpolation technique to improve the quality of the curve. The data comprising of pressure and temperature at different ...

  17. Ensemble-based data assimilation schemes for atmospheric chemistry models

    NARCIS (Netherlands)

    Barbu, A.L.

    2010-01-01

    The atmosphere is a complex system which includes physical, chemical and biological processes. Many of these processes affecting the atmosphere are subject to various interactions and can be highly nonlinear. This complexity makes it necessary to apply computer models in order to understand the

  18. Sensitivity of transatlantic dust transport to chemical aging and related atmospheric processes

    KAUST Repository

    Abdelkader, Mohamed

    2017-03-20

    We present a sensitivity study on transatlantic dust transport, a process which has many implications for the atmosphere, the ocean and the climate. We investigate the impact of key processes that control the dust outflow, i.e., the emission flux, convection schemes and the chemical aging of mineral dust, by using the EMAC model following Abdelkader et al. (2015). To characterize the dust outflow over the Atlantic Ocean, we distinguish two geographic zones: (i) dust interactions within the Intertropical Convergence Zone (ITCZ), or the dust–ITCZ interaction zone (DIZ), and (ii) the adjacent dust transport over the Atlantic Ocean (DTA) zone. In the latter zone, the dust loading shows a steep and linear gradient westward over the Atlantic Ocean since particle sedimentation is the dominant removal process, whereas in the DIZ zone aerosol–cloud interactions, wet deposition and scavenging processes determine the extent of the dust outflow. Generally, the EMAC simulated dust compares well with CALIPSO observations; however, our reference model configuration tends to overestimate the dust extinction at a lower elevation and underestimates it at a higher elevation. The aerosol optical depth (AOD) over the Caribbean responds to the dust emission flux only when the emitted dust mass is significantly increased over the source region in Africa by a factor of 10. These findings point to the dominant role of dust removal (especially wet deposition) in transatlantic dust transport. Experiments with different convection schemes have indeed revealed that the transatlantic dust transport is more sensitive to the convection scheme than to the dust emission flux parameterization. To study the impact of dust chemical aging, we focus on a major dust outflow in July 2009. We use the calcium cation as a proxy for the overall chemical reactive dust fraction and consider the uptake of major inorganic acids (i.e., H2SO4, HNO3 and HCl) and their anions, i.e., sulfate (SO42−), bisulfate

  19. Atmospheric Models for Aerocapture Systems Studies

    Science.gov (United States)

    Justus, C. G.; Duvall, Aleta; Keller, Vernon W.

    2003-01-01

    Aerocapture uses atmospheric drag to decelerate into captured orbit from interplanetary transfer orbit. This includes capture into Earth orbit from, for example, Lunar-return or Mars-return orbit. Eight Solar System destinations have sufficient atmosphere for aerocapture to be applicable - three of the rocky planets (Venus, Earth, and Mars), four gas giants (Jupiter, Saturn, Uranus, and Neptune), and Saturn's moon Titan. These destinations fall into two groups: (1) The rocky planets, which have warm surface temperatures (approx. 200 to 750 K) and rapid decrease of density with altitude, and (2) the gas giants and Titan, which have cold temperatures (approx. 70 to 170 K) at the surface or 1-bar pressure level, and slow rate of decrease of density with altitude. The height variation of average density with altitude above 1-bar pressure level for the gas giant planets is shown. The periapsis density required for aerocapture of spacecraft having typical values of ballistic coefficient (a measure of mass per unit cross-sectional area) is also shown. The aerocapture altitudes at the gas giants would typically range from approx. 150 to 300 km. Density profiles are compared for the rocky planets with those for Titan and Neptune. Aerocapture at the rocky planets would occur at heights of approx. 50 to 100 km. For comparison, typical density and altitudes for aerobraking operations (circularizing a highly elliptical capture orbit, using multiple atmospheric passes) are also indicated.

  20. Long-range atmospheric transport and the distribution of polycyclic aromatic hydrocarbons in Changbai Mountain.

    Science.gov (United States)

    Zhao, Xiangai; Kim, Seung-Kyu; Zhu, Weihong; Kannan, Narayanan; Li, Donghao

    2015-01-01

    The Changbai (also known as "Baekdu") Mountain, on the border between China and North Korea, is the highest mountain (2750 m) in northeastern China. Recently, this mountain region has experienced a dramatic increase in air pollution, not only because of increasing volumes of tourism-derived traffic but also because of the long-range transport of polluted westerly winds passing through major industrial and urban cities in the eastern region of China. To assess the relative importance of the two sources of pollution, 16 polycyclic aromatic hydrocarbons (PAHs) as model substances were determined in the mountain soil. A total of 32 soil samples were collected from different sides of the mountain at different latitudes between July and August of 2009. The ∑PAH concentrations were within the range 38.5-190.1 ng g(-1) on the northern side, 117.7-443.6 ng g(-1) on the southern side, and 75.3-437.3 ng g(-1) on the western side. A progressive increase in the level of ∑PAHs with latitude was observed on the southern and western sides that face the westerly wind with abundant precipitation. However, a similar concentration gradient was not observed on the northern side that receives less rain and is on the leeward direction of the wind. The high-molecular-weight PAH compounds were predominant in the soils on the southern and western sides, while low-molecular-weight PAHs dominated the northern side soils. These findings show that the distribution of PAHs in the mountain soil is strongly influenced by the atmospheric long-range transport and cold trapping. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Simulation of atmospheric CO2 over Europe and western Siberia using the regional scale model REMO

    International Nuclear Information System (INIS)

    Chevillard, A.; Ciais, P.; Lafont, S.

    2002-01-01

    The spatial distribution and the temporal variability of atmospheric CO 2 over Europe and western Siberia are investigated using the regional atmospheric model, REMO. The model, of typical horizontal resolution 50 km, is part of a nested modelling framework that has been established as a concerted action during the EUROSIBERIAN CARBONFLUX project. In REMO, the transport of CO 2 is simulated together with climate variables, which offers the possibility of calculating at each time step the land atmosphere CO 2 fluxes as driven by the modelled meteorology. The uptake of CO 2 by photosynthesis is calculated using a light use efficiency formulation, where the absorbed photosynthetically active solar radiation is inferred from satellite measurements. The release of CO 2 from plant and soil respiration is driven by the simulated climate and assumed to be in equilibrium with photosynthesis over the course of one year. Fossil CO 2 emissions and air-sea fluxes within the model domain are prescribed, whereas the influence of sources outside the model domain is computed from as a boundary condition CO 2 fields determined a global transport model. The modelling results are compared against pointwise eddy covariance fluxes, and against atmospheric CO 2 records. We show that a necessary condition to simulate realistically the variability of atmospheric CO 2 over continental Europe is to account for the diurnal cycle of biospheric exchange. Overall, for the study period of July 1998, REMO realistically simulates the short-term variability of fluxes and of atmospheric mixing ratios. However, the mean CO 2 gradients from western Europe to western Siberia are not correctly reproduced. This latter deficiency points out the key role of boundary conditions in a limited-area model, as well as the need for using more realistic geographic mean patterns of biospheric carbon fluxes

  2. Modeling the distribution of ammonia across Europe including bi-directional surface–atmosphere exchange

    Directory of Open Access Journals (Sweden)

    R. J. Wichink Kruit

    2012-12-01

    Full Text Available A large shortcoming of current chemistry transport models (CTM for simulating the fate of ammonia in the atmosphere is the lack of a description of the bi-directional surface–atmosphere exchange. In this paper, results of an update of the surface–atmosphere exchange module DEPAC, i.e. DEPosition of Acidifying Compounds, in the chemistry transport model LOTOS-EUROS are discussed. It is shown that with the new description, which includes bi-directional surface–atmosphere exchange, the modeled ammonia concentrations increase almost everywhere, in particular in agricultural source areas. The reason is that by using a compensation point the ammonia lifetime and transport distance is increased. As a consequence, deposition of ammonia and ammonium decreases in agricultural source areas, while it increases in large nature areas and remote regions especially in southern Scandinavia. The inclusion of a compensation point for water reduces the dry deposition over sea and allows reproducing the observed marine background concentrations at coastal locations to a better extent. A comparison with measurements shows that the model results better represent the measured ammonia concentrations. The concentrations in nature areas are slightly overestimated, while the concentrations in agricultural source areas are still underestimated. Although the introduction of the compensation point improves the model performance, the modeling of ammonia remains challenging. Important aspects are emission patterns in space and time as well as a proper approach to deal with the high concentration gradients in relation to model resolution. In short, the inclusion of a bi-directional surface–atmosphere exchange is a significant step forward for modeling ammonia.

  3. Uncertainty modelling of atmospheric dispersion by stochastic ...

    Indian Academy of Sciences (India)

    discharges and related regulated pollution criteria for the marine environment. An Integrated. Simulation-Assessment Approach (ISAA) (Yang et al 2010) is developed to systematically tackle multiple uncertainties associated with hydrocarbon contaminant transport in subsurface and assessment of carcinogenic health risk ...

  4. A Description of the Framework of the Atmospheric Boundary Layer Environment (ABLE) Model

    Science.gov (United States)

    2012-09-01

    temperature, moisture, and scalars or pollutant transports. The model is based on a set of three-dimensional, prognostic, incompressible, Navier - Stocks ...transfer between the Earth’s surface and the atmosphere. We use a set of incompressible Navier - Stocks system equations with the Boussinesq...present (Stull 1989; Durran 2008). The first stage in the development is focused on the Reynolds Averaged Navier - Stocks (RANS) type model, and the second

  5. Recent advances in non-LTE stellar atmosphere models

    Science.gov (United States)

    Sander, Andreas A. C.

    2017-11-01

    In the last decades, stellar atmosphere models have become a key tool in understanding massive stars. Applied for spectroscopic analysis, these models provide quantitative information on stellar wind properties as well as fundamental stellar parameters. The intricate non-LTE conditions in stellar winds dictate the development of adequate sophisticated model atmosphere codes. The increase in both, the computational power and our understanding of physical processes in stellar atmospheres, led to an increasing complexity in the models. As a result, codes emerged that can tackle a wide range of stellar and wind parameters. After a brief address of the fundamentals of stellar atmosphere modeling, the current stage of clumped and line-blanketed model atmospheres will be discussed. Finally, the path for the next generation of stellar atmosphere models will be outlined. Apart from discussing multi-dimensional approaches, I will emphasize on the coupling of hydrodynamics with a sophisticated treatment of the radiative transfer. This next generation of models will be able to predict wind parameters from first principles, which could open new doors for our understanding of the various facets of massive star physics, evolution, and death.

  6. Concept Layout Model of Transportation Terminals

    Directory of Open Access Journals (Sweden)

    Li-ya Yao

    2012-01-01

    Full Text Available Transportation terminal is the key node in transport systems. Efficient terminals can improve operation of passenger transportation networks, adjust the layout of public transportation networks, provide a passenger guidance system, and regulate the development of commercial forms, as well as optimize the assembly and distribution of modern logistic modes, among others. This study aims to clarify the relationship between the function and the structure of transportation terminals and establish the function layout design. The mapping mechanism of demand, function, and structure was analyzed, and a quantitative relationship between function and structure was obtained from a design perspective. Passenger demand and terminal structure were decomposed into several demand units and structural elements following the principle of reverse engineering. The relationship maps between these two kinds of elements were then analyzed. Function-oriented concept layout model of transportation terminals was established using the previous method. Thus, a technique in planning and design of transportation structures was proposed. Meaningful results were obtained from the optimization of transportation terminal facilities, which guide the design of the functional layout of transportation terminals and improve the development of urban passenger transportation systems.

  7. Modelling Chemical Patterns of Atmospheric Polycyclic Aromatic Hydrocarbons (PAHs) in the Iberian Peninsula

    Science.gov (United States)

    Ratola, Nuno; Jiménez-Guerrero, Pedro

    2013-04-01

    Semi-volatile organic compounds (SVOCs) such as PBDEs, PCBs, organochlorine pesticides (OCPs) or PAHs, are widespread and generated in a multitude of anthropogenic (and natural for PAHs) processes and although they are found in the environment at low concentrations, possess an extraordinary carcinogenic capacity (Baussant et al., 2001) and high ecotoxicity due to their persistence in different matrices (air, soil, water, living organisms). In particular, PAHs are originated by combustion processes or release from fossil fuels and can be transported in the atmosphere over long distances in gaseous or particulate matter (Baek et al., 1991). The establishment of strategies for sampling and chemical transport modelling of SVOCs in the atmosphere aiming the definition and validation of the spatial, temporal and chemical transport patterns of contaminants can be achieved by an integrated system of third-generation models that represent the current state of knowledge in air quality modelling and experimental data collected in field campaigns. This has implications in the fields of meteorology, atmospheric chemistry and even climate change. In this case, an extensive database already obtained on levels of atmospheric PAHs from biomonitoring schemes in the Iberian Peninsula fuelled the establishment of the first models of behaviour for PAHs. The modelling system WRF+CHIMERE was implemented with high spatial and temporal resolution to the Iberian Peninsula in this first task (9 km for the Iberian Peninsula, 3 km to Portugal, 1 hour), using PAHs atmospheric levels collected over a year-long sampling scheme comprising 4 campaigns (one per season) in over 30 sites. Daily information on meteorological parameters such as air temperature, humidity, rainfall or wind speed and direction was collected from the weather stations closest to the sampling sites. Diagnosis and forecasts of these meteorological variables using MM5 or WRF were used to feed a chemistry transport model

  8. Highway and interline transportation routing models

    International Nuclear Information System (INIS)

    Joy, D.S.; Johnson, P.E.

    1994-01-01

    The potential impacts associated with the transportation of hazardous materials are important issues to shippers, carriers, and the general public. Since transportation routes are a central characteristic in most of these issues, the prediction of likely routes is the first step toward the resolution of these issues. In addition, US Department of Transportation requirements (HM-164) mandate specific routes for shipments of highway controlled quantities of radioactive materials. In response to these needs, two routing models have been developed at Oak Ridge National Laboratory under the sponsorship of the U.S. Department of Energy (DOE). These models have been designated by DOE's Office of Environmental Restoration and Waste Management, Transportation Management Division (DOE/EM) as the official DOE routing models. Both models, HIGHWAY and INTERLINE, are described

  9. Multimodal transportation best practices and model element.

    Science.gov (United States)

    2014-06-01

    This report provides guidance in developing a multimodal transportation element of a local government comprehensive : plan. Two model elements were developed to address differences in statutory requirements for communities of different : sizes and pl...

  10. NODA for EPA's Updated Ozone Transport Modeling

    Science.gov (United States)

    Find EPA's NODA for the Updated Ozone Transport Modeling Data for the 2008 Ozone National Ambient Air Quality Standard (NAAQS) along with the ExitExtension of Public Comment Period on CSAPR for the 2008 NAAQS.

  11. Separating Transported and Local Atmospheric Carbon Monoxide in Australasia with Satellite and Ground-based Remote Sensing

    Science.gov (United States)

    Buchholz, R. R.; Edwards, D. P.; Deeter, M. N.; Worden, H. M.; Emmons, L. K.; Jones, N. B.; Paton-Walsh, C.; Deutscher, N. M.; Velazco, V. A.; Griffith, D. W. T.; Robinson, J.; Smale, D.

    2015-12-01

    A range of measurement techniques are required to understand atmospheric composition. No single instrument can measure all you need to know about the atmosphere, due to differences in temporal and spatial scales. Satellites help interpret synoptic-scale contributions to composition, but provide little fine-scale information due to sparse measurement timing and spatial averaging. In contrast, ground-based solar-tracking FTIR instruments can capture fine-scale chemistry and dynamic influence, but being point measurements, have trouble identifying transported signals. Knowing the relative contribution of transported to local sources of atmospheric pollution is important for developing realistic air quality policies and providing accurate air quality forecasts. In this study, we exploit the complementary limitations and sensitivities of two instruments to gain information about carbon monoxide (CO) sources at three stations in Australasia: Darwin and Wollongong in Australia and Lauder in New Zealand. Total column amounts of CO are compared between the satellite-borne Measurements of Pollution in the Troposphere (MOPITT) and ground-based solar FTIR instruments in the TCCON and NDACC networks. Several CO timeseries anomalies are highlighted as representative of pollution delivery pathways in relation to local, regional and long-distance contributions. Large-scale pollution events are captured by both instruments, but only the satellite instrument can provide regional and global context. MOPITT identifies long-range transport of pollution from biomass burning in South America and southern Africa, while the FTIR can additionally capture local urban and biomass burning influences. Unusually low CO, sourced from southern latitudes, is also measured by both instruments. Interannual variability is significantly different at each site and is diagnosed with chemical transport modeling (CAM-chem) to quantify the role of emissions versus meteorology.

  12. Modelling stratospheric chemistry in a global three-dimensional chemical transport model

    Energy Technology Data Exchange (ETDEWEB)

    Rummukainen, M. [Finnish Meteorological Inst., Sodankylae (Finland). Sodankylae Observatory

    1995-12-31

    Numerical modelling of atmospheric chemistry aims to increase the understanding of the characteristics, the behavior and the evolution of atmospheric composition. These topics are of utmost importance in the study of climate change. The multitude of gases and particulates making up the atmosphere and the complicated interactions between them affect radiation transfer, atmospheric dynamics, and the impacts of anthropogenic and natural emissions. Chemical processes are fundamental factors in global warming, ozone depletion and atmospheric pollution problems in general. Much of the prevailing work on modelling stratospheric chemistry has so far been done with 1- and 2-dimensional models. Carrying an extensive chemistry parameterisation in a model with high spatial and temporal resolution is computationally heavy. Today, computers are becoming powerful enough to allow going over to 3-dimensional models. In order to concentrate on the chemistry, many Chemical Transport Models (CTM) are still run off-line, i.e. with precalculated and archived meteorology and radiation. In chemistry simulations, the archived values drive the model forward in time, without interacting with the chemical evolution. This is an approach that has been adopted in stratospheric chemistry modelling studies at the Finnish Meteorological Institute. In collaboration with the University of Oslo, a development project was initiated in 1993 to prepare a stratospheric chemistry parameterisation, fit for global 3-dimensional modelling. This article presents the parameterisation approach. Selected results are shown from basic photochemical simulations

  13. Mathematical modeling plasma transport in tokamaks

    International Nuclear Information System (INIS)

    Quiang, Ji

    1995-01-01

    In this work, the author applied a systematic calibration, validation and application procedure based on the methodology of mathematical modeling to international thermonuclear experimental reactor (ITER) ignition studies. The multi-mode plasma transport model used here includes a linear combination of drift wave branch and ballooning branch instabilities with two a priori uncertain constants to account for anomalous plasma transport in tokamaks. A Bayesian parameter estimation method is used including experimental calibration error/model offsets and error bar rescaling factors to determine the two uncertain constants in the transport model with quantitative confidence level estimates for the calibrated parameters, which gives two saturation levels of instabilities. This method is first tested using a gyroBohm multi-mode transport model with a pair of DIII-D discharge experimental data, and then applied to calibrating a nominal multi-mode transport model against a broad database using twelve discharges from seven different tokamaks. The calibrated transport model is then validated on five discharges from JT-60 with no adjustable constants. The results are in a good agreement with experimental data. Finally, the resulting class of multi-mode tokamak plasma transport models is applied to the transport analysis of the ignition probability in a next generation machine, ITER. A reference simulation of basic ITER engineering design activity (EDA) parameters shows that a self-sustained thermonuclear burn with 1.5 GW output power can be achieved provided that impurity control makes radiative losses sufficiently small at an average plasma density of 1.2 X 10 20 /m 3 with 50 MW auxiliary heating. The ignition probability of ITER for the EDA parameters, can be formally as high as 99.9% in the present context. The same probability for concept design activity (CDA) parameters of ITER, which has smaller size and lower current, is only 62.6%

  14. Weather Research and Forecasting (WRF) Regional Atmospheric Model: Oahu

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Weather Research and Forecasting (WRF) mesoscale numerical weather prediction model 3.5-day hourly forecast for the region surrounding the Hawaiian island of Oahu at...

  15. Weather Research and Forecasting (WRF) Regional Atmospheric Model: CNMI

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Weather Research and Forecasting (WRF) mesoscale numerical weather prediction model 7-day hourly forecast for the region surrounding the Commonwealth of the Northern...

  16. Weather Research and Forecasting (WRF) Regional Atmospheric Model: Guam

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Weather Research and Forecasting (WRF) mesoscale numerical weather prediction model 7-day hourly forecast for the region surrounding the island of Guam at...

  17. Weather Research and Forecasting (WRF) Regional Atmospheric Model: Samoa

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Weather Research and Forecasting (WRF) mesoscale numerical weather prediction model 7-day hourly forecast for the region surrounding the islands of Samoa at...

  18. PREDICTION OF ATMOSPHERIC AIR POLLUTION BY EMISSIONS OF MOTOR TRANSPORT TAKING INTO ACCOUNT THE CHEMICAL TRANSFORMATION OF HARMFUL SUBSTANCES

    Directory of Open Access Journals (Sweden)

    M. M. Biliaiev

    2017-06-01

    Full Text Available Purpose. Development of 3D numerical models, which allow us to calculate air pollution process from road transport emissions based on chemical transformation of pollutants. Creating numerical models, which would give the opportunity to predict the level of air pollution in urban areas. Methodology. To address the evaluation of the air pollution problem of emissions of vehicles the equations of aerodynamics and mass transfer were used. In order to solve differential equations of aerodynamics and mass transfer the finite difference methods are used. For the numerical integration of the equation for the velocity potential the method of conditional approximation was applied. The equation for the velocity potential written in difference form, is being split into two equations, and at each step of splitting the unknown value of the potential speed is determined by the explicit scheme of running account and the difference scheme itself is implicit. For the numerical integration of the equation of dispersion of emissions in the atmosphere is used implicit alternating-triangular difference splitting scheme. Emissions from the road are simulated by a series of point sources of a given intensity. The developed numerical models are the basis of established software package.Findings. There were developed 3D numerical models, which belong to the class «diagnostic models». These models take into account the main physical factors affecting the process of dispersion of pollutants in the atmosphere when emissions from road transport taking into account the chemical transformation of pollutants. On the basis of the constructed numerical models a computational experiment to assess the level of air pollution in the street was carried out. Originality. Numerical models that allow you to calculate the 3D aerodynamic of wind flow in urban areas and the process of mass transfer of emissions from the road were developed. The models make it possible to account the

  19. Ocean-Atmosphere Coupled Model Simulations of Precipitation in the Central Andes

    Science.gov (United States)

    Nicholls, Stephen D.; Mohr, Karen I.

    2015-01-01

    The meridional extent and complex orography of the South American continent contributes to a wide diversity of climate regimes ranging from hyper-arid deserts to tropical rainforests to sub-polar highland regions. In addition, South American meteorology and climate are also made further complicated by ENSO, a powerful coupled ocean-atmosphere phenomenon. Modelling studies in this region have typically resorted to either atmospheric mesoscale or atmosphere-ocean coupled global climate models. The latter offers full physics and high spatial resolution, but it is computationally inefficient typically lack an interactive ocean, whereas the former offers high computational efficiency and ocean-atmosphere coupling, but it lacks adequate spatial and temporal resolution to adequate resolve the complex orography and explicitly simulate precipitation. Explicit simulation of precipitation is vital in the Central Andes where rainfall rates are light (0.5-5 mm hr-1), there is strong seasonality, and most precipitation is associated with weak mesoscale-organized convection. Recent increases in both computational power and model development have led to the advent of coupled ocean-atmosphere mesoscale models for both weather and climate study applications. These modelling systems, while computationally expensive, include two-way ocean-atmosphere coupling, high resolution, and explicit simulation of precipitation. In this study, we use the Coupled Ocean-Atmosphere-Wave-Sediment Transport (COAWST), a fully-coupled mesoscale atmosphere-ocean modeling system. Previous work has shown COAWST to reasonably simulate the entire 2003-2004 wet season (Dec-Feb) as validated against both satellite and model analysis data when ECMWF interim analysis data were used for boundary conditions on a 27-9-km grid configuration (Outer grid extent: 60.4S to 17.7N and 118.6W to 17.4W).

  20. Perfluoroalkyl contaminants in the Canadian Arctic: evidence of atmospheric transport and local contamination.

    Science.gov (United States)

    Stock, Naomi L; Furdui, Vasile I; Muir, Derek C G; Mabury, Scott A

    2007-05-15

    Perfluorosulfonates (PFSAs) and perfluorocarboxylates (PFCAs) have been hypothesized to reach remote locations such as the Canadian Arctic either indirectly as volatile precursor chemicals that undergo atmospheric transport and subsequent degradation, or directly via oceanic and atmospheric transport of the PFSAs and PFCAs themselves. Water, sediment, and air samples were collected from three Arctic lakes (Amituk, Char, and Resolute) on Cornwallis Island, Nunavut, Canada. Samples were analyzed for PFSAs and PFCAs, precursor chemicals including the fluorotelomer alcohols (FTOHs) and polyfluorinated sulfonamides (FSAs), and precursor degradation products such as the fluorotelomer unsaturated carboxylates (FTUCAs). PFSAs and PFCAs were detected in water and sediment of all three Arctic lakes (concentrations ranged from nondetect to 69 ng/L and nondetect to 85 ng/g dry weight, respectively). FTOHs and FSAs were observed in air samples (mean concentrations ranged from 2.8 to 29 pg/m3), and confirm that volatile precursors are reaching Arctic latitudes. The observation of degradation products, including FTUCAs observed in sediment and atmospheric particles, and N-ethyl perfluorooctanesulfonamide (NEtFOSA) and perfluorooctanesulfonamide (PFOSA) in air samples, indicate that degradation of the FTOHs and FSAs is occurring in the Arctic environment. PFSAs and PFCAs were also observed on atmospheric particles (mean concentrations ranged from contamination of Resolute Lake, which is located downstream of an airport wastewater input, has occurred.

  1. The Ocean-Land-Atmosphere Model (OLAM): A new Generation of Earth System Model

    Science.gov (United States)

    Walko, R. L.; Avissar, R.

    2006-12-01

    The Ocean-Land-Atmosphere Model (OLAM) has been developed to extend the capabilities of the Regional Atmospheric Modeling System (RAMS) to a global modeling framework. OLAM is a new model with regard to its dynamic core, grid configuration, memory structure, and numerical solution technique. Instead of the Boussinesq approximation used in RAMS, OLAM solves the full compressible Navier-Stokes equations in conservation form using finite-volume numerical operators that conserve mass, momentum, and energy to machine precision. In place of RAMS' structured multiple nested grids and hexahedral grid cells on a polar stereographic projection, OLAM uses a single unstructured grid and pentahedral (prism) grid cells (with a triangular footprint) which conform to the sphere without a coordinate transformation. OLAM's grid topology enables local mesh refinement to any degree without the need for special grid nesting algorithms; all communication between regions of different resolution is accomplished seamlessly by flux-conservative advective and diffusive transport. OLAM represents topography using a form of the volume-fraction or shaved grid cell method in which model levels are strictly horizontal, rather than terrain- following, and therefore intersect topography. Grid cell face areas, which explicitly appear in the finite volume equations and are pre-computed and stored, are reduced in proportion to any blockage by topography, thereby correctly regulating inter-cell transport and preventing advective flux normal to the ground surface. Apart from its dynamic core and grid configuration, OLAM bears a strong resemblance to RAMS. Both models share the same physical parameterizations for microphysics, land and vegetation water and energy balances, radiative transfer, and sub-grid cumulus convection. Model coding structure, I/O file formats, and methods of compiling, initializing, and executing the models are very similar or identical. Results of a variety of OLAM simulations

  2. Mars Global Reference Atmospheric Model 2010 Version: Users Guide

    Science.gov (United States)

    Justh, H. L.

    2014-01-01

    This Technical Memorandum (TM) presents the Mars Global Reference Atmospheric Model 2010 (Mars-GRAM 2010) and its new features. Mars-GRAM is an engineering-level atmospheric model widely used for diverse mission applications. Applications include systems design, performance analysis, and operations planning for aerobraking, entry, descent and landing, and aerocapture. Additionally, this TM includes instructions on obtaining the Mars-GRAM source code and data files as well as running Mars-GRAM. It also contains sample Mars-GRAM input and output files and an example of how to incorporate Mars-GRAM as an atmospheric subroutine in a trajectory code.

  3. The ECHAM3 atmospheric general circulation model

    International Nuclear Information System (INIS)

    1993-09-01

    The ECHAM model has been developed from the ECMWF model (cycle 31, November 1988). It contains several changes, mostly in the parameterization, in order to adjust the model for climate simulations. The technical details of the ECHAM operational model are described. (orig./KW)

  4. Developing Tighter Constraints on Exoplanet Biosignatures by Modeling Atmospheric Haze

    Science.gov (United States)

    Felton, Ryan; Neveu, Marc; Domagal-Goldman, Shawn David; Desch, Steven; Arney, Giada

    2018-01-01

    As we increase our capacity to resolve the atmospheric composition of exoplanets, we must continue to refine our ability to distinguish true biosignatures from false positives in order to ultimately distinguish a life-bearing from a lifeless planet. Of the possible true and false biosignatures, methane (CH4) and carbon dioxide (CO2) are of interest, because on Earth geological and biological processes can produce them on large scales. To identify a biotic, Earth-like exoplanet, we must understand how these biosignatures shape their atmospheres. High atmospheric abundances of CH4 produce photochemical organic haze, which dramatically alters the photochemistry, climate, and spectrum of a planet. Arney et al. (2017) have suggested that haze-bearing atmospheres rich in CO2 may be a type of biosignature because the CH4 flux required to produce the haze is similar to the amount of biogenic CH4 on modern Earth. Atmospheric CH4 and CO2 both affect haze-formation photochemistry, and the potential for hazes to form in Earth-like atmospheres at abiotic concentrations of these gases has not been well studied. We will explore a wide range of parameter space of abiotic concentration levels of these gases to determine what spectral signatures are possible from abiotic environments and look for measurable differences between abiotic and biotic atmospheres. We use a 1D photochemical model with an upgraded haze production mechanism to compare Archean and modern Earth atmospheres to abiotic versions while varying atmospheric CH4 and CO2 levels and atmospheric pressure. We will vary CO2 from a trace gas to an amount such that it dominates atmospheric chemistry. For CH4, there is uncertainty regarding the amount of abiotic CH4 that comes from serpentinizing systems. To address this uncertainty, we will model three cases: 1) assume all CH4 comes from photochemistry; 2) use estimates of modern-day serpentinizing fluxes, assuming they are purely abiotic; and 3) assume serpentinizing

  5. Harvard Forest regional-scale air mass composition by Patterns in Atmospheric Transport History (PATH)

    Science.gov (United States)

    Moody, J. L.; Munger, J. W.; Goldstein, A. H.; Jacob, D. J.; Wofsy, S. C.

    1998-06-01

    We calculated 4 years (1990-1993) of back trajectories arriving at Harvard Forest and used them to define patterns in atmospheric transport history. This information was used to assess the degree to which regional-scale transport modulates the chemical composition of air masses sampled at Harvard Forest. Different seasonal signals in trace-gas concentration are derived for different flow patterns. Throughout the year, high-speed transport of cool, dry, cloud-free air from the north and northwest represents background conditions for the Harvard Forest site. These synoptic conditions describe the atmosphere after passage of a cold front. The most polluted conditions in each season occurred under SW flow, with warmer temperatures, higher water vapor mixing ratios, low mixed-layer depths at the site, and a higher frequency of cloudy conditions. These regional-scale air mass characteristics describe synoptic conditions of warm sector transport. In addition to average air mass characteristics, we have analyzed the covariation of species (e.g., O3 versus NOy-NOx; O3 versus CO) to address chemical processes based on transport history. For summer daytime measurements, we show that relatively fresh pollutants arrive in SW flow while the most aged air masses with higher O3 to NOz slopes arrive with W flow, suggesting a Midwestern contribution to regional high-oxidant episodes. These observations of patterns in chemical characteristics related to patterns in transport are corroborated with probability maps indicating the likelihood of transport from upwind regions using trajectories selected for chemical distribution end-members (10th and 90th percentiles).

  6. Modeling concentrations and fluxes of atmospheric CO2 in the North East Atlantic region

    DEFF Research Database (Denmark)

    Geels, C.; Christensen, J.H.; Hansen, A.W.

    2001-01-01

    As part of the Danish NEAREX project a three-dimensional Eulerian hemispheric air pollution model is used to study the transport and concentrations of atmospheric CO2 in the North East Atlantic region. The model domain covers the major part of the Northern Hemisphere and currently the model inclu...

  7. Impact of transport model errors on the global and regional methane emissions estimated by inverse modelling

    Science.gov (United States)

    Locatelli, R.; Bousquet, P.; Chevallier, F.; Fortems-Cheney, A.; Szopa, S.; Saunois, M.; Agusti-Panareda, A.; Bergmann, D.; Bian, H.; Cameron-Smith, P.; Chipperfield, M. P.; Gloor, E.; Houweling, S.; Kawa, S. R.; Krol, M.; Patra, P. K.; Prinn, R. G.; Rigby, M.; Saito, R.; Wilson, C.

    2013-10-01

    A modelling experiment has been conceived to assess the impact of transport model errors on methane emissions estimated in an atmospheric inversion system. Synthetic methane observations, obtained from 10 different model outputs from the international TransCom-CH4 model inter-comparison exercise, are combined with a prior scenario of methane emissions and sinks, and integrated into the three-component PYVAR-LMDZ-SACS (PYthon VARiational-Laboratoire de Météorologie Dynamique model with Zooming capability-Simplified Atmospheric Chemistry System) inversion system to produce 10 different methane emission estimates at the global scale for the year 2005. The same methane sinks, emissions and initial conditions have been applied to produce the 10 synthetic observation datasets. The same inversion set-up (statistical errors, prior emissions, inverse procedure) is then applied to derive flux estimates by inverse modelling. Consequently, only differences in the modelling of atmospheric transport may cause differences in the estimated fluxes. In our framework, we show that transport model errors lead to a discrepancy of 27 Tg yr-1 at the global scale, representing 5% of total methane emissions. At continental and annual scales, transport model errors are proportionally larger than at the global scale, with errors ranging from 36 Tg yr-1 in North America to 7 Tg yr-1 in Boreal Eurasia (from 23 to 48%, respectively). At the model grid-scale, the spread of inverse estimates can reach 150% of the prior flux. Therefore, transport model errors contribute significantly to overall uncertainties in emission estimates by inverse modelling, especially when small spatial scales are examined. Sensitivity tests have been carried out to estimate the impact of the measurement network and the advantage of higher horizontal resolution in transport models. The large differences found between methane flux estimates inferred in these different configurations highly question the consistency of

  8. Impact of transport model errors on the global and regional methane emissions estimated by inverse modelling

    Directory of Open Access Journals (Sweden)

    R. Locatelli

    2013-10-01

    Full Text Available A modelling experiment has been conceived to assess the impact of transport model errors on methane emissions estimated in an atmospheric inversion system. Synthetic methane observations, obtained from 10 different model outputs from the international TransCom-CH4 model inter-comparison exercise, are combined with a prior scenario of methane emissions and sinks, and integrated into the three-component PYVAR-LMDZ-SACS (PYthon VARiational-Laboratoire de Météorologie Dynamique model with Zooming capability-Simplified Atmospheric Chemistry System inversion system to produce 10 different methane emission estimates at the global scale for the year 2005. The same methane sinks, emissions and initial conditions have been applied to produce the 10 synthetic observation datasets. The same inversion set-up (statistical errors, prior emissions, inverse procedure is then applied to derive flux estimates by inverse modelling. Consequently, only differences in the modelling of atmospheric transport may cause differences in the estimated fluxes. In our framework, we show that transport model errors lead to a discrepancy of 27 Tg yr−1 at the global scale, representing 5% of total methane emissions. At continental and annual scales, transport model errors are proportionally larger than at the global scale, with errors ranging from 36 Tg yr−1 in North America to 7 Tg yr−1 in Boreal Eurasia (from 23 to 48%, respectively. At the model grid-scale, the spread of inverse estimates can reach 150% of the prior flux. Therefore, transport model errors contribute significantly to overall uncertainties in emission estimates by inverse modelling, especially when small spatial scales are examined. Sensitivity tests have been carried out to estimate the impact of the measurement network and the advantage of higher horizontal resolution in transport models. The large differences found between methane flux estimates inferred in these different configurations highly

  9. Relating landfill gas emissions to atmospheric pressure using numerical modeling and state-space analysis

    DEFF Research Database (Denmark)

    Poulsen, T.G.; Christophersen, Mette; Moldrup, P.

    2003-01-01

    were applied: (I) State-space analysis was used to identify relations between gas flux and short-term (hourly) variations in atmospheric pressure. (II) A numerical gas transport model was fitted to the data and used to quantify short-term impacts of variations in atmospheric pressure, volumetric soil......-water content, soil gas permeability, soil gas diffusion coefficients, and biological CH4 degradation rate upon landfill gas concentration and fluxes in the soil. Fluxes and concentrations were found to be most sensitive to variations in volumetric soil water content, atmospheric pressure variations and gas...... permeability whereas variations in CH4 oxidation rate and molecular coefficients had less influence. Fluxes appeared to be most sensitive to atmospheric pressure at intermediate distances from the landfill edge. Also overall CH4 fluxes out of the soil over longer periods (years) were largest during periods...

  10. Stable isotope composition of atmospheric carbon monoxide. A modelling study

    International Nuclear Information System (INIS)

    Gromov, Sergey S.

    2014-01-01

    This study aims at an improved understanding of the stable carbon and oxygen isotope composition of the carbon monoxide (CO) in the global atmosphere by means of numerical simulations. At first, a new kinetic chemistry tagging technique for the most complete parameterisation of isotope effects has been introduced into the Modular Earth Submodel System (MESSy) framework. Incorporated into the ECHAM/MESSy Atmospheric Chemistry (EMAC) general circulation model, an explicit treatment of the isotope effects on the global scale is now possible. The expanded model system has been applied to simulate the chemical system containing up to five isotopologues of all carbon- and oxygen-bearing species, which ultimately determine the δ 13 C, δ 18 O and Δ 17 O isotopic signatures of atmospheric CO. As model input, a new stable isotope-inclusive emission inventory for the relevant trace gases has been compiled. The uncertainties of the emission estimates and of the resulting simulated mixing and isotope ratios have been analysed. The simulated CO mixing and stable isotope ratios have been compared to in-situ measurements from ground-based observatories and from the civil-aircraft-mounted CARIBIC-1 measurement platform. The systematically underestimated 13 CO/ 12 CO ratios of earlier, simplified modelling studies can now be partly explained. The EMAC simulations do not support the inferences of those studies, which suggest for CO a reduced input of the highly depleted in 13 C methane oxidation source. In particular, a high average yield of 0.94 CO per reacted methane (CH 4 ) molecule is simulated in the troposphere, to a large extent due to the competition between the deposition and convective transport processes affecting the CH 4 to CO reaction chain intermediates. None of the other factors, assumed or disregarded in previous studies, however hypothesised to have the potential in enriching tropospheric CO in 13 C, were found significant when explicitly simulated. The

  11. Modeling of light absorbing particles in atmosphere, snow and ice in the Arctic

    Science.gov (United States)

    Sobhani, N.; Kulkarni, S.; Carmichael, G. R.

    2015-12-01

    Long-range transport of atmospheric particles from mid-latitude sources to the Arctic is the main contributor to the Arctic aerosol loadings and deposition. Black Carbon (BC), Brown Carbon (BrC) and dust are considered of great climatic importance and are the main absorbers of sunlight in the atmosphere. Furthermore, wet and dry deposition of light absorbing particles (LAPs) on snow and ice cause reduction of snow and ice albedo. LAPs have significant radiative forcing and effect on snow albedo. There are high uncertainties in estimating radiative forcing of LAPs. We studied the potential effect of LAPs from different emission source regions and sectors on snow albedo in the Arctic. The transport pathway of LAPs to the Arctic is studies for different high pollution episodes. In this study a modeling framework including Weather Research and Forecasting Model (WRF) and the University of Iowa's Sulfur Transport and dEpostion model(STEM) is used to predict the transport of LAPs from different geographical sources and sectors (i.e. transportation, residential, industry, biomass burning and power) to the Arctic. For assessing the effect of LAP deposition on snow single-layer simulator of the SNow, Ice, and Aerosol Radiation (SNICAR-Online) model was used to derive snow albedo values for snow albedo reduction causes by BC deposition. To evaluate the simulated values we compared the BC concentration in snow with observed values from previous studies including Doherty et al. 2010.

  12. The simulation of the transport of aircraft emissions by a three-dimensional global model

    Directory of Open Access Journals (Sweden)

    G. J. M. Velders

    1994-04-01

    Full Text Available A three-dimensional off-line tracer transport model coupled to the ECMWF analyses has been used to study the transport of trace gases in the atmosphere. The model gives a reasonable description of their general transport in the atmosphere. The simulation of the transport of aircraft emissions (as NOx has been studied as well as the transport of passive tracers injected at different altitudes in the North Atlantic flight corridor. A large zonal variation in the NOx concentrations as well as large seasonal and yearly variations was found. The altitude of the flight corridor influences the amount of tracers transported into the troposphere and stratosphere to a great extent.

  13. Gridded anthropogenic emissions inventory and atmospheric transport of carbonyl sulfide in the U.S.: U.S. Anthropogenic COS Source and Transport

    Energy Technology Data Exchange (ETDEWEB)

    Zumkehr, Andrew [Sierra Nevada Research Institute, University of California, Merced California USA; Hilton, Timothy W. [Sierra Nevada Research Institute, University of California, Merced California USA; Whelan, Mary [Sierra Nevada Research Institute, University of California, Merced California USA; Smith, Steve [Joint Global Change Research Institute, PNNL, College Park Maryland USA; Campbell, J. Elliott [Sierra Nevada Research Institute, University of California, Merced California USA

    2017-02-21

    Carbonyl sulfide (COS or OCS), the most abundant sulfur containing gas in the troposphere, has recently emerged as a potentially important atmospheric tracer for the carbon cycle. Atmospheric inverse modeling studies may be able to use existing tower, airborne, and satellite observations of COS to infer information about photosynthesis. However, such analysis relies on gridded anthropogenic COS source estimates that are largely based on industry activity data from over three decades ago. Here we use updated emission factor data and industry activity data to develop a gridded inventory with a 0.1 degree resolution for the U.S. domain. The inventory includes the primary anthropogenic COS sources including direct emissions from the coal and aluminum industries as well as indirect sources from industrial carbon disulfide emissions. Compared to the previously published inventory, we found that the total anthropogenic source (direct and indirect) is 47% smaller. Using this new gridded inventory to drive the STEM/WRF atmospheric transport model, we found that the anthropogenic contribution to COS variation in the troposphere is small relative to the biosphere influence, which is encouraging of carbon cycle applications in this region. Additional anthropogenic sectors with highly uncertain emission factors require further field measurements.

  14. Support Center for Regulatory Atmospheric Modeling (SCRAM)

    Science.gov (United States)

    This technical site provides access to air quality models (including computer code, input data, and model processors) and other mathematical simulation techniques used in assessing air emissions control strategies and source impacts.

  15. On atmospheric stability in the dynamic wake meandering model

    DEFF Research Database (Denmark)

    Keck, Rolf-Erik; de Mare, Martin Tobias; Churchfield, Matthew J.

    2014-01-01

    The present study investigates a new approach for capturing the effects of atmospheric stability on wind turbine wake evolution and wake meandering by using the dynamic wake meandering model. The most notable impact of atmospheric stability on the wind is the changes in length and velocity scales...... spectra and applied to the dynamic wake meandering model to capture the correct wake meandering behaviour. The ambient turbulence in all stability classes is generated using the Mann turbulence model, where the effects of non-neutral atmospheric stability are approximated by the selection of input...... in the computational domain. The changes in the turbulent length scales due to the various atmospheric stability states impact the wake meandering characteristics and thus the power generation by the individual turbines. The proposed method is compared with results from both large-eddy simulation coupled...

  16. Technical discussions on Emissions and Atmospheric Modeling (TEAM)

    Science.gov (United States)

    Frost, G. J.; Henderson, B.; Lefer, B. L.

    2017-12-01

    A new informal activity, Technical discussions on Emissions and Atmospheric Modeling (TEAM), aims to improve the scientific understanding of emissions and atmospheric processes by leveraging resources through coordination, communication and collaboration between scientists in the Nation's environmental agencies. TEAM seeks to close information gaps that may be limiting emission inventory development and atmospheric modeling and to help identify related research areas that could benefit from additional coordinated efforts. TEAM is designed around webinars and in-person meetings on particular topics that are intended to facilitate active and sustained informal communications between technical staff at different agencies. The first series of TEAM webinars focuses on emissions of nitrogen oxides, a criteria pollutant impacting human and ecosystem health and a key precursor of ozone and particulate matter. Technical staff at Federal agencies with specific interests in emissions and atmospheric modeling are welcome to participate in TEAM.

  17. Southeast Atmosphere Studies: learning from model-observation syntheses

    Science.gov (United States)

    Mao, Jingqiu; Carlton, Annmarie; Cohen, Ronald C.; Brune, William H.; Brown, Steven S.; Wolfe, Glenn M.; Jimenez, Jose L.; Pye, Havala O. T.; Ng, Nga Lee; Xu, Lu; McNeill, V. Faye; Tsigaridis, Kostas; McDonald, Brian C.; Warneke, Carsten; Guenther, Alex; Alvarado, Matthew J.; de Gouw, Joost; Mickley, Loretta J.; Leibensperger, Eric M.; Mathur, Rohit; Nolte, Christopher G.; Portmann, Robert W.; Unger, Nadine; Tosca, Mika; Horowitz, Larry W.

    2018-02-01

    Concentrations of atmospheric trace species in the United States have changed dramatically over the past several decades in response to pollution control strategies, shifts in domestic energy policy and economics, and economic development (and resulting emission changes) elsewhere in the world. Reliable projections of the future atmosphere require models to not only accurately describe current atmospheric concentrations, but to do so by representing chemical, physical and biological processes with conceptual and quantitative fidelity. Only through incorporation of the processes controlling emissions and chemical mechanisms that represent the key transformations among reactive molecules can models reliably project the impacts of future policy, energy and climate scenarios. Efforts to properly identify and implement the fundamental and controlling mechanisms in atmospheric models benefit from intensive observation periods, during which collocated measurements of diverse, speciated chemicals in both the gas and condensed phases are obtained. The Southeast Atmosphere Studies (SAS, including SENEX, SOAS, NOMADSS and SEAC4RS) conducted during the summer of 2013 provided an unprecedented opportunity for the atmospheric modeling community to come together to evaluate, diagnose and improve the representation of fundamental climate and air quality processes in models of varying temporal and spatial scales.This paper is aimed at discussing progress in evaluating, diagnosing and improving air quality and climate modeling using comparisons to SAS observations as a guide to thinking about improvements to mechanisms and parameterizations in models. The effort focused primarily on model representation of fundamental atmospheric processes that are essential to the formation of ozone, secondary organic aerosol (SOA) and other trace species in the troposphere, with the ultimate goal of understanding the radiative impacts of these species in the southeast and elsewhere. Here we

  18. Southeast Atmosphere Studies: learning from model-observation syntheses

    Directory of Open Access Journals (Sweden)

    J. Mao

    2018-02-01

    Full Text Available Concentrations of atmospheric trace species in the United States have changed dramatically over the past several decades in response to pollution control strategies, shifts in domestic energy policy and economics, and economic development (and resulting emission changes elsewhere in the world. Reliable projections of the future atmosphere require models to not only accurately describe current atmospheric concentrations, but to do so by representing chemical, physical and biological processes with conceptual and quantitative fidelity. Only through incorporation of the processes controlling emissions and chemical mechanisms that represent the key transformations among reactive molecules can models reliably project the impacts of future policy, energy and climate scenarios. Efforts to properly identify and implement the fundamental and controlling mechanisms in atmospheric models benefit from intensive observation periods, during which collocated measurements of diverse, speciated chemicals in both the gas and condensed phases are obtained. The Southeast Atmosphere Studies (SAS, including SENEX, SOAS, NOMADSS and SEAC4RS conducted during the summer of 2013 provided an unprecedented opportunity for the atmospheric modeling community to come together to evaluate, diagnose and improve the representation of fundamental climate and air quality processes in models of varying temporal and spatial scales.This paper is aimed at discussing progress in evaluating, diagnosing and improving air quality and climate modeling using comparisons to SAS observations as a guide to thinking about improvements to mechanisms and parameterizations in models. The effort focused primarily on model representation of fundamental atmospheric processes that are essential to the formation of ozone, secondary organic aerosol (SOA and other trace species in the troposphere, with the ultimate goal of understanding the radiative impacts of these species in the southeast and

  19. Atmospheric aerosol dispersion models and their applications to environmental risk assessment

    Directory of Open Access Journals (Sweden)

    Andrzej Mazur

    2014-03-01

    Full Text Available Introduction. Numerical models of dispersion of atmospheric pollutants are widely used to forecast the spread of contaminants in the air and to analyze the effects of this phenomenon. The aim of the study is to investigate the possibilities and the quality of diagnosis and prediction of atmospheric transport of aerosols in the air using the dispersion model of atmospheric pollutants, developed at the Institute of Meteorology and Water Management (IMWM in Warsaw. Material and methods. A model of the dispersion of atmospheric pollutants, linked with meteorological models in a diagnostic mode, was used to simulate the transport of the cloud of aerosols released during the crash near the town of Ożydiw (Ukraine and of volcanic ash – during the volcanic eruption of Eyjafjallajökull in Iceland. Results. Possible directions of dispersion of pollutants in the air and its concentration in the atmosphere and deposition to the soil were assessed. The analysis of temporal variability of concentrations of aerosols in the atmosphere confirmed that the model developed at IMWM is an effective tool for diagnosis of air quality in the area of Poland as well as for determination of exposure duration to the aerosol clouds for different weather scenarios. Conclusions. The results are a confirmation of the thesis, that because in the environmental risk assessment, an important element is not only current information on the level of pollution concentrations, but also the time of exposure to pollution and forecast of these elements, and consequently the predicted effects on man or the environment in general; so it is necessary to use forecasting tools, similar to presented application. The dispersion model described in the paper is an operational tool for description, analysis and forecasting of emergency situations in case of emissions of hazardous substances.

  20. Some results regarding the comparison of the Earth's atmospheric models

    Directory of Open Access Journals (Sweden)

    Šegan S.

    2005-01-01

    Full Text Available In this paper we examine air densities derived from our realization of aeronomic atmosphere models based on accelerometer measurements from satellites in a low Earth's orbit (LEO. Using the adapted algorithms we derive comparison parameters. The first results concerning the adjustment of the aeronomic models to the total-density model are given.

  1. On the construction of a regional atmospheric climate model

    DEFF Research Database (Denmark)

    Christensen, J. H.; Van Meijgaard, E.

    1992-01-01

    A Regional Atmospheric Climate Model which combines the physical parameterization package of the General Circulation or Climate Model (ECHAM) used at the Max Planck Institute for Meteorology in Hamburg, and the dynamics package of the Nordic - Dutch - Irish Limited Area Model (HIRLAM), has been...

  2. Information Flow in an Atmospheric Model and Data Assimilation

    Science.gov (United States)

    Yoon, Young-noh

    2011-01-01

    Weather forecasting consists of two processes, model integration and analysis (data assimilation). During the model integration, the state estimate produced by the analysis evolves to the next cycle time according to the atmospheric model to become the background estimate. The analysis then produces a new state estimate by combining the background…

  3. South African seasonal rainfall prediction performance by a coupled ocean-atmosphere model

    CSIR Research Space (South Africa)

    Landman, WA

    2010-12-01

    Full Text Available Evidence is presented that coupled ocean-atmosphere models can already outscore computationally less expensive atmospheric models. However, if the atmospheric models are forced with highly skillful SST predictions, they may still be a very strong...

  4. Mathematical models for atmospheric pollutants. Final report

    International Nuclear Information System (INIS)

    Drake, R.L.; Barrager, S.M.

    1979-08-01

    The present and likely future roles of mathematical modeling in air quality decisions are described. The discussion emphasizes models and air pathway processes rather than the chemical and physical behavior of specific anthropogenic emissions. Summarized are the characteristics of various types of models used in the decision-making processes. Specific model subclasses are recommended for use in making air quality decisions that have site-specific, regional, national, or global impacts. The types of exposure and damage models that are currently used to predict the effects of air pollutants on humans, other animals, plants, ecosystems, property, and materials are described. The aesthetic effects of odor and visibility and the impact of pollutants on weather and climate are also addressed. Technical details of air pollution meteorology, chemical and physical properties of air pollutants, solution techniques, and air quality models are discussed in four appendices bound in separate volumes

  5. Chemical Thermodynamics of Aqueous Atmospheric Aerosols: Modeling and Microfluidic Measurements

    Science.gov (United States)

    Nandy, L.; Dutcher, C. S.

    2017-12-01

    Accurate predictions of gas-liquid-solid equilibrium phase partitioning of atmospheric aerosols by thermodynamic modeling and measurements is critical for determining particle composition and internal structure at conditions relevant to the atmosphere. Organic acids that originate from biomass burning, and direct biogenic emission make up a significant fraction of the organic mass in atmospheric aerosol particles. In addition, inorganic compounds like ammonium sulfate and sea salt also exist in atmospheric aerosols, that results in a mixture of single, double or triple charged ions, and non-dissociated and partially dissociated organic acids. Statistical mechanics based on a multilayer adsorption isotherm model can be applied to these complex aqueous environments for predictions of thermodynamic properties. In this work, thermodynamic analytic predictive models are developed for multicomponent aqueous solutions (consisting of partially dissociating organic and inorganic acids, fully dissociating symmetric and asymmetric electrolytes, and neutral organic compounds) over the entire relative humidity range, that represent a significant advancement towards a fully predictive model. The model is also developed at varied temperatures for electrolytes and organic compounds the data for which are available at different temperatures. In addition to the modeling approach, water loss of multicomponent aerosol particles is measured by microfluidic experiments to parameterize and validate the model. In the experimental microfluidic measurements, atmospheric aerosol droplet chemical mimics (organic acids and secondary organic aerosol (SOA) samples) are generated in microfluidic channels and stored and imaged in passive traps until dehydration to study the influence of relative humidity and water loss on phase behavior.

  6. Real time model for public transportation management

    Directory of Open Access Journals (Sweden)

    Ireneusz Celiński

    2014-03-01

    Full Text Available Background: The article outlines managing a public transportation fleet in the dynamic aspect. There are currently many technical possibilities of identifying demand in the transportation network. It is also possible to indicate legitimate basis of estimating and steering demand. The article describes a general public transportation fleet management concept based on balancing demand and supply. Material and methods: The presented method utilizes a matrix description of demand for transportation based on telemetric and telecommunication data. Emphasis was placed mainly on a general concept and not the manner in which data was collected by other researchers.  Results: The above model gave results in the form of a system for managing a fleet in real-time. The objective of the system is also to optimally utilize means of transportation at the disposal of service providers. Conclusions: The presented concept enables a new perspective on managing public transportation fleets. In case of implementation, the project would facilitate, among others, designing dynamic timetables, updated based on observed demand, and even designing dynamic points of access to public transportation lines. Further research should encompass so-called rerouting based on dynamic measurements of the characteristics of the transportation system.

  7. Convenient models of the atmosphere: optics and solar radiation

    Science.gov (United States)

    Alexander, Ginsburg; Victor, Frolkis; Irina, Melnikova; Sergey, Novikov; Dmitriy, Samulenkov; Maxim, Sapunov

    2017-11-01

    Simple optical models of clear and cloudy atmosphere are proposed. Four versions of atmospheric aerosols content are considered: a complete lack of aerosols in the atmosphere, low background concentration (500 cm-3), high concentrations (2000 cm-3) and very high content of particles (5000 cm-3). In a cloud scenario, the model of external mixture is assumed. The values of optical thickness and single scattering albedo for 13 wavelengths are calculated in the short wavelength range of 0.28-0.90 µm, with regard to the molecular absorption bands, that is simulated with triangle function. A comparison of the proposed optical parameters with results of various measurements and retrieval (lidar measurement, sampling, processing radiation measurements) is presented. For a cloudy atmosphere models of single-layer and two-layer atmosphere are proposed. It is found that cloud optical parameters with assuming the "external mixture" agrees with retrieved values from airborne observations. The results of calculating hemispherical fluxes of the reflected and transmitted solar radiation and the radiative divergence are obtained with the Delta-Eddington approach. The calculation is done for surface albedo values of 0, 0.5, 0.9 and for spectral values of the sandy surface. Four values of solar zenith angle: 0°, 30°, 40° and 60° are taken. The obtained values are compared with data of radiative airborne observations. Estimating the local instantaneous radiative forcing of atmospheric aerosols and clouds for considered models is presented together with the heating rate.

  8. SST Diurnal Variability: Regional Extent & Implications in Atmospheric Modelling

    DEFF Research Database (Denmark)

    Karagali, Ioanna; Høyer, Jacob L.

    2013-01-01

    The project Sea Surface Temperature Diurnal Variability: Regional Extent and Implications in Atmospheric Modeling (SSTDV: R.EX.- IM.A.M.) was initiated within the framework of the European Space Agency's Support to Science Element (ESA STSE). The main focus is twofold: i) to characterize...... and quantify regional diurnal warming from the experimental MSG/SEVIRI hourly SST fields, for the period 2006-2012. ii) To investigate the impact of the increased SST temporal resolution in the atmospheric model WRF, in terms of modeled 10-m winds and surface heat fluxes. Withing this context, 3 main tasks...... SST variability on atmospheric modeling is the prime goal of the third and final task. This will be examined by increasing the temporal resolution of the SST initial conditions in WRF and by evaluating the WRF included diurnal scheme. Validation of the modeled winds will be performed against 10m ASAR...

  9. Quantitative Analysis of Major Factors Affecting Black Carbon Transport and Concentrations in the Unique Atmospheric Structures of Urban Environment

    Science.gov (United States)

    Liang, Marissa Shuang

    combined contribution from both traffic and atmospheric circulation accounted for observed spatiotemporal variability in PM2.5 concentrations. Based on these experimental and quantitative analyses, a three-dimensional model is proposed for contaminant's transport in highly urbanized Cincinnati region. Furthermore this dissertation explored implications on roadside pollutant evaluation, and on the risk analysis of future fuel substitution using biodiesel. The Gaussian-type models are poor in determining the effective emission factor particularly under nocturnal thermal inversion for which the effective emission factor is a function of lapse rate in the morning. The Gaussian models are applicable in daytime after the breakdown of thermal inversion. Lastly, among three types of fuels examined, the proposed butanol-added biodiesel-diesel blend (D80B15Bu5) yielded a good compromise between black carbon and NOx emissions while maintaining proper combustion properties. It is also found that the emission contained less black carbon and had higher organic carbon (OC) and elemental (EC) ratio than tested petroleum diesel. As demonstrated in other parts of this study, the OC-enriched emission will likely affect the black carbon occurrence and PM concentrations in the urban environments. Overall, it is suggested that urban formation and biofuel usage define the environmental impacts of black carbon, and are the focus for climate change mitigation and adaptation.

  10. Transport properties site descriptive model. Guidelines for evaluation and modelling

    International Nuclear Information System (INIS)

    Berglund, Sten; Selroos, Jan-Olof

    2004-04-01

    This report describes a strategy for the development of Transport Properties Site Descriptive Models within the SKB Site Investigation programme. Similar reports have been produced for the other disciplines in the site descriptive modelling (Geology, Hydrogeology, Hydrogeochemistry, Rock mechanics, Thermal properties, and Surface ecosystems). These reports are intended to guide the site descriptive modelling, but also to provide the authorities with an overview of modelling work that will be performed. The site descriptive modelling of transport properties is presented in this report and in the associated 'Strategy for the use of laboratory methods in the site investigations programme for the transport properties of the rock', which describes laboratory measurements and data evaluations. Specifically, the objectives of the present report are to: Present a description that gives an overview of the strategy for developing Site Descriptive Models, and which sets the transport modelling into this general context. Provide a structure for developing Transport Properties Site Descriptive Models that facilitates efficient modelling and comparisons between different sites. Provide guidelines on specific modelling issues where methodological consistency is judged to be of special importance, or where there is no general consensus on the modelling approach. The objectives of the site descriptive modelling process and the resulting Transport Properties Site Descriptive Models are to: Provide transport parameters for Safety Assessment. Describe the geoscientific basis for the transport model, including the qualitative and quantitative data that are of importance for the assessment of uncertainties and confidence in the transport description, and for the understanding of the processes at the sites. Provide transport parameters for use within other discipline-specific programmes. Contribute to the integrated evaluation of the investigated sites. The site descriptive modelling of

  11. Thermal model of spent fuel transport cask

    International Nuclear Information System (INIS)

    Ahmed, E.E.M.; Rahman, F.A.; Sultan, G.F.; Khalil, E.E.

    1996-01-01

    The investigation provides a theoretical model to represent the thermal behaviour of the spent fuel elements when transported in a dry shipping cask under normal transport conditions. The heat transfer process in the spent fuel elements and within the cask are modeled which include the radiant heat transfer within the cask and the heat transfer by thermal conduction within the spent fuel element. The model considers the net radiant method for radiant heat transfer process from the inner most heated element to the surrounding spent elements. The heat conduction through fuel interior, fuel-clad interface and on clad surface are also presented. (author) 6 figs., 9 refs

  12. PHOTOCHEMISTRY IN TERRESTRIAL EXOPLANET ATMOSPHERES. I. PHOTOCHEMISTRY MODEL AND BENCHMARK CASES

    Energy Technology Data Exchange (ETDEWEB)

    Hu Renyu; Seager, Sara; Bains, William, E-mail: hury@mit.edu [Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States)

    2012-12-20

    We present a comprehensive photochemistry model for exploration of the chemical composition of terrestrial exoplanet atmospheres. The photochemistry model is designed from the ground up to have the capacity to treat all types of terrestrial planet atmospheres, ranging from oxidizing through reducing, which makes the code suitable for applications for the wide range of anticipated terrestrial exoplanet compositions. The one-dimensional chemical transport model treats up to 800 chemical reactions, photochemical processes, dry and wet deposition, surface emission, and thermal escape of O, H, C, N, and S bearing species, as well as formation and deposition of elemental sulfur and sulfuric acid aerosols. We validate the model by computing the atmospheric composition of current Earth and Mars and find agreement with observations of major trace gases in Earth's and Mars' atmospheres. We simulate several plausible atmospheric scenarios of terrestrial exoplanets and choose three benchmark cases for atmospheres from reducing to oxidizing. The most interesting finding is that atomic hydrogen is always a more abundant reactive radical than the hydroxyl radical in anoxic atmospheres. Whether atomic hydrogen is the most important removal path for a molecule of interest also depends on the relevant reaction rates. We also find that volcanic carbon compounds (i.e., CH{sub 4} and CO{sub 2}) are chemically long-lived and tend to be well mixed in both reducing and oxidizing atmospheres, and their dry deposition velocities to the surface control the atmospheric oxidation states. Furthermore, we revisit whether photochemically produced oxygen can cause false positives for detecting oxygenic photosynthesis, and find that in 1 bar CO{sub 2}-rich atmospheres oxygen and ozone may build up to levels that have conventionally been accepted as signatures of life, if there is no surface emission of reducing gases. The atmospheric scenarios presented in this paper can serve as the

  13. Coupling of transport and geochemical models

    International Nuclear Information System (INIS)

    Noy, D.J.

    1986-01-01

    This report considers mass transport in the far-field of a radioactive waste repository, and detailed geochemical modelling of the ground-water in the near-field. A parallel approach to this problem of coupling transport and geochemical codes is the subject of another CEC report (ref. EUR 10226). Both studies were carried out in the framework of the CEC project MIRAGE. (Migration of radionuclides in the geosphere)

  14. Radionuclide Transport Models Under Ambient Conditions

    Energy Technology Data Exchange (ETDEWEB)

    G. Moridis; Q. Hu

    2001-12-20

    The purpose of Revision 00 of this Analysis/Model Report (AMR) is to evaluate (by means of 2-D semianalytical and 3-D numerical models) the transport of radioactive solutes and colloids in the unsaturated zone (UZ) under ambient conditions from the potential repository horizon to the water table at Yucca Mountain (YM), Nevada.

  15. Radionuclide Transport Models Under Ambient Conditions

    International Nuclear Information System (INIS)

    Moridis, G.; Hu, Q.

    2001-01-01

    The purpose of Revision 00 of this Analysis/Model Report (AMR) is to evaluate (by means of 2-D semianalytical and 3-D numerical models) the transport of radioactive solutes and colloids in the unsaturated zone (UZ) under ambient conditions from the potential repository horizon to the water table at Yucca Mountain (YM), Nevada

  16. Linearized vector radiative transfer model MCC++ for a spherical atmosphere

    International Nuclear Information System (INIS)

    Postylyakov, O.V.

    2004-01-01

    Application of radiative transfer models has shown that optical remote sensing requires extra characteristics of radiance field in addition to the radiance intensity itself. Simulation of spectral measurements, analysis of retrieval errors and development of retrieval algorithms are in need of derivatives of radiance with respect to atmospheric constituents under investigation. The presented vector spherical radiative transfer model MCC++ was linearized, which allows the calculation of derivatives of all elements of the Stokes vector with respect to the volume absorption coefficient simultaneously with radiance calculation. The model MCC++ employs Monte Carlo algorithm for radiative transfer simulation and takes into account aerosol and molecular scattering, gas and aerosol absorption, and Lambertian surface albedo. The model treats a spherically symmetrical atmosphere. Relation of the estimated derivatives with other forms of radiance derivatives: the weighting functions used in gas retrieval and the air mass factors used in the DOAS retrieval algorithms, is obtained. Validation of the model against other radiative models is overviewed. The computing time of the intensity for the MCC++ model is about that for radiative models treating sphericity of the atmosphere approximately and is significantly shorter than that for the full spherical models used in the comparisons. The simultaneous calculation of all derivatives (i.e. with respect to absorption in all model atmosphere layers) and the intensity is only 1.2-2 times longer than the calculation of the intensity only

  17. Commercial Consolidation Model Applied to Transport Infrastructure

    Energy Technology Data Exchange (ETDEWEB)

    Guilherme de Aragão, J.J.; Santos Fontes Pereira, L. dos; Yamashita, Y.

    2016-07-01

    Since the 1990s, transport concessions, including public-private partnerships (PPPs), have been increasingly adopted by governments as an alternative for financing and operations in public investments, especially in transport infrastructure. The advantage pointed out by proponents of these models lies in merging the expertise and capital of the private sector to the public interest. Several arrangements are possible and have been employed in different cases. After the duration of the first PPP contracts in transportation, many authors have analyzed the success and failure factors of partnerships. The occurrence of failures in some stages of the process can greatly encumber the public administration, incurring losses to the fiscal responsibility of the competent bodies. This article aims to propose a new commercial consolidation model applied to transport infrastructure to ensure fiscal sustainability and overcome the weaknesses of current models. Initially, a systematic review of the literature covering studies on transport concessions between 1990 and 2015 is offered, where the different approaches between various countries are compared and the critical success factors indicated in the studies are identified. In the subsequent part of the paper, an approach for the commercial consolidation of the infrastructure concessions is presented, where the concessionary is paid following a finalistic performance model, which includes the overall fiscal balance of regional growth. Finally, the papers analyses the usefulness of the model in coping with the critical success factors explained before. (Author)

  18. Higher-fidelity yet efficient modeling of radiation energy transport through three-dimensional clouds

    International Nuclear Information System (INIS)

    Hall, M.L.; Davis, A.B.

    2005-01-01

    Accurate modeling of radiative energy transport through cloudy atmospheres is necessary for both climate modeling with GCMs (Global Climate Models) and remote sensing. Previous modeling efforts have taken advantage of extreme aspect ratios (cells that are very wide horizontally) by assuming a 1-D treatment vertically - the Independent Column Approximation (ICA). Recent attempts to resolve radiation transport through the clouds have drastically changed the aspect ratios of the cells, moving them closer to unity, such that the ICA model is no longer valid. We aim to provide a higher-fidelity atmospheric radiation transport model which increases accuracy while maintaining efficiency. To that end, this paper describes the development of an efficient 3-D-capable radiation code that can be easily integrated into cloud resolving models as an alternative to the resident 1-D model. Applications to test cases from the Intercomparison of 3-D Radiation Codes (I3RC) protocol are shown

  19. Transport in two-dimensional scattering stochastic media: Simulations and models

    International Nuclear Information System (INIS)

    Haran, O.; Shvarts, D.; Thieberger, R.

    1999-01-01

    Classical monoenergetic transport of neutral particles in a binary, scattering, two-dimensional stochastic media is discussed. The work focuses on the effective representation of the stochastic media, as obtained by averaging over an ensemble of random realizations of the media. Results of transport simulations in two-dimensional stochastic media are presented and compared against results from several models. Problems for which this work is relevant range from transport through cracked or porous concrete shields and transport through boiling coolant of a nuclear reactor, to transport through stochastic stellar atmospheres

  20. GRAM Series of Atmospheric Models for Aeroentry and Aeroassist

    Science.gov (United States)

    Duvall, Aleta; Justus, C. G.; Keller, Vernon W.

    2005-01-01

    The eight destinations in the Solar System with sufficient atmosphere for either aeroentry or aeroassist, including aerocapture, are: Venus, Earth, Mars, Jupiter, Saturn; Uranus. and Neptune, and Saturn's moon Titan. Engineering-level atmospheric models for four of these (Earth, Mars, Titan, and Neptune) have been developed for use in NASA's systems analysis studies of aerocapture applications in potential future missions. Work has recently commenced on development of a similar atmospheric model for Venus. This series of MSFC-sponsored models is identified as the Global Reference Atmosphere Model (GRAM) series. An important capability of all of the models in the GRAM series is their ability to simulate quasi-random perturbations for Monte Carlo analyses in developing guidance, navigation and control algorithms, and for thermal systems design. Example applications for Earth aeroentry and Mars aerocapture systems analysis studies are presented and illustrated. Current and planned updates to the Earth and Mars atmospheric models, in support of NASA's new exploration vision, are also presented.

  1. Atmospheric Turbulence Modeling for Aero Vehicles: Fractional Order Fits

    Science.gov (United States)

    Kopasakis, George

    2015-01-01

    Atmospheric turbulence models are necessary for the design of both inlet/engine and flight controls, as well as for studying coupling between the propulsion and the vehicle structural dynamics for supersonic vehicles. Models based on the Kolmogorov spectrum have been previously utilized to model atmospheric turbulence. In this paper, a more accurate model is developed in its representative fractional order form, typical of atmospheric disturbances. This is accomplished by first scaling the Kolmogorov spectral to convert them into finite energy von Karman forms and then by deriving an explicit fractional circuit-filter type analog for this model. This circuit model is utilized to develop a generalized formulation in frequency domain to approximate the fractional order with the products of first order transfer functions, which enables accurate time domain simulations. The objective of this work is as follows. Given the parameters describing the conditions of atmospheric disturbances, and utilizing the derived formulations, directly compute the transfer function poles and zeros describing these disturbances for acoustic velocity, temperature, pressure, and density. Time domain simulations of representative atmospheric turbulence can then be developed by utilizing these computed transfer functions together with the disturbance frequencies of interest.

  2. Radionuclide Transport Models Under Ambient Conditions

    Energy Technology Data Exchange (ETDEWEB)

    G. Moridis; Q. Hu

    2000-03-12

    The purpose of this Analysis/Model Report (AMR) is to evaluate (by means of 2-D semianalytical and 3-D numerical models) the transport of radioactive solutes and colloids in the unsaturated zone (UZ) under ambient conditions from the potential repository horizon to the water table at Yucca Mountain (YM), Nevada. This is in accordance with the ''AMR Development Plan U0060, Radionuclide Transport Models Under Ambient Conditions'' (CRWMS M and O 1999a). This AMR supports the UZ Flow and Transport Process Model Report (PMR). This AMR documents the UZ Radionuclide Transport Model (RTM). This model considers: the transport of radionuclides through fractured tuffs; the effects of changes in the intensity and configuration of fracturing from hydrogeologic unit to unit; colloid transport; physical and retardation processes and the effects of perched water. In this AMR they document the capabilities of the UZ RTM, which can describe flow (saturated and/or unsaturated) and transport, and accounts for (a) advection, (b) molecular diffusion, (c) hydrodynamic dispersion (with full 3-D tensorial representation), (d) kinetic or equilibrium physical and/or chemical sorption (linear, Langmuir, Freundlich or combined), (e) first-order linear chemical reaction, (f) radioactive decay and tracking of daughters, (g) colloid filtration (equilibrium, kinetic or combined), and (h) colloid-assisted solute transport. Simulations of transport of radioactive solutes and colloids (incorporating the processes described above) from the repository horizon to the water table are performed to support model development and support studies for Performance Assessment (PA). The input files for these simulations include transport parameters obtained from other AMRs (i.e., CRWMS M and O 1999d, e, f, g, h; 2000a, b, c, d). When not available, the parameter values used are obtained from the literature. The results of the simulations are used to evaluate the transport of radioactive

  3. Radionuclide Transport Models Under Ambient Conditions

    International Nuclear Information System (INIS)

    Moridis, G.; Hu, Q.

    2000-01-01

    The purpose of this Analysis/Model Report (AMR) is to evaluate (by means of 2-D semianalytical and 3-D numerical models) the transport of radioactive solutes and colloids in the unsaturated zone (UZ) under ambient conditions from the potential repository horizon to the water table at Yucca Mountain (YM), Nevada. This is in accordance with the ''AMR Development Plan U0060, Radionuclide Transport Models Under Ambient Conditions'' (CRWMS M and O 1999a). This AMR supports the UZ Flow and Transport Process Model Report (PMR). This AMR documents the UZ Radionuclide Transport Model (RTM). This model considers: the transport of radionuclides through fractured tuffs; the effects of changes in the intensity and configuration of fracturing from hydrogeologic unit to unit; colloid transport; physical and retardation processes and the effects of perched water. In this AMR they document the capabilities of the UZ RTM, which can describe flow (saturated and/or unsaturated) and transport, and accounts for (a) advection, (b) molecular diffusion, (c) hydrodynamic dispersion (with full 3-D tensorial representation), (d) kinetic or equilibrium physical and/or chemical sorption (linear, Langmuir, Freundlich or combined), (e) first-order linear chemical reaction, (f) radioactive decay and tracking of daughters, (g) colloid filtration (equilibrium, kinetic or combined), and (h) colloid-assisted solute transport. Simulations of transport of radioactive solutes and colloids (incorporating the processes described above) from the repository horizon to the water table are performed to support model development and support studies for Performance Assessment (PA). The input files for these simulations include transport parameters obtained from other AMRs (i.e., CRWMS M and O 1999d, e, f, g, h; 2000a, b, c, d). When not available, the parameter values used are obtained from the literature. The results of the simulations are used to evaluate the transport of radioactive solutes and colloids, and

  4. Summary of the LLNL one-dimensional transport-kinetics model of the troposphere and stratosphere: 1981

    International Nuclear Information System (INIS)

    Wuebbles, D.J.

    1981-09-01

    Since the LLNL one-dimensional coupled transport and chemical kinetics model of the troposphere and stratosphere was originally developed in 1972 (Chang et al., 1974), there have been many changes to the model's representation of atmospheric physical and chemical processes. A brief description is given of the current LLNL one-dimensional coupled transport and chemical kinetics model of the troposphere and stratosphere

  5. Atmospheric Turbulence Modeling for Aerospace Vehicles: Fractional Order Fit

    Science.gov (United States)

    Kopasakis, George (Inventor)

    2015-01-01

    An improved model for simulating atmospheric disturbances is disclosed. A scale Kolmogorov spectral may be scaled to convert the Kolmogorov spectral into a finite energy von Karman spectral and a fractional order pole-zero transfer function (TF) may be derived from the von Karman spectral. Fractional order atmospheric turbulence may be approximated with an integer order pole-zero TF fit, and the approximation may be stored in memory.

  6. Premar-2: a Monte Carlo code for radiative transport simulation in atmospheric environments

    International Nuclear Information System (INIS)

    Cupini, E.

    1999-01-01

    The peculiarities of the PREMAR-2 code, aimed at radiation transport Monte Carlo simulation in atmospheric environments in the infrared-ultraviolet frequency range, are described. With respect to the previously developed PREMAR code, besides plane multilayers, spherical multilayers and finite sequences of vertical layers, each one with its own atmospheric behaviour, are foreseen in the new code, together with the refraction phenomenon, so that long range, highly slanted paths can now be more faithfully taken into account. A zenithal angular dependence of the albedo coefficient has moreover been introduced. Lidar systems, with spatially independent source and telescope, are allowed again to be simulated, and, in this latest version of the code, sensitivity analyses to be performed. According to this last feasibility, consequences on radiation transport of small perturbations in physical components of the atmospheric environment may be analyze and the related effects on searched results estimated. The availability of a library of physical data (reaction coefficients, phase functions and refraction indexes) is required by the code, providing the essential features of the environment of interest needed of the Monte Carlo simulation. Variance reducing techniques have been enhanced in the Premar-2 code, by introducing, for instance, a local forced collision technique, especially apt to be used in Lidar system simulations. Encouraging comparisons between code and experimental results carried out at the Brasimone Centre of ENEA, have so far been obtained, even if further checks of the code are to be performed [it

  7. Sensitivity and uncertainty analysis of the PATHWAY radionuclide transport model

    International Nuclear Information System (INIS)

    Otis, M.D.

    1983-01-01

    Procedures were developed for the uncertainty and sensitivity analysis of a dynamic model of radionuclide transport through human food chains. Uncertainty in model predictions was estimated by propagation of parameter uncertainties using a Monte Carlo simulation technique. Sensitivity of model predictions to individual parameters was investigated using the partial correlation coefficient of each parameter with model output. Random values produced for the uncertainty analysis were used in the correlation analysis for sensitivity. These procedures were applied to the PATHWAY model which predicts concentrations of radionuclides in foods grown in Nevada and Utah and exposed to fallout during the period of atmospheric nuclear weapons testing in Nevada. Concentrations and time-integrated concentrations of iodine-131, cesium-136, and cesium-137 in milk and other foods were investigated. 9 figs., 13 tabs

  8. Quasi-Wavelet Models for Atmospheric Turbulence

    National Research Council Canada - National Science Library

    Goedecke, George

    2002-01-01

    ...). The "quasi-wavelet" (QW) model discussed in this paper is an attempt to develop a mathematical representation for the turbulence that more closely resembles this physical picture than Fourier modes or customary wavelets...

  9. Validation and application of an urban turbulence parameterisation scheme for mesoscale atmospheric models

    OpenAIRE

    Roulet, Yves-Alain F.; Clappier, Alain

    2005-01-01

    Growing population, extensive use (and abuse) of the natural resources, increasing pollutants emissions in the atmosphere: these are a few obstacles (and not the least) one has to face with nowadays to ensure the sustainability of our planet in general, and of the air quality in particular. In the case of air pollution, the processes that govern the transport and the chemical transformation of pollutants are highly complex and non-linear. The use of numerical models for simulating meteorologi...

  10. The Impacts of Atmospheric Moisture Transportation on Warm Sector Torrential Rains over South China

    Directory of Open Access Journals (Sweden)

    Shuixin Zhong

    2017-06-01

    Full Text Available Warm Sector Torrential Rains (WSTRs occurring during the outbreak of the monsoon in May of 2015 in South China were studied using surface automatic weather observational data, sounding, European Centre for Medium-Range Weather Forecasts Reanalysis interim Data (ERA-interim, satellite and radar data, and a four-level nested grid simulation with the finest grid spacing of 1 km using the Weather Research and Forecasting model (WRF. The results show that the extreme precipitation event, which had maximum rainfall amounts of 406.3 mm in 10 h and 542.2 mm in 24 h on 20 May 2015, and was characterized by its rapid development and its highly concentrated and long duration of heavy rainfall, occurred over the trumpet-shaped topography of Haifeng. The simulation results indicated that the South China Sea (SCS atmospheric moisture transportation (AMT was crucial in triggering the precipitation of the WSTR over South China. The simulation of the WSTR was conducted by using the total energy-mass flux scheme (TEMF, which provided a reasonable simulation of the circulation and the vertical profile in the Planetary Boundary Layer (PBL as well as the estimation of the precipitation. The AMT, which extends from the Beibu Gulf and the South China Sea to the coastal areas and provides Shanwei with a considerable amount of moisture in the boundary layer, and the effects within the PBL, which include orographic effects, an extra low-level jet, and a high-energy tongue characterized by a high-potential pseudo-equivalent temperature tongue with a warm and moist southwesterly wind, were the important large-scale factors causing the WSTR.

  11. EXAMINING TATOOINE: ATMOSPHERIC MODELS OF NEPTUNE-LIKE CIRCUMBINARY PLANETS

    Energy Technology Data Exchange (ETDEWEB)

    May, E. M.; Rauscher, E. [University of Michigan (United States)

    2016-08-01

    Circumbinary planets experience a time-varying irradiation pattern as they orbit their two host stars. In this work, we present the first detailed study of the atmospheric effects of this irradiation pattern on known and hypothetical gaseous circumbinary planets. Using both a one-dimensional energy balance model (EBM) and a three-dimensional general circulation model (GCM), we look at the temperature differences between circumbinary planets and their equivalent single-star cases in order to determine the nature of the atmospheres of these planets. We find that for circumbinary planets on stable orbits around their host stars, temperature differences are on average no more than 1.0% in the most extreme cases. Based on detailed modeling with the GCM, we find that these temperature differences are not large enough to excite circulation differences between the two cases. We conclude that gaseous circumbinary planets can be treated as their equivalent single-star case in future atmospheric modeling efforts.

  12. Characterization of atmospheric aerosols in Ile-de-France: Local contribution and Long range transport

    International Nuclear Information System (INIS)

    Cuesta, J.E.

    2006-06-01

    Atmospheric aerosols interact directly in a great number of processes related to climate change and public health, modifying the energy budget and partly determining the quality of the air we breathe. In my PhD, I chose to study the perturbation, if not the aggravation, of the living conditions in Ile-de-France associated to aerosol transport episodes in the free troposphere. This situation is rather frequent and still badly known. To achieve my study, I developed the observation platform 'TReSS' Transportable Remote Sensing Station, whose instruments were developed at the Laboratoire de Meteorology Dynamique by the LiMAG team. 'TReSS' consists of a new high-performance 'Mini-Lidar' and of two standard radiometers: a sun photometer and a thermal infrared radiometer. The principle of my experimental approach is the synergy of the vertical Lidar profiles and the particle size distributions over the column, obtained by the 'Almucantar' inversion of sun photometer data. The new 'Lidar and Almucantar' method characterizes the vertical distribution by layer and the optical micro-physical properties of the local and transported aerosols. Firstly, I undertook the characterization of the Paris aerosol, mainly of anthropogenic origin. Their radiative properties were analyzed in the daily and yearly scales. Then, I conducted a statistical multi-year study of transport episodes and a two-week study case, representative of a succession of desert dust intrusion in Ile-de-France. My PhD work concludes by a study on the impact of biomass burning aerosols during the heat wave on August 2003. I study the impact of the transported aerosols into the local radiative budget and the possible consequences on the diurnal cycle of the atmospheric boundary layer. (author)

  13. Field-scale water flow and solute transport : SWAP model concepts, parameter estimation and case studies = [Waterstroming en transport van opgeloste stoffen op veldschaal

    NARCIS (Netherlands)

    Dam, van J.C.

    2000-01-01

    Water flow and solute transport in top soils are important elements in many environmental studies. The agro- and ecohydrological model SWAP (Soil-Water-Plant-Atmosphere) has been developed to simulate simultaneously water flow, solute transport, heat flow and crop growth at field scale

  14. Proposed ozone reference models for the middle atmosphere

    Science.gov (United States)

    Keating, G. M.; Young, D. F.

    Since the publication of the last COSPAR International Reference Atmosphere (CIRA 72), large amounts of ozone data acquired from satellites have become available in addition to increasing quantities of rocketsonde, balloonsonde, Dobson, M83, and Umkehr measurements. From the available archived satellite data, models are developed for the new CIRA using 5 satellite experiments (Nimbus 7 SBUV and LIMS, AEM-2 SAGE, and SME IR and UVS) of the monthly latitudinal and altitudinal variations in the ozone mixing ratio in the middle atmosphere. Standard deviations and interannual variations are also quantified. The satellite models are shown to agree well with a previous reference model based on rocket and balloon measurements.

  15. Real-time modeling of complex atmospheric releases in urban areas

    International Nuclear Information System (INIS)

    Baskett, R.L.; Ellis, J.S.; Sullivan, T.J.

    1994-08-01

    If a nuclear installation in or near an urban area has a venting, fire, or explosion, airborne radioactivity becomes the major concern. Dispersion models are the immediate tool for estimating the dose and contamination. Responses in urban areas depend on knowledge of the amount of the release, representative meteorological data, and the ability of the dispersion model to simulate the complex flows as modified by terrain or local wind conditions. A centralized dispersion modeling system can produce realistic assessments of radiological accidents anywhere in a country within several minutes if it is computer-automated. The system requires source-term, terrain, mapping and dose-factor databases, real-time meteorological data acquisition, three-dimensional atmospheric transport and dispersion models, and experienced staff. Experience with past responses in urban areas by the Atmospheric Release Advisory Capability (ARAC) program at Lawrence Livermore National Laboratory illustrate the challenges for three-dimensional dispersion models

  16. Real-time modelling of complex atmospheric releases in urban areas

    International Nuclear Information System (INIS)

    Baskett, R.L.; Ellis, J.S.; Sullivan, T.J.

    2000-01-01

    If a nuclear installation in or near an urban area has a venting, fire, or explosion, airborne radioactivity becomes the major concern. Dispersion models are the immediate tool for estimating the dose and contamination. Responses in urban areas depend on knowledge of the amount of the release, representative meteorological data, and the ability of the dispersion model to simulate the complex flows as modified by terrain or local wind conditions. A centralised dispersion modelling system can produce realistic assessments of radiological accidents anywhere in a country within several minutes if it is computer-automated. The system requires source-term, terrain, mapping and dose-factor databases, real-time meteorological data acquisition, three-dimensional atmospheric transport and dispersion models, and experienced staff. Experience with past responses in urban areas by the Atmospheric Release Advisory Capability (ARAC) program at Lawrence Livermore National Laboratory illustrate the challenges for three-dimensional dispersion models. (author)

  17. Development of one-dimensional atmosphere-soil-vegetation model

    Energy Technology Data Exchange (ETDEWEB)

    Nagai, Haruyasu; Yamazawa, Hiromi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1999-04-01

    To study dynamical behaviors of air and water as media of radionuclide migration in the atmosphere-soil-vegetation system, a one-dimensional numerical model was developed. The atmospheric part, which is based on the existing one-dimensional meteorological model PHYD1V3, consists of prognostic equations for horizontal wind components, potential temperature, specific humidity, fog water, turbulence kinetic energy and turbulence length scale. This part also consists of a second-order turbulence closure model and solar-atmospheric radiation model. The soil part consists of prognostic equations for soil temperature, volumetric water content and specific humidity in soil air. The atmosphere and soil parts are interfaced with the ground surface water and heat budget equations. The vegetation part consists of a heat budget equation for the leaf surface temperature and prognostic equations for the leaf surface water and vertical water flux in the canopy. This model employs a finite difference scheme with multi-layer description for the atmosphere, vegetation, and soil parts. (author)

  18. Technical Note: High-resolution mineralogical database of dust-productive soils for atmospheric dust modeling

    Directory of Open Access Journals (Sweden)

    S. Nickovic

    2012-01-01

    Full Text Available Dust storms and associated mineral aerosol transport are driven primarily by meso- and synoptic-scale atmospheric processes. It is therefore essential that the dust aerosol process and background atmospheric conditions that drive dust emissions and atmospheric transport are represented with sufficiently well-resolved spatial and temporal features. The effects of airborne dust interactions with the environment determine the mineral composition of dust particles. The fractions of various minerals in aerosol are determined by the mineral composition of arid soils; therefore, a high-resolution specification of the mineral and physical properties of dust sources is needed.

    Several current dust atmospheric models simulate and predict the evolution of dust concentrations; however, in most cases, these models do not consider the fractions of minerals in the dust. The accumulated knowledge about the impacts of the mineral composition in dust on weather and climate processes emphasizes the importance of including minerals in modeling systems. Accordingly, in this study, we developed a global dataset consisting of the mineral composition of the current potentially dust-producing soils. In our study, we (a mapped mineral data to a high-resolution 30 s grid, (b included several mineral-carrying soil types in dust-productive regions that were not considered in previous studies, and (c included phosphorus.

  19. Identification of sensitive parameters in the modeling of SVOC reemission processes from soil to atmosphere.

    Science.gov (United States)

    Loizeau, Vincent; Ciffroy, Philippe; Roustan, Yelva; Musson-Genon, Luc

    2014-09-15

    Semi-volatile organic compounds (SVOCs) are subject to Long-Range Atmospheric Transport because of transport-deposition-reemission successive processes. Several experimental data available in the literature suggest that soil is a non-negligible contributor of SVOCs to atmosphere. Then coupling soil and atmosphere in integrated coupled models and simulating reemission processes can be essential for estimating atmospheric concentration of several pollutants. However, the sources of uncertainty and variability are multiple (soil properties, meteorological conditions, chemical-specific parameters) and can significantly influence the determination of reemissions. In order to identify the key parameters in reemission modeling and their effect on global modeling uncertainty, we conducted a sensitivity analysis targeted on the 'reemission' output variable. Different parameters were tested, including soil properties, partition coefficients and meteorological conditions. We performed EFAST sensitivity analysis for four chemicals (benzo-a-pyrene, hexachlorobenzene, PCB-28 and lindane) and different spatial scenari (regional and continental scales). Partition coefficients between air, solid and water phases are influent, depending on the precision of data and global behavior of the chemical. Reemissions showed a lower variability to soil parameters (soil organic matter and water contents at field capacity and wilting point). A mapping of these parameters at a regional scale is sufficient to correctly estimate reemissions when compared to other sources of uncertainty. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Using passive air samplers to assess local sources versus long range atmospheric transport of POPs.

    Science.gov (United States)

    Halse, Anne Karine; Schlabach, Martin; Sweetman, Andy; Jones, Kevin C; Breivik, Knut

    2012-10-26

    Passive air samplers (PAS) are cost-efficient tools suitable for spatial mapping of atmospheric concentrations of persistent organic pollutants (POPs). The objective of this study was to use PAS to (i) determine atmospheric concentrations of selected POPs in Norwegian coastal zones with consumption advisories on seafood (N = 22), and (ii) evaluate a simple nested monitoring approach to assess the relative influence of local vs. long-range atmospheric transport (LRAT) at coastal sites. The latter was facilitated by comparison with data from a coordinated European-wide campaign in which an identical sampling and analytical approach was followed. Air concentrations were calculated based on the loss of performance reference compounds (PRCs), and results are presented for selected polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons (PAHs), hexachlorocyclohexanes (HCHs), hexachlorobenzene (HCB), dichlorodiphenyltrichloroethanes (DDTs) and chlordanes. Air concentrations of PCBs were generally highest at sites within larger cities and up to about an order of magnitude higher than anticipated on the basis of LRAT alone. The distribution of PAHs and HCB occasionally showed elevated concentrations at coastal sites with ongoing or former industrial activity, while an urban site was significantly influenced by banned insecticides (technical DDT and lindane). Coastal sites were also elevated in α-HCH beyond the anticipated LRAT contribution, which we attribute to volatilization from the sea. We conclude that a simple nested PAS monitoring approach provides useful information for screening efforts aiming to assess both atmospheric burdens as well as the relative significance of local sources in controlling these burdens at sites in contaminated areas.

  1. Hydrogen recycle modeling in transport codes

    International Nuclear Information System (INIS)

    Howe, H.C.

    1979-01-01

    The hydrogen recycling models now used in Tokamak transport codes are reviewed and the method by which realistic recycling models are being added is discussed. Present models use arbitrary recycle coefficients and therefore do not model the actual recycling processes at the wall. A model for the hydrogen concentration in the wall serves two purposes: (1) it allows a better understanding of the density behavior in present gas puff, pellet, and neutral beam heating experiments; and (2) it allows one to extrapolate to long pulse devices such as EBT, ISX-C and reactors where the walls are observed or expected to saturate. Several wall models are presently being studied for inclusion in transport codes

  2. GEOS-5 Chemistry Transport Model User's Guide

    Science.gov (United States)

    Kouatchou, J.; Molod, A.; Nielsen, J. E.; Auer, B.; Putman, W.; Clune, T.

    2015-01-01

    The Goddard Earth Observing System version 5 (GEOS-5) General Circulation Model (GCM) makes use of the Earth System Modeling Framework (ESMF) to enable model configurations with many functions. One of the options of the GEOS-5 GCM is the GEOS-5 Chemistry Transport Model (GEOS-5 CTM), which is an offline simulation of chemistry and constituent transport driven by a specified meteorology and other model output fields. This document describes the basic components of the GEOS-5 CTM, and is a user's guide on to how to obtain and run simulations on the NCCS Discover platform. In addition, we provide information on how to change the model configuration input files to meet users' needs.

  3. 10-year record of atmospheric composition in the high Himalayas: source, transport and impact